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2 CHAPTER 1 INTRODUCTION

The first two examples provide a contrast between an experiment that
showed no variability and another that showed considerable variability.

Vaccine for Anthrax. Anthrax is a serious disease of sheep and cattle. In 1881
Louis Pasteur conducted a famous experiment to demonstrate the effect of his
vaccine against anthrax. A group of 24 sheep were vaccinated; another group of 24
unvaccinated sheep served as controls. Then, all 48 animals were inoculated with
a virulent culture of anthrax bacillus. Table 1.1 shows the results.! The data of Table
1.1 show no variability; all the vaccinated animals survived and all the unvacci-
nated animals died. |

Bacteria and Cancer. To study the effect of bacteria on tumor development,
researchers used a strain of mice with a naturally high incidence of liver tumors.
One group of mice were maintained entirely germ free, while another group were
exposed to the intestinal bacteria Escherichia coli. The incidence of liver tumors
is shown in Table 1.2.2

In contrast to Table 1.1, the data of Table 1.2 show variability; mice given
the same treatment did not all respond the same way. Because of this variability,
the results in Table 1.2 are equivocal; the data suggest that exposure to E. coli in-
creases the risk of liver tumors, but the possibility remains that the observed dif-
ference in percentages (62% versus 39%) might reflect only chance variation rather
than an effect of E. coli. If the experiment were replicated with different animals,
the percentages might be substantially changed; note especially that the 62% is
based on only 13 animals. |

In Chapter 10 we will discuss statistical techniques for evaluating data such
as those in Tables 1.1 and 1.2. Of course, in some experiments variability is minimal
and the message in the data stands out clearly without any special statistical analy-
sis. It is worth noting, however, that absence of variability is itself an experimental
result that must be justified by sufficient data. For instance, because Pasteur’s
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ent that anthrax data (Table 1.1) show no variability at all, it is intuitively plausible to con-
clude that the data provide “solid” evidence for the efficacy of the vaccination.
But note that this conclusion involves a judgment; consider how much less “solid”
In 1881 the evidence would be if Pasteur had included only 3 animals in each group, rather
ct of his than 24. In fact, a judgment that variability is negligible can be justified by an ap-
up of 24 propriate statistical analysis. Thus, a statistical view can be helpful even in the ab-
ted with sence of variability.
of Table The next two examples illustrate some of the questions that a statistical
unvacci- approach can help to answer.
|
Flooding and ATP. In an experiment on root metabolism, a plant physiolo-
gist grew birch tree seedlings in the greenhouse. He flooded four seedlings with
water for one day and kept four others as controls. He then harvested the
seedlings and analyzed the roots for adenosine triphosphate (ATP). The mea-
sured amounts of ATP (nmols per mg tissue) are given in Table 1.3 and dis-
played in Figure 1.1.3
The data of Table 1.3 raise several questions: How should one summarize
the ATP values in each experimental condition? How much information do the
data provide about the effect of flooding? How confident can one be that the re-
duced ATP in the flooded group is really a response to flooding rather than just =
random variation? What size experiment would be required in order to firmly cor- & 21~ .
roborate the apparent effect seen in these data? m = *
opment, g 18
tumors. g *
up were g L5 . *
- tumors =
E 12 *
ce given £ gl
rlablhty’ < 7 Flooded Control
. coli in-
ved dif- Figure 1.1 ATP concentration
n rather in birch tree roots
animals, . . .
. 62% is Chapters 2, 6,7, and 8 address questions like those posed in Example 1.3.

|
MAO and Schizophrenia. Monoamine oxidase (MAO) is an enzyme that is @S EI]J MR

thought to play a role in the regulation of behavior. To see whether different cat-
egories of schizophrenic patients have different levels of MAO activity, researchers
collected blood specimens from 42 patients and measured the MAO activity in
the platelets. The results are given in Table 1.4 and displayed in Figure 1.2. (Val-
ues are expressed as nmol benzylaldehyde product per 108 platelets per hour.)*
Note that it is much easier to get a feeling for the data by looking at the graph
(Figure 1.2) than it is to read through the data in the table. The use of graphical
displays of data is a very important part of data analysis.

To analyze the MAO data, one would naturally want to make comparisons
among the three groups of patients, to describe the reliability of those compar-

ata such isons, and to characterize the variability within the groups. To go beyond the data
minimal to a biological interpretation, one must also consider more subtle issues, such as the
al analy- following: How were the patients selected? Were they chosen from a common hos-
rimental pital population, or were the three groups obtained at different times or places?
asteur’s Were precautions taken so that the person measuring the MAO was unaware of

— S
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Figure 1.2 MAO activity in
schizophrenic patients

the patient’s diagnosis? Did the investigators consider various ways of subdivid-
ing the patients before choosing the particular diagnostic categories used in Table
1.4? At first glance, these questions may seem irrelevant—can we not let the mea-
surements speak for themselves? We will see, however, that the proper interpre-
tation of data always requires careful consideration of how the data were obtained.

|

Chapters 2,3,8,and 9 include discussions of selection of experimental sub-
jects and of guarding against unconscious investigator bias. In Chapter 11 we will
show how sifting through a data set in search of patterns can lead to serious mis-
interpretations, and we will give guidelines for avoiding the pitfalls in such searches.

