ALGEBRA

SETS, SYMBOLS, AND THE
LANGUAGE OF THOUGHT






B
]

THE HISTORY-OF
MATHEMATICS

ALGEBRA

SETS, SYMBOLS, AND THE
LANGUAGE OF THOUGHT

Fobn Tabak, Ph.D.

w@
Facts On File, Inc.



ALGEBRA: Sets, Symbols, and the Language of Thought
Copyright © 2004 by John Tabak, Ph.D.
Permissions appear after relevant quoted material.

All rights reserved. No part of this book may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval systems, without permission in writing from the pub-
lisher. For information contact:

Facts On File, Inc.
132 West 3 1st Street
New York NY 10001

Library of Congress Cataloging-in-Publication Data
Tabak, John.
Algebra : sets, symbols, and the language of thought / John Tabak.
p. cm. — (History of mathematics)
Includes bibliographical references and index.
ISBN 0-8160-4954-8 (hardcover)
1. Algebra—History. I. Title.
QA151.T33 2004
512—dc222003017338

Facts On File books are available at special discounts when purchased in bulk quanti-
ties for businesses, associations, institutions or sales promotions. Please call our
Special Sales Department in New York at (212) 967-8800 or (800) 322-8755.

You can find Facts On File on the World Wide Web at http://www.factsonfile.com

Text design by David Strelecky
Cover design by Kelly Parr
Tllustrations by Sholto Ainslie

Printed in the United States of America
MPFOF 10987654321

This book is printed on acid-free paper.



1o Diane Haber, teacher, mathematician, and inspirator.






CONTENTS

Introduction: Algebra as Language

I

The First Algebras

Mesopotamia: The Beginnings of Algebra
Mesopotamians and Second-Degree Equations
The Mesopotamians and Indeterminate Equations
Clay Tablets and Electronic Calculators

Egyptian Algebra

Chinese Algebra

Rbetorical Algebra

Greek Algebra

The Discovery of the Pythagoreans
The Incommensurability of V2
Geometric Algebra

Algebra Made Visible

Diophantus of Alexandria

Algebra from India to Northern Africa
Brahmagupta and the New Algebra

Mahavira

Bhaskara and the End of an Era

Islamic Mathematics

Poetry and Algebra

Al-Khwarizmi and a New Concept of Algebra
A Problem and a Solution

Omar Khayyam, Islamic Algebra at Its Best
Leonardo of Pisa

o I W o

10
12
16

18
19
24
25
27
31

35
38

42
44
46
47
50
53
54
59



4 Algebra as a Theory of Equations 60

The New Algorithms 63
Algebra as a Tool in Science 69
Francois Viete, Algebra as a Symbolic Language 71
Thomas Harriot 75
Albert Girard and the Fundamental Theorem of Algebra 79
Further Attempts at a Proof 83
Using Polynomials 88
5 Algebra in Geometry and Analysis 91
René Descartes 95
Descartes on Multiplication 98
Pierre de Fermat 102
Fermat’s Last Theorem 105
The New Approach 106
6 The Search for New Structures 110
Niels Henrik Abel 112
Evariste Galois 114
Galois Theory and the Doubling of the Cube 117
Doubling the Cube with a Straightedge and
Compass Is Impossible 120
The Solution of Algebraic Equations 122
Group Theory in Chemistry 127
7 The Laws of Thought 130
Aristotle 130
Gottfried Leibniz 133
George Boole and the Laws of Thought 137
Boolean Algebra 141
Aristotle and Boole 144
Refining and Extending Boolean Algebra 146

Boolean Algebra and Computers 149



8 'The Theory of Matrices and Determinants 153

Early Ideas

Spectral Theory

The Theory of Matrices

Matrix Multiplication

A Computational Application of Matrix Algebra
Matrices in Ring Theory

Chronology
Glossary
Further Reading
Index

155
159
166
172
175
177

179
197
203
213






INTRODUCTION

ALGEBRA AS LANGUAGE
algebra n.

1. a generalization of arithmetic in which letters representing
numbers are combined according to the rules of arithmetic

2. any of various systems or branches of mathematics or logic
concerned with the properties and relationships of abstract enti-
ties (as complex numbers, matrices, sets, vectors, groups, rings,
or fields) manipulated in symbolic form under operations often
analogous to those of arithmetic

(By permission. From Merriam-Webster’s Collegiate Dictionary,
10th ed. © Springfield, Mass.: Merriam-Webster, 2002)

Algebra is one of the oldest of all branches of mathematics. Its
history is as long as the history of civilization, perhaps longer. The
well-known historian of mathematics B. L. van der Waerden
believed that there was a civilization that preceded the ancient
civilizations of Mesopotamia, Egypt, China, and India and that it
was this civilization that was the root source of most early mathe-
matics. This hypothesis is based on two observations: First, there
were several common sets of problems that were correctly solved
in each of these widely separated civilizations. Second, there was an
important incorrectly solved problem that was common to all of
these lands. Currently there is not enough evidence to prove
or disprove his idea. We can be sure, however, that algebra was
used about 4,000 years ago in Mesopotamia. We know that
some remarkably similar problems, along with their algebraic
solutions, can be found on Egyptian papyri, Chinese paper, and
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Mesopotamian clay tablets. We can be sure that algebra was
one of the first organized intellectual activities carried out by
these early civilizations. Algebra, it seems, is as essential and as
“natural” a human activity as art, music, or religion.

No branch of mathematics has changed more than algebra.
Geometry, for example, has a history that is at least as old as that
of algebra, and although geometry has changed a lot over the
millennia, it still feels geometric. A great deal of geometry is still
concerned with curves, surfaces, and forms. Many contemporary
books and articles on geometry, as their ancient counterparts did,
include pictures, because modern geometry, as the geometry of
these ancient civilizations did, still appeals to our intuition and
to our experience with shapes. It is very doubtful that Greek
geometers, who were the best mathematicians of antiquity,
would have understood the ideas and techniques used by
contemporary geometers. Geometry has changed a great deal
during the intervening millennia. Still, it is at least probable that
those ancient Greeks would have recognized modern geometry
as a kind of geometry.

The same cannot be said of algebra, in which the subject matter
has changed entirely. Four thousand years ago, for example,
Mesopotamian mathematicians were solving problems like this:

Given the area and perimeter of a plot of rectangular land, find
the dimensions of the plot.

This type of problem seems practical; it is not. Despite the refer-
ence to a plot of land, this is a fairly abstract problem. It has little
practical value. How often, after all, could anyone know the area
and perimeter of a plot of land without first knowing its dimen-
sions? So we know that very early in the history of algebra there was
a trend toward abstraction, but it was a different kind of abstraction
than what pervades contemporary algebra. Today mathematicians
want to know how algebra “works.” Their goal is to understand
the logical structure of algebraic systems. The search for these
logical structures has occupied much of the last hundred years of
algebraic research. Today mathematicians who do research in the
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field of algebra often focus their attention on the mathematical
structure of sets on which one or more abstract operations have
been defined—operations that are somewhat analogous to addi-
tion and multiplication.

We can illustrate the difference between modern algebra and
ancient algebra by briefly examining a very important subfield of
contemporary algebra. It is called group theory, and its subject is
the mathematical group. Roughly speaking, a group is a set of
objects on which a single operation, somewhat similar to ordinary
multiplication, is defined. Investigating the mathematical proper-
ties of a particular group or class of groups is a very different kind
of undertaking from solving the rectangular-plots-of-land prob-
lem described earlier. The most obvious difference is that group
theorists study their groups without reference to any nonmathe-
matical object—such as a plot of land or even a set of numbers—
that the group might represent. Group theory is solely about
(mathematical) groups. It can be a very inward looking discipline.
By way of contrast with the land problem, we include here a
famous statement about finite groups. (A finite group is a group
with only finitely many elements.) The following statement was
first proved by the French mathematician Augustin-Louis Cauchy
(1789-1857):

Let the letter G denote a finite group. Let N represent the
number of elements in G. Let p represent a prime number.
If p (evenly) divides N then G has an element of order p.

You can see that the level of abstraction is much higher in this
statement than in the rectangular-plot-of-land problem. To many
well-educated laypersons it is not even clear what the statement
means or even whether it means anything at all.

Ancient mathematicians, as would most people today, would
have had a difficult time seeing what group theory, one of the
most important branches of contemporary mathematical
research, and the algebraic problems of antiquity have in com-
mon. In many ways, algebra, unlike geometry, has evolved into
something completely new.
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As algebra has become more abstract, it has also become more
important in the solution of practical problems. Today it is an
indispensable part of every branch of mathematics. The sort of
algebraic notation that we begin to learn in middle school—“let «
represent the variable”’—can be found at a much higher level and
in a much more expressive form throughout all contemporary
mathematics. Furthermore it is now an important and widely uti-
lized tool in scientific and engineering research. It is doubtful that
the abstract algebraic ideas and techniques so familiar to mathe-
maticians, scientists, and engineers can even be separated from the
algebraic language in which those ideas are expressed. Algebra is
everywhere.

This book begins its story with the first stirrings of algebra in
ancient civilizations and traces the subject’s development up to
modern times. Along the way, it examines how algebra has been
used to solve problems of interest to the wider public. The book’s
objective is to give the reader a fuller appreciation of the intellec-
tual richness of algebra and of its ever-increasing usefulness in all
of our lives.



THE FIRST ALGEBRAS

Mesopotamian ziggurat at Ur. For more than two millennia Mesopotamia
was the most mathematically advanced culture on Earth. (The Image Works)

How far back in time does the history of algebra begin? Some
scholars begin the history of algebra with the work of the Greek
mathematician Diophantus of Alexandria (ca. third century A.D.).
It is easy to see why Diophantus is always included. His works
contain problems that most modern readers have no difficulty rec-
ognizing as algebraic.

Other scholars begin much earlier than the time of Diophantus.
They believe that the history of algebra begins with the mathe-
matical texts of the Mesopotamians. The Mesopotamians were a
people who inhabited an area that is now inside the country of
Iraq. Their written records begin about 5,000 years ago in the
city-state of Sumer. The Sumerian method of writing, called
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cuneiform, spread throughout the region and made an impact that
outlasted the nation of Sumer. The last cuneiform texts, which
were written about astronomy, were made in the first century A.D.,
about 3,000 years after the Sumerians began to represent their
language with indentations in clay tablets. The Mesopotamians
were one of the first, perhaps the first, of all literate civilizations,
and they remained at the forefront of the world’s mathematical
cultures for well over 2,000 years. Since the 19th century, when
archaeologists began to unearth the remains of Mesopotamian
cities in search of clues to this long-forgotten culture, hundreds of
thousands of their clay tablets have been recovered. These include
a number of mathematics tablets. Some tablets use mathematics to
solve scientific and legal problems—for example, the timing of an
eclipse or the division of an estate. Other tablets, called problem
texts, are clearly designed to serve as “textbooks.”

Mesopotamia: The Beginnings of Algebra

We begin our history of algebra with the Mesopotamians. Not
everyone believes that the Mesopotamians knew algebra. That
they were a mathematically sophisticated people is beyond doubt.
They solved a wide variety of mathematical problems, some of
which would challenge a well-educated layperson of today. The
difficulty in determining whether the Mesopotamians knew any
algebra arises not in what the Mesopotamians did—because their
mathematics is well documented—but in how they did it.
Mesopotamian mathematicians solved many important problems
in ways that were quite different from the way we would solve
those same problems. Many of the problems that were of interest
to the Mesopotamians we would solve with algebra.

Although they spent thousands of years solving equations, the
Mesopotamians had little interest in a general theory of equations.
Moreover, there is little algebraic language in their methods of
solution. Mesopotamian mathematicians seem to have learned
mathematics simply by studying individual problems. They moved
from one problem to the next and thereby advanced from the sim-
ple to the complex in much the same way that students today
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might learn to play the piano. An aspiring piano student might
begin with “Old McDonald” and after much practice master the
works of Frédéric Chopin. Ambitious piano students can learn the
theory of music as they progress in their musical studies, but there
is no necessity to do so—not if their primary interest is in the area
of performance. In a similar way, Mesopotamian students began
with simple arithmetic and advanced to problems that we would
solve with, for example, the quadratic formula. They did not seem
to feel the need to develop a theory of equations along the way.
For this reason Mesopotamian mathematics is sometimes called
protoalgebra or arithmetic algebra or numerical algebra. Their
work is an important first step in the development of algebra.

It is not always easy to appreciate the accomplishments of the
Mesopotamians and other ancient cultures. One barrier to our
appreciation emerges when we express their ideas in our notation.
When we do so it can be difficult for us to see why they had to
work so hard to obtain a solution. The reason for their difficulties,
however, is not hard to identify. Our algebraic notation is so pow-
erful that it makes problems that were challenging to them appear
almost trivial to us. Mesopotamian problem texts, the equivalent
of our school textbooks, generally consist of one or more problems
that are communicated in the following way: First, the problem is
stated; next, a step-by-step algorithm or method of solution is
described; and, finally, the presentation concludes with the answer
to the problem. The algorithm does not contain “equals signs” or
other notational conveniences. Instead it consists of one terse
phrase or sentence after another. The lack of symbolic notation is
one important reason the problems were so difficult for them to
solve.

The Mesopotamians did use a few terms in a way that would
roughly correspond to our use of an abstract notation. In particu-
lar they used the words length and width as we would use the vari-
ables x and y to represent unknowns. The product of the length
and width they called ares. We would write the product of x and y
as xy. Their use of the geometric words length, width, and area,
however, does not indicate that they were interpreting their work
geometrically. We can be sure of this because in some problem
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texts the reader is advised to perform operations that involve mul-
tiplying Jength and width to obtain area and then adding (or sub-
tracting) a Jength or a width from an area. Geometrically, of course,
this makes no sense. To see the difference between the brief, to-
the-point algebraic symbolism that we use and the very wordy
descriptions of algebra used by all early mathematical cultures, and
the Mesopotamians in particular, consider a simple example.
Suppose we wanted to add the difference x — y to the product xy.
We would write the simple phrase

Xy +x-—y

In this excerpt from an actual Mesopotamian problem text, the
short phrase xy + x — y is expressed this way, where the words length
and width are used in the same way our variables, x and y, are used:

Length, width. I have multiplied length and width, thus obtain-
ing the area. Next I added to the area the excess of the length
over the width.

(Van der Waerden, B. L. Geometry and Algebra in Ancient
Civilizations. New York: Springer-Verlag, 1983. Page 72. Used with

permission)

Despite the lack of an easy-to-use symbolism, Mesopotamian
methods for solving algebraic equations were extremely advanced
for their time. They set a sort of world standard for at least 2,000
years. Translations of the Mesopotamian algorithms, or methods of
solution, can be difficult for the modern reader to appreciate, how-
ever. Part of the difficulty is associated with their complexity. From
our point of view, Mesopotamian algorithms sometimes appear
unnecessarily complex given the relative simplicity of the problems
that they were solving. The reason is that the algorithms contain
numerous separate procedures for what the Mesopotamians per-
ceived to be different types of problems; each type required a dif-
ferent method. Our understanding is different from that of the
Mesopotamians: We recognize that many of the different “types”
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of problems perceived by the Mesopotamians can be solved with
just a few different algorithms. An excellent example of this phe-
nomenon is the problem of solving second-degree equations.

