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Chapter 1

Introduction

The subject of Topology grew out of the foundations of calculus and more
generally analysis. If you took a typical calculus sequence, then you began by
learning about functions of the real line. The focus was on differentiable func-
tions and how they can be best approximated locally by linear functions (the
derivative). Along the way you learned about continuous functions. Again,
the emphasis was on local properties such as limits; a notable exception is
the intermediate value theorem. Later on these concepts were generalized to
functions of more than one variable, i.e. functions from R" to R™. Topology
incorporates further generalizations. In particular, it allows one to study the
local and global properties of continuous functions between general spaces.

To read this book you do not need to have studied general topology.
This introductory chapter summarizes the elementary topology which we
will need.

As was mentioned above one of the powers of the calculus is that through
differentiation differentiable functions are locally approximated by linear
functions. Linear functions are, of course, much easier to work with. Fur-
thermore, linear functions can be studied algebraically as you learned in
your linear algebra course. As an example of the advantage gained by this
process of algebratization consider the following question. Is the function
f : R? — R? given by

fl,y) = (2® = 3oy +y+ 2,0y — 29° — 4z — 1)

invertible near the point (1,2)7 Trying to find an explicit inverse is difficult.
However, calculus gives us a simpler way to answer the question. Differenti-

7
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ating f gives
| 22 -3y 3r+1
Df(l',y)—[ y_4 1‘—4y]

Evaluating this at (1,2) we get

Df(1,2) = [ :‘21 :i]

Since the determinant of this matrix does not equal zero, f is invertible in a
neighborhood of (1,2). Of course this is just a special case of the following
theorem.

Theorem 1.1 [Inverse Function Theorem| Let U be an open set in R™ and
let f: U — R"™ be a differentiable function. Let x € U. If Df(x), the
derivative of f at x, is an invertible matriz, then there is an open neigh-
borhood V. C U containing x such that f : V. — f(V) is invertible with a
differentiable inverse.

The important point of this example is that through calculus we have
reduced an analytic problem to an algebraic problem. In fact, this method
allows us to develop an algorithmic approach to answering this question. For
example using the computer package MAPLE we can solve this problem as
follows.

with(linalg):

f1 = (x,y) -> x72 -3%xxy +y +2:

£2 = (x,y) —-> x*y - 2%y~2 -4x*x-1:

f (x,y) > (f1(x,y), f2(X y)):

Df := (x,y) -> array(1l..2, 2, LID[1T(£1) (x,y) ,DL2] (£1) (x,y)],
[D[1](£2) (x,y) ,D[2] (£2) (x, y)]])

f(x,y)’=f(x,y);

'Df (x,y) ’=Df (x,y) ;

'Df (1,2)’=Df(1,2);

’Det (D (1,2)) ’=det (Df(1,2));

On a superficial level we might say that calculus, through the deriva-
tive, provides us with a way to transform the study of local properties of
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differentiable functions to problems in linear algebra. Furthermore, since for
elementary functions many of the operations used in calculus can be imple-
mented as algorithms and since linear algebra is also amenable to algorithmic
implementation, many problems can be reduced to simple symbolic compu-
tations as described above. As will be shown in this book algebraic topology
provides a means by which one can transform the study of the global prop-
erties of topological spaces and continuous functions to problems in algebra,
or more precisely group theory (don’t worry about what a group is at this
moment - it will be introduced when the time comes). There are several
different algebraic structures that can be assigned to topological spaces, the
one we will study is called homology. Our focus will be on developing an al-
gorithmic approach to homology theory which allows us to use the computer
to solve topological problems.

1.1 Basic Notions from Topology

It was stated above that knowledge of general topology is not a prerequi-
site for this book. While this is correct, familiarity with the basic ideas of
topology is worthwhile for at least two reasons. First, it is hoped that after
finishing this book you will be motivated to continue your study of topology,
and therefore, you may as well begin using the language of topology at this
point. Second, as in the case of all important mathematics, the abstraction
helps clarify the essential ideas.

1.1.1 Topological Spaces

The most fundamental definition is that of a topological space.

Definition 1.2 A topology on a set X is a collection T of subsets of X with
the following properties:

1. § and X are in 7.
2. Any union of elements of 7 is in 7.
3. Any finite intersection of elements of 7 is in 7.

The elements of the topology T are called open sets. A set X for which a
topology 7 has been specified is called a topological space.
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This is a fairly abstract definition - fortunately we don’t need to work at
this level of generality. In fact in everything we do we will always assume
that the set X is a subset of R" and that X inherits the standard topology
from R"”. To explain what we mean by this recall the following ideas from
analytic geometry.

Let © = (x1,...,2,) € R". The Euclidean norm of x is given by

||y = a3 + a3+ + a2,
Given a point x € R", the ball of radius r > 0 centered at x is given by
By(x,r) :={y € R" [ ||z —yl]> <r}.

The topology on R” is typically defined in terms of the Euclidean norm.
Since a topology is nothing but a collection of sets that satisfies the conditions
of Definition 1.2, another way of saying this is that the open sets in R" can
be defined in terms of the Euclidean norm.

Definition 1.3 A set U C R" is open if and only if for every point x € U
there exists an € > 0 such that By(z,e) C U.

The reader should check that this definition of an open set is consistent
with the definition of a topology (see Exercise 1.1). This topology is called
the standard topology on R"™. Unless it is explicitly stated otherwise R"
will always be chosen to be the topological space specified by the standard
topology.

Example 1.4 The interval (—1,2) C R is an open set in the standard topol-
ogy on R. To prove this let = € (—1,2). This is equivalent to the conditions
—1 <z and z < 2. Choose 19 = (v + 1)/2 and r; = (2 — x)/2. Then, both
ro > 0 and r; > 0. Let € = min{rg, 7, }. Thus, By(x,€) C (—1,2). Since this
is true for any = € (—1,2), we have shown that (—1,2) is an open set in the
standard topology on R.

Generalizing this argument leads to the following result.

Proposition 1.5 Any interval of the form (a,b), (a,00) or (—o0,b) is open
in R.
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Proof: See Exercise 1.3. [ ]

From Definition 1.2.2, it follows that the arbitrary union of intervals is
open, e.g. (a,b) U (¢, d) is an open set.

Example 1.6 The unit n-ball
D" :={zx e R"|||z]]» < 1}

is an open set in the standard topology on R"™. Observe that if x € D" then
|||z < 1. Therefore, 0 < 1 — ||z||. Let r = 2022 Then, By(x,r) C D"

Example 1.7 Of course not every set is open. As an example consider
(0,1] € R. 1 € (0,1], but given any ¢ > 0, B2(1,¢) ¢ (0,1]. Therefore,
(0, 1] is not open in the standard topology on R. The same argument shows
that any interval of the form (a, b}, [a, b) or [a, b] is not open in the standard
topology on R.

Since open sets play such an important role in topology it is useful to be
able to refer to the largest open set contained by a set.

Definition 1.8 The interior of a set A is the union of all open sets contained
in A. The interior of A is denoted by

int (A)
Since the arbitrary union of open sets is open, int (A) is an open set.

One of the advantages of the abstract definition of a topology is that it
does not explicitly involve a particular norm or distance. In fact, there are
other norms that can be put on R"™ which give rise to the same topology. For
our purposes the supremum norm which is defined by

l|lz|| == sup | for x = (zy,...,2,) € R"
1<i<n

is particularly convenient. Given a point x € R", the e-cube centered at x is
B(z,e) :=={y e R" | [|[z —y]| <e}.

Since the supremum norm represents a different way of measuring distance
an e-cube is different from an e-ball (see Figure 1.1)
As before we can use this norm to define a collection of sets.
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S I

{z e R?| [zl =1} {r e R | [zl =1}

Figure 1.1: The unit distance from the origin in the Euclidean norm and the
unit distance from the origin in the Supremum norm.

Definition 1.9 Let V' € 7Ty, if and only if for every point z € V' there exists
€ > 0 such that B(x,e) C V.

Again, the reader should check that 7g,, defines a topology on R" (see
Exercise 1.2).

Proposition 1.10 Ty, is the same as the standard topology on R™.

Proof: To prove this result it needs to be shown that every set V' € Tgp is
in the standard topology and every set in the standard topology is in Tgyp.

Let V' € Tgup. Let € V. Then there exists € > 0 such that B(z,¢) C V.
Observe that By(z,¢) C B(x,€). Therefore, V' satisfies Definition 1.3 which
means that V' is in the standard topology.

Let U be an open set in the standard topology. Let x € U. Then there
exists € > 0 such that By(z,€) C U. One can check that B(z, =) C Ba(z, ).
Thus U € Tqup. [

As important as an open set is the notion of a closed set.

Definition 1.11 A subset K of a topological space X is closed if its com-
plement
X\K={reX|z¢&K}

is open.
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Example 1.12 The interval [a, b] is a closed subset of R. This is straight-
forward to see since its complement R \ [a,b] = (—o00,a) U (b, 00) is open.
Similarly, [a, 00) and (—oo,b] C R are closed.

Example 1.13 The set C" := {z € R" | ||z|| < 1} is closed. This is

equivalent to claiming that R™ \ C™ is open, i.e. that {z € R™ | ||z|| > 1}

is open. Observe that ||z|| > 1 is equivalent to max;—; __,{|x;|} > 1. Thus,

there exists at least one coordinate, say the j-th coordinate, such that |z;| >

1. Then

|7 — 1
2

B(z, ) C R\ C".

Remark 1.14 The reader should take care not to get lulled into the idea
that a set is either open or closed. Many sets are neither. For example,
the interval (0,1] C R is neither open nor closed. As was observed in Ex-
ample 1.7, it is not open. Similarly, it is not closed since its complement is
(—00,0] U (1, 00) which is not open.

Theorem 1.15 Let X be a topological space. Then the following statements
are true.

1. 0 and X are closed sets.
2. Arbitrary intersections of closed sets are closed.

3. Finite unions of closed sets are closed.

Proof: (1) ) =X\ X and X = X \ (.
(2) Let {K,}aca be an arbitrary collection of closed sets. Then

X\ ﬂKa: U(X\Ka)

acA acA

Since, by definition X \ K, is open for each a € A and the arbitrary union
of open sets is open, X \ Nycq Ko is open. Therefore, N,c4 Ko is closed.
(3) See Exercise 1.8. u

Definition 1.16 Let X be a topological space and let A C X. The closure
of A'in X is the intersection of all closed sets in X' containing A. The closure
of A is denoted by cl A (many authors also use the notation A.)
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By Theorem 1.15 the arbitrary intersection of closed sets is closed, there-
fore the closure of an arbitrary set is a closed set. Also, observe that A C cl A
and therefore cl A is the smallest closed set which contains A.

Example 1.17 Consider [0,1) C R. Then cl[0,1) = [0,1]. This is not too
difficult to prove. First one needs to check that [0,1) is not closed. This
follows from the fact that [1,00) is not open. Then one shows that [0, 1] is
closed by showing that (—oc,0) U (1,00) is an open set in R. Finally one
observes that any closed set that contains [0, 1) must contain [0, 1].

Similar argument shows that

c1(0,1) = cl[0,1) = ¢l (0, 1] = ¢l [0, 1] = [0, 1].

Definition 1.18 Let X be a topological space and let A C X. The boundary
of A is defined to be
bdA:=clANncl(X\ A).

Example 1.19 Consider [0,1] C R. From Example 1.17, c1]0,1] = [0, 1].
Observe that ¢l ((—o00,0) U (1,00)) = (—00,0] U [1, 00). Therefore,

bd [0,1] = {0} U {1}

The following proposition gives a nice characterization of points that lie
in the boundary of a set.

Proposition 1.20 Let A C X. A point x € bd A if and only if for every
open set U C X containing x, UNA# D and un (X \ A) # 0.

Proof: ]

Up to this point, the only topological spaces that have been considered
are those of R” for different values of n. The abstract definition of a topology
only requires that one begin with a set X. So consider X C R". Is there
a natural way to specify a topology for X in such a way that it matches as
closely as possible the topology on R™? The answer is yes, but we begin with
a more general definition.

Definition 1.21 Let Z be a topological space with topology 7. Let X C Z.
The subspace topology on X is the collection of sets

Tx = {XNU|UeT)
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Before this definition can be accepted, the following proposition needs to
be proved.

Proposition 1.22 Ty defines a topology on X.

Proof: The three conditions of Definition 1.2 need to be checked.

First, observe that () € Ty since ) = X N (. Similarly, X € Tx since
X=XnZ.

The intersection and union properties follow from the following equalities:

n

AXNU) = XN (erlUl>

i=1
Uxnu) = Xn (U Ui>
€T €T

for any indexing set Z. [ ]

Using this definition of the subspace topology, any set X C R" can be
treated as a topological space.

It is important to notice that while open sets in the subspace topology
are defined in terms of open sets in the ambient space, the sets themselves
may “look” different.

Example 1.23 Consider the interval [—1,1] C R with the subspace topol-
ogy induced by the standard topology on R. (0,2) is an open set in R,
hence

(0,1] = (0,2) N [-1,1]

is an open set in [—1,1]. We leave it to the reader to check that any interval
of the form [—1,a) and (a, 1] where —1 < a < 1 is an open set in [—1,1].

Example 1.24 Let X =[—1,0)U(0,1]. Observe that [-1,0) = (—2,0)N X
and (0,1] = (0,2) N X, thus both are open sets. However, [—1,0) = X\ (0, 1]
and (0,1] = X \ [-1,0) so both are also closed sets. This shows that for
general topological spaces one can have nontrivial sets that are both open
and closed.

Exercises

1.1 Prove that Definition 1.3 defines a topology for R2.



16 CHAPTER 1. INTRODUCTION
1.2 Prove that Tg,, defines a topology for R
1.3 Prove Proposition 1.5.

1.4 Prove that any set consisting of a single point is closed in R".

1.5 Prove that B(z, /=) C B(z,¢).
1.6 Let
Q":={reR"|0<z; <1} CR"
Let
KL= bd Q"

Prove the following:
1. @™ C R" is closed.

2. k"' ={reC"|z; €{0,1} for some i = 1,...,n}.

1.7 Let Z be a topological space with topology 7. Let Y C X C Z. Let
Tx be the subspace topology obtained from viewing X C Z. Let 7y be the
subspace topology obtained from viewing Y C Z. Let Sy be the subspace
topology obtained from viewing Y C X where X has the topology Tx. Prove
that Sy = 7;/

1.8 Prove that the finite intersection of closed sets is closed.

1.9 Let Q = [ky, ky + 1] X [k, ko + 1] x [ks, k3 + 1] C R? where k; € Z for
1 =1,2,3. Prove that () is a closed set.

1.1.2 Continuous Maps

With the notion of subspace topology we have at our disposal a multitude of
different topological spaces, in particular we can topologize any subset of R".
A natural question is which topological spaces are “equivalent” and which
are “different.” The quotation marks are included because these terms need
to be defined before an answer can be given.
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Example 1.25 The square X := [0,1] x [0,1] C R? and a portion of the
closed unit disk Y := {z € R? | ||z]| < 1, 21 > 0, 2o > 0} C R? are clearly
different from the geometric point of view: the first one is a polyhedron,
the second one is not. However, we would like to think of them as being
“equivalent” in a topological sense, since they can be transformed from one
to the other and back by simply stretching or contracting the spaces.

To be more precise, observe that any element of Y has the form y =
(rcos@,rsinf) where 0 <r <1and 0 <@ < x/2. Define f:Y — X by

(r,rtan@) if 0 <6 <m/4,

f(rcosd,rsinf) = { (rcot@,r) ifmw/4<6<m/2.

Observe that this map just expands Y by moving points out along the rays
emanating from the origin.

One can also write down a map g : X — Y which shrinks X onto Y along
the same rays (see Exercise 1.10).

You have already seen maps of the form of f in the previous example
in your calculus class under the label of a continuous functions. Since we
introduced the notion of topology on an abstract level, we need to define
continuous functions in an equally abstract way.

Recall that a topological space consists of two objects, the set X and
the topology 7. Therefore, to compare two different topological spaces one
needs to make a comparison of both the elements of the sets - this is done
using functions - and one needs to compare the open sets that make up the
two topologies.

Definition 1.26 Let X and Y be topological spaces with topologies 7x and
Ty, respectively. A function f: X — Y is continuous if and only if for every
open set V € Ty its preimage under f is open in X, i.e.

f_l(V) € Tx.

Even in this very general setting we can check that some maps are con-
tinuous.

Proposition 1.27 Let X and Y be topological spaces.

(i) The identity map 1x : X — X is continuous.
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(ii) Let yo € Y. The constant map f : X — Y given by f(x) = yo is
continuous.

Proof: (i) Since 1y is the identity map, 13'(U) = U for every set U C X.
Thus, if U is open, its preimage under 1y is open.

(ii) Let V' C Y be an open set. If yo € V then f~'(V) = X which is
open. If yo € V', then f~'(V) = () which is also open. n

Proposition 1.28 If f : X - Y and g: Y — Z are continuous maps, then
go f: X — Z is continuous.

Proof: Let W be an open set in Z. To show that go f is continuous we need to
show that (gof)~' (W) is an open set. However, (gof) Y{(W) =g ' (f~1(W)).
Since f is continuous, f~!(W) is open and since g is continuous g~ (f~1(W))
is open. [

This definition tells us how we will compare topological spaces. Therefore,
to say that two topological spaces are equivalent it seems natural to require
that both objects, the sets and the topologies, be equivalent. On the level
of set theory the equivalence of sets is usually taken to be the existence of a
bijection. To be more precise, let X and Y be sets. A function f: X — Y is
an injection if for any two points =,z € X, f(x) = f(z) implies that z = z.
f is a surjection if for any y € Y there exists x € X such that f(x) =y. If f
is both an injection and a surjection then it is a bijection. If f is a bijection
then one can define an inverse map f~!: Y — X .

Definition 1.29 Let X and Y be topological spaces with topologies Tx and
Ty, respectively. A bijection f : X — Y is a homeomorphism if and only if
both f and f~! are continuous.

Proposition 1.30 Homeomorphism defines an equivalence relation on topo-
logical spaces.

Proof: Recall (see A.2) that to show that homeomorphism defines an equiv-
alence relation we need to show that it is reflexive, symmetric and transitive.
To see that it is reflexive, observe that given any topological space X the
identity map 1x : X — X is a homeomorphism from X to X.
Assume that X is homeomorphic to Y. By definition this implies that
there exists a homeomophism f : X — Y. Observe that f=!:Y — X is also



1.1. BASIC NOTIONS FROM TOPOLOGY 19

a homeomorphism and hence Y is homeomorphic to X. Thus, homeomor-
phism is a symmetric relation.

Finally, Proposition 1.28 shows that homeomorphism is a transitive rela-
tion, that is if X is homeomorphic to Y and Y is homeomorphic to Z, then
X is homeomorphic to Z. ]

As before, we have introduced the notion of continuous function on a level
of generality much greater than we need. The following result indicates that
this abstract definition matches that learned in calculus.

Theorem 1.31 Let f : R — R. Then, f is continuous if and only if for
every © € R and any € > 0, there exists a § > 0 such that if |v —y| < 0 then

[f (@) = fly)| <e.

Proof: (=) Let f : R — R be continuous. Consider x € R and ¢ > 0.
Observe that the interval B(f(z),€) = (f(z) — ¢, f(x) + €) is an open set in
the range of f. Since f is continuous, f~'(B(f(z),€)) is an open set in R.
Obviously z € f~'(B(f(x),€)). Hence, by the definition of an open set in
the standard topology on R, there exists 6 > 0 such that

Bx,0) = (x — 6,z +0) C fH(B(f(z),¢)).

We will now check that this is the desired §. If y € R such that |z — y| < 0,
then y € (x—4,x+40) and hence f(y) € B(f(x),€). Therefore, | f(z)—f(y)| <
€.

(«<=) This direction is a bit more difficult since we have to check that for
every open set V C R, f~}(V) is open. With this in mind, let V' be an
arbitrary open set in R. By definition for each z € V there exists €, > 0
such that B(z,¢,) C V. Observe that

V =J B(z,¢,).

zeV

Assume for the moment that we can prove that for every z € V, f1(B(z,¢,))
is open. Then we are done, since

V) =U f1(B(ze))

zeV

and the arbitrary union of open sets is open.
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Thus, all that we need to prove is that given z € V and ¢, > 0, but
sufficiently small, then f~1(B(z,¢,)) is open.

With this in mind observe that it is possible that f~!(B(z,¢,)) = 0. This
is okay since () is an open set. So assume that f~'(B(z,¢€,)) # 0. Then there
exists w € f7'(B(z,¢,)). This implies that f(w) € B(z,¢,) = (2 —€,, 2+ ¢€,).
Let p = s min{f(w) — 2z + €., 2+ €. — f(w)}. Then, B(f(w), ) C B(z,€.)

We are finally ready to use the definition of continuity from calculus. Let
€ = u, then there exists 6 > 0 such that |w—y| < ¢ implies | f(z) — f(y)| < u.
Another way of saying this is that

f(B(w,0)) C B(f(w), n) C Bz, €:).

This implies that B(w,d) C f~'(B(z,¢,)). Since w was an arbitrary element
of f7(B(z,€.)), [~'(B(z,€,)) is open. -

A straightforward generalization of this proof gives the following theorem

Theorem 1.32 Let f: R" — R™. Then, f is continuous if and only if for
every x € R™ and any € > 0, there exists a 0 > 0 such that if ||z —y|| < ¢

then ||f(z) — f(y)l] <e.

Thus, using Theorem 1.31 we can easily show that a variety of simple
topological spaces are homeomorphic.

Proposition 1.33 The following topological spaces are homeomorphic:
(1) R,
(ii) (a,00) for any a € R,
(iii) (—o0,a) for any a € R,
(iv) (a,b) for any —oo < a < b < 0.

Proof: We begin by proving that R and (a,00) are homeomorphic. Let
f: R — (a,00) be defined by

f(z) =a+e".

This is clearly continuous. Furthermore, f~!(z) = In(z — a) is also continu-
ous.
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Observe that f : (a,00) — (—00, —a) given by f(x) = —z is a homeomor-
phism. Thus, any iterval of the form (—oo,b) is homeomorphic to (—b, c0)
and hence to R.

Finally, to see that (a,b) is homeomorphic to R observe that f : (a,b) —

R given by
r—a
=1
/() n(b—x)

is continuous and has a continuous inverse given by f1(x) = (be¥ +a)/(1 +
ev). u

Proposition 1.34 The following topological spaces are homeomorphic:
1. [-1,1],
2. la,b] for any —oo < a < b < oc.

Proof: See Exercise 1.11. [ ]

Another useful way to characterize continuous functions is as follows.

Proposition 1.35 Let f : X = Y. f is continuous if and only if for every
closed set K CY, f~'(K) is a closed subset of X.

Proof: (=) Let K CY be an a closed set. Then Y\ K is an open set. Since
f is continuous, f~!'(Y"\ K) is an open subset of X. Hence X \ f~1(Y'\ X) is
closed in X. Thus, it only needs to be shown that X\ f~'(YV'\ K) = f~!(K).
Let z € X\ f"}(Y\ K). Then f(z) € Y and f(z) ¢ Y \ K. Therefore,
f(x) € K or equivalently z € f1(K). Thus, X\ f}(Y\K) C f}(X). Now
assume x € f1(K). Then, z ¢ f (Y \ K) and hence z € X \ f1(V \ K).

(<) Let U C Y be an open set. Then Y \ U is a closed subset. By
hypothesis, f~'(Y \ U) is closed. Thus X \ f~'(Y \ U) is open. But X \
[TYNU) = 1), u

Exercises

1.10 Refering to Example 1.25:
(a) Write down the inverse function for f.
(b) Prove that f is a continuous function.

1.11 Prove Proposition 1.34.
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1.1.3 Connectedness

One of the most fundamental global properties of a topological space is
whether or not it can be broken into two distinct open subsets. The fol-
lowing definition makes this precise.

Definition 1.36 Let X be a topological space. X is connected if the only
subsets of X that are both open and closed are ) and X. If X is not connected
then it is disconnected.

Example 1.37 Let X = [-1,0) U (0,1] ¢ R. Then X is a disconnected
space since by Example 1.24 [—1,0) and (0, 1] are both open and closed in
the subspace topology.

While it is easy to produce examples of disconnected spaces proving that
a space is connected is more difficult. Even the following intuitively obvious
result is fairly difficult to prove.

Theorem 1.38 Any interval in R is connected.

Hints as to how to prove this theorem can be found in Exercise 1.12 or
the reader can consult [2]).
A very useful theorem is the following.

Theorem 1.39 Let f: X — Y be a continuous function. If X is connected,
then so is f(X) C Y.

Proof: Let Z = f(X). Suppose that Z is disconnected. Then there exists
an set A C Z, where A # (), Z, that is both open and closed. Since f
is continuous, f1(A) is both open and closed. But f~1(A) # (), X which
contradicts the assumption that X is connected. [

We can now prove one of the more fundamental theorems from topology
that you made use of in your calculus class.

Theorem 1.40 [Intermediate Value Theorem] If f : [a,b] — R is a contin-
uous function and if f(a) > 0 and f(b) < 0, then there ezists ¢ € [a,b] such
that f(c) = 0.
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Proof: The proof is by contradiction. Assume that there is no ¢ € [a, b] such
that f(c) =0. Then

f([a,b]) C (—o00,0) U (0, 00).

Let U = (—00,0) N f([a,b]) and V = (0,00) N f([a,b]). Using the subspace
topology, U and V' are open sets and f([a,b]) = U U V. Since f(a) > 0
and f(b) < 0, U and V are not trivial. Therefore, f([a,b]) is disconnected
contradicting Theorems 1.38 and 1.39. ]

Example 1.41 The half-closed interval (0, 1] is not homeomorphic to the
open interval (0, 1). We will argue by contradiction. Suppose that f : (0,1] —
(0,1) is a homeomorphism and let ¢ := f(1). Then the restriction of f
to (0,1) is a homeomorphism of (0,1) onto the set (0,¢) U (t,1). That is
impossible since the first set is connected and the second is not, contradicting
Theorem 1.39.

Exercises

1.12 This exercise leads to a proof that the interval [0,1] is a connected
set. With this in mind, let A and B be two disjoint nonempty open sets in
I =10,1]. The following arguments will show that I # AU B.

Let a € A and b € B, then either a < b or a > b. Assume without loss of
generality that a < b.

(a) Show that the interval [a,b] C 1.
Let Ay := AN{a,b] and By := BN |a,b].
(b) Show that Ay and By are open in [a, b] under the subspace topology.
Let ¢ be the least upper bound for Ay, i.e.
c:=inf{zr e R |z >y forall y € Ap}.
(c) Show that ¢ € [a, b].

(d) Show ¢ ¢ By. Use the fact that ¢ is the least upper bound for A, and
that By is open.
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(e) Show that ¢ ¢ Ay. Again use the fact that ¢ is the least upper bound
for Ag and that Ag is open.

Finally, observe that ¢ € I, but ¢ ¢ AyU By and therefore, that I # Ay U By.

1.13 Let A and B be connected sets. Assume that AN B # (). Prove that
AU B is connected.

1.14 Show that S! is connected.

1.15 We say that a topological space X has the fized point property if every
continuous map f : X — X has a fixed point, i.e. a point x € X such that
f(z) = x.

a) Show that the fixed point property is a topological property, i.e. that it
is invariant under a homeomorphism.

b) Show that any closed bounded interval [a, b] has the fixed point property.
Hint: Apply the Intermediate Values Theorem to the function f(z) — x.

1.16 Show that the unit circle S = {z € R? | ||z|| = 1} is not homeomor-
phic to an interval (whether it is closed, open or neither).
Hint: Use an argument similar to that in Example 1.41.

1.17 * A simple closed curve in R™ is an image of an interval [a, b] under a
continuous map o : [a,b] — R" (called a path) such that o(s) = o(t) for any
s <t,s,t € la,b] if and only if s = a and ¢t = b. Prove that any simple closed
curve is homeomorphic to a unit circle.

1.2 Linear Algebra

Homology theory (what we will learn in this book) provides an excellent
geometric way to proceed from linear algebra to more abstract algebraic
structures. As was indicated earlier, we do assume that you are familiar with
the most basic ideas from linear algebra. We shall review them, but as in the
previous section we shall present these ideas in a fairly general framework.
If the words feel unfamiliar don’t worry they will be repeated many times
throughout this text.
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1.2.1 Fields

Let us begin with the real numbers R. In the previous section we were
concerned with R as a topological space. In this section we will consider it
to be a purely algebraic object. Let’s review its properties in this context.
Recall that there are two operations addition + : R x R — R and
multiplication - : R Xx R — R defined on R. We usually write the operations
as x+y and x-y or simply zy. The operations satisfy the following conditions.

1. Addition is commutative,
rt+y=y+zx
for all z,y € R.
2. Addition is associative,
T+ (y+z)=(r+y) +z
for all z,y, z € R.

3. There is a unique element 0 (zero) in R such that x + 0 = z for all
x € R. 0 is the identity element for addition.

4. For each x € R there exists a unique element —xr € R such that
z+ (—x) = 0. —z is the additive inverse of the element z.

5. Multiplication is commutative,

for all z,y € R.
6. Multiplication is associative,
- (y-z)=(z-y)- 2
for all z,y, z € R.

7. There is a unique element 1 (one) in R such that -1 = z for all z € R.
1 is the identity element for multiplication.
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8. For each x € R\ {0} there exists a unique element z=' € R such that
x-x ' =1. 27! is the multiplicative inverse of the element x.

9. Multiplication distributes over addition; that is
r-(y+z)=z-y+x-2
for all z,y, z € R.

These properties can be abstracted which leads to the notion of a field.

Definition 1.42 A field is a set F' along with two operations, addition + :
F x F — F and multiplication - : F' x F' — F, that satisfy properties (1) -

(9)-

Typically we simplify the expression of multiplication and write zy in-
stead of = - y.

Example 1.43 The set of complex numbers C and the set of rational num-
bers Q are fields.

Example 1.44 The integers Z do not form a field. In particular, 2 € Z, but
27l=1¢g17.
2

Example 1.45 A very useful field is Zs, the set of integers module 2. The
rules for addition and multiplication are as follows:

+ 011 101
0101 01010
1410 1101

We leave it to the reader to check that properties (1)-(9) of a field are satisfied.

Example 1.46 Another field is Z3, the set of integers module 3. The rules
for addition and multiplication are as follows:

+]of[1]2 Jof1]2
0 J0[1]2 0J0]0]0
1 1]2]0 1012

21201 210121
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Again we leave it to the reader to check that properties (1)-(9) of a field are
satisfied. However, we note that —1 = 2 and 27! = 2.

Example 1.47 Z,, the set of integers module 4 is not a field. The rules for
addition and multiplication are as follows:

+]of1]2]3 Jofi]2]3
0J0[1]2]3 0J0]0]0]0
1 1]2]3]0 1o[1]2]3
22301 2 0]2[0]2
33012 310(3 21

Observe that the element 27! & Z;.

Exercises

1.18 Prove that the set of rational numbers Q is a field.

1.19 Let Z, denote the set of integers modulo n. For which n is Z,, a field?

1.2.2 Vector Spaces

In your linear algebra course you learned about vector spaces, most probably
the real vector spaces R™. As before let us think about this in an abstract
manner. The first time through you should read the following definition
substituting R for the field /' and R" for the vector space V.

Definition 1.48 A vector space over a field F'is a set V' with two operations,
vector addition + : V x V — V and scalar multiplication F' x V. — V.
Furthermore, if u,v € V then v +v € V and given a« € F and v € V,
av € V. Vector addition satisfies the following conditions.

1. Vector addition is commutative,
v+u=u-+v

for all vectors u,v € V.
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2. Vector addition is associative,
u+t (v+w)=(utv)+w
for all vectors u,v,w € V.

3. There exists a unique zero vector 0 € V such that v + 0 = v for all
veV.

4. For each vector v € V there exists a unique vector —v € V such that
v+ (—v) =0.

The scalar multiplication satisfies the following rules:

1. For every v € V, 1 times v equals v where 1 € F' is the unique element
one in the field.

2. Forevery v € V and o, € F
a(pv) = (af)v
3. For every aw € F' and all u,v € V,

a(u+v) =au+ av.

4. For all o, € F and every v € V

(a+ B)v = av + fu.

Definition 1.49 Let V and W be vector spaces over a field F. W is a
subspace of V., if W C V.

This definition of a vector space may look formidable, however, ignoring
the formality for a moment, this is the way most calculus textbooks introduce
vectors. Typically to describe the vector space R? one is told that the symbols
i, j, and k represent basis vectors pointing in the z, y and z directions. They
can be scaled by multiplying by a real number, e.g. 2i or v/3j. Of course,
1li =i and 0i = 0 is the zero vector. Finally, an arbitrary vector is just a
sum of these vectors, e.g.

v=oai+ Bj+ 7k (1.1)
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where «, 3,7 € R.
An equivalent but different formalism is the use of column vectors. In
R3; one lets

1 0 0
0 0 1
and then (1.1) becomes
1 0 0 Q
v=al|0|+F|1|+y|0]|=]|0]. (1.2)
0 0 1 ¥

Depending on the context we will use both formalisms in this book.
The advantage of the abstract definition of a vector space is that it allows
us to talk about many different types of vector spaces.

Example 1.50 Let i, j, and k represent basis vectors for a vector space over
the field Z,. This vector space is denoted by Z3 and the typical vector has
the form

v=oai+ [j+ 7k

where «, 3,y € Zs. If we choose to write v as a column vector, then we
would have

1 0 0 o
v=a|0|+[8|1|+y|0|=]|0
0 0 1 v

Since Zs has only two elements we can actually write out all the vectors in
the vector space Z3. Using both sets of notation they are:

0 1 0 0
o=[0] i=]0] j=|1] x=]o0
0 0 0 1
1 1 0 1
itj=|1] i+k=]0] j+k=|1| i+j+k=]1
0 1 1 1

Observe that in this vector space each vector is its own additive inverse.
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Example 1.51 One can try to do the same construction over the integers.
Since Z is not a field we will not, by definition, get a vector space. On the
other hand we can mimic what has been done before and define an algebraic
object which we will denote by Z3. Let i, j, and k be basis elements, then
it makes perfectly good sense to talk about linear combinations of these
elements,

v=oai+ [j+ 7k

where «, 3, € Z. This addition is clearly associative and commutative. The
zero vector is given by
0i + 0j + Ok.

and —uv is given by —ai + (—0)j + (—v)k. Similarly, properties 1-4 of scalar
multiplication also hold. Nevertheless, since Z is not a field, Z? is not a vector
space. The importance of this last statement will become clear in Chapter
3.

To make it clear why in the definition of a vector space we insist that the
scalars form a field we need to recall some of the most fundamental ideas
from linear algebra.

Definition 1.52 Let V be a vector space. A set of vectors S C V' is linearly
independent if for any finite set of vectors {vy,...,v,} C S the only solution
to the equation

a1v1 + e + - - + v, =0

isa; =ay =---=a, =0. The set S spans V if every element v € V' can be
written as a finite sum of multiples of elements in 5, i.e.

V= QU1 + QoUy + - - - + U,

for some collection {vy,...,v,} C S and {au,...a,} C F. A basis for V
is a linearly independent set of vectors in V' which spans V. V is a finite-
dimensional vector space if it has a finite basis.

One of the most important results concerning finite dimensional vector
spaces is that it has a dimension.

Theorem 1.53 IfV is a finite dimensional vector space, then any two bases
of V' have the same number of elements.
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This theorem allows us to make the following defintion.

Definition 1.54 The dimension of a vector space is the number of elements
in a basis.

A very closely related result is the following.

Proposition 1.55 Let S be a linearly independent subset of a vector space
V. Suppose w is a vector in V which is not in the subspace spanned by S.
Then the set obtained by adjoining w to S is linearly independent.

Proof: The proof is by contradiction. Assume that by adjoining w to S, linear

independence is lost. This means that there are distinct vectors vq,...,v, S
and nonzero scalars aq, ..., a,, 3 in the field F' such that
a1v1 + s + ... + oy, + Bfw = 0. (1.3)

Since F'is a field, 37! € F. Thus we can rewrite (1.3) as
w=F"Hogv, + vy + ...+ uvy)

which contradicts the assumption that w is not in the subspace spanned by
S. ]

Remark 1.56 In the proof of Proposition 1.55 we made crucial use of the
fact that F' was a field. If we return to Example 1.51 then we can see that
Proposition 1.55 need not hold in Z3. Let

1 0 0 0
S = O,/ 1],]160 and w=10
0 0 2 1

Observe that w is not in the span of S since 27! € Z, but S U {w} is not a
linearly independent set.

The previous remark may seem somewhat trivial and esoteric, but as we
shall soon see it has a profound effect on the homology groups of topological
spaces.

Exercises

1.20 Let Z3 denote the three dimensional vector space over the field Zs.
Write down all the elements of Z3.
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1.2.3 Linear Maps

We now turn to a brief discussion of maps between vector spaces.

Definition 1.57 Let V' and W be vector spaces over a field F. A linear
map or linear operator from V to W is a function L : V' — W such that

L(av + u) = a(Lv) + Lu

for all u,v € V' and all scalars o € F'. L is an isomorphism if L is invertible.
The vector spaces V and W are said to be isomorphic if there exists an
isomorphism L : V — W.

A fundamental result from linear algebra is the following.

