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Praise for Making Better Decisions

“The book is a modern take on decision making. The innovative 
scope will inspire instructors by encouraging them to include a 
combination rather than a subset of decision-theoretic, statistical, 
behavioral, and philosophical concepts in their courses.”

Marzena J. Rostek, University of Wisconsin

“Written by a leading authority and teacher in the area of decision 
theory, this is a terrific combined textbook–handbook for students 
and practitioners of management. Indeed, it is a terrific book for 
everyone interested in ‘making better decisions.’”

Adam Brandenburger, New York University

“This book is extremely effective for anyone who wants to acquire 
quick, basic understanding of old and new concepts of decision 
 theory, with a minimum level of technical details.”

Ehud Kalai, Northwestern University

ffirs.indd   iffirs.indd   i 7/15/2010   5:58:23 AM7/15/2010   5:58:23 AM



To Eva, Alma, and Erga

ffirs.indd   iiffirs.indd   ii 7/15/2010   5:58:23 AM7/15/2010   5:58:23 AM



Making Better Decisions
Decision Theory in Practice

Itzhak Gilboa

A John Wiley & Sons, Ltd., Publication

ffirs.indd   iiiffirs.indd   iii 7/15/2010   5:58:23 AM7/15/2010   5:58:23 AM



This edition first published 2011
© 2011 John Wiley & Sons, Inc.

Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell’s 
publishing program has been merged with Wiley’s global Scientific, Technical, and 
Medical business to form Wiley-Blackwell.

Registered Office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, 
United Kingdom

Editorial Offices
350 Main Street, Malden, MA 02148-5020, USA
9600 Garsington Road, Oxford, OX4 2DQ, UK
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, for customer services, and for information about 
how to apply for permission to reuse the copyright material in this book please see our 
web site at www.wiley.com/wiley-blackwell.

The right of Itzhak Gilboa to be identified as the author of this work has been asserted in 
accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording or otherwise, except as permitted by the UK Copyright, Designs and 
Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears 
in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trade-
marks. All brand names and product names used in this book are trade names, service 
marks, trademarks or registered trademarks of their respective owners. The publisher is 
not associated with any product or vendor mentioned in this book. This publication is 
designed to provide accurate and authoritative information in regard to the subject mat-
ter covered. It is sold on the understanding that the publisher is not engaged in rendering 
professional services. If professional advice or other expert assistance is required, the 
services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Gilboa, Itzhak. 
Making better decisions : decision theory in practice / Itzhak Gilboa.
  p. cm.
 Includes bibliographical references and index.
 ISBN 978-1-4443-3651-1 (hardback) – ISBN 978-1-4443-3652-8 (pbk. : alk. paper) 
1. Decision making. I. Title. 
 QA279.4.G554 2011
 658.4’03–dc22

A catalogue record for this book is available from the British Library.

Set in 10.5/13.5pt Palatino by SPi Publisher Services, Pondicherry, India.
Printed in Singapore

01 2011

ffirs.indd   ivffirs.indd   iv 7/15/2010   5:58:23 AM7/15/2010   5:58:23 AM



Contents

Preface viii
Acknowledgments x

1 Background 1
 Suggested Reading 5

2 Judgment and Choice Biases 6
 Introduction 6
 Problems – Group A 9
 Problems – Group B 12
 Framing Effects 15
 Brainstorming and Formal Models 20
 Endowment Effect 22
 Sunk Costs 27
 Decision Trees 30
 Representativeness Heuristic 34 
 Availability Heuristic 39
 Anchoring 44
 Mental Accounting 46
 Dynamic Inconsistency 51
 Exercises 53

9781444336511_2_toc.indd   v9781444336511_2_toc.indd   v 7/9/2010   6:08:58 AM7/9/2010   6:08:58 AM



Contents

vi

3 Consuming Statistical Data 57
 Introduction 57
 Problems 58
 Conditional Probabilities 63
 Gambler’s Fallacy 72
 Biased Samples 77
 Regression to the Mean 80
 Correlation and Causation 81
 Statistical Significance 84
 Bayesian and Classical Statistics 85
 Exercises 93

4 Decisions under Risk 98
 Introduction 98
 Problems 99
 The Independence Axiom 102
 Von Neumann and Morgenstern’s Result 110
 Measurement of Utility 113
 Risk Aversion 116
 Prospect Theory 123
 Exercises 130

5 Decisions under Uncertainty 133
 Introduction 133
 Problems 134
 Subjective Probability 141
 Learning From the Fact We Know 151
 Causality 163
 The Sure Thing Principle 166
 Alternative Models 171
 Objective Probabilities 172
 Exercises 174

6 Well-Being and Happiness 178
 Introduction 178
 Problems – Group A 179
 Problems – Group B 180

9781444336511_2_toc.indd   vi9781444336511_2_toc.indd   vi 7/9/2010   6:08:58 AM7/9/2010   6:08:58 AM



Contents

vii

 Well-Being 181
 Measurement Issues 184
 What’s Happiness?  186
 Exercises 188

Appendix A: Optimal Choice 191

Appendix B: Probability and Statistics 195

Solutions  204

Index  210

9781444336511_2_toc.indd   vii9781444336511_2_toc.indd   vii 7/9/2010   6:08:58 AM7/9/2010   6:08:58 AM



Preface

This book can be used as a textbook for a course in management or 
economics. It can also be used as a self-help book for interested readers. 
The material is presented in a very informal and non-mathematical 
form, and the book does not get into the nuts and bolts of the theory. 
Readers who are convinced that they could make better decisions 
by applying decision theory seriously may well need to use more 
technical textbooks and/or the advice of experts. The goal of this 
book is to generate awareness of potential problems as well as pos-
sible solutions.

A word to teachers: I recommend asking the students to cope with 
the problems at the beginning of each chapter on their own. In two 
out of the five chapters the problems appear in two versions, titled 
“Group A” and “Group B.” Mostly, the problems of the two groups 
are slightly different, and the comparison between the answers to 
similar problems is the heart of the matter. If possible, students 
might be divided into two groups, get only their questionnaire, and 
cope with the problems on their own before class discussion. The 
book’s web site (www.wiley.com/go/gilboa) has a downloadable 
file with the questionnaires, so that these can be distributed before 
the students get to read the book. It is also possible to have students 
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ix

Preface

work on the problems in class. In any event, it is important that 
each student works on only one version of each problem. If time 
allows, students can also work in class in small groups, and com-
pare the answers they come up with individually with the answers 
they choose after a group discussion. The book’s web site also has 
PowerPoint slides that you may use in class.

A word to out-of-class readers: It is recommended that you think 
about the problems in the order they are presented, and try to 
 imagine what your answer would be if you were solving either only 
the first or only the second questionnaire. You may also take a break 
of a day or two between the two questionnaires.

Whether the book is used as a textbook or a self-help book, the 
juxtaposition of problems is not designed to make anyone feel bad 
about “not getting it right.” The goal is only to illustrate certain 
points in a clear and memorable way.
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1

Background

This book is designed to acquaint you with some ideas from deci-
sion theory, and to examine how they might help in making better 
decisions. The method of presentation is based on problems in 
which you are asked to imagine a situation, and make a decision or 
a judgment. The problems are chosen to exemplify some principles 
of decision theory, as well as violations of these principles derived 
from the psychological literature.

What are “better decisions” and who has the authority to judge 
what a good decision is? The answers are not obvious. I take the 
view that the quality of a decision is, in the final analysis, a judg-
ment to be made by the decision maker. That is, a “good,” or a 
“better,” decision should be so judged by the one who makes it. 
Decision makers may need to be exposed to some analysis and 
reasoning about their decisions; they may also need some experi-
ence to be able to judge their decisions with the appropriate per-
spective. But eventually, it is the decision makers themselves who 
should feel that they make better decisions. If decision theorists 
preach a certain mode of decision making, but they do not man-
age to convince decision makers that this mode is “right,” then it 
probably isn’t.

Making Better Decisions, by Itzhak Gilboa © 2011 John Wiley & Sons, Inc.
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Borrowing an economic metaphor, I view people like me – namely, 
decision theorists – as merchants. We buy decision principles (mostly 
from the forefathers of decision theory) and try to sell them to deci-
sion makers. These are our consumers, and the consumers should 
feel they are happy with the product they have bought. This doesn’t 
mean that all consumers should be happy at all stages of the pro-
cess. Sometimes acquiring knowledge might take some patience. 
It’s also possible that some people will find parts of this book useful 
but not others. But if most readers find most of the book useless, 
there’s something wrong with the product I’m selling.

I usually start with examples in which classical decision theory is 
violated. Many such examples were provided by the psychologists 
Daniel Kahneman and Amos Tversky.1 They and their followers ran 
carefully designed laboratory experiments which showed that 
almost all rationality assumptions in economics may be violated, in 
certain examples, by a non-negligible portion of decision makers.2 
Other examples predate the works of Kahneman and Tversky. In 
any event, it should be emphasized that for practically every gen-
eral principle there will be examples in which it will be violated by 
many decision makers.3

I believe that the best way to explain a principle is to start with an 
example that violates it. In general, it is useful to understand a the-
ory by that which it rules out, and a few good examples are the best 
way to envision the general principle. Moreover, in the case of deci-
sion making, observing a violation of a certain theory, or principle, 
also raises a question that each of us has to cope with on her or his 
own: do I like to be the kind of decision maker who violates this 
principle and, if so, when, and under what conditions? Seeing an 
example in which I violated a certain principle, and then under-
standing what the principle suggests, I can next judge whether I 
wish to change my behavior in the future or not.

In a sense, you may consider this book as a catalog of patterns of 
decision making that some theorists consider to be irrational. I use 
these patterns both to present the general principles, but also to crit-
icize them. As explained above, I will try not to offer a supposedly 
correct answer as to which principles we should adopt and when. 
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This decision should be made by each and every decision maker. 
I believe that, whatever is your answer, you will be enriched by 
understanding the general principles and by being acquainted with 
examples in which these principles tend to be violated.

It might be useful to mention two terms that decision theorists 
and economists like to use in this context: descriptive and norma-
tive theories. A descriptive theory is meant to describe reality. For 
instance, the claim that demand curves slope down attempts to tell 
us something about the world. Importantly, it does not make a value 
judgment and takes no stand on whether this feature of the world is 
good or bad.

A normative theory is a recommendation to decision makers, a 
suggestion regarding how they should make decisions. For 
instance, the claim that we should reduce income inequality is a 
normative claim. Note that the word “normative” does not mean 
here “the norm in a given society” as it does in other social sci-
ences. The term only says something about the type of interaction 
between the theorist and the decision maker, namely, that this is 
an instance in which the former is trying to convince the latter to 
behave in a certain way.

In decision theory it is often the case that a principle can be inter-
preted either descriptively or normatively. Consider the theory that 
each economic agent maximizes a utility function. I may propose it 
as descriptive, namely, arguing that this is a good description of real 
economic agents. And I may promote it as normative, in which case 
my claim will be that you would be wise to become such an agent. 
As a descriptive theory, the principle is tested for its correspondence 
to reality. The better it fits the data, the more successful it is. As a 
normative one, the principle should not fit reality. In fact, there is no 
point in giving decision makers recommendations that they any-
way follow. Rather, the test is whether the decision makers would 
like to follow the principle.

It is important to realize that you will typically be interested in 
both normative and descriptive theories. A good normative theory 
is one that you would like to adopt, that is, one that would allow 
you to make better decisions in your own eyes. A good descriptive 
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theory will tell you how people around you behave. Whether you 
interact with your boss or your underlings, colleagues or customers, 
competitors or other traders, it is important to know how they make 
decisions.

There is a delicate point here. When we teach the foundations of 
microeconomics, for example, we typically assume that agents are 
rational. If this happens to be a good descriptive theory, you may use 
it to make better decisions in the market, and this seems like fair play. 
But when we focus on modes of behavior that are considered irra-
tional (at least by some), an ethical issue emerges. Suppose that we 
are convinced that a certain mode of behavior is silly, and that we 
would like to avoid it. It so happens that many people are not aware 
of our analysis and they still follow it. Knowing this fact might be 
useful, but is it morally right? Will we be justified in making better 
decisions for ourselves, relying, as it were, on other people’s mis-
takes? And if not, will not a book such as this make the world a worse 
place, helping some decision makers take advantage of others?

These are serious concerns. Nevertheless, I do not hesitate to teach 
the material presented here or to publish this book. There are two 
main reasons for this. First, I do not believe that such knowledge can 
be kept confidential. Too many people know of this material (includ-
ing the work of Kahneman and Tversky) for this to be a secret. 
Second, many if not most practitioners who could benefit from this 
knowledge had already done so years before it made its way into 
the realm of academic knowledge. Many of the effects that Kahneman 
and Tversky documented in their careful studies had been made 
use of by marketing people and politicians, among others. Hence, 
one might hope that such a book will do more good than harm, 
because it will help the unprofessional make better decisions in the 
presence of the professionals.

Notes

1 Daniel Kahneman received the Nobel Prize in Economics in 2002 for his 
contributions in this area. Amos Tversky died in 1996.
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2 See, for instance, Kahneman, D., Slovic, P. and Tversky, A. (eds) (1982) 
Judgment under Uncertainty: Heuristics and Biases. Cambridge University 
Press.

3 Amos Tversky used to say: “Give me an axiom, and I’ll design the 
experiment that refutes it.”
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Judgment and Choice Biases

Introduction

This chapter discusses a variety of examples in which people tend to 
make judgments or decisions that are considered to be “biases” or 
“mistakes,” at least by some. Many of these examples contradict the 
classical theories of rational choice used in economics and related 
fields. Some violate explicit assumptions of economic theory. Others 
violate implicit assumptions and often cannot even be discussed in 
the language of economics.

Most of these examples were suggested and tested experimentally 
by Daniel Kahneman and Amos Tversky and their followers. Kahneman 
and Tversky started their project in the late 1960s. For many years 
researchers in various fields did not take their findings as much more 
than amusing examples for cocktail party chat. Economists dismissed 
the examples on the grounds that many of the experiments did not 
involve monetary payoffs, arguing that people’s behavior would be 
much closer to classical economic predictions if significant amounts 
were at stake. Often an evolutionary argument was also quoted: if such 
silly and suboptimal behavior exists, there will be agents in the market 
who will take advantage of it, and it will be driven out by the 

Making Better Decisions, by Itzhak Gilboa © 2011 John Wiley & Sons, Inc.
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 evolutionary forces of the market. Finally, there was a claim that many 
of the examples are artificial and contrived, and do not represent the 
typical behavior of real agents in naturally occurring situations.

Over the years things have changed. In the 1990s researchers in 
economics and finance started expanding the scope of their models 
to encompass some types of behavior that were found in experi-
mental studies though they were at odds with the classical theory. 
The fields of behavioral economics and behavioral finance flour-
ished, and the 2002 Nobel Prize in Economics, awarded to Daniel 
Kahneman, recognized the impact of psychological research on eco-
nomics. However, this recognition did not settle the debate, and the 
importance and validity of psychological experiments for econom-
ics are still topics of heated controversy.

The main goal of this book is to help you make better decisions for 
yourself, that is, to change your decision making procedures so that 
you will like your decisions better. For this normative purpose, the 
controversy mentioned above is not very relevant. We will go over 
examples in which some people behave in ways that they find silly, 
and you will be urged to ask yourself whether you sometimes make 
such decisions and whether you think that they can be improved 
upon. You may find that you are a textbook Homo economicus who 
never behaves in a way that anyone considers suboptimal. 
Alternatively, you may find that you sometimes deviate from this 
model, but that you actually like the way you make decisions even 
when you do. In both cases you will not gain much from the exer-
cise, though no harm will be done either. However, if you find some 
cases in which you make decisions that you don’t like, and decide to 
adopt a procedure that can help you avoid such decisions in the 
future, you will have gained something. The examples presented 
here were selected with these scenarios in mind. They are designed 
to help you think about your own decisions, and whether they are 
natural or contrived, typical or rare, they serve their purpose.

If, however, you wish to use the examples for descriptive pur-
poses, that is, to understand and predict how people around you 
behave, a few words of warning are in order. First, the argument 
that some examples are extreme, contrived, or artificial has been 
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made also within psychology.1 In fact, there is an ongoing debate 
about the degree to which the violations of rational theories are typ-
ical in naturally occurring decision situations. Some findings sug-
gest that people tend to make decisions better in tasks and contexts 
that are familiar to them than in unfamiliar ones.2 Thus, if one were 
hoping to exploit other people’s biases and mistakes, one would be 
well advised to take into account the possibility that these biases 
might be less prevalent in real life than in classroom experiments. It 
is possible to benefit from other people’s suboptimal behavior, but 
the present collection of examples is not designed for this purpose.

Second, knowledge in the social sciences is typically qualified and 
limited. We know of very few general laws that can be thought of as 
universal or eternal as are the laws of the natural sciences. Social and 
economic systems are very complex, and they keep changing, some-
times as a result of research about them. Consequently, my advice is 
to take any scientific finding about the behavior of people, econo-
mies, or societies with a spoonful of salt. It is not a priori clear that 
the lessons learnt from one group of agents generalize to another. 
Real-estate agents in California need not have the same decision 
modes as cereal consumers in Belgium. In psychology it is well 
accepted that empirical knowledge does not automatically general-
ize from one group to another, and that experiments need to be rep-
licated. Sometimes a finding that is true of adults does not hold for 
adolescents, and a phenomenon that was found in women does not 
generalize to men. Similarly, any particular violation of classical 
choice theory that we discuss here may be more prevalent in some 
groups of agents and less in others, and it is even possible that some 
of them are less prevalent today than they were 30 years ago.

To conclude, you may view the following pages as raising ques-
tions about decision making. The answers, describing how people 
actually make decisions, have to be constantly updated and adapted. 
The questions, by contrast, are timeless.

Most of the material in this chapter can be understood without 
any prior knowledge. However, if you have never taken any class in 
microeconomic theory, and you feel that Homo economicus is a com-
plete stranger to you, Appendix A provides a little background.

9781444336511_4_002.indd   89781444336511_4_002.indd   8 7/10/2010   6:42:45 PM7/10/2010   6:42:45 PM



Judgment and Choice Biases

9

Problems – Group A

Problem 2.1

A 65-year-old relative of yours suffers from a serious disease. It 
makes her life miserable, but does not pose an immediate risk to her 
life. She can go through an operation that, if successful, will cure 
her. However, the operation is risky; 30% of the patients undergoing 
it die. Would you recommend that she undergoes it?

Problem 2.2

You are given $1,000 for sure. Which of the following two options 
would you prefer?
 a. To get an additional $500 for sure.
 b. To get another $1,000 with probability 50%, and otherwise noth-

ing (and be left with the first $1,000).

Problem 2.3

You go to a movie. It was supposed to be good, but it turns out to be 
boring. Would you leave in the middle and do something else instead?

Problem 2.4

Linda is 31 years old, single, outspoken, and very bright. She majored 
in philosophy. As a student, she was deeply concerned with issues 
of discrimination and social justice, and she participated in anti-
nuclear demonstrations.
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Rank order the following eight descriptions in terms of the prob-
ability (likelihood) that they describe Linda:
 a. Linda is a teacher in an elementary school.
 b. Linda works in a bookstore and takes yoga classes.
 c. Linda is active in a feminist movement.
 d. Linda is a psychiatric social worker.
 e. Linda is a member of the League of Women Voters.
 f. Linda is a bank teller.
 g. Linda is an insurance salesperson.
 h. Linda is a bank teller who is active in a feminist movement.

Problem 2.5

In four pages of a novel (about 2,000 words) in English, do you 
expect to find more than 10 words that have the form      n 
(seven-letter words that have the letter n in the sixth position)?

Problem 2.6

What is the probability that, in the next two years, there will be a 
cure for AIDS?

Problem 2.7

What is the probability that, during the next year, your car could be 
a “total loss” due to an accident?
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Problem 2.8

Which of the following causes more deaths?
 a. Digestive diseases.
 b. Motor vehicle accidents.

Problem 2.9

A newly hired engineer for a computer firm in Melbourne, 
Australia, has four years of experience and good all-round 
qualifications.

Do you think that her annual salary is above or below $65,000?

What is your estimate of her salary?

Problem 2.10

You have bought a ticket to a concert, which cost you $50. When you 
arrive at the concert hall, you find you have lost the ticket. Would 
you buy another one (assuming you have enough money in your 
wallet)?

Problem 2.11

Which of the following two options do you prefer?
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a. Receiving $10 today.
b. Receiving $12 a week from today.

Problems – Group B

Problem 2.12

A 65-year-old relative of yours suffers from a serious disease. It 
makes her life miserable, but does not pose an immediate risk to her 
life. She can go through an operation that, if successful, will cure 
her. However, the operation is risky; 70% of the patients undergoing 
it survive. Would you recommend that she undergoes it?

Problem 2.13

You are given $2,000 for sure. Which of the following two options 
would you prefer?
 a. To lose $500 for sure.
 b. To lose $1,000 with probability 50%, and otherwise to lose 

nothing.

Problem 2.14

Your friend had a ticket to a movie. She couldn’t make it, and gave 
you the ticket “instead of just throwing it away.” The movie was 
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supposed to be good, but it turns out to be boring. Would you leave 
in the middle and do something else instead?

Problem 2.15

Linda is 31 years old, single, outspoken, and very bright. She majored 
in philosophy. As a student, she was deeply concerned with issues 
of discrimination and social justice, and she participated in anti-
nuclear demonstrations.

Rank order the following eight descriptions in terms of the prob-
ability (likelihood) that they describe Linda:
 a. Linda is a teacher in an elementary school.
 b. Linda works in a bookstore and takes yoga classes.
 c. Linda is active in a feminist movement.
 d. Linda is a psychiatric social worker.
 e. Linda is a member of the League of Women Voters.
 f. Linda is a bank teller.
 g. Linda is an insurance salesperson.
 h. Linda is a bank teller who is active in a feminist movement.

Problem 2.16

In four pages of a novel (about 2,000 words) in English, do you 
expect to find more than 10 words that have the form     ing 
(seven-letter words that end with ing)?
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Problem 2.17

What is the probability that, in the next two years, there will 
be a new genetic discovery in the study of apes, and a cure for 
AIDS?

Problem 2.18

What is the probability that, during the next year, your car could be 
a “total loss” due to:
 a. An accident in which the other driver is drunk?
 b. An accident for which you are responsible?
 c. An accident occurring while your car is parked on the street?
 d. An accident occurring while your car is parked in a garage?
 e. One of the above?

Problem 2.19

Which of the following causes more deaths?
 a. Digestive diseases.
 b. Motor vehicle accidents.

Problem 2.20

A newly hired engineer for a computer firm in Melbourne, 
Australia, has four years of experience and good all-round 
qualifications.
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Do you think that her annual salary is above or below $135,000?

What is your estimate of her salary?

Problem 2.21

You are going to a concert. Tickets cost $50. When you arrive at 
the concert hall, you find you have lost a $50 bill. Would you still 
buy the ticket (assuming you have enough money in your 
wallet)?

Problem 2.22

Which of the following two options do you prefer?
 a. Receiving $10 fifty weeks from today.
 b. Receiving $12 fifty-one weeks from today.

Framing Effects

Consider Problems 2.1 and 2.12. Their text is very similar:

A 65-year-old relative of yours suffers from a serious disease. It 
makes her life miserable, but does not pose an immediate risk to her 
life. She can go through an operation that, if successful, will cure her. 
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However, the operation is risky; [Problem 2.1: 30% of the patients 
undergoing it die. Problem 2.12: 70% of the patients undergoing it 
survive]. Would you recommend that she undergoes it?

These two problems are identical. The only difference in the text is 
that one of them gives the information in terms of probability of 
death, and the other in terms of probability of survival. But it is the 
same information. It doesn’t take more than a moment’s reflection 
to realize that, if 30% of the patients die, then 70% of them survive, 
and vice versa. In other words, the two problems only differ in the 
representation of the information provided.

Yet, people often make different decisions in the two problems 
above. If you consider two large groups of randomly selected deci-
sion makers, and you give each group one of these problems, you 
are likely to find that a larger percentage of people recommend 
undergoing the operation in Problem 2.12 than in Problem 2.1. This 
is a variant of a famous example used by Kahneman and Tversky to 
exemplify the framing effect: the effect that the frame, or the repre-
sentation, has on the decision.3

The mechanism of the framing effect is not hard to imagine, 
once the phenomenon is pointed out to you: different representa-
tions of the same information can induce different associations in 
our minds. These can change our emotional reaction as well as 
our assessment of  probabilities. It is natural that I don’t like 
 risking my life. Given the choice between two options, one that 
involves risk of death and another that doesn’t, it makes sense 
that I would need particularly good reasons to choose the former 
over the latter. As a result, there is an almost automatic reaction 
away from choices that may risk my life, and the very word 
“death” is a signal that an option is of this type. Hence, when I 
hear the word “death,” a red light inside my mind starts blinking 
“danger,” and I am more likely to try to avoid the option associ-
ated with death. By contrast, when I hear the word “survival,” it 
connotes positive thoughts and emotions. Thus, a decision that is 
explicitly related to survival is more attractive than one that is 
explicitly related to death.
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The difficulty is that, typically, a decision that may result in sur-
vival may also result in death and vice versa. When I present the 
problem to you, I can choose to highlight one or the other, but both 
possibilities exist irrespective of the representation I choose. This is 
why most people feel that it is irrational to make different decisions 
in the two problems above. Let me remind you that according to the 
rules of the game we play, it is up to you to determine what is 
rational for you. Thus, if you insist that you’re OK with making dif-
ferent decisions in the two problems, then it is rational for you to do 
so and that’s that. However, I have tried this example in many 
classes, and I have yet to find a student who insists that this is 
rational. This does not mean, of course, that no one makes different 
decisions in the two problems: framing effects do work, and people 
do tend to make different decisions. But they do not seem to like 
that. When people are tricked by this example, they are not very 
proud of their decision. Hence, it is irrational for them to make dif-
ferent decisions in different framings of the same problem.

Next consider Problems 2.2 and 2.13. The former reads:

You are given $1,000 for sure. Which of the following two options 
would you prefer?

 a. To get an additional $500 for sure.
 b. To get another $1,000 with probability 50%, and otherwise noth-

ing (and be left with the first $1,000).

Whereas Problem 2.13 reads:

You are given $2,000 for sure. Which of the following two options 
would you prefer?

 a. To lose $500 for sure.
 b. To lose $1,000 with probability 50%, and otherwise to lose 

nothing.

Here, again, we have two different representations of the same 
 alternatives. Observe that we are asked to make a choice before we 
are given anything. Thus, whether we first get $1,000 and then 
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 additional money ($500 for sure or another $1,000 with probability 
50%) or first get $2,000 and then lose some money ($500 for sure or 
$1,000 with probability 50%) should make no difference. Put differ-
ently, if you ignore the words “get” and “lose” in the second stage, 
the choice in both problems is between

 a. Getting $1,500 for sure.
 b. Getting $1,000 with probability 50%, and $2,000 with proba-

bility 50%.

The two problems above are simply different representations of this 
problem. Hence, most people tend to feel that they would have liked 
to make the same decision in Problems 2.2 and 2.13. Again, the claim 
is not that most people do make the same decision in the two prob-
lems. It is, rather, that most people would like to make the same deci-
sion. In other words, if you consider the theoretical claim that 
“people are not affected by the representation of alternatives,” the 
existence of framing effects has to do with its descriptive validity: 
the more prevalent are framing effects, the less accurate is this the-
ory as a description of reality. However, the theory can still be a 
good normative theory: if people accept it as a desirable goal, and if, 
furthermore, they find it irrational not to follow it, then this theory 
can be a useful guide in their decision making.

The equivalence of the two representations in Problems 2.2 and 
2.13 is not always accepted as universally as the equivalence between 
Problems 2.1 and 2.12. Some people feel that losing money that they 
already had is very different from getting money that they never 
had, even if the bottom line is the same. Indeed, this has to do with 
other phenomena found by Kahneman and Tversky and Richard 
Thaler, known as “loss aversion” and “endowment effect,” to be 
discussed later. These phenomena are important and well estab-
lished. Moreover, we will discuss situations in which you may find 
them rational. For example, if you have become used to having a 
certain amount of wealth, giving it up may be quite different from 
not having it in the first place. But in the present case we are discuss-
ing money that is promised to you, but that you have not yet 
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received. You didn’t even have enough time to get used to the idea 
that this money will be yours, to start planning what you’ll do with 
it, and so on. Rather, you’re told that you will get some money, and 
you immediately keep reading the relevant choices. Hence many 
people are convinced that their choices in Problems 2.2 and 2.13 
should be the same. But, again, it is your decision whether it is irra-
tional to have your choice depend on the representation of the out-
comes in this case.

Examples of framing effects abound. In the United States, gas sta-
tions often have two posted prices – the “regular” one, which 
applies to credit card purchases, and a “cash discount” price, apply-
ing only to cash purchases. It’s easy to understand why the two 
prices might differ. But why don’t we observe the cash price as 
being the default and the higher one as a “credit surcharge” price? 
Clearly, the practical implications would be the same – you pay one 
price with credit card and another, lower price when you use cash. 
However, representation matters. Suppose that I need gas, drive by 
the station, but find that I have no cash in my wallet. I can easily tell 
myself, “OK, I’ll pay the regular price – I’m not the kind of guy who 
has to get the discount whenever possible,” and buy gas. By con-
trast, if the cash price were perceived as the “regular” (default) 
price, and there were a credit surcharge, I might have reacted by 
saying, “That’s really unfair! Do I need to pay a fine for using my 
card? Are they trying to exploit the fact that I forgot to withdraw 
cash?” – and I might decide to look for another gas station, one that 
treats its customers more fairly. Thus, the representation of the 
same menu of prices can result in different behavior.

Next consider a politician running for office, say, the presidency. 
Suppose that he says, “I intend to make health costs tax deductible.” 
This sounds like a social policy that favors people with difficulties: 
if someone is sick and has a hard time financing health care that is 
not provided by the state, the state would help them out by deduct-
ing these costs from their pre-tax income. Assume now that the same 
candidate says, “I would like to have the state subsidize health costs. 
And I will give a higher percentage subsidy to the rich than to the 
poor.” Clearly, this doesn’t sound great. Why would the rich get a 
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higher percentage subsidy than the poor? However, this policy 
means precisely the same thing as the previous one. Making a cer-
tain expense tax deductible is tantamount to subsidizing it, where 
the rate of subsidy is the marginal tax rate. Richer people, who are 
typically paying a higher marginal tax rate, will enjoy a greater 
deduction than poor people. To consider an extreme case, a person 
who has no income and therefore pays no taxes will not benefit from 
a tax deduction at all.

These two examples suggest that framing effects are quite com-
mon. Indeed, we’d expect marketing people as well as politicians to 
be masterful at “framing” options in attractive ways. People whose 
job it is to try to sell something to us typically have a good feel as to 
which representations work better than others.

Brainstorming and Formal Models

What can be done to avoid framing effects? More generally, how can 
we avoid mistakes, that is, decisions or evaluations that we might 
consider silly?

First, awareness is key. Being aware of various types of biases, mis-
takes, and psychological effects is an important step in trying to 
 identify them in our reasoning or decision making processes, and in 
attempting to avoid them. Second, the use of formal models may be of 
great help. Finally, working in groups and brainstorming often helps. 
This should be qualified, because group decisions are not always 
better than individual decisions. Groups that differ in their motiva-
tion may find it hard to make coherent decisions, and if they do, the 
decisions may be very conservative, and may also be swayed by char-
ismatic personalities. But individuals who discuss a problem together 
and then go their own ways to make individual decisions will gener-
ally make better decisions than they would on their own. Groups do 
tend to be better than individuals in sheer analysis,4 with many ideas 
being brought up, challenged by others, compared, and analyzed.

In the case of framing effects, formal models are often all that is 
needed. In fact, we can even use them as a definition of “framing 
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effects”: these are the effects that disappear when a formal model is 
introduced. For example, if, in Problem 2.1, you were to write down 
the choices in a formal model, you’d represent undergoing the oper-
ation as a distribution over outcomes. Such creatures are lists of 
probability numbers that need to sum up to 1. Hence, if there is 30% 
probability of death, you’ll have to write down also the complement 
event, namely, survival, and find that it has a probability of 70%. 
And if you were to start with Problem 2.12, by similar reasoning you 
would end up with the same distribution. In other words, if you put 
upon yourself the discipline of using formal models, you won’t be 
able to attach importance to the representation, and you will be 
immune to the framing effect.

The same logic applies to Problems 2.2 and 2.13. If you write down 
a formal model, you need to represent the choices as distributions 
over outcomes. It may take you a few seconds to do it, but at the end 
you’ll see that the choice is between a gain of $1,500 for sure and a 
gain of $1,000 or $2,000 with equal probabilities. Similarly, in the gas 
station example a formal model would be a list of payment methods 
and corresponding prices, where words such as “discount” and “sur-
charge” have no room. Finally, the tax deduction example is one in 
which people pay different amounts depending on their income and 
their health costs. If you write down a table (or a  function) describing 
the amount of money a person is left with given these two inputs, 
you’ll find that the two representations describe the same table.5

In short, formal models may be of great help in making better 
 decisions, even though we should not expect the formal model to 
give us the “correct” answer. It is very seldom the case that there is a 
correct answer that can be calculated in a mathematical model. These 
cases are, in a sense, less interesting, because you can relegate the 
computation of the “correct answer” to a piece of software or a con-
sultant. Most of our problems, however, are not of this type. Typically, 
answers depend on subjective judgments, opinions, and values. But 
our thinking about these problems can be greatly simplified and clar-
ified by the use of formal models. Framing effects are an extreme 
example in which the use of a formal model helps you avoid the psy-
chological bias, without restricting your actual choices in any way.
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It is important to distinguish between formal models and mathe-
matical sophistication. Using a formal, mathematical model does 
not necessarily mean that you solve complicated equations, or that 
you expect the right choice to emerge out of a calculation that 
 normal people can barely follow. In fact, there is a danger of over- 
mathematization that you should be aware of: often experts focus 
on those parts of the problem that are amenable to mathematical 
analysis, and discard those that are hard to measure or specify. And 
when decision makers find it difficult to follow the mathematical 
reasoning, they sometimes accept the conclusions without question-
ing the assumptions. This is not the type of formal modeling that 
I try to promote here. Rather, I suggest using the language of math-
ematics as a way to abstract away from details of the problem, with-
out discarding anything of importance. Therefore, the formal model 
will often not have a clear-cut answer, because it will have too many 
unspecified parameters. But the very exercise of thinking in terms of 
a formal model will greatly help you sharpen your intuition, and 
should not result in worse decisions.

In the following we will see many other psychological biases, and 
most of them will not disappear as soon as a formal model is used. 
Some of these formal models will also suggest that certain choices 
are better, or more coherent, than others. But it is important to bear 
in mind that the use of formal models is not a substitute for further 
analysis or for group brainstorming.

Endowment Effect

As mentioned above, different choices in Problems 2.2 and 2.13 can 
also be explained by the endowment effect, attributed to Richard Thaler.6 
It is defined as the tendency to value what we have more than what 
we do not yet have. In the example above, $1,000 that I already have 
will be “worth” more to me than the same amount I do not yet have. 
Hence, it is easier for me to risk not getting this amount if I do not 
think it’s mine, than to lose it if I think it is. (We will go back to the 
asymmetry between gains and losses, and to loss aversion, later on.)
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The endowment effect is not mainly about money. It can be viewed 
as a manifestation of a general principle called the status quo bias,7 
and, in the context of economic trade, it can manifest itself with 
respect to various goods. Consider the following experiment. We 
are trying to find out the value of a coffee mug for students. (This 
experiment was run with college students.8 Researchers often find 
that the easiest way to get participants for experiments is to sample 
students in their universities. Psychologists are aware of the fact 
that not all findings from college students will generalize to the rest 
of the population.) Here are three different ways to try to assess it:

1. Ask the students how much they are willing to pay in order to 
get the mug.

2. Tell the students that each of them is going to get a gift. It can be 
either the mug or a sum of money. Ask them what amount of 
money would make them indifferent between the mug and the 
money.

3. Give each student the mug as a gift. (You may also let them use it 
once, to really make them feel it’s theirs.) Now ask them how much 
we will need to pay them in order to buy the mug from them.

It seems like all three answers should be similar. But even according 
to economic theory, the answers need not be identical, because in 
the first condition the students do not get any gifts, and in the last 
two they do. More precisely, assume that a student’s “bundle” is a 
pair (m, n), where m is the amount of money the student has, and n 
is the number of coffee mugs in their possession. Let us say that a 
student starts off with (m, 0), that is, a certain amount of money m 
and no coffee mugs. Question (1) looks for a price p such that

( ) ( )− ,  1 ~ ,  0m p m

That is, we ask what price p would make the student indifferent 
between giving up the amount of money p, being left with m − p, 
and getting the mug, versus not giving up any money and not get-
ting the mug.
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Question (2), by contrast, asks what the amount of money q is 
such that getting q as a gift (resulting in m + q dollars but no mugs) 
would be equivalent to getting a mug (but no money). That is, which 
q solves the “preference equation”

( ) ( )+  , 0 ~ ,  1m q m

Finally, consider question (3). Here the student gets the mug as a gift, 
and therefore has a bundle (m, 1). Now we ask them how much we 
should pay to buy the mug from them. That is, by how much should 
we increase their amount of money m so that they’d be willing to go 
down from 1 mug to 0 mugs. This translates to asking which q solves

( ) ( )+  , 0 ~ ,  1m q m

Clearly, economic theory predicts that the answers to (2) and (3) will 
be identical. The answer to (1) may differ. For example, p cannot 
exceed m, while q can. Indeed, if I were offering you the rent of a 
very nice apartment rather than a coffee mug, you may have a very 
high q (getting the use of the apartment as a gift) while you may not 
be able to afford to pay so much out of your existing income m.