Mesopotamians and Second-Degree Equations

There is no better example of the difference between modern
methods and ancient ones than the difference between our
approach and their approach to solving second-degree equations.
(These are equations involving a polynomial in which the highest
exponent appearing in the equation is 2.) Nowadays we under-
stand that all second-degree equations are of a single form:

ax’ +bx +c=0

where 4, b, and ¢ represent numbers and x is the unknown whose
value we wish to compute. We solve all such equations with a sin-
gle very powerful algorithm—a method of solution that most stu-
dents learn in high school—called the quadratic formula. The
quadratic formula allows us to solve these problems without giv-
ing much thought to either the size or the sign of the numbers
represented by the letters 4, 4, and ¢. For a modern reader it hard-
ly matters. The Mesopotamians, however, devoted a lot of energy
to solving equations of this sort, because for them there was not
one form of a second-degree equation but several. Consequently,
there could not be one method of solution. Instead the
Mesopotamians required several algorithms for the several differ-
ent types of second-degree equations that they perceived.

"The reason they had a more complicated view of these problems
is that they had a much narrower concept of number than we do.
They did not accept negative numbers as “real,” although they must
have run into them at least occasionally in their computations. The
price they paid for avoiding negative numbers was a more compli-
cated approach to what we perceive as essentially a single problem.
The approach they took depended on the exact values of 4, 4, and .

"Today we have a much broader idea of what constitutes a number.
We use negative numbers, irrational numbers, and even imaginary
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numbers. We accept all such numbers as solutions to second-degree
equations, but all of this is a relatively recent historical phenomenon.
Because we have such a broad idea of number we are able to solve
all second-degree algebraic equations with the quadratic formula, a
one-size-fits-all method of solution. By contrast the Mesopotamians
perceived that there were three basic types of second-degree equa-
tions. In our notation we would write these equations like this:

x>+ bx=c
X’ +c=bx
x> =bx +¢

where, in each equation, / and ¢ represent positive numbers. This
approach avoids the “problem” of the appearance of negative
numbers in the equation. The first job of any scribe or mathe-
matician was to reduce or “simplify” the given second-degree
equation to one of the three types listed. Once this was done, the
appropriate algorithm could be employed for that type of equation
and the solution could be found.

In addition to second-degree equations the Mesopotamians
knew how to solve the much easier first-degree equations. We call
these linear equations. In fact, the Mesopotamians were advanced
enough that they apparently considered these equations too sim-
ple to warrant much study. We would write a first-degree equation
in the form

ax+b=20

where # and b are numbers and « is the unknown.

They also had methods for finding accurate approximations for
solutions to certain third-degree and even some fourth-degree
equations. (Third- and fourth-degree equations are polynomial
equations in which the highest exponents that appear are 3 and 4,
respectively.) They did not, however, have a general method for
finding the precise solutions to third- and fourth-degree equations.
Algorithms that enable one to find the exact solutions to equations
of the third and fourth degrees were not developed until about 450
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years ago. What the Mesopotamians discovered instead were meth-
ods for developing approximations to the solutions. From a practical
point of view an accurate approximation is usually as good as an
exact solution, but from a mathematical point of view the two are
quite different. The distinctions that we make between exact and
approximate solutions were not important to the Mesopotamians.
They seemed completely satistied as long as their approximations
were accurate enough for the applications that they had in mind.

The Mesopotamians and Indeterminate Equations

In modern notation an indeterminate equation—that is, an equa-
tion with many different solutions—is usually easy to
recognize. If we have one
equation and more than one
unknown then the equation is
generally indeterminate. For
the Mesopotamians geometry
was a source of indeterminate
equations. One of the most
famous examples of an
indeterminate equation from
Mesopotamia can be expressed
in our notation as

Ky =2

The fact that that we have
three variables but only one
equation is a good indicator
that this equation is indeter-
minate. And so it is. Geomet-
rically we can interpret this
equation as the Pythagorean

Cuneiform tablet, Plimpton 322.
This tablet is the best known of all
Mesopotamian mathematical tablets;
its meaning is still a subject of schol-

theorem, which states that for
a right triangle the square of
the length of the hypotenuse

arly debate. (Plimpton 322, Rare
Book and Manuscript Library,
Columbia University)
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CLAY TABLETS AND ELECTRONIC CALCULATORS

The positive square root of the
positive number a—usually
written as Va—is the positive
number with the property that
if we multiply it by itself we
obtain a. Unfortunately, writing
the square root of a as Va
does not tell us what the num-
ber is. Instead, it tells us what
Ja does: If we square Va we
get a.

Some square roots are
easy to write. In these cases
the square root sign, v, is not
really necessary. For example,  Calculator. Many electronic calcula-

2 is the square root of 4, and  tors use the square root algorithm
3 is the square root of 9. In  pioneered by the Mesopotamians.
symbols we could write 2 = (CORBIS)

V4 and 3 = V9 but few of us

bother.

The situation is a little more complicated, however, when we want to
know the square root of 2, for example. How do we find the square root
of 2? It is not an especially easy problem to solve. It is, however, equiv-
alent to finding the solution of the second-degree equation

X¥-2=0

Notice that when the number V2 is substituted for x in the equation we
obtain a true statement. Unfortunately, this fact does not convey much
information about the size of the number we write as V2.

The Mesopotamians developed an algorithm for computing square
roots that yields an accurate approximation for any positive square

(here represented by z?) equals the sum of the squares of the
lengths of the two remaining sides. The Mesopotamians knew this
theorem long before the birth of Pythagoras, however, and their
problem texts are replete with exercises involving what we call the
Pythagorean theorem.
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root. (As the Mesopotamians did, we will consider only positive square
roots.) For definiteness, we will apply the method to the problem of
calculating V2.

The Mesopotamians used what we now call a recursion algorithm to
compute square roots. A recursion algorithm consists of several steps.
The output of one step becomes the input for the next step. The more
often one repeats the process—that is, the more steps one takes—the
closer one gets to the exact answer. To get started, we need an “input”
for the first step in our algorithm. We can begin with a guess; they did.
Almost any guess will do. After we input our initial guess we just repeat
the process over and over again until we are as close as we want to be.
In a more or less modern notation we can represent the Mesopotamian
algorithm like this:

OUTPUT = 1/2(INPUT + 2/INPUT)

(If we wanted to compute \/5, for example, we would only have to
change 2/INPUT into 5/INPUT. Everything else stays the same.)

If, at the first step, we use 1.5 as our input, then our output is 1.416
because

1.416 = 1/2(1.5 + 2/1.5)
At the end of the second step we would have
1.414215. .. = 1/2(1.416 + 2/1.416)

as our estimate for V2. We could continue to compute more steps in the
algorithm, but after two steps (and with the aid of a good initial guess)
our approximation agrees with the actual value of V2 up to the millionth
place—an estimate that is close enough for many practical purposes.

What is especially interesting about this algorithm from a modern
point of view is that it is probably the one that your calculator uses to
compute square roots. The difference is that instead of representing the
algorithm on a clay tablet, the calculator represents the algorithm on an
electronic circuit! This algorithm is as old as civilization.

The Pythagorean theorem is usually encountered in high school
or junior high in a problem in which the length of two sides of a
right triangle are given and the student has to find the length of
the third side. The Mesopotamians solved problems like this as
well, but the indeterminate form of the problem—with its three
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unknowns rather than one—is a little more challenging. The inde-
terminate version of the problem consists of identifying what we
now call Pythagorean triples. These are solutions to the equation
given here that involve only whole numbers.

There are infinitely many Pythagorean triples, and Mesopotamian
mathematicians exercised considerable ingenuity and mathematical
sophistication in finding solutions. They then compiled these whole
number solutions in tables. Some simple examples of Pythagorean
triples include (3, 4, 5) and (5, 12, 13), where in our notation, taken
from a preceding paragraph, z = 5 in the first triple and z = 13 in the
next triple. (The numbers 3 and 4 in the first triple, for example, can
be placed in either of the remaining positions in the equation and the
statement remains true.)

The Mesopotamians did not indicate the method that they used
to find these Pythagorean triples, so we cannot say for certain how
they found these triples. Of course a few correct triples could be
attributed to lucky guesses. We can be sure, however, that the
Mesopotamians had a general method worked out because their
other solutions to the problem of finding Pythagorean triples
include (2,700, 1,771, 3,229), (4,800, 4,601, 6,649), and (13,500,
12,709, 18,541).

The search for Pythagorean triples occupied mathematicians in
different parts of the globe for millennia. A very famous generaliza-
tion of the equation we use to describe Pythagorean triples was pro-
posed by the 17th-century French mathematician Pierre de Fermat.
His conjecture about the nature of these equations, called Fermat’s
last theorem, occupied the attention of mathematicians right up to
the present time and was finally solved only recently; we will describe
this generalization later in this volume. Today the mathematics for
generating all Pythagorean triples is well known but not especially
easy to describe. That the mathematicians in the first literate culture
in world history should have solved the problem is truly remarkable.

Egyptian Algebra

Little is left of Egyptian mathematics. The primary sources are a
tew papyri, the most famous of which is called the Ahmes papyrus,
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The Abmes papyrus, also known as the Rhind papyrus, contains much
of what is known about ancient Egyptian mathematics. (© The British
Museum)

and the first thing one notices about these texts is that the
Egyptians were not as mathematically adept as their neighbors and
contemporaries the Mesopotamians—at least there is no indica-
tion of a higher level of attainment in the surviving records. It
would be tempting to concentrate exclusively on the
Mesopotamians, the Chinese, and the Greeks as sources of early
algebraic thought. We include the Egyptians because Pythagoras,
who is an important figure in our story, apparently received at least
some of his mathematical education in Egypt. So did Thales,
another very early and very important figure in Greek mathemat-
ics. In addition, certain other peculiar characteristics of Egyptian
mathematics, especially their penchant for writing all fractions as
sums of what are called unit fractions, can be found in several cul-
tures throughout the region and even as far away as China. (A unit
fraction is a fraction with a 1 in the numerator.) None of these
commonalities proves that Egypt was the original source of a lot
of commonly held mathematical ideas and practices, but there are
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indications that this is true. The Greeks, for example, claimed that
their mathematics originated in Egypt.

Egyptian arithmetic was considerably more primitive than that
of their neighbors the Mesopotamians. Even multiplication was
not treated in a general way. To multiply two numbers together
they used a method that consisted of repeatedly doubling one of
the numbers and then adding together some of the intermediate
steps. For example, to compute 5 x 80, first find 2 x 80 and then
double the result to get 4 x 80. Finally, 1 x 80 would be added to
4 x 80 to get the answer, 5 X 80. This method, though it works, is
awkward.

Egyptian algebra employed the symbol heap for the unknown.
Problems were phrased in terms of “heaps” and then solved. To
paraphrase a problem taken from the most famous of Egyptian
mathematical texts, the Ahmes papyrus: If 1 heap and 1/7 of a heap
together equal 19, what is the value of the heap? (In our notation
we would write the corresponding equation as x + x/7 = 19.) This
type of problem yields what we would call a linear equation. It is
not the kind of exercise that attracted much attention from
Mesopotamian mathematicians, who were concerned with more
difficult problems, but the Egyptians apparently found them chal-
lenging enough to be worth studying.

What is most remarkable about Egyptian mathematics is that it
seemed to be adequate for the needs of the Egyptians for thou-
sands of years. Egyptian culture is famous for its stunning archi-
tecture and its high degree of social organization and stability.
These were tremendous accomplishments, and yet the Egyptians
seem to have accomplished all of this with a very simple mathe-
matical system, a system with which they were apparently quite
satisfied.

Chinese Algebra

The recorded history of Chinese mathematics begins in the Han
dynasty, a period that lasted from 206 B.C.E. until 220 C.E. Records
from this time are about 2,000 years younger than many
Mesopotamian mathematics texts. What we find in these earliest
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of records of Chinese mathematics is that Chinese mathemati-
cians had already developed an advanced mathematical culture. It
would be interesting to know when the Chinese began to devel-
op their mathematics and how their ideas changed over time, but
little is known about mathematics in China before the founding
of the Han dynasty. This lack of knowledge is the result of a
deliberate act. The first emperor of China, Qin Shi Huang, who
died in the year 210 B.C.E., ordered that all books be burned. This
was done. The book burners were diligent. As a consequence, lit-
tle information is available about Chinese mathematical thought
before 206 B.C.E.

One of the first and certainly the most important of all early
Chinese mathematical texts is Nine Chapters on the Mathematical
Art, or the Nine Chapters for short. (It is also known as Arithmetic
in Nine Sections.) The mathematics in the Nine Chapters is already
fairly sophisticated, comparable with the mathematics of
Mesopotamia. The Nine Chapters has more than one author and is
based on a work that survived, at least in part, the book burning
campaign of the emperor Qin Shi Huang. Because it was exten-
sively rewritten and enlarged knowing what the original text was
like is difficult. In any case, because the book was rewritten during
the Han dynasty, it is one of the earliest extant Chinese mathe-
matical texts. It is also one of the best known. It was used as a math
text for generations, and it has served as an important source of
inspiration for Chinese mathematicians.

In its final form the Nine Chapters consists of 246 problems on a
wide variety of topics. There are problems in taxation, surveying,
engineering, and geometry and methods of solution for determi-
nate and indeterminate equations alike. The tone of the text is
much more conversational than that adopted by the
Mesopotamian scribes. It is a nice example of what is now known
as rhetorical algebra. (Rbetorical algebra is algebra that is expressed
with little or no specialized algebraic notation.) Everything—the
problem, the solution, and the algorithm that is used to obtain the
solution—is expressed in words and numbers, not in mathematical
symbols. There are no “equals” signs, no x’s to represent
unknowns, and none of the other notational tools that we use
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when we study algebra. Most of us do not recognize what a great
advantage algebraic notation is until after we read problems like
those in the Nine Chapters. These problems make for fairly diffi-
cult reading for the modern reader precisely because they are
expressed without the algebraic symbolism to which we have
become accustomed. Even simple problems require a lot of
explanatory prose when they are written without algebraic nota-
tion. The authors of the Nine Chapters did not shy away from using
as much prose as was required.

