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1. PoINT SET TOPOLOGY BASICS
As usual we will let X and Y be sets and P(X) denote the power set of X.

Definition 1.1. A collection of set 7 C P(X) is a topology on X if

1. 0, X e,
2. 7 is closed under finite intersections, and
3. 7 is closed under arbitrary unions.

The members of 7 are called open sets and the sets C' C X such that C¢ € T are
called closed sets. We will often write V' C, X to denote that V € 7 and C C X
to indicate that C is a closed subset of X.

Example 1.2. Suppose that X = {1,2}, then

1. 0 = {0, X} (Trivial topology on X), 71 = {0, X,{1}}, = = {0, X,{2}},
3 = {0, X, {1},{2}} - Discrete topology are all topologies on X.

2. Suppose (X, 7) is a topology space and Y C X. Then v = {UNY : U € 7} is
a topology on Y called the relative topology on Y. (Notice that the closed
sets in Y relative to Ty are precisely those sets of the form C'NY where C is
close in X. Indeed, B C Y is closed if Y\ B=Y NV for some V € 7 which
is equivalent to B=Y \ (Y NV) =Y NV for some V € 7.)

3. Suppose that X is a set and £ C P(X) be a collection of subsets of X. We
let 7(€) be the smallest topology on X containing €. If 7 = 7(£), we call
£ a subbase for the topology .

Proposition 1.3. Given € C P(X), 7(E) consists of arbitrary unions of finite
intersections of elements from & U {X,0}.

Proof. Let 7 C P(X) denote the collection of sets consisting of arbitrary unions
of finite intersections of elements from £ U {X,0}. Then 7 C 7(€) so to finish the
proof it suffices to show that 7 is a topology.

Suppose {4; : i € I} and {B; : j € J} are collection’s of sets which are finite
intersections of the elements in £ U {X,(}. Set

A=|JA and B=| | B;.
icl JjeJ
Then
AmB:U{AmBj:ieIandjeJ}eT

So 7 is closed under finite intersections, it is obviously closed under unions and
contains X, (). That is 7 is a topology. m
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Definition 1.4. We say &£ is a base for a topology if ) € £, X = UE and for all
UV eg,
Unv=Jw:wecandWcUnV}.
Suppose that & is a base for a topology and {U;}!_, C € and N, U; # (). Then
for x € NI, U;, there exists Wy € & such that x € Wy C Uy N Us. Similarly, there
exists Wy € & such that x € Wy € Wy NUs C Uy NUs N Us. Continuing inductively

this way we find there exists W,,_; € £ such that x € W,,_; C N_,U;. This shows
that

(1.1) NP Ui = {W: W e € and W € N, Ui}

The proof of the following proposition is an easy consequence of Eq. (1.1) and
Proposition 1.3.

Proposition 1.5. If € is a base for a topology then the general element of T(E) is
of the form V = UB where B C £.

Example 1.6. Suppose that X = {1,2,3,4} and & = {A := {1,2}, B := {2,3}}
in which case
T(€)={ANB,A,B,AUB, X, (}.
If € = {{1,2},{2},{2,3},0, X} then £ is a base for 7(£).
Example 1.7. Let (X, p) be a metric space and let
&y ={Bx(r):x € X and r > 0} U{X,0}

where

Bao(r) ={y € X : p(x,y) <r}.

Then &, is a base for a topology which we denote by 7, and call the induced topology
on (X, p). Notice that V' is open in this topology iff for all x € V, there exists € > 0
such that B,(e) C V.

Proof. To prove that &£, is a base for a topology we must show: for any z,y € X
and €,6 > 0 such that B, (e) N By (6) # 0, then for all for all z € B,(€) N By(6) there
exists 7 > 0 such that B,(r) C B,(e) N By(6). This is fairly clear from Figure 1.
The formal proof is as follows. If w € B, (r), then by the triangle inequality,

plz,w) < p(x, 2) + p(w, 2) = p(x,z) +r
and similarly

ply,w) < ply, 2) + 7.
Therefore if we choose 0 < r < min(e — p(z, 2), 6 — p(y, 2)), then p(z,w) < € and
p(y, w) < 6, i.e. w € By(e) N By(6) showing that B, (r) C By(e) N By(6). m
If (X, p) is a metric space we will also define the closed ball at = of radius r by
Co(r) :={y € X : p(z,y) <7}

Let us now show that C' = Cy,(r) is indeed closed. Recall that in a metric space
that |p(z,y) — p(z, 2)| < p(y,2). lf y ¢ C, then 6 := p(z,y) —e > 0 and if z € B, (6)
we have

e<e+0—p(y 2) <plz,y) —ply,2) < p(x, 2)
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FIGURE 1. Squeezing a ball in the intersection.

which shows that Bs(y) N C = ). This shows that C° is open and hence that C' is
closed.

Definition 1.8. Let A C X be a set. The interior, A?, of A is the largest open set
contained in A, i.e.

A= J{ver:v A4}
The closure A, of A is the smallest closed set which contains A, i.e.
A=({C>A:CC X}
The boundary of A is the set
0A = A\ A°.
We also define the set of accumulation points of A to be
acc(A) ={z e X:VNA\{z} #0 for all V € 7 such that x € V'}.
A set E C X is said to be nowhere dense if E° = ().
Let A C X, then
(A% = f]{VC :VerandV C A} = ﬂ{C : C'is closed C D A} = Ae.
Similarly (A4)¢ = (A°)°. Hence the boundary of A may be written as
(1.2) 0A= A\ A’ = AN (A%° = AnAe,
which is to say 0A consists of the points in both the closure of A and A°.
Definition 1.9. A set E C X is a neighborhood of a point = € X ifz € E° C E.

Notation 1.10. Let 7, = {V € 7 : 2 € V}. So 7, consists of all the open
neighborhoods of x. A collection n C 7, is called a neighborhood base at ©z € X
if for all V € 7, there exists W € n such that W C V.

Proposition 1.11. Let A C X and x € X.
1. IfVCo X and ANV =0 then ANV = ).
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2. t € AffVNAAD for allV € 7,.
3.2 €AW VNALD and VNAS £ for all V € 7.

4. A= AUacc(A).

Proof. 1. Since ANV =), A C V¢ and since V¢ is closed, A C V. That is to
say ANV = 0.

2. We will prove z ¢ A iff there exists V € 7, such that VN A =(. Ifx ¢ A
then V=A4¢c 1, and VNACVNA={. Conversely if there exists V € 1, such
that VN A = () then by 1. ANV = (). The third assertion easily follows from the
second and Eq. (1.2). Item 4. is an easy consequence of the definition of acc(A)
and item 2. =

Lemma 1.12. Let A C Y C X, let AY denote the closure of A in'Y with its
relative topology and A = AX be the closure of A in X, then AY = AX NY.

Proof. Let € Y then x € AY iffforall V e 7}, VA # (). This happens iff
forall U € X, UNYNA=UnA# () which happens iff + € AX. That is to say
AY = AX nyY.

An alternative proof may be given as follows:

AY =n{BCY:AcCB}=n{CnY:AcCrC X}
=YNn(n{C:AcCrC X})=YnAX
wherein we have made use of the comments in Item (2) of Example 1.2. m

Definition 1.13. Let {x,} C X, we say x,, — = as n — 00 or lim, ez, = x if
for all V € 7., x, € V almost always (abbreviated a.a.) by which we mean that
{n:z, ¢ V} is finite.

Remark 1.14. (1) If 7 = {X, 0} then given {z,} C X, x,, — « for all z € X, i.e.
all sequences converge to all points = € X.

(2)We say that a topology 7 on X is Hausdorff or Ty if for all z # y € X there
exists V € 7, and W € 7, such that VN W = (. When 7 is Hausdorff the limits of
convergent sequences are unique. Indeed if z,, — = € X and y # x we may choose
V € 17, and W € 7, such that VN W = (. Then z,, € V a.a. implies x,, ¢ W for
all but a finite number of n and hence x,, - y.

Definition 1.15. Let (X, 7) be a topological space. We say that X is first count-
able iff every point x € X has a countable neighborhood base and we say that X
is second countable iff there exists a countable base for 7.

Example 1.16. Every metric space is first countable.

When 7 is first countable, we may formulate many topological notions in terms
of sequences. The next Lemma is one such example.

Lemr_na 1.17. Suppose there exists {xn}zo:l C A such that lim,_,oo x,, = x, then
x € A. Conversely if (X, 7) is a first countable space (like a metric space) then if
x € A there exists {x,},. ; C A such that lim,,_, x, = .

Proof. As we have already seen z € A iff VN A # ) for all V € 7,. If there
exists {z,} -, C A such that lim,_.o z, = x, then for all V € 7, we have z,, € V
a.a. so that V N A # (). This shows that = € A.

For the converse we now assume that (X, 7) is first countable and that {V,,},~,
is a countable neighborhood base at 2 such that V; > Vo D V3 O .... Thenif z € A,
there exists z,, € V,, N A for all n. It is now easily seen that z, >z asn — co. B
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Example 1.18. Let (X, p) be a metric space and 7 = 7, be the induced topology

on X. Then B, () C C,(e€). It is not generally true that B, (e) = C,(¢€). For example
let X = {1,2} and p(1,2) = 1, then B;(1) = {1}, By(1) = {1} while C(1) = X.
Another counter example is to take
X:{(x,y)ERQ:x:Oora::l}
with the usually Euclidean metric coming from the plane. Then
B(O,O)(l) = {(an) € Rz : ‘y| < 1}7

Biog)(1) = {(0,y) € R?: |y| < 1}, while
C0,0)(1) = Bo,0)(1) U{(0,1)}.
In spite of the above examples, Lemmas 1.19 and 1.40 below shows that for
certain metric spaces of interest it is true that B, (¢) = Cy(e).

Lemma 1.19. Suppose that (X, |-|) is a normed vector space and p is the metric
on X defined by p(x,y) = |z —y|. Then
B,(€) = Cx(€) and
9B.(e) ={y € X : p(x,y) = €}.

Proof. We must show that C := Cy,(e) C By(e) = B.Fory € C, let v =y — z,
then

vl = ly —a| = pla,y) <e
Let o, =1 —1/n so that oy, T 1 as n — oo. Let y, = & + anv, then p(z,y,) =
anp(z,y) < €, so that v, € By(€e) and p(y,yn) = 1 —a,, — 0 as n — oco. This shows

that y,, — y as n — oo and hence that y € B. m

Definition 1.20. Let f : X — Y be a function between two topological spaces.
Then f is continuous if f~1(V) is open in X for all V open in Y or equivalently
f71(0) is closed in X for all C closed in Y. We also say that f is continuous
at v € X if for all W open in Y such that f(xz) € W there exists V' € 7, such
that f(V) C W, i.e. x € f~ (W) for all W open in Y such that f(z) € W.

Definition 1.21. A map f : X — Y between topological spaces is called a home-
omorphism provided that f is bijective, f is continuous and f~! : ¥ — X is
continuous. If there exists f : X — Y which is a homeomorphism, we say that
X and Y are homeomorphic. (As topological spaces X and Y are essentially the
same.)

Lemma 1.22. Let f: X — Y be a function between two topological spaces. Then

1. f is continuous iff f is continuous at x for all x € X

2. If€ C P(Y) is a subbase for the topology on'Y then f is continuous iff f~*(V)
is open in X for allV € &.

3. If g: Y — Z is another continuous function then g o f is also continuous.

Proof.

1. (=) Let V C, Y. Then for all z € f~(V) there exists W, C, X such
that f(W,) C V. and therefore

= | mecx
zef~1(V)
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(<) Given z € X and V C, Y such that f(z) € V take W = f1(V) C, X
then x € W and f(W) C V.

2. (=) Clear. (<) Recall that f=1(7(€)) = 7(f~1(€)) where f~1(&) =
{f7Y(V) : V € &}. Thus if f=1(&) consists of open sets then f~!(7(£)) =
T(f_l(g)) C 7x, lLe. f_l(’Ty) CT7x.

3. Suppose that V C, Z, then (go f)™' (V) = f~Yg (V) Co X since
g H(V)c,Y.

|

Lemma 1.23. Suppose that f : X — Y is a map between topological spaces. Then
the following are equivalent:

1. f is continuous.

2. f(A) C f(A) forall ACX

3. f~Y(B) C f~Y(B) for all BC X.

Proof. If f is continuous, then f~* (f(A)) is closed and since A C f~1 (f(A)) C

! (f(A)) it follows that A c f~! (f(A)) . From this equation we learn that

f(A) c f(A) so that (1) implies (2) Now assume (2), then for B C Y (taking
A = f~1(B)) we have

f(f~X(B)) C f(f~X(B)) C f(f~Y(B)) C B
and therefore
(1.3) f1(B)c f71(B).

This shows that (2) implies (3) Finally if Eq. (1.3) holds for all B, then when B is
closed this shows that

which shows that
fH(B) = f~1(B).

Therefore f~(B) is closed whenever B is closed which implies that f is continuous.
[

Exercise 1.24. Suppose that A and B are closed subsets of a topological space X
and f € C(A) and g € C(B) such that f = g on AN B. Show

flz) if z€A
F(I)_{g((x) if xeB

defines a continuous function on A U B.
Solution. Let C be a closed set R or C depending on the context, then
FHC0)=f1(C)ug (O).

By the continuity of f and g, f~1(C) and g—*(C) are relatively closed sets in A and
B respectively and since A and B are closed, it follows that f~1(C) and g=1(C) are
closed in X as well. Therefore F~!(C) is closed in X and hence closed in AU B,
showing the F'is continuous. m
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Proposition 1.25. If f: X — Y is continuous at x € X andlim, . x, = € X,
then lim, o f(z,) = f(x) € Y. Moreover, if there exists a countable neighborhood
base n C T, then f is continuous at x iff lim f(x,) = f(x) for all sequences

{zn} C X which are convergent to x.

Proof. If f : X — Y is continuous and W' € 75,y C P(Y), then there exists
V € 7, such that f(V) C W. Since z,, — z, z,, € V a.a. and therefore f(z,) €
f(V)Cc W aa., ie. f(z,) — f(z) as n — oo.

Conversely suppose that n = {W,}>2, C 7, is a countable base and
nh_)nolo f(zyn) = f(z) for all sequences {z,} C X. By replacing W,, by Wi n---NW,

if necessary, we may assume that {W,} is a decreasing sequence of sets. If
f were not continuous at x then there exists V € 74(,) such that = ¢ f~1(V)°.
Therefore, W,, is not a subset of f~1(V) for all n. Hence for each n, we may choose
x, € Wy, \ f1(V). This sequence then has the property that z,, — = as n — oo
while f(z,) ¢ V for all n and hence lim,,_,o, f(z,,) # f(z). ®

1.1. Connectedness.

Definition 1.26. (X, 7) is disconnected if there exists non-empty open sets U
and V of X such that UNV = and X = UUV. Wesay {U, V'} is a disconnection
of X. The topological space (X, 7) is called connected if it is not disconnected,
i.e. if there are no disconnection of X. If A C X we say A is connected iff (A, 74)
is connected where 74 is the relative topology on A. Explicitly, A is disconnected
in (X, 1) iff there exists U,V € T such that UNA# QD UNAZ£D, ANUNV =0
and ACUUYV.

The reader should check that the following statement is an equivalent definition
of connectivity. A topological space (X, 7) is connected iff the only sets A C X
which are both open and closed are the sets X and (.

Remark 1.27. Let A CY C X. Then A is connected in X iff A is connected in Y.
Proof. Since
TAS{VNA:VCX}={VNANY:VCX}={UNA:UC,Y},

the relative topology on A inherited from X is the same as the relative topology on
A inherited from Y. Since connectivity is a statement about the relative topologies
on A, Ais connected in X iff A is connectedinY. m

The following elementary but important lemma is left as an exercise to the reader.

Lemma 1.28. Suppose that f : X — Y is a continuous map between topological
spaces. Then f(X) CY is connected if X is connected.

Proposition 1.29. Let (X, 1) be a topological space.

1. If B C X is a connected set and X is the disjoint union of two open sets U
and V, then either B C U or BCV.

2. a) If A C X is connected, then A is connected.

b) More generally, if A is connected and B C acc(A), then AU B is con-

nected as well.

3. If {Eq}ca is a collection of connected sets such that ()
Y = UaeA E,, is connected as well.

4. Suppose A, B C X are non-empty connected subsets of X such that ANB # (),
then AU B is connected in X.

aca Ba # 0, then
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5. Every point x € X is contained in a unique maximal connected subset C,, of

X and this subset is closed. The set C,, is called the connected component
of x.

Proof.
1. Since B is the disjoint union of the relatively open sets BNU and BNV, we

must have BNU = B or BNV = B for otherwise {BNU, BNV} would be
a disconnection of B.

. a. Let Y = A equipped with the relative topology from X. Suppose that

U,V C, Y form a disconnection of Y = A. Then by 1. either A C U or
A C V. Say that A C U. Since U is both open an closed in Y/ it follows that
Y = A C U. Therefore V = () and we have a contradiction to the assumption
that {U, V} is a disconnection of Y = A. Hence we must conclude that Y = A
is connected as well.

b. Now let Y = AU B with B C acc(A4), then

AY =ANnY = (AUacc(A)NY = AUB.

Because A is connected in Y, by (2) b. Y = AU B = AY is also connected.

. Let Y := J,c4 Euo- By Remark 1.27, we know that E, is connected in Y for

each aw € A. If {U,V'} were a disconnection of Y, By item (1), either E, C U
or B, C Vforall a. Let A ={a € A: E, C U} then U = Ugep Eq and
V = Uqea\aEa. (Notice that neither A or A\ A can be empty since U and
V' are not empty.) Since

0=UnV =|Jaeaser (BaNEg) D () Ea #0.

acA

we have reached a contradiction and hence no such disconnection exists.

. Let Y = AUB and, for sake of contraction, suppose that Y were disconnected.

Since A and B are connected, it follows from item (1) that {A4, B} is the only
possible disconnection of Y. In particular it follows that AY = A. On the other
hand we have seen that AY = ANY = AN B. Therefore A = AN B. But since
{A, B} is a disconnection, (} = AN B = AN B # () which is a contradiction.

. Let C denote the collection of connected subsets C C X such that x € C.

Then by item 3., the set C, := UC is also a connected subset of X which
contains z and clearly this is the unique maximal connected set containing x.
Since C, is also connected by item (2) and C, is maximal, C, = C,, i.e. C,
is closed.

Example 1.30. The connected subsets of R are intervals.

Proof. Suppose that A C R is a connected subset and that a,b € A with

a < b. If there exists ¢ € (a,b) such that ¢ ¢ A, then U := (—o0,c) N A and

V=

(¢, 00)N A would form a disconnection of A. Hence (a,b) C A. Let o := inf(A)

and ( := sup(A) and choose «,, 3, € A such that «,, < 8, and «,, | « and
Gn T B as n — oo. By what we have just shown, (a,,8,) C A for all n and hence
(o, B) = U2 (aup, Bn) C A. From this it follows that A = («, 8), [, 3), (o, 0] or
[a, B], i.e. A is an interval.
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Conversely! suppose that A is an interval, and for sake of contradiction, suppose
that {U,V} is a disconnection of A with a € U, b € V. After relabeling U and
V if necessary we may assume that a < b. Since A is an interval [a,b] C A. Let
p = sup ([a,b] NU), then because U and V are open, a < p < b. Now p can not
be in U for otherwise sup ([a,b]NU) > p and p can not be in V for otherwise
p < sup ([a,b] NU). From this it follows that p ¢ U UV and hence A # U UV
contradicting the assumption that {U,V'} is a disconnection. m

1.2. Separable Spaces.

Definition 1.31. A set A C X is said to be dense if A = X. A topological space
X is separable if there exists a countable dense subset A C X.

Example 1.32. he following are example of countable dense sets.

1. The rational number Q are dense in R equipped with the usual topology.

2. More generally, Q% is a countable dense subset of R? for any d € N.

3. If (X, p) is a metric space which is separable then every subset Y C X is also
separable in the induced topology.

Proof. (3) Let A C X be a countable dense set and let A = {x,,}>2 ;. Set
p(z,Y) =inf{p(x,y) : y € Y} the distance from = to Y. Recall that p(-,Y) : X —
[0,0) is continuous. Indeed, if z,z € X and y € Y then

(1.4) p(z,Y) < p(z,y) < p(z, 2) + p(2,9).
Taking the inf over y € Y in (1.4) implies
oY) < pla,2) +p(zY) or
(1.5) p(z,Y) = p(2,Y) < p(x, 2).
Equation (1.5) along with Eq. (1.5) with = and z interchanged shows that
lp(x,Y) = p(2,Y)| < p(z, 2)

which certainly implies that p(-,Y") is continuous.

Let €, = p(x,,Y) > 0 and for each n let y,, € B,, (+) NY if €, = 0 otherwise
choose y,, € By, (2¢,) NY. Then if y € Y and € > 0 we may choose n € N such that
p(y,xpn) < €, < €/3 and % <€/3. I €y >0, p(Yn,zn) < 2€, < 2¢/3 and if €, = 0,
P(Yn, Tr) < €/3 and therefore

P(Ysyn) < p(ys@n) + p(Tn, yn) <€
This shows that B = {y, }52, is a countable dense subset of Y. m

Proposition 1.33. FEvery separable metric space is second countable.

1(An Old proof.) Conversely suppose that A is an interval which for sake of contradiction is
not connected. Let U,V Co R such that ANU and ANV is a disconnection of A. Let a € ANU
and b € ANV and notice that a # b because ANU NV = (). With out loss of generality we may
assume that a < b. Since A is an interval, we know that [a,b] C A.

Now let p = sup{[a, b)) NU}. We will now finish the proof by showing that p € ANUNV which
will contradict the assumption that ANU NV = (. By Lemma 1.17 p € UN A]R and by (1) of
Lemma 1.12, U N A —Tn At Since U N A is closed in A, it follows that p € U N At = UnA.
From this it follows that p = b for otherwise sup{[a,b] N U} > p. But then p = b € VN A and
hencepe ANUNV.



MATH 240B LECTURE NOTES: TOPOLOGY AND FUNCTIONAL ANALYSIS 11

Proof. Let {x,}5°, be a countable dense subset of X. Let & =
{X,0} U {Bs,(rm)} C 7,, where {r,,}7°_; is dense in (0,00). Then & is a

m,n=1
countable base for 7,. To see this let V' C X be open and x € V. Choose
€ > 0 such that By(e) C V and then choose z, € Bg(¢/3). Choose ry, near
€/3 such that p(z,x,) < r, < €/3 so that © € B, (r,) C V. This shows
V =U{B.,(rm): By, (rm) CV}. m

1.3. Bounded Functions as Metric Spaces.

Definition 1.34. Let B(X,C) denote the bounded functions in C* and B(X,R)
denote the bounded functions in R¥. We may equip these spaces with the supremum
(or uniform) norm:

[flloo = I fllu = sup{[f(2)] : € X}

and let p be the associated “uniform metric,”

p(f,9) = [If = glloo for all f,g € B(X)
where B(X) is either B(X,C). or B(X,R).
Lemma 1.35. The metric space (B(X), p) as defined above is complete.

Proof. It is easily checked that p is a metric. For completeness, let {f,}52; be
a Cauchy sequence in B(X) then {f,(z)}52; C Cis Cauchy for all z € X. Hence
by completeness of C or R, f(z) = lim f,(z) exists for all z € X. Noting that

[f(@) = fu(@)| <[f(2) = fin(@)] + [fm(2) = fn()]
<|f(@) = fn(@)] + [ fm = Fulloos

we have
(@)~ ful@)] < T |£(2) ~ fon(@)| + 0L | frn — Fullow = T fon — Fullce

Taking the sup of the left member of this equation over x and the letting n — oo
gives

m—0oC

wherein we have used { f,,} is Cauchy in B(X). Therefore, f, — f uniformly and

[flleo < I1f = falloo + [ fallee <00
so that f € B(X). m

Notation 1.36. Given a topological space X, let C'(X) denote the continuous
functions from X — R or X — C. Also let BC(X) = C (X) N B(X), i.e. the space
of bounded continuous functions on X.

Proposition 1.37. The space BC(X) is a closed subspace of (B(X), p), where p
is the sup-norm metric.

Proof. We will prove this by showing that BC(X) C BC(X). Solet f € BC(X)
and choose f, € BC(X) such that f, L, fasn — oo, ie. p(f, fn) — 0. We will
shows that f € C(X) and hence f € BC(X) showing BC(X) C BC(X).
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Let z € X and € > 0 be given and choose N € N so large that ||f — fu|lcc < €/3
for all n > N. Then for any in X we have

[f(@) = f) < [f(2) = ful@)] + [fu(2) = (@) + [f () — fu(y)]
<2/|f = falloo + [ fu(2) = fu(y)]

<2t 1ful@) - faly).

3
Choose V' open in X such that x € V and f,(V) C By, (2)(€/3), i.e. so that
| fr(z) — fr(y)| < €/3 for all y € V. Then
2
|f(z) — fly)] < §€+§ =eforallyeV.

Since € > 0 is arbitrary, we shown that f is continuous at =. =

Remark 1.38. Notice that BC(X) is complete since it is easily verified that a closed
subset of a complete metric space is also a complete metric space.

1.3.1. Application: An ODE Existence Theorem. In this section suppose that
R and R? are equipped with the standard Euclidean topologies that f : RxR? — R
is a continuous function. Further assume there is a constant K < oo such that

|f(t,z) — f(t,y)| < K|z —y| for all t € R and =,y € R%.
We wish to find a C'! function y : R — R? solving the ordinary differential equation,
(1.6) y(t) = f(t,y(t)) with y(0) = yo

where yj is a given point RY. Tt is easily checked that solving Eq. (1.6) is equivalent
to finding a continuous function y : R — R? such that

(17) y(t) = o + /0 Fry(r)dr

In general no such solution exists. However, if we restrict ¢ in some neighborhood
of 0, and only require y to be defined on this neighborhood, solutions do exist. In
particular we have the following theorem.