The next example shows how the effects of variability can distort the results
of an experiment and how this distortion can be minimized by careful design of the
experiment.

m Food Choice by Insect Larvae. The clover root curculio, Sitona hispidulus, is

aroot-feeding pest of alfalfa. An entomologist conducted an experiment to study
food choice by Sitona larvae. She wished to investigate whether larvae would pref-
erentially choose alfalfa roots that were nodulated (their natural state) over roots
whose nodulation had been suppressed. Larvae were released in a dish where both
nodulated and nonnodulated roots were available. After 24 hours the investigator
counted the larvae that had clearly made a choice between root types. The results
are shown in Table 1.5.°

The data in Table 1.5 appear to suggest rather strongly that Sitona larvae
prefer nodulated roots. But our description of the experiment has obscured an
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SECTION 1.2 EXAMPLES AND OVERVIEW 5

important point—we have not stated how the roots were arranged. To see the
relevance of the arrangement, suppose the experimenter had used only one dish,
placing all the nodulated roots on one side of the dish and all the nonnodulated
roots on the other side, as shown in Figure 1.3(a), and had then released 120 lar-
vae in the center of the dish. This experimental arrangement would be seriously
deficient, because the data of Table 1.5 would then permit several competing
interpretations—for instance, (a) perhaps the larvae really do prefer nodulated
roots; or (b) perhaps the two sides of the dish were at slightly different temperatures,
and the larvae were responding to temperature rather than nodulation; or (c) per-
haps one larva chose the nodulated roots just by chance and the other larvae fol-
lowed its trail. Because of these possibilities, the experimental arrangement shown
in Figure 1.3(a) can yield only weak information about larval food preference.
The experiment was actually arranged as in Figure 1.3(b), using six dishes
with nodulated and nonnodulated roots arranged in a symmetric pattern. Twenty
larvae were released into the center of each dish. This arrangement avoids the pit-
falls of the arrangement in Figure 1.3(a). Because of the alternating regions of
nodulated and nonnodulated roots, any fluctuation in environmental conditions
(such as temperature) would tend to affect the two root types equally. By using sev-
eral dishes, the experimenter has generated data that can be interpreted even if the
larvae do tend to follow each other. To analyze the experiment properly, we would
need to know the results in each dish; the condensed summary in Table 1.5 is not
adequate. |

In Chapter 8 we will describe various ways of arranging experimental ma-
terial in space and time so as to yield the most informative experiment. In later
chapters we will discuss how to analyze the data to extract as much information as
possible, and yet to resist the temptation to over interpret patterns that may rep-
resent only random variation.

Sexual Orientation. Some research has suggested that there is a genetic basis
for sexual orientation. One such study involved measuring the midsagittal area of
the anterior commissure (AC) of the brain for 30 homosexual men, 30 heterosex-
ual men, and 30 heterosexual women. The researchers found that the AC tends to
be larger in heterosexual women than in heterosexual men and that it is even
larger in homosexual men. These data are summarized in Table 1.6 and are shown
graphically in Figure 1.4.

The data suggest that the size of the AC in homosexual men is more like that
of heterosexual women than that of heterosexual men. When analyzing these data,
we should take into account two things: (1) The measurements for two of the

Figure 1.3 Possible
arrangements of food choice
experiment. The dark-shaded
areas contain nodulated roots
and the light-shaded areas
contain nonnodulated roots.
(a) A poor arrangement.

(b) A good arrangement.

Example 1.6



Figure 1.4 Midsagittal area of
the anterior commissure (mm?)
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homosexual men were much larger than any of the other measurements; some-
times one or two such outliers can have a big impact on the conclusions of a study.
(2) Twenty-four of the thirty homosexual men had died of AIDS, as opposed to
6 of the 30 heterosexual men; if AIDS affects the size of the anterior commissure,
then this factor could account for some of the difference between the two groups
of men.®

Note that the context in which the data arose is of central importance in
statistics. This is quite clear in the present example: The numbers themselves can
be used to compute averages or to make graphs, like Figure 1.4, but if we are to un-
derstand what the data have to say, we must understand the context in which they
arose. This context tells us to be on the alert for the effects of other factors, such
as the impact AIDS may have on the size of the anterior commissure. Data analysis
without reference to context is meaningless. |

In Chapter 8 we will consider aspects of data collection and analysis that
help to deal with the concerns raised in Example 1.6.

Toxicity in Dogs. Before new drugs are given to human subjects, it is common
practice to test them first in dogs or other animals. In part of one study, a new in-
vestigational drug was given to 4 male and 4 female dogs, at doses 8 mg/kg and
25 mg/kg. Many “endpoints” were measured, such as cholesterol, sodium, and glu-
cose, from blood samples in order to screen for toxicity problems in the dogs be-
fore starting studies on humans. One endpoint was alkaline phosphatase level
(measured in U/Li). The data are shown in Table 1.7 and plotted in Figure 1.5
The design of this experiment allows for the investigation of the interaction
between two factors: sex of the dog and dose. These factors interacted in the fol-
lowing sense: For females the effect of increasing the dose from 8 to 25 was posi-
tive, although small (the average increased from 133.5 to 143), but for males the
effect of increasing the dose from 8 to 25 was negative (the average dropped from
143 to 124.5). Techniques for studying such interactions will be considered in
Chapter 11. |
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SECTION 1.2 EXAMPLES AND OVERVIEW 7

The following example is a study of the relationship between two measured
quantities.

Body Size and Energy Expenditure. How much food does a person need?
To investigate the dependence of nutritional requirements on body size, researchers
used underwater weighing techniques to determine the fat-free body mass for each
of seven men. They also measured the total 24-hour energy expenditure during
conditions of quiet sedentary activity; this was repeated twice for each subject.
The results are shown in Table 1.8 and plotted in Figure 1.6.
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Figure 1.5 Alkaline phosphate
level in dogs. Males are shown
with circles, females with xs.

