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Al-Khwārizmı̄ and a New Concept of Algebra 50
A Problem and a Solution 53
Omar Khayyám, Islamic Algebra at Its Best 54
Leonardo of Pisa 59



4 Algebra as a Theory of Equations 60
The New Algorithms 63
Algebra as a Tool in Science 69
François Viète, Algebra as a Symbolic Language 71
Thomas Harriot 75
Albert Girard and the Fundamental Theorem of Algebra 79
Further Attempts at a Proof 83
Using Polynomials 88

5 Algebra in Geometry and Analysis 91
René Descartes 95
Descartes on Multiplication 98
Pierre de Fermat 102
Fermat’s Last Theorem 105
The New Approach 106

6 The Search for New Structures 110
Niels Henrik Abel 112
Évariste Galois 114
Galois Theory and the Doubling of the Cube 117
Doubling the Cube with a Straightedge and 

Compass Is Impossible 120
The Solution of Algebraic Equations 122
Group Theory in Chemistry 127

7 The Laws of Thought 130
Aristotle 130
Gottfried Leibniz 133
George Boole and the Laws of Thought 137
Boolean Algebra 141
Aristotle and Boole 144
Refining and Extending Boolean Algebra 146
Boolean Algebra and Computers 149



8 The Theory of Matrices and Determinants 153
Early Ideas 155
Spectral Theory 159
The Theory of Matrices 166
Matrix Multiplication 172
A Computational Application of Matrix Algebra 175
Matrices in Ring Theory 177

Chronology 179
Glossary 197
Further Reading 203
Index 213





I N T R O D U C T I O N

ALGEBRA AS LANGUAGE

algebra n.

1. a generalization of arithmetic in which letters representing
numbers are combined according to the rules of arithmetic

2. any of various systems or branches of mathematics or logic
concerned with the properties and relationships of abstract enti-
ties (as complex numbers, matrices, sets, vectors, groups, rings,
or fields) manipulated in symbolic form under operations often
analogous to those of arithmetic

(By permission. From Merriam-Webster’s Collegiate Dictionary, 
10th ed. © Springfield, Mass.: Merriam-Webster, 2002)

Algebra is one of the oldest of all branches of mathematics. Its 
history is as long as the history of civilization, perhaps longer. The
well-known historian of mathematics B. L. van der Waerden
believed that there was a civilization that preceded the ancient 
civilizations of Mesopotamia, Egypt, China, and India and that it
was this civilization that was the root source of most early mathe-
matics. This hypothesis is based on two observations: First, there
were several common sets of problems that were correctly solved
in each of these widely separated civilizations. Second, there was an
important incorrectly solved problem that was common to all of
these lands. Currently there is not enough evidence to prove 
or disprove his idea. We can be sure, however, that algebra was
used about 4,000 years ago in Mesopotamia. We know that 
some remarkably similar problems, along with their algebraic
solutions, can be found on Egyptian papyri, Chinese paper, and
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Mesopotamian clay tablets. We can be sure that algebra was 
one of the first organized intellectual activities carried out by 
these early civilizations. Algebra, it seems, is as essential and as
“natural” a human activity as art, music, or religion.

No branch of mathematics has changed more than algebra.
Geometry, for example, has a history that is at least as old as that
of algebra, and although geometry has changed a lot over the
millennia, it still feels geometric. A great deal of geometry is still
concerned with curves, surfaces, and forms. Many contemporary
books and articles on geometry, as their ancient counterparts did,
include pictures, because modern geometry, as the geometry of
these ancient civilizations did, still appeals to our intuition and
to our experience with shapes. It is very doubtful that Greek
geometers, who were the best mathematicians of antiquity,
would have understood the ideas and techniques used by 
contemporary geometers. Geometry has changed a great deal
during the intervening millennia. Still, it is at least probable that
those ancient Greeks would have recognized modern geometry 
as a kind of geometry.

The same cannot be said of algebra, in which the subject matter
has changed entirely. Four thousand years ago, for example,
Mesopotamian mathematicians were solving problems like this:

Given the area and perimeter of a plot of rectangular land, find
the dimensions of the plot.

This type of problem seems practical; it is not. Despite the refer-
ence to a plot of land, this is a fairly abstract problem. It has little
practical value. How often, after all, could anyone know the area
and perimeter of a plot of land without first knowing its dimen-
sions? So we know that very early in the history of algebra there was
a trend toward abstraction, but it was a different kind of abstraction
than what pervades contemporary algebra. Today mathematicians
want to know how algebra “works.” Their goal is to understand
the logical structure of algebraic systems. The search for these
logical structures has occupied much of the last hundred years of
algebraic research. Today mathematicians who do research in the
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field of algebra often focus their attention on the mathematical
structure of sets on which one or more abstract operations have
been defined—operations that are somewhat analogous to addi-
tion and multiplication.

We can illustrate the difference between modern algebra and
ancient algebra by briefly examining a very important subfield of
contemporary algebra. It is called group theory, and its subject is
the mathematical group. Roughly speaking, a group is a set of
objects on which a single operation, somewhat similar to ordinary
multiplication, is defined. Investigating the mathematical proper-
ties of a particular group or class of groups is a very different kind
of undertaking from solving the rectangular-plots-of-land prob-
lem described earlier. The most obvious difference is that group
theorists study their groups without reference to any nonmathe-
matical object—such as a plot of land or even a set of numbers—
that the group might represent. Group theory is solely about
(mathematical) groups. It can be a very inward looking discipline.
By way of contrast with the land problem, we include here a
famous statement about finite groups. (A finite group is a group
with only finitely many elements.) The following statement was
first proved by the French mathematician Augustin-Louis Cauchy
(1789–1857):

Let the letter G denote a finite group. Let N represent the 
number of elements in G. Let p represent a prime number. 
If p (evenly) divides N then G has an element of order p.

You can see that the level of abstraction is much higher in this
statement than in the rectangular-plot-of-land problem. To many
well-educated laypersons it is not even clear what the statement
means or even whether it means anything at all.

Ancient mathematicians, as would most people today, would
have had a difficult time seeing what group theory, one of the
most important branches of contemporary mathematical
research, and the algebraic problems of antiquity have in com-
mon. In many ways, algebra, unlike geometry, has evolved into
something completely new.
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As algebra has become more abstract, it has also become more
important in the solution of practical problems. Today it is an
indispensable part of every branch of mathematics. The sort of
algebraic notation that we begin to learn in middle school—“let x
represent the variable”—can be found at a much higher level and
in a much more expressive form throughout all contemporary
mathematics. Furthermore it is now an important and widely uti-
lized tool in scientific and engineering research. It is doubtful that
the abstract algebraic ideas and techniques so familiar to mathe-
maticians, scientists, and engineers can even be separated from the
algebraic language in which those ideas are expressed. Algebra is
everywhere.

This book begins its story with the first stirrings of algebra in
ancient civilizations and traces the subject’s development up to
modern times. Along the way, it examines how algebra has been
used to solve problems of interest to the wider public. The book’s
objective is to give the reader a fuller appreciation of the intellec-
tual richness of algebra and of its ever-increasing usefulness in all
of our lives.
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1

1
the first algebras

How far back in time does the history of algebra begin? Some
scholars begin the history of algebra with the work of the Greek
mathematician Diophantus of Alexandria (ca. third century A.D.).
It is easy to see why Diophantus is always included. His works
contain problems that most modern readers have no difficulty rec-
ognizing as algebraic.

Other scholars begin much earlier than the time of Diophantus.
They believe that the history of algebra begins with the mathe-
matical texts of the Mesopotamians. The Mesopotamians were a
people who inhabited an area that is now inside the country of
Iraq. Their written records begin about 5,000 years ago in the
city-state of Sumer. The Sumerian method of writing, called

Mesopotamian ziggurat at Ur. For more than two millennia Mesopotamia
was the most mathematically advanced culture on Earth.  (The Image Works)



cuneiform, spread throughout the region and made an impact that
outlasted the nation of Sumer. The last cuneiform texts, which
were written about astronomy, were made in the first century A.D.,
about 3,000 years after the Sumerians began to represent their
language with indentations in clay tablets. The Mesopotamians
were one of the first, perhaps the first, of all literate civilizations,
and they remained at the forefront of the world’s mathematical
cultures for well over 2,000 years. Since the 19th century, when
archaeologists began to unearth the remains of Mesopotamian
cities in search of clues to this long-forgotten culture, hundreds of
thousands of their clay tablets have been recovered. These include
a number of mathematics tablets. Some tablets use mathematics to
solve scientific and legal problems—for example, the timing of an
eclipse or the division of an estate. Other tablets, called problem
texts, are clearly designed to serve as “textbooks.”

Mesopotamia: The Beginnings of Algebra
We begin our history of algebra with the Mesopotamians. Not
everyone believes that the Mesopotamians knew algebra. That
they were a mathematically sophisticated people is beyond doubt.
They solved a wide variety of mathematical problems, some of
which would challenge a well-educated layperson of today. The
difficulty in determining whether the Mesopotamians knew any
algebra arises not in what the Mesopotamians did—because their
mathematics is well documented—but in how they did it.
Mesopotamian mathematicians solved many important problems
in ways that were quite different from the way we would solve
those same problems. Many of the problems that were of interest
to the Mesopotamians we would solve with algebra.

Although they spent thousands of years solving equations, the
Mesopotamians had little interest in a general theory of equations.
Moreover, there is little algebraic language in their methods of
solution. Mesopotamian mathematicians seem to have learned
mathematics simply by studying individual problems. They moved
from one problem to the next and thereby advanced from the sim-
ple to the complex in much the same way that students today
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might learn to play the piano. An aspiring piano student might
begin with “Old McDonald” and after much practice master the
works of Frédéric Chopin. Ambitious piano students can learn the
theory of music as they progress in their musical studies, but there
is no necessity to do so—not if their primary interest is in the area
of performance. In a similar way, Mesopotamian students began
with simple arithmetic and advanced to problems that we would
solve with, for example, the quadratic formula. They did not seem
to feel the need to develop a theory of equations along the way.
For this reason Mesopotamian mathematics is sometimes called
protoalgebra or arithmetic algebra or numerical algebra. Their
work is an important first step in the development of algebra.

It is not always easy to appreciate the accomplishments of the
Mesopotamians and other ancient cultures. One barrier to our
appreciation emerges when we express their ideas in our notation.
When we do so it can be difficult for us to see why they had to
work so hard to obtain a solution. The reason for their difficulties,
however, is not hard to identify. Our algebraic notation is so pow-
erful that it makes problems that were challenging to them appear
almost trivial to us. Mesopotamian problem texts, the equivalent
of our school textbooks, generally consist of one or more problems
that are communicated in the following way: First, the problem is
stated; next, a step-by-step algorithm or method of solution is
described; and, finally, the presentation concludes with the answer
to the problem. The algorithm does not contain “equals signs” or
other notational conveniences. Instead it consists of one terse
phrase or sentence after another. The lack of symbolic notation is
one important reason the problems were so difficult for them to
solve.

The Mesopotamians did use a few terms in a way that would
roughly correspond to our use of an abstract notation. In particu-
lar they used the words length and width as we would use the vari-
ables x and y to represent unknowns. The product of the length
and width they called area. We would write the product of x and y
as xy. Their use of the geometric words length, width, and area,
however, does not indicate that they were interpreting their work
geometrically. We can be sure of this because in some problem
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texts the reader is advised to perform operations that involve mul-
tiplying length and width to obtain area and then adding (or sub-
tracting) a length or a width from an area. Geometrically, of course,
this makes no sense. To see the difference between the brief, to-
the-point algebraic symbolism that we use and the very wordy
descriptions of algebra used by all early mathematical cultures, and
the Mesopotamians in particular, consider a simple example.
Suppose we wanted to add the difference x – y to the product xy.
We would write the simple phrase

xy + x – y

In this excerpt from an actual Mesopotamian problem text, the
short phrase xy + x – y is expressed this way, where the words length
and width are used in the same way our variables, x and y, are used:

Length, width. I have multiplied length and width, thus obtain-
ing the area. Next I added to the area the excess of the length
over the width.

(Van der Waerden, B. L. Geometry and Algebra in Ancient
Civilizations. New York: Springer-Verlag, 1983. Page 72. Used with
permission)

Despite the lack of an easy-to-use symbolism, Mesopotamian
methods for solving algebraic equations were extremely advanced
for their time. They set a sort of world standard for at least 2,000
years. Translations of the Mesopotamian algorithms, or methods of
solution, can be difficult for the modern reader to appreciate, how-
ever. Part of the difficulty is associated with their complexity. From
our point of view, Mesopotamian algorithms sometimes appear
unnecessarily complex given the relative simplicity of the problems
that they were solving. The reason is that the algorithms contain
numerous separate procedures for what the Mesopotamians per-
ceived to be different types of problems; each type required a dif-
ferent method. Our understanding is different from that of the
Mesopotamians: We recognize that many of the different “types”
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of problems perceived by the Mesopotamians can be solved with
just a few different algorithms. An excellent example of this phe-
nomenon is the problem of solving second-degree equations.

Mesopotamians and Second-Degree Equations
There is no better example of the difference between modern
methods and ancient ones than the difference between our
approach and their approach to solving second-degree equations.
(These are equations involving a polynomial in which the highest
exponent appearing in the equation is 2.) Nowadays we under-
stand that all second-degree equations are of a single form:

ax2 + bx + c = 0

where a, b, and c represent numbers and x is the unknown whose
value we wish to compute. We solve all such equations with a sin-
gle very powerful algorithm—a method of solution that most stu-
dents learn in high school—called the quadratic formula. The
quadratic formula allows us to solve these problems without giv-
ing much thought to either the size or the sign of the numbers
represented by the letters a, b, and c. For a modern reader it hard-
ly matters. The Mesopotamians, however, devoted a lot of energy
to solving equations of this sort, because for them there was not
one form of a second-degree equation but several. Consequently,
there could not be one method of solution. Instead the
Mesopotamians required several algorithms for the several differ-
ent types of second-degree equations that they perceived.

The reason they had a more complicated view of these problems
is that they had a much narrower concept of number than we do.
They did not accept negative numbers as “real,” although they must
have run into them at least occasionally in their computations. The
price they paid for avoiding negative numbers was a more compli-
cated approach to what we perceive as essentially a single problem.
The approach they took depended on the exact values of a, b, and c.

Today we have a much broader idea of what constitutes a number.
We use negative numbers, irrational numbers, and even imaginary
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numbers. We accept all such numbers as solutions to second-degree
equations, but all of this is a relatively recent historical phenomenon.
Because we have such a broad idea of number we are able to solve
all second-degree algebraic equations with the quadratic formula, a
one-size-fits-all method of solution. By contrast the Mesopotamians
perceived that there were three basic types of second-degree equa-
tions. In our notation we would write these equations like this:

x2 + bx = c
x2 + c = bx
x2 = bx + c

where, in each equation, b and c represent positive numbers. This
approach avoids the “problem” of the appearance of negative
numbers in the equation. The first job of any scribe or mathe-
matician was to reduce or “simplify” the given second-degree
equation to one of the three types listed. Once this was done, the
appropriate algorithm could be employed for that type of equation
and the solution could be found.

In addition to second-degree equations the Mesopotamians
knew how to solve the much easier first-degree equations. We call
these linear equations. In fact, the Mesopotamians were advanced
enough that they apparently considered these equations too sim-
ple to warrant much study. We would write a first-degree equation
in the form

ax + b = 0

where a and b are numbers and x is the unknown.
They also had methods for finding accurate approximations for

solutions to certain third-degree and even some fourth-degree
equations. (Third- and fourth-degree equations are polynomial
equations in which the highest exponents that appear are 3 and 4,
respectively.) They did not, however, have a general method for
finding the precise solutions to third- and fourth-degree equations.
Algorithms that enable one to find the exact solutions to equations
of the third and fourth degrees were not developed until about 450
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years ago. What the Mesopotamians discovered instead were meth-
ods for developing approximations to the solutions. From a practical
point of view an accurate approximation is usually as good as an
exact solution, but from a mathematical point of view the two are
quite different. The distinctions that we make between exact and
approximate solutions were not important to the Mesopotamians.
They seemed completely satisfied as long as their approximations
were accurate enough for the applications that they had in mind.

The Mesopotamians and Indeterminate Equations
In modern notation an indeterminate equation—that is, an equa-
tion with many different solutions—is usually easy to 
recognize. If we have one
equation and more than one
unknown then the equation is
generally indeterminate. For
the Mesopotamians geometry
was a source of indeterminate
equations. One of the most
famous examples of an 
indeterminate equation from
Mesopotamia can be expressed
in our notation as

x2 + y2 = z2

The fact that that we have
three variables but only one
equation is a good indicator
that this equation is indeter-
minate. And so it is. Geomet-
rically we can interpret this
equation as the Pythagorean
theorem, which states that for
a right triangle the square of
the length of the hypotenuse
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(here represented by z2) equals the sum of the squares of the
lengths of the two remaining sides. The Mesopotamians knew this
theorem long before the birth of Pythagoras, however, and their
problem texts are replete with exercises involving what we call the
Pythagorean theorem.

8 ALGEBRA

CLAY TABLETS AND ELECTRONIC CALCULATORS

The positive square root of the
positive number a—usually
written as √a—is the positive
number with the property that
if we multiply it by itself we
obtain a. Unfortunately, writing
the square root of a as √a
does not tell us what the num-
ber is. Instead, it tells us what
√a does: If we square √a we
get a.

Some square roots are
easy to write. In these cases
the square root sign, √, is not
really necessary. For example,
2 is the square root of 4, and
3 is the square root of 9. In
symbols we could write 2 =
√4 and 3 = √9 but few of us
bother.

The situation is a little more complicated, however, when we want to
know the square root of 2, for example. How do we find the square root
of 2? It is not an especially easy problem to solve. It is, however, equiv-
alent to finding the solution of the second-degree equation

x2 – 2 = 0

Notice that when the number √2 is substituted for x in the equation we
obtain a true statement. Unfortunately, this fact does not convey much
information about the size of the number we write as √2.

The Mesopotamians developed an algorithm for computing square
roots that yields an accurate approximation for any positive square

Calculator. Many electronic calcula-
tors use the square root algorithm
pioneered by the Mesopotamians.
(CORBIS)



The Pythagorean theorem is usually encountered in high school
or junior high in a problem in which the length of two sides of a
right triangle are given and the student has to find the length of
the third side. The Mesopotamians solved problems like this as
well, but the indeterminate form of the problem—with its three
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root. (As the Mesopotamians did, we will consider only positive square
roots.) For definiteness, we will apply the method to the problem of
calculating √2.

The Mesopotamians used what we now call a recursion algorithm to
compute square roots. A recursion algorithm consists of several steps.
The output of one step becomes the input for the next step. The more
often one repeats the process—that is, the more steps one takes—the
closer one gets to the exact answer. To get started, we need an “input”
for the first step in our algorithm. We can begin with a guess; they did.
Almost any guess will do. After we input our initial guess we just repeat
the process over and over again until we are as close as we want to be.
In a more or less modern notation we can represent the Mesopotamian
algorithm like this:

OUTPUT = 1/2(INPUT + 2/INPUT)

(If we wanted to compute √5, for example, we would only have to
change 2/INPUT into 5/INPUT. Everything else stays the same.)

If, at the first step, we use 1.5 as our input, then our output is 1.416̄
because

1.416̄ = 1/2(1.5 + 2/1.5)

At the end of the second step we would have

1.414215. . . = 1/2(1.416̄ + 2/1.416̄)

as our estimate for √2. We could continue to compute more steps in the
algorithm, but after two steps (and with the aid of a good initial guess)
our approximation agrees with the actual value of √2 up to the millionth
place—an estimate that is close enough for many practical purposes.

What is especially interesting about this algorithm from a modern
point of view is that it is probably the one that your calculator uses to
compute square roots. The difference is that instead of representing the
algorithm on a clay tablet, the calculator represents the algorithm on an
electronic circuit! This algorithm is as old as civilization.



unknowns rather than one—is a little more challenging. The inde-
terminate version of the problem consists of identifying what we
now call Pythagorean triples. These are solutions to the equation
given here that involve only whole numbers.

There are infinitely many Pythagorean triples, and Mesopotamian
mathematicians exercised considerable ingenuity and mathematical
sophistication in finding solutions. They then compiled these whole
number solutions in tables. Some simple examples of Pythagorean
triples include (3, 4, 5) and (5, 12, 13), where in our notation, taken
from a preceding paragraph, z = 5 in the first triple and z = 13 in the
next triple. (The numbers 3 and 4 in the first triple, for example, can
be placed in either of the remaining positions in the equation and the
statement remains true.)

The Mesopotamians did not indicate the method that they used
to find these Pythagorean triples, so we cannot say for certain how
they found these triples. Of course a few correct triples could be
attributed to lucky guesses. We can be sure, however, that the
Mesopotamians had a general method worked out because their
other solutions to the problem of finding Pythagorean triples
include (2,700, 1,771, 3,229), (4,800, 4,601, 6,649), and (13,500,
12,709, 18,541).

The search for Pythagorean triples occupied mathematicians in
different parts of the globe for millennia. A very famous generaliza-
tion of the equation we use to describe Pythagorean triples was pro-
posed by the 17th-century French mathematician Pierre de Fermat.
His conjecture about the nature of these equations, called Fermat’s
last theorem, occupied the attention of mathematicians right up to
the present time and was finally solved only recently; we will describe
this generalization later in this volume. Today the mathematics for
generating all Pythagorean triples is well known but not especially
easy to describe. That the mathematicians in the first literate culture
in world history should have solved the problem is truly remarkable.

Egyptian Algebra
Little is left of Egyptian mathematics. The primary sources are a
few papyri, the most famous of which is called the Ahmes papyrus,
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and the first thing one notices about these texts is that the
Egyptians were not as mathematically adept as their neighbors and
contemporaries the Mesopotamians—at least there is no indica-
tion of a higher level of attainment in the surviving records. It
would be tempting to concentrate exclusively on the
Mesopotamians, the Chinese, and the Greeks as sources of early
algebraic thought. We include the Egyptians because Pythagoras,
who is an important figure in our story, apparently received at least
some of his mathematical education in Egypt. So did Thales,
another very early and very important figure in Greek mathemat-
ics. In addition, certain other peculiar characteristics of Egyptian
mathematics, especially their penchant for writing all fractions as
sums of what are called unit fractions, can be found in several cul-
tures throughout the region and even as far away as China. (A unit
fraction is a fraction with a 1 in the numerator.) None of these
commonalities proves that Egypt was the original source of a lot
of commonly held mathematical ideas and practices, but there are
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indications that this is true. The Greeks, for example, claimed that
their mathematics originated in Egypt.

Egyptian arithmetic was considerably more primitive than that
of their neighbors the Mesopotamians. Even multiplication was
not treated in a general way. To multiply two numbers together
they used a method that consisted of repeatedly doubling one of
the numbers and then adding together some of the intermediate
steps. For example, to compute 5 × 80, first find 2 × 80 and then
double the result to get 4 × 80. Finally, 1 × 80 would be added to
4 × 80 to get the answer, 5 × 80. This method, though it works, is
awkward.

Egyptian algebra employed the symbol heap for the unknown.
Problems were phrased in terms of “heaps” and then solved. To
paraphrase a problem taken from the most famous of Egyptian
mathematical texts, the Ahmes papyrus: If 1 heap and 1/7 of a heap
together equal 19, what is the value of the heap? (In our notation
we would write the corresponding equation as x + x/7 = 19.) This
type of problem yields what we would call a linear equation. It is
not the kind of exercise that attracted much attention from
Mesopotamian mathematicians, who were concerned with more
difficult problems, but the Egyptians apparently found them chal-
lenging enough to be worth studying.

What is most remarkable about Egyptian mathematics is that it
seemed to be adequate for the needs of the Egyptians for thou-
sands of years. Egyptian culture is famous for its stunning archi-
tecture and its high degree of social organization and stability.
These were tremendous accomplishments, and yet the Egyptians
seem to have accomplished all of this with a very simple mathe-
matical system, a system with which they were apparently quite
satisfied.

Chinese Algebra
The recorded history of Chinese mathematics begins in the Han
dynasty, a period that lasted from 206 B.C.E. until 220 C.E. Records
from this time are about 2,000 years younger than many
Mesopotamian mathematics texts. What we find in these earliest
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of records of Chinese mathematics is that Chinese mathemati-
cians had already developed an advanced mathematical culture. It
would be interesting to know when the Chinese began to devel-
op their mathematics and how their ideas changed over time, but
little is known about mathematics in China before the founding
of the Han dynasty. This lack of knowledge is the result of a
deliberate act. The first emperor of China, Qin Shi Huang, who
died in the year 210 B.C.E., ordered that all books be burned. This
was done. The book burners were diligent. As a consequence, lit-
tle information is available about Chinese mathematical thought
before 206 B.C.E.

One of the first and certainly the most important of all early
Chinese mathematical texts is Nine Chapters on the Mathematical
Art, or the Nine Chapters for short. (It is also known as Arithmetic
in Nine Sections.) The mathematics in the Nine Chapters is already
fairly sophisticated, comparable with the mathematics of
Mesopotamia. The Nine Chapters has more than one author and is
based on a work that survived, at least in part, the book burning
campaign of the emperor Qin Shi Huang. Because it was exten-
sively rewritten and enlarged knowing what the original text was
like is difficult. In any case, because the book was rewritten during
the Han dynasty, it is one of the earliest extant Chinese mathe-
matical texts. It is also one of the best known. It was used as a math
text for generations, and it has served as an important source of
inspiration for Chinese mathematicians.

In its final form the Nine Chapters consists of 246 problems on a
wide variety of topics. There are problems in taxation, surveying,
engineering, and geometry and methods of solution for determi-
nate and indeterminate equations alike. The tone of the text is
much more conversational than that adopted by the
Mesopotamian scribes. It is a nice example of what is now known
as rhetorical algebra. (Rhetorical algebra is algebra that is expressed
with little or no specialized algebraic notation.) Everything—the
problem, the solution, and the algorithm that is used to obtain the
solution—is expressed in words and numbers, not in mathematical
symbols. There are no “equals” signs, no x’s to represent
unknowns, and none of the other notational tools that we use
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when we study algebra. Most of us do not recognize what a great
advantage algebraic notation is until after we read problems like
those in the Nine Chapters. These problems make for fairly diffi-
cult reading for the modern reader precisely because they are
expressed without the algebraic symbolism to which we have
become accustomed. Even simple problems require a lot of
explanatory prose when they are written without algebraic nota-
tion. The authors of the Nine Chapters did not shy away from using
as much prose as was required.

Aside from matters of style, Mesopotamian problem texts and
the Nine Chapters have a lot in common. There is little in the way
of a general theory of mathematics in either one. Chinese and
Mesopotamian authors are familiar with many algorithms that
work, but they express little interest in proving that the algorithms
work as advertised. It is not clear why this is so. Later
Mesopotamian mathematicians, at least, had every opportunity to
become familiar with Greek mathematics, in which the idea of
proof was central. The work of their Greek contemporaries had
little apparent influence on the Mesopotamians. Some historians
believe that there was also some interaction between the Chinese
and Greek cultures, if not direct then at least by way of India. If
this was the case, then Chinese mathematics was not overly influ-
enced by contact with the Greeks, either. Perhaps the Chinese
approach to mathematics was simply a matter of taste. Perhaps
Chinese mathematicians (and their Mesopotamian counterparts)
had little interest in exploring the mathematical landscape in the
way that the Greeks did. Or perhaps the Greek approach was
unknown to the authors of the Nine Chapters.

Another similarity between Mesopotamian and Chinese mathe-
maticians lay in their use of approximations. As the
Mesopotamians did and the Greeks did not, Chinese mathemati-
cians made little distinction between exact results and good
approximations. And as their Mesopotamian counterparts did,
Chinese mathematicians developed a good deal of skill in obtain-
ing accurate approximations for square roots. Even the method of
conveying mathematical knowledge used by the authors of the
Nine Chapters is similar to that of the Mesopotamian scribes in
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their problem texts. Like the Mesopotamian texts, the Nine
Chapters is written as a straightforward set of problems. The prob-
lems are stated, as are the solutions, and an algorithm or “rule” by
which the reader can solve the given problem for himself or her-
self is described. There is little apparent concern for the founda-
tions of the subject. The mathematics in the Nine Chapters is not
higher mathematics in a modern sense; it is, instead, a highly
developed example of “practical” mathematics.

The authors of the Nine Chapters solved many determinate equa-
tions (see the sidebar Rhetorical Algebra for an example). They
were at home manipulating positive whole numbers, fractions, and
even negative numbers. Unlike the Mesopotamians, the Chinese
accepted the existence of negative numbers and were willing to
work with negative numbers to obtain solutions to the problems
that interested them. In fact, the Nine Chapters even gives rules for
dealing with negative numbers. This is important because negative
numbers can arise during the process of solving many different
algebraic problems even when the final answers are positive.
When one refuses to deal with negative numbers, one’s work
becomes much harder. In this sense the Chinese methods for solv-
ing algebraic equations were more adaptable and “modern” than
were the methods used by the Mesopotamians, who strove to
avoid negative numbers.

In addition to their work on determinate equations, Chinese
mathematicians had a deep and abiding interest in indeterminate
equations, equations for which there are more unknowns than
there are equations. As were the Mesopotamians, Chinese mathe-
maticians were also familiar with the theorem of Pythagoras and
used the equation (which we might write as x2 + y2 = z2) to pose
indeterminate as well as determinate problems. They enjoyed
finding Pythagorean triples just as the Mesopotamians did, and
they compiled their results just as the Mesopotamians did.

The algebras that developed in the widely separated societies
described in this chapter are remarkably similar. Many of the
problems that were studied are similar. The approach to problem
solving—the emphasis on algorithms rather than a theory of equa-
tions—was a characteristic that all of these cultures shared. Finally,
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RHETORICAL ALGEBRA

The following problem is an example of Chinese rhetorical algebra taken
from the Nine Chapters. This particular problem is representative of the
types of problems that one finds in the Nine Chapters; it is also a good
example of rhetorical algebra, which is algebra that is expressed without
specialized algebraic notation.

In this problem the authors of the Nine Chapters consider three types
or “classes” of corn measured out in standard units called measures.
The corn in this problem, however, is not divided into measures; it is
divided into “bundles.” The number of measures of corn in one bundle
depends on the class of corn considered. The goal of the problem is to
discover how many measures of corn constitute one bundle for each
class of corn. The method of solution is called the Rule. Here are the
problem and its solution:

There are three classes of corn, of which three bundles of the
first class, two of the second and one of the third make 39
measures. Two of the first, three of the second and one of the
third make 34 measures. And one of the first, two of the sec-
ond and three of the third make 26 measures. How many meas-
ures of grain are contained in one bundle of each class?

Rule. Arrange the 3, 2, and 1 bundles of the three classes
and the 39 measures of their grains at the right.

Arrange other conditions at the middle and at the left. With
the first class in the right column multiply currently the middle
column, and directly leave out.

Again multiply the next, and directly leave out.
Then with what remains of the second class in the middle

column, directly leave out.
Of the quantities that do not vanish, make the upper the fa,

the divisor, and the lower the shih, the dividend, i.e., the 
dividend for the third class.

To find the second class, with the divisor multiply the measure
in the middle column and leave out of it the dividend for the third
class. The remainder, being divided by the number of bundles of
the second class, gives the dividend for the third class. To find
the second class, with the divisor multiply the measure in the
middle column and leave out of it the dividend for the third class.
The remainder, being divided by the number of bundles of the
second class, gives the dividend for the second class.



not one of the cultures developed a specialized set of algebraic
symbols to express their ideas. All these algebras were rhetorical.
There was one exception, however. That was the algebra that was
developed in ancient Greece.
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To find the first class, also with the divisor multiply the meas-
ures in the right column and leave out from it the dividends for
the third and second classes. The remainder, being divided by
the number of bundles of the first class, gives the dividend for
the first class.

Divide the dividends of the three classes by the divisor, and
we get their respective measures.

(Mikami, Yoshio. The Development of Mathematics in China and Japan.
New York: Chelsea Publishing, 1913)

The problem, which is the type of problem often encountered in 
junior high or high school algebra classes, is fairly difficult to read, but
only because the problem—and especially the solution—are expressed
rhetorically. In modern algebraic notation we would express the 
problem with three variables. Let x represent a bundle for the first class
of corn, y represent a bundle for the second class of corn, and 
z represent a bundle for the third class of corn. In our notation the prob-
lem would be expressed like this:

3x + 2y + z = 39
2x + 3y + z = 34
x + 2y + 3z = 26

The answer is correctly given as 9 1/4 measures of corn in the first
bundle, 4 1/4 measures of corn in the second bundle, and 2 3/4 meas-
ures of grain in the third bundle.

Today this is not a particularly difficult problem to solve, but at the 
time that the Nine Chapters was written this problem was for experts
only. The absence of adequate symbolism was a substantial barrier to
mathematical progress.



2
greek algebra

Greek mathematics is fundamentally different from the mathemat-
ics of Mesopotamia and China. The unique nature of Greek math-
ematics seems to have been present right from the outset in the
work of Thales of Miletus (ca. 625 B.C.E.–ca. 546 B.C.E.) and
Pythagoras of Samos (ca. 582 B.C.E.–ca. 500 B.C.E.). In the begin-
ning, however, the Greeks were not solving problems that were any
harder than those of the Mesopotamians or the Chinese. In fact, the
Greeks were not interested in problem solving at all—at least not in
the sense that the Mesopotamian and Chinese mathematicians
were. Greek mathematicians for the most part did not solve prob-
lems in taxation, surveying, or the division of food. They were inter-
ested, instead, in questions about the nature of number and form.

It could be argued that Chinese and Mesopotamian mathemati-
cians were not really interested in these applications, either—that
they simply used practical problems to express their mathematical
insights. Perhaps they simply preferred to express their mathe-
matical ideas in practical terms. Perhaps, as it was for their Greek
counterparts, it was the mathematics and not the applications that
provided them with their motivation. Though possible, this expla-
nation is not entirely certain from their writings.

There is, however, no doubt about how the Greeks felt about
utilitarian mathematics. The Greeks did not—would not—express
their mathematical ideas through problems involving measures of
corn or the division of estates or any other practical language. They
must have known, just as the Mesopotamian and Chinese mathe-
maticians knew, that all of these fields are rich sources of mathe-
matical problems. To the Greeks this did not matter. The Greeks
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were interested in mathematics for the sake of mathematics. They
expressed their ideas in terms of the properties of numbers, points,
curves, planes, and geometric solids. Most of them had no interest
in applications of their subject, and in case anyone missed the point
they were fond of reciting the story about the mathematician
Euclid of Alexandria, who, when a student inquired about the util-
ity of mathematics, instructed his servant to give the student a few
coins so that he could profit from his studies. There are other sim-
ilar stories about other Greek mathematicians. Greek mathemati-
cians were the first of the “pure” mathematicians.

Another important difference between Greek mathematicians
and the mathematicians of other ancient cultures was the distinc-
tion that the Greeks made between exact and approximate results.
This distinction is largely absent from other mathematical cul-
tures of the time. In a practical sense, exact results are generally no
more useful than good approximations. Practical problems involve
measurements, and measurements generally involve some uncer-
tainty. For example, when we measure the length of a line segment
our measurement removes some of our uncertainty about the
“true” length of the segment, but some uncertainty remains. This
uncertainty is our margin of error. Although we can further reduce
our uncertainty with better measurements or more sophisticated
measurement techniques, we cannot eliminate all uncertainty. As a
consequence, any computations that depend on this measurement
must also reflect our initial imprecision about the length of the
segment. Our methods may be exact in the sense that if we had
exact data then our solution would be exact as well. Unfortunately,
exact measurements are generally not available.

The Greek interest in precision influenced not only the way
they investigated mathematics; it also influenced what they inves-
tigated. It was their interest in exact solutions that led to one of the
most profound discoveries in ancient mathematics.

The Discovery of the Pythagoreans
Pythagoras of Samos was one of the first Greek mathematicians.
He was extremely influential, although, as we will soon see, we
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cannot attribute any particular discoveries to him. As a young man
Pythagoras is said to have traveled widely. He apparently received
his mathematics education in Egypt and Mesopotamia. He may
have traveled as far east as India. Eventually he settled on the
southeastern coast of what is now Italy in the Greek city of
Cortona. (Although we tend to think of Greek civilization as situ-
ated within the boundaries of present-day Greece, there was a
time when Greek cities were scattered throughout a much larger
area along the Mediterranean Sea.)

Pythagoras was a mystic as well as a philosopher and mathe-
matician. Many people were attracted to him personally as well as
to his ideas. He founded a community in Cortona where he and
his many disciples lived communally. They shared property, ideas,
and credit for those ideas. No Pythagorean took individual credit
for a discovery, and as a consequence we cannot be sure which of
the discoveries attributed to Pythagoras were his and which were
his disciples’. For that reason we discuss the contributions of the
Pythagoreans rather than the contributions of Pythagoras himself.
There is, however, one point about Pythagoras about which we
can be sure: Pythagoras did not discover the Pythagorean theo-
rem. The theorem was known to Mesopotamian mathematicians
more than 30 generations before Pythagoras’s birth.

At the heart of Pythagorean philosophy was the maxim “All is
number.” There is no better example of this than their ideas about

music. They noticed that the
musical tones produced by a
string could be described by
whole number ratios. They
investigated music with an
instrument called a mono-
chord, a device consisting of
one string stretched between
two supports. (The supports
may have been attached to a
hollow box to produce a rich-
er, more harmonious sound.)
The Pythagorean monochord
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The monochord, a device used by the
Pythagoreans to investigate the rela-
tionships that exist between musical
pitches and mathematical ratios.



had a third support that was slid back and forth under the string.
It could be placed anywhere between the two end supports.

The Pythagoreans discovered that when the third support divid-
ed the length of the string into certain whole number ratios, the
sounds produced by the two string segments were harmonious or
consonant. This observation indicated to them that music could
be described in terms of certain numerical ratios. They identified
these ratios and listed them. The ratios of the lengths of the two
string segments that they identified as consonant were 1:1, 1:2,
2:3, and 3:4. The ratio 1:1, of course, is the unison: Both string
segments are vibrating at the same pitch. The ratio 1:2 is what
musicians now call an octave. The ratio 2:3 is the perfect fifth, and
the ratio 3:4 is the perfect fourth.

The identification of these whole number ratios was profoundly
important to the Pythagoreans. The Pythagoreans believed that
the universe itself could be reduced to ratios of whole numbers.
They speculated that the same ratios that governed the mono-
chord governed the universe in general. They believed, for exam-
ple, that Earth and the five other known planets (Mercury, Venus,
Mars, Jupiter, and Saturn) as well as the Sun orbited a central fire
invisible to human eyes. They believed that distances from the
central fire to the planets and the Sun could also be described in
terms of whole number ratios. Nor was it just nature that the
Pythagoreans believed could be reduced to number. They also
believed that all mathematics could be expressed via whole num-
ber arithmetic.

The Pythagoreans worshipped numbers. It was part of their
beliefs that certain numbers were invested with special properties.
The number 4, for example, was the number of justice and retri-
bution. The number 1 was the number of reason. When they
referred to “numbers,” however, they meant only what we would
call positive, whole numbers, that is, the numbers belonging to the
sequence 1, 2, 3, . . . (Notice that the consonant tones of the
monochord were produced by dividing the string into simple whole
number ratios.) They did not recognize negative numbers, the
number 0, or any type of fraction as a number. Quantities that we
might describe with a fraction they would describe as a ratio
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between two whole numbers, and although we might not make a
distinction between a ratio and a fraction, we need to recognize
that they did. They only recognized ratios.

To the Pythagoreans the number 1 was the generator of all
numbers—by adding 1 to itself often enough they could obtain
every number (or at least every number as they understood the
concept). What we would use fractions to represent, they
described as ratios of sums of the number 1. A consequence of this
concept of number—coupled with their mystical belief that “all is
number”—is that everything in the universe can be generated
from the number 1. Everything, in the Pythagorean view, was in
the end a matter of whole number arithmetic. This idea, however,
was incorrect, and their discovery that their idea of number was
seriously flawed is one of the most important and far-reaching dis-
coveries in the history of mathematics.

To understand the flaw in the Pythagorean idea of number we
turn to the idea of commensurability. We say that two line seg-
ments—we call them L1 and L2—are commensurable, if there is a
third line segment—we call it L3—with the property that the
lengths L1 and L2 are whole number multiples of length L3. In this
sense L3 is a “common measure” of L1 and L2. For example, if seg-
ment L1 is 2 units long and L2 is 3 units long then we can take L3

to be 1 unit long, and we can use L3 to measure (evenly) the
lengths of both L1 and L2. The idea of commensurability agrees
with our intuition. It agrees with our experience. Given two line
segments we can always measure them and then find a line seg-
ment whose length evenly divides both. This idea is at the heart of
the Pythagorean concept of number, and that is why it came as
such a shock to discover that there existed pairs of line segments
that were incommensurable, that is, that there exist pairs of seg-
ments that share no common measure!

The discovery of incommensurability was a fatal blow to the
Pythagorean idea of number; that is why they are said to have tried
to hide the discovery. Happily knowledge of this remarkable fact
spread rapidly. Aristotle (384–332 B.C.E.) wrote about the concept
and described what is now a standard proof. Aristotle’s teacher,
Plato (ca. 428–347 B.C.E.), described himself as having lived as an
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animal lives—that is, he lived
without reasoning—until he
learned of the concept.

It is significant that the
Greeks so readily accepted the
proof of the concept of
incommensurability because
that acceptance shows just
how early truly abstract rea-
soning began to dominate
Greek mathematical thinking.
They were willing to accept a
mathematical result that vio-
lated their worldview, their
everyday experience, and their
sense of aesthetics. They were
willing to accept the idea of
incommensurability because
it was a logical consequence of
other, previously established,
mathematical results. The
Greeks often expressed their
understanding of the concept
by saying that the length of a
diagonal of a square is incom-
mensurable with the length of
one of its sides.

Incommensurability is a perfect example of the kind of result
that distinguished Greek mathematical thought from the mathe-
matical thought of all other ancient cultures. In a practical sense
incommensurability is a “useless” concept. We can always find a
line segment whose length is so close to the length of the diagonal
of the square as to be indistinguishable from the diagonal, and we
can always choose this segment with the additional property that
its length and the length of a side of the square share a common
measure. In a practical sense, commensurable lengths are always
sufficient.
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Two lengths are commensurable if
they are whole number multiples of a
third length. For example, segments
L2 and L3 are commensurable because
L2 = 2L1 and L3 = 3L1. Segment L1

is called a common measure of L2

and L3. Not every pair of lengths is
commensurable. The side of a square
and its diagonal share no common
measure; these segments are called
incommensurable.



In a theoretical sense, however, the discovery of incommensura-
bility was an important insight into mathematics. It showed that
the Pythagorean idea that everything could be expressed in terms
of whole number ratios was flawed. It showed that the mathemat-
ical landscape is more complex than they originally perceived it to
be. It demonstrated the importance of rigor (as opposed to intu-
ition) in the search for mathematical truths. Greek mathemati-
cians soon moved away from Pythagorean concepts and toward a
geometric view of mathematics and the world around them. How
much of this was due to the discoveries of the Pythagoreans and
how much was due to the success of later generations of geome-
ters is not clear. In any case Greek mathematics does not turn back
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THE INCOMMENSURABILITY OF √2

The proof that the length of a diagonal of a square whose sides are 1
unit long is incommensurable with the length of a side of the square is
one of the most famous proofs in the history of mathematics. The proof
itself is only a few lines long. (Note that a square whose side is 1 unit
long has a diagonal that is √2 units long. This is just a consequence of
the Pythagorean theorem.) In modern notation the proof consists of
demonstrating that there do not exist natural numbers a and b such that
√2 equals a/b. The following nonexistence proof requires the reader to
know the following two facts:

1. If a2 is divisible by 2 then a2/2 is even.

2. If b2 (or a2) is divisible by 2 then b (or a) is even.

We begin by assuming the opposite of what we intend to prove: We 
suppose that √2 is commensurable with 1—that is, we suppose that √2 can
be written as a fraction a/b where a and b are positive whole numbers. We
also assume—and this is critical—that the fraction a/b is expressed in lowest
terms. In particular, this means that a and b cannot both be even numbers.
It is okay if one is even. It is okay if neither is even, but both cannot be even
or our fraction would not be in lowest terms. (Notice that if we could find
integers such that √2 = a/b, and if the fraction were not in lowest terms 
we could certainly reduce it to lowest terms. There is, therefore, no harm in
assuming that it is in lowest terms from the outset.) Here is the proof:



toward the study of algebra as a separate field of study for about
700 years.