Theorem 1.39. Keeping the notation and assumptions above. For all 0 < T <
K1, there exists a unique solution y : (—=T,T) — R? to Eq. (1.6).

Proof. Let X denote the complete metric space of bounded functions from
(—T,T) — R? equipped with the uniform metric:

p(x,y) = sup |x(t) —y(t)|.

te(=T,T)
For x € X, let
= Yo +/ f(r, a(
and notice that for z,y € X and ¢t € (—T,T) that

t

[f(T (1)) = f(7,y(7))ldr

‘/ Kla(r) — y(r)|dr

STK|[z = ylloo-

1S(2)(t) = S(w) ()] =
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FIGURE 2. An almost length minimizing curve joining z to y.

Taking the sup of this equation over t shows that

(1.8) 15(2) = S(W)lleo < allz — ylloo
where @ = KT < 1. This equation with y = 0 implies that

15(@)llc < 15(0)lloc + 1S(2) = S(0)[|oc < [1S(0)[|oc + arf|2ljeo < o0

Therefore S : X — X is a contraction and therefore by the contraction mapping
principle (see your homework) has a unique fixed point, y. This is to say

y(t) = S()(t) = o + / F(7),y(7))dr for all ¢ € (~T,1T).
|

1.4. Appendix on Riemannian Metrics. This subsection is not completely self
contained and may safely be skipped.

Lemma 1.40. Suppose that X is a Riemannian (or sub-Riemannian) manifold
and p is the metric on X defined by

p(z,y) =inf {{(0) : 0(0) =z and o (1) =y}

where U(c) is the length of the curve o. We define £(c) = oo if o is not piecewise
smooth.

Then

B,(€) = Cx(€) and
9B.(e) = {y € X : p(x,y) = €}.
_ Proof. Let C := Cy(€) C By(e) =: B. We will show that C C B by showing
B¢ C C°. Suppose that y € B¢ and choose § > 0 such that B,(6) N B = (. In
particular this implies that
By (6) N By(e) = 0.

We will finish the proof by showing that p(x,y) > e+ 8 > € and hence that y € C°.
This will be accomplished by showing: if p(x,y) < € + § then B,(6) N B,(e) # 0.

If p(z,y) < max(e, §) then either x € B,(6) or y € B,(¢€). In either case B,(6) N
B,(€) # (). Hence we may assume that max(e, §) < p(z,y) < e+ 6. Let « > 0 be a
number such that

max(e,0) < p(z,y) <a<e+d

and choose a curve ¢ from x to y such that ¢{(c) < a. Also choose 0 < §' < § such
that 0 < o — § < € which can be done since o — § < €. Let k(t) = p(y,o(t)) a
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continuous function on [0, 1] and therefore k£([0,1]) C R is a connected set which
contains 0 and p(z,y). Therefore there exists t9 € [0,1] such that p(y,o(to)) =
k(to) = ¢'. Let z = o(ty) € By(6) then

(2,2) < Urloaug) = ) — Ulg) < a— ply) —a— 8 < e
and therefore z € B, (€) N B, (6) #0. m

Remark 1.41. Suppose again that X is a Riemannian (or sub-Riemannian) mani-
fold and

p(z,y) =inf {{(c) : 0(0) = z and o(1) = y}.
Let o be a curve from z to y and let € = £(0) — p(z,y). Then for all 0 < u < v <1,
pla(u),a(v)) <L(o]pu,e0) +e
So if o is within € of a length minimizing curve from x to y that o}, ,) is within
€ of a length minimizing curve from o(u) to o(v). In particular if p(z,y) = (o)
then p(o(u),0(v)) = (0][u,e) for all 0 <u < v <1, i.e. if o is a length minimizing
curve from x to y that ol . is a length minimizing curve from o(u) to o(v).
To prove these assertions notice that

p(z,y) +e=1L(c) = Uo|j0,u) + €(0|ju0) + €]1w,1))
> p($a O'(U)) + K(U‘[u,v]) + p(O’(’U), y)
and therefore

U0l uw)) < p(,y) + € = p(z,0(w) = p(a(v),y)

(o(u),o(v)) +e.

2. NORMAL SPACES

<p
<p

Definition 2.1. A topological space (X, 7) is said to be normal or Ty if:

1. X is Hausdorff and
2. if for any two closed disjoint subsets A, B C X there exists disjoint open sets
V,W C X such that ACV and BC W.

Remark 2.2. Suppose that X is normal and C' C W Cy X and C'is closed. Then
there exists U C, X such that
CcUcUcCW.

Indeed, Since W€ is closed and C N W€ = (), there exists disjoint open sets U and
V such that C C U and W¢ C V. Therefore C C U C V¢ C W and since V¢ is
closed, we may conclude that C CcU cU Cc Ve C W.

The converse of the above remark holds as well. Namely if for all C ¢ W Cc, X
with C' closed, there exists U C, X such that C ¢ U ¢ U C W, then X is normal.
To prove this, if A and B are disjoint closed set in X, then A C B¢ and B¢ is open,
hence there exists U C, X such that

AcUcUc B¢

and by the same token there exists W C, X such that U ¢ W ¢ W C B¢. Taking
complements of the last expression implies

BcWe¢cWwecUe.
Let V=W Then ACU Co, X, BCV o XandUNV CcUNW® = 0.
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Lemma 2.3 (Urysohn’s Lemma for Metric Spaces). Every metric space, (X, p), is
normal. Moreover if A and B are disjoint closed subsets of X, then there exists
feC(X,[0,1]) such that f =0 on A and f =1 on B.

Proof. Let ps(x) = p(z, A) and pp(z) = p(z, B) denote the distance from z to
A and B respectively. We will show that

pa(z)
T = 03+ on @)
is the desired function. Since B¢ is open, if x ¢ B there exists an ¢ > 0 such that
B,(e) C B¢ and hence pg(z) > € > 0. Similarly if z ¢ A than pa(z) > 0 and
therefore because A°U B¢ = X,

pa(z) + pp(x) >0 for all x € X.

Therefore f is well defined and being the composition of continuous functions is
continuous so f € C(X,[0,1]). It is now clear that and f(z) = 0 if z € A and
f(z)=1ifz € B.

The open sets, V = f~1(—00,1/2) and W = f~1(1/2,00), are disjoint and
AcCcVand BCW. nm

Theorem 2.4 (Urysohn’s Lemma for Normal Spaces). Let X be a normal space.
Assume A, B are disjoint closed subsets of X. Then there exists f € C(X,][0,1])
such that f =0 on A and f =1 on B.

We will prove this theorem after the next Lemma. The idea of the proof is to
define f by its level sets. For motivational purposes, suppose that f € C(X,[0,1])
such that f =0on Aand f =1on B. Forr > 0,let U, = {f < r}. Then for r < s,
U, C{f <r} CUs and since {f <r} is closed this implies that

AcU,cU.c{f<rtcU,cCB°

for all 0 < r < s < 1. Therefore associated to the function f is the collection open
set {U,},( With the property that A C U, C U, CUs; C B¢ forall 0 <7 <s <1
and U, = X if » > 1. Finally let us notice that we may recover the function f from
the sequence {U,} ., by the formula

flz)=inf{r >0:2€U,}.
Hopefully these remarks will help the reader understand the motivation for the
proof of Theorem 2.4. For the remainder of this section let

D={k2":k=12...2"  n=12..}

r>0

be the dyadic rationales in (0, 1].

Lemma 2.5. Suppose that (X, T) is normal and A, B are disjoint closed subsets of
X. Then there exists {Uy}, . C T such that for all v < s in I,

AcU,cU,cUsCU = B
Proof. Let U; = B°. By Remark 2.2 there exists U; ;3 C, X such that
AC Uy CUypC U
Similarly we may construct Uy 2,Usz/q Co X such that
ACUyy CUyyy CUyjp CUyjg CUzpy CUspq C UL
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and then we may construct Uy /g, Us/s, Us s, Ur/s Co X such that

AC Ul/g C [_]1/8 C U1/4 C U1/4 C U3/8 C Ug/g C U1/2
C (71/2 C U5/8 C U5/8 C U3/4 C U3/4 C U7/8 C (77/8 c U;.

It is now easy to continue (inductively) in this fashion to construct the desired
sequence {U, }, . C 7. The details are left to the reader. m

Proof. (Urysohn’s Lemma for Normal Spaces) Let {U,}, ., C 7 be as in Lemma
2.5, U, = X if r > 1 and define

f(z) =inf{r e DU[1,00) : x € U,.}.

Notice that f(z) € [0,1] for all z € X, if € A then f(z) = 0 since z € U, for
all » € D and if x € B, then z ¢ U, for all » € D and hence f(z) = 1. So it
only remains to show f is continuous. We will do this by showing that {f < «}
and {f > a} are open sets for all a € R. This will shows f is continuous since
€ ={(a, ), (—00,a) : @ € R} is a subbase for the topology on R.

If x € X, then f(x) < o iff there exists r < « such that « € U, so that

{f<a}=JU o X.

r<a

Similarly, f(x) > o iff there exists » > a with x ¢ U,. Now if » > o and = ¢ U,
then for o < s < r, & ¢ Us C U,.. Thus we have shown that

{f>oz}:UU§COX.

s>«

Theorem 2.6 (Tietze Extension Theorem). Let X be a normal space, A C X,
—o<a<b<ooand f € C(A,[a,b]). Then there exists F € C(X, [a,b]) such that
Fla=f.

Proof. By translating and scaling we may assume a = 0 and b = 1. We will now
construct F' by a sequence of approximations. Firstly let B,C' C A be the closed
subsets of X defined by B = f~1([0,4]) and C = f~1([%,1]). By Urysohn’s Lemma
choose g1 € C(X, [0, 4]), such that g; =0 on B and g; = 1 on C. Let f; = f—g1]a,
then fi(z) = f(z) for x € B, 0 < fi(z) < f(z) < 1/3 for x € f71([1/3,2/3]) and
0 < fi(z) <2/3 for x € C and thus

0§f1§2/30nA

Applying the same construction we may find go € C(X,[0,2]) such that fy :=

3
% f1 — g2] 4 satisfies
0§f2§2/30nA.

Continuing this way inductively we may find g, € C(X, [0, %D and fn 1= 3 fn_1 —
Jn|a such that

0< fu<2/30n A
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Now on A,

2 2
f=ft+tn :g(fz +92) o1 = —f2+ 92+91

- 33 3T 93 392 g1 = 3 3 3 g3 392 g1

9 n—1 n—1 9 k—1
= <§> fn+ 22: (g) k-
Hence if we define F,(z) := >, (%) " gk, then F, converges uniformly to the
continuous function

Since |f,,] <2/3 on A,

n—1
|f = F|= lim |f — F,| = lim <§> |fa] =0 on A,

i.e. f = F|a. To finish the proof notice that, on X,

o) 9 k—1 2 9 k—1 2 1
s Z<3> Y. <3> 31-2/3 |

k=1

Corollary 2.7. Suppose that X is a normal topological space, A C X is closed,
F € C(A,R). Then there exists F' € C(X) such that F|4 = f

Proof. Let g = arctan(f) € C(A (=%,%)). Then by the Tietze extension theo-
rem, there exists G € C(X, [—%, 5]) such that G|4 =g. Let B=G*({-5,5}) C
X, then BN A = (. By Urysohn s lemma there exists h € C(X,[0,1]) such that
h=1on Aandh=0on B and in particular hG € C(4,(—3, 3)) and (hG)la=g.
The function F' = tan(hG) € C(X) is an extension of f. u

3. COMPACT SPACES

Definition 3.1. Let (X,7) be a topological space and A C X. We say a subset
U C 7 is an open cover of A if A C UU. The set A is said to be compact if every
open cover of A has finite a sub-cover, i.e. if i is an open cover of A there exists
Uy CC U such that Uy is a cover of A. (We will write A CC X to denote that
A C X and A is compact.) A subset A C X is precompact if A is compact. As
usual, the reader should notice that A C X is compact iff (A4, 74) is compact.

Definition 3.2. We say a collection F of closed subsets of a topological space
(X, 7) has the finite intersection property if NFy # () for all Fy CC F.

The notion of compactness may be expressed in terms of closed sets as follows.

Proposition 3.3. A topological space X is compact iff every family of closed sets
F C P(X) with the finite intersection property satisfies (| F # 0.
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Proof. (=) Suppose that X is compact and F C P(X) is a collection of closed
sets such that (| F = 0. Let

U=r:={C°:CeF}cCr,

then U is a cover of X and hence has a finite subcover, Uy. Let Fy = U5 CC F,
then NFy = ) so that F does not have the finite intersection property.

(<) If X is not compact, there exists an open cover U of X with no finite sub-
cover. Let F = U¢, then F is a collection of closed sets with the finite intersection
property while YF =0. m

Proposition 3.4. Closed subsets of compact spaces are compact.

Proof. Let F' C X be closed and U be an open cover of F' then &/ U {F*} is an
open cover of X. Therefore there exists Uy CC U such that Uy U {F°} covers X.
The finite collection of open sets U is a finite subcover of F. m

Proposition 3.5. Suppose that (X, T) is a Hausdorff space, K CC X and x ¢ K.
Then there exists U,V € 7 such that UNV =0, x € U and K C V. In particular
K s closed.

Proof. Because X is Hausdorff, for all y € K there exists V,, € 7, and U, € 7,
such that V, NU, = (). The cover {V,} _, of K has a finite subcover, {V,} _, for
some A CC K. Let V. =U{V,:ye At and U = N{U, : y € A}, then U,V € 7
satisfy € U, K C V and U NV = (). This shows that K¢ is open and hence that
K is closed. m

Proposition 3.6. If (X, 7) is Hausdorff and compact then X is normal.

Proof. Let A and B be closed disjoint subsets of X. By Proposition 3.4, both A
and B are compact. By Proposition 3.5, for all x € B there exist V,, € 7, U, C, X
such that A C U, and U, NV, = (). By Compactness of A, there is a finite set
A CC B such that V = UzepV, contains B. Let U := NgepalUs € 7, then UNV =)
while ACUand BCV. m

The next Proposition contains some easily verified facts about compact sets. The
proof is left to the reader

Proposition 3.7. Suppose that X andY are topological spaces.

1. Suppose that A C X compact and f : X — Y is a continuous, then f(A) is
compact in'Y.

2. The finite union of compact sets is compact.

3. If X is compact and f € C(X), then f is bounded, i.e. C(X)= BC(X).

4. If X is compact and Y is Hausdorff and f : X — Y is a continuous bijection
then f is a homeomorphism, i.e. f~1:Y — X is continuous as well. (Just
show that f(C)C Y for allC C X.)

3.1. Compactness in Metric Spaces. Let (X,p) be a metric space and let
Bl (e) = Bi(e) \ {z}. Let us start with the following elementary lemma which
is left as an exercise to the reader.

Lemma 3.8. Let E C X be a subset of a metric space (X, p). Then the following
are equivalent:

1. z € X s an accumulation point of E.

2. Bl(e)yNE#0 for alle > 0.
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3. B.(e) N E is an infinite set for all e > 0.
4. There exists {xy,},-, C E\{z} with lim, oz, = .

Definition 3.9. A metric space (X, p) is said to be € — bounded (e > 0) provided
there exists a finite cover of X by balls of radius €. The metric space is totally
bounded if it is € — bounded for all € > 0.

Theorem 3.10. Let X be a metric space. The following are equivalent.
(a) X is compact.
(b) Every infinite subset of X has an accumulation point.
(c) X is totally bounded and complete.

Proof. The proof will consist of showing that a = b = ¢ = a.

(a = b) We will show that not b = not a. Suppose there exists E C X,such
that #(E) = oo and E has no accumulation points. Then for all z € X there exists
Ve € 7, such that (V, \ {z}) N E = (). Clearly V = {V,} .y is a cover of X, yet
V has no finite sub cover. Indeed, for each x € X, V, N E consists of at most one
point, therefore if A CC X, UgeaV, can only contain a finite number of points from
E, in particular X # Uz Vy.

(b = ¢) Let € > 0 be given and choose 1 € X. If possible choose x5 € X such that
d(z2,x1) > €, then if possible choose x3 € X such that d(zs,{z1,22}) > € and con-
tinue inductively choosing points {z; }?:1 C X such that d(z,,, {z1,...,20-1}) > €.
This process must terminate, for otherwise we could choose E = {xj};il and
infinite number of distinct points such that d(zj,{z1,...,z;-1}) > € for all
Jj = 2,3,4,.... Since for all x € X the B,(¢/3) N E can contain at most one
point, no point € X is an accumulation point of F.

(¢ = a) For sake of contradiction, assume there exists a cover an open cover
V = {Vataca of X with no finite subcover. Since X is totally bounded for each
n € N there exists A,, CC X such that

X = |J B:(1/n).
TEA,

Choose x1 € Ay such that no finite subset of V covers Ky := B, (1). Since K; =
Nzea, K1 N B, (1/2), there exists zo € Ay such that Ko := K7 N B,,(1/2) can not be
covered by a finite subset of V. Continuing this way inductively, we construct sets
K, = K,_1NBy,, (1/n) with z,, € A, such no K,, can be covered by a finite subset
of V. Now choose y,, € K,, for each n. Since {K,} _, is a decreasing sequence of
closed sets such that diam(kX,,) < 2/n, it follows that {y,} is a Cauchy and hence

convergent sequence and
y= lim y, € N5y_1 K.
n—oo
Since V is a cover of X, there exists V € V such that x € V. Since K, | {y} and

diam(K,) — 0, it now follows that K, C V for some n large. But this violates the
assertion that K, can not be covered by a finite subset of V. m

Corollary 3.11. Let X be a metric space then X is compact iff all sequences
{zn} C X have convergent subsequences.

Proof. If X is compact and {z,,} C X

1. f#({zn:n=1,2,...}) < oo then choose x € X such that z, = x i.0. let
{nr} C {n} such that x,, =z for all k. Then z,, — =
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2. If #({zn:n=1,2,...}) = co. We know E = {z,,} has an accumulation
point {x}, hence there exists z,, — .

Conversely if F is an infinite set let {z,}2°, C E be a sequence of distinct
elements of E. We may, by passing to a subsequence, assume z,, — z € X as
n — 00. Now z € X is an accumulation point of £ by Theorem 3.10 and hence X
is compact. m

The following is an application of the previous theorem.

Proposition 3.12. Suppose that (X, p) is a complete separable metric space and
s a probability measure on B = o(7,). The for all € > 0, there exists K. CC X
such that p(K¢) > 1 —e.

Proof. Let {zy},-, be a countable dense subset of X. Then X = UgB,, (1/n)
for all n € N. Hence by continuity of u, there exists, for all n € N, IV,, < oo such
that u(F,) > 1—€2™" where F,, := Up", By, (1/n). Let K := N, F,, then

X\ K) = p(U, F) < S u(E) =S (1—p(F) < S =
n=1 n=1 n=1

so that p(K) > 1—e. Moreover K is compact since K is closed and totally bounded,;
K C F, for all n and each F,, is 1/n — bounded. =

3.2. Locally compact spaces.

Definition 3.13. A topological space X is locally compact if for all z € X there
exists a compact neighborhood N, of z, i.e. N, CC X and x € ND.

Remark 3.14. If X is Hausdorff, then X is locally compact iff for every x € X there
exists V' € 7, which is precompact. To verify this assertion, suppose that N, is
as in Definition 3.13. Let V = N? € 7, then, since N, is closed by Proposition
3.5, V C N, and hence V is compact by Proposition 3.4. Conversely if V € 7, is
precompact, N, = V is a compact neighborhood of z because z € V C NO.

Finite dimensional Euclidean spaces, R™, are typical examples of locally compact
spaces. Also any subset of a locally compact space with the relative topology is
locally compact.

Proposition 3.15. Suppose X is a locally compact Hausdorff space (LCH for
short) and U C, X. For all compact subset K of X such that K C U, there exists
a precompact open set V such that K CV cV c U C X.

Proof. By local compactness, for all z € K, there exists U, € 7, such that U,
is compact. Since K is compact, there exists A CC K such that {U, }me A s a cover
of K. The set O = U,cpU, is an open set which contains K and is precompact
since O = UpeaU, — the finite union of compact sets. So by replacing U by U N O
if necessary, we may assume that U is compact.

Let Y = U, a compact Hausdorff space and hence a normal space. Since OU
is closed in X and contained in Y, OU is close in Y.2 Now K and OU are closed

2Notice that the boundary of U in Y, 8y U, is given by the same as the boundary of U in X
because

HU=UY\U=UNnY\U=U\U=aU.
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disjoint subsets of Y and therefore, there exists disjoint relatively open sets V' and
W in Y such that K C V and U C W. Since V C Y\ W C Y,

V=VnY=VY¥cyYy\WcY\oUu =1,
wherein we have used V' C Y with Y closed in X. Finally V is open in X since

V CU C, X and V is relatively open in U. (So V. =W NU for some W Cy X and
hence V=VNU=WnNUC, X.) m

Definition 3.16. Suppose that f : X — C is a function. The support of f,
supp(f), is the smallest closed set outside of which f is 0, i.e.

supp(f) = {f #0} =N{C: CC X and f|c. =0} .
Alternatively
supp(f)¢={f=0"=U{V:V erand f|y =0}.

It U Co X, we will write C.(U) for those function f € C(U) with compact support
in U. By abuse of notation, we will consider C.(U) as a subspace of C.(X) by
identifying f € C.(U) with its extension by zero to a function on X.

For example, let f(z) = sin(z)1jg 4x)(z), then

{f # 0} = (0,4m) \ {7, 2, 3}
and therefore supp(f) = [0, 4~].

Lemma 3.17 (Locally Compact Version of Urysohn’s Lemma). Let X be a locally
compact Hausdorff space and K T U C, X. Then there exists f € C(X,[0,1]) such
that f =1 on K and supp(f) CC U. Alternatively put, if K is compact and C' is
closed in X such that KNC = (), then there exists f € C.(X,[0,1]) such that f =1
on K and f=0 on C.

Proof. Let V be an precompact open set as in Proposition 3.15, then V is a
compact Hausdorff space and hence is normal. Since K and 0V are closed subsets
of V, Urysohn’s lemma implies there exists g € C(V,[0,1]) such that g = 1 on
K and g = 0 on 9V. We may now define f = g on V and f = 0 on V*, then
f € C(X,][0,1]) is the desired function since supp(f) C V and V is compact. m

Theorem 3.18 (Locally Compact Version Tietze’s Extension Theorem). Let X be
a locally compact Hausdorff space, K be a compact subset of X and f € C(K,[0,1]).
Then there exists F € C(X,[0,1]) such that F|x = f. Moreover F may be taken
to vanish outside a compact set, i.e. supp(F) is compact.

Proof._By Proposition 3.15 there exists a precompact open set, V, such that
KcVcV cX Letge C(KUIV) be defined by

_ [ f@) zeK
g(””){o x € 0V.

Then by the Tietze extension theorem, there exists G € C(V,[0,1]) such that G|x =
f and Glagy = 0. The desired function F' € C(X) may now be defined by

[ G(z) forzeV
F(x)_{o xdV.
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Definition 3.19. Let X be a topological space. We say that a function f € C'(X)
vanishes at infinity if for all € > 0, {|f| > €} is compact in X. We will denote the
function f € C(X) vanishing at infinity by Co(X).

Notice that Cy(X) C BCO(X).

Proposition 3.20. Let X be a topological space, BC(X) be the space of bounded
continuous functions on X with the supremum norm topology. Then

1. Co(X) is a closed subspace of BC(X).

2. If we further assume that X is a locally compact Hausdorff space, then
Co(X) = Ce(X).

Proof.

1. Suppose that {f,}.., C Co(X) and f € BC(X) such that ||f — fn]| — 0 as

n — 0o. Since

we have for all € > 0 that

{Ifl z e Clfal +1f = full Z e} ={lful Ze—|If - ful} CC X

provided that n is large enough that || f — f,|| < e. Since {|f| > €} is a closed
subset of a compact set, {|f| > €} is compact as well. Hence f € Cy(X).

2. Since Cy(X) is a closed subspace of BC(X) and C.(X) C Co(X), we always
have C.(X) C Co(X). Now suppose that f € Co(X) and let K,, = {|f| >
1} £ X. By Lemma 3.17 we may choose ¢,, € Cc(X, [0, 1]) such that ¢, =1
on K. Define f, = ¢, f € Co(X). Then

1

This shows that f € C.(X).
|

Proposition 3.21 (Alexanderov Compactification). Suppose that X is a non-
compact Locally compact Hausdorff space. Let X* = X U {oco}, where {oco} is
a some point disjoint form X. Let

T=7U{(X\K)U{o}: KCC X}.

The T* is a topology on X* and (X*,7*) is a compact Hausdorff space. Moreover
if f € C(X) extends to continuously to X* iff f = g+ c with g € Co(X) and ¢ € C.
The extension is given by f(o0) = c.

Proof. Suppose that U,V € 7*. If U or V € 7, then UNV € 7 C 7 and
U=(X\K)U{oo} and V = (X \ L)U{co} where K and L are compact sets then

UNV =(X\K)N(X\L)U{col = (X\ (KUL)U{co} €7

since K U L is compact. Therefore 7* is closed under intersections. Now if U =
(X \ K)U{oo} with K CC X and V € 7, then

X \NOUUM=X\(X\K)u)=XN(KNV)=KnV*
a compact set and hence

UUV = (X \(KNV))U{cc} € 7.



MATH 240B LECTURE NOTES: TOPOLOGY AND FUNCTIONAL ANALYSIS 23

Similarly if U, = (X \ K4) U {oo} with K, CC X for all a € A, then
UacaUa = (X \ NaeaKa) U {oo} € 7.

The other possible cases are now easily checked so the 7* is closed under arbitrary
unions. Since () and X™* are in 7* (because ) is compact), it follows that 7* is a
topology.