Example 1.8

Figure 1.6 Fat-free mass and
energy expenditure in seven
men. Each man is represented
by a different symbol.
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A primary goal in the analysis of these data would be to describe the rela-
tionship between fat-free mass and energy expenditure—to characterize not only
the overall trend of the relationship, but also the degree of scatter or variability in
the relationship. (Note also that, to analyze the data, one needs to decide how to
handle the duplicate observations on each subject.) |

The focus of Example 1.8 is on the relationship between two variables:
fat-free mass and energy expenditure. Chapter 12 deals with methods for describ-
ing such relationships and for quantifying the reliability of the descriptions.

A Look Ahead

Where appropriate, statisticians make use of the computer as a tool in data analy-
sis; computer-generated output and statistical graphics appear throughout this
book.The computer is a powerful tool, but it must be used with caution. Using the
computer to perform calculations allows us to concentrate on concepts. The dan-
ger when using a computer in statistics is that we will jump straight to the calcu-
lations without looking closely at the data and asking the right questions about
the data. Our goal is to analyze, understand, and interpret data—which are num-
bers in a specific context—not just to perform calculations.

In order to understand a data set, it is necessary to know how and why the
data were collected. In addition to considering the most widely used methods in
statistical inference, we will consider issues in data collection and experimental
design. Together, these topics should provide the reader with the background need-
ed to read the scientific literature and to design and analyze simple research
projects.

The preceding examples illustrate the kind of data to be considered in this
book. In fact, each of the examples will reappear as an exercise or example in an
appropriate chapter. As the examples show, research in the life sciences is usually
concerned with the comparison of two or more groups of observations, or with
the relationship between two or more variables. We will begin our study of statis-
tics by focusing on a simpler situation—observations of a single variable for a single
group. Many of the basic ideas of statistics will be introduced in this oversimplified
context. Two-group comparisons and more complicated analyses will then be dis- .
cussed in Chapter 7 and later chapters.
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Weight of a baby
Cholesterol concentration in a blood specimen
Optical density of a solution

A variable such as weight is continuous because, in principle, two weights
can be arbitrarily close together. Some types of quantitative variables are not con-
tinuous but fall on a discrete scale, with spaces between the possible values. A
discrete variable is a quantitative variable for which we can list the possible val-
ues. For example, the number of eggs in a bird’s nest is a discrete variable because
only the values 0,1,2,3, ..., are possible. Other examples of discrete variables are

Age of a person (in years)
Number of bacteria colonies in a petri dish
Number of cancerous lymph nodes detected in a patient

The distinction between continuous and discrete variables is not a rigid
one. After all, physical measurements are always rounded off. We may measure
the weight of a steer to the nearest kilogram, of a rat to the nearest gram, or of an
insect to the nearest milligram. The scale of the actual measurements is always dis-
crete, strictly speaking. The continuous scale can be thought of as an approxima-
tion to the actual scale of measurement.

In summary, variables can be of the following types:

1 says she |
20. In the in

1. Categorical variables
(a) Ordinal
(b) Not ordinal

2. Quantitative variables

(a) Discrete
(b) Continuous

We will sometimes find it useful to discuss these types separately when consider-
ing methods of data analysis.

Samples

A sample is a collection of persons or things on which we measure one or more
variables. The number of observations in a sample is called the sample size and is
‘ denoted by the letter n. The following are some examples of samples:

y, (ii) for each v:
, (iii) identify the

The birthweights of 150 babies born in a certain hospital @ SAggllﬁ;

The sexes of 73 Cecropia moths caught in a trap (b) ’II'Le birt

The flower colors of 81 plants that are progeny of a single parental cross of 65 ba
The number of bacterial colonies in each of six petri dishes

‘ (a) A physi

In conceptualizing a sample, it is helpful to be aware of the following elements: (b) During :

(a) The observed variable. For example, gf;ob?s;

birthweight
sex (a) A biolog
flower color (b) A physi

. severe e
number of colonies : !
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SECTION 2.1 INTRODUCTION

(b) The observational unit (or case). For example,

baby

i moth

4 plant

4 petri dish

b (c) The sample size. For example,

n =150

n=73

n =81

n==6

Remark: There is some potential for confusion between the statistical
fneaning of the term sample and the sense in which this word is sometimes used
in biology. If a biologist draws blood from 20 people and measures the glucose
goncentration in each, she might say she has 20 samples of blood. However, the sta-
istician says she has one sample of 20 gluco se measurements; the sample size is
i = 20. In the interest of clarity, throughout this book we will use the term

pecimen where a biologist might prefer sample. So we would speak of glucose
casurements on 20 specimens of blood.

\ otation for Variables and Observations

We will adopt a notational convention to distinguish between a variable and an ob-
erved value of that variable. We will denote variables by uppercase letters such
s Y. We will denote the observations themselves (that is, the data) by lowercase
etters such as y. Thus, we distinguish, for example, between Y = birthweight (the
ariable) and y = 7.9 Ib (the observation). This distinction will be helpful in ex-
" plaining some fundamental ideas concerning variability.

Exercises 2.1-2.3

i For each of the following settings in Exercises 2.1-2.3, (i) identify the variable(s) in the
 study, (ii) for each variable tell the type of variable (e.g., categorical and ordinal, discrete,
 etc.), (iii) identify the observational unit, and (iv) determine the sample size.

