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ABSTRACT. This book includes basic material on general topology,
introduces algebraic topology via the fundamental group and cov-
ering spaces, and provides a background on topological and smooth
manifolds. It is written mainly for students with a limited experience
in mathematics, but determined to study the subject actively. The
material is presented in a concise form, proofs are omitted. Theo-
rems, however, are formulated in detail, and the reader is expected
to treat them as problems.



Foreword

Genre, Contents and Style of the Book

The core of the book is the material usually included in the Topology part
of the two year Geometry lecture course at the Mathematical Department
of St. Petersburg University. It was composed by Vladimir Abramovich
Rokhlin in the sixties and has almost not changed since then.

We believe this is the minimum topology that must be mastered by any
student who has decided to become a mathematician. Students with
research interests in topology and related fields will surely need to go
beyond this book, but it may serve as a starting point. The book in-
cludes basic material on general topology, introduces algebraic topology
via its most classical and elementary part, the theory of the fundamen-
tal group and covering spaces, and provides a background on topological
and smooth manifolds. It is written mainly for students with a limited
experience in mathematics, but who are determined to study the subject
actively.

The core material is presented in a concise form; proofs are omitted. The-
orems, however, are formulated in detail. We present them as problems
and expect the reader to treat them as problems. Most of the theorems
are easy to find elsewhere with complete proofs. We believe that a serious
attempt to prove a theorem must be the first reaction to its formulation.
It should precede looking for a book where the theorem is proved.

On the other hand, we want to emphasize the role of formulations. In
the early stages of studying mathematics it is especially important to
take each formulation seriously. We intentionally force a reader to think
about each simple statement. We hope that this will make the book
inconvenient for mere skimming.

The core material is enhanced by many problems of various sorts and
additional pieces of theory. Although they are closely related to the
main material, they can be (and usually are) kept outside of the standard
lecture course. These enhancements can be recognized by wider margins,
as the next paragraph.

iii
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The problems, which do not comprise separate topics and are intended exclu-
sively to be exercises, are typeset with small face. Some of them are very easy
and included just to provide additional examples. Few problems are difficult.
They are to indicate relations with other parts of mathematics, show possible
directions of development of the subject, or just satisfy an ambitious reader.
Problems, whose solutions seem to be the most difficult (from the authors’
viewpoint), are marked with a star, as in many other books.

Further, we want to deliver additional pieces of theory (with respect to
the core material) to more motivated and advanced students. Maybe, a
mathematician, who does not work in the fields geometric in flavor, can
afford the luxury not to know some of these things. Maybe, students
studying topology can postpone this material to their graduate study.
We would like to include this in graduate lecture courses. However,
quite often it does not happen, because most of the topics of this sort
are rather isolated from the contents of traditional graduate courses.
They are important, but more related to the material of the very first
topology course. In the book these topics are intertwined with the core
material and exercises, but are distinguishable: they are typeset, like
these lines, with large face, large margins, theorems and problems in
them are numerated in a special manner described below.

Exercises and illustrative problems to the additional topics are typeset
with even wider margins and marked in a different way.

Thus, the whole book contains four layers:

the core material,
exercises and illustrative problems to the core material,
additional topics,
exercises and illustrative problems to additional topics.

The text of the core material is typeset with large face and smallest
margins.

The text of problems elaborating on the core material is typeset with small
face and larger margins.

The text of additional topics is typeset is typeset with large face and
slightly smaller margins as the problems elaborating on the core material.

The text of problems illustrating additional topics is typeset with small
face and the largest margins.

Therefore the book looks like a Russian folklore doll, matreshka com-
posed of several dolls sitting inside each other. We apologize for being
nonconventional in this and hope that it may help some readers and does
not irritate the others too much.
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The whole text of the book is divided into sections. Each section is
divided into subsections. Subsections are not numerated. Each of them
is devoted to a single topic and consists of definitions, commentaries,
theorems, exercises, problems, and riddles.

By a riddle we mean a problem of a special sort: its solution is not
contained in the formulation. One has to guess a solution, rather than
deduce it.

0.A. Theorems, exercises, problems and riddles belonging to the core
material are marked with pairs consisting of the number of section and
a letter separated with a dot. The letter identifies the item inside the
section.

0.1. Exercises, problems, and riddles, which are not included in the core, but
are closely related to it (and typeset with small face) are marked with pairs
consisting of the number of the section and the number of the item inside the
section. The numbers in the pair are separated also by a dot.

Theorems, exercises, problems and riddles related to additional topics
are enumerated independently inside each section and denoted similarly.

0:A. The only difference is that the components of pairs marking the
items are separated by a colon (rather than dot).

We assume that the reader is familiar with naive set theory, but anticipate
that this familiarity may be superficial. Therefore at points where set
theory is especially crucial we make set-theoretic digressions maintained
in the same style as the rest of the book.

Advice to the Reader

Since the book contains a summary of elementary topology, you may
use the book while preparing for an examination (especially, if the exam
reduces to solving a collection of problems). However, if you attend
lectures on the subject, it would be much wiser to read the book prior
to the lectures and prove theorems before the lecturer gives the proofs.

We think that a reader who is able to prove statements of the core of
the book, does not need to solve all the other problems. It would be
reasonable instead to look through formulations and concentrate on the
most difficult problems. The more difficult the theorems of the main text
seem to you, the more carefully you should consider illustrative problems,
and the less time you should waste with problems marked with stars.

Keep in mind that sometimes a problem which seems to be difficult is
followed by easier problems, which may suggest hints or serve as technical
lemmas. A chain of problems of this sort is often concluded with a
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problem which suggests a return to the theorem, once you are armed
with the lemmas.

Most of our illustrative problems are easy to invent, and, moreover, if you
study the subject seriously, it is always worthwhile to invent problems
of this sort. To develop this style of studying mathematics while solving
our problems one should attempt to invent one’s own problems and solve
them (it does not matter if they are similar to ours or not). Of course,
some problems presented in this book are not easy to invent.
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Part 1

General Topology



Although it may seem unexpected, the goal of this part of the book is to
teach the language of mathematics. More specifically, one of its most im-
portant components: the language of set-theoretic topology, which treats
the basic notions related to continuity. The term general topology means:
this is the topology that is needed and used by most mathematicians.

As a research field, it was completed a long time ago. Its permanent us-
age in the capacity of a common mathematical language has polished its
system of definitions and theorems. Nowadays studying general topol-
ogy really resembles studying a language rather than mathematics: one
needs to learn a lot of new words, while proofs of all theorems are ex-
tremely simple. On the other hand, the theorems are numerous. It is
not surprising: they play the role of rules regulating usage of words.

We have to warn students, for whom this is one of the first mathematical
subjects. Do not hurry to fall in love with it too seriously, do not let an
imprinting happen. This field may seam to be charming, but it is not
very active. It hardly provides as much room for exciting new research
as most other fields.



CHAPTER 1

Generalities

1. Topology in a Set

Definition of Topological Space

Let X be a set. Let €2 be a collection of its subsets such that:

(a) the union of a family of sets, which are elements of €2, belongs to 2;

(b) the intersection of a finite family of sets, which are elements of €,
belongs to €2;

(c¢) the empty set & and the whole X belong to €.

Then

Q) is called a topological structure or just a topology' in X;

the pair (X, Q) is called a topological space;

an element of X is called a point of this topological space;

e an element of €2 is called an open set of the topological space (X, ).

The conditions in the definition above are called the azioms of topological
structure.

Simplest Examples

A discrete topological space is a set with the topological structure which
consists of all the subsets.

1.A. Check that this is a topological space, i.e., all axioms of topological
structure hold true.

An indiscrete topological space is the opposite example, in which the
topological structure is the most meager. It consists only of X and @.

1.B. This is a topological structure, is it not?

Here are less trivial examples.

I'Thus € is important: it is called by the same word as the whole branch of mathe-
matics. Of course, this does not mean that  coincides with the subject of topology,
but everything in this subject is related to 2.

3
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1.1. Let X be the ray [0,4+00), and Q consists of @, X, and all the rays
(a,+00) with @ > 0. Prove that Q is a topological structure.

1.2. Let X be a plane. Let X consist of @, X, and all open disks with center
at the origin. Is this a topological structure?

1.3. Let X consist of four elements: X = {a,b,c,d}. Which of the follow-
ing collections of its subsets are topological structures in X, i.e., satisfy the
axioms of topological structure:

(a) @, X, {a}v {b}’ {a’c}v {a’bvc}’ {avb}§
(b) @, X, {a}, {b}, {a,b}, {b,d};
(¢) 9, X, {a,c,d}, {b,c,d}?

The space of 1.1 is called an arrow. We denote the space of 1.3 (a) by 4pT.
It is a sort of toy space made of 4 points. Both of these spaces, as well as the
space of 1.2, are not important, but provide good simple examples.

The Most Important Example: Real Line

Let X be the set R of all real numbers, 2 be the set of unions of all
intervals (a,b) with a,b € R.

1.C. Check if € satisfies the axioms of topological structure.

This is the topological structure which is always meant when R is consid-
ered as a topological space (unless other topological structure is explicitly
specified). This space is called usually the real line and the structure is
referred to as the canonical or standard topology in R.

1.4. Let X be R, and () consists of empty set and all the infinite subsets of
R. Is © a topological structure?

1.5. Let X be R, and 2 consists of empty set and complements of all finite
subsets of R. Is 2 a topological structure?

The space of 1.5 is denoted by Ry, and called the line with T4 -topology.

1.6. Let (X, Q) be a topological space and Y be the set obtained from X by
adding a single element a. Is

{{a}UU : U € Q} U {5}

a topological structure in Y'?

Using New Words: Points, Open and Closed Sets
Recall that, for a topological space (X,), elements of X are called
points, and elements of ) are called open sets.?

2The letter  stands for the letter O which is the initial of the words with the same
meaning: Open in English, Otkrytyj in Russian, Offen in German, Quvert in French.
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1.D. Reformulate the axioms of topological structure using the words
open set wherever possible.

A set F' € X is said to be closed in the space (X, Q) if its complement
X \ Fisopen (ie., X\ F€Q).

Set-Theoretic Digression. De Morgan Formulas

1.E. Let {A)} ea be an arbitrary family of subsets of a set X. Prove
that

(1) X~JAa=NExE~4)

AEA AEA

(2) X~ A= x4y,

AEA AEA

Formula (2) is deduced from (1) in one step, is it not? These formulas are
nonsymmetric cases of a single formulation, which contains in a symmetric
way sets and their complements, unions and intersections.

1.7. Riddle. Find such a formulation.

Being Open or Closed

1.F Properties of Closed Sets. Prove that:

(a) the intersection of any collection of closed sets is closed:;

(b) union of any finite number of closed sets is closed;

(c) empty set and the whole space (i.e., the underlying set of the topo-
logical structure) are closed.

Notice that the property of being closed is not a negation of the property
of being open.
1.G. Find examples of sets, which

(a) are both open, and closed simultaneously;
(b) are neither open, nor closed.

1.8. Give an explicit description of closed sets in

a) a discrete space;

(

(b) an indiscrete space;
(c) the arrow;

(d) 4pT;

(e) R, -

1.H. Prove that a closed segment [a, b] is closed in R.
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Concepts of closed and open sets are similar in a number of ways. The
main difference is that the intersection of an infinite collection of open
sets does not have to be necessarily open, while the intersection of any
collection of closed sets is closed. Along the same lines, the union of an
infinite collection of closed sets is not necessarily closed, while the union
of any collection of open sets is open.

1.9. Prove that the half-open interval [0, 1) is neither open nor closed in R,
but can be presented as either the union of closed sets or intersection of open
sets.

1.10. Prove that every open set of the real line is a union of disjoint open

intervals.
1 o0
1.11. Prove that the set A = {0} U {E} is closed in R.
n=1
Cantor Set

Let K be the set of real numbers which can be presented as sums of series
of the form Y 7, 3 % with a;, = 0 or 2. In other words, K is the set of
real numbers which in the positional system with base 3 are presented
as 0.a1az . ..ag ... without digit 1.

1:A. Find a geometric description of K.

1:A:1. Prove that

(a) K is contained in [0, 1],

(b) K does not intersect (%, 2)
(¢) K does not intersect (3s 5+2

) for any integers k£ and s.

1:A:2. Present K as [0,1] with an infinite family of open intervals
removed.

1:A:3. Try to draw K.

The set K is called the Cantor set. It has a lot of remarkable properties
and is involved in numerous problems below.

1:B. Prove that K is a closed set in the real line.

Characterization of Topology in Terms of Closed Sets

1.12. Prove that if a collection F of subsets of X satisfies the following
conditions:

(a) the intersection of any family of sets from F belongs to F;
(b) the union of any finite number sets from F belongs to F;
(c) @ and X belong to F,

then F is the set of all closed sets of a topological space (which one?).

1.13. List all collections of subsets of a three-element set such that there
exist topologies, in which these collections are complete sets of closed sets.
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Topology and Arithmetic Progressions

1.14*. Consider the following property of a subset F' of the set N of natural
numbers: there exists N € N such that F' does not contain an arithmetic
progression of length greater than N. Prove, that subsets with this property
together with the whole N form a collection of closed subsets in some topology
in N.

Solving this problem, you probably are not able to avoid the following com-
binatorial theorem.

1.15 Van der Waerden’s Theorem*. For every n € N there exists N €
N such that for any A C {1,2,...,N}, either A or {1,2,... , N}~ A contains
an arithmetic progression of length n.

Neighborhoods

By a neighborhood of a point one means any open set containing this

Analysts and French mathematicians (following N. Bourbaki)

prefer a wider notion of neighborhood: they use this word for any set
containing a neighborhood in the sense above.

1.16. Give an explicit description of all neighborhoods of a point in

(a) a discrete space;

(b) an indiscrete space;
(c) the arrow;
(d) 4pT.

2. Bases

Definition of Base

Usually the topological structure is presented by describing its part,
which is sufficient to recover the whole structure. A collection X of open
sets is called a base for a topology if each nonempty open set is a union
of sets of X. For instance, all intervals form a base for the real line.

2.1. Are there different topological structures with the same base?

2.2. Find some bases of topology of

(a) a discrete space;
(b) an indiscrete space;
(c) the arrow;

(d) 4pT.

Try to choose the bases as small as possible.

2.3. Describe all topological structures having exactly one base.
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Bases for Plane

2.4. Prove that any base of the canonical topology of R can be diminished.

Consider the following three collections of subsets of R?:

e Y2 which consists of all possible open disks (i.e., disks without its
boundary circles);

e X% which consists of all possible open squares (i.e., squares without
their sides and vertices) with sides parallel to the coordinate axis;

e X! which consists of all possible open squares with sides parallel to the
bisectors of the coordinate angles.

(Squares of £ and X! are defined by inequalities max{|z — al, |y — b|} < p
and |z — a| + |y — b| < p respectively.)

2.5. Prove that every element of Y2 is a union of elements of ¥

2.6. Prove that intersection of any two elements of ¥! is a union of elements
of XL

2.7. Prove that each of the collections ¥2 £, 3! is a base for some topo-
logical structure in R2, and that the structures defined by these collections
coincide.

When a Collection of Sets is a Base

2.A. A collection Y of open sets is a base for the topology, iff for any
open set U and any point x € U thereisasetV € ¥ such thatx € V C U.

2.B. A collection ¥ of subsets of a set X is a base for some topology in
X, iff X is a union of sets of ¥ and intersection of any two sets of 3 is a
union of sets in .

2.C. Show that the second condition in 2.B (on intersection) is equiva-
lent to the following: the intersection of any two sets of ¥ contains, to-
gether with any of its points, some set of X containing this point (cf. 2.4).

Subbases

Let (X, Q) be a topological space. A collection A of its open subsets is called
a subbase for Q, provided the collection

of all finite intersections of sets belonging to A is a base for .

2.8. Prove that for any set X a collection A of its subsets is a subbase of a
topology in X, iff A # @ and X = UpyecaW.
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Infinity of the Set of Prime Numbers

2.9. Prove that all infinite arithmetic progressions consisting of natural num-
bers form a base for some topology in N.

2.10. Using this topology prove that the set of all prime numbers is infinite.

(Hint: otherwise the set {1} would be open (?!) )

Hierarchy of Topologies

If ©2; and €2, are topological structures in a set X such that 2y C 5 then
()5 is said to be finer than €y, and §2; coarser than {)y. For instance,
among all topological structures in the same set the indiscrete topology
is the coarsest topology, and the discrete topology is the finest one, is it
not?

2.11. Show that Tj-topology (see Section 1) is coarser than the canonical
topology in the real line.

2.12. Riddle. Let ¥, and X5 be bases for topological structures ; and Q9
in a set X. Find necessary and sufficient condition for ; C €5 in terms of
the bases ¥; and Yo without explicit referring to ; and Qs (cf. 2.7).

Bases defining the same topological structure are said to be equivalent.

2.D. Riddle. Formulate a necessary and sufficient condition for two
bases to be equivalent without explicit mentioning of topological struc-
tures defined by the bases. (Cf. 2.7 bases Y% ¥°° and X! must satisfy
the condition you are looking for.)

3. Metric Spaces

Definition and First Examples

A function p: X x X - Ry ={x € R |2z >0} is called a metric (or
distance) in X, if

(a) p(z,y) =0, iff = y;

(b) p(z,y) = p(y, z) for every z,y € X;

(c) plz,y) < p(x,2) + p(z,y) for every x,y,z € X.

The pair (X, p), where p is a metric in X, is called a metric space. The
condition (c) is triangle inequality.

3.A. Prove that for any set X

0, ifz=uy;

X x X >R, —
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1S a metric.

3.B. Prove that Rx R — R : (x,y) — |z — y| is a metric.

3.C. Prove that R* x R" — R : (z,y) = />, (; — y;)? is a metric.

Metrics 3.B and 3.(C are always meant when R and R"™ are considered as
metric spaces unless another metric is specified explicitly. Metric 3.B is
a special case of metric 3.C. These metrics are called Euclidean.

Further Examples

3.1. Prove that R” x R* — Ry : (z,y) = max;=1,___ ,|z; — ¥;| is a metric.

3.2. Prove that R® x R* — Ry : (z,y) = Y., |#; — yi| is a metric.

Metrics in R introduced in 3.C-3.2 are included in infinite series of the
metrics

1
p
o s (She-up)’s w21
=1

3.3. Prove that p®) is a metric for any p > 1.
3.3.1 Hélder Inequality. Prove that

n n l/p n 1/‘]
S < (zwf) (zyf)
=1 =1 =1

ifxi,yi>0,p,q>0and%+%:1.

Metric of 3.C'is p®), metric of 3.2 is p(V), and metric of 3.1 can be denoted
by p(°) and adjoined to the series since

1
n 1
. p p
lim E a; = max a;,
p—+o
for any positive aq, as, ..., ay,.

3.4. Riddle. How is this related to ¥2 ¥°° and X! from Section 27

For a real number p > 1 denote by () the set of sequences & = {zi}ti=1,. .
such that the series Y ;= |z|P converges.

3.5. Prove that for any two elements z,y € 1P the series o0, |z; — ;[P
converges and that

1
. .
P
e (Sle-ul)' p21
=1

is a metric in (P,
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Balls and Spheres

Let (X, p) be a metric space, let a be its point, and let r be a positive
real number. The sets

(3) Dy(a) ={z e X |pla,z) <7},
(4) Dyla] = {z e X | pla,x) <7},
(5) Sp(a) ={z e X | pla,x) =7}

are called, respectively, open ball, closed ball, and sphere of the space
(X, p) with center at a and radius r.

Subspaces of a Metric Space

If (X, p) is a metric space and A C X, then the restriction of metric p
to A X A is a metric in A, and (A4, plaxa) is a metric space. It is called
a subspace of (X, p).

The ball D;[0] and sphere S;(0) in R* (with Euclidean metric, see 3.C)
are denoted by symbols D" and S"! and called n-dimensional ball and
(n — 1)-dimensional sphere. They are considered as metric spaces (with
the metric restricted from R").

3.D. Check that D' is the segment [—1,1]; D? is a disk; S° is the pair
of points {—1,1}; S' is a circle; S? is a sphere; D? is a ball.

The last two statements clarify the origin of terms sphere and ball (in
the context of metric spaces).

Some properties of balls and spheres in arbitrary metric space resem-
ble familiar properties of planar disks and circles and spatial balls and
spheres.

3.E. Prove that for points z and a of any metric space and any r >
pla, )
Dr- o (@) € Dr(a).

Surprising Balls

However in other metric spaces balls and spheres may have rather surprising
properties.

3.6. What are balls and spheres in R?> with metrics of 3.7 and 3.2 (cf. 8.4)?
3.7. Find Di[a], Dyla], and Sy (a) in the space of 5.A.

3.8. Find a metric space and two balls in it such that the ball with the
smaller radius contains the ball with the bigger one and does not coincide
with it.
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3.9. What is the minimal number of points in the space which is required to
be constructed in 3.8.

3.10. Prove that in 3.8 the big radius does not exceed double the smaller
radius.

Segments (What Is Between)

3.11. Prove that the segment with end points a,b € R™ can be described as
{z € R" | p(a,z) + p(z,b) = p(a,b) },

where p is the Euclidean metric.

3.12. How do the sets defined as in 3.11 look like with p of 8.1 and 3.27
(Consider the case n = 2 if it appears to be easier.)

Bounded Sets and Balls

A subset A of a metric space (X, p) is said to be bounded, if there is a
number d > 0 such that p(x,y) < d for any z,y € A. The greatest lower
bound of such d is called the diameter of A and denoted by diam(A).

3.F. Prove that a set A is bounded, iff it is contained in a ball.

3.13. What is the relation between the minimal radius of such a ball and
diam(A)?

Norms and Normed Spaces

Let X be a vector space (over R). Function X — Ry : x — |z| is called a
norm if

(a) |z] =0, iff z = 0;

(b) JAz| =|Al|z| for any A € R and z € X;

(© [z +yl < ||+ |y| for any z,y € X.

3.14. Prove that if z — |z| is a norm then
p: X xX =Ry :(z,y)- |z -yl

is a metric.

The vector space equipped with a specified norm is called a normed space.
The metric defined by the norm as in 8.1 turns the normed space into the
metric one in a canonical way.

3.15. Look through the problems of this section and figure out which of the
metric spaces involved are, in fact, normed vector spaces.

3.16. Prove that every ball in the normed space is a convex® set symmetric
with respect to the center of the ball.

3Recall that a set A is said to be convez if for any z,y € A the segment connecting
x,y is contained in A. Of course, this definition is based on the notion of segment,
so it makes sense only for subsets of spaces, where the notion of segment connecting
two point is defined. This is the case in vector and affine spaces over R
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3.17*%. Prove that every convex closed bounded set in R?, which is symmet-
ric with respect to its center and is not contained in any affine space except
R™ itself, is the unit ball with respect to some norm, and that this norm is
uniquely defined by this ball.

Metric Topology

3.G. The collection of all open balls in the metric space is a base for
some topology (cf. 2.A, 2.B and 3.E).

This topology is called metric topology. It is said to be induced by the
metric. This topological structure is always meant whenever the metric
space is considered as a topological one (for instance, when one says
about open and closed sets, neighborhoods, etc. in this space).

3.H. Prove that the standard topological structure in R introduced in
Section 1 is induced by metric (z,y) — |z — y|.

3.18. What topological structure is induced by the metric of 3.A4?

3.1. A set is open in a metric space, iff it contains together with any its
point a ball with center at this point.

3.19. Prove that a closed ball is closed (with respect to the metric topology).
3.20. Find a closed ball, which is open (with respect to the metric topology).

3.21. Find an open ball, which is closed (with respect to the metric topol-
0gy).

3.22. Prove that a sphere is closed.
3.23. Find a sphere, which is open.

Metrizable Topological Spaces

A topological space is said to be metrizable if its topological structure is
induced by some metric.

3.J. An indiscrete space is not metrizable unless it consists of a single
point (it has too few open sets).

3.K. A finite space is metrizable iff it is discrete.
3.2/. Which topological spaces described in Section 1 are metrizable?
Equivalent Metrics

Two metrics in the same set are said to be equivalent if they induce the
same topology.
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3.25. Are the metrics of 3.C, 3.1, and 3.2 equivalent?

3.26. Prove that metrics p,, p, in X are equivalent if there are numbers
¢,C' > 0 such that

cpi(z,y) < pa(z,y) < Cpi(z,y)
for any z,y € X.
3.27. Generally speaking the inverse is not true.

3.28. Riddle. Hence the condition of the equivalence of metrics formulated
in 3.26 can be weakened. How?

3.29%. Prove that the following two metrics p,, pc in the set of all contin-
uous functions [0, 1] — R are not equivalent:*

pi(f.9) :/0 |f(z) — g(x)|dz;  pe(f,g) = max |f(z) — g(z)|.

z€[0,1]

Is it true that topological structure defined by one of them is finer than
another?

Ultrametric

A metric p is called an ultrametric if it satisfies to wltrametric triangle in-
equality:
p(z,y) < max{p(z,z), p(z,y)}
for any =z, 9, 2.
A metric space (X, p) with ultrametric p is called an wltrametric space.

3.30. Check that only one metric in 3.4-3.2 is ultrametric. Which one?

3.31. Prove that in an ultrametric space all triangles are isosceles (i.e., for
any three points a, b, ¢ two of the three distances p(a,b), p(b,c), p(a,c) are
equal).

3.32. Prove that in a ultrametric space spheres are not only closed (cf. 8.22)
but also open.

The most important example of ultrametric is p-adic metric in the set Q of
all rational numbers. Let p be a prime number. For z,y € Q, present the
difference z —y as $p®, where 7, s, and « are integers, and r, s are relatively
prime with p. Put p(z,y) = p~«.

3.33. Prove that this is an ultrametric.

Operations with Metrics

3.34. Prove that if p: X x X — R, is a function which satisfies conditions
(a) and (c) of the definition of metric then the function
(z,y) = p(z,y) + p(y, )

is a metric in X.

“Indexes in the notations allude to the spaces these metrics are defining.
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3.35. Prove that if p,, p, are metrics in X then p, + p, and max{p,, p.} are

also metrics. Are the functions min{p,, p,}, &, and p, p, metrics?
P2

3.36. Prove that if p: X x X — R, is a metric then

(a) function
p(z,y)
is a metric;
(b) function
(z,9) = f(p(z,y))
is a metric, if f satisfies the following conditions:
(1) f(0)=0,
(2) f is a monotone increasing function, and
() flz+y) <f(x)+ f(y) for any z,y € R.

3.37. Prove that metrics p and are equivalent.

p
1+p
Distance Between Point and Set

Let (X, p) be a metric space, A C X, b€ X. The inf{ p(b,a) |a € A} is
called a distance from the point b to the set A and denoted by p(b, A).

3.L. Let A be a closed set. Prove that p(b, A) =0, iff b € A.

3.38. Prove that |p(z, A) — p(y, A)| < p(z,y) for any set A and points z, y
of the same metric space.

Distance Between Sets

Let A and B be bounded subsets in the metric space (X, p). Put
d,(A,B) = max{sup p(a, B), sup p(b, A)}
a€A beB
This number is called the Hausdorff distance between A and B.

3.39. Prove that the Hausdorff distance in the set of all bounded subsets of
a metric space satisfies the conditions (b) and (c) of the definition of metric.

3.40. Prove that for every metric space the Hausdorff distance is a metric
in the set of its closed bounded subsets.

Let A and B be bounded polygons in the plane®. Put
da(A,B) =S(A)+ S(B) —25(ANnB),
where S(C) is the area of polygon C.
3.41. Prove that da is a metric in the set of all plane bounded polygons.

5 Although we assume that the notion of bounded polygon is well-known from elemen-
tary geometry, recall the definition. A bounded plane polygon is a set of the points
of a simple closed polygonal line and the points surrounded by this line. By a simple
closed polygonal line we mean a cyclic sequence of segments such that each of them
starts at the point where the previous one finishes and these are the only pairwise
intersections of the segments.
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We will call da the area metric.

3.42. Prove that in the set of all bounded plane polygons the area metric is
not equivalent to the Hausdorff metric.

3.43. Prove that in the set of convex bounded plane polygons the area metric
is equivalent to the Hausdorff metric.

4. Subspaces

Let (X, ) be a topological space, and A C X. Denote by Q4 the collec-
tion of sets ANV, where V € Q.

4.A. Q4 is a topological structure in A.

The pair (A, Q,4) is called a subspace of the space (X, ). The collection
Q4 is called the subspace topology or the relative topology or the topology
induced on A by €0, and its elements are called open sets in A.

4.B. The canonical topology in R' and the topology induced on R! as
a subspace of R? coincide.

4.1. Riddle. How to construct a base for the topology induced on A using
the base for the topology in X?

4.2. Describe the topological structures induced

(a) on the set N of natural numbers by the topology of the real line;
(b) on N by the topology of the arrow;

(c) on the two-point set {1,2} by the topology of Ry, ;

(d) on the same set by the topology of the arrow.

4.3. Is the half-open interval [0,1) open in the segment [0,2] considered as
a subspace of the real line?

4.C. A setis closed in a subspace, iff it is the intersection of the subspace
and a closed subset of the ambient space.

Relativity of Openness

Sets, which are open in the subspace, are not necessarily open in the
ambient space.

4.D. The unique open set in R!, which is also open in R?, is the empty
set J.

However:

4.E. Open sets of an open subspace are open in the ambient space, i.e.,
if A € Q then Q4 C Q.

The same relation holds true for closed sets. Sets, which are closed in
the subspace, are not necessarily closed in the ambient space. However:
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4.F. Closed sets of the closed subspace are closed in the ambient space.

4.4. Prove that a set U is open in X, iff every its point has a neighborhood
V in X such that UNV is open in V.

It allows one to say that the property of being open is a local property.
4.5. Show that the property of being closed is not a local property.

4.G Transitivity of Induced Topology. Let (X,Q) be a topological
space, and X D A D B. Then (Q4)p = Qpg, i.e., the topology induced on
B by the topology induced on A coincides with the topology induced on B
directly.

4.6. Let (X, p) be a metric space, and A C X. Then the topology in A
generated by metric plaxa coincides with the topology induced on A by the
topology in X generated by metric p. (To prove this statement you need to
prove two inclusions. Which of them is less obvious?)

Agreement on Notations of Topological Spaces

Different topological structures in the same set are not considered simul-
taneously very often. That is why a topological space is usually denoted
by the same symbol as the set of its points, i.e., instead of (X, ) one
writes just X. The same is applied for metric spaces: instead of (X, p)
one writes just X.

5. Position of a Point with Respect to a Set

This section is devoted to a further expansion of the vocabulary needed
when one speaks of phenomena in a topological space.

Interior, Exterior and Boundary Points

Let X be a topological space, A C X, and b € X. The point b is called

e an interior point of the set A if it has a neighborhood contained
in A;

e an exterior point of the set A if it has a neighborhood disjoint with
A;

e a boundary point of the set A if any its neighborhood intersects
both A and the complement of A.
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Interior and Exterior

The interior of a set A in a topological space X is the maximal (with
respect to inclusion) open in X set contained in A, i.e., an open set,
which contains any other open subset of A. It is denoted Int A or, going
into details, Intx A.

5.A. Every subset of a topological space has interior. It is the union of
all open sets contained in this set.

5.B. The interior of a set is the union of its interior points.
5.C. A set is open, iff it coincides with its interior.

5.D. Prove that in R:

(a) Tnt[0,1) = (0,1),
(b) IntQ = @ and
(c) nt(R\ Q) = 2.

5.1. Find the interior of {a,b,d} in space 4pT.

The exterior of a set is the maximal open set disjoint from A. It is
obvious that the exterior of A is Int(X \ A).

Closure

The closure of a set A is the minimal closed set containing A. It is
denoted Cl A or, going into details, Clx A.

5.E. Every subset of topological space has closure. It is the intersection
of all closed sets containing this set.

5.2. Prove that if A is a subspace of X, and B C A, then Cl4y B = (Clx B)N
A. Is it true that Inty B = (Intx B) N A?

A point b is called an adherent point for a set A if all of its neighborhood
intersect A.

5.F. The closure of a set is the set of its adherent points.
5.G. A set A is closed, iff A = Cl A.

5.H. The closure of a set is the complement of its exterior. In formulas:
ClA =X \ Int(X \ A), where X is the space and A C X.

5.1. Prove that in R:

(a) Cl0,1) = [0,1],
(b) C1Q =R,
(¢) CIR~Q) =R

5.3. Find the closure of {a} in 4pT.
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Frontier

The frontier of a set A is the set Cl A \ Int A. Tt is denoted by Fr A or,
more precisely, Fry A.

5.4. In 4pT find the frontier of {a}.

5.J. The frontier of a set is the set of its boundary points.
5.K. Prove that a set A is closed, iff Fr A C A.

5.5. Prove that Fr A = Fr(X \ A4). Find a formula for Fr A, which is sym-
metric with respect to A and X \ A.

5.6. The frontier of a set A equals the intersection of the closure of A and
the closure of the complement of A:

FrA=ClANCIX \ A).

Closure and Interior with Respect to a Finer Topology
5.7. Let Q1, Qs be topological structure in X, and Q; C Q5. Let Cl; denote
the closure with respect to ;. Prove that Cl; A D Cly A for any A C X.

5.8. Formulate and prove an analogous statement about interior.

Properties of Interior and Closure

5.9. Prove that if A C B then Int A C Int B.
5.10. Prove that Int Int A = Int A.

5.11. Is it true that for any sets A and B the following equalities hold true:

Int(AN B) = Int AN Int B,
Int(AU B) = Int AU Int B?

5.12. Give an example in which one of that equalities does not hold true.

5.13. In the example that you have found solving the previous problem an
inclusion of one hand side into another one holds true. Does this inclusion
hold true for any A and B?

5.14. Study the operator Cl in a way suggested by the investigation of Int
undertaken in 5.9-5.13.

5.15. Find Cl{1}, Int[0, 1], and Fr(2,400) in the arrow.
5.16. Find Int((0,1]U {2}), C1({ % | n € N}), and FrQ in R.

5.17. Find CIN, Int(0,1), and Fr[0,1] in Ry, . How to find the closure and
interior of a set in this space?

5.18. Prove that a sphere contains the frontier of the open ball with the
same center and radius.

5.19. Find an example in which a sphere is disjoint from the closure of the
open ball with the same center and radius.
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Let A be a subset, and b be a point of the metric space (X, p). Recall
(see Section 3) that the distance p(b, A) from the point b to the set A is
the inf{ p(b,a) | a € A}.

5.L. Prove that b € Cl A, iff p(b, A) = 0.

5.20 The Kuratowski Problem. How many pairwise distinct sets can one
obtain out of a single set using operators Cl and Int?

The following problems will help you to solve problem 5.20.
5.20.1. Find a set A C R such that the sets A, ClA, and Int A

would be pairwise distinct.
5.20.2. 1s there a set A C R such that

(a) A, ClA, Int A, ClInt A are pairwise distinct;
(b) A, ClA, Int A, Int C1 A are pairwise distinct;
(¢) A, ClA, Int A, ClInt A, Int Cl A are pairwise distinct?

If you find such sets, keep on going in the same way, and when fail,
try to formulate a theorem explaining the failure.

5.20.3. Prove that ClInt ClInt A = ClInt A.

5.21%*. Find three sets in the real line, which have the same frontier. Is it
possible to increase the number of such sets?

Recall that a set A C R" is said to be convex if together with any two points
it contains the whole interval connecting them (i.e., for any z,y € A any
point z belonging to the segment [z, y] belongs to A).

Let A be a convex set in R™.
5.22. Prove that Cl1 A and Int A are convex.

5.23. Prove that A contains a ball, unless A is not contained in an (n — 1)-
dimensional affine subspace of R”.

5.24. When is Fr A convex?

Characterization of Topology by Closure or Interior Opera-
tions

5.25*%. Let in the set of all subset of a set X exist an operator Cl, which
has the following properties:

(a) Cl.o=g;

(b) Cl. A D A4;

(¢) CL(AuUB)=Cl, AUCL B;

(d) CL.Cl, A=Cl, A

Prove that @ = {U C X | CL.(X \U) = X \ U } is a topological structure,
and Cl, A is the closure of a set A in the space (X, Q).

5.26. Find an analogous system of axioms for Int.
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Dense Sets

Let A and B be sets in a topological space X. A is said to be dense in
B if C1 A D B, and everywhere dense if Cl A = X.

5.M. A set is everywhere dense, iff it intersects any nonempty open set.

5.N. The set Q is everywhere dense in R.

5.27. Give a characterization of everywhere dense sets in an indiscrete space,
in the arrow and in Ry, .

5.28. Prove that a topological space is a discrete space, iff it has a unique
everywhere dense set (which is the entire space, of course).

5.29. Is it true that the union of everywhere dense sets is everywhere dense,
and that the intersection of everywhere dense sets is everywhere dense?

5.30. Prove that the intersection of two open everywhere dense sets is ev-
erywhere dense.

5.31. Which condition in the previous problem is redundant?

5.32*%. Prove that in R a countable intersection of open everywhere dense
sets is everywhere dense. Is it possible to replace R here by an arbitrary
topological space?

5.33*. Prove that Q cannot be presented as a countable intersection of
open sets dense in R.

5.34. Formulate a necessary and sufficient condition on the topology of a
space which has an everywhere dense point. Find spaces satisfying the con-
dition in Section 1.

Nowhere Dense Sets

A set is called nowhere dense if its exterior is everywhere dense.

5.35. Can a set be everywhere dense and nowhere dense simultaneously?

5.0. A set A is nowhere dense in X, iff any neighborhood of any point
x € X contains a point y such that the complement of A contains y
together with one of its neighborhoods.

5.36. Riddle. What can you say about the interior of a nowhere dense set?
5.37. Is R nowhere dense in R??
5.38. Prove that if A is nowhere dense then Int C14 = @.

5.39. Prove that the frontier of a closed set is nowhere dense. Is this true
for the boundary of an open set; boundary of an arbitrary set?

5.40. Prove that a finite union of nowhere dense sets is nowhere dense.

5.41. Prove that in R* (n > 1) every proper algebraic set (i.e., a set defined
by algebraic equations) is nowhere dense.

5.42. Prove that for every set A there exists a maximal open set B in which
A is dense. The extreme cases B = X and B = & mean that A is either
everywhere dense or nowhere dense respectively.



6. SET-THEORETIC DIGRESSION. MAPS 22

Limit Points and Isolated Points

A point b is called a limit point of a set A if any neighborhood of b
intersects A \. {b}.
5.P. Every limit point of a set is its adherent point.

5.43. Give an example proving that an adherent point may be not a limit
one.

A point b is called an isolated point of a set A if b € A and there exists
a neighborhood of b disjoint with A ~\ {b}.

5.Q. A set A is closed, iff it contains all its limit points.

5.44. Find limit and isolated points of the sets (0,1]U {2}, {1 | n € N}
in Q and in R.

5.45. Find limit and isolated points of the set N in Ry, .

Locally Closed Sets

A subset A of a topological space X is called locally closed if each of its points
has a neighborhood U such that AN U is closed in U (cf. 4.4—4.5).

5.46. Prove that the following conditions are equivalent;:

(a) A islocally closed in X;
(b) A is an open subset of its closure Clx A;
(c) A is the intersection of open and closed subsets of X.

6. Set-Theoretic Digression. Maps

Maps and the Main Classes of Maps

A mapping f of a set X to a set Y is a triple consisting of X, Y, and
a rule,® which assigns to every element of X exactly one element of Y.
There are other words with the same meaning: map, function.

If f is a mapping of X to Y then one writes f : X — Y, or X LY. The
element b of Y assigned by f to an element a of X is denoted by f(a)

and called the image of a under f. One writes b = f(a), or a EA b, or
fra—b.

A mapping f : X — Y is called a surjective map, or just a surjection if
every element of Y is an image of at least one element of X. A mapping

60f course, the rule (as everything in the set theory) may be thought of as a set.
Namely, one considers a set of ordered pairs (z,y) with z € X, y € Y such that the
rule assigns y to z. This set is called the graph of f. It is a subset of the set X x Y
of all ordered pairs (z,y).
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f X — Y is called an injective map, injection, or one-to-one map if
every element of YV is an image of not more than one element of X. A
mapping is called a bijective map, bijection, or invertible if it is surjective
and injective.

Image and Preimage

The image of a set A C X under a map f : X — Y is the set of images
of all points of A. It is denoted by f(A). Thus

f(A) = {f(a) : x € A}.

The image of the entire set X (i.e., f(X)) is called the image of f. The
preimage of a set B C Y under a map f: X — Y is the set of elements
of X whose images belong to B. It is denoted by f~'(B). Thus

f'(B)={a€X : f(a) € B}.

Be careful with these terms: their etymology can be misleading. For
example, the image of the preimage of a set B can differ from B. And
even if it does not differ, It may happen that the preimage is not the
only set with this property. Hence, the preimage cannot be defined as a
set, whose image is a given set.

6.A. f(f '(B)) = B, iff B is contained in the image of f.
6.B. f(f '(B)) C Bforany map f: X —Y and BCY.

6.C. Let f: X =Y and B C Y such that f(f '(B)) = B. Then the
following statements are equivalent:

(a) f~'(B) is the unique subset of X whose image equals B;
(b) for any a1,ay € f~'(B) the equality f(a;) = f(az) implies a; = as.

6.D. A map f: X — Y is an injection, iff for any B C Y such that
f(f7'(B)) = B the preimage f~'(B) is the unique subset of X whose
image equals B.

6.E. f'(f(A)) D Aforany map f: X — Y and A C X.
6.F. [1(f(A) =Aiff f(A)NFIXNA) =2

6.1. Do the following equalities hold true for any A,B C Y and any f: X —

Y:
(8) fHAUB) = fTH(A) U fY(B),
(9) FTHANDB) = fTHA) N fH(B),
(10) FTHY N A) =X N fH(A4)?
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6.2. Do the following equalities hold true for any A, B C X and any f: X —

Y:
(11) f(AUB) = f(A)U f(B),
(12) f(ANB) = f(A)N f(B),
(13) fFIXNA) =Y~ f(A)?

6.3. Give examples in which two of the equalities above are false.
6.4. Replace the false equalities of 6.2 by correct inclusions.

6.5. What simple condition on f : X — Y should be imposed in order to
make correct all the equalities of 6.2 for any A, B C X 7

6.6. Prove that for any map f: X — Y, and subsets A C X, BCY":

Bnf(A) = f(f~'(B)n A).

Identity and Inclusion

The identity map of a set X is the map X — X defined by formula
x — x. It is denoted by idx, or just id, when there is no ambiguity. If
A is a subset of X then the map A — X defined by formula = +— =z is
called an inclusion map, or just inclusion, of A into X and denoted by
in: A— X, or just in, when A and X are clear.

6.G. The preimage of a set B under an inclusion in: A — X is BN A.

Composition

The composition of mappings f: X — Y and g : Y — Z is the mapping
go f: X — Z defined by formula x — g(f(x))

6.H. ho(go f)=(hog)o fforanymaps f: X -V, ¢g:Y — Z, and
h:7Z—U.

6.1. fo(idy)=f=(idx)o fforany f: X =Y.

6.J. The composition of injections is injective.

6.K. If the composition g o f is injective then f is injective.
6.L. The composition of surjections is surjective.

6.M. If the composition g o f is surjective then g is surjective.

6.N. The composition of bijections is a bijection.

6.7. Let a composition go f be bijective. Is then f or g necessarily bijective?
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Inverse and Invertible

A mapg:Y — X issaid to be inverse toamap f: X — Y ifgof =idy
and f o g =idy. A map, for which an inverse map exists, is said to be
inwvertible.

6.0. A mapping is invertible, iff it is a bijection.

6.P. If an inverse map exists then it is unique.

Submappings

If AC X and B C Y then for every f: X — Y such that f(A) C B
there is mapping ab(f) : A — B defined by formula 2 — f(z) and called
an abbreviation of the mapping f to A, B, or submapping, or submap. If
B =Y then ab f: A — Y is denoted by f|4 and called the restriction of
ftoA If B#Y then ab f: A — B is denoted by f|4 5 or even simply

[l

6.Q). The restriction of amap f: X — Y to A C X is the composition
of inclusion in A :— X and f. In other words, f|4 = f oin.

6.R. Any abbreviation (including any restriction) of injections is injec-
tive.

6.S. If a restriction of a mapping is surjective then the original mapping
is surjective.

7. Continuous Maps

Definition and Main Properties of Continuous Maps

Let X, Y be topological spaces. A map f : X — Y is said to be

continuous if the preimage of any open subset of Y is an open subset of
X.

7.A. A map is continuous, iff the preimage of any closed set is closed.

7.B. The identity map of any topological space is continuous.

7.1. Let Qq, Q5 be topological structures in X. Prove that the identity
mapping of X
id : (X,Ql) — (X,QQ)

is continuous, iff Q5 C Q.
7.2. Let f: X — Y be a continuous map. Is it continuous with respect to

(a) a finer topology in X and the same topology in Y,
(b) a coarser topology in X and the same topology in Y,
(¢) a finer topology in Y and the same topology in X,
(d) a coarser topology in Y and the same topology in X?
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7.3. Let X be a discrete space and Y an arbitrary space. Which maps
X - Y and Y = X are continuous?

7.4. Let X be an indiscrete space and Y an arbitrary space. Which maps
X - Y and Y = X are continuous?

7.C. Let A be a subspace of X. The inclusion in : A — X is continuous.

7.D. The topology 24 induced on A C X by the topology of X is the
coarsest topology in A such that the inclusion mapping in : A — X is
continuous with respect to it.

7.5. Riddle. The statement 7.D admits a natural generalization with the
inclusion map replaced by an arbitrary map f : A — X of an arbitrary set
A. Find this generalization.

7.E. A composition of continuous maps is continuous.
7.F. A submap of a continuous map is continuous.

7.G. A map f: X — Y is continuous, iff ab f : X — f(X) is continu-
ous.

7.H. Any constant map (i.e., a map with image consisting of a single
point) is continuous.

Reformulations of Definition

7.6. Prove that a mapping f : X — Y is continuous, iff
Clf YA) c f(C14)
forany A CY.

7.7. Formulate and prove similar criteria of continuity in terms of Int f=1(A)
and f~!(Int A). Do the same for Cl f(A4) and f(ClA).

7.8. Let ¥ be a base for topology in Y. Prove that a map f: X — Y is
continuous, iff f~1(U) is open for any U € X.

More Examples

7.9. Is the mapping f : [0,2] — [0, 2] defined by formula
z, ifz€]0,1);
fla) = frel
3—z, ifzell,2
continuous (with respect to the topology induced from the real line)?

7.10. Is the map f of segment [0, 2] (with the topology induced by the topol-
ogy of the real line) into the arrow (see Section 1) defined by formula

) = x, if z € 0,1];
Cz+1, ifze (1,2
continuous?

7.11. Give an explicit characterization of continuous mappings of Ry, (see
Section 1) to R.
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7.12. Which maps Ry, — Ry, are continuous?

7.13. Give an explicit characterization of continuous mappings of the arrow
to itself.

7.14. Let f be a mapping of the set Z ; of nonnegative numbers onto R
defined by formula

%, if x #£0;
f(m)_{o, if 2 = 0.

