I l@ve RuBoard |
1.13 The sys ModuleThe sys module provides a number of functions and variables that can be used to manipulate different parts of the Python runtime environment. 1.13.1 Working with Command-line ArgumentsThe argv list contains the arguments that were passed to the script, when the interpreter was started, as shown in Example 1-66. The first item contains the name of the script itself. Example 1-66. Using the sys Module to Get Script ArgumentsFile: sys-argv-example-1.py import sys print "script name is", sys.argv[0] if len(sys.argv) > 1: print "there are", len(sys.argv)-1, "arguments:" for arg in sys.argv[1:]: print arg else: print "there are no arguments!" script name is sys-argv-example-1.py there are no arguments! If you read the script from standard input (like "python < sys-argv-example-1.py"), the script name is set to an empty string. If you pass in the program as a string (using the -c option), the script name is set to "-c." 1.13.2 Working with ModulesThe path list contains a list of directory names in which Python looks for extension modules (Python source modules, compiled modules, or binary extensions). When you start Python, this list is initialized from a mixture of built-in rules, the contents of the PYTHONPATH environment variable, and the registry contents (on Windows). But since it's an ordinary list, you can also manipulate it from within the program, as Example 1-67 shows. Example 1-67. Using the sys Module to Manipulate the Module Search PathFile: sys-path-example-1.py import sys print "path has", len(sys.path), "members" # add the sample directory to the path sys.path.insert(0, "samples") import sample # nuke the path sys.path = [] import random # oops! path has 7 members this is the sample module! Traceback (innermost last): File "sys-path-example-1.py", line 11, in ? import random # oops! ImportError: No module named random Example 1-68 demonstrates the builtin_module_names list, which contains the names of all modules built into the Python interpreter. Example 1-68. Using the sys Module to Find Built-in ModulesFile: sys-builtin-module-names-example-1.py import sys def dump(module): print module, "=>", if module in sys.builtin_module_names: print "<BUILTIN>" else: module = _ _import_ _(module) print module._ _file_ _ dump("os") dump("sys") dump("string") dump("strop") dump("zlib") os => C:\python\lib\os.pyc sys => <BUILTIN> string => C:\python\lib\string.pyc strop => <BUILTIN> zlib => C:\python\zlib.pyd The modules dictionary contains all loaded modules. The import statement checks this dictionary before it actually loads something from disk. As you can see from Example 1-69, Python loads quite a bunch of modules before handing control over to your script. Example 1-69. Using the sys Module to Find Imported ModulesFile: sys-modules-example-1.py import sys print sys.modules.keys() ['os.path', 'os', 'exceptions', '_ _main_ _', 'ntpath', 'strop', 'nt', 'sys', '_ _builtin_ _', 'site', 'signal', 'UserDict', 'string', 'stat'] 1.13.3 Working with Reference CountsThe getrefcount function (shown in Example 1-70) returns the reference count for a given object—that is, the number of places where this variable is used. Python keeps track of this value, and when it drops to 0, the object is destroyed. Example 1-70. Using the sys Module to Find the Reference CountFile: sys-getrefcount-example-1.py import sys variable = 1234 print sys.getrefcount(0) print sys.getrefcount(variable) print sys.getrefcount(None) 50 3 192 Note that this value is always larger than the actual count, since the function itself hangs on to the object while determining the value. 1.13.4 Checking the Host PlatformExample 1-71 shows the platform variable, which contains the name of the host platform. Example 1-71. Using the sys Module to Find the Current PlatformFile: sys-platform-example-1.py import sys # # emulate "import os.path" (sort of)... if sys.platform == "win32": import ntpath pathmodule = ntpath elif sys.platform == "mac": import macpath pathmodule = macpath else: # assume it's a posix platform import posixpath pathmodule = posixpath print pathmodule Typical platform names are win32 for Windows 9X/NT and mac for Macintosh. For Unix systems, the platform name is usually derived from the output of the "uname -r" command, such as irix6, linux2, or sunos5 (Solaris). 