The interesting finding was that the answers in (3) were much 
higher than the answers in (2) and (1), with (2) being above (1). The 
average answers were $2.87 for (1), $3.12 for (2), and $7.12 for (3). 
That is, the biggest difference in the answers occurred precisely 
where economic theory would have predicted no difference at all.

Why do we observe the endowment effect and is it rational? There 
are several reasons why it may make a lot of sense to exhibit the 
endowment effect, and more generally the status quo bias. These 
reasons may also explain why we evolved to have these biases. 
Among the reasons are:

 a. Information: When we own something, we know it better than 
when we don’t. There may not be much to know about a coffee 
mug, but if you think of a computer or a car, you realize that 
there may be various problems with the unknown product. 
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Having owned and consumed a product, you know its quality. 
Thus, a new product is actually a lottery, an uncertain choice, as 
far as your utility is concerned. If you don’t like risk, you will 
prefer the product that you already know.

 b. Transaction costs: If we had no status quo bias, we would be 
switching between different choices much more often than we 
do. Consider the following example. Your child comes home 
and says that he wants to study math. After one year he’s back 
saying that math has no future, and that he really wants to study 
physics. A year later, and it’s law. Later still he finds that eco-
nomics is the thing for him. At some point you’re likely to say, 
“Hey, why don’t you choose something and finish it, to have 
some degree?” The point is that at every stage your child might 
be right in the assessment that an alternative choice is better 
than the one he’s made. But information is noisy and what looks 
good today may not look so great tomorrow. If every time a 
 certain alternative looks better than what we have, perhaps even 
only a little bit better, we switch to it, we may never get any-
where. By contrast, a preference for the status quo adds stability 
to our choices. It prevents us making too frequent changes, 
which have their own cost.

 c. Habit formation: We get used to certain products. Sometimes it’s 
a matter of changing tastes: you can get used to a particular 
brand of cereal, or beer, to an extent that your taste buds truly 
demand this product and no other. Sometimes it’s a matter of 
routine: you may not have a strong preference between two 
word processors, but, working with either of them for a while, 
you’ll be reluctant to switch to the other. (You may think of this 
type of habit formation as a way of minimizing the transaction 
costs involved in switching.)

In short, there are many reasons to prefer something that we are 
used to, or already have, to something similar that is new. However, 
in the case of the coffee mug it is not clear that any of the explana-
tions above is very compelling. There is relatively little uncertainty 
about the quality of the mug: mugs are mugs. The experiment does 
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not allow us to switch among mugs, so that the second issue is not 
terribly relevant either. And finally, there isn’t that much to get used 
to in using a mug to drink coffee. As a result, you may find that, 
while it is generally a good idea to stick to your choices to some 
extent, it isn’t rational to demand for the mug much more than you 
are willing to pay in order to buy it.

It is important that we need not make a single decision in our life, 
whether we do or do not exhibit the endowment effect. It is quite 
possible that we will find the endowment effect rational for us in 
some cases but not in others. The following examples illustrate.

Mary is a 75-year-old woman who lives alone in a large house. 
When asked, why not sell it and move to an apartment that fits her 
needs better, she says, “Look, this is where I raised my children with 
my beloved husband. Every corner of the house is filled with mem-
ories. It is the story of my life.” If you ask how much you need to 
pay Mary in order for her to sell the house, you’ll find that the 
answer is much higher than the amount she would be willing to pay 
for another house of a similar size in a similar neighborhood.

Next consider Bob. Bob held a portfolio of real-estate stocks that 
went down considerably. Yet, Bob doesn’t sell the stocks. When 
asked why, he says, “Well, this is a temporary blip. I believe they’ll 
go up again.” “Oh,” you answer, “in this case why don’t you buy 
more of these stocks?” “Are you nuts?” is Bob’s reply, “buy more 
after I’ve lost so much on them?!”

I trust that you don’t find Mary’s behavior irrational. Her utility 
from owning the house cannot be summarized by the number of 
square feet she has at her disposal. Memories and emotions are part 
of the experience of “consuming” the house, and they exist only in 
this particular house. They cannot be traded or transferred. Therefore 
we should not be surprised that Mary evaluates her house, with her 
memories, rather differently from another house, even though the 
market finds them similar.

By contrast, Bob’s behavior will probably be deemed less rational to 
most readers. In fact, this phenomenon has a name: the disposition 
effect.9 People have been found to be reluctant to sell equities that went 
down in value. If Bob were to say, “You know, I’ve been an owner of 
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stock XYZ for so long, it’s like a friend to me,” you’d consider him a 
bit sentimental for a rational investor. (Indeed, the disposition bias is 
not explained by an emotional relationship with the equity. Rather, it 
may have to do with the willingness to confront one’s mistakes.)

Let us remind ourselves that what is rational for you always 
remains a matter of your judgment. While few people find framing 
effects rational, the endowment effect may well be rational, at least 
for some people in some circumstances. Many of the psychological 
biases we discuss here probably came into being because they make 
sense, and lead to good decisions, in some contexts. They are dis-
cussed here because in other contexts they may result in silly deci-
sions. The name of the game is to ask ourselves in which situations a 
certain mode of behavior is rational for us, and in which situations it 
isn’t. For each type of bias, each of us has to decide where to draw the 
rationality line, beyond which one decides to change one’s behavior.

Sunk Costs

Problems 2.3 and 2.14 are similar: in both you have to decide whether 
to keep watching a disappointing movie or do something else. 
However, there is a slight difference between them. Problem 2.3 is:

You go to a movie. It was supposed to be good, but it turns out to be 
boring. Would you leave in the middle and do something else instead?

Whereas Problem 2.14 reads:

Your friend had a ticket to a movie. She couldn’t make it, and gave 
you the ticket “instead of just throwing it away.” The movie was sup-
posed to be good, but it turns out to be boring. Would you leave in the 
middle and do something else instead?

While in Problem 2.3 it isn’t specified how you got the ticket, the 
implicit assumption is that you bought it. Thus, the difference is that 
in Problem 2.3 you (presumably) paid for the ticket, and in 
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Problem 2.14 you didn’t. Often, this difference results in different 
choices: people find it easier to walk out in the middle of a boring 
movie if they didn’t pay for it than if they did.

Is this rational? Most economists would say that it isn’t. The 
argument is obvious: once you’re inside the movie theater, it 
doesn’t make any difference whether you have or have not paid 
to get in. No one will give you your money back if you walk out. 
So, the reasoning goes, whatever the amount of money you 
invested to get the ticket, you should ignore it in your current 
decision. The amount of money you may have paid is a sunk cost, 
as it cannot be retrieved. And to many, rationality dictates that 
sunk costs be ignored.

If you accept this reasoning, you should ask yourself why many 
people sometimes find themselves behaving differently, that is, tak-
ing sunk costs into account. Are there any circumstances where it 
actually makes sense to do so? Or are there modes of behavior that 
are generally effective and useful, but that sometimes result in fail-
ing to ignore sunk costs?

You may be reminded of the status quo bias discussed above. If you 
had a plan to buy a ticket and to go to the movie, the status quo bias 
suggests that you should stay your course and stick to this plan rather 
than change it before it is completed. Some of the reasons that could 
justify the status quo bias might apply here as well. In particular, if 
you tend to follow your original plans, your decision making gains 
some stability. In our example, imagine that you sit there in the movie 
theater and contemplate your choice (the movie, as we agreed, is too 
boring anyway). So you say to yourself, “Well, I don’t really like this 
movie. I should get out.” But then another, more responsible voice 
inside your head replies, “OK, but then what? What will I do?” “Go 
see another movie” might be your bored-self reply. “Spend money on 
another ticket and go to see another movie? What is there to guaran-
tee that I won’t be disappointed again? Maybe this other movie, like 
this one, will look promising but will end up being boring too? I could 
go on switching like that from one theater to another all night long, 
spending tons of money and not enjoying anything. No, I’ll be better 
off staying here. Maybe the movie will get more interesting…”.
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In other words, there is a danger that our evaluations of the options 
might change too much, and that switching to options that appear 
better may result in achieving nothing. Many of our decisions have 
to do with projects that take time; a movie is a relatively minor 
project, while education is a major one. What both have in common, 
however, is that a satisfactory outcome may require some effort over 
time, and we achieve very little from an unfinished project. Since we 
face the danger of too frequent switches, a bias for the completion of 
an already-started project may be beneficial in the long run.

There could be other explanations of the tendency to complete 
projects. One of them has to do with self-control. Let’s go back to the 
dialog between you and yourself above, and assume that you say, 
petulantly, “But this movie is boring!” and your responsible self says, 
“Fine. So next time you should check what movie you’re going to see 
before you buy the ticket. Now you stay here and this will teach you a 
lesson.” In this case, the person is not a monolithic decision maker, but 
is better viewed as a collection of different players who have different 
goals. One of them is responsible for short-term fun, and another for 
long-term goals, such as being frugal. The discussion between them is 
reminiscent of the interaction between a child and a parent, where the 
latter is fully committed to the child’s well-being, but believes this 
goal will be best served by forgoing some short-term temptations.

Yet another explanation would put the emphasis on the social 
aspect of one’s decision. If you go to a movie and then leave in the 
middle, some people may suspect that you’re impatient or unreliable 
in general. If you do it too often, and have such a reputation, people 
might hesitate to launch joint projects with you, thinking to them-
selves, “Sure, this person is all excited now, but what would happen 
if they changed their mind? Will I be left alone?” Along these lines, if 
you go to the movie with friends, you may have a good reason to 
take sunk costs into account: ignoring them might involve a slight 
embarrassment, an admission that you may regret your own choices, 
that you may drop unfinished projects, and so forth.

Observe that if the movie ticket was given to you by a friend who 
had no other use for it, all these justifications of staying in the movie 
theater are much weaker. Hence, these ways of thinking might 
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explain why people sometimes behave differently in the two prob-
lems. But if you are on your own, with no one to impress, and you’re 
quite sure that you’ll be better off at home at this point, you may 
indeed be convinced that how much money you paid for the ticket 
is irrelevant: it is a sunk cost and should therefore have no impact 
on your current decision.

Decision Trees

If you wish to ignore sunk costs, how can you do that? One simple 
but useful technique is to model your decision problem as a deci-
sion tree. In such a tree you describe each decision by a node, where 
the tree branches out, leading to other nodes. If you have a multi-
stage decision to make, you start with the first and then proceed to 
describe the other available decisions, depending on the choices already 
made. In Problem 2.3 the first choice is whether to buy a ticket to the 
movie, and then a subsequent choice, in the case you did buy a ticket, 
is whether to stay and watch the movie.

Some of the uncertainties we face are not up to us to decide about. 
They depend on random events or on other players. In our exam-
ple, it is not known a priori whether the movie will be interesting or 
not. Such uncertainty can also be described by branching in the 
decision tree, only this time the branching node represents not your 
own decision, but someone else’s. We often refer to “nature” as the 
player who makes these random choices. More generally, such 
nodes can be controlled either by other players, who are conscious 
decision makers like us, and who may be analyzing the same deci-
sion tree and thinking about our choices, or by nature. The crucial 
difference is that nature is not assumed to have well-defined goals, 
or a utility function; it chooses randomly, and we try to estimate the 
probabilities with which it may make any possible choice. When 
other players are involved, we will often know something about 
their goals and incentives, and will try to figure out what they 
might do, in any of their decision nodes, based on that knowledge. 
However, once we have figured out what these other players might 

9781444336511_4_002.indd   309781444336511_4_002.indd   30 7/10/2010   6:43:06 PM7/10/2010   6:43:06 PM



Judgment and Choice Biases

31

do, or at least what are the probabilities that they would adopt each 
possible choice, we can think of these players and of nature as part 
of our environment. They control some decision nodes in our tree; 
their choices matter to us, but we can’t dictate them.

A decision tree for Problem 2.3 might look as follows:

Boring Interesting

Leave Stay

Stay home Buy ticket to movie

Decision tree 2.1.

The first node designates your original choice, whether to buy a ticket 
and go to the movie (right branch) or to stay home (left branch). Often 
such decision nodes are depicted as rectangles. If you make the latter 
choice, we are led to a subtree in which you stay home. We can fur-
ther elaborate this subtree, describing various choices you have in it, 
such as to watch TV or read a book. At some point we will need to 
finish this description, and will write down the outcome of that path 
in the tree. Since in Problem 2.3 we already know that you bought a 
ticket, let’s focus on the subtree on the right hand side. In it we get to 
a chance move, drawn here as a circle. It describes two eventualities 
that may unfold, as if these were two possible decisions, but this time 
they are nature’s decisions, not yours. The decision is to make the 
movie boring or interesting. Observe that you need not think of this 
as an actual decision made by any  superpower. Moreover, whether 
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the movie would be boring or interesting was probably determined 
long ago. However, as far as you are concerned, this is an uncertainty 
that has not been resolved until you actually buy the ticket and go to 
see the movie. Hence we can draw the two possible resolutions of 
this uncertainty as two branches coming out of the circle as if nature 
were making this decision right there and then.

If nature decides to make the movie interesting, and we’re led 
down the rightmost path, you obtain the outcome of watching an 
interesting movie. If, however, nature decides to make the movie 
boring, as we know it did in Problem 2.3, we’re going down the path 
that leads left from the circle (nature’s node). And then we are finally 
faced with the decision problem in 2.3: having bought a ticket, and 
having found that the movie is boring, now you have to choose 
between leaving and staying. To keep the diagram simple, I have 
omitted the outcomes that should appear in each leaf of the tree.

Let us now consider Problem 2.14. Decision tree 2.2 shows how 
that problem might look. The only difference between decision trees 
2.2 and 2.1 is that the former involves no payment for the ticket, 
whereas the latter does. This difference should be reflected in the 

Stay home Accept free ticket to movie 

Boring Interesting

Leave Stay

Decision tree 2.2.

outcomes at the leaves of both trees: having paid for the ticket, you 
will have less money than if you had got it for free. Therefore, if we 
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compare the subtrees that describe the Leave/Stay decisions in the 
two decision trees, they are not quite the same: they do describe the 
same choices, and the outcomes are the same, but in one subtree all 
outcomes have the same amount of money deducted from them. 
However, the choice between Leave and Stay should probably not 
be affected by this difference, as none of the money you paid in 
Problem 2.3 will be reimbursed to you. Hence, many people feel 
that the choice in the two problems should be identical. And if you 
use a decision tree to make your choices, you are more likely to focus 
on the relevant subtree and ignore sunk costs.10

If the subtrees in the two decision trees were completely identical 
(also in terms of the exact outcome at each leaf), the claim that the same 
decision should be made in both problems would have been even 
more compelling. In this case it follows, from a principle that is some-
times called consequentialism, that your decision in a subtree should 
only depend on that subtree. If I accept this principle, then, having 
arrived at a certain decision node, I can forget about all the other parts 
of the tree, including the path that led me to where I am, and all the 
other branches that could have materialized but didn’t. Rather, my 
current choice should depend only on the options available to me now 
and the future choices and outcomes they might lead to.

If you decide to use decision trees, and you commit to consequen-
tialism, you will be less prone to sunk-cost effects, as well as to other 
phenomena that people sometimes feel uncomfortable about. For 
example, no one likes to experience regret. Yet, people often feel that 
they should focus on the future options available to them, rather than 
think about what they could have done but didn’t. In particular, 
many people find it irrational to give up on material payoff only in 
order to avoid the experience of regret. Decision trees, coupled with 
consequentialism, can help you avoid these modes of behavior: what-
ever choices you could have made belong to other subtrees, different 
than the one you’re facing. Hence the payoffs you could have received 
there are immaterial, and should not affect your current choice.

People often find it rational to ignore counterfactuals, namely, 
eventualities that would have unfolded were reality different than 
it is, and consequentialism helps you do that. But consequentialism 
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also means that you ignore the path that led you to the subtree you 
are facing. That is, not only counterfactual, hypothetical worlds are 
ignored, but also actual history, to the extent that it does not affect 
future outcomes. Isn’t this a bit extreme? Does it mean, for exam-
ple, that you should be ungrateful to your old teachers or your par-
ents, if they do not affect outcomes in the remaining subtree?

Well, this would be your conclusion if by “outcome” you think 
only about monetary payoff, and your past benefactors no longer 
have any effects on these payoffs. But this is a rather restrictive way 
of looking at decision problems. The outcome of a tree also specifies 
other things that matter to you, such as the well-being of your loved 
ones, and your own emotional reactions. Hence, consequentialism 
need not make you a heartless bastard – it all depends on what is 
incorporated in the outcomes.

Wait a minute, you may say: if you start getting all kinds of emo-
tional phenomena into the outcomes, what would prevent me from 
putting regret in as well? And then consequentialism will not rule 
out regret, or sunk-cost effects, and, in fact, it’s not clear it will rule 
out anything! This is a very valid point. However, if you use a deci-
sion tree it will be clear to you to what extent past and counterfac-
tual choices affect your behavior. If they do, you will find yourself 
either violating consequentialism, or writing down outcomes that 
explicitly take these considerations into account. And this will help 
you make decisions in a way that is rational for you.

Representativeness Heuristic

Problems 2.4 and 2.15 are identical. You were asked to rank the fol-
lowing statements about Linda:

 a. Linda is a teacher in an elementary school.
 b. Linda works in a bookstore and takes yoga classes.
 c. Linda is active in a feminist movement.
 d. Linda is a psychiatric social worker.
 e. Linda is a member of the League of Women Voters.
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 f. Linda is a bank teller.
 g. Linda is an insurance salesperson.
 h. Linda is a bank teller who is active in a feminist movement.

The point is to see if you ranked (f) as less likely than (h). Typically, 
I get 40–50% of the class exhibiting this ranking. However, upon 
careful inspection, everyone agrees that it doesn’t make sense to 
rank (f) as less likely than (h), because (h) is fully contained in (f). 
That is, there is no way in which (h) will occur without (f) occur-
ring as well. In fact, (h) is the intersection11 of (f) and (c) (Figure 2.1). 
So what’s going on in this example? Why do many people rank (h) 
as more likely than (f) even though, after a moment’s reflection, 
they agree that this ranking does not make sense?

The answers here vary. First, many people argue that when they 
read (f) they didn’t understand it to mean “Linda is a bank teller, 
who may or may not be active in a feminist movement,” but “Linda 
is a bank teller who is not active in a feminist movement.” That is, 
they argue that they understood (f) in the context of (h), and this 
context, “not active in a feminist movement,” was implicitly under-
stood, though not stated.

While this is quite possible, there is no reason to understand (f) in 
this sense, especially as it is stated before (h). But this is not so 
important. The point of this example, as well as other examples you 
may consider irrational, is not to make you feel stupid. The point is 

Figure 2.1 Venn diagram showing (h) as the intersection of (f) and (c).

hf c
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to highlight certain biases that most of us are prone to, in the hope 
that, with awareness and some analysis, you will exhibit only those 
biases you feel comfortable with.

So let’s move on to the second explanation. This explanation is 
due to Kahneman and Tversky, who developed this and similar 
examples and used them in experiments.12 They referred to these 
examples as the conjunction fallacy, because in them the conjunction 
of two events is ranked as more plausible than one of the events. 
Kahneman and Tversky offered the following explanation of the 
conjunction fallacy.

In everyday as well as professional life we are bombarded with 
judgment and evaluation questions. Alas, often there isn’t sufficient 
information on which to base a carefully reasoned answer to the 
question at hand. In the case above, we are asked to rank eight state-
ments. This can be viewed as replying to 28 questions about the 
relative likelihood of pairs of statements. Only two pairs ((c) and 
(h), and (f) and (h)) can be ranked based on logic and probability 
alone. Assuming you don’t have access to the relevant statistical 
data, 26 out of the 28 pairs are left unranked if you restrict yourself 
to carefully argued answers. In other words, relying on logic and 
probability often leaves us with no answer.

What do we do? According to Kahneman and Tversky, the human 
mind has developed “heuristics.” These are methods of generating 
answers that are not guaranteed to provide a correct answer, but 
that do result in plausible answers most of the time. For instance, in 
the problem above, Kahneman and Tversky argued that people use 
“representativeness heuristic,” which suggests that we ask our-
selves what is representative, or typical, of Linda. Given Linda’s 
description, being a bank teller seems at odds with her image. Hence 
(f) is deemed unlikely. By contrast, being a bank teller who is active 
in a feminist movement is “more like Linda.” It is easier for us to 
imagine how this fits Linda: for instance, she had to take a job as a 
bank teller to make a living, but in her spare time she continued to 
support the causes she felt passionately about.

Importantly, representativeness heuristic makes sense most of the 
time. If I were to ask you whether Linda were more likely to be active 
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in a feminist movement or a pro-life (anti-abortion) movement, you 
would probably vote for the feminist movement, and this would 
probably be supported by statistical data (if we could get them). That 
is, representativeness heuristic, like other heuristics we will consider 
later on, is not stupid. To the contrary: it is a useful and reasonable 
way of providing answers to difficult problems. But sometimes it may 
lead us astray, as this example illustrates. According to this view, it’s a 
good idea to be aware of our biases and of the heuristics our minds 
use, and it’s also a good idea to ask why they are, on the whole, useful. 
At the same time, we would like to know when these reasoning tech-
niques, which are generally successful, might lead to wrong answers.

There are other stories that can be told about the particular exam-
ple of Linda. For instance, one might argue that the very task that 
we are asked to perform in this problem is not very natural: very 
seldom do we find ourselves ranking statements according to their 
relative likelihood. By contrast, a task that we perform on a daily 
basis is judging whether our interlocutor is honest. When we have 
to deal with this doubt, an abundance of details that do not contra-
dict each other makes the speaker more likely to be truth telling. 
This is basically what happens when a witness is cross-examined in 
court: the witness is asked about various details. The more they talk 
and the more statements they utter, the lower is the probability that 
all these statements are true (by the same logic that says that (h) can-
not be more likely than (f)). But if the witness survives a long cross-
examination with no apparent contradictions, we tend to believe 
that they are telling the truth. The reason is that we judge the prob-
ability not of the statements themselves, but of the event that the 
witness is not lying. And longer statements that are consistent 
arouse more faith than shorter ones.

By a similar logic, assume that, a few years after you last saw Linda, 
I tell you that I have just met her. You ask me what she’s up to these 
days, and I provide one of the answers (a)–(h). Even if you have no 
doubt that I’m telling the truth, you are still aware of the fact that 
there’s more than one Linda in this world, and there’s some doubt in 
your mind whether the Linda I met is indeed the same Linda you 
once knew. In this set-up, you won’t be trying to assess the probability 
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that the statement I make is true of Linda, given that this is the same 
Linda; rather, you’ll be asking yourself what is the probability that 
this is the same Linda, given what the statement says. And then, with 
a sufficient number of details that are typical of Linda, you may be 
convinced that this is the same Linda even if you never expected her 
to be a bank teller. According to this story, when people are asked to 
rank the eight statements, the answers they provide are not sheer like-
lihood judgments of the statements presented, because they are 
colored by the answers to other questions such as “Is this person tell-
ing me the truth?” or “Are we talking about the same Linda?”

Be that as it may, the conjunction fallacy is an impressive phenom-
enon, which makes an important point: it is useful to use representa-
tiveness heuristic, but it can sometimes lead to wrong judgments 
and therefore also to wrong decisions, where, as always, “wrong” is 
subjectively understood. Linda’s example is another one that will 
not survive a formal model: if we use the machinery of probability 
theory to represent our beliefs, we will find it impossible to assign a 
lower probability to an event (f) than to a subevent thereof (h).

Linda the bank teller has become a very famous example. Some 
studies which tried to replicate the findings of Kahneman and 
Tversky didn’t obtain as strong an effect as the original study. Indeed, 
it has been argued that Kahneman and Tversky’s examples were 
carefully chosen, and that some of the effects they found were more 
dramatic in laboratory experiments than they would be in real life.13

The debate regarding the scope and implications of the findings 
of Kahneman and Tversky and their followers is still active, and will 
probably remain so for years to come. As mentioned in the introduc-
tion, the conclusions the psychologists, economists, and decision 
theorists reach on these issues are important for our descriptive use 
of the theory: we might want to know which model best describes 
the behavior of decision makers around us. However, this debate is 
less relevant for normative applications. For these we would like to 
see in which ways we can improve our own decision making. 
Hence I try to provide convincing examples (typically, the original 
 examples used by Kahneman and Tversky and their colleagues 
and followers), asking whether you can find yourself making a 
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 certain decision. The next question is whether you like making deci-
sions this way. If the answer to both questions is negative, we are 
dealing with a mode of behavior that you find silly, but that, luckily, 
is not a mode you may find yourself adopting. If the answer to both 
questions is positive, then you might not be rational by the stand-
ards of some economists, but you are happy with your own deci-
sions. If, however, the answer to the first question is positive and to 
the second question negative, we’re dealing with a case in which 
you may improve your decision making in your own eyes. 
Understanding such examples is the main goal of this book.

Availability Heuristic

Problems 2.5 and 2.16 are quite similar. They read:

In four pages of a novel (about 2,000 words) in English, do you expect 
to find more than 10 words that have the form

[Problem 2.5:]      n  (seven-letter words that have the letter n 
in the sixth position)?

[Problem 2.16:]     ing (seven-letter words that end with ing)?

The typical finding is that the second formulation results in higher 
estimates than the first. This doesn’t seem very logical, because the 
first problem describes a larger set of words than the second: every 
seven-letter word that ends with “ing” is a seven-letter word that 
has “n” in the penultimate position.

Why do people give higher estimates for the “ing” ending as com-
pared with all the endings “ana,” “anb,” “anc”… combined? The rea-
son seems obvious: when asked a question such as this, we probe our 
minds, and try to think of examples of the type discussed. Clearly, if I 
had a list with all the seven-letter words I know in English and I tried 
to assess the frequency of appearance of each one of them, and then 
sum up these frequencies, I would never come up with a higher 
 estimate for “ing” than for “_n_”. Similarly, if I had a computer doing 
these statistics for me, again, the estimate for the “_n_” ending would 
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have to be at least as large as the estimate for the “ing” ending. But I 
do not have a computer to calculate this for me, nor is it very practical 
for me to try to think of all the seven-letter words I know. So I do the 
best I can. I try to imagine words of the type involved. And then it 
may be a little difficult to think of words that end with “_n_”, but it is 
much easier to think of words that end with “ing”. When I ask you to 
think of the latter, I restrict the set of words you’re allowed to use as 
examples. But I also give you a hint as to how to generate such 
words.

Kahneman and Tversky referred to this phenomenon as availa-
bility heuristic.14 Basically, it can be thought of as a heuristic to solve 
likelihood estimation problems. In the absence of a carefully main-
tained and easily accessible database, we sample our own memory 
for examples – and certain examples that are more easily available 
to us will have a higher weight in the resulting estimate. It is as if 
we were taking a biased sample: in trying to recall cases, or to 
imagine scenarios, those that are more conspicuous, or more 
 available, will have a higher probability of being sampled, and 
the resulting sample may not be representative of the target 
population.

Problems 2.6 and 2.17 make a similar point.15 The first reads:

What is the probability that, in the next two years, there will be a cure 
for AIDS?

Whereas the second:

What is the probability that, in the next two years, there will be a new 
genetic discovery in the study of apes, and a cure for AIDS?

The second problem thus deals with a more specific event. If you are 
considering both events simultaneously, you should not assign a 
higher probability to the second event than to the first: any scenario 
that satisfies the condition “there will be a new genetic discovery in 
the study of apes, and a cure for AIDS” also satisfies the condition 
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“in the next two years, there will be a cure for AIDS,” just as any 
word that ends with “ing” also ends with “_n_”. But the discovery 
in the study of apes suggests a way in which the event can occur, 
and thereby makes it more available to your mind, just as the “hint” 
of “ing” suggests a way in which a word might end with “_n_”. 
Thus, if you ponder Problem 2.6, you may be thinking, “Oh, this is 
a long shot. They’ve been looking for a cure for such a long time, 
why would they find one now?” But when you read Problem 2.17, 
you might say to yourself, “I do remember some story about AIDS 
starting with a blood transfusion from apes. It makes sense that the 
cure would come from there!”

Next consider Problems 2.7 and 2.18. In the former you are 
asked:

What is the probability that, during the next year, your car could be a 
“total loss” due to an accident?

Whereas in the latter:

What is the probability that, during the next year, your car could be a 
“total loss” due to:

 a. An accident in which the other driver is drunk?
 b. An accident for which you are responsible?
 c. An accident occurring while your car is parked on the street?
 d. An accident occurring while your car is parked in a garage?
 e. One of the above?

We would like to compare the answer to (e) in Problem 2.18 with the 
answer to Problem 2.7. Typically, the former exceeds the latter, often 
by much. The reason is probably related to availability heuristic 
again: while Problem 2.7 only asks for the probability of an event, 
Problem 2.18 offers many ways in which the accident could happen. 
If we were restricting attention to one item out of (a)–(d) in Problem 
2.18, the formal structure would have been the same as in the 
 previous example (comparing Problems 2.6 and 2.17). In this 
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case the effect is used to “magnify” an evaluated probability. Since 
 availability heuristics makes each of the scenarios (a)–(d) in Problem 
2.18 more conspicuous than it was in Problem 2.7, the addition over 
all of them results in a larger estimate.

In various studies of this nature, it was found that unpacking an 
event, or breaking it into several subevents, could result in magnify-
ing its assessed probability by a factor of 1.5 or more.16 You might 
have had the experience of buying an insurance policy, with an 
agent who tries to sell an insurance against various types of risk. 
After you’ve insured yourself against some risks, the agent might 
go on and describe in very vivid colors the next type of calamity, 
against which you haven’t yet bought insurance. It is as if the insur-
ance agent makes you think about Problem 2.18 rather than Problem 
2.7. As is generally the case, a psychological bias that can be used to 
make money has already been discovered by practitioners.

This example is interesting for another reason as well. Consider 
the two problems again, and ask yourself: where do you believe you 
would give a better assessment of the true probability of your car 
being a total loss – in the itemized version (Problem 2.18) or the 
bottom-line-only version (Problem 2.7)? It is quite possible that you 
were more accurate in the bottom-line-only version, because the 
itemized version made you overestimate the probability of the 
event. If this is the case, this is an example where thinking more 
might result in less-good answers. The reason is that in the itemized 
version we are led to think a lot about the way the event (total loss) 
could happen, but we don’t devote similar attention to the comple-
mentary event, that is, that the car is not lost. It is not obvious how 
one can split one’s time, thinking about various scenarios, in an 
“even-handed way,” devoting the same amount of time to events 
that are equally likely. Indeed, this is precisely the problem of assign-
ing probabilities to these scenarios. But it is obvious that itemizing 
only one event introduces a bias. Importantly, we find that some-
times “thinking more” isn’t “thinking better,” and consequently 
sometimes the intuitive, gut feeling answer will be better than the 
reasoned one.
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Our final example of availability heuristic is Problem 2.8 (identi-
cal to Problem 2.19):

Which of the following causes more deaths?

 a. Digestive diseases.
 b. Motor vehicle accidents.

Most people tend to choose (b). The data that I have available (no 
pun intended) is for 2002.17 In this year, the answer was (a), with 
digestive diseases causing more than 50% more deaths than motor 
vehicle accidents. To be precise, for each death by motor vehicle 
accident, there were 1.66 deaths by digestive diseases. However, we 
suspect that the numbers of media reports about deaths of each type 
would give us a very different ratio.

This example highlights the nature of availability heuristic as a 
biased sample: you are asked to compare the probability of the two 
types of death, but you probably don’t have the data needed for 
such a comparison. You still have to make a judgment. So you try to 
think, and probe for examples from memory. Most of the deaths you 
know about come from the media. And if the media is biased in its 
reports, there is no wonder that the “sample” you carry around with 
you in your memory is biased as well.

Observe that we’re not in the business of media-bashing here. 
The point is not that journalists only seek sensational headlines. In 
fact, it makes a lot of sense to report on traffic accidents: they are 
avoidable. If we hear about them in the media, maybe we’ll drive 
more carefully and lives will be saved. By contrast, public aware-
ness does not suffice to avoid deaths caused by digestive diseases. 
Awareness always helps, but it is surely easier to save lives in the 
case of traffic accidents. As a result, the media is serving an impor-
tant social goal by reporting (easily avoidable) traffic accident 
deaths more often than (less avoidable) disease victims. Yet, it is 
useful to recall that this social goal introduces a bias into the sample 
generated by media reports.
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Anchoring

Problems 2.9 and 2.20 were quite similar:

A newly hired engineer for a computer firm in Melbourne, Australia, 
has four years of experience and good all-round quali fications.

Do you think that her annual salary is above or below [Problem 
2.9: $65,000; Problem 2.20: $135,000]?

What is your estimate of her salary?

Typically, there is a statistically significant difference between the 
answers given in the two conditions. And, as you can guess, peo-
ple give higher estimates if they are first asked about the higher 
value.

This is an example of the anchoring effect.18 It is the effect that irrel-
evant, or nearly irrelevant, information might have, above and 
beyond what can be reasonably justified. In Kahneman and Tversky’s 
original examples the information was the assessment provided by 
someone else, who was declared to know very little about the prob-
lem at hand. The point is that, in the absence of sound data, your 
assessment may be affected by almost arbitrary pieces of informa-
tion even if their relevance is rather limited.

The anchoring effect derives from an anchoring heuristic, postu-
lated to be employed in the assessment of unknown quantities with 
very little information: you begin with some estimate, which serves 
as an “anchor,” and you correct it. Thus, if you’re told that someone 
estimated the salary at $65,000, this is the anchor. Then you think 
some more and may conclude that this is actually too low, so you 
correct upwards. But even after the correction the estimate is likely 
to be lower than it would have been had you started with $135,000 
as your anchor.

In the examples used here, I changed the anchor: rather than it 
being an explicit estimate given by someone else, it is only a 
question. This is designed to minimize the actual information 
that is being given by the anchor: here information is not  explicitly 
given, as the anchors ($65,000 and $135,000) are only  mentioned 
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as part of a question. This does not mean that they convey no 
information. The very fact that these values were chosen to be 
asked about may tell you something. But it is arguably less 
 relevant than a number which is given explicitly as someone else’s 
assessment.

Is anchoring rational? Do you like the fact that your answers 
might vary with the anchors provided? The answer is not obvious. 
As we have just said, anchoring cannot be dismissed simply as a 
mistake. An assessment provided by someone, however poorly 
informed, is still an assessment. And if you have a theory about the 
people who pose questions and why they should pose certain ques-
tions rather than others, then their choice of questions is also inform-
ative. Yet, you may not feel comfortable with the fact that your 
assessment varies with information that may be arbitrary. Moreover, 
you may worry about the fact that this information can be used 
strategically.

Consider the following example. An employee is being reviewed 
by a committee, which can decide to discontinue employment, con-
tinue under current terms, or promote the employee. You walk into 
the meeting and say “I really feel that this person should be pro-
moted.” Later on, when you’re asked to support your opinion, it 
may turn out that you don’t have very convincing arguments, and 
your colleagues don’t vote for promotion. But the very fact that pro-
motion was mentioned and discussed is a sort of anchor, and it may 
make the continuation of employment a non-issue. By contrast, if 
you start off by suggesting that employment be discontinued, even 
if you have no arguments to support that view, you may find that 
promotion is barely discussed.

In real life it may be hard to identify cases of pure anchoring 
effects. In the promotion example above, your colleagues might 
start from your position out of courtesy. People may have an incen-
tive to avoid conflict, and therefore refrain from promoting a view 
that’s very different from the one already stated. Conversely, they 
may also be antagonistic and seek an opposing view intentionally. 
Anchoring effects often interact with strategic considerations of 
these types.
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Mental Accounting

Problem 2.10 read:

You have bought a ticket to a concert, which cost you $50. When you 
arrive at the concert hall, you find you have lost the ticket. Would you 
buy another one (assuming you have enough money in your 
wallet)?

And Problem 2.21:

You are going to a concert. Tickets cost $50. When you arrive at the 
concert hall, you find you have lost a $50 bill. Would you still buy the 
ticket (assuming you have enough money in your wallet)?

Typically, people tend to respond in the affirmative (for buying a 
ticket) more in the second case than in the first. The reasoning is, 
roughly, that in the second case the $50 bill has nothing to do with 
the concert. By contrast, in the first case you’d already spent $50 on 
the concert, and lost the ticket, and now you’re about to spend even 
more. Some people say, “$100 on this concert is really too much to 
spend.”