Let i : X — X* be the inclusion map. Then ¢ is continuous and open, i.e. i(V) is
open in X* for all V open in X. If if f € C(X*), then g = f|x — f(00) = foi— f(c0)
is continuous on X. Moreover, for all € > 0 there exists V' € 75 such that

lg(@)] = |f(x) — f(o0)] < eforall z € V\ {0} .

Since V = (X \ K) U {oo}, it follows that g vanishes at oo since {|g| > ¢} C K.
Conversely if g € Co(X) extend g to X* by setting g(co) = 0. Given € > 0, the
set K = {|g| > €} is compact, hence g(X* \ K) C (—e¢,¢€), which shows that g is
continuous at co and so g is continuous on X*. Now it f = g + ¢ with ¢ € C and
g € Co(X), it follows by what we just proved that f extended to X™* by f(oc0) = ¢
is continuous on X*. m

Lemma 3.22. Suppose that X is a locally compact Hausdorff space and E C X.
Then E is closed iff EN K is closed for all K CC X.

Proof. Since compact subsets of Hausdorff spaces are closed, E N K is closed
if £ is closed and K is compact. If E were not closed there exists * € E \ E. By
Proposition 3.15 there exists a compact set K C X such that x € K° C K. I now
claim that x € K N E. Indeed, if V € 7, then VN KNEDVNK'NE #()

since VN K° € 7, and # € E. This shows that x € K N E and since = ¢ E we
see that v € KN E\ (K N E). In particular this shows that K N E # K N E and
hence K N E is not closed. =

3.3. Partitions of Unity.

Definition 3.23. Let {Ua}aca be an open cover of E C X. We say {h, €
C(X,[0,1])}aca is a partition of unity of E subordinate to {U,} if

1. supp(ha) C U, for all a € A,
2. for all x € X there exists neighborhood N, of x such that h,|y, = 0 for all
but finitely many o.
3. > ho(z)=1foralzecFE.
a €A
Proposition 3.24. Suppose that X is a locally compact Hausdorff space, K C X
is a compact set, and U = {Uj}?:1 is an open cover of K. Then there exists a
partition of unity {h; };L:l of K subordinate to U such that supp(h;) is compact for
all j.

Proof. For all + € K choose V, € 7ysuch that V, C U; for some j

and V, is compact. Choose A CC K such that K C |J V,. Let F; =
xEA

U{‘_/m cx€ANandV, C Uj}, then Fj; is compact, F; C U; for all j, and K C
Un_, Fj. Choose f; € Cc(X,[0,1]) such that f; =1 on F; and supp (f;) C U;. Then

g:Z.fj € OC(X)
j=1
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and g > 1 on K and hence K C {g > 3}. Choose v € C.(X,[0,1]) such that v =1
on K and supp(v) C {g > 3} and define fo =1 —v. Then fo =0 on K, fo =1 if
g < % and therefore,
fot it +fan=fo+tg>0
on X. The desired partition of unity may be constructed as
fi(x)
hi(x) = .
= R@ T
Indeed supp (hj) = supp (f;) C Uj, hj € Co(X,[0,1]) and on K,
ikt fe  fitet e

fot i+t +f [+ +Ta

hi+- -+ h, =

4. COMPACTNESS IN FUNCTION SPACES
In this section, let X be a topological space.

Definition 4.1. Let F C C(X).

1. F is equicontinuous at x € X iff for all € > 0 there exists U € 7, such that
lf(y) — f(z)| <eforally e U and f € F.

2. F is equicontinuous if F is equicontinuous at all points z € X.

3. F is pointwise bounded if sup{f(z) € C|f € F} < oo for all x € X.

Theorem 4.2 (Ascoli-Arzela Theorem). Let X be a compact Hausdorff space and
F C C(X). Then F is precompact in C(X) iff F is equicontinuous and point-wise
bounded.

Proof. (<) Since B(X) is a complete metric space, we must show F is totally
bounded. Let € > 0 be given. By equicontinuity there exists V, € 7x for all
x € X such that |f(y) — f(z)| < €/2if y € V, and f € F. Since X is compact
we may choose A CC X such that X = UgcpV,. We have now decomposed X
into “blocks” {V.}, . such that each f € F is constant to within € on V. Since
sup{f(z) :x € A and f € F} < o0, it is now evident that

M =sup{f(z):z€ X and f € F} <sup{f(z):z € Aand f € F} + € < 0.

Let D = {ke/2: k € Z} N [-M, M] and notice that if f € F and ¢ € D" (i.e.
¢ : A — D is a function) is chosen so that |p(x) — f(z)| < €/2 for all x € A then
for x € A and y € V,

1f(y) = o) < [f(y) = f(@)| + |f(z) — p(@)] <e
Hence if we set, for ¢ € D,
Fo={feF:|fly) —¢p(x)] <eforyeV, and x € A}

then F = J{Fs: ¢ € D }.
Let T := {g/) eDA:Fy £ (0} and for each ¢ € I' choose f, € FyNF. For f € Fy,
x € A and y € V,, we have
1f(y) = fo )l < 1f(y) — (@) +[¢(x) — fo(y)| < 2e.
So ||f — fsll < 2¢ for all f € Fy showing that Fy4 C By, (2¢). Therefore,

F = UgerFp C Uper By, (2¢€)
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and because € > ( was arbitrary we have shown that F is totally bounded.

(=) Since ||| : C(X) — [0,00) is a continuous function on C(X) it is bounded
on any compact subset F C C'(X). This shows that sup{||f| : f € F} < co which
clearly implies that F is pointwise bounded.? Suppose F were not equicontinuous
at some point x € X that is to say there exists ¢ > 0 such that for all V €
Tz, sup sup |f(y) — f(x)| > e.* Equivalently put, to each V € 7, we may choose

yeV feF
(4.1) fv € Fand zy € V such that |fy(z) — fv(zy)| >€®

| .
|| R

Set Cy ={fw W emand WCV} C F and notice for any V CC 7, that

NyevCy 2 Chy # 0,

so that {Cy },, € 7, C F has the finite intersection property. Since F is compact,
it follows that there exists some

fe () ev#0.
Vet
Since f is continuous, there exists V' € 7, such that |f(x) — f(y)| < €/3 for all
y € V. Since f € Cy, there exists W C V such that ||f — fi| < €¢/3. We now arrive
at a contradiction since

€< |fw(x) = fwaw)| < [fw(@) = f(@)| + [f(@) = flaw)] + [f(@w) — fw(zw))
<€/3+¢€/3+¢€/3=¢

which is a contradiction. m

Definition 4.3. A topological space (X,7) is said to be ¢ — compact if there
exists compact set K,, C X such that X = U2 ; K,,. Notice that we may assume,
by replacing K,, by K3 U Ko U---U K, if necessary, that K, T X.

Lemma 4.4. Suppose X is a o-compact and locally compact Hausdorff space. Then
there exists precompact open set S, C X such that S,, C Sy, C Spy1 for all n.

Proof. Choose K,, T X as in Definition 4.3. Let U; C 7 be a finite cover of K,
by precompact open sets. Take S; = UlU;. Then 57 is open and precompact. We
may now inductively construct S,, as in the lemma with the added property that
K, C S,. Indeed if S1,...,S,, have been chosen as described such that K; C S; for
alli =1,2,...,n, then let U, a finite cover of K,, US,, by precompact open sets
and define S,11 = UWpy1. B

Corollary 4.5. Let {f,} C C(X) be a pointwise bounded sequence of functions
which is equicontinuous on compact subsets of X. Then there exists a subsequence

30mne could also prove that F is pointwise bounded by considering the continuous evaluation
maps ez : C(X) — R given by ez (f) = f(x) for all z € X.

4If X is first countable we could finish the proof with the following argument. Let {V;, oy
be a neighborhood base at x such that V3 D Vo D V3 D .... By the assumption that F is not
cquicontinuous at , there exist fp € F and zn € Vi, such that |frn(z) — fu(zn)| > € V n. Since
F is a compact metric space by passing to a subsequence if necessary we may assume that fp,
converges uniformly to some f € F. Because £, — & as n — oo we learn that

<2l fn = fll + 1 f(x) — f(zn)| — 0 as n — oo

which is a contradiction.
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{nk} C {n} such that gi := fn, is a sequence which is convergent uniformly on
compact subsets of X.

Proof. Let K,’s be compact subsets of X and use Proposition 3.15 to find
precompact open sets V,, containing K,,. So by replacing K,, by V,, if necessary, we
may find compact sets K,, such that X =122 K9.

We may now apply Theorem 4.2 repeatedly to find a nested family of subse-
quences

{fa} 2 {gnt D {ga} D {gn} - .
such that { gﬁ}zozl is a sequence of continuous functions uniformly convergent on
K. Using Cantor’s trick, define the subsequence {hy} of {f,,} by hx = gF. Then
{ht} is uniformly convergent on each K,,. Now if K C X is an arbitrary compact
set, there exists M < oo such that K C UM, K9 c UM | K,, and therefore {hs} is
uniformly convergent on K as well.

Theorem 4.6 (Peano’s Existence Theorem). Suppose f : R x R? — R 4s a
bounded continuous function. Then there exists a solution to the differential equa-
tion

x(t) = f(t,x(t)) fort >0 with
z(0) = zo.

Proof. Given € > 0, there exists a unique function z. € C([—¢, 00) — R?) such
that z.(t) =z for —e <t <0 and

t
(4.2) ze(t) = o + /0 f(r,ze(T — €))dr for all t > 0.

Indeed if t € [0, €], define z.(t) by Eq. (4.2), then use Eq. (4.2) to define z. on
e, 2¢], etc. Let M = sup|f(t, z)| < oo, then

t
|ze(t)] < |~”€0|+/0 [f(r, (T — €))| dr < [xo| + Mt

and

/: flr,x(r —€))dr

for all ¢t > s > 0 and ¢ > 0. Therefore {z.}.~0 is an equicontinuous pointwise
bounded family in C([0,00),R?) and hence there exists € | 0 such that x., uni-
formly converges on compact subintervals of [0,00).to some z € C([0,00), R%).
Passing to the limit in Eq. (4.2) implies that

|ze(t) — ze(s)| =

< M|t — s8]

z(t) = lim z,, (t) = zg —I—/O f(r,z(1))dr.

k—oo
L]

We could give another proof of this theorem as follows. Let fc(t,-) = f(¢,) * 6
where 6, is an approximate ¢ — function as described in Lemma 5.2 and 5.3 below.
Then let z(t) solve

Ze(t) = fe(t,z(t)) for t > 0 with

z(0) =z
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which we know has solutions by the Lipschitz case proved on the homework. More-
over {z.}. o has uniformly bounded derivatives and hence are equicontinuous.
They are also pointwise bounded, so there exists €, | 0 such that z, uniformly
converges on compact subintervals of R to some = € C(R,R?). Passing to the limit
in the integral equation

re(t) = o + /0 fou (7,0, (7))

then shows that x solves the desired ordinary differential equation.

5. APPROXIMATION THEOREMS
5.1. Classical Weierstrass Approximation Theorem.

Theorem 5.1 (Weierstrass Approximation Theorem). Let f € C([a,b],R), then
there exists polynomials Pp(x) such that P, — f uniformly.

We will give the proof after the next two lemmas. For this lemma let {Q;,} -
be the following sequence of “approximate 6 — functions:”

n=1

1 1
(5.1) Qn(z)=—(1- xz)"lmgl where c,, := / (1 —2%)"dx.

Cn, 1

We will give two proof of this theorem. The first is based on approximate 6 —
functions and the second is based on the weak law of large numbers.

Lemma 5.2. Let {Q,,} -, be the sequence of functions defined in Eq. (5.1), then

/RQn(x) d:z:_/_ll Qn(@) de =1

lim / Qn(z)dz = 0.

n— oo
|z >e

and for any € >0

Proof. The first assertion is obvious from the definition of ¢,,. For the second
we have (using symmetry)

2 "d
O ()da = f ’
x| >e Qfo 2)ndx + 2f — z?)"dx
1 xT n n
<fe 6(1_ )dx:(lix)—i_l‘i
S -arde (e
(1 _ )n+1
= W — 0 as n — OoQ.
2 (11— 22)nd
/ Qn(z)de = — J s )1 !
|| >e 2 [, (1 —a?)nde +2 (1 - x2)"dac
JoEA - a?)rde e [l a(l—a?)nda

- - xQ)”dx - (1- 62)
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Combining this equation with

1 (1 _ 2\yn+l _ £2)(n+1)
x(1 — 2?)"dx = (L—a7) |} = (1—€¢)
. 2(n+1) 2(n+1)

shows that
(1 _ 62)(n+1) (1 _ 62)
< P—
@n(@)de < 1-e)me2n+1)  e2(n+1)

— 0 asn— oco.

|z =e
]

Lemma 5.3. Suppose that {Qn}zozl is a sequence of positive functions on R such
that

5.2 n(x) dx =1 and

(52) [ @@

(5.3) nh_)ngo Qn(x)dz =0
|z]>e

for alle > 0. For f € BC(R), let

Then Q,, * f converges to f uniformly on compact subsets of R.

Proof. Let x € R, then because of Eq. (5.2),
Qe )~ 1)) = | [ Q) 0o =)~ s ] < [ Quto) 50 =) - )]
R
Let M =sup{|f(z)|: z € R} and € > 0, then by and Eq. (5.2)

|Qn * f(2) = f(2)] < Qu) |f(z —y) — f(2)ldy

ly|<e

+ 5 Qu) [f(z —y) — f(z)ldy
y|>e

S\Sl‘l<p |f(x+2) = f(2)|+2M y Qn(y)dy
z|<e Yy|>e

Let K be a compact subset of R, then
sup |@Qn * f(z) — f(z)| < sup |f(x+2)— f(x)| +2M Qn(y)dy
zeK |z|<e,xe K |ly|>e

and hence by Eq. (5.3),
lim sup sup [Qn * f(z) — f(z)| < sup |f(z+2) = f(2)].

n—ooxe K |z|<e,xe K

This finishes the proof since the right member of this equation tends to 0 as € | 0
by uniform continuity. m
Proof. (Weierstrass Approximation Theorem) We begin with two reductions:

1. We may reduce the problem to the case where a = 0 and b = 1 by considering
the function

g(z) = fla+z(b—a)) for z € [0,1].
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2. Moreover, by considering the function go(z) = g(x) — ( ) — z(g(1) — g(0))
we may assume that f € C([0,1],R) and f(0) = f(1) =

So suppose that f € C([0,1],R) and f(0) = f(1) = 0 and that f has been
extended to all R by setting f = 0 on R\[0,1]. Let Q,,(x) be defined as in Eq. (5.1).
Then by Lemma 5.2 and 5.3, p,,(z) := (Qy, * f)(z) — f(z) uniformly for = € [0, 1]
as m — 00. So to finish the proof it only remains to show p,(x) is a polynomial
when z € [0,1]. This follows for z € [0, 1] since

1—(x—vy Zak

where ay(y) are polynomials in y and therefore

/ Qule — o) F)dy = — f< Y1 — (2 — 9)?)™ o yy<1dly

Cn

=— f( )1 = (z —y)*)"dy

L]

Proof. (The second proof of the Weierstrass Approximation Theorem) As in
the first proof it suffices to assume that f € C([0,1]). For z € [0,1] let p, be the
measure on {0,1} given by p, ({0}) = 1 — 2 and p, ({1}) = z. For n € N and
z € [0,1], let x” denote the n — fold product of i, with itself on Q, :={0,1}" and
let X;(w) =w; for we {0,1}"". We also let S, = (X1 + X2+ -+ X,,)/n. The law
of large numbers then states that S,, should be close to

/ Xidu;:/ wdiy(w)=1-2+0-1—2) ==
Q, {0,1}

when n is large Let us define

:[2 f(Sn)d,uZ: Z f<W1+WQ<;...+wn>H$wi(lx)l—wi.
i=1

weR,

The later shows that p,(z) is a polynomial in x of degree at most n. By the law
of large numbers we expect that p,(z) is close to f(z), a fact which we will now
verify. Let € > 0 be given, then since p2(Q2,) =1,

1£(x) — pula)| = [2 (F(x) — £(S0)) dyen| < [2 F(@) — F(Sa)|dpe”

< / @) — F(Sa) dpl + / F(@) — F(S,) du”
{|Sn—z|>e€} {|Sn—z|<e}
<2Mp; (‘Sn - :17‘ > 6)

+sup{|f(y) — f(=)[ : y €[0,1] and |y —z[ < ¢}
(5.4) < 2Mypig (|Sn — x| > €) + &

where M = sup {|f(z)|: z € [0,1]} and
be =sup{|f(y) — f(x)] : 2,y € [0,1] and |y — z| < €}.
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By uniform continuity, 6 — 0 as € — 0 and by Chebyshev’s inequality,

n

1 1 1
b (S — 2 > €) < = / (Sn — )27 = — / (L3, — )2
€ € Ja, n i

n

— oz [ 30 () - o)

Qo j=1
By Fubini’s theorem, it follows that for k # j that

2
[ (=) ) l | w-o) dmw)] -0
Q,, {0,1}
and
[ Ge—apai= [ @=-afdun() = (- aPotati-a) <2
Q,, {0,1}
Combining the last three displayed equations shows that
1 2
mn _ < - —_
(S0 — ] > ) < —on =
which combined with Eq. (5.4) implies that

4M
sup |f(x) —pn(x)] < —5 + e
s 11(0) ~ (o)l <

and therefore
lim sup sup |f(z)—pn(z)] <é6 —0ase—0.
n—eo z€[0,1]

5.2. The Stone-Weierstrass Theorem. We now wish to generalize Theorem 5.1
to more general topological spaces. We will first need some definitions.

Definition 5.4. Let X be a topological space and A C C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

1. A is said to separate points if for all distinct points x,y € X there exists
f € A such that f(x) # f(y).

2. A is an algebra if A is a vector subspace of C(X) which is closed under
pointwise multiplication.

3. A is called a lattice if fV g := max(f,g) and f A g = min(f,g) € A for all
f,ge A

4. A C C(X) is closed under conjugation if f € A whenever f € A.%

Remark 5.5. If X is a topological space such that C'(X,R) separates points then
X is Hausdorff. Indeed if z,y € X and f € C(X,R) such that f(z) # f(y), then
f~Y(J) and f~Y(I) are disjoint open sets containing = and y respectively when [
and J are disjoint intervals containing f(z) and f(y) respectively.

Lemma 5.6. If A C C(X,R) is a closed algebra then |f| € A for all f € A and A

is a lattice.

6T his is of course no restriction when C(X) = C(X,R).
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Proof. Let f € A and let M = sup |f(z)|. Using Theorem 5.1, there are
zeX
polynomials P, (t) such that

lim sup ||t| — P.(t)] = 0.

n—o00 [t|<M
By replacing P, by P, — P, (0) if necessary we may assume that P,(0) = 0. Sine
A is an algebra, it follows that f,, = P,(f) € A and |f| € A, |f| being the uniform
limit of the f,,’s. This also shows that A is a lattice since

L rgt1r—a

(f+g—1f =4l

fvg=

frhg=

N~ o

Lemma 5.7. Let A C C(X,R) be an algebra which separates points and xz,y € X
be distinct points such that

(5.5) 3 f,g € A such that f(z) # 0 and g(y) # 0.
Then
(56) Vi={(f(2), f() : f € A}=R”.

Proof. It is clear that V is a non-zero subspace of R? If dim(V) = 1, then
V = span(a, b) with a # 0 and b # 0 by the assumption in Eq. (5.5). Since (a,b) =
(f(x), f(y)) for some f € Aand f? € A, it follows that (a?,b?) = (f?(2), f2(y)) € V
as well. Since dimV =1, (a,b) and (a?,b?) are linearly dependent and therefore

2
0—da<z ;>—mw—mﬂ—mw—@

which implies that @ = b. But this the implies that f(z) = f(y) for all f € A,
violating the assumption that A separates points. Therefore we conclude that
dim(V) =2, i.e. that V =R%. =

Theorem 5.8 (Stone-Weierstrass Theorem). Suppose X is a compact Hausdorff
space. A C C(X,R) is a closed subalgebra which separates points and for x € X
let

A, ={f(z): f € A} and
Then either one of the following two cases hold.

1. Ap = R for all x € X, i.e. for all x € X there exists f € A such that

F(x) £ 07
2. There exists a unique point xg € X such that A,, ={0}.

Moreover in case (1) A = C(X,R) and in case (2) A=71,, ={f € C(X,R):
f(zg) = 0}.

Proof. If there exists x¢ such that A,, = {0} (x¢ is unique since A separates
points) then A,, C Z,,. If such an zq exists let C = 7, and if A, = R for all z,

0

7If A contains the constant function 1, then this hypothesis holds.
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set C = C(X,R). Let f € C, then by Lemma 5.7, for all z,y € X such that  # y
there exists g, € A such that f = g, on {z,y}.%

Claim 5.9. Given € > 0 and x € X there exists g, € A such that g, (x) = f(z)
and f < gz +€ on X.

To prove the claim, let V, be an open neighborhood of y such that |f — gu,| < €
on V, so in particular f < € + g5, on V,. By compactness, there exists A CC X

such that X = |J V,. Set
yeA

9z(2) = max{g.y(2) : y € A},
then for any y € A, f < €+ gzy < €+ g, on V,, and therefore f < € + g, on X.
Moreover, by construction f(x) = g5(z).

We now will finish the proof of the theorem. For each x € X, let U, be a
neighborhood of x such that |f — g,] < € on U,. Choose I' CC X such that
X = U U, and define

zel’
g=min{g,:x €T} € A

Then f <g+eon X and for z € T', g, < f 4+ € on U, and hence g < f 4+ € on U,.
Since X = |J U, we conclude that
xel’
f<g+eandg< f+eon X,
i.e. that |f — g| < e on X. Since € > 0 is arbitrary it follows that f € A =.4. m

Theorem 5.10 (Complex Stone-Weierstrass Theorem). Let X be a compact Haus-
dorff space. Suppose A C C(X,C) is closed in the uniform topology, separates
points, and is closed under conjugation. Then either A = C(X) or A = I, for
some xg € X.

Proof. Since

2%

s
s

f+
2
Re f and Im f are both in A.Therefore

Ar ={Re f,Im f: f € A}

is a real sub-algebra of C(X,R) which separates points. Therefore either Ax =
C(X,R) or Ag = Z,, N C(X,R) for some z¢ and hence A = C(X,C) or 7,
respectively. m

Re f = and Imf:f

Example 5.11. Let X = S' = {2 € C: |z| = 1} and A be the set of polynomials
in z and z, i.e. A is the algebra generated by {1,z,Z}. Then A separates points,
1 € A and A is closed under conjugation allows us to conclude from Theorem 5.10

that A = C(X).

Corollary 5.12. Given a continuous function f : R — C which is 2 -periodic and

€ > 0 there exists p(0) = . ane’™ such that |f(0) — P(6)| < € for all 6 € R.
n=—N

8If we are in the case whrere Az, = {0} and = = zo or y = xo, then gy exists merely by the
fact that A separates points.
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Theorem 5.13. Let X be non-compact locally compact Hausdorff space, space. If
A is a closed subalgebra of Co(X,R) which separates points. Then either A =
Co(X,R) or there exists xg € X such that A= {f € Co(X,R) : f(zo) =0}.

Proof. If there exists 29 € X such A C {f € Co(X,R) : f(zg) = 0} let X*
be the one point compactification of X \ {zg} otherwise let X* be the one point
compactification of X. Now apply Theorem 5.8 to learn that A C C(X* R) is
A=Ty =Co(X*\ {0},R). m

Example 5.14. Let X = [0,00), A > 0 be fixed, A be the algebra generate by
t — e . So the general element f € A is of the form f(t) = p(e=*), where p(z)
is a polynomial. Since A C Co(X,R) separates points and is pointwise positive,

A= Cy(X,R).

As an application of this example, we will shows that the Laplace transform is
injective.

Theorem 5.15. For f € L'(]0,00),dx), let the Laplace transform is defined by
L) = / ef)‘mf(:zz)dx for all X > 0.
0

If Lf(A) =0 then f(z) =0 for m -a.e. x.

Proof. Suppose that f € L'([0,00),dz) such that Lf(\) = 0. Let g €
Co([0,0),R) and € > 0 be given. Choose {ax}r>o such that {\ > 0:ay # 0}
is a finite set and

lg(z) — ZaAe_)‘ﬂ < e for all z > 0.

A>0
Then
Oo:z: z)dx| = - ) — are z)dx
| s@i@a /O<g<> > >f<>d
- ) — are z)|dx
<[ o > e (@)l

< e[| fllr-

Since € > 0 is arbitrary, it follows that [} g(z)f(z)dz = 0 for all g € Co([0, 00), R).

Let
_ | FG i@ #0
sgnf(z) = { (I)f( )| it F(z) = 0

and define du(x) = |f(z)|dm(z). Then p is a measure on [0,00) such that
1([0,00)) < oo. By our regularity theorems, we know that C,([0,00)) is dense
in L'(p). Therefore there exists g, € C.(|0,00)) such that g, — sgnf in L'(u).
Therefore,

0= /000 gn(2) f(z)dz
= | s@sens@yn) "= [ pansePaue) = [ 1#@)dn()
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6. PRODUCT SPACES AND TYCHONOFF’S THEOREM

6.1. Product Spaces. Let {(Xq,7a)},c 4 be a collection of topological spaces (we

assume X, # @) and let X4 = J] X,. Recall that € X4 is a function
acA

r:A— H X
acA
such that z, := z(a) € X, for all @ € A. An element © € X4 is called a choice
function and the axiom of choice states that X4 # () provided that X, # ) for

each o € A. If each X, above is the same set X, we will denote X4 = [[ Xa by
acA
X4. S0z € X4 is a function from A to X.