Geometric Algebra
The attempt by the Pythagoreans to reduce mathematics to the
study of whole number ratios was not successful, and Greek
mathematics soon shifted away from the study of number and
ratio and toward the study of geometry, the branch of mathemat-
ics that deals with points, curves, surfaces, solid figures, and their
spatial relationships. The Greeks did not study geometry only as
a branch of knowledge; they used it as a tool to study everything
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Suppose a/b = √2.

Now solve for b to get
a/√2 = b

Finally, square both sides.
a2/2 = b2

This completes the proof. Now we have to read off what the last equa-
tion tells us. First, a2 is evenly divisible by 2. (The quotient is b2.)
Therefore, by fact 2, a is even. Second, since a2/2 is even (this follows
by fact 1) b2—which is a2/2—is also even. Fact 2 enables us to conclude
that b is even as well. Since both a and b are even our assumption that
a/b is in lowest terms cannot be true. This is the contradiction that we
wanted. We have proved that a and b do not exist.

This proof resonated through mathematics for more than 2,000
years. It showed that intuition is not always a good guide to truth in
mathematics. It showed that the number system is considerably more
complicated than it first appeared. Finally, and perhaps unfortunately,
mathematicians learned from this proof to describe √2 and other sim-
ilar numbers in terms of what they are not: √2 is not expressible as a
fraction with whole numbers in the numerator and denominator.
Numbers like √2 came to be called irrational numbers. A definition of
irrational numbers in terms of what they are would have to wait until
the late 19th century and the work of the German mathematician
Richard Dedekind.



from astronomy to the law of the lever. Geometry became the
language that the Greeks used to describe and understand 
the world about them. It should come as no surprise, then, that
the Greeks also learned to use the language of geometry to
express ideas that we learn to express algebraically. We call this
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ALGEBRA MADE VISIBLE

Today one of the first ideas
that students learn as they
begin to study algebra is that
“multiplication distributes
over addition.” This is called
the distributive law and in
symbols it looks like this:

x(y + z) = xy + xz

Though most of us eventually
succeed in learning this rule,
few of us could give a reason
why it might be true. The very
first proposition that Euclid proves in book II of the Elements is exactly
this statement, but it is expressed in the language of geometrical alge-
bra. More than 2,000 years ago Euclid expresses the distributive law in
the following words:

If there be two straight lines, and one of them be cut into any
number of segments whatever, the rectangle contained by the
two straight lines is equal to the rectangles contained by the
uncut straight line and each of the segments.

(Euclid. Elements. Translated by Sir Thomas L. Heath. Great Books of the Western
World, vol. 11. Chicago: Encyclopaedia Britannica, 1952.)

See the pictorial version of Euclid’s statement. Notice that the illustra-
tion shows three rectangles, two smaller ones and a large one. (The
large rectangle is made of the four outside line segments. The smaller
rectangles lie inside the large one.) All three rectangles have the same
height. We use x to represent the height of each of the rectangles. The
rectangle on the left has length y and the rectangle on the right has
length z. The length of the largest rectangle is y + z. Now we recall the
formula for the area of a rectangle: Area = length × width. Finally, we
can express the idea that the area of the largest rectangle equals the
area of the two smaller rectangles by using the algebraic equation
given. When the distributive law is expressed geometrically the reason
that it is true is obvious.

Y

X

Z

Diagram of Euclid’s proof that xy +
xz = x(y + z).



geometric algebra, and it is an important part of the mathemati-
cal legacy of the ancient Greeks. Today the principal source of
Greek ideas about geometric algebra is the set of books entitled
Elements by Euclid of Alexandria, who lived in Alexandria, Egypt,
in the third century B.C.E.

Little is known about Euclid. Although he lived in Alexandria,
Egypt, he may have been born elsewhere. We do not know when
he was born or when he died. We know that the institution
where Euclid worked—it was called the Museum—was home to
many of the most successful Greek mathematicians of the time.
We know that many of the mathematicians who lived and
worked at the school were born elsewhere. Perhaps the same can
be said of Euclid.

Euclid is best remembered for having written one of the most
popular textbooks of all time. Called Elements, it has been trans-
lated into most of the world’s major languages over the last 2,000
years. In recent years it has fallen out of favor as a textbook, but
many high school treatments of plane geometry are still only sim-
plified versions of parts of Euclid’s famous work. To describe the
Elements solely as a textbook, however, is to misrepresent its
impact. The type of geometry described in Euclid’s textbook—
now called Euclidean geometry, though it was not Euclid’s inven-
tion—dominated mathematical thought for 2,000 years. We now
know that there are other kinds of geometry, but as late as 200
years ago many mathematicians and philosophers insisted that
Euclidean geometry was the single true geometry of the universe;
if a geometry was not Euclidean, it was not “real.” It was not until
the 19th century that mathematicians began to realize that
Euclidean geometry was simply one kind of geometry and that
other, equally valid geometries exist.

The Elements was written in 13 brief books. Of special interest
to us is the very brief book II, which lays out the foundations of
geometric algebra. In book II we see how thoroughly geometric
thinking pervaded all of Greek mathematics including algebra.
For example, when we speak of unknowns, x, y, and z, we general-
ly assume that these variables represent numbers. Part of learning
elementary algebra involves learning the rules that enable us to
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manipulate these symbols as if they were numbers. Euclid’s
approach is quite different. In Euclid’s time “variables” were not
numbers. Euclid represented unknowns by line segments, and in
his second book he establishes the rules that allow one to manip-
ulate segments in the way that we would manipulate numbers.
What we represent with equations, Euclid represented with pic-
tures of triangles, rectangles, and other forms. Geometric algebra
is algebra made visible.

Much of the geometry that one finds in the Elements is per-
formed with a straightedge and compass. This is constructible
mathematics in the sense that the truth of various mathematical
statements can be demonstrated through the use of these imple-
ments. Though it would be hard to imagine simpler implements,
the Greeks used these devices successfully to investigate many
important mathematical ideas. As any set of techniques has, how-
ever, the use of the straightedge and compass has its limitations.
Although it is not immediately apparent, certain classes of prob-
lems cannot be solved by using straightedge and compass tech-
niques. The Greeks never discovered what kinds of limitations
they imposed on themselves by their choice of these tools. As it
turned out, their mathematical development was, at times, hin-
dered by their insistence on the use of a straightedge and compass.
In fact, some of the most famous mathematical problems from
antiquity are famous precisely because they cannot be solved by
using a straightedge and compass.

There are three classical geometry problems—first mentioned
in the introduction of this book—that are very important in the
history of algebra. Their importance in geometry is that they
remained unsolved for more than 2,000 years. They were not
unsolved because they were neglected. These problems attracted
some of the best mathematical minds for generation after gener-
ation. Interesting mathematical ideas and techniques were dis-
covered as individuals grappled with these problems and
searched for solutions, but in the end none of these mathemati-
cians could solve any of the three problems as originally stated,
nor could they show that solutions did not exist. The problems
are as follows:
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Problem 1: Given an arbitrary
angle, divide the angle into
three equal parts, using only a
straightedge and compass.

Problem 2: Given a circle,
construct a square having the
same area as the circle, using
only a straightedge and compass.

Problem 3: Given a cube, find
the length of the side of a new
cube whose volume is twice
that of the original cube. Do
this using only a straightedge
and compass.
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Trisecting the angle: Given angle
ABC, use a straightedge and compass
to construct angle ABD so that the
measure of angle ABD is one-third
that of the measure of angle ABC.

Problem 2

Squaring the circle: Given a circle and
using only a straightedge and compass,
construct a square of equal area.

Problem 3

Doubling the cube: Given a cube and
using only a straightedge and compass,
construct a second cube that has precise-
ly twice the volume of the original cube.



Notice that each problem has the same restriction: using only a
straightedge and compass. This is critical. It is also critical to
remember that the Greeks were not interested in approximate
solutions to these problems. They were only interested in exact
solutions. The Greeks could have easily constructed highly accu-
rate approximations to a third of an angle, a squared circle, and a
cube with a volume approximately twice as large as the given
cube—and all with only a straightedge and compass. But approxi-
mations were not their goal. These ancient Greek geometers were
searching for a method that would in theory give them the exact
solution—not a good approximation to the solution—to each of
the three problems.

These three problems are probably more important in the his-
tory of algebra than in the history of geometry. In algebra the
search for the solutions of these problems gave birth to a new con-
cept of what algebra is. In the 19th century, after some extraordi-
nary breakthroughs in algebraic thought, these problems were
disposed of once and for all. Nineteenth-century mathematicians
discovered that the reason these problems had remained unsolved
for 2,000 years was that they are unsolvable. Remember: This was
proved by using algebra, not geometry. The ideas required to
prove that these problems were unsolvable represented a huge
step forward in the history of algebra.

The geometric algebra described by Euclid set the standard for
Greek algebraic thinking for centuries. His exposition was logical-
ly rigorous, and because it was so visual it was also aesthetically
appealing. But the geometric algebra found in book II of Elements
was also too simple to be very useful. Elementary results had been
obtained by sophisticated techniques. The reliance on formal, very
sophisticated geometric reasoning made it difficult to extend the
ideas described by Euclid. A new approach to algebra was needed.

Diophantus of Alexandria
Diophantus is often described as the father of algebra. He was,
perhaps, the only one of the great Greek mathematicians to devote
himself fully to the study of algebra as a discipline separate from
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geometry. We know little of his life. The dates of his birth and
death are unknown. We do know that he lived in Alexandria,
Egypt. It is generally believed that he was alive during the third
century C.E., but even this is not certain; some scholars believe that
he was alive during the second century C.E., and some believe that
he was alive during the fourth century C.E. What are thought to be
the facts of his life are usually summed up in this ancient mathe-
matics problem:

God granted him to be a boy for the sixth part of his life, and
adding a twelfth part to this, He clothed his cheeks with down;
He lit him the light of wedlock after a seventh part, and five
years after his marriage He granted him a son. Alas! Late-born
child; after attaining the measure of half his father’s life, chill
Fate took him. After consoling his grief by this science of num-
bers for four years he ended his life.

(Reprinted by permission of the publishers and the Trustees of Loeb
Classical Library from Greek Anthology: Volume V, Loeb Classical
Library. Volume L 86, translated by W. R. Paton, Cambridge, Mass.:
Harvard University Press, 1918)

By solving the (linear) equation that is described in the problem,
we learn that Diophantus lived to be 84 years old.

Diophantus’s contribution to algebra consists of two works, the
more famous of which is entitled Arithmetica. The other is On
Polygonal Numbers. Neither work exists in its entirety. Arithmetica
originally consisted of 13 volumes. Six volumes were preserved in
the original Greek, and in the 1970s previously unknown Arabic
translations of four more volumes were discovered. Even less of
On Polygonal Numbers has come down to us; it is known through a
set of excerpts.

Arithmetica is arranged much as the Nine Chapters and the
Mesopotamian problem texts are. Like other ancient algebralike
mathematical texts, Diophantus’s work is essentially a long list of
problems. The exception occurs at the beginning of the first vol-
ume, in which he attempts to give an account of the foundations
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of algebra. This is historic because it is the first time that anyone
tried to do this.

With respect to the number system that he uses, he describes
rational numbers—numbers that can be represented as fractions
with whole numbers in the numerator and the denominator—
and negative numbers. He gives rules for working with negative
numbers, and he seems comfortable enough with this system.
But when solving problems, he clearly prefers solutions that are
nonnegative.

Unlike the Nine Chapters and the other books mentioned previ-
ously, Arithmetica is largely devoid of nonmathematical references.
It is concerned with the properties of numbers and equations, and
Diophantus used no nonmathematical terminology in the expres-
sion of these ideas. There are no references to the division of corn,
the height of a tree, or the area of a field. These are “pure” prob-
lems, and in that spirit he is intent on finding only exact solutions.
Approximation of a solution, no matter how accurate, is not
acceptable to Diophantus. In this sense Arithmetica is more philo-
sophical than practical. Although Diophantus certainly knows
about incommensurable (irrational) numbers, he does not consid-
er them to be acceptable solutions to any of his equations. He
searches for and accepts only rational numbers as solutions.

Another important contribution that Diophantus makes to alge-
bra is his use of symbolism. All of the works that we have exam-
ined so far, whether written in Mesopotamia, Egypt, or China,
were of a rhetorical character—that is, everything is expressed in
words. This format tends to hinder progress in mathematics
because it obscures the ideas and techniques involved. Diophantus
introduced abbreviations and some symbols into his work. We call
this mixture of abbreviations, words, and a few symbols syncopat-
ed algebra. Diophantus’s syncopated algebra lacks the compact
form of contemporary algebraic equations. It is not especially easy
to read, but he went further toward developing a specialized sys-
tem of symbols than any of his predecessors.

The problems that Diophantus studied often had multiple solu-
tions. The existence of multiple solutions for a single problem
would immediately catch the eye of any contemporary mathemati-
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cian, but Diophantus usually seems not to care. If he can find even
one solution he seems content. Did he know that in some cases
other solutions exist? It is not always clear. On the other hand,
Diophantus is very interested in how a solution is found, and he
sometimes describes more than one method for solving the same
problem. It is clear that algorithms are a primary focus for him.

It is tempting to see in Diophantus’s exhausting list of problems
and solutions the search for a rigorous theory of algebraic equa-
tions that is analogous to the highly developed system of geome-
try that the Greeks had developed centuries earlier. If that was his
goal, he did not achieve it. There is no overarching concept to
Diophantus’s algebra. It is, instead, a collection of adroitly chosen
problems, whose solutions more often than not depend on a 
clever trick rather than a deeper theoretical understanding.
Nevertheless, there is no work that survives from antiquity in any
culture that rivals Diophantus’s Arithmetica as an algebraic text.
Though he does not introduce unity to his subject, he greatly rais-
es the level of abstraction. In Diophantus’s work we find algebra
stripped of all nonmathematical references, with the equations
themselves displayed as objects that deserve study in their own
right. Perhaps more importantly, Arithmetica served as a source of
insight and inspiration for generations of Islamic and European
mathematicians. And about 1,500 years after Diophantus wrote
Arithmetica, his work inspired the French mathematician Pierre de
Fermat to attempt to generalize one of the problems that he found
in Arithmetica about representing one square as the sum of two
squares. This gave rise to what is now called Fermat’s last theorem,
one of the most famous of all mathematical problems and one that
was not solved until late in the 20th century.

Greek algebra—whether it is like that found in Elements or in
Arithmetica—is characterized by a higher level of abstraction than
that found in other ancient mathematically sophisticated cultures.
Both the choice of problems and method of presentation were
unique among the cultures of antiquity, and the Greek influence
on future generations of Arab and European mathematicians was
profound. New approaches to algebra that were eventually devel-
oped elsewhere, however, would prove to be equally important.
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The tradition of Greek mathematical research ended in the third
century C.E. with the death of Hypatia (ca. 370–415) in Alexandria.
Hypatia was a prominent scholar and mathematician. She wrote
commentaries on the works of Diophantus, Apollonius, and
Ptolemy, but all of her work has been lost. We know of her through
the works and letters of other scholars of the time. Hypatia was
murdered in a religious dispute. Shortly thereafter many of the

The death of Hypatia marked the end of the Greek mathematical tradition.
(ARPL/Topham/The Image Works)



scholars in Alexandria left, and mathematical research at
Alexandria, the last of the great Greek centers of learning, ended.

Mathematics, however, continued to develop in new ways and in
new locations. In the Western Hemisphere the Mayan civilization
was developing a unique and advanced form of mathematics. We
know of some of their accomplishments, but most of their work
was destroyed by Spanish conquerors in the 16th century. Another
new and important center of mathematical research developed on
the Indian subcontinent, but before examining the accomplish-
ments of these mathematicians it is important to say a few words
about terminology.

The mathematical tradition that developed on the Indian sub-
continent during this time is sometimes called Indian mathemat-
ics. It was not created entirely in what is now India. Some of it
arose in what is now Pakistan, and, in any case, India was not
united under a central government during the period of interest
to us. There was no India in the modern sense. There are some
histories of “Indian” mathematics that use the term Hindu math-
ematics, but not all of the mathematicians who contributed to the
development of this mathematical tradition were themselves
Hindu. There are no other terms in general use. We use the
terms Indian mathematics and Hindu mathematics interchangeably
because they are the two common names for this mathematical
tradition, but neither term is entirely satisfactory. We look for-
ward to the time when better, more descriptive terminology is
developed to describe the accomplishments of this creative and
heterogeneous people.

There are widely varying claims made about the history of
Indian mathematics. Some scholars think that a sophisticated
Hindu mathematical tradition goes back several thousand years,
but the evidence for this claim is indirect. Very few records from
the more remote periods of Indian history have survived. Some of
the earliest records of Indian mathematical accomplishments are
the Sulvasutras, a collection of results in geometry and geometric
algebra. The dating of these works is also a matter of dispute.
Some scholars believe that they date to the time of Pythagoras, but
others claim they were written several centuries after Pythagoras’s
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death. Mathematically the Sulvasutras are, in any case, not espe-
cially sophisticated when compared with the Hindu works that are
of most interest to us. In fact, it is their simplicity that is the best
indicator that they preceded the works for which we do have reli-
able dates.

Despite their simplicity, the Sulvasutras contain many qualities
that are characteristic of much of the Indian mathematical tradi-
tion. It is important to review these special characteristics, because
Indian mathematics is quite distinct from that of the other math-
ematically sophisticated cultures that preceded it. Moreover, even
when there is overlap between the mathematics of India and that
of ancient Greece or Mesopotamia, it is clear that Indian mathe-
maticians perceived mathematics differently. The mathematics of
the Indians is often compared unfavorably to Greek mathematics,
but such comparisons are not especially helpful. Hindu mathe-
matics is better appreciated on its own terms. Mathematics occu-
pied a different place in the culture of the Hindus than it did in the
culture of the Greeks.

One characteristic of Hindu mathematics is that almost all of
it—problems, rules, and definitions—is written in verse. This is
true of the Sulvasutras and virtually all later works as well. Another
characteristic property that we find in the Sulvasutras as well as
later Hindu mathematics is that there are no proofs that the rules
that one finds in the texts are correct. Ancient Indian texts contain
almost no mathematical rigor, as we understand the term today.
The rules that one finds in these texts were sometimes illustrated
with one or more examples. The examples were sometimes fol-
lowed with challenges directed to the reader, but there was little in
the way of motivation or justification for the rules themselves.
This was not simply a matter of presentation. The mathematicians
who created this highly imaginative approach to mathematics
must have had only a minimal interest in proving that the results
they obtained were correct, because mistakes in the texts them-
selves often were unnoticed. Many of the best Hindu works con-
tain a number of significant errors, but these works also contain
important discoveries, some of which have had a profound effect
on the entire history of mathematics.
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Another important difference between Indian mathematics and
the mathematics of other cultures with advanced mathematical
traditions is that other cultures perceived mathematics as a sepa-
rate field of study. In the Indian cultural tradition, mathematics
was not usually treated as an independent branch of knowledge.
There are very few ancient Sanskrit texts devoted solely to math-
ematics. Instead mathematical knowledge was usually conveyed in
isolated chapters in larger works about astronomy. Astronomy and
religion were very much intertwined in the classical culture of the
Indian subcontinent. To many of the most important Hindu math-
ematicians, mathematics was a tool for better understanding the
motions and relative locations of objects in the night sky. It was
not a separate academic discipline.

Brahmagupta and the New Algebra
The astronomer and mathematician Brahmagupta (ca. 598–ca.
670) was one of the most important of all Indian mathematicians.
Not much is known about his life. It is known that he lived in
Ujjain, a town located in what is now central India. In
Brahmagupta’s time Ujjain was home to an important astronomi-
cal observatory, and Brahmagupta was head of the observatory.
Brahmagupta’s major work is a book on astronomy, Brahma-
sphuta-siddhānta (The opening of the universe). Written entirely 
in verse, Brahmagupta’s masterpiece is 25 chapters long. Most of
the book contains information about astronomical phenomena:
the prediction of eclipses, the determination of the positions of the
planets, the phases of the Moon, and so on. Just two of the 
chapters are about mathematics, but those two chapters contain a
great deal of important algebra.

Brahmagupta’s work, like that of other Hindu mathemati-
cians, contains plenty of rules. Most are stated without proof;
nor does he provide information about how he arrived at these
rules or why he believes them to be true. Many rules are, 
however, followed by problems to illustrate how the rules can be
applied. Here, for example, is Brahmagupta’s “rule of inverse
operation”:
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Multiplier must be made divisor; and divisor, multiplier; posi-
tive, negative and negative, positive; root [is to be put] for
square; and square, for root; and first as converse for last.

(Brahmagupta and Bhaskara. Algebra with Arithmetic and
Mensuration. Translated by Henry Colebrook. London: John Murray,
1819)

By modern standards this is a fairly terse explanation, but by the
standards of the day it was comparatively easy reading. To under-
stand why, it helps to know that Brahmagupta, like many Indian
mathematicians, probably grew up reading just this type of explana-
tion. Indian astronomical and mathematical knowledge was gener-
ally passed from one generation to the next within the same family.
Each generation studied astronomy, mathematics, and astrology and
contributed to the family library. Brahmagupta’s father, for example,
was a well-known astrologer. Mathematical writing and astronomi-
cal writing were important parts of Brahmagupta’s family tradition.
He would have been accustomed to this kind of verse, but he
advanced well beyond what he inherited from his forebears.
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One of the most important characteristics of Brahmagupta’s work
is his style of algebraic notation. It is, like that of Diophantus, syn-
copated algebra. Syncopated algebra uses specialized symbols and
abbreviations of words to convey the ideas involved. For instance,
Brahmagupta used a dot above a number to indicate a negative
number. When formulating an equation containing one or more
unknowns, Brahmagupta called each unknown a different color.
His use of colors is completely analogous to the way that we are
taught to use the letters x, y, and z to represent variables when we
first learn algebra. To simplify his notation he preferred to use an
abbreviated form of each color word. One section of his book is
even called Equations of Several Colors.

One consequence of his notation is that his mathematical prose
is fairly abstract, and this characteristic is important for two rea-
sons. First, a condensed, abstract algebraic notation often makes
mathematical ideas more transparent and easy to express. Second,
good algebraic notation makes adopting a very general and inclu-
sive approach to problem solving easier, and generality is just what
Brahmagupta achieved.

To appreciate the generality of Brahmagupta’s approach we need
only compare it with that of Diophantus. Brahmagupta considered
the equation that we would write as ax + by = c, where a, b, and c
are integers (whole numbers), called coefficients, that could be
positive, negative, or zero. The letters x and y denote the variables
that are meant to represent whole number solutions to the equa-
tion. Brahmagupta’s goal was to locate whole numbers that, when
substituted for x and y, made the equation a true statement about
numbers.

Brahmagupta’s very broad understanding of what a, b, and c rep-
resent stands in sharp contrast with the work of Diophantus.
Diophantus preferred to consider only equations in which the
coefficients are positive. This required Diophantus to break
Brahmagupta’s single equation into several special cases. If, for
example, b was less than 0 in the preceding equation, Diophantus
would add –b to both sides of the equation to obtain ax = –by + c.
(If b is negative, –b is positive.) This equation, with the b trans-
posed to the other side, was a distinct case to Diophantus, but
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Brahmagupta, because he did not distinguish between positive and
negative coefficients, had to consider only the single equation ax +
by = c. This allowed him to achieve a more general, more modern,
and more powerful approach to the solution of algebraic equa-
tions. Furthermore, he accepted negative numbers as solutions, a
concept with which his Greek predecessors had difficulty.

This highly abstract approach to the solution of algebraic equa-
tions is also characteristic of Brahmagupta’s work with second-
degree algebraic equations. When he solved second-degree
algebraic equations, also called quadratic equations, he seemed to
see all quadratic equations as instances of the single model equa-
tion ax2 + bx + c = 0, where the coefficients a, b, and c could repre-
sent negative as well as nonnegative numbers. Brahmagupta was
willing to accept negative solutions here as well. He also accepted
rational and irrational numbers as solutions. (A rational number can
be represented as the quotient of two whole numbers. An irrational
number is a number that cannot be represented as the quotient of
two whole numbers.) This willingness to expand the number sys-
tem to fit the problem, rather than to restrict the problem to fit
the number system, is characteristic of much of the best Indian
mathematics.

Finally, Brahmagupta, as Diophantus was, was interested in
indeterminate equations. (An indeterminate equation is a single
equation, or a system of equations, with many solutions.) When
considering these types of problems he attempted to find all pos-
sible solutions subject to certain restrictions.

Brahmagupta’s work is algorithmic in nature. To Brahmagupta
learning new math meant learning new techniques to solve equa-
tions. Today many of us think of mathematics as the search for
solutions to difficult word problems, but mathematics has always
been about more than finding the right solutions. The Greeks,
for example, were often more concerned with discovering new
properties of geometric figures than they were with performing
difficult calculations. Brahmagupta was familiar with other
approaches to mathematics, but he was motivated by problems
that involved difficult calculations. He wanted to find calculating
techniques that yielded answers, and he had a very broad idea of
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what constituted an answer. The Brahma-sphuta-siddhānta was
quickly recognized by Brahmagupta’s contemporaries as an
important and imaginative work. It inspired numerous commen-
taries by many generations of mathematicians.

Mahavira
The mathematician Mahavira (ca. 800–ca. 870), also known as
Mahaviracharya, was one of those inspired by Brahma-sphuta-
siddhānta (Compendium of the essence of mathematics) Mahavira
lived in southern India. He was an unusual figure in the history of
Hindu mathematics. He was not, for example, a Hindu. He was a
member of the Jain religion. (Jainism is a small but culturally
important religious sect in present-day India.) He was not an
astronomer. His book, called Ganita Sara Samgraha, is the first
book in the Indian mathematical tradition that confines its atten-
tion to pure mathematics. It is sometimes described as a commen-
tary on Brahmagupta’s work, but it is more than that. Mahavira’s
book is an ambitious attempt to summarize, improve upon, and
teach Indian mathematical knowledge as he understood it.
Mahavira’s book was very successful. It was widely circulated and
used by students for several centuries.

There are traditional aspects of Mahavira’s book. As
Brahmagupta’s great work, Brahma-sphuta-siddhānta, is, Mahavira’s
book is written in verse and consists of rules and examples. The
rules are stated without proof. Coupled with his very traditional
presentation is a very modern approach to arithmetic. It is pre-
sented in a way that is similar to the way arithmetic is taught today.

In addition to his presentation of arithmetic, Mahavira demon-
strated considerable skill manipulating the Hindu system of
numeration: He constructed math problems whose answers read
the same forward and backward. For example: 14287143 × 7 =
100010001. (Notice that the answer to the multiplication problem
is a sort of numerical palindrome.) He was also interested in alge-
braic identities. (An identity is a mathematical statement that is true
for all numbers.) An example of one of the identities that Mahavira
discovered is a3 = a(a + b)(a – b) + b2 (a – b) + b3. These kinds of iden-
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tities sometimes facilitate calculation. They also demonstrate how
various algebraic quantities relate one to another.

Word problems were also important to Mahavira. He included
numerous carefully crafted problems in Ganita Sara Samgraha.
Some of the problems are elementary, but some require a fair bit
of algebra to solve.

Mahavira exercises his algebraic insights on two other classes of
problems. In one section of the book he studies combinatorics.
Combinatorics, which generally requires a fairly extensive knowl-
edge of algebra, deals with the way different combinations of
objects can be chosen from a fixed set. It is the kind of knowledge
that is now widely used in the study of probability. He shows, for
example, that the number of ways r objects can be chosen from a
set containing n objects is

n (n – 1) (n – 2) . . . (n – r +1)
r (r – 1) (r – 2) . . . 2 • 1

where we have written his result in modern notation. This is an
important formula that is widely used today.

The second class of algebra problems is geometric in origin.
In Mahavira’s hands even the geometry problems—and there
are a number of them—are just another source of algebraic
equations. For example, he attempts to find the dimensions of
two triangles with the following properties: (1) the areas of the
triangles are equal and (2) the perimeter of one is twice that of
the other. This problem leads to some fairly sophisticated alge-
bra. This is a nice example of an indeterminate problem—it has
many solutions.

More generally, there are several points worth noting about
Mahavira’s work. First, like Brahmagupta’s work, Mahavira’s writ-
ings are a highly syncopated approach to algebra. (Algebra is
called syncopated when it is expressed in a combination of words,
abbreviations, and a few specialized symbols.) Second, the empha-
sis in much of the book is on developing the techniques necessary
to solve algebraic problems. It is a tour de force approach to solv-
ing various types of equations, but he provides no broader context
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into which we can place his results. Each problem stands on its
own with no consideration given to a broader theory of equations.
Third, there are no proofs or carefully developed logical argu-
ments. He shows the reader results that he believes are important,
but he often does not show the reader why he considers the results
correct. His ideas are creative, but because of his lack of emphasis
on mathematical proofs when he makes an error, even a glaring
error, he sometimes fails to catch it. For example, when he tries to
compute the area of an ellipse, he gets it wrong. Given the level of
mathematics in Mahavira’s time, this was admittedly a difficult
problem. Perhaps he could not have solved the problem by using
the mathematics available at the time, but with a more rigorous
approach to the problem he might have been able to discover what
the answer is not.

Bhaskara and the End of an Era
The discoveries of Brahmagupta, Mahavira, and many other
mathematicians in the Indian tradition probably found their
highest expression in the work of the mathematician and
astronomer Bhaskara (1114–ca. 1185). Bhaskara, also known as
Bhaskaracharya and Bhaskara II, was the second prominent
Indian mathematician of that name. (We will have no reason to
refer to the first.) Bhaskara was born in southern India, in the
city of Bijapur in the same general region in which Mahavira 
was born. Unlike Mahavira, but like Brahmagupta, Bhaskara was
an astronomer. He eventually moved to Ujjain, where he became
head of the astronomical observatory there. It was the same
observatory that Brahmagupta had directed several centuries
earlier.

Bhaskara’s main work, Siddhānta Siromani (Head jewel of accu-
racy), is a book about astronomy and mathematics. It is divided
into four sections, covering arithmetic, algebra, the celestial
sphere, and various planetary calculations. Like the other texts we
have considered, the Siddhānta Siromani is written in verse,
although Bhaskara also provides an additional section written in
prose that explains some of the mathematics found in the main
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body of the work. Sanskrit scholars have praised Bhaskara’s work
both for the quality of its poetry and for its mathematical content.

At one point in Siddhānta Siromani Bhaskara claims to summarize
the work of Brahmagupta and two other mathematicians. We can
compare his work with that of Brahmagupta to see what parts of
Brahmagupta’s work he used, but the work of the other two mathe-
maticians has been lost. Furthermore, although Bhaskara’s work in
combinatorics seems to owe much to Mahavira’s book, he does not
mention Mahavira in his acknowledgment. Bhaskara’s book does,
however, go beyond Mahavira’s. For these reasons it is not clear
whether Bhaskara was mathematically far above his contemporaries
or whether his work simply reflected a very high level of mathemat-
ical achievement in the city of Ujjain at the time that it was written.

Bhaskara uses a highly syncopated algebraic notation. He solves
a variety of determinate and indeterminate equations, and he is
open to the possibility that the solutions to the equations that he
solves may be negative as well as positive, and irrational as well as
rational. He looks at very general first- and second-degree alge-
braic equations and seems comfortable with coefficients that are
negative as well as positive. He even suggests special rules for
doing arithmetic with certain irrational numbers. In many ways
the work that Bhaskara did on second-degree algebraic equations
is identical to work that high school students do today. Although
this point may sound elementary, it was not. Mathematicians took
millennia to extend their idea of number, their idea of solution,
and their computational techniques to solve these types of equa-
tions. Furthermore, there are many aspects of Bhaskara’s work
with algebraic equations that were not surpassed anywhere in the
world for several centuries.

The Leelavati and the Bijaganita, the two sections of his work
that are mathematical in nature, are full of word problems to chal-
lenge the reader. He writes about swans, bees, and monkeys.
Bhaskara worked hard to engage the reader with well-written,
interesting exercises. One problem describes a bamboo plant, 32
cubits long, growing out of level ground. The wind springs up and
breaks the plant. The top of the plant falls over, and the tip of the
plant just touches the ground at a distance of 16 cubits from the
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base of the stalk. Bhaskara
challenges the reader to com-
pute the distance above the
ground at which the stalk
snapped. Interestingly, this
same problem can also be
found in ancient Chinese
mathematical literature. (The
answer is that the stalk
snapped 12 cubits above the
ground.)

Bhaskara’s interest in the
technical issues involved in
solving particular equations
allowed him to make great
progress in special cases, and

his work with the quadratic equation was very general, but in most
cases, the progress that Bhaskara achieves is incremental progress.
He absorbs the work of his predecessors and extends it. Most of
what he did, from his use of verse, to his indifference to the con-
cept of proof, to his choice of problems, and to his preference for
algebraic as opposed to geometric methods, is reminiscent of the
work of Indian mathematicians who preceded him. What distin-
guishes his work is that it is generally more advanced than that of
his predecessors. He expresses his ideas with greater clarity. His
approach is more general, that is, more abstract, and so he sees
more deeply into each problem. Finally his work is more com-
plete. The Siddhānta Siromani influenced many generations of
mathematicians. It was a major achievement. It is sometimes
described as the most important mathematical text to emerge from
the classical Indian mathematical tradition.

Islamic Mathematics
The origins of Indian mathematics, Egyptian mathematics, and
Mesopotamian mathematics, to name three prominent examples,
lie thousands of years in the past. Records that might help us

46 ALGEBRA

16

A problem by Bhaskara: Before the
plant broke it was 32 cubits tall.
After it broke the distance from the
top of the plant (now on the ground)
to the base is 16 cubits. At what
height did the break occur?



understand how mathematics arose in these cultures are some-
times too sparse to provide much insight. This is not the case with
Islamic mathematics.

Historically Islamic culture begins with the life of Muhammad
(570–632). Historical records are reasonably good. We can refer to
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POETRY AND ALGEBRA

It is an oft-repeated remark that in a poem, the poetry is the part that is
lost in translation. If this is true for translations of verse between modern
languages, the “loss of poetry” must be even more pronounced when
ancient Sanskrit verse is translated to modern English. Nevertheless,
skillful translations are the only means that most of us have of appreci-
ating the poetry in which the mathematicians of ancient India expressed
themselves. Here are two word problems, originally composed in verse
in Sanskrit, by Bhaskara:

1.) One pair out of a flock of geese remained sporting in the
water, and saw seven times the half of the square-root of the
flock proceeding to the shore tired of the diversion. Tell me,
dear girl, the number of the flock.

The algebraic equation to be solved is (7/2)√—x = x – 2.
The solutions to the equation are x = 16 and x = 1/4.
The only reasonable solution to the word problem is x = 16.

2.) Out of a heap of pure lotus flowers, a third part, a fifth and
a sixth, were offered respectively to the gods Siva, Vishńu 
and the Sun; and a quarter was presented to Bhaváníi. The
remaining six lotuses were given to the venerable preceptor.
Tell quickly the whole number of flowers. (ibid.)

The algebraic equation to be solved is

The solution to the mathematical equation is x = 120.

(Brahmagupta and Bhaskara. Algebra with Arithmetic and Mensuration.
Translated by Henry Colebrook. London: John Murray, 1819)

1 1 1 1
3 5 6 4

x – ( – + – + – + – ) x = 6



documents by Islamic historians as well as their non-Muslim
neighbors. We know quite a bit about how mathematics in gener-
al, and algebra in particular, arose in the Islamic East, and this is
important, because within 200 years of the death of the Prophet
Muhammad great centers of learning had been established. A new
and important mathematical tradition arose. This new tradition
had a profound influence on the history of mathematics: Algebra
was the great contribution of Islamic mathematicians. But the
term Islamic mathematics must be used with care.

Islamic mathematics is the term traditionally given to the mathe-
matics that arose in the area where Islam was the dominant reli-
gion, but just as the term Hindu mathematics is not entirely
satisfactory, neither is Islamic mathematics quite the right term.
Although Islam was the dominant religion in the region around
Baghdad in what is now Iraq when algebraic research flourished,
Jews and Christians also lived in the area. For the most part, they
were free to practice their religions unmolested. Although most of
the prominent mathematical scholars of the time had the Islamic
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The Great Mosque at Samarra was built about 60 miles from Baghdad,
al-Khwārizmı̄’s home, near the end of the mathematician’s life.  (Josef
Polleross/The Image Works)



faith, there was also room for others at even the most prominent
institutions of higher learning. A number of Christian scholars, for
example, helped to translate the ancient Greek mathematical texts
that were stored at the House of Wisdom in Baghdad, one of the
great centers of learning at the time. There was a notable 10th-
century Jewish mathematician who published “Islamic” mathe-
matics named Abu ‘Otman Sahl ibn Bishr, ibn Habib ibn Hani;
and one of the most prominent mathematicians of his day, Ali-sabi
Thabit ibn Qurra al-Harrani, was a Sabean, a member of a sect
that traced its roots to a religion of the ancient Mesopotamians.
Despite this diversity, Islamic mathematics is the name often given
to this mathematics because the Islamic faith had a strong cultur-
al as well as religious impact.

Sometimes this mathematics is called Arabic, but not all the
mathematicians involved were Arabic, either. Of the two choices,
Arabic or Islamic mathematics, Islamic mathematics seems the
more accurate description. Islam affected everything from govern-
mental institutions to architectural practices. So we adopt the
common practice of calling our subject Islamic mathematics, even
though math, in the end, has no religious affiliation, because the
Islamic society of the time was tolerant and heterogeneous, and
the work of Islamic mathematicians has found a secure place in the
mathematics practiced around the world today.

The history of Islamic mathematics begins in earnest with the
life of al-Ma’mūn (786–833). Although al-Ma’mūn is an important
figure in the history of algebra, he was no mathematician. He is
best remembered for his accomplishments as a political leader. He
was the son of the caliph Hārūn ar-Rashı̄d. (The caliphs, as were
the kings of the time, were absolute rulers of their nations.) Ar-
Rashı̄d had another son, al-Ma’mūn’s half-brother, named al-
Amı̄n. After the father’s death the two brothers, al-Ma’mūn and
al-Amı̄n, led their respective factions in a brutal four-year civil war
over succession rights to the caliphate. In the end al-Amı̄n lost
both the war and his life.

As caliph al-Ma’mūn proved to be a creative, if ruthless, political
leader. He worked hard, though not entirely successfully, to heal
the division that existed between the Shı̄’ite and Sunnite sects of
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Islam. In Baghdad he established the House of Wisdom, an impor-
tant academic institution where Greek texts in mathematics, sci-
ence, and philosophy were translated and disseminated. When
these works could not be obtained within the caliphate, he obtained
them from the libraries of Byzantium, a sometimes-hostile power.
He established astronomical observatories, and he encouraged
scholars to make their own original contributions. His work bore
fruit. A new approach to algebra developed in Baghdad at this time.

Al-Khwārizmı̄ and a New Concept of Algebra
A number of mathematicians responded to al-Ma’mūn’s words of
encouragement and contributed to the development of a new con-
cept of algebra. Mathematically speaking, it was a very creative
time. One of the first and most talented mathematicians was
named Mohammed ibn-Mūsā al-Khwārizmı̄ (ca. 780–ca. 850). Al-
Khwārizmı̄ described what happened in these words:

[al-Ma’mūn] has encouraged me to compose a short work 
on Calculating by (the rules of) Completion and Reduction,
confining it to what is easiest and most useful in arithmetic.

(Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s Latin
Translation of the Algebra of al-Khwārizmı̄. Translated by
Karpinski, Louis C. New York: The Macmillan Company, 1915)

Al-Khwārizmı̄’s approach to algebra was new and significant,
but many of the results that he obtained were not. Nor was he
the only mathematician of his time to use the new approach. In
recent historical times scholars have discovered the work of
another Islamic mathematician, Abd-al-Hamid ibn-Turk, who
wrote a book about algebra that was similar to al-Khwārizmı̄’s.
This second text was written at about the same time that al-
Khwārizmı̄’s work was published. The existence of Abd-al-
Hamid’s book indicates that some of the mathematical ideas
described by al-Khwārizmı̄ may not have originated with him. In
that sense, al-Khwārizmı̄ may, as Euclid was, have been more 
of a skilled expositor than an innovator. There is not enough
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information to know for sure. Nevertheless al-Khwārizmı̄’s book
had the greatest long-term influence. Even the author’s name
became part of the English language. Al-Khwārizmı̄’s name was
mispronounced often enough in Europe to take on the form
algorismi, and this word was later shortened to the words algo-
rithm, a specialized method for solving mathematical problems,
and algorism, the so-called Arabic system of numerals.
Furthermore, the first word in the title of one of al-Khwārizmı̄’s
books, Hisāb al-jabr wa’l muqābala, eventually found its way into
English as the word algebra.

Al-Khwārizmı̄’s book Hisāb al-jabr wa’l muqābala has little in 
common with those of Brahmagupta and Diophantus. For one
thing, the problems that he solves tend to be easier, because they
are for the most part less advanced. Second, he avoids solutions
that involve 0 or negative numbers. He avoids problems in inde-
terminate analysis—that is, problems for which many solutions
exist—and he writes without any specialized algebraic notation.
Not only does he avoid the use of letters or abbreviations for
variables, he sometimes even avoids using numerals to represent
numbers. He often prefers to write out the numbers in longhand.
Even the motivation for Al-Khwārizmı̄’s book was different from
that of his predecessors. Diophantus seems to have had no moti-
vation other than an interest in mathematics. Brahmagupta’s
motivation stemmed from his interest in mathematics and
astronomy. But al-Khwārizmı̄ wrote that al-Ma’mūn had encour-
aged him to develop a mathematics that would be of use in 
solving practical problems such as the “digging of canals” and
the “division of estates.”

Much of the first half of al-Khwārizmı̄’s book Hisāb al-jabr is
concerned with the solution of second-degree algebraic equations,
but his method is not nearly as general as Brahmagupta’s. Unlike
Brahmagupta, he does not perceive all quadratic equations as
instances of a single general type. Instead, what we would call
“the” quadratic equation he perceived as a large number of sepa-
rate cases. For example, he considers quadratic equations, such as
x2 = 5x, and he identifies the number 5 as a solution. (We would
also recognize x = 0 as a solution, but al-Khwārizmı̄ does not
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acknowledge 0 as a legitimate solution.) Because he uses rhetori-
cal algebra, that is, an algebra devoid of specialized, algebraic sym-
bols, his description of the equation x2 = 5x and its solution take
some getting used to:

A square is equal to 5 roots. The root of the square then is 5, and
25 forms its square which, of course, equals five of its roots.

(Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s Latin
Translation of the Algebra of al-Khwārizmı̄. Translated by
Karpinski, Louis C. New York: The Macmillan Company, 1915)

He plods his way from one special case to the next, and in this
there is nothing new. At first it seems as if al-Khwārizmı̄, as his pred-
ecessor Brahmagupta and his far-away contemporary Mahavira did,
sees algebra simply as a collection of problem-solving techniques.
But this is not so. After establishing these results he shifts focus; it is
this shift in focus that is so important to the history of algebra. After
solving a number of elementary problems, he returns to the prob-
lems that he just solved and proves the correctness of his approach.
In the field of algebra this is both new and very important.

Al-Khwārizmı̄’s tool of choice for his proofs is geometry, but he
is not interested in geometry as a branch of thought in the way
that the ancient Greeks were. He is not interested in studying
geometry; he wants to use it to provide a proof that his algebraic
reasoning was without flaws. Recall that it was the lack of proofs
in Hindu algebra that made it so difficult for those mathematicians
to separate the true from the false. Al-Khwārizmı̄, by contrast,
wanted to build his algebra on a solid logical foundation, and he
was fortunate to have a ready-made model of deductive reasoning
on hand: the classics of Greek geometry.

The geometry of the Greeks would certainly have been familiar
to al-Khwārizmı̄. Throughout his life the translators associated
with the House of Wisdom were busy translating ancient Greek
works into Arabic, and there was no better example of careful
mathematical reasoning available anywhere in the world at this
time than in the works of the Greeks. Their works are filled with
rigorous proofs. Al-Khwārizmı̄ had the concept for a rigorous
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algebra and a model of mathematical rigor available. It was his
great insight to combine the two into something new.