1.13.5 Tracing the ProgramThe setprofiler function allows you to install a profiling function. This is called every time a function or method is called, at every return (explicit or implied), and for each exception. Let's look at Example 1-72. Example 1-72. Using the sys Module to Install a Profiler FunctionFile: sys-setprofiler-example-1.py import sys def test(n): j = 0 for i in range(n): j = j + i return n def profiler(frame, event, arg): print event, frame.f_code.co_name, frame.f_lineno, "->", arg # profiler is activated on the next call, return, or exception sys.setprofile(profiler) # profile this function call test(1) # disable profiler sys.setprofile(None) # don't profile this call test(2) call test 3 -> None return test 7 -> 1 The profile module provides a complete profiler framework, based on this function. The settrace function in Example 1-73 is similar, but the trace function is called for each new line: Example 1-73. Using the sys Module to Install a trace FunctionFile: sys-settrace-example-1.py import sys def test(n): j = 0 for i in range(n): j = j + i return n def tracer(frame, event, arg): print event, frame.f_code.co_name, frame.f_lineno, "->", arg return tracer # tracer is activated on the next call, return, or exception sys.settrace(tracer) # trace this function call test(1) # disable tracing sys.settrace(None) # don't trace this call test(2) call test 3 -> None line test 3 -> None line test 4 -> None line test 5 -> None line test 5 -> None line test 6 -> None line test 5 -> None line test 7 -> None return test 7 -> 1 The pdb module provides a complete debugger framework, based on the tracing facilities offered by this function. 1.13.6 Working with Standard Input and OutputThe stdin, stdout, and stderr variables contain stream objects corresponding to the standard I/O streams. You can access them directly if you need better control over the output than print can give you. You can also replace them, if you want to redirect output and input to some other device, or process them in some non-standard way, as shown in Example 1-74. Example 1-74. Using the sys Module to Redirect OutputFile: sys-stdout-example-1.py import sys import string class Redirect: def _ _init_ _(self, stdout): self.stdout = stdout def write(self, s): self.stdout.write(string.lower(s)) # redirect standard output (including the print statement) old_stdout = sys.stdout sys.stdout = Redirect(sys.stdout) print "HEJA SVERIGE", print "FRISKT HUM\303\226R" # restore standard output sys.stdout = old_stdout print "M\303\205\303\205\303\205\303\205L!" heja sverige friskt hum\303\266r M\303\205\303\205\303\205\303\205L! An object that implements the write method is all it takes to redirect output. (Unless it's a C type instance, that is: Python uses an integer attribute called softspace to control spacing, and adds it to the object if it isn't there. You don't have to bother if you're using Python objects, but if you need to redirect to a C type, you should make sure that type supports the softspace attribute.) 1.13.7 Exiting the ProgramWhen you reach the end of the main program, the interpreter is automatically terminated. If you need to exit in midflight, you can call the sys.exit function, which takes an optional integer value that is returned to the calling program. It is demonstrated in Example 1-75. Example 1-75. Using the sys Module to Exit the ProgramFile: sys-exit-example-1.py import sys print "hello" sys.exit(1) print "there" hello It may not be obvious, but sys.exit doesn't exit at once. Instead, it raises a SystemExit exception. This means that you can trap calls to sys.exit in your main program, as Example 1-76 shows. Example 1-76. Catching the sys.exit CallFile: sys-exit-example-2.py import sys print "hello" try: sys.exit(1) except SystemExit: pass print "there" hello there If you want to clean things up after yourself, you can install an "exit handler," which is a function that is automatically called on the way out. This is shown in Example 1-77. Example 1-77. Catching the sys.exit Call Another WayFile: sys-exitfunc-example-1.py import sys def exitfunc(): print "world" sys.exitfunc = exitfunc print "hello" sys.exit(1) print "there" # never printed hello world In Python 2.0, you can use the atexit module to register more than one exit handler. |
I l@ve RuBoard |