However, standard economic reasoning would suggest that the 
decision in the two cases should be the same. Suppose that you start 
with m + 50 dollars. In Problem 2.10 you bought a ticket, and were 
left with m dollars. We can think of the purchase as exchanging the 
bundle (m + 50, 0) for (m, 1), where the first coordinate is the amount 
of money you have, and the second coordinate the number of tick-
ets. Alas, having lost the ticket you find that rather than (m, 1) you 
have (m, 0). Now the question is whether you prefer this bundle to 
buying a ticket, that is, which is preferred:

( ) ( )−,  0  or 50,  1m m

In the second case, you started with the bundle (m + 50, 0) and, 
before having bought the ticket, managed to lose $50. So now you 
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have only (m, 0). Again, the question is whether you’d stick to this 
bundle (giving up on the concert), or buy the ticket and have (m − 
50, 1). That is, it is precisely the same question.

Standard economic modeling does not allow us to treat the two 
cases differently. We can imagine a situation in which a person won’t 
buy the second ticket, because they won’t be left with enough money 
to buy food. But then they won’t buy the ticket in both cases, whether 
what they have lost was a ticket or a $50 bill. Similarly, they may 
shrug their shoulders and buy the ticket, because they can afford to. 
But then this should be their decision in both cases. A decision tree 
might help them see that the ticket and the $50 bill are sunk costs, 
leaving them with precisely the same material payoff in the subtree 
you’re facing.

The standard economic assumption is that money is fungible: a 
dollar is a dollar is a dollar. Dollars don’t come with name tags on 
them; they can be transferred from one expense to another. However, 
Richard Thaler argued, using examples as above, that people have 
mental accounts:19 even though money is indeed fungible, people 
often behave as if a certain sum “belongs” to a certain class of 
expenditures.

Another example suggested by Thaler is the following.20 Mr Smith 
goes by a store and sees a sweater. He likes it, but decides that it’s 
too expensive to buy. When he comes home, he finds that his wife 
bought him precisely the same sweater for his birthday, and he’s 
happy. If the couple has only joint bank accounts, how can the man 
be pleased to see that his wife made precisely the decision he decided 
not to make?

A birthday present from one’s spouse differs from one’s own 
spontaneous decision in two ways. One is agency, namely, who 
makes the decision (and bears the responsibility for it). When the 
wife buys the sweater, she relieves her husband from the responsi-
bility for the decision. If he were to buy it himself, he would need to 
justify the purchase to himself, and perhaps to cope with the blow 
to his self-image as a frugal person.

The second difference is the occasion of the birthday. If the sweater 
comes out of the “birthday account,” it is a legitimate expense. This 
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account has a certain budget, and as long as all birthday presents do 
not exceed it, everything’s fine. Observe that this could work even if 
we ignored the agency issues: the man can decide to buy a present 
to himself, and feel that it is fine to do so on his birthday, but not on 
any other day.

Why do we observe mental accounting? When can it be useful? 
There are at least three distinct explanations of this phenomenon:

a. Complexity: Consider the government budget. Taking a rather 
idealized view of a complex organization, let us think of the 
government as a single decision maker who has a well-defined 
utility function. It considers all possible expenses, on schools 
and roads, hospitals and police, and strikes a trade-off that does 
the most good to the citizens (or so one should hope). Assume 
now that a certain bridge suddenly collapses. There is an unpre-
dictable new expense. Since the overall budget has decreased, 
the optimization problem should be re-solved. In particular, the 
extra expense of fixing the bridge might have to be shared by all 
departments. Maybe the hospitals should buy less medication, or 
the schools should give up some computers. In principle, the gov-
ernment should get together again and determine what the new 
budget should be. But it is not very practical to re-allocate the 
budget every time a bridge collapses. The complexity of the gov-
ernment’s budget problem precludes a perfect re-optimization, 
and calls for a simplifying approach: divide the budget among 
major categories, divide each category into subcategories, allo-
cate the budget to these, and so on. In each subcategory one 
needs to consider only transfers between items in this subcate-
gory. This means that there are relatively few comparisons to 
be made, and they tend to be between subcategories that are 
similar in nature. Hence, the problem becomes much easier.
 Considering an individual consumer again, we observe that 
for most people the budget allocation problem is also quite 
complex. This may not be true if you have to survive on $10 a 
day, and your basic needs already exhaust your budget with-
out leaving you too many choices. But if you’re fortunate 
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enough to have a much higher income, there is a multitude of 
ways in which you could spend your budget. How would you 
decide? How could you even conceive of all the consumption 
bundles that are available to you? This problem is akin to the 
government’s budget problem, and you may adopt a similar 
approach: start by allocating your income among major catego-
ries, such as food, housing, entertainment, and so forth. Within 
each category, you can go on to divide the budget into subcate-
gories, and so on. As a result, you have money that you have 
decided is allocated to certain types of expenses, that is, a men-
tal accounting system.

b. Self-control: Consider Mr Smith who sees the sweater that he 
would like to have. The sweater is not cheap, but he can afford 
to buy it. However, Mr Smith says to himself, “What would hap-
pen if I were to buy such luxury items whenever I feel like it? 
Today it will be a sweater, tomorrow a leather bag, and at the 
end of the month I’ll discover a huge bill on my credit card.” 
“No,” he responds to himself, “it’s only this once. I’ll buy the 
sweater and as of tomorrow I’ll be as frugal as a monk.” “Com’n,” 
he continues his internal debate, still by the store’s window, “it’s 
easy to say ‘just this once’ – I can say the same thing tomorrow 
and then the day after tomorrow. It’s going to be like the story 
with this diet that I always begin the following Monday…”.
 Thus, Mr Smith is coping with a problem of self-control. He’s 
sophisticated enough to realize that he’s prone to break his own 
promises to himself. One way to help himself resist the tempta-
tion is to decide, at the beginning of the month, how much he’s 
going to spend on each category of products, and do his best not 
to exceed that. Of course, in the absence of a commitment device 
he may also fail to respect this promise. But keeping track of the 
expenses in each category may alleviate the self-control prob-
lem: at least there will be a red light blinking when he spends 
too much.

 c. Memory: A related problem one may have is of recording small 
purchases. Assume that Jane made a decision to consume wine 
every day, but to limit herself, most of the time, to $10 bottles. 
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She figured out that she can have a $30 bottle about 15% of the 
times, but no more than that. So she says to herself, “Great, I’ll 
buy wine, at $10 or $30 a bottle, and I just have to make sure that 
the number of times I buy the more expensive bottles doesn’t 
exceed 54 per year.”

 Obviously, this is going to be difficult to implement, even if Jane 
has no self-control problems. The implementation of her consump-
tion strategy requires not only iron will, but also perfect memory. If 
she can’t quite remember how many times she bought the more 
expensive bottle this year, she might buy it too often, or she might 
be unduly cautious and drink cheap wine more often than she could 
have afforded to. One possible solution is to use the calendar as a 
memory aid: Jane can decide to have a more expensive bottle on 
Saturday nights, and a less expensive one the rest of the week. Thus, 
she need not keep track of her past consumption – she only needs to 
obey the calendar. This is similar to Mr Smith’s birthday gift: allow-
ing oneself to spend more money on one’s birthday is a way to enjoy 
some luxury from time to time, without fearing that one would end 
up spending too much (or too little) due to forgetfulness.

Similar phenomena occur when people consider large, non-
repetitive expenses. People who are frugal on a daily basis may find 
themselves spending money much more easily when they are on a 
vacation, or when they move to a new house, and so on. In the case 
of the vacation, this may be due to the desire to make it a perfect 
experience. But this explanation doesn’t seem compelling in the 
moving example. It is possible, however, that on a rather unique 
occasion such as moving, one doesn’t have to worry about the higher 
expenses becoming a habit.

With all these explanations, it might seem that there is hardly any-
thing more rational than mental accounting. But this is not what I 
am trying to say. As is the case with most psychological biases dis-
cussed here, there are many situations in which they lead to better 
decisions, and then there are others when they do not. Mental 
accounting is no exception: there are situations, as in the case of 
the lost ticket we started out with, where you may find that it is 
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 irrational to treat money as if it had a pre-destined use. Where to 
draw the line between useful and silly mental accounting remains, 
as always, your subjective choice.

Dynamic Inconsistency

Problem 2.11 asks you to compare

 a. Receiving $10 today.
 b. Receiving $12 a week from today.

Whereas Problem 2.22 asks you to compare

 a. Receiving $10 fifty weeks from today.
 b. Receiving $12 fifty-one weeks from today.

Often, more people choose option (a) in the first problem than in the 
second.21 Moreover, there are many people who simultaneously 
choose (a) in Problem 2.11 and (b) in Problem 2.22. Is there any dif-
ficulty with such a pattern of choices? Well, maybe. Assume that 
you look at Problem 2.22 and decide to go for (b). Indeed, you say to 
yourself, it’s anyway very far in the future. Whether I have to wait 
50 weeks or 51 weeks, I have to be patient. But then why not get a 
20% higher sum? However, assume that someone asks you, after 50 
weeks have gone by, whether you’d like to change your choice. 
Now, “50 weeks” means “immediately,” and “51 weeks” means “a 
week from now.” That is, if you get the chance to change your choice, 
you are now facing the same choices as in Problem 2.11, and (assum-
ing consequentialism) switch to (a).

If these are indeed the choices you make, you will be dynamically 
inconsistent: you will be making some choices about your future 
behavior, but, when the time comes to implement them, you will 
not want to. There are many problems of this nature. You may 
have to study for an exam, and you prefer to first go out with 
friends and study tomorrow. When tomorrow becomes today, you 
may again wish to postpone studying. In the end you may find 
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yourself  unprepared for the exam, which is not the choice you 
would have liked to make at the outset. Similarly, you may find 
yourself postponing the beginning of your savings, or your diet, 
or any other unpleasant choice that you are tempted to put off 
until a later date.

Dynamically inconsistent decision makers may be aware of 
their inconsistency, and take it into account. In particular, they 
may seek commitment devices that will limit their future choices 
and not allow them to deviate from their chosen course of action. 
For example, in the United States people used to join “Christmas 
Clubs” which were savings plans, yielding low or negative inter-
est, and providing the benefit of one not being able to withdraw 
one’s own money. The idea was that by putting your money in 
such a plan you can guarantee yourself that, no matter what 
 happens during the year, and no matter how tempted you 
might be to do other things with your money, you will not be able 
to use it until Christmas, when you presumably need it to buy 
Christmas gifts.

The idea that, in the face of self-control problems, one might be 
better off with less choice dates back to Homer’s Odyssey: Odysseus 
wants to enjoy the singing of the sirens, but not to be tempted by 
them. Knowing that he will not be able to resist the temptation, he 
orders his men to tie him to the boat’s mast. This way he ends up 
enjoying the sirens’ singing but also getting safely away from their 
island.

Self-control problems abound. They appear in the context of the 
consumption of addictive substances (including alcohol and 
tobacco), of the choice of diet and exercise, as well as of consump-
tion habits and the accumulation of debt. When consumers are 
prone to self-control problems and may therefore be dynamically 
inconsistent, we cannot model them as coherent utility-maximizing 
agents. And this casts doubt on the validity of the arguments 
 supporting free markets. In particular, these problems may justify 
regulations that limit people’s choices, as in the cases of accumulat-
ing credit card debt, withdrawing from (or borrowing against) one’s 
retirement funds, and so forth.22
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Exercises

1. Some people are afraid of flying. They are often surprised to 
learn that many more people lose their lives in motor vehicle 
accidents (on the ground) than in airplanes. Why are their eval-
uations of these numbers inaccurate? And does it follow that 
flying is less dangerous than driving?

2. Jim and Joe are students who live on small scholarships. They 
go to an all-you-can-eat restaurant and pay $8.95 for the meal. 
Joe is unexpectedly told that, being the 100th customer of the 
day, he gets his money back (and gets to eat at no charge). Other 
things being equal, do you think that Joe will consume the same 
amount of food as Jim?

3. Magazines often offer their new customers a subscription over 
an initial period at a very low cost. Provide at least two reasons 
why this may be a smart way to attract customers.

4. Credit card companies used to offer students loans at enticing 
rates. Presumably, this was an example of voluntary trade 
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among adults, which should be allowed in a free market. Provide 
a reason why such offers may be restricted by law.

5. In most countries, a driver who wishes to join an organ donation 
program has to make an explicit choice to do so. There is a pro-
posal to make every driver an organ donor unless they opt out.23 
Do you think this proposal might have an effect on the number 
of organ donors? If so, which psychological effect might be 
responsible for this?

6. Mary noticed that, when she gets an unexpected bonus from her 
employer, she allows herself to buy goods she didn’t plan to 
buy, and often ends up spending an amount of money larger 
than her bonus. What psychological effect is related to this phe-
nomenon, and what goes wrong in her decision making?

Notes

1 See, for instance, Gigerenzer, G. and Hoffrage, U. (1995) How to improve 
Bayesian reasoning without instructions: frequency formats. Psychological 
Review, 102, 684–704.
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 2 Gigerenzer has been arguing that simple heuristics and intuition lead 
to rather good decisions in naturally occurring situations. See 
Gigerenzer, G. and Todd, P. M. (1999) Simple Heuristics that Makes Us 
Smart. Oxford University Press.

 3 Tversky, A. and Kahneman, D. (1981) The framing of decisions and the 
psychology of choice. Science, 211, 453–458.

 4 Lorge, I. and Solomon, H. (1955) Two models of group behavior in the 
solution of Eureka-type problems. Psychometrika, 20, 139–148; Davis, 
J. H. (1992) Some compelling intuitions about group consensus deci-
sions, theoretical and empirical research, and interpersonal aggrega-
tion  phenomena: selected examples, 1950–1990. Organizational Behavior 
and Human Decision Processes, 52, 3–38; Cooper, D. J. and Kagel, J. (2005) 
Are two heads better than one? Team versus individual play in signal-
ing games. American Economic Review, 95, 477–509.

 5 I’m blithely ignoring here the question of what a formal model is. In 
fact, what is formal enough for one may not be formal to another. More 
importantly, formal models may capture representations as well. But 
such models still force us to explicitly state all considerations that we 
allow to have an effect over our decisions.

 6 Thaler, R. (1980) Toward a positive theory of consumer choice. Journal 
of Economic Behavior and Organization, 1, 39–60.

 7 Samuelson, W. and Zeckhauser, R. J. (1988) Status quo bias in decision 
making. Journal of Risk and Uncertainty, 1, 7–59; Kahneman, D., Knetsch, 
J. L. & Thaler, R. H. (1991) Anomalies: the endowment effect, loss aver-
sion, and status quo bias. Journal of Economic Perspectives, 5, 193–206.

 8 Kahneman, D., Knetsch, J. L. & Thaler, R. H. (1990) Experimental test 
of the endowment effect and the Coase theorem. Journal of Political 
Economy, 98, 1325–1328.

 9 Shefrin, H. and Statman, M. (1985) The disposition to sell winners too 
early and ride losers too long: theory and evidence. Journal of Finance, 
3, 777–790.

10 If the amount of money lost is significant, so that it changes the avail-
able choices in the future, you are surely not expected to ignore it. But 
in this case we will not refer to it as sunk cost.

11 See Appendix B for basic definitions of operations on events.
12 Kahneman, D. and Tversky, A. (1972) Subjective probability: a judgment 

of representativeness. Cognitive Psychology, 3, 430–454; Tversky, A. and 
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Consuming Statistical Data

Introduction

Much of the discussion in the previous chapter speculated about the 
mechanisms underlying psychological phenomena, asking under 
what conditions these mechanisms would be sensible. We tend to 
assume that the human mind is a rather sophisticated inference tool 
that has evolved over a long period, and that is probably not so bad 
at doing what it was designed to do. Indeed, for practically all 
modes of thinking we discussed, one can find good reasons and a 
variety of environments in which they are close to optimal.

This chapter is different. We will mostly discuss phenomena that 
are plain mistakes. Correspondingly, this is the least democratic of 
all chapters in the book: whereas in the others I keep asking you to 
make your own decision regarding what is rational for you, here 
I will use the authority bestowed upon me by the academic world to 
say, “Sorry, what you just said is wrong and what I say is right.”

The reason might be that this chapter deals with statistical data, 
rather than with natural inputs. One can hardly make the case that 
the human mind has evolved to consume and understand statistical 
data, because such data are extremely recent in evolutionary terms. 
Some statistical techniques are about 100 years old, and yet they are 

Making Better Decisions, by Itzhak Gilboa © 2011 John Wiley & Sons, Inc.
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employed in innumerable studies, whose results are reported on a 
daily basis in the media. Thus, we are bombarded with statistical 
findings, and we try to analyze them using minds that have not 
changed since statistics was invented. It should not be a surprise 
that we need some help in this task.

This book is designed for people who have taken at least one intro-
ductory course in probability and statistics. Several  statistical concepts 
that are taught in such a course are explained again in the context of the 
problems that follow, because, according to my experience, many stu-
dents who have done well in a statistics course can still be quite con-
fused about the meaning and  applications of statistical concepts. As a 
result, very little prior  knowledge is actually required to follow the dis-
cussion. If, however, you feel that you lack such knowledge, Appendix 
B may be of help.

Problems

Problem 3.1

A newly developed test for a rare disease has the following features: 
if you do not suffer from the disease, the probability that you test 
positive (“false positive”) is 5%. However, if you do have the disease, 
the probability that the test fails to show it (“false negative”) is 10%.

You took the test, and, unfortunately, you tested positive. The 
probability that you have the disease is:

Problem 3.2

You are going to play roulette. You first sit there and observe, and 
you notice that the last five times it came up “black.” Would you bet 
on “red” or on “black”?
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Problem 3.3

A study of students’ grades in the United States showed that immi-
grants had, on average, a higher grade point average than US-born 
students. The conclusion was that Americans are not very smart, or at 
least do not work very hard, as compared with other nationalities.

What do you think?

Problem 3.4

In order to estimate the average number of children in a family, a 
researcher sampled children in a school, and asked them how many 
siblings they had. The answer, plus one, was averaged over all chil-
dren in the sample to provide the desired estimate.

Is this a good estimate?

Problem 3.5

A contractor of small renovation projects submits bids and competes 
for contracts. He has noticed that he tends to lose money on the 
projects he runs. He has started wondering how he can be so 
 systematically wrong in his estimates.

Can you explain that?

Problem 3.6

Comment on the following.
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[At a restaurant] ANN: I hate it. It’s just like I told you: they don’t 
make an effort anymore.

BARBARA: They?
ANN: Just taste it. It’s really bad food. Don’t you remember how it 

was the first time we were here?
BARBARA: Well, maybe you’re tired.
ANN: Do you like your dish?
BARBARA: Well, it isn’t bad. Maybe not as good as last time, but…
ANN: You see? They first make an effort to impress and lure us, and 

then they think that we’re anyway going to come back. No wonder 
that so many restaurants shut down after less than a year.

BARBARA: Well, I’m not sure that this restaurant is so new.
ANN: It isn’t?
BARBARA: I don’t think so. Jim mentioned it to me a long time ago, it’s 

only us who didn’t come here for so long.
ANN: So how did they know they should have impressed us the first 

time and how did they know it’s our second time now? Do you 
think the waiter was telling the chef, “Two sirloins at no. 14, but 
don’t worry about it, they’re here for the second time”?

Problem 3.7

Studies show a high correlation between years of education and 
annual income. Thus, argued your teacher, it’s good for you to study: 
the more you do, the more money you will make in the future.

Is this conclusion warranted?

Problem 3.8

In a recent study, it was found that people who did not smoke at all 
had more visits to their doctors than people who smoked a little bit. 
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One researcher claimed: “Apparently, smoking is just like consuming 
red wine – too much of it is dangerous, but a little bit is actually good 
for your health!”

Do you accept this conclusion?

Problem 3.9

Comment on the following.

CHARLES: I don’t use a mobile phone anymore.
DANIEL: Really? Why?
CHARLES: Because it was found to be correlated with brain cancer.
DANIEL: Com’n, you can’t be serious. I asked an expert and 

they said that the effect is so small that it’s not worth thinking 
about.

CHARLES: As long as you have something to think with. Do as you 
please, but I’m not going to kill myself.

DANIEL: Fine, it’s your decision. But I tell you, the effects that were 
found were insignificant.

CHARLES: Insignificant? They were significant at the 5% level!

Problem 3.10

Comment on the following.

MARY: My skin is killing me. Look how red it is.
PAULA: Yeah, it’s really bad. Why don’t you take something?
MARY: I tried everything. Nothing works.
PAULA: Nothing?
MARY: I’m telling you, I tried anything I could put my hands on.
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PAULA: Look, maybe I can help you. I know this guy who works for 
BigMed, you know, the drug company.

MARY: Sure I know, they’re big.
PAULA: Well, they are in the final phase of testing an ointment, and 

I think it’s precisely for this type of rash. They need volunteers for 
the test – why don’t you join the study? They even give you all 
kinds of skin products as a gift.

MARY: I don’t need any gifts. If it can help, I have enough of an 
incentive to take it, believe me. But what if it’s going to be 
worse?

PAULA: It won’t. They’re a serious company and the product has 
already passed many tests.

MARY: So was it approved by the FDA [Food and Drug 
Administration]?

PAULA: No, they’re still testing it, that’s the point of the test.
MARY: I don’t get it. It’s either/or: if you’re so sure it’s OK, why 

isn’t it approved? If it’s not yet approved, it’s probably not yet 
OK.

PAULA: It’s never 100% sure to be “OK,” as you put it. A drug can be 
approved and then still kill people. It’s all a matter of probabilities 
and statistics.

MARY: What does it help me that you call this probability? Again: 
either the probability is low enough so that it can be approved, or 
it’s not low enough and then I don’t want to take it.

PAULA: Which probability?
MARY: The probability that something bad might happen. I don’t 

know what, but they are testing something, aren’t they?
PAULA: It’s up to you, of course. It’s your skin and it’s your decision. 

But we always take risks, when we board planes and when we 
play squash. All I’m saying is that, given BigMed’s reputation, 
this is a very reasonable risk to take, and it’s a pity to go on 
suffering.

MARY: Well, then, given BigMed’s reputation, why are they still 
 testing it instead of the FDA just approving it?
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Conditional Probabilities

Problem 3.1 reads:

A newly developed test for a rare disease has the following  features: 
if you do not suffer from the disease, the probability that you test 
positive (“false positive”) is 5%. However, if you do have the dis-
ease, the probability that the test fails to show it (“false negative”) 
is 10%.
 You took the test, and, unfortunately, you tested positive. The prob-
ability that you have the disease is: 

Many people tend to provide answers such as 95%, 90%, or some-
thing in between. The fact is that there is no way to tell. We will explain 
why in detail. In a nutshell, we are given conditional probabilities in 
one direction: of testing positive, and therefore also of testing nega-
tive, given having the disease and given not having it. But we are 
asked about the conditional probabilities in the other direction: of 
having the disease given testing positive. And we generally cannot 
figure out the conditional probabilities in one direction from the con-
ditional probabilities in the other direction. What is missing is also 
some information on the unconditional probabilities, in this case the 
probability of having the disease a priori (unconditional on the test).

Let us first look at two extreme situations. Suppose that we take 
the test in a hospital ward in which all patients have already been 
diagnosed with the disease. Assume for simplicity that the previous 
diagnosis was done by many physicians and is beyond doubt. Now 
we apply the test to them. It is still true that the test has 10% of false 
negatives. That is, in the population of these sick patients, 10% will 
test negative. If I tested positive, what is the probability that I have 
the disease? The answer is 100%. It would have been the same answer 
if I had tested negative: because we anyway know that, being hospi-
talized in this ward, I have the disease, it doesn’t matter what the test 
shows. That is, an unconditional (a priori) probability of 100% will 
translate to a conditional (a posteriori) probability of 100%.
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Next assume that we consider a test for a disease that is long extinct. 
The test still has the conditional probabilities mentioned above – 5% 
false positives (within the population of the healthy) and 10% false 
negatives (within the population of the sick). These are properties of 
the test, its accuracy rates, which are independent of the population 
to which it is applied. But given that the disease is extinct, the uncon-
ditional, a priori probability that I have the disease is zero. After tak-
ing the test, it is still zero, no matter what the test shows. If the test 
happens to be positive, I’d simply shrug my shoulders and say, “Oh 
well, one of these false positives. We know they happen.”

Thus, in the two extremes – where we know that the patient is healthy 
or that they are sick – the posterior probability, after taking the test, is 
precisely the same as the prior probability, before taking the test. The 
typical case will clearly be between these extremes, where the test does 
provide additional information. But these extremes tell us two things: 
first, despite the given  conditional probabilities of testing positive 
(given being healthy and given being sick), the conditional probability 
of being sick given testing positive can be as low as 0% and as high as 
100%. Second, an important piece of information that is missing for 
the calculation is the unconditional probability of having the disease.

To see the complete analysis, let us use some notation. Denote the 
two events in question by

D – having the disease
T – testing positive

and their complements, or negations, by

¬ D – not having the disease
¬ T – testing negative

We are given the following:

( ) =T | D   90%P

That is, the conditional probability of T (testing positive) given D 
(having the disease) is 90%. Since the conditional probabilities, given 
a certain event, also add up to 1, we know that the  conditional 
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 probability of ¬T (testing negative) given the same D (having the 
disease) has to be 100 − 90%:

¬ =( T | D) 10%P

Similarly, we are told that the conditional probability of T (testing 
positive) given ¬D (not having the disease) is 5%, or

¬ =(T | D) 5%P

which implies

¬ ¬ =( T | D) 95%P

But what we are asked about is the conditional probability of having 
the disease given that one tested positive, that is

( ) =D |T   ?P

And it isn’t any of the numbers given above. What is it, then? By 
definition, it is the ratio between the probability of both events 
occurring (the “intersection” of D and T) and the overall probability 
of event T. To compute it, it will be helpful to have a probability tree. 
This can be thought of as a decision tree in which you have no 
choices to make, and all the nodes are chance nodes. In such a tree 
conditional probabilities can be written on the edges:

p 1 –p

D ~ D

0.90 0.10 0.05 0.95

T ¬T T ¬T

Decision tree 3.1.
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With the aid of this tree we can compute the probabilities of the 
leaves, which are the intersections of two events. For instance, if 
we’re interested in the probability of both having the disease (D) 
and testing positive (T), that is, the intersection of D and T, we can 
simply multiply the probability of D, p, by the conditional probabil-
ity of T given D, 0.90. And the probability of D and ¬T will be the 
same p multiplied by 0.10. More generally, the probability of any 
leaf of the tree is obtained by multiplying all the (conditional) prob-
abilities from the root of the tree to that leaf (see Appendix B):

Decision tree 3.2.

p 1 –p

D ¬D

0.90 0.10 0.05 0.95

T ¬T T ¬T

0.90p 0.95(1 –p)0.10p 0.05(1 –p)

What is the probability of disease given testing positive, that is, 
P(D | T) = ? We need to take the probability of their intersection, 
and divide it by the probability of T. The tree above does give us the 
first: the probability of the intersection is 0.90p. But what is the prob-
ability of T?

Here we have to work a little: the event T (testing positive) is not 
represented by any node in the tree above. But we do have two nodes 
representing disjoint events that together make up T: we have a node 
for T-and-D (T ∩ D) just mentioned above, and for its counterpart, 
T-and-(not-D) (T ∩ ¬D). The probability of T is, therefore,
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( ) ( )= + −T   0.90   0.05 1P p p

And we can now calculate the conditional probability of D given T:

( ) ( ) ( )⎡ ⎤= = + −⎣ ⎦D | T   0.90  /  T   0.90  /  0.90   0.05 1P p P p p p

This formula reflects the points made above: (i) we can’t tell what 
this probability is without knowing what p is, the unconditional 
probability of the disease (p = P(D)); (ii) as p varies between 0 and 1, 
so will P(D | T). But besides these qualitative points, the formula 
also gives us a precise calculation of the conditional probability of 
having the disease if we know the a priori, unconditional probability of 
the disease. For example, if the disease is very rare, and has only 1% 
probability in the overall population, that is,

( )  D   1%p P= =

we obtain

( ) ( )
[ ]

[ ]

⎡ ⎤= + −⎣ ⎦
= +

= +
= ≅

D | T   0.90  /  0.90   0.05 1

 0.90 * 0.01/  0.90 * 0.01  0.05 * 0.99

               0.009 /  0.009  0.0495  

 0.009 /  0.0585  0.1538

P p p p

To see that this indeed makes sense, it is sometimes useful to think 
in terms of frequencies rather than probabilities. That is, we imag-
ine a large population, and translate probabilities to proportions. 
Assume, for example, that we have 10,000 people. With probability 
of disease p = 1% overall, 100 are sick and 9,900 are healthy. How 
many will test positive in each subpopulation? Well, this is what 
the conditional probabilities are telling us: the 10% of false nega-
tives (among the sick) means that, out of the 100 sick people, 90 will 
indeed test positive, but 10 will walk home with the false reassur-
ance that the test was negative in their case. As for the 9,900 healthy 
people, we know that 5% of them will test positive despite the fact 
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that they are healthy. That is, 495 (5%*9,900) will be healthy people 
who test positive, while the rest (95%*9,900 = 9,405) will be healthy 
people who are also told that they were found healthy on the test. 
Overall, those who test positive are 90 sick people and 495 healthy 
people, altogether 90 + 495 = 585. If I tested positive, I know that I 
am one of these 585 people. But I need not be one of the 90 sick 
ones – I may well be one of the 495 healthy ones who were false 
positives. What are the chances that I’m truly sick? Indeed, 90/585, 
which is about 15.38%.

Sometimes people find the sort of drawing shown in Figure 3.1 
helpful. It is a sort of Venn diagram, where sets (or events) are rep-
resented by areas. It may be best to make the areas proportional to 
the sizes of sets (or the probabilities of the corresponding events). 
Sometimes, the diagram will only be schematic. For example, con-
sider a square of 100 × 100 = 10,000 people, where the leftmost col-
umn represents the 1% of sick people (Figure 3.1).

Next, we split each of these populations according to those who 
test positive versus those who test negative (Figure 3.2). The condi-
tional probability we were trying to compute, P(D | T), is the size of 
the darker shaded area (90) divided by the sum of the sizes of both 
shaded areas (90 + 495 = 585), which yields 90/585.

An important lesson from this exercise is that it is quite possible 
that most sick people test positive, while most of those who test 

100 sick (D)

9,900 healthy (¬D)

Figure 3.1 Sick and healthy people.
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positive are not sick. Recall: the conditional probability of testing 
positive given that one is sick was

( ) =T | D   90%P

while the conditional probability of being sick given that one tested 
positive is only

( )D | T 15.38%P ≅

More generally, the conditional probability of one event, A, given 
another, B, is quite different from the converse conditional probabil-
ity, that of B given A. In particular, it may well be the case that

( ) >A | B   50%P

while

( ) <B | A   50%P

That is, it is possible that “most of the B’s are A’s” while “most of the 
A’s are not B’s.” In fact, what relates the conditional probability of A 
given B to that of B given A is the ratio of the unconditional proba-
bilities. Specifically,

( ) ( ) ( ) ( )= ⎡ ⎤⎣ ⎦A | B   A / B  *  B | AP P P P

Figure 3.2 Positive and negative for sick and healthy people.

90 sick positive
(D and T)

495 healthy positive 

(¬D and T) 

10 sick negative

(D and¬T)

9,405 healthy negative

(¬D and¬T) 
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(Throughout the discussion let us assume that all probabilities are 
positive, so that we won’t be diving by zeros, and all conditional 
probabilities are well defined.)

Hence, if we are dealing with two events whose overall (uncon-
ditional) probability is the same (P(A) = P(B) and P(A)/P(B) = 1), 
we will find that the conditional probability of the first given the 
second is the same as that of the second given the first. But this is 
not true in general. Yet, people tend to confuse the two conditional 
probabilities. Because this confusion is tantamount to ignoring the 
ratio P(A)/P(B) in the formula above, Kahneman and Tversky 
referred to this phenomenon as ignoring base rates.1 “Base” probabil-
ities are the a priori, unconditional probabilities, P(A) and P(B). 
Ignoring them, or, to be precise, ignoring their ratio, is what results 
in the confusion of P(A | B) with P(B | A).

The phenomenon of ignoring base rates may have originated 
from the following fact: for any two events, if the first makes the 
second more likely, then the second makes the first more likely as 
well. Formally, for two events A and B, say that A is correlated 
with B if

( ) ( )>B | A   BP P

that is, if knowing that A has occurred increases our belief that B 
will occur. You may recall that the overall probability of B is a 
weighted average of the conditional probability of B given A and 
the conditional probability of B given ¬A. (The weights are simply 
the probabilities of A and of ¬A – see Appendix B for details.) Hence, 
P(B | A) > P(B) is equivalent to

( )B |A   (B | A)P P> ¬

and to

( )B   (B | A)P P> ¬

Reversing the roles, we can say that B is correlated with A if any one 
(hence, all) of the following is true:
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( ) ( )
( )
( )

>

> ¬

> ¬

A | B   A

A   (A| B)

A | B   (A| B)

P P

P P

P P

The interesting fact, however, is that “being correlated with” is a 
symmetric relation: if A is correlated with B, then B is correlated 
with A. For example, suppose that you interview candidates for a 
job. Let A stand for “the candidate wears a business suit” and B for 
“the candidate is good.” If it is true that, among the good candi-
dates, you see a higher percentage of suit-wearing ones than you do 
in the entire population (P(A | B) > P(A)), then it is also true that, 
given that someone wears a suit, they are more likely to be a good 
candidate than if we knew nothing about what they wear (P(B | A) > 
P(B)). But we can’t say anything quantitative. It is possible that most 
of the good candidates wear suits, while it may be far from true that 
most of the suit-wearing candidates are good.

The qualitative inference was true also in the example we started 
out with: the probability of testing positive was higher among the 
sick than among the healthy:

( ) = > = ¬T | D   90%  5%  (T | D)P P

(and this also means P(T | D) > P(T) > P(T | ¬D) even if we don’t 
know what P(T) is). This implies also that

( ) ( )D | T   D  (D | T)P P P> > ¬

that is, testing positive isn’t good news: the probability of being sick 
knowing that we tested positive is higher than the probability of being 
sick not knowing anything (P(D)) or knowing that we tested negative 
(P(D | ¬T)). But this is all we can say: if D makes T more likely (than 
before knowing D), then T makes D more likely (than before know-
ing T). Any additional quantitative inference will be unwarranted.

Importantly, the mistake of ignoring base rates, which all of us are 
prone to, is also the engine that keeps many prejudices alive. To con-
sider a benevolent example, assume that many of the top squash 
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 players are Pakistani. What we mean by this is that, among the top 
squash players, there is a disproportionate representation of 
Pakistanis:

( ) ( )Pakistani | top_ player   PakistaniP P>

where the number P(Pakistani) refers to the proportion of Pakistanis 
in the overall human population. Thus, knowing that one is a top 
player makes it more likely that one is Pakistani than before we had 
this piece of information. This does indeed mean that the converse 
direction of the correlation holds qualitatively: given that one is 
Pakistani, one is more likely to be a top player than if we knew noth-
ing about one’s nationality:

( ) ( )>top_ player | Pakistani   top_ playerP P

However, even if most of the top players are Pakistanis,

( ) >Pakistani | top_ player   50%P

we cannot infer that most of the Pakistanis are top players:

( )top_ player | Pakistani  ?  50%P

And if you replace “Pakistanis” and “top players” by other groups 
and other features, you may find that certain prejudices and social 
stigmas may be rooted in the all-too-natural but hardly justifiable 
phenomenon of ignoring base rates.

Gambler’s Fallacy

Problem 3.2 reads:

You are going to play roulette. You first sit there and observe, and you 
notice that the last five times it came up “black.” Would you bet on 
“red” or on “black”?
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Many people respond that they would now rather bet on “red.” It 
is, in fact, very difficult to justify this answer. The reason is the fol-
lowing. We can make the plausible assumption that consecutive 
spins of the roulette wheel are identically and independently dis-
tributed (i.i.d.):2 each time the wheel is spun, each outcome has the 
same probability of coming up, and whatever we know about past 
spins tells us nothing about future ones. If this is the case, then there 
is nothing to learn from past outcomes about future ones, and the 
fact that the roulette wheel came up “black” five times in a row 
shouldn’t change your probability that it will next be “red” or 
“black.” This would be the case if you knew for sure that the rou-
lette wheel was fair, that is, that “black” and “red” had the same 
probability in each spin.

It is possible that you’re not quite sure that the roulette wheel is 
fair. In this case, you may still assume that consecutive spins are 
i.i.d. in “reality.” That is, there is a certain physical mechanism that 
governs the outcome of the experiment, and this mechanism does 
not change from one spin to another, irrespective of how many spins 
we’ve observed as well as of their outcomes. Thus, the spins will be 
i.i.d. given (conditional on) the mechanism. However, if we are not 
sure what the mechanism is, then for us, subjectively, the spins are 
not independent. This is indeed the case whenever we take a sample 
in order to learn something about the distribution: given the distri-
bution, we assume that the observations are i.i.d., but for us, not 
knowing what the distribution is, they are not independent. The 
whole point of statistical inference is that we can learn something 
about the distribution, and thereby also about future observations, 
from past observations.

But if this is the case, and we’re not sure that the roulette wheel is 
fair, having observed five times “black” should make us put more 
credence on the hypothesis that the roulette wheel is biased towards 
“black.” To consider an extreme case, if you were to observe 1,000,000 
“black” outcomes, the only reasonable prediction is “black” for the 
1,000,001st.

To conclude, if you are certain that the roulette wheel is fair, past 
observations are immaterial. If you’re not certain, you should learn 
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from past observations, but bias your estimate towards the more 
frequent observations. In either case, “red” doesn’t seem to be more 
likely as a result of a sequence of “black”s.