——

/2.1 (a) A paleontologist measured the width (in mm) of the last upper molar in 36
specimens of the extinct mammal Acropithecus rigidus.

(b) The birthweight, date of birth, and the mother’s race were recorded for each
of 65 babies.

2.2 (a) A physician measured the height and weight of each of 37 children.

; (b) During a blood drive, a blood bank offered to check the cholesterol of anyone
who donated blood. A total of 129 persons denoted blood. For each of them,
the blood type and cholesterol levels were recorded.

2.3 (a) A biologist measured the number of leaves on each of 25 plants.
; (b) A physician recorded the number of seizures that each of 20 patients with
severe epilepsy had during an eight-week period.
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OF SAMPLES AND POPULATIONS

m Clumping of Blood. The strength of reaction of a blood specimen to a certain
‘ antigen is categorized into one of six classes according to the degree of clumping

2.2 FREQUENCY DISTRIBUTIONS:
TECHNIQUES FOR DATA
standing a set of data on a given variable is to explore the

data and describe the data in summary form. In this chapter we discuss three mu-
tually complementary aspects of summary data description: frequency distribu-
tions, measures of center, and measures of dispersion. These tell us about the shape,

center, and spread of the data.

A first step toward under

Frequency Distributions

on is simply a display of the frequency, or number of oc-
currences, of each value in the data set. The information can be presented in tab-
ular form or, more vividly, with a graph. A bar chart is a simple graphic showing
the categories that a categorical variable takes on and the number of observations
in each category for the data in the sample. Here are two examples of frequency

distributions for categorical data.

A frequency distributi

Color of Poinsettias. Poinsettias can be red, pink, or white. In one investigation
of the hereditary mechanism controlling the color, 182 progeny of a certain parental
cross were categorized by color.! The bar graph in Figure 2.1 is a visual display of

the results given in Table 2.1. ||

of the red blood cells: Class I, complete clumping; Class 11, marked clumping;. ..}
Class VI, no clumping. The results for specimens from 70 type-B people are given
n

in Table 2.2 and displayed as a bar graph in Figure 222

10 +
[ — L
1 I 111 v \% VI
Strength of reaction

Figure 2.2 Bar chart of strength of clumping
reaction of 70 blood specimens
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A dotplot is a simple graph that can be used to show the distribution of a

antitative variable when the sample size is small. To make a dotplot, we draw a

Mmber line covering the range of the data and then put a dot above the number
for each observation, as the following example shows.

fle Expectancy. Table 2.3 shows the infant mortality rate (infant deaths per m
00 live births) in each of 12 countries in South America, as of 1999.% The distri-

tion is shown in Figure 2.3. ]

ariable is to explore the
ter we discuss three mu-
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Figure 2.3 Dotplot of infant
mortality in 12 South America
countries

Wwhite. In one investigation 2
bgeny of a certain parental |

ke 2.1 is a visual display of
' ||

When two or more observations take on the same value, we stack the dots
adotplot on top of each other. This gives an effect similar to the effect of the bars

a bar chart. If we create bars, in place of the stacks of dots, we then have a
listogram. A histogram is like a bar chart, except that a histogram displays a quan-

ative variable, which means that there is a natural order and scale for the vari-
le. In a bar chart the amount of space between the bars (if any) is arbitrary, since
the data being displayed are categorical. In a histogram the scale of the variable
determines the placement of the bars. The following example shows a dotplot and

flood specimen to a certain 4 histogram for a frequency distribution.

o the degree of clumping | 5
I, marked clumping; . ..; SlRLitter Size of Sows. A group of 36 two-year-old sows of the same breed GDuroc, EIECIL ple 2.4
0 type-B people are given Yorkshire) were bred to Yorkshire boars. The number of piglets surviving to 21

B W days of age was recorded for each sow.* The results are given in Table 2.4 and dis-

played as a dotplot in Figure 2.4 and as a histogram in Figure 2.5. u S .

i I

8 . o o o
IRelative Frequency EEEEERE
E L o o L L] L L [ ]
IThe frequency scale is often replaced by a relative frequency scale: 567 8910111213 14
'f; Number of piglets
| . Frequency .
g Relative frequency = T Figure 2.4 Dotplot of number

of surviving piglets of 36 sows
The relative frequency scale is useful if several data sets of different sizes

s) are to be displayed together for comparison. As another option, a relative

requency can be expressed as a percentage frequency. The shape of the displayis

ot affected by the choice of frequency scale, as the following example shows.
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Figure 2.5 Histogram of number of surviving

piglets of 36 sows
Color of Poinsettias. The poinsettia color distribution of Example 2.1 is ex-
pressed as frequericy, relative frequency, and percent frequency in Table 2.5 and
Figure 2.6. |
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Grouped Frequency Distributions

In the preceding examples, simple ungrouped frequency distributions provided conq
cise summaries of the data. For many data sets, it is necessary to group the data il
order to condense the information adequately. (This is usually the case with confflf MTB > HISTOG
tinuous variables.) The following example shows a grouped frequency distributionfi:

Example 2.6 Serum CK. Creatine phosphokinase (CK) is an enzyme related to muscle and
' brain function. As part of a study to determine the natural variation in CK con
centration, blood was drawn from 36 male volunteers. Their serum concentrationg

i ‘gpeak of the distribr
0l h¢ pointed end. Thu
Métches out, like the p
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of CK (measured in u/Li) are given in Table 2.6°. Table 2.7 shows these data
grouped into classes. For instance, the frequency of the class 20-39 is 1, which
means that one CK value fell in this range. The grouped frequency distribution is
| displayed as a histogram in Figure 2.7. |