Let g : Z + — f(Z 4) be its submap. Induce topology on Z  and f(Z ;) from
R. Are f and the map ¢!, inverse to g, continuous?

Behavior of Dense Sets

7.15. Prove that the image of an everywhere dense set under a surjective
continuous map is everywhere dense.

7.16. Is it true that the image of nowhere dense set under a continuous map
is nowhere dense.

7.17*. Does there exist a nowhere dense set A of [0,1] (with the topology
induced out of the real line) and a continuous map f : [0,1] — [0, 1] such that
f(A4) =10,1)7

Local Continuity

A map f of a topological space X to a topological space Y is said to be
continuous at a point a € X if for every neighborhood U of f(a) there
exists a neighborhood V' of a such that f(V) C U.

7.1. A map f: X — Y is continuous, iff it is continuous at each point
of X.

7.J. Let X, Y be metric spaces, and a € X. A map f : X — Y is
continuous at a, iff for every ball with center at f(a) there exists a ball
with center at a whose image is contained in the first ball.

7.K. Let X,Y be metric spaces, and a € X. A mapping f : X — Y is
continuous at the point a, iff for every € > 0 there exists 6 > 0 such that
for every point x € X inequality p(x,a) < 0 implies ,o(f(x), f(a)) <e.

Theorem 7.K means that continuity introduced above coincides with the
one that is usually studied in Calculus.
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Properties of Continuous Functions

7.18. Let f,g : X — R be continuous. Prove that the mappings X — R
defined by formulas

(14) z = f(z) +g(z),

(15) z = f(z)g(z),

(16) z = f(z) = g(),

(17) z =[f(2)],

(18) z — max{f(z), g(z)},
(19) z = min{f(z), g(x)}

are continuous.
7.19. Prove that if 0 ¢ g(X) then a mapping X — R defined by formula

@
g(x

(z)

is continuous.

7.20. Find a sequence of continuous functions f; : R — R, (i € N) such that
the formula
x > supq{ fi(z) | i € N}

defines a function R — R which is not continuous.
7.21. Let X be any topological space. Prove that a function f : X — R" :

z = (fi(z),..., fn(z)) is continuous, iff all the functions f; : X — R with
1 =1,...,n are continuous.

Real p x g-matrices comprise a space Mat(p X ¢q,R), which differs from RPY
only in the way of numeration of its natural coordinates (they are numerated
by pairs of indices).

7.22. Let f: X - Mat(p x q¢,R) and g : X — Mat(q x r,R) be continuous
maps. Prove that then

X = Mat(px r,R) : z — g(z) f(x)

is a continuous map.

Recall that GL(n;R) is the subspace of Mat(n x n,R) consisting of all the
invertible matrices.

7.23. Let f : X — GL(n;R) be a continuous map. Prove that X —
GL(n;R) : z — (f(z)) ! is continuous.

Special About Metric Case

7.L. For every subset A of a metric space X the function defined by
formula x +— p(z, A) (see Section 3) is continuous.

7.24. Prove that a topology of a metric space is the coarsest topology, with
respect to which for every A C X the function X — R defined by formula
x + p(z, A) is continuous.
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A mapping f of a metric space X into a metric space Y is called an
isometric embedding if p(f(a),f(b)) = p(a,b) for every a,b € X. A
bijection which is an isometric embedding is called an isometry.

7.M. Every isometric embedding is injective.
7.N. Every isometric embedding is continuous.

A mapping f : X — X of a metric space X is called contractive if there exists
a € (0,1) such that p(f(a), (b)) < ap(a,b) for every a, b € X.

7.25. Prove that every contractive mapping is continuous.

Let X, Y be metric spaces. A mapping f : X — Y is said to be Hdélder if
there exist C > 0 and o > 0 such that p(f(a), f(b)) < Cp(a,b)® for every
a,beX.

7.26. Prove that every Holder mapping is continuous.

Functions on Cantor Set and Square-Filling Curves

Recall that Cantor set K is the set of real numbers which can be presented
as sums of series of the form > 2, 3¢ with a, =0 or 2.

7:A. Let v be a map K — I defined by

o
ST

Prove that v, : K — I is a continuous surjection. Draw the graph of ¢.

7:B. Prove that the function K — K defined by
> ay a
2k
> Z
k=1
is continuous.

Denote by K2 the set {(z,y) € R? : 1 € K,y € K}.

7:C. Prove that the map 72 : K — K? defined by
TSN
k=1 (

is a continuous surjection.

7:D. Prove that the map 3 : K — I? defined as the composition of
9 : K — K% and K2 — I? : (z,y) — (71(2),71(y)) is a continuous
surjection.

7:E. Prove that the map 3 : K — I? is a restriction of a continuous
map. (Cf. 1:4:2.)
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The latter map is a continuous surjection I — I?. Thus, this is a curve
filling the square. A curve with this property was first constructed by
G. Peano in 1890. Though the construction sketched above is based
on the same ideas as the original Peano’s construction, they are slightly
different. Since then a lot of other similar examples have been found. You
may find a nice survey of them in a book by Hans Sagan, Space-Filling
Curves, Springer-Verlag 1994. Here is a sketch of Hilbert’s construction.

7:F. Prove that there exists a sequence of polygonal maps f;, : I — I?
such that

(a) fr connects all centers of the squares forming the obvious subdivi-
sion of I? into 4% equal squares with side 1 / 2k

(b) dist(fx(2), fr_1(z)) < v2/2F+! for any x € T (here dist means the
metric induced on I? from the standard Euclidean metric of R?).

7:G. Prove that any sequence of paths f; : I — I? satisfying the con-
ditions of 7:F converges to a map f : I — I? (i.e. for any = € I there
exists a limit f(z) = limg_,o fx(z)) and this map is continuous and its
image is dense in I2.

7:H. ” Prove that any continuous map I — I? with dense image is
surjective.

7:1. Generalize 7:C — 7:FE 7:F — 7:H to obtain a continuous surjection of
I onto I™.

Sets Defined by Systems of Equations and Inequalities

7.0. Let f; (i =1,...,n) be continuous mappings X — R. Then the
subset of X consisting of solutions of the system of equations

fl(l') =0,... ,fn(aj) =0
is closed.

7.P. Let f; (i =1,...,n) be continuous mappings X — R. Then the
subset of X consisting of solutions of the system of inequalities

fl(m) 20’ 7fn(x) >0

is closed, while the set consisting of solutions of the system of inequalities

fl(ZE) > 0, . ,fn(l') >0
is open.

7.27. Where in 7.0 and 7.P a finite system can be replaced by an infinite
one.

"Although this problem can be solved using theorems well-known from Calculus, we
have to mention that it would be more appropriate after Section 13. Cf. Problems
13.0, 13.T, 13.K.
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Set-Theoretic Digression. Covers

A collection T" of subsets of a set X is called a cover or a covering of X
if X is a union of sets of belonging to I', i.e., X = J . A. In this case
elements of I are said to cover X.

There is also a more general meaning of these words. A collection ' of
subsets of a set Y is called a cover or a covering of a set X C Y if X is
contained in the union of the sets belonging to I', i.e., X C J er A In
this case, sets belonging to I' are also said to cover X.

Fundamental Covers

Consider a cover I' of a topological space X. Each element of I" inherits
from X a topological structure. When are these structures sufficient
for recovering the topology of X7 In particular, under what conditions
on I' does continuity of a map f : X — Y follow from continuity of

its restrictions to elements of I'. To answer these questions, solve the
problems 7.28-7.29 and 7.Q-7.V.

7.28. 1Is this true for the following coverings:

(a) X =1[0,2], I ={[0, 1], (1,2]};

(b) X =10,2], T ={[0,1],[1,2]};

() X=R I'={QR\Q}

(d) X =R, I'is aset of all one-point subsets of R?

7.29. A cover of a topological space consisting of one-point subsets has the
property described above, iff the space is discrete.

A cover I' of a space X is said to be fundamental if a set U C X is open,
iff for every A € T" the set U N A is open in A.

7.Q. A covering I of a space X is fundamental, iff a set U C X is open
provided U N A is open in A for every A € T'.

7.R. A covering I of a space X is fundamental, iff a set F' C X is closed
provided F'N A is closed A for every A € I.

A cover of a topological space is said to be open if it consists of open
sets, and closed if it consists of closed sets. A cover of a topological space
is said to be locally finite if every point of the space has a neighborhood
intersecting only a finite number of elements of the cover.

7.S. Every open cover is fundamental.
7.T. Every finite closed cover is fundamental.

7.U. Every locally finite closed cover is fundamental.
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7.V. Let T' be a fundamental cover of a topological space X. If the
restriction of a mapping f : X — Y to each element of T' is continuous
then f is continuous.

A cover TV is said to be a refinement of a cover I if every element of T is
contained in some element of T.

7.30. Prove that if a cover I' is a refinement of a cover I', and I" is funda-
mental then T is also fundamental.

7.31. Let A be a fundamental cover of a topological space X, and T be a
cover of X such that 'y = {UN A | U € I'} is a fundamental cover for
subspace A C X for every A € A. Prove that I' is a fundamental cover.

7.32. Prove that the property of being fundamental is local, i.e., if every
point of a space X has a neighborhood V such that Ty ={UNV |U €T}
is fundamental, then I" is fundamental.

8. Homeomorphisms

Definition and Main Properties of Homeomorphisms

An invertible mapping is called a homeomorphism if both this mapping
and its inverse are continuous.

8.A. Find an example of a continuous bijection, which is not a homeo-
morphism.

8.B. Find a continuous bijection [0,1) — S', which is not a homeomor-
phism.

8.C. The identity map of a topological space is a homeomorphism.
8.D. A composition of homeomorphisms is a homeomorphism.

8.E. The inverse of a homeomorphism is a homeomorphism.

Homeomorphic Spaces

A topological space X is said to be homeomorphic to space Y if there
exists a homeomorphism X — Y.

8.F. Being homeomorphic is an equivalence relation. (Cf. 8.C-8.E.)

Role of Homeomorphisms

8.G. Let f: X — Y be a homeomorphism. Then U C X is open (in
X), iff f(U) is open (in V).

8.H. f: X — Y is a homeomorphism, iff f is a bijection and defines a
bijection between the topological structures of X and Y.
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8.1. Let f: X — Y be a homeomorphism. Then for every A C X

) Ais closed in X, iff f(A) is closed in Y

) 7(C1A4) = Clf(A);

) f(Int A) = Int f(A);

) f(FrA) =Frf(A);

) Ais a neighborhood of a point € X, iff f(A) is a neighborhood of
the point f(z);

(f) etc.

Therefore from the topological point of view homeomorphic spaces are
completely identical: a homeomorphism X — Y establishes one-to-one
correspondence between all phenomena in X and Y which can be ex-
pressed in terms of topological structures.

This phenomenon was used as a basis for a definition of the subject
of topology in the first stages of its development, when the notion of
topological space had not been developed yet. Then mathematicians
studied only subspaces of Euclidean spaces, their continuous mappings
and homeomorphisms. Felix Klein in his famous Erlangen Program,®
where he classified various geometries that had emerged up to that time,
like Euclidean, Lobachevsky, affine, and projective geometries, defined
topology as a part of geometry which deals with the properties preserved
by homeomorphisms.

More Examples of Homeomorphisms

8.J. Let f: X — Y be a homeomorphism. Prove that for every A C X
the reduction ab(f) : A — f(A) is also a homeomorphism.

8.K. Prove that every isometry (see Section 7) is a homeomorphism.

8.L. Prove that every nondegenerate affine transformation of R” is a
homeomorphism.

8.1. Prove that inversion
R
xH%:R"\{O}%R"\{O}
x
is a homeomorphism.

8.2. Let H = {z € C | Imz > 0} be the upper half-plane. Prove that
az+b

mapping f : H — H defined by f(z) = ot d where a,b,c,d € R, is a
cz
homeomorphism if Ccl 2 > 0.

8In fact it was not assumed to be a program in the sense of being planned, although it
became a kind of program. It was a sort of dissertation presented by Klein for getting
the position as a professor at Erlangen University.
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8.3. Prove that a bijection R — R is a homeomorphism, iff it is a monotone
function.

8./. Prove that every bijection of an indiscrete space onto itself is a homeo-
morphism. Prove that the same holds true for a discrete space and Ry, .

8.5. Find all homeomorphisms of the space 4pT' (see Section 1) to itself.

8.6. Prove that every continuous bijection of the arrow onto itself is a home-
omorphism.

8.7. Find two homeomorphic spaces X and Y and a continuous bijection
X — Y, which is not a homeomorphism.

8.8. Is 7o : K — K? considered in Problem 7:C a homeomorphism? Recall
that K is the Cantor set, K> = {(z,y) € R> : z € K,y € K} and 7, is

defined by
oo ()

k=1 k=1 k=1

Examples of Homeomorphic Spaces

Below the homeomorphism relation is denoted by . It is not a commonly
accepted notation. In other textbooks any sign close to, but distinct from

=, e. g ~, >~ &, is used.
8.M. [0,1] = [a,b] for any a < b.
) = [a,b) = (0,1] = (a,b] for any a < b.

1%

8.N. [0,1
8.0. (0,1) = (a,b) for any a < b.

8.P. (-1,1) =R

8.Q. [0,1) = [0,+0c0) and (0,1) = (0, +00).
8.R. S'\{(0,1)} = R".

8.S. S™~ {point} = R".

. Prove that the following plane figures are homeomorphic:

%
©

the whole plane R?;

open square { (z,y) € R? | z,y € (0,1) };

open strip { (z,y) € R? |z € (0,1) };

half-plane { (z,y) € R? |y >0 };

open half-strip { (z,y) e R? |z > 0,y € (0,1) };

open disk { (z,y) e R? |22 +y* < 1};

open rectangle { (z,y) € R? [a <z < b c<y<d};

open quadrant { (z,y) € R? |2,y > 0};

{(z,y) € B2 | y® + |z| >z}, i.e., plane cut along the ray {y =0, z >

0}.
8.T. Prove that
(a) closed disk D? is homeomorphic to square I? = { (z,y) € R? | x,y €

[0,1] };
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(b)
(c)
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open disc Int D? = { (z,y) € R? | 2% + y* < 1} is homeomorphic to
open square Int I? = { (z,y) € R* | z,y € (0,1) };

circle S' is homeomorphic to the boundary of square 0I? =
Int I2.

JERN

8.U. Prove that

(a)
(b)
(c)

every bounded closed convex set in the plane with nonempty interior
is homeomorphic to D?;

every bounded open convex nonempty set in the plane is homeomor-
phic to the plane;

boundary of every bounded convex set in the plane with nonempty
interior is homeomorphic to S*.

8.10. In which of the situations considered in 8.U can the assumption that
the set is bounded be omitted?

8.11. Classify up to homeomorphism all closed convex sets in the plane.
(Make a list without repeats; prove that every such set is homeomorphic
to one in the list; postpone a proof of nonexistence of homeomorphisms till
Section 9.)

8.12%. Generalize the previous three problems to the case of sets in R”
with arbitrary n.

The latter four problems show that angles are not essential in topology,
i.e., for a line or boundary of a domain the property of having angles is
not preserved by homeomorphism. And now two more problems on this.

8.13. Prove that every closed simple (i.e., without self-intersections) polygon
in R? (and in R® with n > 2) is homeomorphic to the circle S'.

8.14. Prove that every non-closed simple finite unit polyline in R? (and in R
with n > 2) is homeomorphic to the segment [0, 1].

8.15. Prove that R? \ {|z|,|y| > 1} = I? < {(£1,£1),(£1,£1)}.

8.16. Prove that the following plane figures are homeomorphic to each other:

(@) {(z,9)|0<z, y<1}h

(b) {(z,9) [0<2<1,0<y <1}

(©) {(z,y)|0<2z<1,0<y<1}

(d) {(z,9) |2,y >0}

() {(z,y)|z>0}

() {(z,9)|z>2y>0}

&) {(@yla?+y’<Lz#1}

8.17. Prove that the following plane figures are homeomorphic to each other:

punctured plane R? \ {(0,0)};

punctured disc { (z,y) |0 <z?+y> <1};

annulus { (z,y) | a < 2% + y? < b} where 0 < a < b;
plane without disc { (z,y) | 22 +y? > 1};

plane without square { (z,y) |0 < z,y <1}

plane without segment R? \ [0, 1].

P o e N TS
- O Ao T
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8.18. Let X C R? be an union of several segments with a common end point.
Prove that the complement R? \. X is homeomorphic to the punctured plane.

8.19. Let X C R? simple non-closed finite polyline. Prove that its comple-
ment R? \. X is homeomorphic to the punctured plane.

8.20. Let Dy,...,D, C R? be pairwise disjoint closed discs. The comple-
ment of the union of its interior is said to be plane with n holes. Prove
that any two planes with n holes are homeomorphic, i.e., dislocation of discs
D1, ..., D, does not affect on the topological type of R? \ U™, Int D;.

8.21. Prove that for continuous functions f, g : R — R such that f < g, the
space between their graphs { (z,y) € R? | f(z) <y < g() } is homeomorphic
to a closed strip { (z,y) | y € [0,1] }.

8.22. Prove that a mug (with handle) is homeomorphic to a doughnut.

8.23. Arrange the following items to homeomorphism classes: a cup, a
saucer, a glass, a spoon, a fork, a knife, a plate, a coin, a nail, a screw,
a bolt, a nut, a wedding ring, a drill, a flower pot (with hole in the bottom),
a key.

8.24. In a spherical shell (the space between two concentric spheres) one
drilled out a cylindrical hole connecting the boundary spheres. Prove that
the rest is homeomorphic to D3.

8.25. In a spherical shell one made a hole connecting the boundary spheres
and having the shape of a knotted tube (see Figure 1.). Prove that the rest
of the shell is homeomorphic to D3.

FIGURE 1
8.26. Prove that surfaces shown in Figure 2 are homeomorphic (they are

called handles).

8.27. Prove that surfaces shown in the Figure 3 are homeomorphic. (They
are homeomorphic to Klein bottle with two holes. More details about this is
given in Section 18.)

8.28* Prove that R \ S' = R\ (R' U{(1,1,1)}).
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)

FIGURE 2

=)W

FIGURE 3

8.29. Prove that subset of the sphere S™ defined in standard coordinates in
Rt by inequality 3 + 23 +--- + 2} < x},, + -+ x} is homeomorphic to
R* N R %,

Examples of Nonhomeomorphic Spaces

8. V. Spaces consisting of different number of points are not homeomor-
phic.

8. W. A discrete space and an indiscrete space (which have more than
one point) are not homeomorphic.

8.30. Prove that the spaces Z, Q (with topology induced from R), R, Ry
and the arrow are pairwise non-homeomorphic.

8.31. Find two non-homeomorphic spaces X and Y for which there exist
continuous bijections X — Y and ¥ — X.

Homeomorphism Problem and Topological Properties

One of the classic problems of topology is the homeomorphism problem:
to find out whether two given topological spaces are homeomorphic. In
each special case the character of solution depends mainly on the answer.
To prove that spaces are homeomorphic, it is enough to present a home-
omorphism between them. Essentially this is what one usually does in
this case. To prove that spaces are not homeomorphic, it does not suffice
to consider any special mapping, and usually it is impossible to review all
the mappings. Therefore for proving non-existence of a homeomorphism
one uses indirect arguments. In particular, one finds a property or a
characteristic shared by homeomorphic spaces and such that one of the
spaces has it, while the other does not. Properties and characteristics
which are shared by homeomorphic spaces are called topological proper-
ties and invariants. Obvious examples of them are the cardinality (i.e.,
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the number of elements) of the set of points and the set of open sets (cf.
Problems 8.29 and 8.V). Less obvious examples are the main object of
the next chapter.

Information (Without Proof)

Euclidean spaces of different dimensions are not homeomorphic. The
balls DP, DY with p # ¢ are not homeomorphic. The spheres SP, S¢
with p # ¢ are not homeomorphic. Euclidean spaces are homeomorphic
neither to balls, nor to spheres (of any dimension). Letters A and B are
not homeomorphic (if the lines are absolutely thin!). Punctured plane
R? \ {point} is not homeomorphic to the plane with hole R? \ { z° +¢? <

1},

These statements are of different degrees of difficulty. Some of them
will be considered in the next section. However some of them can not be
proven by techniques of this course. (See, e.g., D. B. Fuchs, V. A. Rokhlin.
Beginner’s course in topology: Geometric chapters. Berlin; New York:
Springer-Verlag, 1984.)

Embeddings

Continuous mapping f : X — Y is called a (topological) embedding if
the submapping ab(f) : X — f(X) is a homeomorphism.

8.X. The inclusion of a subspace into a space is an embedding.

8.Y. Composition of embeddings is an embedding.

8.Z. Give an example of continuous injective map, which is not a topo-
logical embedding. (Find such an example above and create a new one.)

8.32. Find topological spaces X and Y such that X can be embedded into
Y, Y can be embedded into X, but X 2 Y.

8.33. Prove that () cannot be embedded into Z.

8.34. Can a discrete space be embedded into an indiscrete space? How about
vice versa?

8.35. Prove that spaces R, Ry, , and the arrow cannot be embedded into
each other.

8.36 Corollary of Inverse Function Theorem. Deduce from the Inver-
se Function Theorem (see, e.g., any course of advanced calculus) the following
statement:

For any differentiable function f : R® — R™ whose Jacobian det(%) does

not vanish at the origin 0 € R" there exists a neighborhood U of the origin
such that f|y : U — R” is an embedding and f(U) is open.



8. HOMEOMORPHISMS 39

Embeddings fi,f; : X — Y are said to be equivalent if there exist
homeomorphisms hx : X — X and hy : Y — Y such that fo o hy =
hy o f1 (the latter equality mayb stated as follows: the diagram

x Loy
hxl lhy
x Ly

is commutative).

An embedding of the circle S* into R? is called a knot.
8.37. Prove that knots fi, fo : St — R3 with f1(S!) = f2(S?) are equivalent.

8.38. Prove that knots Q &) are equivalent.

Information

There are nonequivalent knots. For instance, Q and C@)



CHAPTER 2

Topological Properties

9. Connectedness

Definitions of Connectedness and First Examples

A topological space X is said to be connected if it has only two subsets
which are both open and closed: @ and the entire X.

A partition of a set is a cover of this set with pairwise disjoint sets. To
partition a set means to construct such a cover.

9.A. A topological space is connected, iff it cannot be partitioned into
two nonempty open sets, iff it cannot be partitioned into two nonempty
closed sets.

9.1. Is an indiscrete space connected? The same for the arrow and Ry, .
9.2. Describe explicitly all connected discrete spaces.

9.3. Is the set Q of rational numbers (with the topology induced from R)
connected? The same about the set of irrational numbers.

9.4. Let Qy, Q2 be topological structures in a set X, and 5 be finer than
O (ie., Q1 C Q). If (X,0Qy) is connected, is (X, Qs) connected? If (X, Q)
is connected, is (X, Q) connected?

Connected Sets

When one says that a set is connected, it means that this set lies in some
topological space (which should be clear from the context), and, with the
induced topology, is a connected topological space.

9.5. Give a definition of disconnected subset without relying on the induced
topology.

9.6. Is the set {0,1} connected in R, in the arrow, in Ry, ?

9.7. Describe explicitly all connected subsets of the arrow, of Ry, .

9.8. Show that the set [0,1] U (2, 3] is disconnected in R.

9.9. Prove that every non-convex subset of the real line is disconnected.

9.10. Let A be a subset of a topological space X. Prove that A is dis-
connected, iff there exist non-empty sets B and C such that A = B U C,
BnNnClxC=@,and CNClx B=2.

40
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9.11. Find a topological space X and disconnected subset A C X such that
for any disjoint open sets U and V', which form a cover of X, either U D A,
or VDO A.

9.12. Prove that for every disconnected set A in R" there exist disjoint open
sets U and V such that ACUUV, UNA# @, and VNA#g.

Compare 9.10-9.12 with 9.5.

Properties of Connected Sets

9.B. The closure of a connected set is connected.

9.13. Prove that if a set A is connected and A C B C ClA, then B is
connected.

9.C. Let {A)}xea be a family of connected subsets of a space X. Assume
that any two sets of this family intersect. Then |J, ., A is connected.
(In other words: the union of pairwise intersecting connected sets is
connected.)

9.D. Let {Ay}rez be a family of connected sets such that AN A, # &
for any k € Z. Prove that | J, ., Ay is connected.

9.14. Let A, B be connected sets, and AN CIB # @&. Prove that AU B is
connected.

9.15. Let A be a connected subset of a connected space X, and BC X \ 4
be an open and closed set in the topology of the subspace X \ A of the
space X. Prove that AU B is connected.

9.16. Does connectedness of AUB and AN B imply connectedness of A and
B?

9.17. Prove that if A and B are either both closed or both open sets, and
their union and intersection are connected then A and B are connected, too.

9.18. Let A1 D Az D --- be an infinite descending sequence of connected
oo
spaces. Is [),_; Ax a connected set?

Connected Components

A connected component of a space X is its maximal connected subset,
that is a connected subset, which is not contained in any other (strictly)
larger connected subset of X.

9.E. Every point belongs to some connected component. Moreover, this
component is unique. It is the union of all connected sets containing this
point.

9.F. Connected components are closed.

9.G. Two connected components either are disjoint or coincide.
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A connected component of a space X is called just a component of X.
Theorems 9.F and 9.G mean that connected components comprise a par-
tition of the whole space. The next theorem describes the corresponding
equivalence relation.

9.H. Prove that two points are in the same component, iff they belong
to the same connected set.

9.19. Let z and y belong to the same component. Prove that any set, which
is closed and open, either contains both x and y or does not contain either of
them (cf. 9.29).

9.20. Let a space X has a group structure, and the multiplication by an
element of the group is a continuous map. Prove that the component of
unity is a normal subgroup.

Totally Disconnected Spaces

A topological space is called totally disconnected if each of its components
consists of a single point.

9.1 Obvious Example. Any discrete space is totally disconnected.

9.J. The space Q (with the topology induced from R) is totally discon-
nected.

Note that Q is not discrete.

9.21. Give an example of an uncountable closed totally disconnected subset
of the line.

9.22. Prove that Cantor set (see 1:A4) is totally disconnected.

Frontier and Connectedness
9.23. Prove that if A is a proper nonempty subset of a connected topological
space then Fr A # @.

9.24. Let F be a connected subset of X. Prove that if A C X, FN A, and
FN(X\NA)#othen FNFrA+#o.

9.25. Let A be a subset of connected topological space. Prove that if Fr A
is a connected set then Cl A is also connected.

Behavior Under Continuous Maps

A continuous image of a space is its image under a continuous mapping.

9.K. A continuous image of a connected space is connected. (In other
words if f : X — Y is a continuous map, and X is connected then f(X)
is also connected.)
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9.L Corollary. Connectedness is a topological property. The number
of connected components is a topological invariant.

9.M. A space X is not connected, iff there is a continuous surjection
X — S0,

Connectedness on Line

9.N. The segment I = [0, 1] is connected.

There are several ways to prove 9.N. One is suggested by 9. M, but refers to
a famous Intermediate Value Theorem from calculus, see 9.5. Basically the
same proof as a combination of 9. M with a traditional proof of Intermidiate
Value Theorem is sketched in the following two problems. Cf. also 9.26
below.

9.N.1. Let U, V be subsets of I with V = U\ V. Let a € U, b eV
and a > b. Prove that there exists a descending sequence a,, with a; = a,
a, € U and an ascending sequence b,, with by = b, b, € V such that both
a, and b,, have the same limit c.

9.N.2. If under assumptions of 9.N.1 U and V are open, then in which of
them can be ¢?

9.26. Prove that every open subset of the real line is a union of disjoint open
intervals (do not use 9.N). Deduce 9.N from this.

9.0. Prove that the set of connected components of an open subset of
R is countable.

9.P. Prove that R' is connected.
9.Q. Describe explicitly all connected subsets of the line.

9.R. Prove that every convex set in R" is connected.

9.27. Consider the union of spiral
1 ith ¢ >0
= _— 1
r=ewp |y ) with ¢ >

(r, ¢ are the polar coordinates) and circle S!. Is this set connected? Would
the answer change, if the entire circle was replaced by some its subset?

(Cf. 9.19)

9.28. Consider the subset of the plane R? consisting of points with both
coordinates rational or both coordinates irrational. Is it connected?

9.29. Find a space and two points belonging to its different components
such that each simultaneously open and closed set contains either both of the
points, or neither of them (cf. 9.19).
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Intermediate Value Theorem and Its Genralizations

The following theorem is usually included in Calculus. You can easily
deduce it from the matterial of this section. In fact, in a sense it is
equivalent to connectedness of interval.

9.8 Intermediate Value Theorem. A continuous function
f:la,b] = R

takes every value between f(a) and f(b).

Many problems which can be solved using Intermediate Value Theorem can
be found in Calculus textbooks. Here are few of them.

9.30. Prove that any polynomial of odd degree in one variable with real
coefficients has at least one real root.

9.T Generalization. Let X be a connected space and f : X — R a
continuous function. Then f(X) is a convex subset of R.

Dividing Pancakes

9.31. Any irregularly shaped pancake can be cut in half by one stroke of the
knife made in any prescribed direction. In other words, if A is a bounded
open set in the plane and [ is a line in the plane, then there exists a line L
parallel to [ which divides A in half by area.

9.32. If, under the conditions of 9.31, A is connected then L is unique.

9.33. Suppose two irregularly shaped pancakes lie on the same platter; show
that it is possible to cut both exactly in half by one stroke of the knife. In
other words: if A and B are two bounded regions in the plane, then there
exists a line in the plane which divides each region in half by area.

9.3} Diwviding Pancake. Prove that a plane pancake of any shape can be
divided to four pieces of equal area by two straight cuts orthogonal to each
other. In other words, if A is a bounded connected open set in the plane,
then there are two perpendicular lines which divide A into four parts having
equal areas.

9.35. Riddle. What if the knife is not makes cuts of a shape different from
straight line? For which shapes of the blade you can formulate and solve
problems similar to 9.81 — 9.347

9.36. Riddle. Formulate and solve counter-parts of Problems 9.81 — 9.3}
for regions in the three-dimensional space. Can you increase the number of
regions in the counter-part of 9.31 and 9.337

9.37. Riddle. What about pancakes in R™?

Induction on Connectedness

A function is said to be locally constant if each point of its source space
has a neighborhood such that the restriction of the function to this neigh-
borhood is constant.
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9.U. A locally constant function on a connected set is constant.
9.38. Riddle. How are 9.2/ and 9.U related?

9.39. Let G be a group equipped with a topology such that for any g € G the
map G — G defined by z — zgz~' is continuous, and let G with this topology
be connected. Prove that if the topology induced in a normal subgroup H of
G is discrete, then H is contained in the center of G (i.e., hg = gh for any
h € H and g € G).

9.40 Induction on Connectedness. Let £ be a property of subsets of a
topological space such that the union of sets with nonempty pairwise inter-
sections inherits this property from the sets involved. Prove that if the space
is connected and each its point has a neighborhood with property £, then the
space has property £.

9.41. Prove 9.U and solve 9.39 using 9.40.

For more applications of induction on connectedness see 10.R, 10.14, 10.16
and 10.18.

Applications to Homeomorphism Problem

Connectedness is a topological property, and the number of connected
components is a topological invariant (see Section 8).

9.V. [0,2] and [0, 1] U [2, 3] are not homeomorphic.

Simple constructions, which assign homeomorphic spaces to homeomor-
phic ones (e.g. deleting one or several points), allow one to use connect-
edness for proving that some connected spaces are not homeomorphic.

9.W. I, R", S" and [0, 00) are pairwise nonhomeomorphic.

9.42. Prove that a circle is not homeomorphic to any subspace of R.

9.43. Give a topological classification of the letters: A, B, C, D, ..., consid-
ered as subsets of the plane (the arcs comprising the letters are assumed to
have zero thickness).

9.44. Prove that square and segment are not homeomorphic.

Recall that there exist continuous surjections of the segment onto square
and these maps are called Peano curves, see Section 7.

9.X. R! and R* are not homeomorphic if n > 1.

Information. RP and R? are not homeomorphic unless p = ¢. It fol-
lows, for instance, from the Lebesgue-Brower Theorem on invariance of
dimension (see, e.g., W. Hurewicz and H. Wallman, Dimension Theory
Princeton, NJ, 1941).

9.45. The statement “RP is not homeomorphic to R? unless p = ¢” implies
that SP is not homeomorphic to S? unless p = q.
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10. Path-Connectedness

Paths

A path in a topological space X is a continuous mapping of the interval
I = [0,1] to X. The point s(0) is called the initial point of a path
s : I — X, while s(1) is called its final point. One says that path s
connects s(0) with s(1). This terminology is inspired by an image of
moving point: at the moment ¢ € [0, 1] it is in s(¢). To tell the truth, this
is more than what is usually called a path, since besides an information on
trajectory of the point it contains a complete account on the movement:
the schedule saying when the point goes through each point.

A constant map s : I — X is called a stationary path and denoted by
e, where a = s(I). For a path s the inverse path is the path defined
by t — s(1 —t). Tt is denoted by s~'. Although, strictly speaking,
this notation is already used (for the inverse mapping), the ambiguity
of notations does not lead to confusion: in the context involving paths,
inverse mappings, as a rule, do not appear.

Let u: I — X, v:I— X be paths such that u(1) = v(0). Set

(2w, if t € 0, 1]
(20 wo(t) = {v(2t— 1), ifte [l 1),

10.A. Prove that the map uv : I — X defined by (10) is continuous
(i.e., it is a path). Cf. 7.T and 7.V.

Path wv is called the product of paths u and v. Recall that it is defined
only if the final point u(1) of u coincides with the initial point v(0) of v.

Path-Connected Spaces

A topological space is said to be path-connected or pathwise connected,
if any two points can be connected in it by a path.

10.B. Prove that I is pathwise connected.

10.C. Prove that the Euclidean space of any dimension is pathwise con-
nected.

10.D. Prove that sphere of dimension n > 0 is path-connected.

10.E. Prove that the zero-dimensional sphere S° is not path-connected.

10.1. Which of the following topological spaces are path-connected:

(a) a discrete space;
(b) an indiscrete space;
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(c) the arrow;
(d) ]RT1 ;
(e) 4pT7?

Path-Connected Sets

By a path-connected set or pathwise connected set one calls a subset
of a topological space (which should be clear from the context) path-
connected as a space with the topology induced from the ambient space.

10.2. Prove that a subset A of a topological space X is path-connected, iff
any two points in it can be connected by a path s: I — X with s(I) C A.
10.3. Prove that a convex subset of Euclidean space is path-connected.

10.4. Prove that the set of plane convex polygons with topology defined by
the Hausdorff metric is path-connected.

Path-connectedness is very similar to connectedness. Further, in some
important situations it is even equivalent to connectedness. However,
some properties of connectedness do not carry over path-connectedness
(see 10.0, 10.P). For properties, which carry over, proofs are usually
easier in the case of path-connectedness.

10.F. The union of a family of pairwise intersecting path-connected sets
is path-connected.

10.5. Prove that if sets A and B are both closed or both open and their union
and intersection are path-connected, then A and B are also path-connected.

10.6. Prove that interior and frontier of a path-connected set may not be
path-connected and that connectedness shares this property.

10.7. Let A be a subset of Euclidean space. Prove that if Fr A is connected
then Cl A is also connected.

10.8. Prove that the same holds true for a subset of an arbitrary path-
connected space.

Path-Connected Components

A path-connected component or pathwise connected component of a topo-
logical space X is a path-connected subset of X such that no other path-
connected subset of X contains it.

10.G. Every point belongs to a path-connected component.
10.H. Two path-connected components either coincide or are disjoint.

10.1. Prove that two points belong to the same path-connected compo-
nent, iff they can be connected by a path.
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Unlike to the case of connectedness, path-connected components may be
non-closed. (See 10.0, c¢f. 10.N, 10.P.)

10.J. A continuous image of a pathwise connected space is pathwise
connected.

10.9. Let s: I — X be a path connecting a point of a set A with a point of
X \ A. Prove that s(I) NFr(4) # @.

Path-Connectedness Versus Connectedness

10.K. Any path-connected space is connected.

Put
A= {(:E,y) cR? : x>0,yzsinl}
x
and X = AU{(0,0)}.

10.10. Draw A.
10.L. Prove that A is path-connected and X is connected.

10.M. Prove that deleting any point from A makes A and X discon-
nected (and hence, not path-connected).

10.N. X is not path-connected.

10.0. Find an example of a path-connected set, whose closure is not
path-connected.

10.P. Find an example of a path-connected component that is not
closed.

10.Q. If each point of a space has a path-connected neighborhood, then
each path-connected component is open.

10.R. If each point of a space has a path-connected neighborhood, then
the space is path-connected, iff it is connected.

10.5. For an open subset of Euclidean space connectedness is equivalent
to path-connectedness.

10.11. For subsets of the real line path-connectedness and connectedness are
equivalent.

10.12. Prove that for any € > 0 an e-neighborhood of a connected subset of
Euclidean space is path-connected.

10.13. Prove that any neighborhood of a connected subset of Euclidean
space contains a path-connected neighborhood of the same set.
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Polygon-Connectedness

A subset A of Euclidean space is said to be polygon-connected if any two
points of A can be connected by a finite polygonal line contained in A.

10.14. Prove that for open subsets of Euclidean space connectedness is
equivalent to polygon-connectedness.

10.15. Construct a path-connected subset A of Euclidean space such that A
consists of more than one point and no two distinct points can be connected
with a polygon in A.

10.16. Let X C R? be a countable set. Prove that then R% \ X is polygon-
connected.

10.17. Let X C R™ be a union of a countable collection of affine subspaces
with dimensions not greater than n — 2. Prove that then R” \ X is polygon-
connected.

10.18. Let X C C" be a union of a countable collection of algebraic sub-
sets (i.e., subsets defined by systems of algebraic equations in the standard
coordinates of C*) Prove that then C* \ X is polygon-connected.

Recall, that real n x n-matrices comprise a space, which differs from R?’ only
in the way of enumeration of its natural coordinates (they are numerated
by pairs of indices). The same relation holds between the set of complex
n x n-matrix and C* (homeomorphic to R2"").

10.19. Find connected and path-connected components of the following sub-
spaces of the space of real n x n-matrices:

GL(n;R) = {A : det A # 0};
O(n;R) ={A : A-(tA) = ¥};
Symm(n;R) = {A : tA=A};
Symm(n; R) N GL(n; R);

{A: A2 =K},

10.20. Find connected and path-connected components of the following sub-
spaces of the space of complex n X n-matrices:

e GL(n;C) ={A : det A#0};

e U(n; ):{A:A-(tA)ZJf};
o Herm(n;C) ={A : tA= A};
e Herm(n;C) N GL(n;C).

11. Separation Axioms

The aim of this section is to consider natural restrictions on topological
structure making the structure closer to being metrizable.



11. SEPARATION AXIOMS 50

Hausdorff Axiom

A lot of separation axioms are known. We restrict ourselves to the most
important four of them. They are numerated and denoted by T}, 715,
T3, and T} respectively. Let us start with the most important second
axiom. Besides the notation 75 it has a name, the Hausdorff axiom. A
topological space satisfying it is called a Hausdorff space. This axiom is
stated as follows: any two distinct points possess disjoint neighborhoods.

11.A. Any metric space is Hausdorff.
11.1. Which of the following spaces are Hausdorff:

(a) a discrete space;
(b) an indiscrete space;
(c) the arrow;

(d) ]RT1 ;

(e) 4pT?

If the next problem holds you up even for a minute, we advise you to
think over all definitions and solve all simple problems.

11.B. Is the segment [0, 1] with the topology induced from R a Hausdorff
space? Do the points 0 and 1 possess disjoint neighborhoods? Which if
any?

Limits of Sequence

Let {a,} be a sequence of points of a topological space X. A point b € X
is called its limit, if for any neighborhood U of b there exists a number
N such that a,, € U for any n > N. The sequence is said to converge or
tend to b as n tends to infinity.

11.2. Explain the meaning of the statement “ b is not a limit of sequence
a,” avoiding as much as you can negations (i.e., the words no, not, none,
etc..)

11.C. In a Hausdorff space any sequence has at most one limit.

11.D. Prove that in the space Ry, each point is a limit of the sequence

{a, = n}.
Coincidence Set and Fixed Point Set
Let f,g: X — Y be maps. Then the set {x € X : f(z) = g(x)} is called the

coincidence set of f and g.

11.3. Prove that the coincidence set for two continuous maps of an arbitrary
topological space to a Hausdorff space is closed.

11.4. Construct an example proving that the Hausdorff condition in 11.8 is
essential.
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A point z € X is called a fized point of amap f: X — X if f(z) = x. The
set of all fixed points of a map f is called the fized point set of f.

11.5. Prove that the fixed point set of a continuous map of a Hausdorff space
to itself is closed.

11.6. Construct an example proving that the Hausdorff condition in 11.5 is
essential.

11.7. Prove that if f,g : X — Y are continuous maps, Y is Hausdorff, A is
everywhere dense in X, and f|4 = g|a then f = g.

11.8. Riddle. How are problems 11.8, 11.5, and 11.7 related?

Hereditary Properties

A topological property is called hereditary if it is carried over from a
space to its subspaces, i.e. if a space X possesses this property then any
subspace of X possesses it.

11.9. Which of the following topological properties are hereditary:

finiteness of the set of points;
finiteness of the topological structure;
infiniteness of the set of points;
connectedness;

path-connectedness?

11.E. The property of being Hausdorff space is hereditary.

The First Separation Axiom

A topological space is said to satisfy the first separation axiom T if each
of any two points of the space has a neighborhood which does not contain
the other point.

11.F. A topological space X satisfies the first separation axiom,

e iff all one-point sets in X are closed,
e iff all finite sets in X are closed.

11.10. Prove that a space X satisfies the first separation axiom, iff any point
of X coincides with the intersection of all its neighborhoods.

11.11. Any Hausdorff space satisfies the first separation axiom.
11.G. In a Hausdorff space any finite set is closed.

11.H. A metric space satisfies the first separation axiom.

11.12. Find an example showing that the first separation axiom does not
imply the Hausdorff axiom.

11.1. Show that Ry, meets the first separation axiom, but is not a Haus-
dorff space (cf. 11.12).

11.J. The first separation axiom is hereditary.
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11.13. Prove that if for any two distinct points a and b of a topological
space X there exists a continuous map f of X to a space with the first
separation axiom such that f(a) # f(b) then X possesses the first separation
axiom.

11.14. Prove that a continuous mapping of an indiscrete space to a space
satisfying axiom 77 is constant.

11.15. Prove that in every set there exists a coarsest topological structure
satisfying the first separation axiom. Describe this structure.

The Third Separation Axiom

A topological space X is said to satisfy the third separation axiom if any
closed set and a point of its complement have disjoint neighborhoods,
i.e., for any closed set I C X and point b € X \ F' there exist open sets
UV CcXsuchthat UNV =g, FCU,and be V.

A topological space is called regular if it satisfies the first and third
separation axioms.

11.K. A regular space is Hausdorff space.

11.L. A space is regular, iff it satisfies the second and third separation
axioms.

11.16. Find a Hausdorff space which is not regular.

11.17. Find a space satisfying the third, but not the second separation ax-
iom.

11.18. Prove that a space satisfies the third separation axiom, iff any neigh-
borhood of any point contains the closure of some neighborhood of the same
point.

11.19. Prove that the third separation axiom is hereditary.

11.M. Any metric space is regular.

The Fourth Separation Axiom

A topological space X is said to satisfy the fourth separation axiom if any
two disjoint closed sets have disjoint neighborhoods, i.e., for any closed
sets A, B C X such that AN B = @ there exist open sets U,V C X such
that UNV =g, ACU,and BCV.

A topological space is called normal if it satisfies the first and fourth
separation axioms.

11.N. A normal space is regular (and hence Hausdorff).

11.0. A space is normal, iff it satisfies the second and fourth separation
axioms.
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11.20. Find a space which satisfies the fourth, but not second separation
axiom.

11.21. Prove that a space satisfies the fourth separation axiom, iff in any
neighborhood of any closed set contains the closure of some neighborhood of
the same set.

11.22. Prove that any closed subspace of a normal space is normal.

11.23. Find closed disjoint subsets A and B of some metric space such that
inf{p(a,b) |a € A,be B} =0.

11.P. Any metric space is normal.

11.24. Let f : X — Y be a continuous surjection such that the image of any
closed set is closed. Prove that if X is normal then Y is normal.

Niemytski’s Space

Denote by H the open upper half-plane {(z,y) € R? : y > 0} equipped with
the topology induced by the Euclidean metric. Denote by X the union of
H and its boundary line L = {(z,y) € R? : y = 0}, but equip it with the
topology, which is obtained by adjoining to the Euclidean topology the sets
of the form zU D, where z € R and D is an open disc in H which is tangent
to L at the point . This is the Niemytski space. It can be used to clarify
properties of the fourth separation axiom.

11.25. Prove that the Niemytski space is Hausdorff.

11.26. Prove that the Niemytski space is regular.

11.27. What topological structure is induced on L from X7

11.28. Prove that the Niemytski space is not normal.

11.29 Corollary. There exists a regular space, which is not normal.

11.30. Embed the Niemytski space into a normal space in such a way that
the complement of the image would be a single point.

11.31 Corollary. Theorem 11.22 does not extend to non-closed subspaces,
i.e., the property of being normal is not hereditary?

Urysohn Lemma and Tietze Theorem

11:A*. Let Y be a topological space satisfying the first separation ax-
iom. Let T be a subbase! of the topology of Y. Let ¥ be an open cover
of a space X. Prove that if there exists a bijection ¢ : ¥ — T which
preserves inclusions then there exists a continuous map f: X — Y such
that f~1(V) = ¢ (V) for any V € T.

11:B. Prove that intervals [0,7) and (r, 1] where r = 3%, n,q € N form
a subbase for [0,1], i.e., a collection of open sets in [0, 1], whose finite
intersections form a base of the standard topology in [0, 1].

'Recall that a subbase of the topology of Y is a collection T of open sets of ¥ such
that all finite intersections of sets from T form a base of topology of Y, see Section 2.
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11:C Urysohn Lemma. Let A and B be disjoint closed subsets of a
normal space X. Then there exists a continuous function f : X — I
such that f(A) =0 and f(B) = 1.

11:D. Let A be a closed subset of a normal space X. Let f : A — [—1,1]
be a continuous function. Prove that there exists a continuous function
g: X — [-%, %] such that |f(z) — g(z)| < 3 for any z € A.

11:E. Prove that under the conditions of 11:D for any € > 0 there exists
a continuous function ¢ : X — [—1,1] such that |f(z) — ¢(z)| < € for
any z € A.

11:F Tietze Extension Theorem. Prove that under the conditions of
11:D there ezists a continuous function F : X — [—1,1] such that Fla =

f-

11:G. Would the statement of Tietze Theorem remain true if in the
hypothesis the segment [—1, 1] was replaced by R, R*, S!, or $27?

12. Countability Axioms

In this section we continue to study topological properties which are
imposed additionally on a topological structure to make the abstract
situation under consideration closer to special situations and hence richer
in contents. Restrictions studied in this section bound a topological
structure from above: they require something to be countable.