Notation 6.1. For a € A, let m, : X4 — X, be the canonical projection map,
Ta(Z) = 4. The product topology T = ®acaTq is the smallest topology on X 4
such that each projection 7, is continuous. Explicitly, 7 is the topology generated
by

(6.1) E={m'(Va):a€ AV, € 7o}
A “basic” open set in this topology is of the form
(6.2) V={zveXs:m(z) eV, for « € A}

where A is a finite subset of A and V,, € 7, for all « € A. We will sometimes write
V above as

V=] Vax [ Xa =Va x Xaa.
aEA agA\

Proposition 6.2. Suppose Y is a topological space and f :' Y — X4 is a map.
Then f is continuous iff mo o f 1Y — X, is continuous for all a € A.

Proof. If f is continuous then 7, o f is the composition of two continuous
functions and hence is continuous. Conversely if 7, o f is continuous for all « € A,
the (mp0 f) (Vo) = f (7,1 (Va)) is open in Y for all & € A and V,, C, X,. That
is to say, f~1(€) consists of open sets, and therefore f is continuous since € is a
subbase for the product topology. m

Proposition 6.3. Suppose that (X,T) is a topological space and {f,} C X4 is a
sequence. Then f, — f in the product topology of X4 iff fu(a) — f(a) for all
a € A

Proof. Since 7, is continuous, if f,, — f then f,(a) = 7o (fn) — 7o (f) = f(a)
for all @ € A. Conversely, f,(a) — f(a) for all a € A iff 7, (f,,) — 7a(f) for all
a € A. Therefore if V = 71(V,) € £ and f € V, then 7, (f) € V,, and 7o (f,.) € Vi
a.a and hence f,, € V a.a. This shows that f,, — fasn —oo. =

Proposition 6.4. Let (X, 7a) be topological spaces and X 4 be the product space
with the product topology.

1. If X, is Hausdorff for all « € A, then so is X 4.
2. If each X is connected for all o € A, then so is X 4.

Proof.
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1. Let z,y € X 4 be distinct points. Then there exists o € A such that 7, (z) =
Zo # Yo = Ta(y). Since X, is Hausdorff, there exists disjoint open sets
U,V C X, such m,(z) € U and 7,(y) € V. Then n;'(U) and 7' (V) are
disjoint open sets in X 4 containing x and y respectively.

2. Let us begin with the case of two factors, namely assume that X and Y are
connected topological spaces, then we will show that X x Y is connected
as well. To do this let p = (zg,y0) € X x Y and E denote the connected
component of p. Since {x¢} X Y is homeomorphic to Y, {zg} X Y is connected
in X xY and therefore {zg} xY C E, i.e. (zg,y) € E for all y € Y. A similar
argument now shows that X x {y} C E for any y € Y, that isto X xY = E.
By induction the theorem holds whenever A is a finite set.

For the general case, again choose a point p € X4 = X4 and let C = Cp be
the connected component of p in X 4. Recall that C, is closed and therefore
if C, is a proper subset of X 4, then X 4\ C), is a non-empty open set. By the
definition of the product topology, this would imply that X 4 \ C}, contains an
open set of the form

V= Naeamy ! (Vo) = Va x Xa\a

where A CC A and V,, € 7, for all @« € A. We will now show that no such V

can exist and hence X4 = (), i.e. X4 is connected.
Define ¢ : Xy — X4 by ¢(y) = x where

fya if a€A

xa{ Pa if adA.
IfaeA maod(y) =ya = Ta(y) and if @ € A\ A then 7, 0¢(y) = pa so that
in every case m, 0 ¢ : XA — X, is continuous and therefore ¢ is continuous.
Since X, is a product of a finite number of connected spaces it is con-
nected by step 1. above. Hence so is the continuous image, ¢(Xp) =
XA X A{pataeara» of Xa. Now p € ¢(X4) and ¢(Xa) is connected implies

that ¢(Xx) C C. On the other hand one easily sees that

DA£VNp(Xp)CcVNC

contradicting the assumption that V' C C°.
L]

6.2. Tychonoff’s Theorem. The main theorem of this subsection is that the
product of compact spaces is compact.

Theorem 6.5 (Tychonoft’s Theorem). Let {Xq}aca be a collection of non-empty
compact spaces. Then X4 = [] Xa is compact in the product space topology.
acA
The proof of this theorem requires Zorn’s lemma which is equivalent to the axiom
of choice, (see Theorem 8.7 below). Before going into the details of the proof, let
us first prove the following special case.

Proposition 6.6. Suppose that X and Y are non-empty compact topological
spaces, then X XY is compact in the product topology.

Proof. Let U be an open cover of X x Y. Then for each (z,y) € X xY
there exist U € U such that (z,y) € U. By definition of the product topology,
there also exist V, € 77X and Wy € 7‘5/ such that V, x W, C U. Therefore V :=
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{Va x Wy : (z,y) € X x Y} is also an open cover of X x Y. We will now show that
V has a finite sub-cover, say Vo CC V. Assuming this is proved for the moment,
this implies that U/ also has a finite subcover because each V' € V) is contained in
some Uy € U. So to complete the proof it suffices to show that every cover V of the
form V = {V, x W, : o € A} where V,, C, X and W, C, Y has a finite subcover.

Given z € X, let f, : Y — X XY be the map f,(y) = (z,y) and notice that
fz is continuous since mx o f,(y) = x and 7wy o f,(y) = y are continuous maps.
From this we conclude that {z} x Y = f,(Y) is compact. Similarly, it follows that
X x {y} is compact for all y € Y.

Since V is a cover of {z} X Y, there exist I'; CC A such that {z} XY C

U (Vo x W,) without loss of generality we may assume that I'; is chosen so that
acl',
reVyforallaely. Let U, = () Vo Co X. Then {Us,},x is an open cover of
acl',
X which is compact, hence there exists A CC X such that X = U,ecpU,. The proof

is completed by showing that Vg := Ugep Uacr, {Va X Wa} is a cover of X x Y,
UWo = Uzen Uaer, (Va X Wo) D Uzea Uaer, (Uz X Wo) = Ugen (U, xY) =X X Y.

L]
The next lemma is the crux of the proof of the general case of Theorem 6.5.

Lemma 6.7 (Alexander’s Lemma). Let (X, T) be a topological space. Let £ C T be
a subbase for the topology of T, T = 7(E). Then X is compact iff every open cover
B C & of X has a finite subcover:

Proof. It is clear that if X is compact and B C &£ is a cover of X, then B has a
finite subcover. So it suffices to show that if X is not compact, there exists a cover
B C &£ with not finite subcover. We will construct B in two steps.

1. There is a maximal open cover A of X with no finite subcover. Let U be the
collection of open covers of X with no finite subcovers and partially ordered U
by inclusion. (U is not empty by definition since X is not compact.) Suppose
that {Ag}ges C U is a linearly ordered collection. Then if Uy,...,U, €

U Ag, by linear order of { A3} gep, there exists 8y € B such that Uy, ... U, €
BeEB
Ag, for some By € B. Since Ag, € U is an open cover of X with no finite
n

subcover, it follows that |J U; # X and hence |J Ag is a cover of X with

i=1 BEB
no finite subcover. Hence |J Ag € U is an upper bound for {Ag}gep, so we
BeB

may apply Zorn’s Lemma to conclude that ¢/ has a maximal element which
we denote by A.

2. We will finish that proof by showing that B=.4N¢E is a cover of X. (Notice
that B can not have a finite subcover, since if it did A would also have finite
subcover.) For sake of contradiction, suppose that there exists z € X \ UB.
Since A covers X there exists U € A such that € U and because 7 = 7(&),
there exists Vi,...,V, € & such that

xeVin---nV, cU.

Notice that no Vj is in A, for if one were (say V;), we would have V; € 5 and
hence z € UB. Because A is maximal, A U {V;} must have a finite subcover
for each j. Hence for each j = 1,2,...,n there exists A; CC A such that if
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W; = UA;j then V; UW; = X. Now
n n n
vulJw; 2 (ﬂw) U (ij) =X
1 1 1
which implies that A’ := {U} U U}_,A; is a finite subcover of .A.? This is a

contraction to the fact that A had no finite subcover and hence UB = X.

]

We now give the proof of Tychonoff’s Theorem.

Proof. (Tychonoft’s Theorem) By Alexander’s Lemma 6.7, we must shows that
every open cover V, which is contained in the subbase & = {n }(U) : U Co X, €
A}, has a finite subcover. If V is such an open cover and « € A, let

Vo ={U Co Xo : 7, (U) € V}.

Claim: There exists some 3 € A such that V3 is a cover of Xg3.
If there were no such 3, then V3 := UVg & X for all 5 € A. So by the Axiom
of choice there would exists some = € [],c 4 (X \ V). On the other hand

V= U T 1(Va) = U {(r X (U):U € Vy}
acA acA

and z € UV (V is a cover of X 4), so there must exist some 8 € A and Ug € Vg
such that mg(x) € Ug. But this is precluded by choice of « € [] . 4 (Xg \ Vg). This
proves the claim.

Let 8 € A such that Vg is a cover of Xg. Using the compactness of Xg, there
exists {U; };_, C Vg (n < 00) such that {U;}.-_; covers Xg. Then {Wﬂfl(Ui)}l = v

is now the desired subcover of X 4. ®

acA

7. URYSOHN’S METRIZATION THEOREM

Definition 7.1. Let I = [0, 1] and A be a non-empty set, then I with the product
topology is called a cube.

Definition 7.2. Let X be a topological space. A subset F C C(X,I) is said to
separates points and closed sets if for all x € X and closed sets F' C X such

that = ¢ F, there exists f € F such that f(z) & f(F).
Remark 7.3. If f is as in Definition 7.2, we may find h € C(I,I) such that h =0

on f(F) and h(f(z)) =1. Then g = ho f € C(X,I) has the property that g(z) =1
and g(F) = {0}.

Notation 7.4. Given F C C(X,I), define e : X — I” by x — e, where e,(f) =
f(z). The function e, € I” is called the evaluation map at x € X.

Proposition 7.5. Let X be a topological space and F C C(X,I). Then

1. The map e : X — I” is continuous.
2. If F separates points then e is injective.

~ n n
et X = (N V;) U (UW;) and notice that for all z € X = V; UW;, z € V; or & € W;. Hence
1 1
if £ € |JW; then z € X and if z & UW; then z € Vj for all j ie. z € NV; which again shows
J J

that z € X. That is to say X C X and hence X = X.
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3. If F separates points and closed sets; then e is a homeomorphism onto its
range.

Proof. (1) For f € F, let mp : I” — I be the projection map, m(z) = z(f).
Then

myoe(x) =my(ex) = ex(f) = f()
which shows that 7yoe = f is continuous for all f € F and therefore e is continuous.
(2) Since e, = ey iff f(x) = e, (f) = ey (f) = f(y) for all f € F, e is injective iff
JF separates points.
(3)We must show that e is an open map, i.e. if U Co X then e(U) is open in
e(X) in the relative topology. Let U Co X and x € U. Since x ¢ U° there exists
f € F such that f(z) ¢ f(U¢). Let

V=n,M[f(U)) ={z € I” : 2(f) ¢ f(U*)} C IT.

Then

Vine(X) ={e,: fly) ¢ f(U)}
is a relatively open subset of e(X) and by construction z € V Ne(X). We will now
finish the proof by showing V Ne(X) C e(U). This will be accomplished by showing
if y ¢ U then e, ¢ V. Now if y € U¢, then e,(f) = f(y) € f(U°) C f(U¢) and
therefore e, ¢ V. m

Theorem 7.6 (Urysohn Metrization Theorem). Every second countable normal
space X is metrizable. Moreover, there is a metric S compatible with the topol-
ogy such that X 1is totally bounded and hence the completion of X is compact.

Proof. The proof of the theorem will be broken into four steps.

1. By Folland problem # 4.76 there exists a countable subset 7 C C(X, [0, 1]) such
that for all # € X and F C X there exists f € F such that f(z) = 1 and

2. By Folland problem # 4.77 the product topology and Y = [0,1]7 is metriz-
able. Let d be a metric on Y compatible with the product topology.

3. For z € X, let e, : X — Y be defined by e, (f) = f(x). Then by Proposition
7.5 the map e : X — Y define by © — e, is a homeomorphism onto e(Y) =
{e; :x € F} CY when e(Y) is equipped with the relative topology from Y.

4. Define p(x,y) = d(ez, ey), then since e : X — e(X) C Y is a homeomorphism,
p is a metric on e(X) compatible with the topology on X. By Tychonoft’s

d
Theorem, Y is compact and therefore the closure e(X) , of e(X) in Y is
compact as well. Since the completion, X', of X is homeomorphic to the

e(X )d we conclude that X" is compact and hence totally bounded. It now
easily follows that X is totally bounded as well.

8. ZORN’S LEMMA AND THE HAUSDORFF MAXIMAL PRINCIPLE

Definition 8.1. A partial order < on X is a relation with following properties
(i) fz<yandy < zthen z < z.
(ii) fz <y and y < x then z = y.

(i) # <z for all x € X.
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Example 8.2. Let Y be a set and X = P(Y). There are two natural partial orders
on X.

1. Ordered by inclusion, A < Bis A C B and
2. Ordered by reverse inclusion, A < B if B C A.

Definition 8.3. Let (X, <) be a partially ordered set we say X is linearly a
totally ordered if for all z,y € X either x <y or y < z. The real numbers R with
the usual order < is a typical example.

Definition 8.4. Let (X, <) be a partial ordered set. We say z € X is a maximal
element if for all y € X such that y > z implies y = z, i.e. there is no element
larger than z. An upper bound for a subset E of X is an element x € X such
that x > y for all y € F.

Example 8.5. Let
X:{a:{l} b={1,2} ¢={3} d=1{2,4} e:{Q}}

ordered by set inclusion. Then b and d are maximal elements despite that fact that
b aand a £ b. We also have

e If E ={a,e,c}, then E has no upper bound.

Definition 8.6. o If F = {a,e}, then b is an upper bound.
e F = {e}, then b and d are upper bounds.

Theorem 8.7. The following are equivalent.

1. The axiom of choice.

2. The Hausdorff Maximal Principle: FEvery partially ordered set has a
mazimal (relative to the inclusion order) linearly ordered subset.

3. Zorn’s Lemma: If X is partially ordered set such that every linearly ordered
subset of X has an upper bound, then X has a mazimal element.'©

Proof. (2 = 3) Let X be a partially ordered subset as in 3 and let F = {E C
X : E is linearly ordered} which we equip with the inclusion partial ordering. By
2. there exist a maximal element E € F. By assumption, the linearly ordered set
E has an upper bound = € X. The element z is maximal, for if y € Y and y > z,
then E'U {y} is still an linearly ordered set containing E. So by maximality of E,
E = FU{y}, ie. y € E and therefore y < x showing which combined with y > =
implies that y = x.!!

10Tf X is a countable set we may prove Zorn’s Lemma by induction. Let {zn}? , be an
cunumeration of X, and define E, C X inductively as follows. For n = 1 let E; = {z1}, and
if B, have been choosen, let Enp1 = En U{Zny1} if @ny1 is an upper bound for E, otherwise
let Eny1 = En. The set E = US| Ey is a lincarly ordered (you check) subset of X and hence
by assumtion E has an upper bound, x € X. I claim that his element is maximal, for if there
exists y = zm € X such that y > z, then z,, would be an upper bound for E,,_1 and therefore
Yy =&m € Em C E. That is to say if y > «, then y € E and hence y < z, so y = z. (Hence we
may view Zorn’s lemma as a “ jazzed” up version of induction.)

11Similalry one may show that 3 = 2. Let F = {E C X : E is linearly ordered} and order F

by inclusion. If M C F is linecarly ordered, let E = UM = |J A. If z,y € E then z € A and
AeM
y € B for some A, B C M. Now M is linearly ordered by set inclusion so A C B or B C A i.e.

z,y € Aor z,y € B. Sinse A and B are linearly order we must have cither z < y or y < z, that
is to say F is linearly ordered. Hence by 3. there exists a maximal element EF € F which is the
assertion in 2.
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(3= 1) Let {Xqa},c 4 be a collection of non-empty sets, we must show [] . 4 Xa
is not empty. Let G denote the collection of functions g : D(g) — [[,c 4 Xa such
that D(g) is a subset of A, and for all « € D(g), g(a) € X,. Notice that G is
not empty, for we may let oy € A and zg € X,, and then set D(g9) = {a} and
g(ag) = xg to construct an element of G. We now put a partial order on G as follows.
We say that f < g for f,g € G provided that D(f) C D(g) and f = g|p¢). H® C G
is a linearly ordered set, let D(h) = UgeaD(g) and for a € D(g) let h(a) = g(a).
Then h € G is an upper bound for ®. So by Zorn’s Lemma there exists a maximal
element h € G. To finish the proof we need only show that D(h) = A. If this
were not the case, then let ap € A\ D(h) and zp € X,,. We may now define
D(h) = D(h) U {ag} and

h(a) = { h(e) %f a € D(h)

g if a=aq.

Then h < h while h % h violating the fact that h was a maximal element.

(1 = 2) Let (X, <) be a partially ordered set. Let F be the collection of linearly
ordered subsets of X which we order by set inclusion. Given zg € X, {zo} € F is
linearly ordered set so that F # ().

Fix an element Py € F. If Py is not maximal there exists P; € F such that
Py & P;. In particular we may choose x ¢ Py such that Py U {} € F. The idea
now is to keep repeating this process of adding points z € X until we construct a
maximal element P of F. We now have to take care of some details.

We may assume with out loss of generality that F = {P € F : P is not maximal}
is a non-empty set. For P € F, let P* = {x € X : PU{x} € F}. As the above
argument shows, P* # () for all P € F. Using the axiom of choice, there exists
f €llpes P We now define g : 7 — F by

P if P is maximal
(8.1) 9(P) = { PU{f(x)} if P isnot maximal.

The proof is completed by the next lemma which shows that ¢ must have a fixed
point P € F. This fixed point is maximal by construction of g. m

Lemma 8.8. The function g : F — F defined in Eq. (8.1) has a fized point.'?

Proof. The idea of the proof is as follows. Let Py € F be chosen arbitrarily.
Notice that ® = { g(")(PO)}Zo:O C F is a linearly ordered set and it is therefore

oo
easily verified that P, = |J ¢ (P,) € F. Similarly we may repeat the process to
n=0

construct P = |J ¢/ (P)) € F and Py = |J ¢ () € F, etc. etc. Then take
=0 0

Poo = U2 Py, azbld start again with Py repla?ced by Ps. Then keep going this way
until eventually the sets stop increasing in size, in which case we have found our
fixed point. The problem with this strategy is that we may never win. (This is
very reminiscent of constructing measurable sets and the way out is to use measure
theoretic like arguments.)

Let us now start the formal proof. Again let Py € F and let /3 = {P € F:
Py C P}. Notice that F; has the following properties:

2Here is an casy proof if the clements of F happened to all be finite scts and there existed a
set P € F with a maximal number of elments. In this case the condition that P C g(P) would
imply that P = g(P), otherwise g(P) would have more clements than P.
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1. Py € Fi.
2. If ® C F; is a totally ordered (by set inclusion) subset then U® € Fj.
3. f Pe theng(P)Efl.

Let us call a general subset 7/ C F satisfying these three conditions a tower and
let

Fo=nN{F : F is a tower} .

Standard arguments show that Fy is still a tower and clearly is the smallest tower
containing Py. (Morally speaking Fq consists of all of the sets we were trying to
constructed in the “idea section” of the proof.)

We now claim that Fj is a linearly ordered subset of F. To prove this let I' C Fq
be the linearly ordered set

I'={Cec Fy: forall Ac Fyeither AC CorCC A}.

Shortly we will show that I' C Fy is a tower and hence that Fy = I'. That is to say
Fo is linearly ordered. Assuming this for the moment let us finish the proof. Let
P = UFy which is in Fy by property 2 and is clearly the largest element in Fy. By
3. it now follows that P C g(P) € Fp and by maximality of P, we have g(P) = P,
the desired fixed point. So to finish the proof, we must show that I" is a tower.

First off it is clear that Py € T" so in particular T" is not empty. For each C € T
let

Do :={A € Fy:either AC Corg(C)C A}.

We will begin by showing that & C Fy is a tower and therefore that & = Fy.

1. P € dgsince Py C Cforall C € I' C Fp. 2. If & C & C Fy is totally
ordered by set inclusion, then Ag := UP € Fy. We must show Ag € P, that is
that Ap C C or C C Ae. Now if A C C for all A € ®, then Ap C C and hence
Ag € P¢. On the other hand if there is some A € ® such that g(C) C A then
clearly g(C) C Ag and again Ag € D¢

3. Given A € &¢ we must show g(A) € P, i.e. that

(8.2) g(A) C Cor g(C) C g(A).

There are three cases to consider: either A & C, A = C, or ¢(C) C A. In the case
A=C, g(C)=g(A) C g(A) and if g(C) C A then g(C) C A C g(A) and Eq. (8.2)
holds in either of these cases. So assume that A ¢ C. Since C' € T, either g(A) C C
(in which case we are done) or C' C g(A). Hence we may assume that

AG CcCyg(A).

Now if C' were a proper subset of g(A) it would then follow that g(A) \ A would
consist of at least two points which contradicts the definition of g. Hence we must
have g(A) = C C C and again Eq. (8.2) holds, so @ is a tower.

It is now easy to show that I' is a tower. It is again clear that Fy € T' and
Property 2. may be checked for I' in the same way as it was done for ®¢ above.
For Property 3., if C € T' we may use & = Fy to conclude that for all A € Fy
that either A C C' C g(C) or ¢(C) C A, i.e. g(C) € T'. Thus I is a tower and we
are done. m
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9. NETS

CAUTION: this section is unedited, hence very rough.

In this section (which may be skipped) we develop the notion of nets. Nets are
generalization of sequences. Let us begin by showing that for general topological
spaces, sequences are not always adequate.

We start by considering C(R) C C%. If {f,} € C(R) and f,, — f pointwise
(which is the notion of convergence in C¥) then f is a Borel measurable function.
Hence the sequential limits of elements in C'(R) is contained in the Borel measurable
functions which is properly contained in C¥. On the other hand we have the

Claim 9.1. O(R) = C®.
Proof. If f € C¥, a typical neighborhood of f is
N ={geC®:|g(x;) — f(x;)| <efori=1,...,n},
where € > 0 and {z;}._, is a finite subset of R. Clearly N N C(R) # 0 so that

feCR). m

Definition 9.2. A directed set (A, <) is a set with a relation such that

1. a <«

2. a < 3,8 <~ implies a < 7 and

3. if a, B € A there exists v € A such that a <y and 8 < 7.

A net is function z : A — X where A is a directed set. We will often denote x
by {xa}aeA-

Example 9.3 (Directed sets). 1. A=2%X:a<BifacC B Notea<f,B<y
implies a C 3 C «y implies a C v and if a <y o, 8 € 2¥X then a < o U 3 and
f<aUp.

2. A =2% : a < Bif B C a reverse inclusion. Say a < 3,3 < 7 implies
aDfFOvyimpliesaDyona<y a,f€A adanfF 2O animplies
a,f<ang.

Definition 9.4. Let {z4},c4 C X be a net then

o z, —x,asiff forall V € 1, x, € V eventually i.e. there exists = By € A
such that for all « > 8z, € V.

e 1 is a cluster point of {z4}aca if for all V € 7, 24 € V frequently, i.e. for
all § € A there exists a > (3 such that z, € V.

Proposition 9.5. Let X be a topological space and E C X. Then

e 1z is an accumulation point of E iff there exists net {zx,} C E \ {x}such that
Ty — T.

ez cFE iff there exists {xo} C E such that x4 — x.
Proof.

e Say z is an accumulation point of E.
A = 1, by reverse set inclusion for all « € 7, choose z,, € (a\ {z})NE. Then
given V € 1, for all « > V i.e. and o C V, z,, € V implies z, — .

e Conversely If {z,}qca C E\{z}and z, — x then for all V' € 7, there exists
B € A such that z, € V for all & > § in particular z, € (E\ {z}) NV # 0.
Sox e A. < (E).
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e Recall E = E U acc(E),acc(E) = Accumulation points of E. For clearly
acc(E) C E so EUacc(E) C E. Conversely if x ¢ (E U acc(E)) implies
x ¢ FE and x ¢ acc(E) implies there exists V' € 7, such that VN (E\ {z}) =
VN E = (. Showing E U acc(E) is closed. Thus E C E Uacc(E). Therefore
if € E = EUacc(E) then if z € E take z, = z if v € acc(E) take z, as
above. One easily sees if {zq}aca C F and 2, — x then z € E.

|
Proposition 9.6. f: X — Y is continuous at x iff f(xa) — f(z) forall xs — x.

Proof. f is continuous, x, — x then given V' € 74, there exists W € 7,
such that f(w) C V. So z, € W eventually implies f(z,) € V eventually implies

Conversely If f is not continuous at z. Then there exists W € 7(, such that
for all V € 7, f(V) C W. For all V € 7, choose zy € W\ f(V) (Axiom of choice).
Then zy — x as we have seen above. While f(zy) € W¢so f(xy) /4 f(z). ®

Definition 9.7 ( Subnet). (z4)aca is a net (yg)sep is a subnet if there exists
(8 — af such that

(i) ys = zap for all 5 € B

(ii) for all ag € A there exists Gy € B such that for all 5> Gy af > .

Proposition 9.8. (z,)aca is a net, © is a cluster point of (xo)aca iff there exists
a subnet (yg)gep such that yz — .

Proof. Suppose y3 = o3 — v and W € 7, and ag € A there exists fy € Bsuch
that yg € W for all 8 > By. i.e. zog € W for all 8 > (. Choose 3; € B such that
ag > o for all 3 > B; then choose #3 € B such that 83 > (; and (#3 > (2 then
of8 > ap and x5 € W for all > B3 implies z, € W frequently.

Conversely: Assume z is a cluster point of (z4)aeca. Consider T,2A with
(U,a) < (U',d) iff @« <o’ and U D U'. For all (U,~) € 7,xA. Choose oy, > 7y
in A such that y(, ,) = za,,,, € U. Then if ag € A for all (U",v') > (U, ao) i.e.
Y >apand U CU a4y =9 > ag implies oy 4y > ap.