\ of Example 2.1 is ex-
uency in Table 2.5 and
: |

Frequency
N
I

I I I
20 60 100 140 180 220

CK concentration (u/Li)

—

Figure 2.7 Histogram of serum CK
concentrations for 36 men

A grouped frequency distribution should display the essential features of the
data. For instance, the histogram of Figure 2.7 shows that the average CK value is
about 100 U/Li, with the majority of the values falling hetween 60 and 140 U/Li. In
addition, the histogram shows the shape of the distribution. Note that the CK val-
;  ues are piled up around a central peak, or mode. On either side of this mode, the fre-
o f quencies decline and ultimately form the tails of the distribution. These shape features
] are labeled in Figure 2.8. The CK distribution is not symmetric but is skewed to the
right, which means that the right tail is more stretched out than the left.*
' Computer note: Computer software is often used to make a histogram. For
| example, if the data have been entered into the statistical package MINITAB as
column C1, then the following command will produce a histogram:

stributions provided con-
! ary to group the datain |
sually the case with con- MTB > HISTOGRAM C1
bd frequency distribution.

bie related to muscle and *To help remember which tail of a skewed distribution is the longer tail, think of a skewer.
| 1 variation in CK con- The peak of the distribution corresponds to the handle of the skewer and the tail corresponds
3 a van . to the pointed end. Thus, a distribution that is skewed to the right is one in which the right tail
i it S(?I‘ uin concentrations  stretches out, like the pointed end of a skewer:
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Example 2.7
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Height

Figure 2.9 Heights of students,
using 7 classes (class width = 3)

|

!‘ Figure 2.10 Heights of
students, using 18 classes
(class width = 1.1)

Mode
] &
§ 30
o
£ 20
Right tail s
Left tail / 10
Figure 2.8 Shape features of _,_‘—‘ H
the CK distribution
. ) . ) s Computer n
When making a histogram, we need to decide how many classes to have B, use the cor

and how wide the classes should be. If we use computer software to generate a
histogram, the program will choose the number of classes and the class width for
us, but most software allows the user to change the number of classes and to spec- B > HISTO(
ify the class width. If a data set is large and is quite spread out, it is a good idea to UBC > NINTI
look at more than one histogram of the data, as is done in Example 2.7.

emicolon at t
s. In this cas
s (NINTERV

Heights of Students. A sample of 510 college students were asked how tall
they were. Note that they were not measured; rather, they just reported their
heights. Figure 2.9 shows the distribution of the self-reported values, using 7 class-
es and a class width of 3 (inches). By using only 7 classes, the distribution appears

to be reasonably symmetric, with a single peak around 66 inches. iterpreting Ar

Figure 2.10 shows the height data, but in a histogram that uses 18 classes and istogram can b
a class width of 1.1. This view of the data shows two modes—one for women and e of the distrit
one for men. l , of each bar is

‘ Figure 2.11 shows the height data again., this time using 37 classes, each of
width .5. Using such a large number of classes makes the distribution look jagged. rvations in th
In this case, we see an alternating pattern between classes with lots of observa- sa histogram
tions and classes with few observations. In the middle of the distribution we see that o

. . ) i of the total a
there were many students who reported a height of 63 inches, few who reported a
height of 63.5 inches, many who reported a height of 64 inches, and so on. It seems
that most students round off to the nearest inch! |
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Frequency

8 8 &5 g

I I I I
]

—
S
{

i

I H I I I I
: 580 605 630 655 680 705 73.0 75.5
H Height

Computer note: To make a histogram with 37 classes within the MINITAB

“$ystem, use the command
-

b | MTB > HISTOGRAM C1;
SUBC > NINTERVAL 37.

/ The semicolon at the end of the first line tells the computer that a subcommand

1 fpllows. In this case, the subcommand tells the computer that the number of in-
 tervals (NINTERVAL) is 37.

‘Interpreting Areas in a Histogram

i A histogram can be looked at in two ways. The tops of the bars sketch out the
| shape of the distribution. But the areas within the bars also have a meaning. The
| area of each bar is proportional to the corresponding frequency. Consequently,
| the area of one or several bars can be interpreted as expressing the number of
 observations in the classes represented by the bars. For example, Figure 2.12
| shows a histogram of the CK distribution of Example 2.6. The shaded area is
| 42% of the total area in all the bars. Accordingly, 42% of the CK values are in

 the corresponding classes; that is, 15 of 36 or 42% of the values are between 60
{ u/Liand 100 u/Li.*

Frequency
-
I

I { I |
20 60 100 140 180 220
CK concentration (u/Li)

L Strictly speaking, between 60 u/Li and 99 u/Li, inclusive.

Figure 2.11 Heights of
students, using 37 classes
(class width = .5)

Figure 2.12 Histogram of CK
distribution. The shaded area is

42% of the total area and
represents 42% of the
observations.
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Figure 2.13 Histograms of CK
distribution with unequal class
widths. (a) Distorted;

(b) appropriate.

Example 2.8

The area interpretation of histograms is a simple but important idea. In our
later work with distributions we will find the idea to be indispensable.