Set-Theoretic Digression. Countability

Recall that two sets are said to be of equal cardinality if there exists a
bijection of one of them onto the other. A set of the same cardinality
as a subset of the set N of natural numbers is said to be countable.
Sometimes this term is used only for infinite countable sets, i.e. for
set of the cardinality of the whole set N of natural numbers, while a
set, countable in the sense above is called at most countable. This is
less convenient. In particular, if we adopted this terminology, then this
section would have to be called “At Most Countability Axioms”. This
would lead to other more serious inconveniences as well. Our terminology
has the following advantageous properties.

12.A. Any subset of a countable set is countable.
12.B. The image of a countable set under any mapping is countable.

12.C. The union of a countable family of countable sets is countable.
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Second Countability and Separability

In this section we study three restrictions on topological structure. Two
of them have numbers (one and two), the third one has no number. As
in the previous section, we start from the restriction having number two.

A topological space is said to satisfy the second aziom of countability
or to be second countable if it has a countable base. A space is called
separable if it contains a countable dense set. (This is the countability
axiom without a number mentioned above.)

12.D. The second axiom of countability implies separability.

12.E. The second axiom of countability is hereditary.
12.1. Are the arrow and Ry, second countable?
12.2. Are the arrow and Ry, separable?

12.3. Construct an example proving that separability is not hereditary.

12.F. A metric separable space is second countable.

12.G Corollary. For metric spaces, separability is equivalent to the
second aziom of countability.

12.H. (Cf. 12.3.) Prove that for metric spaces separability is hereditary.
12.1. Prove that Euclidean spaces and all their subspaces are separable
and second countable.

12.4. Construct a metric space which is not second countable.

12.J. A continuous image of a separable space is separable.

12.5. Construct an example proving that a continuous image of a second
countable space may be not second countable.

12.K Lindelof Theorem. Any open cover of a second countable space
contains a countable part, which also covers the space.

12.6. Prove that any base of a second countable space contains a countable
part which is also a base.

12.7. Prove that in a separable space any collection of pairwise disjoint open
sets is countable.

12.8. Prove that the set of components of an open set A C R” is countable.

12.9. Prove that any set of disjoint figure eight curves in the plane is count-
able.

12.10 Brower Theorem*. Let {K)} be afamily of closed sets of a second
countable space and let for any descending sequence Ky D Ky D ... of sets
belonging to this family the intersection N{°K,, also belongs to the family.
Then the family contains a minimal set, i.e., a set such that no proper its
subset belongs to the family.
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Embedding and Metrization Theorems

12:A. Prove that the space [y is separable and second countable.
12:B. Prove that a regular second countable space is normal.

12:C. Prove that a normal second countable space can be embedded
into ls. (Use Urysohn Lemma 11:C.)

12:D. Prove that a second countable space is metrizable, iff it is regular.

Bases at a Point

Let X be a topological space, and a its point. A neighborhood base at a
or just base of X at a is a collection of neighborhoods of a such that any
neighborhood of a contains a neighborhood from this collection.

12.L. If ¥ is a base of a space X then {U € ¥ : a € U} is a base of X
at a.

12.11. In a metric space the following collections of balls are neighborhood
bases at a point a:

e the set of all open balls of center a;

e the set of all open balls of center a and rational radii;

e the set of all open balls of center a and radii r,, where {r,} is any
sequence of positive numbers converging to zero.

12.12. What are the minimal bases at a point in the discrete and indiscrete
spaces?

First Countability

A topological space X is says to satisfy the first axiom of countability or
to be a first countable space if it has a countable neighborhood base at
each point.

12.M. Any metric space is first countable.
12.N. The second axiom of countability implies the first one.

12.0. Find a first countable space which is not second countable. (Cf.
12.4.)

12.13. Which of the following spaces are first countable:

) the arrow;

) ]RT1 ;

) a discrete space;

) an indiscrete space?
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Sequential Approach to Topology

Specialists in Mathematical Analysis love sequences and their limits.
Moreover they like to talk about all topological notions relying on the
notions of sequence and its limit. This tradition has almost no mathe-
matical justification, except for a long history descending from the XIX
century studies on the foundations of analysis. In fact, almost always? it
is more convenient to avoid sequences, provided you deal with topolog-
ical notions, except summing of series, where sequences are involved in
the underlying definitions. Paying a tribute to this tradition we explain
here how and in what situations topological notions can be described in
terms of sequences.

Let A be a subset of a topological space X. The set of limits of all
sequences a, with a, € A is called a sequential closure of A and denoted
by SCI A.

12.P. Prove that SCl1 A C Cl A.

12.Q. Ifaspace X is first countable then the for any A C X the opposite
inclusion C1 A C SCl A holds also true, and hence SC1 A = Cl A.

Therefore, in a second countable space (in particular, any metric spaces)
one can recover (hence, define) the closure of a set provided it is known
which sequences are convergent and what the limits are. In turn, knowl-
edge of closures allows one to recover which sets are closed. As a conse-
quence, knowledge of closed sets allows one to recover open sets and all
other topological notions.

12.14. Let X be the set of real numbers equipped with the topology con-
sisting of @ and complements of all countable subsets. Describe convergent
sequences, sequential closure and closure in X. Prove that in X there exists
a set A with SC1 A # Cl A.

Sequential Continuity

Consider now continuity of maps along the same lines. Amap f: X — Y
is said to be sequentially continuous if for any b € X and a sequence
a, € X, which converges to b, the sequence f(a,) converges to f(b).

12.R. Any continuous map is sequentially continuous.

12.8. The preimage of a sequentially closed set under a sequentially
continuous map is sequentially closed.

12.T. If X is a first countable space then any sequentially continuous
map f: X — Y is continuous.

2The exceptions which one may find in the standard curriculum of a mathematical
department can be counted on two hands.
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Thus for mappings of a first countable space continuity and sequential
continuity are equivalent.

12.15. Construct a sequentially continuous, but discontinuous map. (Cf.
12.14)

13. Compactness

Definition of Compactness

This section is devoted to a topological property, which plays a very
special role in topology and its applications. It is sort of topological
counter-part for the property of being finite in the context of set theory.
(It seems though that this analogy has never been formalized.)

Topological space is said to be compact if any of its open covers contains
a finite part which covers the space.

IfI'isa cover of X and X C I''is a cover of X then GS is called a subcover
(or subcovering) of T'. Thus, a topological space is compact if every open
cover has a finite subcover.

13.A. Any finite topological space and indiscrete space are compact.

13.B. Which discrete topological spaces are compact?

13.1. Let Q; C Q9 be topological structures in X. Does compactness of
(X, Q2) imply compactness of (X, ;)7 And vice versa?

13.C. Prove that the line R is not compact.
13.D. Prove that a topological space X is not compact iff there exists
an open covering which contains no finite subcovering.

13.2. Is the arrow compact? Is Ry, compact?

Terminology Remarks

Originally the word compactness was used for the following weaker prop-
erty: any countable open cover contains a finite subcover.

13.E. Prove that for a second countable space the original definition of
compactness is equivalent to the modern one.

The modern notion of compactness was introduced by P. S. Alexandroff
(1896-1982) and P. S. Urysohn (1898-1924). They suggested for it the
term bicompactness. This notion appeared to be so successful that it
has displaced the original one and even took its name, i.e. compactness.

The term bicompactness is sometimes used (mainly by topologists of
Alexandroff school).
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Another deviation from the terminology used here comes from Bourbaki:
we do not include the Hausdorff property into the definition of com-
pactness, which Bourbaki includes. According to our definition, Ry, is
compact, according to Bourbaki it is not.

Compactness in Terms of Closed Sets

A collection of subsets of a set is said to be centered if the intersection
of any finite subcollection is not empty.

13.F. A collection Y of subsets of a set X is centered, iff there exists
no finite ¥; C X such that the complements of the sets belonging to 3,
cover X.

13.G. A topological space is compact, iff any centered collection of its
closed sets has nonempty intersection.

Compact Sets

By a compact set one means a subset of a topological space (the latter
must be clear from the context) provided it is compact as a space with
the topology induced from the ambient space.

13.H. A subset A of a topological space X is compact, iff any cover
which consists of sets open in X contains a finite subcover.

13.3. Is [1,2) C R compact?

13.4. Is the same set [1,2) compact in the arrow?

13.5. Find a necessary and sufficient condition (formulated not in topological
terms) for a subset of the arrow to be compact?

13.6. Prove that any subset of Ry, is compact.

13.7. Let A and B be compact subsets of a topological space X. Does it
follow that AU B is compact? Does it follow that A N B is compact?

13.8. Prove that the set A = {0} U {=}52, in R is compact.

Compact Sets Versus Closed Sets

13.1. Is compactness hereditary?
13.J. Any closed subset of a compact space is compact.

13.K. Any compact subset of a Hausdorff space is closed.

13.L Lemma to 13.K, but not only ... . Let A be a compact sub-
set of a Hausdorff space X and b a point of X which does not belong to
A. Then there exists open sets U,V C X such that b€ V, A C U and
unv =g.

13.9. Construct a nonclosed compact subset of some topological space. What
is the minimal number of points needed?
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Compactness and Separation Axioms

13.M. A compact Hausdorff space is regular.

13.N. Prove that a compact Hausdorff space is normal.

13.10. Prove that the intersection of any family of compact subsets of a
Hausdorff space is compact. (Cf. 13.7.)

13.11. Let X be a Hausdorff space, let {K,}aea be a family of its compact
subsets, and let U be an open set containing Ngep Ko. Prove that U D
Naca K, for some finite A C A.

13.12. Let {K,} be a decreasing sequence of compact nonempty connected
subset of a Hausdorff space. Prove that the intersection M), K, is nonempty
and connected.

13.13. Construct a decreasing sequence of connected subsets of the plane
with nonconnected intersection.

13.14. Let K be a connected component of a compact Hausdorff space X
and let U be an open set containing K. Prove that there exists an open and
closed set V such that K CV C U.

Compactness in Euclidean Space

13.0. The interval I is compact.

Recall that n-dimensional cube is the set
I"={zeR"|z; €[0,1] fori=1,...,n}.
13.P. The cube I" is compact.

13.Q. Any compact subset of a metric space is bounded.

Therefore, any compact subset of a metric space is closed and bounded,
see 13.K and 15.0Q).

13.R. Construct a closed and bounded, but noncompact set of a metric
space.

13.15. Are the metric spaces of Problem 3.4 compact?

13.5. A subset of a Fuclidean space is compact, iff it is closed and
bounded.

13.16. Which of the following sets are compact:

(a) [07 1);
(b) ray Ry ={z € R|z > 0};
(c) S%
(d) 8™
(e) one-sheeted hyperboloid;
(f) ellipsoid;

) [0,1]NnQ?
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Matrix (a;;) with 1 <4 <n, 1 < j < k with real a;j can be considered as a
point of R™ . For this, one needs to enumerate somehow (e.g, lexicographi-
cally) its elements by numbers from 1 till nk. This identifies the set L(nk)
of all matrices like that with R** and endows it with a topological structure.
(Cf. Section 10.)

13.17. Which of the following subsets of L(n,n) are compact:

(a) GL(n)={A € L(n,n)| det A # 0};

(b) SL(n)={A € L(n,n)| det A = ¥};

(¢c) O(n)={A € L(n,n) :|Ais an orthogonal matrix};
(d) {A € L(n,n)| A% = ¥}, here ¥ is the unit matrix?

Compactness and Maps

13.T. A continuous image of a compact set is compact. (In other words,
if X is a compact space and f : X — Y is a continuous map then f(X)
is compact.)

13.U. On a compact set any continuous function is bounded and attains
its maximal and minimal values. (In other words, if X is a compact space
and f : X — R is a continuous function, then there exist a,b € X such
that f(a) < f(x) < f(b) for any x € X.) Cf. 15.T and 13.S.

13.18. Prove that if f : I — R is a continuous function then f(I) is an
interval.

13.19. Prove that if F' and G are disjoint subsets of a metric space, F' is
closed and G compact then p(F,G) = inf {p(z,y) |z € F, y € G} > 0.

13.20. Prove that any open set containing a compact set A of a metric space
X contains an e-neighborhood of A. (i.e., the set {z € X |p(z,A) < e} for
some € > 0).

13.21. Let A be a closed connected subset of R” and let V be its closed
e-neighborhood (i.e., V = {x € R"|p(z,A) < €}). Prove that V is path-
connected.

13.22. Prove that if in a compact metric space the closure of any open ball
is the closed ball with the same center and radius then any ball of this space
is connected.

13.23. Let X be a compact metric space and f : X — X be a map such
that p(f(x), f(y)) < p(z,y) for any z,y € X with  # y. Prove that f has
a unique fixed point. (Recall that a fixed point of f is a point x such that

flz) =)
13.24. Prove that for any open cover of a compact metric space there exists
a number r > 0 such that any open ball of radius r is contained in some
element of the cover.
13.V Lebesgue Lemma. Let f : X — Y be a continuous map of a
compact metric space X to a topological space Y, and let I be an open
cover of Y. Then there exists a number 6 > 0 such that for any set
A C X with diameter diam(A) < § the image f(A) is contained in some
element of T'.
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Norms in R”
13.25. Prove that any norm R” — R (see Section 3) is a continuous function
(with respect to the standard topology of R").

13.26. Prove that any two norms in R" are equivalent (i.e. define the same
topological structure). See 3.26, cf. 3.29.

13.27. Does the same hold true for metrics in R*?

Closed Maps

A continuous map is said to be closed if the image of any closed set under
this map is closed.

13.W. A continuous map of a compact space to a Hausdorff space is
closed.

Here are two important corollaries of this theorem.

13.X. A continuous injection of a compact space to a Hausdorff space
is a topological embedding.

13.Y. A continuous bijection of a compact space to a Hausdorff space
is a homeomorphism.

13.28. Show that none of the hypothesis in 13.Y can be omitted without
making the statement false.

13.29. Does there exist a noncompact subspace of Euclidian space such that
any its map to a Hausdorff space is closed? (Cf. 13.U and 13.W.)

14. Local Compactness and Paracompactness

Local Compactness
A topological space X is called locally compact if each of its points has
a neighborhood with compact closure.

1/:A. Prove that local compactness is a local property, i.e., a space is
locally compact, iff each of its points has a locally compact neighborhood.

14:B. Is local compactness hereditary?

1/4:C. Prove that a closed subset of a locally compact space is locally
compact.

14:D. Prove that an open subset of a locally compact Hausdorff space
is locally compact.

14:1. Which of the following spaces are locally compact:
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(c) R
(d) a discrete space?

14:2. Find two locally compact sets on the line such that their union
is not locally compact.

One-Point Compactification

Let X be a Hausdorff topological space. Let X* be the set obtained by
adding a point to X (of course, the point does not belong to X). Let Q*
be the collection of subsets of X* consisting of

e sets open in X and
e sets of the form X* \ C, where C' C X is a compact set.

14:E. Prove that Q* is a topological structure.
14:F. Prove that the space (X*, ") is compact.

14:G. Prove that the inclusion X — X™ is a topological embedding
(with respect to the original topology of X and Q*).

14:H. Prove that if X is locally compact then the space (X*,Q*) is
Hausdorff. (Recall that X is assumed to be Hausdorff.)

A topological embedding of a space X into a compact space Y is called
a compactification of X if the image of X is dense in Y. In this situation
Y is also called a compactification of X.

14:1. Prove that if X is a locally compact Hausdorff space and Y is its
compactification with Y \ X consisting of a single point then there exists
a homeomorphism Y — X* which is the identity on X.

The space Y of Problem 14:1 is called a one-point compactification or
Alexandroff compactification of X.

14:J. Prove that the one-point compactification of the plane is homeo-
morphic to S2.

1/:3. Prove that the one-point compactification of R” is homeomorphic
to S™.

14:4. Give explicit descriptions of one-point compactifications of the
following spaces:

(a) annulus {(z,y) € R*|1 < 2? +y? < 2};

) square without vertices {(z,y) € R?*|z,y € [-1,1], |zy| < 1};
(©) strip {(z,9) € B?|z € [0,1]};

) a compact space.

14:K. Prove that a locally compact Hausdorff space is regular.
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Proper Maps

A continuous map f: X — Y is said to be proper if the preimage of any
compact subset of Y is compact.

Let X, Y be Hausdorff spaces. Any continuous map f : X — Y is
naturally extended to a map X* — Y™ defined by the following formula:

() f(x), fzeX
xr) =

Y*\Y, otherwise, ie., ifz = X* \ X.
1/4:L. Prove that f* is continuous, iff f is proper.

14:M. Prove that any proper map of a Hausdorff space to a Hausdorff
locally compact space is closed.

Problem 14:M is related to Theorem 13. W.

14:N. Extend this analogy: formulate and prove statements correspond-
ing to theorems 15.X and 13.Y.

Locally Finite Collections of Subsets

A collection I' of subsets of a space X is said to be locally finite if each
point b € X has a neighborhood U such that ANU = () for all but finite
number of A € T.

14:0. Any locally finite cover of a compact space is finite.

14:5. If a collection I" of subsets of a space X is locally finite then so
is{Cl1A| AeT}.

14:6. If a collection T of subsets of a space X is locally finite and Cl A
is compact for each A € T' then each A € T intersects only finite number
of elements of T'.

14:7. Any locally finite cover of a sequentially compact space is finite.

14:P. Find an example of an open cover of R” which does not possess
a locally finite subcover.

Let T' and A be covers of a set X. Then A is said to be a refinement of
I if for each A € T" there exists B € A such that B C A.

14:Q. Prove that any open cover of R” has a locally finite open refine-
ment.

14:R. Let {U;}ien be a locally finite open cover of R". Prove that there
exist an open cover {V; };en such that C1V; C U; for each i € N.
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Paracompact Spaces

A space X is said to be paracompact if any its open cover has a locally
finite open refinement.

14:5. Any compact space is paracompact.
14:T. R" is paracompact.

14:U. Let X = U2, X; and X; are compact sets. Then X is paracom-
pact.

14:V. Any closed subspace of a paracompact space is paracompact.
14:8. A disjoint union of paracompact spaces is paracompact.

14:9. If X is a paracompact space and Y compact then X x Y is
paracompact.

Paracompactness and Separation Axioms

14:10. Any Hausdorff paracompact space is regular.
14:11. Any Hausdorff paracompact space is normal.

14:12. Let X be a normal space and I' its locally finite open cover.
Then there exists a locally finite open cover A such that {C1V |V € A}
is a refinement of T'.

Information. Any metrizable space is paracompact.

Partitions of Unity

For a function f : X — R, the set Cl{z € X | f(z) # 0} is called the
support of f and denoted by supp f.

14:W. Let {fa}aeca be a family of continuous functions X — R such
that the sets supp(f,) comprise a locally finite cover of the space X.
Prove that the relation

f(x) =" falo)
a€cA
defines a continuous function f: X — R

A family of nonnegative functions f, X — Ry is called a partition of
unity if the sets supp(f,) comprise a locally finite cover of the space X

and ZaEA foc(x) =1

A partition of unity {f,} is said to be subordinate to a cover I' if each
supp(fa) is contained in an element of I'.

14:X. For every normal space X there exists a partition of unity which
is subordinate to a given locally finite open cover of X.

14:Y. A Hausdorff space is paracompact, iff any its open cover admits
a partition of unity which is subordinate to this cover.
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Application: Making Embeddings from Pieces

14:Z. Let h U; - R*, 1 =1,... ,k, be embeddings, where U; comprise

an open cover of a space X. Then X can be embedded in RF(?+1)

14:Z:1. Show that the map = — (f;(z)hi(z)), where f; X — R com-
rise a partition of unity, which is subordinate to the given cover and
hi(z) = (hi(z),1) € R**! is an embedding.

15. Sequential Compactness

Sequential Compactness Versus Compactness

A topological space is said to be sequentially compact if every sequence
of its points contains a convergent subsequence.

15.A. Any compact first countable space is sequentially compact.

A point b is called an accumulation point of a set A if every neighborhood
of b contains infinitely many points of A.

15.A.1. Prove that in a first countable space the notions of accumulation
point and limit point coincide.

15.A.2. In a compact space any infinite set has an accumulation point.
15.A.3. Deduce Theorem 15. A from 15.A4.2.
15.B. A sequentially compact second countable space is compact.

15.B.1. In a sequentially compact space a decreasing sequence of nonempty
closed sets has a nonempty intersection.

15.B.2. Prove that in a topological space every decreasing sequence of
nonempty closed sets has nonempty intersection, iff any centered countable
collection of closed sets has nonempty intersection.

15.C. For second countable spaces compactness and sequential com-
pactness are equivalent.

In Metric Space

A subset A of a metric space X is called an e-net (where ¢ is a positive
number) if p(z, A) < e for each point z € X.

15.D. Prove that in any compact metric space for any ¢ > 0 there exists
a finite e-net.

15.E. Prove that in any sequentially compact metric space for any £ > 0
there exists a finite e-net.
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15.F. Prove that a subset of a metric space is everywhere dense, iff it is
an e-net for any € > 0.

15.G. Any sequentially compact metric space is separable.
15.H. Any sequentially compact metric space is second countable.

15.1. For metric spaces compactness and sequential compactness are
equivalent.

15.1. Prove that a sequentially compact metric space is bounded. (Cf. 15.F
and 15.1)

15.2. Prove that in any metric space for any € > 0 there exists

(a) a discrete e-net and even
(b) an e-net such that the distance between any two of its points is greater
than e.

Completeness and Compactness

A sequence {x,}nen of points of a metric space is called a Cauchy se-
quence if for any € > 0 there exists a number N such that p(z,,zp),e
for any n,m > N. A metric space is said to be complete if each Cauchy
sequence in it is convergent.

15:A. A Cauchy sequence, which contains a convergent subsequence,
converges.

15:B. Prove that a metric space is complete, iff any decreasing sequence
of its closed balls with radii tending to 0 has nonempty intersection.

15:C. Prove that a compact metric space is complete?
15:D. Is any locally compact, but not compact metric space complete?

15:E. Prove that a complete metric space is compact, iff for any ¢ > 0
it contains a finite e-net.

15:F. Prove that a complete metric space is compact iff for any € > 0 it
contains a compact e-net.

Non-Compact Balls in Infinite Dimension

By [*° denote the set of all bounded sequences of real numbers. This is
a vector space with respect to the component-wise operations. There is a
natural norm in it: |z|| = sup{|z,| : n € N}.

15.3. Are closed balls of [*° compact? What about spheres?
15.4. Is the set {z € [* : |z,| < 27",n € N} compact?

15.5. Prove that the set {z € I*® : |z,| =27 ",n € N} is homeomorphic to
the Cantor set K introduced in Section 1.

15.6*. Does there exist an infinitely dimensional normed space, in which
closed balls are compact?
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p-Adic Numbers

Fix a prime integer p. By Z, denote the set of series of the form ag + a1p +
ot app™ + ... with 0 < a, < p, ap € N. For 2,y € Z, put p(z,y) =0
if x =y and p(x,y) = p~™, if m is the smallest number such that the m-th
coefficients in the series x and y differ.

15.7. Prove that p is a metric in Z,.

This metric space is called the space of integer p-adic numbers. There is an
injection Z — Z, assigning to agp + a1p+ - - - + a,p" € Z with 0 < a;, < p the
series

g+ arp+ -+ app” + 0p" T+ 0p" T+ € Z,
and to —(ag + a1p + -+ - + a,p™) € Z with 0 < a;, < p the series
bo+bip+--+bp" +(—1p" T+ (p-1p" T+ ...,
where
1

bo+bip+ -+ byp" = p"t
Cf. 8.33.

— (a0 +aip+ -+ +anp").

15.8. Prove that the image of the injection Z — Z,, is dense in Z,,.
15.9. Is Z, a complete space?

15.10. Is Z, compact?

Induction on Compactness

A function f : X — R is locally bounded if for any point a € X there exists
a neighborhood U and a number M > 0 such that |f(z)] < M for x € U
(i.e., each point has a neighborhood such that the restriction of f to this
neighborhood is bounded).

15.11. Prove that if a space X is compact and a function f : X — R is
locally bounded then f is bounded.

This statement is one of the simplest applications of a general principle formu-
lated below in 15.12. This principle may be called induction on compactness
(cf. induction on connectedness discussed in Section 9).

Let X be a topological space, C a property of subsets of X. We say that C
is additive if the union of any finite family of sets having C also has C. The
space X is said to possess C locally if each point of X has a neighborhood
with property C.

15.12. Prove that a compact space which possesses locally an additive prop-
erty has this property itself.

15.13. Deduce from this principle the statements of problems 13.Q, 15:E,
and 15:F.
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Spaces of Convex Figures

Let D C R? be a closed disc of radius p. Consider the set of all convex
polygons P with the following properties:

e the perimeter of P is at most p;
e P is contained in D;
e P has < n vertices (the cases of one and two vertices are not excluded).

See 3.89, cf. 3.41.

15.14. Equip this set with a natural topological structure. For instance,
define a natural metric.

15.15. Prove that this space is compact.

15.16. Prove that there exists a polygon belonging to this set and having
the maximal area.

15.17. Prove that this is a regular n-gon.

Consider now the set of all convex polygons of perimeter < p contained in D.
In other words, consider the union of the sets of < n-gons considered above.

15.18. Construct a topological structure in this set such that it induces the
structures introduced above in the spaces of < n-polygons.

15.19. Prove that the space provided by the solution of Problem 15.18 is
not compact.

Consider now the set of all convex subsets of the plane of perimeter < p
contained in D.

15.20. Construct a topological structure in this set such that it induces the
structure introduced above in the spaces of polygons.

15.21. Prove that the space provided by the solution of Problem 15.20 is
compact.

15.22. Prove that there exists a convex plane set with perimeter < p having
a maximal area.

15.23. Prove that this is a disc of radius 5.

15.2/. Consider the set of all bounded subsets of a compact metric space.
Prove that this set endowed with the Hausdorff metric (see 3.40) is a compact
space.

Problems for Tests

Test.1. Let X be a topological space. Fill Table 1 with pluses and minuses
according to your answers to the corresponding questions.

Test.2. Let X be a topological space. Fill Table 2 with pluses and minuses
according to your answers to the corresponding questions.

Test.3. Give as many proves as you can for non-existence of a homeomor-
phism between
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If X is:

Has Y
the same
property, if:

connected

Hausdorff

non-
Hausdorff

separable

compact

non-
compact

second
countable

YCX

Y is open
subset of X

Y is closed
subset of X

X is dense
mY

Y is quotient
space of X

Y = X as sets,
QX C Qy

Y is open
subset of R"

Y is anti-
discrete

S! and R!,
I and I?,
R and ]RT1

TABLE 1

Rand Ry ={z € R : z>0}.
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If X is:

Has Y
the same
property, if:

connected

Hausdorff

non-

Hausdorff

separable

compact

non-
compact

second
countable

X=YxZ

Y=XxZ

Y is open
dense in X

X is open
dense in Y

X is quotient
space of Y

Y = X as sets,
QX D) Qy

Y is closed
and bounded
subset of R"

Y is discrete

TABLE 2




CHAPTER 3

Topological Constructions

16. Multiplication

Set-Theoretic Digression. Product of Sets

Let X and Y be sets. The set of ordered pairs (z,y) with € X and
y € Y is called a direct product or Cartesian product or just product of X
and Y and denoted by X xY. If AC X and BC Y then AxB C XxY.
Sets X x {b} with b € Y and {a} x Y with a € X are called fibers of the
product X x Y.

16.A. Prove that for any A;, Ao C X and B;,B, C Y
(A1 U Ag) X (Bl U Bz) = (Al X Bl) U (A1 X Bg) U (A2 X Bl) U (A2 X BQ),
(A1 X Bl) N (A2 X BQ) = (Al N AQ) X (Bl N BQ)

There are natural maps of X x Y onto X and Y defined by formulas
(x,y) — z and (x,y) — y. They are denoted by prx and pry and are
called (natural) projections.

16.B. Prove that pry'(A) = A x Y for A C X. Write down the corre-
sponding formula for B C Y

To amap f: X — Y there corresponds a subset I'; of X x Y defined by
'y ={(z, f(z)) : v € X} and called the graph of f.

16.C. Aset I' C X xY is the graph of a map X — Y, iff for each a € X
the intersection I' N (@ X Y") contains exactly one point.
16.1. Prove that for any map f: X — Y and any set A C X,
f(A) =pry(TyN(AxY)) =pry(Tynpry'(4))
and f~1(B) = prx(I'N (X x B)) for any BCY.

16.2. Let A and B be subsets of X and A = {(z,y) € X x X : z = y}.
Prove that (Ax B)NA=g,iff ANB =2

16.3. Prove that the map prx |Ff is bijective.
16.4. Prove that f is injective, iff pry|Ff is injective.

16.5. Let T: X XY — Y x X be the map defined by (z,y) — (y,z). Prove
that I'y-1 = T'(I'y) for any invertible map f: X — Y.

72
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Product of Topologies

Let X and Y be topological spaces. If U is an open set of X and B is an
open set of Y, then we say that U x V is an elementary set of X x Y.

16.D. The set of elementary sets of X x Y is a base of a topological
structure in X X Y.

The product of topological spaces X and Y is the set X x Y with the
topological structure defined by the base consisting of elementary sets.

16.6. Prove that for any subspaces A and B of spaces X and Y the topology
of the product A x B coincides with the topology induced from X x Y via
the natural A x BC X x Y.

16.E. The product Y x X is (canonically) homeomorphic to X x Y.
The product X x (Y x Z) is canonically homeomorphic to (X xY) x Z.

16.7. Prove that if A is closed in X and B is closed in Y then A x B is closed
in X xY.

16.8. Prove that Cl(A x B) =ClAXx ClB forany AC X and BCY.
16.9. Is it true that Int(A x B) = Int A x Int B?

16.10. Is it true that Fr(A x B) = Fr A x Fr B?

16.11. Is it true that Fr(A x B) = (Fr A x B) U (A x Fr B)?

16.12. Prove that for closed A and B Fr(A x B) = (Fr A x B)U (A x Fr B)?
16.13. Find a formula for Fr(A x B) in terms of A, Fr A, B and Fr B.

Topological Properties of Projections and Fibers

16.F. The natural projections prx and pry are continuous.

16.G. Prove that the topology of product is the coarsest topology with
respect to which pry and pry are continuous.

16.H. A fiber of a product is canonically homeomorphic to the corre-
sponding factor. The canonical homeomorphism is the restriction to the
fiber of the natural projection of the product onto the factor.

16.1. Prove that R' x R = R?, (RY)" = R*, (I)" = I" (recall that
I™ is the n-dimensional cube).

16.14. Let ¥x and Yy be bases of topological spaces X and Y. Prove that
sets U x V with U € ¥x and V € Yy comprise a base for X x Y.

16.15. Prove that a map f : X — Y is continuous iff prx |1“f is a homeomor-
phism.

16.16. Prove that if W is open in X x Y then prx (W) is open in X.
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A map of a topological space X to a topological space Y is said to be open
if the image of any open set under this map is open. Therefore 16.16 states
that prx : X xY — X is an open map.

16.17. 1Is prx a closed map?

16.18. Prove that for each topological space X and each compact topological
space Y the map pry : X x Y — X is closed.

Cartesian Products of Maps

Let X, Y, and Z be sets. To amap f : Z — X XY one assigns the
compositions f1 = prxof: Z — X and fo = pryof : Z — Y. They
are called factors of f. Indeed, f can be recovered from them as a sort of
product.

16.19. Prove that for any maps f1 : Z — X and fo : Z — Y there exists a
uniquemap f: Z - X xY withprxof=fiand pryo f = fs

16.20. Let X, Y, and Z be topological spaces. Prove that f is continuous
iff f1 and f, are continuous.

For any maps ¢; : X1 — Y; and g5 : Xo — Y5 there is a map X; x Xo —
Y1 x Y5 defined by formula (z1,z2) — (g1(z1), g2(22)). This map is called a
(Cartesian) product of g; and go and denoted by g1 X go.

16.21. Prove that the Cartesian product of continuous maps is continuous,
and the Cartesian product of open maps is open.

16.22. Prove that a metric p : X x X — R is continuous with respect to the
topology defined by the metric.

Properties of Diagonal and Graph
16.23. Prove that a topological space is Hausdorff iff the set A = {(z,z) :
x € X} (which is called the diagonal of X x X) is closed.

16.24. Prove that if Y is a Hausdorff space and a map f : X — Y is
continuous then the graph I'y is closed in X x Y.

16.25. Let Y be a compact space and I'y be closed. Prove that then f is
continuous.

16.26. Prove that in 16.25 the hypothesis on compactness is necessary.
16.27. Let f R — R be a continuous function. Prove that its graph is:

(a) closed;

(b) connected;

(c) path connected;
(d) locally connected;
(e) locally compact.

16.28. Does any of properties of the graph of a function mentioned in 16.27
imply its continuity?

16.29. Let I'y be closed. Then the following assertions are equivalent:

(a) f is continuous;
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(b) f is locally bounded;
(c) the graph I'y of f is connected.

16.30. Prove that if I'; is connected and locally connected then f is contin-
uous.

16.31. Prove that if I'y is connected and locally compact then f is continu-
ous.

16.32. Are some of assertions in problems 16.29 — 16.31 true for mappings
f:R* = R?

Topological Properties of Products

16.J.

16.K.

16.L.
uct .

The product of Hausdorff spaces is Hausdorft.
16.33. Prove that the product of regular spaces is regular.
16.34. The product of normal spaces is not necessarily normal.

16.34.1. Prove that the set of real numbers with the topology de-
fined by the base which consists of all the rays [a,o0) is normal.

16.34.2. Prove that in the Cartesian square of the space introduced
in .1 the subspace {(z,y) : * = —y} is closed and discrete.

16.34.3. Find two disjoint subsets of {(z,y) : £ = —y} which have
no disjoint neighborhoods in the Cartesian square of the space of
.1.

The product of separable spaces is separable.

First countability of factors implies first countability of the prod-

16.M. The product of second countable spaces is second countable.

16.N.
16.0.

16.P.
16.Q.

The product of metrizable spaces is metrizable.

The product of connected spaces is connected.

16.35. Prove that for connected spaces X and Y and any proper subsets
ACX,BCY theset X xY \ A x B is connected.

The product of path-connected spaces is path-connected.
The product of compact spaces is compact.

16.36. Prove that the product of locally compact spaces is locally compact.

16.37. For which of the topological properties studied above, if X x Y has
the property then X also has?
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Representation of Special Spaces as Products

16.R. Prove that R? \ {0} is homeomorphic to S' x R.
16.38. Prove that R* \  RF is homeomorphic to S7#~1 x Rk+1.

16.39. Prove that S" N{z € R™™" : 2} +--- +a} <aj, +---+2),}is
homeomorphic to S*¥~1 x Dn=k+1,

16.40. Prove that O(n) is homeomorphic to SO(n) x O(1).
16.41. Prove that GL(n) is homeomorphic to SL(n) x GL(1).

n(n+1)

16.42. Prove that GL,(n) is homeomorphic to SO(n) x R™ =z , where
GLy(n) ={A € L(n,n) : det A > 0}.

16.43. Prove that SO(4) is homeomorphic to S* x SO(3).

The space S! x S! is called a torus.

16.S. Construct a topological embedding of the torus to R?

The product S x - - x S of k factors is called the k-dimensional torus.

16.T. Prove that the k-dimensional torus can be topologically embed-
ded into RF*!,

16.U. Find topological embeddings of S* x D? S'x S' x I, and S%? x I
into R3.

17. Quotient Spaces

Set-Theoretic Digression. Partitions and Equivalence Relations

Recall that a partition of a set is its cover consisting of pairwise disjoint
sets. Each partition of a set X gives rise to an equivalence relation (i.e.,
a relation, which is reflexive, symmetric and transitive): two elements
of X are said to be equivalent if they belong to the same element of
the partition. Vice versa, each equivalence relation in X gives rise to
the partition of X to classes of equivalent elements. Thus partitions
of a set into nonempty subsets and equivalence relations in the set are
essentially the same. More precisely, they are two ways of describing the
same phenomenon.

Let X be aset, and S be a partition. The set whose elements are members
of the partition S (which are subsets of X) is called the quotient set or
factor set of X by S and denoted by X/g.
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17.1. Riddle. How is this operation related to division of numbers? Why
is there a similarity in terminology and notations?

At first glance, the definition of quotient set contradicts one of the very
profound principles of the set theory which states that a set is defined
by its elements. Indeed, according to this principle, X/g = S, since S
and X/g have the same elements. Hence, there seems to be no need to
introduce X/g.

The real sense of the notion of quotient set is not in its literal set-theoretic
meaning, but in our way of thinking of elements of partitions. If we
remember that they are subsets of the original set and want to keep
track of their internal structure (at least, of their elements), we speak of
a partition. If we think of them as atoms, getting rid of their possible
internal structure then we speak on the quotient set.

The set X/ g is called also the set of equivalence classes for the equiva-
lence relation corresponding to the partition S.

The mapping X — X/g that maps z € X to the element of S contain-
ing this point is called a (canonical) projection and denoted by pr. A
subset of X which is a union of elements of a partition is said to be sat-
urated. The smallest saturated set containing a subset A of X is called
the saturation of A.

17.2. Prove that A C X is an element of a partition S of X, iff A =
pr—!(point) where pr: X — X/g is the natural projection.

17.A. Prove that the saturation of a set A equals pr—! (pr(A)).

17.B. Prove that a set is saturated iff it is equal to its saturation.

Quotient Topology

A quotient set X/ g of a topological space X with respect to a partition S
into nonempty subsets is provided with a natural topology: a set U C
X/ g is said to be open in X/ g if its preimage pr~' (U) under the canonical
projection pr: X — X/g is open.

17.C. The collection of these sets is a topological structure in the quo-
tient set X/g.

This topological structure is called the quotient topology. The set X/g
with this topology is called the quotient space of the space X by parti-
tion S.

17.3. Give an explicit description of the quotient space of the segment [0, 1]
by the partition consisting of [0, ], (%, 2], (%, 1].
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17.4. What can you say about a partition S of a topological space X if the
quotient space X/g is known to be discrete?

17.D. A subset of a quotient space X /g is open iff it is the image of an
open saturated set under the canonical projection pr.

17.E. A subset of a quotient space X/ g is closed, iff its preimage under
pr is closed in X, iff it is the image of a closed saturated set.

17.F. The canonical projection pr: X — X/g is continuous.

17.G. Prove that the quotient topology is the finest topology in X/g
such that the canonical projection pr is continuous with respect to it.

Topological Properties of Quotient Spaces

17.H. A quotient space of a connected space is connected.

17.1. A quotient space of a path-connected space is path-connected.
17.J. A quotient space of a separable space is separable.

17.K. A quotient space of a compact space is compact.

17.L. The quotient space of the real line by partition R, , R~ R, is
not Hausdorff.

17.M. The quotient space of a topological space X by a partition S is
Hausdorff, iff any two elements of S possess disjoint saturated neighbor-
hoods.

17.5. Formulate similar necessary and sufficient conditions for a quotient

space to satisfy other separation axioms and countability axioms.

17.6. Give an example showing that second countability may get lost when
we go over to a quotient space.

Set-Theoretic Digression. Quotients and Maps

Let S be a partition of a set X into nonempty subsets. Let f: X — Y
be a map which is constant on each element of S. Then there is a map
X/s — Y which assigns to each element A of S the element f(A). This
map is denoted by f/g and called the quotient map or factor map of f
(by partition S).

17.N. Prove that a map f : X — Y is constant on each element of
a partition S of X iff there exists a map ¢g : X/g — Y such that the
following diagram is commutative:

x 1,y
Prl g
X/s

Prove that such a map g coincides with f/g.
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More generally, if S and T" are partitions of sets X and Y then every map
f X — Y, which maps each element of S into an element of T', gives
rise to a map X/g — Y/7 which assigns to an element A of partition
S the element of partition 7' containing f(A). This map is denoted by
f/s, T and called the quotient map or factor map of f (with respect to
S and T).

17.0. Formulate and prove for f/g 7 a statement which generalizes
17.N.

A map f : X — Y defines a partition of the set X into nonempty
preimages of the elements of Y. This partition is denoted by S(f).

17.P. The map f/g(f) : X/S(f) — Y is injective.

This map is called injective factor (or injective quotient) of the map f.

Continuity of Quotient Maps

17.Q. Let X, Y be topological spaces, S be a partition of X into
nonempty sets, and f : X — Y be a continuous map, which is constant
on each element of S. Then the factor f/g of f is continuous.

17.7. Let X, Y be topological spaces, S be a partition of X into nonempty
sets. Prove that the formula f — f/g defines a bijection of the set of all
continuous maps X — Y, which are constant on each element of the partition
S, onto the set of all continuous maps X/g — Y.

17.R. Let X, Y be topological spaces, S and T partitions of X and Y,
and f: X — Y a continuous map, which maps each element of S into
an element of 7. Then the map f/g 7: X/g — Y/T is continuous.

Closed Partitions

A partition S of a topological space X is called closed, if the saturation
of each closed set is closed.

17:1. Prove that a partition is closed iff the canonical projection X —
X/g is a closed map.

17:2. Prove that a partition, which contains only one element consist-
ing of more than one point, is closed if this element is a closed set.

17:A. The quotient space of a topological space satisfying the first sep-
aration axiom with respect to a closed partition satisfies the first sepa-
ration axiom.

17:B. The quotient space of a normal topological space with respect to
a closed partition is normal.
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Open Partitions

A partition S of a topological space X is called open, if the saturation of
each open set is open.

17:3. Prove that a partition is open iff the canonical projection X —
X/ g is an open manp.

17:4. Prove that if a set A is saturated with respect to an open parti-
tion, then Int A and Cl A are also saturated.

17:C. The quotient space of a second countable space with respect to
an open partition is second countable.

17:D. The quotient space of a first countable space with respect to an
open partition is first countable.

17:E. Let S be an open partition of a topological space X and T be an
open partition of a topological space Y. Denote by S x T the partition
of X XY consisting of Ax B with A € S and B € T. Then the injective
factor X xY/s xT7 — X/gxY/T of prxprX xY — X/gxY/T isa
homeomorphism.

18. Zoo of Quotient Spaces

Tool for Identifying a Quotient Space with a Known Space

18.A. If f : X — Y is a continuous map of a compact space X onto a
Hausdorff space Y then the injective factor f/5(f): X/s(f) =Y is a
homeomorphism.

18.B. The injective factor of a continuous map of a compact space to a
Hausdorff one is a topological embedding.

18.1. Describe explicitly partitions of a segment such that the corresponding
quotient spaces are all the connected letters of the alphabet.

18.2. Prove that there exists a partition of a segment I with the quotient
space homeomorphic to square I x I.

Tools for Describing Partitions

Usually an accurate literal description of a partition is cumbersome, but
can be shortened and made more understandable. Of course, this re-
quires a more flexible vocabulary with lots of words with almost the
same meanings. For instance, the words factorize and pass to a quo-
tient can be replaced by attach, glue, identify, contract, and other words
accompanying these ones in everyday life.

Some elements of this language are easy to formalize. For instance, fac-
torization of a space X with respect to a partition consisting of a set A
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and one-point subsets of the complement of A is called a contraction (of
the subset A to a point), and the result is denoted by X/ 4.

18.3. Let A, B C X comprise a fundamental cover of a topological space X.
Prove that the quotient map A/ 4 n B — X/B of the inclusion 4 — X is a
homeomorphism.

If A and B are disjoint subspaces of a space X, and f : A — B is
a homeomorphism then passing to the quotient of the space X by the
partition into one-point subsets of the set X \ (A U B) and two-point
sets {z, f(z)}, where x € A, is called gluing or identifying (of sets A and
B by homeomorphism f).

Rather convenient and flexible way for describing partitions is to describe
the corresponding equivalence relations. The main advantage of this
approach is that, due to transitivity, it suffices to specify only some pairs
of equivalent elements: if one states that x ~ y and y ~ 2 then it is not
needed to state x ~ z, since this follows.

Hence, a partition is represented by a list of statements of the form
x ~ 1y, which are sufficient to recover the equivalence relation. By such
a list enclosed into square brackets, we denote the corresponding par-
tition. For example, the quotient of a space X obtained by identify-
ing subsets A and B by a homeomorphism f : A — B is denoted by

X/la ~ f(a) for any a € A] or just X/[q ~ f(a)]-

Some partitions are easy to describe by a picture, especially if the original
space can be embedded into plane. In such a case, as in the pictures
below, one draws arrows on segments to be identified to show directions
which are to be identified.

Below we introduce all these kinds of descriptions for partitions and give
examples of their usage, providing simultaneously literal descriptions.
The latter are not nice, but they may help to keep the reader confident
about the meaning of the new words and, on the other hand, appreciating
the improvement the new words bring in.

Entrance to the Zoo

18.C. Prove that I/[g ~ 1] is homeomorphic to S™.

In other words, the quotient space of segment I by the partition consisting
of {0,1} and {a} with a € (0,1) is homeomorphic to a circle.

18.C.1. Find a surjective continuous map I — S' such that the corre-
sponding partition into preimages of points consists of one-point subsets of
the interior of the segment and the pair of boundary points of the segment.
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18.D. Prove that D"/gn-1 is homeomorphic to S™.

In 18.D we deal with the quotient space of ball D" by the partition into
S™~! and one-point subsets of its interior.

Reformulation of 18.D: Contracting the boundary of an n-dimensional
ball to a point gives rise to an n-dimensional sphere.

18.D.1. Find a continuous map of ball D" to the sphere S™ that maps the
boundary of the ball to a single point, and maps the interior of the ball
bijectively onto the complement of this point.

18.E. Prove that I?/[(0,¢) ~ (1,) for ¢ €]] is homeomorphic to S* x 1.

Here the partition consisits of pairs of points {(0,t),(1,¢)} where t € I,
and one-point subsets of (0,1) x I.

Reformulation of 18.E: If we glue the side edges of a square identifying
points on the same hight, we get a cylinder.

S -
- >

18.F. Let X and Y be topological spaces, S a partition of X. Denote
by T the partition of X x Y into sets A x y with A € S, y € Y. Then
the natural bijection X/g x Y — X X Y/T is a homeomorphism.

18.G. Riddle. How are the problems 18.C, 18.F and 18.F related?
18.H. S' x I/[(z,0) ~ (2,1) for z € §'] is homeomorphic to S* x S*.

Here the partition consists of one-point subsets of S x (0,1), and pairs
of points of the basis circles lying on the same generatrix of the cylinder.

Reformulation of 18. H: If we glue the basis circles of a cylinder identifying
points on the same generatrix, then we get a torus.

18.1. I*/](0,¢) ~ (1,t), (£,0) ~ (t,1)] is homeomorphic to S* x S*.

In 18.1 the partition consists of

e one-point subsets of the interior (0,1) x (0, 1) of the square,

e pairs of points on the vertical sides, which are the same distance
from the bottom side (i.e., pairs {(0,?), (1,¢)} with ¢ € (0,1)),

e pairs of points on the horizontal sides which lie on the same vertical
line (i.e., pairs {(¢,0), (¢,1)} with ¢ € (0,1)),

e the four vertices of the square
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Reformulation of 18.I: Identifying the sides of a square according to the
MAWAN

picture g 2 , we get a torus @

AN

Transitivity of Factorization

A solution of Problem 18.1 can be based on Problems 18.F and 18.H and
the following general theorem.