Moreover, Given W € 7, then y,,) € U C W for all U C W. Hence fixing
a € A we see if (U,y) > (W, ) then yy,4) € U C W showing that
Yy — 2. |
Exercise 9.9. [#34, p. 121]

Let (za)aca be a net in a topological space and for each a € A let E, = {xg :

B> a}. Then z is a cluster point of (z,) iff z € (] E,.
acA

- xa(Uﬁ/)

Proof. If z is a cluster point, then given W € 1, we know E, N W # () for all

a € E since g € W frequently thus z € E,, implies x € N E,.
acA
Conversely: If = is not a cluster point of (x,) then there exists W € 7, and

a € A such that zg ¢ W for all § > aie. WNE, =0 ie. r ¢ E, implies
v¢ (| Eo ®

acA

Theorem 9.10. X is compact iff Every net has a cluster point.

Proof. Let X be compact and (za)aca C X. Set F, = {z3: 8 > a}. Now F,
is closed, Fo,, N---NF,, D F, provided v > «a4,...7 = 1,...,n which exists since A
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FIGURE 3. (cirx)

is directed. Therefore F,,, N---N F,, # () i.e. {F,}aca has the finite intersection
property. X is not compact implies there exists € () F,. By the above problem

aca
implies « is a cluster point of (zq)aca. If X is not compact let {Ug}ger be an

infinite cover with no finite subcover. Let A = {a C B : #a < oo} ordered by

inclusion. for a € A choose z,, € X \ ( U Ub) # (). Then (z4)aca is a net in X.
BeEa

Claim 9.11. it has no cluster point. For if x € X choose 3 such that x € Ug.

Then for alla > {f} ie. fe€axzy & |J Uy D Ug i.e. zo & Ug implies x is not
YEQ
a cluster point of (x).

10. BANACH SPACES
Let F denote either C or R.

Definition 10.1. A norm on a vector space X is a function ||-|| : X — [0, 00) such
that

1. (Homogeneity) ||[Az|| = |A| ||z|| for all A € C and z € X.

2. (Triangle inequality) ||z +y|| < [[z]| + [Jy[| for all z,y € X.

3. (Positive definite) ||z|| = 0 implies z = 0.

A pair (X,||-]]) where X is a vector space and ||-|| is a norm on X is called a
normed vector space.

Definition 10.2. If (X,|-||) is a normed vector space, then we say {z,} -, C X
is a Cauchy sequence if lim,, »,—.oc || Zm — @n|| = 0. The normed vector space is a
Banach space if it is complete, i.e. if every {z,} ., C X which is Cauchy is
convergent where {z,},-, C X is convergent iff there exists © € X such that
lim,, o0 ||y, — || = 0. As usual we will abbreviate this last statement by writing
lim,,— oo Tn, = .

Theorem 10.3. A normed space (X, |- ||) is a Banach space iff for every sequence
o] N

{x, )02 such that Y ||z,|| < oo then imy_oo > @, = S exists in X (that is to
n=1 n=1

say every absolutely convergent series is a convergent series in X ). As usual we

will denote S by > x,.

n=1
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00 N
Proof. (=)If X is complete and > ||z, || < co then sequence Sy = > =, for

N € N is Cauchy because (for N > ]\7/1[)1 "
N
1Sy = Smll < > ]l —0as M,N — oo.
n=M+1
] N
ThereforeS = > @, :=limy_0o Y. @, exists in X.
n=1 n=1

(<=) Suppose that {z,,} ., be a Cauchy sequence and let {y;, = x,, }73>, be a

o0
subsequence of {x,}, -, such that > |[ynt1 — yn|| < co. By assumption
n=

N o]
YN+1 — U1 = Z(yn-f-l - yn) — 8= Z(yn-f-l - yn) € X as N — oo.

n=1 n=1
This shows that limy_,~ yny exists and is equal to x := y; + S. Since {xn}zozl is
Cauchy,
|z — 2nll < [l = yrll + lyx — znll — 0 as k,n — oo
showing that lim,,_., x,, exists and is equal to . m
Example 10.4. We have the following examples of Banach spaces. Suppose that
X is a set then
1. The bounded functions B(X) on X is a Banach space with the norm

[f]I = sup | f(x)]
zeX

and

2. if X is a topological space the subspace BC(X) C B(X) is closed and hence
also a Banach space in the above norm.

3. If (X, M, i) is a measurable space then L!(X, M, du) is a Banach space with

1£]y = /X fldu

provided that we agree to identify functions f of g which agree p — a.e.

Definition 10.5. Let X and Y be normed spaces and T : X — Y be a linear
map. Then T is said to be bounded provided there exists C' < oo such that
IT(z)|| < C||z||x for all z € X. We denote the best constant by ||T’||, i.e.

IT()|

IT|| = sup = sup{[|T(2)| : [l=]| =1} .
o£0 |zl axz0

The number ||T|| is called the operator norm of T

Notation 10.6. Let L(X,Y) denote the bounded linear operators from X to Y.

Remark 10.7. (1) The operator norm is a norm on the vector space L(X,Y). (2)
Moreover if T': X — Y and S : Y — Z are linear maps between normed vector
spaces then ||ST|| < ||S||||T||, where ST := SoT. For example the triangle inequality
is verified as follows, if A, B € L(X,Y) then

Ao Boll _ | [Asl +[Bsll _ _ JAs] | _ (1Bl

-+ sup

|A + B|| = sup <

a0 |l w0 |2

= 1A+ 1Bl
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For the second remark we have for z € X, ||STz| < [|S|||Tz| < ||SIIT||||=] from
which it follows that ||ST|| < [|S||||T]|.

Proposition 10.8. Suppose that X and Y are normed spaces and T : X — Y is
a linear map. The the following are equivalent:
(a) T is continuous.

(b) T is continuous at 0.
(c) T is bounded.

Proof. (a) = (b) trivial. (b) = (c) If T continuous at 0 then there exist § > 0
such that ||T'(z)|| < 1if Hx|| < 6. Therefore for any € X, |IT (6z/||=]]) || <1 which
implies that ||T'(z)| < 4||lz|| and hence ||T|| < % < oco. (¢c) = (a) Let € X and
€ > 0 be given. Then

1T(y) = T(@)|| = 1T =) < ITI ly —zll <e

provided |ly — z|| < €¢/[|T|| = 6. m
The following simple theorem is often useful for defining bounded linear trans-
formations.

Theorem 10.9 (B.L.T. Theorem). Suppose that X is a normed space, Y is a Ba-
nach space, and D C X is a dense linear subspace of X. Suppose that T : D — Y
is a linear transformation and there exists C' < oo such that | Tz|| < C||z|| for all
x € D. Then T has a unique extension to an element of L(X,Y).

Exercise 10.10. Prove Theorem 10.9

Exercise 10.11. Suppose that X is a Banach space, I = [a,b] with —c0 < a <

b < oo. For a function f: I — X, let || f|| =sup{||f(t)||x : t € I} and define
Y={f:1-X:|f] <o}

Show (Y ||-]|) is a Banach space.

Example 10.12. Let X be a Banach space, I = [a,b] with —00 < a < b < o0
and (Y,]|-]|) be the Banach space as in Exercise 10.11. Let D C Y denote those
functions f € Y of the form f(t) = Y77, x;14,(t), where A; € B (the Borel o —
algebra on I) and z; € X. Alternatively put, f € D provided that f : I-X is a
bounded simple function. For f € D, let

Z xm( {:1:}

Just as for real valued functions one shows that I : D — X is linear. Moreover for
feDb,

11(f

=12 am(F~" ({a})

:ﬁ“f(t)“dm(t) <m(I)|f].

This shows that I is bounded and therefore by Theorem 10.9, I has a unique
bounded extension to D — the closure of D in Y.

< 3 el m({f =)

zeX

Exercise 10.13. Show that C(I — X) C D. Hence the above example constructs
the integral of f € C(I — X).
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Exercise 10.14. Let X =R” and Y =R™ and T : X — Y be a linear transfor-
mation so that 7' is given by matrix multiplication by an m X n matrix. Let us
identify the linear transformation 7" with this matrix.

1. (*) Assume the norms on X and Y are the ¢! — norms, i.e. for z € R",
[#]| = >27_ |zj| . Then the operator norm of T'is given by

1T = max Z|
1<j<n

2. Assume the norms on X and Y are the {*° — norms, i.e. for x € R”, ||z|| =
maxi<j<n |Z;| . Then the operator norm of T is given by

n
I = e, 2 Tl
J:

3. (*) Assume the norms on X and Y are the £2 — norms, i.e. for z € R”, ||z|* =

> 5y 3. Show |T|? is the largest eigenvalue of the matrix 7T : R® — R".
Example 10.15. If X is finite dimensional normed space then all linear maps are
bounded.

Example 10.16. Suppose that K : [0,1] x [0,1] — C is a continuous function. Let
T : L' ([0,1],dm) — C(]0,1]) be defined by

z) = / K (2, 9)f(v)dy

It is easily checked that this map is linear and maps to C([0, 1]) as advertised. (Use
the dominated convergence theorem.) If M is a bound for |K|, then

(TF)()| < /0 K (2. 9) £ ()| dy < M | £,

which shows that ||Tf|| ., < M || f||; and hence that
1Tl i~ < max{|K(z,y)| : z,y € [0,1]} < 0.

We can in fact show that ||T|| = M as follows. Let (zo,v0) € [0,1]? such that
|K(x0,y0)] = M. Then given € > 0, there exists a neighborhood U = I x J of
(®0,y0) such that |K(x,y) — K(xo,y0)| < € for all (x,y) € U. Let f € C.(I,]0,00))
such that fo x)dz = 1. Choose a € C such that |a| = 1 and oK (zg,y0) = M,
then

(Taf)(o) = ' / 1K(xo,y)af(y)dy‘ - \ [ Eomarway
> Re / oK (w0.9)f )y > [ (M =) fu)dy = (M =) o

I

and hence

ITafllc = (M =€) llefll

showing that ||T|| > M — e. Since € > 0 is arbitrary, we learn that ||T|| > M and
hence ||T)| =
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Similarly one easily shows that T'|¢(jo,1) : C([0,1]) — C([0,1]) is bounded and
1
ITllecr < sup {/0 K (2,y)|dy : z € 0, 1}} <.
One may also vies T : C([0,1]) — L'([0,1]) in which case

1
Tl < [ max Kyl <o,

Proposition 10.17. Suppose that X is a normed vector space and 'Y is a Banach
space. Then (L(X,Y),| - |lop) is a Banach space.

Proof. We must show (L(X,Y),||-||op) is complete. Suppose that T,, € L(X,Y)

oo
is a sequence of operators such that > ||T,,|| < co. Then

n=1
o0 o0
STl < DTl ]| < oo
n=1 n=1
o0
and therefore by the completeness of Y, Sz := > T,z = limy_ Sy exists in

n=1

N

Y, where Sy := > T,,. The reader should check that S : X — Y so defined in
n=1

linear. Since,

N 0o
8] = jim, S| < Jim 2 Trl| < 3 1l
n=

n=1

S is bounded and

(10.1) ISI < > ITll-
n=1
Similarly,
N oo
ISz~ Sual| = Jim [[Syz — Syl < lim S [Tull el = Y T la]
n=M+1 n=M+1

and therefore,

IS — S < Z |T5]] — 0 as M — oo.
n=M
=

Definition 10.18. Let T': X — Y be a linear map between normed spaces X and
Y. Then T': X — Y is an isometry if | Tz|| = ||z|| forall z € X and T : X = Y
is invertible if T is a bijection and T~ is bounded.

Proposition 10.19. Suppose X is a Banach space and T € L(X) = L(X,X)
satisfies > ||T™|| < oo. Then I —T is invertible and
n=0
1 ” - mn — - U
= Ty < S )

n=0 n=0

(I-T)"'=+*
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In particular if |T|| < 1 then the above formula holds and

1
I-T)7 Y < —.
”( ) ” =17

N oo
Proof. Let Sy := Y T™. By Proposition 10.17, S = > T" := limy_c0 Sy
n=0 n=0
exists in L(X). Moreover,

(10.2) (I-T)Sy =SN(I-T)=1-T""' - Te€ L(X)as N — .

Since for any A € L(X), [|[AS — ASn|| < [|A[|[|S — Sn|| — 0 as N — oo and
ISA—SNA| < ||Al||S — Sn|| — 0 as N — o0, it follows from Eq. (10.2) that
(I -T)S = S —T) = 1. This shows that(/ — T)~! = S and the bound on
(I —T) ! follows from Eq. (10.1). Furthermore, if ||T|| < 1, then ||| < ||T|"
and

o0 o0 1
[T < > IITI" < <00
2T S =y
proving the last assertion in the statement. m

Corollary 10.20. Let L™ (X) denote the invertible elements in L(X). Then L* (X)
is an open subset of L(X). More specifically, if A € L*(X) and B € L(X) satisfies

(10.3) 1B — Al < [lA=H~
then B € L*(X).
Proof. Let A and B be as above, then
B=A-(A-B)=A[l-A'(A- B))]
and
|47 (A~ BY|| < A7 [lA - Bl < JA A7 = 1.
Therefore [I — A~'(A — B))] is invertible and hence so is B with
Bl'=[I-A"'(A-B))] A,

Notice that

1B < [l — 47 A - By 7| At < 1475

1

—[[A=H A= B))
1

— A=A = Bl

< ||A7T
<4715
[

10.0.1. Application. Consider the linear differential equation
(10.4) #(t) = A(t)z(t) where z(0) = zo € R™.

Here A € C(R — L(R")) and x € C'(R — R™). As usual this equation may be
written in its equivalent integral form, i.e. we are looking for z € C(R,R") such
that

(10.5) 2(t) = 2o + /0 A(r)z(7)dr.
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Theorem 10.21. Let ¢ € C([0,T],R™), then the integral equation

(10.6) x(t) = P(t) +/0 A(m)z(T)dT

has a unique solution given by

t) + Z /An(t) A(Tn) e A(Tl)d’(tn)dﬁ ...dry,

where
M) ={0<m < <m <t}
Moreover,
[2(t)] < []g] efor 14N,
Proof. Define A: C([0,T],R") — C([0,T],R™) by

/ Ar
Then z solves Eq. (10.5) iff + = ¢ + Az or equivalently iff (I — A)x = ¢. The
theorem will be proved by show (I —.A)~! exists and 3" [ A"]| < co. An induction

n=1
argument shows

(A" () = / A7y A7) (A" ) ()
:/0 dTn/O At 1 A(T0) AT 1) (A" P) (Tr—1)

_ / A(ra) .. A(r)p(r)dr ... dr,

07 < ST <7

- / A(m) ... A(m)b(tn)dm . . dr
At

Hence

[(A"¢)(t)[rn < {

0<m <--<mp <7

LA - - [[A()lldr - dm} [l

Therefore
A7 < / LA Al . dre
0<m <o <7, <T
1
= [ A A
[O,T]”

(10.7) _%</0 ||A(7')||d7'> .
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Alternatively, one can prove this last equality by induction on n. Namely let

F(t) = / JA()ldr

then by induction one shows that

I
LO= [ 1A A = )
0<r < <ry T
Indeed,
‘1 n ’ ! 1 d n+1 1 n+1
In_H(t)f/O oF (T)F(T)dp/o T O = e

proving Eq. (10.7) again. Using this estimate we then have

Z A" < efd 1AMlldr < o0,

n=0

Therefore (I — A)~! exists and (I — A)~! = > A" and

n=0
(1 —A)7Y| < elo IAM)lldr

10.1. More about sums in Banach spaces.

Definition 10.22. Suppose that X is a Normed space and {v, € X : v € A} isa
given collection of vectors in X. We say that s = Y ., v, € X if for all € > 0
there exists a finite set I'« C A such that Hs — ZaeA va“ < eforall A CcCc A
such that T'. C A. (Unlike the case of real valued sums, this does not imply that
> aca llvall < 0o. See Proposition 12.16, from which one may manufacture counter-
examples to this false premise.)

Lemma 10.23. (1) When X is a Banach space, ) . 4 Vo exists in X iff for all
€ > 0 there exists I'« CC A such that HzaeAva“ < € forall A cC A\ T,
Also if ) c 4 va exists in X then {a € A:v, # 0} is at most countable. (2) If
5= qeaVa € X exists and T : X —'Y is a bounded linear map between normed
spaces, then Y ., Tv, exvists in Y and

TSZTZva = ZTUQ.
acA acA

Proof. (1) Suppose that s =3, v, exists and € > 0. Let '« CC A be as in
Definition 10.22. Then for A CC A\ T,

E Vol < E va—l—g Vo, — S|| + E Vo — 8
aEA aEA acl'¢ acl'¢
= E Vo — S|| + € < 2e.
acel’ (UA
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Conversely, suppose for all € > 0 there exists I'. CC A such that ||Z
for all A CC A\T.. Let v, := Up_T'1 ), C A and set s, :=
m > n,

ach Vaf| < €

acyn Va- Then for

IS — sl = Z Vol <1/n— 0 as m,n — .
a€Ym\1n

Therefore {sn}zozl is Cauchy and hence convergent in X. Let s := lim,,_, o Sy, then
for A CC A such that v,, C A, we have

S—E’Ua

aEA

1
<ls—=sall+] D va <lls=sall + -
€A\

Since the right member of this equation goes to zero as n — oo, it follows that
> acA Vo exists and is equal to s.

Let v := U2, v, — a countable subset of A. Then for o ¢ v, {a} C A\ 7, for all
n and hence

lvall = ng <1/n—0asn— oo.
Be{a}

Therefore v, =0 for all « € A\ 7.
(2) Let I'c be as in Definition 10.22 and A CC A such that I'c C A. Then

TszTva S—Zva

acA aEA

< |7 <|Tlle

which shows that > __, T'v, exists and is equal to T's. m

aEA
11. DUAL SPACES X*

Notation 11.1. If X is a normed space we denote the Banach space L(X,F) by
X* and refer to X* as the (continuous) dual space of X.

Proposition 11.2. Let X be a complex vector space over C. If f € X* and u =
Ref € Xy then

(11.1) f(z) = u(x) —iu(iz).
Conversely if u € Xg and f is defined by Eq. (11.1), then f € X* and [ju|x: =

lfllx». More generally if p is a semi-norm on X, then
[fl <piffu<p.
Proof. Let v(z) = Im f(z), then
v(iz) =Im f(iz) =Im(if(z)) = Ref(z) = u(z).
Therefore
f(z) = u(x) +iv(r) = u(z) + iu(—iz) = u(x) —iuliz).
Conversely for u € Xz let f(x) = u(x) — tu(iz). Then
f((a+1ib)x) = u(az + ibx) — iu(iax — bzx) = au(x) + bu(iz) — i(au(iz) — bu(x))
while

(a+1b)f(x) = au(z) + bu(iz) + i(bu(z) — au(ix)).
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So f is complex linear.
Because |u(z)| = [Ref(z)| < |f(z)], it follows that ||u]] < ||f||. For z € X choose
A € 8 C C such that |f(x)| = Af(x) so

[f(2)] = f(Az) = w(hx) < lul] Az = [Jul|]=]]

Since x € X is arbitrary, this shows that || f|| < [Ju| so ||f]| = |Ju].13
For the last assertion, it is clear that |f| < p implies that u < |u| < |f]| < p.
Conversely if u < p and z € X, choose A € S' C C such that |f(z)| = Af(z). Then

[f(@)] = Af(x) = f(Ax) = u(Az) < p(Ax) = p(x)
holds for all z € X. m

Definition 11.3 (Minkowski functional). p: X — R is a Minkowski functional if

1. p(z +y) < p(x) + p(y) for all z,y € X and
2. p(ex) = cp(z) for all ¢ > 0 and z € X.

Example 11.4. Suppose that X = R and
p(x) =inf{A > 0:2 € \[-1,2] = [\, 2)\]}.
Notice that if > 0, then p(z) = /2 and if < 0 then p(x) = —z, i.e.

[ x/2 if x>0
p(:z:)—{ lz] if z<0.

From this formula it is clear that p(cz) = cp(z) for all ¢ >
Moreover, p satisfies the triangle inequality, indeed if p(z) =
z € A[—1,2] and y € pu[—1,2] so that

r+ Yy € )‘[717 2] + /‘L[ilv 2] - (A + M) [717 2]
which shows that p(z +y) < A+ p = p(x) + p(y). To check the last set inclusion
let a,b € [—1, 2], then

)\aJr,ub—()\Jr,u)( A at+ L b>€()\+u)[1,2]

0 but not for ¢ < 0.
A and p(y) = u, then

At At
since [—1,2] is a convex set and FAM +xi =1

Theorem 11.5 (Hahn-Banach). Let X be a real vector space, M C X be a sub-
space f: M — R be a linear functional such that f <p on M. Then there exists a
linear functional F': X — R such that Fly = f and F < p.

13

Proof. To understand better why || f|| = ||u||, notice that

1712 = sup [f(z)]* = sup (Ju(@)? + |u(iz)|*).
llell=1 el =1

z||=

Supppose that M = sup |u(z)| and this supremum is attained at zg € X with |lzo]| = 1.
llzll=1
Replacing xg by —xo if necessary, we may assume that  w(zg) = M. Since v has a maximum at

( xo + itxo )
u| —
o \llzo+itzoll

1 . .
{m (w(zo) + tu(zazo))} = u(izo)

Z0,

d
dt
d

dt|,
since %|0|1 —+it| = %|0\/1 + t2 = 0.This explains why ||f|| = ||ul|. =
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Proof. Step (1) We show for all x € X \ M there exists and extension F to
M @ Rz with the desired properties. If F' exists and o = F(z), then for all y € M
and A € R we must have f(y)+ o = F(y+Az) < p(y+Az) ie. Ao < p(y+Arz)—f(y).
Equivalently put we must find o € R such that

o< Py +A2) — f(y)
- A
o> pz—pz) — f(2) for all z € M and u > 0.
1
So if a € R is going to exist, we have to prove, for all y,z € M and A, p > 0 that
f(z) =p(z = px) _ ply + o) = f(y)
I - A

forally € M and A >0

or equivalently

(11.2) FOz+ py) < up(y + Ax) + Ap(z — pz)
= p(py + pAz) +p(Az — Auz).
But

fz + py) = f(Az + pAz) + f(Az — M)
< p(Az + pAz) + p(Az — Apx)

which shows that Eq. (11.2) is true and by working backwards, there exist an o € R
such that f(y) + Aa < p(y + Az). Therefore F(y + Az) := f(y) + Ao is the desired
extension.

Step (2) Let us now write F': X — R to mean F' is defined on a linear subspace
D(F) C X and F : D(F) — R is linear. For F,G : X — R we will say F < G if
D(F) € D(G) and F' = G|p(r), that is G is an extension of F. Let

F={F:X —R:MC D(F), F<pon D(F)}.

Then (F, <) is a partially ordered set. If ® C F is a chain (i.e. a linearly ordered
subset of F) then ® has an upper bound G € F defined by D(G) = |J D(F) and
Fco

G(x) = F(x) for x € D(F). Then it is easily checked that D(G) is a linear subspace,
G € F,and F < G for all F € &. We may now apply Zorn’s Lemma to conclude
there exists a maximal element F' € F. Necessarily, D(F) = X for otherwise we
could extend F' by step (1), violating the maximality of F. Thus F' is the desired
extension of f. m

Corollary 11.6. Suppose that X is a complex vector space, p : X — [0,00) is a
semi-norm, M C X is a linear subspace, and f : M — C is linear functional such
that |f(x)| < p(x) for all x € M. Then there exists F' € X' (X' is the algebraic
dual of X) such that F|y = f and |F| < p.

Proof. Let u = Ref then u < p on M and hence by Theorem 11.5, there exists
U € X} such that Uly =wand U < p on M. Define F(z) = U(x) — iU (iz) then
as in Proposition 11.2, F = f on M and |F| <p. m

Theorem 11.7. Let X be a normed space M C X be a closed subspace and x €
X \ M. Then there exists f € X* such that ||f]| = 1, f(zx) = 6 = d(x, M) and
f=0o0n M.
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Proof. Define f: M @ Cx — C by f(m+Azx) =6 for all m € M and X € C.
Notice that

[m + Az|| = [A|[|z +m/A|| > |\
and hence
|f(m+ Az)| = |A]6 < [|m + Az

which shows || f|| < 1. In fact, since |f(m + z)| =6 = in£1||:1: +m|, |f|| =1. By
meM

Hahn-Banach theorem there exists F' € X* such that F|pygc, = f and |F(z)| < ||z|
for all z € X, i.e. ||F| <1.Since 1 =||f|| <|[[F||<1wesee|F|=]|f]. =

Corollary 11.8. The linear map x € X — & € X™* where &(f) = f(x) for all
x € X is an isometry. (This isometry need not be surjective.)

Proof. Since |Z(f)| = [f(x)| < [[fllx- |z|lx for all f € X*, it follows that
|Z|| ¢ ox < ||| x - Now applying Theorem 11.7 with M = {0}, there exists f € X*
such that ||f|| = 1 and |2(f)| = f(z) = ||=||, which shows that [|Z]|y.. > |z y -
This shows that x € X — & € X™* is an isometry. Since isometries are necessarily
injective, we are done. m

Definition 11.9. A Banach space X is reflexive if the map z € X — & € X** is
surjective.

11.1. Weak Topology.

Definition 11.10. (1) Weak topology on X is the topology generated by X*. i.e.
sets of the form

N =N {r e X :|fi(z) — fi(xo)| < €}

where f; € X* and ¢ > 0 form a neighborhood base for the weak topology on X at
Zg.
(2) The Weak-* topology on X* is the topology generated by X, i.e.

N =N, {g€ X f(x) - gla)| <€)

where x; € X and € > 0 forms a neighborhood base for the weak-+ topology on X*
at f e X"

Theorem 11.11 (Alaoglu’s Theorem). If X is a normed space the unit ball in X*
is weak - x compact.