Aside from matters of style, Mesopotamian problem texts and
the Nine Chapters have a lot in common. There is little in the way
of a general theory of mathematics in either one. Chinese and
Mesopotamian authors are familiar with many algorithms that
work, but they express little interest in proving that the algorithms
work as advertised. It is not clear why this is so. Later
Mesopotamian mathematicians, at least, had every opportunity to
become familiar with Greek mathematics, in which the idea of
proof was central. The work of their Greek contemporaries had
little apparent influence on the Mesopotamians. Some historians
believe that there was also some interaction between the Chinese
and Greek cultures, if not direct then at least by way of India. If
this was the case, then Chinese mathematics was not overly influ-
enced by contact with the Greeks, either. Perhaps the Chinese
approach to mathematics was simply a matter of taste. Perhaps
Chinese mathematicians (and their Mesopotamian counterparts)
had little interest in exploring the mathematical landscape in the
way that the Greeks did. Or perhaps the Greek approach was
unknown to the authors of the Nine Chapters.

Another similarity between Mesopotamian and Chinese mathe-
maticians lay in their use of approximations. As the
Mesopotamians did and the Greeks did not, Chinese mathemati-
cians made little distinction between exact results and good
approximations. And as their Mesopotamian counterparts did,
Chinese mathematicians developed a good deal of skill in obtain-
ing accurate approximations for square roots. Even the method of
conveying mathematical knowledge used by the authors of the
Nine Chapters is similar to that of the Mesopotamian scribes in
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their problem texts. Like the Mesopotamian texts, the Nine
Chapters is written as a straightforward set of problems. The prob-
lems are stated, as are the solutions, and an algorithm or “rule” by
which the reader can solve the given problem for himself or her-
self is described. There is little apparent concern for the founda-
tions of the subject. The mathematics in the Nine Chapters is not
higher mathematics in a modern sense; it is, instead, a highly
developed example of “practical” mathematics.

The authors of the Nine Chapters solved many determinate equa-
tions (see the sidebar Rhetorical Algebra for an example). They
were at home manipulating positive whole numbers, fractions, and
even negative numbers. Unlike the Mesopotamians, the Chinese
accepted the existence of negative numbers and were willing to
work with negative numbers to obtain solutions to the problems
that interested them. In fact, the Nine Chapters even gives rules for
dealing with negative numbers. This is important because negative
numbers can arise during the process of solving many different
algebraic problems even when the final answers are positive.
When one refuses to deal with negative numbers, one’s work
becomes much harder. In this sense the Chinese methods for solv-
ing algebraic equations were more adaptable and “modern” than
were the methods used by the Mesopotamians, who strove to
avoid negative numbers.

In addition to their work on determinate equations, Chinese
mathematicians had a deep and abiding interest in indeterminate
equations, equations for which there are more unknowns than
there are equations. As were the Mesopotamians, Chinese mathe-
maticians were also familiar with the theorem of Pythagoras and
used the equation (which we might write as & + y* = 2%) to pose
indeterminate as well as determinate problems. They enjoyed
finding Pythagorean triples just as the Mesopotamians did, and
they compiled their results just as the Mesopotamians did.

The algebras that developed in the widely separated societies
described in this chapter are remarkably similar. Many of the
problems that were studied are similar. The approach to problem
solving—the emphasis on algorithms rather than a theory of equa-
tions—was a characteristic that all of these cultures shared. Finally,



16 ALGEBRA

RHETORICAL ALGEBRA

The following problem is an example of Chinese rhetorical algebra taken
from the Nine Chapters. This particular problem is representative of the
types of problems that one finds in the Nine Chapters; it is also a good
example of rhetorical algebra, which is algebra that is expressed without
specialized algebraic notation.

In this problem the authors of the Nine Chapters consider three types
or “classes” of corn measured out in standard units called measures.
The corn in this problem, however, is not divided into measures; it is
divided into “bundles” The number of measures of corn in one bundle
depends on the class of corn considered. The goal of the problem is to
discover how many measures of corn constitute one bundle for each
class of corn. The method of solution is called the Rule. Here are the
problem and its solution:

There are three classes of corn, of which three bundles of the
first class, two of the second and one of the third make 39
measures. Two of the first, three of the second and one of the
third make 34 measures. And one of the first, two of the sec-
ond and three of the third make 26 measures. How many meas-
ures of grain are contained in one bundle of each class?

Rule. Arrange the 3, 2, and 1 bundles of the three classes
and the 39 measures of their grains at the right.

Arrange other conditions at the middle and at the left. With
the first class in the right column multiply currently the middle
column, and directly leave out.

Again multiply the next, and directly leave out.

Then with what remains of the second class in the middle
column, directly leave out.

Of the quantities that do not vanish, make the upper the fa,
the divisor, and the lower the shih, the dividend, i.e., the
dividend for the third class.

To find the second class, with the divisor multiply the measure
in the middle column and leave out of it the dividend for the third
class. The remainder, being divided by the number of bundles of
the second class, gives the dividend for the third class. To find
the second class, with the divisor multiply the measure in the
middle column and leave out of it the dividend for the third class.
The remainder, being divided by the number of bundles of the
second class, gives the dividend for the second class.
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To find the first class, also with the divisor multiply the meas-
ures in the right column and leave out from it the dividends for
the third and second classes. The remainder, being divided by
the number of bundles of the first class, gives the dividend for
the first class.

Divide the dividends of the three classes by the divisor, and
we get their respective measures.

(Mikami, Yoshio. The Development of Mathematics in China and Japan.
New York: Chelsea Publishing, 1913)

The problem, which is the type of problem often encountered in
junior high or high school algebra classes, is fairly difficult to read, but
only because the problem—and especially the solution—are expressed
rhetorically. In modern algebraic notation we would express the
problem with three variables. Let x represent a bundle for the first class
of corn, y represent a bundle for the second class of corn, and
z represent a bundle for the third class of corn. In our notation the prob-
lem would be expressed like this:

3x+2y+z=39
2x+3y+z=34
X+2y+3z=26

The answer is correctly given as 9 1/4 measures of corn in the first
bundle, 4 1/4 measures of corn in the second bundle, and 2 3/4 meas-
ures of grain in the third bundle.

Today this is not a particularly difficult problem to solve, but at the
time that the Nine Chapters was written this problem was for experts
only. The absence of adequate symbolism was a substantial barrier to
mathematical progress.

not one of the cultures developed a specialized set of algebraic
symbols to express their ideas. All these algebras were rhetorical.
There was one exception, however. That was the algebra that was
developed in ancient Greece.



GREEK ALGEBRA

Greek mathematics is fundamentally different from the mathemat-
ics of Mesopotamia and China. The unique nature of Greek math-
ematics seems to have been present right from the outset in the
work of Thales of Miletus (ca. 625 B.C.E.—ca. 546 B.C.E.) and
Pythagoras of Samos (ca. 582 B.C.E.—ca. 500 B.C.E.). In the begin-
ning, however, the Greeks were not solving problems that were any
harder than those of the Mesopotamians or the Chinese. In fact, the
Greeks were not interested in problem solving at all—at least not in
the sense that the Mesopotamian and Chinese mathematicians
were. Greek mathematicians for the most part did not solve prob-
lems in taxation, surveying, or the division of food. They were inter-
ested, instead, in questions about the nature of number and form.

It could be argued that Chinese and Mesopotamian mathemati-
cians were not really interested in these applications, either—that
they simply used practical problems to express their mathematical
insights. Perhaps they simply preferred to express their mathe-
matical ideas in practical terms. Perhaps, as it was for their Greek
counterparts, it was the mathematics and not the applications that
provided them with their motivation. Though possible, this expla-
nation is not entirely certain from their writings.

There is, however, no doubt about how the Greeks felt about
utilitarian mathematics. The Greeks did not—would not—express
their mathematical ideas through problems involving measures of
corn or the division of estates or any other practical language. They
must have known, just as the Mesopotamian and Chinese mathe-
maticians knew, that all of these fields are rich sources of mathe-
matical problems. To the Greeks this did not matter. The Greeks

18
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were interested in mathematics for the sake of mathematics. They
expressed their ideas in terms of the properties of numbers, points,
curves, planes, and geometric solids. Most of them had no interest
in applications of their subject, and in case anyone missed the point
they were fond of reciting the story about the mathematician
Euclid of Alexandria, who, when a student inquired about the util-
ity of mathematics, instructed his servant to give the student a few
coins so that he could profit from his studies. There are other sim-
ilar stories about other Greek mathematicians. Greek mathemati-
cians were the first of the “pure” mathematicians.

Another important difference between Greek mathematicians
and the mathematicians of other ancient cultures was the distinc-
tion that the Greeks made between exact and approximate results.
This distinction is largely absent from other mathematical cul-
tures of the time. In a practical sense, exact results are generally no
more useful than good approximations. Practical problems involve
measurements, and measurements generally involve some uncer-
tainty. For example, when we measure the length of a line segment
our measurement removes some of our uncertainty about the
“true” length of the segment, but some uncertainty remains. This
uncertainty is our margin of error. Although we can further reduce
our uncertainty with better measurements or more sophisticated
measurement techniques, we cannot eliminate all uncertainty. As a
consequence, any computations that depend on this measurement
must also reflect our initial imprecision about the length of the
segment. Our methods may be exact in the sense that if we had
exact data then our solution would be exact as well. Unfortunately,
exact measurements are generally not available.

The Greek interest in precision influenced not only the way
they investigated mathematics; it also influenced what they inves-
tigated. It was their interest in exact solutions that led to one of the
most profound discoveries in ancient mathematics.

The Discovery of the Pythagoreans

Pythagoras of Samos was one of the first Greek mathematicians.
He was extremely influential, although, as we will soon see, we
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cannot attribute any particular discoveries to him. As a young man
Pythagoras is said to have traveled widely. He apparently received
his mathematics education in Egypt and Mesopotamia. He may
have traveled as far east as India. Eventually he settled on the
southeastern coast of what is now Italy in the Greek city of
Cortona. (Although we tend to think of Greek civilization as situ-
ated within the boundaries of present-day Greece, there was a
time when Greek cities were scattered throughout a much larger
area along the Mediterranean Sea.)

Pythagoras was a mystic as well as a philosopher and mathe-
matician. Many people were attracted to him personally as well as
to his ideas. He founded a community in Cortona where he and
his many disciples lived communally. They shared property, ideas,
and credit for those ideas. No Pythagorean took individual credit
for a discovery, and as a consequence we cannot be sure which of
the discoveries attributed to Pythagoras were his and which were
his disciples’. For that reason we discuss the contributions of the
Pythagoreans rather than the contributions of Pythagoras himself.
There is, however, one point about Pythagoras about which we
can be sure: Pythagoras did not discover the Pythagorean theo-
rem. The theorem was known to Mesopotamian mathematicians
more than 30 generations before Pythagoras’s birth.

At the heart of Pythagorean philosophy was the maxim “All is
number.” There is no better example of this than their ideas about
music. They noticed that the
musical tones produced by a
String string could be described by
whole number ratios. They
investigated music with an
instrument called a mono-
chord, a device consisting of
one string stretched between
two supports. (The supports

The monochord, a device used by the hay have been attached FO a
Pythagoreans to investigate the rela- hollow box to prqduce a rich-
tionships that exist between musical er, more harmonious sound.)
pitches and mathematical ratios. The Pythagorean monochord
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had a third support that was slid back and forth under the string.
It could be placed anywhere between the two end supports.

The Pythagoreans discovered that when the third support divid-
ed the length of the string into certain whole number ratios, the
sounds produced by the two string segments were harmonious or
consonant. This observation indicated to them that music could
be described in terms of certain numerical ratios. They identified
these ratios and listed them. The ratios of the lengths of the two
string segments that they identified as consonant were 1:1, 1:2,
2:3, and 3:4. The ratio 1:1, of course, is the unison: Both string
segments are vibrating at the same pitch. The ratio 1:2 is what
musicians now call an octave. The ratio 2:3 is the perfect fifth, and
the ratio 3:4 is the perfect fourth.

The identification of these whole number ratios was profoundly
important to the Pythagoreans. The Pythagoreans believed that
the universe itself could be reduced to ratios of whole numbers.
They speculated that the same ratios that governed the mono-
chord governed the universe in general. They believed, for exam-
ple, that Earth and the five other known planets (Mercury, Venus,
Mars, Jupiter, and Saturn) as well as the Sun orbited a central fire
invisible to human eyes. They believed that distances from the
central fire to the planets and the Sun could also be described in
terms of whole number ratios. Nor was it just nature that the
Pythagoreans believed could be reduced to number. They also
believed that all mathematics could be expressed via whole num-
ber arithmetic.

The Pythagoreans worshipped numbers. It was part of their
beliefs that certain numbers were invested with special properties.
The number 4, for example, was the number of justice and retri-
bution. The number 1 was the number of reason. When they
referred to “numbers,” however, they meant on/y what we would
call positive, whole numbers, that is, the numbers belonging to the
sequence 1, 2, 3, . . . (Notice that the consonant tones of the
monochord were produced by dividing the string into simple whole
number ratios.) They did not recognize negative numbers, the
number 0, or any type of fraction as a number. Quantities that we
might describe with a fraction they would describe as a ratio
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between two whole numbers, and although we might not make a
distinction between a ratio and a fraction, we need to recognize
that they did. They only recognized ratios.

To the Pythagoreans the number 1 was the generator of all
numbers—by adding 1 to itself often enough they could obtain
every number (or at least every number as they understood the
concept). What we would use fractions to represent, they
described as ratios of sums of the number 1. A consequence of this
concept of number—coupled with their mystical belief that “all is
number”—is that everything in the universe can be generated
from the number 1. Everything, in the Pythagorean view, was in
the end a matter of whole number arithmetic. This idea, however,
was incorrect, and their discovery that their idea of number was
seriously flawed is one of the most important and far-reaching dis-
coveries in the history of mathematics.

"To understand the flaw in the Pythagorean idea of number we
turn to the idea of commensurability. We say that two line seg-
ments—we call them L, and L,—are commensurable, if there is a
third line segment—we call it L,—with the property that the
lengths L, and L, are whole number multiples of length L;. In this
sense L; is a “common measure” of L, and L,. For example, if seg-
ment L, is 2 units long and L, is 3 units long then we can take L,
to be 1 unit long, and we can use L; to measure (evenly) the
lengths of both L, and L,. The idea of commensurability agrees
with our intuition. It agrees with our experience. Given two line
segments we can always measure them and then find a line seg-
ment whose length evenly divides both. This idea is at the heart of
the Pythagorean concept of number, and that is why it came as
such a shock to discover that there existed pairs of line segments
that were incommensurable, that is, that there exist pairs of seg-
ments that share no common measure!

The discovery of incommensurability was a fatal blow to the
Pythagorean idea of number; that is why they are said to have tried
to hide the discovery. Happily knowledge of this remarkable fact
spread rapidly. Aristotle (384-332 B.C.E.) wrote about the concept
and described what is now a standard proof. Aristotle’s teacher,
Plato (ca. 428-347 B.C.E.), described himself as having lived as an



animal lives—that is, he lived
without reasoning—until he
learned of the concept.