Yet, people do make this prediction, which Kahneman and 
Tversky called “the gambler’s fallacy.”3 Where is it coming from? 
Most probably, from an over-interpretation of the law of large num-
bers (LLN). This law, dating back to Jacob Bernoulli in the early 
eighteenth century,4 says that if you observe a long sequence of i.i.d. 
random variables, their average will, with very high probability, be 
very close to their (joint) expectation. Thus, if the roulette wheel is 
indeed fair, then, as the number of spins goes to infinity, the relative 
frequency of “red” and of “black” will converge to the same number 
(slightly lower than a half, because the zero, or zeros, are neither 
“red” nor “black”). Knowing this law, people seem to be thinking 
along the following lines: “So far the empirical frequency has been 
rather biased: I observed five ‘black’s and no ‘red’s. But I know that 
in the limit the two outcomes should have the same frequency. 
Hence, ‘red’ has to ‘catch up.’ It must be the case that there will be 
more ‘red’s than ‘black’s in the future.”

This reasoning is intuitive, but wrong. As Kahneman and Tversky 
put it, deviations from the expected frequency “are not corrected, 
they are diluted.” For example, suppose that we observed 100 
“black”s, and consider the next 1,000,000 spins. Assume for simplic-
ity that each outcome is either “black” or “red” with probability 
50%. Then the expected number of “black”s at the end of the 
1,000,100 spins is 500,100, and the expected number of “red”s is 
500,000. It is not as if nature is sitting there and thinking “Uh-oh, 
I put too many ‘black’s there, I should fill up some ‘red’s before 
Bernoulli gets upset with me.” Nature doesn’t really care about the 
past spins. It will continue to generate the random spins, but, as 
Bernoulli showed, in the limit we will get a relative frequency of 
50%–50%. The first 100 spins will never be taken into account, but 
they will become negligible as the number of spins goes to infinity.

The gambler’s fallacy is an interesting bias because it follows from 
too much knowledge, not from too little. Someone who has never heard 
of the law of large numbers is unlikely to make the gambler’s mistake. 
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Children, who will often be prone to the other biases we discussed, will 
probably predict “black” after many “black”s have been observed.

The gambler’s fallacy is related to two other mistakes that people 
make in dealing with probabilities. The first has to do with the clas-
sification of similar outcomes. Assume that you fill up a lottery 
ticket where you need to select six numbers out of 50. You ask me 
which numbers to choose, and I suggest “1, 2, 3, 4, 5, 6.” “Com’n,” 
you say, “this is ridiculous. I don’t need to be a decision theorist to 
know that this is very unlikely. What on earth is the probability that 
the numbers will come out to be precisely this sequence?!” “Well,” 
I would counter, “if you believe that these guys are not cheating 
you, you should believe that any six-tuple of numbers has the same 
probability. If you find 1, 2, 3, 4, 5, 6 highly unlikely (and I agree that 
it is!), then you should find any other sequence, such as 2, 5, 17, 18, 
23, 45, just as unlikely. It probably follows that you should not play 
this game in the first place…”.

In fact, I can even give you a good reason to choose “1, 2, 3, 4, 5, 6” 
over “2, 5, 17, 18, 23, 45”: while both are just as likely to be the correct 
six-tuple, if other people think like you do, then, conditional on win-
ning, you will have fewer people to share the prize with. But then 
you may argue that there are these nuts out there who do crazy 
things, or people who listen to decision theorists, or whatever. We’ll 
conclude that the optimal choice has to do with the game played 
among the gamblers, and game theory belongs in a different course.

The point of this example is that when there is an obvious pattern, 
or a simple way to describe the outcomes, we understand how 
unlikely it is. When there are no simple patterns, we tend to lump 
outcomes together and think that the outcome is more likely than it 
really is. Namely, we think of the particular outcome as if it had the 
probability of all the outcomes resembling it. Thus, “1, 2, 3, 4, 5, 6” is 
classified as “the wondrous unique case in which we obtained six 
consecutive numbers, starting with 1,” whereas “2, 5, 17, 18, 23, 45” is 
registered in our minds as “a relatively evenly dispersed six-tuple, 
with one consecutive couple.” Going back to our roulette example, 
the sequence “black, black, black, black, black, black” seems more 
exceptional than the sequence “black, black, black, black, black, red.” 
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If “black” and “red” are equiprobable in each round, the two sequences 
have exactly the same probability. But the former is easily described 
in a class of its own, namely, “only black,” whereas the latter might be 
lumped together with others, as in “only one red in six spins.” It is 
true that observing one “red” in six spins is more likely than observ-
ing zero “red”s. But any particular sequence with one red has exactly 
the same probability as the sequence with no “red”s at all.

The second mistake that is related to the gambler’s fallacy is the 
confounding of conditional with unconditional probabilities. An old 
joke (that only probability teachers find funny) suggests that, if you’re 
concerned about there being a bomb on a plane you’re going to board, 
you should bring one bomb with you. The reason is that passengers 
do not normally carry bombs with them, and the probability of two 
such bombs is really small. Students, who may not laugh at this joke, 
are expected to see that the probability that is “really small” is the a 
priori, unconditional probability of there being two bombs. By con-
trast, the conditional (a posteriori) probability of two bombs, given 
that you already carry one, is the same as the probability of one bomb 
being brought by someone else if you don’t bring a bomb with you. 
Similarly, the unconditional, a priori probability of six “blacks” is 
very low. But the probability of a sixth “black” after five have been 
observed is equal to the probability of “black” in a single spin.

To consider another example, assume that you are interviewing 
candidates for several positions. You’re about to interview a can-
didate who studied in school A, and you recall that the last two 
candidates from school A were fantastic. “Oh well,” you say to 
yourself, “this one can’t be that good. After all, the probability of 
three great candidates is truly small!”

This would be another example of confounding conditional with 
unconditional probabilities. The unconditional probability of three 
great candidates used to be very low indeed, but, conditioning on 
the first two, the probability of the third being great is like the prob-
ability of the first candidate being great. If at all, you should be 
learning something about the school, just as the gambler may learn 
that the roulette wheel is biased, and update the probability that the 
next candidate is good upwards.5
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Having understood all this, it is useful to mention that people 
sometimes make the opposite type of mistake, where they “learn” 
too much while facing independent phenomena. Suppose that 
you’re going on a trip, and, at the airport, you discover that your 
MP3 player doesn’t work. Worse still, the airline couldn’t find your 
reservation, and the coffee shop’s espresso machine was broken. 
You start wondering whether it is worth taking the trip. “With my 
luck,” you say, “nothing good will come out of it.”

In this case the three calamities that befell you seem causally and 
statistically independent. Importantly, they seem to be completely 
unrelated to the success of your trip. Yet, people often think in terms 
of “this isn’t my lucky day,” or “the stars are against me.” Such 
thoughts are very natural, and they can be rational under certain 
assumptions. For example, you may assume that the alignment of 
the stars determines a certain luck variable, and, conditional on this 
variable, your fate is determined. The interesting fact is that even 
people who are not willing to make these assumptions explicitly 
might still think along similar lines. We often believe we find certain 
causal relations where they do not really exist.6

Biased Samples

Problem 3.3 asks your opinion on:

A study of students’ grades in the United States showed that immi-
grants had, on average, a higher grade point average than US-born 
students. The conclusion was that Americans are not very smart, or at 
least do not work very hard, as compared with other nationalities.

The conclusion may or may not be true, but it is not warranted given 
the data. One obvious explanation for the data is that the people who 
choose to emigrate from their country do not constitute a representa-
tive sample of their nation. For example, it is possible that only peo-
ple who tend to have a certain personality choose to emigrate – say, 
those who have the resolve and determination to do whatever it 
takes to better their life conditions. It is also possible that the 
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 population of immigrants was selected based on talent: people who 
have received negative signals about their abilities may wisely decide 
not to undertake the challenge of starting from scratch in a new cul-
ture. According to this explanation, only those who are talented (as 
signaled by their success in school and on the job in their home coun-
try) choose to emigrate. And there are many other possible explana-
tions. The main point of the example is that the very fact that someone 
chose and succeeded to emigrate may be correlated with talent or 
diligence, which are presumably the variables of interest. Hence, 
when we consider a population of immigrants, we observe a biased 
sample of the population from which it was selected.

Note that, based on these data, someone might say that a randomly 
selected immigrant student is likely to be more successful than a ran-
domly selected non-immigrant. This conclusion may be right, as it 
focuses on the population of immigrants. The conclusion that is not 
warranted was the one that took the immigrant population to be rep-
resentative of the home country population. Whether a sample is 
biased or not depends on the question you are interested in: a sample 
will be biased relative to some populations but not to others.

Examples of biased samples abound. The most famous is probably 
the “Literary Digest” poll before the US presidential election in 1936.7 
The poll predicted that Landon would beat Roosevelt, who actually 
won the election. One problem with the poll was its use of phone and 
car registration lists. Not everyone had cars and phones in 1936, and 
the rich were over-represented in the sample. Since the rich tended to 
vote Republican more than the poor, the sample had a larger propor-
tion of Republican voters than did the overall population.

Often the bias in the sample is inherent to the sampling proce-
dure. For example, when you take a poll people choose whether to 
respond or not. Those who decide to respond may not be repre-
sentative of the target population: you may get an over-representa-
tion of people who feel strongly about the issues, in one direction or 
another. Typically, people who have more time will find it easier to 
respond to polls. This might suggest that the poll will have an over-
representation of retired or unemployed people as compared with 
the population as a whole. If the people who don’t wish to respond 
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to the poll also don’t bother to vote, your sample will be fine; but if 
they do find the time to vote, the sample will be biased. Finally, 
another source of bias in polling is the converse phenomenon: many 
people do respond to the poll, and argue, often honestly, that they 
intend to vote, but eventually fail to do so. Finding a sample that 
will be representative of the population of eligible voters who even-
tually exercise their right to vote is not an easy task.

Another example in which the bias is introduced by the sampling 
procedure itself is given in Problem 3.4. The story there was:

In order to estimate the average number of children in a family, a 
researcher sampled children in a school, and asked them how many 
siblings they had. The answer, plus one, was averaged over all chil-
dren in the sample to provide the desired estimate.

The problem with this procedure is that a family with more chil-
dren has a higher probability of showing up in the sample. For 
example, a family who has five children, all studying in the same 
school, has five times as high a probability of being sampled as a 
family who has but one child. And a childless family will disappear 
from the sample completely.

The winner’s curse is also related to biased sampling. The term refers 
to a phenomenon which is demonstrated by the following example. 
Suppose that the government sells an oil field via an auction. The oil 
field has a common value: whoever wins it will enjoy the same profits. 
(This is in contrast with private values, where each potential buyer 
has their own subjective valuation of the object, as often happens in 
the case of art works.) However, this common value is not known 
with certainty. Assume that each bidder consults with experts, gets an 
unbiased estimate of the value, and bids it (or a bit below it, to guar-
antee some profit). The “unbiased estimate” means that, in expecta-
tion, the estimates are accurate. That is, with many such independent 
estimates, one can expect that the average will converge to the true 
value. Yet, it has been observed that the winner of the auction ends up 
losing money – and this has been referred to as a “curse” befalling the 
winner. In fact, there is nothing mysterious about this curse; rather, it’s 
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a natural statistical phenomenon: while the average estimate may be 
close to the true value, a bid based on the average estimate is unlikely 
to win the auction. The winner will typically be one of those who had 
the highest estimates. And these tend to be overestimating the value. 
In other words, while the overall population of bids is a representa-
tive sample of the distribution of the unbiased estimate, the popula-
tion of bids that end up winning the auction is a biased sample.

Problem 3.5 is another example of the winner’s curse. It reads:

A contractor of small renovation projects submits bids and competes 
for contracts. He has noticed that he tends to lose money on the 
projects he runs. He has started wondering how he can be so system-
atically wrong in his estimates.

As in the auction for an oil field, contractors who submit their offers 
for a job have to estimate the cost of performing it, and submit a 
proposal that will leave them some profit. We should expect propos-
als at a lower cost to have a higher chance of being selected. As a 
result, given that one wins the job, one is likely to be on the low side of 
the proposals, and probably also on the low side of the estimations. 
Therefore, even if one has an unbiased estimate of costs, one may 
end up losing money on average: the projects one gets are not a rep-
resentative sample of the population of estimates.

Regression to the Mean

Consider the dialog in Problem 3.6. Ann is complaining about the 
quality of food at a restaurant that she and her friend are visiting for 
the second time. Her friend, Barbara, points out that the restaurant 
is not new, so this cannot be explained by the general phenomenon 
of restaurants deteriorating after their inauguration. Are they sim-
ply having bad luck?

The answer is that this “bad luck” is something that could be 
expected. The reason is regression to the mean: if you select something 
due to its extreme past performance (good or bad), you should expect 
that its future performance will be closer to the mean. The  mechanism 
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behind this statistical phenomenon is quite simple: when you observe 
the variable, say “performance,” you typically see the cumulative 
effect of an inherent quality trait, and a transient noise, or “luck” 
component. When you sample the same variable again, you should 
expect the trait component to be there, but the transient one to be re-
sampled. Hence, if you truly thought that a restaurant was great, it 
makes sense that some of your experience is due to the chef’s talent 
and innovation, and some of it to the lucky draw that you had – from 
the raw materials that the restaurant had that day to your own mood. 
When you come back, you should still expect the chef to be talented; 
hence you should expect an above-average experience. But the tran-
sient features are unlikely to be repeated, so you should not be too 
surprised to see that you don’t enjoy the second time as much as the 
first. And this statistical fact is independent of any psychological 
aspects such as the novelty of the first experience.

Regression to the mean is also a type of biased sample – rather than 
select a restaurant at random, where we can expect that the noise fac-
tor will be, on average, the same as last time, we select a restaurant that 
we truly liked, which typically means that we select a restaurant based 
on a lucky draw of the noise variable. In other words, restaurants that 
were particularly lucky in their past performance have a higher prob-
ability of being visited again, and, given that, they have a tendency to 
perform below the level that resulted in them being selected.

This phenomenon can be observed whenever we use the services 
of a professional whose performance has some component of luck. 
This will include stock market traders and fund managers, as well 
as politicians.

Correlation and Causation

Problem 3.7 reads:

Studies show a high correlation between years of education and 
annual income. Thus, argued your teacher, it’s good for you to study: 
the more you do, the more money you will make in the future.
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Clearly, this is an instance in which correlation between two  variables 
is taken to reflect a causal link. It is true that, generally speaking, 
when a variable X is a cause of Y (say, high X values cause high Y 
values), we should expect X and Y to be correlated in the statistical 
sense (as measured by covariances, correlation coefficients, etc.). 
But the converse is false. We often observe correlations that do not 
reflect causal relationships.

In this example, a high correlation between education and income 
may indeed be a result of a causal link, according to which people 
with more education are better equipped to deal with market condi-
tions and therefore can make more money. But it is also compatible 
with a converse causal link, as would be the case where people who 
already make a lot of money can afford to buy more education for 
the sake of fun. This theory can be quite plausible if by “education” 
we refer, for example, to the study of ancient languages. It is also 
possible that education and income are causally related only through 
a third variable. For example, if you have rich parents they may be 
able to afford to give you more schooling, as well as a head start in 
your professional life. Thus, the parents’ wealth is the joint cause 
both of your education and of your income, but the latter need not 
be directly related in a causal link.

Problem 3.8 is another example of correlation that does not imply 
causation. It reads:

In a recent study, it was found that people who did not smoke at all 
had more visits to their doctors than people who smoked a little bit. 
One researcher claimed: “Apparently, smoking is just like consuming 
red wine – too much of it is dangerous, but a little bit is actually good 
for your health!”

In this case we’re a bit suspicious of the presumed theory.8 With 
enough data we may accept it, but we’d like to think of the data 
critically. In particular, one wonders whether the positive correla-
tion between smoking and health might be due to the fact that some 
of the non-smokers are sick people who were ordered to quit smok-
ing by their doctors. Specifically, assume that the population of 
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non-smokers consists of two disjoint subpopulations: one of people 
who have never smoked and who are generally healthy; and the 
other of people who smoked heavily for many years and were 
instructed to quit smoking because their doctors found them in a 
very high risk group. By comparison, imagine that the population 
of those who smoke just a little have smoked at this level for many 
years, and this low level of smoking has not had any significant 
effect on their health. In this case, we may find that the non-smok-
ers are less healthy than the occasional smokers. But this is not 
because not smoking at all is bad for one’s health. Rather, causation 
goes the other way around: some of the non-smokers do not smoke 
because they are (already) sick.

There are many situations in which it is quite obvious which 
causal theory accounts for a given correlation. For instance, when 
I find that most people at the hospital are sick, I should not assume 
that hospitals are bad for your health. Rather, hospitalization is a 
result of sickness. But often the relationship is far from obvious, as 
in the example of education and income above.

To establish causation, one usually prefers controlled experiments. 
If you can assign people to different groups randomly, and control 
their conditions, so that the only difference is the presumed cause, 
you can then observe the results and see whether indeed changing the 
cause (alone) has the presumed effect. However, such experiments are 
often impractical or unethical. They may be impractical because they 
would require a long time (as in the case of education), or a whole 
society to be used as a participant in the experiment. And ethical 
issues will often be relevant, whether we discuss people’s health, edu-
cation, or other determinants of their well-being in the long run.

While there are sophisticated statistical techniques that can help 
us tell causation from mere correlation, they are somewhat limited. 
In particular, it is very difficult to identify the causes of unique 
events such as stock market crashes, wars, and the like. For our pur-
poses here, it is a good idea to recall that correlation does not imply 
causation. People often infer causal relationships where these do 
not necessarily exist, and people sometimes invite others to make 
such inferences. A little bit of doubt seems healthy in this context.
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Statistical Significance

The dialog in Problem 3.9 is not meant to convince you to ignore 
possible risks. But it is supposed to remind you what “statistical 
significance” means. Significance is a subtle concept that is used in 
hypotheses tests. It is the maximum probability with which you 
allow yourself to make a “Type I error.” What this means is the fol-
lowing: You wish to state a claim, call it A. You define it as your 
alternative, often denoted H1. As your “null hypothesis,” denoted 
H0, you define the negation of your desired conclusion, not-A. In 
this example, if you wish to argue that mobile phones cause cancer, 
you state as your null hypothesis the claim that they do not, namely, 
that there is no difference in the probability of cancer between the 
population of mobile phone users and the population of non-users. 
Then you design a test: you will take a sample, and you will deter-
mine under which conditions you will decide to “reject” H0, thereby 
stating your conclusion A. Rejection of H0 is considered to be a state-
ment (that its negation, H1, is the case), while failing to reject H0 is 
not considered to be a proof that it is true (even if it is sometimes 
referred to as “accepting H0”).

Before taking the test you ask yourself to what extent you are will-
ing to make a false statement (Type I error) versus not making a 
statement that would have been true (Type II error). There is typi-
cally a trade-off between these two errors, and by selecting a test 
that “rejects” more or less often you can increase or decrease the 
probabilities of these errors.

It is important to stress that we do not know what the probability of 
making these errors is. To be precise, we can make a Type I error only 
if H0 is true (and we nevertheless reject it) and a Type II error only if 
H0 is false (and we fail to reject it). Thus, there is no possible world in 
which we can commit both types of errors. And we do not have a 
probability regarding which possible world we’re in. Neither before nor 
after taking the test do we have a probability that H0 is true (or false).

So what are the probabilities we are discussing? These are only 
conditional probabilities. Given a possible world, which might be 
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 consistent either with H0 or with H1, but not with both, we can 
 compute the conditional probability of rejecting H0 (or of not reject-
ing it). The “probability of Type I error” is the maximum such condi-
tional probability. It is as if we range over all the possible worlds 
consistent with H0, calculate the probability of rejection for each, and 
take the worst case, that is, the maximum probability. This is the famous 
“significance level” of hypothesis testing (often denoted by α).

The significance level therefore has to do with the probability of 
making a statement while it is not true. It has nothing to do with the 
content of the statement itself. Thus, it is possible that the use of 
mobile phones increases the probability of brain tumors from 
0.0000302 to 0.0000303. If this is the case, the hypothesis “the proba-
bility is no more than 0.0000302” will be rejected, with a large enough 
sample, at any significance level (α > 0) you choose. Yet, it does not 
mean that this difference is “significant” in any sense of the word. Of 
course, these numbers are made up, and I chose them so that they 
were tiny, and even the relative increase (from 0.0000302 to 0.0000303) 
was tiny. And, to stress the obvious, I’m not trying to promote the 
use of mobile phones. But I would like you to recall precisely what 
“statistical significance” means and what it doesn’t mean.

Bayesian and Classical Statistics

The dialog between Mary and Paula in Problem 3.10 raises an impor-
tant question about the meaning of statistical significance in hypoth-
esis testing, and, in fact, also about the meaning of “confidence” as 
used in confidence intervals. You may note that the terms “confi-
dence” and “significance” were chosen so as not to say the word 
“probability.” The reason is that they are not probability, and should 
not be confused with this notion. This calls for an explanation.

Confidence intervals and hypotheses tests are techniques of clas-
sical statistics. This is the most common approach to statistical infer-
ence problems, where we consider a collection of distributions, look 
at observations, and try to find out which of the distributions are 
more likely to be behind these data. For concreteness, assume that 
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we have a Normally distributed random variable X with an unknown 
mean μ and, for simplicity, a known standard deviation of σ = 1. 
Thus we know everything that there is to know about X apart from 
its mean (expectation).

Classical statistics provides several techniques to deal with the 
statistical inference problem “What is μ?” One is point estimation, 
where you compute a single number, based on the data, and hope 
that it is not too far from the unknown parameter, μ. In the problem 
we discuss, various criteria for the selection of a point estimator lead 
to the average of the observations. Another technique is interval esti-
mation, where you construct an interval of values, whose end points 
depend on the sample, and hope that the interval “covers” (con-
tains) the unknown parameter. Such an interval is called a confidence 
interval at a level of confidence, say, 95%, if it covers the unknown 
parameter μ with probability 95%.

Did we just say “probability”? Yes, we did. So what was that busi-
ness about “confidence is not probability”? Here comes the subtle 
point: before we take the sample, we can say that the interval we will 
construct, after the sample has been observed, will cover μ with prob-
ability 95%. For instance, if we take just one observation, n = 1, the 
single point in the sample, X, has probability of 95% not to be more 
than two standard deviations (2σ = 2) away from μ. In symbols:

( )− μ ≤ ≅Prob   2   95%X
 (3.1)

This is a probabilistic statement about the random variable X. It is not 
a probability statement about μ, as the latter is an unknown parame-
ter, not a random variable. What’s the difference? We don’t know μ, 
do we? Well, we don’t know what μ is, and, in fact, we won’t know 
what it is even after we take the sample. But in classical statistics we 
do not think of μ as a random variable with a distribution, expecta-
tion, variance, and so forth. It is just a number. A number we happen 
not to know, but not a random variable. Hence (3.1) is a probability 
statement about the random variable X. Recall that, for any particular 
value of μ, we know the distribution of X (assumed here N(μ, 1) ), and 
therefore we can make probabilistic statements about X given μ.
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The beauty of (3.1) is that it is a correct probabilistic statement 
(about X given μ) no matter what μ is. That is: for every possible value 
of μ there is a different probability model. In each of these models, X 
is distributed Normally with a standard deviation of 1. These mod-
els differ in the expectation of X, μ. But one of the nice properties of 
the family of Normal distributions is that the difference X − μ, that 
is, the deviation from the mean, has the same distribution. This is 
why we can state that X will be more than two standard deviations 
away from μ with probability 95%, and we can make this statement 
without knowing what μ is!

However, (3.1) is a probability statement about X. Once we have 
taken the sample and observed, for example, X = 4, the story is over. 
We get the confidence interval of [X−2, X + 2] = [2, 6], and we know 
that it was generated by a procedure that, a priori, used to have a 
probability 95% of covering μ. This does not mean that the particu-
lar interval [2, 6] does indeed cover μ with this probability, or with 
any other probability. After we have taken the sample, there is no 
longer any probability to speak of. Either [2, 6] covers μ or not, but 
that’s it. In classical statistics μ is not a random variable, neither 
before nor after the sample has been taken. Therefore, we can’t 
quantify the uncertainty about μ in a probabilistic way (according to 
classical statistics).

Another example might help. Suppose that I roll a die, and that Y 
is the outcome. A priori, it has a probability of 1/6 to be each of the 
values 1, 2, 3, 4, 5, 6. In particular, I can write

( )Prob 4 1/6Y = =  (3.2)

This is a correct probability statement about the random variable Y 
before I take the sample. After I take it, I can’t plug the value of Y into 
this expression and expect to get something meaningful. Whether Y 
happened to be 4 or not, I’ll get a silly statement (such as “Prob(4 = 4) 
= 1/6” or “Prob(3 = 4) = 1/6”). The probability statement is a state-
ment about the random variable Y while it was still random, so to 
speak. Once it has been observed and there is no longer any ran-
domness involved, there are no interesting probability statements to 
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make, and we surely can’t take the probability statements we used 
to have and plug into them the value of the random variable we 
observed.

Exactly the same logic applies to statement (3.1). It is a statement 
about the random variable X, comparable to statement (3.2) about 
the random variable Y. Both make sense before the random variable 
in question has been observed. Neither would make sense if we 
plug in the value observed. The only difference is that statement 
(3.1) is a general template, which applies to any specific value of μ. 
But plugging the value of X into (3.1) is the same type of conceptual 
mistake as plugging the value of Y into (3.2).

Classical statistics therefore does not allow us to discuss the 
unknown parameter μ probabilistically. And this applies to other 
unknown parameters, too. For example, while we assumed that we 
knew that σ = 1, it is more realistic to assume that we don’t know σ. 
In this case we can only say that

( )− μ ≤ σ ≅Prob   2 95%X
 (3.3)

which may not be very helpful. Luckily, we can also estimate σ by the 
standard deviation in the sample (typically denoted by s), and some 
combination of X and s has a known distribution – the t (or “Student 
t”) distribution. The trick is that a certain function of the sample 
(a statistic) has a known distribution, even though the parameters μ 
and σ are unknown. And similar logic applies to the statistics that are 
known to have distributions, such as χ2 and F. These statistics can be 
computed based on the sample alone (they do not depend on the 
unknown parameters), and their distributions are known, despite the 
fact that some parameters aren’t. The reason we need statements such 
as (3.1) and (3.3), which hold for any values of the unknown param-
eters, is precisely that we can’t quantify over these parameters.

Hypothesis testing is a very different statistical technique. As 
opposed to confidence intervals, hypothesis tests are tailored for a 
specific question, rather than being a general-purpose estimation. 
But there is an important feature that is common to hypothesis 
 testing and confidence intervals: they do not treat the unknown 
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 parameters as random variables. They are trying to say something 
about the unknown distribution without assuming that we have 
probabilities over the distributions.

Hence, the notion of “significance” in hypothesis testing is not 
probability. It is related to probabilities given the distributions. For 
instance, assume, again, that X is Normally distributed with expec-
tation μ and standard deviation σ = 1. Suppose that we try to claim 
that μ is positive. We then test the negation, that is, the hypothesis 
that μ is not positive:

μ ≤0H :   0

versus the alternative hypothesis,

>1H :   0μ

and if we manage to reject H0 it is as if we proved H1.
The “test” will tell us when to reject H0. For instance, still assum-

ing that we have only one observation X (n = 1), we can decide that 
the rejection condition be

  2X >

We then ask ourselves what is the probability that we make a “wrong” 
decision. But this probability can only be computed given a value of 
μ. If μ ≤ 0, that is, H0 is true, a wrong decision would be to reject it, 
that is, to make a statement (H1) when it is wrong. This is a Type 
I error. What is the probability of making this error? Well, it depends on 
μ. If μ > 0 this probability is zero: in this case the statement H1: μ > 0 
is true, and it won’t be an error to make it. (One could then make 
only a Type II error, that is, to fail to make the statement.) If, how-
ever, μ ≤ 0, the probability of a Type I error is simply the probability 
of rejecting H0, which we decided to do if and only if X > 2. It follows 
that, for every μ ≤ 0, the probability of a Type I error is

( )Prob   2X >

We do not know what this probability is, because it depends on μ, 
and we neither know μ nor have a probability over the values of μ. 
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What we can say is only a bound: in our example, this probability is 
going to be largest when μ is largest. And the largest possible value 
consistent with H0 is μ = 0. So the “significance level” is the highest 
such probability, computed for μ = 0:

> μ = ≅Prob(   2 |   0)  2.3%X

The important point for our discussion is that this is the probability 
of an event stated in terms of the random variable X, given a value 
of μ. It is not a probability about μ. Neither before nor after we take 
the sample do we have a probability about μ, or a probability that H0 
is true.

There is a different approach to statistics, called the Bayesian 
approach (after Thomas Bayes, who introduced the notion of 
Bayesian updating9). According to this approach, anything we do 
not know is subject to probabilistic quantification. For example, if 
μ is not known to us, we can still have subjective beliefs about it 
and treat it as if it were truly random. That is, the Bayesian 
approach accepts the framework according to which μ is a fixed 
parameter that “in reality” doesn’t change. However, as opposed 
to the classical approach, it argues that a parameter that is not 
known is, as far as we are concerned, just like a random variable. 
And then we can have probabilistic beliefs about μ – and this also 
means that we have a joint distribution of X and μ, and we can 
observe X and update the probabilities about μ according to 
Bayes’s rule.

The Bayesian approach to statistics is much simpler than the 
classical one from a conceptual viewpoint. Rather than dealing 
with concepts such as “confidence” and “significance,” which are 
close to “probability” but aren’t probability, the Bayesian approach 
has only one concept – probability. In principle, it is always subjec-
tive. If we know that the distribution of X given μ is N(μ, 1), then 
all of us will have subjective probabilities that agree on this fact. 
That is, if you take two Bayesian statisticians, their joint distribu-
tions for X and μ may disagree about the marginal distribution of 
μ, but they will agree on the conditional distribution of X given μ. 
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And with this approach the only reasonable thing to do is to use 
Bayesian updating.

If the Bayesian approach is conceptually so simple, you might 
wonder, why do most textbooks teach us the classical approach, 
with all these complicated concepts? The answer lies in our toler-
ance of subjective judgments. Let’s go back to the dialog and the 
new drug that Mary contemplates using. The Food and Drug 
Administration (FDA) has not approved it yet. In order to approve 
it, the FDA will run various tests, using hypothesis testing meth-
ods. Why doesn’t the FDA use a Bayesian approach? Because in 
order to do that it will have to introduce some subjective judgments. 
In particular, it will have to have an a priori (unconditional) prob-
ability that the drug is dangerous, and then update this probability 
based on the samples it takes, to result in an a posteriori (condi-
tional) probability. If, for the sake of argument, the FDA were to 
start with zero probability that the drug is dangerous, then, what-
ever the results of the experiments it runs, the posterior probability 
that it is dangerous will also be zero. (No amount of information 
can make a zero probability event a positive probability event as a 
result of Bayesian updating.) If, on the other hand, the prior prob-
ability of the event is 1, so will be its posterior probability. Both of 
these represent very extreme prejudices. Between these prejudices 
there is a continuum of much more reasonable prior probabilities. 
But whatever prior probability we choose, it will have an effect on 
the conclusion. To be precise, for any two different probabilities we 
can imagine a data set that will “prove” that the drug is safe under 
one probability, but conclude that it isn’t safe under the other 
probability.

This degree of subjectivity is not desirable. Who is going to 
determine the subjective probability of the FDA? Do we want the 
outcome of the study to depend on their biases? Surely not. The 
FDA is supposed to be a government agency that provides the 
public with objective information. Well, you may say, how objec-
tive can it be? Nothing is perfectly objective in life. There are always 
some assumptions we make, implicitly or explicitly, that affect our 
conclusions. True. But it doesn’t mean we shouldn’t try. And this is 
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what classical statistics is doing: it attempts to be as objective as 
possible. And to this end it has to shun prior beliefs, which are 
inherently subjective, and get into the conceptually complicated 
territory of classical statistics.

However, how about Mary herself? She can try the drug if she 
wants to. Should she do this, or should she wait for the FDA 
approval? While this is obviously her decision, we could give her 
the following piece of advice: “Look, Mary, the FDA is testing 
hypotheses, excluding any possible subjective input. This is fine, 
this is their job. But for your own decision making, there is noth-
ing wrong in using your subjective judgment as well. If you believe 
that BigMed would not risk its reputation by submitting a drug 
that’s not safe, you can use this judgment, as well as the fact that 
BigMed has indeed submitted the drug, and draw your own con-
clusion from this, namely that the drug is probably safe.”

As mentioned in the dialog, very few facts are certain in our 
lives. And the drug may be dangerous even if it has passed all the 
tests of BigMed. In fact, it can still be dangerous even if it is 
approved by the FDA. The point is not that Mary can be certain 
that the drug is safe; the point is that classical and Bayesian statis-
tics are techniques that should be used for very different types of 
problems. When you wish to make a point, that is, to be able to state 
a conclusion that would be accepted as “objectively (statistically) 
proved,” your tool is classical statistics. When you wish to make a 
decision that is the best decision for yourself, and you don’t need to 
worry about convincing anyone else, Bayesian statistics would be 
the method of choice.

Most of the statistics textbooks teach you the classical approach. 
It is the right thing to use for making points. Classical statistics is 
the method that would be used, for example, to test whether your 
product is safe if, God forbid, you’re being sued. It is what you 
have to apply if you need to convince a board of directors that 
your new idea is great. And it is the main workhorse of scientific 
discovery in all fields, from economics and marketing to biology, 
psychology, and even physics. But it is important to recall that this 
is not necessarily the best tool for your own decision making. 
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When confronted with statistical data, you should ask yourself 
what it is that you’re trying to do: to make the best decision for 
yourself or to make a point that could be “proved” to others? 
Based on this you should select the statistical approach that best 
fits your needs.

Exercises

1. A home owner who has a mortgage and who is not going to 
default may miss a payment on a particular month with proba-
bility 2.8%. (One who defaults obviously misses the payment for 
sure.) If Mr A missed a payment, what is the probability that he 
is going to default?
a. 2.8%
b. 2.8% / [2.8% + 1]
c. 1 / [2.8% + 1]
d. Cannot be determined.
e. Can be determined, but differs from (a)–(c).

2. A leading newspaper followed up on the inflation rate predic-
tions given by several economists. It selected the five with the 
best record, and asked them to predict inflation in the current 
year. At the end of the year, it appeared they were not so suc-
cessful. The journalist concluded that we must be living in a 
very tumultuous period, when even top experts cannot make 
good predictions. This conclusion is:
a.  Erroneous, and it reflects the journalist’s anchoring bias.
b. Reasonable, because the journalist can’t tell the inflation rate 

either.
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c.  Erroneous, as this might be a case of regression to the 
mean.

d.  Quite likely, though the journalist may still be exposed to an 
availability bias.

3. “Most journalists I met were superficial. Next time I see some-
one superficial, I’m going to ask them if they are journalists.” 
Which statement would you endorse?
a.  It’s not enough to know that most journalists are superfi-

cial – maybe most people are superficial anyway. One has to 
look at the comparison between superficial people among 
journalists and among non-journalists.

b.  Even if most journalists are superficial, it doesn’t mean that 
most superficial people are journalists.

c.  Assuming that there are many more superficial people in 
the population than there are journalists, the percentage of 
superficial among the journalists must be larger than the 
percentage of journalists among the superficial.

d. All of the above.
e. None of the above.

4. Suppose that fashion models tend to be stupid more than the 
rest of the population. In this case:
a.  We can conclude that the fashion industry tends to hire stu-

pid people for modeling.
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b.  We can conclude that the life of a model tends to dull the 
mind.

c.  We can conclude that the fashion industry chooses its mod-
els according to some criteria that correlate negatively with 
intelligence.

d. All of the above (all are warranted conclusions).
e. None of the above.

5. Your friend has a car repair shop, specializing in transmission 
systems. You told him you’re considering buying a car of 
make A, which is not very popular. His reaction was “Don’t 
get near them – I fix their transmission all the time. In fact, 
they’re 90% of my business!” What can you say based on your 
friend’s experience?
a.  That, if you buy a car of make A, you’ll have 90% probability 

of transmission problems.
b.  That, if you buy a car of make A, you’ll be more likely to 

have transmission problems than not.
c.  That, if you buy a car of make A, you’ll be more likely to have 

transmission problems than if you buy a car of another make.
d. All of the above.
e. None of the above.

6. A certain genetic disease is recessive, which implies that a child 
might have it only if both parents are carriers of the disease. The 
probability of each person being a carrier is 2%. One of two 
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 prospective parents took a test and was found to be a carrier. 
Before the second took the test, the doctor said: “Oh, don’t 
worry: I have seen people who were carriers of the disease in my 
life, but I’ve never seen two parents being carriers!” Do you sup-
port the doctor’s view?

7. We wish to estimate the expectation μ of a random variable X. 
We ask two statisticians, one classical and the other Bayesian, to 
do the job. The difference between them will be that:
a.  The Bayesian one will have a guess about μ even before tak-

ing the sample.
b. The Bayesian one will not take a sample at all.
c.  The classical one will generate a confidence interval, but 

will not truly think that it contains the parameter μ.
d. The classical one will prefer counter-intuitive answers.
e. All of the above.