18.J Transitivity of Factorization. Let S be a partition of a space
X, and let S" be a partition of the space X/g. Then the quotient space
(X/8)/s" is canonically homeomorphic to X/T, where T is the parti-
tion of the space X into preimages of elements of the partition S" under
projection X — X/g.

Mobius Strip

Mobius strip or Mobius band is 12/[(0,@ ~(1,1—t) In other words,
this is the quotient space of square I? by the partition into pairs of
points symmetric with respect to the center of the square and lying on
the vertical edges and one-point set which do not lie on the vertical
edges. Figuratively speaking, the Mobius strip is obtained by identifying
the vertical sides of a square in such a way that the directions shown on
them by arrows are superimposed.

18.K. Prove that the Mobius strip is homeomorphic to the surface swept
in R by an interval, which rotates in a halfplane around the middle point
while the halfplane rotates around its boundary line. The ratio of the
angular velocities of these rotations is such that rotation of the halfplane
by 360° takes the same time as rotation of the interval by 180°. See
Figure 1.

FIGURE 1
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Contracting Subsets

18.4. Prove that [0, 1]/[%’ 2] is homeomorphic to [0,1], and [0, 1]/{%’1} is
homeomorphic to letter P.

18.5. Prove that the following spaces are homeomorphic:

(a) RZ;

(b) R/r;

(c) R*/p2;

@) B/p;

(e) R?/4 where A is a union of several segments with a common end point;
(f) R?/p where B is a simple finite polygonal line, i.e., a union of a finite

sequence of segments I;, ..., I, such that the initial point of I;;q
coincides with the final point of I;).

18.6. Prove that if f : X — Y is a homeomorphism then the quotient spaces
X/ 4 and Y/ f(A4) are homeomorphic.

18.7. Prove that R? /[0, 4o0) is homeomorphic to Int D* U {(0,1)}.

Further Examples

18.8. Prove that 51/[2 ~ e2mi/34] is homeomorphic to St

In 718.8 the partition consists of triples of points which are vertices of equi-
lateral inscribed triangles.

18.9. Prove that the following quotient spaces of disk D? are homeomorphic
to D?:

@) D*/l(z,y) ~ (=2, ~y)];
() D /l(w,y) ~ (z,~y)]
(C) D /[(Z',y) ~ (_yvx)]

18.10. Find a generalization of 18.9 with D" substituted for D?.

18.11. Describe explicitly the quotient space of line R' by equivalence rela-
tonz~y&z—y€EZ.

18.12. Present the Mdbius strip as a quotient space of cylinder St x I.

Klein Bottle

Klein bottle is P/[(t, 0) ~ (t,1), (0,t) ~ (1,1 —t)] In other words, this
is the quotient space of square I? by the partition into

one-point subsets of its interior,
pairs of points (¢, 0), (¢,1) on horizontal edges which lie on the same
vertical line,

e pairs of points (0,%), (1,1 — ¢) symmetric with respect to the center
of the square which lie on the vertical edges, and

e the quadruple of vertices.
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18.13. Present the Klein bottle as a quotient space of

(a) a cylinder;

(b) the M&bius strip.

18.14. Prove that S' x Sl/[(z’w) ~ (—z,w)] is homeomorphic to the Klein
bottle. (Here w denotes the complex number conjugate to w.)

18.15. Embed the Klein bottle into R? (cf. 18.K and 16.5).

18.16. Embed the Klein bottle into R* so that the image of this embedding
under the orthogonal projection R* — R? would look as follows.

Projective Plane

Let us identify each boundary point of the disk D? with the antipodal
point, i.e., factorize the disk by the partition consisting of one-point
subsets of the interior of the disk and pairs of points on the boundary
circle symmetric with respect to the center of the disk. The result is
called the projective plane. This space cannot be embedded into R?, too.
Thus we are not able to draw it. Instead, we present it in other way.

18.L. A projective plane is the result of gluing of a disk and the Mobius
strip by homeomorphism between boundary circle of the disk and bound-
ary circle of the Mobius strip.

You May Have Been Provoked to Perform an Illegal Operation

Solving the previous problem you did something which does not fit into
the theory presented above. Indeed, the operation with two spaces called
gluing in 18.L has not appeared yet. It is a combination of two operations:
first we must make a single space consisting of disjoint copies of the
original spaces, and then we factorize this space identifying points of one
copy with points of another. Let us consider the first operation in details.

Set-Theoretic Digression. Sums of Sets

A sum of a family of sets {X,}aca is the set of pairs (z,,«) such that
To € Xo. The sum is denoted by [[ .4 Xo. The map of X3 (8 € A)
to [[,c4 Xao defined by formula z + (z, §) is an injection and denoted
by ing. If only sets X and Y are involved and they are distinct, we can
avoid indices and define the sum by setting

XY ={(z,X) |z e X} U{(y,Y) |y e Y}
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Sums of Spaces

18.M. If { X, }aca is a collection of topological spaces then the collection
of subsets of [[,., Xo Whose preimages under all inclusions in, (a € A)
are open, is a topological structure.

The sum [[ ., Xo with this topology is called the (disjoint) sum of
topological spaces X, (a € A).

18.N. Topology described in 18.M is the finest topology with respect to
which all inclusions in,, are continuous.

18.17. The maps ing : Xg — [[,c4 Xa are topological embedding, and
their images are both open and closed in [, 4 Xa-

18.18. Which topological properties are inherited from summands X, by
the sum [],. 4 Xo? Which are not?

Attaching Space

Let X, Y be topological spaces, A a subset of Y, and f : A — X
a continuous map. The quotient space (X IIY)/[q ~ f(a) for a € A] i
denoted by X Uy Y, and is said to be the result of attaching or gluing
the space Y to the space X by f. The latter is called the attaching map.

Here the partition of X IT'Y" consists of one-point subsets of iny(Y . A)
and in; (X \ f(A)), and sets ini(z) Uiny(f~'(z)) with = € f(A).

18.19. Prove that the composition of inclusion X — X IT'Y and projection
XY — X Uy Y is a topological embedding.

18.20. Prove that if X is a point then X Uy Y is Y/ 4.

18.0. Prove that attaching a ball D" to its copy by the identity map of
the boundary sphere S™ ! gives rise to a space homeomorphic to S™.

18.21. Prove that the Klein bottle can be obtained as a result of gluing two
copies of the Mdobius strip by the identity map of the boundary circle.

18.22. Prove that the result of gluing two copies of a cylinder by the identity
map of the boundary circles (of one copy to the boundary circles of the other)
is homeomorphic to S' x S'.

18.23. Prove that the result of gluing two copies of solid torus S x D? by
the identity map of the boundary torus S' x S! is homeomorphic to S' x S2.

18.2/. Obtain the Klein bottle by gluing two copies of the cylinder S! x T
to each other.

18.25. Prove that the result of gluing two copies of solid torus S x D? by
the map
St x St = S x S (x,y) — (y,x)

of the boundary torus to its copy is homeomorphic to S®.
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18.P. Let X, Y be topological spaces, A asubset of Y, and f,g: A — X
continuous maps. Prove that if there exists a homeomorphism h : X — X
such that ho f = g then X Uy Y and X U, Y are homeomorphic.

18.Q. Prove that D™ U, D™ is homeomorphic to S™ for any homeomor-
phism A : S*~t — §7—1L,

18.26. Classify up to homeomorphism topological spaces, which can be ob-
tained from a square by identifying a pair of opposite sides by a homeomor-
phism.

18.27. Classify up to homeomorphism the spaces which can be obtained
from two copies of S! x I by identifying of the copies of S* x {0,1} by a
homeomorphism.

18.28. Prove that the topological type of the space resulting in gluing two

copies of the Mobius strip by a homeomorphism of the boundary circle does
not depend on the homeomorphism.

18.29. Classify up to homeomorphism topological spaces, which can be ob-
tained from S' x I by identifying S* x 0 with S! x 1 by a homeomorphism.

Basic Surfaces

A torus S! x S! with the interior of an embedded disk deleted is called a
handle. A two-dimensional sphere with the interior of n disjoint embed-
ded disks deleted is called a sphere with n holes.

18.R. A sphere with a hole is homeomorphic to disk D?.

18.S. A sphere with two holes is homeomorphic to cylinder S x I.

A sphere with three holes has a special name. It is called pantaloons.

The result of attaching p copies of a handle to a sphere with p holes
by embeddings of the boundary circles of handles onto the boundary
circles of the holes (the boundaries of the holes) is called a sphere with
p handles, or, more ceremonial (and less understandable, for a while),
orientable connected closed surface of genus p.

18.30. Prove that a sphere with p handles is well-defined up to homeomor-
phism (i.e., the topological type of the result of gluing does not depend on
the attaching embeddings).

18.T. A sphere with one handle is homeomorphic to torus S* x S*.

18.U. A sphere with two handles is homeomorphic to the result of gluing
two copies of a handle by the identity map of the boundary circle.

A sphere with two handles is called a pretzel. Sometimes this word de-
notes also a sphere with more handles.
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The space obtained from a sphere with ¢ holes by attaching ¢ copies of
the Mobius strip by embeddings of the boundary circles of the Md&bius
strips onto the boundary circles of the holes (the boundaries of the holes)
is called a sphere with q crosscaps, or non-orientable connected closed
surface of genus q.

18.31. Prove that a sphere with ¢ crosscaps is well-defined up to homeomor-
phism (i.e., the topological type of the result of gluing does not depend on
the attaching embeddings).

18.V. A sphere with one crosscap is homeomorphic to the projective
plane.

18.W. A sphere with two crosscaps is homeomorphic to the Klein bottle.

A sphere, spheres with handles, and spheres with crosscaps are called
basic surfaces.

18.X. Prove that a sphere with p handles and ¢ crosscaps is homeomor-
phic to a sphere with 2p + ¢ crosscaps (here ¢ > 0).
18.32. Classify up to homeomorphisms topological spaces, which can be ob-
tained by attaching to a sphere with 2p holes p copies of S* x I by embeddings

of the boundary circles of the cylinders onto the boundary circles of the sphere
with holes.

19. Projective Spaces

This section can be considered as a continuation of the previous one. The
quotient spaces described here are of too great importance to consider
them just as examples of quotient spaces.

Real Projective Space of Dimension n

This space is defined as the quotient space of the sphere S™ by the par-
tition into pairs of antipodal points, and denoted by RP™.

19.A. The space RP™ is homeomorphic to the quotient space of the
ball D™ by the partition into one-point subsets of the interior of D", and
pairs of antipodal point of the boundary sphere S™ !,

19.B. RP is a point.
19.C. The space RP! is homeomorphic to the circle S!.

19.D. The space RP? is homeomorphic to the projective plane defined
in the previous section.

19.E. The space RP™ is canonically homeomorphic to the quotient space
of R* {0} by the partition into one-dimensional vector subspaces of
R**! punctured at 0.
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A point of the space R**! \ {0} is a sequence of real numbers which are
not all zeros. These numbers are called homogeneous coordinates of the
corresponding point of RP™. The point with homogeneous coordinates

T, X1, - - - , Ty is denoted by (xg : 21 : -+ - : 2,,). Homogeneous coordinates
define a point of RP", but are not defined by this point: proportional
vectors of coordinates (zg, x1,...,2,) and (Azg, A\x1, ..., Az,) define the

same point of RP".

19.F. The space RP" is canonically homeomorphic to the metric space,
whose points are lines of R"™! passing through the origin 0 = (0,... ,0)
and the metric is defined as the angle between lines (which takes values
in [0, Z]). Prove that this is really a metric.

Complex Projective Space of Dimension n

This space is defined as the quotient space of unit sphere S?**+1 of the
space C"*! by the partition into circles which cut by (complex) lines of
C"*! passing through the point 0. It is denoted by CP™.

19:A. CP" is homeomorphic to the quotient space of the unit ball D"
of the space C" by the partition whose elements are one-point subsets
of the interior of D?" and circles cut on the boundary sphere S?"~! by
(complex) lines of the space C" passing through the origin 0 € C".

19:B. CPY is a point.
19:C. CP! is homeomorphic to S2.

19:D. The space CP"™ is canonically homeomorphic to the quotient space
of the space C**! \ {0} by the partition into complex lines of C"*!
punctured at 0.

Hence, CP"™ can be viewed as the space of complex-proportional non-
zero complex sequences (g, T1,... ,Ty). Notation (zg:x1:---:x,) and
term homogeneous coordinates introduced for the real case are used in
the same way for the complex case.

19:E. The space CP" is canonically homeomorphic to the metric space,
whose points are the (complex) lines of the space C*! passing through
the origin 0 and the metric is defined to be the angle between lines (which
takes values in [0, 7]).

Quaternion Projective Spaces and Cayley Plane

Must be written
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20. Topological Groups

Algebraic Digression. Groups

Recall that a group is a set G equipped with a group operation. A group
operation in set G is a map w : G x G — G satisfying the following three
conditions (known as group azioms):

Associativity. w(a,w(b,c)) = w(w(a,b),c) for any a,b,c € G,
Existence of Neutral Element. There exists e € G such that
w(e,a) = w(a,e) = a for every a € G,

¢ Existence of Inverse. For any a € G there exists b € G such that
w(a,b) = w(b,a) =e.

20:1. In a group a neutral element is unique.

20:2. For any element of a group an inverse element is unique.

The notations above are never used. (The only exception may happen,
as here, if the definition of group is discussed.) Instead, one uses either
multiplicative or aditive notations.

Under multiplicative notations the group operations is called multiplica-
tion and denoted as multiplication: (a,b) — ab. The neutral element
is called unity and denoted by 1. The element inverse to a is denoted
by a~!. These notations are borrowed from the case, say, of group of
nonzero rational numbers with the usual multiplication.

Under additive notations the group operations is called addition and
denoted as addition: (a,b) +— a + b. The neutral element is called zero
and denoted by 0. The element inverse to a is denoted by —a. These
notations are borrowed from the case, say, of group of integer numbers
with the usual addition.

An operation w : G x G — G is commutative provided that w(a,b) =
w(b,a) for all a,b € G. A group with commutative group operation is
called commutative or abelian. Traditionally the additive notations are
used only in the case of commutative group, while the multiplicative
notations are used both for commutative and non-commutative cases.
Below we use mostly the multiplicative notations.

20:3. Check that in each of the following situations we have a group:

(a) the set S,, of bijections of the set {1,2,...,n} of n first natural
numbers with composition (symmetric group of degree n,)

(b) the set Homeo(X) of all homeomorphisms of a topological space
X with composition,

(c) the set of invertible real n X n-matrices GL(n,R) with matrix
multiplication,

(d) the set of all real p x g-matrices with addition of matrices,
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(e) the set of all subsets of a set X with symmetric difference
(A,B)— (AUB)\ (AN B)

Topological Groups

A topological group is a set G equipped with both topological and group
structures such that the maps G x G — G : (z,y) — zy and G — G :
x +— 2~ ! are continuous.

20:4. Prove that if G is a group and a topological space then G x
G — G: (z,y) = 2y and G - G : = — x~! are continuous, iff
G x G — G : (z,y) = o 'y is continuous.

20:5. Prove that for a topological group G the inversion G — G : ¢ —

2z~ ! is a homeomorphism.

20:6. Let G be a topological group, X a topological space, and f,g :
X — @G be maps continuous at a point g € X. Prove that maps
X -Gz~ f(z)g(z) and X - G : 2~ (f(z))~! are continuous at
Zo-

20:A. Any group equipped with the discrete topological structure is a
topological group.

20:7. Is a group equipped with the indiscrete topological structure a
topological group?

20:B. The real line R with the addition is a topological group.

20:C. The punctured real line R \ 0 with the multiplication is a topo-
logical group.

20:D. The punctured complex line C \ 0 with the multiplication is a
topological group.

20:8. Check that in each of the following situations we have a topolog-

ical group:

(a) the set GL(n,R) of invertible real n x n-matrices with the matrix
multiplication and the topology induced by the inclusion to the
set of all real n x n-matrices considered as R”z,

(b) the set GL(n,C) of invertible complex n x n-matrices with the
matrix multiplication and the topology induced by the inclusion
to the set of all complex n X n-matrices considered as =R,

Self-Homeomorphisms Making a Topological Group Homoge-
neous

Recall that the maps of a group G to itself defined by formula z — za !

and x — az, respectively, are called (right and left) translations and
denoted by R, and L.

20:E. Any translation of a topological group is a homeomorphism.
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Recall that the conjugation of a group G by a € G is the map G — G :

T — ailxa.

20:F. Conjugation of a topological group by any its element is a home-
omorphism.

Given subsets A, B of a group G, the set {ab : a € A,b € B} is denoted
by AB, and {a ! : a € A} is denoted by AL

20:G. If U is an open set in a topological group G then for any x € G
the sets U, Uz and U~! are open.

20:9. Does the same hold true for closed sets?

20:10. Prove that if U and V' are subsets of a topological group G and
U is open then UV and VU are open.

20:11. Does the same hold true if one replaces all the words open by
closed?

20:11:1. Which of the following sugroups of the additive group
R are closed:

(a) Z,
(b) V2Z,
(c) Z++277

Neighborhoods

20:H. IfT is a neighborhood basis at the unity 1 in a topological group
G then ¥ = {aU : a € G,U € T'} is a basis for topology of G.

A subset A of a group G is said to be symmetric if A~! = A.

20:1. Any neighborhood of unity of a topological group contains a sym-
metric neighborhood of unity.

20:J. For any neihgborhood U of 1 of a topological group there exists a
neighborhood V of 1 such that VV C U.

20:12. For any neihgborhood U of 1 of a topological group and any
natural number n there exists a symmetric neighborhood V' of 1 such
that V" C U.

20:13. Let G be a group and ¥ be a collection of its subsets. Prove
that there exists a unique topology on G such that G with this topology
is a topological group and ¥ is its neighborhood basis at the unity, iff
Y satisfies the following five conditions:

(a) each U € ¥ contains the unity of G,
) for every z € U € X there exists V' € X such that zV C U,
(c) for each U € ¥ there exists V € ¥ such that V! C U,
(d) for each U € X there exists V' € ¥ such that VV C U,
(e) for every z € G and U € ¥ there exists V € ¥ such that V' C
71U

20:K. Riddle. For what reasons 20:J is similar to the triangle inequal-
ity?
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Separaion Axioms

20:L. A topological group is Hausdorff, iff it satisfies the first separation
axiom, iff the unity is closed.

20:M. A topological group is Hausdorff, iff the unity is equal to the
intersection of its neighborhoods.

20:N. If the unity of a topological group G is closed, then G (as a
topological space) is regular.

Consequently, for topological groups the first three separation axioms are
equivalent.

Countability Axioms

20:0. If T is a neighborhood basis at the unity 1 in a topological group
G and S C G is dense in G, then ¥ = {aU : a € S,U € I'} is a basis for
topology of G. Cf. 20:H and 12.F.

20:P. A first countable separable topological group is second countable.

Subgroups

Recall that a subset H of a group G such that HH = H and H ' = H
is called a subgroup of G. It is a group with the operation defined by the
group operation of G. If G is a topological group, then H inherits also a
topological structure from G.

20:Q. If H is a subgroup of a topological group G, then the topological
and group structures induced from G make H a topological group.

20:14. Prove that a subgroup of a topological group is open, iff it
contains an interior point.

20:15. Prove that every open subgroup of a topological group is also
closed.

20:16. Find an example of a subgroup of a topological group, which

(a) is closed, but not open,
(b) is neither closed, nor open.

20:17. Prove that a subgroup of a topological group is discrete, iff it
contains an isolated point.

20:18. Prove that a subgroup H of a topological group G is closed,
iff it is locally closed, i.e., there exists an open set U C G such that
UNH=UNCIH # @.

20:19. Prove that if H is a non-closed subgroup of a topological group
G then Cl1H \ H is dense in C1H.

20:20. Prove that the closure of a subgroup of a topological group is
a subgroup.
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20:21. Is it true that the interior of a subgroup of a topological group
is a subgroup?

Recall that the smallest subgroup of a group G containing a set S is said
to be generated by S.

20:22. The subgroup generated by S is the intersection of all the sub-
groups which contain S. On the other hand, this is the set of all the
elements which can be obtained as products of elements of S and ele-
ments inverse to elements of S.

20:R. A connected topological group is generated by any neighborhood
of the unity.

Recall that for a subgroup H of a group G right cosets are sets Ha =
{za : z € H} with a € G. Analogously, sets aH are left cosets of H in
G.

20:23. Let H be a subgroup of a group GG. Define a relation: a ~ b
if ab~! € H. Prove that this is an equivalence relation and the right
cosets of H in GG are the equivalence classes.

20:24. What is the counter-part of 20:23 for left cosets?

The set of left cosets of H in G is denoted by G/H, the set of right cosets
of H in G, by H \ G. If G is a topological group and H is its subgroup
then the sets G/H and H \ G are provided with the quotient topology.
Equipped with these topologies, they are called spaces of cosets.

20:S. For any topological group G and its subgroup H, the natural
projections G — G/H and G — H \ G are open (i.e., the image of every
open set is open).

20:25. The space of left (or right) cosets of a closed subgroup in a
topological group is regular.

Normal Subgroups

Recall that a subgroup H of a group G is said to be normal if a='ha € H
for all h € H and a € G. Normal subgroups are called also normal
divisors or invariant subgroups.

20:26. Prove that the closure of a normal subgroup of a topological
group is a normal subgroup.

20:27. The connected component of the unity of a topological group
is a closed normal subgroup.

20:28. The path-connected component of the unity of a topological
group is a normal subgroup.
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Recall that for a normal subgroup left cosets coincide with right cosets
and the set of cosets is a group with the multiplication defined by formula
(aH)(bH) = abH. The group of cosets of H in G is called the quotient
group or factor group of G by H and denoted by G/H.

20:T. The quotient group of a topological group is a topological group
(provided that it is considered with the quotient topology).

20:29. The natural projection of a topological group onto its quotient
group is open.

20:30. A quotient group of a first (or second) countable group is first
(respectively, second) countable.

20:31. The quotient group G/H of a topological group G is regular,
iff H is closed.

20:32. Prove that if a normal subgroup H of a topological group G is
open then the quotient group G/H is discrete.

20:33. Let G be a finite topological group. Prove that there exists a
normal subgroup H of G such that a set U C G is open, iff it is a union
of several cosets of H in G.

Homomorphisms

Recall that a map f of a group G to a group H is called a (group)
homomorphism if f(zy) = f(z)f(y) for all z,y € G. If G and H are
topological groups then by a homomorphism G — H one means a group
homomorphism which is continuous.

20:U. A group homomorphism of a topological group to a topological
group is continuous, iff it is continuous at 1.

Besides similar modifications, which can be summarized by the following
principle: everything is assumed to respect the topological structures, the
terminology of group theory passes over without changes. In particu-
lar, the kernel Ker f of a homomorphism f : G — H is defined as the
preimage of the unity of H. A homomorphism f is a monomorphism if
it is injective. This is known to be equivalent to Ker f = 1. A homo-
morphism f : G — H is an epimorphism if it is surjective, i.e, its image
Im f = f(G) is the whole H.

In group theory, an isomorphism is an invertible homomorphism. Its
inverse is a homomorphism (and hence an isomorphism) automatically.
In theory of topological groups this must be included in the definition
of isomorphism: an isomorphism of topological groups is an invertible
homomorphism whose inverse is also a homomorphism. In other words,
an isomorphism of topological groups is a map which is both an algebraic
homomorphism and a homeomorphism. Cf. Section 8.

20:34. An epimorphism f : G — H is open, iff its injective factor,
f/8(f) : G/ Ker f — H, is an isomorphism.



20. TOPOLOGICAL GROUPS 96

20:35. An epimorphism of a compact topological group onto a topo-
logical group with closed unity is open.

20:36. Prove that the quotient group R/Z of the additive group of real
numbers by the subgroup of integers is isomorphic to the multiplicative
group S' = {z € C : |z| = 1} of complex numbers with absolute value
1.

Local Isomorphisms

Let G and H be topological groups. A local isomorphism of G to H is a
homeomorphism f of a neighborhood U of the unity of G to a neighbor-
hood V of the unity of H such that

e f(xy) = f(z)f(y) for every z,y € U such that xy € U,
o fYzt) = f12)f (t) for every z,t € V such that zt € V.

Topological groups G, H are said to be locally isomorphic if there exists
a local isomorphism of G to H.

20:V. Isomorphic topological groups are locally isomorphic.

20:W. Additive group R of real numbers and multiplicative group S* of
complex numbers with absolute value 1 are locally isomorphic, but not
isomorphic.
20:37. Prove that the relation of being locally isomorphic is an equiv-
alence relation on the class of topological groups.

20:38. Find neighborhoods of unities in R and S! and a homeomor-
phism between them, which satisfies the first condition from the defini-
tion of local isomorphism, but does not satisfy the second one.

20:39. Prove that for any homeomorphism between neighborhods of
unities of two topological groups, which satisfies the first condition from
the definition of local isomorphism, but does not satisfy the second one,
there exists a submapping, which is a locall isomorphsm between these
topological groups.

Direct Products

Let G and H be topological groups. In group theory, the product G x H
is given a group structure,' in topology it is given a topological structure
(see Secion 16).

20:X. These two structures are compatible: the group operations in
G x H are continuous with respect to the product topology.

Thus, G x H is a topological group. It is called the direct product of
the topological groups G and H. There are canonical homomorphisms
related with this: the inclusions i : G - G x H : z — (z,1) and iy :
H - GxH : z+— (1,z), which are monomorphisms, and the projections
pe:GxH—G:(z,y)— zand pg: Gx H— H: (z,y) — y, which
are epimorphisms.

!Recall that the multiplication in G x H is defined by formula (z,u)(y,v) = (zy, uv).
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20:40. Prove that the topological groups G' x H/;, and G are isomor-
phic.

20:41. The product operation is both commutative and associative:
G x H is (canonically) isomorphic to H x G and G x (H x K) is canon-
ically isomorphic to (G x H) x K.

A topological group G is said to decompose into the direct product of its
subgroups A and B if the map Ax B — G : (x,y) — xy is an isomorphism
of topological groups. If this is the case, the groups G and A x B are
usually identified via this isomorphism.

Recall that a similar definition exists in ordinary group theory. The only
difference is that there the isomorphism is just an algebraic isomorphism.
Moreover, in that theory, G decomposes into the direct product of its
subgroups A and B, iff A and B generate (G, are normal subgroups and
AN B = 1. Therefore, if these conditions are satisfied in the case of
topological groups, then (z,y) — xy : AXxB — G is a group isomorphism.

20:42. Prove that in this situation the map (z,y) —» zy: Ax B - G
is continuous. Find an example where the inverse group isomorphism
is not continuous.

20:43. Prove that a compact Hausdorff group which decomposes al-
gebraically into the direct product of two subgroups, decomposes also
into the direct product of these subgroups in the category of topological
groups.

20:44. Prove that the multiplicative group R \ 0 of real numbers is
isomorphic (as a topological group) to the direct product of the multi-
plicative group S° = {1, —1} and the multiplicative group R* = {z €
R : z > 0}.

20:45. Prove that the multiplicative group C \ 0 of complex numbers
is isomorphic (as a topological group) to the direct product of the mul-
tiplicative group S' = {z € C : |z| = 1} and the multiplicative group
R .

20:46. Prove that the multiplicative group H \ 0 of quaternions is
isomorphic (as a topological group) to the direct product of the multi-
plicative group S® = {z € H : |z| = 1} and the multiplicative group
R .

20:47. Prove that the subgroup S° = {1,-1} of S* ={z € H : |z| =
1} is not a direct factor.

20:48. Find a topological group homeomorphic to RP? (the three-
dimensional real projective space).

21. Actions of Topological Groups

Actions of Group in Set

Must be written!
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Continuous Actions

Must be written!

Orbit Spaces

Must be written!

Homogeneous Spaces

Must be written!

22. Spaces of Continuous Maps

Sets of Continuous Mappings

By C(X,Y) we denote the set of all continuous mappings of a topologival
space X to a topological space Y.
22:1. Prove that C(X,Y") consists of a single element iff so does Y.

22:2. Prove that there exists an injection ¥ — C(X,Y). In other
words, the cardinality cardC(X,Y) of C(X,Y) is greater than or equal
to card Y.

22:3. Riddle. Find natural conditions implying C(X,Y) =Y.

22:4. Let Y = {0,1} equipped with topology {@,{0},Y}. Prove that
there exists a bijection between C(X,Y) and the topological structure
of X.

22:5. Let X be a set of n points with discrete topology. Prove that
C(X,Y) can be identified with ¥ x ... X Y (n times).

22:6. Let Y be a set of k points with discrete topology. Find necessary
and sufficient condition for the set C(X,Y’) contain k? elements.

Topological Structures on Set of Continuous Mappings
Let X, Y be topological spaces, A C X, B C Y. Denote by W (A, B) the
set {f € C(X,Y) | f(A) C B}. Denote by AP¥) the set
{W(a,U) |a€ X, UisopeninY}
and by A the set
{W(C,U) | C C X is compact, U is open in Y'}
22:A. APY) is a subbase of a topological structure on C(X,Y).
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The topological structure generated by AP is called the topology of
pointwise convergency. The set C(X,Y") equipped with this structure is
denoted by CP®)(X,Y).

22:B. Al is a subbase of a topological structures on C(X,Y).

The topological structure defined by A() is called the compact-open
topology. Hereafter we denote by C(X,Y) the space of all continuous
mappings X — Y with the compact-open topology, unless the contrary
is specified explicitly.

22:C Compact-Open Versus Pointwise. The compact-open topol-

ogy is finer than the topology of pointwise convergence.

22:7. Prove that C(I,I) is not homeomorphic to C**)(I, I).

Denote by Const(X,Y) the set of all constant mappings f: X — Y.

22:8. Prove that the topology of pointwise convergence and compact-
open topology of C(X,Y) induce the same topological structure on
Const(X,Y), which, with this topology, is homeomorphic Y.

22:9. Let X be a discrete space of n points. Prove that C(?*)(X,Y’) is
homeomorphic ¥ x ... x Y (n times). Is this true for C(X,Y)?

Topological Properties of Spaces of Continuous Mappings

22:D. Prove that if Y is Hausdorff, then C("*)(X,Y) is Hausdorff for
any topological space X. Is this true for C(X,Y)?

22:10. Prove that C(I, X) is path connected iff X is path connected.

22:11. Prove that C(?")(I,T) is not compact. Is the space C(I, I) com-
pact?

Metric Case

22:E. If Y is metrizable and X is compact then C(X,Y") is metrizable.

Let (Y, p) be a metric space and X a compact space. For continuous
maps f,g: X =Y put

d(f,9) = max{p(f(z), g(z)) | = € X}.

22:F This is a Metric. If X is a compact space and Y a metric space,
then d is a metric on the set C(X,Y).

Let X be a topological space and Y a metric space with metric p. A
sequence f, of maps X — Y is said to uniformly converge to f : X — Y
if for any ¢ > 0 there exists a natural N such that p(f,,(z), f(z)) < € for
any n > N and z € X. This is a straightforward generalization of the
notion of uniform convergence which is known from Calculus.
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22:G Metric of Uniform Convergence. Let X be a compact space
and Y a metric space. A sequence f, of maps X — Y converges to
f : X = Y in the topology defined by d, iff f, uniformly converges to f.

22:H Uniform Convergence Versus Compact-Open. Let X be a
compact space and Y a metric space. Then the topology defined by d on
C(X,Y) coincides with the compact-open topology.

22:12. Prove that the space C(RR,I) is metrizable.

22:13. Let Y be a bounded metric space and X a topological space
which admits presentation X = U?; X;, where X; is compact and
X; CInt X;4q for i =1,2,.... Prove that C(X,Y") is metrizable.

Denote by Cp(X,Y) the set of all continuous bounded maps from a topo-
logical space X to a metric space Y. For maps f,g € Cp(X,Y), put

d>(f,9) = sup{p(f(2),9(z)) | = € X}.
22:1 Metric on Bounded Mappings. This is a metric in Cy(X,Y).
22:J d*®° and Uniform Convergence. Let X be a topological space

and Y a metric space. A sequence f, of bounded maps X — Y converges
to f: X — Y in the topology defined by d*°, iff f,, uniformly converges

to f.

22:K When Uniform Is Not Compact-Open. Find X and Y such
that the topology defined by d* on Cy(X,Y’) does not coincide with the
compact-open topology.

Interactions With Other Constructions

22:L Continuity of Restricting. Let X, Y be topological spaces and
A C X. Prove that the map C(X,Y) — C(A,Y) : f — f|4 is continuous.

22:M Continuity of Composing. Let X be a topological space and
Y a locally compact Hausdorff space. Prove that the map

CX,)Y)xC(Y,Z) = C(X,Z) : (fig)r>gof
1s continuous.

22:14. Is local compactness of Y necessary in 22:M?

22:N Extending Target. For any topological spaces X, Y and B CY
the map C(X,B) — C(X,Y) : f+—ipo f is a topological embedding.
22:0 Maps to Product. For any topological spaces X, Y and Z the
space C(X,Y x Z) is canonically homeomorphic to C(X,Y) x C(X, Z).

22:P Restricting to Sets Covering Source. Let {Xi,...,X,} be a
fundumental cover of X. Prove that for any topological space Y,

C(X7Y)_>HC(X’HY) : fH(f|X177f|Xn)
i=1
is a topological embedding. What if the cover is not fundamental?
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22:Q Factorizing Source. Let S be a closed partition? of a Hausdorff
compact space X. Prove that for any topological space Y the mapping
C(X/S,Y) = C(X,Y)
is a topological embedding.

22:15. Are the conditions imposed on S and X in 22:@) necessary?

22:R The Ewvaluation Map. Let X, Y be topological spaces. Prove
that if X is locally compact and Hausdorff then the map

CX,Y)xX =Y : (f,z)~ f(z)
is continuous.

22:16. Are the conditions imposed on X in 22:R necessary?

Mappings X xY — Z and X — C(Y, 2)

22:S. Let X, Y and Z be topological spaces and f X XY — Z be a
continuous map. Then the map

F:X—>CY,Z): F(z) :yw— f(z,y),
is continuous.

22:T. Let X, Z be topological spaces and Y a Hausdorff locally compact
space. Let F': X — C(Y, Z) be a continuous mapping. Then the mapping
f: X XY = Z:(z,y) = F(z)(y) is continuous.

22:U. Let X, Y and Z be topological spaces. Let the mapping
D:C(X xY,Z)—C(X,C(Y,Z))
be defined by the relation
O(f)(z) :y = f(z,y).
Then

(a) @ is continuous;
(b) if Y is locally compact and Hausdorff then @ is a homeomorphism.

2Recall that a partition is called closed, if the saturation of each closed set is closed.



Part 2

Algebraic Topology



CHAPTER 4

Fundamental Group and Covering Spaces

This part of the book can be considered as an introduction to algebraic
topology. This is a part of topology, which relates topological and al-
gebraic problems. The relationship is used in both directions, but re-
duction of topological problems to algebra is at first stages more useful,
since algebra is usually easier. The relation is established according to
the following scheme. One invents a construction, which assigns to each
topological space X under consideration an algebraic object A(X). The
latter may be a group, or a ring, or a quadratic form, or algebra, etc.
Another construction assigns to a continuous mapping f : X — Y a
homomorphism A(f) : A(X) — A(Y). The constructions should sat-
isfy natural conditions (in particular, they form a functor), which make
it possible to relate topological phenomena with their algebraic images
obtained via the constructions.

There are infinitely many useful constructions of this kind. In this part
we deal mostly with one of them. This is the first one, first from both
the viewpoints of history and its role in mathematics. It was invented
by Henri Poincaré in the end of the nineteenth century.

103
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23. Homotopy

Continuous Deformations of Maps

23.A. Is it possible to deform continuously

(a) The identity map id : R* — R? to the constant map R?> — R? :
0,

(b) The identity map id : S — S! to the symmetry S' — S': 2z +— —z
(here z is considered as a complex number, since the circle S' is
{reC: |z|=1}),

(¢) The identity map id : S* — S to the constant map S' — S': z +—
]'7

(d) The identity map id : S* — S! to the two-fold wrapping S — S :
T — 22,

(e) The inclusion S' — R? to a constant map,

(f) The inclusion S' — R? \ 0 to a constant map?

23.B. Riddle. When you (tried to) solve the previous problem, what
did you mean by “deform continuously’?

This section is devoted to the notion of homotopy formalizing the naive
idea of the continuous deformation of a map.

Homotopy as Map and Family of Maps

Let f, g be continuous maps of a topological space X to a topological
space Y, and H : X x I — Y a continuous map such that H(z,0) =
f(z) and H(z,1) = g(z) for any x € X. Then f and g are said to be
homotopic, and H is called a homotopy between f and g.

For x € X, t € I denote H(z,t) by hy(x). This change of notation results
in a change of the point of view of H. Indeed, for a fixed ¢ the formula
x +— hy(x) defines a map h; : X — Y and H appears to be a family of
maps h; enumerated by ¢t € I.

23.C. Prove that each h; is continuous.

23.D. Does continuity of all h; imply continuity of H?

The conditions H(z,0) = f(x) and H(z,1) = g(z) in the definition of
homotopy above can be reformulated as hy = f and h; = ¢g. Thus a
homotopy between f and g can be considered as a family of continuous
maps, which connects f and g. Continuity of a homotopy allows one to
say that it is a continuous family of continuous maps.
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Homotopy as Relation

23.E. Homotopy of maps is an equivalence relation.

23.E.1. If f : X — Y is a continuous map then H : X x I — Y defined by
H(z,t) = f(z) is a homotopy between f and f.

23.E.2. If H is a homotopy between f and g then H' defined by H'(z,t) =
H(z,1 —1t) is a homotopy between g and f.

23.E.3. If H is a homotopy between f and f' and H' is a homotopy between
f" and f"” then H" defined by

H(x,2t fort <1/2
R T
H'(z,2t —1) fort>1/2
is a homotopy between f and f".

Homotopy, being an equivalence relation by 23.E, divides the set C(X,Y)
of all continuous mappings of a space X to a space Y into equivalence
classes. The latter are called homotopy classes. The set of these classes
is denoted by 7(X,Y).

23.1. Prove that for any X, the set (X, I) has a single element.

23.2. Prove that the number of elements of 7(I,Y") coincides with the num-
ber of path connected components of Y.

Straight-Line Homotopy

23.F. Any two continuous maps of the same space to R” are homotopic.

23.G. Solve the preceding problem by proving that for continuous maps
f,9: X — R formula H(x,t) = (1 —t)f(z) + tg(x) defines a homotopy
between f and g.

The homotopy defined in 25.G is called a straight-line homotopy.

23.H. Prove that any two continuous maps of a space to a convex sub-
space of R" are homotopic.

A set A C R” is said to be star convez, if there exists a point b € A such that
for any = € A the whole segment [a, 2] connecting x to a is contained in A.

23.3. Prove that any two continuous maps of a space to a star convex sub-
space of R™ are homotopic.

23.4. Prove that any continuous map of a convex set C' C R™ to any space
is homotopic to a constant map.

23.5. Under what conditions (formulated in terms of known topological
properties of a space X) any two continuous maps of any convex set to X are
homotopic?
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23.6. Prove that any non-surjective map of an arbitrary topological space
to S™ is homotopic to a constant map.

23.7. Prove that any two maps of a one-point space to R” \ {0} with n > 1
are homotopic.

23.8. Find two non-homotopic maps of a one-point space to R ~\ {0}.

23.9. For various m, n, k, calculate the number of homotopy classes of maps
{1,2,...,m} = R" < {x1,x9,...,2}, where {1,2,...,m} is equipped with
discrete topology.

23.10. Let f,g be maps of a topological space X to C . 0. Prove that if
|f(z) — g(z)] < |f(x)| for any = € X then f and g are homotopic.

23.11. Prove that for any polynomials p and ¢ over C of the same degree in
one variable there exists r > 0 such that for any R > r formulas z — p(z)
and z — ¢(z) define maps of circle {z € C : |z] = R} to C~\ 0 and these
maps are homotopic.

23.12. Let f, g be maps of an arbitrary topological space X to S™. Prove
that if | f(a) — g(a)| < 2 for any a € X then f is homotopic to g.

23.13. Let f : S™ — S™ be a continuous map. Prove that if it is fixed point
free, i.e., f(z) # x for any = € S™, then f is homotopic to the symmetry
T —x.

Two Natural Properties of Homotopies

23.1. Let f,f": X =Y, g:Y — B, h: A— X be continuous maps
and F' : X x I — Y a homotopy between f and f’. Prove that then
go F o (hxid;) is a homotopy between go foh and go f' o h.

23.J. Riddle. Under conditions of 23.1 define a natural mapping
©(X,Y) — 7(A, B).
How does it depend on g and h? Write down all the nice properties of

this construction.

23.K. Prove that maps fy, f1 : X = Y x Z are homotopic iff pry ofy is
homotopic to pry o f; and pr, ofy is homotopic to pry o fi.

Stationary Homotopy

Let A be a subset of X. A homotopy H : X x I — Y is said to be fized
or stationary on A, or, briefly, to be an A-homotopy, if H(z,t) = H(x,0)
for all z € A, t € I. Maps which can be connected by an A-homotopy
are said to be A-homotopic.

Of course, A-homotopic maps coincide on A. If one wants to emphasize
that a homotopy is not assumed to be fixed, one says that it is free. If
one wants to emphasize the opposite (that it is fixed), one says that the
homotopy is relative.
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Warning: there is a similar, but different kind of homotopy, which is also
called relative. See below.

23.L. Prove that, like free homotopy, A-homotopy is an equivalence
relation.

The classes into which A-homotopy divides the set of continuous maps
X — Y that agree on A with a map f: A — Y are called A-homotopy
classes of continuous extensions of f to X.

23.M. For what A is a straight-line homotopy fixed on A?

Homotopies and Paths

Recall that by a path in a space X we mean a continuous mapping of the
interval I into X. (See Section 10.)

23.N. Riddle. In what sense is any path a homotopy?
23.0. Riddle. In what sense does any homotopy consist of paths?
23.P. Riddle. In what sense is any homotopy a path?

23.Q. Riddle. Introduce a topology in the set C(X,Y") of all continuous
mappings X — Y in such a way that for any homotopy h; : X — Y the
map I — C(X,Y) : t — h; would be continuous.

Recall that the compact-open topology in C(X,Y) is the topology gener-
ated by the sets {¢p € C(X,Y) | p(A) C B} for compact A C X and open
BCY.

23:A. Prove that any homotopy h; : X — Y defines (by the formula
presented in 23.Q)) a path in C(X,Y) with compact-open topology.

23:B. Prove that if X is locally compact and regular then any path in
C(X,Y) with compact-open topology is defined by a homotopy.

Homotopy of Paths

23.R. Prove that any two paths in the same space X are freely homo-
topic, iff their images belong to the same pathwise connected component
of X.

This shows that the notion of free homotopy in the case of paths is not
interesting. On the other hand, there is a sort of relative homotopy
playing a very important role. This is (0U1)-homotopy. This causes the
following commonly accepted deviation from the terminology introduced
above: homotopy of paths always means not a free homotopy, but a
homotopy fixed on the end points of I (i.e. on 0 U 1).

Notation: a homotopy class of a path s is denoted by [s].
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24. Homotopy Properties of Path Multiplication

Multiplication of Homotopy Classes of Paths

Recall (see Section 10) that paths v and v in a space X can be multiplied,
provided the initial point v(0) of v coincides with the final point u(1) of
u. The product uv is defined by

wn(t) = {u(Qt), if ¢+ <1/2

v(2t—1), ift>1/2.

24.A. Prove that if a path u is homotopic to v’ and a path v is homotopic
to v’ and there exists product uv, then u'v" exists and is homotopic to
uv.

Define a product of homotopy classes of paths v and v to be the homotopy
class of uv. So, [u][v] is defined as [uv], provided uv is defined. This is a
definition which demands a proof.

24.B. Prove that the product of homotopy classes of paths is well-
defined (of course, when the initial point of paths of the first class coin-
cides with the final point of paths of the second class).

Associativity

24.C. TIs multiplication of paths associative?

Of course, this question might be formulated with more details:

24.D. Let u, v, w be paths in the same space such that products uv
and vw are defined (i.e., u(1) = v(0) and v(1) = w(0)). Is it true that
(uwv)w = u(vw)?

24.1. Prove that for paths in a metric space (uv)w = u(vw) implies that w,
v, w are constant maps.

24.2. Riddle. Find non-constant paths u, v, and w in an indiscrete space
such that (uwv)w = u(vw).

24.E. Find a map ¢ : I — [ such that for any paths u, v, w with
u(1) = v(0) and v(1) = w(0)

((uwv)w) o ¢ = u(vw).

24.F. Multiplication of homotopy classes of paths is associative.

If you are troubled by 2/.F, consider the following problem.

24.G. Reformulate Theorem 24.F in terms of paths and their homo-
topies.
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If you want to understand the essence of 24.F, you have to realize that
paths (uv)w and u(vw) have the same trajectories and differs by time
spent in the fragments of the path. Therefore to find a homotopy between
them one has to find a continuous way to change one schedule to the
other.

If there is still a trouble in a formal prove, recall 24.F and solve the
following problem.

24.H. Prove that any path in I beginning in 0 and finishing in 1 is
homotopic toid : I — 1.

Also, it may be useful to take into account 23.1.

Unit

Let a be a point of a space X. Denote by ¢, the path I — X : ¢t — a.

24.1. Is e, a unit for multiplication of paths?

The same question in more detailed form:
24.J. For a path u with u(0) = a is e,u = u? For a path v with v(1) = a

is ve, = v?

Problems 24.I and 24.J are similar to 24.C and 2/4.D, respectively.

24.3. Riddle. Extending this analogy, formulate and solve problems similar
to 24.F.

24.4. Prove that e,u = u implies u = e,.

24.K. The homotopy class of e, is a unit for multiplication of homotopy
classes of paths.

Inverse

Recall that for a path u there is inverse path u~' defined by u™'(t) =
u(1l —t) (see Section 10).

24.L. Is the inverse path inverse with respect to multiplication of paths?

In other words:

24.M. For a path u beginning in a and finishing in b is uu~! = e, and
utu = ep?
24.5. Prove that for a path u with u(0) = a equality uu™! = e, implies

U= eg.

24.6. Find a map ¢ : I — I such that (uu—!) = u o ¢ for any path u.
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1

24.N. For any path u the homotopy class of path u~" is inverse to the

homotopy class of u.

We see that from the algebraic viewpoint multiplication of paths is ter-
rible, but it defines multiplication of homotopy classes of paths, which
has nice algebraic properties. The only unfortunate property is that the
multiplication of homotopy classes of paths is not defined for any two
classes.

24.0. Riddle. How to select a subset of the set of homotopy classes of
paths to obtain a group?

25. Fundamental Group

Definition of Fundamental Group

Let X be a topological space, zq its point. A path in X which starts
and ends at x¢ is called a loop in X at xo. Denote by Q(X, zq) the set
of loops in X at zy. Denote by (X, zg) the set of homotopy classes of
loops in X at xz.