Frequency Distributions with Unequal Class Widths

When a grouped frequency distribution is formed, classes are usually chosen to
be of equal width. Occasionally classes of unequal width are used, for example, to
smooth the distribution in a region where the data are sparse. If the classes are of
unequal width, the method for drawing the histogram must be modified. To take
an exaggerated example, suppose the last four classes of the CK grouping of Table
2.7 were coalesced into one class: 140-219. This class would have a frequency of 5.
If the resulting distribution were plotted using raw frequencies, the histogram
would be distorted in shape, as illustrated in Figure 2.13(a). Furthermore, the areas
of the bars would no longer be proportional to the frequencies of the corresponding
classes. The distortion can be removed by dividing the frequency of the coalesced
class by 4, since it is 4 times as wide as the other classes. This gives the histogram
of Figure 2.13(b). Notice that in this modified histogram the height of the wide
bar is the average of the heights of the four narrow bars that it has replaced. This
averaging process tends to retain the approximate shape of the original histogram;

also, the proportionality between area and frequency is preserved. [Of course, the

vertical axis in Figure 2.13(b) can no longer be labeled “frequency”; this will be dis-

cussed further in Section 3.5.]

Even if you are not actually drawing a histogram, it is important to check

the class widths when interpreting a tabulated distribution. If they are unequal,

the frequencies do not indicate the shape of the distribution.

A natural v

8 8 —
2¥yo on. The sm
6 6 L ik of “8” as the
g g as we work
Q Q
T ' | elzﬁltt di
= — = € dia,
= 2= . 2 - _‘ ‘ g
Wrdered stem-ar
T T |
20 60 100 140 180 220 20 60 100 140 180 220
CK concentration CK concentration / Notice that.
(a) (b) it sideways. Unl
al data value:
To construct
Stem-and-Leaf Diagrams g yrite down ea
15 the leaf and
Another graphic that is useful for small data sets is a stem-and-leaf diagram. The 25, and so on.
construction of a stem-and-leaf diagram is illustrated in the following example. ; e hundreds a:
to round the
Radish Growth. A common biology experiment involves growing radish i¥%:for instance, 1]

seedlings under various conditions. In one version of this experiment, a moist paper
towel is put into a plastic bag. Staples are put in the bag about one-third of the
way from the bottom of the bag; then radish seeds are placed along the staple
seam. One group of students kept their radish seed bags in total darkness for three
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‘5 and so on. The smallest observation is an 8, for which the stem is 0—that is, we
f think of “8” as the two-digit number 08. If we continue adding leaves to the
¢ stems as we work through the data, the result is the stem-and-leaf diagram of

| ing it sideways. Unlike a histogram, however, the stem-and-leaf diagram retains the
| original data values. '

lves growing radish |
out one-third of the |

total darkness for three
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and then measured the length, in mm, of each radish shoot at the end of the
iree days. They collected 14 observations: the data are shown in Table 2.8.°

A natural way to organize the data is by putting the observations into
Foups:

0’s: 8

10s: 15 11 10 15

20’s: 20 20 29 22 25
30’s: 30 33 35 37

We can then split each data value into a “stem” and a “leaf” as follows:

Stem Leaf
8§ — 0 8
018
15 1 > 115105
20 — 2 0 2({00925
30 3 0 310357
Key: 115 means 15 mm.

Figure 2.14 Stem-and-leaf
diagram for radish growth in

darkness
- Figure 2.14.
1 In the diagram, each stem is accompanied by all of its leaves. It helps to 08
j arrange the leaves in order, from smallest to largest, on each stem. Figure 2.15 is 110155
‘ . . 2/00259
- an ordered stem-and-leaf diagram of the radish growth data. n 310357

Key: 1IS means 15 mm.

Notice that a stem-and-leaf diagram can be viewed as a histogram by turn- Figure 2.15 Stem-and-leaf

diagram for radish growth in

darkness with the leaves
To construct a stem-and-leaf diagram, simply read through the data values arranged in order

| and write down each leaf next to its stem. In general, the last digit of an observa-
| tion is the leaf and the rest is the stem. For example, if the data values are 123,137,
| 142,125, and so on, then we would use the ones digits (the 3,7, 2, and 5) as leaves
| and the hundreds and tens digits together (i-e.,12,13,14) as the stems. It may be nec-
| essary to round the data so that this principle will produce a satisfactory display. Sup-
pose, for instance, that the radish growth data had been measured to the nearest .1
i mm, and the values were 15.3,20.2,10.8, ... ; then we would want to round the data
 t0 one decimal place before constructing the stem-and-leaf diagram.

Note that the construction of a stem-and-leaf diagram does not depend on

 the location of the decimal point in the data. For instance, if the radish growth data




’ . FETIPRN Radish Growth. The data shown in Table 2.8 are for radish seedlings that were
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of Table 2.8 were expressed in cm rather than in mm, then the observations would
be 1.5,2.0,1.1,...but the (ordered) stem-and-leaf diagram would be exactly the
same as Figure 2.15; the key indicates the scale of measurement.
It is sometimes helpful to stretch out the scale in a stem-and-leaf diagram
) by splitting the stems in half, with leaves 04 going in the lower half and leaves
S s 5-9 going in the upper half of each stem. Figure 2.16 shows this technique applied
ey:115 means 15 mm. to the radish data.
Figure 2.16 Stem-and-leaf Computer note: To make a stem-and-leaf diagram within the MINITAB
diagram for radish growth in system, for data stored in column 1, use the command

darkness using split stems
[ MTB > STEM Cl

MINITAB will choose how to split the stems. This choice can be overridden wit
the subcommand “INCREMENT.”

Another type of stem-and-leaf diagram is a back-to-back stem-and-leaf di
agram, which allows us to compare two distributions, as in Example 2.9.