8. The difference between confidence intervals and hypothesis 
tests is that:
a.  The confidence level is a probability only a priori, before 

taking the sample, whereas significance is a probability also 
after the sample has been taken.

b.  Significance looks at the difference between values of the 
unknown parameters, and not just at the probabilities of 
Type I and Type II errors.
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c.  Confidence intervals are a general-purpose estimation tech-
nique, whereas each hypothesis test is tailored to a particu-
lar statement.

d. All of the above.
e. None of the above.

Notes

1 Kahneman, D. and Tversky, A. (1972) Subjective probability: a judgment 
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3 Tversky, A. and Kahneman, D. (1974) Judgment under uncertainty: 

 heuristics and biases. Science, 185, 1124–1131.
4 Bernoulli, J. (1713) Ars Conjectandi.
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6 In the social domain, this is often explained by attribution theory of 
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Decisions under Risk

Introduction

People have been making conscious, deliberate decisions under 
uncertainty for at least as long as recorded history. The Bible tells us 
about Jacob who is about to meet his brother Esau, whom he fears 
for good reasons.1 Jacob decided to divide his camp in two, saying, 
“If Esau come to the one company and smite it, then the other com-
pany which is left shall escape” (Genesis 32:8). Clearly, Jacob was 
reasoning about a problem of decision under uncertainty; he seemed 
to have been risk averse, preferring to save half of his camp for sure 
rather than bet on saving all of it; and he had an intuitive sense of 
diversification.

However, probability theory was not invented until the mid- 
seventeenth century, and even then it did not lead very directly to a 
theory of decision making under uncertainty. In 1738 Daniel 
Bernoulli introduced the “St Petersburg Paradox,”2 showing that it 
is unlikely that people behave as if they were maximizing the 
expected value of bets. Instead, he argued, people have a utility 
function, and they behave as if what they were trying to do was to 
maximize the expectation of the utility they get from the bet. Thus, 

Making Better Decisions, by Itzhak Gilboa © 2011 John Wiley & Sons, Inc.
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expected utility theory was explicitly inaugurated in the early eight-
eenth century, but the theory then remained dormant for another 
two centuries. While economics was making impressive progress, 
decision theory did not quite exist until the middle of the twentieth 
century.

At that time, however, things changed rapidly. Economics became 
much more mathematical than it had been, and much of it aspired to 
base economic predictions on theories of individual behavior. 
Decision theory and game theory were established as interdiscipli-
nary fields that underlie different social sciences, and that nowadays 
extend to enrich other domains as well, such as biology and compu-
ter science. The formidable theories that were developed during that 
period are likely to serve as insightful guidelines for the foreseeable 
future. Yet, the accuracy of these theories in predicting actual behav-
ior was soon challenged. This chapter and the following one are 
designed to explain the main ideas of the classical theory of decision 
under uncertainty, as well as some of its main criticisms.

This chapter deals with decision under the situation of risk, that is, 
with known probabilities. Probabilities are known, and explicitly given 
to us when we play in a casino, or buy state lotteries. Probabilities are 
arguably also known in more real-life set-ups, as in the case of an insur-
ance problem. But probabilities are typically neither explicitly given to 
us, nor necessarily “known” in any meaningful sense in most of the 
important problems that we face in real life. For this reason, this chap-
ter should be viewed mostly as a preparation for the following one. 
First, we make the simplifying assumption that probabilities are given, 
and try to see what decision making modes make sense for us in such 
set-ups. Only then will we proceed to the more involved problem in 
which probabilities are not given, namely decision under uncertainty.3

Problems

In each of the following problems you are asked to choose between 
two lotteries. A “lottery” gives you certain monetary prizes with given 
probabilities.
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For instance:

A: $0 0.5
 $1,000 0.5

A is a lottery that gives you $0 with probability 50%, and $1,000 
otherwise.

A “sure” prize will be represented as a lottery with probability 1, 
say:

B: $500 1

B is a “lottery” that gives you $500 for sure.
Please denote your preferences between the lotteries by

A ≺ B or A ≻ B

(or A ~ B if you are indifferent between the two).

Problem 4.1

A: $0 0.5 B: $500 1
 $1,000 0.5

Problem 4.2

A: $0 0.2 B: $500 1
 $1,000 0.8

 

Problem 4.3

A: $2,000 0.5 B: $1,000 0.5
 $4,000 0.5  $5,000 0.5
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Problem 4.4

A: $2,000 0.5 B: $1,000 0.4
 $4,000 0.5  $5,000 0.6

Problem 4.5

A: $0 0.2 B: $3,000 1
 $4,000 0.8

Problem 4.6

A: $0 0.2 B: $400 0.6
 $400 0.6  $500 0.4
 $1,000 0.2

Problem 4.7

A: $0 0.1 B: $400 0.5
 $400 0.5  $500 0.5
 $1,000 0.4

Problem 4.8

A: $2,000 0.2 B: $1,000 0.2
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 $4,000 0.2  $5,000 0.2
 $6,000 0.6  $6,000 0.6

Problem 4.9

A: $2,000 0.2 B: $1,000 0.16
 $4,000 0.2  $5,000 0.24
 $6,000 0.6  $6,000 0.6

Problem 4.10

A: $0 0.8 B: $0 0.75
 $4,000 0.2  $3,000 0.25

The Independence Axiom

Let us start by comparing your answers to Problems 4.1 and 4.6:

Problem 4.1

A: $0 0.5 B: $500 1
 $1,000 0.5   

Problem 4.6

A: $0 0.2 B: $400 0.6
 $400 0.6  $500 0.4
 $1,000 0.2   
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What were your choices? Many people find that they make the same 
choice in the two: they prefer either A in both, or B in both. There is 
some logic in such a consistency: suppose that I tell you that, with 
probability of 60%, you’re going to get $400, and otherwise, with 
probability of 40%, you’ll have to choose among A or B in Problem 
4.1. That is, there is first a nature move, which is independent of your 
choice, and depending on this move you may have the choices in 4.1, 
or no choice at all (with $400 for sure). What would be your choice?

It seems plausible that you’ll choose as you did in 4.1. Let us 
explain why. We begin with a decision problem that is neither 4.1 
nor 4.6 (though we will argue that it is similar to both). Assume that 
nature first decides whether, with probability 60%, you get $400 for 
sure, or, with probability 40%, you get to choose between the alter-
natives in 4.1. We can draw a decision tree as follows:

(a)

0.6 0.4

$ 400

$ 500

0.5 0.5

$ 0 $ 1,000

Decision tree 4.1a.

As in Chapter 2, a circle denotes a nature move or a chance node, that is, 
a random choice that is not up to you, and a rectangle denotes a node 
where you can make a choice. The numbers on the edges coming out 
of a circle (chance node) denote the probabilities with which you will 
find yourself in each possible branch, conditional on  reaching the 
 circle. In the first circle the probability numbers 0.6 and 0.4 are also the 
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unconditional probabilities that nature would move left or right, respec-
tively, because at the beginning of the tree there is nothing to condition 
on. At this level, with probability 0.6 you get the outcome $400 (for 
sure) and the game ends. With the complementary probability of 0.4 
you get to the rectangle and you make your choice there. At the second 
circle the probabilities of (0.5, 0.5) denote the conditional probabilities of 
getting $0 and $1,000, given that we reach this circle (as a result of the 
first move of nature and of your own choice in the rectangle).

We don’t have probabilities on the edges coming out of a rectan-
gle node, because the probabilities are not part of the description of 
the problem – they are up to you to determine. In this example there 
is but one rectangle node: if you go left, you get $500 (for sure), and 
if you go right you get a 50%–50% lottery between $0 and $1,000.

The last chance node can be more concisely described also as a 
lottery, which is a list of pairs (outcome, probability). The last node 
above is the lottery that yields $0 with probability 50% and $1,000 
with probability 50%, and we can write it as ($0, 0.5; $1,000, 0.5). 
Thus we can write the same decision tree as:

0.6

(b)

0.4 

$ 400

$ 500 ($0, 0.5; $1,000, 0.5)

Decision tree 4.1b (concise representation).

Assume that you are asked to make a choice, before the game begins, 
as to your move at the rectangle node, if and when you get there. No 
one guarantees that nature will indeed move right and give you a 
chance to play. But if it does, you’ll have to make a choice, and you’re 
asked to determine what it is now (before knowing whether indeed 
you will have the chance to play).
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What would you do? You may find the following reasoning quite 
convincing: “If nature moves left (at the first node) and I get the 
$400, it doesn’t matter what I choose. So I should better focus on the 
second case. But here the problem is precisely that of 4.1! Hence, 
when asked, at the beginning, what would I do if I can play, I should 
choose as I did in Problem 4.1.”

But if you accept this consequentialist reasoning, we may now 
ask you to look at the following tree:

Decision tree 4.2.

0.6 0.4 0.6 0.4

$ 400 $ 500 $ 400 ($ 0, 0.5; $ 1,000, 0.5)

Here you are asked to move first, and then nature moves. However, 
whatever you do, you have the same probability that nature will 
give you the $400 for sure (60%). And, whatever you do, you have 
40% probability of nature moving right, where your choice does 
matter. Hence you may say to yourself, “It doesn’t really matter 
whether I move first and nature second or vice versa. If nature gives 
me the $400 for sure, which will happen with probability 60% in 
either case, then my decision doesn’t matter. And if nature goes 
right, my choice is the same as in the previous tree.”

Observe that in Decision tree 4.2 you can imagine that nature’s 
choice differs in the two cases. But since it has the same  probabilities, 
and you never get to experience the two branches simultaneously, it 
seems like it shouldn’t matter.

Finally, if you compute the overall probability of getting each out-
come in Decision tree 4.2, depending on your choice, you find that 
these are exactly the choices of Problem 4.6: if you move left you get 
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the lottery ($400, 0.6; $500, 0.4), and if you move right you get the 
lottery ($0, 0.2; $400, 0.6; $1,000, 0.2).

Taking all of these arguments together, we have a reason to make the 
same choice in 4.1 as in 4.6. While none of the arguments we used along 
the way is a logical necessity, they are all quite compelling: Problem 4.1 
is described as a subtree of Decision tree 4.1; it seems logical to make 
the choice in this subtree as you would in Problem 4.1. (This is what 
consequentialism dictates here.) And if you make the decision before 
nature moves, there appears to be no reason to change your mind. (This 
is an implication of dynamic consistency.) But the choices in Decision 
trees 4.1 and 4.2 differ only in the order of moves, where, if you move 
first, you can’t affect the choices made by nature. Finally, the overall 
distributions you choose between in Decision tree 4.2 are precisely 
those of Problem 4.6.

Let us move on. Compare your decisions in Problems 4.2 and 4.7. 
Again, they are related by the same reasoning:

Problem 4.2

A: $0 0.2 B: $500 1
 $1,000 0.8   

Problem 4.7

A: $0 0.1 B: $400 0.5
 $400 0.5  $500 0.5
 $1,000 0.4   

We may write

0.5 0.5 

$ 400 

$ 500 ($ 0, 0.2; $ 1,000, 0.8)

Decision tree 4.3.
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and observe that the choice in the entire tree (made before the game 
begins) is equivalent to the choice in Problem 4.7, while the choice in 
the subtree that matters is precisely the choice in Problem 4.2.

Next consider Problems 4.3 and 4.8:

Problem 4.3

A: $2,000 0.5 B: $1,000 0.5
 $4,000 0.5  $5,000 0.5

Problem 4.8

A: $2,000 0.2 B: $1,000 0.2
 $4,000 0.2  $5,000 0.2
 $6,000 0.6  $6,000 0.6

If we “take out” the $6,000, we can write

0.6 0.4 

$ 6,000 

($ 2,000, 0.5; $ 4,000, 0.5) ($ 1,000, 0.5; $ 5,000, 0.5)

Decision tree 4.4.

Again, the same reasoning suggests that the choice in Problems 4.3 
and 4.8 is the same. And on it goes: the same structure relates choices 
in Problems 4.4 and 4.9, and finally in Problems 4.5 and 4.10:

Problem 4.4

A: $2,000 0.5 B: $1,000 0.4
 $4,000 0.5  $5,000 0.6
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Problem 4.9

A: $2,000 0.2 B: $1,000 0.16
 $4,000 0.2  $5,000 0.24
 $6,000 0.6  $6,000 0.6

Decision tree 4.5.

0.6 0.4

$ 6,000

($ 2,000, 0.5; $ 4,000, 0.5) ($ 1,000, 0.4; $ 5,000, 0.6)

Problem 4.5

A: $0 0.2 B: $3,000 1
 $4,000 0.8   

Problem 4.10

A: $0 0.8 B: $0 0.75
 $4,000 0.2  $3,000 0.25

Decision tree 4.6.

0.75 0.25

$ 0

($ 0, 0.2; $ 4,000, 0.8) $ 3,000
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In how many of the pairs did you indeed make the same decisions? 
A very common answer is that the first four pairs result in the same 
choice, but the last one doesn’t. We’ll discuss the last pair in the 
sequel. First, let us be more explicit about the underlying principle. 
Consider choices between pairs of lotteries, where each lottery, say, 
P, is a list of outcome–probability pairs as above. Consider two pos-
sible decision trees: in the first, you are simply asked to choose 
between two lotteries, P and Q:

P Q

Decision tree I.

In the second, nature will first make a move. With probability (1 – a) 
you’ll get lottery R, without any further choices on your part. With 
probability a, you can choose among P and Q.

Decision tree II.

α1 – α

R

P Q

The independence axiom (formulated by John von Neumann and Oskar 
Morgenstern) suggests that your choices in Decision trees I and II 
should be the same, no matter what are the lotteries P, Q, and R. The 
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answers to Problems 4.1–4.10 typically indicate that most people tend 
to behave in accordance with this axiom in many cases, but not all. 
Specifically, as mentioned above, it is common to observe choices that 
follow the axioms in the first four pairs but not in the last one. We will 
now see what this axiom implies, if indeed it is always followed.

Von Neumann and Morgenstern’s Result

In 1944, John von Neumann and Oskar Morgenstern inaugurated 
game theory.4 One of the by-products of their project was the fol-
lowing result. Suppose that a decision maker can compare any pair 
of lotteries. Assume that they do so in a transitive manner, that is, 
that if they find P at least as good as Q, and Q at least as good as R, 
then they also find P at least as good as R. Assume also that their 
preferences satisfy a more technical condition that is called “conti-
nuity.” We won’t get into its formulation here; I think it is fair to 
say that most people find it a reasonable condition once it’s 
explained in detail. Finally, and most importantly, assume that the 
decision maker also satisfies the independence axiom stated above. 
Then, proved von Neumann and Morgenstern, the decision maker 
can be viewed as if they were maximizing the expectation of a util-
ity function. That is: there exists an assignment of utility numbers 
to outcomes such that, for any pair of lotteries P and Q, the deci-
sion maker will always prefer the one that has a higher expected 
utility.

For example, assume that my utility function is

( )
( )
( )
( )

$0 0

$400 0.5

$500 0.6

$1,000 1

u

u

u

u

=
=
=

=

and you wish to predict my choice in Problems 4.1 and 4.6. Let’s 
start with 4.1.
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Problem 4.1

A: $0 0.5 B: $500 1
 $1,000 0.5   

The expected utility of option A is

0.5 * ($0) 0.5 * ($1,000) 0.5 * 0 0.5 * 1 0.5u u+ = + =

while the expected utility of option B is

1 * ($500) 1* 0.6 0.6u = =

Hence, the expected utility of option B is higher than that of A, and 
if I satisfy von Neumann and Morgenstern’s axioms, and I have the 
utility function above, I will prefer B to A.

Next consider Problem 4.6.

Problem 4.6

A: $0 0.2 B: $400 0.6
 $400 0.6  $500 0.4
 $1,000 0.2   

The same type of calculation would yield, for option A,

( )+ +
= + +

0.2 * ($0) 0.6 * $400 0.2 * ($1,000)

0.2 * 0 0.6 * 0.5 0.2 * 1 = 0.5

u u u

and, for option B,

( )0.6 * $400 0.4 * ($500) 0.6 * 0.5 0.4 * 0.6 0.54u u+ = + =

Thus, option B has a higher expected utility. From the calculations 
above you may also see why someone who is an expected utility 
maximizer will satisfy the independence axiom: the common part 
to the two lotteries (above, $400 with probability 0.6) cancels out, 
while the remainder is proportional to the calculations we had in 
4.1. The more interesting part of the result is the converse: some-
one who satisfies the independence axiom for any three lotteries 
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(P, Q, and R), and also satisfies the other axioms mentioned above, 
has to be an expected utility maximizer.

What does the theorem mean? Descriptively, it may convince us 
that there are more expected utility maximizers around us than we 
used to believe. If I were to ask you how many traders in the market 
can be assigned a utility function, such that their choices are predict-
able by maximization of the expectation of this utility function, 
you’d probably say, “not too many.” Indeed, there are many traders 
who probably don’t think in these terms at all. But the claim is not 
that the expected utility maximization necessarily describes the 
mental process that traders go through in their minds. Rather, it 
only says that this procedure may be a good description of their 
final choices (if we assume that traders face known probabilities). 
And if you now consider the independence axiom, and recall that 
maximizing expected utility is more or less equivalent to satisfying 
this axiom (and precisely equivalent to satisfying this axiom and the 
other ones), then you may believe that more traders can be so 
described. This is important since a lot of work in finance assumes 
that traders are indeed expected utility maximizers, and there have 
also been serious attempts to empirically estimate the utility func-
tion that characterizes traders.5

The theorem also has important normative implications: let’s 
now forget about other traders, who may or may not be described 
by expected utility maximization, and ask what the best thing for 
you to do is. We agreed that you should be the judge of your own 
decisions. And the independence axiom may be one criterion to 
judge your choices by: after looking at some examples and explain-
ing the independence axiom, I may ask you whether you would 
like to be the kind of person who satisfies it. That is, are you con-
tent with choices that violate it, or do you make the meta-choice of 
trying to make choices that are consistent with the axiom? If the 
answer is that you would like to satisfy the axiom, the theorem 
tells you something both important and useful: it tells you that the 
only way to satisfy the axiom is to behave as if you were out to 
maximize the expectation of a utility function. And there is a sim-
ple algorithm that guarantees that you’ll satisfy the axiom: choose 
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a utility function, and then always choose an option that has the 
highest expectation of this function. Moreover, any other algo-
rithm that guarantees that you satisfy the axiom is equivalent to 
this one.

The next logical step is, therefore, to find out your own utility 
function, that is, the function that best describes your preferences 
(when used in the maximization of expected utility paradigm). 
Before we do that, we briefly mention that you need not always 
accept or always violate the axiom. After we complete the presenta-
tion of the classical theory, we will go back to Problems 4.5 and 4.10 
and see why people may accept the axiom in most cases, but con-
sciously choose to violate it in other cases. If these are your prefer-
ences, the expected utility idea, and the utility function we are about 
to measure, will only serve as first approximations of your preferred 
modes of decision making under risk.

Measurement of Utility

Let us now assume that you made your choice to maximize the 
expectation of a utility function, and all that’s left for you to deter-
mine is which function suits you best. Here a nice surprise awaits 
you: you only need to determine your preferences between lotteries 
that have three different outcomes. In fact, if you can compare any 
pair of lotteries, where you have two possible outcomes in one and 
a single possible outcome in the other, you will be able to pinpoint 
your utility function precisely. This means that if you know what 
your preferences are in these simple situations, you will know your 
utility function, and will find the only way to make decisions con-
sistent with this function in more complicated situations.

Consider the example shown in Table 4.1. You have to choose 
between two lotteries, P and Q.

The choice between P and Q may be quite confusing. P seems to 
be less risky. It promises at least $200, while Q may yield nothing. 
But Q has a much higher probability of getting $1,000. What should 
you do?
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The idea of measuring, or calibrating, your utility function would 
work as follows. The function will be unique only up to changes in 
the unit of measurement and shifts of zero. That is, we have two 
degrees of freedom when we select the particular function, similar 
to the freedom we have in measuring temperature. When we 
switch from a Fahrenheit to a Celsius scale we perform a linear 
transformation, multiplying by a positive constant and adding (or 
subtracting) a constant. Precisely the same freedom will be allowed 
here. Put differently, we can choose which outcome will get a util-
ity of zero and which a utility of 1 (provided that the latter is better 
than the former), and the rest will be determined uniquely.

Let us simplify matters by setting the worst outcome to 0 and the 
best to 1:

( )
( )
0 0

$1,000 1

u

u

=
=

Let us now try to figure out what is the utility of $200. Suspecting 
the function might be linear in money, we may start by asking which 
of the following options you prefer:

A: $0 0.8 B: $200 1
 $1,000 0.2   

The expected utility of option A is

Table 4.1 Two lotteries P and Q.

Outcome in $, x Probability under P, P(x) Probability under Q, Q(x)

0 0 0.10
200 0.10 0.20
400 0.20 0.20
600 0.40 0.05
800 0.20 0.15
1,000 0.10 0.30
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( ) ( )+ = + =0.8 * $0 0.2 * $1,000 0.8 * 0 0.2 * 1 0.2u u

while that of B is

( ) ( )1* $200 $200u u=

If you happen to be indifferent between A and B, it must be the case that

( )$200 0.2u =

In this case we’re lucky and our job is done: we found the unique 
value of u($200) that describes your preferences in the decision 
problem above, and this value will have to serve in all future calcu-
lations of expected utility involving the outcome $200. If we were 
not that lucky, we distinguish between two cases: if you prefer A to 
B we conclude that

( ) <$200   0.2u

while if you prefer B to A we conclude that

( ) >$200   0.2u

Whatever the answer, we can continue by changing the probability of 
getting $1,000 in A, and finding the probability that would yield indif-
ference. For instance, if you prefer B to A, we may ask you to compare

A′: $0 0.7 B: $200 1
 $1,000 0.3   

Basically asking whether u($200) is larger or smaller than 0.3, and so on. 
Finally, we will find a value p such that you are indifferent between

A′: $0 1-p B: $200 1
 $1,000 p   

And it follows that u($200) = p.
Continuing in this way for the other outcomes, $400, $600, and 

$800, we find their utility values. Each time we only make very 
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 simple comparisons – the sure outcome on the one hand, and a lot-
tery between two outcomes on the other. These simple questions 
suffice to uniquely determine the utility function, and they give you 
a powerful tool in assessing the utility function you would like to 
use, if indeed this idea appeals to you.

Risk Aversion

Let us go back to Problem 4.1. You were asked to compare a lottery 
(A) with a sure outcome (B). In this case, the sure outcome hap-
pened to be exactly the expected value of the lottery:

+ =0.5 * $0 0.5 * $1,000 $500

Does it mean that you have to be indifferent between the two? The 
answer is negative. Expectation is but one way to summarize a 
whole distribution of a numerical random variable by a single 
number. There are other numbers that tell us something about the 
random variable, such as the median and the mode. Further, we can 
also compute the random variable’s standard deviation in an attempt 
to measure its dispersion, or, in a case of a lottery, riskiness. Indeed, 
option A is a lottery with a positive standard deviation, while option 
B has a standard deviation of zero. Thus, there is nothing in proba-
bility theory that tells us that we have to choose the random variable 
with the highest expected value. If we were facing a repeated deci-
sion, under the same conditions, where the random variables were 
independent, we would know that the expectation means quite a bit 
due to the law of large numbers: in this case, the average of many 
random variables would be very close to the expectation, with very 
high probability. But in a one-short decision problem as above, the 
expectation need not mean that much.

In contrast to the expected value of the random variable, the 
expected utility means more. As discussed above, von Neumann–
Morgenstern’s theorem states that very mild assumptions imply 
that you would want to behave as if you were maximizing the 
expectation of a certain utility function. This theorem does not tell 
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you which utility function to choose; it only says that there exists 
one that describes your tastes. If your utility function is linear in 
money, that is, if

( )$ *u x a x b= +

for some parameters, a > 0, and b, we can also assume that

( )$u x x=

(because the von Neumann–Morgenstern utility is anyway given up to 
a linear transformation, so that we can simply set a = 1 and b = 0). In this 
case, an expected utility maximizer will also be an expected value maxi-
mizer, that is, he will choose the lottery with the higher expectation. But 
many decision makers do not behave in this way. In particular, 
if you prefer B to A in Problem 4.1, your von Neumann–Morgenstern 
utility function (assuming you have one) cannot be linear.

A decision maker who always prefers the expected value of a lot-
tery (such as B) to the lottery itself (such as A) is called risk averse. It 
turns out that, if the decision maker maximizes the expected value of 
a von Neumann–Morgenstern function, u, risk aversion is equivalent 
to the utility function being concave. This means that the graph of the 
function is always above each of its strings. More concretely, take any 
two sums of money, x and y. Consider the straight line segment that 
connects the points on the graph, (x, u(x)),(y, u(y)). The function is 
(strictly) concave if, in between x and y, the graph of the function 
is (strictly) above the segment connecting the two (see Figure 4.1).

To see why concavity of the function u relates to risk aversion, con-
sider a simple case as in Problem 4.1. Suppose that your wealth level is 
W and that I offer you a bet of $100 on a fair coin. Thus, with probabil-
ity of 50% you’ll gain $100, and will have W + 100, and with probability 
of 50% you’ll lose $100, and will have W – 100. You may think of your 
gain as a random variable, X, with the following distribution:

100 0.50
100 0.50

X
+⎧

= ⎨−⎩
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If you take the bet, you will have a wealth of W + X, that is, the ran-
dom variable

100 0.50
100 0.50

W
W X

W

+⎧
+ = ⎨ −⎩

And if you refuse the bet, you are left with your wealth, W, for sure. 
Assuming that you maximize the expectation of a function u(x), 
what will be your decision?

Consider the graph shown in Figure 4.2. If you refuse the bet, you 
are left with W for sure, and the utility is u(W) with probability 1, 
implying that the expected utility is u(W).

If you take the bet, you get the risky variable W + X, which can 
take the values W + 100 and W – 100 with equal probability. Hence 
the utility of your wealth will be u(W + 100) with probability 50%, 
and u(W–100) with probability 50%. Thus, the expected utility is

U

X Y

Figure 4.1 A concave function.
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( ) ( ) ( )+ = + + −⎡ ⎤⎣ ⎦ 0.5 * 100 0.5 * 100E u W X u W u W

This is the point, on the vertical axis, that is half way between u(W + 
100) and u(W–100). It corresponds to the point W on the string. That 
is, the point (W, E[u(W + X)]) is precisely the mid-point of the seg-
ment connecting (W–100, u(W–100)) and (W + 100, u(W + 100)). As 
the graph shows, if the function u is concave, the value u(W) is above 
E[u(W + X)]. That is, the utility of the expectation of W + X is higher 
than the expectation of the utility of that random variable. You can 
also imagine why this would be true if the probabilities involved 
were not 50%–50%, or if the gain and the loss were not equal. 
Graphically, the line segment describes the expected utility of the 
bet (which is a linear combination of the utility values at the 
extremes), while the graph of the function describes the utility of the 
expected value. In fact, this will be true of any random variable, not 
only one that takes only two values: the function u is concave if and 
only if, for every random variable, the expectation of the utility is 

W–100 W W+ 100

E [u (W+X )]

u(W+ 100)

u(W )

u(W–100)

Figure 4.2 Concavity of u implies risk aversion.
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lower than the utility of the expectation (with the possibility of 
equality in degenerate cases, where there is no risk involved).6

You may imagine that one can also exhibit risk loving (or risk seeking) 
behavior. This would mean that the decision maker prefers the ran-
dom variable to its expectation (with certainty). For expected utility 
maximizers, this behavior is equivalent to a convex utility function, 
that is, a function that is always below its strings (see Figure 4.3).

Risk aversion is typically assumed in economics and finance. Indeed, 
when we buy insurance, we probably exhibit risk aversion: the pre-
mium is higher than the expected loss. How do we know that? Because 
the insurance company does not insure a single client – it insures many 
of them, who are more or less independent, and presumably also simi-
lar in terms of the risk they face. Thus, the insurance company faces 
many random variables that are roughly i.i.d. (independently and 
identically distributed), and it may rely on the law of large numbers to 
calculate its average loss with very high accuracy (and very high prob-
ability). If the insurance company were to price the premium below the 

U

X Y

Figure 4.3 A convex function.
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expected loss, it would lose money. Hence we can assume that, at 
least in most cases, insurance companies price premiums above the 
expected losses. Why do we, as individuals, still purchase the insur-
ance? Because, facing a single random variable, the expected value 
is not so meaningful to us. And if we are risk averse, we will be will-
ing to pay the insurance company to take the burden of risk off our 
shoulders. But this explanation does presume that the insurance 
company’s clients are risk averse. Risk loving clients would not buy 
policies that are more expensive than the expected loss. By this logic, 
anyone who buys insurance behaves, at least in this problem, in a 
risk averse manner.

Gambling in casinos is typically given as the converse example: if 
I gamble in a casino, I walk in with a given, certain, amount of money, 
and pay something to play a game that gives me a random payoff in 
return. This would make a lot of sense if the expected payoff were 
higher than the cost of playing. In this case, you could think of me as 
investing: putting money into an uncertain prospect, but one that 
has a sufficiently high probability of yielding sufficiently high prof-
its to result in a positive expectation. However, we don’t really 
believe that the casino is offering us gambles with positive expected 
gains. The reason is, again, the law of large numbers: if the casino 
were to offer such a gamble, since it offers identical gambles to many 
independent clients, it would lose money. Indeed, casino games have 
well-defined probabilities, and we can compute and find out that 
they offer a negative expected payoff. (An exception is Black Jack, 
where, I’ve been told, you can obtain a positive expected payoff if 
you manage to count and recall which cards have been drawn.)

Clearly, the same logic applies to state lotteries: you may verify that 
the expected gain is lower than the cost of participation. Indeed, the 
state makes money due to the law of large numbers. It would appear 
that only risk loving people would buy state lotteries, just as only risk 
averse people would buy insurance policies. But then what do we do 
with people who simultaneously buy insurance (say, against losing 
their houses) and lottery tickets? Are they risk averse or risk loving?

There is a possibility of explaining such a behavior by maximiza-
tion of expected utility with a function that is neither (everywhere) 
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convex nor (everywhere) concave: if it were concave when it came 
to low payoffs, and convex when it came to high ones, you could 
explain such a behavior (see Figure 4.4).

With such a function, starting at wealth level W, when I look 
upwards towards the potential gains promised by the lottery (or the 
casino), I behave in a risk loving way, preferring the bet over the 
sure expected value; but when I look downwards towards the pos-
sible losses, involving the loss of my property, I behave in a risk 
averse way, and buy insurance.

This explanation is a little problematic, since it requires that all the 
individuals who simultaneously buy insurance and lottery tickets be 
around the inflection point of their utility function. Were such 
 individuals to gain a lot of money, they would find themselves in the 
convex range of the function, and stop buying insurance. But we do 
find rich people insuring their properties, and poor people tend to 
buy lottery tickets more than the rich. It actually seems more reason-
able that the inflection point “moves around” with the wealth level – 
but this means that we don’t have a utility function that is defined on 
the bottom-line levels of wealth, but on changes in wealth, that is, 
wealth compared with the level we already have. This idea will lead 

U

W

Figure 4.4 A graph of a function that is concave in part of the range and 
convex in another.
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us to an important contribution of prospect theory, to be discussed 
shortly. However, it is not obvious that gambling behavior should fit 
into the mold of expected utility theory with monetary payoffs. It 
seems more reasonable that a large part of the payoff to gamblers is 
the excitement, the time they spend waiting for the lottery’s outcome, 
fantasizing about what they would do with their gains, or praying to 
Lady Luck. None of these non-monetary payoffs are captured in the 
“outcomes” of the lotteries above, and it’s not clear that we should 
try to capture them by the curvature of the utility function.

Economic and finance theory go on to specify particular func-
tional forms of the utility functions that characterize economic 
agents, investors, and so on. There are ways to measure risk aver-
sion, in absolute terms as well as in relative terms, as a proportion of 
current wealth. The functional forms that give rise to constant abso-
lute risk aversion and constant relative risk aversion have been very 
popular in theoretical and empirical studies. They are, however, 
beyond the scope of this book.

Prospect Theory

Let us go back to the independence axiom. You may recall that we 
had five pairs of choices that were related by this axiom: the axiom 
requires that you make the same decision in Problem 4.1 as in Problem 
4.6, in Problem 4.2 as in Problem 4.7, and so on. We mentioned that it 
is quite common to observe decision makers following the axiom in 
the first four pairs but not in the last one. This one was:

Problem 4.5

A: $0 0.2 B: $3,000 1
 $4,000 0.8   

Problem 4.10

A: $0 0.8 B: $0 0.75
 $4,000 0.2  $3,000 0.25
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Many people choose B in 4.5 but A in 4.10. Moreover, even when the 
independence axiom is explained in this context, many people insist 
that, while they see the logic of the axiom, they would not like to 
follow it in this example. Asked for the reason, people often say that 
in 4.5 option B offers them certainty.

This example was suggested by Kahneman and Tversky,7 based 
on an example of Maurice Allais (dating back to the 1950s).8 They 
argued that the example illustrates the “certainty effect,” namely 
the “extra bonus” that certainty yields.

Consider another example of the same type, but this time with no 
certainty involved:

Problem 4.11

A: $0 0.2 B: $0 0.6
 $1,000,000 0.8  $2,000,000 0.4

Problem 4.12

A: $0 0.9992 B: $0 0.9996
 $1,000,000 0.0008  $2,000,000 0.0004

A typical pattern of preferences here would rank A over B in 4.11 but 
B over A in 4.12. This, again, is a violation of the independence 
axiom. You can verify that the probabilities of getting the positive 
payoffs in both lotteries in 4.12 are the same as in 4.11, only divided 
by 1,000. The ratio of the probabilities (of getting 1 million dollars in 
A to that of getting 2 million dollars in B) is the same across the two 
problems. The independence axiom would have implied that the 
same choice be made in these problems. In fact, if you “mix” the lot-
teries in 4.11 with zero, attaching probability 0.999 to zero and 0.001 
to the lotteries, you get the respective lotteries in 4.12. But in Problem 
4.11 people often say, “Hey, I prefer to have a probability of 80% of 
being a millionaire rather than a probability of 40%, even if I do get 
more money in the latter case.” By contrast, the probabilities of get-
ting the money in Problem 4.12 seem so small that people tend to 
ignore them. Kahneman and Tversky referred to this phenomenon 
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as “the common ratio effect.” In fact, the different choices in Problems 
4.5 and 4.10 can also be explained by the common ratio effect.

In a famous article bearing this title, Kahneman and Tversky 
offered “prospect theory”9 as an alternative to expected utility the-
ory for decision making under risk. One aspect of the theory was the 
claim that people react to stated probabilities in a non-linear way. It 
is as if decision makers were distorting the probabilities they were 
faced with: the decision weights implicitly assigned to given payoffs 
in actual behavior do not depend on the probability in a linear way. 
Specifically, assume that the decision maker has a function f that 
looks as in Figure 4.5. The function is strictly increasing, taking the 
value 0 at p = 0 and the value 1 at p = 1. It is assumed to be above the 
45° line for small probabilities, and below it for large ones. Thus, 
small probabilities are magnified in the decision making process, 
and very large ones (close to 1) are treated as if they were smaller 
than they really are.

Let us assume that we are given the prospect of gaining xi dollars 
with probability pi, for i = 1, …, n, where the sum of all pi’s is 1. (The 

f(p)

1

p1

Figure 4.5 A typical graph of the probability distortion function.
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use of the word “prospect” will be explained shortly.) Von Neumann–
Morgenstern expected utility theory suggests that the decision 
maker maximizes the formula

( ) ( ) ( )1 1 2 2 ... n np u x p u x p u x+ + +

for an appropriately chosen function u. By contrast, one version of 
prospect theory10,11 suggests that the decision maker chooses a maxi-
mizer of

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 ... n nf p u x f p u x f p u x+ + +

You can verify that violations of the independence axiom mentioned 
above can be explained by this theory.

However, prospect theory has another, no less important ingredi-
ent: it claims that people treat gains and losses differently. To draw 
this distinction, it supposed that the decision maker has a certain ref-
erence point with which payoffs are compared. Payoffs that are higher 
than the reference point are perceived as gains, and payoffs that are 
lower than the reference point as losses. Kahneman and Tversky 
argued that people react differently to gains versus losses. In particu-
lar, people are averse to losses. This loss aversion goes beyond the 
obvious fact that people prefer more money to less. It suggests that a 
given amount of money, if perceived as a loss relative to the reference 
point, will be considered a more painful outcome than the same 
amount when perceived as a gain. Importantly, prospect theory holds 
that people react to changes rather than to absolute levels. Kahneman 
and Tversky used the term value function for the function that gov-
erns behavior under risk. The change of term from utility to value 
should remind us that the function has a different interpretation than 
in expected utility theory: it is still defined on real numbers, denoting 
sums of money, but these numbers are changes from the reference 
point, rather than the bottom-line levels of wealth.