Both Q(X, x¢) and 7 (X, zq) are equipped with multiplication.

25.A. For any topological space X and a point xy € X the set m1(X, xg)
of homotopy classes of loops at xy with multiplication defined above is a

group.

(X, o) is called the fundamental group of the space X with base point
xo. It was introduced by Poincaré and that is why it is called also
Poincaré group. The letter 7 in its notation is also due to Poincaré.

Why Index 17

The index 1 in the notation (X, o) appeared later than the letter
m. It is related to one more name of the fundamental group: the first
(or one-dimensional) homotopy group. There is an infinite series of
groups 7, (X, zg) with r = 1,2,3,... and the fundamental group is one of
them. The higher-dimensional homotopy groups were defined by Witold
Hurewicz in 1935, thirty years after the fundamental group was defined.

There is even a zero-dimensional homotopy group mo(X, o), but it is not
a group, as a rule. It is the set of path-wise connected components of
X. Although there is no natural multiplication in 7y (X, z¢) , unless X is
equipped with some special additional structures, there is a natural unit
in 7o(X, zg). This is the component containing .
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Roughly speaking, the general definition of 7,(X,z¢) is obtained from
the definition of m (X, zo) by replacing I with the cube I".

25.B. Riddle. How to generalize problems of this section in such a way
that in each of them I would be replaced by I"?

High Homotopy Groups

Let X be a topological space and zg its point. A continuous map I" — X
which maps the boundary OI" of I" to xq is called a spheroid of dimension
r of X at xg. Two r-dimensional spheroids are said to be homotopic, if they
are 0I"-homotopic. For spheroids u, v of X at zg of dimension r > 1 define
their product uv by formula

21, ta, ...t if 4 < 1/2
wv(ty, to, ..., tp) = u(2ty,ta, ..., ty), 1 1 <1/
v(2ty — 1, g, ..., 1), ifty >1/2.

The set of homotopy classes of r-dimensional spheroids of a space X at xq is
the r-th (or r-dimensional) homotopy group 7,.(X, zg) of X at xg. Thus,

Wr(Xa 1170) = ,”(Ir’a_[r; X: :EO)‘
Multiplication of spheroids induces multiplication in 7,.(X, zq), which makes
(X, zo) a group.
25.1. For any X and zo the group 7.(X,xo) with r > 2 is Abelian.

25.2. Riddle. For any X,zo and r > 2 present group 7,.(X,zo) as the
fundamental group of some space.

Circular loops

Let X be a topological space, ¢ its point. A continuous map/:S!' — X
such that! [(1) = zy is called a (circular) loop at xzy. Assign to each
circular loop [ the composition of [ with the exponential map I — S* :
t s ¥, This is a usual loop at the same point.

25.C. Prove that any loop can be obtained in this way from a circular
loop.

Circular loops [lq, Iy are said to be homotopic if they are 1-homotopic.
Homotopy of a circular loop not fixed at z is called a free homotopy.

25.D. Prove that circular loops are homotopic, iff the corresponding
loops are homotopic.

25.3. What kind of homotopy of loops corresponds to free homotopy of cir-
cular loops?

25.4. Describe the operation with circular loops corresponding to the mul-
tiplication of paths.

IRecall, that S is considered as a subset of the plane R?, which is identified in a
canonical way with C. Hence 1 € {z € C : |z] = 1}.
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25.5. Outline a construction of fundamental group based on circular loops.

Similarly, high-dimensional homotopy groups can be constructed not out of
homotopy classes of maps (I",0I") — (X, zq), but as

w(S",(1,0,...,0); X,zo).
Another, also quite a popular way, is to define m,.(X, zq) as
m(D",0D"; X, x9)-
25.6. Establish natural bijections
w(I",0I"; X,z9) = w(D",0D"; X, z9) — w(S",(1,0,...,0); X, xz0)

The Very First Calculations

25.E. Prove that m(R",0) is a trivial group (i.e., consists of one ele-
ment).

25:A. What about =, (R",0)?
25.F. Generalize 25.F to the cases suggested by 23.H and 23.5.

25.7. Calculate the fundamental group of an indiscrete space.

25.8. Calculate the fundamental group of the quotient space of disk D?
obtained by identification of each z € D? with —z.

25.G. Prove that m1(S", (1,0,...,0)) with n > 2 is a trivial group.

Whether you have solved 25.G or not, we would recommend you consider
problems .1, .3, .4, .5 and .6 designed to give an approach to 25.G, warn
about a natural mistake and prepare an important tool for further calcu-
lations of fundamental groups.

25.G.1. Prove that any loop s : I — S™, which does not fill the whole S"
(i.e., s(I) # S™) is homotopic to the constant loop, provided n > 2. (Cf.
Problem 23.6.)

Warning: for any n there exists a loop filling S™. See 7:1

25.G.2. Is a loop filling S? homotopic to the constant loop?

25.G.3 Corollary of Lebesgue Lemma 13.V. Lets: 1 — X be a path,
and I' be an open covering of a topological space X. There exists a sequence
of points ay,...,anxy € I with 0 = a1 < ag < --- < any_1 < any =1 such
that s([ai, a;y1]) is contained in an element of T for each i.

25.G.4. Prove that if n > 2 then for any path s : I — S™ there exists a
subdivision of I into a finite number of subintervals such that the restriction

of s to each of the subintervals is homotopic, via a homotopy fixed on the
endpoints of the subinterval, to a map with nowhere dense image.

25.G.5. Prove that if n > 2 then any loop in S™ is homotopic to a loop
which is not surjective.

25.G.6. Deduce 25.G from .1 and .5. Find all the points of the proof of
25.G obtained in this way, where the condition n > 2 is used.
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Fundamental Group of Product

25.H. The fundamental group of the product of topological spaces is
canonically isomorphic to the product of the fundamental groups of the
factors:

(X X Y, (w0, 90)) = m (X, x0) x m1 (Y, y0)

25.9. Prove that 7 (R™ \0,(1,0,...,0)) is trivial if n > 3

25:B. Prove the following generalization of 25.H:
T (X XY, (20, 90)) = (X, z0) X 7 (Y, 0).

Simply-Connectedness

A non-empty topological space X is said to be simply connected or one-
connected if it is path-connected and any loop in it is homotopic to a
constant map.

25.1. For a path-connected topological space X the following statements
are equivalent:

(a) X is simply connected,

(b) any continuous map f : S' — X is (freely) homotopic to a constant
map,

(¢c) any continuous map f : S' — X can be extended to a continuous
map D? — X,

(d) any two paths s, sy : I — X connecting the same points xq and 14
are homotopic.

The following theorem implies Theorem 25.1. However, since it treats a
single loop, it can be applied to more situations. Anyway, proving 25.1,
one proves 25.J in fact.

25.J. Let X be a topological space and s : S' — X be a circular loop.
Then the following statements are equivalent:

(a) s is homotopic to the constant loop,
) s is freely homotopic to a constant map,
(c) s can be extended to a continuous map D* — X,
) the paths s;,s_ : I — X defined by formula s.(t) = s(e™) are
homotopic.

25.J.1. Riddle. Proving that 4 statements are equivalent one has to prove
at least 4 implications. What implications would you choose for the short-
est proof of Theorem 25..J7

25.10. Which of the following spaces are simply connected:

(a) a discrete space,
(b) an indiscrete space,
(c) R",
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(d) s,

(e) a convex set,

(f) a star convex set,
(g) R" 0.

25.11. Prove that a topological space X, which is presented as the union of
open simply connected sets U and V' with simply connected U NV, is simply
connected.

25.12. Show that the assumption that U and V are open is necessary in
25.11.

25.18%. Let X be a topological space, U and V its open sets. Prove that if
UUV and UNYV are simply connected, then U and V are simply connected,
too.

Fundamental Group of a Topological Group

Let G be a topological group. Given loops u,v : I — G starting at
the unity 1 € G, let us define a loop u ® v : I — G by the formula
u ®v(t) = u(t) - v(t), where - denotes the group operation in G.

25:C. Prove that the set (G,1) of all the loops in G starting at 1
equipped with the operation ® is a group.

25:D. Prove that the operation ® on (G, 1) defines a group operation
on m1(G, 1) and that this operation coincides with the standard group
operation (defined by multiplication of paths).

25:D:1. For loops u,v — G starting at 1, find (ue1) ® (e1v).
25:E. The fundamental group of a topological group is abelian.

25:F. Formulate and prove the analogues of Problems 25:C and 25:D
for high homotopy groups and my(G, 1).

26. The Role of Base Point

Overview of the Role of Base Point

Roughly, the role of base point may be described as follows:

e While the base point changes within the same path-connected com-
ponent, the fundamental group remains in the same class of isomor-
phic groups.

e However, if the group is not commutative, it is impossible to find a
natural isomorphism between fundamental groups at different base
points even in the same path-connected component.

e Fundamental groups of a space at base points belonging to different
path-connected components have no relation to each other.

In this section these will be demonstrated. Of course, with much more
details.
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Definition of Translation Maps

Let zy and x; be points of a topological space X, and let s be a path

connecting o with z;. Denote by o the homotopy class [s| of s. Define

amap T, : m (X, x9) = 7 (X, 1) by formula T,(a) = 0 Lao.

26.1. Prove that for any loop a : I — X representing a € 71 (X, zo) and a
path s : I — X with s(0) = z( there exists a free homotopy H : [ x [ — X
between a and a loop representing Ts(a) such that H(0,t) = H(1,t) = s(t)
forteI.

26.2. Let a,b: I — X be loops which are homotopic via a homotopy H :
I x I — X such that H(0,¢) = H(1,t) (i.e., H is a free homotopy of loops:
at each moment ¢ € I it keeps the end points of the path coinciding). Set
s(t) = H(0,t) (hence s is the path run over by the initial point of the loop
under the homotopy). Prove that the homotopy class of b is the image of the
homotopy class of a under T : 71 (X, s(0)) = 71 (X, s(1)).

Properties of T

26.A. T, is a (group) homomorphism. (Recall that this means that
Ts(aﬂ) == Ts(a)Ts (5))

26.B. If u is a path connecting xq to x1 and v is a path connecting x;
with xy then T,, =T, oT,,. In other words the diagram

7T1(X,.ZE(]) i) 7T1(X, 5171)

Tuw N\ lTv
(X, x2)

is commutative.

26.C. If paths u and v are homotopic then T, = T,.
26.D. T,, =id: m(X,a) —» m (X, a)

26.E. T, =T,

26.F. T; is an isomorphism for any path s.

26.G. For any points xoy and x; lying in the same path-connected com-
ponent of X groups m (X, zo) and w1 (X, x) are isomorphic.

Role of Path

26.H. If s is a loop representing an element o of fundamental group
(X, zo) then Ty is the internal automorphism of (X, xy) defined by
a— o lao.

26.1. Let xy and x1 be points of a topological space X belonging to
the same path-connected component. Isomorphisms Ty : m(X,x9) —
m (X, z1) do not depend on s, iff T (X, xq) is commutative.



26. THE ROLE OF BASE POINT 116
High Homotopy Groups

26.3. Riddle. Guess how T is generalized to 7, (X, x¢) with any 7.

Here is another form of the same question. We put it since it contains in its
statement a greater piece of an answer.

26.4. Riddle. Given a path s : I — X with s(0) = zo and a spheroid
f:I" = X at xg, how to cook up a spheroid at x; = s(1) out of these?

26.5. Prove that for any path s : I — X and a spheroid f : I" — X with
f(ErI™) = s(0) there exists a homotopy H : I" x I — X of f such that
H(FrI" x t) = s(t) for any t € I and that the spheroid obtained by such a
homotopy is unique up to homotopy and defines an element of 7,.(X,s(1))
well-defined by the homotopy class of s and the element of 7, (X, s(0)) rep-
resented by f.

Of course, a solution of 26.5 gives an answer to 26.4 and 26.3. The map
(X, s(0)) = m-(X,s(1)) defined by 26.5 is denoted by Ts. By 26.2 this T
generalizes T defined in the beginning of the section for the case r = 1.

26.6. Prove that the properties of Ty formulated in Problems 26.4 — 26.G
hold true in all dimensions.

In Topological Group

In a topological group G there is another way to relate m (G, zp) with
71 (G, z1): there are homeomorphisms L, : G — G :  — zg and R, :
G — G : z — gz, so that there are the induced isomorphisms (on—lxl)* :

(G, z9) = m (G, 1) and (R 1) 2 (G, z0) — T (G, m1).

T1T(
26:A. Let G be a topological group, s I — G be a path. Prove that
Ts = (Ls(o)-1501))+ = (Rs(1ys(0)-1) : m1(G,5(0)) = m(G, s(1)).

26:B. Deduce from 26:A that the fundamental group of a topological
group is abelian (cf. 25:F).

26:1. Prove that the fundamental groups of the following spaces are
commutative:

(a) the space of non-degenerate real n x n matrices GL(n,R) = {4 |
det A # 0}

(b) the space of orthogonal real n x n matrices O(n,R) = {A | A -
(“A) =1}

(c) the space of special unitary complex n x n matrices SU(n) = {A |
A-(tA) =1,det A =1}

(d) RP";

(e) Vk,n = HOm(Rk ’ Rn);

26:C. Generalize 26:A and 26:B to a homogeneous space G/H.

26:D. Riddle. What are the counterparts for 26:A4 and 26:B and 26:C
for high homotopy groups?
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27. Covering Spaces

Definition

Let X, B topological spaces, p : X — B a continuous map. Assume that
p is surjective and each point of B possesses a neighborhood U such that
the preimage p~'(U) of U is presented as a disjoint union of open sets
V, and p maps each V,, homeomorphically onto U. Then p: X — B is
called a covering, (of the space B), the space B is called the base of this
covering, X is called the covering space for B and the total space of the
covering. Neighborhoods like U are said to be trivially covered. The map
p is called also a covering map, or a covering projection.

27.A. Let B be a topological space and F' be a discrete space. Prove
that the projection prg : B x F' — B is a covering.

The following statement shows that in a sense locally any covering is
organized as the covering of 27.A.

27.B. A continuous surjective map p: X — B is a covering, iff for each
point a of B the preimage p~!(a) is discrete and there exist a neighbor-
hood U of a and a homeomorphism h : p~*(U) — U x p~!(a) such that

plp-1wy = pru o h.

However, the coverings of 27.A are not interesting. They are said to be
trivial. Here is the first really interesting example.

27.C. Prove that R — S : 2+ €2™® is a covering.

To distinguish the most interesting examples, a covering with a connected
total space is called a covering in narrow sense. Of course, the covering
of 27.C'is a covering in a narrow sense.

27.1. Any covering is an open map.>

Local Homeomorphisms Versus Coverings

A map f: X — Y is said to be locally homeomorphic if each point of X
has a neighborhood U such that the image f(U) is open in Y and the map
U — f(U) defined by f is a homeomorphism.

27.2. Any covering is locally homeomorphic.

27.3. Show that there exists a locally homeomorphic map which is not a
covering.

27.4. Prove that a restriction of a locally homeomorphic map to an open set
is locally homeomorphic.

2Remind that a map is said to be open if the image of any open set is open.
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27.5. For which subsets of R is the restriction of the map of Problem 27.C
a covering.

27.6. Find nontrivial coverings X — B with X homeomorphic to B and
prove that they satisfy the definition of covering.

Number of Sheets

Let p : X — B be a covering. The cardinality (i.e., number of points)
of the preimage p~'(a) of a point a € B is called the multiplicity of the
covering at a or the number of sheets of the covering over a.

27.D. If the base of a covering is connected then the multiplicity of the
covering at a point does not depend on the point.

In the case of covering with connected base the multiplicity is called the
number of sheets of the covering. If the number of sheets is n then the
covering is said to be n-sheeted and we talk about n-fold covering. Of
course, unless the covering is trivial, it is impossible to distinguish the
sheets of it, but this does not prevent us from speaking about the number
of sheets.

More Examples

27.E. Prove that R? — S' X R : (z,y) — (e*™® y) is a covering.

27.F. Prove that C - C~\ 0 : z — €” is a covering.

27.7. Riddle. In what sense the coverings of 27.F and 27.F are the same?
Define an appropriate equivalence relation for coverings.

27.G. Prove that R2 — S' x S': (z,y) — (e2™*,€*™) is a covering.
27.H. Prove that for any natural n the map S' — S': 2z — 2" is an
n-fold covering.

27.8. Prove that for any natural n the map C~N 0 —> C~0: 2z~ 2" is an
n-fold covering.

27.1. Prove that for any natural p and ¢ the map S' x St — S! x St
(z,w) — (2P, w?) is a covering. Find its number of sheets.

27.9. Prove that if p: X — B and p’ : X' — B’ are coverings, then p x p' :
X x X' = B x B’ is a covering.

27.10. Let p: X - Y and q : Y — Z be coverings. Prove that if ¢ is
finitely-fold then gop:x — Y is a covering.

27.11%. Show that the assumption about the number of sheets in Problem
27.10 is necessary.

27.12. Let X be a topological space, which can be presented as a union of
open connected sets U and V. Prove that if U NV is disconnected then X
has a connected infinite-fold covering space
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27.J. Prove that the natural projection S™ — RP™ is a two-fold cover-
ing.
27.K. Ts (0,3) — S': x> €™ a covering? (Cf. 27.5.)

27.L. Ts the projection R*? — R : (z,y) — x a covering? Indeed, why
not take an open interval (a,b) C R as a trivially covered neighborhood:
its preimage (a,b) x R is the union of open intervals (a,b) x {y} which
are projected homeomorphically by the projection (z,y) — x onto (a,b)?

27.13. Find coverings of Md&bius strip by cylinder. What numbers can you
realize as the number of sheets for such a covering?

27.14. Find non-trivial coverings of M&bius strip by itself. What numbers
can you realize as the number of sheets for such a covering?

27.15. Find a two-fold covering of the Klein bottle by torus. Cf. Problem
18.14.

27.16. Find coverings of the Klein bottle by plane R?, cylinder S* x R and a
non-trivial covering by itself. What numbers can you realize as the numbers
of sheets for such coverings?

27.17. Construct a covering of the Klein bottle by R?. Describe explicitly
the partition of R? into preimages of points under this covering.

27.18. Construct a d-fold covering of a sphere with p handles by a sphere
with 1+ d(p — 1) handles.

27.19. Find a covering of a sphere with any number of crosscaps by a sphere
with handles.

Universal Coverings

A covering p : X — B is said to be universal if X is simply connected.
The appearance of word universal in this context will be explained below
in Section 30.

27.M. Which coverings of the problems stated above in this section are
universal?

Theorems on Path Lifting

Letp: X — Band f : A — B be arbitrary maps. Amap g: A — X such
that po g = f is said to cover f or be a lifting of f. A lot of topological
problems can be phrased in terms of finding a continuous lifting of some
continuous map. Problems of this sort are called lifting problems. They
may involve additional requirements. For example, the desired lifting has
to coincide with a lifting already given on some subspace.

27.N. Prove that the identity map S — S*! does not admit a continuous
lifting with respect to the covering R — S' : x + €2™@. (In other words,

there exists no continuous map ¢ : S — R such that > = g for
z e Sh)
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27.0 Path Lifting Theorem. Let p: X — B be a covering, xg € X,
by € B be points such that p(xg) = by. Then for any path s : I — B
starting at by there exists a unique path s : I — X starting at xo and
being a lifting of s. (In other words, there exists a unique path §: 1 — X
with 5(0) =y and po § = s.)

27.0.1 Lemma 1. Let p : X — B be a trivial covering. Then for any
continuous map f of any space A to B there exists a continuous lifting

f:A=X.

27.0.2 Lemma 2. Let p : X — B be a trivial covering and zg € X,
by € B be points such that p(zg) = byg. Then for any continuous map f of
a space A to B mapping a point ag to by, a continuous lifting f A= X
with f(ag) = xo is unique.

27.0.8 Lemma 3. 3 Letp: X — B be a covering, A a connected space. If
f,g: A— X are continuous maps coinciding in some point and pof = pog,
then f =g.

27.20. If in the Problem .2 one replaces zg, by and ag by pairs of points, then
it may happen that the lifting problem has no solution f with f(ag) = zo.
Formulate a condition necessary and sufficient for existence of such a solution.

27.21. What goes wrong with the Path Lifting Theorem 27.0 for the local
homeomorphism of Problem 27.K?

27.22. Consider the covering C — C\ 0 : z — €*. Find liftings of the paths
u(t) =2 —t, v(t) = (1 +1)e®™, and their product uv.

27.23. Prove that any covering p : X — B with simply connected B and
path connected X is a homeomorphism.
27.P Homotopy Lifting Theorem. Let p : X — B be a covering,
xo € X, by € B be points such that p(xy) = by. Let u,v: I — B be paths
starting at by and u,v : I — X be the lifting paths for u,v starting at xy.
If the paths uw and v are homotopic then the covering paths u and v are
homotopic.

27.Q Corollary. Under the assumptions of Theorem 27.P, the cover-
ing paths @ and U have the same final point (i.e., a(1) = v(1)).

Notice that in 27.P and 27.() paths are assumed to share the initial point
Zp. In the statement of 27.() we emphasize that then they share also the
final point.

27.R Corollary of 27.Q. Letp: X — B be a covering and s : I — B
be a loop. If there exists a lifting 5 : I — X of s with 5(0) # §(1) (i.e.,
there exists a covering path which is not a loop), then s is not homotopic
to a constant loop.

3This is rather a generalization of the uniqueness, than a necessary step of the proof.
But a good lemma should emphasize the real contents of the proof, and a generaliza-
tion is one of the best ways to do this.
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27.24. Prove that if a pathwise connected space B has a non trivial pathwise
connected covering space, then the fundamental group of B is not trivial.

27.25. What corollaries can you deduce from 27.24 and the examples of
coverings presented above in this Section?

High-Dimensional Homotopy Groups of Covering Space

27:A. Let p : X — B be a covering. Then for any continuous map
s : 1™ — B and a lifting u : I"~' — X of the restriction s|n-1 there
exists a unique lifting of s extending u.

27:B. For any covering p : X — B and points xg € X, by € B such that
p(xg) = by the homotopy groups m,(X,x¢) and m,(B,by) with r > 1 are
canonically isomorphic.

27:C. Prove that homotopy groups of dimensions greater than 1 of circle,
torus, Klein bottle and Mobius strip are trivial.

28. Calculations of Fundamental Groups Using
Universal Coverings

Fundamental Group of Circle

For an integer n denote by s, the loop in S* defined by formula s, (t) =
e?™nt  The initial point of this loop is 1. Denote the homotopy class of
s1 by a. Thus a € m(S',1). Clearly, s, represents o".

28.A. What are the paths in R starting at 0 € R and covering the loops
s, with respect to the universal covering R — S'?

28.B. The homomorphism Z — (S, 1) defined by formula n — o™ is
an isomorphism.

28.B.1. Rephrase the statement that the homomorphism of Theorem 28.B
is surjective in terms of loops and loop homotopies.

28.B.2. Prove that a loop s : I — S' starting at 1 is homotopic to s, if
the path §: I — R covering s and starting at 0 € R finishes at n € R (i.e.,
5(1) = n).

28.B.3. Rephrase the statement that the homomorphism of Theorem 28.B
is injective in terms of loops and loop homotopies.

28.B.4. Prove that if loop s, is homotopic to constant then n = 0.

28.1. What is the image under the isomorphism of Theorem 28.B of the
homotopy class of loop ¢ — e27it"?

For a loop s : I — S! starting at 1 take the covering path § : I — R
starting at 0. By Theorem 27.0 such a path exists and is unique. Its final
point, belongs to the preimage of 1 under the universal covering projection
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R — S': 2 — e2™®, Hence, this final point is an integer n. By 27.Q, it does
not change if s is replaced by a homotopic loop. Therefore, this construction
provides a well-defined map m(S*,1) — Z assigning n to [s]. Denote this
map by deg.

28.2. Prove that deg is an isomorphism inverse to the isomorphism of The-
orem 28.B

28.C Corollary of Theorem 28.B. The fundamental group of (S')"
is a free abelian group of rank n (i.e., isomorphic to 7).

28.D. On torus S! x S! find two loops whose homotopy classes generate
the fundamental group of the torus.

28.FE Corollary of Theorem 28.B. The fundamental group of punc-
tured plane R? \ 0 is an infinite cyclic group.

28.3. Solve Problems 28.C — 28.E without reference to Theorems 28.B and
25.H, but using explicit constructions of the corresponding universal cover-
ings.

Fundamental Group of Projective Space

The fundamental group of the projective line is an infinite cyclic group.
It is calculated in the previous subsection, since the projective line is a
circle. The zero-dimensional projective space is a point, hence its fun-
damental group is trivial. Here we calculate the fundamental groups of
projective spaces of all other dimensions.

Let n >2and [ : I — RP" bealoopcoveredbyapath[:I—>S"
which connects two antipodal points, say the poles P, = (1,0,...,0)
and P. = (—1,0,...,0), of S™. Denote by A the homotopy class of [. It
is an element of 71 (RP™,(1:0:---:0)).

28.F. For any n > 2 group m (RP",(1:0:---:0)) is a cyclic group of
order 2. It consists of two elements: A\ and 1.

28.F.1 Lemma. Any loop in RP™ at (1:0: ---:0) is homotopic either
to | or constant. This depends on whether the covering path of the loop
connects the poles Py and P, or is a loop.

28.4. Where in the proofs of Theorem 28.F and Lemma, .1 the assumption
n > 2 is used?

Fundamental Groups of Bouquet of Circles

Consider a family of topological spaces {X,}. In each of the spaces let
a point z, be marked. Take the sum II,X, and identify all the marked
points. The resulting quotient space is called the bouquet of {X,} and
denoted by V,X,. Hence bouquet of q circles is a space which is a union
of q copies of circle. The copies meet in a single common point, and this
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is the only common point for any two of them. The common point is
called the center of the bouquet.

Denote the bouquet of ¢ circles by B, and its center by c. Let uy, ...,
u, be loops in B, starting at ¢ and parametrizing the ¢ copies of circle
comprising B,. Denote the homotopy class of u; by ;.

28.G. m(By,c) is a free group freely generated by ay, ... , ay.

Algebraic Digression. Free Groups

Recall that a group G is a free group freely generated by its elements a;,

. ag if:
e cach its element x € G can be expressed as a product of powers
(with positive or negative integer exponents) of ay, ..., a,, i.e.,
— €1 €2 €n
T =agal .. .ag”
and

e this expression is unique up to the following trivial ambiguity: one
may insert or delete factors a;a; ' and a; *a; or replace a* by alas
with r + s = m.

28.H. A free group is defined up to isomorphism by the number of its
free generators.

The number of free generators is called the rank of the free group. For a
standard representative of the isomorphism class of free groups of rank
g one can take the group of words in alphabet of ¢ letters a4, ..., a, and
their inverses a;', ..., a;l. Two words represent the same element of the
group, iff they can be obtained from each other by a sequence of insertions
or deletions of fragments a;a;' and a;'a;. This group is denoted by
F(ay,...,a,), or just F,, when the notations for the generators are not
to be emphasized.

28.1. Each element of F(ay, ..., a,) has a unique shortest representative.
This is a word without fragments that could have been deleted.

The number of letters in the shortest representative of € F(ay, ..., a,)
is called the length of x and denoted by [(x). Of course, this number is
not well defined, unless the generators are fixed.

28.5. Show that an automorphism of I, can map = € F; to an element with
different length. For what value of ¢ does such an example not exist? Is it
possible to change the length in this way arbitrarily?

28.J. A group G is a free group freely generated by its elements aq, ... ,
a, if and only if every map of the set {ay, ..., a,} to any group X can be
extended to a unique homomorphism G — X.
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Sometimes Theorem 28..J is taken as a definition of free group. (A def-
inition of this sort emphasizes relations among different groups, rather
than the internal structure of a single group. Of course, relations among
groups can tell everything about internal affairs of each group.)

Now we can reformulate Theorem 28.G as follows:

28.K. The homomorphism
F(ay,...,a,) = m(By,c)

taking a; to a; fori =1,...,q is an isomorphism.

First, for the sake of simplicity let us agree to restrict ourselves to the
case of ¢ = 2. It would allow us to avoid superfluous complications in
notations and pictures. This is the simplest case, which really represents
the general situation. The case ¢ = 1 is too special.

To take advantages of this, let us change notations. Put B = By, u = uy,
V= U9, =y, f = Q.

Now Theorem 28.K looks as follows:

The homomorphism F(a,b) — w(B,c) taking a to o and b to [ is an
1somorphism.

This theorem can be proved like Theorems 28.B and 28.F, provided the
universal covering of B is known.

Universal Covering for Bouquet of Circles

Denote by U and V' the points antipodal to ¢ on the circles of B. Cut
B at these points, removing U and V' and putting instead each of them
two new points. Whatever this operation is, its result is a cross K, which
is the union of four closed segments with a common end point ¢. There
appears a natural map P : K — B, which takes the center ¢ of the cross
to the center ¢ of B and maps homeomorphically the rays of the cross
onto half-circles of B. Since the circles of B are parametrized by loops
u and v, the halves of each of the circles are ordered: the corresponding
loop passes first one of the halves and then the other one. Denote by U™
the point of P~!(U), which belongs to the ray mapped by P onto the
second half of the circle, and by U~ the other point of P~'(U). Similarly
denote points of P~1(V) by V* and V.

The restriction of P to K ~\{U",U~, V", V~} maps this set homeomor-
phically onto B~ {U, V'}. Therefore P provides a covering of B~ {U, V'}.
But it fails to be a covering at U and V': each of this points has no trivially
covered neighborhood. Moreover, the preimage of each of these points
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consists of 2 points (the end points of the cross), where P is not even a
local homeomorphism. To recover, we may attach a copy of K at each of
the 4 end points of K and extend P in a natural way to the result. But
then new 12 end points, where the map is not a local homeomorphism,
appear. Well, we repeat the trick and recover the property of being a
local homeomorphism at each of the new 12 end points. Then we have to
do this at each of the new 36 points, etc. But if we repeat this infinitely
many times, all the bad points are turned to nice ones.*

28.L. Formalize the construction of a covering for B described above.

Consider F(a, b) as a discrete topological space. Take K x F(a,b). It can
be thought of as a collection of copies of K enumerated by elements of
F(a,b). Topologically this is a disjoint sum of the copies, since F(a, b) is
equipped with discrete topology. In K X F(a,b) identify points (U™, g)
with (U™, ga) and (V—, g) with (VT gb) for each g € F(a,b). Denote the
resulting quotient space by X.

28.M. The composition of the natural projection K x F(a,b) — K and
P : K — B defines a continuous quotient map p : X — B.

28.N. p: X — B is a covering.

28.0. X is path-connected. For any g € F(a,b) there exists a path
connecting (¢, 1) with (¢, g) and covering loop obtained from g by sub-
stituting a by v and b by v.

28.P. X is simply connected.

29. Fundamental Group and Continuous Maps

Induced Homomorphisms

Let f : X — Y be a continuous map of a topological space X to a
topological space Y. Let xy € X and yy € Y be points such that f(zy) =

4This sounds like a story about a battle with a dragon, but the happy ending demon-
strates that modern mathematicians have a magic power of the sort that the heros
of tales could not dream of. Indeed, we meet a dragon K with 4 heads, cut off all
the heads, but, according to the old tradition of the genre, 3 new heads appear in
place of each of the original heads. We cut off them, and the story repeats. We do
not even try to prevent this multiplication of heads. We just fight. But contrary to
the real heros of tales, we act outside of Time and hence have no time restrictions.
Thus after infinite repetitions of the exercise with an exponentially growing number
of heads we succeed! No heads left! This is a typical story about an infinite construc-
tion in mathematics. Sometimes, as in our case, such a construction can be replaced
by a finite one, but which deals with infinite objects. However, there are important
constructions, in which an infinite fragment is unavoidable.
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yo- The latter property of f is expressed by saying that f maps pair
(X, zq) to pair (Y,yo) and writing f : (X, z0) — (Y, %0)-

Denote by f; the map Q(X,z9) — Q(Y,yo) defined by formula fi(s) =
f os. This map assigns to a loop its composition with f.

29.A. f; maps homotopic loops to homotopic loops.

Therefore f; induces a map (X, z9) = m1 (Y, o). The latter is denoted
by f..

29.B. f,:7w(X,z0) — m(Y,y0) is a homomorphism for any continuous
map f: (X, z0) = (Y, 90).

fo (X, 20) = m (Y, y0) is called a homomorphism induced by f.

29.C. Let f: (X, x9) = (Y,y0) and g : (Y, o) — (Z, 20) be (continuous)
maps. Then

(g ° f)* =g«0 fu: 7Tl(X, «’170) — 7T1(Z, ZU).

29.D. Let f,g: (X,z9) — (Y,y0) be continuous maps homotopic via a
homotopy fixed at xq. Then f, = g,.

29.E. Riddle. How to generalize Theorem 29.D to the case of freely
homotopic f and ¢7

29.F. Let f : X — Y be a continuous map, xo and x; points of X
connected by a path s : I — X. Denote f(xo) by yo and f(x1) by .
Then the diagram

(X, 20) f—> T (Y, %)

Tsl J/Tfos

f*
m(X,z1) —— m(Y,5)
is commutative, i.e., T.s 0 f = fi o Tj.

29.1. Prove that the map C~ 0 — C~ 0: z — z° is not homotopic to the
identity map CN0—=-C\0: 2+ z.

29.2. Let X be a subset of R”. Prove that a if a continuous map f: X - Y
is extentable to a continuous map R® — Y then f, : m1 (X, z0) = 71 (Y, f(20))
is the trivial homomorphism (i.e., maps everything to 1) for any zo € X.

29.3. Prove that a Hausdorff space, which contains an open set homeomor-
phic to S x S\ (1,1), has an infinite non-cyclic fundamental group.

29.3.1. Prove that a space X satisfying the conditions of 29.3 can
be continuously mapped to a space with infinite non-cyclic funda-
mental group in such a way that the map would induce an epimor-
phism of 71 (X) onto this infinite group.

29.4. Prove that the fundamental group of the space GL(n,C) of complex
n X n-matrices with non-zero determinant is infinite.
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29.4.1. Construct continuous maps S' — GL(n,C) — S, whose
composition is the identity.

Fundamental Theorem of High Algebra

Here our goal is to prove the following theorem, which at first glance has
no relation to fundamental group.

29.G Fundamental Theorem of High Algebra. Every polynomial
of a positive degree in one variable with complex coefficients has a com-
plex root.

With more details:

Let p(2) = 2" + a;2""' + -+ + a, be a polynomial of degree n > 0 in z
with complex coefficients. Then there exists a complex number w such
that p(w) = 0.

Although it is formulated in an algebraic way and called “The Funda-
mental Theorem of High Algebra,” it has no purely algebraic proof. Its
proofs are based either on topological arguments or use complex analysis.
This is because the field C of complex numbers cannot be described in
purely algebraic terms: all its descriptions involve a sort of completion
construction, cf. Section 15.

29.G.1 Reduction to Problem on a Map. Deduce Theorem 29.G from
the following statement:

For any complex polynomial p(z) of a positive degree the zero belongs to
the image of the map C — C : z — p(z). In other words, the formula
z — p(z) does not define a map C — C \ 0.

29.G.2 Estimate of Reminder. Let p(z) = 2" +a12" ' +---+a, be a
complex polynomial, ¢(z) = 2™ and r(z) = p(z) — q(z). Then there exists
a positive number R such that |r(z)| < |¢(z)| = R" for any z with |z| = R
29.G.3 Lemma on Lady with Doggy. (Cf. 23.10.) A lady ¢(z) and her
dog p(z) walk on punctured plane C\ 0 periodically (i.e., say, with z € S1).
Prove that if the lady does not let the dog to run further than by |g(z)|
from her then the doggy loop S' — C~\ 0: z + p(z) is homotopic to the
lady loop S' = C N 0: z +— ¢q(2).

29.G./ Lemma for Dummies. (Cf. 23.11.) If f : X — Y is a contin-
uous map and s : S' — X is a loop homotopic to the trivial one then
fos:S!' =Y is also homotopic to trivial.

Generalization of Intermediate Value Theorem

29.H. Riddle. How to generalize Intermediate Value Theorem 9.5 to
the case of maps f : D? — R??
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29.5. Let f : D> — R? be a continuous map which leaves fixed each point
of the bounding circle S'. Then f(D?) D> D?.

29.1. Let f: D* — R? be a continuous map. If f(S') does not contain
a € R? and the circular loop f| : S' — R? \ a defines a nontrivial element
of 7 (R? \ a) then there exists z € D? such that f(z) = a.

29.6. Let f: R? — R? be a continuous map such that |f(z) — z| < 1. Prove
that f is a surjection.

29.7. Let u,v : I — I x I be two paths such that «(0) = (0,0), u(1) = (1,1)
and v(0) = (0,1), v(1) = (1,0). Prove that u(I) Nv(I) # @.

29.7.1. Let u, v be as in 29.7. Denote by w the map I? — R?
defined by w(z,y) = u(z) — v(y). Prove that 0 € R? is a value of
w.

29.8. Let C be a smooth simple closed curve on the plane with two inflection
points. Prove that there is a line intersecting C in four points a, b, ¢, d with
segments [a, b], [b,c] and [c,d] of the same length.

Winding Number

As we know (see 28.F), the fundamental group of the punctured plane
R? \.0 is Z. There are two isomorphisms which differ by multiplication by
—1. We choose the one which maps the homotopy class of the loop ¢t —
(cos2rt,sin27rt) to 1 € Z. In terms of circular loops, the isomorphism
means that to any loop f : S' — R? \ 0 we associate an integer. It is
the number of times the loop goes arround 0 in the counter-clockwise
direction.

Now we change the viewpoint in this consideration, and fix the loop, but
vary the point. Let f : S — R? be a circular loop and z € R% ~ f(S1).
Then f defines an element of 71(R? \ ) = Z (we choose basically the
same identification of 71 (R? \ x) with Z assigning 1 to the homotopy
class of t — = + (cos 27t, sin 27t)). This number is denoted by ind(f, z)
and called winding number or index of x with respect to f.

29:A. Let f: S' — R? be a loop and z,y € R? \ f(S'). Prove that
if ind(f,z) # ind(f,y) then any path connecting x and y in R? meets

F(sh).

29:B. Find a loop f : S! — R? such that there exist z,y € R? ~ f(S!)
with ind(f,z) = ind(f,y), but lying in different connected components
of R? . f(S1).

29:C. Prove that for any ray R radiating from z the number of points
in f~Y(R) is not less than |ind(f,x)|.

Borsuk-Ulam Theorem

29:D One-Dimensional Borsuk-Ulam. For each continuous map f :
St — R! there exists x € St such that f(z) = f(—z).
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29:F Two-Dimensional Borsuk-Ulam. For each continuous map f :
5% — R? there exists x € S? such that f(z) = f(—z).

29:E:1 Lemmea. If there exists a continuous map f : §? — R? with
f(z) # f(—=z) for any x € S? then there exists a continuous map
¢ : RP? — RP! inducing a non-zero homomorphism m; (RP2?) —
71 (RP1).

29:1. Prove that at each instant of time, there is a pair of antipodal
points on the earth’s surface where the pressures and also the temper-
atures are equal.

Theorems 29:D and 29:E are special cases of the following general theo-
rem. We do not assume the reader to be ready to prove Theorem 29:F
in the full generality, but is there another easy special case?

29:F Borsuk-Ulam Theorem. For each continuous map f: S" — R”
there exists z € S™ such that f(z) = f(—z).

30. Covering Spaces via Fundamental Groups

Homomorphisms Induced by Covering Projections

30.A. Let p : X — B be a covering, g € X, by = p(rg). Then
pi : M (X, x9) — m (B, by) is a monomorphism. Cf. 27.P.

The image of the monomorphism p, : m (X, x9) — 7 (B, bg) induced by
a covering projection p : X — B is called the group of covering p with
base point xg.

30.B. Riddle on Lifting Loops. Describe loops in the base space of
a covering, whose homotopy classes belong to the group of the covering,
in terms provided by Path Lifting Theorem 27.0.

30.C. Let p: X — B be a covering, let zy,z; € X belong to the same
path-component of X, and by = p(xo) = p(z1). Then p,(m (X, z¢)) and
p«(m1 (X, x1)) are conjugate subgroups of m(B,by) (i.e. there exists an
element o of 71 (B, by) such that p,(m (X, 71)) = a™'p.(m (X, 20))a).

30.D. Let p: X — B be a covering, o € X, by = p(zo). Let a €
m1(B,by). Then there exists z3 € p~'(by) such that p.(m (X,z;)) =
o pu(mi (X, 70)

30.E. Let p: X — B be a covering in a narrow sense and G' C (B, by)
be the group of this covering with base point x,. A subgroup H C
m (B, by) is a group of the same covering, iff it is conjugate to G.
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Number of Sheets

30.F Number of Sheets and Index of Subgroup. Let p: X — B
be a covering in narrow sense with finite number of sheets. Then the
number of sheets is equal to the index of the group of this covering.

30.G Sheets and Right Cosets. Let p : X — B be a covering in
narrow sense, by € B, 1 € p '(by). Construct a natural bijection of
p1(by) and the set p,(m (X, zq))\m (B, by) of right cosets of the group
of the covering in the fundamental group of the base space.

30.1 Number of Sheets in Universal Covering. The number of sheets

of a universal covering equals the order of the fundamental group of the base
space.

30.2 Covering Means Non-Trivial m . Any topological space, which has
a nontrivial path-connected covering space, has a nontrivial fundamental

group.
30:A Action of m in Fiber. Let p : X — B be a covering, by € B.
Construct a natural right action of 7 (B, bg) in p~!(bg).

30:B. When the action in 30:A is transitive?

Hierarchy of Coverings

Let p: X — B and ¢q : Y — B be coverings, g € X, yo € Y and
p(xo) = q(yo) = bp. One says that ¢ with base point yq is subordinate to
p with base point x; if there exists a map ¢ : X — Y such that gop =1p
and ¢(x9) = yo. In this case the map ¢ is called a subordination.

30.H. A subordination is a covering map.

30.1. If a subordination exists, then it is unique. Cf. 27.0.

Coverings p : X — B and ¢ : Y — B are said to be equivalent if there
exists a homeomorphism A : X — Y such that p = g o h. In this case h
and h~! are called equivalencies

30.J. If two coverings are mutually subordinate, then the corresponding
subordinations are equivalencies.

30.K. Let p: X — B and q:Y — B be coverings, tqg € X, yg € Y
and p(zo) = q(yo) = bo. If ¢ with base point yq is subordinate to p with
base point zy then the group of covering p is contained in the group of
covering ¢, i.e. p.(m(X,20)) C qu(m1 (Y, 50)).

A topological space X is said to be locally path-connected if for each point
a € X and each neighborhood U of a there is a neighborhood V' C U
which is path-connected.
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30.L. Let B be a locally path-connected space, p: X - Bandq:Y —
B be coverings in narrow sense, xg € X, yo € Y and p(xo) = q(yo) = bo.
If p.(m1 (X, 20)) C qu(m1(Y, o)) then ¢ is subordinate to p.

30.L.1. Under the conditions of 30.L, if paths u,v : I — X have the same
initial point £y and a common final point, then the paths which cover powu
and powv and have the same initial point yg also have the same final point.

30.L.2. Under the conditions of 80.L, the map X — Y defined by .1 (guess,
what is this map!) is continuous.

30.M. Two coverings, p : X — B and ¢ : Y — B, with a common
locally path-connected base are equivalent, iff for some o € X and
yo € Y with p(x9) = q(yo) = bo the groups p.(mi (X, z0)) and g.(m1 (Y, yo))
are conjugate in (B, by).

To be finished

Automorphisms of Covering
Regular Coverings
Existence of Coverings

Lifting Maps



CHAPTER 5

More Applications and Calculations

31. Retractions and Fixed Points

Retractions and Retracts

A continuous map of a topological space onto a subspace is called a
retraction if the restriction of the map to the subspace is the identity
mapping. In other words, if X is a topological space, A C X then
p: X — Ais a retraction if it is continuous and p|A = id 4.

31.A. Let p be a continuous map of a space X onto its subspace A.
Then the following statements are equivalent:

(a) pis a retraction,

(b) p(a) = a for any a € A,

(¢) poin=idy,

(d) p:X — Ais an extension of the identity mapping A — A.

A subspace A of a space X is said to be a retract of X if there exists a
retraction X — A.

31.1. Any one-point subset is a retract.

Two-point set may be a non-retract.
31.2. Any subset of R consisting of two points is not a retract of R.
31.3. If Ais a retract of X and B is a retract of A then B is a retract of X.

31.4. If Ais aretract of X and B is a retract of Y then A x B is a retract
of X xY.

31.5. A closed interval [a, b] is a retract of R.
31.6. An open interval (a,b) is not a retract of R.

31.7. What topological properties of ambient space are inherited by a re-
tract?

31.8. Prove that a retract of a Hausdorff space is closed.

31.9. Prove that the union of Y-axis and the set {(z,y) € R? : 2 >0,y =
sin%} is not a retract of R? and moreover is not a retract of any of its
neighborhoods.

132



31. RETRACTIONS AND FIXED POINTS 133
The role of the notion of retract is clarified by the following theorem.

31.B. A subset A of a topological space X is a retract of X, iff any
continuous map A — Y to any space Y can be extended to a continuous
map X — Y.

Fundamental Group and Retractions

31.C. If p: X — A is a retraction, i : A — X is the inclusion and
xg € A, then p, : m(X,x9) — m(A,x9) Is an epimorphism and i, :
m (A, o) — m (X, z0) is a monomorphism.

31.D. Riddle. Which of the two statements of Theorem 31.C (about
P« OT i) is easier to use for proving that a set A C X is not a retract of
X7

31.E Borsuk Theorem in Dimension 2. S' is not a retract of D?.

31.10. Ts the projective line a retract of the projective plane?

The following problem is more difficult than $1.F in the sense that its solution
is not a straightforward consequence of Theorem 31.C, but rather demands
to reexamine the arguments used in proof of 31.C.

31.11. Prove that the boundary circle of Mdbius band is not a retract of
Mobius band.

31.12. Prove that the boundary circle of a handle is not a retract of the
handle.

The Borsuk Theorem in its whole generality cannot be deduced like The-
orem 31.F from Theorem 31.C. However, it can be proven using a gener-
alization of 31.C to higher homotopy groups. Although we do not assume
that you can successfully prove it now relying only on the tools provided
above, we formulate it here.

31.F Borsuk Theorem. Sphere S" ! is not a retract of ball D".

At first glance this theorem seems to be useless. Why could it be interest-
ing to know that a map with a very special property of being retraction
does not exists in this situation? However in mathematics non-existence
theorems may be closely related to theorems, which may seem to be more
attractive. For instance, Borsuk Theorem implies Brower Theorem dis-
cussed below. But prior to this we have to introduce an important notion
related to Brower Theorem.



32. HOMOTOPY EQUIVALENCES 134

Fixed-Point Property.

Let f : X — X be a continuous map. A point a € X is called a fized
point of f if f(a) = a. A space X is said to have the fized-point property
if any continuous map X — X has a fixed point. Fixed point property
means solvability of a wide class of equations.