It is significant that the
Greeks so readily accepted the
proof of the concept of
incommensurability because
that acceptance shows just
how early truly abstract rea-
soning began to dominate
Greek mathematical thinking.
They were willing to accept a
mathematical result that vio-
lated their worldview, their
everyday experience, and their
sense of aesthetics. They were
willing to accept the idea of
incommensurability because
it was a logical consequence of
other, previously established,
mathematical results. The
Greeks often expressed their
understanding of the concept
by saying that the length of a
diagonal of a square is incom-
mensurable with the length of
one of its sides.
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it

Two lengths are commensurable if
they are whole number multiples of a
third length. For example, segments
L, and L; are commensurable because
L,=2L,and L; = 3L,. Segment L,
is called a common measure of L,
and L;. Not every pair of lengths is
commensurable. The side of a square
and its diagonal share no common
measure; these segments are called
incommensurable.

Incommensurability is a perfect example of the kind of result
that distinguished Greek mathematical thought from the mathe-
matical thought of all other ancient cultures. In a practical sense
incommensurability is a “useless” concept. We can always find a
line segment whose length is so close to the length of the diagonal
of the square as to be indistinguishable from the diagonal, and we
can always choose this segment with the additional property that
its length and the length of a side of the square share a common
measure. In a practical sense, commensurable lengths are always

sufficient.
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THE INCOMMENSURABILITY OF /2

The proof that the length of a diagonal of a square whose sides are 1
unit long is incommensurable with the length of a side of the square is
one of the most famous proofs in the history of mathematics. The proof
itself is only a few lines long. (Note that a square whose side is 1 unit
long has a diagonal that is Y2 units long. This is just a consequence of
the Pythagorean theorem.) In modern notation the proof consists of
demonstrating that there do not exist natural numbers a and b such that
V2 equals a/b. The following nonexistence proof requires the reader to
know the following two facts:

1. If a® is divisible by 2 then a*/2 is even.
2. If b* (or &%) is divisible by 2 then b (or a) is even.

We begin by assuming the opposite of what we intend to prove: We
suppose that V2 js commensurable with 1—that is, we suppose that V2 can
be written as a fraction a/b where a and b are positive whole numbers. We
also assume—and this is critical—that the fraction a/b is expressed in lowest
terms. In particular, this means that a and b cannot both be even numbers.
It is okay if one is even. It is okay if neither is even, but both cannot be even
or our fraction would not be in lowest terms. (Notice that if we could find
integers such that V2 = a/b, and if the fraction were not in lowest terms
we could certainly reduce it to lowest terms. There is, therefore, no harm in
assuming that it is in lowest terms from the outset.) Here is the proof:

In a theoretical sense, however, the discovery of incommensura-
bility was an important insight into mathematics. It showed that
the Pythagorean idea that everything could be expressed in terms
of whole number ratios was flawed. It showed that the mathemat-
ical landscape is more complex than they originally perceived it to
be. It demonstrated the importance of rigor (as opposed to intu-
ition) in the search for mathematical truths. Greek mathemati-
cians soon moved away from Pythagorean concepts and toward a
geometric view of mathematics and the world around them. How
much of this was due to the discoveries of the Pythagoreans and
how much was due to the success of later generations of geome-
ters is not clear. In any case Greek mathematics does not turn back
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Suppose a/b = V2.

Now solve for b to get
aN2=b

Finally, square both sides.
a’2 =b?

This completes the proof. Now we have to read off what the last equa-
tion tells us. First, a* is evenly divisible by 2. (The quotient is b2)
Therefore, by fact 2, a is even. Second, since a%/2 is even (this follows
by fact 1) b>—which /s a*/2—is also even. Fact 2 enables us to conclude
that b is even as well. Since both a and b are even our assumption that
a/b is in lowest terms cannot be true. This is the contradiction that we
wanted. We have proved that a and b do not exist.

This proof resonated through mathematics for more than 2,000
years. It showed that intuition is not always a good guide to truth in
mathematics. It showed that the number system is considerably more
complicated than it first appeared. Finally, and perhaps unfortunately,
mathematicians learned from this proof to describe V2 and other sim-
ilar numbers in terms of what they are not: V2 is not expressible as a
fraction with whole numbers in the numerator and denominator.
Numbers like Y2 came to be called irrational numbers. A definition of
irrational numbers in terms of what they are would have to wait until
the late 19th century and the work of the German mathematician
Richard Dedekind.

toward the study of algebra as a separate field of study for about
700 years.

Geometric Algebra

The attempt by the Pythagoreans to reduce mathematics to the
study of whole number ratios was not successful, and Greek
mathematics soon shifted away from the study of number and
ratio and toward the study of geometry, the branch of mathemat-
ics that deals with points, curves, surfaces, solid figures, and their
spatial relationships. The Greeks did not study geometry only as
a branch of knowledge; they used it as a tool to study everything
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from astronomy to the law of the lever. Geometry became the
language that the Greeks used to describe and understand
the world about them. It should come as no surprise, then, that
the Greeks also learned to use the language of geometry to
express ideas that we learn to express algebraically. We call this
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ALGEBRA MADE VISIBLE

Today one of the first ideas
that students learn as they
begin to study algebra is that
“multiplication  distributes
over addition” This is called X
the distributive law and in
symbols it looks like this:

|<L>I<;>I

x(y +2) =xy+xz

Though most of us eventually Diagram of Euclid’s proof that xy +
succeed in learning this rule, XZ= x(y +2).

few of us could give a reason

why it might be true. The very

first proposition that Euclid proves in book Il of the Elements is exactly
this statement, but it is expressed in the language of geometrical alge-
bra. More than 2,000 years ago Euclid expresses the distributive law in
the following words:

If there be two straight lines, and one of them be cut into any
number of segments whatever, the rectangle contained by the
two straight lines is equal to the rectangles contained by the
uncut straight line and each of the segments.

(Euclid. Elements. Translated by Sir Thomas L. Heath. Great Books of the Western
World, vol. 11. Chicago: Encyclopaedia Britannica, 1952.)

See the pictorial version of Euclid's statement. Notice that the illustra-
tion shows three rectangles, two smaller ones and a large one. (The
large rectangle is made of the four outside line segments. The smaller
rectangles lie inside the large one.) All three rectangles have the same
height. We use x to represent the height of each of the rectangles. The
rectangle on the left has length y and the rectangle on the right has
length z. The length of the largest rectangle is y + z. Now we recall the
formula for the area of a rectangle: Area = length x width. Finally, we
can express the idea that the area of the largest rectangle equals the
area of the two smaller rectangles by using the algebraic equation
given. When the distributive law is expressed geometrically the reason
that it is true is obvious.
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geometric algebra, and it is an important part of the mathemati-
cal legacy of the ancient Greeks. Today the principal source of
Greek ideas about geometric algebra is the set of books entitled
Elements by Euclid of Alexandria, who lived in Alexandria, Egypt,
in the third century B.C.E.

Little is known about Euclid. Although he lived in Alexandria,
Egypt, he may have been born elsewhere. We do not know when
he was born or when he died. We know that the institution
where Euclid worked—it was called the Museum—was home to
many of the most successful Greek mathematicians of the time.
We know that many of the mathematicians who lived and
worked at the school were born elsewhere. Perhaps the same can
be said of Euclid.

Euclid is best remembered for having written one of the most
popular textbooks of all time. Called Elements, it has been trans-
lated into most of the world’s major languages over the last 2,000
years. In recent years it has fallen out of favor as a textbook, but
many high school treatments of plane geometry are still only sim-
plified versions of parts of Euclid’s famous work. To describe the
Elements solely as a textbook, however, is to misrepresent its
impact. The type of geometry described in Euclid’s textbook—
now called Euclidean geometry, though it was not Euclid’s inven-
tion—dominated mathematical thought for 2,000 years. We now
know that there are other kinds of geometry, but as late as 200
years ago many mathematicians and philosophers insisted that
Euclidean geometry was the single true geometry of the universe;
if a geometry was not Euclidean, it was not “real.” It was not until
the 19th century that mathematicians began to realize that
Euclidean geometry was simply one kind of geometry and that
other, equally valid geometries exist.

"The Elemnents was written in 13 brief books. Of special interest
to us is the very brief book II, which lays out the foundations of
geometric algebra. In book II we see how thoroughly geometric
thinking pervaded all of Greek mathematics including algebra.
For example, when we speak of unknowns, x, y, and 2, we general-
ly assume that these variables represent numbers. Part of learning
elementary algebra involves learning the rules that enable us to
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manipulate these symbols as if they were numbers. Euclid’s
approach is quite different. In Euclid’s time “variables” were not
numbers. Euclid represented unknowns by line segments, and in
his second book he establishes the rules that allow one to manip-
ulate segments in the way that we would manipulate numbers.
What we represent with equations, Euclid represented with pic-
tures of triangles, rectangles, and other forms. Geometric algebra
is algebra made visible.

Much of the geometry that one finds in the Elements is per-
formed with a straightedge and compass. This is constructible
mathematics in the sense that the truth of various mathematical
statements can be demonstrated through the use of these imple-
ments. Though it would be hard to imagine simpler implements,
the Greeks used these devices successfully to investigate many
important mathematical ideas. As any set of techniques has, how-
ever, the use of the straightedge and compass has its limitations.
Although it is not immediately apparent, certain classes of prob-
lems cannot be solved by using straightedge and compass tech-
niques. The Greeks never discovered what kinds of limitations
they imposed on themselves by their choice of these tools. As it
turned out, their mathematical development was, at times, hin-
dered by their insistence on the use of a straightedge and compass.
In fact, some of the most famous mathematical problems from
antiquity are famous precisely because they cannot be solved by
using a straightedge and compass.

There are three classical geometry problems—first mentioned
in the introduction of this book—that are very important in the
history of algebra. Their importance in geometry is that they
remained unsolved for more than 2,000 years. They were not
unsolved because they were neglected. These problems attracted
some of the best mathematical minds for generation after gener-
ation. Interesting mathematical ideas and techniques were dis-
covered as individuals grappled with these problems and
searched for solutions, but in the end none of these mathemati-
cians could solve any of the three problems as originally stated,
nor could they show that solutions did not exist. The problems
are as follows:
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Problem 1: Given an arbitrary
angle, divide the angle into
three equal parts, using only a
straightedge and compass.

Problem 2: Given a circle,
construct a square having the
same area as the circle, using
only a straightedge and compass.

Problem 3: Given a cube, find
the length of the side of a new
cube whose volume is twice
that of the original cube. Do
this using omnly a straightedge
and compass.

D
N
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Problem 1

B

Trisecting the angle: Given angle
ABC, use a straightedge and compass
to construct angle ABD so that the
measure of angle ABD is one-third
that of the measure of angle ABC.

Problem 2

Squaring the circle: Given a circle and
using only a straightedge and compass,
construct a square of equal area.

Problem 3

Doubling the cube: Given a cube and
using only a straightedge and compass,
construct a second cube that has precise-
by twice the volume of the original cube.
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Notice that each problem has the same restriction: using only a
straightedge and compass. This is critical. It is also critical to
remember that the Greeks were not interested in approximate
solutions to these problems. They were only interested in exact
solutions. The Greeks could have easily constructed highly accu-
rate approximations to a third of an angle, a squared circle, and a
cube with a volume approximately twice as large as the given
cube—and all with only a straightedge and compass. But approxi-
mations were not their goal. These ancient Greek geometers were
searching for a method that would in theory give them the exact
solution—not a good approximation to the solution—to each of
the three problems.

These three problems are probably more important in the his-
tory of algebra than in the history of geometry. In algebra the
search for the solutions of these problems gave birth to a new con-
cept of what algebra is. In the 19th century, after some extraordi-
nary breakthroughs in algebraic thought, these problems were
disposed of once and for all. Nineteenth-century mathematicians
discovered that the reason these problems had remained unsolved
for 2,000 years was that they are unsolvable. Remember: This was
proved by using algebra, not geometry. The ideas required to
prove that these problems were unsolvable represented a huge
step forward in the history of algebra.

The geometric algebra described by Euclid set the standard for
Greek algebraic thinking for centuries. His exposition was logical-
ly rigorous, and because it was so visual it was also aesthetically
appealing. But the geometric algebra found in book II of Elements
was also too simple to be very useful. Elementary results had been
obtained by sophisticated techniques. The reliance on formal, very
sophisticated geometric reasoning made it difficult to extend the
ideas described by Euclid. A new approach to algebra was needed.

Diophantus of Alexandria

Diophantus is often described as the father of algebra. He was,
perhaps, the only one of the great Greek mathematicians to devote
himself fully to the study of algebra as a discipline separate from
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geometry. We know little of his life. The dates of his birth and
death are unknown. We do know that he lived in Alexandria,
Egypt. It is generally believed that he was alive during the third
century C.E., but even this is not certain; some scholars believe that
he was alive during the second century C.E., and some believe that
he was alive during the fourth century C.E. What are thought to be
the facts of his life are usually summed up in this ancient mathe-
matics problem:

God granted him to be a boy for the sixth part of his life, and
adding a twelfth part to this, He clothed his cheeks with down;
He lit him the light of wedlock after a seventh part, and five
years after his marriage He granted him a son. Alas! Late-born
child; after attaining the measure of half his father’s life, chill
Fate took him. After consoling his grief by this science of num-
bers for four years he ended his life.

(Reprinted by permission of the publishers and the Trustees of Loeb
Classical Library from Greek Anthology: Volume V, Loeb Classical
Library. Volume L 86, translated by W. R. Paton, Cambridge, Mass.:
Harvard University Press, 1918)

By solving the (linear) equation that is described in the problem,
we learn that Diophantus lived to be 84 years old.

Diophantus’s contribution to algebra consists of two works, the
more famous of which is entitled Arithmetica. The other is On
Polygonal Numbers. Neither work exists in its entirety. Arithmetica
originally consisted of 13 volumes. Six volumes were preserved in
the original Greek, and in the 1970s previously unknown Arabic
translations of four more volumes were discovered. Even less of
On Polygonal Numbers has come down to us; it is known through a
set of excerpts.

Arithmetica is arranged much as the Nine Chapters and the
Mesopotamian problem texts are. Like other ancient algebralike
mathematical texts, Diophantus’s work is essentially a long list of
problems. The exception occurs at the beginning of the first vol-
ume, in which he attempts to give an account of the foundations
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of algebra. This is historic because it is the first time that anyone
tried to do this.

With respect to the number system that he uses, he describes
rational numbers—numbers that can be represented as fractions
with whole numbers in the numerator and the denominator—
and negative numbers. He gives rules for working with negative
numbers, and he seems comfortable enough with this system.
But when solving problems, he clearly prefers solutions that are
nonnegative.

Unlike the Nine Chapters and the other books mentioned previ-
ously, Arithmetica is largely devoid of nonmathematical references.
It is concerned with the properties of numbers and equations, and
Diophantus used no nonmathematical terminology in the expres-
sion of these ideas. There are no references to the division of corn,
the height of a tree, or the area of a field. These are “pure” prob-
lems, and in that spirit he is intent on finding only exact solutions.
Approximation of a solution, no matter how accurate, is not
acceptable to Diophantus. In this sense Arithmetica is more philo-
sophical than practical. Although Diophantus certainly knows
about incommensurable (irrational) numbers, he does not consid-
er them to be acceptable solutions to any of his equations. He
searches for and accepts only rational numbers as solutions.