The ideas of a reference point and the gain–loss asymmetry that 
Kahneman and Tversky postulated, as well as the notion of reaction 
to changes rather than to absolute levels, are related to other phe-
nomena in psychology. Adaptation level theory (developed by Harry 
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Helson in 1947)12 suggests that most of our perceptions adapt to given 
levels of stimuli. The pupils of our eyes enlarge and contract to adjust 
to the level of light; we get used to odors and background noises, and 
so forth. The logic behind these phenomena is that our minds react to 
changes, which typically carry new information, and tend to ignore 
constant stimuli, which do not offer meaningful new data. This does 
not mean that we adjust to anything and everything; indeed, if I hold 
my hand by the fire, I will not say, “Oh well, fire, sure, I already know 
that there is fire out there.” Rather, I will feel scorching that becomes 
more painful as I keep my hand by the fire, until I pull it away. 
Generally, when there is a clear and immediate danger, no adaptation 
will take place, as action is needed. But if, for instance, it gets dark 
towards the evening, there is nothing I can do to change it, and there 
is no immediate danger in darkness per se. Hence it makes sense to 
adapt to the lower level of light by enlarging my pupils. More gener-
ally, apart from cases of severe danger, it makes sense to react to 
changes rather than to absolute levels of the stimuli around us.

In 1955, Herbert Simon offered the theory of bounded rationality. 
He suggested that people do not optimize; rather, he argued, they 
satisfice.13 What that means is the following: people walk around 
with a certain aspiration level for their performance in their minds. 
As long as their performance is above that level, they are satisficed 
and they keep doing whatever they have been doing. When they 
notice that their performance is below that level, they get into action 
and try to see what can be done differently; they start experimenting 
with other options, and so on. In particular, Simon was modeling 
managers, who have too many decisions to make, often with too lit-
tle information. They can’t possibly study each and every problem 
in detail, and thus, as long as things are OK, they don’t change them. 
But they do make sure they put out fires when these erupt.

The reference point of Kahneman and Tversky is a new idea, 
which differs both from the aspiration level of Simon and from the 
adaptation level of Helson. But these other ideas indicate that vari-
ous theories in psychology concur that human beings do not respond 
only to absolute levels, and that, in particular, a certain point on the 
payoff scale may play a special role.
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You may recall Problem 2.2 and Problem 2.13 from the beginning of 
this book, which also had a flavor of gain–loss asymmetry. In these 
problems, the same gains (of $1,000, $1,500, and $2,000) were pre-
sented once as gains (relative to $1,000) and once as losses (relative to 
$2,000), typically resulting in different behavior. While these were also 
examples of framing effects, they hinged on the gain–loss asymmetry 
documented by Kahneman and Tversky, and, in particular, on loss 
aversion. Generally, Kahneman and Tversky argued that the preva-
lent phenomenon of risk aversion is typical of the range of gains, but 
not of losses. In fact, they found that in the realm of losses people are 
often risk loving, and that their value function in this domain tends to 
be convex rather than concave. Their explanation of this phenomenon 
was not that people truly enjoy the risk, but that they dislike losing so 
much, that they may risk even larger losses so as to avoid a certain 
(moderate) loss. Preferring to lose $500 for sure to a 50%–50% bet on 
losing $1,000 (or nothing) is an example of such behavior.

Why do we tend to be so loss averse? There are many possible 
explanations. While in general we may not know what level of per-
formance we can strive for, a level that we have already obtained in 
the past seems possible. Hence, it seems like a good idea not to let 
ourselves slip below it. Also, losing something we had may imply 
losing face in a social environment; others around us may think that 
we are on the decline and that they would better associate with 
competitors. Hence it makes sense that we do not like to lose, and 
that it is particularly painful to experience deterioration in our per-
formance, or to feel that we made silly decisions.

Is this rational? Again, the answer is subjective. And, as in the 
case of the endowment effect, it may well depend on the type of 
application. Consider the following three scenarios.

Scenario 1: I am a politician. I pushed for a project that has so far cost 
$500,000. It was a bad idea. My advisors tell me that maybe it’s time 
to drop it. There is a possibility of investing another $500,000 in it, 
and then it may pay off, roughly justifying the total investment; but it 
is equally likely to be an even bigger fiasco, burying $1,000,000 in 
total. What should I do?
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Scenario 2: I am married, and I’m in charge of the family’s finances. I 
made an investment of $5,000 in a friend’s business. It looks in bad 
shape. My friend tells me that he needs more money invested, or it’s 
all lost. I can invest an additional $5,000, which, with probability 50%, 
will save the business and give me my initial investment back, or, 
with probability 50%, be lost as well. Should I invest more and risk 
more or cut my losses?

Scenario 3: The same as Scenario 2, but this time I’m single.

Let’s start with Scenario 1. As a politician, it may be a very bad idea 
to go back to my voters and say, “Remember these half a million 
dollars? Well, err, this was a bad idea. We lost them. But vote for me 
again and I’ll make better decisions next term.” It sounds like a bet-
ter idea to say, “Sure, this is a big and important project, and we had 
some complications, but we need to stay our course and get this 
thing done.” At the very least, the second idea buys me some time, 
whereas the first one looks like political suicide.

In fact, for the politician the payoff may not be the amount of 
money spent, but the probability of staying in office. Admitting a 
failure, or a loss, decreases this probability dramatically. Hence it 
may be perfectly rational for the politician to avoid such confes-
sions, that is, to be loss averse.

Next consider Scenario 2. Here it’s my money I’m dealing with, 
but I have a wife who may or may not think I’m smart. If I admit a 
loss, I’m going to lose face, and she may not trust my judgment in 
other decisions. I’m unlikely to be dismissed as a husband, but there 
is some similarity between my case and the politician’s: we both 
have an audience of “constituency,” waiting to see what we have 
done for them lately.

Finally, consider Scenario 3. Here I’m all by myself, and I have 
no one to fool. I can tell myself, “Yes, I can go on investing so as not 
to admit a failure, but I already know that this hasn’t been such a 
smart decision, so who am I fooling? Maybe it’s wiser to cut my 
losses.”

I believe that most people would find loss aversion perfectly rea-
sonable for the politician, but not so rational for themselves (in 
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Scenario 3). Scenario 2 is a mixed case, and some people may find 
loss aversion rational for them in such a scenario, while others 
probably won’t. Again, you don’t have to make a sweeping deci-
sion, whether loss aversion is a phenomenon you’re going to reject 
or one you’re willing to live with as rational: it is quite possible 
that in some cases loss aversion will be rational for you, while in 
others it won’t.

Exercises

1. Assume that you are indifferent between getting $700 and get-
ting $1,000 with probability 80% (and otherwise nothing). 
Assume also that you are indifferent between getting $300 
and getting $700 (not $1,000 this time!) with probability 60% 
(and otherwise nothing). Consider lottery A, which gives you 
$1,000 with probability 2/3 (and otherwise nothing), and lot-
tery B, which gives you a 50%–50% bet between $300 and 
$700. If you follow von Neumann–Morgenstern’s theory, you 
should:

 a. Prefer A to B.
 b. Prefer B to A.
 c. Be indifferent between A and B.
 d. One cannot tell based on the data.

2. Mary likes the von Neumann–Morgenstern’s axioms and she 
would like to make decisions in accordance with these axioms. 
By careful introspection, she has decided that she would be 
indifferent between

  $400 for sure and a 50% probability of obtaining $1,000 (other-
wise nothing); and also between
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  $600 for sure and an 80% probability of obtaining $1,000 
 (otherwise nothing).

 Mary is offered a bet among ($0, $400, $600, $1,000) with equal 
chances (25% each) for a cost of $400. Should she prefer the bet 
or should she prefer to keep her $400?

3. A state lottery sells tickets for a cost of $1 each. The ticket has a 
probability of 1/(2,400,000) of winning $1,000,000, and other-
wise nothing.

 a. What is the expected profit of the state from each ticket sold?
 b.  In the hope of increasing profits, the state considers increas-

ing the award to $2,000,000 and reducing the probability of 
winning to 1/(4,800,000). A statistician said that it’s not 
worth the trouble, because the expected profit remains pre-
cisely the same. What do you think?

4. It is often argued that the value function in Kahneman and 
Tversky’s prospect theory is convex in the domain of losses, that 
is, individuals behave in a risk loving way when it comes to 
losses. How can this be reconciled with the fact that people buy 
insurance (where premiums exceed expected losses)?
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Notes

 1 Jacob cunningly received their father’s blessing, which was Esau’s 
birthright as he was the firstborn. When they met, Esau was heading a 
powerful army. However, this particular episode had a happy 
ending.

 2 Bernoulli, D. (1738) Exposition of a new theory on the measurement of 
risk. Econometrica, 22 (1954), 23–36.

 3 The terms “risk” and “uncertainty” for this distinction were suggested 
by Knight, F. H. (1921) Risk, Uncertainty, and Profit. Houghton Mifflin.

 4 von Neumann, J. and Morgenstern, O. (1944) Theory of Games and 
Economic Behavior. Princeton University Press.

 5 See, for example, Mehra, R. and Prescott, E. C. (1985) The equity pre-
mium: a puzzle. Journal of Monetary Economics, 15, 145–161.

 6 This is known as Jensen’s inequality.
 7 Kahneman, D. and Tversky, A. (1979) Prospect theory: an analysis of 

decision under risk. Econometrica, 47, 263–291.
 8 Allais, M. (1953) Le comportement de l’homme rationnel devant le ris-

que: critique des postulats et axiomes de l’Ecole Americaine. 
Econometrica, 21, 503–546.

 9 Kahneman and Tversky (1979), see note 7.
10 This version is not the one published in Kahneman and Tversky’s orig-

inal paper, nor the one to which they later adapted the theory. This 
formula had been suggested also by Edwards (see note 11). Details are 
beyond the scope of this book.

11 Edwards, W. (1954) The theory of decision making. Psychological 
Bulletin, 51, 380–417.

12 Helson, H. (1947) Adaptation-level as frame of reference for prediction 
of psychophysical data. American Journal of Psychology, 60, 1–29.

13 Simon, H. A. (1955) A behavioral model of rational choice. Quarterly 
Journal of Economics, 69, 99–118.
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5

Decisions under Uncertainty

Introduction

The previous chapter dealt with probabilities that are explicitly 
given to us, or that can be assumed known. It is time to move on to 
problems in which probabilities are not given, or cannot be inferred 
from existing statistical data. Observe that these problems include 
many of the more important ones in our lives. The probability of a 
stock market crash over the next month is not written anywhere, 
and cannot be easily inferred from existing data. Similarly, the 
 eruption of war in the Middle East over the next two years is another 
example of an event that is uncertain in the sense that we do not 
know its probability. The same holds also for many personal 
 decisions, such as the choice of a career or a spouse. When you get 
married no one provides you with the probability that you will end 
up divorcing, and relying on general statistics to infer this  probability 
is not very promising. And similar uncertainty exists when you con-
sider the possibility of success of a new business venture, or a new 
career path, and so forth.

One idea that we describe but also critically examine here is that 
the mathematical machinery of probability theory can be used to 

Making Better Decisions, by Itzhak Gilboa © 2011 John Wiley & Sons, Inc.
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reason about uncertainty, even when probabilities are not given. The 
idea is that we can use a probability function that need not be “real” 
in any sense, but that reflects our beliefs, and use it to make better 
decisions. We have already encountered this idea in Chapter 2, when 
we noted that the use of subjective probability can make us immune to 
the conjunction fallacy (rating Linda being a bank teller as less likely 
than being a bank teller who is also active in a feminist movement).

It is an interesting historical fact that Blaise Pascal, often  considered 
to be the most important figure in the invention of probability the-
ory, was also the first person who used subjective probability. In his 
famous wager, Pascal takes a very modern approach to the problem 
of faith. Rather than trying to prove that God exists, as did many 
before and after him, Pascal skipped the metaphysical problem of 
God’s existence and discussed instead the decision problem of the 
individual human being: to choose to believe in God or not. Pascal’s 
main argument for believing in God relies on the assumption that 
the payoff in the afterlife is infinite, while anything you may enjoy 
on Earth is finite. Therefore, he argues, no matter how small is 
the probability that God exists, you are better off believing in Him. 
Clearly, the “probability that God exists” refers to subjective 
 probability, namely, a way to quantify uncertainty. Moreover, 
Pascal’s argument is one of maximizing expectation.1 Hence, Pascal 
was the first person to suggest the notion of expected utility maxi-
mization, and he used it in the context of subjective probabilities.

The following problems deal with issues that are slightly more 
mundane. But they will lead to the same questions: how and when 
can we use the machinery of probability theory to quantify our 
beliefs and make better decisions in the face of uncertainty?

Problems

In the following ten problems you are asked to choose between 
“bets.” A bet yields a particular outcome if a specified event occurs. 
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Some of the events are real-life ones, and some are defined by chance 
mechanisms, such as coins and roulette wheels.

In Problems 5.1–5.10 you are promised the same outcome 
 conditional on events that may be known only in the future. In each 
such problem, imagine that the payoff is obtained at the same time, 
whether you choose A or B.

Problem 5.1

Do you prefer to get $100 if
 A: It will snow on February 1st;
  B: A roulette wheel yields the outcome 3?

Problem 5.2

Do you prefer to get $100 if
 A: The student next to you gets A in this class;
  B: Two consecutive tosses of a fair coin come up Head?

Problem 5.3

Do you prefer to get $100 if
 A: Your next flight is delayed by more than an hour;
  B: A roulette wheel yields an outcome in the range 0–5?
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Problem 5.4

Do you prefer to get $100 if
 A:  The Dow Jones Industrial Average (DJIA) is at least at its cur-

rent value at the end of the year;
 B: A toss of a fair coin is Head?

Problem 5.5

Do you prefer to get $100 if
A: The next president of the United States is a Democrat;
 B: A toss of a fair coin is Head?

Problem 5.6

Do you prefer to get $100 if
 A: It will not snow on February 1st;
 B: A roulette wheel yields an outcome different than 24?

Problem 5.7

Do you prefer to get $100 if
 A: The student next to you gets less than A in this class;
 B: A roulette wheel yields an outcome less than 24?
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Problem 5.8

Do you prefer to get $100 if
 A: Your next flight is on time;
 B: In two consecutive tosses of a fair coin there is at least one Head?

Problem 5.9

Do you prefer to get $100 if
 A: The DJIA is below its current value at the end of the year;
  B: A toss of a fair coin is Head?

Problem 5.10

Do you prefer to get $100 if
 A: The next president of the United States is a Republican;
  B: A toss of a fair coin is Head?

Problem 5.11

You are offered two assets, based on the percentage of change in the 
DJIA between today and tomorrow. Let this percentage change be 
denoted by Δ. Do you prefer to get:

A: $1,000 if 1% < Δ
 $2,000 if 0 < Δ ≤ 1%
 −$1,000 if −0.5% < Δ ≤ 0
 $0 if Δ ≤ −0.5%

or
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B: −$1,000 if 0.8% < Δ
 $1,000 if −0.1% < Δ ≤ 0.8%
 $500 if −0.7% < Δ ≤ −0.1%
 $2,000 if Δ ≤ −0.7%

Problem 5.12

Consider the following version of the TV game “Let’s Make a Deal”: 
there are three doors, marked A, B, and C, and behind one of them 
there is a prize (a car). Behind the two other doors there is no prize 
(a goat). Based on past plays of the game, you can safely assume 
that the car is behind doors A, B, and C with equal probabilities.

You are asked to name a door. Before you open it, the moderator 
(Monty Hall), who knows where the car is, opens a door. He has to 
open a door that (i) differs from the one you named; and (ii) does not 
have the car behind it. (Since there are three doors, he can always do 
that.) Now you are given a choice: you can either open the first door 
you named (“stick”) or open the other door still closed (“switch”). You 
get the prize behind the door you decide to open, and your goal is to 
maximize the probability of getting the car. What should you do?
 a. Stick.
 b. Switch.
 c. It doesn’t matter.

Problem 5.13

Comment on the following dialog.

MARTINE: The question now is, should we cut prices.
VERONIQUE: If you do, you probably get a higher market share, but 

lower profit per customer. It’s a familiar trade-off.

9781444336511_4_005.indd   1389781444336511_4_005.indd   138 7/10/2010   8:52:45 PM7/10/2010   8:52:45 PM



Decisions under Uncertainty

139

MARTINE: Yes, but it depends on the competition. And I don’t know 
whether they will or won’t cut prices.

VERONIQUE: I’m not so sure you should care. If the competition cuts 
prices, you have to cut prices as well. If they don’t, you’re better off 
 cutting prices and being the cheapest.

MARTINE: How come? By this reasoning, we should sell at zero 
prices.

VERONIQUE: Well, maybe not zero prices, but close to zero profit. It 
 happens. It’s related to the “Prisoner’s Dilemma”: you may both be 
 better off if you don’t cut prices, but it is rational for each one to cut 
their prices.

MARTINE: Hmmm.
VERONIQUE: Yes, the point is that whatever the others do, you should 

cut prices. Hence you don’t care what they do, and you might as well 
cut prices now.

Problem 5.14

There are two urns in front of you, each containing 100 balls. Urn A 
contains 50 red balls and 50 black balls. Urn B contains 100 balls, 
and you are told that each ball is either red or black, but you do 
not know how many of the 100 balls are red and how many are 
black.

You are asked to choose an urn (A or B), and a color (red or black). 
Once you announce your choice, a ball will be drawn at random 
from the urn you named. If it is the color you named, you get $100. 
Otherwise you get nothing.

There are, therefore, four possible choices:

AR – betting on a red ball drawn out of urn A
AB – betting on a black ball drawn out of urn A
BR – betting on a red ball drawn out of urn B
BB – betting on a black ball drawn out of urn B
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What are your preferences between the following pairs of bets?
 a. AR ___ AB
 b. BR ___ BB
 c. AR ___ BR
 d. AB ___ BB

Problem 5.15

There is an urn containing 90 balls. Each ball can be red, blue, or 
 yellow. You are also told that there are precisely 30 red balls in the 
urn. Hence, the remaining 60 balls are blue or yellow, but you don’t 
know how many are blue and how many are yellow.

A ball is to be drawn at random from the urn. You are offered 
choices between pairs of bets, where “betting on an event” implies 
winning $1,000 if the event occurs, and nothing otherwise:

 a. Betting on the ball being red
  vs.
  betting on the ball being blue
 b. Betting on the ball being red
   vs.
  betting on the ball being yellow
 c. Betting on the ball being not red
   vs.
  betting on the ball being not blue
 d. Betting on the ball being not red
   vs.
  betting on the ball being not yellow.
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Problem 5.16

Suppose that I am about to undergo a medical operation. I ask my 
doctor what the probability of success is. How can my doctor pro-
vide me with an objective answer?

Problem 5.17

Suppose that I’m interested in an investment whose value depends 
on the possibility of war. I consult an expert on international rela-
tions, and ask him what the probability of war in the Middle East in 
the next year is. How can the expert provide an objective answer?

Subjective Probability

In the previous chapter we dealt with decisions under risk, that is, 
where probabilities were given to us in the description of the prob-
lem. “Given” probabilities are encountered in games of chance, such 
as casino games, state lotteries, and psychological experiments. 
There are many other circumstances where the probabilities are not 
generated by a chance device, such as a roulette wheel, but they can 
still be assumed to be more or less known, or “objective.” For exam-
ple, when we deal with an insurance problem, we can look at statisti-
cal data and see what the empirical frequencies of various events are. 
These empirical frequencies are often taken to be the probabilities of 
these events occurring again in the future. If the events in the past, as 
well as those that are awaiting us in the future, can be assumed i.i.d. 
(identically and independently distributed), and if there are many of 
them, this appears to be a reasonable definition, and the empirical 
frequency can be used to define objective probability.
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However, many important decisions in our lives depend on 
events that are not repeated in the same way, so that the assump-
tion of i.i.d. events doesn’t hold. When we consider the stock mar-
ket behavior over the next week, we can’t assume that it will have 
the same distribution as in previous weeks. Things change in the 
world, and no two weeks are identical. Further, the very fact that 
last week the stock market ended up in a certain way is a piece of 
information that changes our predictions for the coming week. 
Thus, consecutive events are not even causally independent, let 
alone statistically independent. When we consider, for example, 
the possibility of war in the Middle East, we can’t simply resort to 
past statistics for a definition of probabilities, both because no two 
instances are identical, and because the very fact that a certain war 
occurred changes the probability that future wars will.

These complications are not restricted to “big” events such as war 
and peace, crashes and booms. An individual’s choice of a career 
path, or their decision to get married, is also a “big” event in the 
sense that it is never repeated in the very same way, and often not 
even with causal independence between consecutive occurrences. 
Thus, if Mary is asked to assess the probability that she will succeed 
in finding a job as a lawyer, if she decides to start her studies now, 
and if John wonders what is the probability that he will want to 
move and sell his house in the next two years, they cannot simply 
look at past data and use empirical frequencies as probabilities.

As mentioned in the introduction, Pascal had already used the 
machinery of probability theory to sort out intuition and reason about 
uncertainty where no objective probabilities exist. The idea is that 
even if the probabilities that you assign to events will not be objective 
or scientifically estimated, the very discipline imposed by quantify-
ing uncertainty may be useful. The probabilities that you end up with 
are bound to be subjective, because you don’t have nearly enough 
information to come up with scientific or objective assessments. But 
the machinery of probability theory, used for subjective probability, 
guarantees that your beliefs will be internally coherent. You may not 
be right when we compare your assessments with actual data, but at 
least you will not be so silly as to contradict yourself.
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Suppose that you like this idea and try to assess your own subjec-
tive probabilities for various events, that is, try to put your beliefs, 
intuitions, and hunches into numbers. How would you do that? 
One possibility is to compare the probability of events for which 
probability is not given with the probability of events for which it is. 
And to make things concrete, it is often suggested that you relate the 
questions of likelihood to decision problems. That is, rather than 
asking “which event seems more plausible?” we will often ask, 
“which event would you prefer to bet on?” Let’s see how this works 
in Problems 5.1–5.10.

Let’s begin with Problem 5.1:

Problem 5.1

Do you prefer to get $100 if

 A: It will snow on February 1st;
 B: A roulette wheel yields the outcome 3?

The probability of (B) is objectively known. It is 1/37 (or 1/38, 
depending on the type of roulette wheel we have). The probability 
of (A) is not known. But if you prefer to get $100 if it snows than if 
the roulette wheel yields the outcome 3, you probably think that the 
probability of snow on February 1st is higher than 1/37. To be pre-
cise, this is going to be the definition of your subjective probability: 
even if you will state some other beliefs, what we really care about 
are the decisions you make. Therefore, if we find that you make 
decisions as if your subjective probability of snow were higher than 
1/37, that’s good enough for our purposes.

Clearly, if you prefer to bet on (B) than on (A), we will conclude 
that your subjective probability of snow is (or should be defined as) 
lower than 1/37. And if you’re indifferent, we’ve found the precise 
value of your subjective probability of snow on February 1st. The 
general method is to replace the objectively quantifiable event 
(here, (B) ) with another objectively quantifiable one until we reach 
this indifference, and thus “calibrate,” or measure, your subjective 
probability.
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This process surely reminds you of the calibration of utility under 
risk. There, too, we use objectively given probabilities as a way to 
scale, or measure, a subjective magnitude. The difference is that in 
the previous chapter we were trying to quantify utility, and here we 
are quantifying subjective probability. But the process is similar. 
And another similarity is that, for this procedure to be successful, 
your preferences should have a certain degree of internal coherence, 
so that your answers to simple questions would not be contradic-
tory, and will be valid also for your decisions in more complex 
situations.

Let us see what type of internal coherence is relevant in the case 
of subjective probabilities. Compare your answer in 5.1 with your 
answer in Problem 5.6:

Problem 5.6

Do you prefer to get $100 if

 A: It will not snow on February 1st;
  B: A roulette wheel yields an outcome different than 24?

Here the question is whether the outcome of no-snow on 
February 1st is more or less likely than the outcome of the rou-
lette wheel being different than 24. But the latter is known – it is 
36/37. Thus, we see that there are certain constraints on the 
answers you can provide, should your beliefs be represented by 
 subjective  probabilities. For example, if you choose (A) in both 
Problems 5.1 and 5.6, we will not be able to use probabilities to 
capture your beliefs. Indeed, choosing (A) in 5.1 means that, in 
your eyes,

( ) ( )> =Prob snow   Prob outcome 3 1/ 37

and this means that

( ) ( )Prob no-snow 1 Prob snow   36 / 37= − <
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whereas choosing (A) in 5.6 means that

( ) ( )> =Prob no-snow   Prob outcome different from 24 36 / 37

(Notice that I assumed here that your preferences were strict. If you 
were indifferent in both cases and, shrugging your shoulders, gave 
me a random answer, no contradiction arises.)

You may now ask yourself whether indeed you chose (A) in 
both. Or (B) in both – this will generate precisely the same prob-
lem, only with the inequality signs reversed. If you didn’t, namely 
if your choices were (A) in 5.1 and (B) in 5.6, or vice versa, you 
can go on to try to assess your subjective probability of snow on 
February 1st. If, however, your choices were inconsistent with 
the notion of subjective probability, you will have to make a 
meta-decision, of whether you would like to make decisions that 
are compatible with subjective probabilities or not. As in any 
other problem we discuss, it is up to you to decide whether a 
particular mode of behavior is rational for you. If the answer is 
negative, we can find a formal model that will help you avoid 
this type of behavior. But you should first be convinced that this 
model is truly what you like to use for your own decision mak-
ing, rather than a model that some theorists happen to be excited 
about.

I suggest that you withhold judgment on this question for a while. 
Much of my own research career has been devoted to it, and this is 
the part of classical decision theory that I find the least compelling 
from a normative point of view. Let us first look at a few more exam-
ples and then discuss this issue again.

Compare your answers to the following two problems:

Problem 5.2

Do you prefer to get $100 if

 A: The student next to you gets A in this class;
  B: Two consecutive tosses of a fair coin come up Head?
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Problem 5.7

Do you prefer to get $100 if

A: The student next to you gets less than A in this class;
  B: A roulette wheel yields an outcome less than 24?

Problem 5.2 basically asks you to compare

( ) ( )=Prob student gets A  and Prob two consecutive Heads 25%

While 5.7 asks you to compare

( ) ( )< =Prob student doesn’t get A  and Prob outcome  24 24 / 37

which is equivalent to comparing

( ) ( )Prob student gets A  and Prob outcome  24 13 / 37s 35%≥ = ≅

A pattern of answers that is inconsistent with subjective probabili-
ties would be to choose (B) in 5.2 and (B) in 5.7. To see this, observe 
that choosing (B) in 5.2 means that

( ) ( )< =Prob student gets A   Prob two consecutive Heads 25%

while choosing (B) in 5.7 implies

( ) ( )< <
= ≅

Prob student doesn’t get A   Prob outcome  24

24 / 37 65%

or

( ) > − =Prob student gets A   1 65% 35%

However, the three other combinations of answers are consistent 
with subjective probabilities: if you choose (B) in 5.2 and (A) in 5.7, 
this is compatible with

( )<Prob student gets A 25%

and if you choose (A) in 5.2 and (B) in 5.7, you probably believe that
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( )>Prob student gets A 35%

Importantly – as opposed to the example of Problems 5.1 and 5.6 – 
you can here choose (A) in 5.2 as well as (A) in 5.6, and this would 
imply that your subjective probability satisfies

( )< <25% Prob student gets A 35%

Continuing in this way, if there is a subjective probability that guides 
our decisions, we will be able to find it.

Next consider the following pair:

Problem 5.3

Do you prefer to get $100 if

A: Your next flight is delayed by more than an hour;
  B: A roulette wheel yields an outcome in the range 0–5?

Problem 5.8

Do you prefer to get $100 if

A: Your next flight is on time;
  B:  In two consecutive tosses of a fair coin there is at least one Head?

Here, again, we have well-defined, objective probabilities in option 
(B) of each problem, and an event with no objective probability in 
option (A). This pair differs from the previous ones in two ways. 
First, the events in options (A) of the two problems are disjoint, but 
they are not complementary: if your flight is delayed by more than 
an hour, it is evidently not on time, but it can be neither.

The second new feature in this example is that you might prefer 
(A) in 5.3 not because you think that it is very likely that your flight 
is delayed by more than an hour, but because you think that you 
might need the extra cash in this case – for instance, if, due to this 
delay, you miss your connection to a different airline, and have to 
pay extra for the change of ticket. If this is the reason you choose 
(A) in 5.3, this choice doesn’t tell us much about your beliefs.
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This is not a trivial issue. In fact, it could also apply in the previ-
ous examples. If you go back to Problem 5.1, suppose that you see 
someone preferring (A) to (B) – is it because they really believe that 
the snow on February 1st is more likely than the roulette wheel 
yielding 3, or is it perhaps because, should it snow, they will need to 
buy a new coat, and this is why they prefer the money in this case? 
And maybe it’s because they have a distaste for casinos and there-
fore prefer (A)? Our goal in introducing these preference questions 
was to make the notion of “likelihood” or “plausibility” concrete. 
But if, by doing so, we introduce a new bias, having to do with the 
interaction of the outcome with the event, we get rather skewed 
results.2

So let us take this opportunity to clarify the nature of the exer-
cise: when you’re asked to choose among choices as in these prob-
lems, you are implicitly asked to imagine that the outcomes 
promised do not change, and do not become more or less desira-
ble as a result of the event with which they are associated. Often, 
this will be easy to imagine. But there are also situations – involving 
medical decisions, life and death issues, and the like – where this 
becomes harder to imagine. For instance, if I try to assess the 
probability of my death for the sake of a life insurance decision, it 
is hard to imagine how much fun it would be to get $100 when 
I’m six feet under. With all due respect to my children’s well-being, 
I suppose that I will not enjoy the money the same way when I’m 
dead as when I’m alive.

Therefore, when it comes to decisions involving various life and 
health risks, we will need more refined procedures to try to elicit 
our subjective probabilities. In most other problems we will try to 
imagine getting various outcomes, or payoffs, ignoring our special 
needs given the event in question, as well as ignoring any ethical 
and moral issues having to do with enjoying the payoff when this 
particular event occurs.

Going back to the problems, we find that in 5.3 I should prefer 
(A) if (and only if)

( )> ≅Prob a delay of at least 1 hour 6 / 37 16%
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whereas in 5.8 I should prefer (A) if (and only if)

( )>Prob zero delay 75%

Because the two events on the right hand sides are disjoint but not 
complementary, the only constraint we have is that the probability 
you assign to (A) in 5.3 and the probability you assign to (A) in 5.8 
together do not exceed 1. Since the two right hand sides together are 
less than 1, there is no contradiction in choosing (A) in both. You 
may, for instance, believe that the probability of no delay at all is 
80%, but that, if there is a delay, it will be of an hour or more, so that 
the probability of such a delay is 20%.

You may also choose (B) in both problems, for instance, if you believe 
that the flight is very likely to be delayed, but by less than an hour. In 
fact, you may even assign to this event probability 1, implying

( ) ( )=Prob a delay of at least 1 hour ,  Prob zero delay 0

Of course, it’s not clear how you can be so sure that the flight will be 
delayed, but by no more than an hour, but this is still consistent with 
the discipline put upon us by subjective probabilities. Importantly, 
the exercise we are performing here is checking whether your beliefs 
can be represented in a probabilistic way, not asking how you might 
justify these beliefs.

Next, consider the following pair:

Problem 5.4

Do you prefer to get $100 if

A: The DJIA is at least at its current value at the end of the year;
  B: A toss of a fair coin is Head?

Problem 5.9

Do you prefer to get $100 if

A: The DJIA is below its current value at the end of the year;
  B: A toss of a fair coin is Head?
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This is a relatively simple example. The events (A) in the two prob-
lems are complements of each other. If you are to assign to them 
subjective probabilities, they should add up to 1. The events in (B) 
are identical, with an objective probability of 50%. This is almost 
precisely the case in Problems 5.5 and 5.10:

Problem 5.5

Do you prefer to get $100 if

A: The next president of the United States is a Democrat;
  B: A toss of a fair coin is Head?

Problem 5.10

Do you prefer to get $100 if

A: The next president of the United States is a Republican;
  B: A toss of a fair coin is Head?

– with the minor difference that in this pair the two events are not 
complements, strictly speaking, since the United States may elect a 
president who doesn’t belong to either major party.

It is often the case that people prefer (B) in both 5.4 and 5.9, or in 
both 5.5 and 5.10. Such choices are incompatible with representa-
tion of beliefs by subjective probabilities. The same would apply 
to choosing (A) in both 5.4 and 5.9 (or in both 5.5 and 5.10). 
However, this is a much less common pattern of choice. We will 
discuss these phenomena when we deal with difficulties with 
probabilities later on.

In the meantime, you may turn to Problem 5.11. Try to apply this 
technique to measure your own subjective probability for the 
events in question. Then apply the technique of Chapter 4 to esti-
mate your utility function. Finally, use your subjective probabili-
ties and your utility function to find which decision yields a higher 
expected utility in this problem. As you can see, the principles that 
we have considered can help you think about this relatively 
 complex problem, based on your decisions in simpler ones. Do you 
find the resulting decisions palatable?
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Learning From the Fact We Know

Our next two sections have to deal with the question of what are we 
assigning probabilities to? Typically, we think of a probability model, 
in which there are possible scenarios, sometimes called states of 
nature or states of the world, of which precisely one will materialize. 
Events are collections of such states. If we assign a probability to 
each state, we can compute the probability of an event by summing 
up the probabilities of the states belonging to it. In particular, if we 
consider the “sure event,” consisting of all states, we should have 
the probability summing up to 1. All this seems natural and familiar. 
However, sometimes some care is needed in defining the “states.” 
Let us begin with Problem 5.12:

Consider the following version of the TV game “Let’s Make a 
Deal”: there are three doors, marked A, B, and C, and behind one 
of them there is a prize (a car). Behind the two other doors there is 
no prize (a goat). Based on past plays of the game, you can safely 
assume that the car is behind doors A, B, and C with equal 
probabilities.
 You are asked to name a door. Before you open it, the moderator 
(Monty Hall), who knows where the car is, opens a door. He has to 
open a door that (i) differs from the one you named; and (ii) does 
not have the car behind it. (Since there are three doors, he can 
always do that.) Now you are given a choice: you can either open 
the first door you named (“stick”) or open the other door still closed 
(“switch”). You get the prize behind the door you decide to open, 
and your goal is to maximize the probability of getting the car. What 
should you do?

Let us first convince ourselves that the strategy “switch” is better 
than “stick.” In fact, “switch” guarantees us a probability of 2/3 of 
winning the car, while “stick” gives us a probability of only 1/3. 
This might be more intuitive if we observe that “switch” means 
“always switch,” and it results in different doors depending on 
Monty Hall’s choice.

9781444336511_4_005.indd   1519781444336511_4_005.indd   151 7/10/2010   8:53:01 PM7/10/2010   8:53:01 PM



Decisions under Uncertainty

152

Let us be more concrete. Suppose that you are the contestant and 
that your initial choice was door A. Clearly, the same analysis applies 
to any initial choice: because the three doors are, a priori, equally 
likely to have the car behind them, the situation is symmetric with 
respect to this initial choice.

Strategy “stick” means opening door A, regardless of Monty’s 
choice. Thus, it has probability of 1/3 of yielding the car, namely, the 
probability that the initial choice happened to be lucky. By contrast, 
strategy “switch” means different doors: if Monty opens B, “switch” 
will mean “open C”; if he opens C, “switch” will mean “open B.” 
And the point is that “switch” wins whenever the original choice was 
wrong. That is, if the car is behind B or C, “switch” will get it. Let us 
verify that this is correct:

Assume the car is behind B. Monty sees:

A B C

goat car goat

Since you named A, Monty has to open C. So you get to see:

A B C

closed closed open

and “switching” (to the other closed door) leads you to the car.
And if the car is behind C, Monty sees:

A B C

goat goat car

Since you named A, Monty has to open B. So you get to see:

A B C

closed open closed

and “switching” (to the other closed door) leads you to the car 
again.
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Obviously, “switch” will not get the car if it is actually behind A, 
and this is precisely when “stick” wins. We get the evaluation matrix 
shown in Table 5.1.

This is an opportunity to stop for a minute and look at this matrix. 
It is, in fact, the first decision matrix we see in this book. In such a 
matrix we separate the choices that are up to us from those that 
aren’t. We typically use the rows to designate our choices: acts, 
 strategies, or courses of action, that specify our decisions. Importantly, 
each such act should tell us what to do in each and every possible 
eventuality. Thus, the act (or “strategy”) “switch” tells us what to do 
when we get additional information. Our choice of a strategy can be 
made a priori, before we get the information, and it specifies what 
to do given any possible information we may get later on.

The columns in such a matrix are the states of nature, or states of 
the world, and they can be thought of as the strategies of nature in 
the game: anything that does not depend on us. Generally, a state 
should specify all that is uncertain: which random events occur and 
which do not, what choices other agents make, and so forth. It is 
important that we conceptualize the choice of a row (by the decision 
maker) and the choice of a column (by nature, as well as by other 
agents) as causally independent.

Finally, the entries inside the matrix reflect the outcomes: what 
will happen if we choose the respective row, and nature chooses the 
respective column. Often, we summarize an outcome by its utility, 

Table 5.1 Car acts and states; “1” stands for the car, “0” 
for a goat.

    States (car is behind…) 

  Probability  1/3  1/3  1/3

Acts 
 Payoff A B C

Stick 1 0 0
Switch  0  1  1
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which in this case is assumed to be the probability of winning the 
car. When we have probabilities over the states of the world, we can 
use them to compute the expected utility corresponding to each act. 
In our problem, we are given the probabilities of the three states: 
1/3 for each. Hence it is easy to verify that the expected payoff of 
“stick” is 1/3, while that of “switch” is 2/3.