Al-Khwārizmı̄’s interest in developing procedures for computing
with square roots also bears mentioning. He begins with the very
simplest examples, among them the problem of multiplying the
square root of 9 by the number 2. Here is how he describes the
procedure:

Take the root of nine to be multiplied. If you wish to double the
root of nine you proceed as follows: 2 by 2 gives 4, which you
multiply by 9, giving 36. Take the root of this, i.e. 6, which is
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A PROBLEM AND A SOLUTION

The following is an elementary problem that was posed and solved by
al-Khwārizmı̄ in his algebra. It is a nice example of rhetorical algebra, that
is, algebra expressed entirely in words and without the use of special-
ized algebraic symbols.

If you are told, “ten for six, how much for four?” then ten is the
measure; six is the price; the expression how much implies
the unknown number of the quantity; and four is the number of
the sum. The number of the measure, which is ten, is inverse-
ly proportionate to the number of the sum, namely, four.
Multiply, therefore, ten by four, that is to say, the two known
proportionate numbers by each other; the product is forty.
Divide this by the other known number, which is that of the
price, namely, six. The quotient is six and two-thirds; it is the
unknown number, implied in the words of the question how
much? it is the quantity, and inversely proportionate to the six,
which is the price.

(Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s Latin Translation of the
Algebra of al-Khwārizmı̄. Translated by Louis C. Karpinski, New York: The Macmillan
Company, 1915)

In our notation al-Khwārizmı̄ solved the problem that we would
express as 10/6 = x/4.



found to be two roots of nine, i.e. the double of three. For three,
the root of nine, added to itself gives 6.

(Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s Latin
Translation of the Algebra of al-Khwārizmı̄. Translated by
Karpinski, Louis C. New York: The Macmillan Company, 1915)

In our notation we express this idea as 2√9 = √4
—

· 9 = √36 = 6,
which again emphasizes the importance and utility of our modern
system of notation. He extends this simple numerical example into
several more general algebraic formulas. For example, we would
express one of his rhetorical equations as follows: 3√x = √9x .

It is not clear why al-Khwārizmı̄ avoided the use of any sort of
algebraic symbolism. Without any specialized algebraic notation
his work is not easy to read despite the fact that he is clearly a
skilled expositor. Al-Khwārizmı̄’s work had an important influence
on the many generations of mathematicians living in the Near
East, Northern Africa, and Europe. On the positive side, his con-
cept of incorporating geometric reasoning to buttress his algebra-
ic arguments was widely emulated. On the negative side, his highly
rhetorical approach would prove a barrier to rapid progress. What
is most important is that Al-Khwārizmı̄’s work established a logi-
cal foundation for the subject he loved. His work set the standard
for rigor in algebra for centuries.

Omar Khayyám, Islamic Algebra at Its Best
The astronomer, poet, mathematician, and philosopher Omar
Khayyám (ca. 1050–1123) was perhaps the most important of all
Islamic mathematicians after al-Khwārizmı̄. Omar was born in
Neyshābūr (Nishāpūr) in what is now northeastern Iran. He also
died in Neyshābūr, and between his birth and death he traveled a
great deal. Political turbulence characterized Omar’s times, and
moving from place to place was sometimes a matter of necessity.

Omar was educated in Neyshābūr, where he studied mathemat-
ics and philosophy. As a young man he moved about 500 miles
(800 km) to Samarqand, which at the time was a major city, locat-
ed in what is now Uzbekistan. It was in Samarqand that he became
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well known as a mathematician. Later he accepted an invitation to
work as an astronomer and director of the observatory at the city
of Esfahan, which is located in central Iran. He remained there for
about 18 years, until the political situation became unstable and
dangerous. Funding for the observatory was withdrawn, and Omar
moved to the city of Merv, now Mary, in present-day
Turkmenistan. During much of his life Omar was treated with sus-
picion by many of his contemporaries for his freethinking and
unorthodox ideas. He wrote angrily about the difficulty of doing
scholarly work in the environments in which he found himself, but
in retrospect he seems to have done well despite the difficulties.

Omar described algebra, a subject to which he devoted much of
his life, in this way:

By the help of God and with His precious assistance, I say that
Algebra is a scientific art. The objects with which it deals are
absolute numbers and measurable quantities which, though
themselves unknown, are related to “things” which are known,
whereby the determination of the unknown quantities is possi-
ble. Such a thing is either a quantity or a unique relation, which
is only determined by careful examination. What one searches
for in the algebraic art are the relations which lead from the
known to the unknown, to discover which is the object of
Algebra as stated above. The perfection of this art consists in
knowledge of the scientific method by which one determined
numerical and geometric quantities.

(Kasir, Daoud S. The Algebra of Omar Khayyám. New York:
Columbia University Press, 1931. Used with permission)

This is a good definition for certain kinds of algebra even today,
almost a thousand years later. The care with which the ideas in the
definition are expressed indicates that the author was a skilled
writer in addition to being a skilled mathematician, but he is gen-
erally remembered as either one or the other. In the West, Omar
Khayyám is best remembered as the author of The Rubáiyát of
Omar Khayyám, a collection of poems. This collection of poems
was organized, translated into English, and published in the 19th
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century. It has been in print
ever since and has now been
translated into all the major
languages of the world. The
Rubáiyát is a beautiful work,
but Omar’s skill as a poet was
not widely recognized in his
own time, nor is it the trait for
which he is best remembered
in Islamic countries today.

Omar’s contemporaries knew
him as a man of extraordinari-
ly broad interests. Astronomy,
medicine, law, history, philos-
ophy, and mathematics were
areas in which he distin-
guished himself. He made
especially important contribu-
tions to mathematics and to
the revision of the calendar.
His revision of the calendar

earned him a certain amount of fame because the calendar in use at
the time was inaccurate in the sense that the calendar year and the
astronomical year were of different lengths. As a consequence over
time the seasons shifted to different parts of the calendar year. This
variability made using the calendar for practical, seasonal predic-
tions difficult. Correcting the calendar involved collecting better
astronomical data and then using this data to make the necessary
computations. This is what Omar did. It was an important contri-
bution because his calendar was extremely accurate, and its accura-
cy made it extremely useful.

In the history of algebra, Omar Khayyám is best remembered
for his work Al-jabr w’al muqābala (Demonstration concerning the
completion and reduction of problems; this work is also known as
Treatise on demonstration of problems of algebra). The Al-jabr
w’al muqābala is heavily influenced by the ideas and works of Al-
Khwārizmı̄, who had died two centuries before Omar wrote his
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No.   Month Length

  1      Farvardin
  2     Ordibehesht
  3     Khordad
  4     Tir
  5     Mordad
  6     Shahrivar
  7      Mehr
  8     Aban
  9     Azar
10      Dey
11    Bahman
12      Esfand

          31
          31
          31
          31
          31
          31 
          30
          30
          30
          30
          30
29 or 30

A small group of scientists, of which
Omar Khayyám was the most 
prominent member, devised the 
Jalali calendar. With some modest
modifications this has become today’s
Persian calendar (pictured above).



algebra. As with al-Khwārizmı̄, Omar does not see all quadratic
equations as instances of the single equation ax2 + bx + c = 0.
Instead, he, too, divides quadratic equations into distinct types, 
for example, “a number equals a square,” which we would write as
x2 = c; “a square and roots equal a number,” which we would write
as x2 + bx = c; and “a square and a number equal a root,” which we
would write x2 + c = x. (He made a distinction, for example,
between x2 + bx = c and x2 + c = bx because Omar, as do Diophantus
and al-Khwārizmı̄, prefers to work with positive coefficients only.)

Omar even borrows al-Khwārizmı̄’s examples. He uses the same
equation, x2 = 5x, that al-Khwārizmı̄ used in his book, and there
are the by-now standard geometric demonstrations involving the
proofs of his algebraic results. All of this is familiar territory and
would have seemed familiar even to al-Khwārizmı̄. But then Omar
goes on to consider equations of the third degree—that is, equa-
tions of the form ax3 + bx2 + cx + d = 0.

Omar classifies third-degree equations by using the same general
scheme that he used to classify equations of the second degree, and
then he begins to try to solve them. He is unsuccessful in finding an
algebraic method of obtaining a solution. He even states that one
does not exist. (A method was discovered several centuries later in
Europe.) Omar does, however, find a way to represent the solutions
by using geometry, but his geometry is no longer the geometry of the
Greeks. He has moved past traditional Euclidean geometry. Instead
of using line segments as the Greeks had, Omar uses numbers to
describe the properties of the curves in which he is interested. As he
does so he broadens the subject of algebra and expands the collection
of ideas and techniques that can be brought to bear on any problem.

Omar’s synthesis of geometric and algebraic ideas is in some ways
modern. When he discusses third-degree algebraic equations,
equations that we would write as ax3 + bx2 + cx + d = 0, he represents
his ideas geometrically. (Here a, b, c and d represent numbers and x
is the unknown.) For example, the term x3, “x cubed,” is interpret-
ed as a three-dimensional cube. This gives him a useful conceptual
tool for understanding third-degree algebraic equations, but it also
proves to be a barrier to further progress. The problem arises when
he tries to extend his analysis to fourth-degree equations, equations
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that we would write as ax4 + bx3 + cx2 + dx + e = 0. Because he 
cannot imagine a four-dimensional figure, his method fails him,
and he questions the reality of equations of degree higher than 3.

To his credit Omar was aware of the close relationship between
algebraic equations and the number system. However, his narrow
concept of number prevented him from identifying many solutions
that Hindu mathematicians accepted without question. This may
seem to be a step backward, but his heightened sense of rigor was an
important step forward. There are important relationships between
the degree of an algebraic equation and the properties of the num-
bers that can appear as solutions. (The degree of an equation is the
largest exponent that appears in it. Fourth-degree equations, for
example, contain a variable raised to degree 4, and no higher power
appears in the equation.) In fact, throughout much of the history of
mathematics it was the study of algebraic equations that required
mathematicians to consider more carefully their concept of what a
number is and to search for ways in which the number system could
be expanded to take into account the types of solutions that were
eventually discovered. Omar’s work in algebra would not be sur-
passed anywhere in the world for the next several centuries.

The work of al-Khwārizmı̄ and Omar also exemplifies the best
and most creative aspects of Islamic algebra. In particular, their
synthesis of algebra and geometry allowed them to think about
algebraic questions in a new way. Their worked yielded new
insights into the relations that exist between algebra and geometry.
They provided their successors with new tools to investigate alge-
bra, and they attained a higher standard of rigor in the study of
algebra. Although Indian mathematicians sometimes achieved
more advanced results than their Islamic counterparts, Indian
mathematicians tended to develop their mathematics via analogy or
metaphor. These literary devices can be useful for discovering new
aspects of mathematics, but they are of no use in separating the
mathematically right from the mathematically wrong. Islamic
mathematicians emphasized strong logical arguments—in fact,
they seemed to enjoy them—and logically rigorous arguments are
the only tools available for distinguishing the mathematically true
from the mathematically false. It is in this sense that the algebra
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developed by the Islamic mathematicians is—especially during the
period bracketed by the lives of al-Khwārizmı̄ and Omar—much
closer to a modern conception of algebra than is that of the Indians.
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LEONARDO OF PISA

There was one prominent European mathematician during the period in
which Islamic mathematics flourished. He received his education in
northern Africa from an Islamic teacher. As a consequence, he owed
much of his insight to Islamic mathematics. He was the Italian mathe-
matician Leonardo of Pisa, also known as Fibonacci (ca. 1170–after
1240). Leonardo’s father, Guglielmo, was a government official in a
Pisan community situated in what is now Algeria. During this time
Leonardo studied mathematics with a Moor. (The Moors were an Islamic
people who conquered Spain.) From his teacher he apparently learned
both algebra and the Hindu base 10, place-value notation. He later
wrote that he enjoyed the lessons. Those lessons also changed his life.

As a young man Leonardo traveled throughout North Africa and the
Middle East. During his travels he learned about other systems of nota-
tion and other approaches to problem solving. He seems to have even-
tually settled down in Pisa, Italy, where he received a yearly income from
the city.

Leonardo produced a number of works on mathematics. He
described the place-value notation and advocated for its adoption. His
efforts helped to spread news of the system throughout Europe.
(Leonardo only used place-value notation to express whole numbers. He
did not use the decimal notation to write fractions.) His description of
the Indian system of notation is his most long-lasting contribution, but he
also discovered what is now known as the Fibonacci series, and he was
renowned for his skill in algebra as well. He studied, for example, the
equation that we would write as x3 + 2x2 + 10x = 20. This equation was
taken from the work of Omar Khayyám. In his analysis Leonardo appar-
ently recognizes that the solution he sought was not a simple whole
number or fraction. He responds by working out an approximation—and
he recognizes that his answer is an approximation—that is accurate to
the ninth decimal place. Leonardo, however, expressed his answer as a
base 60 fraction. Unfortunately Leonardo does not explain how he found
his answer, an approximation that would set the European standard for
accuracy for the next several centuries.



4
algebra as a theory 

of equations

As art, music, literature, and science did, mathematics flourished
in Europe during the Renaissance, which had its origins in 14th-
century Italy and spread throughout Europe over the succeeding
three centuries. Just as art, music, and science changed radically
during the Renaissance, all pre-Renaissance mathematics is pro-
foundly different from the post-Renaissance mathematics of
Europe. The new mathematics began with discoveries in algebra.

Many of the best European mathematicians of this period were
still strongly influenced by the algebra of al-Khwārizmı̄, but in
the space of a few years Italian mathematicians went far beyond
all of the algorithms for solving equations that had been discov-
ered anywhere since the days of the Mesopotamians.
Mathematicians found solutions to whole classes of algebraic
equations that had never been solved before. Their methods of
solution were, by our standards, excessively complicated. The
algorithms developed by Renaissance era mathematicians were
also difficult and sometimes even counterintuitive. A lack of
insight into effective notation, poor mathematical technique, and
an inadequate understanding of what a number is sometimes
made recognizing that they had found a solution difficult for
them. Nevertheless, many problems were solved for the first
time, and this was important, because these problems had resisted
solution for thousands of years.

The new algorithms also exposed large gaps in the understand-
ing of these mathematicians. To close those gaps they would have
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to expand their concept of number, their collection of problem
solving techniques, and their algebraic notation. The algebraic
solution of these new classes of problems was a major event in the
history of mathematics. In fact, many historians believe that the
modern era in mathematics begins with publication of the
Renaissance era algebra book Ars Magna, about which we will
have much more to say later.

To appreciate what these Renaissance era mathematicians
accomplished, we begin by examining a simple example. The
example is a quadratic equation, an algebraic equation of second
degree. The remarks we make about quadratic equations guide
our discussion of the more complicated equations and formulas
used by the mathematicians of the Renaissance. Our example is
taken from the work of al-Khwārizmı̄. He was an expert at this
type of problem, but because his description is a little old-
fashioned, and because we also want to discuss his problem in
modern notation, we introduce a little terminology first. A quad-
ratic, or second-degree, equation is any equation that we can write
in the form ax2 + bx + c = 0. In this equation, the letter x is the vari-
able. The number or numbers that, when substituted for x, make
the equation a true statement are called the roots of the equation,
and the equation is solved when we find the root or roots. The 
letters a, b, and c are the coefficients. They represent numbers that
we assume are known. In the following excerpt, al-Khwārizmı̄ is
describing his method of solving the equation x2 + 21 = 10x. In this
example the coefficient a equals 1. The coefficient b is –10. 
(Al-Khwārizmı̄ prefers to transpose the term –10x to the right side
of the equation because he does not work with negative coeffi-
cients.) Finally, the c coefficient equals 21. Here is al-Khwārizmı̄’s
method for solving the equation x2 + 21 = 10x:

A square and 21 units equal 10 roots. . . . The solution of this type
of problem is obtained in the following manner. You take first
one-half of the roots, giving in this instance 5, which multiplied
by itself gives 25. From 25 subtract the 21 units to which we have
just referred in connection with the squares. This gives 4, of
which you extract the square root, which is 2. From the half of
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the roots, or 5, you take 2 away, and 3 remains, constituting one
root of this square which itself is, of course, 9.

(Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s 
Latin Translation of the Algebra of al-Khwārizmı̄. Translated 
by Karpinski, Louis C. New York: The Macmillan Company, 1915)

Al-Khwārizmı̄ has given a rhetorical description of an applica-
tion of the algorithm called the quadratic formula. Notice that
what al-Khwārizmı̄ is doing is “constructing” the root, or solu-
tion of the equation, from a formula that uses the coefficients of
the equation as input. Once he has identified the coefficients he
can, with the help of his formula, compute the root. We do the
same thing when we use the quadratic formula, although both
our formula and our concept of solution are more general than
those of al-Khwārizmı̄. In fact, we learn two formulas when we
learn to solve equations of the form ax2 + bx + c = 0. The first is 

x = — + ———— , and the second is x = — – ———— . These are  

the formulas that allow us to identify the roots of a quadratic
equation provided we know the coefficients.

Various rhetorical forms of these formulas were known to 
al-Khwārizmı̄ and even to Mesopotamian mathematicians. They
are useful for finding roots of second-degree equations, but 
they are useless for computing the roots of an equation whose
degree is not 2. Until the Renaissance, no one in the history of
humankind had found corresponding formulas for equations of
degree higher than 2. No one had found a formula comparable
to the quadratic formula for a third-degree equation, that is, an
equation of the form ax3 + bx2 + cx + d = 0, where a, b, c, and d
are the coefficients. This was one of the great achievements of
the Renaissance.

There is one more point to notice about the preceding formu-
las for determining the solutions to the second-degree equations:
They are exact. These formulas leave no uncertainty at all about
the true value for x. We can compare these formulas with the
solution that Leonardo of Pisa obtained for the third-degree
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equation given in the preceding chapter. His approximation was
accurate to the billionth place. This is far more accurate than he
(or we) would need for any practical application, but there is still
some uncertainty about the true value for x.

From a practical point of view, Leonardo completely solved the
problem, but from a theoretical point of view, there is an impor-
tant distinction between his answer and the exact answer. His
approximation is a rational number. It can be expressed as a quo-
tient of two whole numbers. The exact answer, the number that he
was searching for, is an irrational number. It cannot be expressed as
a quotient of two whole numbers. Leonardo’s solution was, for the
time, a prodigious feat of calculation, but it fails to communicate
some of the mathematically interesting features of the exact solu-
tion. Leonardo’s work shows us that even during the Middle Ages
there were algorithms that enabled one to compute highly accu-
rate approximations to at least some equations of the third degree,
but there was no general algorithm for obtaining exact solutions to
equations of the third degree.

The New Algorithms
The breakthrough that occurred in Renaissance Italy was unrelat-
ed to finding useful approximations to algebraic equations. It
involved the discovery of an algorithm for obtaining exact solu-
tions of algebraic equations.

The discovery of exact algorithms for equations of degree high-
er than 2 begins with an obscure Italian academic named Scipione
del Ferro (1465–1526). Little is known of del Ferro, nor are schol-
ars sure about precisely what he discovered. Some historians
believe that he was educated at the University of Bologna, but
there are no records that indicate that he was. What is certain is
that in 1496 he joined the faculty at the University of Bologna as
a lecturer in arithmetic and geometry and that he remained at the
university for the rest of his life.

Uncertainty about del Ferro’s precise contribution to the histo-
ry of algebra arises from the fact that he did not publish his ideas
and discoveries about mathematics. He was not secretive. He
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apparently shared his discoveries with friends. Evidently he
learned how to solve certain types of cubic equations. These equa-
tions had resisted exact solution for thousands of years, so del
Ferro’s discovery was a momentous one. Del Ferro did not learn
how to solve every cubic equation, however.

As their Islamic predecessors had not, the European mathemati-
cians of del Ferro’s time did not use negative coefficients, so they
did not perceive a cubic equation as a single case as we do today.
Today we say that a cubic equation is any equation that can be
written in the form ax3 + bx2 + cx + d = 0. But where we see unity,
they saw a diversity of types of cubic equations. They classified
equations by the side of the equals sign where each coefficient was
written. Where we would write a negative coefficient they care-
fully transposed the term containing the negative coefficient to the
other side of the equation so that the only coefficients they con-
sidered were positive. For example, they looked at the equations 
x3 + 2x = 1 and x3 = 2x + 1 as separate cases. Furthermore, they
would also consider any cubic equation with an x2 term, such as 
x3 + 3x2 = 1, as a case separate from, say, x3 + 2x = 1, because the
former has an x2 term and no x term, whereas the latter equation
has an x term but no x2 term. The number of such separate cases
for a third-degree equation is quite large.

Although we cannot be sure exactly what types of cubic equa-
tions del Ferro solved, many scholars believe that he learned to
solve one or both of the following types of third-degree algebraic
equations: (1) x3 + cx = d and/or (2) x3 = cx + d, where in each equa-
tion the letters c and d represent positive numbers. Whatever del
Ferro learned, he passed it on to one of his students, Antonio
Maria Fior.

News of del Ferro’s discovery eventually reached the ears of a
young, creative, and ambitious mathematician and scientist
named Niccolò Fontana (1499–1557), better known as Tartaglia.
Tartaglia was born in the city of Brescia, which is located in what
is now northern Italy. It was a place of great wealth when
Tartaglia was a boy, but Tartaglia did not share in that wealth. His
father, a postal courier, died when Tartaglia was young, and the
family was left in poverty. It is often said that Tartaglia was self-
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taught. In one story the 14-
year-old Tartaglia hires a
tutor to help him learn to
read but has only enough
money to reach the letter k.
In 1512, when Tartaglia was
barely a teenager, the city was
sacked by the French. There
were widespread looting and
violence. Tartaglia suffered
severe saber wounds to his
face, wounds that left him
with a permanent speech
impediment. (Tartaglia, a
name which he took as his
own, began as a nickname. It
means “stammerer.”)

When Tartaglia heard the
news that del Ferro had dis-
covered a method of solving
certain third-degree equa-
tions, he began the search for
his own method of solving those equations. What he discovered
was a method for solving equations of the form x3 + px2 = q. Notice
that this is a different type of equation from those that had been
solved by using del Ferro’s method, but both algorithms have
something important in common: They enable the user to con-
struct solution(s) using only the coefficients that appear in the
equation itself. Tartaglia and del Ferro had found formulas for
third-degree equations that were similar in concept to the quad-
ratic formula.

When Tartaglia announced his discovery, a contest was arranged
between him and del Ferro’s student, Antonio Maria Fior. Each
mathematician provided the other with a list of problems, and
each was required to solve the other’s equations within a specified
time. Although he initially encountered some difficulty, Tartaglia
soon discovered how to extend his algorithm to solve those types
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of problems proposed by Fior, but Fior did not discover how to
solve the types of problems proposed by Tartaglia. It was a great
triumph for Tartaglia.

Tartaglia did not stop with his discoveries in algebra. He also
wrote a physics book, Nova Scientia (A new science), in which he
tried to establish the physical laws governing bodies in free fall, a
subject that would soon play an important role in the history of
science and mathematics. Tartaglia had established himself as an
important mathematician and scientist. He was on his way up.

It is at this point that the exploits of the Italian gambler, physi-
cian, mathematician, philosopher, and astrologer Girolamo
Cardano (1501–76) become important to Tartaglia and the histo-
ry of science. Unlike del Ferro, who published nothing, Cardano
published numerous books describing his ideas, his philosophies,
and his insights on every subject that aroused his curiosity, and he
was a very curious man. He published the first book on probabili-
ty. As a physician he published the first clinical description of
typhus, a serious disease that is transmitted through the bite of
certain insects. He also wrote about philosophy, and he seemed to

enjoy writing about himself as
well. His autobiography is
entitled De Propria Vita (Book
of my life). In the field of alge-
bra, Cardano did two things
of great importance: He wrote
the book Ars Magna (Great
art), the book that many his-
torians believe marks the start
of the modern era in mathe-
matics, and he helped an
impoverished boy named
Lodovico Ferrari (1522–65).

At the age of 14 Ferrari
applied to work for Cardano
as a servant, but unlike 
most servants of the time,
Ferrari could read and write.
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Impressed, Cardano hired him as his personal secretary instead.
It soon became apparent to Cardano that his young secretary had
great potential, so Cardano made sure that Ferrari received an
excellent university education. Ferrari learned Greek, Latin, and
mathematics at the university where Cardano lectured, and when
Ferrari was 18, Cardano resigned his post at the university in
favor of his former secretary. At the age of 18 Ferrari was lectur-
ing in mathematics at the University of Milan. Together
Cardano and Ferrari would soon make an important contribu-
tion to mathematics.

Meanwhile Tartaglia’s success had attracted Cardano’s attention.
Although Tartaglia had discovered how to solve cubic equations,
he had not made his algorithm public. He preferred to keep it
secret. Cardano wanted to know the secret. Initially he sent a let-
ter requesting information about the algorithm, but Tartaglia
refused the request. Cardano, a capable mathematician in his own
right and a very persistent person, did not give up. He continued
to write to Tartaglia. They argued. Still Tartaglia would not tell,
and still Cardano persisted. Their positions, however, were not
equal. Tartaglia, though well known, was not well off. By contrast,
Cardano was wealthy and well connected. He indicated that he
could help Tartaglia find a prestigious position, which Tartaglia
very much wanted. Cardano invited Tartaglia to his home, and, in
exchange for a promise that Cardano would tell no one, Tartaglia
shared his famous algorithm with his host.

It was a mistake, of course. Tartaglia is said to have recognized
his error almost as soon as he made it. Cardano was of no help
in finding Tartaglia a position, but with the solution to the
third-degree equation firmly in hand, Cardano asked his former
servant, secretary, and pupil, Ferrari, to solve the general
fourth-degree equation, and Ferrari, full of energy and insight,
did as he was asked. He discovered a formula that enabled the
user to construct the root(s) to a fourth-degree equation by
using only the coefficients that appeared in the equation itself.
Now Cardano knew how to solve both third- and fourth-degree
equations, and that is the information Cardano published in Ars
Magna.
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Tartaglia was furious. He
and Cardano exchanged accu-
sations and insults. The whole
fight was very public, and
much of the public was fasci-
nated. Eventually a debate was
arranged between Tartaglia
and Ferrari, who was an
intensely loyal man who never
forgot who gave him help
when he needed it. It was a
long debate, and it did not go
well for Tartaglia. The debate
was not finished when
Tartaglia left. He did not
return. Tartaglia felt betrayed
and remained angry about the
affair for the rest of his life.

In some ways Cardano’s Ars
Magna is an old-fashioned
book. It is written very much in the style of al-Khwārizmı̄: It is a
purely rhetorical work, long on prose and bereft of algebraic
notation. That is one reason that it is both tedious and difficult
for a modern reader to follow. In the manner of al-Khwārizmı̄,
Cardano avoids negative coefficients by transposing terms to one
side of the equation or another until all the numbers appearing in
the equation are nonnegative. In this sense, Ars Magna belongs to
an earlier age.

The significance of Ars Magna lies in three areas. First, the solu-
tions that arose in the course of applying the new algorithms were
often of a very complicated nature. For example, numbers such as

3 
287½+ 80449¼ + 

3 
287½ – 80449¼ – 5, a solution that Cardano

derives in his book for a fourth-degree equation, inspired many
mathematicians to reconsider their ideas of what a number is.
This turned out to be a very difficult problem to resolve, but with
the new algorithms, it was no longer possible to avoid asking the
question.
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ALGEBRA AS A TOOL IN SCIENCE

During the Renaissance great
progress was made in obtain-
ing exact solutions to algebraic
equations. There was a certain
excitement associated with the
work of Tartaglia, Ferrari, and
others because these mathe-
maticians were solving prob-
lems that had resisted solution
for millennia. There was also a
highly abstract quality to their
work: It was now possible to
solve fourth-degree equations,
for example, but opportunities
to use fourth-degree equations
to solve practical problems
were not especially numerous.

There was, however, another
trend that was occurring during
the Renaissance, the applica-
tion of algebra to the solution of
problems in science. There is
no better example of a scien-
tist’s reliance on algebra as a
language in which to express ideas than in the work of the Italian scientist,
mathematician, and inventor Galileo Galilei (1564–1642). Galileo’s alge-
braic approach broke with the past. Archimedes, Aristarchus of Samos,
and other Greek scientists and mathematicians often used straightedge
and compass geometry to express many of their ideas. For well over 1,000
years geometry had been the language of scientific inquiry. This began to
change during the Renaissance.

One of Galileo’s best-known books, Dialogues Concerning Two New
Sciences, is filled with algebra. It is not a book about algebra. It is a book
about science, in which Galileo discusses the great scientific topics of his
time: motion, strength of materials, levers, and other topics that lie at the
heart of classical mechanics. To express his scientific ideas he uses a
rhetorical version of an algebraic function.

In the following quotation, taken from Dialogues, Galileo is describing
discoveries he had made about the ability of objects to resist fracture:

Galileo Galilei. Algebraic ideas are
present in some of Galileo’s mathemat-
ical descriptions of his work, but he
expresses himself rhetorically—without
any specialized algebraic notation. This
makes his ideas somewhat difficult to
read.  (Library of Congress, Prints and
Photographs Division)

(continues)



Second, Cardano’s book marks the first time since the
Mesopotamians began pressing their ideas about quadratic equa-
tions into clay slabs that anyone had published general methods
for obtaining exact solutions to equations higher than second
degree. Algebra had always seemed to hold a lot of promise, but its
actual utility had been limited because mathematicians knew only
enough algebra to solve relatively simple problems. The problems
that were solved by the Mesopotamian, Chinese, Indian, and
Islamic mathematicians were by and large simple variations on a
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ALGEBRA AS A TOOL IN SCIENCE
(continued)

Prisms and cylinders which differ in both length and thickness
offer resistances to fracture . . . which are directly proportional
to the cubes of the diameters of their bases and inversely 
proportional to their lengths.

(Galileo Galilei. Dialogues Concerning Two New Sciences. Translated by
Henry Crew and Alfonso de Salvio. New York: Dover Publications, 1954)

Galileo is describing the physical characteristics of real objects with
algebraic functions. Unfortunately he lacks a convenient algebraic nota-
tion to express these ideas.

In his use of algebra, Galileo was not alone. During the Renaissance
scientists discovered that algebra was often the most convenient way
that they had to express their ideas. The synthesis that occurred between
algebra and science during the Renaissance accelerated interest in alge-
bra. It probably also accelerated progress in science because it made
new abstract relations between different properties more transparent and
easier to manipulate. Algebra as a symbolic language was gaining promi-
nence in mathematics. As notation improved and insight deepened into
how algebra could be used, algebraic notation became the standard way
that mathematicians expressed their ideas in many branches of mathe-
matics. Today algebra has so thoroughly permeated the language of
mathematics and the physical sciences that it is doubtful that the subject
matter of these important disciplines could be expressed independently
of the algebraic notation in which they are written.



very small group of very similar problems. This changed with the
publication of Ars Magna.

Finally, Cardano’s book made it seem at least possible that simi-
lar formulas might exist for algebraic equations of fifth degree and
higher. This possibility inspired many mathematicians to begin
searching for algorithms that would enable them to find exact
solutions for equations of degree higher than 4.

François Viète, Algebra as a Symbolic Language
Inspired by the very public success of Tartaglia and Ferrari and the
book of Cardano, the study of algebra spread throughout much of
Europe. One of the first and most obvious barriers to further
progress was the lack of a convenient symbolism for expressing the
new ideas, but this condition was changing, albeit in a haphazard
way. Throughout Europe various algebraic symbols were intro-
duced. Mathematicians in different geographical or linguistic
regions employed different notation. There were several symbols
proposed for what we now know as an equals sign (=). There were
also alternatives for +, –, ×, and so on. It took time for the notation
to become standardized, but all of these notational innovations
were important in the sense that they made algebra easier.
Rhetorical algebra can be slow to read and unnecessarily difficult to
follow. Ordinary everyday language, the kind of language that we
use in conversation, is just not the right language in which to
express algebra, and the higher the level of abstraction becomes,
the more difficult the rhetorical expression of algebra is to read.
Nor was the lack of a suitable notation the only barrier to progress.

Algebra is about more than symbols. Algebra is about ideas, and
despite the creativity of del Ferro, Tartaglia, Ferrari, and others,
the algebra of much of the 16th century was similar in concept to
what Islamic mathematicians had developed centuries earlier. For
most mathematicians of the time, algebra was still about finding
roots of equations. It was a very concrete subject. The equation
was like a question; the numbers that satisfied the equation were
the answers. A successful mathematician could solve several dif-
ferent types of equations; an unsuccessful mathematician could
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not. At the time algebra was a collection of problem-solving tech-
niques. It was the search for formulas. The formulas might well be
complicated, of course, but the goal was not. This view of algebra
is a very narrow one. In the end it is a view of algebra that is not
even very productive. One of the first mathematicians to under-
stand that algebra is about more than developing techniques to
solve equations was the French mathematician François Viète
(1540–1603).

Viète was born into a comfortable family in Fontenay-le-Comte,
a small town located in the west of France not far from the Bay of
Biscay. He studied law at the University of Poitiers. Perhaps his
initial interest in law was due to his father, who was also a lawyer,
but the legal profession was not for Viète. Within a few years of
graduation he had given up on law and was working as a tutor for
a wealthy family. His work as a tutor was a quiet beginning to an
eventful life. As that of many French citizens was, Viète’s life was
profoundly influenced by the political instability that long plagued
France. During Viète’s life the cause of the turmoil was religious
tension between the Roman Catholic majority and the Protestant
minority, called Huguenots. Viète’s sympathies lay with the
Huguenots.

While he was working as a tutor, Viète began his research into
mathematics. He left his job as a tutor in 1573, when he was
appointed to a government position. Fortunately for mathematics,
in 1584 he was banished from government for his Huguenot sym-
pathies. Viète moved to a small town and for five years devoted
himself to the study of mathematics. It was, mathematically speak-
ing, the most productive time of his life.

Viète understood that the unknowns in an algebraic equation
could represent types of objects. His was a much broader view of
an equation than simply as an opportunity to find “the answer.” If
the unknown could represent a type or “species” of object, then
algebra was about the relationships between types. Viète’s higher
level of abstract thought led to an important notational break-
through. It is to Viète that we owe the idea of representing the
unknown in an equation with a letter. In fact, in his search for
more general patterns Viète also used letters to represent known
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quantities as well. (The “known quantities” are what we have been
calling coefficients.) Although we have been using this notation
since the beginning of this volume—it is hard to talk about alge-
bra without it—historically speaking, this method of notation did
not begin until Viète invented it.

Viète’s method was to use vowels to represent unknown quanti-
ties and consonants to represent known quantities. This is not
quite what we use today; today we let letters toward the end of the
alphabet represent unknowns and letters toward the beginning of
the alphabet represent known quantities, but it is the first instance
of the concept. Notice that by employing letters for the coeffi-
cients Viète deprives himself of any hope of finding numerical
solutions. The compensation for this loss of specificity is that the
letters made it easier for Viète to see broader patterns. The letters
helped him identify relationships between the various symbols and
the classes of objects that they represented.

Though some of Viète’s ideas were important and innovative,
others were old-fashioned or just plain awkward. Viète was old-
fashioned in that he still had a fairly restricted idea of what consti-
tuted an acceptable solution. As had his predecessors, Viète
accepted only positive numbers as legitimate solutions.

Viète had an unusual and, in retrospect, awkward idea for how
unknowns and coefficients should be combined. He interpreted
his unknowns as if there were units attached to them. We have
already encountered a similar sort of interpretation. Recall that
Omar Khayyám had conceptual difficulties in dealing with fourth-
degree equations because he interpreted an unknown as a length.
For Omar an unknown length squared represented a (geometric)
square, an unknown length cubed was a (three-dimensional) cube,
and as a consequence there was no immediate way of interpreting
an unknown raised to the fourth power. In a similar vein, Viète
required all terms in an equation to be “homogeneous” in the
sense that they all had to have the same units. The equation that
we would write as x2 + x = 1, an equation without dimensions,
would have made little sense to Viète since it involved adding, for
example, a line segment, x, to a square, x2. Instead Viète insisted
on assigning dimensions to his coefficients so that all terms had

Algebra as a Theory of Equations  73



the same dimensions. For example, he preferred to work with
equations like A3 – 3B2A = B2D. This was very important to him,
although in retrospect it is hard to see why. Succeeding genera-
tions of mathematicians perceived his requirement of homogene-
ity as a hindrance and abandoned it.

Viète’s work was a remarkable mixture of the old and the new,
and with these conceptual tools he began to develop a theory of
equations. Although he knew how to solve all algebraic equations
up to and including those of the fourth degree, he went further
than simply identifying the roots. He was, for example, able to
identify certain cases in which the coefficients that appeared in the
equations were functions of the equation’s solutions. This is, in a
sense, the reverse of the problem considered by Tartaglia and
Ferrari, who found formulas that gave the solutions as functions of
the coefficients. This observation allowed Viète to begin making
new connections between the coefficients that appeared in the
equation and the roots of the equation.

Viète also began to notice relationships between the degree of
the equation and the number of roots of the equation. He demon-
strated that at least in certain cases, the number of roots was the
same as the degree of the equation. (He was prevented from draw-
ing more general conclusions by his narrow conception of what a
number, and hence a solution, is.)

All of these observations are important because there are many
connections between the solutions of an algebraic equation and
the form of the equation. It turns out that if one knows the coef-
ficients and the degree of the equation then one also knows a great
deal about the roots, and vice versa. Then as now the exact solu-
tions (roots) of an equation were sometimes less important to
mathematicians than other, more abstract properties of the equa-
tion itself. Viète may well have been the first mathematician to
think along these lines.

Viète eventually had the opportunity to return to government,
but he did not abandon his mathematical studies. His mathemati-
cal skill proved useful in his service to King Henry IV, when he
decrypted a number of secret messages sent by the king of Spain
during a religious war. The code was, for the time, state of the art,
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and the Spanish believed it to be unbreakable. Viète’s success
caused the Spanish king to complain to the pope that the French
had used sorcery to decrypt the messages. Viète was also interest-
ed in astronomy, and he wrote a long and unpublished work com-
paring the geometries of the Ptolemaic and Copernican systems.
As did any good astronomer of the time he also needed to know
trigonometry, and in his book Canon Mathematicus Seu ad
Triangula (Mathematical laws applied to triangles), he helped to
develop that field as well.

More importantly for the history of algebra, Viète also wrote
about the three classical, unsolved problems of ancient Greece:
trisection of an angle, squaring of a circle, and doubling of a cube.
During Viète’s life, interest in the problems again became fashion-
able, and claims were made that all three problems had finally
been solved via straightedge and compass. Viète rightly showed
that all the new proofs were faulty and that the problems remained
unsolved. Finally a Belgian mathematician had found a way to
solve one particular algebraic equation of degree 45. An ambassa-
dor from that region to the court of Henry IV boasted of the skill
of the mathematicians of his homeland. He said that there were no
mathematicians in France capable of solving such a difficult prob-
lem. The job of defending the French national honor fell to Viète.
Using trigonometric methods, Viète, too, found a way to solve the
problem.

Viète, a lawyer by training, was perhaps the most forward-think-
ing and capable mathematician of his time. If he had one rival any-
where in Europe, it was the British mathematician and astronomer
Thomas Harriot.

Thomas Harriot
Very little is known of Thomas Harriot (1560–1621) before he
enrolled in Oxford University. After he graduated from Oxford, his
life becomes much easier to trace because his fortunes became
intertwined with those of Sir Walter Raleigh (ca. 1554–1618).
Today Sir Walter Raleigh is best remembered as a swashbuckling
adventurer and a writer. He sailed the Atlantic Ocean, freely con-
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fusing the national good with his own personal profit. He attempt-
ed to establish a colony on Roanoke Island in present-day North
Carolina, and he sailed to present-day Guyana in search of gold to
loot. He wrote about his adventures, and his exploits made him a
popular figure with the general public and with Queen Elizabeth I.

As a favorite of the queen, Raleigh was granted a number of
opportunities to amass great wealth, and he seems to have taken
advantage of all of them. Less well known is that Sir Walter
Raleigh was also a serious student of mathematics. He was not an
especially insightful mathematician himself, but he hired Thomas
Harriot, who was probably the best mathematician in England at

the time, a decision that dis-
played sound mathematical
judgment.

Raleigh’s interest in mathe-
matics was not purely scholar-
ly. He was hoping that the
application of mathematics to
problems in navigation would
enable mariners to determine
their position on the sea more
accurately. This interest in bet-
ter navigational techniques
and tools also accounted for
much of his interest in Harriot.

Thomas Harriot spent
much of his time working on
mathematical problems that
were of interest to Raleigh.
He researched the question 
of how best to use observa-
tions of the Sun and stars to
determine one’s latitude accu-
rately. He worked as a naval
architect and an accountant
for Raleigh, and he was busy
with other nonmathematical
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An imprisoned Sir Walter Raleigh
says good-bye to his wife. Harriot’s
fortunes were closely tied to those of
Raleigh, his patron. Harriot pros-
pered when Raleigh did, but when
Raleigh was imprisoned and later
executed, Harriot lost support and
was briefly imprisoned himself.
(Library of Congress, Prints and
Photographs Division)



pursuits that also arose out of his association with Raleigh. He
sailed to Virginia, for example, on a trip arranged by Raleigh.
While there he learned the Algonquian language and served as
interpreter and spokesman for his group.

As a scientist Harriot had interests that were very broad. He was
an avid astronomer and built several telescopes of his own. He
studied optics and chemistry in addition to algebra. He even had
personal and professional knowledge of Viète through his good
friend Nathaniel Torporley, who was for a time secretary to Viète.
Mathematically Harriot was more modern in outlook than Viète.
In contrast to that of Viète, who, as we have already mentioned,
used a complicated mix of symbols and words, Harriot’s algebraic
notation was simpler and, consequently, more modern. He also
had a much broader concept of what a number is than Viète.
Harriot accepted positive, negative, and imaginary roots as solu-
tions, although as all mathematicians for the next few hundred
years had, Harriot had only a fuzzy idea of what an imaginary
number, in fact, was.

In the field of algebra Harriot made an important observation
about the relationship between the solutions to an equation and
the equation itself. To understand the idea, recall that
Mesopotamian, Greek, Chinese, Indian, and Islamic mathemati-
cians had always been concerned with the problem of finding solu-
tions to a given equation. This was also the goal of the Italian
mathematicians of the Renaissance. We can call this the forward
problem; Harriot gave some thought to what we might call the
inverse problem: Suppose we are given three solutions to a single
algebraic equation, can we find an algebraic equation of degree 3
with these numbers as solutions? Harriot discovered that the
answer is yes, and that the solution is simple. Suppose that a, b, and
c are the three given roots. The equation, expressed in modern
notation, is (x – a)(x – b)(x – c) = 0. The terms in parentheses are
linear factors. To see this third-degree polynomial—which has a, b,
and c as roots—in the form to which we have become accustomed,
we simply multiply the three linear factors together.

To appreciate Harriot’s insight, recall that the product of a set of
numbers can only be 0 if at least one of the numbers is 0.
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Therefore Harriot’s equation is only satisfied if x is equal to a, or
b, or c. This guarantees that the expression on the left, which is
written as a product of linear factors, has only a, b, and c as roots.
Furthermore if the three terms on the left side of the equation are
multiplied together, the coefficients of the third-degree equation
are expressed as functions of a, b, and c. When we multiply the
terms out we get x3 – (a + b + c)x2 + (ab + bc + ac)x – abc = 0. This
shows, for example, that the coefficient of the x2 term is the sum
of the roots of the equation and that the last term on the left is the
product of the roots. By considering the inverse problem, Harriot
was able to discover a number of facts about algebraic equations
that could have proved helpful to other mathematicians interested
in these problems.

Unfortunately Harriot had little influence on his contempo-
raries. Initially he did not seem to have much interest in commu-
nicating his ideas to a wider audience. Later political problems
took up much of his time. Politically he ran into problems that
resulted from his association with Sir Walter Raleigh. When
Queen Elizabeth I died, the throne was assumed by King James I.
The new king did not approve of Raleigh’s adventurism. Later
Raleigh and others were accused of trying to overthrow James.
Raleigh was imprisoned. Meanwhile Harriot had found a new
patron and continued his scientific research. Raleigh was eventu-
ally freed from prison, but later he was rearrested and eventually
executed. The decisions that had ruled against Raleigh had tar-
nished Harriot as well. Eventually Harriot’s new patron was
imprisoned. Even Harriot spent a little time in prison. In addition
to his essentially political problems, Harriot’s health began to fail
him. A cancer slowly robbed him of his energy, and still his math-
ematical ideas lay in drawers and on tables in his study. These
papers represented 40 years of work in science and mathematics,
and nothing had been published. It was only when Harriot was on
his deathbed, dying of cancer, that he finally addressed the ques-
tion of the publication of his mathematical works. He requested
that his lifelong friend Nathaniel Torporley sort through his
papers and assemble his work so that it might finally be published.
It was one of the last requests he made, but Torporley never did
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apply himself to the task. Another longtime friend of Harriot
eventually assembled a single slim book for publication. It was
entitled Artis Analyticae Praxis, now called the Praxis, and it is
through this single effort that we now know of Harriot’s accom-
plishments in algebra.