Theorem 1.58 Let V and W be finite dimensional vector spaces over a field
F. Then, V and W are isomorphic if and only if dimV = dim W.

Definition 1.59 Let L :V — W be a linear map. The kernel of L is
ker L :={v eV |Lv=0}
and the image of L is
image L := {w € W | Lv = w for some v € V'}.

Proposition 1.60 If L : V — W be a linear map, then ker L is a subspace
of V and image L is a subspace of W.

Proof: See Exercise 1.21. [ ]

Exercises

1.21 Prove Proposition 1.60.

1.22 Let L : R? — R? be given by
11
=11 1]

Compute ker L and image L. Draw them as subspaces of R2.
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1.2.4 Quotient Spaces

As will become clear in the next chapter, the notion of a quotient space is
absolutely fundamental in algebraic topology. We will return to this type of
construction over and over again.

Consider V and W, vector spaces over a field F', with W a subspace of
V. Let us set

v~y if and onlyif v—ueW.
Proposition 1.61 ~ defines an equivalence relation on elements of V.

Proof: To prove that ~ is an equivalence relation we need to verify the
following three properties:

l.v~vforallv e Vsincev—v=0eW.
2. v ~uwifand only if u ~ v since v —u € W if and only if u —v € W.

3. v~wuand u ~ x implies v ~ z since v —u € W and u —x € W implies
that v—u+u—z=v—xeW.

Because these equivalence classes are so important we will give them a
special notation. Given v € V' let [v] denote the equivalence class of v under
this equivalence relation, i.e.

[v] ={uveV | |u—veW}

Observe that if w € W, then w ~ 0 and hence [w] = [0].

Definition 1.62 The quotient space V /W is the vector space over F' consist-
ing of the set of equivalence classes defined above. Vector addition is defined
by

[v] + [u] :==[v+u] forall u,veV

and scalar multiplication is given by

afv] :==lav] foralla € F, veV.
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We leave it to the reader to check that this does indeed define a vector
space (see Problem 1.23). A little intuition as to what this represents may
be in order. Consider the vector space ¥V = R?. Then a typical element of
V" has the form

v = .
V2

Let us now assume that we don’t care about the value of the second coordi-
nate. This means that as far as we are concerned

Hul

since they agree in the first coordinate and we don’t care about the value of
the second coordinate. We can still add vectors, multiply by scalars and all
the rest but it seems a bit inefficient to carry around the second coordinate
since we are ignoring it. How can we use quotient spaces to resolve this? Let

W::{weV|w:[£2]}.

Observe that W is a subspace of V' and in the induced equivalence class

)=

We can now consider the vector space V/W whose elements are the equiv-
alence classes. This vector space is a 1-dimensional vector space, i.e. we
can represent an element of V/IW by a single number z, since we can easily
recover the corresponding equivalence class by considering the set of vectors
[ N ] cV.
U2

Of course the best way to compare two different vector spaces is through
linear transformations from one to the other. Consider the linear map 7 :
V' — V/W given by the matrix 7 = [1 0]. Then

BT

i.e. the second coordinate is ignored. Observe that 7 is surjective, i.e. every
element of V/W is in the image of 7. Finally, notice that ker 7 = W. Thus,
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for this example the process of creating a quotient space is equivalent to the
existence of a particular linear map. As will be made clear in Chapter 3, this
is not a coincidence.

Exercises

1.23 Prove that V//W as defined in Definition 1.62 is a vector space over F.
In particular, prove that vector addition and scalar multiplication are well
defined operations.

1.24 Let W be the subspace of R? spanned by the vector

1

5 |
Draw a picture indicating the equivalence classes in R?/TV. What is the
dimension of R?/W?
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Chapter 2

Motivating Examples

Why study algebraic topology? This chapter contains a description of prob-
lems where algebraic topological methods have proven useful. These prob-
lems have their origins in topology (not surprising), computer graphics, dy-
namical systems, parallel computing, and numerics. Obviously for such a
broad set of issues a single chapter cannot do any of the topics justice. They
are included solely for the purpose of motivating the formidable algebraic
machinery we are about to start developing. This chapter is meant to be
enjoyed in the sense of an entertaining story. Don’t sweat the details - try to
get a feeling for the big picture. We will return to these topics throughout
the rest of this book.

2.1 Topology

The importance in linear algebra of the dimension of a vector space is that
any two finite dimensional vector spaces (over the same field) of the same
dimension are isomorphic. In other words from the point of view of linear
algebra they are indistinguishable. Said yet another way, the set of finite
dimensional vector space can be classified according to a single natural num-
ber.

Algebraic topology is an attempt to do a similar thing, but in the context
of topological spaces. Since topological spaces are more varied than vector
spaces, the classification is done in terms of algebraic objects rather than the
natural numbers. As pertains to this book the goal is as follows. Given a
topological space X we want to define an algebraic object H,(X), called the

37



38 CHAPTER 2. MOTIVATING EXAMPLES

homology of X, which is a topologically invariant; that is, if X and Y are
homeomorphic then H,(X) and H,(Y') are isomorphic.

2.1.1 Homotopy

Notice that we did not claim that homology classifies spaces up to homeomor-
phism. It is not true that if two spaces have the same homology, then they
are homeomorphic. Unfortunately, the classification problem in topology is
too difficult for any purely algebraic classification. In fact, this problem is
so difficult, that mathematicians have pretty much given up trying to clas-
sify arbitrary topological spaces up to homeomorphism. Instead they study
the weaker equivalence relation known as homotopy type. Before giving the
definition let us consider a motivating example.

We begin by recalling the intermediate value theorem which we proved
earlier (Theorem 1.40).

Theorem 2.1 If f : [a,b] = R is a continuous function and if f(a) > 0 and
f(b) <0, then there ezists ¢ € [a,b] such that f(c) = 0.

This is a model topological theorem. The function is only assumed to
be continous, global rather than local information is assumed, i.e. the values
of the end points are given, and yet one is still able to draw a conclusion
concerning the behavior of the function on its domain.

Homology provides us with a variety of algebraic tools for determining
if there exists a point ¢ such that f(¢) = 0. But this process of going from
topology to algebra loses information. This should not be surprising. Think
back to calculus where one uses the derivative to obtain a linear approxi-
mation of the differentiable function. Many different functions can have the
same derivative at a point. To get a better approximation one has to use
Taylor polynomials. In fact only analytic functions can be approximated
exactly by their derivatives.

What families of spaces or maps will give us the same algebraic toplogical
information? To answer this consider again the intermediate value theorem.
The only important points are the endpoints so let f,g : [a,b] — R be
different continuous functions with f(a) > 0 and g(a) > 0, and f(b) < 0 and
g(b) < 0. Now consider the family of functions F : [a,b] x [0,1] — R defined
by

F(z,s) = (1= s)f(z) + sg().
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Observe that F'(-,0) = f(-) and F(-,1) = g(-). For any fixed value of s € [0, 1]
we have yet another function F(-,s) : [a,b] — R. Observe that

F(a,s)=(1—s)f(a)+ sg(a) >0

and
F(b,s)=(1—3s)f(b) +sg(b) <0

Thus, we can apply the intermediate value theorem to F'(-,s) for any s €
[0, 1]. This family of functions is a special case of what is known as a homo-

topy.

Definition 2.2 Let X and Y be topological spaces. Let f,g: X — Y be
continuous functions. f is homotopic to g if there exists a continuous map
F: X x[0,1] = Y such that

F(z,0) = f(z) and F(z,1)=g(z)

for each x € X. The map F' is called a homotopy between f and g. f
homotopic to g is denoted by f ~ g.

It is fairly straight forward to check that homotopy is an equivalence
relation (see Excercise 2.1). How does this help us with the classification
problem in topology? Since homotopy is an equivalence relation it can be
used to define an equivalence between topological spaces.

Definition 2.3 Two topological spaces X and Y are homotopicif there exist
continuous functions f: X — Y and ¢ : Y — X such that

gof~1ly and fog~ly

where 1x and 1y denote the identity maps. X homotopic to Y is denoted
by X ~Y.

Example 2.4 Two topological spaces can appear to be quite different and
still be homotopic. For example it is clear that R" is not homeomorphic to
the point {0}. On the other hand these two spaces are homotopic. To see
this let f : R™ — {0} be defined by f(z) = 0 and let g : {0} — R"™ be
defined by g(0) = 0. Observe that f o g = 1{; and hence fog ~ 1. To
show that go f ~ 1gn consider the function F': R" x [0, 1] — R™ defined by

F(z,s) = (1 — s)x.
Clearly, F'(z,0) = x = 1g» and F(z,1) = 0.



40 CHAPTER 2. MOTIVATING EXAMPLES

A special case of homotopy is that of a deformation retract.

Definition 2.5 Let A C X. A deformation retraction of X onto A is a
continuous map F': X x [0,1] — X such that

F(z,0) =2 for z€ X
F(z,1) € A for z€ X
F(a,s)=a for a€ A.

If such an F exists then A is called a deformation retract of X. It is easy to
check that if A is a deformation retract of X and B is a deformation retract
of A, then B is a deformation retract of X.

Example 2.6 {0} is a deformation retract of [0, 1]. Define F': [0,1] — {0}
by F(z,s) = (1 — s)z.

Homology has the property that if two spaces are homotopic then their
homologies are the same. On the other hand, there are spaces with the same
homologies which are not homotopic. Thus, the algebraic invariants that we
will develop in this book are extremely crude measurements of the topology
of the space. Still there are interesting problems to which one can apply
homology theory.

Example 2.7 Let
" :={z e R"" | ||z|]| = 1}.

There is no deformation retraction of I'” to a point. We include this example
at this point to try to indicate that this is a nontrivial problem. In particular,
we encourage you to try to find a proof of this fact. As motivation for the
study of this subject we assure you that once you know homology theory,
this example will become a triviality.

Exercises

2.1 Prove that homotopy is an equivalence relation.

2.2 Let f,g: X — Y be continuous maps. Under the following assumptions
on X and Y prove that f ~ g.
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e X =Y =[0,1]
e X =Ttand Y =[0,1]
e X is any topological space and y € Y is a deformation retract of Y.

Obviously, if you prove the last case, then you have proven the first two.

2.3 Prove that R™\ {0} is homotopic to S"~!.

2.1.2 Graphs

Up to now we have given no indication how one moves from the topology to
the algebra. To motivate the ideas and build some intuition before beginning
with the formal definitions it is useful to have a simple but large class of
topological spaces.

Definition 2.8 A finite graph G consists of a finite collection of points in R?
{v1,...v,}, called vertices, together with straight line segments {e1, ..., e},
joining vertices, called edges which satisfy the following intersection condi-
tions:

1. if two edges intersect nontrivially, then they intersect at a unique ver-
tex, and

2. if an edge and a vertex intersect, then the vertex is an endpoint of the
edge.

A loop L in the graph is a union of edges ey, ey, . . ., e, such that e;Nej # 0
forj=1,...,k—1,and e, Ne; # 0. A graph which is connected and has no
loops is called a tree.

One of the important properties of homology is that it can be determined
from combinatorial information. With this in mind we present the following
definition which indicates there is a natural reduction of a finite graph to a
combinatorial object.

Definition 2.9 An abstract finite graph is a pair (V,€) where V is a finite
set whose elements are called vertices and £ is a collection of pairs of distinct
elements of V called edges.
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V2
U1 €1 Ug

ey €1 €2

es U3 U1 es U3

€3 Uy

Vs e4

Figure 2.1: A loop and a tree.

Before turning to the algebra we want to consider the topology of trees.
In particular, we will show that any tree is homotopically equivalent to a
single point.

A vertex which only intersects a single edge is called a free verter.

Proposition 2.10 FEvery tree which contains at least one free vertex.

Proof: Assume not. Then there exists a tree 7" with 0 free vertices. Let n
be the number of edges in T. Let e; be an edge in T'. Label its vertices by
vy and vi". Since T has no free vertices, there is an edge e, with vertices
vy such that v;” = v,. Continuing in this manner we can label the edges
by e; and the vertices by v where v; = v;”,. Note since there are only a
finite number of vertices, at some point v;” = v; for some 1 > j > 1. Then

{ej,€j41,...,€;} forms a loop. This is a contradition. [ ]

Lemma 2.11 Every edge is homotopic to a point.

Proof: Let e be an edge with vertices v~ and v*. Since e is a line segment
it is homeomorphic to [0,1]. Let h : [0,1] — e be such a homeomorphism
with the property that h(0) = v~ and h(1) = v*. Define F, : e x [0,1] = ¢
by F.(z,s) = h(sh™!(z)). Observe that F(z,1) = h( !(xz)) = 2 and hence
is the identity. F,(z,0) = h(0-h *(z)) = h(0) = v~. Therefore, F, defines a
retract of e to v™. ]
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Proposition 2.12 FEvery tree T contains a vertex v such that there exists a
deformation retraction of T onto v.

Proof: The proof is by induction on the number of edges in the tree.

The simplest tree consists of a single edge. By Lemma 2.11 this is homo-
topic to a point. The homotopy is the deformation retraction.

Assume that the result is true for all trees with n edges or less. We need
to show it is true for a tree with n 4+ 1 edges. Let 1" be a tree with n + 1
edges. By Proposition 2.10 T" has a free vertex v™. Let e be the edge which
contains the vertex v*. Let the other vertex of e be denoted by v—. Let 1"

be the tree obtained from T by removing the edge e and the vertex v™. Now
define G : T x [0,1] — T by

T itz eT’
Glz,5) = { F.(x,s) ifzee

where F, is defined as in Lemma 2.11. This shows that G is a deformation
retraction of T onto 7.
The result now follows by induction. [ ]

Exercises

2.4 Up to homotopy how many different planar graphs are there with 5
edges?

2.1.3 A Preview of Homology

In Example 2.6 we showed that an interval is homotopic to a point. In fact
by Proposition 2.12 every tree is homotopic to a point. Since a point is the
simplest nontrivial topological space, up to homotopy trees must be fairly
simple topological spaces. In Example 2.7 it was stated that I'! is not ho-
motopic to a point. We will use this contrast to motivate how homology can
be used to measure the difference in the complexity of these two topological
spaces. However, we need to begin with a word of caution. The proof that
homology is a topological invariant is fairly complicated. As such it will be
dealt with much later.

To make clear at the outset why working with a graph is not sufficient
to establish the topological invariance of homology, observe that given our
definition, a finite graph is a fixed subset of R®. However, as the following
example indicates different graphs can give rise to the same subset.
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Example 2.13 Consider the family of graphs defined by

Gn={{i/n} |7 =0,...0yU{lj/n, G+ 1)/n]|j=0,....n -1}

Observe that as a subset of R each graph describes [0, 1]. Thus, the same
topological space has many different representations as a graph. In our mo-
tivation of homology we will use abstract graphs. Thus to prove topological
invariance we would have to show that given any two abstract graphs that
are associated to finite graphs that in turn represent homeomorphic spaces
the corresponding homology is the same. This is not trivial.

Having made these explicit disclaimers we now take the liberty of using
language in which we are implicitly assuming that we are working with a
topological invariant. With this in mind we begin by asking the question
how can we show that [0, 1] and T'' are topologically different.

It is worth making an observation at this point. Locally, (—1,1) and T'!
are indistinguishable. More precisely given points x € (—1,1), y € T'', and
sufficiently small neighborhoods, U, and V), of these points, then there exists
a homeomorphism between U, and V). Locally the only difference between
[0,1] and T'! are the boundary points {0, 1} of [0, 1]. We shall try to measure
this distinction algebraically.

A word of caution is needed before we go further. The notion of topolog-
ical boundary is ambiguous here because it depends on the outer space the
graph is imbedded to. For instance, let a,b be two distinct vertices in R2.
Then bd [0,1] = @ in the topology of [a,b], bd [a,b] = {a, b} in the topology
of the line passing through a and b, and bd [a, b] = [a, b] in the topolgy of R?.
But no matter what is the outer space, the points a,b are clearly distinct
from the other points of [a,b] in the sense that they are extreme points of
the interval. That distinction is exhibited by the following definition.

Definition 2.14 A point z of a graph G is called a regular point of G if a
sufficiently small ball in G around z is homeomorphic to an open interval. A
point which is not a regular point is called an extreme point of G. The set
of all extreme points of GG is called the geometric boundary of G and denoted
by bd G.

Let us now think of [0,1] and T'" as graphs. To be precise consider the
graphs indicated in Figure 2.2. [0, 1] is represented by a graph consisting of
four intervals [a, b], [b, ¢], [¢,d] and [d, €].
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& ={la,b],[b,cl, e, d], [d, e]}
V ={a,b,c,de} & ={la,bl,b,c],[c,d], [d,a]}
V' = {{a}, {0}, {c}, {d} }

Figure 2.2: Finite graphs and corresponding abstract finite graphs for [0, 1]
and '

We mentioned earlier that the boundary points of [0,1] are where we
can see a difference in local topology. To keep our computations local we
indicated in the left hand column of Table 2.1 the topological boundaries of
each of the edges. In the right hand column are what for the moment can
be considered fictional algebraic quantities derived from the corresponding
elements of the abstract finite graph.

‘ Topology ‘ ‘ Algebra ‘
bd [a,b] = {a} U {b} Jdla,b]=a+b
bd [b, c] = {b} U {c} Jdb,c]=b+c
bd [e,d] = {c} U {d} Jdlc,d]=c+d
bd[d,e] = {d} U{e} dd,e]=d+e

Table 2.1: Topological and algebric boundaries in [0, 1].

On the topological level addition and subtraction of edges and points is
not an obvious concept. On our fictional algebraic level, however, we will
allow ourselves this luxury. Recalling the discussion in the previous chapter
where we described vector spaces, we write the algebraic objects in bold and
allow ourselves to formally add them. For example {a} becomes a. What
should we use for the scalars? A possible idea is Z, - this way, if we make 0



46 CHAPTER 2. MOTIVATING EXAMPLES

a linear operator, we can match the topological expression

bd ([a,b] U [b,c]) = {a} U {c}

with the algebraic expression

d(la,b] + [b,c]) = 0([a,b]) +I([b,c])
= a+b+b+c
= a+2b+c
= a-+c.

Continuing in this way we have that

d([a,b] + [b,c] +[c,d]+[d,e]) = a+b+b+c+c+d+d+e
= a-+e.

As an indication that we are not too far off track observe that on the topo-
logical level bd [0, 1] = {a} U {e}.

Doing the same for the graph and abstract graph representing I'" we get
Table 2.2. Adding up the algebraic boundaries we have

d([a,b]+ [b,c]+[c,d] + [d,a]) = 0. (2.1)
‘ Topology ‘ ‘ Algebra ‘
bd[a,b] = {a} U {b} dla,b]=a+b
bd [b, c] = {b} U {c} db,c]=b+c
bd e, d] = {c} U {d} dlc,d]=c+d
bd[d,a] = {d} U {a} Jd,a]=d+a

Table 2.2: Topology and algebra of boundaries in 't

Based on these two examples one might make the extravagent claim that
spaces with cycles, i.e. algebraic objects whose boundaries add up to zero,
are topologically nontrivial. This is almost true.

To see how this fails, observe that I'' € C?, and in fact I'' = bd C?. Since
there exists a deformation retract of C? to a point we need to understand
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‘ Topology H Algebra ‘

bd 2 = [a,b] U [b,c] U[e, d] U [d,a] | 9C? = [a,b] + [b,c] + [c, d] + [d, a]

bd [a,b] = {a} U {b} da,b] =a+b
bd [b, ] = {b} U {c} db,c] =b+c
bd[c,d] = {c} U {d} dlc,d] =c+d
bd [d, a] = {d} U {a} dld,a]=d+a

Table 2.3: Topology and algebra of boundaries in C?.

how the nontrivial algebra in I'' becomes trivialized. To do this we need to
go beyond graphs into cubical complexes which will be defined later. For the
moment consider the picture and collection of sets in Figure 2.3. The new

aspect is the square C2. This is coded in the combinatorial information as
the element {C?}.

/ {¢?}
/// & = {la,b], b,¢], e, d], [d, al}

a / b V':{a,b,c,d}

Figure 2.3: Simplicial complex and corresponding abstract simplicial complex
for C2.

Table 2.3 contains the topological boundary information and fictional
algebra that we are associating to it for C?.

Since I'* C C?, one should expect to see the contents of Table 2.2 con-
tained in Table 2.3. Now observe that

0C? = [a,b] + [b,c] + [c,d] + [d, a].

Equation (2.1) indicated that the cycle [a, b] + [b, c] + [c,d] + [d, a] was the
interesting algebraic aspect of I''. In C? it appears as the boundary of an
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object. The observation that we will make is that cycles which are boundaries
should be considered trivial.

Restating this purely algebraically what we are looking for are cycles,
i.e. elements of the kernel of some operator. Let us denote this operator
by O to remind us that it should be related to taking the boundary of a
topological space. Furthermore, if this cycle is a boundary, i.e. the image of
this operator, then we wish to ignore it. In other words we are interest in an
algebraic quantity which takes the form

kernel of 0/image of 0.

We have by now introduced many vague and complicated notions. If you
feel things are spinning out of control - don’t worry, be happy! Admittedly,
there are a lot of loose ends that we need to tie up and we will begin to do
so in the next chapter. The process of developing new mathematics typically
involves developing new intuitions and finding new patterns - in this case we
have the advantage of knowing that it will all work out in the end. For now
lets just enjoy trying to match topology and algebra.

In fact, lets do it again. Recall that earlier we asked the question what
should be use for scalars? We chose Zs last time. Are there other choices that
make sense? Consider Figure 2.4 which looks alot like Figure 2.2 except that
we have added arrows to our graphs to suggest a direction (the fancy word
is orientation) through which we traverse the interval. Similarly, we have
indicated a direction through which we can traverse the loop I''. We could
argue that Z is a natural choice since it is not clear what a fractional amount
of a vertex or an edge of an abstract graph should represent. Furthermore,
using the integers we can assign a plus or a minus sign to the edge or vertex
depending on whether we traverse it following the assigned direction or not.

So let us declare that

J([a,b] +[b,c]+[c,d]+[d,e]) = b—a+c—b+d—-c+e—-d

= e —a.

Again we see that there is consistency between the algebra and the topology
since bd [0,1] = {e} U {a} and the arrows suggest traversing from a to e.
Doing the same for the graph and abstract graph representing I'* gives
rise to Table 2.4
Again, we see that the algebra that corresponds to the interesting topol-
ogy is a cycle - a sum of algebraic objects whose boundaries add up to zero.
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& ={la,b],[b,cl, e, d], [d, e]}
V ={a,b,c,de} & ={la,bl,b,c],[c,d], [d,a]}
V' = {a}, {b},{c}, {d} }

Figure 2.4: Finite graphs and corresponding abstract finite graphs for [0, 1]
and I'' with a sense of direction.

‘ Topology ‘ ‘ Algebra ‘
bd[a,b] = {a} U {b} d<a,b>=b-—a
bd [b,c] = {b} U {c} Jd<b,c>=c—b
bd [e, d] = {c} U {d} J<c,d>=d-c
bd[d,a] = {d} U {a} o<d,a>=a-—-d

Table 2.4: Topology and algebra of boundaries in T'! using Z coefficients.

More precisely we again arrive at equation (2.1). We still need to under-
stand what happens to this algebra when we consider I'' € C?. Consider
Figure 2.5. Table 2.5 contains the topological boundary information and
fictional algebra that we are associating to it for C2.

Since I'' C C?, we again see the contents of Table 2.4 contained in Ta-
ble 2.5. As before

0C? = [a,b] + [b,c] + [c,d] + [d, a].

Equation (2.1) indicated that the cycle [a,b] + [b,c] + [c,d] + [d, a] was
the interesting algebraic aspect of X'. In C? it appears as the boundary of
an object. Again, the observation that we will make is: cycles which are
boundaries should be considered trivial.
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d
7 e
/// &' = {[a,b], [b,d], [e,d], [d, a]}
a / b V,:{aabacad}

Figure 2.5: Simplicial complex and corresponding abstract simplicial complex

for C?.

Topology

Algebra

bdC? =T = [a,b] U[b,c] Ulc,d] U [d, a]

bd [a,b] = {a} U {b}
bd [b,¢] = {b} U {c}
bd e, d] = {c} U {d}
bd [d, a] = {d} U {a}

0C? = [a,b] + [b,c] + [c,d] + [d, a]

Jdla,b]=b—a
Jdb,c]=c—b
Jde,d]=d—-c
Jdd,aj=a—d

Table 2.5: Topology and algebra of boundaries in C?.

Exercises

2.5 Repeat the above computations for a graph which represents a triangle

in the plane.

2.1.4 7 Homology of Graphs

We have done the same example twice using different scalars but the con-
clusion was the same. We should look for a linear operator that somehow
algebraically mimics what is done by taking the topological boundary. Then,
having found this operator we should look for cycles (elements of the kernel)
but ignore boundaries (elements of the image). This is still pretty fuzzy so
lets do it again; a little slower and more formally, but in the general setting
of graphs using the algebra of vector spaces.
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Let G be an abstract graph. Let Gy denote the set of vertices of G and
let GG; denote the set of edges of G. We will construct two vector spaces
Co(G;Zy) and C4(G;Zs) as follows. Declare the set of vertices Gy to be
the set of basis elements of Cy(G;Z2) and let the scalar field be Z,. Thus,
if Gy = {v1,...,v,}, then the collection {v; | ¢ = 1,...,n} is a basis for
Co(G; Zy) and the typical element of Cy(G; Zy) takes the form

V=Qq1V] +QVy + -+ Q,V,

where a; € Zs.

Similarly, let the set of edges G; be the set of basis elements of Cy(G; Zy)
and again let the scalar field be Zs. If Gy = {ey,..., e}, then the collec-
tion {e; | i = 1,...,k} is a basis for Ci(G;Zs) and the typical element of
C1(G; Zy) takes the form

e = 1€ + ages + - -+ e

where «; € Zy. The vector spaces C;(G; Zz) are called the i-chains for G.

It is convenient to introduce two more vector spaces Cy(G; Zs) and C_(G; Zs).
We will always take C'1(G;Zsy) to be the trivial vector space, i.e. the vec-
tor space consisting of exactly one element 0. For graphs we will also set
C5(G; Z2) to be the trivial vector space. As we will see later for more com-
plicated spaces this need not be the case.

We now need to formally define the boundary operators that were alluded
to earlier. Let

00 : C()(G, Z2) — Ofl(G, Z2)
61 : Cl(G; Zg) — Co(G; Z2)
82 : CQ(G; Zg) — Cl(G; Z2)

be linear maps. Since we have chosen bases for these vector spaces, we can
think of dy, 0; and 0, as matrices. Since C_1(G;Zs) = 0, it is clear that
0p must be the matrix with all zeros. Similarly, 0, is the zero matrix. The
entries of the matrix d; are determined by how 0y acts on the basis elements,
i.e. the edges e;. In line with the previous discussion we make the following
definition. Let the edge e; have vertices v; and v;,. Define

alei =V + V.
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In our earlier example we were interested in cycles, i.e. elements of the
kernel of the boundary operator. So define

ZO(G; Zg) := ker 80 = {U € C()(G; ZQ) | 801) = 0}
ZI(G, ZZ) := ker 31 = {U € Cl(G, ZQ) | 81?) = O}
Since dy = 0 it is obvious that Zy(G; Zy) = Co(G; Zs).
We also observed that cycles which are boundaries are not interesting.
To formally state this, define the set of boundaries to be
Bo(G;Zy) :=imd; = {v € Cy(G;Zy) | Je € C1(G; Zy) such that dje = v}
BI(G, Zg) = 1m81 = {0 € OU(G, ZZ)}
Observe that By(G;Zs) C Co(G;Zy) = Zy(G;Zs). Since we have not yet
defined 0, we shall for the moment declare B;(G;Zy) = 0. We can finally

define homology in this rather special setting. For ¢ = 0, 1 the i-th homology
with Zs coefficients is defined to be the quotient space

H,(G;Zy) := Z;(G;Z5)/ B;(G; Zy).

Observe that since this is a quotient space of vector spaces, homology with
Z, coefficients is a vector space.
Let us compute the homology for the graphs in Figure 2.2.

Example 2.15 Let G be the graph representing [0, 1]. Then,

Go = {a,b,cd,e}
G, = {[a7 b]: [b7 C][C, d]: [d7 6]}

Since Gy and G are the bases for the 0-chains and 1-chains we have that
C(G;Zy) ~ 1Zs.

To do the computations it is convenient to use a column vector notation. So
let

o

I
cooc o~

\.CT'

I
coorRo
vo
I
co~oo
vQ-

I
o~ ocoo
QCD
I
—oocoo
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and
1 0 0 0
0 1 0 0
la,b] = NE [b,c] = NE [c,d] = e d,e] = 0
0 0 0 1
With this convention, 0; becomes the 5 x 4 matrix
1 0 00
1100
ob=10110
0011
0 001
Lets do a quick check. For example
1 000 0 0
1 100 1 1
Oib,cj]=10 1 10 0l = 1| =b+ec
0 011 0 0
0 0 01 0

Now consider Z;(G; Zs) := ker ;. Observe that the vector v € C1(G; Zs)
is in Z1(G; Zy) if and only if dyv = 0. If we write

~—

aq
Qi
a3
Oy

then this is equivalent to solving the equation

o a 0
a1 + Qg 0
81 32 = Qo + Q3 = 0 ,
ai a3 + oy 0
(67) 0

which implies that o; = 0 for 2 = 1,...4. Thus, the only element in Z; (G; Z5)

is 0 and hence Z(G;Zy) = 0, the 0-dimensional vector space. By definition
Bl (G, Zg) =0. So

H\(G;Zy) := Z1(G;Z,)/B1(G;Z5) = 0/0 = 0.
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We still need to compute Hy(G;Zs). We know that Cy(G;Zy) ~ Z5. Fur-
thermore, since ker 9; = 0, 0,(C1(G; Z2)) ~ Z3. Thus,

Example 2.16 Let G be the graph representing I't. Then

Gy = {a,b,c d}
Gy = {[a7 b]7 [b7 C] [07 d]7 [d7 a]}

Since Gy and G are the bases for the 0-chains and 1-chains we have that
Co(G;Zy) ~ Zj
C\(G;Zy) =~ 1Zj.

To do the computations it is convenient to use a column vector notation. So
let

1 0 0 0

0 1 0 0

a=lo b=l T 1] 950

0 0 0 1

and

1 0 0 0
0 1 0 0
[a7 b] - 0 ) [ba C] - 0 ) [C, d] - 1 ) [d, e] 0
0 0 0 1

With this convention, 0; becomes the 4 x 4 matrix

) =

SO = =
o= o
== O O
—_o o~

Now consider Z(G; Zs) := ker d;. So we need to solve the equation

(6] a1+ oy 0
81 (6] _ a1 + Qo _ 0
Qa3 Qo + O3 0
QY a3 + oy 0
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Observe that since we are using Z, coefficients,
] = Qg = (X3 = 4

is a solution. In particular, a; = as = a3 = a4 = 1 is a non-trivial solution.
Thus, Z(G; Zs) = Z5. By definition B;(G;Z,) = 0. So

Hl(G, ZQ) = ZI(G, ZZ)/Bl(G, ZQ) ~ ZQ.

We still need to compute Hy(G;Zy). We know that Cy(G; Zy) ~ Zj. Fur-
thermore, since ker 9, ~ Zy, 0,(C1(G; Z2)) ~ Z3. Thus,

Hy(G; Zs) := Zo(G Za) | Bo(G; Zo) = Z [ Ly = Zs.

Exercises

2.6 Compute H,(G;Z;y) where G is a graph for the following figures:

2.7 Prove that if G; and G, are disjoint graphs, then

2.8 * Let G be a graph with a free vertex v that lies on edge e. Let G’ be
the graph obtained by removing e and v* from G. Prove that

2.9 * Prove that if T" is a tree, then
HO(T, Zg) ~ ZQ, Hl(T, ZQ) = 0.

In light of Proposition 2.12 this is suppose to help you believe that homology
might be a topological invariant. Of course this is not a proof of that.
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2.2 Approximation of Maps

The purpose of the last section was to motivate the homology of topological
spaces. The process which we adopted can be summarized as follows. We
began with a topological space G C R? which for the sake of simplicity we
took to be a graph. We then observed that graphs could be represented com-
binatorially and finally we used this combinatorics to produce an algebraic
quantity H,(G) which we call the homology of G. Now assume that we have
two topological spaces X and Y and a continous map f : X — Y. In this
section we will mimic this process in such a way that we obtain a linear map

for Ho(X) — H.(Y).

2.2.1 Approximating Maps on an Interval

To keep the technicalities to an absolute minimum, we begin our discussion
with maps of the form f : [a,b] — [¢,d]. We do this for two reasons. First,
each interval can be represented by a graph and so using the types of ar-
guments employed in the previous section we can compute the homology.
Second, we can actually draw pictures of the functions. This latter point is
to help us develop our intuition, in practice we will want to apply these ideas
to problems where it is not feasible to visualize the maps, either because the
map is too complicated or because the dimension is too high.

With this in mind let X = [-2,2] C R, Y = [-2,4] C R and let f :
X — Y be defined by f(x) = (z—+/2)(x+1). Thus, we have two topological
spaces and a continous map between them. To treat these combinatorially
we think of the spaces as abstract graphs. As was indicated in Example 2.13
there is no unique representation of these intervals as graphs, so we have the
freedom to choose. Let us begin with the representations given in Table 2.6

The question we now face is how do we go from the continuous map f,
to a map which takes the combinatorial data £(X) and V(X) to £(Y) and
V(Y')? Three issues need to be considered in constructing the map.

1. We want to make sure that after we have completed all our calculations
we have the correct answer.

2. Because we want to use the computer we can only do a finite number
of evaluations of the function f.
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Edges of X | £(X) = {[-2,—1], [-1,0], [0,1], [1,2]}
Vertices of X | V(X) = {[-2], [-1], [0], [1], [2]}

Edges of V' | £(X) = {[~2,—1], [-1,0], [0,1], [1,2], [2,3], [3,4]}
Vertices of Y | V(X) = {[-2], [-1], [0], [1], [2], [3], [4]}

Table 2.6: Edges and Vertices for the graphs of X = [—2,2] and Y = [-2,4].

3. In the end we are only interested in computing an object f, : H,(X) —
H,.(Y). We have stated that homology is a homotopical invariant, so
we should not need to have a very precise understanding of f but rather
an approximation up to homotopy.

Let us begin with this last point. In Figure 2.6 we show two functions f
and g which are homotopic. Recall from Exercise 2.2, that any two functions
from one interval to another are homotopic. We include the figure to empha-
size the fact that two homotopic functions can behave very differently locally,
e.g. the derivatives of these functions are very different. If we move to more
complicated spaces, then it is not true that all functions are homotopic (this
is a non-trivial result). However, as will be made clear later for reasonable
spaces if for every x € X, the distance between f(z) and g(z) is sufficiently
small, then f and g are homotopic.

The second point was that we only wanted to do a finite number of
calculations. Since we want to develop algorithms that will allows us to do
these computations, we want to have a systematic method for choosing which
calculations to perform. There are, of course, many different approaches that
we could pursue, however we will adopt the following. Observe that

X =[-2,-1U[-1,00U[0,1] U[L,2].

Therefore, we will do our computations in terms of edges. From the combi-
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Figure 2.6: The function f(z) = (z — v/2)(z + 1) and a homotopic function
g.

natorial point of view, this suggests trying to map edges to edges. Since
f(—2) = 3.41421356..., f(—1) = 0, and f is monotone over the edge
[—2, —1], it is clear that

f([—2,-1]) C [0,4] =[0,1]U[1,2] U [2,3] U [3,4].

Thus we could think of defining a map that takes the edge [0,1] to the
collection of edges {[0,1], [1,2], [2,3], [3,4]}. Of course, this strategy of
looking at the endpoints does not work for the edge [0, 1] since f is not
monotone here.

To deal with this problem let us go back to calculus to develop a method
for getting good estimates on the function.

Theorem 2.17 [Taylor’s Theorem| Let f be a function that is n-times dif-
ferentiable. Then,
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To apply this to our problem observe that f”(z) = 2 and so we can obtain
the inequality

fl@) = fla)+ f'(a)
= fla)+ f(a)(x —a) + (v — a)*
f@)=fla) = fla)(z—a)+(z—a)
[f(@) = fla)] < [f'(a)llz —al + (v — a)”.

For our purposes it is more convenient to write this last inequality as

fla)=If'(a)lle—al = (z—a)* < f(z) < f(a) +|f'(a)l|z—al +(z —a)*. (2:2)

Returning to the interval [0,1], let @ = 1. Then, for any z € [0,1] the
inequality (2.2) implies that
1 1 1

Q) = 1P Gl =51 = =3 <f@) < f)+IFGlle 51+~ 57

1 1
~1.3713 - 0.5858 - 5 — 0.25 < f(x) < —1.3713+0.5858 - 5 +0.25
~1.914 < f(z) < —0.8284

+ (x — a) +/ (x —t)2dt
_|_

We can use this inequality to determine where to map the edge [0, 1]:
f([oa 1]) - [_270] = [_27 _1] U [_17 0]

In Table 2.7 we have applied the relationship (2.2) to the midpoints of all
the intervals in X and from that derived the mappings of the edges. Observe
that since each interval has length 1 (2.2) reduces to

f(a) = 0.5|f(a)] — 0.25 < f(z) < f(a) + 0.5|f"(a)] + 0.25.
We can think of Table 2.7 as defining a map from edges to sets of edges.
For example
and we can represent this graphically by means of the rectangle
0,1] x [-2,0] C [-2,2] x [-2,4] =X x Y.