Proof. For all z € X let D, = {z € C : |z| < ||z||}. Then D, C Cis a

compact set and so by Tychonoft’s Theorem Q = [[ D, is compact in the product
zeX

topology. If f € B:= {f € X™ : [[f| = 1}, [£(2)] < |Ifll llz]| < [lz]| which implies
that f(z) € D, for all x € X, i.e. B C Q. The topology on B inherited from
the weak-* topology on X* is the same as that relative topology coming from the
product topology on Q. So to finish the proof it suffices to show B is a closed subset
of the compact space 2. To prove this let 7,(f) = f(z) be the projection maps.
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Then
B={fe€Q: fis linear}
={feQ: flr+cy) — f(z) —cf(y) =0for all z,y € X and c € C}
= [ ({feQ: fl@+ey) - f(z) —cfly) =0}

z,yeX ceC

N ) Ferey — e —em) ™ ({0)

z,yeX ceC

which is closed because (T qcy — Ty — cmy) :  — C is continuous. m
Definition 11.12. Strong and weak operator topologies on L(X,Y") are the small-
est topologies such that

1. Strong T € L(X,Y) — Tz €Y is continuous for all z € X.
2. Weak T € L(X,Y) — f(Tx) € Cis continuous for all z € X and f € Y™*.

12. HILBERT SPACES
Definition 12.1. Let H be a complex vector space. An inner product on H is a

function on (-,-) : H x H — C such that

1. (ax + by, 2z) = a(z, z) + bly, z) i.e. * — (x,z) is linear.

2. (z,y) = (y,z).
3. ||z||? = (z,z) > 0 with equality ||z||? =0 iff z = 0.

Notice that combining properties (1) and (2) that * — (z,z) is anti-linear for
fixed z € H, i.e.

(z,az + by) = a(z, ) + b(z,y).
We will often find the following formula useful:
o+ 9112 = (x + g, +y) = 2]+ [yl]2 + (2.9) + (y.2)
(12.1) = [zl + llyl* + 2Re(z, y)

Theorem 12.2 (Schwarz Inequality). Let (H,(-,-)) be an inner product space,
then for all x,y € H

[{z, 9)| < [l=[l[ly]]

and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0. First off notice
that if # = ay for some a € C, then (z,y) = a|jy|* and hence

2
[z 9)| = [l lyll™ = llzllllyl-

z,y
lvll® "
Now suppose that x € H is arbitrary, let

Moreover, in this case «a :=

(z,y)
z=x— —=y.
]2
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(So z is the “orthogonal projection” of x onto y.) Then

0o = o~ 28" < e+ LEBE e o, 22,
- [yl lyll* "yl
(=, y)[?
= Jajp - L2221

[yl
from which it follows that

0 < [lyl?ll=l* — [{z, y)”
with equality iff z = 0 or equivalently iff

. <x,yéy.
[yl

|
Corollary 12.3. Let (H,(-,-)) be an inner product space and ||z|| := /{(x,x). Then

II- || és @ norm on H. Moreover (-,-) is continuous on H x H, where H is viewed as
the normed space (H, ||-]]).

Proof. The only non-trivial thing to verify that ||-|| is a norm is the triangle
inequality:
Iz +yl* = lll* + llyll* + 2Refz, ) < [l]* + llyll* + 2ll=]| [ly]
= (ll=ll + llyl?

where we have made use of Schwarz’s inequality. Taking the square root of this
inequality shows ||z + y|| < ||z|| + |ly||. For the continuity assertion:

(@, y) = (2" ") = (e — 2", y) + (& y = o)
< yllllz =" + 12"y — o'l
< lyllllz ="l + (]l + llz = 2"I) lly = ¢/l
= lyllle = 2"l + l=llly = ¥/l + |z — 2"l lly — /Il
from which it follows that (-,-) is continuous. ®

Definition 12.4. Let (H, (-,-)) be an inner product space, we say z,y € H are
orthogonal and write z L y iff (x,y) = 0. More generally if A C H is a set we
say x is orthogonal to A and write L A iff (x,y) = 0 for all y € A. We also
introduce the set
At ={zcH:z 1 A}

We also say that a set S C H is orthogonal if x | y for all z,y € S such that x # y
and if S also satisfies ||z|| =1 for all # € S, then S is said to be orthonormal.
Proposition 12.5. Let (H,(-,-)) be an inner product space then

1. (Parallelogram Law)

(12.2) Iz +yl? + Iz = ylI* = 2)|2|* + 2|ly||?

for all x,y € H.
2. (Pythagorean Theorem) If S C H is a finite orthonormal set, then

(12.3) 1l =" el

z€S zeS
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3. If AC H is a set, then AL is a closed linear subspace of H.

Remark 12.6. See Proposition 12.28 in the appendix below for the “converse” of
the parallelogram law.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier.

(1) For z,y € H,
[z +yl” + [l = yl* = [l2[* + [ly[|* + 2Re(z,y)
+ [l + [ly[I* — 2Re(z, y)
= 2||||” + 2[|y|1*.

(2) This is a simple computation

IDalP=0w Y = (zy

z€eS zeS yeS z,yeS
= z,z) =) |l=|*
zeS zeS

(3) This is a consequence of the continuity of (-,-) and the fact that
AJ_ =MNzca ker((-, CE>)
where ker({-,x)) = {y € H : {(y,z) = 0} — a closed subspace of H. ®

Definition 12.7. A Hilbert space is an inner product space (H,(-,-)) such that
the induced Hilbertian norm is complete.

Definition 12.8. A subset C of a vector space X is said to be convex if for all
x,y € C the line segment [z,y] := {tz+ (1 —t)y: 0 <t <1} joining = to y is
contained in C' as well. (Notice that any vector subspace of X is convex.)

Theorem 12.9. Suppose that H is a Hilbert space and M C H be a closed convex
subset of H. Then for any x € H there exists a unique y € M such that

eyl = d(a, M) = inf 2|,
Moreover, if M is a vector subspace of H, then the pointy may also be characterized
as the unique point in M such that (x —y) L M.

Proof. Let y, € M such that ||z — y,| = 6, — 6 = d(z, M). Then by the

parallelogram law,
2)lx = ynll* + 2]z = ym® = 1122 = o +ym) I* + lyn — yml|?

(yn +ym)
lntmdye g, 2

(12.4) > 487 + [lyn — ym|?

where we have used the fact that M is convex so that (y, + ym)/2 € M. Letting
m,n — oo in the previous inequality implies

26% 4+ 262 > 46* +1lim  sup  ||yn — Y%,

m,n— 00

— 4fle -

Le. limsup,, ,, .o [|Yn — Ym||* = 0. Therefore {y,,},~, is Cauchy and hence conver-
gent. Because M is closed, y := lim y, € M. Also

n—00

|z -yl = lim ||z —y,|| = lim 6, =& = d(x, M)
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and therefore y is a desired closest element in M to x.

To show that y is unique, suppose that z € M were another point such that
|z — z|| = 6 = d(x, M). Then using the parallelogram law as in Eq. (12.4) we find
26% +26% = 2|z — y||* + 2]z — 2|* = |22 — (y + 2)|* + [ly — 2|

(y+2)

= dfjx — THQ +ly — z|?

> 46 + |y — 2|?

from which we learn ||y — z||?, i.e. y = 2.
Now suppose that M is a subspace of H and y € M is the closest point in M to
x. Then for w € M, the function

9(t) = |z — (y + tw)|* = ||z — y||* — 2tRe(z — y, w) + ¢*|Jw|
has a minimum at ¢ = 0. Therefore 0 = ¢’(0) = —2Re(x — y,w). Since w € M is

arbitrary, this implies that (z —y) L M. Finally suppose y € M is any point such
that (z —y) L M. Then for z € M, by Pythagorean’s theorem,

lz = 2| = llz —y +y — 2|
= llz = yl* + lly — 21
> ||z — gl

which shows d(z, M)? > ||z — y||?. That is to say y is the point in M closest to z.
|

Definition 12.10. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection of H onto M is the function Py, : H — H such that for
x € H, Py(z) is the unique element in M such that (z — Py (x)) L M.

Proposition 12.11. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection Py; satisfies:

1. Py is linear (and hence we will write Pyrx rather than Pyy(x).

2. P2, = Py (P is a projection.)

3. Py, = Py, te. (Pyx,y) = (x, Pyy) = (Pyx, Pyy) for all z,y € H.
4. ran(Pys) = M and ker(Py;) = M+

Proof.
1. Let 1,20 € H and o € F, then Pyyx1 + aPyxe € M and
Pyx1 + aPyaxg — (.1‘1 + 04.1‘2) = [PA,{$1 — X1+ Oé(PM$2 — $2)] S ML
showing
Py + aPyxg = Py(z1 + axs).
Then Py, is linear.
2. Obviously ran(Py;) = M and Pz = z for all x € M. Therefore P%, = Pyy.
3. Let z,y € H, then since (z — Pyx) and (y — Pyy) are in M+,
(Py,y) = (Pyx, Pyy +y — Puy)
= (Pux, Prpy)
= (Pyz + (x — Par), Pary)
= (z, Pyy).
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4. Tt is clear that ran(Py;) C M. Moreover, if © € M, then Pyx = x implies
that ran(Py;) = M. Now x € ker(Pyy) iff Pyyx =0iff v =2 —0€ M*.

Corollary 12.12. Suppose that M C H is a proper closed subspace of a Hilbert
space H, then H =M & M=,

Proof. Given z € H, let y = Pyjx so that x —y € M. Then x = y + (z —y) €
M+ML. Iz € MAM>L, then z L z, ie. ||z]|* = (z,2) = 0. So MN M+ = {0} .14
]

Proposition 12.13. The map
(12.5) zeH-2 (., 2) e H
is a conjugate linear isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x,z € H,

[(z, 2)| < ||z|| ||z]] for all z € H

with equality when = z. This implies that ||jz|| ;. = ||(-, 2)|| . = ||2]| . Therefore
j is isometric and this shows that j is injective. To finish the proof we must show
that j is surjective. So let f € H* which we assume with out loss of generality is
non-zero. Then M = ker(f) — a closed proper subspace of H. Since, by Corollary
1212, H = M ® M+, f : H/IM = M+ — T is a linear isomorphism. This
shows that dim(M+) = 1 and hence H = M ¢ Fxg where z9 € M=+ \ {0}.1°
Choose z = Azg € M+ such that f(zo) = (x0,2). (So A = f(x0)/ ||zo||*.) Then for
x =m+ Axg with m € M and A € F we have

f(x) = Af(x0) = Mz, 2) = (Axg, 2) = (M + Axg, 2) = (2, 2)
which shows that f = jz. =

Definition 12.14. {uq}aca C H is an orthonormal set if u, L ug for all a # 3
and |juq| = 1.

Proposition 12.15 (Bessel’s Inequality). Let {uq}aca be an orthonormal set,
then

(12.6) Z (z,ua)|* < ||| for all € H.
acA

In particular the set {a € A : (z,uy) # 0} is at most countable for all x € H.

1401d Proof follows.

Let P be the projection P = Pp; and @Q be the be the complementary projection, @ =1 — P.
It is straightforward to check that Q2 = Q and PQ = QP = 0. Since for all z € H, 2 = Px + Qx
and if Pz = Qy for some 2,y € H, then 0 = QPx = Q%y = Qy. Therefore H = ran(P) @ ran(Q).
Since ran(P) = M, to finish the proof it suffices to show that ran(Q) = M~L. By definition of
P, Qr =z — Px € M* for all z € H so that ran(Q) C M+. Conversely, if x € M+ = ker(P),
z=(1— Pl =Qz €ran(Q).

15 Alternatively, choose g € M1\ {0} such that f(zo) = 1. For € M~ we have f(z—Azg) =0
provided that X := f(z). Therefore z — Axo € M N M+ = {0}, i.e. = Azo. This again shows
that AL is spanned by xo.
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Proof. Let I' C A be any finite set. Then

0< o= Y (2 uadual® = l|z]* — 2Re Y (2, ua) (wa,z) + Y &, ua)?

aecl’ acl acl’
=[l=]* = > l{z, ua)[?
acl’
showing that
> ey ua) P <z
acl’
Taking the supremum of this equation of I' CC A then proves Eq. (12.6). m
Proposition 12.16. Suppose A C H is an orthogonal set. Then s = > ., v

exists in H iff >, 4 |v][* < co. (In particular A must be at most a countable set.)
Moreover, if 3, 4 ||v||* < oo, then

L sl® = Xpea llol* and
2. (s,2) = ,calv, ) forallx € H.

oo
Similarly if {v,}22, be an orthogonal set, then s = > v, exists in H iff
n=1

oo oo
S loal|? < co. In particular if > v, exists, then it is independent of rearrange-
= n=1

n=
ments of {vp 2.

Proof. Suppose s =} _, v exists. Then there exists I' CC A such that

Yolel®=|> v

vEA vEA

2
<1

for all A CC A\TI" ,wherein the first inequality we have used Pythagorean’s theorem.
Taking the supremum over such A shows that }- . 4\ [v]|* < 1 and therefore

D ol <14 |l < oo,
veA vel

Conversely, suppose that |v]|2 < co. Then for all € > 0 there exists [ CC A

such that if A cC A\ T,

vEA ‘

2
= ll? <€

veEA

Zv

veA

Hence by Lemma 10.23, }° _ , v exists.
For item 1, let sc := Y - v, then

sl = llselll < ls = sl <€

and

0< D fol® = llsel* < €.

vEA

Letting € — 0 we deduce from the previous two equations that ||s||* = Sveallvl?
Ttem 2. is a special case of Lemma 10.23.
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N
For the final assertion, let sy = > v, and suppose that limy_,oc Sy = s exists

n=1
in H. Then in particular {sy}%_; is Cauchy so for N > M.
N
> onll® =llsy —sml*> = 0as M, N — oo
n=M+1

o0 o0
which shows that >_ ||v,]|? is convergent, i.e. S [[v,]|? < co. m

n=1 n=1
Corollary 12.17. Suppose H is a Hilbert space, 3 C H is an orthonormal set and
M = span 3. Then

(12.7) Pyz = Z(x, u)u,

u€eB
(12.8) > N w)? = || Payal® and
u€epP
(12.9) > (@, u)(u,y) = (Pyw,y)
uepf

for all x,y € H.

Proof. By Bessel’s inequality, >, 5 |(z,u)|> < ||z||* for all z € H and hence
by Proposition 12.15, Pz := 3~ s(z, u)u exists in H for all z € H and

(12.10) (Pr.y) = Y (e uhuy) = 3o, ud ()
uep uef

for all y € H. Taking y € ( in this expression shows that (Px,y) = (z,y), i.e.
that (x — Pz,y) = 0. Since y € 3 is arbitrary, we learn that (x — Pz) L span (8
and by continuity we also have (x — Pz) 1. M = span (. Since Pz is also in M, it
follows from the definition of Py, that Pz = Pyx proving Eq. (12.7). Equations
(12.8) and (12.9) now follow from (12.10), Proposition 12.16 and the fact that
(Pyvz,y) = (P, Pyry) for all z,y € H. For example,

(Pyra,y) = (Pyz, Pyry) = (Z(ac,u)u,PMy> = Z(x,u><u,PMy>
u€epf uep

=Y (wu)(Pau,y) = Y (@ u)(u,y).
u€f uep
[

12.1. Hilbert Space Basis.

Definition 12.18 (Basis). Let H be a Hilbert space. A basis [ of H is a maximal
orthonormal subset 8 C H.

Proposition 12.19. Fvery Hilbert space has an orthonormal basis.

Proof. Let F be the collection of all orthonormal subsets of H ordered by
inclusion. If ® C F is linearly ordered then U® is an upper bound. By Zorn’s
Lemma there exists a maximal element 3 € . m

An orthonormal set 3 C H is said to be complete if 3+ = {0} . That is to say
if (z,u) =0 for all uw € § then z =0.

Remark 12.20. An orthonormal set 5 C H is a basis iff 3 is complete.
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Proof. Suppose that § C H. If 3 is not complete, then there exists a unit vector
x € 3+ \ {0}. The set 3U {x} is an orthonormal set properly containing 3, so (3
is not maximal. Conversely, if 8 is not maximal, there exists an orthonormal set
f1 C H such that 3 & B;. Then if € (3 \ 3, we have (z,u) = 0 for all u €
showing (3 is not complete.

Theorem 12.21. Let 8 C H be an orthonormal set. Then the following are equiv-
alent:

1. B is complete or equivalently a basis.

2. z= > (x,u)u for allz € H.
u€eB

3. (z,y) = 2 (z,u) (u,y) for all z,y € H.
uepP

4. ||z]|2 = 3 {x,u)|? for all z € H.
u€eS

Proof. Let M = span 8 and P = Py,.

(1) = (2) By Corollary 12.17, >~ (x,u)u = Ppsx. Therefore
uepP

T — Z(x,u)u::z:fPMa: e M+ =p+=1{0}.
uepP
(2) = (3) is a consequence of Proposition 12.16.
(3) = (4) is obvious, just take y = z.
(4) = (1) If x € B+, then by 4), ||z|| = 0, i.e. 2 = 0. This shows that 3 is

maximal. ®m

Proposition 12.22. A Hilbert space H is separable iff H has a countable orthonor-
mal basis 3 C H. Moreover, if H is separable, all orthonormal bases of H are
countable.

Proof. Let D C H be a countable dense set D = {u,}02;. By Gram-Schmidt
process there exists § = {v,}22,; an orthonormal set such that span{v, : n =
1,2...,N} Dspan{u, :n=1,2...,N}. Soif (z,v,) =0 for all n then (z,u,) =0
for all n. Since I C H is dense we may choose {wy} C D such that z = limp_,o wg
and therefore (x,x) = limg_, o (z, wy) = 0. That is to say x = 0 and § is complete.

Conversely if 8 C H is a countable orthonormal basis, then the countable set

D= Zauu:aue(@+i@:#{u:au7ﬁ0}<oo
uef
is dense in H.

Finally let 8 = {u,,}22; be an basis and ; C H be another orthonormal basis.
Then the sets

Ap={vep:{vu,) #0}

are countable for each n € N and hence B := [J A, is a countable subset of A.
n=1

The proof will be finished by showing B is complete and hence maximal, so that
A = B. To see that B is complete, suppose that = € B+ and there exists v € A\ B,
0 (uyn,v) =0 for all n € N. Then

oo

(x,v) = Z(x,un><un,v> =0.

n=1
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Since by assumption (z,v) = 0 for all v € B, it follows that (z,v) =0for allv e A
and because A is complete, x =0. m

Remark 12.23. Suppose that {u,}52; is a total subset of H, i.e. span{u,} = H.
Let {vy, }52, be the vectors found by performing Gram-Schmidt on the set {u,, }5° ;.
Then {v,}22 is an orthonormal basis for H.

Example 12.24. 1. H = L?([~7,7],dm), then by the Stone-Weierstrass the-

orem, {e™}2° s total and therefore e, () = \/%ema for n € Z is an

orthonormal basis. Indeed, we may identify H with L?(S',d#) by the map,
f€H — (60— f(e?)) € L?(S*,df). Under this identification, e’ corre-
sponds to 2" and we have seen by the Stone-Weierstrass theorem that the
algebra generated by z and 27! is dense in C(S!). Since C(S?!) is dense in
L?(S',df), it follows that the algebra generated by z and z~! is dense in
L2(SY,df) as well.

2. Let H = L?(|-1,1],dm) and A := {1,z,2% 23...}. Then A is total in H by
the Stone—Welerstrass theorem and a sumlar argument as in the first example.
The result of doing Gram-Schmidt on this set is the Legendre Polynomials.

3. Let H = L2(R,e™2% dz). Fact A := {1,z,22,23...} is total in H and the
result of doing Gram-Schmidt on A now gives the Hermlte Polynomials.

Remark 12. 25 (An Interesting Phenomena). Let H = L%*([—1,1],dm) and B :
{1,23 2% 29 ... }. Then again A is total in H by the same argument as in item 2
Example 12. 24 This is true even though B is a proper subset of A. Notice that A
is an algebraic basis for the polynomials on [—1, 1] while B is not! The following
computations may help relieve some of the reader’s anxiety. Let f € L?([—1,1],dm),
then, making the change of variables x = 3'/3, shows that

iy [ u@ra= [ e e [ ] do)

-1

where du(y) = y~?/3dy. Since p([-1,1)) = m([—l, 1]) = 2, p is a finite measure
on [—1,1] and hence regular and hence C([—1,1]) is dense in L?([—1 1] d,u) Thus
the usual Stone Weierstrass argument shows as above that A := {1,z,22,23 ...} is
a total in L?([—1,1],du). In particular for any € > 0 there exists a polynomlal p(y)
such that

/ 11 76~ p)][ dnty) < .

However, by Eq. (12.11) we have
1 1
> [ 1) o] dut) = [ 1) = pla®) e

Alternatively, if f € C([—1,1]), then g(y) = f(y*/3) is back in C([~1, 1]). There-
fore for any € > 0, there exists a polynomial p(y) such that

e>|lg —pll, =sup{lg(y) —p)| :y € [-1,1]}

:sup{|g(x3) —p(x3)| tx € [—1,1]} = sup{|f($) —p(x3)| ix € [—1,1]}.

3

This gives another proof the polynomials in z* are dense in C([—1,1]) and hence

in L2(]-1,1]).
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12.1.1. Non-complete inner product spaces. Part of Theorem 12.21 goes through
when H is a not necessarily complete inner product space. We have the following
proposition.

Proposition 12.26. Let (H,(-,-)) be a not necessarily complete inner product
space and 3 C H be an orthonormal set. Then the following two conditions are
equivalent:

Theorem 12.27. 1. z = 5 (z,u)u for all z € H.
u€eS
2. ||zl = Z |(z,u)|? for all x € H.

Moreover, ezther of these two conditions implies that 8 C H is a maximal or-
thonormal set. However 3 C H being a maximal orthonormal set is not sufficient
to conditions for 1) and 2) hold!

Proof. As in the proof of Theorem 12.21, 1) implies 2). For 2) implies 1) let
A CC B and consider

x— Z(x,um

ueA

=le* =2 [z, u)* + D [z, w)?

u€EA ueA

= lle* = > [z, 0.

ueEA

Since [|z||? = Z |(z,u)[?, it follows that for every € > 0 there exists A, CC 3 such

that for all A CC 0 such that A, C A,

x— Z(x,u)u

ueN

2

= Jlal* = > [z, u)* < e

uEA

showing that z = > (z, u)u.
u€eS

Suppose x € 3+. If 2) is valid then ||z||? = 0, i.e.  =0. So 3 is maximal. Let
us now construct a counter example to prove the last assertion.

Take H = Span{e; }$°, C (? and let @, = e; —(n+1)e,41 forn =1,2.... Apply-
ing Gramn-Schmidt to {4, }, ., we construct an orthonormal set 3 = {u, }72, C H.
I now claim that 8 C H is maximal. Indeed if z € 3+ then = L w,, for all n which
then implies that for all n € N,

0=(x,0p) =21 — (n+ Dzpi1.

Therefore z,,41 = (n+ 1) ' 2 for all n. Since z € Span{e;}32,, zy = 0 for some N
sufficiently large and therefore x1 = 0 which in turn implies that z,, = 0 for all n. So
x = 0 and hence 3 is maximal in H. On the other hand, 3 is not maximal in ¢?, sine
the above argument shows that 3+ in £2 is given is the span of v = (1, é, é, }1, é, ceo)
Let P be the orthogonal projection of /2 onto Span3 = v*. Then

o0

Z(x,unmn = Puz,

i=1
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so that " (z,u,)u, = z iff € Spanf = v+ C (2. For example if = (1,0,0,...) €
i=1
H or z = e; for any i, then = ¢ v and hence

o0

i=1
L]

12.2. Appendix: Converse of the Parallelogram Law.

Proposition 12.28 (Parallelogram Law Converse). If (X, |-||) is a normed space
such that Eq. (12.2) holds for all x,y € X, then there exists a unique inner product
on (-, ) such that ||z|| := \/(z,z) for all v € X. In this case we say that ||-|| is a
Hilbertian norm.

Proof. If ||-|| is going to come from an inner product (,-), it follows from Eq.
(12.1) that

2Re(z,y) = [lz +y|* — [|=]* — [ly[

and
—2Re(z,y) = [lz — y[* — [l[* — [ly[*

Subtracting these two equations gives the “polarization identity,”

4Re(z,y) = [lz +y[? — |z — y|>.
Replacing y by iy in this equation then implies that

4z, y) = ||z +iy|* — [« — iy|
from which we find

1

(12.12) (@) =7 ;G\Ix +eyll?

where G = {+1, +i} — a cyclic subgroup of S* C C. Hence if (-, ") is going to exists
we must define it by Eq. (12.12).
Notice that

1 . . . .
(2,0) =2 3 ella+ exl]2 = [lall? + ifla + ] = illa — ix|?
4
eeG
. . . . 2
= el + i |1+ el =i 1 = i?] ] = [l

So to finish the proof of (4) we must show that (z,y) in Eq. (12.12) is an inner
product. Since

My,a) =Y elly+exl* =) ele(y +ex) |

ecG ecG

= Ze”ey + 2|2

ceG
= lly + 2| + || =y + =|* +illiy — «||* = il| iy — «|?
= [lz + ylI* + lz = yl* + il — iy|]* —i]|= + iy|]?
=4(z,y)
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it suffices to show that * — (z,y) is linear for all y € H. (The rest of this proof
may safely be skipped by the reader.) For this we will need to derive an identity
from Eq. (12.2). To do this we make use of Eq. (12.2) three times to find

lz+y+2l” = —llz +y — 2|> + 2]lx + y|* + 2[|2|]?
= llz —y — 2 = 2]z — 2[* = 2lly|* + 2l|= + yII* + 2]
=lly + 2 — 2] = 2lle — 2> = 2|lylI* + 2/l + y[|* + 2[|]
= —lly +z+ 2| + 2y + 2I* + 2|}2l* — 2]}z — 2|I* - 2lly|* + 2]lz + y||* + 2(2*.
Solving this equation for ||z + y + 2||? gives
(1213) e +y+2l? = lly + 2> + o+ ylI* = lla — 2 + [l2]* + ||2I* - ]
Using Eq. (12.13), for z,y,z € H,
ARe(z +2,y) = llz + 2 +yl* — llz +z -y
= lly + 21 + llz + yl* = llz — 2 + [|l=]1* + ||z = [ly]I*
= (lz = yl? + llz = ylI* =l — 2 + [l2[* + |21 — [ly]I*)
=llz+yl? = llz =yl + =+ yl* = ||z — y|?
(12.14) = 4Re(z,y) + 4Re(z,y).
Now suppose that § € G, then since || =1,

1 1
Aszy) = 7 D el +eyl? = 1 Y ella+ o7 ey

eeG eeG
1 2
(12.15) =3 265\|x+5ey\| = 48(z,y)

where in the third inequality, the substitution € — €5 was made in the sum. Since
Im(z, y) = Re(—iz,y)
it follows from Eq. (12.14) and (12.15) that
4Im(x + z,y) = 4Re(—iz — iz,y) = 4Re(—iz, y) + 4Re(—iz, y)
=4Im(z,y) +4Im(z,y)
which combined with Eq. (12.14) shows
(x+2,y) = (z,y) + (2,9).