Albert Girard and the 
Fundamental Theorem of Algebra

It was near the end of Harriot’s life that the Flemish mathemati-
cian Albert Girard (1590–1633) was most active in mathematics.
Today he is remembered for an interesting observation—but not a
proof—about the nature of algebraic equations. His observation
was only speculation, and, as we will soon see, there were many
difficulties to be resolved before a proof would become possible,
but Girard’s musings demonstrated considerable insight into the
nature of algebraic equations.

Not much is written about Girard today. Even in his own time
he was generally referred to as an engineer rather than a mathe-
matician because of his accomplishments as a military architect,
designing fortifications and the like. We do know that he attend-
ed the University of Leiden, in Holland, and that he worked for a
time with the Flemish scientist, mathematician, and engineer
Simon Stevin. Girard’s best-known book is Invention nouvelle en
l’algèbre, and much of the work is of an evolutionary rather than
revolutionary character. He extends the work of Viète on several
fronts. He applies trigonometric methods to the solution of alge-
braic equations, in itself an extension of some work done by Viète,
and he also extends Viète’s ideas on the relationship between roots
and coefficients in an algebraic equation.

Girard’s most interesting contribution was his speculation that
every polynomial of degree n has n roots. Neither al-Khwārizmı̄
nor Viète could have made this assertion because they accepted
only positive roots as valid roots. For them, it was false that every
polynomial of degree n had n roots. In order for the statement to
be true one must have a much broader idea of what constitutes a
number. Even Girard had only a hazy idea of what a complex
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number was; that is one reason why his assertion is little more than
guesswork. It is, nevertheless, an insightful guess, which, together
with the corresponding proof, is called the fundamental theorem
of algebra.

To understand the meaning of Girard’s guess, consider the fol-
lowing analogy with the set of natural numbers. The set of natu-
ral numbers, which is just another name for the set of positive
whole numbers, can be divided into three groups: prime numbers,
composite numbers, and the number 1. (The number 1 constitutes
its own class. It is neither prime nor composite.) The prime num-
bers are divisible only by themselves and 1. For example, the first
four prime numbers are 2, 3, 5, and 7. Any natural number other
than 1 that is not prime is called a composite number. Composite
numbers are always divisible by at least one prime number. For
example, the composite number 462 can be written as the product
of four primes: 462 = 2 × 3 × 7 × 11. One consequence of this
observation about divisibility is that it is always possible to write
any natural number greater than 1 as a product of prime numbers.
It is in this sense that the prime numbers are like building blocks.
Any natural number greater than 1 can be “constructed” by mul-
tiplying the right primes together.

Essentially Girard speculated that linear factors, expressions of
the form (x – a) act as prime numbers. As noted previously, we call
these simple, first-degree polynomials linear factors. Girard
thought that it was possible to represent every polynomial as a
product of linear factors. To be specific, suppose we are given a
polynomial of the form xn + an-1xn–1 + . . . + a1x + a0. (Recall that x j

is the variable x raised to the jth power, and aj is the rational num-
ber by which we multiply x j.) Girard’s assertion is equivalent to
saying that it is possible to find n linear factors (x – r1), (x – r2), 
(x – r3), . . , (x – rn) such that when we multiply them together we
get xn + an–1xn–1 + . . . + a1x + a0, and where the rjs are the roots of
the polynomial. In this sense, every polynomial of degree greater
than 1 plays the role of a composite number in the set of all poly-
nomials, and every linear factor—that is, the set of polynomials of
degree 1—functions as the set of prime numbers does. Essentially
Girard speculated that it should, in theory, be possible to factor

80 ALGEBRA



every polynomial into a product of linear factors in the same way
that we can factor every composite number into a product of
primes.

Girard was not the only mathematician of the time to think along
these lines. Harriot discovered a simple case of this idea when he
investigated cubic equations, and even Viète seems to have had
some hazy ideas about the matter, but Girard was the first to see 
the big picture. These were new and fundamental ideas about the
nature of algebraic equations, and they would occupy the imagina-
tion of many mathematicians for the next two centuries.

With the work of del Ferro, Tartaglia, and Ferrari, on the one
hand, and that of Viète, Harriot, and Girard, on the other,
mathematicians interested in algebra were faced with two dif-
ferent avenues for further research. One avenue was to look for
exact solutions to algebraic equations of the fifth degree and
higher. The second avenue of research was to examine Girard’s
more fundamental assertion about the structure of the equations
themselves.

At the outset both roads must have looked equally promising,
but time would prove otherwise. Although the existence of gener-
al formulas for the roots of equations of the second, third, and
fourth degree pointed to the possibility of similar formulas for
equations of even higher degree, it was eventually discovered that
no other general formulas exist. This is not the same as saying that
the formulas have not yet been found. The algorithms were not
found because they cannot be found. They do not exist. The
nonexistence of general formulas, written in terms of the coeffi-
cients, for equations of degree higher than 4 was something of a
surprise. The proof would depend on deep, new concepts, and
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equivalent to the hypothesis that every polynomial of degree n can be written
as a product of n linear factors.



developing them would take work and time. Proving that the
sought-after formulas do not exist would have to wait a few cen-
turies. The other possibility for research, that of a deeper look at
the structure of algebraic equations, would prove very fruitful and
would occupy some of the best minds in mathematics.

To go beyond Girard’s speculations and probe more deeply into
the nature of algebraic equations, mathematicians had to consider
two fundamental questions. The first difficulty to overcome was 
to determine whether it is even possible to represent every poly-
nomial as a product of linear factors, that is, factors of the form 
x – a, where a represents a root of the equation. The second, relat-
ed problem that had to be confronted involved the number system
to which the a’s belonged: If it was possible to write any polyno-
mial as a product of linear factors, what type(s) of numbers would
appear in place of the a’s in the linear factors? Mathematicians had
already established that even in the case of second-degree equa-
tions, the real numbers were not sufficient. For example, there is
no real number that satisfies the equation x2 + 1 = 0. The only solu-
tions to this equation are +i and –i, where i represents a complex
number with the property that i2 equals –1.

Many early attempts to establish the nature of the roots of an
algebraic equation failed because mathematicians simply assumed
that Girard was correct when he speculated that the polynomial
could be factored. But any “proof” that assumes that a polynomial
can be written as a product of linear factors and then goes on to
prove that the roots must be complex numbers cannot be accepted
as a valid proof. If it has not been established that the polynomial
can be written as a product of linear factors, then we cannot accept
any conclusions regarding the nature of the roots. These difficul-
ties were further compounded by imprecise notions about what
numbers, in fact, are. For almost two centuries after Girard pro-
posed his hypothesis, mathematicians had only a vague idea of the
nature of complex numbers. For example, Wilhelm Gottfried
Leibniz, one of the foremost mathematicians of his age, believed
that there were not enough complex numbers to act as roots for 
all real algebraic equations. To prove his assertion he cited the
equation x4 + 1 = 0. This equation has the number √i, sometimes
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written as √√–1, as a solution. This number, argued Leibniz, could
not be written in the form a + bi, where a and b are real numbers,
and so by definition √i was not a complex number. (Complex num-
bers are often defined as the set of all numbers of the form a + bi,
where the letters a and b represent real numbers.)

We now know that Leibniz was wrong. The number √i is a com-
plex number: That is, there are real numbers a and b such that √i
can written in the form a + bi. It is a telling fact that the first com-
pletely rigorous proofs of the fundamental theorem of algebra
were produced by the same mathematicians who also developed
the first clear and rigorous way of representing complex numbers.

Further Attempts at a Proof
The first mathematician to make headway proving a very restrict-
ed version of the fundamental theorem of algebra was the Swiss
mathematician and scientist Leonhard Euler (1707–93). Euler 
was perhaps the most prolific
mathematician in history.
There probably was no math-
ematical subject of interest in
his day that he did not consid-
er. Some authors claim that
Euler, who could perform
very complex calculations in
his head in much the same
way that Mozart is said to
have composed music, was
able to compose mathematical
papers while playing with his
grandchildren. In any case as a
young man Euler published
papers regularly. As he grew
older he published more. He
lost his eyesight 17 years
before his death. One would
have thought that his inability
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productive mathematicians of all
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to see and write mathematics would have slowed him down, but
the rate at which he published his ideas continued to increase
despite his blindness. Euler’s collected works were eventually pub-
lished late in the 20th century. They filled more than 80 volumes.

In the course of his research Euler found many uses for com-
plex numbers, numbers that had previously been regarded as
“imaginary” or “useless.” As he learned to compute with these
numbers, he learned more about their basic properties. He was
able, for example, to disprove Leibniz’s claim that √i is not com-
plex. Euler was also able to show that for any real algebraic
equation of degree not greater than 6, there exist as many (pos-
sibly complex) linear factors as the degree of the equation. That
is, every algebraic equation of degree n, where n is less than 7,
has n roots. Euler also indicated his belief that the same sort of
argument that he had discovered could be extended 
to equations of higher degree, but he did not undertake that
project himself.

Recall that Girard’s speculation applied to all equations of the
form anxn + an–1xn–1 + . . . + a1x + a0 = 0. He stated that for any 
algebraic equation of degree n there exist exactly n roots. Or
equivalently, there exist n linear factors for any algebraic equation
of degree n. Because n can represent any nonnegative whole 
number, the theorem, if true, also applies to algebraic equations of
very high degree. In particular, it must apply to equations so long
that we could never write them. Euler’s proof was a good start. He
had advanced beyond simple speculation about the theorem, but
his work was far from the last word.

The French mathematicians Jean Le Rond d’Alembert
(1717–83), Pierre Simon Laplace (1749–1827), and Joseph-Louis
Lagrange (1736–1813) also attempted to prove the fundamental
theorem of algebra. As Euler did, each of these mathematicians
contributed something to the general level of understanding, and
each made the truth of the fundamental theorem appear more
plausible, but none produced a complete proof. By the time these
very prominent mathematicians had tried their hand at proving
the fundamental theorem, there were few mathematicians left who
doubted the truth of the theorem.
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At this point one might ask, Why bother proving the funda-
mental theorem when it was by this time so “obviously” true? If
the fundamental theorem of algebra is almost certainly true and
completing the proof is difficult, why not assume the truth and
move on to the next problem? The answers to these questions lie
in the nature of mathematics. Mathematics is a deductive science.
Mathematicians reason from the general to the specific.
Practically speaking this means that new discoveries are obtained
by making logical deductions from previously established results,
definitions, and axioms. In this sense mathematics is like a logical
chain. Each new theorem corresponds to a new link in the chain.
No new idea can be proved if the supposed proof depends on older
ideas whose truth has not been firmly established.

Euler’s initial goal, for example, was to prove what we now call the
fundamental theorem of algebra, but this only seems to be his goal.
Had he been successful in proving the statement true, he would
probably have used the fundamental theorem to deduce other new
results. Furthermore if he had not continued to push forward,
someone else would surely have done so. No matter how difficult it
might be to establish the truth of the fundamental theorem—no
matter how many years of effort are invested in the proof—once it
is proved, the theorem simply becomes a means to proving other
newer theorems. This is mathematical progress. In the case of the
fundamental theorem of algebra, mathematicians took centuries to
progress from Girard’s speculations to a rigorous proof.

The first person to get credit for proving the fundamental theo-
rem of algebra was the German mathematician and scientist Carl
Friedrich Gauss (1777–1855), one of the most successful mathe-
maticians of the 19th century. Gauss showed mathematical prom-
ise at a young age and was awarded a stipend from the duke of
Brunswick. The stipend made it possible for Gauss to go through
high school and university and to earn a Ph.D. His “proof” of the
fundamental theorem was part of his Ph.D. thesis. This was only
his first proof, and there were some gaps in it, but it was a great
step forward.

Gauss’s proof of one of the fundamental results in mathematics
did not lead him to a job immediately after graduation, however.
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He did not want a job. He preferred to study, and he was able to
act independently because the stipend that he received from the
duke continued for several years after he was awarded the Ph.D.
During this time he devoted himself to his own mathematical
research. He obtained a job as director of the astronomical obser-
vatory at Göttingen University only after the duke died and his
stipend was discontinued. Gauss remained in his position as direc-
tor of the observatory for his entire working life.

Despite the many discoveries Gauss made throughout his life,
the fundamental theorem of algebra was an especially important
idea for him. As we mentioned, his first attempt at proving the
fundamental theorem of algebra, the attempt that earned him a
Ph.D., had several gaps in it. He later revised the proof to cor-
rect its initial deficiencies. In fact Gauss never stopped tinker-
ing with the fundamental theorem of algebra. He later
published a third proof, and when he wanted to celebrate the
50th anniversary of receiving his Ph.D., he published a fourth
proof. Each proof approached the problem from a slightly dif-
ferent perspective. He died not long after his fourth proof, his
mathematical career bracketed by the fundamental theorem of
algebra.

Gauss’s eventual success in developing a completely rigorous
proof of the fundamental theorem was due, in part, to his firm
grasp of the nature of complex numbers. It is no coincidence that
he was also one of the first mathematicians to develop a clear, geo-
metrical interpretation of the complex number system. Gauss rep-
resented the complex number system as points on a plane. Each
complex number a + bi is interpreted as a point (a, b) in the so-
called complex plane (see the accompanying figure, on page 87).
This geometric representation of the complex number system is
the one that is in common use today. Gauss was not the only per-
son to have this particular insight. Though the idea seems simple
enough, it was a very important innovation. This is demonstrated
by the fact that after centuries of work, two of the earliest individ-
uals to discover this clear and unambiguous interpretation of the
complex number system also discovered proofs of the fundamen-
tal theorem of algebra.
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Another early proof of the
fundamental theorem of alge-
bra was given by Jean Robert
Argand (1768–1822). Argand
was Swiss-born. He was a
quiet, unassuming man. Little
is known of his early back-
ground or even of his educa-
tion. We do know that he
lived in Paris and worked as a
bookkeeper and accountant,
that he was married and had
children, and that as much as
he enjoyed the study of math-
ematics, it was for him just a hobby.

Argand was not especially aggressive in making himself known
to other mathematicians. In 1806 he published a thin mathemat-
ics book at his own expense. In it one finds two of the most impor-
tant ideas of the time: a geometrical representation of the complex
numbers and a proof of the fundamental theorem of algebra.
Because the book was published anonymously, years later, when
the work had finally attracted the attention of some of the best
mathematicians of the day, a call went out for the unknown author
to identify himself and claim credit for the ideas contained in the
work. It was only then that Argand stepped forward to identify
himself as the author. He later published a small number of addi-
tional papers that commented on the work of other authors or
elaborated on the work contained in his original, anonymously
published book.

Argand’s geometric representation of the complex numbers is
today known as the Argand diagram. It is the interpretation of the
complex numbers that students learn first when introduced to the
subject. His proof that every algebraic equation of degree n with
complex coefficients has n roots would also seem familiar to stu-
dents interested in more advanced algebra. His approach to prov-
ing the fundamental theorem is similar to a common modern
proof.
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The proofs of Cauchy and Argand were just the first few in a
long line of different proofs of the fundamental theorem of alge-
bra. As mathematicians’ understanding of complex numbers and
the functions that depend on them deepened, they developed a
branch of mathematics called the theory of complex variables.
This, essentially, is calculus using complex—as opposed to real—
numbers. Here again the fundamental theorem of algebra plays an
important role, and an entirely new proof of the theorem—this
time using ideas from the theory of complex variables—was 
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USING POLYNOMIALS

For much of the history of the
human race, mathematicians
have worked to understand
the mathematical structure 
of polynomials. They have
developed algorithms to find
the roots of polynomials, they
have developed algorithms
that allow them to approxi-
mate the roots of polynomi-
als, and they have studied
the mathematical relation-
ships that exist between
algebraic (polynomial) equa-
tions and their roots. The
study of polynomials has
occupied some of the best
mathematical minds through-
out much of the history of
humanity, but none of this
work provides an immediate
answer to the question, What
are polynomials good for?

Polynomials play an impor-
tant role in scientific and engi-
neering computations. In many

Polynomials play an essential role in
applied mathematics. This simulation
of the temperature profile of air in
the wake of a speeding bullet was
developed at the National Institute
for Standards and Technology, one of
the leading research institutes in the
United States.  (Courtesy Pedro
Espina/National Institute of
Standards and Technology)



discovered. Each new proof establishes new connections between
the fundamental theorem and other branches of mathematics.

The fundamental theorem of algebra is the culmination of a the-
ory of equations that began with the work of ancient
Mesopotamian scribes pressing triangular shapes into slabs of wet
clay on the hot plains of Mesopotamia thousands of years ago. It
illuminates basic connections between polynomials and the com-
plex number system. It does not solve every problem associated
with polynomials, of course. There were still questions, for exam-
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of the mathematical equations that arise in these disciplines, the
unknown is not a number but a function. That function may represent the
path of a rocket through space or, in meteorology, the position of a high-
pressure front as it moves across Earth’s surface. Equations that have
functions, instead of numbers, for solutions are often exceedingly diffi-
cult to solve. In fact, as a general rule, the precise solutions are often
impossible to calculate. The strategy that applied scientists adopt, there-
fore, is to construct a function that approximates the exact solution. A
polynomial, or a set of polynomials, is often the ideal choice for an
approximating solution. There are two main reasons polynomials are so
widely used.

First, polynomials are well-understood mathematical functions. In
addition to the fundamental theorem of algebra there are a host of
other theorems that describe their mathematical properties. These the-
orems enable scientists and engineers to calculate with polynomials
with relative ease.

Second, there are many polynomials to choose from. This means
that in many problems of practical importance there are sufficiently
many polynomials to enable the scientist or engineer to calculate a
very accurate approximation to the solution by using only polynomi-
als. This method is often used despite the fact that the exact solu-
tion to the equation in which they have an interest is not a polynomi-
al at all.

These two facts have been known to mathematicians since the 19th
century, but the computational difficulties involved in calculating the
desired polynomials often made applying these ideas too difficult. With
the advent of computers, however, many of the computational difficulties
disappeared, so that from a practical point of view polynomials are now
more important than ever.



ple, about the computational techniques needed to approximate
the roots of polynomials and about the role of polynomials in
broader classes of functions. Furthermore special classes of poly-
nomials would eventually be identified for their utility in solving
practical computational problems in science and engineering.
(This research would be further accelerated by the invention of
computers.) And, finally, the fundamental theorem itself sheds 
no light on why the methods that had proved so useful for finding
the roots of algebraic equations of degree less than 5 would, in
general, prove ineffective for finding the roots of equations of
degree 5 or more. Nevertheless the fundamental theorem shows
how several properties of polynomials that had been of interest to
mathematicians for the last 4,000 years are related.

� It relates the degree of an equation to the number of its
solutions.

� It demonstrates that, in theory, any polynomial can be
factored.

� It shows that the complex number system contains all
solutions to the set of all algebraic equations.

Research into algebra did not end with the fundamental theorem
of algebra, of course; it shifted focus from the study of the solu-
tions of polynomials toward a more general study of the logical
structure of mathematical systems.
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5
algebra in geometry

and analysis

In the 17th century mathematicians began to express geometric
relationships algebraically. Algebraic descriptions are in many
ways preferable to the geometric descriptions favored by the
ancient Greeks. They are often more concise and usually easier to
manipulate. But to obtain these descriptions, mathematicians
needed a way of connecting the geometric ideas of lines, curves,
and surfaces with algebraic symbols. The discovery of a method
for effecting this connection—now called analytic geometry—had
a profound impact on the history of mathematics and on the his-
tory of science in general. The ideas mathematicians developed in
the process have become so ingrained in modern approaches to
mathematics that today many students acquire their mathematical
education without ever encountering another way of understand-
ing mathematics.

To be fair, not all the ideas presently credited to these 17th-
century mathematicians originated with them. Some of the more
important ideas in analytic geometry are present in the work of the
ancient Greeks. The Greek mathematician Menaechmus (ca. 380
B.C.E.–ca. 320 B.C.E.) is sometimes credited with discovering how
to express geometric relationships algebraically. Unfortunately
none of his work survived to modern times. We know of him 
only through the descriptions of his work found in the writings of
others. From these descriptions we know that Menaechmus was
concerned with geometric relations that we would express in terms
of equations such as a/x = x/y and x/y = y/b. If, for example, we were



to multiply both sides of the first of these equations by xy, we
would obtain the equation ay = x2, an equation that students every-
where now learn to associate with the graph of a parabola.
Menaechmus was certainly familiar with parabolas. Some authors
think he may have coined the term, but he probably did not under-
stand a parabola as the set of all points in the plane that satisfy this
or some similar equation.

As other Greek mathematicians did, Menaechmus conceived 
of a parabola as the set of all points belonging to the intersection
of a plane and a cone, when the plane takes a certain orientation
relative to the cone (see the accompanying figure). Whatever his
contributions may have been in this regard—however close he was
to an algebraic description of a parabola or other curve—he almost
certainly did not make the jump from geometric to algebraic 
language. The Greeks of Menaechmus’s time did not know 
elementary algebra in the sense that we now understand the term.

The Greek mathematician Apollonius of Perga (ca. 262
B.C.E.–ca. 190 B.C.E.), another mathematician who is sometimes
credited with coining the terms parabola, hyperbola, and ellipse, also
was close to making an important connection between algebra and
geometry. Apollonius was one of the most thoughtful and prolific
of all the ancient Greek mathematicians. His most famous work is
Conics, most of which has survived. As the name implies, the topic
with which Apollonius concerns himself in his great work is the
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The Greeks described the parabola as the intersection of a cone and a plane
when the plane is parallel to a line generating the cone.



mathematical properties of conic sections. (The conic sections are
ellipses, hyperbolas, and parabolas.) In his study of conic sections
Apollonius develops a way of imposing a coordinate system on his
diagram.

A planar coordinate system is a correspondence between ordered
pairs of numbers and points on the plane. Given a point on the
plane, the coordinate system enables the user to associate an
ordered pair of numbers, and given an ordered pair of numbers,
the coordinate system enables the user to associate with them a
point on the plane. Today as a result of long familiarity, the con-
cept seems to be an easy one. It is used in board games that depend
on a grid system and maps that use longitude and latitude or a sim-
ilar method to establish position. The idea may seem almost triv-
ial, but its usefulness cannot be overstated. The development of
coordinate systems has made a huge difference in the development
of both science and mathematics.

The coordinate system devised by Apollonius was not the kind
of coordinate system with which most of us are familiar today. His
axes, for example, were generally not perpendicular to one anoth-
er. Nonperpendicular axes—often called oblique axes—are awk-
ward to use when one wants to calculate distances between points,
for example, but they are perfectly adequate for establishing the
necessary correspondence between pairs of numbers and points on
the plane.

Another important difference between Apollonius’s use of a
coordinate system and our modern approach is that Apollonius
established the conic section first and constructed the coordinate
system later—that is, if he constructed one at all. Today, of course,
we often begin with a coordinate system and then graph the curve
of interest—conic section or otherwise—onto the preassigned
coordinate system. (We do this so often that many of us never
learn another way of representing curves, but there are other ways.
Coordinate systems are tremendously important, but they are not
the only technique available.)

Despite the differences between Apollonius’s use of coordinates
and our more modern approaches, Apollonius’s insights into the
use of coordinates were very penetrating. He recognized some-
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thing of their importance, and he evidently understood how to
change from one coordinate system to another. Changing from
one system to another is important because it is always the curve
or surface under study, not the coordinate system, in which the
mathematician has an interest. The coordinate system is just a tool
to facilitate that study. There is no one “right” coordinate system;
in fact, there is a lot of arbitrariness in how one chooses a coordi-
nate system. Furthermore, the answers that a mathematician
obtains through the use of a coordinate system are expressed in
terms of a particular system of coordinates.

Two mathematicians studying the same object may choose dif-
ferent coordinate systems, and so their final results may well look
different. Are these differences important or are they just artifacts
of the coordinate systems that the mathematicians chose? To
answer this question it is necessary to develop a procedure to
switch from one coordinate system to another. Apollonius knew
how to do this. In this sense, too, he was very modern. Despite all
of his creativity and mathematical ingenuity, however, Apollonius’s
insights into the value of coordinate systems had little effect on
those who followed him.

One reason that Apollonius’s insights into coordinate systems
did not have more impact on the development of mathematics was
that the Greeks had little interest in algebra. The Greek mathe-
matical tradition continued for about eight centuries, and for most
of that time they studied no algebra. Diophantus was the excep-
tion, but he lived toward the end of the age of Greek mathemat-
ics. In any case, the very concise, abstract language of algebra was
unknown to any ancient Greek mathematician. Throughout the
800 years that the Greeks studied geometry, they communicated
their ideas through diagrams and long, often complicated prose.
The curves that they did study were described in this very cum-
bersome way; probably their cumbersomeness helps to account for
the fact that they studied very few curves. In fact all told for 800
years the Greeks restricted their research to about a dozen or so
curves. They did not need a general technique for the description
of curves because they confined their attention to a small number
of special cases.
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All of this had changed by the beginning of the 17th century. By
then many of the most important mathematical works of ancient
Greece had been rediscovered. The beautiful but very taxing dia-
grams that Apollonius and others had used to describe their
insights had become well known to many European mathemati-
cians. Algebra had flourished in the interim, and the innovations
of François Viète and others had prepared the ground for a
hybridization of algebraic and geometric ideas and techniques. To
be sure Viète’s algebraic language was not the one we use today,
but its usefulness was already apparent. The great innovation was
to draw together what had been two very separate disciplines,
algebra and geometry, and to use ideas in each to solve problems
in the other. The opportunity to do this was seized independently
and almost simultaneously by two mathematicians, René
Descartes and Pierre de Fermat.

René Descartes
The French mathematician, scientist, and philosopher René
Descartes (1596–1650) was one of the more colorful characters in
the history of mathematics.
Although we will concentrate
on his ideas about mathemat-
ics, his contributions to sever-
al branches of science are just
as important as his mathemat-
ical innovations, and today he
is perhaps best remembered as
a philosopher.

Descartes was born into
comfortable surroundings.
Although his mother died
when he was an infant, his
father, a lawyer, ensured that
Descartes received an excel-
lent education. As a youth
Descartes displayed a quick
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intellect, and he was described by those who knew him at the time
as a boy with an endless series of questions. He attended the Royal
College at La Flèche and the University of Poitiers, but the more
education he received, the less pleasure he seemed to derive from
it. Given his academic record this is a little surprising. He was a
talented writer who demonstrated a real gift for learning lan-
guages. He also displayed an early interest in science and math.
The Royal College, where he received his early education, accom-
modated his idiosyncrasies: The rector at the school allowed
Descartes to spend his mornings in bed. Descartes enjoyed lying
in bed thinking, and he apparently maintained this habit for most
of his life. Nevertheless by the time he graduated from college he
was confused and disappointed. He felt that he had learned little
of which he could be sure. It was a deficiency that he spent a life-
time correcting.

After college Descartes wandered across Europe for a number of
years. On occasion he enlisted in an army. This was not an
uncommon way for a young gentleman to pass the time. He
claimed that as a young man he enjoyed war, though there are con-
flicting opinions about how much time he spent fighting and how
much time he spent “lying in” each morning. (Ideas about military
discipline have changed in the intervening centuries.) In addition
to his military adventures, Descartes took the time to meet intel-
lectuals and to exchange ideas. This went on for about a decade.
Eventually, however, he settled in Holland, where he remained for
almost two decades, writing and thinking.

Holland was a good place for Descartes. His ideas were new and
radical, and like most radical ideas, good and bad, Descartes’s ideas
were not especially popular. In a less tolerant country, he would
have been in great danger, but because he was under the protec-
tion of the Dutch leader, the prince of Orange, he was safe from
physical harm. Though he was not physically attacked for his
ideas, there was a period when his books were banned.

During his stay in Holland Descartes applied himself to explor-
ing and describing his ideas in mathematics, science, and philoso-
phy. In mathematics his major discoveries can be found in the
book Discours de la méthode (Discourse on method), especially in an
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appendix to this work that described his ideas on geometry. It is in
the Discours that Descartes makes the necessary connections
between geometry and algebra that resulted in a new branch of
mathematics. It is also in this book that he developed most of the
algebraic symbolism that we use today. With very few exceptions,
Descartes’s algebra resembles our algebra. (The reason is that our
algebra is modeled on Descartes’s.) Most modern readers can
understand Descartes’s own equations without difficulty.

One of Descartes’s simpler and yet very important contributions
was to reinterpret ideas that were already known. Since the days of
the ancient Greeks, an unknown was associated with a line seg-
ment. If we call the unknown x, the product of x with itself was
interpreted as a square. This is why we call the symbol x2 “x
squared.” This geometric interpretation had been a great concep-
tual aid to the Greeks, but over the intervening centuries it had
become a barrier to progress. The difficulty was not with x2 or
even x × x × x, written x3 and called “x cubed.” The symbol x3 was
interpreted as a three-dimensional cube. The problem with this
geometric interpretation was that it required one to imagine a
four-dimensional “cube” for the product of x with itself four times,
a five-dimensional cube for the product of x with itself five times,
and so forth. This impeded understanding. The great mathemati-
cian Omar Khayyám, for example, was unable to assign a meaning
to a polynomial of degree 4, because he was not able to see past
this type of geometric interpretation of the symbol x4.

Descartes still imagined the variable x as representing a line seg-
ment of indeterminate length. His innovation was the way he
imagined higher powers of x and, more generally, the geometric
interpretation he gave products. Descartes, for example, simply
imagined x, x2, x3, x4, and so forth, as representing a line segment,
and products of two different variables, x and y, as representing the
length of a third line segment of length xy instead of a rectangle of
area xy as the Greeks and their successors had imagined. To make
the idea palatable, he described it geometrically (see the sidebar
Descartes on Multiplication).

Descartes’s contributions to modern analytic geometry are
extremely important, but his understanding of the subject was
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still profoundly different from ours. We acknowledge his contri-
bution by calling the most common of all coordinate systems in
use today the Cartesian coordinate system, but Descartes made
little use of Cartesian coordinates. To be sure, he recognized the
value of coordinates as a tool in bridging the subjects of algebra
and geometry, but, as Apollonius did, he generally used oblique
coordinates. Furthermore because he questioned the reality of
negative numbers, he refrained from using negative coordinates.
As a consequence Descartes restricted himself to what we would
call the first quadrant, that part of the coordinate plane where
both coordinates are positive. He did, however, recognize and
exploit the connection between equations and geometric curves,
and this was extremely important.
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In more modern terminology,
the Greeks established a cor-
respondence between the
length of line segments and
what we would call real num-
bers. A number of magnitude x
would be represented by a
segment of length x. The prod-
uct of two numbers x and y
was represented as a rectan-
gle with the segment of length
x forming one side of the rec-
tangle and the segment of
length y forming the other. This
works well until one wants to consider products of numbers u, v, x, and y.
Most of us have a difficult time picturing a way of orienting line segments
of length u, v, x, and y so as to form a four-dimensional rectangular solid.

Descartes’s innovation was to use triangles rather than rectangles
and imagine all products as simply line segments of the appropriate
length. We use the accompanying diagram to paraphrase Descartes’s
ideas on multiplication. If we imagine

E
C

D A B

Descartes’s geometric interpretation
of the operation of multiplication.



In Descartes’s time conic sections—ellipses, parabolas, and
hyperbolas—were still generally described geometrically.
Descartes explored the connections between the geometric
description of conic sections and algebraic equations. He did this
by examining the connections between geometry and the algebra-
ic equation y2 = ay – bxy + cx – dx2 + e. (In this equation x and y are
the variables and a, b, c, d, and e are the coefficients.) Depending
on how one chooses the coefficients one can obtain an algebraic
description of any of the conic sections. For example, if a, b, and c
are chosen to be 0 and d and e are positive, then the equation
describes an ellipse. If, on the other hand, a, b, d, and e are taken
as 0 and c is not 0 then the graph is a parabola. Descartes went
much further in exploring the connections between algebra and
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� the distance from A to B as one unit long

� the distance from A to C as x units long and

� the distance from B to D as y units long

then we can construct a segment passing through D that is parallel to
the line AC. Segment DE is this parallel line segment. The triangles ABC
and DBE are similar, so the ratios of their corresponding sides are equal.
In symbols this is written as

AC/1 = DE/BD

or using x and y in place of AC and AD, respectively,

x/1 = DE/y

or, finally, solving for DE, we get

xy = DE

With this diagram Descartes provided a new and more productive 
geometric interpretation of arithmetic.

Descartes’s innovation freed mathematicians from the limiting ideas of
Greek and Islamic mathematicians about the meaning of multiplication
and other arithmetic operations. He also showed that the requirement of
homogeneity that had made using Viète’s algebra so awkward was
unnecessary.



geometry than any of his predecessors, and in doing so he demon-
strated how mathematically powerful these ideas are.

What, in retrospect, may have been Descartes’s most important
discoveries received much less attention from their discoverer 
than they deserved. Descartes recognized that when one equation
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A page from Descartes’s Discours showing how similar Descartes’s alge-
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contains two unknowns, which we call x and y, there is generally
more than one solution to the equation. In other words, given a
value for x, we can, under fairly general conditions, find a value for
y such that together the two numbers satisfy the one equation. The
set of all such solutions as x varies over some interval forms a curve.
These observations can be made mathematically precise, and the
precise expression of these ideas is often called the fundamental
principle of analytic geometry. Descartes knew the fundamental
principle of analytic geometry, but he seems to have considered it
less important than some of the other ideas contained in his work.

The fundamental principle of analytic geometry is important
because it freed mathematicians from the paucity of curves that
had been familiar to the ancient Greeks. Here was a method for
generating infinitely many new curves: Simply write one equation
in two variables; the result, subject to a few not-very-demanding
conditions, is another new curve. Descartes went even further. A
single equation that involves exactly three variables—x, y, and z,
for example—in general, describes a surface. This is called the
fundamental principle of solid analytic geometry, and it, too, was
known to Descartes. Today this is recognized as a very important
idea, but its importance does not seem to have been recognized by
Descartes. He gives a clear statement of the principle but does not
follow it with either examples or further discussion. He under-
stood the idea, but he did not use it.

The principles of analytic and solid geometry, so clearly enunci-
ated by Descartes, were important because they pointed to a way
of greatly enriching the vocabulary of mathematics. Conic sec-
tions and a handful of other curves, as well as cylinders, spheres,
and some other surfaces, had been studied intensively for millen-
nia, in part because few other curves and solids had convenient
mathematical descriptions. Descartes’s insights had made these
restrictions a thing of the past. He was aware of this; it had been
one of his goals: He wrote that he wanted to free mathematics
from the difficult diagrams of the ancients, and in this regard 
he was successful. His algebra and the fundamental principles 
of analytic geometry and solid geometry were his most insightful
discoveries in this sense.
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Descartes’s discoveries in science, mathematics, and philosophy
eventually attracted the attention of the queen of Sweden. Queen
Christina invited him to become a member of her court, and
Descartes accepted. Descartes was not a man who liked the cold.
Nor did he like to get up early in the morning. (He had main-
tained his habit of spending his mornings in bed throughout his
life.) On his arrival in September Descartes must have been dis-
mayed to learn that Queen Christina, on the other hand, liked to
receive her instruction from her new philosopher at five in the
morning. Descartes died in the cold of a Swedish December, less
than five months after arriving at the queen’s court.

Pierre de Fermat
The French mathematician and lawyer Pierre de Fermat
(1601–65) also discovered analytic geometry, and he did so inde-
pendently of René Descartes. Little is known of Fermat’s early life.
He was educated as a lawyer, and it was in the field of law that he
spent his working life. He worked in the local parliament in
Toulouse, France, and later he worked in the criminal court. We
also know that he had an unusual facility with languages. He spoke
several languages and enjoyed reading classical literature. He is
best remembered for his contributions to mathematics, which
were profound.

Today much of what we know of Fermat is derived from the
numerous letters that he wrote. He maintained an active corre-
spondence with many of the leading mathematicians of his time.
His letters show him to be humble, polite, and extremely curious.
He made important contributions to the development of proba-
bility theory, the theory of numbers, and some aspects of calculus,
as well as analytic geometry. Mathematics was, however, only one
of his hobbies.

One activity that Fermat shared with many of the mathemati-
cians of his time was the “reconstruction” of lost ancient texts. By
the early 17th century some of the works of the ancient Greek
mathematicians had again become available. These were, for the
most part, the same texts with which we are familiar today. Most
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of the ancient texts, however, had been lost in the intervening cen-
turies. Although the works had been lost, they had not been for-
gotten. The lost works were often known through commentaries
written by other ancient mathematicians. The ancient commen-
taries described the work of other mathematicians, but often they
were much more than simple descriptions. Sometimes a commen-
tary contained corrections, suggestions, or alternative proofs of
known results; on occasion, the commentaries even contained
entirely new theorems that extended those appearing in the work
that was the subject of the commentary. Other times, however, a
commentary simply mentioned the title of a work in passing. In
any case, much of what we know about Greek mathematics and
Greek mathematicians we know through the commentaries. It had
become fashionable among mathematicians of the 17th century to
try to reconstruct lost works on the basis of information gained
from these secondary sources. Fermat attempted to reconstruct
the book Plane Loci by Apollonius on the basis of information con-
tained in a commentary written by the Greek geometer Pappus of
Alexandria.

Some of Apollonius’s most important work, once thought lost,
was rediscovered in the 20th century in an ancient Arabic transla-
tion, but the book Plane Loci seems to have been permanently lost.
We will never know how close Fermat was in his reconstruction to
the original, but the effort was not wasted. While attempting the
reconstruction Fermat discovered the fundamental principle of
analytic geometry: Under very general conditions, a single equa-
tion in two variables describes a curve in the plane.

As Descartes did, Fermat worked hard to establish algebraic
descriptions of conic sections. Hyperbolas, ellipses, and parabolas
were, after all, the classic curves of antiquity, and any attempt to
express geometry in the language of algebra had at least to take
these curves into account in order to be successful. Fermat was
extremely thorough in his analysis. Again as Descartes did, he ana-
lyzed a very general second-degree equation in the variables x and
y. Fermat’s method was to manipulate the equation until he had
reduced it to one of several standard equations. Each standard
equation represented a class of equations that were similar in the
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sense that each equation in the class could be transformed into
another equation via one or more elementary operations. (The
standard equation that he obtained depended on the initial values
of the coefficients.) Finally, Fermat showed that each of these stan-
dard equations described the intersection of a plane with
Apollonius’s cone. He had found a correspondence between a class
of curves and a class of equations. This analysis was an important
illustration of the utility of the new methods.

As Descartes did, Fermat used coordinates as a way of bridging
the separate disciplines of algebra and geometry. Fermat, too, was
comfortable using oblique coordinates as well as what we now call
Cartesian coordinates.

As might be expected, Fermat and Descartes were each well
aware of the work of the other. They even corresponded with each
other through the French priest and mathematician Marin
Mersenne (1588–1648). Mersenne was a friend of both men and a
talented mathematician in his own right. In addition he opened his
home to weekly meetings of mathematicians in the Paris area and
worked hard to spread the news about discoveries in mathematics
and the sciences throughout Europe.

Despite the many similarities in their work on analytic geome-
try and the fact that they both made their discoveries known to
Mersenne, Descartes had much more influence on the develop-
ment of the subject than did Fermat. One reason was that Fermat
did not publish very much. In fact, Fermat only published a single
paper during his lifetime. It was only later that his writings were
collected and made generally available. Moreover, unlike
Descartes, who had a flair for good algebraic notation, Fermat
used the older, more awkward notation of François Viète.

Surprisingly despite his importance to the subject, Fermat’s
principal mathematical interest was number theory, not analytic
geometry. Although he tried to interest others in problems in the
theory of numbers, Fermat was largely unsuccessful. For the most
part, he worked on his favorite subject alone. His isolation, how-
ever, seemed to pose no barrier to creative thinking. He discov-
ered a number of important results as well as a famous conjecture
called Fermat’s last theorem (see the sidebar).
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FERMAT’S LAST THEOREM

One of Fermat’s most famous
insights is his so-called last
theorem. This problem, which
was finally solved late in the
20th century, is one of the
most famous problems in the
history of mathematics. It can,
however, be understood as a
generalization of a much older
problem, the problem of find-
ing Pythagorean triples. (The
clay tablet called Plimpton
322—a photograph of which
appears in chapter 1—contains
a list of Pythagorean triples in
cuneiform.) A Pythagorean
triple is a set of three natural
numbers with the property that
if each number of the triple is
squared then the sum of the
two smaller squares equals
the largest square. For example, the set (3, 4, 5) is a Pythagorean triple
because, first, each number in the triple is a natural number, and, second,
the three numbers satisfy the equation x2 + y2 = z2, where we can let x, y,
and z represent 3, 4, and 5, respectively. Another way of understanding
the same problem is that we have represented the number 25, which is
a perfect square, as the sum of two smaller perfect squares, 9 and 16.
There are infinitely many Pythagorean triples, a fact of which the
Mesopotamians seemed fully aware. (The Mesopotamians’ work on
Pythagorean triples is discussed in chapter 1.)

The generalization of the Pythagorean theorem of interest to Fermat
involved writing natural numbers greater than 2 in place of the exponent
in the equation x2 + y2 = z2. The resulting equation is xn + yn = zn, where
n belongs to the set (3, 4, 5, . . .). When n is equal to 3 we can interpret
the problem geometrically: We are searching for three cubes, each of
which has an edge that is an integral number of units long, such that the
volume of the largest cube equals the sum of the two smaller volumes.
When n is greater than 3 we can describe the problem in terms of hyper-

The sum of the areas of the two
smaller squares equals the area of the
largest square. The lengths of the
sides of the triangle on which the
squares are constructed are in the
ratio 3:4:5.

(continues)



The New Approach
Descartes and Fermat developed a new symbolic language that
enabled them to bridge the gap that had separated algebra from
geometry. This language contributed to progress in both fields.
They had learned to connect the formerly separate disciplines of
algebra and geometry: Algebraic operations represented the
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FERMAT’S LAST THEOREM
(continued)

cubes, but in higher dimensions there is no easy-to-visualize generaliza-
tion of the two- and three-dimensional interpretations described earlier.

Fermat’s goal, then, was to find a triplet of natural numbers that 
satisfies any one of the following equations x3 + y3 = z3, x4 + y4 = z4, 
x5 + y5 = z5, . . . He was unable to find a single solution for any expo-
nent larger than 2. In fact, he wrote that he had found a wonderful
proof that there were no solutions for any n larger than 2, but the 
margin of the book in which he was writing was too small to contain
the proof of this discovery. No trace of Fermat’s proof has ever been
discovered, but his cryptic note inspired generations of mathemati-
cians, amateur and professional, to try to develop their own proofs.
Before World War I a large monetary prize was offered, and this
inspired many more faulty proofs.

Throughout most of the 20th century mathematicians proved that solu-
tions did not exist for various special cases. For example, it was eventu-
ally proved that if a solution did exist for a particular value of n, then n had
to be larger than 25,000. Most integers, however, are larger than 25,000,
so this type of result hardly scratches the surface. In the late 20th centu-
ry, Fermat’s theorem was finally proved by using mathematics that would
have been entirely unfamiliar to Fermat. The British-born mathematician
Andrew Wiles devised the proof, which is about 150 pages long.

Wiles and many others do not believe that Fermat actually had a proof.
They think that the proof that Fermat thought he had discovered actually
had an error in it. This kind of thing is not uncommon in a difficult logical
argument; Wiles himself initially published an incorrect proof of Fermat’s
theorem. Nevertheless, unlike most of his successors, Fermat was an
epoch-making mathematician. As a consequence it would be wrong to dis-
count completely the possibility that he had found a valid proof using only
mathematics from the 17th century, but at present it does not seem likely.



manipulation of geometric objects, and geometric manipulations
could now be expressed in a compact, algebraic form. Descartes
and Fermat had made an important conceptual breakthrough, and
unlike many other new mathematical ideas, these ideas were
immediately recognized by their contemporaries as valuable.