Doing this for all the edges in the domain gives the the region shown in
Figure 2.7. Observe that the graph of f : X — Y is a subset of this region
and therefore we can think of the region as representing an outerbound on
the function f.

We would like to make clearer this idea of mapping edges to sets of edges.
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Edge of X | Bounds on the image Image Edges

[—2, —1] —0.5< f(z) < 3.5 {[-1,0], [0,1], [1,2], [2,3], [3,4]}
[—1,0] -1.92 < f(z) < 0.1 {[-2,-1], [-1,0], [0,1]}
[0, 1] -1.92 < f(z) < —0.83 {[-2 —1], [—1,0]}
[1,2] -1.33 < f(x) < 1.76 {[-2,-1], [ ,0], 10,1}, [1,2]}

Table 2.7: Edges and Vertices for the graphs of X = [—2,2] and Y = [-2,4].

Definition 2.18 Let X and Y be sets. A multivalued map F : X2V is a
function from X to subsets of Y, i.e. for every x € X, F(z) C Y.

Using thls language we can view our edge mapping as a multivalued map
F -2 2]—>[ 2,4] defined by

[—1,4] ifz=-2
—1,4] ifze (-2,-1)
—1,1] ifzr=-1
[~2,1] ifz € (—1,0)
F(x):=4[-2,0] ifz=0
[—2,0] ifz € (0,1)
[—2,0] ifz=1
[—2,2] ifze(1,2)
[ [-2,2] ifz=2

There are three observations to be made at this point. First, observe
that F is defined in terms of the vertices and the interior of the edges, i.e.
the edges without its endpoints. Since we will used this idea later let us
introduce some notation and a definition.

Definition 2.19 Let e be and edge with endpoints v*. The corresponding
open edge is

e:=e\ {vF}.

The second observation, is that we used the edges to define the images of
the vertices. In particular, we used the formula that if v is a vertex that lies
in edge e; and ey, then

F) = F(e1) N Fley). (2.3)
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1 /

Figure 2.7: The graph of the map produced by sending edges to sets of edges.
Observe that the graph of the function f(r) = (v —v/2)(x + 1) lies inside the
graph of this edge map.

The final point is that even though F : XXV is a map that is defined on
uncountably many points, it is completely characterized by its values on the
four edges that make up X. Thus, F is a finitely representable map. This
is important because it means that it can be stored and manipulated by the
computer.

The multivalued map F that we constructed above is fairly coarse. If
we want a better approximation, then one approach is to use finer graphs to
describe X and Y. For example let us write

12

X:U[—2+%,—1.5+%] and Y:U[—2+%,—1.5+%]
i=0 1=0

Using the same approximation (2.2) as above we obtain the data described
in Table 2.8. The graph of the corresponding multivalued map is shown in
Figure 2.8. Observe that this is a better approximation to the function than
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Edge of X | Bounds on the image Image Edges
[—2, —1.5] 1.30 < f(z) < 3.42 {[1,1.5], [1.5,2], [2,2.5], [2.5,3], [3,3.5]}
[—1.5,—1] | —=0.12 < f(x) < 1.46 {[-0.5,0], [0,0.5], [0.5,1], [1,1.5]}
[-1,-0.5] | —1.53 < f(x) <0.01 | {[-2,—1.5], [-1.5,—1], [-1,0], [0,1.5]}
[—0.5,0] | =1.52 < f(z) < —0.95 {[-2,-1.5], [-1.5,-1], [-1,—-0.5]}
[0,0.5] —1.52 < f(z) < —=1.37 | {[1,1.5], [1.5,2], [2,2.5], [2 5,3], [3,3.5]}
(0.5, 1] —1.49 < f(z) < —0.83 {[-0.5,0], [0,0.5], [0.5,1], [1,1.5]}
1, 1.5] —0.95 < f(z) <0.22 | {[-2,-1.5], [—1.5, —1], [—1,0], 0,1.5]}
(1.5, 2] 0.08 < f(x) < 1.76 {[0,0.5], [0.5,1], [1,1.5], [1.5,2]}
Table 2.8: Edges and Vertices for the graphs of X = [-2,2] and Y = [-2,4].

what was obtained with intervals of unit length. In fact, one can obtain as
good an approximation as one likes by choosing the edge lengths sufficiently
small. In Figure 2.9 one sees the graph of the multivalued map when the
lengths of the edges is 0.1.

2.2.2 Constructing Chain Maps

In the previous section we considered the problem of approximating maps
from one interval to another. Of course the goal of this course is to use such
an approximation to reduce the analytic problem to an algebraic problem. So
in this section we begin with the question: How can we use the information
in Figure 2.7 to construct a map f. : H.([—2,2]) — H.([—2,4])?

Let us begin by emphasizing that this is not an obvious task. Recall
that homology is by definition a quotient of cycles by boundaries, which in
turn belong to subspace of the set of chains. Thus, it seems that the first
place to begin is on the level of chains. Furthermore, in order to be able
to use our intuition from linear algebra we will consider homology with Z,
coefficients. In keeping with Figure 2.7 we will consider [—2,2] and [—2, 4]
to be the graphs made up of the edges with vertices having integer values.

In defining the approximation, we started on the level of edges. In try-
ing to generate the algebra we will start with the vertices. Recall that
Co([—2,2]) is the vector space over Z, whose basis is given by the set of
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Figure 2.8: The graph of the multivalued approximation to f(z) = (z —
V2)(x + 1) with edges of length 0.5.

vertices {{—2},{—1},{0},{1},{2}} and that Cy([—2,4]) is generated by the
vertices {{—2},{—1},{0},{1},{2},{3},{4}}. We will begin by defining a
linear map

f#O : CO([_2v 2]) — CO([_274])'

Of course, to define a linear map it is sufficient to define how it acts on the
basis elements. For lack of a better idea lets define fuo(v) := max F(v). If
we order the basis elements of Cy([—2,2]) and Cy([—2,4]) according to the
obvious ordering of the vertices then

0

fao =

SO o O OO
SO oo+~ OO
SO oo+~ OO
SO = OO oo

_— o O O o O
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Figure 2.9: The graph of the multivalued approximation to f(z) = (z —
V2)(z + 1) with edges of length 0.1.

We have now defined a linear map between the 0-chains of the two
spaces. The next step is to “lift” the definition of fx, to obtain a linear map
fa1 0 C1([—2,2]) = C1([—2,4]). Of course the basis of these spaces are given
by the intervals. So consider the interval [—2, —1] C [—2,2]. How should we
define fyu([—2, —1])? We know that fuo({—2}) = {4} and fuo({—1}) = {1}
so it seems reasonable to define fu([—2,—1]) = [1,2] + [2,3] + [3,4]. Sim-
ilarly, fy1([—1,—0]) = [0,1]. But what about fx;(]0,1]) where f4({0}) =
f#1({1}) = {0}7 Since the two endpoints are the same, let us just declare
that fy,(]0, 1]) does not map to any intervals, i.e. that fy,(]0,1]) = 0. Again
ordering the intervals of [—2, 2] and [—2, 4 in the obvious way an apply these
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rules to each of the intervals we obtain the following matrix

0 00O

0
1
for = ]
0

=)
O OO = O
O OO OO

0

In figuring out how to define fy; we used the phrase “it seems reasonable
to define” but this does not mean we should not define it a different way.
Given our choice for fio are there any restrictions on the way we define f4,7
The answer is an emphatic yes. Recall that our goal is to use fx to obtain
a map on homology, i.e. f, : H.([-2,2];Zy) — H.([-2,4];Zs). Thus, our
real interest is in cycles rather than arbitrary chains. After all elements of
homology are equivalence classes of cycles which are very special chains.

Let c be a cycle, by definition dc = 0. Now if fy is supposed to generate
a map on homology, it is important that fx map cycles to cycles. Thus f4(c)
should be a cycle which again by definition means that 0fx(c) = 0. Notice
that since f is a linear map this leads to the following interesting equation

Ofu(c) =0 = fx(9c).

Again, let ¢ be a cycle, but this time assume that it is also a boundary, i.e.
¢ = 0b for some chain b. This means that in homology ¢ is in the equivalence
class of 0, i.e. in homology [¢] = 0. But, we want the homology map f, to
be linear, so f.(0) = 0 and hence f.([c]) = 0.

What does this mean on the level of cycles. If fu takes cycles to cycles,
then fx(c) is a cycle. But as we just noted we want f.([c]) = 0 and so the
simplest condition to require is that fx(c) be a boundary which means that
in homology fx(c) is in the same equivalence class as 0. How can this be
guarenteed? In other words, what kind of constraint on fx will guarentee
that cycles which are boundaries go to boundaries?

To answer this lets repeat what we have said. ¢ is a boundary so we can
write ¢ = 0b for some chain b. Thus fx(c) = fx(0b). But we want fx(c) to
be the boundary of some chain. What chain? The only one we have at our
disposal is b, so the easiest constraint is to ask that fu(c) = df4(b). Notice
that once again we are led to the interesting equation

Ofp(b) = fy(c) = fy(0b).
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As one might have guessed from the time spent discussing it this rela-
tionship is extremely important and linear maps on the set of chains that
satisfy

Ofy = [40
are called chain maps.

Let us now check whether the linear maps fxo and fx are chain maps,
i.e. that they satisfy the relation 0fy = fx0. We were sloppy about the
subscripts in our discussion above so now we need to be a bit more careful.

First we have two sets of boundary maps

5 o[22 Zs) = Ca([-2,2); %)
o Ci([-2,22,) = Col[-2,2):Z)
8([)’2’2] :Co([-2,2];Z2) — O
and
05 M Co((=2,2Zs) = Cu([-2,22)
o Ci([-2,22,) = Col[-2,2): %)
8([{2’4} 1 Co([—2,2];Zy) — 0.
Using this notation we see that the relation dfy, = f40 should be written as

Fuodl 2 = a2, (2.4)
In the matrix form this equation becomes
0 00 0 0] 10 000 0] - -
00000 1000 110000 8888
00110 1100 011000 010 1
01000 01 10|=]001T1°00 L0 01
00001 0011 000110 L0000
00000 0001 000011 L0000
100 0 0| (00000 1]" -

and it is left to the reader to check that this is an equality. Thus the maps
f#o and fy; are chain maps.

Recall that the constraint of being a chain map was imposed in order to
guarentee that fx would generate a map on homology, f. : H.([-2,2]; Z,) —
H.([-2,4]; Zs). From Section 2.1.3 we know that

Ho([=2,2];Z2) 2 Zo and  Hy([~2,2];Zs) =0
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and similarly
Ho([-2,4];Z9) = Zy and Hy([—2,4];Z,) =0
Thus, the only interesting map is
fo : Ho([—2,2]; Zo) — Ho([—2,4]; Zs).

How should we define the map f,? By definition the elements of Hy([—2, 2]; Z>)
are equivalence classes of the cycles Zy([—2,2]; Zy). But 85> = 0 so any
O-chain is a 0-cycle, i.e. Cy([—2,2];Z2) = Zo([—2,2];Z2). By looking at
the matrix which represents GE_Q’Z] it is possible to check that the vertex
{—2} is not in the image of 8{72’2], i.e. there is no 1-chain w such that
ol >y = {—2}.

Thus, we can take the equivalence class which contains the vertex {—2}
as a generator for Hy([—2,2]; Zs). Since the field Z, consists of two elements
0 and 1, Hy([—2,2]; Zy) consists of two vectors which we will write as 0 and
1. Since the equivalence class of the cycle {—2} generates Hy([—2,2]; Zs), we
can write

{=2}=1¢€ H([-2,2];Z,).

Returning to our map on homology, to define f; we need to determine
fo(1). Of course we want to use the chain map fxo to do this. 1 is a homology
class so fgo(1) is not defined. However, as was mentioned above {—2} is a
generator for 0 and fuo({—2}) is a cycle so we can define fy(1) to be the
equivalence class which contains the cycle fyuo({—2}), i.e.

fo(1) := [fro({=2D)] = {4}].

The same arguments that led to [{—2}] = 1 € Hy([—2,2]; Z5), also show that
[{4}] =1 € Hy([-2,4];Zy). Thus

fo(1) =1.

In other words, fo : Ho([—2,2]; Z2) — Ho([—2,4]; Z2) is the linear map given
by multiplication by 1.

This is probably a good place to restate the caveat that we are motivating
the ideas behind homology at this point. If you do not find these definitions
and constructions completely rigorous that is good, they are not. We will fill
in the details later. For the moment we are just trying to get a feel for how
we can relate algebraic quantities to topological objects.

Exercises
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2.10 Equation (2.4) involves the boundary operators on the level of 1-
chains, i.e. 6;72’2] and 8{72’4]. Discuss how to make sense of this relation as
it pertains to the boundary operators on the levels of O-chains and 2-chains.

2.11 Show that fy : Ho([—2,2]; Z2) — Ho([—2,4]; Z2) is well defined.

2.2.3 Maps of the Circle

Up to now we have considered maps from one interval to another. Since the
homology of an interval is fairly simple it is not surprising that the maps
on homology are equally trivial. So let us consider a space with non-trivial
homology such as I'" of Section 2.1.3. Unfortunately, it is rather difficult to
draw the graph of a function f : I't — I'!. In order to draw simple pictures
we will think of I'' as the unit interval [0,1] but where the endpoints are
identified, i.e. 0 = 1. In fact we will go a step further and think of I'! as the
real line where we make the identification x = = + 1 for every x € R, e.g.
0.5=15=25.

To see how this works in practice consider the function f : [0,1] — R
given by f(r) = 2z. We want to think of f as a map from I'" — I'! and do
this via the identification of y = y + 1 (see Figure 2.10).

While this process allows us to draw nice figures it must be kept in mind
that what we are really interested in is the f as a continuous mapping from
I'! to I''. How should we interpret the drawing in Figure 2.10(b)? Observe
that as we move across the interval [0, 0.5] the graph of f covers all of [0, 1].
So going half way around I'! in the domain corresponds to going once around
I'! in the image. Thus, going all the way around I'" in the domain results
in going twice around I'! in the image. In other words, f wraps I'' around
itself twice. In Figure 2.11 we show a variety of different maps and indicate
how many times they wrap I'" around itself. Our goal in this section is to
see if we can detect the differences in these maps algebraically.

Recall that

Hy(T':Zy) =Zy and H(T';Zy) = Zo.

We will focus our attention on f; : Hy(T'Y; Zy) — Hy (T Zy).

Let us begin by considering the map f : ' — I' given by f(z) = 2z(1—x)
which is drawn in Figure 2.11(a). The first step is to view I'" as a graph. So
we divide it into the intervals [0, 0.25], [0.25,0.5], [0.5,0.75], and [0.75, 1]. Of
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@ ()

2 ‘ ‘ ‘ 2 ‘ ‘ ‘
18f E 18}
16f 1 16f
14f 1 L4t
12f 1 12}

1 1
08f 1 0.8f
06f 1 06}
04f 1 0.4f
02f 1 0.2f

% 02 o4 06 o8 1 % o0z 04 o8 08 1

Figure 2.10: Two versions of the graph of f(x) = 2z. The left hand drawing
indicates f : [0,1] — R. In the right hand drawing we have made the
identification of y = y + 1 and so can view f :[0,1] — [0, 1]. It is important
to keep in mind that on both the x and y axis we make the identification of
0=1. Thus f(0) =0=1= f(1).

course 0 = 1 so this decomposition of I'! into an abstract graph is exactly
the same as that used in Section 2.1.3.

The next step is to obtain an approximation for f. We do this using the
Taylor approximation. Since f”(x) = 4 equation (2.2) becomes

fla) = [f'(@)]e —a| = 2(z — a)* < f(2) < f(a) +|f'(@)l|z — a] + 2(z — a)".

In Figure 2.12(a) we indicate the resulting multivalued map F that is an outer
approximation for f. Of course, it is easier to understand what is happening
if we can view these bounds in the unit square. Using the identification
y = y + 1 we obtain Figure 2.12(b). Recall that we defined the images of
vertices via equation (2.3). This implies that

F({0.25}) = F(]0,0.25]) N F([0.25,0.5))



70 CHAPTER 2. MOTIVATING EXAMPLES

(a) (b)
1 ‘ ‘ ‘ 1 ‘ ‘ ‘
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 02 04 06 08 1 0 02 04 06 08 1
(© (d)
1 ‘ ‘ ‘ 1 : : :
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 02 04 06 08 1 0 02 04 06 08 1

Figure 2.11: Four different maps f : I'" — I''. How do these different f’s
wraps ['' around T''? (a) f wraps the interval [0, 0.5] half way around I'' and
then over the interval [0.5,1] f unwraps it. Thus, we could say that the total
amount of wrapping is 0. (b) f wraps I'' once around T''. (¢) f wraps I'!
three times around I''. (d) f wraps I'' once around T'', but in the opposite
direction from the example in (b).

= [0.25,0.5]U {0.75}.

This is troubling. What we are saying is that using this procedure the outer
approximation of a point is the union of two disjoint sets. It doesn’t seems
right that a connected set needs to be approximated by a disconnected set.
We have two possibilities at this point. One we could redefine our multivalued
map F or two we can try to make a finer approximation of I'!.

Since we do not know of a more efficient way of defining F we will adopt
the approach of refining our approximation of I'*. This means representing
't in terms of shorter edges. So let us consider

I =[0,0.2] U[0.2,0.4] U[0.4,0.6]U[0.6,0.8] U[0.8,1.0]. (2.5)
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Figure 2.12: The outer approximation for the map f(z) = 2z(1 — x).

If we repeat the approximation scheme described above for this representation
of T'! we get the outer approximation described in Figure 2.13. Using this
approximation F(v) is an interval for every vertex wv.

Using the same rules as before we end up with the multivalued map

([0,0.4]U[0.8,1] ifz =0
0,0.4]U0.8,1] ifz € (0,0.2)
[0.2,0.4] if £ = 0.2
[0.2,0.6] if z € (0.2,0.4)
[0.4,0.6] if z =04

F(z) =1 [0.4,0.6] if = € (0.4,0.6)
[0.4,0.6] if =06
0.2,0.6] if z € (0.6,0.8)
[0.2,0.4] ifz =08
0,0.4] U[0.8,1] ifz € (0.8,1)
[ [0,0.4]U[0.8,1] ifz=1
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Figure 2.13: The outer approximation for the map f(z) = 2z(1 — z) based
on edges of length 0.2.

Of course, we have not computed the homology of the graph representing
I'' given by (2.5). The reader is encouraged to check that in this case the
homology of T'" does not change. However, what should be clear is that
it would be nice to have a general theorem that says that if one has the
homology of a space does not depend on the approximation used in the
computation. Again, we will address these issues later. For the moment we
will just assert that the 1-chain given by the sum of all the intervals generates
H\ (T Zy), i.e.

[[0,0.2] + [0.2,0.4] + [0.4,0.6] + [0.6,0.8] + [0.8,1.0]] = 1 € Hy(T'"; Z).

Having determined the multivalued map F for this approximation we
will construct the chain map fgzo : Co(I'';Zy) — Co(I'*;Zs) in the same
manner as in Section 5.1. Set fyo(v) = max F(v) for any vertex v. Thus for
example, fuo({0}) = {1} and fuo({0.2}) = {0.4}. Having defined fy,, the
construction of fgu : Cy(T'"; Zy) — C1(T'; Zy) also follows as in Section 5.1.



2.2. APPROXIMATION OF MAPS 73

Using the natural ordering of the intervals which are a basis for C(T''; Z5)
we can write

10001
10001
far=10 1010
00000
00000

In order to understand the induced map on H,(T'';Z,) we need to see
how fy acts on the generator of H(I''; Zy).
In vector notation as an element of C(T'"; Z,), we have

[0,0.2] + [0.2,0.4] + [0.4,0.6] + [0.6,0.8] + [0.8, 1.0] =

— = = =

Recall that we are using Z, coefficients hence f4([0,0.2]+[0.2, 0.4]+[0.4, 0.6]+
[0.6,0.8] 4 [0.8,1.0]) is given by

1 0001 1 2 0
100 01 1 2 0
01010 11=12(=1]0
00000 1 0 0
00000 1 0 0

Therefore, f; : H(T'';Zy) — Hy(T';Z,) is given by multiplication by 0.
Notice that this corresponds to the number of times that f wraps I'' around
its.

Lets do this again for the map f(z) = z%. We proceed exactly as before.
Again we need estimates on the approximation. Since f”(z) = 2 we can use
equation (2.2). Figure 2.14 shows the resulting multivalued map. To obtain
an appropriate multivalued map we have chosen to represent I'* as follows

I'' = [0,0.125] U[0.125,0.25] U [0.25,0.375] U [0.375, 0.5]
U[0.5, 0.625] U [0.625,0.75] U [0.75, 0.875] U [0.875, 1]

As before it is the sum of all these intervals which generates H,(I'"; Zs).
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Figure 2.14: The outer approximation for the map f(z) = 2.

Constructing f4 as before and using the natural ordering of the intervals
which are a basis for C(I'; Z) we can write

fa1 =

S O o OO o oo
SO O OO OO
O == O OO oo
_— o O O o o oo

S oo oo oo
(>l el e el )
SO OO oo+ OO
SO OO, OO o

If we let fy; act on the 1-chain which generates H;(T'';Z,), then we are
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performing the following computation

1 00 0 0

O OO o oo
O O O = OO
OO = O OO
_ -0 O O O O
_0 O O O O O o
e e e e
= = = = s

SO o O o~ O o

SO OO O oo
SO OO OO -

0 000

Thus, f1 : H(I'';Zy) — H(I'';Zy) is given by fi(1) = 1, ie. it is
multiplication by 1. Observe that this again is the same as the number of
times that f(z) = 2? wraps I'' around itself.

We shall do one more example, that of f(z) = 2z. Figure 2.15 shows the
multivalued map that acts as an outer approximation when the represention
of I'! is given by

' = [0,0.125]U[0.125,0.25] U [0.25,0.375] U [0.375, 0.5]
U[0.5,0.625] U [0.625,0.75] U [0.75, 0.875] U [0.875, 1].

Following exactly the same process as in the case of f(z) = z? we obtain

1001 0O0O01

100 01000

100 01000

101 000100

=10 1000100
001 0OO0O0OT1PO0

001 0OO0O0OT1TO0

10001000 1]
Again viewing how this acts on the generator of H;(I'}; Zy) we have

1 0010

OO O~k OOO
O R R OO O oo
_— o oo o O o

[0
0

0
o
0

0

0

0

|
SOl S G CI O
|

O OO OO =
O OO == OO
O =R = O O O O
_0 O O O O O
O OO OO ==
el e
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Figure 2.15: The outer approximation for the map f(z) = 2z.

In this case we end up with f;(1) = 0, i.e. the homology map on the first
level is multiplication by 0. This does not match our geomtrical observation
that f(z) = 2z wraps ['! around itself twice. On the other hand, it is clear
that fi(1) = 0 precisely because we are using Z, coefficients. If we had
been using integers we might expect to obtain that f; is multiplication by 2.
Unfortunately, using the integers as a scalar does not lead to a vector space.
With this in mind we will spend the next chapter studying the algebra needed
to be able to rigorously do homology over the integers.

Exercises

2.12 Compute f; : Hy (T Zy) — Hi(T';Zy) for f(z) = 3.



Chapter 3

Abelian Groups

In Chapter 2 we computed homology groups using linear algebra. As was
pointed out in our analysis of maps on the circle it would be nice if we could
move beyond linear algebra. In this chapter we will introduce the abelian
group theory that lies at the basis of homological algebra.

3.1 Groups

A binary operation on a set GG is any mapping ¢ : G X G — G. Rather than
writing the operation in this functional form, e.g. q(a,b), one typically uses
a notation such as a + b or ab.

Definition 3.1 An abelian group is a set G, together with a binary operation
+ defined on G and satisfying the following four axioms:

1. For all a,b,c € G,

a+(b+c)=(a+b)+c (associativity)
2. There exist an identity element 0 € G such that for all a € G
a+0=0+a=a.
3. For each a € GG there exists an inverse —a € G such that
a+—-a=b+-b=0.

7



78 CHAPTER 3. ABELIAN GROUPS

4. For all a,b € G,

a+b=b+a (commutativity)

It follows from the axioms (see Exercise 3.1) that the identity element 0 is
unique and that given any a € G its inverse element —a is also unique.

Example 3.2 We denote the set of integers by Z, the rationals by Q, the
real numbers by R and the complex numers by C. All these sets are abelian
groups under addition.

Example 3.3 Recall that the set N of natural numbers is the same as the set
of nonnegative integers. Addition is a binary operation on N. Furthermore,
it is commutative, associative and 0 € N. However, /N is not an abelian group

since its elements have no inverses under addition. For example, 1 € N, but
—1¢ N.

Example 3.4 The vector space R" is an abelian group under coordinate-
wise addition with the identity element 0 = (0,0,...,0).

Example 3.5 Given a positive integer n, let Z, := {0,1,2,...n — 1} with
the addition defined by (a,b) — (@ + b) mod n, where (a + b) mod n is the
remainder of a+b € Z in the division by n, i.e. the smallest integer ¢ > 0 such
that a+b— c is divisible by n. We shall abandon the mod n notation when it
will be clear that we mean the addition in Z,, and not in Z. It is convenient
to describe finite groups such as Z, by giving their table of addition, here is
one for Zs:

_|_
0
1
2

| = O O
O DN | —
= O N N

Definition 3.6 Let G be a group with the binary operation +. A nonempty
subset H C G is a subgroup of G if:

1. 0 € H,

2. for every a € H its inverse —a € H,
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3. H is closed under +, i.e. given a,b € H, a+b € H.

Proposition 3.7 Let H be a subset of G with the property that for any
a,b € H, impliesa —b € H. Then H is a subgroup of G.

The proof of this proposition is left as an exercise.

Given a € G and n € Z, we use the notation

ne:=a+a+---+a

~
n terms

to denote the sum of a with itself n times. If n is a negative integer, then
this should be interpreted as the n-fold sum of —a.

Definition 3.8 Given a group G, a set of elements {g;};c; C G generates
G if any a € G can be written as a finite sum

a = Zajgj (3.1)

where a; € Z. By the finiteness of the above sum we mean that a; = 0 for all
but finitely many j. The elements of {g,};cs are called generators. If there
is a finite set of generators, then G is a finitely generated group.

Observe that the concept of a generating set for a group is similar to that
of a spanning set in linear algebra. What makes vector spaces so nice is that
they have bases which one can use to uniquely represent any vector in the
vector space.

Definition 3.9 A family {g;};cs of generators is called a basis of G if for
any a € G there is a unique set of integers a; such that

a=)Yajg;. (3.2)
A group is free if it has a basis.

Example 3.10 The group of integers Z is a free group generated by a single
element basis: either {1} or {—1}. Observe that for any k € Z \ {0}, {k} is
a maximal linearly independent set. However, if k£ # +1, then {k} does not
generate Z. This is easily seen by noting that if {k} did generate, then there
would be an integer n such that nk = 1.
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Observe that the uniqueness condition implies that a set of generators
{g;}jes of a group G is a basis of G if and only if it is linearly independent,
i.e.

OZZajgj & aj=0foralljeJ
j€J

Every vector space has a basis, this is not true for groups.

Example 3.11 The group of rational numbers Q is not free. To see this
assume that {g,};ec; formed a basis for Q. Recall that any element a € @
can be written in the form a = p/q where p and ¢ are relatively prime
integers. Assume that the basis consists of a unique element g = p/q. Then
g/2 € @, but it is impossible to solve the equation ng = g/2 for some integer
n. Therefore, the basis must contain more than one element. In particular,
there exists p;/q; and py/qe in the basis. Now observe that

P1p2 = (leh)pl/(h = (p1Q2)p2/Q2

which violates the uniqueness condition.

Theorem 3.12 Any two bases of a finitely generated free abelian group G
have the same number of elements. This number is called the rank of G.

Proof: The proof is by contradiction. Let {g1, go,..., 9} and {hy, ho, ..., hy}
be two bases of G with n < m. Then each element of one basis can be ex-
pressed as a linear combiation of the elements of the other basis with integer
coefficients. By using matrix notation,

hy g1 g1 hy

h h

.2 =A 9.2 and 9.2 =B .2 :
P, 9n In hm

where A = (a;j) and B = (b;;) are, respectively, m x n and n X m matrices
with integer coefficients. Thus

hy hy
h h
‘2 _uB .2

P, Do,
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By the uniqueness of the expansion, AB = 1,,y,, (the identity m X m matrix)
which contradicts that n < m: Indeed, the ranks of A and B are at most n,
thus the rank of AB is at most n. But the rank of 1,,4,, is m > n. [

Example 3.13 Consider the group Z%. Set i:= (1,0) and j := (0,1). Then,
{i,j} is a basis for Z? and so the rank of Z? is 2. Another choice of basis
is {i,j —i}. But {2i,3j} is not a basis for Z? even though it is a maximal
linearly independet set in Z2. This set is a basis for 2Z x 3Z which is a proper
subgroup of Z? of the same rank 2. We will learn more about product groups
in the next section.

A group G generated by a single element a is called cyclic and is denoted
by (a). In general, if a € G then (a) is a cyclic subgroup of G. The order
of G denoted by |G| is the number of elements of G. Thus |Z| = oo and
|Z,| = n. The order of an element a € G denoted by o(a) is the smallest
positive integer n such that na = 0, if it exists, and oo if not. Observe that
|{(a)| = o(a). Of course, a group which has a cyclic element of finite order
other than zero cannot be free. The set of all elements in G with finite order
is a subgroup called the torsion subgroup of G. Observe that a free group is
torsion free, i.e. it has no elements of finite order. The converse is not true
(see exercises). If a is of infinite order, the cyclic group (a) is a free abelian
group which may also be denoted by Za or by aZ.

Example 3.14 The addition table for Zg is as follows:

+]o]1]2]3]4]5
ofol1]2]3[4]5
11237450
2121314501
3345012
4 T4]5]0]1]2]3
5501234

Using the table it is easy to check that: 0 has order 1, 1 and 5 have order 6
thus each of them generates the whole group, 2 has order 3 and 3 has order
2. Note the relation between the divisors of 6 and orders of elements of Zg.

We end this section with the following observation
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Lemma 3.15 Any subgroup of a cyclic group is cyclic.

Proof: Let G be a cyclic group generated by a and let H # 0 be a subroup
of G. Let k be the smallest positive integer such that ka € H. We show that
ka generates H. Clearly, nka € H for all integers n and we need to show
that all elements of H are of that form. Indeed, if not, there exists h € H of
the form h = (nk + r)a where 0 < r < k. Since nka € H, we get ra € H,
which contradicts the minimality of k. [ ]

Exercises

3.1 Let G be a group.

(a) Prove that the identity element 0 is unique.

(b) Prove that, given any a € G, the inverse —a of a is unique.

3.2 (a) Write down the tables of addition and multiplication for Zs, Zg, Zs.

(b) If Z!, := Z, \ 0, show that Z. is a multiplicative group but Zg, Z; are
not.

(c) Let now Z} :={k € Z,, : k and n are relatively prime}. Show that Z
is a multiplicative group for any positive integer n.

3.3 (a) Determine the orders of all elements of Zjs, Zg, Zg

(b) Determine the orders of all elements of Z, Zg, Z, where Z; is defined
in the preceeding exercise and the order of @ in a multiplicative group
is the least positive integer n such that o =1

3.4 Prove Proposition 3.7
3.5 Let G be an abelian group.
(a) Let H :={a € G| o(a) < oo} U{0}. Prove that H is a subgroup of G.

a) Show that if GG is free then it is torsion-free.

(a)
(b) Show that the additive group @ is torsion-free.
)

(c) Show that if G is finitely generated and torsion free then it is free.
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3.2 Products and Sums

Let G, G, ..., G, be a family of groups and let

G:HGZ':G1XG2X"'XG” (33)

=1

be the cartesian product of Gy,Gs,...,G,. G becomes a group with the
coordinate-wise addition

(al,ag,...,an)+(b1,b2,...,bn) = (a1+b1,a2+b2,...,an+bn)

called the direct product of G1,Gs,...,G,. The direct product of n copies of
a group G is simply denoted by G™. There is an obvious analogy between the
addition and scalar multiplication in the vector space R"™ and in the direct
product of groups: the difference is that in the direct product of groups we
are only allowed to multiply by integer scalars from Z.

Let A and B be subgroups of G. We define their sum by

A+B:={ceG:c=a+bforsomeac A be B} . (3.4)
We say that G is a direct sum of A and B and write
G:=A®B

if G = A+ B and the decomposition ¢ = a 4+ b of any ¢ € G is unique. We
have the following simple criterion for a direct sum.

Proposition 3.16 Let G be the sum of its subgroups A and B. Then G =
A® B if and only if AN B = {0}.

Proof: Suppose that AN B = {0} and that ¢ = a; + b = as + by are two
decompositions of ¢ € G, a1,as € A and by, by € B. Then a; —ay = by — by €
AN B = {0} hence a; = ay and by = by. Hence the decomposition is unique.
Conversely, let AN B # {0} and let ¢ € AN B, ¢ # 0. Then ¢ can be
decomposed as ¢ = a + b in at least two ways: by posing a := ¢, b:= 0 or
a:=0,b:=c. [

In a similar way one defines the sum and direct sum of any family
G1,Gy, ..., G, of subgroups of a given group G. G is the direct sum of
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G1,Gy,...,G, if every g € G can be uniquelly written as a = .7 | g;, where
g€ Gforalli=1,2,...,n. We write

G=PGC=GioGd - ®G,. (3.5)
i=1
The criterion analogous to that in Proposition 2.1 for a sum to be a direct
sum is

GiNG;={0}ifi#j.

There is a close relation between direct products and direct sums. Let G =
Gy X Go X -+ X G,. We may identify each G; with the subgroup

JiGi= {0} % x {0} X Go {0} x e x {0}
i’th place

Then G = ji1G1 P joGa @ - - - & j,G,, and, for the simplicity of notation, we
may write G = G1 G P - - - D G,. This identification of direct products and
sums will become more formal when we talk about isomorphisms of groups in
the next section. When infinite families of groups are considered, their direct
sum may only be identified with a subgroup of the direct product consisting
of sequences which have zeros in all but finitely many places. In this text,
however, we shall not need to study infinite sums and products.

Example 3.17

Let G be a free abelian group with a basis {g1, g2, . .., g }. By the definition
of a basis,
G=29®2Zg® - DZg, .

Example 3.18 Consider the group Z? = Z x Z. Then Z? = Zi ® Zj, hence
we may write Z2 = Z @ Z. This decomposition of Z? to a direct sum is
related to a particular choice of basis {i,j} called the canonical basis of Z*.
As for vector spaces, there may be many bases, and hence, many direct sum
decompositions, e.g. Z? = Zi ® Z(j — i).

The same consideration applies to Z" with the canonical basis {e',e? ... e},
where the coordinates of e’ are given by

(e)j:{ !

0 otherwise.
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Example 3.19 In the group Z,? = Z, x Z, of order 4, all 3 nonzero elements
(0,1), (1,0), and (1,1) have order 2. Thus this is not a cyclic group.

Consider the group Zs X Zs. Here are the orders of its elements:

0(0) =1, o((1,0)) = 2, o((0,1)) = 0((0,2)) = 3, o((1,1)) = 0((1,2)) =6 .

Thus Zy x Zj is cyclic of order 6, generated by (1,1) and by (1,2). The
notion of isomorphism introduced in the next section will permit to identify
this group with Zg. The same consideration applies to Z,, x Z,, where n and
m are relatively prime (see exercises).

Example 3.17 will now be approached in a different way. Let S =
{s1,S2,...,5,} be any finite set of objects. What the objects are does not
matter. For example, S may be a class of mathematics students, or as is
more relevant to this course, a set of edges or vertices in a graph. With the
discussion of Chapter 2 in mind, the goal is to give meaning to the sum

aiS; + agSe + -+ + apSy ,

where aqy,as,...,a, are integers. For this purpose, let us go back to the
definition of cartesian product in (3.3). The cartesian product G™ of n copies
of G formally is the set of all functions ¢ from the finite set {1,2,...,n} to
G. Thus a point (z,y,z) € G? formally is a function ¢ : {1,2,3} — G given
by ¢(1) = z,¢(2) = y,p(3) = 2. The group structure is given by pointwise
addition: (¢ 4+ ¥)(7) := (i) + ¢(i). With the understanding of this we may
now define the free abelian group Z° generated by S as the set of all functions
¢ : S — Z, with the pointwise addition

(o +¥)(si) = (i) + ¥(s:),i=1,2,..n.
Why is this a free group? Consider the functions s, : S — Z, i =1,2,...,n
defined by
. )1 ifi=y,
Silsg) = { 0 otherwise.

It is easily verified that S := {81, 89,...,5,} is a basis for Z%. It is called the
canonical basis and it may be identified with S. Note that if S = {1,2,...n}
we recover Z° = Z" with the canonical basis e’ defined in Example 3.18.

Exercises
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3.6 (a) Let m,n be relatively prime. Show that Z,, ®Z, is cyclic of order
mn.

(b) Let G = Zyo ® Z3s. Express G as a direct sum of cyclic groups whose
orders are powers of primes.

3.7 (a) Prove that a group of prime order has no proper subgroup.

(b) Prove that if G is a cyclic group and p is a prime dividing |G|, then G
contains an element of order p.