Even if you agree with this analysis, you may still be troubled. 
You named door A. Suppose that Monty Hall opens door B. You 
are faced with the choice between (switching to) C and (sticking 
to) A. Why would door C be more likely to conceal the car than 
door A? How come the probability of door B suddenly “shifted” 
to door C? This is troubling indeed. We will try to understand this 
issue in two steps. First, let us try to see why, intuitively, door C is 
more likely to conceal the car than door A. Second, we’ll have to 
understand what’s wrong with simple Bayesian updating, and 
this will be the main  lesson from this example.

To see why door C is more likely to be the right one, we have to 
recall that the “other” door, which was left shut and to which you 
consider switching, did not have to be door C. This “other” door 
could have been B or C. The a priori probability that the specific 
door C conceals the car is equal to the probability that A does. But 
now we know that C survived a certain selection process. A priori, 
we should think about the “other” door, which is actually a random 
variable. In this particular realization, the random variable happens 
to be C; but it could have been B as well.

It is useful to point out that the rules of the game are such that 
Monty Hall helps you by removing one of the bad choices you can 
make. He is not allowed to open the door that truly does conceal 
the car. This means that after he opens a door you have only two 
possible choices, rather than three. That is, you have fewer possible 
mistakes to make. This means that you’re better off with him open-
ing one door than you were at the outset. But this is not quite 
enough: since one bad choice is crossed out, you would have 
believed that both the remaining ones are now more likely to be 
successful. Why do we argue that only the “other” door is more 
likely to conceal the car?
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The reason is that Monty Hall is not allowed to open your original 
choice, A. When you compare the doors left shut, A and C, you 
know why A is shut: Monty Hall couldn’t have opened it according 
to the rules of the game. By contrast, for door C to remain shut, it 
had to pass a more demanding test. It is as if it were harder for the 
other door to remain closed than for yours. Put differently, the fact 
that these two doors, A and C, remained closed does not provide 
any additional information about door A, but it does provide some 
additional information about door C.

To be absolutely convinced, suppose there were 1,000 doors, 
and Monty had to open 998 of them, but couldn’t open yours. You 
name door 378. Monty goes around, and opens 998 doors. When 
he’s done, you see 998 goats and two closed doors: 378 and 752. 
Where do you think the car is: behind 378, which you anyway 
knew was going to remain closed, or behind 752, which was sin-
gled out by Monty, out of all the other 999 doors?

These arguments hopefully make the conclusion slightly more 
intuitive. But we are still left with the question of what’s wrong with 
the reasoning that says that the two strategies are equivalent? We 
won’t be able to have a good night’s sleep until we understand what 
is wrong with the other reasoning, which goes as follows:

We had a prior probability of 1/3 on each door:

A B C

1/3 1/3 1/3

Now assume that Monty opens door B, and we see a goat. We have 
learnt “not B,” or, if you wish, the event {A, C}. Standard Bayesian 
updating of the prior probability given this event would yield

( )
( ) ( ) ( ) ( )

A|{A,  C}   (A {A,  C})/ ({A,  C})

A / P {A,  C} 1/ 3 / 2/ 3 1/ 2

P P P

P

= ∩

= = =

… and similarly for C. In other words, the standard way of updating 
prior to posterior beliefs tells us that we have a 50%–50% probabil-
ity of finding the car behind door A and behind door C. Therefore, 
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there is no reason to switch. What’s wrong with this? And how do 
we reconcile this conclusion with the analysis above, which showed 
that switching is better?

The answer is that this calculation is a perfectly correct analysis of 
an incorrect model. The problem is not in the mathematics; the prob-
lem is in the modeling. The model we used here employs three states 
of the world: the car is behind A, B, or C. This formulation makes 
the implicit assumption that all that matters is where the car is. This 
turns out to be a wrong assumption in this story. Sometimes, how we 
learn information, or the very fact that we have indeed received a piece of 
information, might be informative in its own right. Here, the fact that 
Monty Hall provided a piece of information, namely, that the car is 
not behind door B, tells us that the car is indeed not behind door B, 
but it also tells us more.

Generally, we should learn from this example that we should be 
sensitive not only to the information we have, but to the very fact 
we have it. We should ask ourselves what other information, if any, we 
could have received, and what does it mean that we know what 
we know rather than something else we could have known.3 To 
 capture all this in a Bayesian analysis, we have to first make sure 
that the state space we work with is rich enough to describe the 
information we have received, how we acquired it, who might have 
made certain choices to provide us with this information, and so on.

A correct analysis of the Monty Hall game would take into account 
both where the car is and which door Monty opens. Still assuming 
you initially chose door A, we would need nine, rather than three, 
relevant states (Table 5.2). Table 5.2 is not a decision matrix. Each 
entry here is a state of the world, that is, a column in a decision 
matrix. But since the car may be behind any of three doors, and 
Monty Hall might (conceivably) open any one of three doors, we 
have nine states, and the matrix in Table 5.2 will help us assess their 
probabilities. Let’s start.

When we add up the (as yet unwritten) probability numbers in a 
given row, we will get at the right margin the overall probability of 
the car being behind door A/B/C. These probabilities are known to 
be 1/3 each. Observe that a single state of the world in the previous 
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(wrong) analysis corresponds here to an entire row. Indeed, the 
overall probability of 1/3 for each row in this formulation mirrors 
the probability of 1/3 for each state of the world in the three-state 
model we discarded.

We know that Monty can’t open door A (that you named). This 
means that the probabilities of all states in the first column are 0. 
Similarly, Monty is not allowed to open the door hiding the car. This 
means that the states of the world along the diagonal (where he 
opens door A and the car is behind A, or he opens B and the car is 
behind B, etc.) also have zero probability. Putting these two together 
we obtain the matrix in Table 5.3.

Observe that the total (or “marginal”) probability of the first col-
umn is zero, as it is the sum of zeros. Indeed, this reflects our belief 
that Monty Hall will not open door A. Next, notice that what we 
have filled in so far implies a unique way to complete the last two 
rows: if the car is behind B, which happens with probability 1/3, we 

Table 5.2 Car is behind and Monty opens, phase 1.

Monty opens 

    A  B  C  Total

Car  A 1/3
is B 1/3

behind C 1/3
  Total       1

Table 5.3 Car is behind and Monty opens, phase 2.

Monty opens

    A  B  C  Total

Car  A 0 1/3
is B 0 0 1/3

behind C 0 0 1/3
  Total 0      1
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can’t put any probability mass in the first two columns (in this row), 
so we have to put the entire 1/3 in the third column. By a similar 
consideration, the entire probability of the third row (“the car is 
behind C”) has to be in the second column (Table 5.4).

The fact that we had no freedom in splitting these probabilities 
(of 1/3 each) in their respective rows reflects the fact that the rules 
of the game do not leave Monty Hall any choice in opening doors 
in the case your initial choice was wrong. By contrast, if your ini-
tial choice, A, happens to be right, Monty does have a choice 
between opening B or C. We’re not quite sure what his rule would 
be in this case. Let us first make a simplifying assumption that, if 
the car is indeed behind A, he makes a random choice between B 
and C. This means that the probability of 1/3 of the top row is 
split equally between the last two columns, giving each of the two 
possible entries a probability of 1/6. With these in place, we can 
also compute the total (“marginal”) probability of each column 
(Table 5.5).

Let us now see that the way we get information may be informa-
tive in and of itself. Assume that all you know is only that the car 
is not behind B. According to the rules of the game, you can’t get 
this information: the only way to learn that the car is not behind B 
is to hear it from Monty Hall. But in order to clarify the point, 
assume that, hypothetically, you get this information and no more. 
For instance, assume that, the night before you participate in the 
show, your great-great-grandfather appears in your dream and 

Table 5.4 Car is behind and Monty opens, phase 3.

Monty opens 

    A  B  C  Total

Car  A 0 1/3
is B 0   0 1/3 1/3

behind C 0 1/3 0 1/3
  Total 0      1
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whispers, “My child, it’s not B.” You’re not superstitious, but great-
great-grandfathers do command respect, so you believe him. 
Importantly, the very fact that the information has been obtained is 
supposedly independent of the game (as opposed to the informa-
tion provided by Monty Hall). In this case you’ll be justified in 
having a simple Bayesian updating of the probability, conditional 
on the first and last rows, and you will have a 50%–50% posterior 
on A and C (Table 5.6).

However, this is not the case at hand: you didn’t learn “not B” 
from some unrelated source, and “not B” does not summarize all 
you know. You also know that Monty Hall opened door B. So you 
should condition on the middle column, crossing out the other two 
(Table 5.7).

The middle column does, indeed, give zero probability to the 
second row (the car being behind door B). This means that, when 

Table 5.5 Car is behind and Monty opens, phase 4.

Monty opens   

A  B  C  Total

Car  A 0 1/6 1/6 1/3
is B 0   0 1/3 1/3

behind C 0 1/3 0 1/3
  Total 0  1/2  1/2  1

Table 5.6 Car is behind and Monty opens, phase 5.

Monty opens   

A  B  C  Total

Car  A 0 1/6 1/6 1/3

is B 0   0 1/3 1/3

behind C 0 1/3 0 1/3

  Total 0  1/2  1/2  1
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Monty Hall opens door B, you indeed know that the car is not 
behind B. But it also changes the conditional probabilities of the 
other two rows. Indeed, the conditional probability of the first 
row is

( ) ( ) ( )= =car behind A | MH opened B 1/ 6 / 1/ 2 1/ 3P

while the last row gets

( ) ( ) ( )= =car behind C | MH opened B 1/ 3 / 1/ 2 2/ 3P

And according to this analysis you should indeed switch, because C 
has a probability 2/3 of having the car. Clearly the same would 
apply to door B if Monty Hall opened C.

This analysis was predicated on the assumption that, if you hap-
pened to be right in the initial guess, then, given the choice between 
B and C, Monty Hall randomizes. But what if he doesn’t randomize 
with equal probabilities? Maybe he has some other rule? Suppose 
that your beliefs about his choice, based on a known or unknown 
rule, wholly or partly random, are summarized by a parameter α, 
between 0 and 1/3, which tells you how much of the probability 
mass of 1/3 resides in the middle column, and how much in the last 
one (Table 5.8).

Table 5.7 Car is behind and Monty opens, phase 6.

    Monty opens   

A  B  C  Total

Car   A 0 1/6 1/6 1/3

is B 0   0 1/3 1/3

behind C 0 1/3 0 1/3

  Total 0  1/2  1/2  1
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Now the conditional probabilities of finding the car behind door 
B (if C is opened) or behind C (if B is opened) depend on your 
assumptions about Monty Hall in case he has a choice. For instance, 
if he always opens B when he can, we get the matrix in Table 5.9.

In this case, if Monty Hall opens door B, there is indeed no reason 
to switch: the conditional probabilities of A and C are 50%–50%. But 
if C is opened, the conditional probability puts the entire mass on 
door B. In this case not only do you have an incentive to switch, you 
are also certain that you’re going to win the car by this switch. Note 
that our original calculation, stating that “switch” wins with prob-
ability 2/3, is valid in this case as well:

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

= +

=

+ =

wins opened B  * wins | opened B opened C

* wins | opened C 2/3 *

                                 1/2 1/3  * 1 2/3

P P P P

P

Table 5.8 Car is behind and Monty opens, phase 7.

    Monty opens   

A  B  C  Total

Car  A 0 α 1/3 – α 1/3
is B 0 0 1/3 1/3

behind C 0 1/3 0 1/3
  Total 0  1/3 + α  2/3 – α 1

Table 5.9 Car is behind and Monty opens, phase 8.

    Monty opens   

A  B  C  Total

Car  A 0 1/3 0 1/3
is B 0   0 1/3 1/3

behind C 0 1/3 0 1/3
  Total 0  2/3  1/3 1
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In fact, this is true for any α.
With this analysis, we can also see why it is so important that 

Monty Hall can’t open the door you chose. If he could, assuming 
that he makes a random choice between the two doors that do not 
conceal the car, we would have had a matrix like that in Table 5.10, 
and in this matrix, indeed, there is no reason to switch: whatever 
column you condition on, the conditional probabilities over the two 
relevant rows are 50%–50%.

This was a little long. Let us focus on the main lessons of this 
example:

● It is extremely important to have the right model for your prob-
lem. If you start with an inappropriate model, you may have a 
perfect mathematical solution of the wrong problem.

● Typically, if you do have an inappropriate model, the mathemati-
cal analysis will give you no hint of this. The only warning sign 
will be when you contrast the conclusions of the model with your 
intuition and common sense. Unfortunately, in problems such as 
this, intuition is not foolproof. We should therefore watch out for 
hidden assumptions, which are implicit in the model formulation. 
We often think in terms of the model, and it may be hard to test 
these assumptions simply because they are taken for granted.

● Specifically relating to a state-space model of uncertainty, if you 
failed to include some states in the model, or defined the states too 
coarsely, ignoring some relevant sources of uncertainty, Bayesian 
updating will never be able to indicate this. Bayesian updating never 

Table 5.10 Car is behind and Monty opens, phase 9.

    Monty opens   

A  B  C  Total

Car  A 0 1/6 1/6 1/3
is B 1/6   0 1/6 1/3

behind C 1/6 1/6 0 1/3
  Total 1/3  1/3  1/3 1
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resurrects zeros – a state with zero probability a priori will also have 
a zero probability a posteriori. Similarly, a state that was not included 
in the analysis will never pop up due to Bayesian updating.

● The way you learn information may be informative in and of itself. 
Sometimes, the very fact that you know, or that you don’t know, 
something tells you something new. In particular, we need to 
analyze people’s incentives in sharing or not sharing information. 
For example, if your car battery has a warranty for five years, be 
careful in the sixth winter. If the producer is willing to give this 
warranty, you can interpret this as saying “This battery is most 
likely to work well for at least five years.” It does not say that the 
battery will work well only five years; it says “at least five years.” 
But, knowing the incentives of the producer, you can deduce that 
the battery may not last much longer than that. Put differently, if 
the battery were most likely to work well for, say, six years, the 
producer would be glad to signal this by a longer warranty period. 
From the fact that they didn’t, you infer that six years are probably 
an exaggeration. Given the fact that a particular statement was 
made, rather than another that could have been made instead, you 
learn something that goes beyond the statement actually made.

Causality

The dialog in Problem 5.13 is about causality. Veronique argues, 
quite convincingly, that no matter what the competitors do, their 
firm should cut prices. In the language of game theory, cutting prices 
appears to be a dominant strategy. The problem with this analysis is 
that it assumes that this is a one-shot game, in which the choices of 
the players are independent of each other. These are indeed the cir-
cumstances in which the Prisoner’s Dilemma, mentioned in the dia-
log, is rather compelling. But in real life price competition is not a 
one-shot game. A firm may cut prices on a given day, and wake up 
next morning to find that their competitors have also cut prices. 
And then they can react – and so can the competitors. Rather than a 
one-shot game, this would be better modeled as a repeated game. 
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In such a game, the choice of strategy of a player need not confine 
itself to a fixed move, such as a fixed level of prices. A strategy may 
react to the environment. In particular, the competitors may have 
chosen as their strategy a function, which determines whether to cut 
prices or not (tomorrow) based on our firm’s decision (today).

Repeated game strategies therefore become rather complicated 
objects, allowing for all possible reactions, or all possible functions 
from history to moves in the future. It may seem that a full analysis 
of the repeated game is dauntingly complex. Moreover, in such an 
analysis you’ll find so many strategies of the other player, each of 
which becomes a state of the world, that you may wonder how you 
are to assign probabilities to all of these.

But you don’t have to fully analyze the entire repeated game in 
order to get the gist of the interaction. It suffices that you think of 
some states of the world in which the competitors do or do not cut 
prices depending on whether you do. In the simplest such model, you 
can consider two periods, and find that there are four states of the 
world (corresponding to four strategies of the opponent), rather 
than two. For each choice of yours, they can react by reducing prices 
or not. The four states can be generated as in Table 5.11.

Table 5.11 is not a decision matrix. This is a matrix which helps us 
define the states of the world, to be put in the decision matrix. When 
we do that, each row in Table 5.11, which may be thought of as a 
function from our choice Cut/Not Cut to their choice between the 
same options, will be one state of the world, that is, one column. The 
decision matrix may look as in Table 5.12.

Table 5.11 The competitor’s response.

    Cut  Not Cut

The A Cut Cut
competitor’s B Cut Not Cut

response C Not Cut Cut
  D Not Cut Not Cut
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As an outcome, we introduce a pair of the letters L/H, standing 
for “low” and “high,” respectively. The first letter designates our 
price, and the second the competitor’s price. In the first row we 
choose to cut prices and our price is L, whereas in the second row we 
choose not to cut prices, resulting in a price H. In the first column, 
the competitor chooses to cut prices no matter what we do, and their 
price is L, while in the last, they do not cut prices, no matter what we 
do, and their price is H. But in columns B and C the competitor’s 
strategy is responsive to ours: in B, for example, they cut prices only 
if we do, and thus we may end up with low prices for both (if we cut 
our price), or high prices for both (if we don’t), and so on.

Veronique’s analysis in the dialog implicitly assumes that the 
competitors do not react to our choice. This is tantamount to exclud-
ing strategies B and C, leaving only A (cut prices no matter what) 
and D (don’t cut prices no matter what). In such a matrix it may 
indeed be true that we’re better off cutting prices, and that this is 
our dominant strategy.

But this is no longer the case in the matrix in Table 5.12, which 
allows for the possibility of a responsive strategy on their part. In 
particular, there is a state of the world (strategy of the competitors) 
B, according to which both firms will end up with the same level of 
prices: low if we start a price war, and high if we don’t. Once this 
state is in the matrix, the choice of cutting prices will no longer be a 
dominant strategy. In particular, if we put a non-negligible probabil-
ity on this state, it may be wise not to start a price war. (There is also 
state C, which means that the competitors will cut prices only if we 
don’t, but this state would probably deserve a lower probability.)

Table 5.12 The competitor’s strategy.

Competitor’s strategy

    A  B  C  D

Our Cut L, L L, L L, H L, H
choice  Not Cut H, L  H, H  H, L  H, H
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The point of this example is simple but extremely important: 
when you formulate your state space, you have to make sure that 
any possible causal relationships are reflected in the states. As in the 
previous problem, hidden assumptions that are introduced into the 
state space will not be corrected by Bayesian updating. In this case, 
the implicit assumption that the competitor’s choice is causally 
independent of your own may be inadvertently introduced by 
 failing to include several states of the world, and from that point on 
the analysis may be perfectly correct mathematically, but quite irrel-
evant to your problem.

We have discussed causality briefly in the chapter on consuming 
statistical data (Chapter 3). It is hard to establish causality, and often 
we will not have sufficient data to do so. But analysis of decision 
problems requires that we be aware of potential causal relationships, 
even if we end up assigning them low subjective probabilities.

The Sure Thing Principle

When we discussed the measurement of subjective probabilities we 
encountered a few difficulties. Specifically, when we measure sub-
jective probability by the willingness to bet, some people prefer to 
bet on a fair coin than, say, on the stock market going up as well as on 
its going down; on the next US president being Republican as well as 
on the president being Democrat. These problems were illustrated 
in two famous thought experiments that Daniel Ellsberg published 
in 1961.4 They are given in Problems 5.14 and 5.15. The former 
reads:

There are two urns in front of you, each containing 100 balls. Urn A 
contains 50 red balls and 50 black balls. Urn B contains 100 balls, and 
you are told that each ball is either red or black, but you do not know 
how many of the 100 balls are red and how many are black.
 You are asked to choose an urn (A or B), and a color (red or black). 
Once you announce your choice, a ball will be drawn at random from 
the urn you named. If it is the color you named, you get $100. 
Otherwise you get nothing.
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There are, therefore, four possible choices:

AR – betting on a red ball drawn out of urn A
AB – betting on a black ball drawn out of urn A
BR – betting on a red ball drawn out of urn B
BB – betting on a black ball drawn out of urn B

Almost all participants express indifference between AR and AB, as 
well as between BR and BB. Indeed, the information provided is 
completely symmetric, and there is no reason to prefer one to the 
other (within each of these pairs). However, not all participants are 
indifferent among all four choices. Many prefer each of the bets on 
the known urn (A) to each of the bets on the unknown urn (B).

Clearly, such preferences cannot be reconciled with the idea that 
your beliefs can be summarized by subjective probabilities that 
would govern your choice. The logic is precisely as in our analysis 
of Problems 5.1–5.10: urn A, the “known” urn, has probabilities 
50%–50% of yielding a black vs. a red ball. It is supposed to be a fair 
chance device, comparable to a fair coin or a roulette wheel. By con-
trast, urn B generates outcomes with unknown probabilities. If you 
were to assign it your subjective probabilities, you will have to 
assign a probability to a red ball and a probability to a black ball that 
add up to 1. As a result, it is impossible that both these probabilities 
will be smaller than 50%. This example is very similar to Problems 5.4 
and 5.9, as well as to 5.5 and 5.10. The important difference is that in 
the latter, there was no symmetry about the unknown event (such as 
the stock market going up or down). In Ellsberg’s example the 
unknown probabilities relate to events that are completely symmet-
ric, as far as we know.

At this point you may conclude that subjective probability is a 
nice tool, but that it may not always be applicable. Specifically, 
when probabilities are not known, it may be difficult to summarize 
our attitude to the problem by a single number. Indeed, the phe-
nomenon that Ellsberg found in his experiments is that many peo-
ple are uncertainty averse: other things being equal, they prefer 
known probabilities to unknown ones, or risk to uncertainty.5,6 
There is some evidence that uncertainty aversion, like risk  aversion, 
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is much more common in the domain of gains than in the domain 
of losses, and that people may become uncertainty loving when it 
comes to losses, presumably due to the same effect of loss aversion 
discussed above in the context of risk.7 Whether people like or dis-
like uncertainty in the domain of losses, many do not seem to 
behave in an uncertainty-neutral way, in the domains both of losses 
and of gains. Hence, subjective probabilities seem a little too restric-
tive. But before we draw this conclusion, we should say something 
about the arguments for summarizing beliefs by subjective 
probabilities.

In the case of expected utility theory under risk we briefly 
described von Neumann and Morgenstern’s result, providing a seri-
ous argument in favor of expected utility maximization. There are 
similar arguments for subjective expected utility maximization in 
the context of uncertainty, that is, for the suggestion that you choose 
your subjective probability, and your utility function, and maximize 
the expectation of the utility with respect to the subjective probabil-
ity. A description of these results is beyond the scope of this book.8,9 
But the second Ellsberg experiment gives us the gist of one impor-
tant axiom.

Consider Problem 5.15:

There is an urn containing 90 balls. Each ball can be red, blue, or yel-
low. You are also told that there are precisely 30 red balls in the urn. 
Hence, the remaining 60 balls are blue or yellow, but you don’t know 
how many are blue and how many are yellow.
 A ball is to be drawn at random from the urn. You are offered 
choices between pairs of bets, where “betting on an event” implies 
winning $1,000 if the event occurs, and nothing otherwise:

 a. Betting on the ball being red
  vs.
  betting on the ball being blue
 b. […]
 c. Betting on the ball being not red
  vs.
  betting on the ball being not blue
 d. […]
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Let us consider these bets given the state space. We may think of 
three states – “the ball drawn is red,” which has a probability 
of 1/3, “the ball drawn is blue,” and “the ball drawn is yellow,” 
where we do not know how the last two share the overall probabil-
ity of 2/3.

In Problem 5.15 you are asked to compare pairs of choices. If we put 
a few of them together, we may get the decision matrix in Table 5.13.

Many people express preferences for Red over Blue. The reason 
typically given is that, when you bet on red you know that your 
probability of winning the prize is 1/3, whereas when you bet on 
blue, the probability is unknown. It can be anywhere in the interval 
[0, 2/3], and while 1/3 is the mid-point of this interval, you do not 
know that this is indeed the probability of blue. In short, this is sim-
ply the intuition of uncertainty aversion.

Next consider Not-Red vs. Not-Blue. The same intuition would 
suggest that you prefer Not-Red, which yields the prize with a 
known probability of 2/3, to Not-Blue, which has a probability 
somewhere between 1/3 and 1.

But here comes the problem: if you consider Red and Blue, you 
notice that they both yield the same outcome, namely, zero, in the 
case a yellow ball is drawn. Hence, when you compare the two, you 
may ignore this state. It is as if you can assume that Yellow is known 
not to have occurred. If it does occur, the choice doesn’t matter, so 
why not focus on the event over which the two bets differ?

This intuition is great, but we can make the same argument for 
the pair Not-Red and Not-Blue. They also yield the same payoff 
(this time, $1,000) in the case a yellow ball is drawn. Hence, we can 

Table 5.13 Red, blue, and yellow.

  Red  Blue  Yellow

Red 1,000 0 0
Blue 0 1,000 0
Not-Red 0 1,000 1,000
Not-Blue 1,000  0  1,000
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ignore this event when we compare Not-Red and Not-Blue. The dif-
ficulty is that, if we ignore the Yellow column, “Red” becomes 
equivalent to “Not-Blue,” and “Blue” equivalent to “Not-Red.” That 
is, if you follow this line of reasoning, and you prefer Red to Blue, 
you should prefer Not-Blue to Not-Red, rather than vice versa.

The logic of this argument is basically an axiom suggested by 
Leonard Savage, typically referred to as the Sure Thing Principle. 
Roughly, it says that if two choices are equivalent given a certain 
event, we can assume that this event does not happen, and deter-
mine preferences between them based on its complement. It proba-
bly reminds you of the logic of the independence axiom of von 
Neumann and Morgenstern, though the models are somewhat dif-
ferent and the relationship between the two is not straightforward.

Historically, Ellsberg’s experiments, from which we started, were 
designed to attack Savage’s Sure Thing Principle. Descriptively, 
there is ample evidence that many people are indeed uncertainty 
averse. From a normative point of view decision theorists are 
divided on the question of whether the Sure Thing Principle can 
always be considered a necessary condition of rationality.

Those of you who violated the Sure Thing Principle in Problem 5.15 
are asked to go over your choices again, and see if you would like to 
change them in light of this axiom. In fact, we could do a similar exer-
cise in the case of Problem 5.14 (the two-urn experiment). In that prob-
lem we did not explicitly specify the state space, but if we were to do 
so, we could point out that uncertainty averse preferences in Problem 
5.14 are also a violation of the Sure Thing Principle, and I could ask 
you to review your preferences in that case as well.

Some people who violate the Sure Thing Principle also insist on 
their preferences even after they are exposed to the axiom.10 If we 
consider Problems 5.5 and 5.10 again, I may feel more comfortable 
with betting on a fair coin than on the party of the next president of 
the United States, even if you show me that, by so doing, I violate the 
axiom. In expressing such preferences, I may point out the difficulty 
that, with all due respect to the axiom, there is simply no way I can 
come up with a single number as my subjective probability of the 
next president being a Democrat. And then, given the choice between 

9781444336511_4_005.indd   1709781444336511_4_005.indd   170 7/10/2010   8:53:07 PM7/10/2010   8:53:07 PM



Decisions under Uncertainty

171

violating a very appealing axiom on the one hand, versus choosing a 
single probability number arbitrarily on the other, I may choose the 
former. It will probably not feel terribly good to know that I violate a 
nice axiom, but to make decisions as if I know probabilities that I do 
not know also doesn’t feel very rational. This is a tough choice, and, 
as with all choices involving what’s rational for us, this is a choice 
that depends on the decision maker and the problem at hand.

Alternative Models

In recent decades there has been a lot of theoretical interest in 
decision models that may serve as alternatives to subjective 
expected utility maximization. One such model that is relatively 
easy to explain is the maxmin model with “multiple priors.”11 
The idea is that, rather than having a single probability for each 
event, as prescribed by the Bayesian model, the decision maker 
entertains a set of probability distributions. This idea is closer in 
spirit to the classical statistics mode of reasoning, where the 
problem is defined by a set of possible distributions, and, as 
opposed to the Bayesian approach, there is no quantification over 
these distributions. When it comes to making decisions, this 
model suggests that each decision is evaluated by its worst case 
expected utility. For example, suppose that my subjective proba-
bility of the next president of the United States being a Democrat 
is somewhere in the range [0.4, 0.6]. When offered a bet of $100 
on a Democrat, I value it by

( ) ( ) ( )
( ) ( )

0.4    0.6Min  * $100 1 * $0

0.4 * $100 0.6 * $0
p p u p u

u u

≤ ≤ ⎡ ⎤+ −⎣ ⎦
= +

And when offered a bet of $100 on a Republican, I value it by

( ) ( ) ( )
( ) ( )

0.4    0.6Min  * $0   1 * $100

0.4 * $100 0.6 * $0
p p u p u

u u

≤ ≤ ⎡ ⎤+ −⎣ ⎦
= +
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Thus, both can be strictly lower than the value of a bet on (either 
side of) a fair coin. According to this theory, uncertainty aversion is 
built into the decision making process, since each alternative is 
 evaluated by the probability that results in the worst case for this 
alternative.

Models such as the maxmin expected utility have been used to 
explain a number of phenomena in finance and economics. One 
example is the “home bias,” referring to the observed phenome-
non that traders appear to prefer to trade stocks of their own 
countries, rather than to trade overseas.12 The comparison of a 
domestic and a foreign asset is arguably reminiscent of Ellsberg’s 
two-urn experiment: the domestic asset is more familiar, and 
more is known about its probability distribution, as compared 
with the foreign asset. Hence, the urn with the known probabili-
ties may be thought of as an idealized domestic asset, whereas the 
urn with the unknown probabilities corresponds to the foreign 
asset. The preferences observed in laboratory experiments, where 
many people prefer to bet on the known probabilities rather than 
the unknown ones, are consistent with the real-life phenomenon 
that people prefer trading “known,” domestic assets to trading 
“unknown,” foreign ones.

Objective Probabilities

Problems 5.16 and 5.17 are supposed to remind us that not all prob-
abilities are subjective. They read as follows.

Problem 5.16

Suppose that I am about to undergo a medical operation. I ask my 
doctor what the probability of success is. How can my doctor provide 
me with an objective answer?

Problem 5.17

Suppose that I’m interested in an investment whose value depends 
on the possibility of war. I consult an expert on international 
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 relations, and ask him what the probability of war in the Middle 
East in the next year is. How can the expert provide an objective 
answer?

These problems are challenging because they deal with unique 
events: in the medical example, no two patients are the same. In the 
international relations example, no two situations of conflict are the 
same. Hence, the notion of objective probability as the empirical fre-
quency in a large database doesn’t quite apply. If I were the patient in 
Problem 5.16, I would not wish to base my decision simply on the 
relative frequencies, because the other patients may differ from me in 
terms of medically relevant variables such as age, gender, weight, 
and so on. Similarly, considering the investment in Problem 5.17, it 
seems silly to assume that the probability of war is just the relative 
frequency of past wars. Indeed, the relative frequency may not even 
be well defined in such an example: will it cover all of recorded his-
tory, or only recent decades? Will it be limited to the region in ques-
tion, or include similar ones? In short, the simple notion of relative 
frequencies does not provide a good definition of probability in either 
of these examples.

And yet, these examples are given here to remind us that some-
times objective probabilities can be defined even when simple 
empirical frequencies cannot be used. How such probabilities are 
defined statistically is beyond the scope of this book. But you should 
be asking yourself what type of answer you might expect, and how 
you can use it.

In the case of the medical example, there are large databases on 
medical procedures, and sophisticated statistical techniques to try 
to estimate probabilities for each given patient. Statisticians, as 
well as medical doctors, may be wrong, and the publication of new 
studies may change their minds. But the probabilistic assessments 
they provide are often objective in the sense that they do not 
depend on the subjective views of the physician or the 
statistician.

The case of the probability of war (in Problem 5.17) is different. In 
cases such as this we sometimes get probabilistic assessments, but 
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these tend to be the expert’s subjective probability, rather than an 
objective probability that the expert has computed. In other words, 
if you ask a different expert about the probability of war, you should 
not be surprised to find a very different assessment. For that reason, 
many international relations experts would be reluctant to quantify 
their beliefs in a probabilistic manner.

What is the difference between these two domains? While in both 
of them we have many observations that are very different from each 
other, in the medical example these observations are, for the most 
part, causally independent. This fact allows experts to employ sophis-
ticated statistical techniques, dealing with the dissimilarities among 
the observations and attempting to assess the way that probabilities 
vary with respect to these dissimilarities. But in the case of war, as in 
the case of a major economic crisis, past observations are not only dif-
ferent in many parameters; they are also causally related, to each other 
as well as to the case at hand. As a result, there is much more room for 
a variety of causal theories, and for subjective beliefs in them, at the 
expense of statistical techniques that can be viewed as objective.

Exercises

1. Consider the following two questions:
 a.  Which is more likely: to observe snow tomorrow or to observe 

two consecutive tosses of a fair coin coming up Head?

 b.  Which is more likely: to observe no precipitation tomorrow 
or to observe a roulette wheel coming up on a number that 
is  different than 7?
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  Which combinations of answers to (a) and (b) are consistent 
with beliefs that can be represented by subjective probabilities?

2. Consider the following two questions:
 a.  Which is more likely: that the DJIA will be above its current 

level two months hence, or that a fair coin comes up 
Head?

 b.  Which is more likely: that the DJIA will be below its current 
level two months hence, or that a fair coin comes up Head?

 Which combinations of answers to (a) and (b) are consis tent 
with beliefs that can be represented by subjective probabilities?

3. Ann thinks that a Democrat and a Republican are just as likely 
to win the upcoming US elections. She prefers to bet on either of 
them winning than on a fair coin coming up Head. What can 
you say about Ann?

 a.  She behaves like the majority of participants in the Ellsberg 
experiments.

 b.  Based on this information alone, she will probably prefer to 
buy a local equity rather than a foreign one.

 c.  Based on this information alone, she will probably prefer to 
buy a foreign equity rather than a local one.
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 d.  She will be comfortable with a Bayesian model describing 
her beliefs.

4. Assessing the probability that the globe will warm up by more 
than 3° (Celsius) is a big challenge. Explain why, and what is the 
dif ference between this and assessing the probability that a 50-year-
old man will develop heart disease over the next ten years.

Notes
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recall that Pascal was the person who invented the concept of expecta-
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2 Dreze, J. H. (1961) Les fondements logiques de l’utilite cardinale et de la 
probabilite subjective. La Decision. Colloques Internationaux du CNRS; 
Karni, E., Schmeidler, D. and Vind, K. (1983) On state dependent prefer-
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Well-Being and Happiness

Introduction

Are you happy? What should happen to make you happy ten years 
hence? Are people around you happy? What determines their hap-
piness? And is there any reason to worry about these questions?

Some people might think that these are not questions that should 
be discussed in a book such as this, and that they should not con-
cern management and economics students. Presumably, readers of 
this book are concerned about making better decisions, making 
more money or fewer investment mistakes, and they are not inter-
ested in discussions about happiness or the meaning of life. But in 
recent years there has been a growing understanding that these 
questions are relevant, from both a descriptive and a normative 
point of view.

Descriptively, we wish to understand the behavior of others with-
out necessarily attempting to change it. And for this purpose it’s 
important to know what motivates people and what they define as 
their well-being. Normatively, each of us may stop to think what we 
seek in life, now and in the future. If we very effectively pursue the 
wrong goal, we will hardly be making good decisions.

Making Better Decisions, by Itzhak Gilboa © 2011 John Wiley & Sons, Inc.
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I therefore devote this chapter to the questions of happiness and 
well-being. It is a shorter chapter than the others, because I believe 
that scientific knowledge is more limited in this domain, and we 
will be left with more question marks than usual. Still, I hope that 
the questions will be worth thinking about.

Problems – Group A

Problem 6.1

Mary works in your public relations office. She is doing a good job 
and you’re pleased with her performance. About six months ago, 
she hired a new employee, named Jane, who turned out to be a born 
talent. They get along fine.

Mary’s direct boss just quit, and you’re looking for someone for 
the job. You don’t think that Mary is perfect for it. By contrast, Jane 
seems a great fit. But it may be awkward to promote Jane and make 
Mary her subordinate. A colleague suggested that you go ahead and 
do this, but give both of them a nice raise to solve the problem.

What percentage of a salary raise do you think will solve the 
problem?

Problem 6.2

As we’re nearing the end of this book, it is time to get some feed-
back. Please answer the following questions:
1. Did you find the explanations clear? Yes_____ No_____
2. Did you find the topics interesting? Yes_____ No_____
3. Did you find the graphs well done? Yes_____ No_____
4. On a scale of 0–10, your overall evaluation for the book is:

9781444336511_4_006.indd   1799781444336511_4_006.indd   179 7/10/2010   8:26:57 PM7/10/2010   8:26:57 PM



Well-Being and Happiness

180

Problem 6.3

Robert and John went to school together, and they got married at roughly 
the same time. They lived in the city and enjoyed it very much.

Robert and his wife have not had any children. John and his wife had 
a first child after one year, and, two years later, they had a second one, 
now eight months old. As a result, John had to move to the suburbs, 
took a mortgage to buy a large house and feels financially strained.

Robert is on a ski vacation with his wife, while John is at home. 
He can’t even dream of a ski vacation with the two children, to say 
nothing of the expense. In fact, John would be quite happy just to 
have a good night’s sleep.