Because of this equation and Eq. (12.15) to finish the proof that x — (z,y) is
linear, it suffices to show (Az,y) = Max,y) for all A > 0. Now if A =m € N, then

(mz,y) = (z + (m - D)z,y) = (z,y) + ((m — 1)z, y)
so that by induction (mz,y) = m{x,y). Replacing = by z/m then shows that
(z,y) = m(m~lz,y) so that (m lz,y) = m 1(x,y) and so if n € N we find
n 1 n
so that (A\x,y) = Max,y) for all A > 0 and A € Q. By continuity, it now follows
that (A\z,y) = Max,y) for all A > 0. (Question, could this have been carried out
algebraically?) m
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12.3. Appendix: Proofs via orthonormal bases. In this appendix, let us give
some proofs of the previous theorems making use of that fact that every Hilbert
space has an orthonormal basis. (This appendix may safely be skipped.) As above,
let H be a Hilbert space.

Let 8 C H be an orthonormal set and M = span 3 C H. Then M is a closed
subspace of H and hence a Hilbert space. (Moreover 3 C M is an orthonormal basis

for M since if z € 3+ then x € span ﬁJ' = M+*. Therefore if x € M and z € 3+,
then = 0.) For « € H, let Pr = ) (z,u)u then P : H — H is orthogonal

u€eB
projection of H onto M. Indeed, if y = Pz = Y (z,u)u, then for v € (3,
u€ef
(—y,v) = (x,0) = > (2, u)(u,v) = (,0) = (z,0) =0
u€eS

showing z —y € 3+ = M~*. So if m € M,
lz = ml® = [I(z = y) +y —m|* =l —ylI* + |y = m|* > [l — y|

with equality iff m = y which shows that y is the unique element in M minimizing
the distance of  to M.
Let us also show using an orthonormal basis that the map

H— H”
x— () =Ly
is a conjugate linear isometric isomorphism. First off by the Schwarz’s inequality,

[ell = sup [€o(y)| = sup [(z,y)] <[]
lyll=1 lyli=1

Moreover taking y = z/||z||, |l=(y)| = ||z|| showing that ||{;| > ||z|| and therefore
that ||€z|| = ||z||. So x — ¢, is an isometric map which is easily seen to be conjugate
linear. Hence we need only show that to every f € H* \ {0} there exists x € H
such that f = £, = (-, z). Let § C H be an orthonormal basis for H, then if z is
going to exist we would have

(12.16) x = Z(x,u)u = Z f(uw)u.

uepf uef

In order to make use of this formula, we need to show > 5 |f (u)|* < co. Suppose
that A CC @ and y € Spanf, then

F) = O (ywyu) = (yu)f(u) = (y, > Fw)u),

ueN u€eEA u€EA

Taking y = >~ cp f(u)u in this expression then shows that

2
F) = llyl™ = Nyl Iyl
showing |ly|l; < || fll 5~ - Squaring this inequality then shows that

ST =yl < I1£113- < oo

uEA
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and since A CC f3 is arbitrary, it follows that 3 5 |f (u)|* < oo as desired. There-
fore we may define = by Eq. (12.16). Then for y € H,

) =1 D ] =) uflw) =) (v fwu) = (.Y fluu) = ().

u€ef u€ef u€ef u€ef

13. BAIRE CATEGORY THEOREM AND ITS CONSEQUENCES
Recall that a set E is said to be nowhere dense iff (E)o = (), i.e. E has empty
interior. Also notice that E is nowhere dense is equivalent to
X =((B)) = ()" = (E"
That is to say E is nowhere dense iff £¢ has dense interior.
13.1. Baire Category Theorem.
Theorem 13.1 (Baire Category Theorem). Let (X, p) be a complete metric space.
1. If {V,},2 | is a sequence of dense open sets, then G := ﬁ V. is dense in X.
2. If {E,},"_, is a sequence of nowhere dense sets, then Xn;él U~ En.

Proof. 1) We must shows that G = X which is equivalent to showing that
W NG # () for all non-empty open sets W C X. Since V; is dense, W NV # () and
hence there exists 1 € X and €; > 0 such that

B(xl,el) cwnvi.

Since V3 is dense, B(xz1,€1) NV # () and hence there exists 2o € X and e > 0 such
that

B($2, 62) C B(.Z‘l, 61) N Vs.
Continuing this way inductively, we may choose {z,, € X and €, > 0}, such that
B(xp,€n) C B(zp_1,€n—1) N Vy Vn.

Furthermore we can clearly do this construction in such a way that €, | 0 as
n T oo. Hence {z,,}22 is Cauchy sequence and z = lim z,, exists in X since X

is complete. Since B(zy,€,) is closed, v € B(z,,€,) C V, so that z € V,, for all
n and hence x € G. Moreover, x € B(z1,e;) C W NV, implies x € W and hence
x € W NG showing WNG #0.

2) For the second assertion, since | J;-, E, C |Jro, En, it suffices to shows that
X # U2, En or equivalently that § # (00, (E,)° = Moo, (ES)°. As we have
observed, E,, is nowhere dense is equivalent to (ES)° being a dense open set, hence
by part 1), (),—, (E<)° is dense in X and hence not empty. m

Definition 13.2. A subset £ C X is meager or of the first category if £ =
J E, where each E, is nowhere dense. And a set F' C X is called residual if F*°

n=1

is meager.

Remarks 13.3. The reader should think of meager as being the topological analogue
of sets of measure 0 and residual as being the topological analogue of sets of full
measure.
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1. If F is a residual set, then there exists nowhere dense sets { E,,} such that

Taking complements of this equation shows that
m'?lo=1E_"fL CF )
i.e. F contains a set of the form N2, V,, with each V,, being an open dense
subset of X.
Conversely, if N9V, C F with each V,, being an open dense subset of

X, then F¢ C Up2, V)¢ and hence F° = U2 F,, where E,, = FCNVy, a
nowhere dense subset of X. Therefore F' is residual iff F' contains a countable
intersection of dense open sets.

2. A countable union of meager sets is meager and a subsets of a meager set is
meager.

3. A countable intersection of residual sets is residual.

The Baire Category Theorem may be stated as follows. If X is a complete metric
space, then (1) all residual sets are dense in X and 2) X is not meager.

13.2. Application to Banach Spaces.

Theorem 13.4 (Open Mapping Theorem). Let X,Y be Banach spaces, T €
L(X,Y). If T is surjective then T is an open mapping.

Proof. For all a« > 0let B, = {z € X :|z||y <a} C X, E, = T(B,) and
B(0,a) ={y €Y : |lylly <a}. -

Claim 1. For all « > 0 there exists § > 0 such that B(0,8) C E,.

Since Y = |J E,, the Baire category theorem implies there exists n such that

n—1

F?Z # 0, i.e. there exists y € F,, and € > 0 such that B(y,e) C E,. Suppose
/|| < € then y and y + % are in B(y,e€) C E,, hence there exists 2,z € B,, such
that ||T2" — (y + ¢')|| and ||Tx — y|| may be made as small as we please, which we
abbreviate as follows

172" — (y +3')|| = 0 and || Tz — y|| ~ 0.
Hence by the triangle inequality,
IT(2" —2) =y = T2 = (y +¢) — (Tz — y)||
< T2 = (y+y)| + 1Tz —y[ = 0

with 2/ — 2 € Ba,. This shows that y/ € FEs, which implies B(0,¢) C Es,. Since
the map ¢, : Y — Y given by ¢4(y) = 5=y is a homeomorphism, ¢ (E2,) = Eq
and ¢, (B(0,€)) = B(0, 25, it follows that B(0,6) C E, where § = $< > 0.

Claim 2. There exists € > 0 such that B(0,¢) C Eq, i.e. Claim 1. holds with
out the closure. -

By Claim 1, there exists 6 > 0 such that B(0,6) C Eq. As in the proof of
Claim 1. we also have B(0,ad) C E, for all @ > 0. Now let € := §/2 and y € YV

be such that |ly| < € = §/2. Then y € B(0,36) C F% so there exists There
exists 1 € By such ||[T'r; —y[| ~ 0 and in particular we may assume that

lly — Txi|| < 27te = 6/4 = 2726.
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Similarly, y — T'zy € B(0, %5) C Ei implies there exists xo € By/4 such that
|y — Ty — Tas|| < 27% = 2736
and hence an z3 € By-3 such that
|y — Txy — Txg — Tas|| < 2% =276
So by induction, we find x,, € By—» such that

(13.1) |y = > Tawl|=|ly = Tar — Taz —--- = Ty < 27" = 2716,
k=1
Since
> < /1\" 1 1
Slad <X (5) =3 (777) -1
n=1 n=1 2 2 1- 2

r = Y =z, exists and ||z|| < 1. Passing to the limit in Eq. (13.1) shows, |ly—Tz|| =

0. Thus we have shown if ||y|| < € then y € T'(B1) = E; which is the content of
Claim 2.

We now show that T is open. If z € V C, X and y = Tz € TV we must show
that TV contains a ball B(y, ) for some § > 0. Now the following statements are
easily seen to be equivalent:

B(y,6) = B(Tz,6) CTV
B(0,6) C TV — Tae = T(V — 2)
(13.2) B(0,a6) C T [a(V — )]

for some o > 0. But since V — z is a neighborhood of 0, there exists o > 0 such
that By C a(V — ) and hence by Claim 2. there exists an € > 0 such that

B(0,¢) CTBy C o(V — x).
Therefore we see that Eq. (13.2) holds provided we choose § =¢/a > 0. ®

Corollary 13.5. If X, Y are Banach spaces and T € L(X,Y) is invertible (i.e. a
bijective linear transformation) then the inverse map, T~', is bounded, i.e. T~ €
L(Y, X). (Note that T~! is automatically linear.)

Theorem 13.6 (Closed Graph Theorem). Let X andY be Banach space T : X —
Y linear is continuous iff T is closed i.e. T(T) C X X Y is closed.

Proof. If T continuous and (z,,Txz,) — (z,y) € X xY as n — oo then
Tz, — Tz =y which implies (z,y) = (z,Tz) € ['(T).
Conversely: If T is closed then the following diagram commutes

I'(T)

X

T Y

where I'(z) := (z, Tx).
The map 7 : X x Y — X is continuous and m|p(r) : ['(T) — X is continuous
bijection which implies ﬂl\;(lT) is bounded by the open mapping Theorem 13.4.
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Hence T' = 75 0 Wl\;(lT) is bounded, being the composition of bounded operators.
[
As an application we have the following proposition.

Proposition 13.7. Let H be a Hilbert space. Suppose that T : H — H is a linear
(not necessarily bounded) map such that there exists T* : H — H such that

(Tz,Y) = (2, T*Y)Vz,y € H.
Then T is bounded.

Proof. It suffices to show that T is closed. To prove this suppose that x,, € H
such that (x,,Tx,) — (v,y) € H x H. Then for any z € H,

(Trp,z) = (xp,T*2) — (2,T7*z) = (Tx,z) as n — oo.

On the other hand lim,, oo (T%y, 2) = (y, z) as well and therefore (T'z, z) = (y, 2)
for all z € H. This shows that Tz = y and proves that T is closed. =
Here is another example.

Example 13.8. Suppose that M C L?([0,1],m) is a closed subspace such that
each element of M has a representative in C(]0,1]). We will abuse notation and
simply write M C C([0,1]). Then

1. There exists A € (0,00) such that || fl, < A fl|z2 for all f e M.

2. For all z € [0,1] there exists g, € M such that
f(z) =(f,g.) for all f e M.

Moreover we have ||g,|| < A.
3. The subspace M is finite dimensional and dim(M) < A%

Proof. 1) I will give a two proofs of part 1. Each proof requires that we first
show that (M, || - ||,) is a complete space. To prove this it suffices to shows that
M is a closed subspace of C([0,1]). So let {f,} € M and f € C([0,1]) such that
| fn— fll, = 0asn — oo. Then || fr — finll2 < |[fn — fimll, — 0 as m,n — oo,
and since M is closed in L%([0,1]), L? — lim, o fn = g € M. By passing to a
subsequence if necessary we know that g g(z) = lim,, . fr(z) = f(z) for m - a.e.
x.So f=ge M.

D)Let i : (M,]| - ||lu) — (M,] - ||2) be the identity map. Then i is bounded and
bijective. By the open mapping theorem, j = i~! is bounded as well. Hence there
exists A < oo such that || f||, = [|7(f)|| < A f|l, for all f e M.

i) Let j : (M, || - []2) = (M, ]| - ||«) be the identity map. We will shows that j is
a closed operator and hence bounded by the closed graph theorem. Suppose that
fn € M such that f,, — f in L? and f,, = j(f.) — g in C([0,1]). Then as in the
first paragraph, we conclude that g = f = j(f) a.e. showing j is closed. Now finish
as in last line of proof i).

2) For z € [0,1], let e, : M — C be the evaluation map e,(f) = f(z). Then

lex (N < [f(@)] < [ fllu < Allfll 2

which shows that e, € M*. Hence there exists a unique element g, € M* such
that

f(z) = e (f) = (f,gz) for all f e M.
Moreover || g2 = ||ex||m < A.
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3) Let {f;}7_, be an orthonormal subset of M. Then

n n
A2 > lea|ie = lgallFe =D [Firga)? =D 1 f5(@)
=1 j=1

and integrating this equation over z € [0, 1] implies that

n 1 n
A222/0 fi(@)Pde =) "1 =n
j=1 j=1

which shows that n < A2. Hence dim(M) < A2, =

Remark 13.9. Keeping the notation in Example 13.8, G(z,y) = g.(y) for all z,y €
[0,1]. Then

1 —_—
£@) = e = | F)GTg)ay forall £ € M.

The function G is called the reproducing kernel for M.
The above example generalizes as follows.

Proposition 13.10. Suppose that (X, M, u) is a finite measure space, p € [1,00)
and W is a closed subspace of LP(p) such that W C LP(u)NL>®(p). Then dim(W) <
0.

Proof. With out loss of generality we may assume that ;(X) = 1. As in Example
13.8, we shows that W is a closed subspace of L>°(u) and hence by the open mapping
theorem, there exists a constant A < oo such that || f[|, < A[/f|, for all f € W.
Now if 1 < p <2, then

[flloe < AllfI, < Allfll;

and if p € (2,00), then || f[[2 < || f|[3[| |2, or equivalently,

_ 1-2/p
£, < IFIRP AT < £ (AN1,)

from which we learn that [|f||, < A'“2/?[/f||, and therefore that |f|l,, <
AA'2/P||f|, so that in any case there exists a constant B < oo such that
1fllee < Bl -

Let { fn}f:r=1 be an orthonormal subset of W and f = 27]:;1 Cn frn with ¢, € C,
then
2 N
<B?Y |en|* < B? |

o n=1

N
> entn
n=1

where || := Ziv=1 lcu|? . For each ¢ € CV, there is an exception set E, such that
for z ¢ E.,

2
< B?|c]?.

N

Z Cnfn(x)

n=1
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Let D := (Q+iQ)" and E = NecpE.. Then u(E) = 0 and for = ¢ E,
22;1 cnfn(x)‘ < B? |c\2 for all ¢ € D. By continuity it then follows for x ¢ E

that

N 2

Z en fn(x)

n=1

< B?|¢|? for all ce CV.

Taking ¢, = fn(x) in this inequality implies that

N 2 N
Z|fn($)\2 SBZZH”(JU)\Q forallz ¢ E
n=1 n=1

and therefore that
N

S ful@)]® < B for all o ¢ E.

n=1
Integrating this equation over x then implies that N < B2, i.e. dim(W) < B2 m

Theorem 13.11 (Uniform Boundedness Principle). Let X and Y be a normed
vector spaces. Suppose A C L(X,Y) and let

(13.3) R=Ry:={z€X: sup |[Az| = oo}.
AcA

Then sup ||A|| < oo iff R is not residual. In particular if X is a Banach space and
AcA

sup ||Az|| < oo for all x € X then sup || 4| < oo.
AeA AeA

Proof. If M := sup ||A]] < oo, then sup ||Az|| < M ||z|| < oo for all z € X, so
AcA AcA

that R = () and R is not residual. Conversely, if R is not residual, then R® = {z €
X : sup ||Az|| < oo} is not meager. For each n € N, let E,, C X be the closed sets
AcA

given by
E, ={z: sup [|[Az| <n} = [ {z: [Az|| < n}.
AeA AeA
Then R = U2 E, and since R¢ is not meager, there exists an n € N such that
E9 #0. Let B(z,6) be a ball such that B(x,8) C E,. Then for y € X with [jy|| = ¢
we know x —y € B(z,8) C E,, so that Ay = Ax — A(x — y) and hence for any
Ae A,

Ayl < [|Az]| + [|A(z —y)[| <n +n =2n.
Hence it follows that ||A|| < 2n/§ for all A € A, i.e. sup ||A| < 2n/d < .
If sup ||Az|| < oo, then R = . If X is a BanachAgggce, then residual sets are
denseA:rf‘d hence R = () is not a Residual set. Therefore sup ||A|| < co by the first
part of the Theorem. m e

Example 13.12. Suppose that {c,} -, C C is a sequence of numbers such that
N
lim Z ancy exists in C for all a € ¢1.
N—oo o

Then ¢ € (°°.
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Proof. Let fy € (ﬂl)* be given by fy(a) = 25:1 anc, and set My :=
max {|c,| :n=1,...,N}. Then
|fn(a)] < My [lall,

and by taking a = e, with k such My = |c|, we learn that || fx|| = My. Now by
assumption, limy_ .« fn(a) exists for all @ € ¢! and in particular,

sup | fn(a)| < oo for all a € £*.
N
So by the Theorem 13.11,
oo > sup || fn|| = sup My =sup{|en| :n=1,2,3,...}.
N N
|

13.3. Applications to Fourier Series. Let T = S! be the unit circle in S! and m
denote the normalized arc length measure on T So if f : T' — [0, 00) is measurable,

then
/ f(w)duw = / fm = f( )d

Also let ¢,,(2) = 2™ for all n € Z. Recall that {(/)n}neZ is an orthonormal basis for
L*(T). For n € N let

n

2= S Ubnon(a) = 37 U)ot = 3 ( / fw kdw)

k=—n k=—n
= [ flw k2P | dw = / flw
/1: k;n
where dp,(a) :=>"p_ o Now ad,(a) — d,(a) = o™ — a™", so that
n n+l _ . —n
— Z P e
a—1
k=—n
with the convention that
an+1 —a " an+1 —a " n A
B i L e w U Dl

k=—n
Writing o = €, we find
pi0(n+1) _ g—ibn  if(n+1/2) _ ,—if(n+1/2)
e _ 1 - 0i0/2 _ o—i0/2

sin(n + 3)0

sin %9 '
Recall by Hilbert space theory, L(T) — limy,—o0 8, (f,+) = f for all f € L?(T). We
will now show that the convergence is not pointwise for all f € C(T) C L*(T).

Proposition 13.13. h z € T, there exists a residual set R, C C(T) such that
sup,, |sn(f,2)| = oo for all f € R,. Recall that C(T) is a complete metric space,
hence R, is a dense subset of C(T).
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Proof. By symmetry considerations, it suffices to take z =1 € T. Let A, f :=
$n(f,1). Then

Anf] = '/f dw‘ [ Iw@law <151, [ o) du

showing
IAn]| < / d (@)] o
T

Since C(T) is dense in L'(T), there exists fj, € C(T,R) such that fi(w) — sgndy ()
in L'. By replacing fi by (fi A1)V (—1) we may assume that || fx|, < 1. It now
follows that

and passing to the limit as k — oo implies that ||A,|| > [ |d,(®)| dw. Hence we
have shown that

_ L e ) 1
(134) Al = [ fdn@ldw=5- [ Jae o= 5- [

Since

1A > |

™ |sin(n + $)0

in 1
sin 50

e

T X
sinx = / cosydy < [cosy|dy < x
0 0

for all > 0. Since sinz is even, |sinz| < |z| for all x € R. Using this in Eq. (13.4)
implies that

™ |sin(n + 3)0 2 " 1. | do
il = gz [ |2 an =2 [ sintn+ 50| §
:%/0 sin(n + )9‘%?
Since
7r (”+2)
/0 sin(n—l—%)@‘d?f—/o |siny|d—;—>ooasn—>oo,

we learn that sup,, ||A,|| = co. So by Theorem 13.11,
Ry ={f € C(T) : sup |An f| = oo}

is a residual set. m
See Rudin Chapter 5 for more details.

Lemma 13.14. For f € LY(T), let

Then f € co and the map f € L (T) — cp is a one to one bounded linear transfor-
mation into but not onto cy.
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L2
Proof. By Bessel’s inequality, ., ‘ f (n)‘ < oo for all f € L*(T) and in
particular limj,,| ‘f(n)‘ =0. Given f € LY(T) and g € L*(T) we have

fn) = 4(n)| =

[ t#tw) = sty aau < 1 g,
and hence

lim sup )f(n)‘ = lim sup )f(n) *f}(n)) <|f—-gl

n—oo n—00

for all g € L?(T). Since L?(T) is dense in L*(T), it follows that lim sup,,_, .
0 for all f € L, i.e. fe co.-
Since )f(n)) <||fll; , we have HfH < ||fll, showing that Af := f is a bounded
co

fm)| =

linear transformation from L*(T) to co.
To see that A is injective, suppose f = Af =0, then [, f(w)p(w, w)dw = 0 for
all polynomials p in w and w. By the Stone - Wierstrass theorem, this implies that

/T F(w)gw)dw =0

for all g € C(T). Since C(T) is dense in L'(T,|f(w)|dw), there exists bounded
functions g,, € C(T) such that g, — sgnf € LY(T,|f(w)| dw). Thus

0= lim . f(w)gn(w)dw = nlLI&Agn(w)sgnf(w) |f(w)| dw = /T | f(w)| dw

n—oo

which shows that f =0 a.e.
If A were surjective, the open mapping theorem would imply that A=! : ¢y —

LY(T) is bounded. In particular this implies there exists C' < co such that

7

(13.5) Ifll, <C for all f € L}(T).

€o

Taking f = d,,, we find ‘ d,|| =1 while limy, o ||dy|;. = 0o contradicting Eq.
Co

(13.5). Therefore ran(A) # co. =

14. LP-SPACES

Let (X, M, i) be a measure space and for 0 < p < oo and a measurable function
f: X —=Clet

1= ([ 117d .
When p = oo, let
[ flloo = inf {a >0 u(|f| > a) = 0}
For 1 <p < o0, let
LP(X,M,p) ={f: X — C: f is measurable and ||f|, < oo}/ ~

where f ~ g iff f = g a.e. Notice that ||f —g||, =0 iff f ~ g and if f ~ g then if
f ~ g then ||f|l, = ||gllp- In general we will continue to write f for the equivalence
class containing f.
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Remark 14.1. We have ||f]lcc < M iff |f(z)] < M for p - a.e. z. To see this,
suppose that ||f|lcc < M, then for all @ > M, u(|f| > a) = 0 and therefore
p(|f] > M) = lim,— oo u(|f| > M +1/n) =0, so that |f(z)] < M for p - ae. z.
Conversely, if |f| < M a.e., then for a > M, u(|f| > a) = 0 and hence || f||co < M.
So in conclusion we have shown

[flloc =inf{a>0:|f(z)| <a for p —a.e. z}.

Our first goal in this section is to show (Lp (X, M, )
We will start with the case p = co.

. 1S a banach space.
(I11,) s & Banach sp

Theorem 14.2. The function |-|| ., is a norm on L*° and (L*°(X, M, p), ||||lo.) s
a Banach space. A sequence {fn},-, C L™ converges to f € L> iff there exists
E € M such that n(E) = 0 and f, — f uniformly on E°. Moreover, bounded
simple function are dense in L.

Proof. Suppose that f,g € L*, then |f| < ||f|l a.e. and |g| < |||, a.e. so
that | f + g| < |f] + 9] < || fllo + ll9]lo, a-e. and therefore

1+ 9llee <M flloe +ll9llec -

Therefore ||-|| satisfies the triangle inequality. The reader may easily check the
remaining conditions that ensure ||| _ is a norm.
Suppose that {f,, },-, C L* is a sequence such f,, — f € L=, ie. [|f — full., —

0 as n — o0o. Then for all £ € N, there exists N < oo such that
,u(\fffn\ >k_1) =0 for all n > Nj.
Let
E =0 Unsn, {If = ful > K71}

Then p(E) = 0 and for x € E¢, we have |f(x) — f,(z)| < k™! for all n > Nj. This
shows that f,, — f uniformly on E€. Conversely, if there exists £ € M such that
#(E) =0 and f,, — f uniformly on E¢, then for any € > 0,

p(f =fulz€) =p{lf = ful 2} NES) =0

for all n sufficiently large. That is to say limsup,,_, ||f — fall < € for all € > 0.
The density of simple functions will be left as an exercise to the reader.