3.8 Prove the following statements.

(a) If G is a finite multiplicative group and a € G, then al® = 1.
(Hint: Use Proposition 2.4 with H = (a))

(b) (Fermat’s Little Theorem) If p is a prime and and p does not divide
a € Z then a?' =1 (mod p) .
(Hint: Recall Exercice 2(c) Section 1)

(c) If pis a prime then o» =b (mod p) for all b € Z.
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3.3 Quotients

In Chapter 2, in the setting of vector spaces we defined homology as a quo-
tient of chains by boundaries. We need to extend this idea to the setting of
groups.

Let H be a subgroup of G and a € G. The set

a+H:={a+h : he H}

is called a coset of H in GG. The element a is called its representative. Typ-
ically a coset will have many different representatives. For example, let
ho € H, a € G and b = a + hgy, then a and b are representatives for the
same coset. The following proposition makes this precise.

Proposition 3.20 Let H be a subgroup of G and a,b € G. Then
(a) The cosets a + H and b+ H are either equal or disjoint.

(b)a+H=b+H if and only if b—a € H.

Proof: (a) Suppose that (a+ H) N (b+ H) # (). Then there exist hy, ho such
that a +hy = b+ hy. Hence, forany he H,b+h=a+hy —hs+he€a+H
so b+ H C a+ H. The reverse inclusion holds by the symmetric argument.

(b) Let a+H = b+H and let hy, hs be asin (a). Then b—a = ho—hy € H.
Conversely, if b —a € H thenb+0=a+ (b—a) € (b+ H) N (a+ H), thus
the concusion follows from (a). n

Writing cosets in the form of a + H is a bit cumbersome, so we shorten
it to [a] := a + H. Notice that to use this notation it is essential that we
know the subgroup H that is being used to form the cosets. We can define
a binary operation on the set of cosets by setting

la] + [b] = [a + b]. (3.6)

Observe that [0] + [a] = [0 + a] = [a] so [0] acts like an identity element.
Furthermore, [a] + [—a] = [a + —a] = [0], so there are inverse elements. It is
also easy to check that this operation is associative and commutative. The
only serious issue is whether this new operation is well defined, in other words
does it depend on which representative we use.
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Proposition 3.21 The formula (3.6) does not dependent on the choice of
coset representative used, and therefore, defines a group structure on {a +

H}aEG-

Proof: Ifd + H =a+ H and V' + H = b+ H then, by Proposition 3.20,
o/ —a€H V—be Handso (a/ +bV)—(a+b) =(a"—a)+ (V) —b) € H.
Hence ' +b0'+ H=a+b+ H. ]

Definition 3.22 The group of cosets described by Proposition 2.3 is called
the quotient group of G by H and denoted by G/H.

An alternative way of introducing the quotient group is in terms of an
equivalence relation. Define the relation a ~ b if and only if b—a € H. Note
that this is an equivalence relation in G, i.e.

i) a ~ a, for all a € G;
ii)a~bs b~a,forallabed,
ii)a~band b~c=a~c, forallabced.

The equivalence class of a € G is the set of all b € G such that b ~ a. Thus,
by Proposition 3.20 the group of cosets exactly is the group of equivalence
classes of a € G.

Proposition 3.23 Let G be a finite group and H its subgroup. Then each
coset a + H has the same number of alements. Consequently,

G| = |G/H|- |H].

Proof: The first conclusion is an obvious consequence of the cancellation law
for the group addition: a 4+ hy = a + hy < hy = hy. The second conclusion
is an immediate conseqence of the first one and the Proposition 2.2(a). =

Example 3.24 Let G = Z and H = kZ for some k € Z, k # 0, the
group G/H = Z/kZ has k elements [0],[1],...,[k — 1]. Since the coset
la + b] is also represented by the remainder of the division of a 4+ b by k, this
group may be identified with 7, discussed in the previous section. What
“identification” means, will become clear in the next section, when we talk
about isomorphisms.



3.4. HOMOMORPHISMS 89

Example 3.25 Let G = Z? and H = Z(j — i) = {(-n,n) : n € Z}. We
may choose coset representatives of the form mi = (m,0), m € Z. Since any
element (m,n) € Z? can be written as (m+n)i+n(j—1i) € (m+n)i+ H, we
have G/H = {[mi]}mez. It is easily seen that [ki] # [mi] whenever k # m,
thus there is a bijection between G/H and Z.

Example 3.26 Consider Z as a subgroup of R and the quotient R/Z. Since
any real number is an integer translation of a number in the interval [0, 1),
R/Z is represented by the points of that interval. Moreover there is a bi-
jection between R/Z and [0, 1), since no two numbers in that interval may
differ by an integer. For any «, 5 € [0, 1), the coset [« + (3] is represented in
[0,1) by the fractional part of @ + . Since 1 ~ 0, R/Z may be visualised as
a circle obtained from the interval [0, 1] by gluing 1 to 0.

A very similar example explaining the concept of polar coordinates is the
quotient group R/27Z. The equivalence relation is now a ~ f & f—a =
2nm,n € 7Z and the representatives may be sarched, for example, in the
interval [0,27). Thus the elements of R/27Z may be identified with the
points on the circle 22 4+ y? = 1 in the plane, via the polar coordinate 6 in
x =cosf, y=sinf.

3.4 Homomorphisms

Let G and G' be two abelian groups. If we wish to compare them then
we need to be able to talk about functions between them. Of course these
functions need to preserve the group structure, in other words they need to
respect the binary operation. This leads to the following definition.

Definition 3.27 A map f: G — G' is called a homomorphism if

fla+b) = f(a) + f(b)
for all a,b € G.
There are some immediate consequences of this definition. For example,

as the following argument shows, homomorphisms map the identity element
to the identity element.

f(0) = f(0+0)=f(0)+ f(0)
f(0) = f(0) = £(0)
0 = f(0)
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A similarly trivial argument shows that
f(na) =nf(a)

foralln € Z and a € G.

Proposition 3.28 Let f: G — G' be a homomorphism. Then
(a) for any subgroup H of G, its image f(H) is a subgroup of G';
(b) for any subgroup H' of G', its inverse image f~(H) is a subgroup of G;

(¢) if f is bijective (i.e. one-to-one and onto) then its inverse f~': G' — G
also is a bijective homomorphism.

Proof: (a) We must show that f(H) satisfies the group axioms. Since f(H) C
G’, the binary operation on f(H) is the same as that of G' and therefore is
associative and commutative. Since f(0) = 0, 0 € H. Let b € H, then
there exists @ € G such that b = f(a). Now observe that 0 = f(a + —a) =
f(a)+ f(—a). Therefore, f(a) = —f(a). Finally, we need to show that f(H)
is closed under the operation +. If b,0' € f(H), then there exist a,a’ € H
such that f(a) = b and f(a’) = b'. Furthermore, b + b = f(a) + f(a') =
fla+d) € f(H).

(b) and (c) follow from similar types of arguments and are left to the
reader. |

Definition 3.29 The set im f := f(G) is called the image or range of f in
G and, by the previous proposition is a subgroup of G'. The set

ker f:= /'(0) = {a € G| f(a) = 0}

is called the kernel of f and is a subgroup of G.

Definition 3.30 A homomorphism f : G — G’ is called an epimorphism if
it is surjective (or onto) i.e. im f = G' and a monomorphism if it is injective
(or 1-1), i.e. for any a # b in G, f(a) # f(b). This condition obviously is
equivalent to the condition ker f = 0. Finally, f is called an isomorphism if
it is both a monomorphism and an epimorphism.
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The last definition requires some discussion since the word isomorphism
takes different meanings in different branches of mathematics. Let X,Y be
any sets and f: X — Y any map. Then f is called invertible if there exists
amap ¢g:Y — X, called inverse of f with the property

gf =1x and fg =1y (3.7)

where 1x and 1y denote the identity maps on X and Y respectively. It
is easy to show that f is invertible if and only if it is bijective. If this is
the case, ¢ is uniquelly determined and denoted by f~!. When we speak
about a particular class of maps, by an invertible map or an isomorphism we
mean a map which has an inverse in the same class of maps. For example,
if continuous maps are of concern, an isomorphism would be a continuous
map which has a continuous inverse: The continuity of a bijective map does
not guarantee, in general, the continuity of its inverse. Proposition 3.1(c)
guarantees that this problem does not occur in the class of homomorphisms.
Thus, a homomorphism is an isomorphism if and only if it is invertible in the
class of homomorphisms.

When G = G', a homomorphism f : G — G may be also be called an
endomorphism and an isomorphism f : G — G may be called an automor-
phism.

Groups G and G’ are called isomorphic, notation G = G, if there exists

an isomorphism f : G — G', we may then write f : G = G’ or G é G'. It
is easy to see that G = (' is an equivalence relation. We shall often permit
ourselves to identify isomorphic groups, unless an additional structure that
is not preserved by isomorphisms is involved.

Example 3.31 Zﬁ = Z2 X Z3.

Example 3.32 Let A, B be subgroups of G such that G = A® B. Then the
map f : A X B — G defined by f(a,b) = a + b is an isomorphism with the
inverse defined by f~!(¢c) = (a, b) where ¢ = a+b is the unique decomposition
of ¢ € G with a € A and b € B. This can be generalised to direct sums and
products of any finite number of groups.

Example 3.33 Let G be a cyclic group of infinite order generated by a.
Then f : Z — G defined by f(n) = na is an isomorphism with the inverse
defined by f~'(na) = n. By the same argument, any cyclic group of order k
is isomorphic to Zy.
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Example 3.34 Let G be a free abelian group generated by {si,s2,...,s,}
discussed in the previous section. Then G =2 Z". Indeed, the map f : Z" — G
defined on the elements of the canonical basis by f(e) := s; and extended
by linearity is a well defined isomorphism.

Example 3.35 Let f : Z — Z be any homomorphism. By linearity, f is
completely defined by its values on 1. If f(1) = k then f(n) = nk for all n.
If £ =0, fis trivial and ker f = Z. Otherwise ker f = 0 and im f = kZ.
Since kZ = 7Z if and only if k¥ = £1, the only automorphisms of Z are 1z
and —1z.

Example 3.36 Let A, B, and G be as above. The inclusion map:: A — G
is a monomorphism and the projection map p : G — A defined by p(c) = a
where ¢ = a+0b with a € A and b € B, is an epimorphism. Note that pi = 14
hence p may be called a left inverse of ¢ and i a right inverse of p. Note that a
left inverse is not necessarily unique. Indeed, take subgroups A = Zi, B = Zj
of Z*. Another choice of a left inverse of i is p'(ni+mj) = (n+m)i (a ”slant”
projection).

Example 3.37 Let H be a subgroup of G and define ¢ : G — G/H by the
formula g(a) := a+H. It is easy to see that ¢ is an epimorphism and its kernel
is precisely H. This map is called the canonical quotient homomorphism.

Let now f : G — G’ be a homomorphism and H = ker f. Then, for any
a € G and h € H, we have f(a+ h) = f(a). Hence the image of any coset
a+ H under f is

flat+ H) ={f(a)} .
Moreover, that image is independent on the choice of a representative of a

coset a + H. Indeed, if a + H = b+ H then b—a € H thus f(b) = f(a). We
may now state the following

Theorem 3.38 Let f: G — G' be a homomorphism and H = ker f. Then
the map

f:G/H —imf

defined by f(a+ H) = f(a) is an isomorphism, called the quotient isomor-
phism.
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Proof: By the preceeding discussion, the formula for f is independent of the
choice of coset representatives, thus f is well defined. Since,

fla+H)+ b+ H)) = fla+b+ H) = fla+b) = f(a) + f(b)
it is a homomorphism. f is a monomorphism since f(a + H) = f(a) = 0
which is equivalent to ker f = H. )
Finally, f is, also, an epimorphism since im f = im f. [

Example 3.39 Let ¢ : G — G/H be the canonical homomorphism from
Example 3.37. Then ¢ = 1g/p, so this is the trivial case of Theorem 3.1.

Example 3.40 Let f : Z — Z, be given by f(a) = a mod n (the remainder
of @ in the division by n). Then f is a well defined epimorphism with ker f =
kZ. Thus f: Z/kZ = Z.

Example 3.41 Let’s go back to p’ in Example 3.36. imp’ = Zi = A and
kerp' = Z(j —i) Thus f : Z2/Z(j — i) = Zi. Note that Z> = Zi® Z(j —i) =
imp’' @ ker p’. This observation will be later generalized.

Example 3.42 Consider Example 3.26 in terms of the quotient isomor-
phism. Let S!' be the unit circle in the complex plane, i.e. the set defined
by |z] =1, z = x +iy € C, i the primitive square root of —1. Then S! is a
multiplicative group with the complex number multiplication and the unity
1 =1+1i0. We define ¢ : R — S* by ¢(#) = € = cosf +isinf. Then ¢ is a
homomorphism from the additive group of R to the multiplicative group S'.
It is an epimorphism with the kernel ker ¢ = 27Z. Thus ¢ : R/27Z = S*.

Exercises

3.9 If m and n are relatively prime, show that Z,, ® Z,, ~ Z,,, (see Exer-
cise 3.2).

3.10 Let f: G — F be a homomorphism of abelian groups.

(a) If F is free, show that there exists a subgroup G’ of G such that G =
ker f @ G'. Conclude that G' ~ F.

(b) Give an example showing that if F' is not free than the conlusion may
be wrong.

3.11 Let g : H — G be a monomorphism, f : G — F an epimorphism and
suppose that ker f = im g. If F'is free, show that G ~ H @ F.
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3.5 Matrix Algebra over Z and Normal Form

A basic technique in the study of linear maps of vector spaces is the row
and column reduction of matrices. In this section we discuss the analogy of
this technique in the study of homomorphisms of free abelian groups. Many
results of elementary matrix algebra have straightforward extensions to our
case but there is one subtlety; our matrices have integer coefficients and di-
vision is not allowed. For example, the operation of multiplying the i-th row
of a matrix by a number a is an elementary row operation over Z if and only
if @ = +1, otherwise it is not invertible.

Let G and G’ be finitely generated free abelian groups with bases, respec-
tively, {g1,92,...,9,} and {g},¢5,..., 9.} If f: G — G’ is any homomor-
phism, then it is determined by its action on the basis elements of G. Even
more, there are unique a;; € Z, 1 =1,2,...,m, 7 =1,2,...,n such that

Floi) = S au (3.8)

Conversely, if A = (a;;) is any n xm matrix with integer coefficients, then the
formula (3.8) extends by linearity to a unique homomorphism f : G — G.
Thus f may be identified with the matrix A called the matriz of f with
respect to the given bases on G and G'.

Due to the isomorphism in Example 3.34 associating any basis in G and
G’ to the canonical bases in Z" and Z™, we may suppose that G = Z" and
G' = Z™. Then f : Z" — Z™ is represented by the matrix multiplication
y = f(z) = Az or, more explicitely, by

Y1 aix Q2 - Qin T
Y2 Qg1 Q22 -+ Q2q T2

=] . (3.9)
Um Am1 Qm2 = Qmp T,

Recall that the columns of A generate the image im A :=im f. In partic-
ular, if n = m and Equation (3.9) is a change of coordinates, the columns of
A are elements of the new basis for Z™ expressed in terms of the canonical
basis of Z™.

For a fixed matrix A, denote by Ry, R», ..., R,, itsrows and by C1,Cy, ..., C,
its columns. Here are the three types of elementary row operations over Z :
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(r1) Exchange rows R; and Ry ;
(r2) Multiply R; by —1;
(r3) Replace R; by R; + qRy, where ¢ € Z .

Note that these operations are invertible over Z. Indeed, (rl) and (r2) are
self-inverses and the inverse of (r3) is replacing R; by R; — qRy. Each oper-
ation can be expressed in terms of matrix multiplication: new matrix B is
obtained by multiplying A on the left by an elementaty matriz E which is
obtained by performing the same operation on the identity m x m matrix

Ime‘

Example 3.43 Let A be a 5 x 3 matrix. If we wish to exchange the second
and third column, this can be done by the elementary matrix

1 0000
0 01 0O
E=101 000
0O 00 10
0 0 0 01
since
1 00 00
11 a2 G13 Aiga Qi1p 00100 11 a3 Q12 A4 Qs
Qo1 Q22 Q13 A14 0«15 01 00 0|=1]axn ax ax au ax
31 Q32 azz AaAz4 G35 00010 31 Qaz3 0azz2 Az4 A35
0 00 O01

The same applies to elementary column operations over Z:
(c1) Exchange columns C; and Cj ;
(c2) Multiply C; by —1;
(c3) Replace C; by C; + qCy, where g € Z ,

which are, in fact, row operations on the transposed matrix A”. The ele-
mentary column operations correspond to the right multiplication of A by
elementary matrices D obtained by performing the same operation on the
identity n X n matrix I, y,.
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Each row operation corresponds to a change of basis in the range space
Z™. Indeed, if B = EA where E is an elementary matrix, then the equation
y = Ax is equivalent to y = Bz, where y := Ey. Since FE is invertible,
y = E~'¢, and the columns of E~! are the new basic vectors in Z™. Similarly,
each column operation corresponds to a change of basis in the domain Z".
If C = AF, where E is an elementary matrix, then the equation y = Ax
is equivalent to y = Cz where z := E~'z, or + = Ez. Thus the columns
of E represent the new basic vectors in Z". The following propositions are
straightforward analogies of elementary linear algebra results.

Proposition 3.44 Let A be an n X m matriz with integer coefficients.

(a) The elementary row operations over Z preserve the subgroups ker A and
coim A := im AT of Z".

(b) The elementary column operations over Z preserve the subgroups im A
and coker A := ker AT of Z™.

The group coim A is traditionally called the row space of A and im A the
column space of A. This terminology is justified by the above remark that
the columns of A generate im A.

Definition 3.45 A matrix A isin row echelon form if the following property
is satisfied. Let a;; be the first non-zero entry in its row R;, then a;; = 0 for
all k > j.

Proposition 3.46 Suppose that A is in row echelon form, then the non-zero
rows of A are linearly independent, and thus they form a basis for coim A.

Example 3.47 We show that the elements (3,2), (2,0) and (0, 3) of Z?* gen-
erate the whole group Z?2, although no two of them do. Indeed, row operations
over Z give

2 0 — 20 R2 — 2R1 + R3 0 -1
0 3 — 0 3 — 0 3
Ry + 2R, 10
(—1)R, |0 1

hence the first two rows (1,0),(0,1) generate the row space of the initial
matrix.
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Example 3.48 Let A : Z3> — Z* be given by

0 2 2
1 0 -1
A= 34 1
5 3 -2

We will find bases for ker A and im A. The simultanuous row operations over
Z of the identity matrix I5.5 and AT give

1 00/0 13 5
[7|AT]=]10 1 0[2 04 3
00 1[2 —1 1 =2
0 10|20 43
— |1 00|01 3 5]|=[P"C"],
1 =1 1{0 0 0 0

where C' = AP. Since the matrix C7 is in a row echelon form, its first two
rows (2,0,4,3) and (0,1, 3,5) form a basis for imC' = im A. The third row
(1,—1,1) of P generates ker A.

The following two theorems show that the method presented in the above
examples may be applied to any integer matrix. Their proofs are constructive
and may be used to obtain formal algorithms.

Theorem 3.49 Let A be an n X m matriz with integer coefficients. Then A
can be brought to a row echelon form by means of elementary row operations
over Z.

Proof: The proof is by induction on the number m of rows of A.
If m =1, then
A= [an a2 a1z - - aln]

which is in row echelon form.
From now on assume m > 1.
Case 1. The first column Cy of A has at most one nonzero entry.
Assume that C) has one nonzero entry az;. Apply the row operation rl
to exchange rows 1 and k. Then the new matrix has the form

A ‘ k2 T Qkn

0

AI
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If all entries in C'; were zero, then the matrix would have a similar form even
without exchanging any rows. Observe that A’ is an n — 1 x m — 1 matrix
and so by the induction arguement can be reduced using row operations to
row echelon form. Thus, A can be reduced to row echelon form.

Hence from now on it is assumed that C'; has multiple nonzero entries.
Let

a=«a(A) :=min{|a;| | ay #0, i =1,2,...m}

Let |ax1| = a. Without loss of generality we may assume that ay; = «a. If
not, we could use the row operation r2 to change the sign of ay;. There are
two cases to consider.

Case 2. a divides all entries of C;.

The assumption that « divides all entries of C is equivalent to the state-
ment that for each a;; # 0 there exists ¢; € Z such that ag; := a;;. For each
a;1 # 0 apply the row operation r3 to replace R; by R; —q; Ry. This results in
a new first column all of whos entries are zero except ag;. Thus the problem
is reduced to Case 1.

Case 3. « fails to divide some entry a;1, © # k of the first column.

If & does not divide the entry a;;, then a;; = ¢;a+r;, where ¢;,r; € Z and
O < |rj] < a. Let A; := A and let Ay be the matrix obtained by replacing
R; by R; — q;R). The first entry of the new row R; is r;. Returning to the
definition of a observe that

O[(AQ) = |Tz| < a(Al).
If A, satisfies Case 2, then we are done. If it does not, then applying the

argument of Case 3 using «(A,) results in a matrix A3. Applying Case 3
mulitple times results in a series of matrices Ay, Ao, Az ... where

Of(Al) > O[(AQ) > O[(Ag) > ..
Since any strictly decreasing sequence of positive integers is finite, there is a

matrix A; which falls into Case 2. [

Theorem 3.50 Let A # 0 be an n x m matriz with integer coefficients. By
means of elementary row and column operations over Z, it is possible to bring
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A to the form
by -

B= 0 : , (3.10)

where b; are postive integers and b; divides b1 for all 1.

Proof: The proof is essentially an a more elaborated version of the arguments
of the previous proof. The induction is now on the totatl number of entries
of the matrix nm.

If nm =1, then A is trivially in normal form.

From now on assume that nm > 1. Let

a = a(A) == min{|a;la;; #0i=1,2,...m, 1 =1,2,...n}.

Let |ag| = a. As before, we may assume that ay = « since otherwise we
multiply R, by —1. There are three cases to consider.

Case 1. « divides all entries of A.

The following simple observation is crucial.

Observation: If an integer a divides all entries of A and a matriz B is
obtained from A by elementary row and column operations over Z, then «
divides all entries of B.

By row and column exchanges we get a = ay;. By the arguments of the
previous proof we get a matrix whose first column is [« 0,0, ...,0]” and us-
ing those arguments for A” gives the first row [, 0,0,...,0]. We put b; := «
and use the induction hypothesis for the matrix A’ obtained by removing the
first row and first column. By the above observation, by divides b; for all 7 > 1.

Case 2. a = ay, fails to divide some entry of its row Ry, or its column C}.

Then we apply the same arguments as in the previous proof to reduce the
problem to Case 1.
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Case 3. a = ay divides all entries in its row and column but it fails to
divide some entry a;; with i # k and j # L.

Let ¢ = aga ! € Z. We first replace R; by R; — qR;, so to get a new
i’th row R; whose [’th entry is 0 and j’th entry is a;; — gag;. Then we
replace Ry by R) = Ry + R]. The first entry of R}, is o and the j’th entry
is ay; = (1 — q)axj + a;;. By the hypothesis, a does not divide aj;, so the
problem is reduced to Case 2. [

The matrix B given by Theorem 4.2 is called the normal form of A. Due
to the relation between elementary row and column operations over Z and
changes of bases discussed at the begenning of this section, we reach the
following

Corollary 3.51 Let f : G — G' be a homomorphism of finitely generated
free abelian groups. Then there are bases of G and G' such that the matriz
of f with respect to those bases is in the normal form (4).

It should be emphasized that the problem of reducing a matrix to the
normal form (4) should be well distinguished from a more difficult problem
of diagonalizing an n x n real matrix A. In the second case, the problem is to
find one basis, the same one for R" viewed as the domain and as the range
of A.

Exercises

3.12 For each matrix A specified below, find its normal form B and two
integer matrices P and (), invertible over Z, such that QB = AP. Use the
information provided by P and () for presenting bases with respect to which
the normal form is assumed, a basis for ker A, and a basis for im A.

6 4
(a) A=1]40
0 6

(b) The matrix A in Example ?7.

2 0 0
(c) A={0 3 0
0009
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3.6 Decomposition Theorem for Abelian Groups

The goal of this section is to prove the following decomposition theorem for
finitely generated free abelian groups.

Theorem 3.52 Let G be a finitely generated abelian group. Then G can be
decomposed as a direct sum of cyclic groups. More explicitely, there exist
generators g1, ga, - - -, gn of G and an integer 0 < r < n such that

1.
G = @?:1<9i> )

2. If r >0, g1,92 ..., gm are of infinite order,

3. Ifk =n—r >0 then g.11, 9ri2, - - -, Gmir have finite ordersty, to, ..., t,
respectively and 1 < ti|ta] ... |tk

The numbers m and ty,to,...,t; are uniquely determined by G, although
generators gi, 9o, - - ., g, are Not.

The above theorem allows us to write GG as G = F' @ T where

, k
F=@,_Zg T=@,_ (954 -

T is the torsion subgroup of G mentioned in Section 1 and F' is a maximal
free subgroup of G. The number r is the rank of F" and it is called the bett:
number of G and the numbers t1, 1o, ..., 1, are called the torsion coefficients
of G.

By Example 3.17, we get the following

Corollary 3.53 Let G be a finitely generated abelian group. Then G is
1somorphic to

'Lty ®Z/ta® ... DL/t
where r and t,ts, ...ty are as in Theorem /.1.
By Exercise 3.9, if m,n are relatively prime, then Z,,,, ~ Z,, ®Z,,. Thus,

by decomposing the numbers 1, ts, ..., to products of primes we get the
following
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Corollary 3.54 Any finitely generated abelian group G is isomorphic to
Z®Z/pMBL/py? ... ®L/p)
where p1,pa,...,Ps are prime numbers.

To prove Theorem 3.52 requires the following results.

Proposition 3.55 Let F' be a finitely generated free abelian group. Let H
be a subgroup of F', then H is finitely generated.

Proof: Since F'is a finitely generated free abelian group there is an integer n
such that F' = Z". Using this isomorphism we shall identify F' with Z™ and
think of H as a subgroup of Z".

To show that H is finitely generated, it is sufficient to find a finite collec-
tion {hy, ha, ..., h,} of elements of Z™ which generate H. Let m; : Z" — Z
be the canonical projection that sends (aq,as, ..., a,) — a;. Define

H, :={be€ H|m() =0ifi>m}.

Observe that an element of H,, is of the form (b1, bs,...,b,,0,...,0). From
this it is easy to check that for all m < n, H,, is a subgroup of H and
H,=H.

For m = 1,...n consider 7,,(H,,). We will use this group to define the
above mentioned generator h,,.

If 7 (H,,) = 0, then define h,, = 0.

If 7, (Hy) # 0, then 7,,(H,,) is a nontrivial subgroup of Z, and therefore
cyclic. This means that there exists k,, € Z such that < k,, >= m,,(Hy,).
Define h,, by 7 (hm) = k.

We need to show that the set {hq, ho, ..., h,} generates H. This will be
done by induction on m. If m =1, then

(mi(h1)) = mi(Hy)

which implies that (h;) = H; or that H; = 0.

Now assume that {hq, ho, ..., hy,_1} generates H,, 1. Let h € Hy,. Then
Tm(h) = kmy(hy,) for some integer j. This implies that 7, (h — jk,) = 0,
and hence h — th,, € H,,_;. Thus

h - th + ilhl + i2h2 + -+ Z‘mflhmfl
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and the conclusion follows.
It is left as exercice to prove that tha non-zero elements of {hy, ha, ..., h,}
are linearly independent, hence they form a basis for H. [

Proposition 3.56 Let F' be a finitely generated free abelian group. Then
any subgroup H of F is free of rank r(H) < r(F).

Proof: Since F is a finitely generated free abelian group there is an integer
n such that F' =2 Z". Using this isomorphism we shall identify F' with
Z" and think of H as a subgroup of Z". By Proposition 3.55 there exist
hi,ho,..., hy € Z™ generators of H. Consider a matrix A whose ¢'th row
is the vector h;. Then H is the row space of A. By Theorem 3.49, A may
be reduced over Z to a row echelon form. The non-zero rows of the reduced
matrix are linearly independent and hence they form a basis for H. Of course,
the number of non-zero rows of an echelon matrix is less or equal than the
number n of columns, thus r(H) < r(F). u

Proof of Theorem 8.52: Let S := {s1,...,Sn} be a set of generators for
G. Consider the free abelian group Z°. Recall we defined the functions
$;:8—=>2Z,1=1,...m by

(1 if =i
i) = {0 otherwise,
which form a basis for Z*.
Define f : Z°% — G by f(3;) = s;. This is a group homomorphism and so
H := ker f is a subgroup of Z°. By Theorem 3.38,

f:Z°/H -G

is an isomorphism. Thus to prove the theorem it is sufficient to obtain the
desired decomposition for the group Z°/H.

Since Z° is a finitely generated free abelian group, by Proposition ?? H
is a free group and r :=rank H < m.

Let j : H — Z° be the inclusion homomorphism. Then by Theorem 3.50
there exist bases {hi, ho,...,h,} for H and {21, 2o, ... 2y} for Z° such that
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the matrix for j has the form

by 0

where b; > 1 and b;|b;1;. Since, j is a monomorphism each b; # 0.
Observe that the basis for H as a subset of Z% is {by21, by29, ..., b2, }. It
is now easy to see that

Z°)H 272 )Zby2, ® - ® L2, ) Zby 2, ® L2y © - D Lz
Ifby,...,bs =1, then fori=1,... s,
Zz;|Zb;z; = 0.
Ifbsiq,...,b, > 1, thenfor j=s+1,...,r,
Z2i|Zbiz; = 7y, .

Therefore,
ZS/H ™~ st+1 DD Zbr o) Zmr
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3.7 Homology Groups

We now turn to a purely algebraic description of Homology groups. Recall
that in Chapter 2 we were forced to deal with Homology groups in the context
of vector spaces, with what we have learned in this Chapter we can now
handle the general case, at least in the purely algebraic setting.

Definition 3.57 A chain complexC = {C\,, Oy }nez consists of abelian groups
C,, called chains, and homomorphisms 0,, : C,, — C),_1, called boundary op-
erators, such that

By 0 Opyy =0 (3.11)

C is a free chain complex if C,, is free for all n € Z. The cycles of C is the
subgroup
Z, = ker 0,

while the boundaries are the subgroups
B, :=imJ,;.
Observe that (3.11) implies that
im0, 11 C ker 0,
and hence the following definition makes sense.
Definition 3.58 The n-th homology group of the chain complex C is
H,(C) := cycles/boundaries = ker 0,,/im 0y, 1.
Observe that this is a purely algebraic definition.
Definition 3.59 C is a finite chain complex if:

1. each C), is a finitely generated free abelian group,

2. there exists an N > 0 such that C), =0 for all n > N and n < 0.

We will only be concerned with free finite chain complexes in this book.



106 CHAPTER 3. ABELIAN GROUPS

Theorem 3.60 (Standard Basis for Free Chain Complexes) Let C = {C,,, 0, }
be a free finite chain complex. Then, for every n € Z there exist subgroups

U,, Vi, and W, of C,, such that

where

0u(Un) © Woer, 0u(Vi) =0 9(Wy) = 0.

Furthermore, there are bases for U, and W,_1 for which the matriz of 0,
takes the form

by 0
0 by

Proof: Let Z, := ker0,. These are the cycles introduced in Chapter 2.
Similarly, the boundaries are B, : imd,,1. Define

W, :={ceC, |3k e Z\ {0} such that kc € B, }.
Lemma 3.61 W, is a subgroup of C,.

Proof: 0 € W, since 0 € B,. If w € W,, then kw € B, for some integer
k # 0. However, B,, is a group so —kw € B,, which implies that —w € B,,.

Finally, if w,w" € W, then there exist nonzero integers k and k' such
that kw, k'w’" € B,,. Since B,, is a group, k'kw, kk'w € B,, and hence k'kw +
kk'w' € B, which implies that k'k(w + w') € B,,. Therefore, (w+ w') € W,.
]

W, is called the group of weak boundaries.
Lemma 3.62 W, C Z,.

Proof: Tt w € W, then kw € B, for some k € Z\ {0}. But B, C Z, hence
0 = d,kw = kO,w = 0. However, C),_; is free, and hence, 0,w = 0. [ ]

H,(C) is a finitely generated abelian group and hence
H,(C)=ZF o T,(C)
where T,,(C) is the torsion subgroup of H,(C). Consider the projection
p: Ha(€) = H,(C)/T,(C) = 7",
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Lemma 3.63 kerp = W,, and hence Z,/W,, = H,(C)/T,(C).

Proof: By definition H,(C) = Z,/B,. So cosets in H,(C) have the form
c+ B,. If kc € B,, for some integer k # 0, then

klc+ B,] = [ke+ B,] = [B,] =0,

i.e. [c+B,] € T,,(C). On the other hand, if for all nonzero integers k, kc & By,
then klc + B,] # 0 for all k € Z\ {0}. Thus, ([c + B,]) 2 Z. In conclusion
then [c + B, € T,,(C) if and only if ¢ € W,. u

Let {c1,...,cx} be a basis for Z,,/W,,. Let {dy,...,d;} be a basis for W,.
Then Z, =V, ® W, where V,, = (c1, ..., cx).

Let {e1,...,¢;} be a basis for C,, and let {€},..., el } be a basis for C;,_;
such that 0, : C,, — C,,_; has the form

by 0

The following three observations follow directly from the form of this matrix:
1. {e1,...,e,} is a basis for Z,.
2. {bi€},...,be;} is a basis for B, ;.
3. {e,..., e} is a basis for W,,_;.
The proof of the theorem is finished once we define U,, = (eq,...¢;). Then

C,=U,®Z,=U,dV, ®W, where V,, and W,, are defined as above. =

Theorem 3.64 The homology groups of a finite free chain compler C =
{C,,0n} are computable.

Proof: By the previous theorem there exists a standard basis for the free
chain complex. Furthermore, this standard basis can be computed using the
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row and column reductions described in Theorem 3.50. In this basis we can
identify the subgroups U,, V,, and W,,. B, =imU,,; and

H,(C) 2V, ® W,/B.

Before ending this section we will introduce yet another construction that
leads to homology groups.

Definition 3.65 Let C = {C,,d,} be a chain complex. A chain complex
D = {D,,d.} is a subchain complex of C if:

1. D, is a subgroup of C), for all n € Z.

The condition that 9], = 9, |p, indicates the boundary operator of a subchain
complex is just the boundary operator of the larger complex restricted in its
domain. For this reason and to simplify the notation we shall let 0’ = 0.

Let C = {C,, 0, } be a chain complex and let D = {D,,, d,,} be a subchain
complex. We can create a new chain complex called the relative chain com-
plez whose chains consist of the groups C,/D,, and whose boundary operators
are the induced maps

5n : Cn/Dn — Cn+1/Dn+1
given by

[c+ Dy] = [One+ Dyq].
0, is well defined since 0,(D,,) C D,_,. Furthermore,

Op © Onti[c+ Dny1] = OnlOniic+ Dy

= [0p 0 0ny1¢+ Dy 4]
= [0+ D,_i]

= 0.

Definition 3.66 The relative n-cycles are Z,(C, D) := ker 9,. The relative
n-boundaries are B, (C, D) := ker 0,11. The relative homology groups are

H,((C,D) := Z,(C,D)/B.(C,D).



Chapter 4

Cubical Homology

In Sections ?? we suggested what were the important elements in Homology.
In particular, we used the edges and vertices of a graph to generate algebraic
objects that measured the nontriviality of the topology of the graph. In this
chapter we shall formally defined cubical homology. However, the first step
is to generalize the combinatorics of graphs to higher dimensional spaces.

There are several ways to extract combinatoric and algebra information
from a set in R"™. The classical approach is by means of triangulations of the
space. For example if n = 2 that means subdividing the space into triangles
so that any two triangles are either disjoint, intersect at a common edge, or
at a vertex. The algebra of triangulations is the Simplicial Homology Theory.

An approach arising naturally from numerical computations and graphics
is by means of cubical grids which subdivide the space to cubes with vertices
in an integer lattice. Look for example at Figure 4.1 The picture seems to be
composed of curves which do not look like polygonal curves. But, like any
picture produced by a computer, there is only a finite amount of information
involved. If we blow up a section of the figure we will see in Figure 4.2 a chain
of small squares called in computer graphics pizels. Note that any two pixels
are either disjoint, intersect at a common edge or at a vertex. The classical
Simplicial Homology Theory would require from us subdividing each pixel
to a union of at least two triangles in order to compute homology. But that
seems to be very artificial: what we see does already have a nice combinatoric
structure and we should be able to extract algebra out of it. This approach
is the Cubical Homology Theory presented here. At the end of this chapter
we shall give a brief overview of the Simplicial Homology and compare the
two theories, empasizing strong and weak points of each approach.

109
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Figure 4.1: A typical computer graphics picture.

Figure 4.2: A blow up of the previous figure.

In numerical and graphical analysis one needs to consider very fine cubical
grids. The size of cubes of a grid cannot be arbitrarily small because of the
computer’s capacity. From a theoretical point of view, the size of a grid is
just a question of choice of units. With appropriate units we may assume in
this chapter that each cube is unitary i.e. it has sides of length 1 and vertices
with integer coordinates. Later on we will investigate what happens with the
algebra extracted from a cubical grid when we change units.