Another important contribution that Diophantus makes to alge-
bra is his use of symbolism. All of the works that we have exam-
ined so far, whether written in Mesopotamia, Egypt, or China,
were of a rhetorical character—that is, everything is expressed in
words. This format tends to hinder progress in mathematics
because it obscures the ideas and techniques involved. Diophantus
introduced abbreviations and some symbols into his work. We call
this mixture of abbreviations, words, and a few symbols syncopat-
ed algebra. Diophantus’s syncopated algebra lacks the compact
form of contemporary algebraic equations. It is not especially easy
to read, but he went further toward developing a specialized sys-
tem of symbols than any of his predecessors.

The problems that Diophantus studied often had multiple solu-
tions. The existence of multiple solutions for a single problem
would immediately catch the eye of any contemporary mathemati-
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cian, but Diophantus usually seems not to care. If he can find even
one solution he seems content. Did he know that in some cases
other solutions exist? It is not always clear. On the other hand,
Diophantus is very interested in how a solution is found, and he
sometimes describes more than one method for solving the same
problem. It is clear that algorithms are a primary focus for him.

It is tempting to see in Diophantus’s exhausting list of problems
and solutions the search for a rigorous theory of algebraic equa-
tions that is analogous to the highly developed system of geome-
try that the Greeks had developed centuries earlier. If that was his
goal, he did not achieve it. There is no overarching concept to
Diophantus’s algebra. It is, instead, a collection of adroitly chosen
problems, whose solutions more often than not depend on a
clever trick rather than a deeper theoretical understanding.
Nevertheless, there is no work that survives from antiquity in any
culture that rivals Diophantus’s Arithmetica as an algebraic text.
Though he does not introduce unity to his subject, he greatly rais-
es the level of abstraction. In Diophantus’s work we find algebra
stripped of all nonmathematical references, with the equations
themselves displayed as objects that deserve study in their own
right. Perhaps more importantly, Arithmetica served as a source of
insight and inspiration for generations of Islamic and European
mathematicians. And about 1,500 years after Diophantus wrote
Arithmetica, his work inspired the French mathematician Pierre de
Fermat to attempt to generalize one of the problems that he found
in Arithmetica about representing one square as the sum of two
squares. This gave rise to what is now called Fermat’ last theorem,
one of the most famous of all mathematical problems and one that
was not solved until late in the 20th century.

Greek algebra—whether it is like that found in Elements or in
Arithmetica—is characterized by a higher level of abstraction than
that found in other ancient mathematically sophisticated cultures.
Both the choice of problems and method of presentation were
unique among the cultures of antiquity, and the Greek influence
on future generations of Arab and European mathematicians was
profound. New approaches to algebra that were eventually devel-
oped elsewhere, however, would prove to be equally important.
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ALGEBRA FROM INDIA TO
NORTHERN AFRICA

The tradition of Greek mathematical research ended in the third
century C.E. with the death of Hypatia (ca. 370-415) in Alexandria.
Hypatia was a prominent scholar and mathematician. She wrote
commentaries on the works of Diophantus, Apollonius, and
Ptolemy, but all of her work has been lost. We know of her through
the works and letters of other scholars of the time. Hypatia was
murdered in a religious dispute. Shortly thereafter many of the

The death of Hypatia marked the end of the Greek mathematical tradition.
(ARPL/Topham/The Image Works)

35
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scholars in Alexandria left, and mathematical research at
Alexandria, the last of the great Greek centers of learning, ended.

Mathematics, however, continued to develop in new ways and in
new locations. In the Western Hemisphere the Mayan civilization
was developing a unique and advanced form of mathematics. We
know of some of their accomplishments, but most of their work
was destroyed by Spanish conquerors in the 16th century. Another
new and important center of mathematical research developed on
the Indian subcontinent, but before examining the accomplish-
ments of these mathematicians it is important to say a few words
about terminology.

The mathematical tradition that developed on the Indian sub-
continent during this time is sometimes called Indian mathemat-
ics. It was not created entirely in what is now India. Some of it
arose in what is now Pakistan, and, in any case, India was not
united under a central government during the period of interest
to us. There was no India in the modern sense. There are some
histories of “Indian” mathematics that use the term Hindu math-
ematics, but not all of the mathematicians who contributed to the
development of this mathematical tradition were themselves
Hindu. There are no other terms in general use. We use the
terms Indian mathematics and Hindu mathematics interchangeably
because they are the two common names for this mathematical
tradition, but neither term is entirely satisfactory. We look for-
ward to the time when better, more descriptive terminology is
developed to describe the accomplishments of this creative and
heterogeneous people.

There are widely varying claims made about the history of
Indian mathematics. Some scholars think that a sophisticated
Hindu mathematical tradition goes back several thousand years,
but the evidence for this claim is indirect. Very few records from
the more remote periods of Indian history have survived. Some of
the earliest records of Indian mathematical accomplishments are
the Sulvasutras, a collection of results in geometry and geometric
algebra. The dating of these works is also a matter of dispute.
Some scholars believe that they date to the time of Pythagoras, but
others claim they were written several centuries after Pythagoras’s
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death. Mathematically the Sulvasutras are, in any case, not espe-
cially sophisticated when compared with the Hindu works that are
of most interest to us. In fact, it is their simplicity that is the best
indicator that they preceded the works for which we do have reli-
able dates.

Despite their simplicity, the Sulvasutras contain many qualities
that are characteristic of much of the Indian mathematical tradi-
tion. It is important to review these special characteristics, because
Indian mathematics is quite distinct from that of the other math-
ematically sophisticated cultures that preceded it. Moreover, even
when there is overlap between the mathematics of India and that
of ancient Greece or Mesopotamia, it is clear that Indian mathe-
maticians perceived mathematics differently. The mathematics of
the Indians is often compared unfavorably to Greek mathematics,
but such comparisons are not especially helpful. Hindu mathe-
matics is better appreciated on its own terms. Mathematics occu-
pied a different place in the culture of the Hindus than it did in the
culture of the Greeks.

One characteristic of Hindu mathematics is that almost all of
it—problems, rules, and definitions—is written in verse. This is
true of the Sulvasutras and virtually all later works as well. Another
characteristic property that we find in the Sulvasutras as well as
later Hindu mathematics is that there are no proofs that the rules
that one finds in the texts are correct. Ancient Indian texts contain
almost no mathematical rigor, as we understand the term today.
The rules that one finds in these texts were sometimes illustrated
with one or more examples. The examples were sometimes fol-
lowed with challenges directed to the reader, but there was little in
the way of motivation or justification for the rules themselves.
This was not simply a matter of presentation. The mathematicians
who created this highly imaginative approach to mathematics
must have had only a minimal interest in proving that the results
they obtained were correct, because mistakes in the texts them-
selves often were unnoticed. Many of the best Hindu works con-
tain a number of significant errors, but these works also contain
important discoveries, some of which have had a profound effect
on the entire history of mathematics.
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Another important difference between Indian mathematics and
the mathematics of other cultures with advanced mathematical
traditions is that other cultures perceived mathematics as a sepa-
rate field of study. In the Indian cultural tradition, mathematics
was not usually treated as an independent branch of knowledge.
There are very few ancient Sanskrit texts devoted solely to math-
ematics. Instead mathematical knowledge was usually conveyed in
isolated chapters in larger works about astronomy. Astronomy and
religion were very much intertwined in the classical culture of the
Indian subcontinent. To many of the most important Hindu math-
ematicians, mathematics was a tool for better understanding the
motions and relative locations of objects in the night sky. It was
not a separate academic discipline.

Brahmagupta and the New Algebra

The astronomer and mathematician Brahmagupta (ca. 598—ca.
670) was one of the most important of all Indian mathematicians.
Not much is known about his life. It is known that he lived in
Ujjain, a town located in what is now central India. In
Brahmagupta’s time Ujjain was home to an important astronomi-
cal observatory, and Brahmagupta was head of the observatory.
Brahmagupta’s major work is a book on astronomy, Brabma-
sphuta-siddhianta (The opening of the universe). Written entirely
in verse, Brahmagupta’s masterpiece is 25 chapters long. Most of
the book contains information about astronomical phenomena:
the prediction of eclipses, the determination of the positions of the
planets, the phases of the Moon, and so on. Just two of the
chapters are about mathematics, but those two chapters contain a
great deal of important algebra.

Brahmagupta’s work, like that of other Hindu mathemati-
cians, contains plenty of rules. Most are stated without proof;
nor does he provide information about how he arrived at these
rules or why he believes them to be true. Many rules are,
however, followed by problems to illustrate how the rules can be
applied. Here, for example, is Brahmagupta’s “rule of inverse
operation”:
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The ancient astronomical observatory at Ujjain. This site has mamny
exotic pieces of “celestial architecture” used in the study of astronomy.
(Dinodia/The Image Works)

Multiplier must be made divisor; and divisor, multiplier; posi-
tive, negative and negative, positive; root [is to be put] for
square; and square, for root; and first as converse for last.

(Brabmagupta and Bhbaskara. Algebra with Arithmetic and
Mensuration. Translated by Henry Colebrook. London: Fohn Murray,
1819)

By modern standards this is a fairly terse explanation, but by the
standards of the day it was comparatively easy reading. To under-
stand why, it helps to know that Brahmagupta, like many Indian
mathematicians, probably grew up reading just this type of explana-
tion. Indian astronomical and mathematical knowledge was gener-
ally passed from one generation to the next within the same family.
Each generation studied astronomy, mathematics, and astrology and
contributed to the family library. Brahmagupta’s father, for example,
was a well-known astrologer. Mathematical writing and astronomi-
cal writing were important parts of Brahmagupta’s family tradition.
He would have been accustomed to this kind of verse, but he
advanced well beyond what he inherited from his forebears.
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One of the most important characteristics of Brahmagupta’s work
is his style of algebraic notation. It is, like that of Diophantus, syn-
copated algebra. Syncopated algebra uses specialized symbols and
abbreviations of words to convey the ideas involved. For instance,
Brahmagupta used a dot above a number to indicate a negative
number. When formulating an equation containing one or more
unknowns, Brahmagupta called each unknown a different color.
His use of colors is completely analogous to the way that we are
taught to use the letters x, y, and 2 to represent variables when we
first learn algebra. To simplify his notation he preferred to use an
abbreviated form of each color word. One section of his book is
even called Equations of Several Colors.

One consequence of his notation is that his mathematical prose
is fairly abstract, and this characteristic is important for two rea-
sons. First, a condensed, abstract algebraic notation often makes
mathematical ideas more transparent and easy to express. Second,
good algebraic notation makes adopting a very general and inclu-
sive approach to problem solving easier, and generality is just what
Brahmagupta achieved.

"To appreciate the generality of Brahmagupta’s approach we need
only compare it with that of Diophantus. Brahmagupta considered
the equation that we would write as ax + by = ¢, where 4, b, and ¢
are integers (whole numbers), called coefficients, that could be
positive, negative, or zero. The letters x and y denote the variables
that are meant to represent whole number solutions to the equa-
tion. Brahmagupta’s goal was to locate whole numbers that, when
substituted for x and y, made the equation a true statement about
numbers.

Brahmagupta’s very broad understanding of what 4, 4, and ¢ rep-
resent stands in sharp contrast with the work of Diophantus.
Diophantus preferred to consider only equations in which the
coefficients are positive. This required Diophantus to break
Brahmagupta’s single equation into several special cases. If, for
example, b was less than 0 in the preceding equation, Diophantus
would add —& to both sides of the equation to obtain ax = by + .
(If b is negative, —b is positive.) This equation, with the & trans-
posed to the other side, was a distinct case to Diophantus, but
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Brahmagupta, because he did not distinguish between positive and
negative coefficients, had to consider only the single equation ax +
by = ¢. This allowed him to achieve a more general, more modern,
and more powerful approach to the solution of algebraic equa-
tions. Furthermore, he accepted negative numbers as solutions, a
concept with which his Greek predecessors had difficulty.

"This highly abstract approach to the solution of algebraic equa-
tions is also characteristic of Brahmagupta’s work with second-
degree algebraic equations. When he solved second-degree
algebraic equations, also called quadratic equations, he seemed to
see all quadratic equations as instances of the single model equa-
tion ax’ + bx + ¢ = 0, where the coefficients 4, 4, and ¢ could repre-
sent negative as well as nonnegative numbers. Brahmagupta was
willing to accept negative solutions here as well. He also accepted
rational and irrational numbers as solutions. (A rational number can
be represented as the quotient of two whole numbers. An irrational
number is a number that cannot be represented as the quotient of
two whole numbers.) This willingness to expand the number sys-
tem to fit the problem, rather than to restrict the problem to fit
the number system, is characteristic of much of the best Indian
mathematics.

Finally, Brahmagupta, as Diophantus was, was interested in
indeterminate equations. (An indeterminate equation is a single
equation, or a system of equations, with many solutions.) When
considering these types of problems he attempted to find all pos-
sible solutions subject to certain restrictions.

Brahmagupta’s work is algorithmic in nature. To Brahmagupta
learning new math meant learning new techniques to solve equa-
tions. Today many of us think of mathematics as the search for
solutions to difficult word problems, but mathematics has always
been about more than finding the right solutions. The Greeks,
for example, were often more concerned with discovering new
properties of geometric figures than they were with performing
difficult calculations. Brahmagupta was familiar with other
approaches to mathematics, but he was motivated by problems
that involved difficult calculations. He wanted to find calculating
techniques that yielded answers, and he had a very broad idea of
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what constituted an answer. The Brabma-sphuta-siddbanta was
quickly recognized by Brahmagupta’s contemporaries as an
important and imaginative work. It inspired numerous commen-
taries by many generations of mathematicians.

Mahavira

The mathematician Mahavira (ca. 800—ca. 870), also known as
Mabhaviracharya, was one of those inspired by Brabma-sphuta-
siddhanta (Compendium of the essence of mathematics) Mahavira
lived in southern India. He was an unusual figure in the history of
Hindu mathematics. He was not, for example, a Hindu. He was a
member of the Jain religion. (Jainism is a small but culturally
important religious sect in present-day India.) He was not an
astronomer. His book, called Ganita Sara Samgraba, is the first
book in the Indian mathematical tradition that confines its atten-
tion to pure mathematics. It is sometimes described as a commen-
tary on Brahmagupta’s work, but it is more than that. Mahavira’s
book is an ambitious attempt to summarize, improve upon, and
teach Indian mathematical knowledge as he understood it.
Mahavira’s book was very successful. It was widely circulated and
used by students for several centuries.