31.13. Prove that the fixed point property is a topological property.
31.14. A closed interval [a,b] has the fixed point property.

31.15. Prove that if a topological space has fixed point property then each
its retract also has the fixed-point property.

31.16. Prove that if topological spaces X and Y have fixed point property,
79 € X and yo € Y, then XTI Y /5y, ~ yo 2lso has the fixed point property.

31.17. Prove that R" with n > 0 does not have the fixed point property.
31.18. Prove that S™ does not have the fixed point property.

31.19. Prove that RP™ with odd n does not have the fixed point property.
31.20%*. Prove that CP™ with odd n does not have the fixed point property.

Information. RP™ and CP™ with any even n have the fixed point
property.
31.G Brower Theorem. D" has the fixed point property.

31.H. Deduce from Borsuk Theorem in dimension n (i.e., from the state-
ment that S™"~' is not a retract of D") Brower Theorem in dimension n
(i.e., the statement that any continuous map D™ — D" has a fixed point).

32. Homotopy Equivalences

Homotopy Equivalence as Map

Let X and Y be topological spaces, f : X — Y and g : Y — X contin-
uous maps. Consider compositions fog:Y — Y and go f : X — X.
They would be equal to the corresponding identity maps, if f and g were
homeomorphisms inverse to each other. If fog and go f are only homo-
topic to the identity maps then f and ¢ are said to be homotopy inverse
to each other. If a continuous map possesses a homotopy inverse map
then it is called homotopy invertible or a homotopy equivalence.

32.A. Prove the following properties of homotopy equivalences:

(a) any homeomorphism is a homotopy equivalence,

(b) a map homotopy inverse to a homotopy equivalence is a homotopy
equivalence,

(c) the composition of homotopy equivalences is a homotopy equiva-
lence.

32.1. Find a homotopy equivalence that is not a homeomorphism.
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Homotopy Equivalence as Relation

Topological spaces X and Y are said to be homotopy equivalent if there
exists a homotopy equivalence X — Y.

32.B. Homotopy equivalence of topological spaces is an equivalence re-
lation.

The classes of homotopy equivalent spaces are called homotopy types.
Thus homotopy equivalent spaces are said to be of the same homotopy

type.
32.2. Prove that homotopy equivalent spaces have the same number of path-
connected components.

32.3. Prove that homotopy equivalent spaces have the same number of con-
nected components.

32.4. Find infinite series of topological spaces belonging to the same homo-
topy type, but pairwise non-homeomorphic.

Deformation Retraction

A retraction p, which is homotopy inverse to the inclusion, is called a
deformation retraction. Since p is a retraction, one of the two conditions
from the definition of homotopy inverse maps is satisfied automatically:
its composition with the inclusion poin is equal to the identity id 4. The
other condition says that ino p is homotopic to the identity idy.

If X admits a deformation retraction onto A, then A is called a defor-
mation retract of X.

Examples

32.C. Circle S! is a deformation retract of R? ~. 0
32.5. Prove that Md&bius strip is homotopy equivalent to circle.

32.6. Prove that a handle is homotopy equivalent to a union of two circles
intersecting in a single point.

32.7. Prove that a handle is homotopy equivalent to a union of three arcs
with common end points (i.e., letter 6).

32.8. Classify letters of Latin alphabet up to homotopy equivalence.

32.D. Prove that a plane with s points deleted is homotopy equivalent
to a union of s circles intersecting in a single point.

32.E. Prove that the union of a diagonal of a square and the contour of
the same square is homotopy equivalent to a union of two circles inter-
secting in a single point.
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32.9. Prove that the space obtained from S? by identification of a two (dis-
tinct) points is homotopy equivalent to the union of a two-dimensional sphere
and a circle intersecting in a single point.

32.10. Prove that the space {(p,q) € C : 2°+ pz + ¢ has two distinct roots}
of quadratic complex polynomials with distinct roots is homotopy equivalent
to the circle.

32.11. Prove that the space GL(n,R) of invertible n x n real matrices is
homotopy equivalent to the subspace O(n) consisting of orthogonal matrices.

Deformation Retraction Versus Homotopy Equivalence

32.F. Spaces of Problem 32.F cannot be embedded one to another. On
the other hand, they can be embedded as deformation retracts to plane
with two points removed.

Deformation retractions comprise a special type of homotopy equiva-
lences. They are easier to visualize. However, as follows from 32.F,
homotopy equivalent spaces may be such that none of them can be em-
bedded to the other one, and hence none of them is homeomorphic to a
deformation retract of the other one. Therefore deformation retractions
seem to be not sufficient for establishing homotopy equivalences.

Though it is not the case:

32.12%. Prove that any two homotopy equivalent spaces can be embedded
as deformation retracts to the same topological space.

Contractible Spaces

A topological space X is said to be contractible if the identity mapid : X — X
is homotopic to a constant map.

32.13. Show that R and I are contractible.

32.14. Prove that any contractible space is path-connected.

32.15. Prove that the following three statements about a topological space
X are equivalent:

(a) X is contractible,

(b) X is homotopy equivalent to a point,

(c) there exists a deformation retraction of X onto a point,

(d) any point a of X is a deformation retract of X,

(e) any continuous map of any topological space Y to X is homotopic to a

constant map,
(f) any continuous map of X to any topological space Y is homotopic to a
constant map.

32.16. Is it right that if X is a contractible space then for any topological
space Y

(a) any two continuous maps X — Y are homotopic?
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(b) any two continuous maps ¥ — X are homotopic?

32.17. Check if spaces of the following list are contractible:

R™,

a convex subset of R”,

a star convex subset of R,

{(zay) € ]RZ : $2 _y2 S 1}7

a finite tree (i.e., a connected space obtained from a finite collection
of closed intervals by some identifying of their end points such that
deleting of an internal point of each of the segments makes the space
disconnected.)

oo T W

32.18. Prove that X x Y is contractible, iff both X and Y are contractible.

Fundamental Group and Homotopy Equivalences

32.G. Let f : X — Y and g : Y — X be homotopy inverse maps,
xg € X and yy € Y be points such that f(zo) = yo and g(yo) = o
and, moreover, the homotopies relating f o g toidy and go f to idx are
fixed at y, and xq, respectively. Then f, and g, are inverse to each other
isomorphisms between groups (X, x¢) and 7 (Y, yq).

32.H Corollary. If p : X — A is a strong deformation retraction,
xo € A, then p, : m(X,z9) — m (A, x0) and in, : m (A4, o) = 7 (X, 20)
are isomorphisms inverse to each other.

32.19. Calculate the fundamental group of the following spaces:

Mobius strip,

R W R,

RN (R,

R3 ST,

RN < S7,

S3 St

SN Sk,

RP3 \ RP',

handle,

sphere with s holes,

Klein bottle with a point removed,
Mobius strip with s holes.

=R s Ao T W
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32.20. Prove that the boundary of the Md&bius band standardly embedded
in R® (see 18.18) could not be the boundary of a disk embedded in R? in such
a way that its interior does not intersect the band.

32.21. Calculate the fundamental group of the space of all the complex
polynomials az? + bxr + ¢ with distinct roots. Calculate the fundamental
group of the subspace of this space consisting of polynomials with a = 1.

32.22. Riddle. Can you solve 32.21 along deriving of the formular for roots
of quadratic trinomial?

32.1. What if the hypothesis of Theorem 32. G were weakened as follows:
9(yo) # xo and/or the homotopies relating f o g to idy and go f to idx
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are not fixed at o and xg, respectively? How would f, and ¢, be related?
Would 7 (X, z¢) and (Y, yo) be isomorphic?

33. Cellular Spaces

Definition of Cellular Spaces

In this section we study a class of topological spaces, which play an
important role in algebraic topology. Their role in the context of this
book is more restricted: this is the class of spaces for which we learn how
to calculate the fundamental group.

This class of spaces was introduced by J.H.C.Whitehead. He called these
spaces CW -complexes, and they are known under this name. However,
for many reasons it is not a good name. For very rare exceptions (one of
which is CTW-complex, other is simplicial complex), the word complex is
used nowadays for various algebraic notions, but not for spaces.

We have decided to usethe term cellular space instead of CW-complexes,
following D. B. Fuchs and V. A. Rokhlin, Beginner’s Course in Topology:
Geometric Chapters. Berlin; New York: Springer-Verlag, 1984.

A zero-dimensional cellular space is just a discrete space. Points of a
0-dimensional cellular space are also called (zero-dimensional) cells or
0-cells.

A one-dimensional cellular space is a space, which can be obtained as
follows. Take any 0-dimensional cellular space X,. Take a family of maps
0 : SY — Xj. Attach to Xy by ¢, the sum of a family of copies of D*
(indexed by the same indices « as the maps ¢, ):

XoU,, (I,DY).

The images of the interior parts of copies of D' are called (open) 1-
dimensional cells, or 1-cells, or edges. The subsets obtained out of D!
are called closed 1-cells. The cells of Xy (i.e., points of Xg) are also
called vertices. Open 1-cells and 0-cells comprise a partition of a one-
dimensional cellular space. This partition is included in the notion of
cellular space, i.e., a one-dimensional cellular space is a topological space
equipped with a partition, which can be obtained in this way.

One-dimensional cellular spaces are associated also with the term graph.
However, rather often this term is used for one-dimensional cellular spaces
either equipped with additional structures (like orientations on edges),
or satisfying to additional restrictions (such as injectivity of ¢, ).
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A two-dimensional cellular space is a space, which can be obtained as
follows. Take any cellular space X; of dimension < 1. Take a family of
continuous' maps ¢, : S — X;. Attach to X; by ¢, the sum of a family
of copies of D?:

X, U,, (I1,D?%).

The images of the interior parts of copies of D? are called open 2-
dimensional cells, or 2-cells, or faces. The cells of X, are also considered
as cells of the 2-dimensional cellular space. A set obtained out of a copy
of D? is called a closed 2-cell. Open cells of both kinds comprise a par-
tition of a 2-dimensional cellular space. This partition is included in the
notion of cellular space, i.e., a two-dimensional cellular space is a topo-
logical space equipped with a partition, which can be obtained in the
way described above.

A cellular space of dimension n is defined in a similar way: This is a
space equipped with a partition. It can be obtained from a cellular space
X,,_1 of dimension < n by attaching a family of copies of ball D" by a
family of continuous maps of their boundary spheres:

Xp—1 Uy, (IL,D").

The images of interior parts of the attached n-dimensional balls are
called (open) n-dimensional cells, or n-cells. The images of the whole
n-dimensional balls are called closed n-cells.  Cells of X,_; are also
considered as cells of the n-dimensional cellular space.

A cellular space is obtained as a union of increasing sequence of cellular
spaces Xg C X; C -+ C X,, C ... obtained in this way from each other.
The sequence may be finite or infinite. In the latter case topological
structure is introduced by saying that the cover of the union by X,’s
is fundamental, i.e., that a set U C U;2 X, is open, iff its intersection
U N X, with each X,, is open in X,.

The union of all cells of dimension < n of a cellular space X is called
the n-dimensional skeleton of X. This term may be misleading, since n-
dimensional skeleton may be without cells of dimension n, hence it may
coincide with (n — 1)-dimensional skeleton. Thus n-dimensional skeleton
may have dimension < n. Therefore it is better to speak about n-th
skeleton or n-skeleton. Cells of dimension n are called also n-cells. A
cellular space is said to be finite if it contains a finite number of cells. A
cellular space is said to be locally finite if any its point has a neighborhood
which intersects a finite number of cells. A cellular space is said to be
countable if it contains a countable number of cells. Let X be a cellular
space. A subspace A C X, which can be presented both as a union

LAbove, in the definition of 1-dimensional cellular space, the restriction of continuity
for ¢, also could be stated, but it would be empty, since any map of S° to any space
is continuous.
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of closed cells and a union of open cells, is called a cellular subspace
of X. Of course, it is provided with a partition into the open cells of
X contained in A. Obviously, the k-skeleton of a cellular space X is a
cellular subspace of X.

33.A. Prove that a cellular subspace of a cellular space is a cellular
space.

First Examples

33.B. A cellular space consisting of two cells, one 0-dimensional and
one n-dimensional, is homeomorphic to S™.

33.C. Present D™ with n > 0 as a cellular space made of three cells.

33.D. A cellular space consisting of a single zero-dimensional cell and ¢
one-dimensional cells is a bouquet of ¢ circles.

33.E. Present torus S' x S! as a cellular space with one 0O-cell, two
1-cells, and one 2-cell.

33.F. How to obtain a presentation of torus S x S' as a cellular space
with 4 cells from a presentation of S! as a cellular space with 2 cells?

33.1. Prove that if X and Y are finite cellular spaces then X x Y can be
equipped in a natural way with a structure of finite cellular space.

33.2%  Does the statement of 8.1 remain true if one skips the finiteness
condition in it? If yes, prove; if no, find an example when the product is not
a cellular space.

33.G. Present sphere S™ as a cellular space such that spheres S° C St C
52 C .- S™ ! are its skeletons.

33.H. Present RP™ as a cellular space with n + 1 cells. Describe the
attaching maps of its cells.

33.3. Present CP" as a cellular space with n+1 cells. Describe the attaching
maps of its cells.

33.4. Present the following topological spaces as cellular ones

) handle,

) Mbobius strip,

) StxI,

) sphere with p handles,

) sphere with p crosscaps.

33.5. What is the minimal number of cells in a cellular space homeomorphic
to

(a) Mobius strip,
(b) sphere with p handles,
(c) sphere with p crosscaps?
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33.6. Find a cellular space, in which a closure of a cell is not equal to a union
of other cells. What is the minimal number of cells in a space containing a
cell of this sort?

33.7. Consider a disjoint sum of a countable collection of copies of closed
interval I and identify the copies of 0 in all of them. Present the result
(which is the bouquet of the countable family of intervals) as a countable
cellular space. Prove that this space is not first countable.

33.1. Present R! as a cellular space.

33.8. Prove that for any two cellular spaces homeomorphic to R! there exists
a homeomorphism between them mapping each cell of one of them homeo-
morphically onto a cell of the other one.

33.J. Present R" as a cellular space.

Denote by R*® the union of the sequence of Euclidean spaces R® ¢ R! C

- C R* C canonically included to each other: R* = {zr € R*"! :
ZTpr1 = 0}. Equip R® with the topological structure, for which the
spaces R" comprise a fundamental cover.

33.K. Present R*™ as a cellular space.

More Two-Dimensional Examples

Let us consider a class of 2-dimensional cellular spaces, which admit a
simple combinatorial description. Each space of this class can be pre-
sented as a quotient space of a finite family of convex polygons by identi-
fication of sides via affine homeomorphisms. The identification of vertices
is defined by the identification of the sides. The quotient space is natu-
rally equipped with decomposition into 0-cells, which are the images of
vertices, 1-cells, which are the images of sides, and faces, the images of
the interior parts of the polygons.

To describe such a space, one needs, first, to show, what sides are to
be identified. Usually this is indicated by writing the same letters at the
sides that are to be identified. There are only two affine homeomorphisms
between two closed intervals. To specify one of them, it is enough to show
orientations of the intervals which are identified by the homeomorphism.
Usually this is done by drawing arrows on the sides. Here is a description
of this sort for the standard presentation of torus S* x S' as the quotient
space of square:

It is possible to avoid a picture by a description. To do this, go around
the polygons counter-clockwise writing down the letters, which stay at
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the sides of polygon along the contour. The letters corresponding to the
sides, whose orientation is opposite to the counter-clockwise direction,
put with exponent —1. This gives rise to a collection of words, which
contains a sufficient information about the family of polygons and the
partition. For instance, the presentation of torus shown above is encoded
by the word ab ta 'b.

33.9. Prove that:

word a~'a describes a cellular space homeomorphic to S2,
word aa describes a cellular space homeomorphic to RP?,
word aba~'b~ !¢ describes a handle,

word abeb~! describes cylinder S x I,

each of the words aab and abac describe Mobius strip,
word abab describes a cellular space homeomorphic to RP?,
each of the words aabb and ab~'ab describe Klein bottle,
word

SR o o T W

-1

alblal_lbl_lagbga;lbgl o agbgag_lbg .

describes sphere with g handles,
(i) word aiaiasas ... a4a, describes sphere with g crosscaps.

Topological Properties of Cellular Spaces

33:A. Closed cells comprise a fundamental cover of a cellular space.

33:B. If A is cellular subspace of a cellular space X then A is closed in
X.

33:C. Prove that any compact subset of a cellular space intersects a
finite number of cells.

33:D Corollary. A cellular space is compact, iff it is finite.

33:E. Any cell of a cellular space is contained in a finite cellular subspace
of this space.

33:F. Any compact subset of a cellular space is contained in a finite
cellular subspace.

33:G. A cellular space is separable, iff it is countable.

33:H. Any path-connected component of a cellular space is a cellular
subspace.

33:1. Any path-connected component of a cellular space is both open
and closed. It is a connected component. In particular, a cellular space
is path-connected, iff it is connected.

33:J. Any connected locally finite cellular space is countable.
33:K. A cellular space is connected, iff its 1-skeleton is connected.

33:L. Any cellular space is normal.
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Embedding to Euclidean Space

33.L. Any countable O-dimensional cellular space can be embedded into
R.

33.M. Any countable locally finite 1-dimensional cellular space can be
embedded into R?.

33.10. Find a 1-dimensional cellular space, which you cannot embed into
R?. (We do not ask to prove that it is impossible to embed.)

33.N. Any finite dimensional countable locally finite cellular space can
be embedded into Euclidean space of sufficiently high dimension.

33.N.1. Let X and Y be topological spaces such that X can be embedded
into R? and Y can be embedded into R?. Let A be a closed subset of
Y. Assume that A has a neighborhood U in Y such that there exists a
homeomorphism h : Cl1U — A x I mapping A to A x 0. Let p: A = X

be any continuous map. Then there exists an embedding of X U, Y into
Rp+a+1

33.N.2. Let X be a locally finite countable k-dimensional cellular space
and A be its (k — 1)-skeleton. Prove that if A can be embedded to RP then
X can be embedded into RPTF+1,

33.0. Any countable locally finite cellular space can be embedded into
R>.

33.P. Any countable locally finite cellular space is metrizable.

One-Dimensional Cellular Spaces
33.Q. Any connected finite 1-dimensional cellular space is homotopy
equivalent to a bouquet of circles.

33.Q.1 Lemma. Let X be a 1-dimensional cellular space, and e its 1-cell,
which is attached by an injective map S° — Xy (i.e., it has two distinct
end points). Prove that the natural projection X — X/ is a homotopy
equivalence. Describe the homotopy inverse map explicitly.

A 1-dimensional cellular space is called a tree if it is connected and the
complement of any its 1-cell is not connected.

33.R. A cellular space X is a tree, iff there is no an embedding S* — X.

33.8. Prove that any point of a tree is a deformation retract of the tree.

33.11. Prove that any finite tree has fixed point property.

Cf. 81.14, 31.15 and 31.16.

33.12. Does the same hold true for any tree, for a finite graph?
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A cellular subspace A of a cellular space X is called a mazimal tree of X
if A is a tree and is not contained in any other cellular subspace B C X,
which is a tree.

33.T. Prove that any finite connected 1-dimensional cellular space con-
tains a maximal tree.

33.U. Prove that a cellular subspace A of a cellular space X is a maximal
tree, iff it is a tree and the quotient space X/ 4 is a bouquet of circles.

33.V. Let X be a 1-dimensional cellular space and A its cellular sub-
space. Prove that if A is a tree then the natural projection X — X/ 4 is
a homotopy equivalence.

Problems 3. T, 33.V and 33.U provide a proof of Theorem 35.0).

33:M. Prove that any 1-dimensional connected cellular space has a max-
imal tree.

33:N. Any connected one-dimensional cellular space is homotopy equiv-
alent to a bouquet of circles.

33:0. Prove that if T is a tree and a cellular subspace of a cellular space
X then the natural projection X — X /7 is a homotopy equivalence.

33:P. Any connected cellular space is homotopy equivalent to a cellular
space with 0-skeleton consisting of one point.

Euler Characteristic

Let X be a finite cellular space. Let ¢;(X) denote the number of its cells
of dimension i. Euler characteristic of X is the alternating sum of ¢;(X):

X(X) = co(X) — 1 (X) +ea(X) — o+ (=1)'es(X) + ...

33:Q). Prove that Euler characteristic is additive in the following sense:
for any cellular space X and its finite cellular subspaces A and B

X(AUB) = x(A) + x(B) = x(AN B).

33:R. Prove that Euler characteristic is multiplicative in the following
sense: for any finite cellular spaces X and Y the Euler characteristic of
their product X x Y is x(X)x(Y).

33.W. A finite connected cellular space X of dimension one is homotopy
equivalent to the bouquet of 1 — x(X) circles.



34. FUNDAMENTAL GROUP OF A CELLULAR SPACE 145

34. Fundamental Group of a Cellular Space

One-Dimensional Cellular Spaces

34.A. If X is a finite 1-dimensional cellular space, then m1(X) is a free
group of rank 1 — x(X).

34.B. Homotopy Classification of Finite 1-Dimensional Cel-
lular Spaces. Two finite 1-dimensional cellular spaces are homotopy
equivalent, iff their FEuler characteristics are equal.

34.1. Prove that the fundamental group of 2-dimensional sphere with n
points removed is a free group of rank n — 1.

34.2 Euler Theorem. For any bounded convex polyhedron in R? the num-
ber of edges plus 2 is equal to the sum of the numbers of vertices and faces.

34.C. Let X be a finite 1-dimensional cellular space, T" a maximal tree
of X and xy € T'. For each cell e C X \.T choose a loop s,, which starts
at xp, goes inside T" to e, then goes once along e and then comes back to
xo in T. Prove that m (X, xg) is freely generated by homotopy classes of
Se-

Generators

34.D. Let A be a topological space, o € A. Let ¢ : S¥=! — A be a
continuous map, X = AU, D*. Prove that if £ > 1 then the inclusion
homomorphism 7 (A, zy) — 71 (X, z¢) is surjective. Cf. .5, .4.

34.E. Let X be a cellular space, x, its O-cell and X, the 1-skeleton of
X. Then the inclusion homomorphism

(X1, o) — m1 (X, Tp)
is surjective.

34.F. Let X be a finite cellular space, T" a maximal tree of X; and
xg € T. For each cell e C X ~\. T choose a loop s., which starts at x,
goes inside T" to e, then goes once along e and then comes back to xy in
T. Prove that m (X, z¢) is generated by homotopy classes of s..

34.3. Deduce Theorem 25.G from Theorem 34.F.
34.4. Find m (CP™).

Relators

Let X be a cellular space, zq its 0-cell. Denote by X,, the n-skeleton of
X. Recall that X, is obtained from X by attaching copies of disk D? by
continuous maps @, : S — X;. The attaching maps are circular loops
in X;. For each « choose a path s, : I — X; connecting ¢, (1) with .
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Denote by N the normal subgroup of (X, zy) generated (as a normal
subgroup?.) by elements

Ts.[¢a) € ™ (X1, 20).
34.G. Prove that N does not depend on the choice of paths s,.

34.H. N coincides with the kernel of the inclusion homomorphism
Ty : 7T1(X1,5170) — 7T1(X, .ZE(]).
34.H.1 Lemma 1. N C Keri,, cf. 25.J (c).

34.H.2 Lemma 2. Let p; : Y1 — X; be a covering with covering group
N. Then for any o and a point y € p; '(¢a(1)) there exists a lifting
Pa 2 ST = Y7 of @, with $u(1) = y.

34.H.3 Lemma 3. Let Y5 be a cellular space obtained by attaching copies
of disk to Y; by all liftings of attaching maps ¢,. Then there exists a map
p2 1 Yo — X5 extending p; and this is a covering.

34.H.4 Lemma 4. Any loop s: I — X; realizing an element of the kernel
of the inclusion homomorphism 7 (X7, z9) — 71 (X9, z¢) (i.e., homotopic
to constant in X5) is covered by a loop of Yo. The covering loop is contained
in Yl.

34.H.5 Lemma 5. N coincides with the kernel of the inclusion homomor-
phism st (Xl, ZE()) — 1 (XQ, ZE()).

34.H.6 Lemma 6. Attaching maps of n-cells with n > 3 are lifted to any
covering space. Cf. 27:A, 27:B.

34.H.7 Lemma 7. Covering ps : Yo — X9 can be extended to a covering
of the whole X.

34.H.8 Lemma 8. Any loop s : I — X; realizing an element of Keri,
(i.e., homotopic to constant in X)) is covered by a loop of Y. The covering
loop is contained in Y;.

Writing Down Generators and Relators

Theorems &4.F and 34.H imply the following prescription for writing
down presentation for the fundamental group of a finite dimensional cel-
lular space by generators and relators:

Let X be a finite cellular space, xy its O-cell. Let T a maximal tree of
1-skeleton of X. For each 1-cell e ¢ T of X choose a loop s., which
starts at xg, goes inside T to e, then goes once along e and then comes
back to x¢ in T. Let g1, ..., g, be the homotopy classes of these loops.

2Recall that a subgroup is said to be normal if it coincides with conjugate subgroups.
The normal subgroup generated by a set A is the minimal normal subgroup contain-
ing A. As a subgroup, it is generated by elements of A and elements conjugate to
them. This means that each element of this normal subgroup is a product of elements
conjugate to elements of A
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Let ¢1,...,0, : St — X, be attaching maps of 2-cells of X. For each ¢,
choose a path s; connecting ;(1) with zq in 1-skeleton of X. Express the
homotopy class of the loop s; '¢;s; as a product of powers of generators

gj. Let ry, ..., r, are the words in letters g;, ..., g, obtained in this
way. The fundamental group of X is generated by g1, ..., g, which are
subject to defining relators ry =1, ..., r, = L.

34.1. Check that this rule gives correct answers in the cases of RP™ and
S1x St for the cellular presentations of these spaces provided in Problems
33.H and 33.E.

Fundamental Groups of Basic Surfaces

34.J. The fundamental group of a sphere with g handles admits presen-
tation

{al,bl, as, bg, c. Clg,bg :

-1 _
, =1}

arbra; by tagboay byt .agbgag_lb
34.K. The fundamental group of a sphere with g crosscaps admits pre-

sentation
. 2.2 2 _
{al,ag,...ag Dajay ... ay = 1}.

34.L. Prove that fundamental groups of spheres with different number
of handles are not isomorphic.

When one needs to prove that two finitely presented groups are not iso-
morphic, one of the first natural moves is to abelianize the groups. Recall
that to abelianize a group G means to quotient it out by the commutator
subgroup. The commutator subgroup [G, G] is the normal subgroup gen-
erated by commutators a~'b~'ab for all a,b € G. Abelianization means
adding relations that ab = ba for any a,b € G.

Abelian finitely generated groups are well known. Any finitely generated
abelian group is isomorphic to a product of a finite number of cyclic groups.
If the abelianized groups are not isomorphic then the original groups are
not isomorphic as well.

34.L.1. Abelianized fundamental group of a sphere with g handles is a free
abelian group of rank 2¢ (i.e., is isomorphic to Z29).

34.L.2. Prove that fundamental groups of spheres with different number
of crosscaps are not isomorphic.

34.L.3. Abelianized fundamental group of a sphere with ¢ crosscaps is
isomorphic to Z9~! x Zo.

34.M. Spheres with different numbers of handles are not homotopy
equivalent.
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34.N. Spheres with different numbers of crosscaps are not homotopy
equivalent.

34.0. A sphere with handles is not homotopy equivalent to a sphere
with crosscaps.

If X is a path-connected space then the abelianized fundamental group of
X is called the 1-dimensional (or first) homology group of X and denoted
by Hy(X). If X is not path-connected then H;(X) is the direct sum of
the first homology groups of all path-connected components of X. Thus
.1 can be rephrased as follows: if F, is a sphere with ¢g handles then
H,(F,) =7Z*.

Seifert - van Kampen Theorem

Let X be a connected cellular space, A and B its cellular subspaces which
cover X. Denote AN B by C.

34:A. How fundamental groups of X, A, B and C are related?

34:B Seifert - van Kampen Theorem. Suppose A, B, and C are
connected. Let xy € C,

m(A,z0) ={a1,...,0p : p1=1,...,p, =1},

m(B,zo) ={B1,...,84 : o1 =1,...,0, =1},
and 71 (C,xo) be generated by i, ... 7. Let the images of ; under
the inclusion homomorphisms m1(C, z9) — w1 (A, zo) and 7 (C,zy) —
w1 (B, o) be expressed as (o, ..., 0p) and 0;(Bi,. .., By), respectively.
Then

m(X) ={a1,...,0,01,...,5¢ :
pr=1...,00=1Lo1=1,...,0,=1,
gl:nla"'agt:nt}'

34:C. Let X, A, B and C be as above. Suppose A, B are simply con-
nected and C consists of two path connected components. Prove that
m1(X) is isomorphic to Z.

To write details: van Kampen published much more gen-
eral theorem!

35. One-Dimensional Homology and Cohomology

Sometimes the fundamental group contains too much information to deal
with, and it is more convinient to ignore a part of this information. A
regular way to do his is to use some of the natural quotient groups of the
fundamental group. One of the quotients, the abelianized fundamental
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group, was introduced and used in Section 34 to prove, in particular, that
spheres with different numbers of handles are not homotopy equivalent,
see Problems 34.L, .1-.3 and 34.M.

Recall that for a path-connected space X the abelianized fundamental
group of X is called its one-dimensional homology group and denoted
by Hy(X). If X is an arbitrary topological space then H;(X) is the
direct sum of the one-dimensional homology groups of all the connected
components of X.

In this Section we will study the one-dimensional homology and its clos-
est relatives. Usually they are studied in the framework of homology
theory together with high-dimensional generalizations. This general the-
ory requires much more algebra and takes more time and efforts. On
the other hand, one-dimensional case is useful on its own, involves a lot
of specific details and provides a geometric intuition, which is useful, in
particular, for studying high-dimensional homology.

First, few new words. Elements of a homology group is called homology
classes. They really admit several interpretations as equivalence classes
of objects of various nature. For example, according to the definition
we start with, a homology class is a coset consisting of elements of the
fundamental group. In turn, each element of the fundamental group
consists of loops. Thus, we can think of a homology class as of a set
of loops. A loop which belongs to the zero homology class is said to be
zero-homologous. Loops, which belong to the same homology class, are
said to be homologous to each other.

35:A Zero-Homologous Loop. Let X be a topological space. A cir-
cular loop s : S' — X is zero-homologous, iff there exist a continuous
map f of a disk D with handles (i.e., a sphere with a hole and handles)
to X and a homeomorphism % of S' onto the boundary circle of D such
that foh =s.

35:A:1. In the fundamental group of a disk with handles, a loop,
whose homotopy class generates the fundamental group of the bound-
ary circle, is homotopic to a product of commutators of meridian and
longitude loops of the handles.

A homotopy between a loop and a product of commutators of loops
can be thought of as an extension of the loop to a continuous map of
a sphere with handles and a hole.

Description of Hi(X) in Terms of Free Circular Loops

Factorization by the commutator subgroup kills the difference between
translation maps defined by different paths. Therefore the abelianized
fundamental groups of a path-connected space can be naturally identified.
Hence each free loop defines a homology class. This suggests that H;(X)
can be defined starting with free loops, rather than loops at a base point.
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35:B. On the sphere with two handles and three holes shown in Figure
1 the sum of the homology classes of the three loops, which go counter-
clockwise arround the three holes, is zero.

e

FI1GURE 1. Sphere with two handles and three holes. The
boundary circles of the holes are equipped with arrows
showing the counter-clockwise orientation.

35:C Zero-Homologous Collections of Loops. Let X be a pathwise
connected space and sq,...,5, : S' = X be a collection of n free loops.
Prove that the sum of homology classes of si, ..., s, is equal to zero,
iff there exist a continuous map f : F' — X, where F' is a sphere with
handles and n holes, and embeddings i1,...,i, : S' — F parametrizing
the boundary circles of the holes in the counter-clockwise direction (as
in Figure 1) such that s, = foi, for k=1,...,n.

35:D Homologous Collections of Loops. In a topological space X
any class ¢ € Hi(X) can be represented by a finite collection of free
circular loops. Collections {u1,...,up} and {vi,...,v4} of free circular
loops in X define the same homology class, iff there exist a continuous
map f : F' — X, where F'is a disjoint sum of several spheres with handles
and holes with the total number of holes equal p + ¢, and embeddings
Wy eenylbpyqg: S ! — F parametrizing the boundary circles of all the holes
of F' in the counter-clockwise direction such that uy = f oy for k =
1,...,p andu/,;1 = foipypfork=1,...,q.

35:1. Find H,(X) for the following spaces

Mobius strip,

handle,

sphere with p handles and r holes,

sphere with p crosscaps and r holes,

the complement in R® of the circles {(z,y,z) € R® | 2 = 0,2 +
y2 =1} and {(z,y,2) € R? |z = 07'22 +(y— 1)2 =1},

(f) the complement in R® of the circles {(z,y,2) € R® | z = 0,2 +
y? =1} and {(z,y,2) € R® | 2 = 1,2% + 4> = 1},

a
b
c
d

e~ TN T~
N e —

One-Dimensional Cohomology

Let X be a path-connected topological space and G a commutative group.

35:E. The homomorphisms 7 (X,z9) — G comprise a commutative
group in which the group operation is the pointwise addition.
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The group Hom(m (X, z¢), G) of all the homomorphisms 71 (X, z0) - G
is called one-dimensional cohomology group of X with coefficients in G
and denoted by H'(X;G).

For an arbitrary topological space X, the one-dimensional cohomology
group of X with coefficients in G is defined as the direct product of
one-dimensional cohomology group with coefficients in G of all the path-
connected components of X.

35:F Cohomology via Homology. H'(X;G) = Hom(H,(X), G).

The following subsection is to be rewritten when
the section on classification of coverings will be
done!

Cohomology and Classification of Regular Coverings

Recall that a covering p : X — B is a regular G-covering if X is a
G-space, in which the orbits of the action of G are the fibers of p and
G acts effectively on each of them. Regular G-covering may be with
disconnected total space. For example, X x G — X is a regular G-
covering.

For any loop s : I — B in the base B of a regular G-covering p: X — B
there is a map My : p~!(s(0)) — p~'(s(0)) assigning to z € p~1(s(0)) the
final point of the path covering s~' and beginning at z. This map is called
the monodromy transformation of p~'(s(0)) defined by s. It coincides
with action of one of the elements of G. In this way a homomorphism
m(B) — G is defined. It is called the monodromy representaion of
the fundamental group. Thus any regular G-covering of X defines a
cohomology class belonging to H'(X; G).

35:G Cohomology and Regular Coverings. This map is a bijection
of the set of all the regular G-coverings of X onto H'(X; G).

35:2 Addition of G-Coverings. What operation on the set of regu-
lar G-coverings corresponds to addition of cohomology classes?

Integer Cohomology and Maps to S'

Let X be a topological space and f : X — S' a continuous map. It
induces a homomorphism f, : Hi(X) — Hy(S') = Z. Therefore it
defines an element of H'(X;Z).

35:H. This construction defines a bijection of the set of all the homotopy
classes of maps X — S' onto H'(X;Z).

35:1 Addition of Maps to Circle. What operation on the set of ho-
motopy classes of maps to S' corresponds to the addition in H'(X;Z)?
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35:J. What regular Z-covering of X corresponds to a homotopy class of
mappings X — S under the compositions of the bijections described in
35:H and 35:G

One-Dimensional Homology Modulo 2

Here we define yet another natural quotient group of the fundamental
group. It is even simpler than H;(X).

For a path-connected X, consider the quotient group of 1 (X) by the
normal subgroup generated by squares of all the elements of 7(X). Tt
is denoted by H;(X;Zs) and called one-dimensional homology group of
X with coefficients in Zy. For an arbitrary X, the group Hy(X;Zs) is
defined as the sum of one-dimensional homology group with coefficients
in Zq of all the path-connected components of X.

Elements of Hy(X;Zs) are called one-dimensional homology classes mod-
ulo 2 or one-dimensional homology classes with coefficients in Zs. They
can be thought of as classes of elements of the fundamental groups or
classes of loops. A loop defining the zero homology class modulo 2 is said
to be zero-homologous modulo 2.

35:K. In a disk with crosscaps the boundary loop is zero-homologous
modulo 2.

35:L Loops Zero-Homologous Modulo 2. Prove that a circular loop
s : 81 — X is zero-homologous modulo 2, iff there exist a continuous map
f of a disk with crosscaps D to X and a homeomorphism A of S onto
the boundary circle of D such that f o h = s.

35:M. If a loop is zero-homologous then it is zero-homologous modulo
2.

35:N Homology and Mod 2 Homology. H1(X;Zs) is commutative
for any X, and can be obtained as the quotient group of Hi(X) by the
subgroup of all even homology classes, i.e. elements of H;(X) of the form
2¢ with ¢ € Hi(X). Each element of is of order 2 and H;(X;Zs) is a
vector space over the field of two elements Zo.

35:3. Find H,(X;Z,) for the following spaces

Mboébius strip,

handle,

sphere with p handles,

sphere with p crosscaps,

sphere with p handles and r holes,

sphere with p crosscaps and r holes,

the complement in R? of the circles {(z,y,2) € R® | 2 = 0,22 +
y2 =1} and {(z,y,2) € R? |z = 0722 +(y— 1)2 =1},

(h) the complement in R? of the circles {(z,y,2) € R® | 2 = 0,2% +
y? =1} and {(z,y,2) € R® | 2 = 1,2 +y* =1},

P e P i VS

a
b
c
d
e
f
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35:4 Zo-Homology of Cellular Space. Deduce from the calculation
of the fundamental group of a cellular space (see Section 34) an algo-
rithm for calculation of the one-dimensional homology group with Zs
coefficients of a cellular space.

35:0 Collections of Loops Homologous Mod 2. Let X be a topo-
logical space. Any class ¢ € Hy(X;Zs) can be represented by a fi-
nite collection of free circular loops in X. Collections {uy,...,u,} and
{v1,...,v4} of free circular loops in X define the same homology class
modulo 2, iff there exist a continuous map f : F — X, where F'is a dis-
joint sum of several spheres with crosscaps and holes with the total num-
ber of holes equal p+¢, and embeddings i1, ..., %44 : S! — F parametriz-
ing the boundary circles of all the holes of F' such that uy = f o i for
k=1,...,pand vy = foipy, for k=1,...,q.

35:5. Compare 35:0 with 85:D. Why in 35:0 the counter-clockwise
direction does not appear? In what other aspects 25:0 is simpler than
35:D and why?
35:P Dwuality Between Mod 2 Homology and Cohomology.
Hl (X, Zg) = Hom(H1 (X, Zg), ZQ) = HOmZ2(H1 (X, Zg), Zg)
for any space X. If Hy(X;Zo) is finite then Hy(X;Zs) and H'(X;Zo)
are finite-dimensional vector spaces over Zs dual to each other.

35:6. A loop is zero-homologous modulo 2 in X, iff it is covered by a
loop in any two-fold covering space of X.

35:Q. Riddle. Homology Modulo n? Generalize all the theory above
about Zs-homology to define and study Z,-homology for any natural n.



Part 3

Manifolds



This part is devoted to study of the most important topological spaces.
These spaces provide a scene for most of geometric branches of mathe-
matics.



CHAPTER 6

Bare Manifolds

36. Locally Euclidean Spaces

Definition of Locally Euclidean Space

Let n be a non-negative integer. A topological space X is called a locally
FEuclidean space of dimension n if each point of X has a neighborhood
homeomorphic either to R” or R} . Recall that R} = {z € R* : z; > 0},
it is defined for n > 1.

36.A. The notion of 0-dimensional locally Euclidean space coincides
with the notion of discrete topological space.

36.B. Prove that the following spaces are locally Euclidean:

R™,

any open subset of R”,
S™,

RP",

CpP™,

R?,

any open subset of R},
D",

torus St x S*,

handle,

sphere with handles,
sphere with holes,
Klein bottle,

sphere with crosscaps.

GOCORDED

—~
—

—~

A A
EE oo

— (I
N’ N N S N N N e S S S S S

36.1. Prove that an open subspace of a locally Euclidean space of dimension
n is a locally Euclidean space of dimension n.

36.2. Prove that a bouquet of two circles is not locally Euclidean.

36.C. If X is a locally Euclidean space of dimension p and Y is a locally
Euclidean space of dimension ¢ then X x Y is a locally Euclidean space
of dimension p + q.

156
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Dimension

36.D. Can a topological space be simultaneously a locally Euclidean
space of dimension both 0 and n > 07

36.E. Can a topological space be simultaneously a locally Euclidean
space of dimension both 1 and n > 17

36.3. Prove that any nonempty open connected subset of a locally Euclidean
space of dimension 1 can be made disconnected by removing two points.

36.4. Prove that any nonempty locally Euclidean space of dimension n >
1 contains a nonempty open set, which cannot be made disconnected by
removing any two points.

36.F. Can a topological space be simultaneously a locally Euclidean
space of dimension both 2 and n > 27

36.G. Let U be an open subset of R? and a p € U. Prove that m (U \
{p}) admits an epimorphism onto Z.

36.H. Deduce from 36.G that a topological space cannot be simultane-
ously a locally Euclidean space of dimension both 2 and n > 2.

We see that dimension of locally Euclidean topological space is a topo-
logical invariant at least for the cases when it is not greater than 2. It
is corrected without this restriction. However, one needs some technique
to prove this. One possibility is provided by dimension theory, see, e.g.,
W. Hurewicz and H. Wallman, Dimension Theory Princeton, NJ, 1941.
Other possibility is to generalize the arguments used in 36.H to higher
dimensions. However, this demands a knowledge of high-dimensional
homotopy groups.

36.5. Deduce that a topological space cannot be simultaneously a locally Eu-
clidean space of dimension both n and p > n from the fact that m,_; (S"7!) =
Z. Cf. 36.H

Interior and Boundary

A point a of a locally Euclidean space X is said to be an interior point of
X if a has a neighborhood (in X') homeomorphic to R”. A point a € X,
which is not interior, is called a boundary point of X.

36.6. Which points of R} have a neighborhood homeomorphic to R} 7

36.1. Formulate a definition of boundary point independent of a defini-
tion for interior point.

Let X be a locally Euclidean space of dimension n. The set of all interior
points of X is called the interior of X and denoted by int X. The set
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of all boundary points of X is called the boundary of X and denoted by
0X.

These terms (interior and boundary) are used also with different meaning,.
The notions of boundary and interior points of a set in a topological space
and the interior part and boundary of a set in a topological space are
introduced in general topology, see Section 5. They have almost nothing
to do with the notions discussed here. In both senses the terminology is
classical, which is impossible to change. This does not create usually a
danger of confusion.

Notations are not as commonly accepted as words. We take an easy
opportunity to select unambiguous notations: we denote the interior part
of a set A in a topological space X by Intx A or Int A, while the interior
of a locally Euclidean space X is denoted by int X; the boundary of a
set in a topological space is denoted by symbol Fr, while the boundary
of locally Euclidean space is denoted by symbol 0.

36.J. For a locally Euclidean space X the interior int X is an open dense
subset of X, the boundary 0X is a closed nowhere dense subset of X.

36.K. The interior of a locally Euclidean space of dimension n is a lo-
cally Euclidean space of dimension n without boundary (i.e., with empty
boundary; in symbols: d(int X') = ).

36.L. The boundary of a locally Euclidean space of dimension n is a
locally Euclidean space of dimension n — 1 without boundary (i.e., with
empty boundary; in symbols: 0(0X) = &).

36.M. intR} D {z € R* : z; >0} and
OR"! C {zr e R" : 2, =0}.

36.7. For any z,y € {x € R : x; = 0}, there exists a homeomorphism
f:RY = R} with f(z) =y.

36.N. Either OR} = @ (and then 0X = @ for any locally Euclidean
space X of dimension n), or R} = {z € R* : x; = 0}.

In fact, the second alternative holds true. However, this is not easy to
prove for any dimension.

36.0. Prove that OR! = {0}.
36.P. Prove that OR% = {z € R? : z; = 0}. (Cf. 36.G.)

36.8. Deduce that a OR? = {z € R" : z; = 0} from m,_1(S"!) = Z. (CL.
36.P, 36.5)

36.Q. Deduce from OR} = {z € R : x; = 0} for all n > 1 that
int(X xY)=int X x intY
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and
(X xY)=(0(X)xY)U (X x9Y).

The last formula resembles Leibniz formula for derivative of a product.
36.R. Riddle. Can this be a matter of chance?

36.S. Prove that

(a) (I x I) = (3 x I) U (I x dI),

(b) aD™ = S" 1,

(c) O(S'xI)=S8"xal =S'T1S!,

(d) the boundary of M&bius strip is homeomorphic to circle.

36.T Corollary. Mobius strip is not homeomorphic to cylinder S x I.

37. Manifolds

Definition of Manifold

A topological space is called a manifold of dimension n if it is

e locally Euclidean of dimension n,
e second countable,
e Hausdorff.

37.A. Prove that the three conditions of the definition are independent
(i.e., there exist spaces not satisfying any one of the three conditions and
satisfying the other two.)

37.A.1. Prove that RU; R, wherei: {z € R : z <0} — R is the inclusion,
is a non-Hausdorff locally Euclidean space of dimension one.

37.B. Check whether the spaces listed in Problem 36.B are manifolds.

A compact manifold without boundary is said to be closed. As in the case
of interior and boundary, this term coincides with one of the basic terms
of general topology. Of course, the image of a closed manifold under
embedding into a Hausdorff space is a closed subset of this Hausdorff
space (as any compact subset of a Hausdorff space). However absence
of boundary does not work here, and even non-compact manifolds may
be closed subsets. They are closed in themselves, as any space. Here
we meet again an ambiguity of classical terminology. In the context of
manifolds the term closed relates rather to the idea of a closed surface.



37. MANIFOLDS 160

Components of Manifold

37.C. A connected component of a manifold is a manifold.

37.D. A connected component of a manifold is path-connected.
37.E. A connected component of a manifold is open in the manifold.
37.F. A manifold is the sum of its connected components.

37.G. The set of connected components of any manifold is countable.
If the manifold is compact, then the number of the components is finite.

37.1. Prove that a manifold is connected, iff its interior is connected.

37.H. The fundamental group of a manifold is countable.

Making New Manifolds out of Old Ones

37.1. Prove that an open subspace of a manifold of dimension n is a
manifold of dimension n.

3%7.J. The interior of a manifold of dimension 7 is a manifold of dimen-
sion n without boundary.

37.K. The boundary of a manifold of dimension n is a manifold of di-
mension n — 1 without boundary.

37.2. The boundary of a compact manifold of dimension n is a closed man-
ifold of dimension n — 1.

37.L. 1f X is a manifold of dimension p and Y is a manifold of dimension
q then X x Y is a manifold of dimension p + q.

37.M. Prove that a covering space (in narrow sense) of a manifold is a
manifold of the same dimension.

37.N. Prove that if the total space of a covering is a manifold then the
base is a manifold of the same dimension.

37.0. Let X and Y be manifolds of dimension n, A and B components
of 0X and 9Y respectively. Then for any homeomorphism h : B — A
the space X U, Y is a manifold of dimension n.