4.1 Cubical Sets

4.1.1 Elementary Cubes

Definition 4.1 An elementary interval is a closed interval I C R of the
form

[=[,1+1] or =]

for some k € Z. To simplify the notation we will use the notation

=11

for an interval that contains only one point. Elementary intervals that con-
sist of a single point are degenerate. Elementary intervals of length one are
nondegenerate.

Example 4.2 The intervals [2,3], [-15, —14], and [7] are all examples of
elementary intervals. On the other hand, [3, 2] is not an elementary inter-
val since the boundary points are not integers. Similarly, [1,3] is not an
elementary interval since the length of the interval is greater than 1.

Definition 4.3 An elementary cube () is a finite product of elementary in-
tervals, i.e.
Q=1 xI,x---xI,CR"
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where each I; is an elementary interval. The set of all elementary cubes in
R" is denoted by K™. The set of all elementary cubes is denoted by K, i.e.

K= U K.
n=1

Figure 4.3 indicates a variety of elementary cubes. Observe that the cube
[1,2] C R is different from the cube [1,2] x [0] C R? since they are subsets
of different spaces. Of course using the inclusion map ¢ : R — R? given
by t(x) = (z,0) we can identify these two elementary cubes. However, we
will take great care in this book to explicitly state this identification if we
make it. Thus, if the identification is not clearly stated, then they should be
treated as distinct sets.

T S5 i The elementary cube [1,2] C R
3
9 The elementary cubes
I 1,2 x [1] € R?
1 *—o
and
“Lptozsd 1,2] % [1] ¢ R?
3
2
1 //// The elementary cube
[1,2] % [1,2] C R
-1 1 2 3 4
-1

Figure 4.3: Elementary cubes in R and R2.

Of course there are many other elementary cubes, e.g.

Q1 = [1,2] x[0,1] x [-2,-1] C R?
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Qx = [1x[1,2]x[0,1] = {1} x [1,2] x [0,1] C R

Qs = [L2]x[0] x [-1] =[1,2] x {0} x {-1} C R

Q4 : [0] [0] [] (07070) €R3

Qs = [-1,0] x [3,4] x [6] x [1,2] = [~1,0] x [3,4] x {6} x [1,2] c R*

which we shall not attempt to draw.

Definition 4.4 Let () = I; X I x --- x I, C R™ be an elementary cube.
The embedding number of () is denoted by emb () and is defined to be n since
@ C R". The dimension of @) is denoted by dim () and is defined to be the
number of nondegenerate intervals I; which are used to define (). Using this
notation we can write

K" :={Q € K| embQ@ = n}.
Similarly, we will let
Kq:={Q € K|dimQ = d}

and
g = ch nK".

Example 4.5 Refering to the elementary cubes defined above we have that

emb@; =3 and dim@; =3
emb(@s =3 and dimQ, =2
emb@3; =3 and dim@; =1
emb@s =3 and dimQ@,; =0
emb@s; =4 and dimQs; =3

In particular, the reader should observe that the only general relation between
the embedding number and the dimension of an elementary cube () is that

0 <dim@ < embQ. (4.1)
Proposition 4.6 Let ) € K} and P € Kj?, then

Qx Pe Ky
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Proof: Since ) € K™ it can be written as the product of n elementary
intervals, i.e.

Q=1 xI),x...x1I,.
Similarly, we can write
P=J xJyx...xJ,
where each J; is an elementary interval. Hence,
RQXP=LxLILx...xI,xJ xJyx...xJ,

which is a product of elementary intervals.
It is left to the reader to check that dim(@Q x P) =dim@ +dimP. =

It should clear from the proof of Proposition 4.6 that though they lie in
the same space Q X P # P x Q).

Exercises

4.1 Prove that any elementary cube is closed.

4.1.2 Representable Sets

Elementary cubes will be the building blocks for the homology theory that
we will develop, however for technical reasons it will useful to have additional
sets to work with. For this reason we introduce the notion of open cubes.

Definition 4.7 Let [ be an elementary interval. The associated open ele-
mentary interval is

o ((Li+1) HT=][1l+1],
['_{[l] it 7 =[1,1].

We extend this definition to a general elementary cube (Q = I} x Iy x...x I, C
R"™ by defining the associated open elementary cube as

o o o

Q::}lxjgx...x[n.
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Example 4.8 An important word of warning: An open cube need not be an
open set. Consider for example [1] € Kj. This is a single point and hence
a closed set (see Exercise 1.4). Of course, as was shown in Exercise 1.4 any
interval of the form (/,/ + 1) is an open subset of R. Thus, if I € K1, then

the open elementary interval j’ C R is an open set.
Consider now the elementary cube @ = [1,2] x [3] € K2. The associated

open elementary cube is @ = (1,2) x [3] C R? which is clearly not an open
set.

We can generalize this example to the following Proposition.

Proposition 4.9 Let () € K. The associated open elementary cube ) is an
open set if and only if Q € K forn > 1.

Proof: Since (@ is an elementary cube it is the product of elementary intervals

Q211XIQX"'XInCRn. Let Il:[al,bl] where aiEZandbi:ai or

b =a; + 1. Let z; = ‘“TJ’(” Observe that x = (1,29, ...,2,) € Q.
Assume that Q € K} where d < n. Then, there exists iy such that

I, = |a;,] is a degenerate interval. Observe that for any € > 0, B(z,¢€) ¢ Q.
Therefore, () is not open.
On the other hand, if ) € K}, then by Exercise 1.4 () is an open set. ®

Proposition 4.10 We have the following properties

(i) R"=U{Q | Q e K},

(i) A C R™ bounded implies that card {Q € K" | 52 NA#0} < oo,
(iii) If P,Q € K", then PN Q=0 or P = Q,

(iv) For every Q € K, Clé =Q,

(v) Q€ K" implies that Q) = U{ﬁ | P e K Pc Q}.
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Proof: (i) Obviously U{é) | Q@ € K™} € R™ To prove the opposite inclusion

take an © = (21, 2s,...,z,) € R" and put
ja { [l‘l,!L'Z] if x; € Z,
" | [floor (z;), floor (z;) + 1] otherwise.

Then 52 = }1 X }2 X ... X ;n is an open cube and z € 52 This proves (i).

(ii) The proof is straightforward.

(iii) For elementary cubes of dimesion one the result is obvious. Also,
it extends immediately to elementary cubes of dimension greater than one,
because the intersection of Cartesian products of intervals is the Cartesian
product of the intersections of the corresponding intervals.

(iv) Observe that 52 C @, therefore 0152 C Q. To prove the opposite
inclusion take an z = (z1, 22 ...2,) € Q. Let Q = [ky, 1] X [ka, lo] X . . X[ky, 5]
and put

A = {i=1,....n |z =k},
B = {i=1,...,n|x; =1}

Define 37 := (yi,4J,...y}) € R" by

yl =4 i€e ANBorig¢g AUB,
T — = i€ B\ A

2n

Then 3y’ € 52 and lim ¢/ = z. It follows that = € Clg).

j—00
(v) Consider @ = I} x Iy x ... x I, and let z = (x1,29,...,2,) € Q.

Define
J o= { [z;,x;] if x; is an endpoint of I;

I; otherwise.

and put P := J; X Jy X ...x J, Then obviously x € 1% and 1% C . Hence z
belongs to the right-hand-side of (v). |

Using open cubes we can define a class of topological spaces.

Definition 4.11 A set Y C R" is representable if it is a finite union of open
elementary cubes. The family of representable sets in R" is denoted by R".

As an immediate consequence of Proposition 4.10(v) we get
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Proposition 4.12 Fvery elementary cube is representable.

Definition 4.13 The open hull of a set A C R™ is

oh (4) = [ J{QI Q € K.QN A # 0}, (4.2)
and the closed hull of A is

ch (4) = H{Q | Q € K, Q NA # 0} (4.3)
Example 4.14 Consider the vertex P = [0] x [0] € R?. Then,
oh (P) = {(z1,25) € R* | =1 < x; < 1}.
Generalizing this example leads to the following result.

Proposition 4.15 Let P = [a;] X -+ X [a,] € R™ be an elementary vertex.
Then,

oh(P)=(a;—1,a1+1) x-+- X (a, — 1,a, +1).

The names chosen for oh (A) and ch (A) are justified by the following
proposition.

Proposition 4.16 Assume A C R™. Then
(i) A Coh(A) and A C ch(A).
(i) The set oh (A) is open and representable.
(i1i) The set ch (A) is closed and representable.
(iv) oh (A) =N{U € R" | U is open and A C U}

(v) ch(A) =N{B € R™ | B is closed and A C B}. In particular, if K is a
cubical set such that A C K, then ch (A) C K.

(vi) oh (oh(A)) =oh(A) and ch(ch(A)) = ch (A).
(vii) If y € oh (x), then ch (z) C ch(y).

(viii) Q@ € K™ and x 652 implies that ch (z) = Q.
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(iz) Let Q@ € K" and let z,y 652. Then, oh (x) = oh (y) and ch (z) = ch (y).

Proof: (i) That A C ch(A) follows directly from the definition and A C
oh (A) follows from Proposition 4.10(v).

(ii) By Proposition 4.10(ii) the union in (4.2) is finite. Therefore the
set oh (A) is representable. To prove that oh (A) is open we will show that

it satisfies ??. Let P € K? be such that P Noh (A) = (. Assume that
P Nnoh(A) # (. Then there exists a @ € K such that Q N A # 0 and

PN Q# (. Since P is representable, it follows from Proposition ?? that

éc P. Therefore ) = cl éC P,ie. PNA # (). This means that PC oh (A),
a contradiction. It follows that oh (A) is open.

(iii) The set ch (A) is closed since it is the finite union of closed sets. By
Proposition 4.12 ch (A) is representable.

(iv) Observe that since oh (A) is open, representable and contains A,

(Y{U € R™ | U is open and A C U} C oh (4).

To show the opposite inclusion take an open set U € R"™ such that A C U.
Let 2 € oh (A). Then there exists a @ € K such that ANQ # 0 and x 652.
It follows that ) # QNU = cl 52 NU, i.e. 52 NU # (. By Proposition 7?7
g)C U, hence x € U. This shows that oh (4) C U and since U is arbirtary,

oh (4) C ({U € R™ | U is open and A C U}.
(v) Since ch (A) is closed, representable and contains A,
(){B € R" | Bis closed and A C B} C ch (A).

Let K € R™ be a closed set which contains A. We will show that ch (A) C K.
For this end take an = € ch(A). Then there exists a Q € K such that

52 NA # () and z € Q. It follows that 52 NK # () and consequently EQC K.
Hence Q C K and x € K. This shows that ch (A) C K and since K is

arbirtary,
ch (A) C (){B € R" | Bis closed and A C B}.

(vi) This follows immediately from (iv) and (v).

(vii) Observe that since y € oh (x), there exists a P € K such that y ep
and z € P. Take a z € ch (). Then there exists a () € K such that z € Q
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and z Eé). It follows that éC P, hence also () C P and consequently z € P,
which proves (vii).

(viii) This is straightforward.

(ix) Let 2z € oh(x). Then there exists a @ € K such that z €@ and

x € Q. It follows that PC Q, i.e. y € Q. Consequently z € oh(y) and
oh () C oh (y). The same way one proves that oh (y) C oh (z). The equality
ch () = ch (y) follows from (viii).

u

4.1.3 Cubical Sets

As was mentioned before elementary cubes will make up the basic building
blocks for our homology theory. This leads to the following definition.

Definition 4.17 A set X C R" is cubical if X can be written as a finite
union of elementary cubes.

If X C R" is a cubical set, then we shall adopt the following notation.
KX)={QeK|QCX}

and

Kr(X):={Q € K(X) | dimQ = k}.

Observe that if () C X and @ € K then emb(@ = n, since X C R". This
in turn implies that ) € K™ so to use the notation K"(X) is somewhat
redundant, but it serves to reminds us that X C R". Therefore, when it
is convenient we will write ' (X'). In analogy with graphs, the elements of
Ko(X) are the vertices of X and the elements of K;(X) are the edges of X.
More generally, the elements of Ky (X) are the k-cubes of X.

Example 4.18 Consider the set X = [0,1] x [0,1] x [0,1] C R?. This is an
elementary cube, and hence, is a cubical set. It is easy to check that

K3(X) = [0,1] x [0,1] x [0,1]

Ka(X) = {10] x [0,1] x [0,1], 1] x [0,1] x [0,1],
[0, 1] x [0] x [0,1],[0,1] x [1] x [0, 1],
[0,1] x [0,1] x [0],[0,1] x [0,1] x [1]}
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Ki(X) = {[0] < [0] x [0,1],[0] x [1] < [0,1],
[0] > [0, 1] x [0], [0] x [0, 1] x [],
[1] > [0] > [0, 1], [1] > [1] > [0, 1],
[1] > [0, 1] x [0, [1] x [0, 1] x [],
[0, 1] > [0] x [0], [0, 1] x [0]  [1],
[0, 1] > [1] x [0], [0, 1] x [1] > [1]}
Ko(X) = {[0] < [0] < [0], [0] > [0 > 1],
[0] > [1] > [0], [0 > [1] > [1],
[1] > [0] > [o], [1] > [0] > [1],
[1] > [1] > o], 1] > [1] > [1]}

Example 4.19 It should be noted that the definition of a cubical set is
extremely restrictive. For example, the unit circle 22 + 3> = 1 is not a
cubical set. In fact, even a simple set such as a point may or may not be
a cubical set. In particular consider the point P = (r,y,2) € R3. Pis a
cubical set if and only if z, y, and z are all integers.

Proposition 4.20 If X C R" is cubical, then X s closed and bounded.

Proof: By definition a cubical set is the finite union of elementary cubes.
By Exercise 4.1 an elementary cube is closed and by Theorem 1.15 the finite
union of closed sets is closed.

To show that X is bounded, let @ € K(X) then Q@ =1 x I, x --- x I,
where I; = [I;] or I, = [I;,1; + 1]. Let

p(Q) = max {|l;| + 1}
Now set R = maxgex(x) p(Q). Then X C B(0, R). u

Definition 4.21 Any @ € K(X) is called a face of X and is denoted by
Q = X. Qisa proper facein X, denoted by @) < X, if there exists P € IC(X)
such that P # @ and Q < K(P). If @ is not a proper face, then it is a
mazimal face. Kpax(X) is the set of maximal faces in X. A face which is a
proper face of exactly one elementary cube is a free face.

Example 4.22 Let X =[0,1] x[0, 1] x[0,1]. Then, Ko(X )UK (X)UK(X)
is the set of proper faces. The set of free faces is given by Ko(X).
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Example 4.23 Refering to the cubical set X C R? shown in Figure 4.4.
The following elementary cubes are free faces

[—1] x 2]

0,1 x [0, [0,1]x [1], [0]x[0,1], [1]x[0,1]

3
25F -
[-1.0] x [2]
2r [F11x[2] [0]x 2] 7
15+ [0] x [1,2] B
[0.1]x [1]
1+ [0]x [1] (1] x[1] ]
051 [0] x [0,1] [1]x [0,1] 4
of [0] x [0] [01x[0,1] b
[0.1]x [0]
-05 - -
_l 1 1 1 1 1 1 1
-2 1.5 1 0.5 0 0.5 1 15 2
Figure 4.4: Elementary cubes of X C R?.
Exercises

4.2 In Example 4.19 it was noted that a given point need not be a cubical
set. However, the set consisting of a point can be represented by a cubical
set as follows. Let X C R consist of a single point, i.e. X = {x¢}. Let
f:X — 0¢€R" Then, fis a homeomorphism and f(X) = 0 is a cubical
set.

Prove that any abstract graph which is a tree can be represented as a
cubical set.
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4.3 Observe that any cubical set which consists of elementary cubes of
dimension 0 or 1 is a graph and hence gives rise to an abstract graph. Give
an example of an abstract graph which which does not arise as a cubical set.
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4.2 The Algebra of Cubical Sets

In this section we finally present the formal definitions that we use to tran-
sition between the topology of a cubical set and the algebra of homology
theory.

4.2.1 Cubical Chains
We begin by defining the algebraic objects of interest.

Definition 4.24 The group Cy of k-dimensional chains (k-chains for short)
of X is the free abelian group generated by elements of Iy, i.e.

Ck = Z’Ck.
If c € Cy then dime := k.

Observe that CY is an infinitely generated free abelian group. In practice
we will be interested in the chains generated by cubical sets.

Definition 4.25 Let X C R" be a cubical set. C}(X) is the finitely gener-
ated free abelian group generated by the elements of I (X) and is refered
to as the set of k-chains of X. Observe that Cy(X) is a subgroup of Cj.

Recall from definition given in Chapter 3 that this implies that the basis
for Ct(X) is the set of functions @ : Kr(X) — Z defined by

Arpy . J1 ifP=Q
QP) = {0 otherwise. (44)
Since Kp(X) = 0 for k < 0 and k£ > n, the corresponding group of k-chains
Given an elementary cube ) we will refer to Q as its dual elementary
chain, and similarly, given an elementary chain Q we will refer to Q as its
dual elementary cube.
Let Kp(X) := {Q | Q € Kp(X)}. Since X is a cubical set and KP(X)
is a basis for Cy(X), Crx(X) is finite dimensional. Furthermore, given any
c € C(X) there are integers a; such that

Cc = Z az@z

Qi€ (X)
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Definition 4.26 Let ¢ € C(X) and let ¢ = Y™, 0;Q; where a; # 0 for
1 =1,...,m. The support of the chain ¢ is the cubical set

|C| = U Q; C R"
=1

Proposition 4.27 Support has the following properties:

(i) 10| = 0.

(ii) Let a € Z, then
le| if a #0.

(iii) If Q € K, then |Q] = Q.
(iv) |e1 + 2| C ler| U esl.
Proof: (i) By definition the 0 chain is the element of the free abelian group
which is not generated by any cube.
(i) This follows directly from the definition of support and (i).
(iii) This too follows directly from the definition of chains and support.

(iv) Let ¢ = ¥, ai@i and let ¢, = Eé-zl bj]3i where a;,b; # 0 for
t=1,...,mand 5 =1,...,[. Then

m l
¢ e = a,Qi+ Y bP,.
i=1 =1
Thus, = € |¢; + ¢3| implies x € |¢1] or = € |ca]. u

Example 4.28 It is not true in general that |¢; + ¢ = |e1| U |e2|. Consider
any chain ¢ such that |¢| # (). Observe that

D=le—cl#lc|Ule] = c| # 0.

Notice that while a chain ¢ is an algebraic object, its support |c| is a
set. Thus, we have just defined a way to go from a cubical set to a finite
dimensional free group, and from an element of the free group back to a
cubical set.
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Proposition 4.29 The map ¢ : Ki — Ky, given by H(Q) = Q is a bijection.

Proof: Since Ky, is defined to be the image of ¢ it is obvious that ¢ is
surjective. To prove injectivity assume that P, € K, and P = Q. This
implies that R R

1= P(P) = Q(P)

and hence that P = (). [

Remark 4.30 While the notation we are using for chains is consistent with
that of earlier chapters some care must be taken when discussing 0-chains
that are generated by elementary cubes in R. Let X C R be a cubical set.
Consider [1] € Cy(X). By definition it is the function

M@= { Te=1l

0 otherwise.

Q)= {2 #Q=1

0 otherwise.

while

—

This is different from [2] € Cy(X), since
a@-{) 1e=p

0 otherwise.

o~ —~ o~

In particular |[1]] = |2[1]] =1 € R while |[2]| =2 € R.
Finally, 0 € C\(X) is the identity element of the group and hence |0] = (),
while [0] is the dual of the vertex located at the origin, i.e. 0] =0 € R.

Example 4.31 Let c = ﬁg — Al + El — Eg, where
Al = [0] X [07 ]-]7 AQ = [1] X [07 ]-]7 Bl = [07 1] X [0]7 B2 = [07 1] X [1]

Then |¢| is the contour of the square [0, 1]* shown on Figure 4.5. In addition
we have chosen to give a geometric interpretion of the signs appearing in
the expression for c. In particular, in Figure 4.5 we included an orientation
to the edges indicated by the arrows. Thus, positive or negative elementary
chains represent the direction in which an edge is traversed. For example,
we think of A; as indicating moving along the edge from (0, 0) to (0,1) while
— A, suggests covering the edge in the opposite direction. With this in mind,
c represents a counter-clockwise closed path around the square.
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(0,1) —B, (1,1)
—;{1 Q A\Q
(0,0) B, (1,0)

Figure 4.5: Boundary of the unit square.

Example 4.32 With the notation of the previous example, consider the
chain 2c. It is clear that |2¢| = |¢| so both chains represent the same geometric
object. The chain 2¢ can be interpreted as a path winding twice around the
square in the counter-clockwise direction. Similarly, the chain

21+A\2+§1+§2:A1+§2+;{2+B1

could be interpreted as a “sum” of two different paths along the boundary
of the square connecting (0,0) to (1,1).

Proposition 4.33 If K, L C R" are cubical sets, then
Cy(KUL) =C,(K)+ Ck(L).

Proof: Let Q € K(K). Then Q € Ki(K) and hence @ € Kr(K U L). The
same argument applies to Q € K (L) and so Cx(K) + Cx(L) C Cix(K U L).
To prove the opposite inclusion let ¢ € Cx(K U L). In terms of the basis
elements this can be written as

c= ZaiQia a; # 0.
i=1

Let A:={i | Q; C K} and B := {1,2,...,m} \ A. Put ¢; := Yiea :Q;,
Co = Yicn 0. Obv1ously lei] C K. Let i€ B Then @; € K UL and

Q; ¢ K. In particular Q NK = (). Consequently Q C L and since L is closed
also Q; C L. Hence |c3| C L. Tt follows that ¢ = ¢; + ¢ € Cx(K) + Cy(L). m
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From Proposition 4.6 we know that the product of two elementary cubes
is again an elementary cube. This motivates the following definition.

Definition 4.34 Given two elementary cubes P € K and Q € Ky set
Po Q = P/X\Q

We can extend this product to ¢ : Cy x Cpr — Ciyp as follows. Let ¢; € l%k
and let ¢y € K. By definition we can write

= Zaiﬁi and ¢y = ij@\j
where {P;} = Kj, and {Q;} = Ky Define

C10Cy 1= Zalb]PZ X Q]

i,J
The element ¢ ¢ ¢y € Cpyp is called the cubical product of ¢; and cs.
Example 4.35 Let
P, =1[0] x[0,1], P, =[1] x [0,1], P3 =10,1] x [0], Py =[0,1] x [1]

then P, € K. Let Q; = [—1,0] and @y = [0, 1], then Q; € K1. This gives
rise to chains ¢; = P + P, + P; + P, and ¢ = Q1 + Q2. By definition we
have

c10C = P1/><\Q1+P2/><\Q1+P3/X\Q1+P4/X\Q1+
P x Qo+ Pox Qo+ P3x Qo+ Py X Qo

while

cpocC = Q1/><\P1+Q1/><\P2+Q1/X\P3+Q1/X\P4+
Qe X PL4+ QX P+ Qo x P3+ Qs x Py

Figure 4.6 indicates the support of the chains ¢y, ¢o, ¢; © ¢ and ¢; © ¢;.
The cubical product has the following properties.

Proposition 4.36 Let ¢q,co,c3 be chains. Then

(i) c;00=00¢, =0
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Support of chain c, Support of chain c,
2
15
Py
1
0.5 P, b |
2 1 Q, 0 Q, 1
0 P
3
-0.5
-1 L
-1 0 1 2
Support of chain c,¢¢C, Support of chain c,¢C

Figure 4.6: The support of the chains ¢, ¢/, co and ¢ o c.

(17) ¢10(ca+e3) =c10cs+¢10¢3
(ZZZ) (Cl 002) SC3 =C1 © (02 003)
(iv) if c;0ce =0, then ¢y =0 or ca = 0.

Proof: (i) and (ii) follow immediately from the definition.
(iii) The proof is straightforward. ~
(iv) Assume that ¢; = X%, ;P; and ¢; = ¥}_, b;Q;. Then

a;b; Py o Q; = 0,

k
=1 1

l

)

j
ie. aibj=0forany ¢t =1,2,...,k, j=1,2,...,1. It follows that
k ! kool

2 2 2
(2 a)(205) = 2> (aiby)” =0,
=1 j=1 i=1

7 = i=1j=1
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hence 3¢ a? =0 or Y! = 0. Consequently ¢; =0 or c; = 0. [ ]

J1J

Proposition 4.37 Let @ be an elementary cubical chAain suAch that emb @ >
1. Then, there exist unique elementary cubical chains I and P withemb I =1
and emb P = d — 1 such that

~

Q=1¢P.
Proof: Since @ is an elementary cubical chain, @ is an elementary cube, i.e.
Q=1 xI, x---x1I,.

Set I=1I and P:=1I, x I3 X -+ x I,,, then Q = I o P.

We still need to prove that this is the unique decomposition. If Q JoP!
for some J € K and P’ € K*~! then I, x P = J x P’ and from Proposition
4.29 we obtain Iy x P = J x P'. Since I;,J C R, it follows that I; = J and
P=P. ]

4.2.2 The Boundary Operator

Given a cubical set X C R", the chains C(X) are the free groups which will
be used to define the homology groups. To obtain a free chain complex we
need to define boundary operators, i.e. linear maps 0, : C(X) — C}_,(X)
with the property that dy o Oy,1 = 0. Since 0, is supposed to be linear and
Cr(X) is a free group it is sufficient to give the definition in terms of the
basis elements of Cy(X).

At times the notation 0y is too cumbersome, so we will typically simplify
it to 0.

Definition 4.38 The cubical boundary operator
ak Ck — Ck 1

is defined by induction on the embedding number. Notice that if 0 is a linear
map then it must be the case that

00:=0.
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Let Q € KL, then @ is an elementary interval and hence Q = [I] € K} or
Q =[l,l+ 1] € K} for some [ € Z. Define

S _Jo_ifQ={],
aQ'_{[l+1]—[l] if Q=1[I,1+1].

Now assume that @ € I%Z where n > 1. By Proposition 4.37 there exist
unique elementary cubical chains I, P with emb/ =1 and embP =n — 1
such that

~

Q= IoP.
Define ~ o o
0Q =0l o P+ (—1)4™'T 6 0P.

Finally, we extend the definition to all chains by linearity, i.e. if ¢ = a1Q1 +
asQs + - -+ + 4, Q, then

dc = aﬁ@l + a23Q2 + -+ aman

Example 4.39 Let @) = [I] x [I']. Then,

~
—~ o~ o~ ]/\ o~

0Q = ol o[+ (-1 0o o]

= 0o[l'l|4+[l]<0
= 0+0.

Thus, the boundary of the dual to a vertex is trivial. This matches our
intuitive notions developed for graphs.

Example 4.40 Let Q =[l, + 1] x [I,I' + 1]. Then,

00 = OlI+1]o T + 1]+ (=)™ TE 1] o o[, 1 4 1]

= [+ =)ol +1] =11+ 1]o (1 +1]—[)
I+ 1ol +1]—o[l, i +1]—[LI+1]o[l +1]+[l,I+1] 0[]
A1) X [0+ 1) =[] x [0+ 1]+ LI+ 1] x 1] = [+ 1] x [ +1].

Proposition 4.41 Let ¢ and ¢ be cubical chains, then

dcod)=0cocd + (—1)mcodd.
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Proof: Since 0 is a linear operator it is sufficient to prove the proposition for
elementary cubical chains, i.e. to show that

ANQoQ)=0QoQ +(~1)"°Q 0 0Q".

The proof will be done by induction on the embedding dimension of the
corresponding cubes.

If n = 1, then the result follows from calculations similar to those of
Example 4.40.

If n > 1, then we can decompose ) or @' as in Proposition 4.37. Assume
that it is () that can be decomposed, i.e. () = I X P where emb/ =1 and
emb P =n — 1. Then,

0QoQ) = dloPoqQ)

= 0l oPoQ + (—1)"™Tod(PoQ)

= 0IoPoQ + (1) To (0P oQ + (-1)"™PP ¢ 0Q')

= 0loPoQ + (—1)I™ TodPoQ + (—1)Im+dmPT o P oo

= (0T o P+ (-1)"™'T00P) 0 Q' + (-1)"™?Q 0 Q)

= Qo Q' + (~1)"™2Q o 0

[ ]
Corollary 4.42 If @1,@2, cee @m are elementary cubical chains, then
8(@10Q20---0@m) = Z( 1) i 1d‘leQ X ij_loaépojHo---o@m.
j=1

As was indicated earlier we are really interested in 0y : Ci(X) — Cr—1(X)
where X is a cubical set.

Definition 4.43 The boundary operator for the cubical set X is defined to
be
8k Ok( ) — Okfl(X)

obtained by restricting 0 : Cy, — Cr_1 to Ci(X).
Before we can employ this definition we need to be sure that d (Cy (X)) C

Cr—1(X). Observe that since 0 is a linear operator the following proposition
suffices.
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Proposition 4.44 Let (Q C R" be an elementary cube, then
8k : Ck(Q) — Ckfl(Q).

Proof: Let Q =1y x Iy x --- x I,,. By Corollary 4.42

~

8(©) - 2:(_1)25;11 Wmlifiono fj—l © afj <>fj+1 oo,
7=1

Consider each term of this sum separately. If I; is a degenerate interval, then
flo---ofj_loafj ofj+10---ofm =0€ Cr1(Q).

On the other hand if I; is nondegenerate, then I; = [l;,1; + 1]. This implies
that

Lio-ol_1 000l 00, = flo---o([lj/—ltl]—[l])o-- oI
= f1<>"'<>[lj:]_]<>"'<>fm+
flo...o[mo...ofm
Both terms on the right side are in Cj_1(Q) since
11X"'XI]'_1X[lj]X[j+1"'XInCQ
and
Il><---><Ij_1><[lj+1]><Ij+1---><InCQ.

n

The following proposition shows that 0 is a boundary operator.
Proposition 4.45

0od =0

Proof: Because 0 is a linear operator it is enough to verify this property for
elementary cubical chains. Again, the proof is by induction on the embedding
number.
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Let () be an elementary interval. If @ = [I], then by definition 90 =0 so
2(0Q) =0. If Q@ = [I,1 + 1], then

0(0Q) = ANl +1)

= o(l+1]-1[1)
= Ol+1]- 0[]
= 0-0

= 0.

Now assume that () € K" for n > 1. Then by Proposition 4.37 we can
write () = I X P where emb/ =1 and embP =n — 1. So

(0Q) = 0(d(I x
d(0(I o P))
~ 9 (afoﬁ + (_1)dimff<>aﬁ)

X P))

= (0l o P) + (~1)"™19 (I 0 0P)
= 001 o P+ (~1)"™ 191 0 0P + (~1)"™T (91 0 0P + I 0 00D
= (=1)dmT9] 6 9P + (—1)I™ 79T 6 DP.
The last step uses the induction hypothesis that the proposition is true if the
embedding number is less than n.
Observe that if dim I = 0, then I = 0 in which case we have that each
term in the sum is 0 and hence 90Q) = 0. On the other hand, if dim [ = 1,

then dim &I = 0 and hence the two terms cancel each other giving the desired
result. ]

4.2.3 Homology of Cubical Sets

Let X C R" be a cubical set. Then I(X) generates the cubical k-chains
Cr(X) and 0 : Cx(X) — Cy_1(X) is a boundary operator. Thus we can
make the following definition.

Definition 4.46 The cubical chain complex for the cubical set X C R" is

C(X) :={Ck(X), Or}
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where Cj (X)) are the cubical k-chains generated by KC(X') and 0 is the cubical
boundary operator.

This allows us to immediately define the homology of X.

Definition 4.47 Let X C R"™ be a cubical set. The cubical k-cycles of X
are the elements of the subgroup

Zk(X) :=ker 0y C Ck(X).
The cubical k-boundaries of X are the elements of the subgroup
B(X) :=image 0x11 C Ck(X).
The cubical homology groups of X are the quotient groups
Hy(X) == Zp(X)/Bi(X).

We finish this section with the computation of the homology of two ex-
tremely simple cubical spaces.

Example 4.48 Let X = (). Then Cy(X) = 0 for all £ and hence
Hy(X)=0 k=0,1,2,...

Example 4.49 Let X = {xy} C R" be a cubical set consisting of a single
point. Then zq = [l;] x [l3] X -+ x [I,]. Thus,

Z iftk=0,
0 otherwise.

Ck(X):{

Furthermore, Zy(X) = Cy(X) = Z. Since C; = 0, By = 0 and therefore,
Hy(X) =2 Z. Since, Cix(X) = 0 for all & > 1, H(X) = 0 for all £ > 1.
Therefore,

Z ifk=0

0 otherwise.

Hi(wo) = {
Example 4.50 Recall the cubical set

Tt = [0] x [0, 1] U [1] x [0, 1] U [0,1] x [0] U [0,1] x [1]
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The set of elementary cubes is

{10] x [0], [1] x [0], [1] > [0], [1] x [1]}

{[0] x [0, 1], [1] x [0,1], 0, 1] x [0], [0, 1] x [1]}
Thus, the bases for the sets of chains

0] > [0], [0] > [1], [1] > [o], [1]  [1]}
(0] [0], [0 & [1], [1] © [0, [1] & [1]}
[0] %
[0]

ICo(TH)
I (Th)

{
{ —_— —_—

{(0] x [0, 1], [1] x [0, 1], [0, 1] x [0], 0, 1] x [1]}
{[0] «[0,1], [1] » [0, 1], [0, 1]  [0], [0, 1] & [1]}

To compute the boundary operator we need to compute the boundary of the
basis elements.

([0« [0,1]) = —[0]*[0] +[0] o [1]
o([1]«[0,1]) = =[] [0]+[1] 1]
0([0,1]«[0]) = —[0] & [0] + [1] o [0]
o([0, 1« [1]) = —[0] o [1] + [1] o [1]

We can put this into the form of a matrix

-1 0 -1 0
1 0 0 —1
O = 0 -1 1 0
0o 1 0 1

To understand Z;(T'') we need to know ker d;, i. e. we need to solve the

equation
—1 0 —1 0 (6%}
1 0 0 —1 (65) .
0 —1 1 0 (0% -
0 1 0 1 Oy

This in turn means solving

—Q — Qg
ap — Oy
—Qip + (3
Qo + Q4
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The only non-trivial solution to this is
Q= —qg = —a3 = ay.
Thus, we have that dim Z;(I'!) = 1 and is generated by
(0] [0,1] — [1] ©[0,1] — [0,1] © [0] + [0, 1] © [1].
Since, Co(I'") = 0, B;(I'') = 0 and hence
H(T") = Z,(T") = Z.

As we learned in Chapter 3, solving for the quotient space Zy(T'!)/By(T)
is a little more difficult. While we could compute the Smith normal form we
shall take a slightly different tack here and concentrate on equivalence classes.
We begin with the observation that there is no solution to the equation

—1 0 —1 0 Qq
1 0 0 —1 Qo
0 —1 1 0 Q3
0 1 0 1 oy

o O O

This implies that [0] ¢ [0] € By(T'). On the other hand
{[0] © 0] + [0] o [1], [0] & [0] + [1] & [0], [0] © [0] + [1] & [1]} C Bo(I™).

From this, given any element u € Cy(I') such that u # a[0] ¢ [0] for some
a € Z one can show that u + [0] ¢ [0] € By(I'"). In particular, Ho(['!) =
Zo(T1)/By(T'h) is generated by [0]o[0] and thus dim Hy(T'') = 1. In particular,
we have proven that

Z ifk=0,1
H (T = { ’
A 0 otherwise.

We could continue in this fashion for a long time computing homology
groups, but as the reader hopefully has already seen this is a rather time
consuming process. Furthermore, even if one takes a simple set such as

X =[0,1] x [0,1] x [0,1] x [0,1]

the number of elementary cubes is quite large and the direct computation
of its homology is quite tedious. Thus, we need to develop more efficient
methods.

Exercises
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4.4 Let I'? = bd [0, 1]® be the boundary of the unit cube. Determine the
cubical complex C(I'?) and compute H,(T'?).

4.5 Let X be a cubical set obtained by removing the center cube (1,2) X
(1,2) x [0, 1] from the solid rectangle [0, 3] x [0, 3] x [0,1]. Let "= bd X be
its boundary. (compare this set with a torus discussed in Example 4.81.

(a) Prepare the data file for computing the chain complex C(X) of X by
the program cubchain. Run the program to find C(X) and H,(X,Z,)
for several values of p. Make a guess about H,(X).

(b) Determine C(7") and compute H,(P).

4.6 The figure L in the file labirynth.bmp is composed of a large but finite
number of pixels so it is a cubical set. Run the Pilarczyk programs to find
the homology of it. Open two gates (i.e. remove two pixels) in opposite walls
of the labyrinth and again run the program to find the homology of what is
left. Make a guess about the solvability of the labyrinth. i.e. a possibility of
passing inside from one gate to another without crossing a wall.
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4.3 Hy(X)

This Chapter began with a discussion of cubical sets. These are a very
special class of topological spaces. We then moved on to the combinatorics
and algebra associated with these spaces and defined the homology of a
cubical set. However, we have not said anything about the relationships
between homology groups of a cubical set and topological properties of the
set. The following theorem is a first step in this direction. It says that the zero
dimensional homology group measures the number of connected components
of the cubical set.