Mathematicians interested in geometry exploited the fundamen-
tal principles of analytic and solid geometry to develop new ways
of describing old curves and surfaces. They also developed entire-
ly new curves and surfaces. The exploration of geometry from an
algebraic point of view and the application of geometry to algebra
challenged many fine mathematicians. Descartes and Fermat had
opened up a new mathematical landscape, and for several genera-
tions thereafter, mathematicians worked to extend the ideas and
techniques that Descartes and Fermat had pioneered. It would be
a long time before progress in analytic geometry began to slow.

The geometric interpretation of algebraic quantities also influ-
enced other branches of mathematics and science. Perhaps most
importantly, the language of analytic geometry, somewhat modi-
fied and augmented, became the language of analysis, that branch
of mathematics that arose out of calculus. Calculus was discovered
twice, once by the British physicist and mathematician Sir Isaac
Newton (1643–1727), and again independently by the German
philosopher, mathematician, and diplomat Gottfried Wilhelm
Leibniz (1646–1716).

The new analysis enabled the user to solve problems in geome-
try and physics that had previously been too difficult. In fact, early
in the development of analysis certain problems in geometry that
Descartes himself had believed to be unsolvable were solved. The
techniques the analysts used often required a great deal of analyt-
ic geometry. Newton, for example, invented and employed a num-
ber of coordinate systems to facilitate his study of both physics and
geometry. Some of these coordinate systems have proved to be
more important than others, but in every case they were exten-
sions of the concepts of Descartes and Fermat: Each coordinate
system established a correspondence between ordered sets of real
numbers and geometric points. Each coordinate system served as
a bridge between the magnitudes of geometry—those continually
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varying quantities, such as length, area, and volume—and the
numbers and symbols of algebra.

Newton generally interpreted the variables that arose in his
studies as representing geometric magnitudes. In his studies of
physics, however, Newton sometimes interpreted variables as
magnitudes of another sort: forces, accelerations, and velocities.
We take symbolic notation for granted today, but the symbolic
language developed by some of these mathematicians contributed
substantially to progress in the mathematical and physical sci-
ences. Newton’s notation was, however, only a modest extension
of the notation used in the analytic geometry of his time. Newton
absorbed the ideas of Descartes and Fermat and used these ideas
throughout his work. He managed to develop a new branch of
mathematics that used their notation, but he did not contribute
much new notation himself.

Leibniz, who was much more gifted in languages than was
Newton, greatly extended the notation of Descartes and Fermat to
create a highly expressive symbolic language that was ideally suit-
ed to the new mathematics. He used this notation to express the
ideas of analysis in a much more sophisticated way than that of
Newton. He, too, generally interpreted the symbols that arose in
his study of calculus as geometric or physical magnitudes. It was
one of Leibniz’s great accomplishments to extend the language of
analytic geometry until it fit the problems in which he had an
interest.

The role of good notation is sometimes expressed by saying that
with good notation the pencil becomes as smart as the holder. To
see the difference that good algebraic notation makes, knowing
something about the early history of calculus is helpful. British
mathematicians were more heavily influenced by Newton than
they were by Leibniz. They considered it a matter of national
honor to use the notation of their countryman. Unfortunately for
them, Newton’s notation was not expressive enough to be espe-
cially useful. In continental Europe, however, mathematicians
wholeheartedly adopted Leibniz’s notation, which was far superi-
or to that of Newton. Leibniz devised his symbols to embody sev-
eral basic concepts of calculus in order to communicate his ideas
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more effectively. This system facilitated discovery both for him
and for those who followed. As a consequence calculus initially
evolved much more slowly on the British Isles than it did on the
Continent.

Today Leibniz’s notation is still used in analysis, and the inter-
pretation of algebraic symbols as geometric magnitudes or as
physical magnitudes is still one of the basic conceptual approach-
es of the geometer and the analyst. So thoroughly have algebraic
notation and language pervaded geometry and analysis that
whether mathematicians who specialize in these subjects could
express their discoveries without the use of them is doubtful. But
this was just the beginning. Algebra changed radically more than
once in the years following the revolution of Descartes and
Fermat.
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6
the search for new

structures

Early in the 19th century the nature of algebra changed again.
Extraordinary new ideas were introduced. They changed the
nature of every branch of mathematics that depends on algebra—
and today every branch of mathematics depends on algebra. They
caused mathematicians to perceive their subject in new ways, and
this new perspective enabled them to imagine and solve entirely
new kinds of problems.

When the new algebra was first introduced, its importance was
not generally recognized. Some of the first groundbreaking
papers were dismissed because the reviewers, who were among
the best mathematicians of their day, did not understand the
ideas involved. To those responsible for the innovations, howev-
er, the power of the new ideas and techniques was apparent.
Some of the first applications of the new algebra involved solv-
ing some of the oldest, most intractable problems in the history
of mathematics. For example, the new algebra enabled mathe-
maticians to prove that the three classic problems of antiquity,
the squaring of the circle, the trisection of the angle, and 
the doubling of the cube (all performed with a straightedge 
and compass) are unsolvable. In addition, they showed that the
problem of finding an algorithm for factoring any fifth-degree
polynomial—an algorithm similar in spirit to the one that
Tartaglia discovered in the 16th century for factoring a third-
degree polynomial—could not be solved because the algorithm
does not exist.



These very important dis-
coveries were made under
very difficult conditions. We
often forget how important
disease and violence were in
shaping much of the history
of Europe. Their role is
revealed in their effects on
the lives of these highly cre-
ative mathematicians. These
young people lived short,
hard, often miserable lives.
They faced one difficulty
after another as best they
could, and they never
stopped creating mathemat-
ics. On the night before he
expected to die, the central
figure in this mathematical
drama, a young mathemati-
cian named Évariste Galois,
spent his time hurriedly writ-
ing down as much of what he
had learned about mathemat-
ics as possible so that his
insights, which were wholly
unrecognized during his brief life, would not be lost.

Broadly speaking the mathematical revolution that occurred in
algebra early in the 19th century was a move away from computa-
tion and toward the identification and exploitation of the structur-
al underpinnings of mathematics. Underlying any mathematical
system is a kind of logical structure. Often the structure is not
immediately apparent, but research into these structures has gen-
erally proved to be the most direct way of understanding the
mathematical system itself. About 200 years ago mathematicians
began to identify and use some of these structures, and they have
been busy extending their insights ever since.
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Since the work of Niels Abel and
Évariste Galois, many algebraists
have been occupied with the discovery
and exploitation of mathematical
structures of ever-increasing 
sophistication.  (Library of Congress,
Prints and Photographs Division)



Niels Henrik Abel
The Norwegian mathematician Niels Henrik Abel (1802–29) was
one of the first and most important of the new mathematicians.
As many 17th-, 18th-, and 19th-century mathematicians were, he
was the son of a minister. The elder Abel was also a political
activist, and he tutored Niels at home until the boy was 13 years
old. Niels Abel attended secondary school in Christiania, now
called Oslo. While there, he had the good fortune to have a math-
ematics teacher named Bernt Holmboe, who recognized his tal-
ent and worked with him to develop it. Under Holmboe’s
guidance Abel studied the works of earlier generations of mathe-
maticians, such as Leonhard Euler, as well as the mathematical
discoveries of his contemporaries, such as Carl Friedrich Gauss.
In addition to exposing Abel to some of the most important works
in mathematics, Holmboe also suggested original problems for
Abel to solve. Abel’s ability to do mathematics even at this young
age was stunning.

Abel’s father died shortly before his son was to enroll in univer-
sity. The family, not rich to begin with, was left impoverished.
Once again, Holmboe helped. He contributed money and helped
raise additional funds to pay for Abel’s education at the University
of Christiania. Still under the tutelage of Holmboe, Abel began to
do research in advanced mathematics. During his last year at the
university, Abel searched for an algorithm that would enable him
to solve all algebraic equations of fifth degree. (Recall that an alge-
braic equation is any equation of the form anx n + an–1x n–1 + . . . + a1x
+ a0 = 0, where the aj are rational numbers, called coefficients, and
the x j is the variable x raised to the jth power. The degree of the
equation is defined as the highest exponent appearing in the equa-
tion. A second-degree, or quadratic, equation, for example, is any
equation of the form a2x2 + a1x + a0 = 0.) Abel thought that he had
found a general solution for all such equations, but he was quick-
ly corrected. Far from being discouraged, he continued to study
algebraic equations of degree greater than 4.

After graduation Abel wanted to meet and trade ideas with the
best mathematicians in Europe, but there were two problems to
overcome. First, he did not speak their languages; second, he had
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no money. With the help of a
small grant he undertook the
study of French and German
so that he could become flu-
ent enough to engage these
mathematicians in conversa-
tion. During this time he also
proved that there was no gen-
eral algebraic formula for
solving equations of the fifth
degree.

Recall that centuries earlier
Niccolò Fontana, also known
as Tartaglia, had found an
algorithm that enabled him to
express solutions of any third-
degree algebraic equation as a
function of the coefficients
appearing in the equations.
Shortly thereafter Lodovico
Ferrari had discovered an
algorithm that enabled him to
express solutions of any
fourth-degree equation as functions of the coefficients. Similar
methods for identifying the solutions to all second-degree equa-
tions had been discovered even earlier.

What had never been discovered—despite much hard work by
many mathematicians—were similar methods that could enable
one to express the roots of arbitrary equations of degree higher
than 4 as functions of the coefficients. Abel showed that, at least
in the case of fifth-degree equations, the long-sought-after for-
mula did not exist. This, he believed, was a demonstration of his
talent that would surely attract the attention of the mathemati-
cians he wanted to meet. In 1824 he had the result published in
pamphlet form at his own expense, and in 1825 he left Norway
with a small sum given him by the Norwegian government to
help him in his studies.
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Niels Henrik Abel discovered that the
search for an algorithm to solve an
arbitrary fifth-degree equation was
futile; no such algorithm exists.
(Library of Congress, Prints and
Photographs Division)



He was wrong about the pamphlet. He sent his pamphlet to Carl
Friedrich Gauss, but Gauss showed no interest. This is puzzling
since Abel had just solved one of the most intractable problems in
mathematics. Although Gauss was no help, during the winter of
1825–26, while in Berlin, Abel made the acquaintance of the
German mathematician August Leopold Crelle, the publisher of a
mathematics journal. Abel and Crelle became friends, and subse-
quently Crelle published a number of Abel’s papers on mathemat-
ics, including his work on the insolubility of fifth-degree
equations. Abel also traveled to Paris and submitted a paper to the
Academy of Sciences. He hoped that this would gain him the
recognition that he believed he deserved, but again nothing hap-
pened. Throughout much of his travel Abel had found it necessary
to borrow money to survive. He eventually found himself deeply
in debt, and then he was diagnosed with tuberculosis.

Abel returned to Norway in 1827. Still heavily in debt and with-
out a steady source of income, he began to work as a tutor.
Meanwhile news of his discoveries in algebra and other areas of
mathematics had spread throughout the major centers of mathe-
matics in Germany and France. Several mathematicians, including
Crelle, sought a teaching position for him in the hope of provid-
ing Abel with a better environment to study and a more comfort-
able lifestyle. Meanwhile Abel continued to study mathematics in
the relative isolation of his home in Norway. He died before he
was offered the job that he so much wanted.

Abel’s discovery that not all algebraic equations of degree 5 are
solvable is quite technical. It is easier to get a feeling for the new alge-
bra that was developed at this time if we first familiarize ourselves
with the research of the main character in this part of the history of
algebra, the French mathematician Évariste Galois (1811–32).

Évariste Galois
Today Galois is described as a central figure in the history of
mathematics, but during his life he had little contact with other
mathematicians. This, however, was not for lack of trying. Galois
very much wanted to be noticed.
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Évariste Galois was born into a well-to-do family. Nicolas-
Gabriel Galois, his father, was active in politics; Adelaide-Marie
Demante, his mother, taught Galois at home until he was 12 years
old. Because Évariste Galois was dead before his 21st birthday—
and because the last several years of his life were extremely turbu-
lent—it is safe to say that he received much of his formal education
from his mother. In 1823 Galois enrolled in the Collège Royal de
Louis-le-Grand. Initially he gave no evidence of a particular talent
for mathematics. Soon, however, he began to do advanced work in
mathematics with little apparent preparation. By the time he was
16 he had begun to examine the problem of finding roots to alge-
braic equations. This problem had already been solved by Abel,
but Galois was not aware of this at the time.

Galois was off to a good start, but his luck soon took a turn for
the worse. He submitted two formal papers describing his discov-
eries to the Academy of Sciences in Paris. These papers were sent
to the French mathematician Augustin-Louis Cauchy (1789–1857)
for review. Cauchy was one of the most prominent mathematicians
of his era. He certainly had the imagination and the mathematical
skill required to understand Galois’s ideas, and a positive review or
recommendation from Cauchy would have meant a lot to Galois.
Cauchy lost both papers. This occurred in 1829, the same year that
Galois’s father committed suicide. Eight months later, in 1830,
Galois tried again. He submitted another paper on the solution of
algebraic equations to the Academy of Sciences. This time the
paper was forwarded to the secretary of the academy, the French
mathematician and Egyptologist Joseph Fourier (1768–1830).
Fourier died before any action was taken on Galois’s paper. The
paper that was in Fourier’s possession was lost as well. Meanwhile
Galois had twice applied for admission to the École Polytechnique,
which had the best department of mathematics in France. It was
certainly the school to attend if one wanted to work as a mathe-
matician. Both times Galois failed to gain admission.

Galois shifted his emphasis and enrolled in the École Normale
Supérieure. He hoped to become a teacher of mathematics, but as
his father and many of his fellow citizens had, Galois became
involved in politics. Politics was important to Galois, and he was
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not shy about making his ideas known. At the time this activity
involved considerable personal risk.

France had been embroiled in political instability and violence
since before Galois was even born: The French Revolution began
in 1789. It was followed by a period of political terror, during
which thousands of people were executed. The military leader and
later emperor Napoléon Bonaparte eventually seized power and
led French forces on several ultimately unsuccessful campaigns of
conquest. The results were the defeat of the French military and
Napoléon’s imprisonment in 1815. Napoléon’s adventurism did
nothing to resolve the conflict between those who favored monar-
chy and those who favored democracy. Galois was one of the lat-
ter. In 1830 the reigning French monarch, Charles X, was exiled,
but he was replaced with still another monarch. The republicans—
Galois among them—were disappointed and angry. Galois wrote
an article expressing his ideas and was expelled from the École
Normale Supérieure. He continued his activism. He was arrested
twice for his views. The second arrest resulted in a six-month jail
sentence.

Despite these difficulties Galois did not stop learning about
mathematics. In 1831 he tried again. He rewrote his paper and
resubmitted it to the academy. This time the paper fell into the
hands of the French mathematician Siméon-Denis Poisson
(1781–1840). In the history of mathematics, Poisson, like Cauchy
and Fourier, is an important figure, but with respect to his han-
dling of Galois’s paper, the best that can be said is that he did not
lose it. Poisson’s review of Galois’s paper was brief and to the
point: He (Poisson) did not understand it. Because he did not
understand it, he could not recommend it for publication. He sug-
gested that the paper be expanded and clarified.

This was the last opportunity Galois had to see his ideas in print.
In 1832 at the age of 20 years and seven months, Galois was chal-
lenged to a duel. The circumstances of the duel are not entirely
clear. Romance and politics are two common, and presumably
mutually exclusive, explanations. In any case Galois, although he
was sure he would not survive the duel, accepted the challenge. 
He wrote down his ideas about algebra in a letter to a friend. The
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contents of the letter were published four months after Galois
died in the duel. This was the first publication in the branch of
mathematics today known as Galois theory.

Galois Theory and the Doubling of the Cube
To convey some idea of how Galois theory led to a resolution of
the three classical unsolved problems in Greek geometry we
examine the problem of doubling the cube. Originally the prob-
lem was stated as follows: Given a cube, find the dimensions of a
second cube whose volume is precisely twice as large as the vol-
ume of the first. If we suppose that the length of an edge on the
first cube is one unit long, then the volume of the first cube is one
cubic unit: Volume = length × width × height. The unit might be
a meter, an inch, or a mile; these details have no effect on the
problem. If the volume of the original cube is one cubic unit then
the problem reduces to finding the dimensions of a cube whose
volume is two cubic units. If we suppose that the letter x repre-
sents the length of one edge of the larger cube, then the volume
of this new cube is x3, where x satisfies the equation x3 = 2. In other
words, x = 3√2, where the
notation 3√2 (called the cube
root of 2) represents the num-
ber that, when cubed, equals
2. The reason that the prob-
lem was so difficult is that it
called for the construction of
a segment of length 3√2 unit
using nothing but a straightedge
and compass. It turns out that
this is impossible.

To show that it is not possi-
ble to construct a segment of
length 3√2 we need two ideas.
The first idea is the geometric
notion of a constructible
number. The second is the
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Rational numbers
-1/2, 2/3, 7/5, . . .

Irrational numbers
π, e

Natural Constructable
numbers
1/10 . . . √2

The natural numbers are a subset 
of the rational numbers. The set of
irrational numbers shares no elements
with the set of rational numbers.
Some constructible numbers are
rational and others are irrational.
Together the rational numbers and
the irrational numbers compose the
set of real numbers.



algebraic notion of a field. We begin with an explanation of a con-
structible number.

We say that a number x is constructible if given a line segment
one unit long, we can construct a line segment x units long using
only a straightedge and compass. (From now on when we use the
word construct, we mean “construct using only a straightedge and
compass.”) A straightedge and compass are very simple imple-
ments. There is not much that can be done with them. We can,
for example, use the compass to measure the distance between
two points by placing the point of the compass on one geomet-
ric point and adjusting the compass so that the other point of the
compass is on the second geometric point. This creates a
“record” of the distance between the points. Also if we are given
a line, we can use the compass to construct a second line per-
pendicular to the first. Besides these there are a few other basic
techniques with which every geometry student is familiar. All
other geometric constructions are some combination of this
handful of basic techniques.

Some numbers are easy to construct. For example, given a seg-
ment one unit long, it is easy to construct a segment two units
long. One way to accomplish this is to extend the unit line seg-
ment, and then use the compass to measure off a second line seg-
ment that is one unit long and placed so that it is end to end with
the original unit segment. This construction proves that the num-
ber 2 is constructible. In a similar way, we can construct a segment
that is n units long where n is any natural number. Our first con-
clusion is that all natural numbers are constructible.

We can also use our straightedge and compass to represent the
addition, subtraction, multiplication, and division of natural
numbers. To add two natural numbers—which we call m and
n—we just construct the two corresponding line segments—one
of length m and one of length n—and place them end to end.
The result is a line segment of length m + n. In a similar way we
can represent the difference of the numbers n – m: To accom-
plish this we just measure “out” n units, and “back” m units. It
is also true, although we do not show it, that given any two
whole numbers m and n, we can construct a line segment of
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length mn and a line segment of length m/n, provided, of course,
that n is not 0. What this indicates is that every rational number
is constructible.

Some irrational numbers are also constructible. We can, for
example, use a straightedge and compass to construct a square
each of whose sides is one unit long. The diagonal of the square
is of length √2 units long, as an application of the Pythagorean
theorem demonstrates. This shows that √2 is also a con-
structible number. We can even construct more complicated-
looking numbers. For example, because √2 is constructible, we
can also construct a line segment of length 1 + √2. We can use
this segment to construct a square with sides of length 1 + √2.
The diagonal of this square is of length √3

—+ —2√2, as another
application of the Pythagorean theorem shows. This proves that
this more complicated-looking number is constructible as well.
These processes can be repeated as many times as desired. The
result can be some very complicated-looking numbers. The
question then is, Can 3√2 be constructed by some similar
sequence of steps?

If we can show that 3√2 is not constructible then we will have
demonstrated that it is impossible to double the cube by using a
straightedge and compass as our only tools. To do this we need the
algebraic concept of a field.

We define a field as any set of numbers that is closed under addi-
tion, subtraction, multiplication, and division. By closed we mean
that if we combine any two numbers in the set through the use of
one of the four arithmetic operations, the result is another num-
ber in the set. For example, the rational numbers form a field,
because no matter how we add, subtract, multiply, or divide any
pair of rational numbers, the result is always another rational
number (provided that we do not divide by 0). Similarly, the real
numbers form a field. It turns out, however, that there are many
fields that contain all the rational numbers but that do not contain
all of the real numbers. Although they are not as familiar as the
fields of rational and real numbers, these intermediary fields are
the ones that are important to proving the impossibility of dou-
bling the cube.
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DOUBLING THE CUBE WITH A STRAIGHTEDGE
AND COMPASS IS IMPOSSIBLE

Using the information in the
text, we can show how the
“new algebra” can be used to
complete the proof that it is
impossible to construct 3√2
with a straightedge and com-
pass. To appreciate the proof
one needs to keep in mind
two facts:

1. The number 3√2 is 
irrational.

2. The graph of the 
polynomial y = x3 – 2
crosses the x-axis only
once.

Here is the proof: Suppose
that we adjoin √k1, √k2, √k3, . . .,
√kn to the field of rational num-
bers, one after another, in the
same way that √2 and then
√a
——

+
—
b√—2 are adjoined to the rational numbers in the main body of the text.

Our hypothesis is that if we adjoin enough of these numbers to the field of
rational numbers, we eventually create a field that contains 3√2. (We can
use this hypothesis to create two contradictions that prove that doubling
the cube with a straightedge and compass is impossible.)

We begin our work with the rational numbers, which we represent
with the letter F0. By fact 1, 3√2 does not belong to F0 so we have to
adjoin at least one number to F0 in order that our new field will contain
3√2. We adjoin √k1 to the rational numbers (where k1 belongs to F0 but
√k1 does not) to get a new field that we call F1. (Every number in F1 is
of the form a + b√k1, where a, b, and k1 are chosen from F0, the field of
rational numbers.) Next we choose k2 from F1 and then adjoin √k2 to F1

to create a new field, which we call F2. (The numbers in F2 are of the
form c + d√k2, where c and d represent numbers taken from F1.) We
continue the process until we reach Fn, which is obtained by adjoining

1 2 3-3 -2 -1
1

2

3

-3

-2-2

-1

-5

-4

The graph of the curve y = x3 – 2.
Notice that the graph crosses the 
x-axis only once.
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√kn to the field Fn–1. The elements in Fn are of the form p + q√kn, where
p, q, and kn belong to the field Fn–1. (The fields are like traditional Russian
matryoshka dolls, each one fitting inside a slightly larger one, beginning
with the smallest, the field of rational numbers, and ending with the
largest, Fn.) We assume that each time we adjoin some √kj it makes the
field to which we adjoin it bigger. In other words, we suppose that it is
never the case that √kj belongs to Fj–1, the field from which kj was drawn.
Otherwise every number of the form e + f√kj would be in Fj–1 and we
would not have made Fj–1 bigger by adjoining √kj to it. Finally we assume
that we stop as soon as we have a field that contains 3√2. This means
that Fn contains 3√2 but Fn–1 does not.

To prove that the cube cannot be doubled by using a straightedge and
compass, we work with the equation 3√2 = p + q√kn. This equation must
be true for some numbers p, q, and kn in the field Fn–1 because we have
assumed that 3√2 lies in Fn and every number in Fn can be written in this
form. We use this equation for 3√2 to obtain two contradictions. The
contradictions show that the hypothesis that 3√2 belongs to Fn is impos-
sible. Therefore, we have to conclude that the field Fn does not contain
3√2. Since every constructible number belongs to some field of the type
Fn, this will prove that 3√2 is not constructible and so the cube cannot
be doubled with a straightedge and compass. The computations go like
this: Cube both sides of the equation 3√2 = p + q√kn—that is, multiply
each side by itself three times—to get 2 = (p3 + 3q2kn) + (3p2q + b3kn)√kn.
Now consider (3p2q + b3kn), the coefficient of √kn. Contradiction 1: If
(3p2q + b3kn) is not equal to 0, then we can solve for √kn in terms of num-
bers that all belong to the field Fn–1. Since Fn–1 is a field we conclude
that √kn belongs to Fn–1 and our assumption that Fn is bigger than Fn–1

was in error. This is the first contradiction. Contradiction 2: If the num-
ber (3p2q + b3k) equals 0, then cube the new number p – q√kn to get (p3

+ 3q2k) – (3p2q + b3k)√kn. Since (3p2q + b3k) is 0 it must be the case
that p – q√kn is also a cube root of 2. [Because if (3p2q + b3k) is 0 then
both the cube of p – q√kn and the cube of p + q√kn are equal, and we
have already assumed that p + q√kn is the cube root of 2.] Therefore, the
graph of y = x3 – 2 must cross the x axis at p – q√kn and at p + q√kn.
This contradicts fact number 2.

The situation is hopeless. If we assume that (3p2q + b3k) is not 0 we
get a contradiction. If we assume that (3p2q + b3k) is 0 we get a con-
tradiction. This shows that our assumption that we could construct 3√2
was in error, and we have to conclude that 3√2 is not constructible with
a straightedge and compass. This is one of the more famous proofs in
the history of mathematics.



To see an example of one of these intermediary fields, consider
the set of all numbers of the form a + b√2, where a and b are cho-
sen from the set of rational numbers. No matter how we add, sub-
tract, multiply, or divide two numbers of the form a + b√2 the
result is always another number of the same form. This field is
called an extension of the rational numbers. We say that we have
adjoined √2 to the rational numbers to obtain this extension.
Every number in the field consisting of √2 adjoined to the ration-
al numbers, which we represent with the symbol Q(√2), is con-
structible. (Notice that when b = 0 the resulting number is
rational. This shows that the field of rational numbers is a subfield
of Q(√2).)

Having created the extension Q(√2) we can use it to make an
even larger field by adjoining the square root of some element of
Q(√2). The element we adjoin is of the form √—

a
—
+ b

—
√2. Every

number in this field has the form c + d√—
a

—
+ 

—
b
—
√

—
2, where c and d are

chosen from Q(√2) and a + b√2 is positive. We can do this as
often as we want. Each new field can be chosen so that it is larg-
er than the previous one. Every number in each such extension is
constructible, and conversely, every constructible number
belongs to a field that is formed in this way.

To complete the proof we need only show that no matter
how many times we extend the rational numbers in the 
manner just described, the resulting field never contains the
number 3√2. The proof uses the concept of field and requires
us to complete a few complicated-looking multiplication 
problems and recall a bit of analytic geometry (see the sidebar
for details).

The Solution of Algebraic Equations
Some fields are smaller than others. To repeat an example
already given, the field of rational numbers is “smaller” than the
field defined as Q(√2), because every number in Q(√2) is of the
form a + b √2 where a and b are rational numbers; if we consider
the case where b is 0 and a is any rational number, then it is
apparent that Q(√2) contains every rational number. However,
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when b = 1 and a = 0, we can see that Q(√2) also contains √2,
which is not rational. Because the rational numbers are a proper
subset of Q(√2), we can say that the field of rational numbers is
smaller than Q(√2).

For each algebraic equation there is always a smallest field that
contains all the roots of the equation. This is the field we obtain
by adjoining the smallest possible set of numbers to the set of
rational numbers. This field, which is determined by the roots of
the polynomial of interest, is important enough to have its own
name. It is called the splitting field. Depending on the polynomi-
al, the splitting field can have a fairly complicated structure. The
numbers that make up the field can sometimes be difficult to write
down; they are usually not constructible; and as do all the fields
that we consider, the splitting field contains infinitely many num-
bers. Furthermore, it must be closed under four arithmetic opera-
tions: addition, subtraction, multiplication, and division. Fields are
complicated objects. It was one of Galois’s great insights that he
was able to rephrase the problem of solving algebraic equations so
that it was simple enough to solve. His solution involved another
type of algebraic structure called a group.

The idea of a group is one of the most important ideas in math-
ematics. There are many kinds of groups. Galois concentrated on
one kind of group, called a permutation group. We can create 
an example of a permutation group by cutting a square out of the
center of a piece of paper.
Suppose that, by moving
clockwise about the square, we
number each of the corners as
shown. Suppose, too, that we
number the corresponding
corners of the square hole
from which the square was cut
so that when we replace the
square inside the square hole,
each number on the square
matches up with its mate (see
Figure [A]).
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Figure A, the identity permutation.



If we now rotate the square
90° clockwise about its center,
the number 1 on the square
matches up with the number 2
on the hole. The number 2 on
the square matches the num-
ber 3 on the hole, and so on
(see Figure [B]).

If we rotate that square 180°
out of its original position, we
get a new configuration (see
Figure [C]).

There are two other rota-
tions that are possible. One
entails rotating the square
270° clockwise—this yields 
a fourth configuration (see
Figure [D])—and the last
rotation entails rotating the
square 360° clockwise (see
Figure [A] again). Notice that
making the last rotation has
the same effect as not moving
the square at all.
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Figure B, a 90° clockwise rotation.
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Figure C, a 180° clockwise rotation.
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Figure D, a 270° clockwise rotation.



All four of these rotations
taken together form a group:
No matter whether we rotate
the square once and then fol-
low that rotation by another
rotation—no matter whether
we rotate the square many
times—the result always
reduces to one of the rota-
tions we have already
described. We have created a
physical representation of a
group with four elements.

The four-element group
described in the previous
paragraph is also a subgroup—that is, it is a group that is part of a
larger group of motions of the square. We can get more motions
in our group by “reflecting” the square about a line of symmetry.
Physically this can be accomplished by flipping the square over
along one of its lines of symmetry. For example, we can flip the
square along the line connecting two opposite corners. Under
these circumstances two corners of the square remain motionless
while the other two corners
swap places. If, for example,
we reflect the square about
the line connecting the cor-
ners 1 and 3, then corners 2
and 4 of the square change
places while 1 and 3 remain
motionless (see Figure [E]).
This configuration (corners 1
and 3 fixed and corners 2 
and 4 exchanged) is new; we 
cannot obtain this reflection
through any sequence of 
rotations, but it is far from the
only reflection that we can

The Search for New Structures  125

1

4

2

3

1

2

4

33

Figure E

Figure E, a reflection of the square
about the line connecting corners 1
and 3.
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Figure F, a reflection of the square
about the line connecting corners 2
and 4.



generate. We can obtain still another configuration of the square
within its hole by reflecting the square about its other diagonal
(see Figure [F]). There are two other reflections—each is obtained
by reflecting the square about lines passing through the center of
the square and the midpoint of a side. We omit the details.
Allowing all possible combinations of rotations and reflections
gives us a still larger group. (Of course, there are mathematical
formulas that do the same thing that we are doing with paper, but
the mathematical methods are simply a symbolic substitute for
rotating the square through multiples of 90° and reflecting it
about its axes of symmetry.)

So far we have examined only the motions obtainable by rotat-
ing and reflecting a square, but we can generate other, very differ-
ent, permutation groups by using other geometric figures.
Depending on the figures we choose to study, the permutation
groups we generate may have more or fewer elements than the
permutation group associated with the square. The subgroups
associated with each permutation group also depend on the group
that we study. Galois did not invent permutation groups, but he
did find an extraordinarily creative use for them.

Galois noticed that to each (infinite) splitting field there corre-
sponds a unique (finite) permutation group. The algebraic struc-
ture of two splitting fields is “the same” if they have the same
permutation group. Even better, the permutation group contains
important information about the splitting field and the algebraic
equation from which the field is obtained. In particular, an 
algebraic equation can be solved if the permutation group has a
certain structure. If the permutation group lacks this structure
then there is no algorithm analogous to those discovered by
Tartaglia and Ferrari that would enable one to solve the equation.

It might seem as if Galois simply swapped the difficulties of
working with algebraic equations for the difficulties of working
with splitting fields, then swapped the problems he encountered
with splitting fields for a new set of problems associated with
groups. There is, however, a real advantage to studying the per-
mutation group instead of the splitting field or the algebraic equa-
tion: The group problem is simple enough to solve. Unlike the
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GROUP THEORY IN CHEMISTRY

Symmetries are everywhere. Humans are (approximately) bilaterally
symmetric in the sense that the left side of the human body is a 
mirror image of the right side. This is why a good portrait artist can
accurately “complete” a portrait, given, for example, only the left half
of a picture of the subject’s face, but cannot do as well when provid-
ed with a picture of, for example, the lower half of the face. Large
trees with many branches are often rotationally symmetric in the
sense that if they could be rotated about a vertical line passing
through the center of the trunk, they would look essentially the same
after the rotation as before. A five-petal flower, for example, is some-
what more symmetric than a person and less symmetric than a large
tree: If a flower is rotated clockwise or counterclockwise about its
vertical axis by any multiple of 72°, the flower looks “the same” in the 
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GROUP THEORY IN CHEMISTRY
(continued)

sense that we cannot detect whether or not a rotation took place. The
restriction to 72° (72° = 360°/5) is necessary, because a rotation by
a multiple of 72° moves each petal into the position occupied by
some other petal.

A transformation that leaves an object looking the same after the
transformation as it did before is a symmetry transformation. Chemists
are often concerned with transformations that leave a molecule looking
the same after a transformation as it looked before. This type of analysis
is an important application of group theory. The first step in using group
theory in the study of molecules is to identify all of the symmetry trans-
formations associated with a molecule.

Figure A shows the structure of the molecule ethene. Each line repre-
sents an electron shared by two atoms. The letters C and H stand for car-
bon and hydrogen atoms, respectively. The diagram indicates that ethene
consists of two carbon and four hydrogen atoms. The numbers attached to
each letter are just a convenience: They are used so that we can distinguish
between atoms that are of the same type and therefore otherwise indistin-
guishable. Figure A also shows the simplest of all symmetry transforma-
tions: If we do nothing then the molecule looks the same before we did
nothing as it did afterward. This not-very-interesting transformation is called
the identity transformation. Figure B shows that if we reflect the diagram
about the dotted line, the atom H1 exchanges places with H2, atom H3

exchanges places with H4, and the two carbon atoms exchange places as
well. If we had not attached numbers to the letters we could not know that
the reflection had occurred at all. This reflection, therefore, belongs to the
set of symmetry transformations associated with ethene. Figure C shows
that if the entire molecule is rotated clockwise about its center the two car-
bon molecules exchange places, H1 exchanges places with H3, and H2

exchanges places with H4, so this rotation is also a symmetry transforma-
tion. Other symmetry transformations are associated with ethene as well.

To every molecule we can associate a symmetry group. When two dif-
ferent molecules have the same basic shape, they also have the same
symmetry group. Consequently it is possible to categorize molecules on
the basis of their symmetry group—two molecules with the same sym-
metry group belong to the same class. Symmetry groups and their asso-
ciated calculations enable chemists to predict many important molecu-
lar properties, interpret data, and simplify complex theories. Symmetry
groups have proved to be an important concept in theoretical chemistry.



splitting fields, which have four operations and infinitely many
numbers, each permutation group has only one operation and
finitely many elements. Galois swapped a harder problem for an
easier problem. The group problem was manageable; the field
problem was not.

This is an example of what is meant by structure in mathematics.
Each splitting field has many properties in common with other
fields—that is why they are all called fields—but there are differ-
ences between the fields as well. These finer points of structure are
determined by the nature of the roots that are adjoined to the
rational numbers in order to get the splitting field. The finer
points of structure in the field determine the properties of the per-
mutation group. In this sense the structure of the group reflects
the structure of the field, but, because the group is easier to under-
stand, solving problems associated with the field by studying its
associated permutation group becomes possible.

The discovery of these group methods required an especially
creative mathematical mind. Galois’s ideas represented a huge leap
forward in mathematical thinking, and it would be some time
before other mathematicians caught up. Today groups are one of
the central concepts in all of mathematics. They play a prominent
role in geometry, analysis, algebra, probability, and many branch-
es of applied science as well. The search for the structures that
underlie mathematics, and the search for criteria—analogous 
to Galois’s permutation groups—that enable mathematicians 
to determine when two structures are really “the same” are now
central themes of algebraic research. In many ways these ideas are
responsible for the ever-increasing pace of mathematical progress.
What we now call modern, or abstract, algebra begins with the
work of a French teenager almost 200 years ago.
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7
the laws of thought

Algebra changed radically more than once during the 19th century.
Previously Descartes had interpreted his variables as magnitudes,
that is, lengths of line segments. He used algebra as a tool in his study
of geometry. Leibniz and Newton had interpreted the variables that
arose in their computations as geometric magnitudes or as forces or
accelerations. On the one hand, these interpretations helped them
state their mathematical questions in a familiar context. They
enabled Newton and Leibniz to discover new relationships among
the symbols in their equations, so in this sense these interpretations
were useful. On the other hand, these interpretations were not nec-
essary. One can study the equations of interest to Descartes, Newton,
and Leibniz without imposing any extramathematical interpretation
on the symbols employed. At the time no one thought to do this.

In the 19th century mathematicians began to look increasingly
inward. They began to inquire about the true subject matter of math-
ematics. The answer for many of them was that mathematics was sole-
ly concerned with the relationships among symbols. They were not
interested in what the symbols represented, only in the rules that gov-
erned the ways symbols were combined. To many people, even today,
this sounds sterile. What is surprising is that their inquiries about the
relationships among symbols resulted in some very important, practi-
cal applications, the most notable of which is the digital computer.

Aristotle
The new and more abstract concept of mathematics began in the
branch of knowledge called logic. Logic began with the works of the



ancient Greek philosopher
Aristotle (384 B.C.E.–322
B.C.E.). Aristotle was educated
at the academy of the philoso-
pher Plato, which was situated
in Athens. He arrived at the
academy at the age of 17 and
remained until Plato’s death 20
years later. When Plato died,
Aristotle left Athens and trav-
eled for the next 12 years. He
taught in different places and
established two schools. Finally
he returned to Athens, and at
the age of 50 he established the
school for which he is best
remembered, the Lyceum.
Aristotle taught there for the
next 12 years. The Lyceum was
a place that encouraged free inquiry and research. Aristotle himself
taught numerous subjects and wrote about what he discovered. For
Aristotle all of this abruptly ended in 323 B.C.E., when Alexander the
Great died. There was widespread resentment of Alexander in
Athens, and Aristotle, who had been Alexander’s tutor, felt the wrath
of the public directed at him after the death of his former student.
Aristotle left Athens under threat of violence. He died one year later.

One of the subjects in which Aristotle was interested was logic, that
branch of thought that deals with the “laws” of correct reasoning.
Aristotle’s contribution to logic was his study of something called the
syllogism. This is a very formal, carefully defined type of reasoning. It
begins with categorical statements, usually called categorical proposi-
tions. A proposition is a simple statement. “The car is black” is an
example of a proposition. Many other types of sentences are not cat-
egorical propositions. “Do you wish you had a black car?” and “Buy
the black car” are examples of statements that are not propositions.
These types of sentences are not part of Aristotle’s inquiry. Instead his
syllogisms are defined only for the categorical proposition.
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A categorical proposition is a statement of relationship between
two classes. “All dogs are mammals” is an example of a categorical
proposition. It states that every creature in the class of dogs also
belongs to the class of mammals. We can form other categorical
propositions about the class of dogs and the class of mammals.
Some are more sensible than others:

� “Some dogs are mammals.”
� “No dogs are mammals.”
� “Some dogs are not mammals.”

are all examples of categorical propositions. We can strip away the
content of these four categorical propositions about the class of
dogs and the class of mammals and consider the four general types
of categorical expressions in a more abstract way:

� All x’s are y’s.
� Some x’s are y’s.
� No x’s are y’s.
� Some x’s are not y’s.

Here we can either let the xs represent dogs and the ys represent
mammals or let the letters represent some other classes. We can
even refrain from assigning any extramathematical meaning at all
to the letters.

We can use the four types of categorical propositions to form
one or more syllogisms. A syllogism consists of three categori-
cal propositions. The first two propositions are premises. 
The third proposition is the conclusion. Here is an example of
a syllogism:

� Premise 1: All dogs are mammals.
� Premise 2: All poodles are dogs.
� Conclusion: All poodles are mammals.

We can form similar sorts of syllogisms by using the other three
types of categorical propositions. In all, we can form 256 different
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types of syllogisms from the four types of categorical propositions,
but only 24 of the syllogisms are logically valid.

Aristotle’s writings were collected and edited by Andronicus of
Rhodes, the last head of Aristotle’s Lyceum. This occurred about
three centuries after Aristotle’s death. The Organon, as Andronicus
named it, is the collection of Aristotle’s writings on logic. It
became one of the most influential books in the history of Western
thought.

Aristotle’s ideas on logic were studied, copied, and codified by
medieval scholars. They formed an important part of the educa-
tional curriculum in Renaissance Europe. In fact, the Organon
formed a core part of many students’ education into the 20th
century. But the syllogism tells us little about the current state of
logic. Its importance is primarily historical: For about 2,000
years the syllogism was the principal object of study for those
interested in logic. For 20 centuries not one new idea on logic
was added to those of Aristotle. Many scholars thought that, at
least in the area of logic, Aristotle had done all that could be
done. They believed that in the area of logic no new discoveries
were possible.

There is no doubt that Aristotle made an important contribution
to understanding logic, because his was the first contribution. In
retrospect, however, Aristotle’s insights were very limited. Logic is
more than the syllogism, because language is more than a set of
syllogisms. Logic and language are closely related. We can express
ourselves logically in a variety of ways, and not every set of logical
statements can be reduced to a collection of syllogisms. Aristotle
had found a way of expressing certain logical arguments, but his
insights are just too simple to be generally useful.

Gottfried Leibniz
The German philosopher, mathematician, and diplomat Gottfried
Wilhelm Leibniz was born in 1646 in Leipzig, a region of Europe
devastated by the Thirty Years’ War (1618–48). When Leibniz was
just a boy, his father died. The elder Leibniz left behind a person-
al library where his son spent many long hours as he was growing
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up. Though Leibniz attended school it is believed that he acquired
most of his early education from his father’s books.

Leibniz learned of the work of Descartes and Galileo at the
University of Leipzig, where he studied law. He was denied a
doctorate from Leipzig, apparently because, at the age of 20, he
was thought too young. Leibniz left Leipzig and submitted a
thesis to the University of Altdorf. It was quickly accepted.
Altdorf awarded him a doctorate and offered him a position on
the faculty, but Leibniz refused the position. He became a
diplomat instead.

When Leibniz was a young man, Europe was rebuilding.
Evidence of the Thirty Years’ War, which had had its roots partly
in religious strife, was everywhere. The Continent was on the
mend. New ideas about mathematics and science were spreading
across the land. Leibniz, who had an extraordinarily broad intel-
lect, strove to learn as much as he could. Nor was his attention
fixed solely on math and science. He was also interested in philos-
ophy, law, history, and languages. There was, in fact, little that
escaped his attention. He is often described as the last person who
truly mastered all academic disciplines of his age.

Leibniz’s broad interests were reflected in his very broad and
ambitious goals. When faced with diversity, Leibniz sought unity.
This seems to have been part of his personality. It is sometimes
speculated that the reason he rejected a position on the faculty at
Altdorf is that he could not tolerate the segmentation of knowl-
edge that is characteristic of much of academic work. During his
university days Leibniz sought to unify and reconcile the classical
ideas of Aristotle with the new sciences of his time. Throughout
his adult life he attempted to reunite various branches of the
Christian religion, and he wanted to unify science. His efforts in
this regard are what make him an important figure in the history
of logic and the mathematical laws of thought.

Progress in mathematics and science was hindered, according to
Leibniz, because the research community was itself fragmented in
very fundamental ways. Then, as now, Europe was linguistically
fragmented. The spread of scientific discoveries was certainly
hampered by linguistic barriers. Further, scientists sometimes 
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disagreed about the validity of a particular theory not because they
differed about the quality of the available evidence, but because
they could not agree on what constituted acceptable proof.
Leibniz proposed the establishment of a specialized language of
science. His method was twofold. First, he sought to develop a set
of universal symbols that would enable scientists to communicate
across linguistic barriers. This would speed and clarify communi-
cation. Second, he sought to develop a set of rules that would
enable every user of this new vocabulary to manipulate the sym-
bols in a transparent and logical way.

Leibniz’s proposal for a universal language of science is more
than a linguistic preference. His idea also contains certain impor-
tant philosophical assumptions about the nature of knowledge.
Philosophically Leibniz believed in the possibility of isolating a
relatively small number of fundamental concepts on which higher
knowledge is based. These fundamental concepts were to be the
building blocks of his linguistic system.