So the last thing to prove is the completeness of L°° for which we will use
Theorem 10.3. Suppose that { f, }. ; C L* is a sequence such that >~ || full ., <
00. Let My, = ||fulloo s En = {|ful > My}, and E := U2, E,, so that u(E) = 0.
Then for x € E° we have

n=1
o0 o0
Z sup |fn(z)| < ZM" < oo
n—1%EE* n=1

which shows that Sy (z) = Ziv=1 fn(z) converges uniformly to S(z) := Y07 | fn(z)
on E°, that is to say ||S — Syl 2 0asn—oo. m
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14.1. Some inequalities.

Proposition 14.3. Let f : [0,00) — [0,00) be a continuous strictly increasing
function such that f(0) = 0 (for simplicity) and lim f(s) = co. Let g = f~! and
for s,t >0 let

F(s) = /0 " H(s)ds' and G(t) = /0 Lot
Then for all s,t > 0,
st < F(s) + G(t)
and equality holds iff t = f(s).
Proof. Let
As :={(o,7): 0 <7< f(o) for 0 <o < s} and
B, :={(0,7):0< o <g(r)for 0 <7 <t}

then as one sees from Figure 4, [0, s] x [0,t] C A5 U B;. (In the figure: s =3, t =1,
As is the region under ¢t = f(s) for 0 < s < 3 and By is the region to the right of
the curve s = g(¢) for 0 < ¢ < 1.) Hence if m is Lebesgue measure on the plane,

st =m([0,s] x [0,t]) < m(As) +m(B;) = F(s) + G(t).

FIGURE 4. A picture proof of Proposition 14.3.

|
Definition 14.4. The conjugate exponent ¢ € [1,00] top € [1,00] is g := ﬁ with
the convention that ¢ = oo if p = 1. Notice that ¢ satisfies
1 1
(14.1) St =11+2=¢g p-L=1andq@p-1) =p.
p q p q
Lemma 14.5. Ifs,t > 0 then
s P
st < — 4 —
q p

with equality if and only if s9 = tP.
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Proof. Let F(s) = % for p > 1,
f(s)=st"1 =t

or
g(t) = 177 = g2
because q=1/(p—1)+1or1/(p—1) =g — 1. Therefore G(t) = t?/q and hence
P e
st < —+ —
p q
with equality iff t = sP~!. m

Theorem 14.6 (Holder’s inequality). Suppose that 1 < p < co and q := (ﬁ) ,

or equivalently

S =1
P g

If f,g are measurable functions then || fgll1 < | fll, - llgllq with equality iff
£ 9|
)P = (=)

T = T,

Proof. The cases where ||f||; =0 or oo or ||g||, =0 or co are easy to deal with
and are left to the reader. So we will assume now that 0 < ||f||g, [lg|l, < co. Let
s=1fl/IIfll, and t = |g|/||g|lq then Lemma 14.5 implies

fol 1 1fP 1 gl
1fllpllglly = 2 Ifll, — q llgll?
Integrating this equation then gives
1 1
ol 1, 1_,
[fllsllglle — P2 q

with equality iff

gl P! gl _ |fIP/e
Tole gD T Tole g e T W = el
4 P q P

|
Theorem 14.7 (Minikowski’s Inequality). If 1 < p < oo and f,g € LP then
1+ 9gllp < I £llo + llgll,
with equality iff
segn(f) = sgn(g) when p=1 and
f =cg for some ¢ >0 when p > 1.
Proof. Since
|f +gl” < @max (|f],|g])" = 2" max (f[*,|g[") < 2" (|f]" + |gI")
it follows that
1 +glb <27 (I[£1I5 + [lg]E) < oo.
In the case that p =1,

||f+g\|1:/X\f+g\du§/xlfldu+/x\g\du
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with equality iff

[fl+1gl =1f + gl ae. <= sgn(f)=sgn(g) a.e.

Now assume that p > 1. We may assume || f + g||, > 0 since if ||f + g||, = 0 the
theorem is easily verified. Now

lf+glP=1F+allf+aPt <(fl+gD)If +g/P?

with equality iff sgn(f) = sgn(g) a.e. Integrating this equation and applying
Holder’s inequality gives

/ |f + glPdp S/ £l \f+g|p’1du+/ lg| [f + glPdp
X X X

(14.2) < (1flls + llgll) IHF + gl llg

W lth equallty lﬁ

and sgn(f) = sgn(g) a.e.

Now

(143) 07+ al =g = [ 5+ oY= [ 1+

wherein we have used Eq. (14.1), ¢(p — 1) = p. Combining Egs. (14.2) and (14.3)
implies

(14.4) £+ glp < I FlplLf + gllE/ e+ llgllpl1f + gll3/

with equality iff

sgn(f) = sgn(g) and

7 >”_ F b _< g >
14.5 = = .e.
(145) <|f||p e\

Solving for || f +g||, in Eq. (14.4) with the aid of Eq. (14.1) shows that || f +g||, <
I fllp + llgllp with equality iff Eq. (14.5) holds which happens iff f = cg a.e. with
c>0. m

Theorem 14.8 (Completeness of LP(u)). Suppose that {f,} C LP(u) is Cauchy,

then there exists f € LP(u) such that fn e f. Moreover f is unique modulo the
equivalence relation of being equal off sets of measure zero.

Proof. Write
1/p
1= ([ 1eran)
X
By Chebyschev’s inequality,

p(lfn = fml = €) = 1 (| fn = finl” =€)

1 1
S_P/ |fn7fm|pdlj’:_p||fn*fm“pHO&Sm,n—)oo
& Jx €
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for all € > 0. This shows that {f,,} is L%-Cauchy (i.e. Cauchy in measure) so there
exists {g;} C {fn} such that g; — f a.e. Now by Fatou’s Lemma,

lg; — fIF = /klim inf |g; — gr/” < lim inf/ l9; — gr|Pdp
—00 k—oo

= lim inf ||g; — gx||’ — 0 as j — oo.
k—oo

In particular, || f]| < |lg; — fIl + llg;]| < oo so the f € LP and g; , f. The proof
is finished because,

[fr = £l < 1 fn = g5l + llgs = fll = 0 as jin — oo,
u

14.2. Corollaries of Hélder’s Inequality. The LP (1) — norm controls two types
of behaviors of f, namely the “behavior at infinity” and the behavior of local singu-
larities So in particular, if f is blowing up at a point xg € X, then locally near x it
is harder for f € LP(u) as p increases. On the other hand a function f € LP(y) is al-
lowed to decay at infinity slower and slower as p increases. With these “insights” in
mind, we should not in general expect LP(p) C L9(p) or L(p) C LP(u). However,
there are two notable exceptions that we shall prove below. (1) If u(X) < oo, then
there is no behavior at infinity to worry about and we expect that L?(u) C LP(u) for
all ¢ < p. See Corollary 14.10 below. (2) If 1 is counting measure, i.e. p(A4) = #(A),
then all functions in LP(u) for any p can not blow up on a set of positive measure,
so there are no local singularities. Hence we expect in this case that LP(p) C L7(u)
for all ¢ < p, see Corollary 14.13 below.

Corollary 14.9. Suppose that r,p,q € (0, 00| are numbers such that
1 1 1
14.6 —=—4-
(14.6) s =313
then for measurable functions f,g: X — C,

1fgll, < NI fllp - llgllq-

Proof. The case r = oo is easy and is left to the reader. So assume r € (0, 00).
By Eq. (14.6), a = p/r and b = ¢/r are conjugate exponents. Thus by Holder’s
inequality,

)

Fallz = WA 1l < A lla - Hol™ o = LF15/7 - gl

from which the desired result follows. m

Corollary 14.10. If u(X) < oo, then LP(u) C Li(p) for all0 < p < ¢ < 00 and
the inclusion map is bounded.

Proof. Choose a € [1,00] such that

1 1 1 —
LU R 3
p a q bq

Then by Corollary 14.9,
a 11
£, = 11F - 1, < 1Fllg - 1Ll = £ F g = 0@ £]lg-

The reader may easily check this final formula is correct even when ¢ = oo provided
we interpret (1/p —1/q) = 1/p in this case. m
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Proposition 14.11. Suppose that 0 < p < g < r < oo, then LT C LP + L', i..e
every function f € LY may be written as f =g+ h with g € LP and h € L".

Proof. The blow up points of f are contained in the set £ := {|f| > 1} and the
behavior of f at infinity is solely determined by f on E€. Hence let ¢ = flg and
h = flge so that f = g + h. By our discussion at the beginning of this section we
expect that g € LP and h € L". Indeed,

9" = 11" 1e = [fI" 11y < 1T Lgpsay < IfI°

which after integrating shows that ||g[[; < [|f[|3. Similarly

P = 111" 1e = [f1" Y <y < 1P Lgp<y <1517
so that ||h||] < HfIIZ- n

Corollary 14.12. Suppose that 0 < p < g < r < 00, then LP N L" C L9 and we
have

A gl l=A
1Fllg < A1 11
where A € (0,1) is determined so that

1_A2, 1-2 with X = p/q if r = oo.
qg "

Proof. Let A\ be determined as above, a = p/\ and b = r/(1 — \), then by
Corollary 14.9,

171, = =< | e, = e .

[

Again, the heuristic explanation of this corollary is that if f € LP N L", then
f has local singularities no worse than an L” function and behavior at infinity no
worse than an LP function. Hence f € LP for any ¢ between p and r.

Corollary 14.13. Suppose now that j is counting measure. Then LP(u) C L9(p)
for all0 < p < g < .

Proof. Suppose that 0 < p < r = oo, then

112 = sup {|f(@)P s x € X} < Y |F(@)I” = I 1I}.

zeX

Now apply Corollary 14.12 with r = co to find

I£1l, < NP A1 < AR/ N1 = £, -

14.2.1. Jensen’s Inequality.

Definition 14.14. A function ¢ : (a,b) — R is convex if for all a < 29 < 1 < b
and ¢ € [0,1] ¢(z;) < tp(x1) + (1 — t)Pp(xo) where z; = tzy + (1 — t)xp.
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720

715

T10

-6 4, 2 0 2
A convex function with along with two cords corresponding to zp = —2 and
1 =4 and zg = —5 and z; = —2.

The following Proposition is clearly motivated by Figure 14.14.

Proposition 14.15. Suppose that ¢ : (a,b) — R is a convex function, then
1. For all u,v,w, z € (a,b) such that u < v, w < z, u < w and v < z we have
P(v) — ¢(u) _ ¢(2) — ¢(w)
v—u B zZ—w '
2. For each c € (a,b), the right and left sided derivatives ¢/.(c) exists in R and
if a <u<wv<b, then ¢ (u) < ¢ (v) < ¢l (v).
3. The function ¢ is continuous.
4. For allt € (a,b) there exists B € R such that ¢(x) > P(t) + B(x — t) for all
x € (a,b).

(14.7)

Proof. 1a) Suppose first that v < v = w < 2, in which case Eq. (14.7) is
equivalent to

(@(v) = ¢(u) (z = v) < (B(2) = B(v)) (v —w)

which after solving for ¢(v) is equivalent to the following equations holding:
P(v) < B(2)

But this last equation states that ¢(v) < ¢(2)t + ¢(u) (1 —t) where ¢t = 2= and
v =tz + (1 — t)u and hence is valid by the definition of ¢ being convex.

1b) Now assume that Suppose first that © = w < v < z, in which case Eq. (14.7)
is equivalent to

U—U+d)(u)2:v

zZ—U z u

(P(v) = d(u)) (z —u) < (P(2) — d(u)) (v —u)
which after solving for ¢(v) is equivalent to
P(v) (z —u) < ¢(2) (v —u) + ¢(u) (z — v)
which is equivalent to

v — zZ—U

B(v) < Bz) T + ()

Again this equation is valid by the convexity of ¢.
lc) u < w < v = z, in which case Eq. (14.7) is equivalent to

(@(2) = ¢(w)) (z = w) < (¢(2) = P(w)) (z —u)

z— z—u
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and this is equivalent to the inequality,

P(w) < ¢(z)

which again is true by the convexity of ¢.
1) General case. If u < w < v < z, then by la-1c)

w—u+¢(u)z—w

zZ—U zZ—U

P(2) — p(w) > P(v) — p(w) > P(v) — P(u)
andifu<v<w<z
P(2) — p(w) > P(w) — ¢(v) > Pw) — du)

We have now taken care of all possible cases.

2) On the set a < w < z < b, Eq. (14.7) shows that (¢(z) — ¢(w)) /(z —w) is a
decreasing function in w and an increasing function in z and therefore ¢/, (z) exists
for all z € (a,b). Also from Eq. (14.7) we learn that

(14.8) P (u) < w foralla<u<w<z<b,
(14.9) Mgd)’,(z) foralla <u<v<z<b,

v—u
and letting w T z in the first equation also implies that

P (u) < ¢’ (2) foralla <u < z<b.

/

The inequality, ¢/_(z) < ¢/, (z), is also an easy consequence of Eq. (14.7).

3) Since ¢(x) has both left and right finite derivatives, it follows that ¢ is con-
tinuous. (For an alternative proof, see Rudin.)

4) Given t, let 3 € [¢"_(t), ¢/, (t)], then by Eqs. (14.8) and (14.9),

A0 < o1 (1) < < gt (1) < HEL=20

for all a < u <t < z <b. Item 4. now follows. =

Corollary 14.16. Suppose ¢ : (a,b) — R is differential then ¢ is convex iff ¢ is
non decreasing. In particular if ¢ € C?%(a,b) then ¢ is convex iff ¢ > 0.

Proof. By Proposition 14.15, if ¢ is convex then ¢’ is non-decreasing. Conversely
if ¢’ is increasing then

M = ¢’ (&) for some &; € (¢, 1)
xr1 —C
and
M = ¢' (&) for some & € (g, ¢).
c— T
Hence
P1) = 9(e) _ Ble) — plxo)
xr1—cC - C— X9

for all g < ¢ < x1 from which it follows that ¢ is convex. m

Example 14.17. The function exp(x) is convex , zP is convex iff p > 1 and
—log(x) is convex.
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Theorem 14.18 (Jensen’s Inequality). Suppose that (X, M, ) is a probability
space, i.e. ju is a positive measure and u(X) = 1. Also suppose that f € L' (u),
f: X —(a,b), and ¢ : (a,b) — R is a convex function. Then

</>( /. fdu> < [ oty

where if po f ¢ L (1), then ¢o f is integrable in the extended sense and [, ¢(f)dp =
0.

Proof. Let t = [, fdu € (a,b) and let 3 € R such that ¢(s) — ¢(t) > B(s —t)
for all s € (a,b). Then integrating the inequality, ¢(f) — () > B(f —t), implies

that
0</¢ ) — (1) /¢ ) — ¢/fdu

Moreover, if ¢(f) is not integrable, then ¢(f <;5( ) —t) which shows that
negative part of ¢(f) is integrable. Therefore f X du oo in this case. m

As an application, we may use Corollary 14.16 and Theorem 14.18 to give another
proof of Lemma 14.5. Let a =1Ins and b =Int. Then by Jensen’s inequality,

st = e(a+b) = e(%qa+%pa) < leqa =+ lepa = lsq + ltp
S q p q

with equality iff ga = pa iff s9 = tP. As a check
ot = 551/ — glta/p — qa
so by Eq. (14.1)
st 54 g4 P
st=81=— 4+ —=—+ —.
q p q p

14.3. The Dual of L? spaces. Throughout this section we assume (X, M, u) is
a o-finite measure space, ¢ € [1,00] and p € [1,00] are conjugate exponents, i.e.
pl+qgt=1 Forge L let ¢, € (LP)* be given by

bo(f) = / of dp.

By Holder’s inequality

(14.10) 6o()] < / l971di < Ngllall 1l
which implies that
(14.11) lpgll ey < llgllq-

We now show that the reverse inequality.

Proposition 14.19. Keeping the notation above, for all g € L9,

(14.12) Bgll(Lry = llgllq-
Proof. Assume first that ¢ < co so p > 1. We want equality to hold in (14.10)

which happens iff
gl \* liRY
lgf| =gf and < = a.e.
19llq £l
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Therefore we should take | f| = Hf||p\g\‘I/p/HgHg/p and sgn(f)sgn(g) = 1 sosgn(f) =
sgn(g). Therefore

= sgn(f)1] = sgalg) LI glarr.
loli

and since the constants are irrelevant for our purposes, let f = sgn(g)|g|%/?, where

|g\q/p =1if ¢ = 1 and p = co. (Alternatively, just try f of the form f = sgn(g)|g|*.
In order for f € LP we must choose A such that Ap = ¢, i.e. A = ¢/p as above.) If
p = oo, we find

bo(F)] = /X gsgn(@)di = lll (= gl £l

which shows that [|¢g|[(L)+ > [|g][1. If p < o0, then

1|2 = / = / 1917 = [lglle

while
30(5) = [atdn= [ lalotd = [ lattd = gl
Hence
[Pg(F) _ gl o=
T

This shows that ||¢,|| > ||g||l; which combined with Eq. (14.11) implies Eq. (14.12).

Now assume that p = 1 and ¢ = oo and let ||g|cc = M. Choose X,, € M such
that X,, T X as n — oo and p(X,,) < oo for all n. For any € > 0, u(|g| > M —¢€) >0
and X, N{|g| > M —¢€} 1 {|g| > M — €}. Therefore, u(X,,N{|g| > M —¢€}) > 0 for
n sufficiently large. Let

f=segn(g)lx,n{jg|>M-c}
then
[flln = p(Xn N {lg] = M — €}) € (0, 00).

Moreover,

_ son(g)gdp = d
196(£)] /X”ﬂ{QZJVI—e} sanlgody /Xnﬂ{IQIZM—E} ol
> (M = (X N {lg] > M — &) = (M — )|

and this implies that ||¢g||z1y« > M — e. Since € > 0 is arbitrary, it follows that
[Bgllzrys = M =1glloc. ™

Theorem 14.20. Let (X, M, 1) be a o-finite measure space and suppose that p,q €
[1,00] are conjugate exponents. Then for p € [1,00), the map g € LI — ¢, €
(LP)* is an isometric isomorphism of Banach space. We summarize this by writing
(LP)* = L7 for all 1 <p < 0.

Proof. The only point that we have not yet proved is the surjectivity of the
map g € LY — ¢, € (LP)*. (When p = 2 this follows from the general Hilbert space
theory.)
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Case 1. Assume pu(X) < oco. Let ¢ € (LP)*. If ¢ = ¢4 for some g € L9 then
g € L' (by Holder’s inequality) and
(14.13) o(14) = [ g
A

for all A € M. This suggests that we let A(A) = ¢(14). Let us now show that A is
a complex measure and \ < .
Suppose that A = []22, A, with A,, € M, then'¢

N
Ta—=) 1a,]

n=1

= [ j’f:N_,_lAn)]’% —0as N — oo.

Lr = Hlu?z,o:N+1A”

Therefore

AA) = d(1a) =D d(1a,) =D MAn).
1 1

Combining the last equation with the fact that A\(()) = 0 implies that A is a complex
measure. Moreover if y1(A) =0, 14 = 0 in L? and thus, M(A) = ¢(14) = ¢(0) =0
showing \ < p.

The Radon-Nikodym theorem now implies there exists g = d\/du € L'(u). Then
for this g, Eq. (14.13) is valid for all A € M and then by linearity we find

(14.14) o(f) = /X fgdu for all f €S

where S is the space of complex valued simple functions on X. Given a bounded
measurable function g on X, let f,, € S such that |f,| < |f| and f,, — f pointwise
as n — 00. By the dominated convergence theorem, f,, — f in LP(u) and therefore,

(14.15) o(f) = lim ¢(f,) = lim /X fugdy = /X fodu

n—oo

and Eq. (14.14) holds for all bounded measurable functions f. We will now show
that g € L(p).

Given M < oo, let ¢p(f) := #(1gj<prf). Then for f € L*°, we have by Eq.
(14.15) that

oui(5) = | foligcasdi =ty ()
X
where gns := gl)5<p € L°° C LP for all p > 1. Moreover,

loas () < |o(Lg1<na )| < Nl | Gg1<aefll o < NI o

so that [|par|| oy < [|@ll(zn)~ - Since L (p) is dense in L, it follows that ¢as = ¢y,
for all M < co. By Proposition 14.19, we learn

lgaelly = Nl@nrllzoys < 1Ml (Loy- -
Fatou’s lemma or the dominated convergence theorem now allows us to let M — oo

to conclude that [|g|[, < [|#[[( L,,)*”. Once we know this, it again follows from Eq.
(14.15) and the density of L> C L” that ¢ = ¢,.

161t is at this point that the proof breaks down when p = co.
17The argument leading to this conclusion may be replaced by the reverse Holder inequality
of Theorem 14.22 below.
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Case 2. Now suppose that p is o-finite and X,, € M are sets such that 0 <
w(Xp) <ooand X = [[ X,. Identify LP(X,,, My, i) with
n=1

{f e LP(X,M,p)): f =0on Ej}.

So ¢|rr(x,,) is still bounded on LP(X,) and hence by Case 1. there exists g, €

L(Xy,) such that ¢|rr(x, u.) = Pg, o0 LP(Xy, pin) for all n. Define g = 3 gn.
n=1

Notice that

N
d)‘Ll’(UQ’:an) = d) N on Lp( U Xn)
nzz:l n n=1
and this implies that
N
(14.16) 1D~ galle = 18]z, xll < N9l
n=1

for all N. Since {gn},. , have disjoint supports,

N N
1> gnl = lgnl T gl as N — oo
n=1

n=1

and so we may pass to the limit in Eq. (14.16) using the monotone convergence
theorem to show

o] N
||g||q = H Zlgnnq = ]\}gnoo || Zlgan < ||¢H(L1’)* < 0.
n= n=

Each f € LP(X) decomposes as f = > f lx, and by the dominated convergence
n=1
theorem implies,

N
1F =3l = IF (1= 10z x, ) = O s N — oo
1
Hence

B(f) =D d(flx,) = de(flx,.) = pg(f)

since ¢(f) = ¢p4(f) for all f € LP(X,,) and ¢ and ¢, are continuous on LP(X). m
Theorem 14.22 fails in general when p = co.

Example 14.21. Consider X = [0,1], M = B, and g = m. Then (L*°)* # L*.

Proof. Let M := C([0,1])“ C ”L*([0,1],dm). It is easily seen for f € M, that
| flleoc =sup{f(z):z €[0,1]} for all f € M. Therefore M is a closed subspace of
L>. Define £(f) = f(0) for all f € M. Then ¢ € M* with norm 1. By the Hahn-
Banach theorem there exists an extension L € (L*>)* such that L = ¢ on M and
|L|| = 1. Suppose that there exists g € L' such that

L(f) = ¢4(f) = fgdm for all f e L°°.
[0,1]
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Let fn(x) = (1 — nx) 1,<,-1, then L(f,) = 1 for all n and hence

n—oo n—00

1= lim L(f,) = lim / frngdm = gdm =0,
[0,1] {0}

wherein we have made use of the Dominated convergence theorem in the second to
last equality. From this contradiction, we conclude that L # ¢, for any g € L1. m

14.4. Converse of Holder’s Inequality.

Theorem 14.22 (Converse of Holder’s Inequality). Assume that (X, M, ) is a o
— compact measure space, q € [1,00] and p be the corresponding conjugate exponent.
Also let S denote the set of simply functions f on X such that u(f # 0) < co. For
g: X — C measurable such that fg € L' for all f € S, let

(14.17) M,(g) = sup{ /ngdu‘  feS with 1], = 1}.

If My(g) < oo then g € L% and M,(g) = ||gl|, -

Proof. As above, let X,, € M be sets such that p(X,) < co and X,, T X as
n T oo. Suppose that ¢ = 1 and hence p = co. Choose simple functions f,, on X such
that |f,] < 1 and sgn(g) = lim, o fr in the pointwise sense. Then lx, f, € S

and therefore
‘ / 1x,, fngdp
X

for all m,n. By assumption 1x,, g € L'(u) and therefore by the dominated conver-
gence theorem we may let n — oo in this equation to find

/ Ix,, |9l dp < My(g)
X

for all m. The monotone convergence theorem then implies that

/ lgldp = lim / 1x,. lgldp < My(9)
X n—oo X

showing ¢ € L'(n) and ||g]l;, < M,(g). Since Holder’s inequality implies that
M,(g) < |lgll; , we have proved the theorem in case ¢ = 1.
For ¢ > 1, we will begin by assuming that g € L%(u). Since p € [1, 00) we know

that S is a dense subspace of LP(u) and therefore

< M,y(g)

My(g) = Sup{

where the last equality follows by Proposition 14.19.

So it remains to show that if fg € L! for all f € S and M,(g) < oo then
g € Li(p). For n € N, let g, = 1x,15/<ng. Then g, € L(u), in fact ||gnll, <
nu(X,)'/9 < 0. So by the previous paragraph,

/ fgdu‘  f e IP(u) with [f], = 1} = lll,

lgnlly = Mq(gn) = sup{ / lenlg<ngd/1" 2 fe LP(p) with |[f[], = 1}
X

< Mqy(9) [|£1x, Ygi<nll, < Mq(g)

8 This is equivalent to requiring 149 € L' () for all A € M such that p(A) < oco.



MATH 240B LECTURE NOTES: TOPOLOGY AND FUNCTIONAL ANALYSIS 91

wherein the second to last inequality we have made use of the definition of My(g)
and the fact that flx, A 1j4<, € S. If ¢ € (1,00), an application of the monotone
convergence theorem (or Fatou’s Lemma) now shows that

loll, = Jim [lgall, < My(g) < oc.

And if ¢ = 00, then ||gn]leo < My(g) < oo for all n implies |g,,| < M,(g) a.e. which
then implies that |g| < M,(g) a.e. since |g| = lim,, o0 |gn| - That is g € L>(p) and
9]l = Moo(g). m