Theorem 4.51 Let X be a cubical set. Then Hy(X) is a free abelian group.
Furthermore, if {P; | i =1,...,d} is a collection of vertices in X consisting
of one vertex from each connected component of X, then

{[ﬁz] EI_IO(*X) |i:1v"'vd}
forms a basis for Ho(X).

Proof: The proof consists of two steps: (1) identifing elementary cubes with
the connected components, and (2) using this to prove the theorem.

Step 1. Let P and P’ be vertices in X. Define the equivalence class
P ~ P’ if there is a sequence of vertices Ry, ..., R,, of X such that P = R,,
P'" = R,,, and there exist elementary edges ) with vertices Ry | and Rj.
For each vertex P in X, let

Cp:= |J oh(Q)NX.

Q~P

Observe that P ~ @ implies that Cp = Cg. Also, by Proposition 4.16(ii) C'p
is open.

We will now show that if P ¢ @, then Cp N Cqy = 0. The proof is by
contradiction, so let z € CpNCyq. In particular, v € X. Since X is a cubical
set there exists an elementary cube S C X such that z € S. We also know
that © € oh (P') N X and = € oh (Q') N X where P ~ P' and @ ~ @'. This
implies that opS C oh (P')Noh (Q')NX. Thus, P',Q" € S. Since S is convex
there exists a path from P’ to Q' made up of edges of S. Therefore, P’ ~ ',
a contradiction.

Finally, we need to show that Cp is a connected component. We do this
by showing that it is path connected. Let x,y € Cp. Then there exist vertices
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P and @ such that P ~ @, x € oh(P)N X and y € oh(Q) N X. Since X
is cubical, there exists an elementary cube S C X such that z € S Noh (P).
Observe that this implies that P € S. However, S is convex so there is a line
segment from x to P. Similarly, there exists a path from y to Q). Since P ~ Q)
there exist a sequence of vertices Ry,..., R, and edges (), as above. The
union of the line segments and edges forms a path from z to y. Therefore,
Cp is path connected.

We can now conclude that the sets Cp,, 2 =1, ..., d are connected, open,
and disjoint. Therefore, they represent all the connected components of X.

Step 2. First recall that Zy(X) = Cy(X). Therefore, P, is a cycle for each
1=1,...d.

Let P be a vertex in X. Then, there exists j such that P € Cp,. By
construction, this implies that P ~ P; and hence there exist edges ), which
form a path from P to P;. Consider the chain

Then, Oc = ﬁj — P and hence
[P}] = [P] € Ho(X).

The final step is to show that each P, is a distinct basis element. To do
this we need to show that

d
€= Z %ﬁi
7=1

is a boundary element if and only if each o; = 0. Obviously, if ¢ = 0, then
¢ € By(X). So assume that at least one scalar a; # 0 and assume that ¢ = 9b
for some b € C(X). We can write b as a sum of chains as follows

~

it must be that 0b; = o; P;.
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We need to show that the only way this can happen is for a; = 0. To do

~

this, let € : Cp(X) — Z be the group homomorphism defined by () =1 for
every vertex P € X. Let Q be an elementary edge. Then, 0Q) = R, — Ry
where Ry and R; are vertices. Observe that
6(GQ) = E(Rl - ﬁo)

= €(Ry) — e(Ro)

= 1-1

= 0.
This implies that €(9b;) = 0 and hence

0 =¢€(0b;) = e(aiﬁi) = aie(ﬁi) = ;.

Thus, P, generates nontrivial homology and [P}] # [ﬁ]] if i # 75. |
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4.4 Elementary Collapses

As the reader might have realized by now, even very “simple” cubical sets
contain a large number of elementary cubes. We shall now discuss a method
that allows us to reduce the number of elementary cubes needed to compute
the homology of the set.

Lemma 4.52 Let X be a cubical set. Let Q € K(X) be a free face and
assume Q) < P. Then, P is not the proper face of any other cube in K(X)
and dim ) = dim P — 1.

Proof: Assume P < R. Then () < R contradicting the uniqueness of P.
Assume dim ) < dim P — 1. Then there exists R € K(X) different from
@ and P such that Q < R < P. [ ]

Definition 4.53 Let Q be a free face in (X)) and let ) be a proper face of
P. Let K'(X) := K(X) \ {Q, P}. Define

X' = U R.
ReK!(X)

Then X' is a cubical space obtained from IC(X) via an elementary collapse
of @ through P.

Example 4.54 Let X =[0,1] x [0,1] C R? (see Figure 4.7). Then

Ka(X) = {[0,1] x [0, 1]}
Ki(X) = {[0] < [0,1], 1] x [0, 1], [0, 1] > 0], [0, 1] > [1]}
Ko(X) = {[0] x [0, [0] > [t], [1] x [O], [t] > [1]}

There are four free faces, the elements of K1(X). Let @ = [0,1] x [1], then
Q < P =10,1] x[0,1]. If we let X" be the cubical space obtained from IC(X)
via the elementary collapse of @) through P, then X' = [0] x [0,1] U [1] X
[0,1] U [0,1] x [0] and

K (XT) {[0] > 0, 1], [1]  [0,1], [0, 1] > [0]}
Ko(X") = {[0]x [0, [0] x [1], [1] x [0, [1] x [1]}
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Observe that the free faces of IC(X') are different from those of £(X’). In
particular, [0] x [1] and [1] x [1] are free faces with [0] x [1] < [0] x [0,1]. Let
X" be the space obtained by collapsing [0] x [1] through [0] x [0,1]. Then,

Ki(X") = {1 < [0,1],[0,1] x [0}
Ko(X") = {[o] > [0], [1] x o], [1] x [1]}

On K(X") we can now perform an elementary collapse of [1] x [1] through
[1] % [0,1] to obtain X" where

Ki(X") = {0, 1] x [0]}
Ko(X") = {[o] < [0], [1] < [0], }

A final elementary collapse of [1] x [0] through [0, 1] x [0] results in the
single point X" = [0] x [0]. Thus, through this procedure we have reduce a
2-cube to a single point.

Theorem 4.55 Let X' be obtained from X wvia an elementary collapse of Qg
through Py. Then
H.(X') = H,(X).

Proof: Let 0’ and 0 denote the boundary operators on C,(X') and C.(X),
respectively. Assume dim Py = k. By Lemma 4.52, dimQ, = k — 1.
Observe that
Co(X)=Co(X) n#kk—1.

Therefore, the domain and range of 9, and 0/, remain the same except for
n#k+1,k,k—1,k— 2. Thus,

Hy(X')=Hy(X) n#k+1,kk—1k—2.

By Lemma 4.52, Py € Bj,(X), thus By(X) = Bj(X’). This means that
the
image 0 = image d'.

Therefore, Zy,1(X') = Z,1(X) which implies that

Hy 1 (X') = Hyy1 (X).
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The cubical set Xc R? The cubical set X'c R?
2 2
15 15
1 Q 1 Q
0 0
-0.5 -0.5
4 0 1 2 Y 0 1 2
The cubical set X"c R The cubical set X"c R?
2 2
1.5 15
1 Q 1
0.5 P! 0.5
0 0 —
-0.5 -0.5
= 0 1 2 Y 0 1 2

Figure 4.7: Sequence of Elementary Collapses of [0,1] x [0,1 C R?.

Assume that .
0Py = Qo + Z aiRi; (4.5)

i=1
where R; # Qo and a; = +1 for all : = 1,..., k. It should be notAed thatAin
writing this equation a choice has been made for orientations of Py and .

The reader should check that the argument is, in fact, independent of this
choice. Now

k
0 = Og—100k(Py) = Op—1(Qo) + Op—1 (Z aiRi> :

=1

This implies that
O 1(Qo) = =0k 1 (i Cliéz) (4.6)
and hence, By_»(X') = Bg_o(X). Thereforel,_
Hy o(X') = Hi 2(X).
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Now consider ¢ € Z;(X). We can write

Then,
0 = 8kc
o~ I o~
= boOpPo + D b0k(P)

=1

k I
= boQo + bo Z a;R; + Z biO ()

where the last equality follows from (4.5). By Lemma 4.52, Qo does not
appear in either of the summations. Thus, by = 0. Observe that this means
that

and hence that ¢ € Z(X’). This in turn implies that Z;(X') = Z(X). Since
Bip(X') = B(X).
H(X') = Hp(X).

The final step is to show that there exists a group isomorphism f :
Hy 1(X) — Hj_1(X'). We will do this as follows. Consider o € Hy_1(X).
Then « = [f] for some 0 € Z;_;(X). We can write

J
0 =boQo+ > b;S;
j=1

where S; # Q. Recall (4.5) and define
S
0 =—by > a;R; + > b;S;.
i=1 j=1
Then, by (4.6)

= [0'] € Hy—1(X). (4.8)




144 CHAPTER 4. CUBICAL HOMOLOGY

But,
S
— Z a; R; + Z aij € Zk,l(Xl)
i=1 j=1
and thus we can view [0'] € Hi_1(X'). So define

F(oD) =10

It is straightforward to check that f is a group homomorphism, so all that
remains is to show that it is an isomorphism. Since Z; 1(X') C Zy 1(X)
it is clear that f is surjective. To show it is a monomorphism assume that
01,0y € Zp_1(X) and that f([f1]) = f([#2]). The same argument that led to
(4.8) shows that [0,] = [fs] € Hi_1(X). u

Corollary 4.56 Let Y C X be cubical sets. Furthermore, assume that Y
can be obtained from X via a series of elementary collapses, then

H.(Y)® H,(X).
From Examples 4.54, 4.49 and Corollary 4.56 we can conclude that

Z iftk=0

A ([0,1]x [0, 1]) ~ {0 otherwise

Up to this point the discussion of elementary collapses has been purely
combinatorial and algebraic. We have not indicated how an elementary col-
lapse is related to a topological operation. This is the purpose of following
discussion.

Let Q C R™ be an elementary cube of the form

Q=1 x--x1I,

where I; = [a;, b;] is an elementary interval. To simplify the formulas for the
continuous maps that will be used we want to move @) to the origin. Thus
we define the translation

To(z1, 22, ..., 0) = (X1 — Q1,03 — A2, ..., Ty, — Qy)- (4.9)
Let P =Tg(Q). Then, P has the form,

P=J x - xJ,
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where J; = [0,d;] and d; € {0,1}. If dim P > 0, then there exists iy such
that d;, = 1. Let
R=K; x-X Kn

1) ifi=i
K' — [ 05
’ { J; otherwise.

where

The R is both a free and a proper face of P.

Lemma 4.57 Let P’ be obtained from P via the elementary collapse of R
through P. Then, P' is a deformation retract of P.

Proof: If dim P = 1, then this is just restating the fact that a point is a
deformation retract of an edge. So we can assume that dim P > 1.
Let Z={i|d; =1} \ {io}. Define F': P x [0,1] — P by

(1,..., (2 maX;cz {xl — %})taﬂ Etxio, cey T) if0<t<l,
F(l‘l,...,l'n,t): tan 5t
limyq (21, .., (2 max;cr {xz — %}) Tigy oy Ty) ift=1.
(4.10)
Observe that F'(-,0) = id p, F|prxjo1 = id pr, and F(P,1) C P’. We leave it
to the reader to check that F' is continuous. [ |

Proposition 4.58 Let (Q be an elementary cube. Let Q' be obtained from Q)
through an elementary collapse. Then @' is a deformation retract of Q.

Proof: Let ¢Q C R™. Since () is an elementary cube it has the form
Q=L x---x1,

where I; = [a;, b;] is an elementary interval. Let S be the proper free face of
@ such that ' is obtain by the elementary collapse of S through ). Then
S has the form S = J; x --- X J, where

J.:{[a] if © = 1o,
’ J;  otherwise.

and « € {a;,, b;,}. We will present the proof in the case that a = b;;. The
case that o = a;, is left to the reader.
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Define G : @ x [0,1] — @ by
G(z,t) = T, (F(To(x),t)) (4.11)

where F' is given by (4.10) and Ty is given by (4.9). That this is the desired
deformation retraction follows from Lemma 4.57. [}

Proposition 4.59 Let X be a cubical set. Let X' be obtained from X
through an elementary collapse. Then X' is a deformation retract of X.

Proof: Let X' be obtained by the elementary collapse of the proper free face
S through the elementary cube @). Define H : X x [0,1] — X by

G(z,t) ifre@

x otherwise,

H(z, 1) = {

where G is given by (4.11). We leave it to the reader to check that H is
continuous. m

Exercises

4.7 Use the elementary collapses to show that the elementary cube [0, 1]
is acyclic.

4.8 Let X be the solid cubical set discussed in Exercise ?7?7. Here is an alter-
native way of computing the homology of X: Use the elementary collapses of
X onto the simple closed curve I' defined as the union of four line segments
[1,2] x [1] x [0] , [2] x [1,2] x [0] , [1,2] x [2] x [0] , [1] x [1,2] x [0] . Compute
the homology of I' and deduce what is the homology of X.
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4.5 Acyclic Cubical Spaces

We finish this chapter with a class of important cubical sets; those which
have trivial homology, i.e. the homology of a point

Definition 4.60 A cubical set X is acyclic if

Z itk=0

H.(X) ~
£(X) {0 otherwise.

Proposition 4.61 Elementary cubes are acyclic.

Proof: Let Q = I, x Iy x --- X I, be an elementary cube. We can assume
that I; = [0,b;] where b; € {0,1}. (If @ is not of this form, then use the
translation T to move it to the origin.)

The proof is by induction on the dimension of Q.

If dim @ = 0, then the result follows from Example 4.49.

Now assume that the result is true for every elementary cube of dimension
less than d and that dim (@) = d. Since, it is possible that d < n not all
elementary intervals need be nondegenerate. Let

J = {i|I;=[0,1]}.

Let m = max{i € J}.
Observe that

Fi=1x---I,1x[1] x[0] x---x[0]

is a free face. Let Q' be the cubical set obtained by collapsing F' through Q.
Q' can now be written as the union of d — 1 dimensional elementary cubes.
To be precise if i € J, set

G01211X"'X1i_1><[O]in_l_lX"'XIm_lX[O,]_]X[O]X"'X[O]

)

and let

Gli=1 x- - xILi 1 x[1] X Ly X -+ X Iy 1 x [0,1] x [0] x - -+ x [0].

)

set
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Then
Q'=ru|JG?
1eJ
where o € {0,1}. Now observe that each G¢ has a proper free face

Fli=T x- - x L x[1] x Ly X -+ X Ly g x [1] x [0] x -+ x [0]
and
F) =1 x - x I 1 X[0] X Tiyq X -+ X Ly 1 x [1] x [0] x -+ x [0].

Let Q be the cubical set obtained by collapsing each F* through G¢. Q? can
be written as a union of P and d — 2 dimensional elementary cubes. Again,
to be precise, for each pair i,y € J with i; < iy, let a = (o, ) € {0,1}?
and set

Gial,iz = Il X oo X [il—l X [al] X -[i1+1 X oo 'Iiz—l X [&2] X [i2+1 X oo
X1 % [0,1] x [0] x - -+ x [0]
Then,
Q*=PuU U G 4,
1,12 € J
1 < iy
a € {0,1}?

Once again, each G¢ ; has a free face

Fo

01,462 = 11 X e X Iil—l X [O[l] X [i1+1 X v '[i2—1 X [0[2] X [i2+1 X oo

X1 X [1] x [0] X - - x [0]
which allows for an elementary collapse. After k steps we have that

Q"=PuU U G i
iigs o ir €T
1 <lgp < - <1
o€ {0,1}F

where G¢

it is,..i, 18 the elementary cube of the form J; X --- x J, with

[Oéj] le:Z] € {il,iQ,...,ik}
J; =< [0] ifig J
[0,1] otherwise.
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Furthermore, G ; . has a proper free face Fj}; . = K; X---x K, of
the form o o _
;] ifi=1i; € {i1,92,..., 0k}
Ko 0] ifigJ
' [1] ifi=m

[0,1] otherwise.
After, d iterations we have that

Q=P
and by the induction step P is acyclic. [

While the reduction process that we used in the previous proof is simple
to implement, it is rather difficult to comprehend. Therefore, we would like
to have conceptually easier way to conclude that a cubical set is acyclic. The
following theorem provides us with such a method. As we shall see in Chapter
6 this is a simple version of a much more general and powerful theorem called
the Meyer-Vietoris sequence.

Proposition 4.62 Assume X,Y C R" are cubical sets. If X, Y and XNY
are acyclic, then X UY s acyclic.

Proof: We will first prove that Ho(X UY) ~ Z. By Theorem 4.51 the
assumption that X and Y are acyclic implies that X and Y are connected.
X NY is acyclic implies that X NY # (). Therefore, X UY is connected and
hence by Theorem 4.51, Hy(X UY) ~ Z.

Now consider the case of Hi(X UY). Let z € Z;(X UY') be a cycle. We
need to show that z € B;(X UY). By Proposition 4.33, z = zy + 2y for
some zx € C1(X) and 2y € C1(Y). Since z is a cycle, 0z = 0. Thus,

0 = 0z
= 0(zx + 2v)
= Ozx + 0zy
—0zy = O0Ozx.

Observe that —0zy,0zx € Co(Y N X) = Zy(Y N X). From the assumption
of acyclicity, Ho(Y N X) = Z. Therefore, as an element of Hy(Y N X),
[0zx] =n € Z.

We will now show that n = 0. dzx € Cy(XNY) implies that 0zx = > az-]3i
where P, € Ko(X NY). By Theorem 4.51, [0zx] = n € Z implies that



150 CHAPTER 4. CUBICAL HOMOLOGY

~

> a; = n. Define the group homomorphism € : Co(X) — Z by €(P) = 1 for
each P € Ko(X UY). Then for any Q € Ko(X UY) €(0Q) = 0. Therefore,

€(0zx) = 0, but
€(0zx) =D a; =n.

Therefore, n = 0.
Since [0zx] = 0 € Hy(X UY'), there exists b € C1(X NY) such that
0b = Ozx. Now observe that

O(=b+ zx) = —0b+ dzx = 0.

Therefore, —b + zx € Zy(X). But, H;(X) = 0 which implies that there
exists by € Cy(X) such that 0bx = —b + zx. The same argument shows
that there exits by € Cy(X) such that dby = b+ zy. Finally, observe that
bx + by € CQ(X UY and

a(bx + by) - 8bx + aby
= b4+z2zy + b+ 2y
= 2y +2x

C.

Therefore, ¢ € B; (X UY') which implies that [2] = 0 € H;(XUY). Therefore,
H/(XUY)=0.

We now show that H,(X UY)~ 0 foralln > 1. Let z € Z,(X UY) be
a cycle. Then by Proposition 4.33.2, z = zx + 2y for some zy € C,(X) and
zy € Cy(Y). Since z is a cycle, 0z = 0. Thus,

0 = 0z
= O(zx + 2zv)
= Ozx + 0zy
—0zy = Ozx.

Of course, this does not imply that dzy = 0. However, since zy € C,(Y') and
zx € Cp(X) we can conclude that —0zy,0zy € C,,_1(Y N X). Let ¢ = 0zx.
Since

Jdc=000zx =0

¢ € Zy (Y N X).
Since X NY is acyclic, H,, 1(XNY) = 0. Therefore, c € B, 1(XNY). i.e.
there exists a ¢ € C,,(XNY') such that ¢ = 9¢. It follows that zx —¢ € Z,(X)
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and zy +¢ € Z,(Y). By the acyclicity of X and Y there exist ¢y € C,41(X)
and c§ € Cp,11(Y) such that zy — ¢ = 9cy and zy — ¢ = 0¢),. Therefore

z=zx +z2y =0(cx +¢) € B,(XUY).

Proposition 4.63 If X C R" is a conver cubical set, then X is acyclic.

Proof: Since X is a convex cubical set, it can be written as the product of
intervals, i.e.
X = [al,bl] X e X [an,bn]

where a;,b; € Z. (Note: we are not assuming that these are elementary
intervals.) Let the dimension of X be d, the number of intervals such that
b; > a;. The proof will be by induction, both on the dimension of the convex
set and the number of d-dimensional elementary cubes in X.

Observe that if X is 1 dimensional, then X is a line segment in R"™, which
is easily checked to be acyclic.

If X consists of a single d dimensional elementary cube, then by Propo-
sition 4.61 X is acyclic.

So assume that there are g elementary d dimensional cubes in X and
that the proposition is true for every convex cubical set with less than ¢
elementary d dimesional cubes and every convex set of dimension less than
d.

Observe that for some ig, b
cube. Let

io — @i, > 2. If not, then X is an elementary

Xl = [alabl] X X [aima’io +1] X X [a”’b”]

and
Xy = [ag, b1] X -+ X ag, +1,bg] X -+ X [an, by.

Then, X, Xy, and X; N X, are convex cubical sets. Furthermore, since the
number of d dimesional elementary cubes in X; and X5 are less than ¢, X;
and Xy are acyclic. The dimesion of X; N X5 is less than d, and hence by
induction is also acyclic. The result follows from Proposition 4.62. ]

Since convex cubical sets are always the products of intervals they repre-
sent a small class of cubical sets. A slightly larger collection that is topolog-
ically simple is as follows.
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Definition 4.64 A cubical set X C R" is starshaped with respect to a point
x € Z" if X is the union of a finite number of convex cubical sets each of
which contains the point .

Proposition 4.65 Let X;, i = 1,...,n be a collection of starshaped sets
with respect to the same point x. Then,

U Xz and ﬂ Xz
=1

=1

are starshaped.

Proof: Since X is starshaped be can write X; = UR; ; where R; ; is convex
and z € R; ;. Thus, if X = U; X}, then X = U; ;R; ; and hence is starshaped.
So assume that X = N;X;. Then

e
- u(nn)

J

But, since x € R;; for each i, j, for each j, N; R;; is a convex and contains
x. Again, this means that X is starshaped. [

Proposition 4.66 Fvery starshaped set is acyclic.

Proof: Let X be a starshaped cubical set. Then, X = Ule R; where each R;
is a cubical convex set, there exists x € X such that x € R; foralli =1,.. .k,
and k is the minimal number of convex sets needed to obtain X. The proof
is by induction on k.

If kK =1 then X is convex and hence by Propostion 4.63 is acyclic.

So assume that every starshaped cubical set which can be written as
the union of k£ — 1 convex sets containing the same point is acyclic. Let
Y = Uf;ll R;. Then by the induction hypothesis, Y is acyclic. Ry is convex
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and hence by Propostion 4.63 is acyclic. Furthermore, R; N R}, is convex for
eachi=1,...,k—1 and

k—1
YNR,=[)(RNRy).

=1

Therefore, Y N Ry, is a starshaped. region which can be written in terms of
k — 1 convex sets. By the induction hypothesis it too is acyclic. Therefore,
by Proposition 4.62, X is acyclic. ]

Proposition 4.67 Assume that C is a family of rectangles in R™ such that
the intersection of any two of them is non-empty. Then NC is non-empty.

Proof: First consider the case when d = 1. Then rectangles become intervals.
Let a denote the supremum of the set of left endpoints of the intervals and
let b denote the infimum of the set of right endpoints. We cannot have b < a,
because then one can find two disjoint intervals in the family. Therefore
0 # [a,b] C NC.

If d > 1 then each rectangle is a Cartesian product of intervals, the
intersection of all rectangles is the Cartesian product of the intersections
of the corresponding intervals, and the conclusion follows from the previous
case. ]

Proposition 4.68 Let X C R" be a cubical set. Let A C X such that
diam A < 1. Then, ch (A) N X is acyclic.

Proof: Let
C:={Q e K(X) |Q NA # 0}.

Since X is cubical
ch(A)NX=JQ
Qec
Observe that for any two elementary cubes P, () € C the intersection P N Q)
is non-empty, because otherwise diam A > 1. Therefore by Proposition 4.67
also N C is non-empty. It follows that ch (A) is star-shaped and consequently
acyclic by Proposition 4.66. ]

Exercises
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4.9 Give an example where X and Y are acyclic cubical sets, but X UY is
not acyclic.

4.10 Consider the capital letter H as a 3-dimensional cubical complex.
Compute its homology.
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4.6 Reduced Homology

In the proofs of Theorem 4.51 and Proposition prop:acyclicM-V we used a
specific group homomorphism to deal with the fact that the 0-th homology
group was isomorphic to Z. In mathematics seeing a particular trick being
employed to overcome a technicality in different contexts suggests that the
possibility of a general procedure to take care of the problem. As was men-
tioned the difficulty arose because Hy =2 Z rather than being trivial. We can
therefore, as the following question: Is there a different homology theory such
that in the previous two examples we would have trivial Oth level homology?

Hopefully, this question does not seem too strange. We spent most of
Chapter 2 motivating the homology theory that we are using and as we did
so we had to make choices of how to define our algebraic structures. From
a purely algebraic point of view, given K(X) all we need inorder to define
homology groups is a chain complex {Cy(X), Ok }rez. This means that if we
change our chain complex, then we will have a new homology theory. The
trick we employed involved the group homomorphism € : Cy(X) — Z defined
by sending each elementary cubical chain to 1. Furthermore, we showed in
each case that € o 0; = 0, which means that

image d; C kere.

It is with this in mind that we introduce the following definition.

Definition 4.69 Let X be a cubical set. The reduced cubical chain complex
of X is given by {C}(X), Ok }rez where

. Z if k=1,
Cr(X) = {Ck(X) otherwise,

and

5 L { € if k= 0,
719, otherwise.

The corresponding homology groups form the reduced homology of X and are
denoted by
Hp(X).

The following theorem indicates the relationship between the two homol-
ogy groups we now have at our disposal.
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Theorem 4.70 Let X be a cubical set. ﬁg(X) is a free abelian group and

Hy(X)®Z fork=0

Hy(X)~{ =0

€(X) { Hy(X) otherwise.

Furthermore, if {P;|i=0,...,d} is a collection of vertices in X consisting

of one vertex from each connected component of X, then
forms a basis for Hy(X).

Proof: Let ¢ € Cy(X). Then, by Theorem 4.51 there exists
d
cC = o,
i=0
such that [¢] = [¢] € Hy(X). In other words, there exists b € C(X) such that
¢ = c + 01b. Furthermore, ['] = 0 if and only if a; =0 for all i = 0,...,d.
Since Cy(X) = Cp(X), ¢ € Cy(X). However, ¢ € Zy(X) only if €(c) = 0.
But,

)

Eh

e(c) = e(d + oib)
= €(d)+edd

~ Now assume that X has exactly one connected component. Then, ¢ €
Zy(X) if and only if ¢ = 0. Therefore, in this case Ho(X) = 0.
So assume that d > 1. ¢ € Zy(X) implies that 3% ja; = 0. Thus,

0=-%¢%, a; Py. Thus, we can write
d 4
d = Y P =) ;P
i=0 i=0
d ~
= Z CYi(Pz - Po)
1=0

This theorem allows us to give an alternative characterization of acyclic
spaces.
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Corollary 4.71 Let X be a nonempty acyclic cubical set, then

H,(X)=0.
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4.7 Comparison with Simplicial Homology

4.7.1 Simplexes and triangulations

We present here basic definitions and results of Simplicial Homology Theory.
The proofs of the presented results and more examples may be found in most
of standard textbooks in Algebraic Topology, e.g. [Munkres,Keesee,Rotman)].
A subset C' of R" is called convez if, given any two points z,y € C, the
line segment
[z,y] ={tz+ (1 —-t)y |0 <t <1}

is contained in C.

Definition 4.72 The convez hull coA of a subset A of R" is the intersection
of all closed and convex sets containing A.

There is at least one closed convex set containing C', the whole space R",
hence coA # (). It is easy to see that an intersection of any family of convex
sets is convex and we already know that the same is true about intersections
of closed sets. Thus coA is the smallest closed convex set containing A. It is
intuitively clear that the convex hull of two points is a line segment joining
those points, a convex hull of three non-colinear points is a triangle, and a
convex hull of four non-coplanar points is a tetrahedron. We shall generalize
those geometric figures to an arbitrary dimension under the name simplex.

Theorem 4.73 Let V = {vg,v1,...,v,} € R"™ be a finite set. Then coV is
the set of those x € R™ which can be written as

= Nv;, 0< N <1;3) =1, (4.12)

In general, the coefficients \; are not unique. If, for example a,b, ¢, d are
four vertices of the unit square on Figure 2.2 then

11 1 1 1 1
. )== 0b+ —c+0d =0 b+ 0c+ =d .
(2,2) 2a+ —|—2c+ a+2 + c+2
Definition 4.74 A finite set V = {vg,v1,...,v,} in R™ is geometrically
independent if, for any x € coV, the coefficients )\; in Equation 4.12 are
unique. If this is the case, \; are called barycentric coordinates of x.
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Theorem 4.75 Let V = {vy,v1,...,v,} € R™ Then V is geometrically
independent if and only if the set of vectors {vy — vy, vy — Vg, ..., Uy — o} I8
linearly independent. When this is the case, the barycentric coordinates of
x €V are continuous functions of x.

Definition 4.76 Let V = {v,v1,...,v,} be geometrically independent.
The set s = coV is called simplex or, more specificaly, n-simplex spanned
by vertices vy, v1,...,v,. The number n is called the dimension of V. If V' is
a subset of ¥V of k < n vertices, the set co)’ is called k-face of coV.

The union bd (o) of all (k — 1)-faces of a k-simplex s is called geometric
boundary of s. It is easy to verify that a point z € s is in bd s if and only if
at least one of its barycentric coordinates is equal to zero.

From Theorem 4.75 we get the following

Corollary 4.77 Any two n-simplexes are homeomorphic.

Proof: . Let s = co{vy,v1,...,v,} and t = co{wg,wr,...,w,} be two n-
simplexes. Let \;(x) be barycentric coordinates of € s and \;(y) barycentric
coordinates of y € ¢t. By the definition of geometric independence and by
Theorem 4.75 the formula

we will later make use of the following

Definition 4.78 Given any n > 0 the standard n-simplez A,, is given by
A, = cofe, e, ...e,11} where {ej,es,...€,,1} is the canonical basis for
R""!. It is easy to see that any linearly independet set is also geometrically
independent so A, is an n-simplex indeed. Its special property is that the
barycentric coordinates of any point z in A, coincide with the cartesian
coordinates 1, g, ... Tyt
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Figure 4.8: Subdivisions of a square to triangles: the first two are triangula-
tions, the last one is not.

Definition 4.79 A simplicial complex S is a finite collection of simplexes
such that

1. Every face of a simplex in in § is in S;

2. The intersection of any two simplexes in S is a face of each of them.

The subset of R™ being the union of all simplexes of § is called the space
of § and is denoted by |S].

Definition 4.80 A subset P € R" is called polytope or polyhedron if P = |S|
for some simplicial complex §. In this case S is called a triangulation of P.

Obviously, a polytope may have different triangulations. The Figure 4.8
shows examples of subdivisions of a square to triangles. The first two are
triangulations but the last one is not since the intersection of a triangle in the
lower-left corner with the triangle in the upper-right corner is not an edge of
the latter one but a part of it.

One may expect that any cubical set can be triangulated. We leave the
construction as an exercice.

Example 4.81 By a torus we mean any space homeomorphic to the product
St x St of two circles. Since S' x S' € R, it is hard to visualise it. However
one can show, by means of polar coordinates, that this space is homeomorphic
to the surface in R3 obtained by rotation of the circle (z—2)?+22=1, y =0
about the Y-axis. This set can be described as the surface of a donat. Neither
of the above surfaces is a polytope but we shall construct one which is. Let
G be the boundary of any triangle in R%2. Then G is a simple closed curve
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Figure 4.9: Triangulation of a torus

hence it is homeomorphic to the unit cicle. Thus T'= G x G € R* is a torus.
In order to construct a triangulation of 7" we may visualise T" as a square on
Figure 4.9 with pairs of parallel sides glued together. More precisely, consider
the square [0, 3]*> = co{a,b,c,d} where a = (0,0),b = (0,3),c = (3,3),d =
(0,3). Bend the square along the lines z = 1 and = = 2 and glue the directed
edge [a, d] with [b, ¢] so that the vertex a is identified with b and d with ¢. We
obtain a cylinder in R? with a boundary of a unilateral triangle in the plane
y = 0 as the base. We bend the cylinder along the lines y = 1 and y = 2
(this cannot, be done in R? without stretching but we may add another axis)
and glue the edge [a, b] with [d, ¢]. Note that the four vertices a, b, ¢, d of the
square became one. The bend lines divide the square to nine unitary squares.
Each of them can be divided to two triangles as shown on Figure 4.9. Let
S be the collection of all vertices, edges, and triangles of T" obtained in this
way. Although some vertices and edges are identified by gluing, the reader
may verify that § satisfies the definition of simplicial complex.

4.7.2 Simplicial Homology

The term simplicial complex suggests that there should be some natural
structure of chain complex associated with it. That is not so easy to define
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due to problems with orientation which do not appear when we study cubical
sets. We shall therefore proceed as we did with graphs in Chapter 2, that is,
we shall start from chain complexes with coefficients in Z,. This will make
definitions much more simple and, historically, this is the way homology was
first introduced.

Let C*(S, Z3) be the vector space generated by the set S* of k-dimensional
simplexes of S as the canonical basis. We put C*(S,Z,) := 0 if S has no
simplexes od dimension k. The boundary map 0 : C*(S, Zs) — C* (S, Z>)
is defined on any basic element s = co{vg, vy, ...,v,} by the formula

n
Op(s) = ;co(V \ {vi}) .

Thus, in modulo 2 case, the algebraic boundary of a simplex corresponds

precisely to its geometric boundary. We have the following

Proposition 4.82 0,_10, = 0 for all k.

Proof: For any basic element s = co{vg, v1,..., v},

9 104(0) = X3 colV\ for,3))

j#i i=0

Each (k — 1)-face of s appears in the above sum twice, therefore the sum
modulo 2 is equal to zero. [

Thus C(S, Zs) := {C*(S, Z3), O} } rez has the structure of a chain complex
with coefficients in Zs. The homology of that chain comlex is the sequence
of vector spaces

H.(S,Zs) = {H,(S, Z5)} = {kerd, /im .}

The modulo 2 homology of graphs discussed in Section 2,2,2 is a spe-
cial case of what we did above. The real goal however is to construct a
chain complex corresponding to & with coefficients in Z as defined in Section
3.7. As we did it with graphs, we want to impose an orientation of vertices
Vo, U1, ..., U, Spanning a simplex. In case of graphs that was easy since each
edge joining vertices a,b could be written in two ways, as [a, b] or [b,a] and
it was sufficient to tell which vertex do we want to write as the first and
which as the last. In case of simplexes of dimension higher than one, there
are many different ways of ordering the set of vertices.
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Definition 4.83 Two orderings (vg, vy, ..., v,) and (vp,, Up,, - .., vy, ) of ver-
tices of an n-simplex s are said to have the same orientation if one can get
one from another by an even number of permutations of neighboring terms

('Uz'flavi) — (Uia'Uz'fl) .

This defines an equivalence relation on the set of all orderings of vertices od
s. An oriented simplex o = [vg,v1,...,v,] is is an equivalence class of the
ordering (vg, vy, ...,v,) of vertices of a simplex s = co{vy, v1,...,v,}.

It is easy to see that for n > 0 the above equivalance relation divides
the set of all orderings to two equivalence classes. Hence we may say that
the orderings which are not in the same equivalence class have the oposite
orientation. We shall denote the pairs or oposite oriented simplexes by o, o’
or 7,7'. An oriented simplicial complex in a simplicial complex S with one
of the two equivalence clsses chosen for each simplex of §. The orientations
of a simplex and its faces may be done arbitrarily, they do not need to be
related.

Example 4.84 Let s be a triangle in R? spanned by vertices a, b, c. Then
the orientation equivalence class o = [a, b, ¢|] contains the orderings (a, b, ¢),
(b,c,a), (c¢,a,b) and the oposite orientation o’ contains (a,c,b), (b,a,c),
(¢,b,a). One may graphically distinguish the two orientations by tracing
a closed path around the boundary of the triangle s following the order of
vertices. The first equivalence class gives the counter-clockwise direction and
the second one the clockwise direction. However, the meaning of clockwise
or counterclockwise orientation is lost when we consider a triangle in a space
of higher dimension. Let S be the complex consisting of s and all of its edges
and vertices. Here are some among possible choices of orientations and their
graphical representations on Figure 4.10:

1. [a,b,¢],a,b], b, c],[c, a]
2. la,b,¢cl,[a,b],[b,c],[a,c]
3. [a,c,b],[a,b],[b,¢],[a,c]

On the first sight second and third orientation seem wrong since the arrows
on the edges of the triangle do not close a cycle but do not worry: when we
get to algebra, the "wrong” direction of the arrows will be corrected by the
minus sign in the formula for the boundary operator.
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a b a b a b

Figure 4.10: Some orientations of simplexes in a triangle

Let now S™ be the set of all oriented n-simplexes of §. Recall from
Section 3.2 that a free abelian group Z°" generated by S™ is the set of all
functions ¢ : S™ — Z, generated by basic elements ¢ which can be identified
with o € S™. We would like to call this the group of n-chains but there is a
complication: If n > 0, each n-simplex of & corresponds to two elements of
of S™. We therefore adapt the following definition.

Definition 4.85 The group of n-chains denoted by C"(S) is the subgroup
of Z°" consisting of those functions ¢ which satisfy the identity

if o and o’ are oposite orientations of the same n-simplex s.

Proposition 4.86 The group C"(S) is a free abelian group generated by fuc-
tions ¢ = 6 — o' given by the formula

1 ifrt=o0,
o(r):=¢ =1 ifr =0,
0  otherwise,

where o,0',7 € S™ and o,0" are oposite orientations of the same simplet.
This set of generators is not a basis since o' = —a& for any pair o,0'. A basis
15 obtained by chosing either one.