There are traditional aspects of Mahavira’s book. As
Brahmagupta’s great work, Brabma-sphuta-siddhanta, is, Mahavira’s
book is written in verse and consists of rules and examples. The
rules are stated without proof. Coupled with his very traditional
presentation is a very modern approach to arithmetic. It is pre-
sented in a way that is similar to the way arithmetic is taught today.

In addition to his presentation of arithmetic, Mahavira demon-
strated considerable skill manipulating the Hindu system of
numeration: He constructed math problems whose answers read
the same forward and backward. For example: 14287143 x 7 =
100010001. (Notice that the answer to the multiplication problem
is a sort of numerical palindrome.) He was also interested in alge-
braic identities. (An identity is a mathematical statement that is true
for all numbers.) An example of one of the identities that Mahavira
discovered is @’ = a(a + b)(a — b) + * (a — b) + b*. These kinds of iden-
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tities sometimes facilitate calculation. They also demonstrate how
various algebraic quantities relate one to another.

Word problems were also important to Mahavira. He included
numerous carefully crafted problems in Ganita Sara Samgraba.
Some of the problems are elementary, but some require a fair bit
of algebra to solve.

Mahavira exercises his algebraic insights on two other classes of
problems. In one section of the book he studies combinatorics.
Combinatorics, which generally requires a fairly extensive knowl-
edge of algebra, deals with the way different combinations of
objects can be chosen from a fixed set. It is the kind of knowledge
that is now widely used in the study of probability. He shows, for
example, that the number of ways 7 objects can be chosen from a
set containing 7 objects is

nm-1)m-2)... m—-r+1)
rir—-10D@F-2)...21

where we have written his result in modern notation. This is an
important formula that is widely used today.

The second class of algebra problems is geometric in origin.
In Mahavira’s hands even the geometry problems—and there
are a number of them—are just another source of algebraic
equations. For example, he attempts to find the dimensions of
two triangles with the following properties: (1) the areas of the
triangles are equal and (2) the perimeter of one is twice that of
the other. This problem leads to some fairly sophisticated alge-
bra. This is a nice example of an indeterminate problem—it has
many solutions.

More generally, there are several points worth noting about
Mahavira’s work. First, like Brahmagupta’s work, Mahavira’s writ-
ings are a highly syncopated approach to algebra. (Algebra is
called syncopated when it is expressed in a combination of words,
abbreviations, and a few specialized symbols.) Second, the empha-
sis in much of the book is on developing the techniques necessary
to solve algebraic problems. It is a tour de force approach to solv-
ing various types of equations, but he provides no broader context
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into which we can place his results. Each problem stands on its
own with no consideration given to a broader theory of equations.
Third, there are no proofs or carefully developed logical argu-
ments. He shows the reader results that he believes are important,
but he often does not show the reader why he considers the results
correct. His ideas are creative, but because of his lack of emphasis
on mathematical proofs when he makes an error, even a glaring
error, he sometimes fails to catch it. For example, when he tries to
compute the area of an ellipse, he gets it wrong. Given the level of
mathematics in Mahavira’s time, this was admittedly a difficult
problem. Perhaps he could not have solved the problem by using
the mathematics available at the time, but with a more rigorous
approach to the problem he might have been able to discover what
the answer is not.

Bhaskara and the End of an Era

The discoveries of Brahmagupta, Mahavira, and many other
mathematicians in the Indian tradition probably found their
highest expression in the work of the mathematician and
astronomer Bhaskara (1114—ca. 1185). Bhaskara, also known as
Bhaskaracharya and Bhaskara II, was the second prominent
Indian mathematician of that name. (We will have no reason to
refer to the first.) Bhaskara was born in southern India, in the
city of Bijapur in the same general region in which Mahavira
was born. Unlike Mahavira, but like Brahmagupta, Bhaskara was
an astronomer. He eventually moved to Ujjain, where he became
head of the astronomical observatory there. It was the same
observatory that Brahmagupta had directed several centuries
earlier.

Bhaskara’s main work, Siddbanta Siromani (Head jewel of accu-
racy), is a book about astronomy and mathematics. It is divided
into four sections, covering arithmetic, algebra, the celestial
sphere, and various planetary calculations. Like the other texts we
have considered, the Siddbanta Siromani is written in verse,
although Bhaskara also provides an additional section written in
prose that explains some of the mathematics found in the main
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body of the work. Sanskrit scholars have praised Bhaskara’s work
both for the quality of its poetry and for its mathematical content.

At one point in Siddhinta Siromani Bhaskara claims to summarize
the work of Brahmagupta and two other mathematicians. We can
compare his work with that of Brahmagupta to see what parts of
Brahmagupta’s work he used, but the work of the other two mathe-
maticians has been lost. Furthermore, although Bhaskara’s work in
combinatorics seems to owe much to Mahavira’s book, he does not
mention Mahavira in his acknowledgment. Bhaskara’s book does,
however, go beyond Mahavira’s. For these reasons it is not clear
whether Bhaskara was mathematically far above his contemporaries
or whether his work simply reflected a very high level of mathemat-
ical achievement in the city of Ujjain at the time that it was written.

Bhaskara uses a highly syncopated algebraic notation. He solves
a variety of determinate and indeterminate equations, and he is
open to the possibility that the solutions to the equations that he
solves may be negative as well as positive, and irrational as well as
rational. He looks at very general first- and second-degree alge-
braic equations and seems comfortable with coefficients that are
negative as well as positive. He even suggests special rules for
doing arithmetic with certain irrational numbers. In many ways
the work that Bhaskara did on second-degree algebraic equations
is identical to work that high school students do today. Although
this point may sound elementary, it was not. Mathematicians took
millennia to extend their idea of number, their idea of solution,
and their computational techniques to solve these types of equa-
tions. Furthermore, there are many aspects of Bhaskara’s work
with algebraic equations that were not surpassed anywhere in the
world for several centuries.

The Leelavati and the Bijaganita, the two sections of his work
that are mathematical in nature, are full of word problems to chal-
lenge the reader. He writes about swans, bees, and monkeys.
Bhaskara worked hard to engage the reader with well-written,
interesting exercises. One problem describes a bamboo plant, 32
cubits long, growing out of level ground. The wind springs up and
breaks the plant. The top of the plant falls over, and the tip of the
plant just touches the ground at a distance of 16 cubits from the
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base of the stalk. Bhaskara
. challenges the reader to com-
. pute the distance above the
~ ground at which the stalk
~ snapped. Interestingly, this
. same problem can also be
found in ancient Chinese
16 mathematical literature. (The
answer is that the stalk

A problem by Bhaskara: Before the snapped 12 cubits above the
plant broke it was 32 cubits tall. ground.)
After it broke the distance from the

Bhaskara’s interest in the
top of the plant (now on the ground) technical issues involved in
to the base is 16 cubits. At what ¢ u volv

height did the break occur? solving particular equations

allowed him to make great

progress in special cases, and
his work with the quadratic equation was very general, but in most
cases, the progress that Bhaskara achieves is incremental progress.
He absorbs the work of his predecessors and extends it. Most of
what he did, from his use of verse, to his indifference to the con-
cept of proof, to his choice of problems, and to his preference for
algebraic as opposed to geometric methods, is reminiscent of the
work of Indian mathematicians who preceded him. What distin-
guishes his work is that it is generally more advanced than that of
his predecessors. He expresses his ideas with greater clarity. His
approach is more general, that is, more abstract, and so he sees
more deeply into each problem. Finally his work is more com-
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plete. 'The Siddhanta Siromani influenced many generations of
mathematicians. It was a major achievement. It is sometimes
described as the most important mathematical text to emerge from
the classical Indian mathematical tradition.

Islamic Mathematics

The origins of Indian mathematics, Egyptian mathematics, and
Mesopotamian mathematics, to name three prominent examples,
lie thousands of years in the past. Records that might help us
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POETRY AND ALGEBRA

It is an oft-repeated remark that in a poem, the poetry is the part that is
lost in translation. If this is true for translations of verse between modern
languages, the “loss of poetry” must be even more pronounced when
ancient Sanskrit verse is translated to modern English. Nevertheless,
skillful translations are the only means that most of us have of appreci-
ating the poetry in which the mathematicians of ancient India expressed
themselves. Here are two word problems, originally composed in verse
in Sanskrit, by Bhaskara:

1.) One pair out of a flock of geese remained sporting in the
water, and saw seven times the half of the square-root of the
flock proceeding to the shore tired of the diversion. Tell me,
dear girl, the number of the flock.

The algebraic equation to be solved is (7/2)\x = x — 2.
The solutions to the equation are x= 16 and x = 1/4.
The only reasonable solution to the word problem is x = 16.

2.) Out of a heap of pure lotus flowers, a third part, a fifth and
a sixth, were offered respectively to the gods Siva, Vishriu
and the Sun; and a quarter was presented to Bhavanii. The
remaining six lotuses were given to the venerable preceptor.
Tell quickly the whole number of flowers. (ibid.)

The algebraic equation to be solved is

1 1 1 1
x— (= + =+
3

L
st t)”

The solution to the mathematical equation is x = 120.

(Brabmagupta and Bhaskara. Algebra with Arithmetic and Mensuration.
Translated by Henry Colebrook. London: fobn Murray, 1819)

understand how mathematics arose in these cultures are some-
times too sparse to provide much insight. This is not the case with
Islamic mathematics.

Historically Islamic culture begins with the life of Muhammad
(570-632). Historical records are reasonably good. We can refer to
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The Great Mosque at Samarra was built about 60 miles from Baghdad,
al-Kbwarizmi’s bome, near the end of the mathematician’s life. (Josef
Polleross/The Image Works)

documents by Islamic historians as well as their non-Muslim
neighbors. We know quite a bit about how mathematics in gener-
al, and algebra in particular, arose in the Islamic East, and this is
important, because within 200 years of the death of the Prophet
Muhammad great centers of learning had been established. A new
and important mathematical tradition arose. This new tradition
had a profound influence on the history of mathematics: Algebra
was the great contribution of Islamic mathematicians. But the
term Islamic mathematics must be used with care.

Islamic mathematics is the term traditionally given to the mathe-
matics that arose in the area where Islam was the dominant reli-
gion, but just as the term Hindu mathematics is not entirely
satisfactory, neither is Islamic mathematics quite the right term.
Although Islam was the dominant religion in the region around
Baghdad in what is now Iraq when algebraic research flourished,
Jews and Christians also lived in the area. For the most part, they
were free to practice their religions unmolested. Although most of
the prominent mathematical scholars of the time had the Islamic
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faith, there was also room for others at even the most prominent
institutions of higher learning. A number of Christian scholars, for
example, helped to translate the ancient Greek mathematical texts
that were stored at the House of Wisdom in Baghdad, one of the
great centers of learning at the time. There was a notable 10th-
century Jewish mathematician who published “Islamic” mathe-
matics named Abu ‘Otman Sahl ibn Bishr, ibn Habib ibn Hani;
and one of the most prominent mathematicians of his day, Ali-sabi
Thabit ibn Qurra al-Harrani, was a Sabean, a member of a sect
that traced its roots to a religion of the ancient Mesopotamians.
Despite this diversity, Islamic mathematics is the name often given
to this mathematics because the Islamic faith had a strong cultur-
al as well as religious impact.

Sometimes this mathematics is called Arabic, but not all the
mathematicians involved were Arabic, either. Of the two choices,
Arabic or Islamic mathematics, Islamic mathematics seems the
more accurate description. Islam affected everything from govern-
mental institutions to architectural practices. So we adopt the
common practice of calling our subject Islamic mathematics, even
though math, in the end, has no religious affiliation, because the
Islamic society of the time was tolerant and heterogeneous, and
the work of Islamic mathematicians has found a secure place in the
mathematics practiced around the world today.

The history of Islamic mathematics begins in earnest with the
life of al-Ma’mun (786-833). Although al-Ma’mun is an important
figure in the history of algebra, he was no mathematician. He is
best remembered for his accomplishments as a political leader. He
was the son of the caliph Haran ar-Rashid. (The caliphs, as were
the kings of the time, were absolute rulers of their nations.) Ar-
Rashid had another son, al-Ma’mun’s half-brother, named al-
Amin. After the father’s death the two brothers, al-Ma’mun and
al-Amin, led their respective factions in a brutal four-year civil war
over succession rights to the caliphate. In the end al-Amin lost
both the war and his life.

As caliph al-Ma’mun proved to be a creative, if ruthless, political
leader. He worked hard, though not entirely successfully, to heal
the division that existed between the Sht’ite and Sunnite sects of
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Islam. In Baghdad he established the House of Wisdom, an impor-
tant academic institution where Greek texts in mathematics, sci-
ence, and philosophy were translated and disseminated. When
these works could not be obtained within the caliphate, he obtained
them from the libraries of Byzantium, a sometimes-hostile power.
He established astronomical observatories, and he encouraged
scholars to make their own original contributions. His work bore
fruit. A new approach to algebra developed in Baghdad at this time.

Al-Khwarizmi and a New Concept of Algebra

A number of mathematicians responded to al-Ma’mun’s words of
encouragement and contributed to the development of a new con-
cept of algebra. Mathematically speaking, it was a very creative
time. One of the first and most talented mathematicians was
named Mohammed ibn-Musa al-Khwarizmi (ca. 780—ca. 850). Al-
Khwarizmi described what happened in these words:

[al-Ma’mun] has encouraged me to compose a short work
on Calculating by (the rules of) Completion and Reduction,
confining it to what is easiest and most useful in arithmetic.

(Al-Kbhwarizmi, Mobammed ibn-Miisia. Robert of Chester’s Latin
Translation of the Algebra of al-Khwarizmi. Translated by
Karpinski, Louis C. New York: The Macmillan Company, 1915)

Al-Khwarizmi’s approach to algebra was new and significant,
but many of the results that he obtained were not. Nor was he
the only mathematician of his time to use the new approach. In
recent historical times scholars have discovered the work of
another Islamic mathematician, Abd-al-Hamid ibn-Turk, who
wrote a book about algebra that was similar to al-Khwarizmfi’s.
This second text was written at about the same time that al-
Khwarizmi’s work was published. The existence of Abd-al-
Hamid’s book indicates that some of the mathematical ideas
described by al-Khwarizmi may not have originated with him. In
that sense, al-Khwarizmi may, as Euclid was, have been more
of a skilled expositor than an innovator. There is not enough
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information to know for sure. Nevertheless al-Khwarizmi’s book
had the greatest long-term influence. Even the author’s name
became part of the English language. Al-Khwarizmi’s name was
mispronounced often enough in Europe to take on the form
algorismi, and this word was later shortened to the words #/go-
rithm, a specialized method for solving mathematical problems,
and algorism, the so-called Arabic system of numerals.
Furthermore, the first word in the title of one of al-Khwarizmi’s
books, Hisab al-jabr wa’l muqabala, eventually found its way into
English as the word algebra.