WWRNR-O
OO WNO
WO o Wwn-

)

kept in total darkness for three days. In a second part of that experiment, the stu

(1’ 3 3 s s dents moved some seedlings back and forth between light for 12 hour“s and dark ribution is sym
210001257 ness for 12 hours, over the same three-day period. The data for the “12 light/1 28888 o \<ion is show

dark” seedlings are shown in Table 2.9. Figure 2.17 shows the distribution of thesg
data. Figure 2.18 shows the two distributions in a back-to-back stem-and-leaf diaj

on. Bimodalit
subgroups of o

Key: 115 means 15 mm.

Figure 2.17 Stem-and-leaf gram. The stems are in the middle of the diagram, with the “darkness” distributio
f‘lalng ?mhft‘;{zfzdlf g?glwtg‘ building out to the right and the “12 light/12 dark” distribution building out to the
m eS8 ark with e left. Figure 2.19 uses split stems in a back-to-back stem-leaf-diagram to help ug

1 di d . e ep e
eaves arranged In orcer see the difference between the two distributions.

94
55100
7521000

018
10155
2{00259
310357 S .
Key: 115 means 15 mm. (a) Symmetri

Figure 2.18 Back-to-back
stem-and-leaf diagram for
radish growth: light/dark versus
total darkness

410 (c) Skewed
91018 We can see that there is considerable overlap between the two distribu
100{1(01 . g . . ,
ss|1l55 tions. Nonetheless, radish seedlings grown in total darkness tend to grow morg
21000(2(002 than do seedlings grown in light and darkness. The “light and darkness” distribu
75 g 8 g tion is shifted roughly 10 mm, toward lower values, in comparison to the “tota)
3ls57 darkness” distribution.

Key: 1i5 means 15 mm.
Figure 2.19 Back-to-back stem- In a research report, a frequency distribution would usually be presente
and-leaf diagram with split as a table or a histogram. However, the stem-and-leaf diagram is a useful workin{
stems for radish growth: tool during the analysis of data and gives a quick and convenient way to displa
light/dark versus total darkness  small data sets. (e)E
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3 FREQUENCY DISTRIBUTIONS:
¥ SHAPES AND EXAMPLES

When discussing a set of data, we want to describe the shape, center, and spread
Of the distribution. In this section we concentrate on the shapes of frequency dis-

fhibutions and illustrate some of the diversity of distributions encountered in the
e sciences. The shape of a distribution can be indicated by a smooth curve that
pproximates the histogram, as shown in Figure 2.20.

m:within the MINITAB

—

ke can be overridden with

T~ Figure 2.20 Approximation of
to Back stem-and-leaf di- a histogram by a smooth curve

8 in Example 2.9.

Some distributional shapes are shown in Figure 2.21. A common shape for
ological data is unimodal (has one mode) and is somewhat skewed to the right,
s in (c). Approximately bell-shaped distributions, as in (a), also occur. Sometimes
 distribution is symmetric but differs from a bell in having long tails; an exagger-
ted version is shown in (b). Left-skewed (d) and exponential (e) shapes are less

lommon. Bimodality (two modes), as in (f), can indicate the existence of two dis-
inct subgroups of observational units.

N N
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Figure 2.22 Sizes of microfossils
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Example 2.10
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Notice that the shape characteristics we are emphasizing, such as number
of modes and degree of symmetry, are scale free; that is, they are not affected b
the arbitrary choices of vertical and horizontal scale in plotting the distribution. B
contrast, a characteristic such as whether the distribution appears short and fat, of
tall and skinny, is affected by how the distribution is plotted and so is not an in{
herent feature of the biological variable.

The following three examples illustrate biological frequency distributiong
with various shapes. In the first example, the shape provides evidence that the disj
tribution is in fact biological rather than nonbiological.

Microfossils. In 1977 paleontologists discovered microscopic fossil structures|
resembling algae, in rocks 3.5 billion years old. A central question was whethey
these structures were biological in origin. One line of argument focused on theit
size distribution, which is shown in Figure 2.22. This distribution, with its unimoda]
and rather symmetric shape, resembles that of known microbial populations buf
not that of known nonbiological structures.’ \

Cell Firing Times. A neurobiologist observed discharges from rat muscle cell ' |F
grown in culture together with nerve cells. The time intervals between 308 suc i /|
cessive discharges were distributed as shown in Figure 2.23. Note the exponentig| o
shape of the distribution.® | ‘

150 —

s

»

S 100 |-

E

bS]

8

-fé 50 —

=

Z
Figure 2.23 Time intervals I |
between electrical discharges in 0 8 16
rat muscle cells Time (s)

Brain Weight. In 1888 P.Topinard published data on the brain weights of hu
dreds of French men and women. The data for males and females are shown
Figure 2.24(a) and (b). The male distribution is fairly symmetric and bell shape
the female distribution is somewhat skewed to the right. Part (c) of the figud
shows the brain weight distribution for males and females combined. This combine
distribution is slightly bimodal.’