The choice of a basis in Proposition 4.86 is related to the choice of an
orientation in §. Upon identification of the basic elements ¢ with o we get
the identification of o’ with —o. We put C*(S) := 0 if S contains no n-
simplexes. The boundary map 8y : C*(S) — C*~1(8) is defined on any basic
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element [vg, v1,...,v,] by the formula
n .
Ok[vo, V1, ..., U] = Z(—l)’[vg, Vly e vy U1y Uitly -+ s Un) -
i=0

There is a bit of work involved in showing that this formula actually
defines a boundary map: First, one needs to show that the formula is correct
i.e. that it does not depend on the choice of a representative of the equivalence
class [vg, v1, . .., v,]. Secondly, one needs to show that d;_109; = 0. The reader
may consult [Munkers| for the proofs.

Thus C(S) = {C*(S), Ok }rez has the structure of a chain complex as
defined in Section 3.7. The homology of that chain complex is the sequence
of abelian groups.

H.(S) = {Hy(S} = {ker 8, /im Dy} .

An important and difficult problem is to show that different triangulations
of the same polytope have isomorphic homology comology complexes. That
is proved by means of so called barycentric subdivisions and is too involved
for the scope of this overview. The concept of barycentric subdivision will
appear as a by-product of the proof of Theorem 4.87 in the next section.

4.7.3 Comparison of Cubical and Simplicial Homology

Cubical complexes have several nice properties which are not shared by sim-
plicial complexes:

1. As we already mentioned in the introduction to this chapter, numerical
computations and computer graphics naturally lead to cubical sets.
Since they already have a sufficient combinatorial structure to define
homology, further subdivision to triangulations becomes artificial and
increases the complexity of data.

2. A product of elementary cubes is an elementary cube but a product of
simplexes is not a simplex. For example, a product of a triangle by an
interval is a cylinder and it has to be triangulated in order to compute
the simplicial homology. That feature of elementary cubes makes many
proves easier and lists of data shorter.



166 CHAPTER 4. CUBICAL HOMOLOGY

3. We shall talk later about cubical subdivisions. That will be done very
naturally by changing the scale on each coordinate so that the grid Z"
of integer coordinates is replaced by the grid (3Z)". Each elementary
cube is then subdivided to 2" smaller cubes by cutting the length of
each side by half. The notion of barycentric sudivision in the simplicial
theory is much more complicated both numerically and concepionally.

4. As we have seen in the previous section, the notion of orientation in
simplicial complexes is not an easy concept to learn. Why does this
problem not appear in the study of cubical complexes? The answer
is in the fact that the definition of a cubical set is dependent on a
particular choice of coordinates in the space. First, already in R, we
have unknowingly chosen a particular orientation by having written
an elementary interval as [[,] + 1] and not [l + 1,[]. In other words,
a linear order of real numbers imposes a choice of an orientation on
each coordinate axis in R". Secondly, by having written a product of
inervals I; X I X - - - X I, we have implicitely chosen the ordering of the
canonical basis for R".

There is one important weak point of cubical complexes: Every polytope
can be triangulated but not every polytope can be expressed as a cubical set.
In aprticular, a triangle is not a cubical set.

We have however the following result which will help us to define homol-
ogy of a polytope via cubical homology when we later introduce homology
of a map:

Theorem 4.87 Fvery polytope P is homeomorphic to a cubical set. More-
over, given any triangulation S of P, there exists a homeomorphism h : P —
X, where X is a cubical set, such that the restriction of h to any simplex of
S is a homeomorphism of that simplex onto a cubical subset of X.

Proof: In order to keep the idea transparent we skip several technical verifi-
cations. The construction of h is done in two steps.

Step 1. We construct a homeomorphic embedding of P into a standard
simplex in a space of a sufficiently high dimension.

Indeed, let S be a triangulation of P and let V = {vy,vq,...,vx} be the
set of all vertices of S. Let Ay be the standard N-simplex in RV *! described
in Definition 4.78. Consider the bijection fy of ¥ onto the canonical basis of
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RN T given by fo(v;) = €;. Given any n-simplex s = (co){vp,, vy, - .. Vp, } Of
S, fo extends to a map f, : s — RN*! by the formula

[ (Z Aivpi) = Z Aiepi

where ); are barycentric coordinates of a point in s. It follows that f,(s) is
a n-simplex and fs is a homeomorphism of s onto fs(s). If s and ¢ are any
two simplexes of S, sNt is empty or is their common face so if x € sNt then

fs(®) = fore(x) = fi(2) .
Thus the maps f; match on intersections of simplexes. Since simplexes are
closed and there are finitely many of them, the maps f; extend to a map
f: P — P := f(P). By the linear independence of {ej,es,...,ex}, one
shows that P is a polytope triangulated by { f(s)} and f is a homeomorphism.
Moreover, by its construction, f maps simplexes to simplexes.

Step 2. We construct a homeomorphism g of Ay onto the cubical set Y C
bd [0, 1]¥+! consisting of those faces of [0, ]! which have the degenerate
interval [1] on one of the components and such that any face of Ay is mapped
to a cubical face of Y. Once we do that, it will be sufficient to take X := g(P)
and define the homeomorphism h as the composition of f and g.

Consider the diagonal line L parametrised by ¢t — (¢,t,...,t) € RN*!,
t € R. The idea is to project a point x € Ay to a face of Y along the line L in
the direction away from the origin. Recall that the barycentric coordinates of
x € Ay coincide with its cartesian coordinates, thus Y z; = land 0 < z; <1
for all . The image y = g(x) should have coordinates y; = x; +t for all i and
some t > 0. This point isin Y if 0 < z; +¢ <1 forall ¢ and z; +t =1 for
some j. Note that the supremum norm of z is ||z|| = maz{zy, xs,...TNn11}.
Thus the number ¢ := 1 — ||z|| has the desired property and the coordinates
of y = g(x) are given by

yi=1+xz; — ||z]] .

It is clear that g is continuous. The injectivity of ¢ is proved by noticing that
any line parallel to L intersects Ay at a unique point. The surjectivity of ¢
is a by-product of the construction of its inverse ¢ '. Let y € Y. In order
to define z = ¢~ 1(y) we must find a number ¢ € [0,1] such that the point x
whose coordinates are given by x; = y; — ¢ is in Ay. For this, we must have

0<y; —t<1foralliand ¥} (y; —t) = 1. Thus

1 N+1
t=— —1).
N+1(jzlyj )
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Since 0 <y; <1 for all ¢ and y; = 1 for some j, ¢ has the desired properties.
[ ]

We finish this section by discussing an ineresting by-product of the above
proof. A reader unfamiliar with the simplicial theory may skip it or just try
to grasp the main idea. Note that the inverse image of the vertex (1,1,...,1)

of Y in g is the point
1
r=—(1,1,...,1
v N+1(’ e b)

called barycenter of Ay. By continuing along these lines one can show that,
for each face Q of Y, ¢71(Q) is a so called star of a vertex of Ay with
respect to the barycentric subdivision A’y of Ay. The first homeomorphism
f~! preservers the barycentric coordinates of points in each simplex so it
preserves barycenters and barycentric sudivisions. These observations permit
to define a homomorphism of chain complexes C(X) — C(S’) which induces
an isomorphism H,.(S') = H,.(X) in homology. If we take for granted the
result of the simplicial theory saying that that the simplicial homology H.,(P)
of a polytope is independent on the choice of a triangulation, we get

H.(P) = H.(X) .

In the last chapter we shall be able to arrive at this conlusion without
the necessity of applying the simplicial theory.

Exercises

4.11 Define the chain complex C(T,Z2) for the triangulation discussed in
Example 4.81 and use the homchain program to compute H,(T,Z,).

4.12 * Prove that any cubical set can be triangulated.

4.13 Label vertices, edges, and triangles of the triangulation of the torus
in Examplerefex:torus2 displayed on Figure 4.9. Define the chain complex
C(T). Use the homology program to compute H,(T).

4.14 Let K be a polytope constructed as 7" in Example 4.81 but with one
pair of sides twisted before gluing so that the directed edge [a, d] is identified
with [¢,b]. The remaining pair of edges is glued as before, [b, ¢|] with [a, d].
Compute H,(K). What happens if we try to use the homchain program for
computing H,(K,Zy) ?
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This K is called Klein bottle. Note that K cannot be visualised in R?, we
need an extra dimension in order to glue two circles limiting a cylinder with
twisting and without cutting the side surface of the cylinder.

4.15 Let P be a polytope constructed as 7" in Example 4.81 but with sides
twisted before gluing so that the directed edge [a,d] is identified with [c, b]
and [b, ¢] with [d,a]. Compute H,(P). What happens if we try to use the
homchain program for computing H, (P, Z5) ?

This P is called projective plane. Note that P cannot be visualised in R3.
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Chapter 5

Homology of Maps

If homology is a natural invariant of a topological space, then at the very
least given homeomorphic spaces X and Y it should be true that H,(X) and
H,(Y") are isomorphic as groups. To prove this we need to be able to pass from
continuous maps h : X — Y to group homomorphisms h, : H.(X) — H,.(Y).
Of course, for the time being the set of topological spaces that we can consider
is restricted to cubical sets.

As we have indicated many times by now an element of a homology group
is a cycle, i.e. a chain which lies in the kernel of the boundary map. Thus,
it is reasonable to expect that to define a map on homology one first needs
to define a map on the chains. We shall do this by first constructing a
multivalued map on cubes, and then providing an algorithm for obtaining a
linear map on cubical chains. We begin, however, with a purely algebraic
discussion of the latter.

5.1 Chain Maps

Let X and Y be cubical sets with associated cubical chain complexes C(X) =
{Cr(X),08} and C(Y) = {C(Y), ) }. We need to define a special class of
group homomorphisms between the chain complexes that will induce maps
on the homology groups. While we will use the notation F': C(X) — C(Y)
to represent such a map, it must be kept in mind that F' really consists of a
collection of group homomorphisms

171
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Since F' is supposed to induce a map on homology, it must be the case
that F maps cycles to cycles and boundaries to boundaries. As was discussed
in Section 5.1 this leads to the notion of a chain map.

Definition 5.1 Let X and Y be cubical sets with associated cubical chain
complexes C(X) = {C}(X),0 } and C(Y) = {Cp(Y),0)}. F : C(X) —
C(Y) is a cubical chain map if for every k € Z

6,?0Fk :Fk_loa,f. (51)

Another way to describe an equality such as (5.1) is through the language
of commutative diagrams. More precisely to say that the diagram

Ce(X) =5 Gy(Y)
Jox o
Croor(X) 255 0yl (Y)
commutes is equivalent to saying that 9} o Fj, = Fy_; o 9;.
Proposition 5.2 If ' : C(X) — C(Y) is a chain map, then
Fr: Zp(X) — Z(Y)

and
Fk : Bk(X) — Bk(Y)

Proof: 1f ¢ € Zy(X), then 9 c = 0. Thus
0= 8,?0 = Fka,fc = 8,§ch

which implies that Fic € Z;(Y).
Let ¢ € By(X). Then, there exists b € Cyy1(X) such that 95,0 = c.
Thus,
FkC = Fka,fﬂb = a;/Fkb

which implies that Fj(c) € Bi(Y). u
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Definition 5.3 Let F' : C(X) — C(Y) be a chain map. Define F, :
H.(X) — H.(Y) by
E([7) = [F()]-

That this map is well defined follows essentially from Proposition 5.2.
More precisely, if [y] € Hg(X), then v € Z;(X). By Proposition 5.2 [Fi(7y)] €
H(Y). Now assume that [y] = [a]. Then, & = v+ b where b € By (X). But,

0] = [F] = [Fry + Fib] = [Fi(y + b)] = [Fra] = F.[a].

We now know that cubical chain maps F,G : C(X) — C(Y) generate
homology maps F.,G, : H,(X) — H.(Y). It is natural to ask under what
conditions does F, = G..”

Motivate the following defintion

Definition 5.4 Let F,G : C(X) — C(Y) be chain maps. A collection of
functions

Dk : Ck(X) — Ck+1(Y)

is a chain homotopy between F' and G if for all k&
Ot 1Dk + Dy 10y =G — F.

Restating this definition in terms of a diagram gives

Cra(Y)
S|
Cr(X) 5 )
lox 7o
Cr-1(X)

Theorem 5.5 If there exists a chain homotopy between F' and G, then F, =
G,.
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Proof: Let [y] € Hi(X). Then

G(Y) = F(y) = 0y De(7) + Deadi (7)
8I§+1Dk(7) € Bi(Y)

Therefore, [G(v)] = [F(7)]. n

Example 5.6 Let X C R? be the boundary of the unit square [0, 1] x [0, 1].
Then
K (X) = {10, 1] > [0], [0 > [0, 1], [1] > [0, 1], [0, 1] < [1]} .

Let id : C(X) — C(X) be the identity map and let F' : C'(X) — C(X) be
the chain map which one can think of as being generated by rotating X by
90 degrees in a clockwise direction. More precisely,

Fy: Co(X) — Ch(X)
0] x [0] ~ [0] x[1]
0] x [1] — [1]x[1]
% [] ~ [1]x]0]
[ [0] ~ [0]x[0]
F:C(X) = C(X)
0,17 x[0] = —[0] x [0,1]
[0] % [0,1] + [0,1] x [1]
0,1 [1] = —[1]x[0,1]
1] x[0,1] + [0,1] x [0]

We will show that id ., = F, by producing a chain homotopy Dy, : Cx(X) —
Ci+1(X) from F to id. Observe that Ko(X) = 0, therefore Dy, = 0 for n > 1.
This means that only Dy needs to be defined. By definition it must satisfy

Dgal = F - ld .
Let

Dy:Co(X) — Ci(X)
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— —

O % [0] ~ [0]x[0, 1
O[] = [0,1]% [1]
X[ = —[1]xD0,1]
[1] < [0] = —[0,1] x [0]
Observe that
Dodh[0] % 0,1] = Da(([0] x [1] - [0] x [0])
[0,1] x [1] — [9]\>< 0, 1]
= (F —id)([0] x [0, 1]).
The remaining cases are left to the reader to check. ]

Proposition 5.7 Assume X,Y,Z are cubical sets and F : C(X) — C(Y)
and ¢ : C(Y) — C(Z) are chain maps. Then o F : C(X) — C(Z) is a
chain map and

(¢OF)*:¢*OF*-
The proof is left to Exercise 5.1.

Definition 5.8 A chain map F': C(X) — C(Y) is called a chain equivalence
if there exists a chain map G : C(Y) — C(X) such that G o F is chain
homotopic to id ¢(x) and F' o G is chain homotopic to id ¢y

Exercises

5.1 Prove Proposition 5.7

5.2 If F: C(X)— C(Y) is a chain equivalence then f, : H,(X) — H.(Y)
is an isomorphism.

5.3 * Let X be a cubical set and X' obtained from X via an elementary
collapse of a free face @ € K,,_1(X) through P € K, (X) as in Theorem 4.55.
Let j: C—1(X) — Cn(X) be the inclusion homomorphism and p : C,,(X) —
Cn 1(X) the projection homomorphism given on generators by p(]3) =0
and p(g) .= S if S # P. Show that poj = id¢, ,(x) and that j o p is chain
homotopic to id¢,(x). Conclude from Exercise 5.2 that H,(X') = H,(X).
This gives an alternative shorter proof of Theorem 4.55.



176 CHAPTER 5. HOMOLOGY OF MAPS

5.2 Cubical Multivalued maps.

In the last section we discussed chain maps and the maps they induce on
homology. We did not however, discuss how one goes from a continuous map
to a chain map. The are a variety of possibilities, each with it advantages
and disadvantages. The approach we will adopt involves using multivalued
maps to approximate the continuous map. The motivation for this was given
in Chapter 2. We now want to formalize these ideas.

Let X and Y be cubical sets. A multivalued map F - XXV from X to Y is
a function from X to subsets of V', i.e. for every x € X, F(x) C Y. However,
this notion is far too general to be of use in defining a homology theory. In
particular, we want to make sure that points, which have simple topology,
get mapped to sets that have simple topology. In the previous chapter we
introduced the notion of acyclic sets, i.e. sets with the same homology as that
of a point. With this in mind we restrict ourselves to the following types of
multivalued maps.

Definition 5.9 Let X and Y be cubical sets. A multivalued map F : X3y
is cubical if:

1. For every x € X, F(x) is an acyclic cubical set.

2. For every Q € K(X), F
F(x').

5 is constant, i.e. if z,2’ €Q, then F(x) =

Observe that since F(z) is cubical, F(x) is closed. If A C X, then

F(A) = U F(x).

TEA

Example 5.10 Let X = [0,2] and let Y = [—5, 5]. Define F : X3Y by

0] = [=9]
1] = 0]

2l = [
0,1) +— [—4,-1]
1,2) — [1,4]
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The graph of this function is given in Figure 5.1. Observe that F is a cubical
map. However, from several points of view this is not satisfactory for our
needs. The first is that intuitively it should be clear that a map of this
type cannot be thought of as being continuous. The second is that we are
interested in multivalued maps because we use them as outer approximations
of continuous maps. But it is obvious that there is no continuous map f :
X — Y such that f(z) € F(z) for all z € X.

Figure 5.1: The graph of the cubical map f : [0,2] — [-5, 5].

To overcome these problems we need to introduce a notion of continuity
for multivalued maps. Recall that for single valued functions, continuity is
defined in terms of the pre-images of open sets. We want to do something
similar for multivalued maps. However, the first problem is that there are at
least two reasonable ways to define a pre-image.

Let F: X3V and let B C Y. The weak pre-image of B under F is

F*YB) :={z € X | F(z) N B # B},
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while the pre-image of B is
FYB):={xe X|F(x) C B}.

Definition 5.11 A multivalued map F is upper semicontinuous if F~1(U)
is open for any open U C Y and it is lower semicontinuous if the set F*~1(U)
is open for any open U C Y.

Example 5.12 With our goal of using multivalued maps to enclose the im-
age of a continuous function there is in some a canonical choice of constructing
upper or lower semicontinuous cubical maps. To make this clear let us return
to the discussion in Section 7?7 where the use of multivalued maps was first
presented. We considered the function f(z) = (z —+v/2)(z+1) as a map from
X=[-22CcRtoY =[-2,4 CR.

Using a Taylor approximation we derived bounds on f that applied to the
elementary intervals (see Table 2.7 and Figure 2.7). These bounds were used
to define F(Q) for each Q € K1(X). There are two simple ways to define F
acting on vertices. Let P € Ko(X) and let QF € K1(X) be the two edges for
which P € Q* (if P = [0] or P = [2], then set Q= = Q™). Define

FU(P) == F(Qp) U F(Qp)

and
FUP) = F(Qp) N F(Qp)-

Then, F* is upper semicontinuous and F' is lower semicontinuous.

Proposition 5.13 Assume F : XXV is a cubical lower semicontinuous

[e]

map. If P,Q € K(X) and P is a face of Q), then F(P) C .7:(52)

Proof: Since ]—"(52) = F(z) for z 652, the set .7-"(52) is cubical and conse-
quently closed. Thus the set U :=Y \ F(Q) is open. By the lower semicon-
tinuity of F,

Vi=F"HU)={z€ X | F(z)NU # 0}

is open.
Now consider z €P. Since F is cubical, F(x) = f(]O?) Therefore, it is

[e]

sufficient to prove that F(z) C F(Q). This is equivalent to showing that
x ¢V, which will be proved by contradiction.
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So assume that z € V. Since x EP and P < @, it follows that z € ) =
cl (Q) Thus, Vﬂcl( ) # 0. But Vis open, hence VN Q% 0. Let z € VN Q
Then, because F is cubical, F(z) = ]:(Q) and hence, F(z) NU = (. Thus,

z ¢ V, a contradiction. |
Exercises
5.4 Let X = [-1,1]> € R% Let Y = [-2,2]> ¢ R*® Consider the map

A: X — Y given by
05 0
A_[ - 2].

Find a lower semicontinuous multivalued map F : X Y with the property
that Az € F(x) for every z € X.

5.5 Let X,Y C R be cubical sets. Let f : X — Y be a continuous function.
Assume that for each @ € K (X), F(Q) is defined and is an acyclic cubical
set. Let P € Ko(X) and let Q7 € K, (X) be the two edges for which P € Q*
(if P =[0] or P = [2], then set @~ = Q™).

(a) For P € Ky(X), define
F(P) = F(Qp) N F(Qp)

and assume that f(x) € F(z) for all z € X. Prove that F is lower
semicontinuous.

(b) For P € Ky(X), define
F(P) = F(Qp) UF(Qp)

and assume that f(z) € F(x) for all z € X. Prove that F is upper
semicontinuous.

(c) Show that the assumption f(z) € F(x) is necessary.
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5.3 Chain Selectors.

As has been indicated since Chapter 2, our purpose for introducing multi-
valued maps is to obtain an outer approximation for continuous functions.
Of course, we still need to indicate how this outer approximation can be
used to generate homology. By Section 5.1 it is sufficient to indicate how a
multivalued map induces a chain map.

Theorem 5.14 Assume F : XY is a lower semicontinuous cubical map.
Then, there ezists a chain map F : C(X) — C(Y') with the property

IF(Q)| C F(Q) (5.2)
for all Q € K(X).
Proof: 'We will construct the homomorphisms Fj, : Cx(X) — Ci(Y) by
induction in k.

For k < 0, Cyx(X) = 0, therefore there is no choice but to define Fy := 0.
Consider k£ = 0. For each Q € Ky, choose P € Ko(F(Q)) and set

~

F(Q) := P. (5.3)

o

Clearly, |F,Q| = P € F(Q). Since, Q € Ky, Q= Q and hence F(Q) = F(Q).
Therefore,

IFQ| € F(Q).

Furthermore,
F,180 - 0 - 80F0.

To continue the induction, suppose now that the homomorphisms F; :
Ci(X) = C;(Y),1=0,1,2,...,k — 1, are constructed in such a way that

IFQ| € F(Q) for all Q € K;(K),

and
F,_10; = O;F;.

Let Q € Kr(X). Then 0Q = f; anj for some a; € Z and Qj € Kr_1(X).
j=1

Since F is lower semicontinuous, we have by Proposition 5.13

|Fr 1Qj| C F(éj) - F(é)
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forall 7 =1,...,m. Thus

1F, 00| © F(Q).

[e]

F(Q) = F(z) for any x €Q, hence the set F(Q) is acyclic. By the
induction assumption Fj_; is a chain map, so Fj_10Q) is a cycle. However,

by acyclicity, there exists a chain ¢ € Ck(F(g))) such that dc = Fj. 100.
Define R
FL.Q = c.

By definition, the homomorphism F}, satisfies the property

3ka = kalak.

[e]

Also, if Q € Kj,(X), then F,Q € Cy(F(Q)), hence

IFQ| C F(Q).

Therefore the chain map F = {Fj}rez : C(X) — C(Y) satisfying (5.2) is
well defined. |

Observe that in the first nontrivial step (5.3) of the inductive construction
of F' we were allowed to choose any P € Ko(F(Q)). Thus, this procedure
allows us to produce many chain maps of the type described in Theorem 5.14.
This leads to the following definition.

Definition 5.15 A chain map F : C(X) — C(Y) satisfying 5.2 is called a
chain selector of F.

Proposition 5.16 Assume F : XXV is a lower semicontinuous cubical
map and F is a chain selector for F. Then, for any ¢ € C(X)

[E(e)] < F(le]).

Proof: Let ¢ =", aiQi, where a; € Z, a; # 0. Then
Fo)] = > aiF(Q)
i=1

c U@

=1
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c U@
c Ur

= f(g Qi) = F(|cl)-

The following theorem justifies the use of chain selectors.

Theorem 5.17 Let F,G : C(X) — C(Y) be chain selectors for the lower
semicontinous cubical map F : X3y, Then, F is chain homotopic to G,
and hence, they induce the same homomorphism in homology.

Proof: A chain homotopy D = {Dy, : Cx(X) — Ci41(Y) }xez joining F to G
can be constructed by induction.

For k£ < 0, there is no choice but to set Dy := 0.

Thus assume k£ > 0 and D; is defined for ¢ < k in such a way that

8i+1 o DZ + Di—l e] 8Z == Gz - .Fi, (54)
and for all @ € KC;(X) and ¢ € C;(Q),
1Di(0)] € F(Q). (5.5)
Let Q € Cx(X) be an elementary k-cube. Put
¢ = Gp(Q) — Fi(Q) — Dy_194(Q).
It follows easily from the induction assumption that ¢ is a cycle. Moreover,
if 8@ =3 az-]3i for some a; # 0 and P; € Ky 1(X), then P; are faces of @
i=1
and by Proposition 5.13
1De—10(@) € U 1D (P)| € U F(P) € F(Q):
i=1 i=1

Consequently,

e C |GR(Q)| U [Fu(Q)] U |Ds 10:(Q)] € F(Q).
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[e] [e]

It follows that ¢ € Z(F(Q)). Since F(Q) is acyclic, we conclude that there

o ~

exists a ¢ € Cyy1(F(Q)) such that ¢ = ¢. We put Dy (Q) := ¢’. One easily
verifies that the induction assumptions are satisfied, therefore the construc-
tion of the required homotopy is completed. [

The above theorem lets us make the following fundamental definition.

Definition 5.18 Let F : XY be a lower semicontinuous cubical maps.
Let F': C(X) — C(Y) be a chain selector of F. The homology map of F,
F.: H(X)— H.(Y) is defined by

F.=F,.

Keep in mind that the purpose of introducing multivalued maps is in
order to be able to compute the homology of a continuous map by some
systematic method of approximation. Obviously, and we saw this in Chapter
2, what procedure one uses or the amount of computation one is willing to do
determines how sharp an approximation one obtains. An obvious question is
how much does this matter.

Definition 5.19 Let X and Y be cubical spaces and let F,G : XXV be
lower semicontinuous cubical maps. F is a submap of G if

F(z) C G(=)
for every x € X. This is denoted by F C G.

Proposition 5.20 If F,G : KL are two lower semicontinuous cubical
maps and F is a submap of G, then F, = G,.

Proof: Let F be a chain selector of F. Then, F' is also a chain selector of G.
Hence, by definition
[ ]

A fundamental property of maps is that they_c}an be composed. In the
case of multivalued maps F : X—Y and G : Y =7 we will construct the
multivalued map G o F : X:;Z, called the superposition of F and G by
setting

Go F(x) :=G(F(z))

for every x € X.
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Proposition 5.21 If F : XXV and g : Y27 are lower semicontinuous
cubical maps and G o F is acyclic then (G o F), = G, o F,.

Proof: Let F € C(F) and G € C(G). Then by Proposition 5.16 for any
Q € K(X)

(GF(Q)| € G(F(Q)]) € G(F(Q)).

Hence G o F € C(G o F). But we can compose chain maps and hence

5.4 Homology of continuous maps.

We are finally in the position to discuss the homology of continuous maps.
Recall the discussion of maps in Chapter 2. There we started with a con-
tinuous function and used Taylor’s theorem to get bounds on images of the
function. These bounds were then used to construct a multivalued map. We
would like our discussion of the construction of the multivalued map to be
independent of the particular approximation method that is employed. In
particular, the simplest possibility would be to describe the approximation
directly in terms of the image of the function and the cubes in the cubical
spaces. This leads to the following definitions.

Definition 5.22 Let X and Y be cubical sets and let f : X — Y be a
continuous function. A cubical approximation to f is a lower semicontinuous
multivalued cubical map F : X 2V such that

f(z) € F(x) (5.6)
for every x € X.

We will define the homology of a continuous map in terms of cubical
approximations.

Definition 5.23 Let X and Y be cubical sets and let f : X — Y be a
continuous function. Let F : XY be a cubical approximation of f. Then,
the induced homology map, f.: H.(X) — H,(Y), is given by

fo = Fi.
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As is often the case, it is easy to make a definition, but showing that it is
well defined or even applicable is harder. There are at least two questions that
need to be answered before we can be content with this approach to defining
the homology of a continuous map. First, observe that given a continuous
function, there may be many cubical approximations. Thus, we will need
to show that all cubical approximations of a given function give rise to the
same homomorphism on homology. This will be the content of Section 5.4.1.
Second, given cubical sets and a continuous map between them it need not
be the case that there exists a cubical approximation. We will deal with this
problem in Section 5.4.2.

5.4.1 Cubical Approximations

From the point of view of computations one typically wants a cubical ap-
proximation whose images are as small as possible.

Definition 5.24 Let X and Y be cubical sets and let f : X — Y be a con-
tinuous function. The minimal approzimation, M; : X:§Y, of f is defined
by

M (z) = ch (f(ch (2))). (5.7)

If My is a cubical map, then My is refered to as the minimal cubical ap-
prozimation.

Example 5.25 Consider the continuous function f : [0, 3] — [0, 3] given by
f(z) = /3. Figure 5.2 indicates the graph of f and its minimal cubical
approximation M. To verify that M really is the minimal cubical approx-
imation just involves checking the definition on all the elementary cubes in
[0,3]. To begin with consider [0] € Ky. ch[0] = [0] and f(0) = 0, there-
fore M(0) = 0. On the other hand, while ch[1] = [1], f(1) = 1/3 € [0,1]
and hence ch f(1) = [0,1]. Therefore, M;([1]) = [0,1]. The rest of the
elementary cubes can be checked in a similar manner.

Observe that if any cube from the graph of M, were removed, then the
graph of f would no longer be contained in the graph of M. In this sense
M is minimal.
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25F

0.5 b

Figure 5.2: The graph of the continuous function f : [0,3] — [0, 3] and the
graph of M.

Example 5.26 As is suggested by the previous definition, it is not true that
a minimal approximation is necessarily a cubical map. Consider the cubical
set X consisting of the union of the elementary cubes:

K, :=[0]x[0,1] Ky:=][0,1] x [1]
K3 :=[1]x[0,1] K,:=10,1] x [0].
Define the map A : [0,1] — X for ¢ € [0,1] by

(0,4t) if £ €[0,1/4]
(4t —1,1) ift e [1/4,1/2]
(1,3—4) ifte[1/2,3/4]
(4—4t,0) ifte[3/4,1]

and the map f: X — X for (ml,xg) € X by

{ AMzg) if (z1,29) € K1 U K3
(l‘l) lf l‘l,.'L'Q) € Ky UK;y.

A(t) ==

f xlaxQ
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[e]

Then f is continuous and for (xy, 7)) €K;
M (1, 22) = ch (f(ch (21, 32))) = ch (f(K;)) = ch (X) = X

Since X is not acyclic, it follows that M/ is not acyclic and consequently
not a cubical map.

This example shows that given two cubical sets and a continuous map
between them, the minimal approximation need not be a cubical approxi-
mation. One can ask if there is a different cubical approximation for the
continuous map. As the following proposition indicates, the answer is no.

Proposition 5.27 Let X and Y be cubical sets, let f : X — Y be a contin-
uous function and let F : XZ2Y be a cubical approzimation to f. Then, Mg
is a submap of F.

Proof: Let x € X. Then, there exists Q € K(X) such that x Eé. Since F
is a cubical map, F(z) = F(Q) and in particular, F(z) is closed. Now, let

(e}

{z,} CQ such that x, — . By continuity of f, f(z) € F(Q) which in turn
implies that f(Q) C F(Q).
Since x €Q), ch () = Q. Thus,

[e]

M;(x) = ch (f(ch (2))) = ch (f(Q)) C F(Q) = F(z).
|

One way to interpret this proposition is to realize that it implies that a
cubical approximation for a continuous function f exists if and only if My
is a cubical approximation. We have, of course, given a formula for My,
therefore what remains is to understand when M can fail to be a cubical
approximation. The failure in Example 5.26 was due to fact that the map
was not acyclic. The next proposition indicates that this is the only reason
that M can fail to be cubical.

Proposition 5.28 Let X and Y be cubical sets and let f : X — Y be a
continuous function. If Mg(x) is acyclic for each x € X, then My is a
cubical approrimation.
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Proof: Let v € X. Obviously f(z) € f(ch(z)) C My(z). The fact that

M restricted to 52 is constant follows from the fact that if x,y 652, then
ch () = ch (y). The lower semicontinuity of M follows from the fact that
if P is a face of @, then ch (P) C ch (Q). u

Corollary 5.29 Let X andY be cubical sets, let f : X —'Y be a continuous
function. If f has a cubical approzimation, then f,: H.(X) — H.(Y) is well
defined.

Proof: By 5.27, if there exists a cubical approximation F : XY to f, then
M is a submap of F. Since F is acyclic, M/ is acyclic and hence by 5.28
M is a cubical map. Thus, My, is defined. By Proposition 5.20, F, = Mj,.

Now assume that G : XXV is another cubical approximation to f, then
M is a submap of G and so

Proposition 5.30 Let X be a cubical set. Conside the identity map id x :
X — X. Then, MidX 15 a cubical approximation of id x and

Proof: By Proposition 4.16
Miq  (x) = ch (),

which, by Proposition 4.68 is acyclic. Therefore, Midx is a cubical approx-
imation of id x and

(id x)« = Midx*'
Let @ € K(X). Then

o

lideo(@)] = Q = ch (Q) = Mig_(Q).

Therefore, id ¢(x) is a chain selector for Midx' Finally, it is easy to check
that id ¢(x) induces the identity map id , (x) on homology. [
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Proposition 5.31 Let f : X — X be a continous map on a connected
cubical set. If My is a cubical approzimation of f, then f. : Ho(X) — Ho(X)
is the identity map.

Proof: The homology map f, : Hyo(X) — Hy(X) is determined by an
appropriate chain map Fy : Cy(X) — Cp(X). Which in turn can be de-
termined by M acting on Ko(X). So let Q € Kop(X). By definition
M(Q) = ch(f(Q)) which is an elementary cube. Let P € Ky(ch (f(Q))).
Then, we can define Fy(Q) = P, in which case f,([Q]) = [P]. By Theo-
rem 4.51, [Q] = [P] = 1 € Hy(X), and hence we have the identity map on
Hy(X). n

Proposition 5.32 Let X, Y, and Z be cubical sets. Assume f: X —Y and
g :Y — Z are continuous maps such that My, Mg, and Mgy are cubical
approzimations. Then,

(gOf)*:g*Of*
Proof: Observe that

Mgos(x) = ch (g(f(ch (2)))) C ch(g(ch (fch(x)))) = My(M;(z)),
ie. Mgy C M, o Mjy. Therefore, from Propositions 5.20 and 5.21

(gof)e=Mgop)e = (MgoMy) = (M) 0 (My)s = gu 0 fu.

5.4.2 Rescaling

So far we are able to define the homology map of a continuous function when
a cubical approximation exists. Unfortunately, as was indicated in Exam-
ple 5.26 not every map admits a cubical approximation. We encountered
this problem before in Section 2. There we adopted the procedure of subdi-
viding the intervals of our graph. We could do the same thing here, i.e. we
could try to make the images of all elementary cubes acyclic by subdivid-
ing the domain of the map into smaller cubes. However, that would require
developing the homology theory for cubical sets defined on fractional grids.
Obviously, this could be done, but it is not necessary. Instead we take an
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equivalent path based on rescaling the domain of the function to a large size.
Observe that if we make the domain large, then as a fraction of the size of
the domain the elementary cubes become small. This leads to the following
notation.

Definition 5.33 A scaling vector is a vector of positive integers
a=(ay,a,...,0,) € Z"
and gives rise to the scaling A® : R” — R" defined by
A(x) == (aqzy, agxa, . . . 0 Ty).
It 8= (b, 02,---.,0,) is another scaling vector, then set
af = (a1 fr, axfa, .. agfn).

The following properties of scalings are straighforward and left as an
exercise.

Proposition 5.34 Let a and 3 be a scaling vector. Then, A* maps cubical
sets onto cubical sets and A% o A® = AP,

Definition 5.35 Let X C R” be a cubical set and let o € Z" be a scaling
vector. Define AS := A |y. The scaling of X by « is

X9 = AL(X) = A%(X).

Example 5.36 Recall that Example 5.26 described a function f for which
M was not a cubical approximation. The first step in dealing with this
problem involves rescaling the space X. Figure 5.3 shows the effect of scaling
X using the scaling vector a = (4, 4).

We begin by establishing that scalings are nice continuous maps in the
sense that they have cubical approximations.

Proposition 5.37 Let X, Y, and Z be cubical sets and let o and (3 be scaling
vectors. If A*(X) C Y, then Mg is a cubical approzimation. Moreover, if
A(Y) C Z, then M 5 ra 18 a cubical approzimation.

Y X
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The cubical set X< R? The cubical set X%c R?
5 - T T T 5
4 4
3 3
2 2
1 1
0 0
11 0 1 2 3 4 5 11 0 1 2 3 4 5

Figure 5.3: The space X and X® where o = (4,4).

Proof: By definition, for any x € X
Mg, () = (ch (A% (ch (2))).

Since ch (z) is a cube, it follows that A% (ch(z)) is a convex cubical set.
Therefore, by Corollary ?? the set Maa (z) is convex and consequently
acyclic by Proposition 4.63.

Since AY o A% =AY, the map AP o A% is also simple. To show that
MA?/ o Mpq is acyclic, observe that

Mz 0 Mg (x) = (ch (Ay(ch (A% (ch (2)))))).