37.0.1. Prove that the result of gluing of two copy of R} by the identity
map of the boundary hyperplane is homeomorphic to R".

37.P. Let X and Y be manifolds of dimension n, A and B closed subsets
of 0X and 0Y respectively. If A and B are manifolds of dimension n — 1
then for any homeomorphism h : B — A the space X U, Y is a manifold
of dimension n.
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Double

37.Q. Can a manifold be embedded into a manifold of the same dimen-
sion without boundary?

Let X be a manifold. Denote by DX the space X Uiqg,, X obtained by
gluing of two copies of X by the identity mapping idsx : 0X — 90X of
the boundary.

37.R. Prove that DX is a manifold without boundary of the same di-
mension as X.

DX is called the double of X.

37.5. Prove that a double of a manifold is compact, iff the original
manifold is compact.

Collars and Bites

Let X be a manifold. An embedding ¢ : 9X xI — X such that ¢(z,0) = x
for each z € 90X is called a collar of X. A collar can be thought of as a
neighborhood of the boundary presented as a cylinder over boundary.

37:A. Every manifold has a collar.

Let U be an open set in the boundary of a manifold X. For a contin-
uous function ¢ : 0X — R, with ¢~1(0,00) = U set

B, ={(z,t) € 0X xRy : t < p(z)}.
A bite on X at U is an embedding b : B, — X with some ¢ : 0X —
R, such that b(z,0) = x for each z € 9X.

This is a generalization of collar. Indeed, a collar is a bite at U = 0X
with ¢ = 1.

37:A:1. Prove that if U C 0X is contained in an open subset of X
homeomorphic to R}, then there exists a bite of X at U.

37:A:2. Prove that for any bite b : B — X of a manifold X the
closure of X \ b(B) is a manifold.

37:A:8. Let by : By — X be a bite of X and by : By — CI(X \b1(B1))
be a bite of CI(X ~\ b1(B)). Construct a bite b: B — X of X with
b(B) = bl(Bl) U bQ(BQ)

37:A:4. Prove that if there exists a bite of X at 0X then there exists
a collar of X.

37:B. For any two collars ci,cy : 0X x I — X there exists a homeomor-
phism h : X — X with h(z) = z for © € X such that hocy = cs.

This means that a collar is unique up to homeomorphism.
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37:B:1. For any collar ¢ : X x I — X there exists a collar ¢ :
0X x I — X such that ¢(z,t) = /(z,t/2).
37:B:2. For any collar ¢ : 0X x I — X there exists a homeomorphism
hiX = X Upy(en) 0X x I
with h(c(z,t)) = (z,t).

38. Isotopy

Isotopy of Homeomorphisms

Let X and Y be topological spaces, h, h' : X — Y homeomorphisms. A
homotopy h; : X — Y, t € [0,1] connecting h and h' (i.e., with hy = h,
hy = k') is called an isotopy between h and b’ if h; is a homeomorphism
for each ¢ € [0,1]. Homeomorphisms h, h" are said to be isotopic if there
exists an isotopy between h and A'.

38.A. Being isotopic is an equivalence relation on the set of homeomor-
phisms X — Y.

38.B. Find a topological space X such that homotopy between homeo-
morphisms X — X does not imply isotopy.

This means that isotopy classification of homeomorphisms can be more
refined than homotopy classification of them.
38.1. Classify homeomorphisms of circle S' to itself up to isotopy.

38.2. Classify homeomorphisms of line R' to itself up to isotopy.

The set of isotopy classes of homeomorphisms X — X (i.e. the quotient
of the set of self-homeomorphisms of X by isotopy relation) is called the
mapping class group or homeotopy group of X.

38.C. For any topological space X, the mapping class group of X is a
group under the operation induced by composition of homeomorphisms.

38.3. Find the mapping class group of the union of the coordinate lines in
the plane.

38.4. Find the mapping class group of the union of bouquet of two circles.

Isotopy of Embeddings and Sets

Homeomorphisms are topological embeddings of special kind. The notion
of isotopy of homeomorphism is extended in an obvious way to the case
of embeddings. Let X and Y be topological spaces, h,h' : X — Y
topological embeddings. A homotopy h; : X — Y, ¢ € [0, 1] connecting
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h and h' (i.e., with hy = h, hy = k') is called an (embedding) isotopy
between h and h' if h; is an embedding for each ¢ € [0,1]. Embeddings
h, h' are said to be isotopic if there exists an isotopy between h and h'.

38.D. Being isotopic is an equivalence relation on the set of embeddings
X =Y.

A family A;, t € I of subsets of a topological space X is called an isotopy
of the set A = Ay, if the graph T' = {(z,t) € X x I'|z € A;} of the
family is fibrewise homeomorphic to the cylinder A x I, i. e. there exists
a homeomorphism A x I — I" mapping A x {t} to ' N X x {t} for any
t € I. Such a homeomorphism gives rise to an isotopy of embeddings
O, A — X, t el with &g =in, &,(A) = A;. An isotopy of a subset
is also called a subset isotopy. Subsets A and A’ of the same topological
space X are said to be isotopic in X, if there exists a subset isotopy A,
of A with A" = A;.

38.E. 1t is easy to see that this is an equivalence relation on the set of
subsets of X.

As it follows immediately from the definitions, any embedding isotopy
determines an isotopy of the image of the initial embedding and any
subset isotopy is accompanied with an embedding isotopy. However the
relation between the notions of subset isotopy and embedding isotopy is
not too close because of the following two reasons:

(a) an isotopy ®; accompanying a subset isotopy A; starts with the
inclusion of Ay (while arbitrary isotopy may start with any embed-
ding);

(b) an isotopy accompanying a subset isotopy is determined by the sub-
set isotopy only up to composition with an isotopy of the identity
homeomorphism A — A (an isotopy of a homeomorphism is a special
case of embedding isotopies, since homeomorphisms can be consid-
ered as a sort of embeddings).

An isotopy of a subset A in X is said to be ambient, if it may be accom-
panied with an embedding isotopy ®; : A — X extendible to an isotopy
®, : X — X of the identity homeomorphism of the space X. The isotopy
®, is said to be ambient for ®,. This gives rise to obvious refinements of
the equivalence relations for subsets and embeddings introduced above.

38.F. Find isotopic, but not ambiently isotopic sets in [0, 1].

38.G. If sets Ay, A, C X are ambiently isotopic then the complements
X N A; and X \ A, are homeomorphic and hence homotopy equivalent.
38.5. Find isotopic, but not ambiently isotopic sets in R.
38.6. Prove that any isotopic compact subsets of R are ambiently isotopic.

38.7. Find isotopic, but not ambiently isotopic compact sets in R>.
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38.8. Prove that any two embeddings S' — R?® are isotopic. Find embed-
dings S' — R3 that are not ambiently isotopic.

Isotopies and Attaching

38:A. Any isotopy h; : 0X — 0X extends to an isotopy H; : X — X.

38:B. Let X and Y be manifolds of dimension n, A and B components
of 0X and QY respectively. Then for any isotopic homeomorphisms
f,9: B — A the manifolds X Uy Y and X Uy Y are homeomorphic.

38:C. Let X and Y be manifolds of dimension n, let B be a compact
subset of JY. If B is a manifold of dimension n — 1 then for any embed-
dings f,g : B — 0X ambiently isotopic in X the manifolds X U;Y and
X Uy Y are homeomorphic.

Connected Sums

38.H. Let X and Y be manifolds of dimension n, and ¢ : R* — X,
1 : R" - Y be embeddings. Then
X N gO(IIlt Dn) Usp(5m) = X ~p(Int D™):9p(a)— () Y 7,/)(111'6 Dn)

is a manifold of dimension n.

This manifold is called a connected sum of X and Y.

38.1. Show that the topological type of the connected sum of X and Y
depends not only on the topological types of X and Y.

38.J. Let X and Y be manifolds of dimension n, and ¢ : R" — X,
Y : R* — Y be embeddings. Let h : X — X be a homeomorphism.
Then the connected sums of X and Y defined via ¢ and ¢, on one hand,
and via ¢ and h o ¢, on the other hand, are homeomorphic.

38.9. Find pairs of manifolds connected sums of which are homeomorphic
to

(a) S,
(b) Klein bottle,
(c) sphere with three crosscaps.

38.10. Find a disconnected connected sum of connected manifolds. De-
scribe, under what circumstances this can happen.

39. One-Dimensional Manifolds

Zero-Dimensional Manifolds

This section is devoted to topological classification of manifolds of dimen-
sion one. We skip the case of 0-dimensional manifolds due to triviality
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of the problem. Indeed, any 0-dimensional manifold is just a countable
discrete topological space, and the only topological invariant needed for
topological classification of O-manifolds is the number of points: two 0-
dimensional manifolds are homeomorphic, iff they have the same number
of points.

The case of 1-dimensional manifolds is also simple, but it requires more
detailed consideration.

Reduction to Connected Manifolds

Since each manifold is the sum of its connected components, two mani-
folds are homeomorphic if and only if there exists a one-to-one correspon-
dence between their components such that the corresponding components
are homeomorphic. Therefore for topological classification of n-manifolds
it suffices to classify only connected n-manifolds.

Examples

39.A. What connected 1-manifolds do you know?

(a) Do you know any closed connected 1-manifold?

(b) Do you know a connected compact 1-manifold, which is not closed?
(c) What non-compact connected 1-manifolds do you know?

(d) Is there a non-compact connected 1-manifolds with boundary?

39.B. Fill the following table with pluses and minuses.

Manifold X | Is X compact? | Is X empty?

S 1
Rl
1
R}

Statements of Main Theorems

39.C. Any connected manifold of dimension 1 is homeomorphic to one
of the following for manifolds:

circle S*,
line R,
interval I,
half-line R!. .

This theorem may be splitted into the following four theorems:
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39.D. Any closed connected manifold of dimension 1 is homeomorphic
to circle S*.

39.E. Any non-compact connected manifold of dimension 1 without
boundary is homeomorphic to line R*.

39.F. Any compact connected manifold of dimension 1 with nonempty
boundary is homeomorphic to interval I.

39.G. Any non-compact connected manifold of dimension one with non-
empty boundary is homeomorphic to half-line RY, .

Lemma on 1-Manifold Covered with Two Lines

39.H Lemma. Any connected manifold of dimension 1 covered with two
open sets homeomorphic to RY is homeomorphic either to R, or S*.

Let X be a connected manifold of dimension 1 and U,V C X be its open
subsets homeomorphic to R. Denote by W the intersection U N'V. Let
@:U — Rand 9 :V — R be homeomorphisms.

39.H.1. Prove that each connected component of ¢ (W) is either an open
interval, or an open ray, or the whole R.

39.H.2. Prove that a homeomorphism between two open connected subsets
of R is a (strictly) monotone continuous function.

39.H.3. Prove that if a sequence z,, of points of W converges to a point
a € U~ W then it does not converge in V.

39.H.j. Prove that if there exists a bounded connected component C of
@(W) then C = (W), V =W, X =U and hence X is homeomorphic to
R.

39.H.5. In the case of connected W and U # V, construct a homeomor-
phism X — R which takes:

e W to (0,1),
¢ U to (0,400), and
e Vto (—o0,1).

39.H.6. In the case of W consisting of two connected components, con-
struct a homeomorphism X — S', which takes:

e Wto{zeS': —-1/v/2 <Im(z) < 1/v2},
e Uto{z€S': —1/v/2 < Im(z)}, and
e Vito{zeS': Im(z) <1/v2}.

Without Boundary

39.D.1. Deduce Theorem 39.D from Lemma 39.G.
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39.E.1. Deduce from Lemma 39.G that for any connected non-compact
one-dimensional manifold X without a boundary there exists an embedding
X — R with open image.

39.E.2. Deduce Theorem 39.F from .1.

With Boundary
39.F.1. Prove that any compact connected manifold of dimension 1 can be
embedded into S'.
39.F.2. List all connected subsets of S.
39.F.3. Deduce Theorem 39.F from .2, and .1.

39.G.1. Prove that any non-compact connected manifold of dimension 1
can be embedded into R'.

39.G.2. Deduce Theorem 39.G from .1.

Consequences of Classification

39.1. Prove that connected sum of closed 1-manifolds is defined up
homeomorphism by topological types of summands.

39.J. Which 0-manifolds bound a compact 1-manifold?

Mapping Class Groups

39.K. Find the mapping class groups of

(a) S,
(c) RL,
(d) [0,1]

39.1. Find the mapping class group of an arbitrary 1-manifold with finite
number of components.

40. Two-Dimensional Manifolds

Examples

40.A. What connected 2-manifolds do you know?

(a) List closed connected 2-manifold that you know.

(b) Do you know a connected compact 2-manifold, which is not closed?
(c) What non-compact connected 2-manifolds do you know?

(d) Is there a non-compact connected 2-manifolds with boundary?



40. TWO-DIMENSIONAL MANIFOLDS 168

40.1. Construct non-homeomorphic non-compact connected manifolds of di-
mension two without boundary and with isomorphic infinitely generated fun-
damental group.

Ends and Odds

Let X be a non-compact Hausdorff topological space, which is a union
of an increasing sequence of its compact subspaces
cCicCyC---CcC,C---CX.

Each connected component U of X \ C), is contained in some connected
component of X \ C),,_1. A decreasing sequence Uy D Us D --- DU, D
. of connected components of

(XNC)D(XNCy) D D(XNCy)D...
respectively is called an end of X with respect to C1 C --- C Cp, C ...

40:A. Let X and C),, be as above, D be a compact set in X and V a
connected component of X ~ D. Prove that there exists n such that
D c C,,.

40:B. Let X and C,, be as above, D, be an increasing sequence of
compact sets of X with X = U>%,D,. Prove that for any end U; D

- D U, D ... of X with respect to C,, there exists a unique end
Vid-- DV, D ... of X with respect to D, such that for any p
there exists ¢ such that V, C U,.

40:C. Let X, C, and D,, be as above. Then the map of the set of ends of
X with respect to C}, to the set of ends of X with respect to D,, defined
by the statement of 40:B is a bijection.

Theorem 40:C allows one to speak about ends of X without specifying
a system of compact sets
cicCyc---cCpC---CX

with X = U>2,C,,. Indeed, 40:B and 40:C establish a canonical one-to-
one correspondence between ends of X with respect to any two systems
of this kind.

40:D. Prove that R' has two ends, R” with n > 1 has one end.

40:E. Find the number of ends for the universal covering space of the
bouquet of two circles.

40:F. Does there exist a 2-manifold with a finite number of ends which
cannot be embedded into a compact 2-manifold?

40:G. Prove that for any compact set K C S? with connected comple-
ment S? \ K there is a natural map of the set of ends of S? \ K to the
set of connected components of K.

Let W be an open set of X. The set of ends U; D --- DU, D ... of X
such that U, C W for sufficiently large n is said to be open.
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40:H. Prove that this defines a topological structure in the set of ends
of X.

The set of ends of X equipped with this topological structure is called
the space of ends of X. Denote this space by £(X).

40.1:1. Construct non-compact connected manifolds of dimension two
without boundary and with isomorphic infinitely generated funda-
mental group, but with non-homeomorphic spaces of ends.

40.1:2. Construct non-compact connected manifolds of dimension two
without boundary and with isomorphic infinitely generated funda-
mental group, but with different number of ends.

40.1:8. Construct non-compact connected manifolds of dimension two
without boundary with isomorphic infinitely generated fundamental
group and the same number of ends, but with different topology in
the space of ends.

40.1:4. Let K be a completely disconnected closed set in S?. Prove
that the map £(S? \ K) — K defined in 40:G is continuous.

40.1:5. Construct a completely disconnected closed set K C S? such
that this map is a homeomorphism.

40.B. Prove that there exists an uncountable family of pairwise non-
homeomorphic connected 2-manifolds without boundary.

The examples of non-compact manifolds dimension 2 presented above
show that there are too many non-compact connected 2-manifolds. This
makes impossible any useful topological classification of non-compact
2-manifolds. Theorems reducing the homeomorphism problem for 2-
manifolds of this type to the homeomorphism problem for their spaces
of ends do not seem to be really useful: spaces of ends look not much
simpler than the surfaces themselves.

However, there is a special class of non-compact 2-manifolds, which ad-
mits a simple and useful classification theorem. This is the class of simply
connected non-compact 2-manifolds without boundary. We postpone its
consideration to the end of this section. Now we turn to the case, which
is the simplest and most useful for applications.

Closed Surfaces

40.C. Any connected closed manifold of dimension two is homeomorphic
either to sphere S?, or sphere with handles, or sphere with crosscaps.

Recall that according to Theorem &4.M the basic surfaces represent pair-
wise distinct topological (and even homotopy) types. Therefore, 3/.M



Triangulations
of surfaces are
not ramified

40. TWO-DIMENSIONAL MANIFOLDS 170

and 40.C together give topological and homotopy classifications of closed
2-dimensional manifolds.

We do not recommend to prove Theorem 40.C immediately and, espe-
cially, in the formulation given here. All known proofs of /0.C can be
decomposed into two main stages: firstly, a manifold under consideration
is equipped with some additional structure (like triangulation or smooth
structure); then using this structure a required homeomorphism is con-
structed. Although the first stage appears in the proof necessarily and
is rather difficult, it is not useful outside the proof. Indeed, any closed
2-manifold, which we meet in a concrete mathematical context, is either
equipped, or can be easily equipped with the additional structure. The
methods of imposing the additional structure are much easier, than a
general proof of existence for this structure in arbitrary 2-manifold.

Therefore, we suggest for the first case to restrict ourselves to the second
stage of the proof of Theorem /0.C, prefacing it with general notions
related to the most classical additional structure, which can be used for
this purpose.

Triangulations of Surfaces

By an Fuclidean triangle we mean the convex hall of three non-collinear
points of Euclidean space. Of course, it is homeomorphic to disk D?, but
not only the topological structure is relevant for us now. The boundary
of a triangle contains three distinguished points, its vertices, which sepa-
rates the boundary into three pieces, its sides. A topological triangle in a
topological space X is an embedding of an Euclidean triangle into X. A
vertex (respectively, side) of a topological triangle T"— X is the image
of a vertex ( respectively, side) of T"in X.

A set of topological triangles in a 2-manifold X is a triangulation of X
provided the images of these triangles comprise a fundamental cover of
X and any two of the images either are disjoint or intersect in a common
side or in a common vertex.

40.D. Prove that in the case of compact X the former condition (about
fundamental cover) means that the number of triangles is finite.

40.E. Prove that the condition about fundamental cover means that the
cover is locally finite.

Two Properties of Triangulations of Surfaces

40.F. Let FE be a side of a triangle involved into a triangulation of
a 2-manifold X. Prove that there exist at most two triangles of this
triangulation for which E is a side. Cf. 36.G, 36.H and 36.P.
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40.G. Let V be a vertex of a triangle involved into a triangulation of
a 2-manifold X and T, T" be two triangles of the triangulation adjacent
to V. Prove that there exisits a sequence T = T1,T5,...,T, = T' of
triangles of the triangulation such that V' is a vertex of each of them and
triangles 7}, T;11 have common side for each 7 =1,...,n — 1.

Scheme of Triangulation

Let X be a 2-manifold and 7 a triangulation of X. Denote the set of
vertices of 7 by V. Denote by 35 the set of triples of vertices, which
are vertices of a triangle of 7. Denote by > the set of pairs of vertices,
which are vertices of a side of 7. Put Xy = S. This is the set of vertices
of T. Put ¥ = XoUX; UXg. The pair (V. X) is called the (combinatorial)
scheme of T.

40:1. Prove that the combinatorial scheme (V, X) of a triangulation of a
2-manifold has the following properties:

(a) X is a set consisting of subsets of V,

(b) each element of ¥ consists of at most 3 elements of V,

(c) three-element elements of ¥ cover V,

(d) any subset of an element of X belongs to X,

(e) intersection of any collection of elements of 3 belongs to X,

(f) for any two-element element of X there exist exactly two three-
element elements of ¥ containing it.

— — — — —

e
f

Let V be a set and ¥ is a set of finite subsets of V. The pair (V,X) is
called a triangulation scheme if

e any subset of an element of 3 belongs to 3,
e intersection of any collection of elements of 3 belongs to 3,
e any one element subset of V belongs to 3.

There is a natural way to associate a topological space (in fact, a cellular
space) to any triangulation scheme. Namely, for a triangulation scheme
(V, %) consider the set S(V, %) of all functions ¢ : V' — I (= [0,1]) such
that

Supp(c) ={v € V : ¢(v) # 0}
belongs to ¥ and ), .y ¢(v) = 1. Equip S(V,X) with the compact open
topology.

40:J. Prove that S(V, ) is a cellular space with cells {¢ € S : Supp(c) =
o} with o € ¥.

40:K. Prove that if (V. X)) is the combinatorial scheme of a triangulation
of a 2-manifold X then S(V,¥) is homeomorphic to X.

40:L. Let (V,X) be a triangulation scheme such that

(a) V is countable,
(b) each element of ¥ consists of at most 3 elements of V,
(c) three-element elements of ¥ cover V,
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(d) for any two-element element of 3 there exist exactly two three-
element elements of ¥ containing it

Prove that (V,3) is a combinatorial scheme of a triangulation of a 2-
manifold.

Examples

40.2. Consider the cover of torus obtained in the obvious way from the
cover of the square by its halves separated by a diagonal of the square. Is it
a triangulation of torus? Why not?

FIGURE 1
40.3. Prove that the simplest triangulation of S? consists of 4 triangles.

40.4* Prove that a triangulation of torus S! x S! contains at least 14
triangles, and a triangulation of the projective plane contains at least 10
triangles.

Families of Polygons

The problems considered above show that triangulations provide a com-
binatorial description of 2-dimensional manifolds, but this description
is usually too bulky. Here we will study other, more practical way to
present 2-dimensional manifolds combinatorially. The main idea is to
use larger building blocks.

Let F be a collection of convex polygons P;, P,,.... Let the sides of
these polygons be oriented and paired off. Then we say that this is
a family of polygons. There is a natural quotient space of the sum of
polygons involved in a family: one identifies each side with its pair-mate
by a homeomorphism, which respects the orientations of the sides. This
quotient space is called just the quotient of the family.

40.H. Prove that the quotient of the family of polygons is a 2-manifold
without boundary.

40.1. Prove that the topological type of the quotient of a family does not
change when the homeomorphism between the sides of a distinguished
pair is replaced by other homeomorphism which respects the orientations.

40.J. Prove that any triangulation of a 2-manifold gives rise to a family
of polygon whose quotient is homeomorphic to the 2-manifold.

A lot!
Just say NO to
triangulations.
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A family of polygons can be described combinatorially: Assign a letter to
each distinguished pair of sides. Go around the polygons writing down
the letters assigned to the sides and equipping a letter with exponent
—1 if the side is oriented against the direction in which we go around
the polygon. At each polygon we write a word. The word depends on
the side from which we started and on the direction of going around the
polygon. Therefore it is defined up to cyclic permutation and inversion.
The collection of words assigned to all the polygons of the family is called
a phrase associated with the family of polygons. It describes the family to
the extend sufficient to recovering the topological type of the quotient.

40.5. Prove that the quotient of the family of polygons associated with
phrase aba~'b~! is homeomorphic to S x S*.

40.6. Identify the topological type of the quotient of the family of polygons
associated with phrases

aa‘l;
ab, ab;

aa;

abab™';

abab;

abcabe;

aabb;

arbiai by asbyay byt L aghga, bt
a1a1a2a2 - . .QgQgq.

(a

—~ T~ Y

~ A~

b
c
d
e
f
g
h

— o N T e e S e N

(i

40.K. A collection of words is a phrase associated with a family of poly-
gons, iff each letter appears twice in the words.

A family of polygons is called irreducible if the quotient is connected.

40.L. A family of polygons is irreducible, iff a phrase associated with it
does not admit a division into two collections of words such that there is
no letter involved in both collections.

Operations on Family of Polygons

Although any family of polygons defines a 2-manifold, there are many
families defining the same 2-manifold. There are simple operations which
change a family, but do not change the topological type of the quotient of
the family. Here are the most obvious and elementary of these operations.

(a) Simultaneous reversing orientations of sides belonging to one of the
pairs.

(b) Select a pair of sides and subdivide each side in the pair into two
sides. The orientations of the original sides define the orderings of
the halves. Unite the first halves into one new pair of sides, and
the second halves into the other new pair. The orientations of the
original sides define in an obvious way orientations of their halves.
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This operation is called 1-subdivision. In the quotient it effects in
subdivision of a 1-cell (which is the image of the selected pair of
sides) into two 1-cells. This 1-cells is replaced by two 1-cells and
one (-cell.

(c) The inverse operation to 1-subdivision. It is called 1-consolidation.

(d) Cut one of the polygons along its diagonal into two polygons. The
sides of the cut comprise a new pair. They are equipped with an
orientation such that gluing the polygons by a homeomorphism re-
specting these orientations recovers the original polygon. This oper-
ation is called 2-subdivision. In the quotient it effects in subdivision
of a 2-cell into two new 2-cells along an arc whose end-points are
O-cells (may be coinciding). The original 2-cell is replaced by two
2-cells and one 1-cell.

(e) The inverse operation to 2-subdivision. It is called 2-consolidation.

Topological and Homotopy Classification of Closed Surfaces

40.M Reduction Theorem. Any finite irreducible family of polygons
can be reduced by the five elementary operations to one of the following
standard families:

(a) aa™!

11 1,1 “1p-1
(b) aibiay by agbaay by .. agbya; by
(c) ararazas...a4a, for some natural g.

40.N Corollary. Any triangulated closed connected manifold of dimen-
ston 2 18 homeomorphic to either sphere, or sphere with handles, or sphere
with crosscaps.

Theorems 40.N and 34.M provide classifications of triangulated closed
connected 2-manifolds up to homeomorphisms and homotopy equiva-
lence.

40.M.1 Reduction to Single Polygon. Any finite irreducible family of
polygons can be reduced by elementary operations to a family consisting
of a single polygon.

40.M.2 Cancellation. A family of polygons corresponding to a phrase
containing a fragment aa~! or a 'a, where a is any letter, can be trans-
formed by elementary operations to a family corresponding to the phrase
obtained from the original one by erasing this fragment, unless the latter
is the whole original phrase.

40.M.3 Reduction to Single Vertex. An irreducible family of polygons
can be turned by elementary transformations to a polygon such that all its
vertices are projected to a single point of the quotient.
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40.M.4 Separation of Crosscap. A family corresponding to a phrase
consisting of a word XaY a, where X and Y are words and « is a letter,
can be transformed to the family corresponding to the phrase bbY ~1X.

40.M.5. Tf a family, whose quotient has a single vertex in the natural cell
decomposition, corresponds to a phrase consisting of a word XaYa ™!,
where X and Y are nonempty words and a is a letter, then X = UbU’
and Y = Vb V.

40.M.6 Separation of Handle. A family corresponding to a phrase con-
sisting of a word UbU’aVb~'V'a™!, where U, U’, V, and V' are words and
a, b are letters, can be transformed to the family presented by phrase
ded= ' 'UVIVU'.

40.M.7 Handle plus Crosscap Equals 3 Crosscaps. A family corre-

sponding to phrase aba~'b~'ccX can be transformed by elementary trans-
formations to the family corresponding to phrase abdbad X .

Recognizing Closed Surfaces

40.0. What is the topological type of the 2-manifold, which can be
obtained as follows: Take two disjoint copies of disk. Attach three parallel
strips connecting the disks and twisted by 7. The resulting surface S has
a connected boundary. Attach a copy of disk along its boundary by
a homeomorphism onto the boundary of the S. This is the space to
recognize.

40.P. Euler characteristic of the cellular space obtained as quotient of
a family of polygons is invariant under homotopy equivalences.

40.7. How can 40.P help to solve 40.07?

40.8. Let X be a closed connected surface. What values of x(X) allow to
recover the topological type of X7 What ambiguity is left for other values of

X(X)?
Orientations

By an orientation of a segment one means an ordering of its end points
(which one of them is initial and which one is final). By an orientation
of a polygon one means orientation of all its sides such that each vertex
is the final end point for one of the adjacent sides and initial for the
other one. Thus an orientation of a polygon includes orientation of all
its sides. Each segment can be oriented in two ways, and each polygon
can be oriented in two ways.

An orientation of a family of polygons is a collection of orientations of all
the polygons comprising the family such that for each pair of sides one
of the pair-mates has the orientation inherited from the orientation of
the polygon containing it while the other pair-mate has the orientation
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opposite to the inherited orientation. A family of polygons is said to be
orientable if it admits an orientation.

40.9. Which of the families of polygons from Problem 40.6 are orientable?

40.10. Prove that a family of polygons associated with a word is orientable
iff each letter appear in the word once with exponent —1 and once with
exponent 1.

40.Q. Orientability of a family of polygons is preserved by the elemen-
tary operations.

A surface is said to be orientable if it can be presented as the quotient
of an orientable family of polygons.

40.R. A surface S is orientable, iff any family of polygons whose quo-
tient is homeomorphic to S is orientable.

40.S. Spheres with handles are orientable. Spheres with crosscaps are
not.

More About Recognizing Closed Surfaces

40.11. How can the notion of orientability and 40.Q help to solve 40.0?

40.T. Two closed connected manifolds of dimension two are homeo-
morphic iff they have the same Euler characteristic and either are both
orientable or both nonorientable.

Compact Surfaces with Boundary

As in the case of one-dimensional manifolds, classification of compact
two-dimensional manifolds with boundary can be easily reduced to the
classification of closed manifolds. In the case of one-dimensional mani-
folds it was very useful to double a manifold. In two-dimensional case
there is a construction providing a closed manifold related to a compact
manifold with boundary even closer than the double.

40.U. Contracting to a point each connected component of the bound-
ary of a two-dimensional compact manifold with boundary gives rise to
a closed two-dimensional manifold.

40.12. A space homeomorphic to the quotient space of 40.U can be con-
structed by attaching copies of D? one to each connected component of the
boundary.

40.V. Any connected compact manifold of dimension 2 with nonempty
boundary is homeomorphic either to sphere with holes, or sphere with
handles and holes, or sphere with crosscaps and holes.
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40.W. Riddle. Generalize orientabilty to the case of nonclosed man-
ifolds of dimension two. (Give as many generalization as you can and
prove that they are equivalent. The main criterium of success is that the
generalized orientability should help to recognize the topological type.)

40.X. Two compact connected manifolds of dimension two are homeo-
morphic iff they have the same Fuler characteristic, are both orientable
or both nonorientable and their boundaries have the same number of
connected components.

Simply Connected Surfaces

40:M Theorem*. Any simply connected non-compact manifold of di-
mension two without boundary is homeomorphic to R?.

41. One-Dimensional mod2-Homology of Surfaces

Polygonal Paths on Surface

Let F be a triagulated surface. A path s: I — F' is said to be polygonal
if s(I) is contained in the one-dimensional skeleton of the triangulation
of F', the preimage of any vertex of the triangulation is finite, and the
restriction of s to a segment between any two consequitive points which
are mapped to vertices is an affine homeomorphism onto an edge of the
triangulation. In terms of kinematics, a polygonal path represents a
moving point, which goes only along edges, does not stay anywhere, and,
whenever it appears on an edge, it goes along the edge with a constant
speed to the opposite end-point. A circular loop [ : S' — F is said to be

t—exp(2mit)
—

polygonal if the corresponding path [ S'-Lpis polygonal.

41:A. Let F be a triagulated surface. Any path s : I — F connecting
vertices of the triangulation is homotopic to a polygonal path. Any
circular loop [ : S — F is freely homotopic to a polygonal one.

A polygonal path is a combinatorial object:

41:B. To describe a polygonal path up to homotopy, it is enough to
specify the order in which it passes through vertices.

On the other hand, pushing a path to the one-dimensional skeleton can
create new double points. Some edges may appear several time in the
same edge.

41:1. Let F be a triangulated surface and « be an element of 71 (F')
different from 1. Prove that there exists a natural N such that for any
n > N each polygonal loop representing a™ passes through some edge
of the triangulation more than once.
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Subdivisions of Triangulation

To avoid a congestion of paths on edges, one can add new edges, i.e.,
subdivide the triangulation. Although an elementary operation on fami-
lies of polygons applied to a triangulation, gives rise to a family, which is
not a triangulation, making several elementary operations, one can get a
new triangulation with more edges.

One triangulation of a surface is called a refinement of another one if
each triangle of the former is contained in a triagle of the latter. There
are several standard ways to construct a refinement of a triangulation.

For example, add a new vertex, which is located inside of a triangle 7 of
a given triangulation, connect it with the vertices of this triangle with
segments, which are three new edges. The triangle is subdivided into
three new triangles. The other triangles of the original triangulations
are kept intact. This is called the star subdivision centered at 7. See
Figure 2.

FIGURE 2. Star subdivision centered at triangle 7

Another kind of local subdivision: add a new vertex located on an edge ¢
of a given triangulation, connect by new edges this vertex to the vertices
opposite to € of the triangles adjacent to . Each of the adjacent triangles
is subdived into two new triangles. Leave the other triangles intact. This
is a star subdivision centered at €. See Figure 3.

FIGURE 3. Star subdivision centered at edge ¢

41:2. Construct a triangulation and its subdivision which cannot be
obtained as a composition of star subdivisions centered at edges and
triangles.
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41:3. Prove that a subdivision of a triangulation of a compact surface
can be presented as a result of a finite sequence of star sudivisions
centered at triangles and edges and operations inverse to operations of
these types.

Bringing Loops to General Position

41:C. Let F be a triangulated and u, v polygonal circular loops on F.
Then there exist a subdivision of the triangulation of F' and polygonal
loops ', v homotopic to u and v, respectively, such that /(1) Nv'(I) is
finite.

41:D. Let F be a triangulated and u a polygonal circular loop on F.
Then there exist a subdivision of the triangulation of ¥’ and a polygonal
loop v homotopic to u such that v maps the preimage v=!(¢) of any edge
e C v(I) homeomorphically onto ¢. (In other words, v passes along each
edge at most once).

Let u, v be polygonal circular loops on a triangulated surface F' and a
be an isolated point of u(I) Nv(I). Suppose v '(a) and v~!(a) are one
point sets. One says that u intersects v translversally at a if there exist
a neighborhood U of a in F' and a homeomorphism U — R? which maps
u(I) NU onto the z-axes and v(I) N U to y-axes.

Polygonal circular loops u, v on a triangulated surface are said to be in
general position to with respect each other, if u(I) Nwv(i) is finite, for
each point a € u(i) Nv(I) each of the sets u~'(a) and v~ !(a) contains a
single point and u, v are transversal at a.

41:E. Any two circular loops on a triangulated surface are homotopic
to circular loops, which are polygonal with respect to some subdivision
of the triangulation and in general position with respect to each other.

For a map f: X — Y denote by Si(f) the set
{a € X | 7' f(a) consists of k elements}
and put
S(f) ={a € X | f~'f(a) consists of more than 1 element}.

A polygonal circular loop [ on a triangulated surface F' is said to be
generic if

(a) S(I) is finite,

(b) S(1) = S2(0),

(c) at each a € [(S2(1)) the two branches of s(I) intersecting at a are
transversal, that is ¢ has a neighborhood U in F' such that there
exists a homeomorphism U — R? mapping the images under s of
the connected components of s~ (U) to the coordinate axis.
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41:F. Any circular loop on a triangulated surface is homotopic to a
circular loop, which is polygonal with respect to some subdivision of the
triangulation and generic.

Generic circular loops are especially suitable for graphic representation,
because the image of a circular loop defines it to a great extend:

41:G. Let [ be a generic polygonal loop on a triangulated surface. Then
any generic polygonal loop k with k(S') = I(S!) is homotopic in I(S!)
to either [ or 17!,

Thus, to describe a generic circular loop up to a reparametrization ho-
motopic to identity, it is sufficient to draw the image of the loop on the
surface and specify the direction in which the loop runs along the image.

The image of a generic polygonal loop is called a generic (polygonal)
closed connected curve. A union of a finite collection of generic closed
connected polygonal curves is called a generic (polygonal) closed curve. A
generic closed connected curve without double points (i.e., an embedded
oriented circle contained in the one-dimensional skeleton of a triangulated
surface) is called a simple polygonal closed curve.

The adjective closed in the definitions above appears because there is a
version of the definitions with (non-closed) paths instead of loops.

41:H. Riddle. What modifications in Problems 41:C — /1:G and cor-
responding definitions should be done to replace loops by paths every-
where?

By a generic polygonal curve we will mean a union of a finite collection
of pairwise disjoint images of generic polygonal loops and paths.

Cutting Surface Along Curve

41:1 Cutting Surface Along Curve. Let F be a triangulated two-
dimensional manifold and C' C F a one-dimensional manifold contained
in the 1-skeleton of the triangulation of F. Assume that 0C' = dF N C.
Prove that there exists a two-dimensional manifold T" and a surjective
continuous map p : T — F such that:

(a) p|:T~p Y (C)— F~ C is a homeomorphism,
(b) p|:p~Y(C) — C is a two-fold covering.

Such T and p are unique up to a homeomorphism: if T and § are other
manifold and mapping satisfying the same conditions then there exists a
homeomorphism h : T'— T such that po h = p.

The surface T described in 41:1 is called the result of cutting F' along C.
It is denoted by F &< C'. This is not the complement F' ~\ C, though a
copy of F'\.C'is contained in F' & C' as a dense subset, which is homotopy
equivalent to the whole F' & C.
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41:J Triangulation of F 3 C. There exists a unique triangulation of
F & C such that the natural map F 3¢ C' — F maps edges onto edges
and triangles onto triangles homeomorphically.

41:4. Describe the topological type of F' . C for the following F' and
C:

F is Mobius band, C' its core circle (deformation retract);

F=8"xS'.C=58"x1;

F is S x S! standardly embedded into R?, C' the trefoil knot on

F, that is {(z,w) € S' x S' | 22 = w?};

(d) F is Mobius band, C is a segment: show that there are two pos-
sible placements of C' in F' and describe F' & C for both of them;

(e) F=RP?, C=RP.

(f) F = RP?, C is homeomorphic to circle: show that there are two

possible placements of C' in F' and describe F' 3¢ C for both of

them.

(a
(b

41:5 Euler Characteristic and Cutting. Find the Euler character-
istic of F' ¢ C when 0C = @. What if 0C # &7

Curves on Surfaces and Two-Fold Coverings

Let F be a two-dimensional triangulated surface and C' C F' a manifold of
dimension one contained in the 1-skeleton of the triangulation of F'. Let
dC = AF N C. Since the preimage C of C under the natural projection
F & C — F is a two-fold covering space of C, there is an involution
7 : C — C which is the only nontrivial automorphism of this covering.
Take two copies of F' & C and identify each x € C in one of them with
7(z) in the other copy. The resulting space is denoted by F~C.

41:K. The natural projection F' & C — F defines a continuous map
F~C 5 F. This is a two-fold covering. Its restriction over F \ C is
trivial.

One-Dimensional Zs>-Cohomology of Surface

By 35:G, a two-fold covering of F' can be thought of as an element of
H'(F;Zs). Thus any one-dimensional manifold C' contained in the 1-
skeleton of F' and such that 0C' = 0F N C' defines a cohomology class of
F with coefficients in Zsy. This class is said to be realized by C.

41:L. The cohomology class with coefficients in Zs realized by C in a
compact surface F' is zero, iff C' divides F', that is, F = G U H, where G
and H are compact two-dimensional manifolds with GN H = C.

Recall that the cohomology group of a path-connected space X with
coefficients in Zs is defined above in Section 35 as Hom(m (X)), Zs).

41:M. Let F be a triangulated connected surface, let C C F' be a mani-
fold of dimension one with 9C' = dF NC contained in the 1-skeleton of F'.
Let I be a polygonal loop on F' which is in general position with respect
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to C. Then the value which the cohomology class with coefficients in
Z9 defined by C takes on the element of 71 (F') realized by [ equals the
number of points of [ N C' reduced modulo 2.

One-Dimensional Zs-Homology of Surface

41:N Zo-Classes via Simple Closed Curves. Let F' be a triangu-
lated connected two-dimensional manifold. Every homology class & €
H{(F';Zs) can be represented by a polygonal simple closed curve.

41:0. A Zy-homology class of a triangulated two-dimensional manifold
F represented by a polygonal simple closed curve A C F' is zero, iff there
exists a compact two-dimensional manifold G C F such that A = 0G.

Of course, the “if” part of 41:0 follows straightforwardly from 35:L.
The “only if” part requires trickier arguments.

41:0:1. If A is a polygonal simple closed curve on F, which does
not bound in F' a compact 2-manifold, then there exists a connected
compact 1-manifold C' C F with 9C = 0F N C, which intersects A in
a single point transversally.

41:0:2. Let F be a two-dimensional triangulated surface and C' C
F' a manifold of dimension one contained in the 1-skeleton of the
triangulation of F. Let 0C = OFNC. Any polygonal loop f : S! — F,
which intersects C' in an odd number of points and transversally at
each of them, is covered in F~C by a path with distinct end-points.

41:0:8. See 35:6.

Poincaré Duality

To be written!

One-Sided and Two-Sided Simple Closed Curves on Surfaces

To be written!

Orientation Covering and First Stiefel-Whitney Class

To be written!

Relative Homology

To be written!
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42. Surfaces Beyond Classification

To be written!

Genus of Surface

To be written!

Systems of disjoint curves on a surface

To be written!

Polygonal Jordan and Schonflies Theorems

To be written!

Polygonal Annulus Theorem

To be written!

Dehn Twists

To be written!

Coverings of Surfaces

To be written!

Branched Coverings

To be written!

Mapping Class Group of Torus
To be written! Lifting homeomorphisms to the universal covering
space. Nielsen and Baer Theorems for torus. GL(2,7Z). Dehn twists

along meridian and longitude and relation between them. Center of the
mapping class group.

Braid Groups

To be written!
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43. Three-Dimensional Manifolds

To be written!

Poincaré Conjecture
Lens Spaces

Seifert Manifolds
Fibrations over Circle

Heegaard Splitting and Diagrams

184



CHAPTER 7

Smooth Manifolds

Although manifolds provide a scene for almost all geometric branches of
Mathematics, the topological structure of a manifold does not decorate
this scene enough. It is not sufficient to discuss most of phenomena of
Analysis and Geometry.

Usually in applications, manifolds arise equipped with various additional
structures. One of them, smooth or differential structure, appears more
often than others. The goal of this Chapter is to introduce the smooth
structure and develope the basic theory.

While topological structures provide a basis for discussing phenomena
related to continuity, smooth structures provide a basis for discussing
phenomena related to differentiability.

The traditional definition of smooth structures is quite long and different
from definitions of similar, and, in fact, closely related structures which
are studied in algebraic geometry and topology. Furthermore, smooth
structures are traditionally defined only on manifolds. This deprives us
of flexibility that we enjoy in general topology, where any set-theoretic
construction has a topological counter-part: a subset turns into a sub-
space, a quotient set turns into a quotient space, etc. The image of a
differential manifold under a differentiable map may happen to be not
a manifold, and hence not eligible to bear any trace of a differential
structure.

Therefore we dare to change the very basic definitions of the differential
topology. The notion of differential manifold becomes a special case
of more general notions of differential space and differential variety. Of
course, specialists are aware about the possibility of these generalizations.
However as far as we know, nobody did a serious attempt to rely on the
generalizations in a textbook written for beginners. We try to overcome
the phobia about singularities, which was a characteristic property of
texts on differential topology. We believe, this makes the subject simpler,
although introduces possibilty to speak about pathological objects.

As we claimed above, we think on teaching the elementary topology as
about teaching a language. This is a great language, one of the main
parts of the language of Mathematics. It is not our goal to teach only

185
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“politically correct” words: we do not want to exclude a single word just
because it can be used in a description of “bad”, “pathological” objects.

Of course, the standard approach to smooth manifolds is also presented,
right after the new one. But first, we must refresh the background from
Multivariable Calculus.

44. Analytic Digression:
Differentiable Functions in Euclidean Space

Differentiability and Differentials

Recall that a function f : R — R is called differentiable at a € R if there
exists a number f'(a) such that

o L flats) - f(o)

z—0 €T

= f'(a).

This definition does not admit immediate generalization to the case of
a map R* — R¥, but can be reformulated in a way that does. Namely,
denote by L the linear map R — R : z — f’(a)x. Then (21) is equivalent

N o ot a) — ()~ L)

x—0 x

=0.

Let f be a map defined in a neighborhood of a point a € R" and taking
values in R¥. One says that f is differentiable at a if there exists a linear
map L : R* — R¥ such that
— —L
o)~ f(@) - L)

x—0 |{17|
In this case L is called the differential of f at a.

=0.

44.A. If f is differentiable at a, then its differential at a is unique.

The differential of f at a is denoted by d, f.

44.1. Prove that for any linear map L : R” — RF different from d, f there
exists a neighborhood U of a such that

|f(z) = f(a) = da f(z = a)| <[f(z) = f(a) = L(z - a)]

for x € U \ a.

Theorem /4.1 means that the affine map x — f(a)+d, f(x—a) approximates
f in a neighborhood of a better than any other affine map.

44-2. Prove that if the dimensions of both source and target are equal to 1

d
then d, f is multiplication by %(a).
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Derivative Along Vector

The image of a vector v under d, f, i.e., d, f(v) is denoted also by D, f(a)
and called the derivative of f at a in direction v.

fla+tv) - f(a)

44.3. Prove that D, f(a) = lim;_,o ;

Thus, D, f(a) is the velocity of changing of f when a moves with velocity v.

44.4. Prove that if v is the i-th standard base vector (i.e., all the components
of v, but i-th, equal 0, and the i-th component is 1), then D, f(a) is equal to

(%(a), %(a), e %(a)), where f; is the j-th component of f.

44.5. The differential d,f of a map f : R — R* has matrix (%) (the

Jacobian matrix of f at a).

Main Properties of Differential

44.B. Let U CR", V C R\, W CR*. Ifamap f : U — V is
differentiable at a € U and g : V' — W is differentiable at f(a) then
go f:U — W is differentiable at a and d,(go f) = dy)god.f. In other
words, the differential of composition is the composition of differentials.

44-.6. Recognize Theorem 44.B as a reformulation of the Chain Rule.
44.C. The differential of the identity map is the identity map.

44.7 Generalization of 44.C. Differential of a linear map L at each point
coinsides with L.

Higher Order Derivatives

IfUCR',V CRFand amap f: U — V is differentiable at each point
of U, the differentials d, f give rise to map U — Hom(R",R¥) : a — d,f.
This generalizes the notion of derivative function.

There is a map closely related to this one, and more convinient for gen-
eralizations. It is defined as follows: U x R* — RF : (a,v) — D, f(a).
The relation is provided by the definition D, f(a) = d, f(v).

44.D. Prove that U — Hom(R",R¥) : a ~ d,f is contnuous iff U x

R — R* : (a,v) — D, f(a) is continuous.

44.E. Prove that U — Hom(R®,R¥) : a + d,f is differentiable at a iff

UxR" — RF : (a,v) = D, f(a) is differentiable at (a,v) for each v € R".
44.8. Riddle. How does this look like in the case of n =1 oreven n = k =
1?7

Is it possible to reduce in 44.E the set of v, for which U x R* — RF : (a,v) —
D, f(a) is differentiable at (a,v)?
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The map U x R* — R¥ : (a,v) — D, f(a) is called the derivative map
for f and denoted by Df. Since it is also a map of the same kind,
one can iterate the construction and define the second derivative D?f :
U x (R")? — RF, third derivative D3f : U x (R*)> — RF and r-th
derivative D" f : U x (R")" — R*.