Each concept would, according to Leibniz, be represented by an
ideogram, which is just another word for symbol. More complex
ideas would then be represented by various combinations of this
fundamental set of ideograms. In this way scientists and mathe-
maticians could build knowledge by (correctly) combining sym-
bols in new ways. Leibniz, however, offered little guidance on the
means of choosing concepts that are sufficiently fundamental to
deserve to be represented by their own ideograms. Nor did he deal
with the problem of what to do if two philosophers or scientists
choose different sets of fundamental concepts with which to begin
their studies.

If we assume that all interested parties can agree on a single set
of fundamental concepts with which to begin, then the second
aspect of Leibniz’s program can be implemented. This involved
mathematics. Mathematically Leibniz wanted to devise a special-
ized set of rules for manipulating the ideograms. He wanted to
develop a calculus of reasoning or a “universal calculus.” The uni-
versal calculus would enable the user to arrive at new deductions
in a way that was transparent and, if properly done, correct. In
Leibniz’s vision the universal calculus would make it possible to
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reduce research to calculations with ideograms in much the same
way that research into certain branches of mathematics has been
reduced to the manipulation of symbols according to certain gen-
erally accepted rules. This was the first attempt at developing an
algebra of thought.

Although we have concentrated on Leibniz’s ideas as they
applied to mathematics and science, his conception was actually
much broader. Leibniz was searching for very general laws of
thought as well as the vocabulary needed to express those laws.
Essentially Leibniz hoped that disagreements of all sorts could be
settled via computations.

Had he been successful, Leibniz would have been able to trans-
late the long prose discourses of the mathematicians of his day into
a concise set of symbolic relations. In particular, Aristotle’s syllo-
gisms could have been expressed in a few lines consisting of a few
symbols each. It was an ambitious plan, and Leibniz worked
throughout his life to interest other scientists in adopting his
ideas, because no single individual can bring about linguistic
change by adopting a language understood only by him or her.
The results of his efforts were mixed.

Leibniz’s conception of a scientific language combined with a
universal calculus was not adopted by his contemporaries. Nor
can it be adopted today—not, at least, as Leibniz conceived it.
The reason is that Leibniz’s vision is, in a sense, excessively
mathematical. Mathematical arguments are deductive in nature,
and deduction is only one kind of reasoning. Deductive reason-
ing is drawing specific conclusions from general principles.
When mathematicians reason deductively, they discover new
results, called theorems, by drawing conclusions from previous-
ly proved theorems, from definitions, and from the axioms that
describe the mathematical system in which they are interested.
(Axioms are the statements that determine the nature of a math-
ematical system. They are not subject to proof.) Of all branches
of human knowledge, only mathematics depends so heavily on
deductive reasoning. Leibniz’s system of knowledge was a deduc-
tive system. By contrast, science depends more on induction,
which often involves drawing general conclusions from numer-
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ous individual observations. This is not only true now; it was true
during Leibniz’s time. The primacy of the experimental method
(essentially a kind of induction) over deductive reasoning was a
principle that Galileo worked hard to establish before Leibniz
was even born. Leibniz, however, left little room in his algebra
of thought for inductive reasoning.

Despite the fact that Leibniz’s grand vision was flawed, frag-
ments of the system that he envisioned can be found in various
branches of knowledge. Mathematics, for example, makes use of a
number of ideograms to represent certain fundamental concepts,
and they are understood by mathematicians around the world and
from culture to culture. Similarly the same combinations of letters
and numbers used to express the chemical composition of various
compounds are well understood across linguistic and cultural
groups. These symbols can be combined to represent chemical
reactions, but not every combination of symbols represents a reac-
tion. They can be correctly combined only in certain ways. The
possibility of certain chemical reactions can be ruled out simply
because the symbols “do not compute.” Finally, Leibniz was the
first person to contribute, in a very general way, to the develop-
ment of the laws of thought that are used in the design of inte-
grated circuits—the circuits that, for example, make it possible for
computers to process data—so in this respect, Leibniz’s ideas have
important practical applications as well. Good ideas, however, are
in themselves seldom sufficient. What was necessary was someone
with the mathematical insight and ambition to grapple with the
very difficult problems involved in implementing an algebra of
thought.

George Boole and the Laws of Thought
The 20th-century British philosopher and mathematician
Bertrand Russell wrote that modern, “pure” mathematics began
with the work of the British mathematician George Boole
(1815–64). Not everyone agrees with Russell’s assessment, but
there can be little doubt that Boole, a highly original thinker,
contributed many insights that have proved to be extremely
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important in ways both theoretical and practical. Nor can there
be any doubt that he was, even by today’s standards, a pure math-
ematician. The following famous quotation, taken from his arti-
cle “Mathematical Analysis of Logic,” strikes many contemporary
readers as radical in that he insists that mathematics is about
nothing more than the relationships among symbols:

They who are acquainted with the present state of the theory of
Symbolical Algebra, are aware, that the validity of the processes
of analysis does not depend upon the interpretation of the sym-
bols which are employed, but solely upon the laws of their com-
bination. Every system of interpretation which does not affect
the truth of the relations supposed, is equally admissible, and it is
thus that the same process may, under one scheme of interpreta-
tion, represent the solution of a question on the properties of
numbers, under another, that of a geometrical problem, and
under a third, that of a problem of dynamics or optics. This prin-
ciple is indeed of fundamental importance; and it may with safe-
ty be affirmed, that the recent advances of pure analysis have
been much assisted by the influence which it has exerted in
directing the current of investigation.

(Boole, George. Mathematical Analysis of Logic: being an essay
towards a calculus of deductive reasoning. Oxford: B. Blackwell, 1965)

Despite Boole’s assertion that mathematics is about nothing more
than symbolic relationships, Boole’s insights have since found impor-
tant applications, especially in the area of computer chip design.

Boole was born into a poor family. His father was a cobbler,
who was interested in science, mathematics, and languages. His
interest in these subjects was purely intellectual. He enjoyed
learning, and he put his discoveries to use by designing and then
creating various optical instruments; telescopes, microscopes,
and cameras were all produced in the elder Boole’s workshop. As
a youth George Boole helped his father in the workshop, and it
was from these experiences presumably that he developed an
interest in the science of optics, a subject about which he wrote
as an adult.
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Despite their poverty, the
Booles sent their son to vari-
ous schools. These schools
were not especially distin-
guished, but he learned a great
deal from his father, and he
supplemented all of this with a
lot of independent study. He
read about history and science;
he enjoyed biographies, poet-
ry, and fiction; and as many of
the mathematicians described
in this history did, Boole 
displayed an unusual facility
with language. While a
teenager, and despite a good
deal of adversity, he learned
Latin, Greek, French, Italian,
and German. His interest in learning languages began early. At the
age of 14 he translated a poem from Latin to English and had the
result published in a local newspaper. The publication of the trans-
lation set off a minor controversy when one reader wrote to the
newspaper to question whether anyone so young could have pro-
duced such a skillful translation. Boole was clearly an outstanding
student, but his formal education was cut short.

In 1831 when Boole was 16, his father’s business became bank-
rupt. The penalties for bankruptcy were more serious then than
they are now, and George Boole left school to help his family. He
got a job, first as an assistant teacher, and later as a teacher. It was
at this time that he began to concentrate his energy on learning
mathematics. He later explained that he turned toward mathemat-
ics because at the time he could not afford to buy many books, and
mathematics books, which required more time to be read, offered
better value. Throughout this period of independent study Boole
went through several teaching jobs. At the age of 20 when he had
saved enough money, he opened his own boarding school in his
hometown of Lincoln.

The Laws of Thought  139

George Boole, founder of Boolean
algebra.  (Topham/The Image Works)



It is a tribute to his intellectual ambition and his love of mathe-
matics that despite moving from job to job and later establishing
and operating his own school, Boole found enough time to learn
higher mathematics and to publish his ideas. He also began to
make contacts with university professors so that he could discuss
mathematics with other experts. Eventually Boole was awarded
the Royal Society of London’s first Gold Medal for one of his
mathematics papers.

Boole never did attend college. His formal education ended per-
manently when he left school at the age of 16. Not everyone has the
drive to overcome this kind of educational isolation, but it seemed to
suit Boole. Unlike many of his university-trained contemporaries,
Boole had considerable language skills that enabled him to read
important mathematical works in their original languages. He devel-
oped unique insights in both mathematics and philosophy. Soon
Boole turned away from the type of mathematics that would have
been familiar to every mathematician of Boole’s time and directed his
energy toward discovering what he called the “laws of thought.”

Boole’s inquiry into the laws of thought is a mathematical and
philosophical analysis of formal logic, often called symbolic logic,
logic, or, sometimes, logistic. The field of logic deals with the
principles of reasoning. It contains Aristotle’s syllogisms as a very
special case, but Boole’s inquiry extended far beyond anything that
Aristotle envisioned. Having developed what was essentially a new
branch of mathematics, Boole longed for more time to explore
these ideas further. His duties at his own school as well as other
duties at other local schools were enough to keep him very busy
but not very well off. When Queen’s College (now University
College) was established in Cork, Ireland, Boole applied for a
teaching position at the new institution. Between the time that he
applied and the time that he was hired, three years passed. He had
despaired of ever being offered the position, but in 1849 when he
finally was, he accepted it and made the most of it.

Boole remained at Queen’s College for the rest of his life. He
married, and by all accounts he was extremely devoted to his wife.
He was apparently regarded with both affection and curiosity by
his neighbors: When Boole met anyone who piqued his curiosity,
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he immediately invited that person to his home for supper and
conversation. He is often described as someone who was kind,
generous, and extremely inquisitive. Boole died after a brief illness
at the age of 49.

Boolean Algebra
Boole’s great contribution to mathematics is symbolic logic. Boole
sought a way of applying algebra to express and greatly extend
classical logic. Recall that Aristotle’s syllogisms were a way of mak-
ing explicit certain simple logical relations between classes of
objects. Boole’s symbolic logic can do the same thing, but his con-
cept of logic greatly extended Aristotle’s ideas by using certain log-
ical operators to explore and express the relations between various
classes. His approach to logic depended on three “simple” opera-
tors, which we (for now) denote by AND, OR, and NOR. Over
the intervening years, mathematicians have found it convenient to
modify some of Boole’s own ideas about these operators, but ini-
tially we restrict our attention to Boole’s definitions. For purposes
of this exposition it is sufficient to restrict our attention to careful
definitions of the operators AND and OR.

Definition of AND: Given two classes, which we call x and y, the
expression xANDy denotes the set of all elements that are common
to both the classes x and y. For example, if x represents the class of
all cars and y represents the set of all objects that are red, then
xANDy represents the class of all red cars. This notation is hardly
satisfactory, however, because Boole was interested in developing
an algebra of thought. As a consequence Boole represented what we
have written as xANDy as the “logical product” of x and y, namely,
xy. This leads to the first unique aspect of Boole’s algebra. Because
the set of all elements common to the class x is the class x itself—
that is, xANDx is x—Boole’s algebra has the property that xx = x or,
using exponents to express this idea, x2 = x. By repeating this argu-
ment multiple times we arrive at the statement xn = x, where n rep-
resents any natural number. This equation does not generally hold
true in the algebra that we first learn in junior and senior high
school, but that does not make it wrong. It is, in fact, one of the
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defining properties of Boolean algebra. Finally, notice that with
this definition of a logical product, the following statement is true:
xy = yx. That is, the elements that belong to the class xANDy are
identical to the elements that belong to the class yANDx.

Definition of OR: Boole’s definition of the operator OR is differ-
ent from that used in Boolean algebra today, but it coincides with
one common usage of the word or. To appreciate Boole’s definition
of the operator OR, imagine that we are traveling through the
country and arrive at a fork in the road. We have a decision to
make: We can turn left or we can turn right. We cannot, however,
simultaneously turn both left and right. In this sense, the word 
or is used in a way that is exclusive. We can take one action or 
the other but not both. Boole defined the OR operator in this
exclusive sense. Given two classes, which we call x and y, the
expression xORy means the set of elements that are in x but not in
y together with the set of elements that are in y but not in x. In 
particular, the class xORy does not contain any elements that are
in x and y. If we again let x represent the class of all cars, and y rep-
resent the class of all objects that are red, then the class xORy con-
tains all cars that are not red and every object that is red provided
it is not a car. As we have written xORy, Boole used the expression
x + y. Notice that with this interpretation of the symbol + it is still
true that x + y = y + x. (We emphasize that Boole’s definition of the
OR operator is different from the definition in common use today.
See the section Refining and Extending Boolean Algebra later in
this chapter for a discussion of the difference.)

The axioms for Boole’s algebra can now be expressed as follows.
A Boolean algebra is, according to Boole, any theory that satisfies
the following three equations:

1. xy = yx
2. x(y + z) = xy + xz
3. xn = x, where n is any natural number

The first and third axioms have already been discussed. The
meaning of the second axiom can best be explained via a Venn 
diagram (see the accompanying illustration).
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The roles of the numbers 0
and 1 are especially important
in Boole’s algebra. The num-
ber 0 represents the empty
set. If, for example, x repre-
sents the set of diamonds and
y represents the set of emer-
alds, then xy, the set of objects
that are both diamonds and
emeralds, is empty—that is,
with this interpretation of x
and y, xy = 0. For Boole, the
number 1 represents the uni-
verse under consideration, that
is, the entire class of objects
being considered. If we con-
tinue to let x represent the set
of diamonds and y the set of
emeralds, and if, in addition,
we let 1 represent the set of all
gemstones then we obtain the
following three additional
equations: (1) 1x = x, (2) 1y =
y, and (3) x(1 – y) = x, where the expression (1 – y) represents all
the objects in the universal set that are not emeralds, so that the
class of diamonds AND the class of gems that are not emeralds is
simply the class of diamonds.

Recall that in the excerpt from Boole quoted at the beginning
of this chapter, he explicitly states, “. . . the validity of the
processes of analysis does not depend upon the interpretation of
the symbols which are employed.” Having established the basic
properties of his algebra, he is free to interpret the symbols in
any manner convenient. This is important because there was
another interpretation that Boole had in mind, and this inter-
pretation has since become very important as well. To appreciate
Boole’s second interpretation, we imagine some proposition,
which we call X, and we let the letter x represent the times when
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Venn diagram demonstrating that in
Boolean algebra x(y + z) = xy + xz.
Note that (y + z) is the horizontally
shaded area, and x(y + z) is the
intersection of the horizontally shaded
are with x. Alternatively, xy is the
area common to disk x and disk y, xz
is the area common to disk x and 
disk z, and xy + xz is the union of 
xy and xz minus their common area.
Therefore, x(y + z) = xy + xz.



proposition X is true. Because a proposition is either true or
false—it cannot be both true and false—the expression 1 – x
must represent those times when X is false. For example, suppose
we let X represent the statement “It is raining.” Because we let x
represent the times when statement X is true, x represents those
times when it actually is raining. The expression 1 – x holds
when the statement X is false: That is, 1 – x represents those
times when it is not raining.

In a similar way we can interpret the logical product and the log-
ical sum. If we have two propositions—we represent them with X
and Y—then we can let the letter x represent those times when
proposition X is true and y represent those times when proposition
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ARISTOTLE AND BOOLE

For more than 2,000 years Aristotle’s treatment of logic was not modi-
fied in any significant way. For Western scholars Aristotle’s logic was the
only type of logic. When propositions are written in ordinary language,
understanding why they arrived at this conclusion is not difficult. Written
rhetorically, Aristotle’s syllogisms have no obvious generalizations. This
changed entirely with the work of Boole. Boole’s insights enabled him to
show that Aristotle’s conception was not only limited but also easily
extended. Once Aristotle’s treatment of the syllogism was expressed by
using Boole’s algebra, it was seen to be a particularly simple set of com-
putations, and Aristotle’s insights were seen to be a very small part of a
much larger algebraic landscape.

In the following we list Aristotle’s four categorical propositions. Each
proposition is followed, in parentheses, by the same expression using
Boole’s algebra. Following Boole, we use the letter v to represent a
nonempty class of objects:

� All x’s are y’s. (xy = x)
� Some x’s are y’s. (v = xy)
� No x’s are y’s. (xy = 0)
� Some x’s are not y’s. (v = x(1 – y))

Notice that each proposition has been expressed as a simple algebraic
equation.



Y is true. The logical product xy now represents those times when
propositions X and Y are simultaneously true. For example, let X
represent the proposition “It is raining” and let Y represent the
statement “It is windy.” The expression xy represents those times
when it is simultaneously rainy and windy. If we let the number 1
represent a true statement and the number 0 represent a false state-
ment, we obtain the following four equations for the logical prod-
uct: 1 × 1 = 1, 1 × 0 = 0, 0 × 1 = 0, and 0 × 0 = 0. These equations
are summarized in a truth table where we let T stand for a true
statement and F for a false statement, to better reflect the inter-
pretation of Boole’s algebra that we have in mind (see the accom-
panying table). In a similar way, the logical sum x + y represents
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Using Boole’s algebra, we can express any syllogism via a set of alge-
braic equations. To illustrate, we rewrite the syllogism given near the
beginning of this chapter involving mammals, dogs, and poodles. This
requires three equations. Each line of the syllogism is written in words
followed, in parentheses, by an algebraic equation that expresses the
same idea. We let the letters m, d, and p represent mammals, dogs, and
poodles, respectively.

� Premise 1: All dogs are mammals. (dm = d)
� Premise 2: All poodles are dogs. (pd = p)
� All poodles are mammals. (pm = p)

Notice that if we multiply the first equation by p we get pdm = pd,
but pd equals p by the second equation. All that remains for us to do
is write p in place of pd on the left and right in the equation pdm =
pd. This yields the conclusion of the syllogism, namely, pm = p. This
example shows how a syllogism can be reduced to an algebraic
computation.

This kind of computation is exactly the sort of thing that Leibniz had
hoped to accomplish—language as mathematics—but did not bring to
fruition. Of course, Boole’s goal is a more limited one than that of
Leibniz. Unlike Leibniz, who hoped for a universal scientific language,
Boole directed his efforts toward expressing logic in the language of
algebra. This more focused ambition together with a very creative imag-
ination enabled him to succeed where Leibniz did not.



those times when, according
to Boole, either proposition X
is true or proposition Y is
true, but not when they are
simultaneously true. In our
weather example, x + y repre-
sents those times when it is
either windy or rainy but not
both.

Keep in mind that this in no
way changes Boole’s algebra.
According to Boole, mathe-
matics is only about the rela-
tionships among symbols, so
from a mathematical perspec-

tive the interpretation that we place on the symbols is irrelevant.
From the point of view of applications, however, the interpreta-
tion that we place on the symbols means everything, because it
determines how we use the algebra. Boole’s alternative interpreta-
tion of his algebraic symbols as representing true and false values
has important applications. It enables one to calculate the true or
false values associated with a question or even a chain of equations.
Engineers use these ideas to design logic circuits for computers.

Boole’s applications of his algebra centered on the theory of
probability and the philosophy of mind. Both applications are of a
philosophical nature, and they are not well remembered now,
principally because Boole’s work in these two areas, although
intellectually interesting, did not uncover much that was new even
at the time. The principal application of Boolean algebra, which
involves the design of computer hardware and software, would not
be discovered until the 20th century.

Refining and Extending Boolean Algebra
Boole’s conception was an important step forward, but it con-
tained some logical problems of its own. The first difficulty was
identified and corrected by the British logician and economist
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Truth table for the operation AND.



William Stanley Jevons (1835–82). The difficulty arises in the
course of computations.

In mathematics—especially pure mathematics—the method by
which we arrive at a solution is at least as important as the solution
itself. When solving a math problem, any sequence of steps should
have the property that each step can be logically justified. To express
the same idea in a different way: There is a mathematical reason
for every step in the solution. This was not the case in Boole’s own
version of Boolean algebra, and much of the difficulty centered
around Boole’s definition of the OR operator.

Recall that given two classes of objects, which we call x and y,
Boole defined x + y to mean that class of objects that belongs to x
or to y but not to both. The problem with this definition is that as
one uses Boole’s algebra to solve problems, one sometimes
encounters expressions such as x + x. To obtain this expression, we
just substitute the letter x for the letter y in the first sentence of
this paragraph. We get that x + x is that class of objects that belongs to
x or to x but not to both. This is meaningless. Although Boole found
ways to manipulate the expressions to obtain valid results, from a
logical point of view his definition is not entirely satisfactory.
Jevons proposed a new definition for the OR operator, and it is his
definition that is in general use today.

Jevons defined the OR operator inclusively: Given two classes,
which we call x and y, the expression xORy means the set of
objects that are either in x or in y. In particular, Jevons defined OR
so that if an object is both in x and in y it also belongs to xORy.
The main advantage of Jevons’s definition is that it allows us to
attach a reasonable definition to the expression x + x: The set of
objects belonging to the class xORx equals the class x itself.
Admittedly this sounds stilted, but it allows us to attach a meaning
to the expression x + x that is logically satisfactory. In particular,
this definition enables us to write the equation x + x = x. This is a
different sort of equation than the one we encounter in our first
algebra courses, but it parallels Boole’s own equation for logical
multiplication, namely, x2 = x. This new definition of the OR oper-
ator straightened out many of the logical difficulties that had aris-
en in computing with Boole’s algebra.
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Notice, too, that in the equations x + x = x and x2 = x the only
coefficient to occur is 1. Furthermore if we search for roots of the
equation x2 – x = 0, we find that the only roots are the numbers 0
and 1. In other words, these equations enable us to restrict our
attention to just two digits. This turns out to have important
applications.

The situation can be summarized with the help of a so-called
truth table. Let the number 1 stand for “true” and the number 0
stand for “false.” The expression xORy returns the value 1 provid-
ed either x is true or y is true. Only if both x and y are false does
xORy return the value 0. This gives rise to the following four
equations: 1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, and 0 + 0 = 0. Just as in
the case of the AND operator, the situation for the OR operator
can be summarized with a truth table where we have used the 
letters T for true and F for false to emphasize the interpretation
we have in mind (see the accompanying illustration).

The latter half of the 19th century saw several further 
extensions and refinements of Boole’s algebra, but Boole’s central
concepts remained valid. Of special interest was the work of 
the German mathematician Ernst Schröder (1841–1902), who
developed a complete set of axioms for Boolean algebra. (Boole’s
axioms, listed previously, were incomplete.)

Axioms are a “bare bones”
description of a mathematical
system in the sense that every-
thing that can be learned
about a mathematical system,
whether that system is, for
example, Boolean algebra 
or Euclidean geometry, is a 
logical consequence of the
axioms. In this sense mathe-
maticians concern themselves
with revealing facts that are,
logically speaking, right before
their eyes. The axioms always
contain all of the information
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that one can learn about a system. The problem is that the infor-
mation is not displayed in an obvious way. Any nonobvious state-
ment that can be deduced from a set of axioms is called a theorem.
Most mathematicians occupy themselves with deducing new theo-
rems from theorems that have already been proved; this is the art of
mathematical discovery. Unfortunately knowing that statement B is,
for example, a logical consequence of statement A gives no insight
into whether or not statement A is true.

Fortunately there is a final reason why any theorem is true. The
ultimate reason that each theorem in a mathematical system is true
is that it can be deduced as a logical consequence of the axioms that
define the system. The axioms are the subject. It is no exaggeration
that, mathematically speaking, one can never be completely sure
what it is one is studying until a set of axioms that define the sub-
ject has been stated. Finally, a logically consistent set of axioms for
any branch of mathematics is important because it ensures that it is
possible to develop the mathematics in such a way that no state-
ment can be proved both true and false. Placing Boole’s algebra on
a firmer logical foundation was Schröder’s contribution.

In the sense that he axiomatized the Boolean algebra, Schröder
completed the subject: He put Boolean algebra into the logical
form that we know today. Of course, many new theorems have
been proved in the intervening century or so since Schröder’s
death, but the theorems were proved in the context of Schöder’s
axioms. Logicians, philosophers, and a few mathematicians were
quick to recognize the value of Boole’s insights. His ideas provid-
ed a conceptual foundation that enabled the user to examine more
closely the relationships that exist between logic and mathematics.
Many mathematicians, inspired by Boole’s work, went on to do
just that. This is one implication of Boole’s discoveries, but
Boolean algebra has had a more immediate impact on our lives
through its use in the design of computer circuitry.

Boolean Algebra and Computers
Boole knew nothing about computers, of course. He died 15
years before the invention of the light bulb, and the first 
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electronic digital computer began operation in 1946—more than
80 years after his death. Nevertheless the design of computer chips
is one of the most important applications of Boolean algebra,
because Boole’s algebra was deliberately created so that it only
used the numbers 0 and 1. Two numerical values are all that is nec-
essary in Boolean algebra, and two digits are all that are necessary
to express ideas in binary code. (Binary code is a way of coding
information that depends on precisely two symbols, which, for
convenience, are often represented by the digits 0 and 1.)

To appreciate how this works, we can imagine a computer that
performs three functions. First, the computer reads an input file
consisting of a string of binary digits. (The input file is the infor-
mation that the computer has been programmed to process.)
Second, the computer processes, or alters, the input file in accor-
dance with some preprogrammed set of instructions. Third, the
computer prints the results of these manipulations. This is the
output file, which we can imagine as consisting of binary code as
well. (Of course, the binary output is usually rewritten in a more
user-friendly format, but the details of this reformatting process
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Cray 2 Supercomputer. The microprocessors on which the machine depends
would not be possible without Boolean algebra.  (Courtesy National
Aeronautics and Space Administration)



do not concern us here.) The output file is the reason we buy the
computer. It represents the answer, the work performed by the
machine on the input file.

The middle step, the processing part of this sequence, is the step
in which we are interested. The processing takes place via a set of
electronic circuits. By an electronic circuit we mean any structure
through which electricity can flow. Circuits are manufactured in a
variety of sizes and can be made of a variety of materials. What is
important is that each circuit is capable of modifying or regulating
the flow of electrical current in certain very specific ways. The
actual control function of the circuit is affected through a set of
switches or gates. The gates themselves are easily described in
terms of Boolean operators.

There are several types of gates. They either correspond to or
can be described in terms of the three common Boolean operators,
the AND, OR, and NOT operators. The names of the gates are
even derived from Boolean algebra: There are AND-gates, OR-
gates, and NOT-gates. By combining Boolean operators we also
obtain two other common types of gates: NAND-gates and NOR-
gates. Each type of gate regulates the flow of electric current sub-
ject to certain conditions.

The idea is that under most conditions there is always a very-low-
level current flowing through each circuit. This current is constant
and has no effect on whether the gate is “open” or “closed.” When,
however, the voltage of the input current rises above a certain pre-
specified level, the gate is activated. The level of voltage required
to activate the gate is called the threshold voltage. Activity occurs
whenever the voltage exceeds the threshold level, and activity ceas-
es when the voltage falls below the threshold.

To see how Boolean algebra comes into play, we describe the
AND-gate and the OR-gate. An AND-gate has two inputs, just as
the Boolean operator AND has two arguments or independent
variables. In the case of the AND-gate, we can let x represent the
voltage at one input and y represent the voltage at the other input.
When the voltage x and the voltage y simultaneously exceed the
threshold voltage, the AND-gate allows current to pass from one
side to another. If, however, the voltage in either or both of the
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inputs falls below the threshold voltage, current does not pass to
the other side of the gate. It is in this sense that the AND-gate is
a physical representation of Boole’s own AND operator. Instead of
classes of objects, or binary digits, however, the AND-gate oper-
ates on electric current.

Similarly the OR-gate is designed to be inclusive, just as the
more modern version of the Boolean operator OR is defined
inclusively: If either x or y is true, then xORy is also true. The OR-
gate operates on two inputs. We can represent the voltage in one
input with the letter x and the voltage in the second input with the
letter y. If either x or y is at or above the threshold voltage then the
OR-gate allows the current to pass. Otherwise, the current does
not pass.

The five switching circuits, AND-, OR-, NOT-, NOR-, and
NAND-gates, are combined in often very complex configurations,
but the goal is always the same: They modify input in the form of
electric current to produce a new electrical current as output. The
user interprets the output as specific information, but this is an
additional interpretation that is placed on the electrical patterns
that emerge from the configuration of circuits. There could be no
better physical representation of Boolean algebra than the logic
circuits of a computer.

George Boole’s exposition of Boolean algebra is contained in a
pamphlet, “Mathematical Analysis of Logic” (1847), and a book,
An Investigation into the Laws of Thought on Which are Founded the
Mathematical Theories of Logic and Probabilities (1854). In these
works we find not just a new branch of mathematics, but also a
new way of thinking about mathematics. Boole’s approach was
deliberately more abstract than that of his predecessors. This
highly abstract approach, far from making his algebra useless,
made his algebra one of the most useful of all mathematical inno-
vations. The most important practical applications of Boole’s
philosophical and mathematical investigations would not be
apparent, however, until about a century after “Mathematical
Analysis of Logic” was published.
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8
the theory of matrices

and determinants

Many new types of algebraic structures have been defined and stud-
ied since the time of Galois. Today, in addition to groups and fields,
mathematicians study algebraic structures called rings, semigroups,
and algebras to name a few. (Here algebra refers to a particular type
of mathematical object.) Each structure is composed of one or
more sets of objects on which one or more operations are defined.
The operations are rules for combining objects in the sets. The sets
and operations together form a structure, and it is the goal of the
mathematician to discover as much as possible about the logical
relationships that exist among different parts of the structure.

In this modern approach to algebra the nature of the objects in
the set is usually not specified. The objects are represented by let-
ters. The letters may represent numbers, polynomials, or some-
thing else entirely, but usually no interpretation is placed on the
letters at all. It is only the relationships that exist between objects
and sets of objects—not the objects and sets themselves—that are
of interest to the mathematician.

One of the first and most important of these “new” mathemati-
cal structures to receive the attention of mathematicians was the
algebra of matrices. Matrices are tables of numbers or symbols.
They combine according to some of the same rules that numbers
obey, but some of the relationships that exist between matrices are
different from the analogous relationships between numbers.

An important part of the theory of matrices is the theory of
determinants. Today a determinant is often described as a function



of a matrix. For example, if the elements in the matrix are 
numbers, then—provided the matrix has as many rows as
columns—we can often use those elements to compute a number
called a determinant. The determinant reveals a great deal of
useful information about the (square) matrix. If a matrix repre-
sents a system of equations, then the determinant can tell us
whether there exists a single solution to the system or whether
there are infinitely many solutions. In theory we can even use
determinants to compute solutions to systems of equations
(although, as we will soon see, the work involved in doing so is
usually enormous—too much work to make it a practical
approach to problem solving).

The theory of matrices and determinants has proved to be one
of the most useful of all branches of mathematics. Not only is the
theory an important tool in the solution of many problems within
the field of mathematics, it is also one of the most useful of all
branches of mathematics in the development of science and engi-
neering. The reason is that this is the type of mathematics that one
must know in order to solve systems of linear equations. (A linear
equation is an equation in which every term is either the product of
a number and a variable of the first power or simply a number. For
example, x + y = 1 is a linear equation, but x2 + y = 1 is not because
the x term is raised to the second power.)

Most of us are introduced to systems of linear equations while
we are still in junior or senior high school. These are “small” sys-
tems, usually involving two or three independent variables. We
begin with small systems because the amount of work involved in
solving systems of linear equations increases rapidly as the number
of variables increases. Unfortunately these small systems fail to
convey the tremendous scope of the subject. Today many mathe-
maticians, scientists, and engineers are engaged in solving systems
of equations involving many thousands of independent variables.
The rush to develop computer algorithms that quickly and accu-
rately solve ever-larger systems of equations has attracted the
attention of many mathematicians around the world. The history
of matrices, determinants, and related parts of mathematics, how-
ever, begins long before the advent of the computer.
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Early Ideas
Today when determinants and matrices are taught matrices are
introduced first, and determinants are described as functions of
matrices. But historically determinants were discovered almost
200 years before mathematicians began to study matrices.

The Japanese mathematician Seki Köwa, also known as Takakazu
(1642–1708), was the first person to discover the idea of a determi-
nant and investigate some of the mathematics associated with this
concept. Seki was born into a samurai warrior family, but at an early
age he was adopted by a family of the ruling class. When Seki 
was age nine a family servant who knew mathematics introduced
him to the subject. He demonstrated mathematical talent almost
immediately, and later in life Seki became known as the Arithmetical
Sage. Today he is often described as the founder of Japanese math-
ematics. This is something of an exaggeration. There was mathe-
matics in Japan before Seki. Nevertheless he was certainly a very
important person in the history of Japanese mathematics.

The Arithmetical Sage published very little work during his life.
In fact, as was the custom in Japan at the time, he disclosed much
of his work to only a select few. As a consequence much of what
we know about his discoveries is secondhand or thirdhand. Some
scholars attribute a great many accomplishments to him: an
(unproved) version of the fundamental theorem of algebra, dis-
coveries in the field of calculus, complex algorithms for discover-
ing solutions to algebraic equations, and more. Other scholars
attribute quite a bit less. It is certain, however, that Seki discovered
determinants, because his writings on this subject are well known.

Seki’s ideas on determinants are fairly complex, and he used
them in ways that would be difficult to describe here. A simpler
approach to determinants was discovered independently in
Europe about 10 years after Seki made his initial discovery. The
German mathematician and philosopher Gottfried Leibniz
(1646–1716) was the second person to discover what we now call
determinants.

Leibniz’s life and some of his other contributions to mathemat-
ics have already been described elsewhere in this volume. With
respect to determinants, Leibniz indicated that he was sometimes

The Theory of Matrices and Determinants  155



required to solve a set of three linear equations involving two vari-
ables. Such a system may or may not have a solution. Leibniz dis-
covered that the determinant could be used to establish a criterion
for the existence or nonexistence of a solution.

In modern notation we might represent a system of three equa-
tions in two unknowns as follows:

a11 + a12x + a13y = 0
a21 + a22x + a23y = 0
a31 + a32x + a33y = 0

The letters aij represent numbers called coefficients. All the coef-
ficients on the left side of the column of “equals” signs can be
viewed as part of a table. In that case the first index—the i-index—
indicates the row in which the number appears, and the second
index—the j-index—indicates the column. (The coefficient a12, for
example, belongs to the first row and the second column.) Notice
that the first column contains no variables.

Leibniz’s system of equations contains more equations—there
are three of them—than there are variables; there are only two
variables. When the number of equations exceeds the number of
variables, the possibility exists that there are simply too many
constraints on the variables and that no values for x and y can
simultaneously satisfy all the equations. Mathematicians today
call such a system—a system for which there are no solutions—
overdetermined. But even when there are more equations than
there are variables, it is still possible that solutions exist. What
Leibniz discovered is a criterion for determining whether such
a system of equations is overdetermined. His criterion is very
general, and it does not involve computing the solutions to the
equations themselves. Instead it places a constraint on the 
numbers in the table of coefficients. The key is using the aij to
compute a number that we now call the determinant. Leibniz
wrote that when the determinant of this type of system is 0, a
solution exists. When the determinant is not 0, there are no 
values of x and y that can simultaneously satisfy all three equa-
tions. In addition Leibniz understood how to use determinants

156 ALGEBRA



to calculate the values of the variables that would satisfy the 
system of equations.

Leibniz had made an important discovery: He had found a way
to investigate the existence of solutions for an entire class of prob-
lems. He did this with a new type of function, the determinant,
that depends only on the coefficients appearing in the equations
themselves. He described his discoveries in letters to a colleague,
but for whatever reason he did not publish these results for a wider
audience. In fact Leibniz’s ideas were not published for more than
150 years after his death. As a consequence his ideas were not
widely known among the mathematicians of his time and had lit-
tle impact on the development of the subject.

Mathematicians again began to look at determinants as a tool in
understanding systems of equations about 50 years after Leibniz
first described his discoveries. Initially these ideas were stated and
proved only for small systems of variables that in modern notation
might be written like this:

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

The notation is similar to what Leibniz used. The differences are
that (1) here there are three equations in three variables and (2)
the bi represent any numbers.

Part of the difficulty that these mathematicians had in applying
their insights about determinants to larger systems of equations
is that their algebraic notation was not good enough.
Determinants can be difficult to describe without very good
notation. The calculation of determinants—even for small sys-
tems—involves quite a bit of arithmetic, and the algebraic nota-
tion needed to describe the procedure can be very complicated as
well. For example, the determinant of the system in the previous
paragraph is

a11a22a33 + a12a23a31 + a13a21a32

– a31a22a13 – a32a23a11 – a33a21a12
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(The general formula for computing determinants of square
matrices of any size is too complicated to describe here. It can,
however, be found in any textbook on linear algebra.)

Notice that for a general system of three equations in three
unknowns the formula for the 3 × 3 matrix given in the preceding
paragraph involves 17 arithmetic operations, that is, 17 additions,
subtractions, and multiplications. Computing the determinant of a
general system of four equations and four unknowns involves sev-
eral times as much work when measured by the number of arith-
metic operations involved.

In 1750 the Swiss mathematician Gabriel Cramer (1704–50)
published the method now known as Cramer’s rule, a method
for using determinants to solve any system of n linear equations
in n unknowns, where n represents any positive integer greater
than 1. Essentially Cramer’s rule involves computing multiple
determinants. Theoretically it is a very important insight into
the relationships between determinants and systems of linear
equations. Practically speaking Cramer’s rule is of little use,
because it requires far too many computations. The idea is sim-
ple enough, however. For example, in the system of equations
given three paragraphs previous, the solution for each variable
can be expressed as a fraction in which the numerator and the
denominator are both determinants. The denominator of 
the fraction is the determinant of the system of equations. The
numerator of the fraction is the determinant obtained from 
the original system of equations by replacing the column of
coefficients associated with the variable of interest with the 
column consisting of (b1, b2, b3). In modern notation we might
write the value of x as

b1 a12 a13

b2 a22 a23

b3 a32 a33

a11 a12 a13

a21 a22 a23

a31 a32 a33
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where the vertical lines indicate the determinant of the table of
numbers inside. A more computational approach to expressing the
value of x looks like this:

x =
b1a22a33 + a12a23b3 + a13b2a32 – b3a22a13 – a32a23b1 – a33b2a12

a11a22a33 + a12a23a31 + a13a21a32 – a31a22a13 – a32a23a13 – a33a21a12

Writing out the solution in this way for a system of five equations
with five unknowns would take up much of this page.

In the years immediately following the publication of this
method of solution, mathematicians expended a great deal of
effort seeking easier ways to compute determinants for certain
special cases as well as applications for these ideas. These ideas
became increasingly important as they found their way into
physics.

Spectral Theory
New insights into the mathematics of systems of linear equations
arose as mathematicians sought to apply analysis, that branch 
of mathematics that arose out of the discovery of calculus, to 
the study of problems in physics. The three mathematicians 
who pointed the way to these new discoveries were all French:
Jean Le Rond d’Alembert (1717–83), Joseph-Louis Lagrange
(1736–1813), and Pierre-Simon Laplace (1749–1827). All three
mathematicians contributed to the ideas about to be described;
of the three d’Alembert was the first.

Jean Le Rond d’Alembert has already been mentioned briefly in
this volume in association with the fundamental theorem of alge-
bra. His biological parents were both wealthy and socially promi-
nent. When their child was an infant they abandoned him on the
steps of a church called Saint Jean le Ronde, which is the source of
most of his name. (He named himself d’Alembert at college.)
D’Alembert’s biological father eventually found a home for Jean le
Ronde with a Parisian family of very modest means named
Rousseau. They raised d’Alembert, and d’Alembert considered
them his true family. He continued to live with them until he was
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middle-aged, and when later he achieved prominence as a scien-
tist, he spurned his biological mother’s attempts to make contact
with him.

D’Alembert’s biological father never acknowledged his paterni-
ty, but he made sure that his son had sufficient money for a first-
rate education. In college d’Alembert studied theology, medicine,
and law, but he eventually settled on mathematics. Surprisingly
d’Alembert taught himself mathematics while pursuing his other
studies, and except for a few private lessons he was entirely self-
taught.

Soon after beginning his mathematical studies, d’Alembert dis-
tinguished himself as a mathematician, a physicist, and a personal-
ity. Never hesitant to criticize the work of others, d’Alembert lived
a life marked by almost continuous controversy as well as mathe-
matical and philosophical accomplishments. In his own day
d’Alembert was probably best known for his work on a massive
encyclopedia that was one of the great works of the Enlightenment.

With respect to systems of linear equations, d’Alembert was
interested in developing and solving a set of equations that would
represent the motion of a very thin, very light string along which
several weights were arrayed. With one end tied to a support, the
weighted string is allowed to swing back and forth. Under these
conditions the motion of the string is quite irregular. Some math-
ematicians of the time believed that the motion was too compli-
cated to predict. D’Alembert, however, solved the problem for
small motions of the string.

The analytical details of d’Alembert’s solution are too compli-
cated to describe here, but the algebra is not. Broadly speaking
d’Alembert reduced his problem to what is now known as an
eigenvalue problem. A general eigenvalue problem looks like this:

a11x + a12y + a13z = λx
a21x + a22y + a23z = λy
a31x + a32y + a33z = λz

In d’Alembert’s problem the unknowns, here represented by the
letters x, y, and z, represented functions rather than numbers,
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but this distinction has no bearing on the algebra that we are
interested in discussing.

This system of linear equations is different from the others we
have considered in three important ways:

1. The unknowns, x, y, and z, appear on both sides of each
equation.

2. The number represented by the Greek letter λ, or
lambda, is also an unknown. It is called the eigenvalue
of the system of equations.

3. The goal of the mathematician is to find all eigenvalues
as well as the solutions for x, y, and z that are associat-
ed with each eigenvalue. Each eigenvalue determines a
different set of values for x, y, and z.

The problem of determining the eigenvalues associated with each
system of equations is important because eigenvalues often have
important physical interpretations.

D’Alembert discovered that the only reasonable solutions to his
equations were associated with negative eigenvalues. Solutions
associated with positive eigenvalues—that is, solutions associated
with values of λ greater than 0—were not physically realistic. A
solution associated with a positive eigenvalue predicted that once
the string was set in motion, the arc along which it swung would
become larger and larger instead of slowly “dying down” as actu-
ally occurs. The observation that the eigenvalues had interesting
physical interpretations was also made by other scientists at about
the same time.

Pierre-Simon Laplace and Joseph-Louis Lagrange reached simi-
lar sorts of conclusions in their study of the motion of the planets.
Their research, as did that of d’Alembert, also generated systems of
linear equations, where each unknown represented a function (as
opposed to a number). They studied systems of six equations in six
unknowns because at the time there were only six known planets.
Laplace and Lagrange discovered that solutions associated with
positive eigenvalues predicted that small perturbations in planetary
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motion would become ever larger over time. One consequence of
Laplace’s and Lagrange’s observation is that any solution associat-
ed with a positive eigenvalue predicted that over time the solar
system would eventually fly apart. Lagrange rejected positive
eigenvalues on the basis of physical reasoning: The solar system
had not already flown apart. Laplace ruled out the existence of
positive eigenvalues associated with his system of equations on
mathematical grounds. He proved that in a system in which all the
planets moved in the same direction, the eigenvalues must all be
negative. He concluded that the solar system is stable—that is,
that it would not fly apart over time.

Notice the similarities between the model of the solar system
and the weighted string problem of d’Alembert. In each case solu-
tions associated with positive eigenvalues were shown to be “non-
physical” in the sense that they did not occur in nature. The
connection between algebraic ideas (eigenvalues) and physical
ones (weighted strings and planetary orbits) spurred further
research into both.

To convey the flavor of the type of insights that Lagrange and
Laplace were pursuing, consider the following eigenvalue problem
taken from one of the preceding paragraphs. It is reproduced
again here for ease of reference.

a11x + a12y + a13z = λx
a21x + a22y + a23z = λy
a31x + a32y + a33z = λz

Notice that we can subtract away each term on the right from
both sides of each equation. The result is

(a11 – λ)x + a12y + a13z = 0
a21x + (a22 – λ)y + a23z = 0
a31x + a32y + (a33 – λ)z = 0

This is a new set of coefficients. The coefficient in the upper left
corner is now a11 – λ instead of simply a11. The middle coefficient
is now a22 – λ instead of a22, and similarly the coefficient in the
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lower right corner is now a33 – λ instead of a33. The other coeffi-
cients are unchanged. From this new set of coefficients a new
determinant can be computed. (We can, in fact, use the formula
already given for 3 × 3-matrices on page 157: Simply substitute 
a11 – λ, a22 – λ, a33 – λ for a11, a22, and a33 in the formula.) The result
is a third-degree polynomial in the variable λ. This polynomial is
called the characteristic polynomial, and its roots are exactly the
eigenvalues of the original system of linear equations.