Al-Khwarizmi’s book Hisab al-jabr wa’l muqabala has little in
common with those of Brahmagupta and Diophantus. For one
thing, the problems that he solves tend to be easier, because they
are for the most part less advanced. Second, he avoids solutions
that involve 0 or negative numbers. He avoids problems in inde-
terminate analysis—that is, problems for which many solutions
exist—and he writes without any specialized algebraic notation.
Not only does he avoid the use of letters or abbreviations for
variables, he sometimes even avoids using numerals to represent
numbers. He often prefers to write out the numbers in longhand.
Even the motivation for Al-Khwarizmi’s book was different from
that of his predecessors. Diophantus seems to have had no moti-
vation other than an interest in mathematics. Brahmagupta’s
motivation stemmed from his interest in mathematics and
astronomy. But al-Khwarizmi wrote that al-Ma’mun had encour-
aged him to develop a mathematics that would be of use in
solving practical problems such as the “digging of canals” and
the “division of estates.”

Much of the first half of al-Khwarizmi’s book Hisab al-jabr is
concerned with the solution of second-degree algebraic equations,
but his method is not nearly as general as Brahmagupta’s. Unlike
Brahmagupta, he does not perceive all quadratic equations as
instances of a single general type. Instead, what we would call
“the” quadratic equation he perceived as a large number of sepa-
rate cases. For example, he considers quadratic equations, such as
&’ = Sx, and he identifies the number 5 as a solution. (We would
also recognize x = 0 as a solution, but al-Khwarizmi does not
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acknowledge 0 as a legitimate solution.) Because he uses rhetori-
cal algebra, that is, an algebra devoid of specialized, algebraic sym-
bols, his description of the equation x* = 5x and its solution take
some getting used to:

A square is equal to 5 roots. The root of the square then is 5, and
25 forms its square which, of course, equals five of its roots.

(Al-Kbwarizmi, Mobammed ibn-Misi. Robert of Chester’s Latin
Translation of the Algebra of al-Khwarizmi. Translated by
Karpinski, Louis C. New York: The Macmillan Company, 1915)

He plods his way from one special case to the next, and in this
there is nothing new. At first it seems as if al-Khwarizmi, as his pred-
ecessor Brahmagupta and his far-away contemporary Mahavira did,
sees algebra simply as a collection of problem-solving techniques.
But this is not so. After establishing these results he shifts focus; it is
this shift in focus that is so important to the history of algebra. After
solving a number of elementary problems, he returns to the prob-
lems that he just solved and proves the correctness of his approach.
In the field of algebra this is both new and very important.

Al-Khwarizmi’s tool of choice for his proofs is geometry, but he
is not interested in geometry as a branch of thought in the way
that the ancient Greeks were. He is not interested in studying
geometry; he wants to use it to provide a proof that his algebraic
reasoning was without flaws. Recall that it was the lack of proofs
in Hindu algebra that made it so difficult for those mathematicians
to separate the true from the false. Al-Khwarizmi, by contrast,
wanted to build his algebra on a solid logical foundation, and he
was fortunate to have a ready-made model of deductive reasoning
on hand: the classics of Greek geometry.

The geometry of the Greeks would certainly have been familiar
to al-Khwarizmi. Throughout his life the translators associated
with the House of Wisdom were busy translating ancient Greek
works into Arabic, and there was no better example of careful
mathematical reasoning available anywhere in the world at this
time than in the works of the Greeks. Their works are filled with
rigorous proofs. Al-Khwarizmi had the concept for a rigorous
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algebra and a model of mathematical rigor available. It was his
great insight to combine the two into something new.

Al-Khwarizmi’s interest in developing procedures for computing
with square roots also bears mentioning. He begins with the very
simplest examples, among them the problem of multiplying the
square root of 9 by the number 2. Here is how he describes the
procedure:

Take the root of nine to be multiplied. If you wish to double the
root of nine you proceed as follows: 2 by 2 gives 4, which you
multiply by 9, giving 36. Take the root of this, i.e. 6, which is

A PROBLEM AND A SOLUTION

The following is an elementary problem that was posed and solved by
al-KhwarizmT in his algebra. It is a nice example of rhetorical algebra, that
is, algebra expressed entirely in words and without the use of special-
ized algebraic symbols.

If you are told, “ten for six, how much for four?” then ten is the
measure; six is the price; the expression how much implies
the unknown number of the quantity; and four is the number of
the sum. The number of the measure, which is ten, is inverse-
ly proportionate to the number of the sum, namely, four.
Multiply, therefore, ten by four, that is to say, the two known
proportionate numbers by each other; the product is forty.
Divide this by the other known number, which is that of the
price, namely, six. The quotient is six and two-thirds; it is the
unknown number, implied in the words of the question how
much? it is the quantity, and inversely proportionate to the six,
which is the price.

(Al-Khwarizmi, Mobammed ibn-Misa. Robert of Chester’s Latin Translation of the
Algebra of al-Khwarizmi. Translated by Louis C. Karpinski, New York: The Macmillan
Company, 1915)

In our notation al-Khwarizmi solved the problem that we would
express as 10/6 = x/4.
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found to be two roots of nine, i.e. the double of three. For three,
the root of nine, added to itself gives 6.

(Al-Kbwarizmi, Mobammed ibn-Misi. Robert of Chester’s Latin
Translation of the Algebra of al-Khwarizmi. Translated by
Karpinski, Louis C. New York: The Macmillan Company, 1915)

In our notation we express this idea as 2Y9 = V4.9 = V36 = 6,
which again emphasizes the importance and utility of our modern
system of notation. He extends this simple numerical example into
several more general algebraic formulas. For example, we would
express one of his rhetorical equations as follows: 3Vx = V9x .

It is not clear why al-Khwarizmi avoided the use of any sort of
algebraic symbolism. Without any specialized algebraic notation
his work is not easy to read despite the fact that he is clearly a
skilled expositor. Al-Khwarizmi’s work had an important influence
on the many generations of mathematicians living in the Near
East, Northern Africa, and Europe. On the positive side, his con-
cept of incorporating geometric reasoning to buttress his algebra-
ic arguments was widely emulated. On the negative side, his highly
rhetorical approach would prove a barrier to rapid progress. What
is most important is that Al-Khwarizmi’s work established a logi-
cal foundation for the subject he loved. His work set the standard
for rigor in algebra for centuries.

Omar Khayyam, Islamic Algebra at Its Best

The astronomer, poet, mathematician, and philosopher Omar
Khayyam (ca. 1050-1123) was perhaps the most important of all
Islamic mathematicians after al-Khwarizmi. Omar was born in
Neyshabur (Nishapur) in what is now northeastern Iran. He also
died in Neyshabur, and between his birth and death he traveled a
great deal. Political turbulence characterized Omar’s times, and
moving from place to place was sometimes a matter of necessity.
Omar was educated in Neyshabar, where he studied mathemat-
ics and philosophy. As a young man he moved about 500 miles
(800 km) to Samarqand, which at the time was a major city, locat-
ed in what is now Uzbekistan. It was in Samarqand that he became
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well known as a mathematician. Later he accepted an invitation to
work as an astronomer and director of the observatory at the city
of Esfahan, which is located in central Iran. He remained there for
about 18 years, until the political situation became unstable and
dangerous. Funding for the observatory was withdrawn, and Omar
moved to the city of Merv, now Mary, in present-day
Turkmenistan. During much of his life Omar was treated with sus-
picion by many of his contemporaries for his freethinking and
unorthodox ideas. He wrote angrily about the difficulty of doing
scholarly work in the environments in which he found himself, but
in retrospect he seems to have done well despite the difficulties.

Omar described algebra, a subject to which he devoted much of
his life, in this way:

By the help of God and with His precious assistance, I say that
Algebra is a scientific art. The objects with which it deals are
absolute numbers and measurable quantities which, though
themselves unknown, are related to “things” which are known,
whereby the determination of the unknown quantities is possi-
ble. Such a thing is either a quantity or a unique relation, which
is only determined by careful examination. What one searches
for in the algebraic art are the relations which lead from the
known to the unknown, to discover which is the object of
Algebra as stated above. The perfection of this art consists in
knowledge of the scientific method by which one determined
numerical and geometric quantities.

(Kasir, Daoud S. The Algebra of Omar Khayyim. New York:
Columbia University Press, 1931. Used with permission)

This is a good definition for certain kinds of algebra even today,
almost a thousand years later. The care with which the ideas in the
definition are expressed indicates that the author was a skilled
writer in addition to being a skilled mathematician, but he is gen-
erally remembered as either one or the other. In the West, Omar
Khayyam is best remembered as the author of The Rubdiyit of
Omar Kbayydm, a collection of poems. This collection of poems
was organized, translated into English, and published in the 19th
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century. It has been in print
No. Month Length ry P
ever since and has now been
1 Farvardin 31 translated into all the major
2 Ordibehesht 31 languages of the world. The
3 Khordod 31 Rubdiydt is a beautiful work,
S 31 but Omar’s skill as a poet was
> Mordad 31 not widely recognized in his
6 Shahrivar 31 . . .
own time, nor is it the trait for
7 Mehr 30 . .
which he is best remembered
8 Aban 30 1 Telami i q
9 Azar 30 in Islamic countries today.
10 Dey 30 Omar’s contemporaries knew
11 Bahman 30 him as a man of extraordinari-
12 Esfand 29 or 30 ly broad interests. Astronomy,
medicine, law, history, philos-
A small group of scientists, of which ophy, and mathematics were
Omar Khayydm was the most areas in which he distin-
prominent member, devised the guished himself. He made

Falali calendar. With some modest
modifications this bas become today’s
Persian calendar (pictured above).

especially important contribu-
tions to mathematics and to
the revision of the calendar.
His revision of the calendar
earned him a certain amount of fame because the calendar in use at
the time was inaccurate in the sense that the calendar year and the
astronomical year were of different lengths. As a consequence over
time the seasons shifted to different parts of the calendar year. This
variability made using the calendar for practical, seasonal predic-
tions difficult. Correcting the calendar involved collecting better
astronomical data and then using this data to make the necessary
computations. This is what Omar did. It was an important contri-
bution because his calendar was extremely accurate, and its accura-
cy made it extremely useful.

In the history of algebra, Omar Khayydm is best remembered
for his work Al-jabr w’al muqabala (Demonstration concerning the
completion and reduction of problems; this work is also known as
Treatise on demonstration of problems of algebra). The Al-jabr
w’al mugiabala is heavily influenced by the ideas and works of Al-
Khwarizmi, who had died two centuries before Omar wrote his
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algebra. As with al-Khwarizmi, Omar does not see all quadratic
equations as instances of the single equation ax’ + bx + ¢ = 0.
Instead, he, too, divides quadratic equations into distinct types,
for example, “a number equals a square,” which we would write as
¥’ = ¢; “a square and roots equal a number,” which we would write
as &’ + bx = ¢; and “a square and a number equal a root,” which we
would write «* + ¢ = x. (He made a distinction, for example,
between &’ + bx = ¢ and &” + ¢ = bx because Omar, as do Diophantus
and al-Khwarizmi, prefers to work with positive coefficients only.)

Omar even borrows al-Khwarizmi’s examples. He uses the same
equation, &’ = Sx, that al-Khwarizmi used in his book, and there
are the by-now standard geometric demonstrations involving the
proofs of his algebraic results. All of this is familiar territory and
would have seemed familiar even to al-Khwarizmi. But then Omar
goes on to consider equations of the third degree—that is, equa-
tions of the form ax® + bx* + cx + d = 0.

Omar classifies third-degree equations by using the same general
scheme that he used to classify equations of the second degree, and
then he begins to try to solve them. He is unsuccessful in finding an
algebraic method of obtaining a solution. He even states that one
does not exist. (A method was discovered several centuries later in
Europe.) Omar does, however, find a way to represent the solutions
by using geometry, but his geometry is no longer the geometry of the
Greeks. He has moved past traditional Euclidean geometry. Instead
of using line segments as the Greeks had, Omar uses numbers to
describe the properties of the curves in which he is interested. As he
does so he broadens the subject of algebra and expands the collection
of ideas and techniques that can be brought to bear on any problem.

Omar’s synthesis of geometric and algebraic ideas is in some ways
modern. When he discusses third-degree algebraic equations,
equations that we would write as 2x’ + bx* + cx + d = 0, he represents
his ideas geometrically. (Here 4, &, ¢ and d represent numbers and x
is the unknown.) For example, the term «°, “x cubed,” is interpret-
ed as a three-dimensional cube. This gives him a useful conceptual
tool for understanding third-degree algebraic equations, but it also
proves to be a barrier to further progress. The problem arises when
he tries to extend his analysis to fourth-degree equations, equations
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that we would write as ax* + by’ + o’ + dx + e = 0. Because he
cannot imagine a four-dimensional figure, his method fails him,
and he questions the reality of equations of degree higher than 3.

"To his credit Omar was aware of the close relationship between
algebraic equations and the number system. However, his narrow
concept of number prevented him from identifying many solutions
that Hindu mathematicians accepted without question. This may
seem to be a step backward, but his heightened sense of rigor was an
important step forward. There are important relationships between
the degree of an algebraic equation and the properties of the num-
bers that can appear as solutions. (The degree of an equation is the
largest exponent that appears in it. Fourth-degree equations, for
example, contain a variable raised to degree 4, and no higher power
appears in the equation.) In fact, throughout much of the history of
mathematics it was the study of algebraic equations that required
mathematicians to consider more carefully their concept of what a
number is and to search for ways in which the number system could
be expanded to take into account the types of solutions that were
eventually discovered. Omar’s work in algebra would not be sur-
passed anywhere in the world for the next several centuries.

The work of al-Khwarizmi and Omar also exemplifies the best
and most creative aspects of Islamic algebra. In particular, their
synthesis of algebra and geometry allowed them to think about
algebraic questions in a new way. Their worked yielded new
insights into the relations that exist between algebra and geometry.
They provided their successors with new tools to investigate alge-
bra, and they attained a higher standard of rigor in the study of
algebra. Although Indian mathematicians sometimes achieved
more advanced results than their Islamic counterparts, Indian
mathematicians tended to develop their mathematics via analogy or
metaphor. These literary devices can be useful for discovering new
aspects of mathematics, but they are of no use in separating the
mathematically right from the mathematically wrong. Islamic
mathematicians emphasized strong logical arguments—in fact,
they seemed to enjoy them—and logically rigorous arguments are
the only tools available for distinguishing the mathematically true
from the mathematically false. It is in this sense that the algebra
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LEONARDO OF PISA

There was one prominent European mathematician during the period in
which Islamic mathematics flourished. He received his education in
northern Africa from an Islamic teacher. As a consequence, he owed
much of his insight to Islamic mathematics. He was the Italian mathe-
matician Leonardo of Pisa, also known as Fibonacci (ca. 1170-after
1240). Leonardo’s father, Guglielmo, was a government official in a
Pisan community situated in what is now Algeria. During this time
Leonardo studied mathematics with a Moor. (The Moors were an Islamic
people who conquered Spain.) From his teacher he apparently learned
both algebra and the Hindu base 10, place-value notation. He later
wrote that he enjoyed the lessons. Those lessons also changed his life.