44.9. Prove that D" f(a,vq,...v,) does not change when one interchange vy,
. Vg

44.10. Express D" f(a,v1,...v,) in “classical” terms, i.e., write down an

expression for D" f(a, v, ...v;) in terms of partial derivatives of components
of f and coordinates of vy, ... v,.
44.11. Let eq, ... e, be the standard basis of R”. Prove that for x =
S ate;
lim |f(a+$) - f(a) - Zi:] % ZZ ,,,,, in=1 Drf(aaeilv' .. aeir)xil .. 'xir| —0
z—0 |.T,‘|s
C"-Maps

Let U be an open subset of R” and r a non-negative integer or co. A
map f : U — RF is said to be of class C" or a C"-map if at each point of
U it has all the derivatives of order < r and all of them are continuous.
A map is of class C° if it is of class C" for all finite 7.

44.F. Amap f: U — RF is of class C", iff its components fi, ... fi
have all the partial derivatives of order < r and these partial derivatives
are continuous.

44-.12. Construct a map which has all the partial derivatives of order < r at
each point, but is not of class C".

Let U be an open subset of R". A map f : U — R¥ is said to be real
analytic or of class C* at xy € U if there exists a neighborhood V' of xg
in U such that the Taylor series

1% 1 n

ZF Z Drf(x()’eip---,ei.,)x“...l'“
r=0 01 geeeydp=1

converges to f(xzg+ x) for xg +z € V.

44.G. A real analytic map is of class C*.

A map of class C? is just a continuous map. It is convinient to assume
a > oo and speak about classes C" with 0 < r < a.
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Diffeomorphisms

Let U, V be open subsets of R” and r be a natural number, or oo or
a. Amap f: U — V is called a diffeomorphism of class C", or C"-
diffeomorphism or just diffeomorphism(of U to V') if f is of class C" at
each point of U, invertible, and f~! is of class C" at each point of V.

44.H. The differential of a diffeomorphism at any point is an isomor-
phism.

44.1. Composition of C"-diffeomorphisms is a C"-diffeomorphism. The

map inverse to a C"-diffeomorphism is a C"-diffeomorphism.

44.13. Which of the following maps are diffeomorphisms and what are the
classes of the diffeomorphisms:

(a) R—R:z— 22

(b) R— R:z > 23,
(c) (0,1) = (0,1) : x> 23,
(d) (0,1) = (0,1) : z > z?,

R—oR:2z~—z+23,

)

)

)

) C—C:x— 2?,
)

) R R:z ez + 22,

) z+22 ifz>0

z—22, ifx <0

)

]R—>R:x»—>{

z+2° ifz>0
z—z%, ifx <0
G) R—=R:xz— z>/3

k) R—=R:z~ x4+ 2'01/3?

i) RoR:z—

Inverse Function Theorem

The following important and famous theorem is a sort of inverse to 44.H.

44.J Inverse Function Theorem. If f : U — R" is a C"-map with
r > 1 defined in a neighborhood U of a € R" and d,f : R* — R” is
invertible then there exist neighborhoods V- C U of a and W C R" of
f(a) such that f|:V — W is a C"-diffeomorphism.

44.K Corollary. Let U and V be open sets in R*. Amap f:U —V
is a C"-diffeomorphism iff it is a bijective C"-map and d, f is an isomor-
phism for any a € U.

Implicit Function Theorem

44.L Implicit Function Theorem. Let U C R” be an open set and
f:U — RF a C-differentiable map. If d,f is surjective then the point a
has a neighborhood V' C U such that V can be presented (by a renumer-
ation of coordinates) as A x B with AC R** B CRF and f~1f(a)NV
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is the graph of some C"-map ¢ : A — B, i.e., f7'f(a) NV = {(z,y) €
AxB|y=g¢(z)}.

C"-Functions

The set of all the C"-functions U — R is denoted by C"(U).

44.M. If f € C"(U) then f|y € C"(V) for any open V' C U. In other
words, for open sets V. C U C R" formula f — f|V defines a map
C"(U) — C™(V).

Useful C*°-Function

44.N Bell-Shape Function. There exists a C'°-function f: R" — R
which takes value 1 on the unit ball D" C R", takes value 0 on the
complement of the ball B of radius 2 centered at 0 takes values in (0, 1)
on Int B~ D". A C%function with these properties does not exists.

44.N.1. The function

1 .
TR {exp(m), ifz € (1,2),

0, if x #£€ (1,2)
is a C'°°-function on R.
44.N.2 Lemma on Smooth Step Function. The function
Yo (t) dt
as(r) = foz )
[ an(t)dt

is a C*°-function on R. It takes value 0 on [0,1] and 1 on [2,00). A
C®-function f : R — R with f[0,1] = 0 and f[2,00) = 1 does not exists.

Applications of Bell-Shape Function

44.0 Retreat Ensures Expansion. Let U C R" be an open set and
f U — R a C"-function with r < co. Prove that any point @ € U has
a neighborhood V' C U such that f|V is a restiction of a C"-function
g:R* - R

44.P C"(R") Knows All the C"(U). A function f : U — R is of class
C™ iff any point a € U has a neighborhood V' C U such that f|y is a
restiction of a C"-function R* — R.

C"-Maps

Consider open sets U,V C R". Any map f : U — V defines a map of
the set of all the functions V' — R to the set of functions U — R:
(p:V-o>R)— (fop:U—R).

If fis a C"-map then this maps C"-functions to C"-functions.
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44.Q. Amap f: U — V isa C"-diffeomorphism, iff it defines a bijection
C'(V)—=Cr(U).

45. Differential Spaces

Motivation: Topological Structure via Continuous Functions

Let X be a topological space. Consider the set of all continuous functions
X — R. It is denoted by C(X).

45.A. C(X) is an algebra over R with respect to the pointwise addition
of functions, multiplication of function by numbers and multiplication of
functions. In other words, if f,¢g € C(X), then (z — af(z) + fg(z)) €
C(X) and (z — f(x)g(x)) € C(X) and these operations satisfy the ax-
ioms of algebra over R.

Besides these linear operations, there are other operations, with respect
to which C(X) is closed.

45.B. Let fi,...,f, € C(X) and f: X — R” be a map defined by f,
o fn. Let f(X) C Aandlet g: A — R be a continuous function. Then

go fleC(X).

45.C. For any topological space X there is a minimal topological struc-
ture ¢ on X such that C(X) = C(X, ¢). Prove that if X is a metrizable
space then ¢ coincides with the original topology of X. Find a topo-
logical space such that these topological structures are different. Find a
non-metrizable space such that these topological structures coincide.

Metrizable topological spaces comprise a large and important class of
topological spaces. The class of topological spaces, which are recoverable
from algebras of continuous functions on them, is even larger. For spaces
of this class the whole theory could be rebuilt on the basis of C(X'), which
would be a replacement for the topological structure (i.e., the set of open
sets) of X.

We describe this opportunity because of its similarity with our approach
to differential structures. Exactly as the notion of topological structure
extends the notion of continuous function to a more general situation,
the notion of differential structure is to extend the notion of differentiable
function.

However, differential structures were never defined in a generality com-
parable to the generality of topological spaces. Maybe this is why the
approach via distinguishing an algebra of “good” real valued functions,
which in the case of continuity looks more restrictive than the standard
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approach, fits so well in the case of differentiability: it is applied to the
situations, in which general topology could be perfectly based on algebras
of continuous functions.

45.D. Prove that a topological space X can be embedded to R", iff:

(a) the topological structure of X is defined by C(X),

(b) the algebra C(X) contains n functions fi, ..., f, such that any
f € C(X) can be obtained from fi, ... f, by an operation described
in 45.B and

(c) for any different a,b € X there exists f; with f;(a) # f;(b).

Differential Spaces

Let X be a set and r be a natural number or infinity. A differential
structure of class C" on X is an algebra C"(X) of functions X — R
satisfying the following two conditions:

(a) Forany fi,..., f, € C"(X) such that the image of the map f: X —
R" defined by fi, ... ,f, is contained in an open set A C R" and
any C"—map g : A — R the composition g o (f|) : X — R belongs
to C"(X). (Cf. 45.B above.)

(b) A function f : X — R belongs to C"(X) if for each a € X there
exist g, h € C"(X) such that h(a) > 0 and f(z) = g(z) for each x
with h(x) > 0.

A set equipped with a differential structure of class C" is called a dif-
ferential space of class C" or C"-space. Elements of C"(X) are called
C"-functions on X.

Any differential space has a natural topological structure: the smallest
one with respect to which all the functions belonging to C"(X) are con-
tinuous. It is called the underlying topological structure and X equipped
with this structure is called the underlying topological space of the C"-
space. The terms from general topology applied to a C"-space are under-
stood as being applied to the underlying topological space. For exam-
ple, “Hausdorff C"-space” means “C"-space whose underlying topological
space is Hausdorff”.

45.E. The underlying topological structure has a basis consisting of the
sets which are defined by finite systems of inequalities f(z) > 0 with

fecl(X).
45.1. Let X be a C"-space with r < oo, let fi,..., fr € C"(X), and U,

i
fi_1(0,+oo) for i = 1,...,r. Construct f,g € C"(X) such that N_,U;
f10,4+00) and Ur_,U; = g (0, +00).

45.2. The underlying topological structure of a C"-space with r < oo has the
basis consisting of the sets each of which is defined by an inequality f(z) > 0
with f € C"(X).
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45.F. In terms of the underlying topology, the second condition in the
definition of differential structure is formulated as follows: the property
of belonging to C"(X) is local, i.e., a function f : X — R belongs to
C"(X), provided in a neighborhood of each point of X it coincides with
some g € C"(X).
45.3. For a given set X, what is a differential C"-structure on X with the
indiscrete (underlying) topology? Does it exist? Is it unique?

45.4. For a given set X, what is a differential C"-structure on X with the
discrete topology? Does it exist? For which X is it unique?

45.5. Prove that any C"-space satisfying the first separation axiom is Haus-
dorff.

45.6. Prove that any C"-space satisfying the first separation axiom is regular.

45.7. Let X be a C"-space with r < oo. Let f,g € C"(X) and A =
f710,4+00), B = g 1[0,4+00). Prove that if AN B = & then there exists
a function h € C"(X) such that h(X) C [0,1], h"1(0) = A and h~}(1) = B.

45.G. The set of all the functions of class C” on an open subset U C R"
is a differential structure of class C" on U. This C"-structure is the
minimal one which contains all the n coordinate projections U — R.

Differential Structure of a Metric Space

Let X be a metric space with metric p : X x X — Ry. A function
f X — R is said to be differentiable ot a € X if for any neighborhood
U of a one can find points by, ..., b € U \a and numbers £y,...,8; € R

such that
e (@) = f(@) = S5 Bilp(biz) — plbiya))| _
va ple.a) |

45:1. Prove that the function X — R : z — p(a, z) may be nondiffer-
entiable at some x # a. Prove that this can be the case for X = S! with
some metric. On the other hand, if X is a subspace of R" equipped
with the metric which is the restriction of the standard metric of R
then X — R : z — p(a, ) is differentiable at each z # a.

45:2. Prove that for any metric space X function X — R : z — p(a,x)"
with integer r > 1 is differentiable at a € X.

45:A. Prove that if X is an open subspace of R" then the notion of
differentiability introduced above coincides with the classical differentia-
bility discussed in Section 44.

Let X be a metric space. A function f : X — R is said to be continu-
ously differentiable at a € X if for any neighborhood U of a there exists
a neighborhood V' of a and continuous functions by,...,b; : V — U,
B, Bk : V — R (for some k) such that for any point ¢ € V

Lo @) = £ = S8 Bilp(bi(e). 2) = plbife). )

P ol,0)

=0.
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Denote by C'(X) the set of functions X — R continuously differentiable
at each point of X.

45:B. Prove that C!(X) is a differential structure of class C! for any
metric space X.

45:3. What is C'(X) if

(a) X ={(x,y) € R? | zy = 0} with metric induced from R?,
(b) X ={(z,y,2) € B | 2y = 0} with metric induced from R?,
(¢) X = S? with metric induced from R3

(d) X is the Cantor set with metric induced from R?

Let X be a metric space and r a natural number. A function f: X — R
is called a function of class C" at a € X if for any neighborhood U of a
one can find a neighborhood V of a and continuous functions by, ..., b :
V-oU,p:V = Rlzy,...,z], where p takes values in polynomials of
degree < r such that for any point c € V

o @) = 1) = plp(br (), ), ., plon(e),0))

rhe olo, oy

=0.

Denote by C"(X) the set of functions X — R of class C" at each point
of X.

45:C. Prove that C"(X) is a differential structure of class C” for any
metric space X.

Differential Subspaces

45.H. Let X be a C"-space and A its subset. Consider the set of func-
tions f : A — R such that for each b € A there exist g,h € C"(X) with
h(b) > 0 and f(x) = g(zx) for each x € A with h(xz) > 0. Prove that this
is a differential structure of class C" on A.

This set of function is denoted by C"(A) and called the C”-structure
induced by C"(X). The set A equipped with C"(A) is called a C"-subspace
of X.

45.1. (Cf. 44.0) Let U C R". Prove that the set of functions belonging
to the C7-structure on U induced by the standard C”-structure of R"
coincides with the set of C"-functions U — R.

Below all the subsets of R are considered as C"-spaces with the structure
induced, as on subspaces, by the standard C"-structure of R”, unless the
opposite is stated explicitely.

45.J. Prove that if A is a subset of a C"-space X and f € C"(A) then
flB : B — R belongs to C"(B) for any B C A.

45.8. Prove that the C"-structure induced on R from the standard C"-
structure of R? coincides with the standard C"-structure of R.
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45.9. Show that the map C"(X) — C"(4) : f — f|A may be nonsurjective.
Under what conditions it is surjective?

C"-Structures on Subspace of Metric Space

45:D. Prove that for an open subset A of a metric space X the C"-
structure induced from the metric C"-structure of X coincides with the
C"-structure induced by the restriction to A of the metric of X.

45:E. For any subset A of a metric space X the C"-structure induced by
the restriction to A of the metric of X is contained in the C”-structure
induced on A from the metric C"-structure of X.

45:F. Prove that for A C R® the C"-structure induced from the stan-
dard C"-structure of R” coincides with the C"-structure induced by the
restriction to A of the metric of R".

45:G. Construct a subset A of a metric space X such that the C"-
structure induced on A from the metric C"-structure of X does not coin-

cide with the C"-structure induced by the restriction to A of the metric
of X.

45:G:1. Embed isometrically R! with the standard metric to a metric
space X such that function R — R : z — |z| is diffrentiable with

respect to the C'-structure induced from the metric C'-structure on
X.

Differentiable Maps

Let X, Y be C"-spaces. A map f: X — Y is called a differentiable map
of class C™ or a map of class C" or or just a C"-map if po f € C"(X)
for each ¢ € C"(Y). A C"™-map f : X — Y defines a homomorphism
C"(Y) = C"(X).

45.K General Properties of C"-Maps. Prove that:

(a) The composition of C"-maps is a C"-map.

(b) The identity map of a C"-space is a C"-map.

(c) The inclusion of a C"-subspace into the C"-space is a C"-map.
(d) A submap of a C"-map is a C"-map.

45.10. Let X be a C"-space. Prove that f € C"(X),iff f: X - Ris a
C"-map (with respect to the standard C"-structure of R).

45.11. Let U C R*, V C R* be open sets. Prove that f: U — V is a C"-
map with respect to the C"-structures induced from the standard structures
of the ambient spaces R and RF iff it is a C"-map in the sense defined in
Section 44 (that is the compostions of f with all the coordinate projections
U — R are r times continuously differentiable).
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Diffeomorphisms

Let X, Y be C"-spaces. A map X — Y is called a diffeomorphism of class
C" or C"-differomorphism if it is an invertible C"-map, and the inverse
map is also of class C". C"-spaces are said to be (C"-)diffeomorphic if
there exists a C"-diffeomorphism X — Y.

45.L General Properties of Diffeomorphisms. Prove that:

(a) The composition of C"-diffeomorphisms is a C"-diffeomorphism.
(b) The identity map of a C"-space is a C"-diffeomorphism.
(¢) The inverse map to a C"-diffeomorphism is a C"-diffeomorphism.

45.M. The diffeomorphism relation of C"-spaces is an equivalence rela-
tion.

45.N. Prove that C"-diffeomorphisms of open subsets of R” defined in
Section 44 are C"-diffeomorphisms in the sense discussed here.

45.12. Prove that any diffeomorphism of a semi-cubic parabola
C={(z,y) e R |2° =y°}
onto itself preserves (0,0) € C).

45.13. Consider the angle A = {(z,y) e R? | z =0,y > 0} U {(z,y) € R? |
2 > 0,y = 0}, semi-cubic parabola C = {(z,y) € R? | 2° =y} and line R.
Prove that there exist C"-bijections A - R, R — C and C' — R, but these
C"-spaces are pairwise nondiffeomorphic.

Differentiale Embeddings

Recall that a topological embedding is a map f : X — Y of a topological
space X to a topological space Y such that its submap f : X — f(X)
is a homeomorphism. In the setup of differential spaces this definition
has an obvious counter-part: a map f : X — Y of a C"-space X to a
C"-space Y is called a C"-embedding if its submap f : X — f(X) is a
C"-diffeomorphism.

45.0. The inclusion of a smooth submanifold to the smooth manifold
is a differentiable embedding.

45.P. (Cf. 45.D.) Prove that a C"-space X can be embedded to R", iff
the algebra C"(X) contains n functions fi, ..., f, such that

(a) C"(X) is the minimal C"-structure containing fi, ... fn,
(b) for any different a,b € X there exists f; with f;(a) # fi(b).

45.14. Which of the following maps are differentiable embeddings:
id: R — R,

St — R2 : (cos 2t,sin 27t) ~ (sin 27t, sin 47t),

St — 81z 22,

R — R? : t— (£2,1%),

R — R :t— (£2,13,1),

(a
(b
(c
(d
(

e

e S e e N



46. CONSTRUCTING DIFFERENTIAL SPACES 197

f) R— Rt (t2,t4),

(g) I — R :tw (sinnt,sin2nt),

(h) [0,1) = R? : ¢+ (sin7t,sin 27t),

(i) (0,1) - R? : t v (sin wt, sin 27t),

() R— 8" xSt (eft, ™),

(k) S'— St x St:ze (23,27,

1) St =S8 xStz (24,27),
(m) ]R—>R2:xl—>{($’$+$5)’ ifz2>0

(z,z —z*), ifz <0

2 _ 2, ($72$)7 ify:O,
(m) {(z,y) eR® |2y =0} = R -(wﬂy)H{Qy’y)’ foe0

2 2y _ 2 . (z,0), if y =0,
(0) {(z.y) eR*|y(ly—2°) =0} > R -(x,y)H{(O’m)’ ity 20
(p) {(z,y) € R |y? =2} 5> B : (z,9) = (z,y,4"/%)?

Semicubic Parabola

45.Q. The set of all C*°-functions on R with the first derivative vanish-
ing at 0 is a C*°-structure on R.

45.R. Prove that for any C'*°-function f : R — R with %(O) =
there exist C*°-functions ¢ : R — R and ¢ : R — R such that f(z)
¢(2%) + 1(2%).

45.8. The C*-space of Problem /5. is C'*°-diffeomorphic to the sub-
space of R? defined by equation z® = y?. The map x — (22, 2°) is the
differential embedding.

0

46. Constructing Differential Spaces

Multiplication of Differentiable Spaces

Let X and Y be C"-spaces. Denote by C"(X x Y) the minimal C"-
structure on X X Y which contains the compositions of the natural pro-
jections X x Y — X and X xY — Y with C"-functions on X and Y,
respectively. The set X x Y equipped with the C"-structure C"(X x Y))
is called a product of C"-spaces X and Y.

46.1. Prove that, from the point of view of C"-spaces, R’ x R? = RPT4,
46.2. Let X, Y, A and B be C"-spaces and f : X - Y, g: A — B be
C"-maps. Prove that

(a) the Cartesian product f x g: X x A =Y x B is a C"-map,

(b) if f, g are C"-diffeomorphisms then f x g is a C"-diffeomorphisms,

(c) if f, g are C"-embeddings then f x g is a C"-embedding.

46.3. Let A, X and Y be C"-spacesand f: A —- X, g: A — Y be C"-maps.
Prove that
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(a) themaph:A— X xY :a— (f(a),g(a)) is a C"-map,
(b) if fis a C"-embeddings then h is a C"-embedding, too.

Quotient Differential Spaces

46.A. Let X be a C"-space and S a partition of X. Prove that the set
of functions f : X/g — R such that f opr € C"(X), where pr is the
canonical projection X — X/g, is a differential structure of class C” on
the quotient set X/g.

This set of function is denoted by C"(X/g) and called the quotient of
C"(X). The quotient set X/g equipped with C"(X/g) is called a quotient
C"-space of X.

46.4. Let S be the partition of R? into vertical lines (i.e., sets of the form
a x R). Prove that R? /g is diffeomorphic to R.

46.5. Prove that the quotient space of the segment [—1, 1] obtained by iden-
tifying the end points —1 and 1 is not diffeomorphic to the circle S* (with the
CT-structure induced from the standard C"-structure of the ambient plane
R?). Find a C"-subspace of R? diffeomorphic to this quotient C"-space.

46.6. Prove that the quotient space of the segment [—1, 1] obtained by iden-
tifying = with = + 3/2 for < —1/2 is diffeomorphic to S*.

46.7. Prove that the orbit space of involution R?> — R? | (z,y) = (-, —y)
is diffeomorphic to the cone {(z,y,2) € R® | 2% + y> = 22,2 > 0}.

46.8. Prove that the orbit space of involution R*> — R? | (z,y) — (z,—y) is
diffeomorphic to the half-plane R? .

46.9. Prove that the quotient space D?/g1 (the boundary circle St of the
disk D? is contracted to a single point) is not diffeomorphic to a subset of
Euclidean space of any dimension.

There is a natural way to introduce a C"-structure into a disjoint sum of
C"-spaces.

46.B. Describe explicitely the natural construction of disjoint sum of
differential spaces.

As in the case of topological spaces, by gluing C"-spaces one means com-
position of two constructions: disjoint summation followed by factoriza-
tion.

46.10. Prove that the result of gluing of two copies of the half-space R’} by
the identity map of the boundary hyperplane is diffeomorphic to {(z,y,2) €
R xRxR |y > 0 and z = 0}U{(z,y,2) € R*! xRxR | 2 >0 and y = 0}

46.11. Prove that the result of gluing of two copies of the half-space R’}
by the map of the subset {(x1,...,2,) | 0 > ;1 > 1} onto itself defined by
(1,22, @) — (L —x1,22,...,2,) is diffeomorphic to R".
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Classical Lie Groups and Homogeneous Spaces

To be written

Space of n-Point Subsets of Surface

To be written

Toric Varieties

To be written

47. Smooth Manifolds

C"-Manifolds

A C"-space X is said to be locally modelled on a C"-space Y if any point
of X has a neighborhood diffeomorphic to an open C"-subspace of Y.

A CT-space is called a smooth, or differential, or differentiable’ manifold
of class C" or just C"-manifold of dimension n if it is modelled on a half-
space R" and the underlying topological space is Hausdorff and second
countable. As it follows immediately from the definition, the underly-
ing topological space of a C"-manifold of dimension n is a (topological)
manifold of dimension n.

47.1. Consider the following subsets of the plane RZ.

(a) {(z,y) eR |z >0,y=0}U{(x,y) €R® |z =0,y >0},
(b) {(z,y) e R | 2* +y> = 1},
() {(x,y) eR?|2*+y?>=1,2>0,y>0}U

{(z,9) eR |z =1,y <0} U{(z,y) € R |2 <0,y =1},
(d) {(z,yeR |y=2%2>0)}U{(z,y) e R |y=0,2<0},
(e) {(z,y) € R |y® =27},
(f) {(z,y) € B |y' = 2%},
(g) {(z,y) € R |y'% > 2}

Equip them with the C"-structure induced from R?. For which r is each of
them a C"-manifold?

47.2. Which of the following C"-subspaces of an Euclidean space are C"-
manifolds?

a) S™,

D",

m,

R7,

{(z,y,2) €R® | ayz > 0},

(
(b

C
(d

~— e

(e

LA funny term: nobody is able to differentiate this differentiable manifold!
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(f) {(x,y,2) € B | zyz > 0}.

A diffeomorphism & : U — G of an open set U of a C"-manifold X onto
an open set of R} or R is called a (local) coordinate system or a chart
in X. The compositions of & and the coordinate projections G — R are
denoted by &', €2, ... £ and called coordinates in the coordinate system
£. The value of £ at a € U is called the i-th coordinate of a in &.

Let £: U — G and np: V — H be charts in a C"-manifold X. Then there
appear charts | : UNV = &UNV),n:UNV - n(UNV) and a map
(E)o ()™ :n(UNV) = &UNV). The latter is called the transition
map from n to £ and denoted by t%. This map calculates the coordinates
of a point in & given the coordinates of this point in 7.

47.A. Prove that the transition map between any two charts of a C"-
manifold is a C"-diffeomorphism.

47.B. Prove that the C"-structure of a C'"-manifold can be recovered
from a collection of its local coordinate systems if the supports of these
local coordinate systems cover the whole manifold.

47.C. Prove that the boundary of the underlying manifold of a C"-
manifold equipped with the induced C"-structure is a C"-manifold.

47.D. Under what conditions the product of two C"-manifolds (consid-
ered as a product in the category of C"-spaces) is a C"-manifold?

Manifolds with Corners

A CT"-space is called an n-dimensional smooth manifold of class C™ with
corners if it is modelled on (Ry)™ and the underlying topological space
is Hausdorff and second countable. As it follows immediately from the
definition, its underlying topological space is a (topological) manifold of
dimension n. Of course, any smooth manifold of class C" is a smooth
manifold of class C" with corners.

47:A. Prove that there exists a smooth manifold of class C" with corners
which is not a smooth manifold of class C".

47:B. Prove that the product of any two C"-manifolds with corners is
a C"-manifold with corners.

In particular, the product of any two C"-manifolds (without corners) is
a C"-manifold with corners.

Traditional Approach to Smooth Manifolds

The theory presented in the previous section is a natural generalization
of the traditional theory which treats only smooth manifolds. The tra-
ditional theory was first developped in full generality by H. Whitney
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(Differentiable manifolds, Annals of Mathematics, 37 (1936) 645-680),
athough one should mention also a book by Hermann Weyl (Die Idee der
Riemannschen Flichen, Teubner, Leipzig, Berlin, 1923) where the same
scheme was applied in the case of one-dimensional complex manifolds.
Now it is commonly accepted.

Here we sketch it. Doing this, we redefine several notions introduced
above. Eventually, the newly introduced notions will be identified with
their previously introduced versions, but for a while, to avoid confusion,
we will refer to the notions definined above adding the words in the sense
of differential spaces.

Let X be a manifold of dimension n, let U C X an open set, £ : U — G
a homeomorphism onto an open set of either R* or R’ . Then ¢ is called
a chart or (local) coordinate system in X, the set U is called the support
of £&. The compositions of ¢ and the coordinate projections G — R are
denoted by &', €2, ... £ and called coordinates in the coordinate system
. The value of £ at a € U is called the i-th coordinate of a in €.

Let £: U — G and n: V — H be charts in X. Then there appear charts
EUNV = EUNV),n:UNV = nUnNV) and homeomorphism
(&) o (m))™" : n(UNV) = £&UNV). The latter is called the transition
map from n to £ and denoted by t%. This map calculates the coordinates
of a point in & given the coordinates of this point in 7. Since n(U NV)
and £(U NV) are open subsets of R” or R, all the notions developed
in Calculus can be applied to #5. In particular, 5 may be of class C".
If tfl is a C"-diffeomorphism then £ and 7 are said to be C"-related. If
UNV =@, the charts also are C"-related.

47.E. C"-related charts are C*-related for any s < r.

A collection of mutually C"-related charts whose supports cover X is
called a C"-atlas of X.

Two CT-atlases are said to be C"-equivalent if their union is a C"-atlas.

47.F. Reformulate the definition of C"-equivalence of atlases in terms
of transition maps.

47.G. Prove that C"-equivalence of C"-atlases is an equivalence relation.

Only transitivity in 47.G is not absolutely obvious, is it?

A class of C"-equivalent atlases of a manifold X is called a differential
structure of class C™ on X, or differentiable® structure of class C™ on
X, or smooth structure of class C™ on X, or just C"-structure. A pair

20f course, nobody differentiates this differentiable structure!
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consisting of a manifold X and a C"-structure on X is called a smooth
(or differential, or differentiable) manifold of class C” or a C"-manifold.

47.H. (Cf. 47.B.) A differential structure is determined by any atlas
belonging to it.

47.1. A differential structure contains a maximal atlas. This is the unon
of all the atlases of this structure.

Sometimes the maximal C"-atlas is called C"-structure. Although we do
not identify them, we say that a chart belongs to a C"-structure and is a
coordinate system of the corresponding C"-manifold if it belongs to the
maximal C"-atlas.

47.J. Let X be a C"-manifold, a € X, and f: X — R a function. Let
¢£:U — G and n:V — H be charts with supports containing a. Then
for any s < r if the composition G@ > ¢! >> UQ > f|y >> Risa C*-
function at £(a) then HQ > n~' >> V@ > f|;y >> R is a C*-function

at n(a).

A function f: X — R defined on a C"-manifold X is said to be of class
C® (with s <r) at a € X if for some (and hence, by 47.J, for any) chart
¢ :U — G with U 5 a the composition G@ > 1 >>UQ > f|ly >> R
is a function of class C* at &(a). A function is said to be a C*-function
if it is of class C*¥ at each a € X.

Equivalence of the Two Approaches

47.K. All the C"-functions on a C"-manifold X comprise a C"-structure
on X in the sense of differential spaces. With respect to this C"-structure,
all the charts of X are charts in the sense of differential spaces. In
particular, as a differential space, X is a C"-manifold in the sense of
differential spaces.

47.L. Let X be a C"-manifold in the sense of differential spaces. Then
its charts in the sense of differential spaces comprise a C"-atlas turning
X into a C"-manifold in the traditional sense. Cf. 47.4 and 47.B.

Thus we have two conversions: any C"-manifold can be converted as
indicated in 47.K to a C"-space which is a C"-manifold in the sense of
differential spaces, and any C"-manifold in the sense of differential spaces
can be converted as indicated in 47.L to a C"-manifold in the traditional
sense.

47.M. These two conversions are inverse two each other: both of their
compositions are identity.
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Revision of Boundary

Let X be a smooth manifold of class C" and dimension n, and let UQ >
§ >> G C R} be a chart belonging to its C"-structure. Then (U N
0X) = GNR"! is an open set of the boundary hyperplane R*~! of R"
and £|: UNOX — GNR"! is a local coordinate system in 9X.

47.N. Local coordinate systems in 0X obtained in this way from lo-
cal coordinate systems belonging to the C"-structure of X define a C"-
structure on 0.X.

47.0. The C"-structure on 0X defined in 47.N coincides with the one
induced on 0X as on differential subspace of X, cf. 4/7.C.

Revision of Multiplication

Let X and Y be smooth manifolds of class C" and dimensions p and

q, respectively. Let 0Y = @. For charts £ : U — G andn:V — H

belonging to the C"-structures of X and Y, respectively, define map
Exn:UxV = GxH:(a,b)— (&(a),n(d)).

This is a chart in X x Y.

47.P. All the charts of this sort are C"-related to each other.

The C"-structure defined by an atlas, which consists of charts of this
type, is meant when one says on X x Y as on manifold of class C".

47.Q. The C"-structure on X x Y defined by an atlas, which consists
of charts of the type described above, coincides with the C"-structure
defined as on a product of differential spaces. Cf. 46.1 and /7.D.

Revision of Differentiable Maps

Let X, Y be smooth manifolds of class C" and f : X — Y a map.
Suppose f is continuous at a € X.

47.R. Let n:V — H be a chart of Y with f(a) € V. Prove that there
exists a chart £ : U — G of X with e € U and f(U) C V.

The map no (f|yy) o€~ is called a representative of f in local coordinate
systems € and n. We denote it by fg. The map f is said to be of class
C*® (with s <) at a if there a representative f of f : X — Y is of class
C* with s < r at £(a).

47.8. Prove that this does not depend on the choice of coordinate sys-
tems: if there is a representative fg of f: X — Y which is of class C* at

&(a) then any other representative fg of f is of class C* at £(a).
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Hence, the class of a map at a point is well-defined. A map f: X —» Y
is said to be of class C* if at each a € X it is of class C*.

47.T. Let X, Y be C"-manifolds. A map f : X — Y is of class C”
in the sense defined above, iff it is a C"-map in the sense of differential
spaces.

Rank of Mapping

47.U. Prove that the rank of the Jacobian matrix (the matrix of the
first order partial derivatives) at {(a) of a representative f of f does not
depend on the choice of & and 7.

This rank is denoted by rk, f and called the rank of f at a. Let f :
X — Y be a C"-map. A point b € Y is called a regular value of f if
k, f = dimY at each point a € f1(b).

Differential Topology

Let X and Y be smooth manifolds of class C". Recall that a map f :
X —= Y is a diffeomorphism of class C" if it is of class C", invertible and
the inverse is also of class C". (Cf. above.)

Information: If X, Y are C"-manifolds and there exists a diffeomorphism
X — Y of class C! then there exists a C"-diffeomorphism X — Y.

Smooth manifolds XS, Y are said to be diffeomorphic if there exists a
diffeomorphism X — Y.

Information: There exists homeomorphic, but not diffeomorphic smooth
manifolds. The lowest dimension of such manifolds is four.

47.3. Prove that if two one-dimensional smooth manifolds are homeomor-
phic, they are also diffeomorphic.

Differential topology is a branch of mathematics which studies properties
of smooth manifolds preserved by diffeomorphisms.

Submanifolds

In Section 45 any subset of a C"-space was equipped with the induced C”-
structure. If we consider only smooth manifolds then a subset, which can
receive a structure, must satisfy strong restrictions. It must be a manifold
and positioned in such a nice way that the structure of C"-space induced
as it was described in Section 45 would turn it to a smooth manifold.
Moreover, for some reasons usually one imposes extra conditions on the
position in the ambient manifold.
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Let X be a smooth manifold of class C" and dimension n, and A be a
subset of X. One says that A is a smooth k-dimensional subset of X if
at each b € A there exists a chart UQ > ¢ >> G of X such that the
pair (£(U),&(U N A)) coincides with one of the following pairs: (R", R¥),
(R*,RY), (R%,RE). The submap & : UN A — &(U N A) is a chart of A.

47.V. Prove that all the charts obtained in this way from charts belong-
ing to the same C"-structure of X are C"-related.

47.W. The C"-structure on a smooth subset described above coincides
with the smooth structure induced on the subset from the ambient C"-
manifold as it was defined in Section 45.

The smooth subset A equipped with the C"-structure which is defined
by the charts of this sort is called a (smooth C”-) submanifold of X.

The definition of smooth subset gives a clear idea of what a smooth subset
is. It says that in a neighborhood of each of its points a smooth subset
looks like and placed in the ambient manifold either as R* in R", or RE
in R*, or ]Rﬁ in R . However, this definition is not convinient when
one wants to check if some special set is smooth. Now we consider its
reformulations more adapted for this kind of problems. For the sake of
simplicity we restrict ourselves to the case of proper smooth subsets, i.e.,
smooth subsets with 04 = 0X N A. In the definition of proper smooth
sets one can skip the pair (R*,R% ).

47.X. Prove that A is a proper smooth k-dimensional subset of a smooth

manifold X, iff for each b € A there exists a local coordinate system ¢ :

U — R, of X (where R, , denotes either R" or R’} ) and a differentiable

map f : Rﬁr) — R" % such that (AN U) is the graph of f.

47.Y. Prove that A is a proper smooth k-dimensional subset of a smooth
manifold X, iff for each b € A there exists a local coordinate system

{:U — Ry, of X and a differentiable map f : RY,) — R"* such that

0 € R * is a regular value of f and, if Rty = R, a regular value of
f|3R7}r and g(A N U) = fﬁl(O)

Cf. Implicit Function Theorem 44.L.

48. Immersions and Embeddings

Immersions

Let X and Y be C"-manifolds. immersion if its rank at each point of X
is equal to the dimension of X.
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48.1. Which of the following differentiable maps are immersions:

=R s A T W

[

N N e~ TN S~
N N N e o N N

—
o

id:R— R,
a constant map R — R,

the projection R? — R,

S1 — R? : (cos 2nt, sin 27t) + (sin 27t, sin 47t),

St — Stz s 22,

R — R? : t — (12,13),

R — R? : ¢t (£2,14),

R — St x St:tes (el emit),

I — R? : t+ (sin7t,sin 2mt),

R? — R3 : (x,9) — (cosz,sinz cosy,sin z siny),

R? = R3 : (z,9) — (cosz(2 + cosy),sinx(2 + cosy),siny)?

48.2. Prove that an immersion of a closed smooth manifold to a closed con-
nected smooth manifold of the same dimension is a covering with a finite
number of sheets.

48.3. Is the same true for compact manifolds with boundary?

48.4. How to generalize /8.2 to the case of compact manifolds with bound-
ary, anyway?

48.5. Does there exist an immersion S? — R2? What about immersion
St x St — R?? Find a generalization for the answers to these questions.

48.6. Does there exist an immersion of a handle (i.e., torus with a hole) to
the plane?

Differentiable Embeddings

Recall that a map f: X — Y of a C"-space X to a C"-space Y is called
a C"-embedding if its submap f : X — ¢(X) is a C"-diffeomorphism.

In the traditional approach to smooth manifolds, one should add to this
an additional condition, because the image f(X) is not a smooth manifold
automatically. Thus the definition looks as follows: A C"-map f : X — Y
is called a differentiable embedding if f(X) is a smooth subsmanifold of
Y and f|: X — f(X) is a diffeomorphism.

48.A. The inclusion of a smooth submanifold to the smooth manifold
is a differentiable embedding.

48.7. Which of the following differentiable maps are differentiable embed-
dings:

(a)
(b

A A
— N~ _~
T B Mo Ao
N’ N’ N e’ N N N’ N N

id:R = R,

St — R2 : (cos 2t,sin 2wt) + (sin 27t, sin 47t),
St — 81z 22,

R — R? : t— (12,1%),

R — R? : ¢t (£2,14),

I — R? .t (sinmt,sin 27t),

[0,1) = R? : t — (sin 7t, sin 27t),

(0,1) = R? : t > (sinmt, sin 27t),

R — St x St it (et ™),

St — 8t x Sz (23,27),
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(k) ST — St x St:zes (24 22),
) RoR e (z,z+2°), if 2 >0
' (z,2 —2*), if 2 <0

Immersions Versus Embeddings

48.B Embedding Is Immersion. Any differentiable embedding of a
smooth manifold to a smooth manifold is an immersion.

48.C Immersion Is Embedding Locally. Let f : X — Y be an im-
mersion. Prove that each point a € X has a neighborhood U such that
flo : U =Y is a differentiable embedding, unless f(a) € dY .

48.8. Riddle. What if, under the conditions of 48.C, f(a) € 9Y?

48.D Diff. Embedding = Top. Embedding + Immersion. Let
X and Y be C"-manifolds. A map f: X — Y is a C"-differentiable em-
bedding, iff f is a topological embedding and C"-immersion.

48.D.1. Let X and Y be C"-manifolds, ¢ € X and f : X — Y be a
topological embedding. Then for any neighborhoods U and V of a and
f(a), respectively, there exist open subsets Uy C U and Vi C V such that
f(Uo) = Vo N f(X).

48.D.2 Straightening I'mmersion. Let U be an open set of R” and f :
U — R* be a C"-map such that rk, f = n for some a € U. Then there
exist a neighborhood V' C U of a and a neighborhood W of f(a) and
C"-diffeomorphisms g : V. — V C R and h : W — W C RF such that
WNf(U) = f(V)and ho(f])og™" is the linear embedding (z1,...,z,)
(Z1,...y2Tpn,0,...,0).

Embeddability to Euclidean Spaces

In early years of topology (say, in papers by Henry Poincaré) by a smooth
manifold one meant what is called smooth submanifolds of an Euclidean
space. It was not convinient, because the embedding usually is quite
irrelevant, and sometimes is not easy to find. For example, RP" with
n = 2% can be embedded into R?n, but does not admit an embedding
into R?"~!. The standard smooth structure is easier to get from the well-
known natural two-fold covering space, which is S™, than to describe a
smooth embedding into an Euclidean space. So, the transition to Whit-
ney’s abstract definition of smooth structures was well-motivated. How-
ever the transition poses the question if the set of objects really changes.
The answer is negative: any smooth manifold can be smoothly embed-
ded into an Euclidean space. This was proved for C"-manifolds with
r < oo by Whitney in the very same paper (Differentiable manifolds,
Annals of Mathematics, 37 (1936) 645-680), where he introduced differ-
ential structures. The real analytic case was done about twenty years
later by Grauert and Remmert.
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Here we consider the simplest case of the embedding theorems.

48.E. Any compact C"-manifold can be C"-differentiably embedded into
FEuclidean space of sufficiently high dimension.

48.E.1. To embed a compact C"-manifold X to RY it is necessary and
sufficient to construct N real valued functions fq, ..., fx of class C" on X
such that for any a € X there exist 44 < 19 < -++ < 1, withrk (%fTi:(a)) =n
and there exist 4, j with f;(a) # f;(a).

48.E.2. Each point of a C"-manifold of dimension n has a neighborhood
which admits a C"-embedding to R”.

48.E.3. (Cf. /4.N) Let X be an n-dimensional C"-manifold, ¢ : U — G a
local coordinate system such that G contains a ball of radius 2 centered at
the origin of R*. Let g be a C"-function defined on U. Then there exists
a C"-function h : X — R such that hl¢-1(pny = gl¢-1(pny and h(z) = 0 for
xz #eU.

The proof of 48.F sketched above does not work for r = a, i.e., for real
analytic functions.

48.9. Where does it not work for real analytic embedding?

Theorem /8.F is correct for real analytic case too, but requires argu-
ments of absolutely different nature. As it was mentioned above, these
arguments were found by Grauert and Remmert in the fifties.

Information: Any n-dimensional C"-manifold can be C"-embedded into
R2?". For r < oo existense of a C"-embedding to R*"*! was proved by H.
Whitney in Differentiable manifolds, Annals of Mathematics, 37 (1936)
645-680. Eight years later he managed to decrease the dimension of the
Euclidean space by one. The same Whitney’s results combined with the
Grauert-Remmert technique give embedding to R?" for a real analytic
manifold of dimension n.

49. Tangent Vectors

As smooth manifolds generalize smooth surfaces lying in Euclidean space,
tangent vectors to a smooth manifold generalize vectors in Euclidean
space applied to a point of a surface and tangent to it.

In literature there are at least three completely different ways of defin-
ing vectors tangent to a smooth manifold. Of course, the results are
equivalent, but this appears as a surprise. The variety of definitions can
be partially explained by advantages of different definitions in different
situations, but the main reason is a difference in pedagogical principles
and experience.
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Different people think about vectors in different ways. A school math
teacher thinks that it is a directed segment, or a class of parallel equally
directed segments of the same length.

A physisist would laugh at this: he knows for sure that the electric
field strength is a vector, but has next to nothing to do with a directed
segment. A usual definition of a vector for physisists is that this is a
quantity which is characterized by a direction in the space and magnitude
(the latter is a number depending on the choice of unit of measurement).

For a mathematician, vector is just an element of a linear space. At first
glance, this is the most general point of view. Both vectors of school
teacher and physisist are vectors for mathematician, because one can
sum them and multiply by a number and these operations are subject of
the same axioms. But when one needs to extend a definition of vector to
a new situation, the axiomatic point of view is not creative. It is good
mostly for throwghing away wrong candidates.

Coordinate Definition

A physisist would probably agree with the following definition of a vector:
a vector is a quantity which can be characterised by n real numbers (its
coordinates) if it is taken in n-dimensional space and a coordinate system
is fixed. When the coordinate system changes, the coordinates of a vector
change accordingly. The first definition of tangent vector that we consider
fits to this scheme.

Let X be a smooth manifold of class C" and dimension n and a be a
point of X. Denote by C, the set of local coordinate systems of X with
supports containing a. A tangent vector of X at a isamap v:C, —» R"
such that for any &,n € C,

0
22 €)= (5) v,
where (g—g) is the Jacobian matrix of the transition function from 7 to
(a). "

§atn

If v(&) = (2,...,2") and v(n) = (y%,...,y") then formula (22) can be
rewritten as follows:

(23) a' =

Here the upper indices are just indices, not exponents. The unusual posi-
tion is determined by the Einstein notations for multilinear algebra which
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are explained below. The main goals of these notations is to exclude nu-
merous summation signs and encode the difference between elements of a
vector space and the conjugate space. In the Einstein notations formula
(23) looks as follows:

g ,
= 7Y

see Digression on Einstein Notations below.

l‘i

The set of all the tangent vectors of X at a is denoted by T, X and called
the tangent space of X at a.

49.A. T,X is a vector space with respect to coordinatewise operations
(v+w)(§) =v(§) +w(§) and (av)(§) = a(v()).
49.B. Any coordinate system £ € C, defines a map

T.X >R :v—v().

This map is a linear isomorphism.

In particular, a vector v € T,X is determined by v(£), and v(§) can
be any element of R". The coordinates of v(§) (with respect to the
canonical coordinate system in R™) are called the coordinates of v in (or
with respect to) the local coordinate system .

Digression on Einstein Notations

To be written

Differentiation of Functions

To be written

Differential of Map

To be written

Tangent Bundle

Consider the set of all the tangent vectors of a manifold X, i.e., UyexT,X.
It is denoted by T'X and called the tangent bundle of X.

For any local coordinate system X D UQ > & >> G C R" put TU =
Ueev 1o X and define a bijection TU — G x R by formula T, X 3 v —
(&(z),v(£)). By this bijection one introduces to TU topology and smooth
structure from G x R”

To be finished
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Tangent Vectors in Euclidean Space

To be written

Vectors as Velocities

To be written

50. Vector Bundles

To be written

General Terminology of Fibrations

Trivial and Locally Trivial

Induced Fibrations

Vector Bundles

Constructions with Vector Bundles
Tautological Bundles

Homotopy Classification of Vector Bundles

Low-Dimensional

51. Orientation

To be written
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Linear Algebra Digression: Orientations of Vector Space
Related Orientations

Orientation of Vector Bundle

Orientation and Orientability of Smooth Manifold
Orientation of Boundary

Orientation Covering

Projective Spaces
52. Transversality and Cobordisms
To be written

Sard Theorem
Transversality
Embedding to R*"*!
Normal Bundle and Tubular Neighborhood
Pontryagin Construction
Degree of Map
Linking Numbers
Hopf Invariant
Thom Construction

Cobordisms