The discovery of the characteristic polynomial established an
important connection between two very important branches of
algebra: the theory of determinants and the theory of algebraic
equations. Laplace and Legendre had discovered the results for
particular systems of equations, but there was as yet no general
theory of either determinants or eigenvalues. Their work, howev-
er, pointed to complex and interesting connections among the
theory of determinants, the theory of algebraic equations, and
physics. This very rich interplay of different areas of mathematics
and science is such a frequent feature of discovery in both fields
that today we sometimes take it for granted. At the time of Laplace
and Legendre, however, the existence of these interconnections
was a discovery in itself.

The work of d’Alembert, Laplace, and Legendre gave a great
impetus to the study of eigenvalue problems. Investigators wanted
to understand the relationships that existed between the coeffi-
cients in the equations and the eigenvalues. They wanted to know
how many eigenvalues were associated with each set of equations.
The result of these inquiries was the beginning of a branch of
mathematics called spectral theory—the eigenvalues are some-
times called the spectral values of the system—and the pioneer in
the theoretical study of these types of questions was the French
mathematician Augustin-Louis Cauchy (1789–1857).

Cauchy was born at a time when France was very politically
unstable. This instability profoundly affected both his personal
and his professional life. First the French Revolution of 1789
occurred. While Cauchy was still a boy, the revolution was sup-
planted by a period called the Reign of Terror (1793–94), a period
when approximately 17,000 French citizens were executed and
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many more were imprisoned. In search of safety, Cauchy’s family
fled Paris, the city of his birth, to a village called Arcueil. It was in
Arcueil that Cauchy first met Laplace. Lagrange and Laplace were
friends of Cauchy’s father, and Lagrange advised the elder Cauchy
that his son could best prepare himself for mathematics by study-
ing languages. Dutifully Cauchy studied languages for two years
before beginning his study of mathematics.

By the age of 21 Cauchy was working as a military engineer—at
this time Napoléon was leading wars against his European neigh-
bors—and pursuing research in mathematics in his spare time.
Cauchy wanted to work in an academic environment, but this goal
proved difficult for him. He was passed over for appointments by
several colleges and worked briefly at others. He eventually
secured a position at the Académie des Sciences in 1816. There he
replaced the distinguished professor of geometry Gaspard Monge,
who lost the position for political reasons.

In July of 1830 there was another revolution in France. This time
King Charles X was replaced by Louis-Philippe. As a condition of
employment Cauchy was required to swear an oath of allegiance to
the new king, but this he refused to do. The result was that he lost
the academic post that had meant so much to him. Cauchy found a
position in Turin, Italy, and later in Prague in what is now the Czech
Republic. By 1838 he was able to return to his old position in Paris
as a researcher but not as a teacher: The requirement of the oath
was still in effect, and Cauchy still refused to swear his allegiance. It
was not until 1848, when Louis-Philippe was overthrown, that
Cauchy, who never did swear allegiance, was able to teach again.

All biographies of Cauchy indicate that he was a difficult man,
brusque and preachy. As a consequence he often did not obtain
academic appointments that he very much desired. This pattern
proved a source of frustration throughout his life. Even toward the
end of his career, after producing one of the largest and most 
creative bodies of work in the history of mathematics, he still failed
to gain an appointment that he sought at the Collège de France.

Today there are theorems and problems in many branches of
mathematics that bear Cauchy’s name. His ideas are fundamental
to the fields of analysis, group theory, and geometry as well as
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spectral theory. After his death his papers were collected and pub-
lished. They fill 27 volumes.

One of Cauchy’s earliest papers was about the theory of deter-
minants. He revisited the problems associated with determinants
and eigenvalues several times during his life, each time adding
something different. We concentrate on two of his contributions,
which we sometimes express in a more modern and convenient
notation than Cauchy used.

Cauchy wrote determinants as tables of numbers. For example,
he would write the determinant of the system of linear equations

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

as the table of numbers

a11 a12 a13

a21 a22 a23

a31 a32 a33

The coefficients a11, a22, a33 lie along what is called the main diag-
onal. Cauchy proved that when all the numbers in the table are
real and when the table itself is symmetric with respect to the main
diagonal—so that, for example, a12 = a21—the eigenvalues, or roots
of the characteristic equation, are real numbers. This was the first
such observation relating the eigenvalues of the equations to the
structure of the table of numbers from which the determinant is
calculated. Part of the value of this observation is that it enables
the user to describe various properties of the eigenvalues without
actually computing them. (As a practical matter, computing eigen-
values for large systems of equations involves a great deal of work.)

Cauchy also discovered a kind of “determinant arithmetic.” In
modern language he discovered that when two matrices are mul-
tiplied together in a certain way, the determinant of the product
matrix is the product of the determinants of the two matrices. In
other words, if A and B are two square arrays of numbers, then

The Theory of Matrices and Determinants  165



det(A × B) = det(A) × det(B), where det(A) is shorthand for “the
determinant of A.” These theorems are important because they
hint at the existence of a deeper logical structure.

Another very important discovery by Cauchy is that the roots of
the characteristic polynomial are invariant. Invariance is a concept
that is very important in many branches of mathematics. For
example, in geometry, when a triangle is moved from one part of
the plane to another or when it is rotated about a point, the size
and shape of the triangle are unchanged. We say that under these
types of motions, the size and shape of the triangle are invariant.
Mathematicians find the idea of invariance helpful, because it can
be used to help determine when two things—for example, two sys-
tems of linear equations or two triangles—that may look very dif-
ferent are in some sense the same.

A set of equations can be imagined as a kind of description. They
describe a set of numbers—the numbers that satisfy the equations.
Different-looking descriptions (equations) can sometimes repre-
sent solutions that are, if not identical, then at least similar. Giving
a precise meaning to these very general statements requires math-
ematicians to identify those properties of the system that are fun-
damental or invariant. The coefficients that appear in a system of
linear equations, for example, are not fundamental, since we could
obtain all of the same solutions after multiplying both sides of
every equation by any number other than 0. On the other hand,
the eigenvalues, or roots of the characteristic equation, are an
early example of a fundamental or invariant property of the sys-
tem. Cauchy’s insights into these matters form an important part
of the foundations of spectral theory.

The Theory of Matrices
Credit for founding the theory of matrices is often given to the
English mathematician Arthur Cayley (1821–95) and his close
friend the English mathematician James Joseph Sylvester
(1814–97), but others had essentially the same ideas at roughly the
same time. The German mathematicians Ferdinand Georg
Frobenius (1849–1917) and Ferdinand Gotthold Max Eisenstein
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(1823–52) and the French mathematician Charles Hermite
(1822–1901) are three mathematicians who also made discoveries
similar to those of Cayley and Sylvester. Eisenstein, in fact, seems
to have been the first to think of developing an algebra of matri-
ces. He had been studying systems of linear equations of the form

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

and began to consider the possibility of analyzing the mathemati-
cal properties of what is essentially the “skeleton” of the equation,
the table of coefficients that today we would write as
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Cray Y 190A Supercomputer. Much of the software used by the machine to
solve computationally intensive problems in aeronautics is expressed in
terms of matrix algebra, an application of their work that 19th-century
mathematicians could not have anticipated.  (Courtesy of the National
Aeronautics and Space Administration)



a11 a12 a13

a21 a22 a23

a31 a32 a33

Although this idea may seem similar to that of Cauchy’s tables of
coefficients, it is not. It is true that Cauchy used tables of numbers,
but he used them as an alternate way of representing the determi-
nant function. Eisenstein contemplated the possibility of develop-
ing an algebra in which the objects of interest were not numbers,
or the determinant function, or even polynomials, but rather
matrices. Unfortunately he died before he could follow up on these
ideas. In this discussion we follow the usual practice of emphasiz-
ing Cayley’s and Sylvester’s contributions, but it would, for exam-
ple, be possible to describe the history of matrix algebra from the
point of view of Frobenius, Eisenstein, and Hermite as well.

A great deal has been written about Cayley and Sylvester as
researchers and as friends. Each distinguished himself in mathe-
matics at university, Cayley at Trinity College, Cambridge, and
Sylvester at Saint John’s College, Cambridge. Cayley’s early aca-
demic successes led to increased opportunities at college as well as
a stipend. Sylvester’s early successes proved to be a source of frus-
tration. He was barred from a number of opportunities because of
his faith—he was Jewish—and he left Saint John’s without gradu-
ating. He would eventually receive his degrees in 1841 from
Trinity College, Dublin.

When it came time to find employment as mathematicians, nei-
ther Cayley nor Sylvester found much in the way of work. Cayley
solved the problem by becoming a lawyer. Sylvester, too, became
a lawyer, but his route to the legal profession was more circuitous.
In 1841 he left Great Britain and worked briefly on the faculty at
the University of Virginia. He left the university several months
later after an altercation with a student. Unable to find another
position in the United States, he returned to London in 1843 to
work as an actuary. While working as an actuary, Sylvester tutored
private pupils in mathematics, and it was during this time that he
tutored the medical pioneer Florence Nightingale in mathematics.
(Nightingale was a firm and early believer in the use of statistics to
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evaluate medical protocols.) Finally, in 1850 Sylvester, as did
Cayley, turned to the legal profession to earn a living. That same
year while they were both working as lawyers Cayley and Sylvester
met and formed a lifelong friendship.

Cayley worked as a lawyer for 14 years before he joined the fac-
ulty at Cambridge in 1863. Sylvester worked as a lawyer for five
years until he found a position at the Royal Military Academy,
Woolwich. Cayley, a contemplative man, remained at Cambridge
for most of the rest of his working life. The exception occurred
when he spent a year at Johns Hopkins University in Baltimore,
Maryland, at Sylvester’s invitation. By contrast Sylvester remained
at Woolwich for 15 years and then, in 1876, moved back to the
United States to work at Johns Hopkins University. (Sylvester
played an important role in establishing advanced mathematical
research in the United States.) In 1883 Sylvester returned to the
United Kingdom to work at Oxford University.

Although they were both creative mathematicians their
approaches to mathematics were quite different. Cayley spoke
carefully and produced mathematical papers that were well rea-
soned and rigorous. By contrast, Sylvester was excitable and talk-
ative and did not hesitate to substitute his intuition for a rigorous
proof. He sometimes produced mathematical papers that con-
tained a great deal of elegant and poetic description but were
decidedly short on mathematical rigor. Nevertheless his intuition
could usually be shown to be correct.

The theory of determinants, spectral theory, and the theory of
linear equations had already revealed many of the basic properties
of matrices before anyone conceived of the idea of a matrix. Arthur
Cayley remarked that logically the theory of matrices precedes the
theory of determinants, but historically these theories were devel-
oped in just the opposite order. It was Cayley, author of “A
Memoir on the Theory of Matrices,” published in 1858, who first
described the properties of matrices as mathematical objects. He
had been studying systems of equations of the form

a11x + a12y = u
a21x + a22y = v
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(Notice that in this set of equations the variables x and y are the
independent variables and the variables u and v are the dependent
variables.) Apparently in an effort to streamline his notation he 

simply wrote [a11 a12], a shorthand form of the same equation thata21 a22

preserves all of the information.
Having defined a matrix he began to study the set of all such

matrices as a mathematical system. The most useful and richest part
of the theory concerns the mathematical properties of square matri-
ces of a fixed size—they are called the set of all n × n matrices, where
n represents a fixed natural number greater than 1. In what follows
we restrict our attention to 2 × 2 matrices for simplicity, but similar
definitions and results exist for square matrices of any size.

Matrix addition is defined elementwise. Given a pair of 2 × 2 

matrices, which we can represent with the symbols [a11 a12]a21 a22

and [b11 b12], the sum of these two matrices is [a11 + b11 a12 + b12].b21 b22 a21 + b21 a22 + b22

(The difference of the two matrices is simply obtained by writing a
subtraction sign in place of the addition sign.) With this definition 

of matrix addition the matrix [0 0] plays the same role as the0 0
number 0 in the real number system.

Cayley also defined matrix multiplication. The definition of
matrix multiplication is not especially obvious to most of us, but to
Cayley it was a simple matter because he and others had used this
definition in the study of other mathematics problems, even before
he had begun the study of matrices (see Matrix Multiplication).

There are differences, of course, between matrix arithmetic and
the arithmetic of numbers that we learn in grade school. One sig-
nificant difference is that multiplication is not commutative: That
is, the order in which we multiply two matrices makes a difference.
Given two matrices, which we represent with the letters A and B,
it is generally false that AB and BA are equal. Ordinary multipli-
cation of numbers, by contrast, is commutative: 3 × 4 and 4 × 3,
for example, represent the same number.
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Another significant difference between matrix multiplication
and ordinary multiplication is that (except 0) every number has a
multiplicative inverse. In other words, if the letter x represents any
number other than 0, there is another number—which we can
write as x–1—such that x × x–1 = 1. Many matrices, however, have
no multiplicative inverse; given a square matrix A, it is often the
case that no matrix A–1 exists with the property that A–1 A = I,
where I represents the identity matrix—the matrix with 1s along
the main diagonal and 0s elsewhere.

There is an additional operation that one can perform in matrix
arithmetic that connects the theory of matrices with ordinary
numbers: Not only can one compute the product of two n × n
matrices; it is also possible to multiply any matrix by a number.
For example, if the letter c represents any number then the 

product of c and the matrix [a11 a12] is [ca11 ca12].a21 a22 ca21 ca22

Cayley also investigated polynomials in which the variables that
appear in the polynomial represent matrices instead of numbers.
His most famous result is the relationship between a square matrix
and its characteristic polynomial. On page 163 we described the
characteristic polynomial of a matrix. Cayley showed that if the
matrix is written in place of the variable in the characteristic 
polynomial and the indicated operations are performed, the result
is always the 0 matrix. In other words, each matrix satisfies the
equation obtained by setting its characteristic polynomial to 0, so
it is sometimes said that every matrix is a root of its own charac-
teristic polynomial. This is called the Hamilton–Cayley theorem
after Cayley and the Irish mathematician and astronomer Sir
William Henry Rowan Hamilton (1805–65), who discovered the
same theorem but from a different point of view.

Cayley was a prominent and prolific mathematician, but his
work on matrices did not attract much attention inside Great
Britain. Outside Great Britain it was unknown. Consequently
many of his ideas were later rediscovered elsewhere. In the 1880s
James Joseph Sylvester, who in the intervening years had become
one of the most prominent mathematicians of his time, turned his
attention to the same questions that Cayley had addressed about
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three decades earlier. Whether Sylvester had read Cayley’s old
monograph or rediscovered these ideas independently is not clear.
In any case Sylvester’s work had the effect of drawing attention to
Cayley’s earlier discoveries—a fact that seemed to please Sylvester.
He always spoke highly of his friend—he once described Cayley’s
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MATRIX MULTIPLICATION

Matrix multiplication is defined for square matrices of a fixed but arbitrary
size in such a manner that many of the laws that govern the arithmetic of
ordinary numbers carry over to the matrix case. In what follows we
restrict our attention to 2 × 2 matrices, but similar definitions apply to
any n × n matrix.

Let the matrix [c11 c12] represent the product of the matrices [a11 a12 ]c21 c22 a21 a22

and [b11 b12 ]. Each number cij is obtained by combining the ith row ofb21 b22

the “a-matrix” with the jth column of the “b-matrix” in the following way:

[a11 a12 ] x [b11 b12 ] = [a11b11 + a12b21 a11b12 + a12b22]  a21 a22         b21  b22          a21b11 + a22b21 a21b21 + a22b22

For example, to compute c12, which is equal to a11b12 + a12b22, multiply
the first entry of the first row of the a-matrix by the first entry of the sec-
ond column of the b-matrix, then add this to the product of the second
entry of the first row of the a-matrix multiplied by the second entry of the
second column of the b-matrix. Here are some consequences of this
definition of multiplication:

1. The matrix [1 0] plays the same role as the number 1 in 0  1
the real number system.

2. If we let A, B, and C represent any three n × n matrices,
then multiplication “distributes” over addition, just as in ordi-
nary arithmetic: A(B + C) = AB + AC.

3. If we let A, B, and C represent any three n × n matrices, the
associative property applies: A(BC) = (AB)C.

4. Matrix multiplication is not usually commutative: AB ≠ BA.



memoir on matrices as “the foundation stone” of the subject—but
in this case Sylvester’s prominence and his emphasis on the con-
tributions of Cayley had the effect of obscuring the work of
Frobenius, Eisenstein, Hermite, and others.

Sylvester did more than rediscover Cayley’s work, however.
Sylvester had made important contributions to the theory of
determinants for decades, and he had learned how to use determi-
nants to investigate a number of problems. In a sense he had
become familiar with many of the problems that are important to
the theory of matrices before discovering matrices themselves.
(Sylvester himself coined the term matrix.)

Sylvester was interested in the relationships that exist between a
matrix and its eigenvalues. He discovered, for example, that if A
represents an n × n matrix and λ is an eigenvalue of A, then λj is an
eigenvalue of the matrix Aj, where Aj represents the matrix prod-
uct of A multiplied by itself j times. He produced other results in
a similar vein. For example, suppose the matrix A has an inverse.
Let A–1, represent the inverse of the matrix A so that A–1 × A equals
the identity matrix, that is, the matrix with 1s down the main diag-
onal and 0s elsewhere. Let λ represent an eigenvalue of A; then
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How did this definition of multiplication arise? Mathematicians, Cayley 

among them, had already studied functions of the form y = 
a11x + a12. If a21x + a22

we take a second function of the same form, say, z = 
b11y + b12, and we
b21y + b22

write y = 
a11x + a12 in place of y in the expression for z, and finally  a21x + a22

perform all of the arithmetic, we obtain the following expression: 

z = 
(a11b11 + a12b21)x + (a11b12 + a12b22). Compare this with the entries 
(a21b11 + a22b21)x + (a21b21 + a22b22)

in the product matrix already given. The corresponding entries are 
identical. It is in this sense that matrix multiplication was discovered
before matrices were discovered!



λ–1—also written as 1/λ—is an
eigenvalue of A–1.

The work of Cayley,
Sylvester, and others led to
the development of a branch
of mathematics that proved to
be very useful in ways that
they could not possibly have
predicted. For example, in the
early years of the 20th centu-
ry, physicists were searching
for a way of mathematically
expressing new ideas about
the inner workings of the
atom. These were the early
years of that branch of physics
called quantum mechanics. 
It turned out that the theory

of matrices—developed by Cayley, Sylvester, Frobenius, Hermite,
and Eisenstein in the preceding century—was exactly the right
language for expressing the ideas of quantum mechanics. All the
physicists needed to do was use the mathematics that had been
previously developed (see A Computational Application of Matrix
Algebra). The theory of matrices proved useful in other ways as
well. (Matrices in Ring Theory describes one such area.)

Probably more than any other mathematical discipline, alge-
bra has evolved. Four thousand years ago it was used to facili-
tate simple computations, painstakingly pressed into clay tablets
and left to dry in the desert sun; it is now the language used to
frame and solve many of the most computationally complex
problems in modern physics and engineering. But algebra is
more than a language of scientific computation. Boolean alge-
bra, for example, makes possible the design of logic circuits that
enable computers to carry out sophisticated computations.
Modern algebra has also enabled mathematicians to see below
the surface of mathematics. With the help of the theories of
groups, rings, and fields, mathematicians now understand many
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develop the theory of matrices.
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A COMPUTATIONAL APPLICATION OF
MATRIX ALGEBRA

Although we have come to think of computers as “fast” in the sense that
they can perform many calculations each second, the truth is that they
are not nearly fast enough for scientists and mathematicians interested
in fluid dynamics, biochemistry, and geophysics, to name a few branch-
es of science and engineering that depend on large-scale computations.
The needs of these scientists and mathematicians drive the develop-
ment of ever more efficient hardware and software. Engineers are con-
tinually designing and building faster computers. Mathematicians are
continually devising software that makes more efficient use of the
machines available. No sooner are the new software and hardware fin-
ished, however, than scientists and mathematicians have imagined even
larger, more complicated problems to solve.

Matrix algebra is an integral part of the programs used in numerical
analysis, the branch of mathematics devoted to the study of how to use 

The interior of the submarine USS Seawolf. (U.S. Navy photo used
with permission)

(continues)



of the deeper logical structures and relations on which so much
of their subject depends. These insights have contributed to
progress in all branches of mathematics. In addition, the sym-
bolic language that previous generations of mathematicians
developed to express their algebraic ideas has become the com-
mon language of mathematicians, engineers, and scientists the
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A COMPUTATIONAL APPLICATION OF
MATRIX ALGEBRA

(continued)

computers to solve problems in mathematics. A nice example of the use
of matrix algebra to solve a computationally intensive problem in real
time arises in submarine navigation.

Nuclear submarines are completely dependent on mathematics and
computer technology to solve very large sets of algebraic equations.
Nuclear submarines are huge ships. They can dive deep and they can
cruise underwater at freeway speeds, but they have no windows. The
crew inside cannot see outside. Despite the fact that they sail blindly,
submarines are nevertheless required sometimes to cruise through
waters where they are surrounded by unseen hazards. These hazards
include mountains, icebergs projecting deep beneath the surface of the
water, and, possibly, other ships and submarines. To navigate through
this maze the ship is equipped with sensors that continually collect vast
amounts of data about the environment. The raw or unanalyzed data are
not in themselves sufficient to enable the crew to navigate. Instead these
data serve as input for very large systems of linear equations. The matri-
ces that represent these equations may have hundreds of thousands of
entries, each of which represents a coefficient in a very large system of
equations. Onboard computers continually solve these very large sets of
linear, algebraic equations. The solutions so obtained are interpreted as
information about in-the-area ships, icebergs, or undersea mountains.
This process of analyzing data through the use of algebraic equations is
continuous while the ship is at sea.

The techniques required to manipulate very large matrices are con-
stantly evolving as scientists and engineers seek to solve ever-larger,
more complex problems. There is no end in sight. Progress in a variety
of scientific and engineering disciplines depends on deeper insight into
the algebra of matrices.



The Theory of Matrices and Determinants  177

MATRICES IN RING THEORY

In the 20th century, mathematicians began to investigate a new type of
structure called a ring. A ring is a set of elements that can be combined
through an operation that is analogous to addition in the following ways:

1. If a and b are elements of the ring, so is a + b.

2. Addition is associative: That is, if a, b, and c belong to the
ring, then a + (b + c) = (a + b) + c.

3. There is an element in the ring analogous to 0—it is even
called 0—with the property that 0 + a = a for every element
a in the ring.

4. For every element a in the ring there is another element
called –a that also belongs to the ring such that a + –a = 0.

5. a + b = b + a for all a and b in the ring.

There is a second operation defined on the elements in the ring that is
somewhat analogous to multiplication. It has the following two properties:

1. If a and b belong to the ring then so does the product ab.

2. If a, b, and c belong to the ring then the associative property
holds: a(bc) = (ab)c.

Ring multiplication is not usually commutative (so that it is usually false
that ab = ba), and not every element in the ring has a multiplicative
inverse. If this seems familiar, it is because various sets of n × n matri-
ces together with the operations described in this chapter can be cho-
sen so as to form concrete examples of rings.

The study of the structure of rings became very important during the first
third of the 20th century as a result of the work of the German mathe-
matician Emmy Noether (1882–1935). Ring theory is usually fairly
abstract. Many mathematicians interested in ring theory often just use let-
ters to represent elements in rings, but matrices are so well understood
and have so many fruitful interpretations that it is sometimes helpful to rep-
resent a particular ring as a collection of n × n matrices. These types of
matrix representations enable mathematicians to make some of their
insights “concrete,” even computable, and they enable scientists to make
use of the highly abstract musings of the mathematical theorist. The rep-
resentation of rings and groups via sets of matrices has become an impor-
tant part of contemporary mathematics, physics, and theoretical chemistry.



world over. Many of the ideas that are central to these diverse
and highly mathematical disciplines probably could no longer
be expressed without algebra. It is no exaggeration 
to say that algebra has become the language of mathematics
even as mathematics has become the language of science.
Algebra is everywhere. It has become indispensable to our way
of life.
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C H R O N O L O G Y

ca. 3000 B.C.E.
Hieroglyphic numerals are in use in Egypt.

ca. 2500 B.C.E.
Construction of the Great Pyramid of Khufu takes place.

ca. 2400 B.C.E.
An almost complete system of positional notation is in use in
Mesopotamia.

ca. 1800 B.C.E.
The Code of Hammurabi is promulgated.

ca. 1650 B.C.E.
The Egyptian scribe Ahmes copies what is now known as the Ahmes
(or Rhind) papyrus from an earlier version of the same document.

ca. 1200 B.C.E.
The Trojan War is fought.

ca. 740 B.C.E.
Homer composes the Odyssey and the Iliad, his epic poems about
the Trojan War.

ca. 585 B.C.E.
Thales of Miletus carries out his research into geometry, marking
the beginning of mathematics as a deductive science.

ca. 540 B.C.E.
Pythagoras of Samos establishes the Pythagorean school of 
philosophy.

ca. 500 B.C.E.
Rod numerals are in use in China.
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ca. 420 B.C.E.
Zeno of Elea proposes his philosophical paradoxes.

ca. 399 B.C.E.
Socrates dies.

ca. 360 B.C.E.
Eudoxus, author of the method of exhaustion, carries out his
research into mathematics.

ca. 350 B.C.E.
The Greek mathematician Menaechmus writes an important work
on conic sections.

ca. 347 B.C.E.
Plato dies.

332 B.C.E.
Alexandria, Egypt, center of Greek mathematics, is founded.

ca. 300 B.C.E.
Euclid of Alexandria writes Elements, one of the most influential
mathematics books of all time.

ca. 260 B.C.E.
Aristarchus of Samos discovers a method for computing the ratio of
the Earth–Moon distance to the Earth–Sun distance.

ca. 230 B.C.E.
Eratosthenes of Cyrene computes the circumference of Earth.

Apollonius of Perga writes Conics.

Archimedes of Syracuse writes The Method, Equilibrium of Planes,
and other works.

206 B.C.E.
The Han dynasty is established; Chinese mathematics flourishes.

ca. A.D. 150
Ptolemy of Alexandria writes Almagest, the most influential
astronomy text of antiquity.
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ca. A.D. 250
Diophantus of Alexandria writes Arithmetica, an important step
forward for algebra.

ca. 320
Pappus of Alexandria writes his Collection, one of the last influential
Greek mathematical treatises.

415
The death of the Alexandrian philosopher and mathematician
Hypatia marks the end of the Greek mathematical tradition.

ca. 476
The astronomer and mathematician Aryabhata is born; Indian
mathematics flourishes.

ca. 630
The Hindu mathematician and astronomer Brahmagupta writes
Brahma-sphuta-siddhānta, which contains a description of place-
value notation.

641
The Library of Alexandria is burned.

ca. 775
Scholars in Baghdad begin to translate Hindu and Greek works
into Arabic.

ca. 830
Mohammed ibn-Mūsā al-Khwārizmı̄ writes Hisāb al-jabr wa’l
muqābala, a new approach to algebra.

833
Al-Ma’mūn, founder of the House of Wisdom in Baghdad (now
Iraq), dies.

ca. 840
The Jainist mathematician Mahavira writes Ganita Sara Samgraha,
an important mathematical textbook.

1071
William the Conqueror quells the last of the English rebellions.
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1086
An intensive survey of the wealth of England is carried out and
summarized in the tables and lists of the Domesday Book.

1123
Omar Khayyám, author of Al-jabr w’al muqābala and the Rubáiyát,
the last great classical Islamic mathematician, dies.

ca. 1144
Bhaskara II writes the Lilavati and the Vija-Ganita, two of the last
great works in the classical Indian mathematical tradition.

ca. 1202
Leonardo of Pisa (Fibonacci), author of Liber Abaci, arrives in Europe.

1360
Nicholas Oresme, French mathematician and Roman Catholic
bishop, represents distance as the area beneath a velocity line.

1471
The German artist Albrecht Dürer is born.

1482
Leonardo da Vinci begins to keep his diaries.

ca. 1541
Niccolò Fontana, an Italian mathematician, also known as
Tartaglia, discovers a general method for factoring third-degree
algebraic equations.

1543
Copernicus publishes De Revolutionibus, marking the start of the
Copernican revolution.

1545
Girolamo Cardano, an Italian mathematician and physician, pub-
lishes Ars Magna, marking the beginning of modern algebra. Later
he publishes Liber de Ludo Aleae, the first book on probability.

ca. 1554
Sir Walter Raleigh, an explorer, adventurer, amateur mathemati-
cian, and patron of the mathematician Thomas Harriot, is born.
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1579
François Viète, a French mathematician, publishes Canon
Mathematicus, marking the beginning of modern algebraic 
notation.

1585
The Dutch mathematician and engineer Simon Stevin publishes
“La disme.”

1609
Johannes Kepler, author of Kepler’s laws of planetary motion, pub-
lishes Astronomia Nova.

Galileo Galilei begins his astronomical observations.

1621
The English mathematician and astronomer Thomas Harriot dies.
His only work, Artis Analyticae Praxis, is published in 1631.

ca. 1630
The French lawyer and mathematician Pierre de Fermat begins a
lifetime of mathematical research. He is the first person to claim to
have proved “Fermat’s last theorem.”

1636
Gérard (or Girard) Desargues, a French mathematician and 
engineer, publishes Traité de la section perspective, which marks 
the beginning of projective geometry.

1637
René Descartes, a French philosopher and mathematician, publishes
Discours de la méthode, permanently changing both algebra and
geometry.

1638
Galileo Galilei publishes Dialogues Concerning Two New Sciences
while under arrest.

1640
Blaise Pascal, a French philosopher, scientist, and mathematician,
publishes Essai sur les coniques, an extension of the work of
Desargues.
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1642
Blaise Pascal manufactures an early mechanical calculator, the
Pascaline.

1648
The Thirty Years’ War, a series of conflicts that involves much of
Europe, ends.

1649
Oliver Cromwell takes control of the English government after a
civil war.

1654
Pierre de Fermat and Blaise Pascal exchange a series of letters about
probability, thereby inspiring many mathematicians to study the
subject.

1655
John Wallis, an English mathematician and clergyman, publishes
Arithmetica Infinitorum, an important work that presages calculus.

1657
Christian Huygens, a Dutch mathematician, astronomer, and
physicist, publishes De Ratiociniis in Ludo Aleae, a highly influential
text in probability theory.

1662
John Graunt, an English businessman and a pioneer in statistics,
publishes his research on the London Bills of Mortality.

1673
Gottfried Leibniz, a German philosopher and mathematician, con-
structs a mechanical calculator that can perform addition, subtrac-
tion, multiplication, division, and extraction of roots.

1683
Seki Köwa, a Japanese mathematician, discovers the theory of
determinants.

1684
Gottfried Leibniz publishes the first paper on calculus, Nova
Methodus pro Maximis et Minimis.
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1687
Isaac Newton, a British mathematician and physicist, publishes
Philosophiae Naturalis Principia Mathematica, beginning a new era
in science.

1693
Edmund Halley, a British mathematician and astronomer, under-
takes a statistical study of the mortality statistics in Breslau,
Germany.

1698
Thomas Savery, an English engineer and inventor, patents the first
steam engine.

1705
Jacob Bernoulli, a Swiss mathematician, dies. His major work on
probability, Ars Conjectandi, is published in 1713.

1712
The first Newcomen steam engine is installed.

1718
Abraham de Moivre, a French mathematician, publishes The
Doctrine of Chances, the most advanced text of the time on the the-
ory of probability.

1743
The Anglo-Irish Anglican bishop and philosopher George Berkeley
publishes The Analyst, an attack on the new mathematics pioneered
by Isaac Newton and Gottfried Leibniz.

The French mathematician and philosopher Jean Le Rond
d’Alembert begins work on the Encyclopédie, one of the great works
of the Enlightenment.

1748
Leonhard Euler, a Swiss mathematician, publishes his Introductio.

1749
The French mathematician and scientist George-Louis Leclerc
Buffon publishes the first volume of Histoire naturelle.
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1750
Gabriel Cramer, a Swiss mathematician, publishes “Cramer’s
Rule,” a procedure for solving systems of linear equations.

1760
Daniel Bernoulli, a Swiss mathematician and scientist, publishes his
probabilistic analysis of the risks and benefits of variolation against
smallpox.

1761
Thomas Bayes, an English theologian and mathematician, dies. His
“Essay Towards Solving a Problem in the Doctrine of Chances” is
published two years later.

The English scientist Joseph Black proposes the idea of latent
heat.

1762
Catherine II (Catherine the Great) is proclaimed empress of Russia.

1769
James Watt obtains his first steam engine patent.

1775
American colonists and British troops fight battles at Lexington and
Concord, Massachusetts.

1778
Voltaire (François-Marie Arouet), a French writer and philosopher,
dies.

1781
William Herschel, a German-born British musician and
astronomer, discovers Uranus.

1789
Unrest in France culminates in the French Revolution

1793
The Reign of Terror, a period of brutal, state-sanctioned repres-
sion, begins in France.
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1794
The French mathematician Adrien-Marie Legendre (or Le
Gendre) publishes his Éléments de géométrie, a text that influences
mathematics education for decades.

Antoine-Laurent Lavoisier, a French scientist and discoverer of the
law of conservation of matter, is executed by the French govern-
ment.

1798
Benjamin Thompson (Count Rumford), a British physicist, pro-
poses the equivalence of heat and work.

1799
Napoléon Bonaparte seizes control of the French government.

Caspar Wessel, a Norwegian mathematician and surveyor, publish-
es the first geometric representation of the complex numbers.

1801
Carl Friedrich Gauss, a German mathematician, publishes
Disquisitiones Arithmeticae.

1805
Adrien-Marie Legendre, a French mathematician, publishes
“Nouvelles méthodes pour la détermination des orbites des
comètes,” which contains the first description of the method of
least squares.

1806
Jean-Robert Argand, a French bookkeeper, accountant, and math-
ematician, develops the Argand diagram to represent complex
numbers.

1812
Pierre-Simon Laplace, a French mathematician, publishes Théorie
analytique des probabilités, the most influential 19th-century work on
the theory of probability.

1815
Napoléon suffers final defeat at the Battle of Waterloo.
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Jean-Victor Poncelet, a French mathematician and “father of
projective geometry,” publishes Traité des propriétés projectives des
figures.

1824
The French engineer Sadi Carnot publishes Réflexions, wherein he
describes the Carnot engine.

Niels Henrik Abel, a Norwegian mathematician, publishes his
proof of the impossibility of algebraically solving a general fifth-
degree equation.

1826
Nikolay Ivanovich Lobachevsky, a Russian mathematician and “the
Copernicus of geometry,” announces his theory of non-Euclidean
geometry.

1828
Robert Brown, a Scottish botanist, publishes the first description 
of Brownian motion in “A Brief Account of Microscopical
Observations.”

1830
Charles Babbage, a British mathematician and inventor, begins
work on his analytical engine, the first attempt at a modern com-
puter.

1832
János Bolyai, a Hungarian mathematician, publishes Absolute Science
of Space.

The French mathematician Evariste Galois is killed in a duel.

1843
James Prescott Joule publishes his measurement of the mechanical
equivalent of heat.

1846
The planet Neptune is discovered by the French mathematician
Urbain-Jean-Joseph Le Verrier through a mathematical analysis of
the orbit of Uranus.

188 ALGEBRA



1847
Georg Christian von Staudt publishes Geometrie der Lage, which
shows that projective geometry can be expressed without any con-
cept of length.

1848
Bernhard Bolzano, a Czech mathematician and theologian, dies.
His study of infinite sets, Paradoxien des Unendlichen, is first pub-
lished in 1851.

1850
Rudolph Clausius, a German mathematician and physicist, publish-
es his first paper on the theory of heat.

1851
William Thomson (Lord Kelvin), a British scientist, publishes “On
the Dynamical Theory of Heat.”

1854
George Boole, a British mathematician, publishes Laws of Thought.
The mathematics contained therein later makes possible the design
of computer logic circuits.

The German mathematician Bernhard Riemann gives a historic
lecture, “On the Hypotheses That Form the Foundations of
Geometry.” The ideas therein later play an integral part in the
theory of relativity.

1855
John Snow, a British physician, publishes “On the Mode of
Communication of Cholera,” the first successful epidemiological
study of a disease.

1859
James Clerk Maxwell, a British physicist, proposes a probabilistic
model for the distribution of molecular velocities in a gas.

Charles Darwin, a British biologist, publishes On the Origin of
Species by Means of Natural Selection.

1861
The American Civil War begins.
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1866
The Austrian biologist and monk Gregor Mendel publishes his ideas
on the theory of heredity in “Versuche über Pflanzenhybriden.”

1867
The Canadian Articles of Confederation unify the British colonies
of North America.

1871
Otto von Bismarck is appointed first chancellor of the German
Empire.

1872
The German mathematician Felix Klein announces his Erlanger
Programm, an attempt to categorize all geometries with the use of
group theory.

Lord Kelvin (William Thomson) develops an early analog comput-
er to predict tides.

Richard Dedekind, a German mathematician, rigorously establish-
es the connection between real numbers and the real number line.

1874
Georg Cantor, a German mathematician, publishes “Über eine
Eigenschaft des Inbegriffes aller reelen algebraischen Zahlen,” a
pioneering paper that shows that not all infinite sets are the same
size.

1890
The Hollerith tabulator, an important innovation in calculating
machines, is installed at the United States Census for use in the
1890 census.

1899
The German mathematician David Hilbert publishes the definitive
axiomatic treatment of Euclidean geometry.

1900
David Hilbert announces his list of mathematics problems for the
20th century.
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The Russian mathematician Andrey Andreyevich Markov begins
his research into the theory of probability.

1901
Henri-Léon Lebesgue, a French mathematician, develops his the-
ory of integration.

1905
Ernst Zermelo, a German mathematician, undertakes the task of
axiomatizing set theory.

Albert Einstein, a German-born American physicist, begins to pub-
lish his discoveries in physics.

1906
Marian Smoluchowski, a Polish scientist, publishes his insights into
Brownian motion.

1908
The Hardy-Weinberg law, containing ideas fundamental to popu-
lation genetics, is published.

1910
Bertrand Russell, a British logician and philosopher, and Alfred
North Whitehead, a British mathematician and philosopher, pub-
lish Principia Mathematica, an important work on the foundations
of mathematics.

1914
World War I begins.

1917
Vladimir Ilyich Lenin leads a revolution that results in the found-
ing of the Union of Soviet Socialist Republics.

1918
World War I ends.

The German mathematician Emmy Noether presents her ideas on
the roles of symmetries in physics.
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1929
Andrey Nikolayevich Kolmogorov, a Russian mathematician,
publishes General Theory of Measure and Probability Theory, estab-
lishing the theory of probability on a firm axiomatic basis for the
first time.

1930
Ronald Aylmer Fisher, a British geneticist and statistician, publishes
Genetical Theory of Natural Selection, an important early attempt to
express the theory of natural selection through mathematics.

1931
Kurt Gödel, an Austrian-born American mathematician, publishes
his incompleteness proof.

The Differential Analyzer, an important development in 
analog computers, is developed at Massachusetts Institute of
Technology

1933
Karl Pearson, a British innovator in statistics, retires from
University College, London.

1935
George Horace Gallup, a U.S. statistician, founds the American
Institute of Public Opinion.

1937
The British mathematician Alan Turing publishes his insights on
the limits of computability.

1939
World War II begins.

William Edwards Deming joins the United States Census Bureau.

1945
World War II ends.

1946
The Electronic Numerical Integrator and Calculator (ENIAC)
computer begins operation at the University of Pennsylvania.
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1948
While working at Bell Telephone Labs in the United States, Claude
Shannon publishes “A Mathematical Theory of Communication,”
marking the beginning of the Information Age.

1951
The Universal Automatic Computer (UNIVAC I) is installed at the
U.S. Bureau of the Census.

1954
FORmula TRANslator (FORTRAN), one of the first high-level 
computer languages, is introduced.

1956
The American Walter Shewhart, innovator in the field of quality
control, retires from Bell Telephone Laboratories.

1957
Olga Oleinik publishes “Discontinuous Solutions to Nonlinear
Differential Equations,” a milestone in mathematical physics.

1964
IBM Corporation introduces the IBM System/360 computer for
government agencies and large businesses.

1965
Andrey Nikolayevich Kolmogorov establishes the branch of
mathematics now known as Kolmogorov complexity.

1966
The A Programming Language (APL) is implemented on the IBM
System/360 computer.

1972
Amid much fanfare, the French mathematician and philosopher
René Thom establishes a new field of mathematics called catastro-
phe theory.

1973
The C computer language, developed at Bell Laboratories, is essen-
tially completed.
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1975
The French geophysicist Jean Morlet helps develop a new kind of
analysis based on what he calls wavelets.

1977
Digital Equipment Corporation introduces the VAX computer.

1981
IBM Corporation introduces the IBM personal computer (PC).

1989
The Belgian mathematician Ingrid Daubechies develops what has
become the mathematical foundation for today’s wavelet research.

1991
The Union of Soviet Socialists Republics dissolves into 15 separate
nations.

1995
The British mathematician Andrew Wiles publishes the first proof
of Fermat’s last theorem.

Cray Research introduces the CRAY E-1200, a machine that sus-
tains a rate of 1 terraflop (1 trillion calculations per second) on real-
world applications.

JAVA computer language is introduced commercially by Sun
Microsystems.

1997
René Thom declares the mathematical field of catastrophe theory
“dead.”

2002
Experimental Mathematics celebrates its 10th anniversary. It is a ref-
ereed journal dedicated to the experimental aspects of mathemati-
cal research.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena create a brief,
elegant algorithm to test whether a number is prime, thereby solv-
ing an important centuries-old problem.
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2003
Grigory Perelman produces what may be the first complete proof
of the Poincaré conjecture, a statement on the most fundamental
properties of three-dimensional shapes.
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G L O S S A R Y

algebra (1) a mathematical system that is a generalization of 
arithmetic, in which letters or other symbols are used to represent
numbers; (2) the study of the formal relations between symbols
belonging to sets on which one or more operations has been defined

algebraic equation an equation of the form anxn + an–1xn–1 + . . . +
a1x + a0 = 0 where n can represent any natural number, x repre-
sents the variable raised to the power indicated, and aj, which
always represents a rational number, is the coefficient by which xj

is multiplied

algorithm a formula or procedure used to solve a mathematical
problem

analytic geometry the branch of mathematics that studies geometry
via algebraic methods and coordinate systems

axiom a statement accepted as true that serves as a basis for deduc-
tive reasoning

characteristic equation an algebraic equation associated with the
determinant of a given matrix with the additional property that the
matrix acts as a root of the equation

coefficient a number or symbol representing a number used to mul-
tiply a variable

combinatorics the branch of mathematics concerned with the selec-
tion of elements from finite sets and the operations that are per-
formed with those sets

commensurable evenly divisible by a common measure. Two
lengths (or numbers representing those lengths) are commensurable
when they are evenly divisible by a common unit
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complex number any number of the form a + bi where a and b are
real numbers and i has the property that i2 = –1

composite number a whole number greater than 1 that is not prime

conic section any member of the family of curves obtained from the
intersection of a double cone and a plane

coordinate system a method of establishing a one-to-one corre-
spondence between points in space and sets of numbers

deduction a conclusion obtained by logically reasoning from gener-
al principles to particular statements

degree of an equation for an algebraic equation of one variable, the
largest exponent appearing in the equation

determinant a particular function defined on the set of square matri-
ces. The value of the determinant is a real or complex number

determinant equation an equation or system of equations for which
there exists a unique solution

eigenvalue the root of a characteristic equation

ellipse a closed curve formed by the intersection of a right circular
cone and a plane

field a set of numbers with the property that however two numbers
are combined via the operations of addition, subtraction, multiplica-
tion, and division (except by 0), the result is another number in the
set

fifth-degree equation an algebraic equation in which the highest
exponent appearing in the equation is 5

fourth-degree equation an algebraic equation in which the highest
exponent appearing in the equation is 4

fundamental principle of analytic geometry the observation that
under fairly general conditions one equation in two variables defines
a curve
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fundamental principle of solid analytic geometry the observation
that under fairly general conditions one equation in three variables
defines a surface

fundamental theorem of algebra the statement that any polyno-
mial of degree n has n roots

geometric algebra a method of expressing ideas usually associated
with algebra via the concepts and techniques of Euclidean geometry

group a set of objects together with an operation analogous to mul-
tiplication such that (1) the “product” of any two elements in the set
is an element in the set; (2) the operation is associative, that is, for any
three elements, a, b, and c in the group (ab)c = a(bc); (3) there is an ele-
ment in the set, usually denoted with the letter e, such that ea = ae =
a where a is any element in the set; and (4) every element in the set
has an inverse, so that if a is an element in the set, there is an element
called a–1 such that aa–1 = e

group theory the branch of mathematics devoted to the study of groups

hyperbola a curve composed of the intersection of a plane and both
parts of a double, right circular cone

identity the element, usually denoted with the letter e, in a group with
the property that if g is any element in the group, then eg = ge = g

indeterminate equation an equation or set of equations for which
there exist infinitely many solutions

irrational number any real number that cannot be expressed as a/b,
where a and b are integers and b is not 0

integer any whole number

linear equation an algebraic equation in which every term is a num-
ber or a variable of degree 1 multiplied by a number

matrix a rectangular array or table of numbers or other quantities

natural number the number 1, or any number obtained by adding
1 to itself sufficiently many times
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one-to-one correspondence the pairing of elements between
two sets, A and B, such that each element of A is paired with a
unique element of B and to each element of B is paired a unique
element of A

parabola the curve formed by the intersection of a right circular
cone and a plane that is parallel to a line that generates the cone

polynomial a mathematical expression consisting of the sum of
terms of the form axn, where a represents a number, x represents a
variable, and n represents a nonnegative integer

prime number a natural number greater than 1 that is—among the
set of all natural numbers—evenly divisible only by itself and 1

Pythagorean theorem the statement that for a right triangle the
square of the length of the hypotenuse equals the sum of the squares
of the lengths of the remaining sides

Pythagorean triple three numbers each of which is a natural num-
ber such that the sum of the squares of the two smaller numbers
equals the square of the largest number.

quadratic equation See SECOND-DEGREE EQUATION

quadratic formula a mathematical formula for computing the roots
of any second-degree algebraic equation by using the coefficients that
appear in the equation

rational number any number of the form a/b, where a and b are
integers and b is not 0

real number any rational number or any number that can be approx-
imated to an arbitrarily high degree of accuracy by a rational number

rhetorical algebra algebra that is expressed in words only, without
specialized algebraic symbols

root for any algebraic equation any number that satisfies the equation

second-degree equation an algebraic equation in which the high-
est exponent appearing in the equation is 2

200 ALGEBRA



spectral theory the study that seeks to relate the properties of a
matrix to the properties of its eigenvalues

syllogism a type of formal logical argument described in detail by
Aristotle in the collection of his writings known as The Organon

symmetry transformation a change, such as a rotation or reflec-
tion, of a geometric or physical object with the property that the
spatial configuration of the object is the same before and after the
transformation

syncopated algebra a method of expressing algebra that uses some
abbreviations but does not employ a fully symbolic system of alge-
braic notation

third-degree equation an algebraic equation in which the highest
exponent appearing in the equation is 3

unit fraction a fraction of the form 1/a, where a is any integer except 0
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MODERN WORKS

Adler, Irving. Thinking Machines, a Layman’s Introduction to Logic,
Boolean Algebra, and Computers. New York: John Day, 1961. This
old book is still the best nontechnical introduction to computer
arithmetic. It begins with fingers and ends with Boolean logic
circuits.