As a young man Leonardo traveled throughout North Africa and the
Middle East. During his travels he learned about other systems of nota-
tion and other approaches to problem solving. He seems to have even-
tually settled down in Pisa, Italy, where he received a yearly income from
the city.

Leonardo produced a number of works on mathematics. He
described the place-value notation and advocated for its adoption. His
efforts helped to spread news of the system throughout Europe.
(Leonardo only used place-value notation to express whole numbers. He
did not use the decimal notation to write fractions.) His description of
the Indian system of notation is his most long-lasting contribution, but he
also discovered what is now known as the Fibonacci series, and he was
renowned for his skill in algebra as well. He studied, for example, the
equation that we would write as x* + 2x* + 10x = 20. This equation was
taken from the work of Omar Khayyam. In his analysis Leonardo appar-
ently recognizes that the solution he sought was not a simple whole
number or fraction. He responds by working out an approximation—and
he recognizes that his answer is an approximation—that is accurate to
the ninth decimal place. Leonardo, however, expressed his answer as a
base 60 fraction. Unfortunately Leonardo does not explain how he found
his answer, an approximation that would set the European standard for
accuracy for the next several centuries.

developed by the Islamic mathematicians is—especially during the
period bracketed by the lives of al-Khwarizmi and Omar—much
closer to a modern conception of algebra than is that of the Indians.
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ALGEBRA AS A THEORY
OF EQUATIONS

As art, music, literature, and science did, mathematics flourished
in Europe during the Renaissance, which had its origins in 14th-
century Italy and spread throughout Europe over the succeeding
three centuries. Just as art, music, and science changed radically
during the Renaissance, all pre-Renaissance mathematics is pro-
foundly different from the post-Renaissance mathematics of
Europe. The new mathematics began with discoveries in algebra.

Many of the best European mathematicians of this period were
still strongly influenced by the algebra of al-Khwarizmi, but in
the space of a few years Italian mathematicians went far beyond
all of the algorithms for solving equations that had been discov-
ered anywhere since the days of the Mesopotamians.
Mathematicians found solutions to whole classes of algebraic
equations that had never been solved before. Their methods of
solution were, by our standards, excessively complicated. The
algorithms developed by Renaissance era mathematicians were
also difficult and sometimes even counterintuitive. A lack of
insight into effective notation, poor mathematical technique, and
an inadequate understanding of what a number is sometimes
made recognizing that they had found a solution difficult for
them. Nevertheless, many problems were solved for the first
time, and this was important, because these problems had resisted
solution for thousands of years.

The new algorithms also exposed large gaps in the understand-
ing of these mathematicians. To close those gaps they would have

60
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to expand their concept of number, their collection of problem
solving techniques, and their algebraic notation. The algebraic
solution of these new classes of problems was a major event in the
history of mathematics. In fact, many historians believe that the
modern era in mathematics begins with publication of the
Renaissance era algebra book Ars Magna, about which we will
have much more to say later.

To appreciate what these Renaissance era mathematicians
accomplished, we begin by examining a simple example. The
example is a quadratic equation, an algebraic equation of second
degree. The remarks we make about quadratic equations guide
our discussion of the more complicated equations and formulas
used by the mathematicians of the Renaissance. Our example is
taken from the work of al-Khwarizmi. He was an expert at this
type of problem, but because his description is a little old-
fashioned, and because we also want to discuss his problem in
modern notation, we introduce a little terminology first. A quad-
ratic, or second-degree, equation is any equation that we can write
in the form ax? + bx + ¢ = 0. In this equation, the letter x is the vari-
able. The number or numbers that, when substituted for x, make
the equation a true statement are called the roots of the equation,
and the equation is solved when we find the root or roots. The
letters 4, b, and ¢ are the coefficients. They represent numbers that
we assume are known. In the following excerpt, al-Khwarizm is
describing his method of solving the equation &* + 21 = 10w. In this
example the coefficient # equals 1. The coefficient # is —10.
(Al-Khwarizmi prefers to transpose the term —10x to the right side
of the equation because he does not work with negative coeffi-
cients.) Finally, the ¢ coefficient equals 21. Here is al-Khwarizmi’s
method for solving the equation &” + 21 = 10x:

A square and 21 units equal 10 roots. . . . The solution of this type
of problem is obtained in the following manner. You take first
one-half of the roots, giving in this instance 5, which multiplied
by itself gives 25. From 25 subtract the 21 units to which we have
just referred in connection with the squares. This gives 4, of
which you extract the square root, which is 2. From the half of



62 ALGEBRA

the roots, or 5, you take 2 away, and 3 remains, constituting one
root of this square which itself is, of course, 9.

(AlI-Kbhwarizmi, Mobammed ibn-Miisa. Robert of Chester’s
Latin Translation of the Algebra of al-Khwarizmi. Translated
by Karpinski, Louis C. New York: The Macmillan Company, 1915)

Al-Khwarizmi has given a rhetorical description of an applica-
tion of the algorithm called the quadratic formula. Notice that
what al-Khwarizmi is doing is “constructing” the root, or solu-
tion of the equation, from a formula that uses the coefficients of
the equation as input. Once he has identified the coefficients he
can, with the help of his formula, compute the root. We do the
same thing when we use the quadratic formula, although both
our formula and our concept of solution are more general than
those of al-Khwarizmi. In fact, we learn two formulas when we
learn to solve equations of the form ax’ + bx + ¢ = 0. The first is

x= M, and the second is x = b _To-dac These are
2a 2a 2a 2a

the formulas that allow us to identify the roots of a quadratic
equation provided we know the coefficients.

Various rhetorical forms of these formulas were known to
al-Khwarizmi and even to Mesopotamian mathematicians. They
are useful for finding roots of second-degree equations, but
they are useless for computing the roots of an equation whose
degree is not 2. Until the Renaissance, no one in the history of
bumankind had found corresponding formulas for equations of
degree higher than 2. No one had found a formula comparable
to the quadratic formula for a third-degree equation, that is, an
equation of the form ax’ + bx’ + cx + d = 0, where 4, b, ¢, and d
are the coefficients. This was one of the great achievements of
the Renaissance.

There is one more point to notice about the preceding formu-
las for determining the solutions to the second-degree equations:
They are exact. These formulas leave no uncertainty at all about
the true value for x. We can compare these formulas with the
solution that Leonardo of Pisa obtained for the third-degree
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equation given in the preceding chapter. His approximation was
accurate to the billionth place. This is far more accurate than he
(or we) would need for any practical application, but there is still
some uncertainty about the true value for x.

From a practical point of view, Leonardo completely solved the
problem, but from a theoretical point of view, there is an impor-
tant distinction between his answer and the exact answer. His
approximation is a rational number. It can be expressed as a quo-
tient of two whole numbers. The exact answer, the number that he
was searching for, is an irrational number. It cannot be expressed as
a quotient of two whole numbers. Leonardo’s solution was, for the
time, a prodigious feat of calculation, but it fails to communicate
some of the mathematically interesting features of the exact solu-
tion. Leonardo’s work shows us that even during the Middle Ages
there were algorithms that enabled one to compute highly accu-
rate approximations to at least some equations of the third degree,
but there was no general algorithm for obtaining exact solutions to
equations of the third degree.

The New Algorithms

The breakthrough that occurred in Renaissance Italy was unrelat-
ed to finding useful approximations to algebraic equations. It
involved the discovery of an algorithm for obtaining exact solu-
tions of algebraic equations.

The discovery of exact algorithms for equations of degree high-
er than 2 begins with an obscure Italian academic named Scipione
del Ferro (1465-1526). Little is known of del Ferro, nor are schol-
ars sure about precisely what he discovered. Some historians
believe that he was educated at the University of Bologna, but
there are no records that indicate that he was. What is certain is
that in 1496 he joined the faculty at the University of Bologna as
a lecturer in arithmetic and geometry and that he remained at the
university for the rest of his life.

Uncertainty about del Ferro’s precise contribution to the histo-
ry of algebra arises from the fact that he did not publish his ideas
and discoveries about mathematics. He was not secretive. He
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apparently shared his discoveries with friends. Evidently he
learned how to solve certain types of cubic equations. These equa-
tions had resisted exact solution for thousands of years, so del
Ferro’s discovery was a momentous one. Del Ferro did not learn
how to solve every cubic equation, however.

As their Islamic predecessors had not, the European mathemati-
cians of del Ferro’s time did not use negative coefficients, so they
did not perceive a cubic equation as a single case as we do today.
Today we say that a cubic equation is #zy equation that can be
written in the form ax® + b’ + cx + d = 0. But where we see unity,
they saw a diversity of types of cubic equations. They classified
equations by the side of the equals sign where each coefficient was
written. Where we would write a negative coefficient they care-
fully transposed the term containing the negative coefficient to the
other side of the equation so that the only coefficients they con-
sidered were positive. For example, they looked at the equations
¥+ 2x =1and &' = 2x + | as separate cases. Furthermore, they
would also consider any cubic equation with an &’ term, such as
¥’ + 3a% = 1, as a case separate from, say, x° + 2x = 1, because the
former has an &’ term and no x term, whereas the latter equation
has an x term but no »* term. The number of such separate cases
for a third-degree equation is quite large.

Although we cannot be sure exactly what types of cubic equa-
tions del Ferro solved, many scholars believe that he learned to
solve one or both of the following types of third-degree algebraic
equations: (1) ¥* + cx = d and/or (2) &* = cx + d, where in each equa-
tion the letters ¢ and d represent positive numbers. Whatever del
Ferro learned, he passed it on to one of his students, Antonio
Maria Fior.

News of del Ferro’s discovery eventually reached the ears of a
young, creative, and ambitious mathematician and scientist
named Niccolo Fontana (1499-1557), better known as Tartaglia.
Tartaglia was born in the city of Brescia, which is located in what
is now northern Italy. It was a place of great wealth when
Tartaglia was a boy, but Tartaglia did not share in that wealth. His
father, a postal courier, died when Tartaglia was young, and the
family was left in poverty. It is often said that Tartaglia was self-



Algebra as a Theory of Equations 65

taught. In one story the 14-
year-old Tartaglia hires a
tutor to help him learn to
read but has only enough
money to reach the letter k.
In 1512, when Tartaglia was
barely a teenager, the city was
sacked by the French. There
were widespread looting and
violence. Tartaglia suffered
severe saber wounds to his
face, wounds that left him
with a permanent speech
impediment. (Tartaglia, a
name which he took as his

Niccolo Fontana, also known as

own, began as a nickname. It Tartaglia. st dzscov.wy of a method
“ ” to solve arbitrary third-degree equa-

means “stammerer.”) tions had a profound effect on the his-

When Tartaglia heard the tory of mathematics. (Library of
news that del Ferro had dis- Congress, Prints and Photographs
covered a method of solving Division)
certain third-degree equa-
tions, he began the search for
his own method of solving those equations. What he discovered
was a method for solving equations of the form x* + px’ = ¢. Notice
that this is a different type of equation from those that had been
solved by using del Ferro’s method, but both algorithms have
something important in common: They enable the user to con-
struct solution(s) using only the coefficients that appear in the
equation itself. Tartaglia and del Ferro had found formulas for
third-degree equations that were similar in concept to the quad-
ratic formula.

When Tartaglia announced his discovery, a contest was arranged
between him and del Ferro’s student, Antonio Maria Fior. Each
mathematician provided the other with a list of problems, and
each was required to solve the other’s equations within a specified
time. Although he initially encountered some difficulty, Tartaglia
soon discovered how to extend his algorithm to solve those types
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of problems proposed by Fior, but Fior did not discover how to
solve the types of problems proposed by Tartaglia. It was a great
triumph for Tartaglia.

Tartaglia did not stop with his discoveries in algebra. He also
wrote a physics book, Nova Scientia (A new science), in which he
tried to establish the physical laws governing bodies in free fall, a
subject that would soon play an important role in the history of
science and mathematics. Tartaglia had established himself as an
important mathematician and scientist. He was on his way up.

It is at this point that the exploits of the Italian gambler, physi-
cian, mathematician, philosopher, and astrologer Girolamo
Cardano (1501-76) become important to Tartaglia and the histo-
ry of science. Unlike del Ferro, who published nothing, Cardano
published numerous books describing his ideas, his philosophies,
and his insights on every subject that aroused his curiosity, and he
was a very curious man. He published the first book on probabili-
ty. As a physician he published the first clinical description of
typhus, a serious disease that is transmitted through the bite of
certain insects. He also wrote about philosophy, and he seemed to
enjoy writing about himself as
well. His autobiography is
entitled De Propria Vita (Book
of my life). In the field of alge-
bra, Cardano did two things
of great importance: He wrote
the book Ars Magna (Great
art), the book that many his-
torians believe marks the start
of the modern era in mathe-
matics, and he helped an
impoverished boy named
Lodovico Ferrari (1522-65).

At the age of 14 Ferrari
applied to work for Cardano
as a servant, but unlike

Tartaglia also belped to invent the

science of ballistics. Extending from
the cannon is bis invention, the gun '
quadrant. (Library of Congress, most servants of the time,
Prints and Photographs Division) Ferrari could read and write.
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Impressed, Cardano hired him as his personal secretary instead.
It soon became apparent to Cardano that his young secretary had
great potential, so Cardano made sure that Ferrari received an
excellent university education. Ferrari learned Greek, Latin, and
mathematics at the university where Cardano lectured, and when
Ferrari was 18, Cardano resigned his post at the university in
favor of his former secretary. At the age of 18 Ferrari was lectur-
ing in mathematics at the University of Milan. Together
Cardano and Ferrari would soon make an important contribu-
tion to mathematics.

Meanwhile Tartaglia’s success had attracted Cardano’s attention.
Although Tartaglia had discovered how to solve cubic equations,
he had not made his algorithm public. He preferred to keep it
secret. Cardano wanted to know the secret. Initially he sent a let-
ter requesting information about the algorithm, but Tartaglia
refused the request. Cardano, a capable mathematician in his own
right and a very persistent person, did not give up. He continued
to write to Tartaglia. They argued. Still Tartaglia would not tell,
and still Cardano persisted. Their positions, however, were not
equal. Tartaglia, though well known, was not well off. By contrast,
Cardano was wealthy and well connected. He indicated that he
could help Tartaglia find a prestigious position, which Tartaglia
very much wanted. Cardano invited Tartaglia to his home, and, in
exchange for a promise that Cardano would tell no one, Tartaglia
shared his famous algorithm with his host.

It was a mistake, of course. Tartaglia is said to have recognized
his error almost as soon as he made it. Cardano was of no help
in finding Tartaglia a position, but with the solution to the
third-degree equation firmly in hand, Cardano asked his former
servant, secretary, and pupil, Ferrari, to solve the general
fourth-degree equation, and Ferrari, full of energy and insight,
did as he was asked. He discovered a formula that enabled th