Therefore the acyclicity of M,s o Mjq follows by the same argument as in
Y
the previous paragraph. [

Since scalings have cubical approximations they induce maps on homol-
ogy. Furthermore, since scalings just change the size of the space one would
expect that they induce isomorphisms on homology. The simplest way to
check this is to show that their homology maps have inverses. Therefore,
given a cubical set X and a scaling vector a let Q2% : X* — X be defined by

Q% (@) := (a7 w1, 05 'y, ..., twy,).

Obviously, 2% = (A%)~". However, we need to know that it induces a map
on homology.



192 CHAPTER 5. HOMOLOGY OF MAPS

Lemma 5.38 Mqa : Xe2X is a cubical approzimation of Q%

Proof: Let x € X®. Then x epe Kr(X®). Since X* = A%(X), there exists
Q € K,,(X), m > k, such that P € A*(Q). Now

Maog (#) = ch (Q%(ch (2)))
ch (2% (P))
- Q

which is acyclic. ]

Proposition 5.39 If X is a cubical set and « is a scaling vector, then
(AS)s : Ho(X) = Ho(X%) and  (Q%).: Ho(X%) — H.(X)
are tsomorphisms. Furthermore,
(AR = (Q%).

Proof: 1t follows from Proposition 5.37 and Lemma 5.38 that M,q and
Mgqq are cubical approximations. Thus, by Proposition 5.37, Mja.0q and
Mg one are cubical approximations. Hence, by Propositions 5.32, and 5.30,

(A 0 (9. = (A% 0 Q%). = id yer = id . (xo

and
(%), 0 (AF). = (U 0 AF). = id x. = id . (x).
]

As was indicated in the introduction, the purpose of scaling is to allow us
to define the homology of an arbitrary continuous map between cubical sets.
Thus, given a continuous map f : X — Y and a scaling vector « define

= fo 0%

Observe that f®: X* =Y.
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Example 5.40 To indicate the relationship between f and f® we return to
Example 5.26. Consider o = (4,4). As was already mentioned Figure 5.3
shows X and f*: X* — X. Now consider M .. Consider @) = [0, 1] x [4].

Let (z1, 23) 652. Then

Mia(xy,22) = ch(f*(ch(xy,22))

which is acyclic. Similar checks at all the points on X* shows that M a is
acyclic and hence M. is a cubical approximation.

Proposition 5.41 Let X and Y be cubical sets and f : X — Y be con-
tinuous. Then there exists a scaling vector o such that My« is a cubical
approxzimation of f*. Moreover, if 3 is another scaling vector such that M ;s
is a cubical approzimation of f°, then

FEAS). = FA(AR).

Proof: Choose § > 0 such that for x,y € K

dist (z,y) <0 = dist(f(z), f(y)) < (5.8)

NN

and let a be a scaling vector such that min{e; | i =1,...,n} > 1/§. Since
diamch (z) < 1, we get from (5.8) that

diam f*(ch (z)) <

Do =

Therefore it follows from Proposition 4.68 that M. is acyclic, i.e. Mya is a
cubical approximation of f<.

Now assume that the scaling vector 3 is such that M s is also a cubical
approximation. Also, assume for the moment that for each i = 1,...,n,
;|G Let v :== g—l Then v = (71,...,7,) is a scaling vector. Clearly,

Ag( = Ao o A%, Therefore it follows from Proposition 5.32 that

(A%): = (Aka)s 0 (A5
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On the other hand we also have
f*=f"0A%a,
hence
Mia (M, () = ch (f%(ch (Aka(ch (2))))) = ch (f*(ch (2))) = Mya(2).
Therefore we get from Proposition 5.32 that
f= 1o (M%)
and consequently
o (A%)e = £ o (Aka) o (AF)w = f7 0 (M%)

Finally, if it is not true that «; | §; for each i = 1,...,n, then let § = af3.
By what we have just proven

o (A%)e = flo (M%), = fPo (AR).
which settles the general case. ]

We can now give the general definition for the homology map of a con-
tinuous function.

Definition 5.42 Let X and Y be cubical sets and let f : X — Y be a
continuous function. Let o be a scaling vector such that M. is a cubical
approximation to f®. Then, f, : H,(X) — H.(Y) is defined by

fo= oo

By Proposition 5.41, this definition is independent of the particular scal-
ing vector used. However, we need to reconcile this definition of the homology
map with that of Definition 5.23. So assume that M/ is a cubical approxi-
mation of f. Let a be the scaling vector where each a; = 1. Then f® = f
and hence the two definitions of f, agree.

The final issue we need to deal with involves the composition of continuous
functions. We will need the following technical lemma.

Lemma 5.43 Let X andY be cubical sets and let f : X — Y be continuous.
Let « be a scaling vector. If My and Myeop are cubical approzimations, then
Mpe o My is a cubical map.
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Proof: We only need to verify that Mae o My is acyclic. Observe that
Mg 0 My(x) = ch (AT (M(x))) = AT (M (2)).

Since M(z) is acyclic, it follows from Proposition 5.39 that A§(M(z)) is
also acyclic. [ ]

Proposition 5.44 Assume f: X =Y and g:Y — Z are continuous maps
between cubical sets. Then

(gOf)*:g*Of*

Proof: Select a scaling vector ( such that M s is a cubical approximation
and for any z,y € Y7

. (5.9)

DN | =

dist (z,y) <2 = dist (¢°(x),9°(y)) <

Similarly, select a scaling vector a such that M. and My are cubical
approximations, and for any x,y in X®

dist (z,y) <2 = dist (A7 o f*(x), A% o f*(y)) < (5.10)

DO | —

Then the maps Ao f* and g% o (A% o f*) = h® have cubical approximations.
Moreover, by 5.9 and 5.10, for any x € K*

diam (¢° och o A’ o f*och (z)) < 1.
Therefore by Proposition 4.68
M s 0 Mpsope(z) = ch 0 g’ och o A% o f*och ()
is acyclic, i.e. the composition Mys o M s, a is acyclic. Hence
(970 f*). =glo f2.
By Lemma 5.43 we also have that
(A © f%)s = Afa, 0 f2
Let h := go f. It follows from Proposition 4.68 that

he = (g% o NS, o), =gl o (AP, o f9),.
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Hence,
(gof)e = hs

= hio(A%).

= g) o (Nia o [0 (A%).

= g7 o (Nia)s o [ 0 (A%)s

g+ © fu
[

Exercises

5.6 Prove Proposition 5.34

5.7 Let X, A\, and f be as in Example 5.26.

a) Verify that the scaling by « := (2, 2) is sufficient for M to be a cubical
approximation of f.
b) Find a chain selector of M fa.
¢) Compute the homology map of f. You may either compute it by hand or
use the homology program for that.

5.8 Do the same as in Exercise 5.7 for the map given by

)\(IL'Q) if (1'1,1'2) € K1

L )\(1'1) if (1'1,1'2) € K2

f(l'l, x2) T )\(1 — .ﬁUg) if (xl,xQ) € Kg
)\(1 — .ﬁUl) if (xl,xQ) € K4

5.4.3 Homotopy Invariance of Maps

We now have a homology theory at our disposal. Given a cubical set X
we can compute its homology groups H,(X) and given a continuous map f
between cubical sets we can compute the induced map on homology f.. What
is missing is how these algebraic objects relate back to topology. Section 4.3
was a partial answer in that we showed that Hy(X) counts the number of
connected components of X. In this section we shall pursue the question of
when do two continuous maps induce the same homomorphism on homology.
In particular, we shall prove the following theorem.
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Theorem 5.45 Let X and Y be cubical sets and let f,g: X — Y be homo-
topic maps. Then

fe = s

We shall break up the proof into two cases. The first is trivial, but
contains the essential observation. The second case is merely an elaboration
of the first needed to overcome some technical difficulties.

By definition f ~ ¢ implies that there exists a continuous function & :
X % [0,1] = Y such that ®(z,0) = f(z) and ®(z,1) = g(x). Observe that
X % [0,1] is a cubical set. Assume for the moment that there exists a cubical
approximation H : X x [0, 1]:>>Y to ®. Define H' : XY by

H'(Q) :=H(Q x[0,1])
for every @ € K(X).

Lemma 5.46 H': XY is a cubical approximation to both f and g.

Proof: Clearly, @ is a face of @ x [0,1]. Therefore, by Proposition 5.13,

[e] [e]

H(Q) C H(Q x [0,1]). However, f(z) € H(x,0) for all x € X. Therefore,

f(é x[0]) C ’H(é)) and in particular, for any = € X, f(r) € H'(z). A similar
argument holds for g. [ ]

Corollary 5.47 If the homotopy from f to g has a cubical approrimation
then

[e = ga-

Proof: By definition
fe = /H; = Gx-
[ ]

This was the easy case. What makes this simple is that an approximation
for the homotopy provides an approximation for both f and g. Of course, ®
need not admit a cubical approximation. However, as was made clear in the
previous section, we can obtain a cubical approximation for an appropriate
scaling of ®.

With this in mind, choose a scaling vector a such that Mga is a cubical
approximation. Observe that ®* o A® is a homotopy between f® o A* and
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g®o A% If X C R" then o € Z""'. Let 8 = (ay,...,q,) and let a4 = k.
Set Z = AP(X). Then
AY(X) =Z x [0,k].
For i = 0,...,k, let f; : X x {i} be defined by fi(z) = f*(x,i) and let
U, : X x[i,i+1] = Y be given by ¥;(z, s) = ®*(z, s). Then, ¥; is a homotopy
from f; to f;11. However, by assumption ¥; has a cubical approximation.
Therefore, f;x = fi+1« and hence, fo. = fr.. Now observe that f. = fo. and
J« = fr+, therefore
fe=gx.

This proves Theorem 5.45 in the general case.

Exercises

5.9 In one of the two previous exercises you should get the trivial homology
map. Prove this in a different way, by showing that your f is homotopic to
a constant map.



5.5. LEFSCHETZ FIXED POINT THEOREM 199

5.5 Lefschetz Fixed Point Theorem

We are now in the position to prove one of the most important results in
algebraic topology, the Lefschetz fixed point theorem. Let f : X — X be
a continuous map. x € X is a fized point of f if f(x) = x. The Lefschetz
theorem gives conditions on f, that imply that f has a fixed point. We need
a few algebraic preliminaries before we can state and prove the theorem.

Let A = [a;;] be an n x n matrix. The trace of A is defined to be the sum
of the diagonal entries, i.e.

n
trA = Z Qi -
=1

It is easy to check that if A and B are n x n matrices, then

i,
Let G be a finitely generated free abelian group and let ¢ : G — G be

a group homomorphism. Since G is free abelian, it has a basis and for a
particular choice of basis ¢ can written as a matrix A. So in this case define

tr¢ = tr A.

To check that this is a well defined concept, let {b ..., b,} be a different basis
for G. Let B : G — G be the isomorphism corresponding to the change of
basis. In this second basis the matrix representation of ¢ is given by B~ ' AB.
Thus,

tr (B 'AB) = tr (B *(AB)) = tr (AB)B ') = tr A.

We will need to apply these ideas in the context of homology groups.
Consider a free chain complex {Cy(X), 0} and a chain map F : C(X) —
C(X). Let Hi(X) be the induced homology groups and f, : H.(X) — H.(X)
the induced homology map.

Since Cy(X) is a free abelian group, tr Fy is well defined for each .
However, the homology groups Hy(X), while abelian need not be free. Let
T (X) denote the torsion subgroup of Hy(X). Then, Hy(X)/Ti(X) is free
abelian. Furthermore, f, : H.(X) — H.(X) induces a homomorphism

Thus, ¢, can be represented as a matrix, and hence tr ¢, is well defined.
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Definition 5.48 Let X be a cubical set and let f : X — X be a continuous
map. The Lefschetz number of f is

L(f):= Z(—l)ktr O

k

Theorem 5.49 Lefschetz Fixed Point Theorem Let X be a cubical set and
let f: X — X be a continuous map. If L(f) # 0, then f has a fized point.

This theorem is an amazing example of how closely the algebra is tied to
the topology. To prove it we need to understand how to relate the topology
in the form of the map on the chain complexes to the algebra in the form of
the induced homology maps on the free part of the homology groups.

We begin with a technical lemma.

Lemma 5.50 Let G be a free abelian group, let H be a subgroup and assume
that G/H 1is free abelian. Let ¢ : G — G be a group homomorphism such
that o(H) C H. Then, ¢ induces a map ¢' : G/H — G/H and

tro=tr¢' +tro g .

Proof: The first step is to understand ¢’. Since G is free abelian, and H is
a subgroup, H is also free abelian. Let {a, ..., ax} be a basis for H and let
{f1+H,...,B,+ H} be a basis for G/H. Then, ¢ is defined by

(B + H) = ().

It is left to the reader to check that ¢’ is a well defined group homomorphism.
Given our choice of basis we can represent ¢’ as a matrix B = [b;]. In

particular,
n

¢ (B;+H) = b6+ H).

=1

Similarly, ¢ |y: H — H has the form

k
¢ |H (CYz') = Zaijoéi
i=1

and so we can write ¢ |gp= A = [a;;].
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Since G =G/H & H, {ay,..., 0, b1, ..., 0.} is a basis for G. Thus,
k
$lag) = > aio
i—1
o(B;) = D byfi=h
i=1
where h € H. This means that as matrix ¢ has the form
A %
=10 s
Clearly, tr¢ = tr ¢’ + tr ¢ |g. [ ]

Theorem 5.51 (Hopf trace theorem) Let {Cy(X), 0k} be a free chain com-
plez and F : C(X) — C(X) a chain map. Let Hy(X) denote the correspond-
ing homology groups with torsion subgroups Ty,(X). Let ¢y : Hi(X)/Tp(X) —
Hy(X)/T(X) be the induced homomorphism. Then

Z(—l)ktr Fk = Z(—l)ktr ¢k

k k

Proof: We will use the notation from Section 3.7 where Wy (X) denotes the
weak boundaries. Recall that

By(X) C Wi(X) C Zi(X) C Cr(X).

Furthermore, since F' is a chain map, each of these subgroups is invari-
ant under Fj, i.e. Fi(Bk(X)) C Br(X), Fr(Wi(X)) C Wi(X), etc. From
Lemma 5.50 F} induces maps

Fi lwoxy + Wi(X) = Wi(X),
Fy o Zp(X)/Wi(X) — Zp(X) /Wi (X)
From Lemma 3.63 and the following comments we have that for each &,

Z(X)/We(X) and Ck(X)/Z,(X) are free abelian groups. Therefore, apply-
ing Lemma 5.50 twice gives

tr Fy = tr F} + tr Fy + tr Fy |, (x) - (5.11)
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However, from Lemma 3.63 Z(X)/Wj(X) = Hi(X)/T(X) and further-
more under this isomorphism, F}, becomes ¢y. Therefore, (5.11) becomes

tr Fj, = tr Fy, 4 tr ¢ + tr Fy, |l (x) - (5.12)

Similarly, Cy(X)/Z,(X) is isomorphic to Bi_1(X) and under this iso-
morphism F}' becomes Fj,_; |p, ,(x). An therefore, (5.12) can be written
as

tr Fy, = tr Fj,_¢ |Bk—1(X) +tr ¢y, + tr F, |Wk(X) . (5.13)

We will now show that tr Fj |w,x)= tr Fi |p,(x). As was done explic-
itly in Section 3.7 there exists a basis {aq,...,q} for W;(X) and integers
ma, ..., my, such that {myaq,...,ma} is a basis for By(X).

Observe that

[
F lwox) (o) =Y agjoy (5.14)
1=1
and

l
Fy |pyxy (mjog) =D bymya (5.15)
i=1

for appropriate constants a;; and b;;. Both these maps are just restrictions of
F}, to the appropriate subspaces. So multiplying (5.14) by m; must give rise
to (5.15) and hence mja;; = b;jm; and in particular m,a; = b;;m;. Therefore,
tr Fy, |w, (x)= tr F}, |B,(x)- Applying this to (5.13) give

tr Fj, = tr Fj,_; |Bk,1(X) +tr ¢ + tr Fj, |Bk(X) . (5.16)

The proof is finished by multiplying (5.16) by (—1)* and summing. =

The Hopf trace formula is the key step in the proof of the Lefschetz fixed
point theorem. However, before beginning the proof let us discuss the basic
argument that will be used. Observe that an equivalent statement to the
Lefschetz fixed point theorem is the following: if f has no fixed points, then
L(f) = 0. This is what we will prove. The Hopf trace formula provides us
with a means of relating a chain map F : C(X) — C(X) for f with L(f).
In particular, if we could show that tr ' = 0, then it would be clear that
L(f) = 0. Of course, the easiest way to check that tr ¥ = 0 is for all the
diagonal entries of F' to be zero. However, the diagonal entries of F' indicate
how the duals of elementary cubes are mapped to themselves. If f has no
fixed points then the image of a small cube will not intersect itself and so the
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diagonal entries are zero. With this argument in mind we turn to the proof,
which as is often the case in mathematics, is presented in the reverse order.

Proof of Lefschetz Fized Point Theorem. Assume f has no fixed points. We
want to show that L(f) = 0.

The first step is to establish some constants that will used in the proof.
Let

¢ :=min [z — f(z)]].

Since we are assuming that f has no fixed points and X is cubical, € > 0.
Similarly, since X is cubical there exists § > 0 such that

e —yll<d = |lf(z) = fWIl <e/3.

Set p := min{d,¢/6}. Let a be a scaling vector with the property that
a; > p~ ! for each i.
With these constants in mind, consider

g:=AS{ofoQf: X — X
We will now show that for any x € X,
M, (z) Nch (z) = 0.
Let y € ch (x). This implies that ||y — z|| < 1 and hence
1905 (y) = Q% (2)[] < .

Therefore,
1f o Q% (y) — fo Q% (2)[| < /3.
By the definition of € followed by the triangle inequality we have
e < [|Q%(z) = f o Q% (z)]]
< Q% (x) = fe QX W]+ [1f 0 Q% (y) — f o Q% (2)]]
This implies that
9% (x) — fo Q5 (y)l| > 2¢/3
and therefore,

@ « o « o @ _ 2€
[[AS 0 Q% (1) = AN o fo Q5 W) = |lx — A% o f o Q5 (W)]] > 1 13 =4.
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This inequality holds for all y € ch (), and therefore M,(z) Nch (z) = 0.

Observe that the this argument is true for any « sufficiently large. There-
fore, by Proposition 5.41 we can assume that o was chosen large enough
that M, is a cubical approximation of g. Let G : C(X?*) — C(X?) be
a corresponding chain map. The standard basis for C'(X®) is K(X®), but
IG(Q)| N Q =0 for all Q € K(X?), and therefore the diagonal entries of G
are zero. In particular, trG = 0 and therefore by the Hopf trace formula,
L(g.) = 0.

Finally, by Proposition 5.39

Theorem 5.52 Let X be an acyclic cubical set. Let f : X — X be continu-
ous. Then, f has a fixed point.

Proof: Since X is acyclic, the only nonzero homology group is Hy(X) =
Z. But, by Proposition 5.31, f. : Ho(X) — Hy(X) is the identity map.
Therefore, L(f) = 1. u



Chapter 6

Homological Algebra

We finished the previous chapter with the Lefschetz fixed point theorem that
allowed us to prove the existence of fixed points of maps from the homology
map. As we noted before this is a remarkable theorem, but as the follow-
ing example indicates it has its limitations. Consider for the moment the
following almost trivial example. Let f : R? — R? be the linear map
2 0 ].po e
f_[o 1/2].R — R

Obviously the origin is a fixed point. Unfortunately, there is no direct way
to apply the Lefschetz theorem to detect this fixed point. To begin with R?
consists of an infinite number of cubes and hence, is not a cubical set. We
could try to get around this problem by restricting the domain and range of
the function. We know that the origin is the fixed point, so we could, for
example, consider X := {z € R? | ||z|| < 4}. Unfortunately, f(X) ¢ X. We
leave it to the reader to check that it is impossible to find a cubical set X
that contains a neighborhood of the origin such that f(X) C X. But to talk
about a fixed point we need to have a map of the form f: X — X.

However, the Lefschetz fixed point theorem is too nice a tool to give up
trying to extend it to an example such as this. So lets study the problem is
little further. In Figure 6.1 the set X := {z € R? | ||z|| < 4} is indicated in
red and its image under f in blue. Obviously, there is a problem in that

Yellow shows the set

B o= ch([—4,—2) x [~4,4] U (2,4] x [~4, 4]).

205
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Of course, the fixed point that is of interest lies in X \ E. This suggests
that we try to develop a homology theory that begins with the set X but
“ignores” the set E. This leads to the notion of relative homology.

The set X=[-4,4] x [-4,4] The set f(X)=[-8,8] x [-2,2]

10 10
5 5
0 - 0 ‘
-5 -5
% 5 0 5 10 BT 5 0 5 10

The set E=[-4,-2] x[2,4]

10

. |

-10
-10 -5 0 5 10

Figure 6.1: The image of the linear map f.

6.1 Relative Homology

Let X and E C X be cubical sets. They generate the sets of elementary cubes
K(X) and K(E) which in turn define the chains C'(X) and C(E). Since K(X)
is a basis for C'(X) and K(E) ¢ K(X), the quotient group C(X)/C(E) is a
free abelian group. Thus we can make the following definition.

Definition 6.1 Let X and F C X be cubical sets. The relative chains of X
modulo E are the free abelian groups
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The relative chain complex of X modulo E is given by
{Ck(Xv E)v ak}

where 0y, : Cx(X,FE) — Cy_1(X, E) is the boundary map induced by the
standard boundary map on Cy(X).

The relative chain complex gives rise to the relative k-cycles,
Z(X,E) :==ker 0y : Cx(X, F) — Cy (X, E),
the relative k-boundaries,
Bi(X, E) := image Og11 : Cr1(X, E) — Ci(X, E),
and finally the relative homology groups
Hy(X, E) := Zy(X, E)/B(X, E).

Proposition 6.2 Let X be a connected cubical set and let E be a non-empty
cubical subset of X. Then,

Ho(X,E) =0.

Proof: To compute Hy(X, E) we begin by examining the associated set of
cycles Zy(X, E). Since 9y =0,

Zo(X, E) = Co(X, E) := Co(X)/Cy(E).

From the proof of Theorem 7?7, X connected implies that for any pair ]3, @ €
Co(X), there exists ¢ € C1(X) such that

~ ~

de=P —Q. (6.1)

E # 0, hence there exists Q € Ko(E). By definition, 0 = Q € Z,(X, E).
Therefore, by (6.1)

~

0=[Q] = [P] € Hy(X, E)
for any P € Ko(X). Therefore, Hy(X, E) = 0. n
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Example 6.3 Let X =[—1,1] C R and let £ = {+1}. Hg(X,E) =0 for
all £ > 2, since Ki(X) = (). By Proposition 6.2, Hy(X, E) = 0.

Therefore, all that remains to be computed is H;(X, E). Observe that
C1(X) ~ Z?* with a basis given by {[—/170], [0/,\1]} Since C1(E) =0,Cy(X,E) =
C1(X). The computation of Cy(X, F) is a little more interesting. The stan-
dard basis for Cy(X) is {[1\1], [/0\]}, while the corresponding basis for Cy(F)
is {[g]} Therefore,

Co(X,E) 2 Z

o~

and generated by [0]. Using these bases the matrix representation for 0; :
Cl(X, E) — CO(X, E) is

The chain [—/170] + [()/,\1] € C1(X, E) clearly generates the kernel of ;. There-
fore,
H\(X,E) ~ Z.

As will become clear as we progress, relative homology groups are a very
powerful tool. So much so that we want a simple shorthand notation for
discussing pairs of cubical sets. With this in mind the statement that (X, E)
is a cubical pair or a pair of cubical sets means that X and E are cubical sets
and F C X.

Example 6.4 Let X = [-3,3] and £ = [-3,—1] U [1,3]. The exact same
arguments as in the previous example show that Hy(X, E) =0 if k # 1.

Let us compute H;(X, E). C,(X) = Z5 with a basis given by {[z,z/w\L 1] |
i = —3,...,2}. In contrast to Example 6.3, C(F) = Z* with a basis
{li,i+1] | i = —3,-2,1,2}. This implies that a basis for C,(X, E) con-
sists of the equivalence classes containing {[—/170], [0/,\1]} Repeating this
type of argument on the level of the 0-chains we see that Cy(X, F) = Z with
a basis consisting of the equivalence class defined by [/0\] Observe that on the
level of relative chains we have the same chain complex as in Example 6.3.
Therefore,

H.([-3,3],[-3,—-1] U[1,3]) = H.([-1,1], {£1}).

One can ask whether these two examples are merely a coincidence or
represent a deeper fact. Since in the relative chains of the pair (X, E) one
quotients out by those elementary chains which lie in the subspace, it seems
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reasonable to conjecture that if one adds the same cubes to both X and F|,
then the group of relative chains does not chain and hence the homology
should not change. Theorem 6.5, presented shortly confirms this, though at
first glance its statement may appear somewhat different.

Of course to compare the relative homology groups of different pairs we
need to be able to talk about maps. So let (X, F) and (Y, B) be cubical pairs.
Let f: X — Y be a continuous map. The most basic question is whether f
induces a map from H, (X, E) to H,(Y, B). If this is to be the case then there
must be an associated chain map F : C(X,E) — C(Y, B). However, this
can only occur if F(C(F)) C C(B). This leads to the following condition.

f:(X,E) = (Y,B)

is a continuous map between cubical pairs if f : X — Y is continuous and
f(E) C B.

To generate a map on the level of relative homology, i.e. f, : H, (X, E) —
H.(Y,B) we proceed as before. f : X — Y is continuous and so for an
appropriate scaling vector o, Mo : X Y is a cubical approximation. Since
f(E) C B and B is cubical, M (E) C B. Now let F' : C(X) — C(Y)
be a chain selector for Ma. For any Q € K(E), |F(Q)| € M (Q) C B,
and hence F(C(FE)) C C(B). Thus, F induces a chain map between the
relative chain complexes, i.e. with a slight abuse of notation we can write

F:C(X,FE) — C(Y,B). Then we define f, : H.(X,E) — H.(Y, B) by

Theorem 6.5 (Excision Isomorphism Theorem) Let (X, E) be a cubical set.
Let U C E be a representable set such that E\ U is a cubical set. Then, the
inclusion map v : (X \U, E\U) — (X, E) induces an isomorphism

e, H(X\UE\U) > H.(X,E).

Proof: Since v : (X \U,E\ U) — (X, E) is the inclusion map, M,(Q) = Q
for every @ € IC(X \ U). Thus, the inclusion map I : C(X \ U) — C(X) is
a chain selector for M,. Let 7 : C(X) — C(X, E) be the projection map.
Then mo I : C(X \U) — C(X, E) is surjective. To see this observe that a
basis for C'(X, E) consists of all

Qe K(X)\K(E) c K(X\U).
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Furthermore, the kernel of 7o I is exactly K(E\ U). Therefore, oI induces
an isomorphism

e: C(X\U)/C(E\U) - C(X)/C(E)

and hence
e. : H(X\UE\U) = H.(X,E)

is an isomorphism. [

We began this chapter with a simple example of a linear map on the
plane and asked the question whether it is possible to detect the fixed point
using algebraic topological methods. Referring to Figure 6.1, we see that
X = [—4,4] x[4, 4] is the region we want to study. Unfortunately, f(X) ¢ X.
However, we identified E' = [—4, 2] x[4, 4]U[2, 4] X [4, 4] as the smallest cubical
set with the property that if € X and f(z) ¢ X, then x € E. Thus, F is a
cubical representation of the exit set for X, i.e. those points which leave X
under one iteration.

As was noted before, f(X) = [-8,8] x [-2,2]. Clearly, f(F) = [—8,4] x
[—2,2] U [4,8] x [-2,2]. Combining these two observations, we can write

f(X) Cc XU f(E).

Solet Y = XU f(F) and let B = EU f(E). Then f: (X,E) — (Y,B)
is a continuous map between cubical pairs. Now let U = Y \ X. This is a
representable set and B\ U = E which is a cubical set. Therefore by the
Excision Isomorphism Theorem

e, H.(Y\U,B\U)— H.(Y,B)

is an isomorphism. But (Y \ U, B\ U) = (X, F), therefore, e;' : H.(Y, B) —
H,.(X, E) is an isomorphism. Define

fixpys s H(X,E) — H, (X, E)

by f(X,E)* = 6;1 ¢} f*

We now have a map, at least on the level of homology, that goes from a
space to itself and we can hope to develop a Lefschetz fixed point theorem for
this map that would tell us about the existence of fixed points for f restricted
to X \ E.

Exercises
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6.1 Let Q € K, be an elementary cube. Let E = {P € K, | P is a proper
face of @Q}. Prove that

Z ifk=gq
0 otherwise.

Ho(Q, E) {

6.2 Let f: (X, E) — (Y, B) be a continuous map between pairs. Choose a

scaling vector o such that M. : X—Y is a cubical approximation. Prove

6.3 Let X = [—4,4] x [4,4], E = [~4,2] x [4,4] U [2,4] x [4,4] and

2 0
f:lo 1/2]:R2—>R2.

Compute H,(X, E) and fx g

6.2 Exact Sequences

We finished the last section with a suggestion that we were close to being able
to develop a Lefschetz fixed point theorem for pairs of spaces. However, if the
reader solved Exercise 6.3, then it is clear that our ability to compute relative
homology groups, is rather limited. Thus, before continuing our quest for a
fixed point theorem we will look for more efficient methods of computing
relative homology groups. Given a pair of cubical sets (X, F), ideally, we
would have a theorem that by which we could determine H,(X, E) in terms
of H,(X) and H.(E). As we shall see in Section 6.3 such a theorem exists,
but before we can state it we need to develop some more tools in homological
algebra.

From the algebraic point of view, homology begins with a chain complex
{Cl%, O} which can be thought of as an sequence of abelian groups and maps

0 15}
...—)C]H_liick—k)Ck_l—)...

with the property that
image Ogy1 C ker 0.

A very special case of this is the following.
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Definition 6.6 A sequence (finite or infinite) of groups and homomorphisms
.= G3 G2 G1

is exact at Gy if
image g3 = ker g¢».
It is an exact sequence if it is exact at every group. If the sequence has a first

or last element, then it is automatically exact at that group.

To develop our intuition concerning exact sequences we will prove a few
simple lemmas.

Lemma 6.7 G1 — G| %50 is an ezact sequence if and only if g1 is an
epimorphism.
Proof: (=) Assume that G1 — G %4 0 is an exact sequence. Since

¢ : Gy — 0, kerp = Gy. By exactness, image g; = ker ¢ = G, i.e. g; is an
epimorphism.
(<) If gy is an epimorphism, then ]

Lemma 6.8 0 — G1 25 Gy is an ezact sequence if and only if g, is an
monomorphism.

Proof: ]

Lemma 6.9 Assume that
G3 = (2 = G1 — Gy

is an exact sequence. Then the following are equivalent:
1. g3 is an epimorphism,
2. g1 18 a monomorphism,

3. g9 1s the zero homomorphism.

Proof: [ ]
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Definition 6.10 A short exact sequence is an exact sequence of the form
0— G3 G2 G1 — 0.

Example 6.11 Stated as a definition, it may appear the a short exact se-
quence is a rather obscure notion. However, it appears naturally in many
examples. Consider a cubical pair (X, F) and for each k the following se-
quence

0 = Cu(E) 25 CL(X) 5 Cu(X, E) = 0 (6.2)

where I is the inclusion map and 7 is the projection map. That this is a
short exact sequence follows from simple applications of the previous lemmas.
To begin with, I; is a monomorphism since K(E) C K(X). Therefore, by
Lemma 6.8

0 — Cy(E) 25 Cp(X)

is exact. Similarly, by definition of relative chains 7, is an epimorphism.
Hence, Lemma 6.7 implies that

Cre(X) 5 Cu(X,E) — 0

is exact. So all that remains is to show that the sequence is exact at Ci(X).
By definition the kernel of 7, is Cy(FE). Similarly, since I} is a monomor-
phism, image I}, = Cy(E), i.e. image I}, = ker 7.
The short exact sequence (6.2) is called the short ezact sequence of a pair.

Lemma 6.12 Let

0— G3 G2 G1 —0
be a short exact sequence. Then, gy induces an isomorphism from G2/ gs(G3)
to G1. Conwversely, if K := ker g9, then the sequence

0— G3 —> G2 G1 —0

1s short exact where 1 is the inclusion map.

Proof: ]

We now turn to the question of maps between exact sequences. Again,
in search of the natural definitions we recall the case of maps between chain
complexes. Let {Cy, 0} and {C}, 0.} be chain complexes. Recall that the
maps of interest between chain complexes are chain maps F' : C — C". To
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begin to view this in the context of exact sequences, observe that the two
chain complexes and chain map form the following commutative diagram.

0, 0,
— Ok+1 k—+1> Ck —k> Ok,1 —

le+1 le le—l (63)
o, 0!
- Chy -5 Cp - Ch, —
This leads us to the following definition for the more restrictive case of exact
sequences.

Definition 6.13 Let
...—)Gk+1 MG}C&)Gk,l—)...

and
' Ihry 0 I !
"'—>Gk+1—>GkH k71—>"'

be exact sequences. A homomorphism F' from the first sequence to the second
is a collection of group homomorphisms Fj : Gy, — G, such that the following
diagram commutes

g
— Gk—l—l i& Gk i) Gk—l — ...
le+1 le le*I (64:)
Gt g5,
] | ] ]
= Gl G, — Gy —

F is an isomorphism, if F} is an isomorphism for each k.

6.3 The Connecting Homomorphism

In the previous section we defined the notion of an exact sequence and proved
some simple lemmas. In this section we shall prove a theorem that is fun-
damental to all of homology theory. As a corollary we will answer the moti-
vating question of how relative homology groups are related to the homology
groups of the each of spaces in the pair.

Definition 6.14 Let A = {4, 07}, B = {By,0P}, and C = {C}, 0} be
chain complexes. Let 0 denote the trivial chain complex, i.e. the chain com-
plex in which each group is the trivial group. Let F': A — Band G: B—C
be chain maps. The sequence

0 A5B9S0
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is a short exact sequence of chain complezes if for every k
F G
is a short exact sequence.

Theorem 6.15 Let
0 A5 B S coo

be a short exact sequence of chain complexes. Then, for each k there exist a
map
0* : Hk(C) — Hk_l(A)

such that
oo Hi(A) 25 Hy(B) S5 Hy(C) 25 Hy_i(A) — ...
s a long exact sequence.

Proof: [ ]

Corollary 6.16 (The exact homology sequence of a pair) Let (X, E) be a
cubical pair. Then there exists a long exact sequence

.= Hy(E) X5 Hy(X) =5 Hy(X,E) 2% H, 1 (E) — . ..
where I : E— X and 7 : (X,0) = (X, E) are inclusion maps.

Proof: ]

6.4 Relative Lefschetz Theorem

6.5 Mayer-Vietoris Sequence
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Appendix A

Equivalence Relations

Let X and Y be sets. The cartesian product of X and Y consists of all
ordered pairs (z,y) with € X and y € Y. It is denoted by

XxY :={(z,y)|r€ X and y € Y}.

Let X be any set. A relation on X is a subset R C X x X.

Example A.1 1. Consider the set of integers Z and let R = {(n,m) |
m = 2n}.

2. Consider the set of positive integers Z™ and let

R = {(n,m) | n and m share a prime factor}.

3. Consider a the set of integers Z and let R = {(n, m) | m—n is a multiple of 2}.

Definition A.2 R is an equivalence relation on X if
1. R is reflezive, i.e. (x,x) € R for all z € X.
2. R is symmetric, i.e. (z,y) € R implies that (y,z) € R.
3. R is transitive, i.e. (x,y) € R and (y, 2) € R implies that (z,2) € R

When R is an equivalence relation, the standard convention is to write z ~ y
if and only if (z,y) € R.

217
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Example A.3 The relation R defined by Example A.1.3 is an equivalence
relation. To see this we must check the three conditions. For every integer
n € Z,n ~ nsince n—n = 0 which is a multiple of 2. Observe that if n ~ m
then m — n is divisible by 2. But this means that n — m is divisible by two
and so m ~ n. Finally, if n ~ m and m ~ k then there exist integers 7 and
j such that m —n = 2¢ and £ — m = 2j. But this implies that

k—n=k—m+m-—n=2i+2j=2(+j),
and hence n ~ k.

Given an equivalence relation ~ on a set X there is a natural way to par-
tition X into disjoint subsets. Namely, for every x € X define the equivalence
class of x to be the subset

[z] ={y e X |z ~y}.

Because, an eqivalence relation is reflexive it is clear that = € [x]. It is easy
to check that the equivalence classes are disjoint. To be more precise. Let
[z] and [y] be equivalence classes. Assume that there exists z € Z such that
z € [z] and z € [y]. Then [z] = [y]. By definition z € [z] means that z ~ z.
Similarly, z € [y] means that z ~ y. By transitivity and symmetry, x ~ y
and hence [z] = [y|. Another way of saying this is that if [x] # [y] then x £ y.

A final important comment concerning equivalence relations has to do
with the functions they induce. Let X be a set with an equivalence relation ~.
Let F denote the set of equivalence classes. Let p : X — FE be given by p(x) =
[z]. Since equivalence classes are disjoint, p is a function. Furthermore, p
is surjective, since any element of E is an equivalence class which can be
represented by [z] and therefore, p(x) = [z]. Another standard notation for
the set £ is X/ ~.
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