Bashmakova, Izabella G. The Beginnings and Evolution of Algebra.
Washington, D.C.: Mathematical Association of America, 2000.
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algebra.
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preeminent mathematics historians of the 20th century. This
work contains much interesting biographical information. The
mathematical information assumes a fairly strong background of
the reader.

Bruno, Leonard C. Math and Mathematicians: The History of
Mathematics Discoveries around the World, 2 vols. Detroit: U.X.L,
1999. Despite its name there is little mathematics in this two-
volume set. What you will find is a very large number of brief
biographies of many individuals who were important in the history
of mathematics.

Bunt, Lucas Nicolaas Hendrik, Phillip S. Jones, Jack D. Bedient. The
Historical Roots of Elementary Mathematics. Englewood Cliffs, N.J.:
Prentice-Hall, 1976. A highly detailed examination—complete
with numerous exercises—of how ancient cultures added, subtract-
ed, divided, multiplied, and reasoned.
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Carroll, L. Symbolic Logic and The Game of Logic. New York: Dover
Publications, 1958. Better known as the author of Alice in
Wonderland, Lewis Carroll was also an accomplished mathemati-
cian. The language in these two books (bound as one) is old-fash-
ioned but very accessible.

Courant, Richard, and Herbert Robbins. What Is Mathematics? An
Elementary Approach to Ideas and Mathematics. New York: Oxford
University Press, 1941. A classic and exhaustive answer to the ques-
tion posed in the title. Courant was an influential 20th-century
mathematician.

Danzig, Tobias. Number, the Language of Science. New York:
Macmillan, 1954. First published in 1930, this book is painfully
elitist; the author’s many prejudices are on display in every chapter.
Yet it is one of the best nontechnical histories of the concept of
number ever written. Apparently it was also Albert Einstein’s
favorite book on the history of mathematics.

Dewdney, Alexander K. 200% of Nothing: An Eye-Opening Tour
through the Twists and Turns of Math Abuse and Innumeracy. New
York: John Wiley & Sons, 1993. A critical look at how mathemati-
cal reasoning has been abused to distort truth.

Eastaway, Robert, and Jeremy Wyndham. Why Do Buses Come in
Threes? The Hidden Mathematics of Everyday Life. New York: John
Wiley & Sons, 1998. Nineteen lighthearted essays on the mathe-
matics underlying everything from luck to scheduling problems.

Eves, Howard. An Introduction to the History of Mathematics. New
York: Holt, Rinehart & Winston, 1953. This well-written history of
mathematics places special emphasis on early mathematics. It is
unusual because the history is accompanied by numerous mathe-
matical problems. (The solutions are in the back of the book.)

Freudenthal, Hans. Mathematics Observed. New York: McGraw-Hill,
1967. A collection of seven survey articles about math topics from
computability to geometry to physics (some more technical than
others).

Gardner, Martin. The Colossal Book of Mathematics. New York:
Norton, 2001. Martin Gardner had a gift for seeing things mathe-
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matically. This “colossal” book contains sections on geometry,
algebra, probability, logic, and more.

———. Logic Machines and Diagrams. Chicago: University of Chicago
Press, 1982. An excellent book on logic and its uses in computers.

Guillen, Michael. Bridges to Infinity: The Human Side of Mathematics. Los
Angeles: Jeremy P. Tarcher, 1983. This book consists of an engaging
nontechnical set of essays on mathematical topics, including non-
Euclidean geometry, transfinite numbers, and catastrophe theory.

Heath, Thomas L. A History of Greek Mathematics. New York: Dover
Publications, 1981. First published early in the 20th century and
reprinted numerous times, this book is still one of the main refer-
ences on the subject.

Hoffman, Paul. Archimedes’ Revenge: The Joys and Perils of
Mathematics. New York: Ballantine, 1989. A relaxed, sometimes
silly look at an interesting and diverse set of math problems rang-
ing from prime numbers and cryptography to Turing machines and
the mathematics of democratic processes.

Hogben, L. Mathematics for the Million. New York: W. W. Norton,
1968. This is a classic text that has been in print for many decades.
Written by a creative scientist, it reveals a view of mathematics, its
history, and its applications that is both challenging and entertain-
ing. Highly recommended.

Jacquette, D. On Boole. Belmont, Calif.: Wadsworth/Thompson
Learning, 2002. This book gives a good overview of Aristotelian
syllogisms, Boolean algebra, and the uses of Boolean algebra in the
design of computer logic circuits.

Joseph, George G. The Crest of the Peacock: The Non-European Roots of
Mathematics. Princeton, N.J.: Princeton University Press, 1991.
One of the best of a new crop of books devoted to this important
topic.

Keyser, Cassius J. The Group Concept. In The World of Mathematics,
vol. 3, edited by James R. Newman. New York: Dover Publications,
1956. A nice introduction to the theory of groups that does not
depend on previous experience with higher mathematics.



Kline, Morris. Mathematics and the Physical World. New York: Thomas
Y. Crowell, 1959. The history of mathematics as it relates to the
history of science, and vice versa.

———. Mathematics for the Nonmathematician. New York: Dover
Publications, 1985. An articulate, not very technical overview of
many important mathematical ideas.

———. Mathematics in Western Culture. New York: Oxford University
Press, 1953. An excellent overview of the development of Western
mathematics in its cultural context, this book is aimed at an audi-
ence with a firm grasp of high school–level mathematics.

McLeish, John. Number. New York: Fawcett Columbine, 1992. A his-
tory of the concept of number from Mesopotamia to modern times.

Pappas, Theoni. The Joy of Mathematics. San Carlos, Calif.: World
Wide/Tetra, 1986. Aimed at a younger audience, this work searches
for interesting applications of mathematics in the world around us.

Pierce, John R. An Introduction to Information Theory: Symbols, Signals
and Noise. New York: Dover Publications, 1961. Despite the sound
of the title, this is not a textbook. Among other topics, Pierce, for-
merly of Bell Laboratories, describes some of the mathematics
involved in encoding numbers and text for digital transmission or
storage—a lucid introduction to the topics of information and alge-
braic coding theory.

Reid, Constance. From Zero to Infinity: What Makes Numbers Interesting.
New York: Thomas Y. Crowell, 1960. A well-written overview of
numbers and the algebra that stimulated their development.

Sawyer, Walter. What Is Calculus About? New York: Random House,
1961. A highly readable description of a sometimes-intimidating,
historically important subject. Absolutely no calculus background
required.

Schiffer, M. and Leon Bowden. The Role of Mathematics in Science.
Washington, D.C.: Mathematical Association of America, 1984.
The first few chapters of this book, ostensibly written for high
school students, will be accessible to many students; the last few
chapters will find a much narrower audience.
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Smith, David E., and Yoshio Mikami. A History of Japanese
Mathematics. Chicago: Open Court, 1914. Copies of this book are
still around, and it is frequently quoted. The first half is an inform-
ative nontechnical survey. The second half is written more for the
expert.

Stewart, Ian. From Here to Infinity. New York: Oxford University
Press, 1996. A well-written, very readable overview of several
important contemporary ideas in geometry, algebra, computability,
chaos, and mathematics in nature.

Swetz, Frank J., editor. From Five Fingers to Infinity: A Journey through
the History of Mathematics. Chicago: Open Court, 1994. This is a
fascinating, though not especially focused, look at the history of
mathematics. Highly recommended.

Swetz, Frank. Sea Island Mathematical Manual: Surveying and
Mathematics in Ancient China. University Park: Pennsylvania State
University Press, 1992. The book contains many ancient problems
in mathematics and measurement and illustrates how problems in
measurement often inspired the development of geometric ideas
and techniques.

Tabak, John. Numbers: Computers, Philosophers, and the Search for
Meaning. New York: Facts On File, 2004. More information about
how the concept of number and ideas about the nature of algebra
evolved together.

Thomas, David A. Math Projects for Young Scientists. New York:
Franklin Watts, 1988. This project-oriented text is an introduction
to several historically important geometry problems.

Yaglom, Isaac M. Geometric Transformations, translated by Allen
Shields. New York: Random House, 1962. Aimed at high school
students, this is a very sophisticated treatment of “simple” geome-
try and an excellent introduction to higher mathematics. It is also
an excellent introduction to the concept of invariance.

Zippin, Leo. The Uses of Infinity. New York: Random House, 1962.
Contains lots of equations—perhaps too many for the uninitiated—
but none of the equations is very difficult. The book is worth the
effort required to read it.



ORIGINAL SOURCES

It can sometimes deepen our appreciation of an important mathe-
matical discovery to read the discoverer’s own description. Often
this is not possible, because the description is too technical.
Fortunately there are exceptions. Sometimes the discovery is
accessible because the idea does not require a lot of technical back-
ground to appreciate it. Sometimes the discoverer writes a non-
technical account of the technical idea that she or he has
discovered. Here are some classic papers:

Ahmes. The Rhind Mathematical Papyrus: Free Translation, Commentary,
and Selected Photographs, Transcription, Literal Translations, translat-
ed by Arnold B. Chace. Reston, Va.: National Council of Teachers
of Mathematics, 1979. This is a translation of the biggest and best
of extant Egyptian mathematical texts, the Rhind papyrus (also
known as the Ahmes papyrus). It provides insight into the types of
problems and methods of solution known to one of humanity’s
oldest cultures.

Boole, George. Mathematical Analysis of Logic. In The World of
Mathematics, vol. 3, edited by James R. Newman. New York: Dover
Publications, 1956. This is a nontechnical excerpt from one of
Boole’s most famous works. Although there is no “Boolean algebra”
in this article, it contains Boole’s own explanation for what he
hoped to gain from studying the laws of thought.

Descartes, René. The Geometry. In The World of Mathematics, vol. 1,
edited by James Newman. New York: Dover Publications, 1956.
This is a readable translation of an excerpt from Descartes’s own
revolutionary work La Géométrie.

Euclid. Elements. Translated by Sir Thomas L. Heath. Great Books of
the Western World. Vol. 11. Chicago: Encyclopaedia Britannica,
1952. See especially book I for Euclid’s own exposition of the
axiomatic method, and read some of the early propositions in this
volume to see how the Greeks investigated mathematics without
equations.

Galilei, Galileo. Dialogues Concerning Two New Sciences. Translated by
Henry Crew and Alfonso de Salvio. New York: Dover Publications,
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1954. An interesting literary work as well as a pioneering physics
text. Many regard the publication of this text as the beginning of
the modern scientific tradition.

Hardy, Godfrey H. A Mathematician’s Apology. Cambridge, England:
Cambridge University Press, 1940. Hardy was an excellent math-
ematician and a good writer. In this oft-quoted and very 
brief book Hardy seeks to explain and sometimes justify his life as
a mathematician.

Russell, Bertrand. Mathematics and the Metaphysicians. In The World of
Mathematics. Vol. 3, edited by James Newman. New York: Dover
Publications, 1956. An introduction to the philosophical ideas upon
which mathematics is founded written by a major contributor to
this field.

INTERNET RESOURCES

Athena Earth and Space Science for K–12. Available on-line. URL:
http://inspire.ospi.wednet.edu:8001/. Updated May 13, 1999.
Funded by NASA’s Public Use of Remote Sensing Data, this site
contains many interesting applications of mathematics to the study
of natural phenomena.

Boyne, Anne. Papers on History of Science. http://nti.educa.
rcanaria.es/penelope/uk_confboye.htm#particular. Downloaded
June 2, 2003. This is a very detailed and interesting paper devoted
to the history of negative numbers. It is well worth reading.

The Eisenhower National Clearinghouse for Mathematics and
Science Education. Available on-line. URL: http://www.enc.org/.
Downloaded on June 2, 2003. As its name implies, this site is a
“clearinghouse” for a comprehensive set of links to interesting sites
in math and science.

Electronic Bookshelf. Available on-line. URL: http://hilbert.
dartmouth.edu/~matc/eBookshelf/art/index.html. Updated on
May 21, 2002. This site is maintained by Dartmouth College. It 
is both visually beautiful and informative, and it has links to 
many creative presentations on computer science, the history of
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mathematics, and mathematics. It also treats a number of other 
topics from a mathematical perspective.

Eric Weisstein’s World of Mathematics. Available on-line. 
URL: http://mathworld.wolfram.com/. Updated on April 10,
2002. This site has brief overviews of a great many topics 
in mathematics. The level of presentation varies substantially 
from topic to topic.

Faber, Vance, et al. This is MEGA Mathematics! Available on-line.
URL: http://www.c3.lanl.gov/mega-math. Downloaded June 2,
2003. Maintained by the Los Alamos National Laboratories, one of
the premier scientific establishments in the world, this site has a
number of unusual offerings. It is well worth a visit.

Fife, Earl, and Larry Husch. Math Archives. “History of
Mathematics.” Available on-line. URL: http://archives.math.utk.
edu/topics/history.html. Updated January 2002. Information on
mathematics, mathematicians, and mathematical organizations.

Gangolli, Ramesh. Asian Contributions to Mathematics. Available on-
line. URL: http://www.pps.k12.or.us/depts-c/mc-me/be-as-ma.pdf.
Downloaded on June 2, 2003. As its name implies, this well-written
on-line book focuses on the history of mathematics in Asia and its
effect on the world history of mathematics. It also includes infor-
mation on the work of Asian Americans, a welcome contribution to
the field.

Heinlow, Lance, and Karen Pagel. “Math History.” Online Resource.
Available on-line. URL: http://www.amatyc.org/OnlineResource/
index.html. Updated May 14, 2003. Created under the auspices of
the American Mathematical Association of Two-Year Colleges, this
site is a very extensive collection of links to mathematical and math-
related topics.

Howard, Mike. Introduction to Crystallography and Mineral Crystal
Systems. Available on-line. URL: http://www.rockhounds.
com/rockshop/xtal/. Downloaded June 3, 2003. The author has
designed a nice introduction to the use of group theory in the
study of crystals through an interesting mix of geometry, algebra,
and mineralogy.
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The Math Forum @ Drexel. The Math Forum Student Center.
Available on-line. URL: http://mathforum.org/students/. Updated
June 2, 2003. Probably the best website for information about the
kinds of mathematics that students encounter in their school-relat-
ed studies. You will find interesting and challenging problems and
solutions for students in grades K–12 as well as a fair amount of 
college-level information.

Melville, Duncan J. Mesopotamian Mathematics. Available on-line.
URL: http://it.stlawu.edu/ca.dmelvill/mesomath/. Updated March
17, 2003. This creative site is devoted to many aspects of
Mesopotamian mathematics. It also has a link to a “cuneiform 
calculator,” which can be fun to use.

O’Connor, John L., and Edmund F. Robertson. The MacTutor
History of Mathematics Archive. Available on-line. URL:
http://www.gap.dcs.st-and.ac.uk/~history/index.html. Updated
May 2003. This is a valuable resource for anyone interested in
learning more about the history of mathematics. It contains an
extraordinary collection of biographies of mathematicians in differ-
ent cultures and times. In addition it provides information about
the historical development of certain key mathematical ideas.

PERIODICALS, THROUGH THE MAIL AND ON-LINE

+Plus

URL: http://pass.maths.org.uk
A site with numerous interesting articles about all aspects of high
school math. They send an email every few weeks to their sub-
scribers to keep them informed about new articles at the site.

Function

Business Manager
Department of Mathematics and Statistics
Monash University
Victoria 3800
Australia



function@maths.monash.edu.au
Published five times per year, this refereed journal is aimed at
older high school students.

The Math Goodies Newsletter

http://www.mathgoodies.com/newsletter/
A popular, free e-newsletter that is sent out twice per month.

Parabola: A Mathematics Magazine for Secondary Students

Australian Mathematics Trust
University of Canberra
ACT 2601
Australia
Published twice a year by the Australian Mathematics Trust 
in association with the University of New South Wales, Parabola
is a source of short high-quality articles on many aspects of
mathematics. Some back issues are also available free on-line.
See URL: http://www.maths.unsw.edu.au/Parabola/index.html.

Pi in the Sky

http://www.pims.math.ca/pi/
Part of the Pacific Institute for the Mathematical Sciences, this
high school mathematics magazine is available over the Internet.

Scientific American

415 Madison Avenue
New York, NY 10017
A serious and widely read monthly magazine, Scientific American
regularly carries high-quality articles on mathematics and mathe-
matically intensive branches of science. This is the one “popular”
source of high-quality mathematical information that you will find
at a newsstand.
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A
abbreviations  See also
algebraic notation
Brahmagupta using
40

Diophantus using
33–34

Mahavira using  43
Abd-al-Hamid ibn-
Turk  50

Abel, Niels Henrik
111, 112–114, 113

abstraction  xii–xiv
Diophantus and  
34

in Greece  23
and need for nota-
tion  71

and ring theory  
177

Viète and  72–73
Abu ‘Otman Sahl ibn
Bishr  49

Academy of Sciences
(Paris)  114, 115, 
164

addition
distributive property
of multiplication
over  27

of matrices  170
of natural numbers
118

Ahmes papyrus
10–11, 11

al-Amı̄n  49
Alembert, Jean Le
Rond d’  84,
159–161, 163

Alexander the Great
131

algebra
arithmetic 
(numerical)  3

Boolean  See
Boolean algebra

changes in  xii–xiv
Chinese  See
Chinese algebra

definition of  xi
Egyptian  See
Egyptian algebra

fundamental theo-
rem of  80, 83–90

geometric  See
geometric algebra

Greek  See Greek
algebra

as language  xi–xiv
Mesopotamian  See
Mesopotamian
algebra

in Middle Ages
60–90

new  110–129
in 19th century
110–129, 130

Omar’s definition of
55

origin of term  51

rhetorical  See
rhetorical algebra

as symbolic language
70, 71–75

syncopated  33, 40,
43, 45

as theory of 
equations  60–90

as tool in science
69–70

algebraic identities
42–43

algebraic notation
abstraction and need
for  71

benefits of  40,
108–109

Bhaskara and  45
Brahmagupta and
40

Descartes and  97,
100

for determinants
157–158

Diophantus and  
33

Fermat and  104
Harriot and  77
innovations in  70,
71

lack of
in China  13–14,
17

al-Khwārizmı̄ and
51, 54

Italic page numbers indicate illustrations.



in Mesopotamia
3–4

Leibniz and
108–109

Mahavira and  43
Newton and
108–109

Viète and  72–74
algebras  153
algorithm, origin of
term  51

Ali-sabi Thabit ibn
Qurra al-Harrani  
49

“all is number”  20, 
22

analytic geometry  91
Descartes and
97–98

Fermat and  102
fundamental princi-
ple of  101, 103

progress in  107
AND  148

definition of
141–142

truth table for  145,
146

AND-gates  151–152
Andronicus of Rhodes
133

angle, trisecting  30,
110

Apollonius of Perga
92–94, 103

applied mathematics
88

approximation
in China  14–15
in Greece  19, 31, 33
Leonardo of Pisa
and  59, 63

in Mesopotamia  7,
9, 14–15

in Middle Ages  63

Arabic mathematics
See Islamic mathe-
matics

Archimedes  69
area, as variable  3–4
Argand, Jean Robert
87

Argand diagram  87
Aristarchus of Samos
69

Aristotle  130–133,
131
on incommensura-
bility  22

life of  131
and logic  130–133,
136, 140, 141,
144–145

Arithmetica
(Diophantus)  32–34

arithmetic algebra  3
Arithmetical Sage  155
Arithmetic in Nine
Sections See Nine
Chapters on the
Mathematical Art

Ars Magna (Cardano)
61, 66–71

Artis Analyticae Praxis
(Harriot)  79

astrology  39
astronomy

Bhaskara and  44
Harriot and  77
Indian mathematics
and  38, 39

Omar and  56
Viète and  75

atom  174
axes  93
axioms

for Boolean algebra
142, 148, 149

definition of  136,
148–149

B
Baghdad  48, 49, 50
ballistics  66
Bhaskara  44–46, 47
Bhaskaracharya  See
Bhaskara

Bijaganita (Bhaskara)
45

bilateral symmetry  127
binary code  150
biochemistry  175
book burning, in
China  13

Book of my life
(Cardano)  See De
Propria Vita
(Cardano)

Boole, George
137–141, 139, 152

Boolean algebra
141–152
and computers  138,
146, 149–152, 174,
175

refining and extend-
ing  146–149

Brahmagupta  38–42
on algebra  52
and algebraic nota-
tion  40

vs. Diophantus  40–41
and indeterminate
equations  41

and irrational 
numbers  41

motivation of  51
and negative num-
bers  40–41

and rational 
numbers  41

and second-degree
equations  41

Brahma-sphuta-
siddhānta (Brahma-
gupta)  38, 42
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bullet, speeding, tem-
perature profile of air
of  88

“bundles”  16–17

C
calculus

discovery of  107
universal  135–136

calendar  56, 56
caliphs  49
Cambridge University
168, 169

Canon Mathematics Seu
ad Triangula (Viète)
75

Cardano, Girolamo
66–71, 68

Cartesian coordinates
98, 104

Cartesian coordinate
system  98

categorical proposi-
tions  131–133

Cauchy, Augustin-
Louis  163–166
on finite groups  xiii
reviewing Galois
paper  115

table of numbers of
165, 168

and theory of deter-
minants  165

Cayley, Arthur  166,
167, 168–174

characteristic polyno-
mial  163, 171

Charles X (king of
France)  116, 164

chemistry
group theory in
127, 127–128

ring theory in  177
symbols in  137

China
book burning in  13
written records from
12–17

Chinese algebra  xi,
12–17
Greek algebra and
14, 18

Mesopotamian alge-
bra and  14–15

Christina (queen of
Sweden)  102

circle, squaring  30,
110

circuits  151, 174
clay tablets  2, 7, 9,
105, 174

code  74–75
coefficients

Brahmagupta on  40
definition of  61
negative  64
in systems of linear
equations  156,
162–163, 166

table of  167–168
in table of numbers
165

Viète assigning
dimensions to
73–74

Collège de France
164

Collège Royal de
Louis-le-Grand  115

colors, representing
variables  40

combinatorics  43
commensurability  22,
23

compass  29–31, 69,
117, 118

complex numbers
Euler on  84
Gauss on  86

geometric represen-
tation of  86, 87, 87

Girard on  79–80
Leibniz on  82–83,
84

understanding  88
complex variables, the-
ory of  88

composite numbers
80

computer algorithms
154

computer chip design
138, 150

computer circuitry
design  149

computer hardware
146, 175

computers, Boolean
algebra and  138, 146,
149–152, 174, 175

computer software
146, 175

Conics (Apollonius)
92–93

conic sections  93, 99,
101, 103

constructible numbers
117, 117–119

coordinates
Cartesian  98, 104
oblique  104

coordinate system
93–94, 98, 107–108

Cramer, Gabriel
158–159

Cramer’s rule
158–159

Cray-2 Supercomputer
150

Cray-Y 190A
Supercomputer  167

Crelle, August
Leopold  114

Crotona  20

Index  215



cube, doubling  30,
110, 117–122

cubic equations  See
third-degree equa-
tions

cuneiform  2, 7, 105

D
d’Alembert, Jean Le
Rond  See Alembert,
Jean Le Rond d’

decryption  74–75
Dedekind, Richard  25
deductive reasoning
136–137

definitions  136
degree of equation  58,
74

del Ferro, Scipione
63–64, 81

Descartes, René  95,
95–102
algebraic notation of
97, 100

and analytic geome-
try  97–98

book of  96–97, 100
and equations
99–101

Leibniz studying
work of  134

on multiplication
98, 98–99

on negative numbers
98

on variables as line
segments  97, 130

determinant arithmetic
165–166

determinants
algebraic notation
for  157–158

computing multiple
158–159

definition of
153–154

Leibniz on  155–157
determinants, theory
of  153–177
Cauchy and  165
early ideas of
155–159

spectral theory and
159–166

determinate equations
Bhaskara and  45
in China  15

Dialogues Concerning
Two New Sciences
(Galileo)  69–70

Diophantus of
Alexandria  1, 31–34,
94
and abstraction  34
algebraic notation of
33

vs. Brahmagupta
40–41

motivation of  51
on negative numbers
33

Discours de la méthode
(Descartes)  96–97,
100

distributive law  27, 27
divisibility  80
division, of natural
numbers  118–119

doubling cubes  30,
110, 117–122

E
École Normale
Supérieure  115, 116

École Polytechnique
115

Egypt
education in  11

written records from
10–11

Egyptian algebra  xi,
10–12

eigenvalue problems
160–161, 162–163

eigenvalues  166
matrix and  173–174
negative  161
positive  161, 162
relating to table of
numbers  165

Eisenstein, Ferdinand
Gotthold Max  166,
167–168, 173, 174

electronic calculators
9

electronic circuit  151
Elements (Euclid)  26,
27, 28–31

Elizabeth I (queen of
England)  76, 78

ellipse  92, 99, 103
equations

algebra as theory of
60–90

Brahmagupta and
40–41

concept of number
and  58

degree of  58, 74
Descartes on
99–101

determinate  See
determinate equa-
tions

Fermat on  103–104
fifth-degree  81–82,
112–114

first-degree  See
first-degree equa-
tions

fourth-degree  See
fourth-degree equa-
tions
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Galois theory and
122–129

indeterminate  
See indeterminate
equations

linear factors and
77–78, 80–82, 84

in Mesopotamia  2,
3, 4, 5–7

during Renaissance
60, 61, 62

roots of  61, 74
second-degree  See
second-degree
equations

third-degree  See
third-degree 
equations

Equations of Several
Colors (Brahmagupta)
40

Euclid  19, 26, 27,
28–31

Euclidean geometry  28
Euler, Leonhard  83,
83–84, 85, 112

exact results
Girard and  81
in Greece  19, 31

experimental method
137

F
Fermat, Pierre de  10,
34, 102–106

Fermat’s last theorem
10, 34, 105–106

Ferrari, Lodovico
66–68, 81, 113

Fibonacci  See
Leonardo of Pisa

Fibonacci series  59
field  119–123

intermediary
119–122

rational numbers
forming  119

real numbers forming
119

splitting  123,
126–129

fifth-degree equations
81–82, 112–114

finite groups  xiii
Fior, Antonio Maria
64, 65–66

first-degree equations
Bhaskara and  45
in Egypt  12
form of  6
in Mesopotamia  6

fluid dynamics  175
Fontana, Niccolò  See
Tartaglia

four, as number of 
justice and retribu-
tion  21

Fourier, Joseph  115
fourth-degree 
equations
in Ars Magna 68
definition of  6
Ferrari solving  67,
113

in Mesopotamia  
6–7

Omar and  57, 73
fractions

in Egypt  11
Pythagoreans not
recognizing  21–22

vs. ratio  22
French Revolution
116, 163

Frobenius, Ferdinand
Georg  166, 173, 
174

fundamental principle
of analytic geometry
101, 103

fundamental principle
of solid analytic
geometry  101

fundamental theorem
of algebra  80, 83–90

G
Galileo Galilei  69,
69–70
and inductive rea-
soning  137

Leibniz studying
work of  134

Galois, Évariste  111,
111, 114–117

Galois theory
117–122

Ganita Sara Samgraha
(Mahavira)  42, 43

gates  151–152
Gauss, Carl Friedrich
85–86, 112, 114

geometric algebra
91–109
Greek  25–31, 91–94
Mahavira and  43
in 17th century  91,
95–109

geometric representa-
tion
of complex number
system  86, 87, 87

of conic sections  99
of equations  99
of multiplication  98,
98–99

geometry
analytic  See analytic
geometry

changes in  xii
Euclidean  28
and indeterminate
equations  7

invariance in  166
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al-Khwārizmı̄ and  52
Omar and  57
as tool in science  69

geophysics  175
Girard, Albert  79–83
Gold Medal from
Royal Society of
London  140

Greek algebra  18–34
and Chinese algebra
14, 18

Diophantus of
Alexandria and  1,
31–34, 94

Egyptian algebra and
12

geometric  25–31,
91–94

and Mesopotamian
algebra  14, 18

Pythagoreans and
19–25

reconstructing writ-
ten texts of  102–103

unique nature of  18
group theory  xiii,
123–129

gun quadrant  66

H
Hamilton, Sir William
Henry Rowan  171

Hamilton-Cayley the-
orem  171

Han dynasty  12–13
hardware, computer
146, 175

Harriot, Thomas
75–79, 81

Harūn ar-Rashı̄d  49
Head jewel of accuracy
(Bhaskara)  See
Siddhānta Siromani
(Bhaskara)

heap  12
Henry IV (king of
France)  74, 75

Hermite, Charles  167,
173, 174

Hindu mathematics
See Indian mathemat-
ics

Hindu system of
numeration  42

Hisāb al-jahr wa’l
muqābala (al-
Khwārizmı̄)  51

Holmboe, Bernt  112
House of Wisdom
(Baghdad)  49, 50, 52

Huguenots  72
Hypatia  35, 35
hyperbola  92, 99, 103

I
ibn Habib ibn Hani
49

identities, algebraic
42–43

identity matrix  171,
173

identity transformation
128

ideogram  135, 137
i-index  156
imaginary number  77
incommensurability
22–25, 33

indeterminate equa-
tions
Bhaskara and  45
Brahmagupta and
41

in China  15
definition of  7
geometry and  7
in Mesopotamia
7–10

Indian mathematics
36–46
Bhaskara and  44–46
Brahmagupta and
38–42

and Islamic mathe-
matics  58

Mahavira and  42–44
Indian system of 
notation  59

inductive reasoning
136–137

“input”  9
input file  150
intermediary field
119–122

invariance  166
Invention nouvelle en
l’algèbre (Girard)  79

“inverse operation,
rule of”  38–39

inverse problems
77–78

An Investigation into the
Laws of Thought on
Which are Founded the
Mathematical Theories
of Logic and
Probabilities (Boole)
152

irrational numbers
117
Bhaskara accepting
45

Brahmagupta and
41

constructible  119
definition of  25

Islamic mathematics
46–59  See also al-
Khwārizmı̄,
Mohammed ibn-Mūsā
and Indian mathe-
matics  58

Omar and  54–59
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J
Al-jahr w’al muqābala
(Omar)  56

Jainism  42
James I (king of
England)  78

Japanese mathematics
155

Jevons, William
Stanley  147

j-index  156
Johns Hopkins
University  169

justice, number of  
21

K
al-Khwārizmı̄,
Mohammed ibn-
Mūsā 48, 50–54, 58
book of  51
and Cardano  68
example from work
of  53, 61–62

and geometry  52
influence of  60
and lack of algebraic
notation  51, 54

on negative num-
bers  51

rhetorical algebra of
52, 54

and second-degree
equations  51–52,
56–57

and square roots
53–54

on zero  51

L
Lagrange, Joseph-
Louis  84, 161–163,
164

language
logic and  133
scientific  135, 136,
145

Laplace, Pierre-Simon
84, 161–163, 164

laws of thought
130–152

Leelavati (Bhaskara)
45

Leibniz, Wilhelm
Gottfried  107,
133–137
algebraic notation of
108–109

on complex numbers
82–83, 84

on deductive reason-
ing  136–137

on determinants
155–157

and relationships
among symbols
130

and scientific lan-
guage  135, 136, 145

solving systems of
linear equations
156–157

length
uncertainty and  19
as variable  3–4, 73

Leonardo of Pisa  59,
62–63

letters
representing objects
153

representing vari-
ables  72–73

linear equations  See
first-degree equa-
tions
systems of  See
systems of linear
equations

linear factors  77–78,
84

line segments  97
linguistic barriers,
progress in math and
science hindered by
134–135

logic
Aristotle and
130–133, 136, 140,
141, 144–145

and language  133
symbolic  140,
141–146

logical product
141–142, 144–145

logical sum  144–146
logic circuits  146
Louis-Philippe (king
of France)  164

Lyceum  131, 133

M
Mahavira  42–44, 52
Mahaviracharya  See
Mahavira

main diagonal  165
al-Ma’mūn  49–50, 51
“Mathematical
Analysis of Logic”
(Boole)  138, 152

Mathematical laws
applied to triangles
(Viète)  See Canon
Mathematics Seu ad
Triangula (Viète)

mathematics
applied  88
Boole on  138, 146
nature of  85
structure in  129
true subject matter
of  130

utility of  19
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mathematics tablets
See clay tablets

matrix (matrices)
addition of  170
characteristic poly-
nomial of  171

coining of term  173
definition of  153
and eigenvalues
173–174

mathematical prop-
erties of  170

multiplication of
165–166, 170–171,
172–173

subtraction of  170
matrix theory
153–177
application of
175–176

discovery of
166–177

early ideas of
155–159

spectral theory and
159–166

Mayan civilization  36
“A Memoir on the
Theory of Matrices”
(Cayley)  169

Menaechmus  91–92
Mersenne, Marin  104
Mesopotamia, written
records from  1–2

Mesopotamian algebra
xi, xii, 2–10
and Chinese algebra
14–15

Greek algebra and
14, 18

microprocessors  150
Middle Ages  60–90
Monge, Gaspard  164
monochord  20, 20–21
Moors  59

Muhammad  47, 48
multiple solutions
33–34

multiplication
Descartes on  98,
98–99

distributive property
of, over addition  27

in Egypt  12
of matrices
165–166, 170–171,
172–173

of natural numbers
118–119

of rings  177
multiplicative inverse
171

Museum  28
music, and mathemat-
ics  20, 20–21

Muslim mathematics
See Islamic mathe-
matics

N
NAND-gates  151, 152
Napoléon Bonaparte
116, 164

National Institute for
Standards and
Technology  88

natural numbers  80,
117, 118–119

navigational tech-
niques  76

negative coefficients
64

negative eigenvalues
161

negative numbers
Bhaskara accepting
45

Brahmagupta accept-
ing  40–41

Brahmagupta’s 
symbol for  40

in China  15
Descartes on  98
Diophantus on  33
al-Khwārizmı̄ avoid-
ing  51

in Mesopotamia  5
Pythagoreans not
recognizing  21

new algebra  110–129
A new science
(Tartaglia)  See Nova
Scientia (Tartaglia)

Newton, Sir Isaac
107–109, 130

Nightingale, Florence
168–169

Nine Chapters on the
Mathematical Art
13–17

Noether, Emmy  177
nonexistence proof  24
nonperpendicular axes
See oblique axes

NOR  141
NOR-gates  151, 152
notation  See algebraic
notation

NOT-gates  151, 152
Nova Scientia
(Tartaglia)  66

nuclear submarines
176

number(s)
complex  See com-
plex numbers

composite  80
concept of  5

and equations  58
constructible  117,
117–119

imaginary  77
irrational  See irra-
tional numbers
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natural  80, 117,
118–119

nature of  18
negative  See nega-
tive numbers

prime  80
Pythagorean idea of
20, 21–24

rational  See rational
numbers

real  117, 119
table of  165, 168
whole  21

number theory  104
numeration, Hindu
system of  42

numerical algebra  3
numerical analysis
175–176

numerical palindrome
42

O
oblique axes  93
oblique coordinates
104

octave  21
Omar Khayyám
54–59

one (1)
in Boolean algebra
143

as number of reason
21

Pythagoreans on  
22

On Polygonal Numbers
(Diophantus)  32–34

The opening of the
universe
(Brahmagupta)  See
Brahma-sphuta-
siddhānta
(Brahmagupta)

operations  153
operators  141–142,
151

optics  138
OR  141

definition of  142
refining  147–148
truth table for  148,
148

Organon (Aristotle)
133

OR-gates  151, 152
output file  150–151
Oxford University  75,
169

P
Pappus of Alexandria
103

parabolas  92, 92, 99,
103

perfect fifth  21
perfect fourth  21
permutation group
123–129

Persian calendar  56,
56

philosophy of mind
146

physics  66, 174, 177
place-value notation
59

planar coordinate sys-
tem  93–94

Plane Loci (Apollonius)
103

planetary motion
161–162

Plato  22–23, 131
Plimpton 322  7, 105
poetry  37, 42, 44, 46,
47

Poisson, Siméon-
Denis  116

polynomials  88–89
characteristic  163,
171

positive eigenvalues
161, 162

positive numbers  21
Praxis (Harriot)  79
prime numbers  80
probability  43
probability theory  
146

problem texts  2
processing  150, 151
propositions  131–133,
143–146

De Propria Vita
(Cardano)  66

protoalgebra  3
Pythagoras  11, 18,
19–20

Pythagoreans  19–25
Pythagorean theorem
20
in China  15
and constructible
numbers  119

Fermat and  105
in Mesopotamia
7–10, 15

Pythagorean triples
10, 15, 105

Q
Qin Shi Huang
(emperor of China)
13

quadratic equations
See second-degree
equations

quadratic formula
5–6, 62

quantum mechanics
174

Queen’s College  140
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R
Raleigh, Sir Walter
75–78, 76

ratio, vs. fraction  22
rational numbers  117

Brahmagupta and
41

Diophantus on  33
extension of  122
forming field  119,
122

real numbers  117, 119
reason, number of  21
reasoning  See also
logic
deductive  136–137
inductive  136–137
principles of  140

recursion algorithm  9
reflection  125,
125–126, 127, 128

Reign of Terror
163–164

religion, astronomy
and  38

Renaissance  60–71,
133

retribution, number of
21

rhetorical algebra
in China  13, 16–17
disadvantages of  71
al-Khwārizmı̄ using
52, 54

Rhind papyrus  See
Ahmes papyrus

rings  153
definition of  177
multiplication of
177

ring theory  177
roots of equation  61,
74

rotation  124, 124,
125, 127, 128

Royal College at La
Flèche  96

Royal Military
Academy  169

Royal Society of
London  140

The Rubáiyát of Omar
Khayyám (Omar)  55

Rule  16
“rule of inverse opera-
tion”  38–39

rules  38, 42
Russell, Bertrand  137

S
Saint John’s College
(Cambridge)  168

Samarra  48
Schröder, Ernst
148–149

scientific language
135, 136, 145

Seawolf (submarine)
175

second-degree equa-
tions
Bhaskara and  45, 46
Brahmagupta and
41

and computing
square roots  8

definition of  5
Fermat and  103
form of  5
al-Khwārizmı̄ solv-
ing  51–52, 61–62

in Mesopotamia
5–7, 62

Omar solving  
56–57

during Renaissance
61, 62

Seki Köwa  155
semigroups  153

Siddhānta Siromani
(Bhaskara)  44–46

software, computer
146, 175

solar system  161–162
solid analytic geome-
try, fundamental prin-
ciple  101

spectral theory
159–166

speeding bullet, tem-
perature profile of air
of  88

splitting fields  123,
126–129

square root(s)
approximation for
14

al-Khwārizmı̄ and
53–54

in Mesopotamia  8–9
of positive number  8

square root sign (√)  8
squaring circles  30,
110

standard equations,
Fermat and  103–104

Stevin, Simon  79
straightedge  29–31,
69, 117, 118

structure  129, 153
subgroup  125
submarine navigation
176

subtraction
of matrices  170
of natural numbers
118

Sulvasutras 36–37
Sumer  1–2
supercomputer  150,
167

syllogism  131–133,
136, 140, 141,
144–145
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Sylvester, James 
Joseph  166, 167,
168–174, 174

symbolic logic  140,
141–146

symbols  See also
algebraic notation
Brahmagupta using
40

in chemistry  137
Descartes using  97
Diophantus using
33

Mahavira using  43
relationships among
130

symmetries  127–128
symmetry groups  128
symmetry transforma-
tion  128

syncopated algebra
33, 40, 43, 45

systems of linear 
equations
d’Alembert solving
160–161

coefficients in  156,
162–163, 166

definition of  154
Laplace and
Lagrange solving
161–163

Leibniz solving
156–157

overdetermined  
156

T
table of coefficients
167–168

table of numbers  165,
168

Takakazu  See Seki
Köwa

Tartaglia  64–66, 65,
67–68, 81, 110, 113

telescopes  77
temperature profile of
air of speeding bullet
88

Thales  11, 18
theorems  136, 149
third-degree equations

definition of  6
del Ferro and  64
Harriot solving
77–78

Leonardo of Pisa
solving  62–63

in Mesopotamia  
6–7

Omar and  57
Tartaglia solving  
65, 67–68, 113

Thirty Years’ War
133, 134

thought, laws of
130–152

threshold voltage
151–152

Torproley, Nathaniel
77, 78

trigonometry  75
Trinity College
(Cambridge)  168

trisecting angles  30,
110

truth table
for AND  145, 146
for OR  148, 148

typhus  66

U
Ujjain  38, 39, 44
uncertainty  19
unison  21
unit fractions  11
unity  134

universal calculus
135–136

universal symbols  
135–136

University of Altdorf
134

University of Bologna
63

University of
Christiania  112

University of Leiden
79

University of Leipzig
134

University of Milan
67

University of Poitiers
72, 96

University of Virginia
168

V
van der Waerden, B.
L.  xi

variables
area as  3–4
in China  16–17
colors representing
40

complex, theory of
88

in Egypt  12
in geometric 
algebra  28–29

length as  3–4, 73
letters representing
72–73

as line segments  
97

in Mesopotamia  
3–4

width as  3–4
Venn diagram
142–143, 143
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verse  37, 42, 44, 46,
47

Viète, François  71–75,
81, 95

W
whole number ratios
20–22

musical pitches as
20–21

universal importance
of  21

whole numbers  21
width, as variable  
3–4

Wiles, Andrew  106
word problems  43

Z
zero (0)

in Boolean algebra
143

al-Khwārizmı̄ avoid-
ing  51

Pythagoreans not
recognizing  21

zero (0) matrix  171
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