Do you think that Robert is happier than John?

Problems – Group B

Problem 6.4

Mary works in your public relations office. She is doing a good job 
and you’re pleased with her performance. About six months ago, 
she hired a new employee, named Jane, who turned out to be a born 
talent. They get along fine.

Mary’s direct boss just quit, and you’re looking for someone for 
the job. You don’t think that Mary is perfect for it. By contrast, Jane 
seems a great fit. But it may be awkward to promote Jane and make 
Mary her subordinate. A colleague suggested that you go ahead and 
do this, but give both of them a nice raise to solve the problem.

What percentage of a salary raise do you think will solve the 
problem?
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Problem 6.5

As we’re nearing the end of this book, it is time to get some feed-
back. Please answer the following questions:
1. On a scale of 0–10, your overall evaluation for the book is:
2. Did you find the explanations clear? Yes_____ No_____
3. Did you find the topics interesting? Yes_____ No_____
4. Did you find the graphs well done? Yes_____ No_____

Problem 6.6

Robert and John went to school together, and they got married at roughly 
the same time. They lived in the city and enjoyed it very much.

Robert and his wife have not had any children. John and his wife had 
a first child after one year, and, two years later, they had a second one, 
now eight months old. As a result, John had to move to the suburbs, 
took a mortgage to buy a large house and feels financially strained.

Robert is on a ski vacation with his wife, while John is at home. 
He can’t even dream of a ski vacation with the two children, to say 
nothing of the expense. In fact, John would be quite happy just to 
have a good night’s sleep.

Do you think that Robert is happier than John?

Well-Being

Problems 6.1 and 6.4 were identical, and they read:

Mary works in your public relations office. She is doing a good job 
and you’re pleased with her performance. About six months ago, she 
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hired a new employee, named Jane, who turned out to be a born tal-
ent. They get along fine.

Mary’s direct boss just quit, and you’re looking for someone for 
the job. You don’t think that Mary is perfect for it. By contrast, Jane 
seems a great fit. But it may be awkward to promote Jane and make 
Mary her subordinate. A colleague suggested that you go ahead and 
do this, but give both of them a nice raise to solve the problem.

What percentage of a salary raise do you think will solve the 
problem?

We obviously don’t know Mary and her personality. Maybe envy is 
very foreign to her, and maybe she has no ambition to be promoted. 
Maybe she shares your admiration for Jane’s talent and it wouldn’t 
even cross her mind that she, rather than her subordinate, could 
have gotten her boss’s job. But it is also quite possible that Mary 
would feel upset. It’s not nice to see one’s subordinate being pro-
moted faster than oneself, and it can be outright humiliating to 
report to someone who only recently reported to you. In fact, your 
intuition might tell you that no salary raise will be able to solve the 
problem. In many institutions, appointing Jane to the job would be 
a taboo, something that you would do only if you actually wished 
Mary to leave. If you would indeed like Mary to stay and remain a 
dedicated employee, you may have to promote Jane to a job in 
another department, or find another job for Mary, or do something 
else that would avoid negative emotions on Mary’s part.

Envy is not an emotion we are very proud of. It is one of the seven 
deadly sins. And yet, it is very human. (If it were not, perhaps it 
would not have deserved so much attention.) People are very sensi-
tive to their social status, and this seems to be common to other spe-
cies as well. Within economics, James Duesenberry suggested (in 
1949) the “relative income hypothesis,” according to which people 
attempt to maximize their relative standing in the income distribu-
tion, rather than income itself.1 Having more money, but being at a 
lower social rank, may be worse than having less money but a higher 
social rank.

Can we abolish envy, and perhaps also other emotions that we 
tend to frown upon? This is not an easy question. Each of us may try, 
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at the very least, not to act on such emotions, and if possible also not 
to show them. Using cognitive techniques, we can also try not to 
experience these emotions, or at least to experience them less often. 
But it is not obvious that we can decide to stop envying people and 
indeed succeed in this task. And even if we do, it would be impru-
dent to assume that everyone else has also abolished envy.

Envy and social status are just two examples of non-material 
factors of well-being. It seems very obvious that people care not 
only about money, or what money can buy, but also about friend-
ship and love, self-fulfillment and satisfaction, leisure and peace 
of mind. The fact that well-being is not synonymous with money 
has been understood for several millennia. There is hardly a 
human culture that has not made this point. From ancient philo-
sophical and religious teachings to recent Hollywood movies, we 
learn that “money isn’t everything,” “money doesn’t buy happi-
ness,” and so forth.

In recent decades, scientific studies in the social sciences have 
attempted to document the relationship between money and well-
being. Researchers such as Richard Easterlin and Ed Diener have 
measured well-being, typically by a person’s self-report, and stud-
ied how it changes with various factors.2 This measure, called sub-
jective well-being, has been found to be significantly correlated with 
income, but not to a large degree (with a correlation coefficient 
around 0.2).3 Easterlin found that the correlation was higher within 
a given cohort than across cohorts. His explanation was that subjec-
tive well-being depends not only on income, but also on the rela-
tionship between one’s income and one’s aspiration level for income, 
and the latter is determined, to a large extent, by comparisons to 
others. Within a cohort, people tend to compare themselves with the 
same group, and therefore to have a similar aspiration level. This 
results in a relatively high correlation between income and reported 
well-being. But across cohorts, when we compare people in differ-
ent age groups, the older, who tend to be richer, also have richer 
friends. Therefore their aspiration levels are higher than those of the 
younger. Consequently, reported well-being need not increase with 
age even though income does.
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The notion of an aspiration level that adapts as a result of experi-
ences might remind you of “adaptation level theory,” by Harry 
Helson, mentioned in Chapter 4 (in the context of prospect theory).4 
Indeed, followers of Helson applied his theory, which focuses on 
sensual perception, to the question of well-being. In a famous study 
from 1978, Brickman, Coates, and Janoff-Bulman compared the 
reported well-being of individuals who underwent very dramatic 
positive and negative events: people who won lotteries on the one 
hand, and people who became handicapped due to an accident on 
the other. The striking finding was that, after a while, the reported 
well-being seemed to be the same in the two groups.5 Philip Brickman 
and Donald Campbell pushed this idea further,6 arguing that there 
is no point in improving people’s material conditions, since they 
anyway adapt to the new circumstances. According to them, human 
beings were like little rodents running on a “hedonic treadmill”: the 
faster we run, the faster we need to keep running to feel content. 
Happiness, they argued, will not be achieved this way.

Measurement Issues

This dramatic conclusion by Brickman and Campbell seemed suspi-
cious to many people. Economists, in particular, are used to think-
ing of utility according to the revealed preference paradigm: we first 
observe people’s choices, and then we assign to them, as outside 
observers, a function that can describe their choices. “Having a 
higher utility,” according to this paradigm, simply means “Will be 
chosen, given the opportunity.” Based on this thinking, economists 
who hear about the lottery winners and the handicapped people 
having the same reported well-being ask, “Yes, but would the lot-
tery winners like to trade places?”

This raises a more general question: what exactly is being meas-
ured by subjective well-being? How much can we trust the answer 
we get to guide our decisions, whether as individuals or as societies, 
regarding ourselves and regarding others? These questions become 
more relevant in light of psychological studies that showed that 
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reported well-being can be manipulated in various ways. To see an 
example, let us contrast Problem 6.2 and Problem 6.5. The first reads:

Problem 6.2

As we’re nearing the end of this book, it is time to get some feedback. 
Please answer the following questions:

1. Did you find the explanations clear? Yes_____ No_____
2. Did you find the topics interesting? Yes_____ No_____
3. Did you find the graphs well done? Yes_____ No_____
4. On a scale of 0–10, your overall evaluation for the book is:

Whereas the second (6.5) has the same questions in a slightly differ-
ent order: no. (4) (the one about overall evaluation) is asked first.

We would like to focus on the correlation between the answers to 
items (3) and (4) in Problem 6.2, and items (1) and (4) in Problem 6.5: 
the satisfaction with the graphs in the book, and the overall evalua-
tion. It makes sense that there will be a positive correlation between 
them: other things being equal, the more satisfied you are with the 
graphs, the more satisfied you’d be with the book as a whole. That 
is, we should find a higher average satisfaction among the people 
who marked “yes” for the graphs question than among those who 
marked “no.” The point is that this correlation may differ between 
the two problems. A typical finding would be that this correlation is 
higher in 6.2 than in 6.5.

The reason seems obvious: in 6.2, just before you’re asked about 
the overall evaluation, the issue of the graphs is being brought to 
your attention. You are asked to focus on it, and whatever you think 
about the graphs, good or bad, is likely to affect your overall evalu-
ation. By contrast, in 6.5 you’re first asked about the overall evalua-
tion, and, if you don’t go back to revise your answer, the quality of 
the graphs is likely to play a more minor role in determining this 
evaluation than when you were asked to first focus on this effect.

Similar phenomena exist when people are asked to report their 
well-being, or “satisfaction with life as a whole.” The latter concept 
is quite vague, and by focusing your attention on certain aspects of 
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your life rather than others, one can manipulate your responses.7 As 
a result, it is not obvious that subjective well-being is a robust 
enough measure to base decisions upon.

Difficulties of this type were part of the motivation for Daniel 
Kahneman and his colleagues to think about other ways to measure 
well-being. Kahneman has also shown that the way individuals recall 
events can be very different from the way they experience them when 
they unfold. He promotes the view that (i) well-being should be 
measured as the sum, over time points, of the instantaneous utility; 
and (ii) this instantaneous utility is best measured objectively, accord-
ing to the judgment of others. Specifically, Kahneman and his col-
leagues suggest the Day Reconstruction Method (DRM),8 according 
to which individuals recall their experiences of a day, hour by hour, 
these experiences are independently ranked for pleasurability, and 
well-being is measured as the sum of these pleasurability rankings.

What’s Happiness?

Consider Problems 6.3 and 6.6, which were identical. They read:

Robert and John went to school together, and they got married at 
roughly the same time. They lived in the city and enjoyed it very much.

Robert and his wife have not had any children. John and his wife had 
a first child after one year, and, two years later, they had a second one, 
now eight months old. As a result, John had to move to the suburbs, 
took a mortgage to buy a large house and feels financially strained.

Robert is on a ski vacation with his wife, while John is at home. He 
can’t even dream of a ski vacation with the two children, to say noth-
ing of the expense. In fact, John would be quite happy just to have a 
good night’s sleep.

Do you think that Robert is happier than John?

Of course, this is not the type of question to which you expect a cor-
rect answer. We do not know who is happier, and it’s not even clear 
what the meaning of this question is. The point of the problem, 
 however, is to question our measurement of well-being. If we use 
subjective well-being questionnaires, we may find Robert saying 
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that he’s quite content with his life, whereas John might complain 
about financial stress, sleep deprivation, and scarcity of leisure. 
Indeed, studies of subjective well-being find that people without 
children report a higher well-being than people with children, 
roughly throughout the parenting period.9 If we were to resort to the 
Day Reconstruction Method, we would probably find that Robert 
spends much more of his time sleeping, going out, and having ski 
vacations than does John, whose time is devoted to changing diapers 
and spending sleepless nights with a screaming baby. Independent 
observers would surely rank “taking a ski vacation” as much more 
pleasurable than “trying to put a screaming baby to bed.” As a result, 
both methods might indicate that it’s a silly idea to have children.

But this conclusion doesn’t make sense. First, if we take the econ-
omists’ revealed preferences approach, having children can’t be 
such a bad idea if so many people consciously choose to do so gen-
eration after generation. Second, if we talk to parents, they will 
often say that their children are the source of their happiness, the 
meaning of their lives, and so forth. While it may be very hard to 
measure this happiness, it seems intuitive that a hug one gets from 
one’s child at the end of a work day can change one’s experience 
during that day. To state the obvious, this does not mean that you 
have to have children in order to be happy. Moreover, it is quite 
possible that people who chose to have children have managed to 
convince themselves,  perhaps with the help of society, that they are 
happy. The point is that some factors, which appear very important 
to people’s happiness, may not be fully captured by existing meas-
ures of well-being.

Where does this leave us? We have a significant body of research 
on well-being, and we can use it to remind ourselves that money 
should not be equated with happiness. This is important for us to 
know when we are dealing with others (such as employees as in 
Problems 6.1 and 6.4), as well as when we plan our own lives. But 
scientific knowledge is far from providing a clear answer to the 
question of what well-being is, let alone of what happiness is. 
The attempts to measure these concepts may well suggest that the 
 question is ill-defined.
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We have mentioned that psychology distinguishes between posi-
tive and negative experiences, as reflected in the gain–loss asymmetry 
discussed in prospect theory. It appears that the measurement of well-
being is another case in which the negative range differs from the 
positive one: while it is not clear what happiness is, it is much clearer 
what misery is. We may not be able to agree whether a person is happy 
thanks to being healthy, free, and wealthy; but we will tend to agree 
that people who are sick, imprisoned, or starving are unhappy.

Throughout this book I have been emphasizing the view that it is 
up to you to determine what a good decision is for you. Clearly, this 
subjective approach also applies to the questions of well-being and 
happiness. Our goal here is to raise the questions rather than to pro-
vide the answers.

Exercises

1. An employee had to choose between two payment schemes for 
a three-year contract. The first offered $90,000 in the first year, 
$100,000 in the second, and $110,000 in the third, while the sec-
ond offered the same amounts in the opposite order (starting 
from $110,000 in the first year and going down to $90,000). The 
employee chose the former.

 a. Why does this choice contradict classical economic theory?
 b. How would you explain such a choice?

2. Suppose that a newly developed drug improves mood with 
absolutely no side effects, in either the short or the long term. 
The drug is not expensive to produce.

 a.  Would you recommend that it be administered to the entire 
population?
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 b. Would you like to take it yourself if people around you do not?

3. Lack of sunlight has been found to contribute to depression 
among some people. One solution is the introduction of artifi-
cial substitutes for sunlight, which were proven to reduce 
depressive symptoms. Would you recommend using such sub-
stitutes? Compare your answer to this question with your 
answer to question (2).

4. Assume that people’s well-being is affected by their aspiration 
level, where the latter is determined by the average perform-
ance of people they think of as their peers. Suppose that globali-
zation is only reflected in an increased flow of information 
among people around the globe. How will it affect well-being?
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Appendix A

Optimal Choice1

A fundamental of optimal choice theory is the distinction between 
feasibility and desirability. A choice is feasible if it is possible for the 
decision maker, that is, one of the things that she can do. An outcome 
is desirable if the decision maker wishes to bring it about. Typically, 
feasibility is considered to be a dichotomous concept, while desirabil-
ity is continuous: a choice is either feasible or not, with no shades in 
between; by contrast, an outcome is desirable to a certain degree, and 
different outcomes can be ranked according to their desirability.

We typically assume that desirability is measured by a utility func-
tion u, such that the higher the utility of a choice, the better will the 
decision maker like it. This might appear odd, as many people do 
not know what functions are and almost no one can be observed 
walking around with a calculator and finding the alternative with 
the highest utility. But it turns out that very mild assumptions on 
choice are sufficient to determine that the decision maker behaves as 
if she had a utility function that she was attempting to maximize. If 
the number of choices is finite, the assumptions are the following:

1. Completeness: for every two choices, the decision maker can 
say that she prefers the first to the second, the second to the first, 
or that she is indifferent between them.

Making Better Decisions, by Itzhak Gilboa © 2011 John Wiley & Sons, Inc.
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2. Transitivity: for every three choices a, b, c, if a is at least as 
good as b, and b is at least as good as c, then a is at least as good 
as c.

It turns out that these assumptions are equivalent to the claim that 
there exists a function u such that, for every two alternatives a and 
b, a is at least as good as b if and only if u(a) ≥ u(b). Descriptively, 
this means that anyone who behaves in accordance with the two 
axioms above can be thought of as a utility maximizer for an appro-
priately chosen utility function (reflecting the person’s tastes). This 
is true of people whose mental processes may be very different 
from maximization of anything. From a normative point of view, 
the implication is that if one likes to satisfy the two axioms above, 
then one may do so by choosing a utility function and making sure 
that one always chooses the alternative with the highest utility. 
Any other algorithm that guarantees adherence to these axioms 
has to be equivalent to maximization of a certain function, and 
therefore the decision maker might well specify the function 
explicitly.

When we consider choice under certainty, there is no need to dis-
tinguish between choices and outcomes: the decision maker knows 
that a given choice leads to a particular outcome. If, however, uncer-
tainty is present, the decision maker may choose an act, but she does 
not know which outcome will result from this act. In this case we 
introduce states of nature or states of the world.2 Given the decision 
maker’s choice of an act, and nature’s choice of a state, the outcome 
is determined. Thus, the decision maker has feasible acts, she faces 
possible states of nature, and she will experience outcomes that are 
more or less desirable to her.

For a simple example of optimal choice under certainty, consider 
the consumer’s problem. The consumer has income I and there are 
n products in the market. Product i costs pi per unit. The consumer 
can decide what quantity xi ≥ 0 they will buy of each product, 
thereby choosing a bundle (x1, x2, …, xn). The feasibility constraint is 
that the bundle be affordable, that is, it has to satisfy the budget 
constraint:
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1 1 2 2 ...+  n np x p x p x I+ + ≤

and desirability is measured by a utility function u. Thus, for 
each bundle (x1, x2, …, xn), u(x1, x2, …, xn) is a number that meas-
ures its desirability. The higher is the value of the function u, the 
more desirable is the bundle, and the more pleased is the 
consumer.

For our purposes, it is worthwhile highlighting what this model 
does not include. Choices are given as quantities of products. Various 
descriptions of the products, which may be part of their frames, are 
not part of the discussion. The utility function measures desirability 
on a scale. We did not mention any special point on this scale, such 
as a reference point. Further, choices are bundles of products to be 
consumed by the consumer in question at the time of the problem. 
They do not allow us to treat a certain bundle differently based on 
the consumer’s history of consumption, or on the consumption of 
others around them. Hence, the very language of the model assumes 
that the consumer does not care what others have, they feel no envy, 
nor any disappointment in the case when their income drops as 
compared with last period, and so on.

It is important to emphasize that the general paradigm of 
rational choice does not necessitate these constraints. For 
instance, instead of the n products the consumer can consume 
today, we may have a model with 2n products, reflecting their 
consumption today and their consumption yesterday. This 
would allow us to specify a utility function u that takes into 
account considerations such as aspiration levels, disappoint-
ment, and so forth. Or, we can use more variables to indicate the 
average consumption in the consumer’s social group, and then 
the utility function can capture social considerations such as the 
consumer’s ranking in society and so forth. Indeed, such mod-
els have been suggested in the past3 and have become more popu-
lar with the rise of behavioral economics. These models show 
that the paradigm of rational choice is rather flexible. Yet, the 
specific theory of consumer behavior which is dominant in eco-
nomics restricts the relevant variables to be independent of 
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 history, others’ experiences, emotions, and other factors which 
might be among the determinants of well-being.

Notes

1 The two appendices contain but the very minimum required to make 
the discussion in the text intelligible. Because they are no more than a 
collection of definitions and fact sheets, readers who have never seen 
this material at all are advised to consult a standard textbook.

2 These two terms are not completely synonymous, but for our purposes 
they can be used interchangeably.

3 Duesenberry, J. S. (1949) Income, Saving, and the Theory of Consumer 
Behavior. Harvard University Press.
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Probability and Statistics

The basic probability model starts with a list of all that can happen, 
that is, of the states of nature. Assume that the states are s1, s2, …, sn. 
Each state is considered to be a complete specification of all that 
matters to the decision maker. An event is a collection (set) of states. 
Thus, an event is simply something that may or may not happen, 
and in our natural language it corresponds to a proposition, a state-
ment that may be true or false. For every state si there is an event 
that corresponds to that state alone, {si}, but events may have more 
than one state in them.

Assume, for example, that we are about to roll a die. The relevant 
states are {1, 2, 3, 4, 5, 6} corresponding to the side of the die that 
comes up. An event can be {2}, that is, the die comes up on 2, but 
also {1, 2, 3, 4}, which stands for “the number that comes up is less 
than 5,” or {1, 3, 5}, “the number is odd,” and so forth. We can also 
define the sure event, S, and the impossible event, Ø.

We perform operations on events, which correspond to the logical 
operations of conjunction, disjunction, and negation, corresponding 
to “and,” “or,” and “not,” respectively. When applied to events, we 
call these operations intersection, union, and complement, and they 
are denoted by the symbols Ç, È, and ¬, respectively.

Making Better Decisions, by Itzhak Gilboa © 2011 John Wiley & Sons, Inc.
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You may verify that the following properties hold for any two 
events A, B:

∪ = ∩ =
∪ ∅ = ∩ ∅ = ∅

¬ ∪ = ¬ ∩ ¬ 
¬ ∩ = ¬ ∪ ¬ 

A S S   A S A
A A   A

(A B) A B
(A B) A B

A probability is a function, assigning non-negative numbers to events, 
attempting to measure their plausibility. Thus, if A is an event, we 
wish P(A) ≥ 0 to measure how likely it is to happen. It is a conven-
tion that the probability of the sure event is 1, that is, that P(S) = 1. 
When we think of events that may or may not occur in each of 
repeated identical trials, we can define P(A) to be the empirical  relative 
frequency of A, namely, the proportion of the trials in which A occurred 
relative to the entire number of trials.

If we take this frequentist interpretation of probability, we will find 
out that, for any two events A and B,

( ) ( )A B (A B) (A B)P P P P+ = ∩ + ∪

Hence this condition is considered to be part of the definition of 
probability in general. It can be verified that it is equivalent to the 
(seemingly weaker) condition that

( ) ( )A B (A B)

whenever A B

P P P+ = ∪
∩ = ∅

that is, if we consider two disjoint events, that can never co-occur 
(A Ç B = Ø) the probability of their union (one of them occurring) 
should be the same as the sum of their probabilities.

It follows that, for every event A,

( ) + ¬ =A   ( A) 1P P

because A and not-A (¬ A) are two disjoint events whose union is S, 
and the probability of S is 1.
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The notion of conditional probability attempts to capture the way 
that beliefs change as a result of receiving new information. If we 
learn that event B has occurred, and I ask myself how likely A is to 
occur, I should first realize that A can only occur if the intersection 
A Ç B occurs, because B is already a given fact. Thus, I should base 
my answer on the probability of this intersection, P(A Ç B). Since 
we have the convention that the probability of the sure event is 1, 
we want to make sure that if I substitute S for A I get 1. But P(S Ç 
B) = P(B) need not be 1. So we re-normalize by dividing the prob-
ability of the intersection by the probability of the known event. 
This leads to Bayes’s definition of conditional probability: the con-
ditional probability of A given B is

( )A|B (A B)/ (B)P P P= ∩

This also means that

∩ =(A B) (B) * (A|B)P P P

In other words: one way to find the probability that both A and B 
occur is to consider first the probability that B occurs, and then to 
multiply it by the conditional probability that A occurs once we know 
that B is already the case.

Two events are independent if they do not convey information 
about each other. We define A to be independent of B if

( ) ( )A|B AP P=

that is, if your beliefs about A before and after learning B are the 
same. If A is independent of B, B is also independent of A, and we 
have (assuming all numbers are positive)

( ) ( )B|A BP P=

and

(A B) (A) * (B)P P P∩ =
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We also make use of the following fact: the probability of an event A 
can be split according to another event B:

= ∩ + ∩ ¬(A) (A B) (A B)P P P

because the two subevents, (A Ç B) and (A Ç ~B), are disjoint 
(cannot happen together), and together they make up all of A. If 
we now proceed to write the probability of each of these inter-
sections as the product of the probability of the one event (first 
B, then ~B) multiplied by the probability of A given that event, 
we get

( ) = ∩ + ∩ ¬
+ ¬ ¬

A    (A B) (A B)

= (B)* (A|B) ( B) * (A| B)

P P P

P P P P

Recall that the probabilities of B and of not-B have to sum up to 1. 
Thus, if we have

( )BPβ =

and

− β = ¬1 ( B)P

we obtain

( ) ( ) ( )= β + − β ¬A * A | B 1 * (A | B)P P P

which says that the probability of A is a weighted average of the 
probability of A given B and the probability of A given not-B, where 
the weights are the probabilities of B and not-B, respectively. This 
means that P(A) is always in between these two conditional proba-
bilities: if

( )A|B (A| B)P P> ¬

then

( ) ( )A|B A (A| B)P P P> > ¬
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and vice versa: if P(A | B) < P(A | ¬ B) then P(A | B) < P(A) < P(A | ¬ B). 
In the case where A and B are independent, all these inequalities 
become equalities.

Clearly, this is symmetric: we can also write

( )
( )

= ∩ + ∩ ¬

= + ¬ ¬
= α + − α ¬

B (B A)  (B A)

A * (B | A)  ( A)* (B | A)

* (B | A) (1 ) * (B | A)

P P P

P P P P

P P

for a = P(A). Again, P(B) will be in between P(B | A) and P(B | ¬ A), 
where all three numbers will be equal precisely when A and B are 
independent events.

Conditional probabilities and independence are also defined for 
more than two events. We can condition on several events, and ask 
what the probability of event A is given that B, C, and D have occurred, 
and so forth. When we say that several events are independent, we 
mean that whatever we know about any subset of them does not 
change the probabilities we assign to the rest. (This is a more demand-
ing requirement than to simply say that any two are independent.)

Random variables are variables that are not up to us to determine 
(as opposed to decision variables). We can model them as functions 
over the state space, where each state of nature determines a unique 
value for the variable, and any uncertainty is encapsulated in the 
question of which state obtains. For example, assume that I bet with 
my friend on the roll of a die. I will gain $1 if it comes up 5, 6, lose 
$1 if it comes up 1, 2, and the bet is off if the die falls on 3 or 4. You 
can think of my net gain as a random variable, X, defined on the 
states as shown in Table B.1.

Random variables are characterized by their distributions, which 
specify (i) the list of all the values that the random variable might 
assume; (ii) the probability with which it will assume every such 
value. In our example, if each state has probability 1/6, the random 
variable X will assume the value -1 with probability 1/3 (if the state 
is s1 or s2), the value 0 with probability 1/3 (in states s3 and s4), and 
the value 1 also with probability 1/3 (in states s5 and s6). Hence the 
distribution of X can be given as shown in Table B.2.
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When we are interested in the relationship between two random 
variables, we may analyze their joint distribution. Just as the distri-
bution of a single random variable tells us what values it may 
assume, and with what probabilities, the joint distribution tells us 
what values each of the variables may assume, and what is the prob-
ability that they will assume certain values simultaneously. For exam-
ple, suppose that X measures years of education, and can take the 
values 10 and 15, whereas Y measures annual income in thousands 
of dollars, and can take the values 40 and 60. We can draw a table in 
which every row corresponds to a value of X and every column to a 
value of Y. In each entry, the joint distribution has the probability 
that X will take the row value and Y will take the column value. 
Thus, when we sum up all numbers in the table we should get 1 
(Table B.3).

If we have the joint distribution of two random variables, we can 
find out the distribution of each of them simply by summation of the 
numbers in each row (for X) or the numbers in each column (for Y) 

Table B.1 State and value of X.

State Value of X

s1 -1
s2 -1
s3 0
s4 0
s5 +1
s6 +1

Table B.2 Value of X and its probability.

Value of X Its probability

-1 1/3
 0 1/3
+1 1/3
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(Table B.4). In this context, the distribution of X and the distribution 
of Y are called the marginal distributions, because they can be found 
at the margins of the joint distribution table.

Two random variables are independent if nothing we know about 
one of them tells us anything new about the other. We have already 
defined independence of events, but not of random variables. 
However, this is not supposed to be confusing: the independence of 
random variables is an extension of the same concept; it states that 
any event that is defined in terms of one random variable is inde-
pendent of any event defined in terms of the other. Two random 
variables are independent if and only if their joint distribution is the 
product of the marginal distributions (in each and every entry). 
Clearly, the joint distribution above does not satisfy this condition. 
There is a unique joint distribution that would make X and Y inde-
pendent with the same marginal distributions, and it is obtained by 
taking the product of the relevant marginal distribution values at 
each entry (Table B.5).

A collection of random variables are independent if nothing we 
know about any subset of them changes our beliefs about (conditional 

Table B.3 Values of X and Y.

 Value of Y 

Value of X 40 60
10 0.4 0.2
15 0.1 0.3

Table B.4 Distributions of X and Y, phase 1.

 Value of Y  

Value of X 20 25 Distribution of X

10 0.4 0.2 0.6

15 0.1 0.3 0.4

Distribution of Y 0.5 0.5 1
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distributions of) the rest. We have a particular interest in random vari-
ables that are independent and also have the same distribution. We 
call them i.i.d. for identically and independently distributed.

A numerical random variable such as X has an expectation which 
is a weighted average of its values, where we use the probabilities 
for the weights. In our case, the expectation of X is

( ) ( ) ( ) ( )= μ = − + + + =E 1/ 3 * 1 1/3* 0 1/3 * 1 0XX

As explained in the text, the expectation is very significant in the 
case of many independent repetitions of the same random variable, 
because, due to the law of large numbers, with such repetitions we 
can be quite certain that the average of the random variables will be 
very close to the expectation. However, in one-shot situations the 
expectation is but one number that attempts to summarize the infor-
mation given in the distribution of the random variable, and it is not 
the only thing that would matter to you.

We are often interested in the degree to which a random variable 
is dispersed around its expectation. In the context of a monetary 
asset, this dispersion is associated with the riskiness of the asset. 
The most popular measures of dispersion are the variance and the 
standard deviation. The variance is defined as the expectation of the 
squared deviation:

( ) ( )2
Var  = E XX X µ⎡ ⎤−⎣ ⎦

and the standard deviation sX is the square root of the variance.

Table B.5 Distributions of X and Y, phase 2.

 Value of Y  

Value of X 20 25 Distribution of X

10 0.3 0.3 0.6

15 0.2 0.2 0.4

Distribution of Y 0.5 0.5 1
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The Normal distribution is a family of distributions, parameter-
ized by the expectation μ and the standard deviation s. This family 
plays a very important role in statistics, due to the central limit theo-
rem, which says that, if we look at the average of n i.i.d. random 
variables (under some additional mild conditions), this average will 
have a distribution that starts to resemble a Normal distribution 
more, as n grows to infinity. The law of large numbers has already 
told us that this average will be close to the expectation μ, but it does 
not say what the distribution of the average is. With the help of the 
central limit theorem one can quantify how close is the average to 
the expectation, without knowing the precise shape of the original 
distribution.
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Solutions to odd-numbered exercises are given below.

Chapter 2

1. Flight accidents are typically much more visible than motor 
vehicle accidents. By availability heuristic, we should expect 
that they would be over-represented in our memory, and result 
in an overestimate of the danger of flying. On the other hand, 
the mere numbers of fatalities caused by each mode of transpor-
tation aren’t the relevant statistics either, because we would 
want to look at these numbers relative to the number of miles 
driven/flown, or to consider some other measures that would 
make it more related to the conditional probability that we face 
in either mode of transportation.

3. One reason may be sheer forgetfulness: once the initial period is 
up, you may simply forget to cancel the subscription, even if at 
first you thought you would. If you planned to cancel the sub-
scription but didn’t, this may be a form of dynamic inconsist-
ency. The other obvious reason has to do with habit formation, 

Making Better Decisions, by Itzhak Gilboa © 2011 John Wiley & Sons, Inc.
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the endowment effect, or the status quo bias: before having the 
magazine you may not value it as much as you would after hav-
ing consumed it for a while.

5. It stands to reason that this changing the default choice from 
“opt out” to “opt in” would have a big effect on the number of 
people choosing to donate organs. One related phenomenon is 
the anchoring effect: when a decision is the default, it serves as 
an anchor. It may also be rational to choose it, if you have an 
implicit belief that the default choice is the norm in the society 
you live in, and that it probably makes sense if it was chosen to 
be the norm. Another effect might be simple forgetfulness or 
unawareness: many people adopt the default choices without 
ever checking what they are.

Chapter 3

1. The correct answer is (d): this probability cannot be determined 
without knowing what percentage of overall home owners with 
a mortgage eventually default.

3. The answer is (d). (a) is true because what we need to compare 
to make any inference is whether one event (being a journalist) 
makes the other (being superficial) more likely than it is before 
knowing anything, and the benchmark of 50% isn’t relevant. 
Clearly, (b) is a point that we made over and over again. 
Statement (c) is correct, because P(A | B) > P(B | A) whenever 
P(A) > P(B).

5. The answer is (c). (a) is false because the probability of A given 
B is not the same as the probability of B given A. (b) is false 
because the type of inference we can draw relates the probabil-
ity of the event to other probabilities of the same events (as in 
P(A | B) > P(A)) but not to any specific number such as 50%. 
Finally, (c) is true, because if the car is not very popular, we may 
assume that its probability in the entire population is less than 
90%, and therefore the probability of finding it in the car repair 
shop is higher than in the general population. Thus,
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( ) ( )make A|problem 90% make AP P= >

and therefore

( ) ( )problem|make A problemP P>

and also

( ) ( )>problem|make A problem|another makeP P

7. The answer is (a): the Bayesian statistician will indeed have a 
guess about the unknown parameter even before looking at the 
sample. But they will take a sample (hence (b) is false). The clas-
sical statistician will not generate a confidence interval that they 
believe is wrong; they will simply avoid stating their beliefs 
about the specific interval that resulted, saying that they can 
only quantify beliefs given the unknown parameter, and before 
the sample was taken. Hence (c) is wrong. Finally, (d) is also 
wrong: classical statistics does not look for counter-intuitive 
answers, it simply attempts to avoid intuition altogether.

Chapter 4

1. If you assign u($1,000) = 1 and u($0) = 0, you find that

( ) ( ) ( )$700 0.8 * $1,000 0.2 * $0 0.8u u u= + =

and then

( ) ( ) ( )$300 0.6 * $700 0.4 * $0 0.6 * 0.8 0.48u u u= + = =

Thus, the expected utility of lottery A is

( ) ( )2/ 3 * $1,000 1/ 3 * $0 2/ 3u u+ =

and of lottery B

( ) ( )0.5 * $700 0.5 * $300 0.5 * 0.8 0.5 * 0.48 0.64u u+ = + =
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Since 2/3 > 0.64, you will prefer A to B, and the answer is (a).
3. a.  The expected profit is the revenue of $1 minus the expected 

payoff, which is

 ( )≅ 0.416$1,000,000 * 1/ 2, 400,000

 that is, about 58.4 cents.
` b.  The statistician is right in observing that the expected profit 

for each ticket does not change. However, because lottery 
buyers do not base their decisions solely on their expected 
gain, the volume of sales might well change as a result of the 
new policy. Even if a potential lottery buyer were an expected 
utility maximizer, as long as their utility function is not lin-
ear, two lotteries with the same expected value need not be 
equally attractive to them. (And we may ignore potential 
buyers who are expected utility maximizers with linear util-
ity functions because they would not buy lottery tickets 
anyway.) Moreover, using prospect theory we can expect 
that the higher award will attract more lottery buyers, but 
that the difference between the probability of 1/2,400,000 
vs. 1/4,800,000 will hardly make a difference. Hence, we 
should not be surprised if the new award structure does 
indeed attract more buyers and increases profits.

Chapter 5

1. Question (a) compares

( ) ( )snow to two consecutive Heads 0.25P P =

Question (b) compares

( ) ( )no precipitation  to different than 7 36 / 37P P =

Let’s start with (b): if the answer is that

( )no precipitation 36 / 37P >
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 then it follows that

( )snow 1/ 37P <

 and the only answer for (a) that is consistent with this is that 
snow is less likely than two consecutive Heads.

  If, however, the answer is that no precipitation is less likely 
than a number different than 7, that is, that

( ) <noprecipitation   36 / 37P

 then we only know that the probability of precipitation is higher 
than 1/37, but any answer to (a) is consistent with this state-
ment. It is possible that the probability of snow is as high as 1, 
but also that it is zero, and the probability of precipitation is 
borne by rain and hail.

3. The majority of participants in Ellsberg’s experiments either 
prefer to bet on known rather than unknown probabilities, or 
express indifference between a probability that is known to be 
50% and a probability that was determined to be 50% by sym-
metry (between the Democrat and the Republican). Hence Ann’s 
behavior is different from the majority of the participants’, and 
(a) is false. (b) is also false, because a local equity is akin to the 
known probability, and, if we can make any inference at all, we 
will probably assume that Ann prefers the foreign equity to the 
local one. Thus, (c) is true. Finally, (d) is false because a Bayesian 
model cannot reflect these beliefs.

Chapter 6

1. a.  Standard economic theory would suggest that, since interest 
rates are positive, the employee can only gain by obtaining 
more money earlier.

 b.  The choice can be explained by at least two phenomena, 
which may be combined. One is lack of self-discipline, 
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related to dynamic inconsistency: the employee might plan 
to save money early on to be used later, but suspects that she 
won’t be able to implement this strategy, and therefore pre-
fers that her employer restrict her choices. The other is that 
the monetary compensation determines her aspiration level, 
and maybe also her notion of self-worth. In this case, the 
employee rightly supposes that it will feel better to be on a 
rising scale, constantly doing better than her aspirations, 
rather than vice versa.

3. There seems to be nothing wrong with this solution. In (2) you 
may have raised several considerations against “artificial happi-
ness”. The point of the two problems is that avoiding misery 
(in 3) may be quite different from seeking happiness (in 2).
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