Sources of Variation

In interpreting biological data, it is helpful to be aware of sources of variability. T4
variation among observations in a data set often reflects the combined effects ¢
several underlying factors. The following two examples illustrate such situation

Weights of Beans. In a classic experiment to distinguish environmental froj
genetic influence, a geneticist weighed seeds of the princess bean Phaseolus vil
garis. Figure 2.25 shows the weight distributions of (a) 5,494 seeds from a cox
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i the brain weights of hun-
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feht. Part (c) of the figure|
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[ |

jnercial seed lot, and (b) 712 seeds from a highly inbred line that was derived from
4 single seed from the original lot. The variability in (a) is due to both environ-
mental and genetic factors; in (b), because the plants are nearly genetically iden-
lical, the variation in weights is due largely to environmental influence.'® Thus,
here is less variability in the inbred line. |

‘(,‘ erum ALT. Alanine aminotransferase (ALT) is an enzyme found in most @I EINTJ IR F:!

luman tissues. Part (a) of Figure 2.26 shows the serum ALT concentrations for
29 adult volunteers. The following are potential sources of variability among
the measurements:

bf sources of variability. The
bts the combined effects of
s illustrate such situations.

hguish environmental fromfi 1. Interindivi'dual
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h) 5,494 seeds from a com-S. (b) Environmental




Figure 2,26 Distribution of
serum ALT measurements (a)
for 129 volunteers; (b) for 109
assays of the same specimen

The effect of the last source—analytical variation—can be seen in Figure 2.26(b
which shows the frequency distribution of 109 assays of the same specimen ¢
serum,; the figure shows that the ALT assay is fairly imprecise.™

Exercises 2.4-2.13
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2.

Intraindividual
(a) Biological: changes over time
(b) Analytical: imprecision in assay

20 30
) g
& 20 g 20
(7] <
=% v
S 10 ° 10
2 X
o
| | | l !
8 28 48 8 28
ALT (u/Li) ALT (u/Li)
(a) (b)

2.4

2.5

2.6

2.7

A paleontologist measured the width (in mm) of the last upper molar in 36 spe{
mens of the extinct mammal Acropithecus rigidus. The results were as follows:}

61 57 60 65 60 57
61 58 59 61 62 60
63 62 61 62 60 57
62 58 57 63 62 57
62 61 59 65 54 67
59 61 59 59 61 61

(a) Construct a frequency distribution and display it as a table and as a histogra]
(b) Describe the shape of the distribution.

In a study of schizophrenia, researchers measured the activity of the enzyf
monoamine oxidase (MAO) in the blood platelets of 18 patients. The results (§
pressed as nmols benzylaldehyde product per 108 platelets) were as follows:™

68 84 87 119 142 188
99 41 97 127 52 178
78 74 73 106 145 10.7

Construct a dotplot of the data.

Consider the data presented in Exercise 2.5. Construct a frequency distribuf
and display it as a table and as a histogram.

A dendritic tree is a branched structure that emanates from the body of a nerve g
As part of a study of brain development, 36 nerve cells were taken from the bra
of newborn guinea pigs. The investigators counted the number of dendritic braf
segments emanating from each nerve cell. The numbers were as follows:!*
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23 30 54 28 31 29 34 35 30
27 21 43 51 35 51 49 35 24
26 29 21 29 37 27 28 33 33
23 37 27 40 48 41 20 30 57

(a) Construct a stem-and-leaf diagram of the data.
(b) Construct a dotplot of the data.

Consider the data presented in Exercise 2.7. Construct a frequency distribution
and display it as a table and as a histogram.

The total amount of protein produced by a dairy cow can be estimated from peri-
odic testing of her milk. The following are the total annual protein production val-
ues (Ib) for 28 two-year-old Holstein cows. Diet, milking procedures, and other
conditions were the same for all the animals.'S

425 481 477 43¢ 410 397 438
545 528 496 502 529 500, 465
539 408 513 496 477 445 546
471 495 445 565 499 508 426

Construct a frequency distribution and display it as a table and as a histogram.

For each of 31 healthy dogs, a veterinarian measured the glucose concentration in
the anterior chamber of the right eye, and also in the blood serum. The following
data are the anterior chamber glucose measurements, expressed as a percentage of
the blood glucose. !

81 85 93 93 99 76 75 84
78 84 81 8 89 81 96 &2
74 70 84 8 80 70 131 75
8 102 115 89 8 79 106

Construct a frequency distribution and display it as a table and as a histogram.

Refer to the glucose data of Exercise 2.10. Construct a stem-and-leaf display of
the data.

ks

In a behavioral study of the fruitfly Drosophila meianogdster, a biologist measured,
for individual flies, the total time spent preening during a six-minute observation
period. The following are the preening times (s) for 20 flies:"’

34 24 10 16 52
76 33 31 46 24
18 26 57 32 25
48 22 48 29 19

(a) Construct a stem-and-leaf display for these data.
(b) Construct a dotplot of the data.
(c) Describe the shape of the distribution.

(Computer problem) ‘Trypanosomes are parasites that cause disease in humans
and animals. In an early study of trypanosome morphology, researchers measured
the lengths of 500 individual trypanosomes taken from the blood of a rat. The re-
sults are summarized in the accompanying frequency distribution,®
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Frequency Frequency e y, = 11,y, = 1
Length (number of Length (number of 413 + ... +1:
(pm) individuals) (pm) individuals) 56. The syml
15 1 27 36 B =ttty
16 3 28 41 310 + 1 = 56.
17 21 29 48 The mean wei
18 27 30 28
19 23 31 43
20 15 32 27
21 10 33 23
22 15 34 10
23 19 35 4
24 21 36 5
25 34 37 1
26 44 38 1

(a) Construct a histogram of the data using 24 classes (i.e., one class for each intege
length, from 15 to 38).
(b) What feature of the histogram suggests the interpretation that the 500 ind}
viduals are a mixture of two distinct types?
(c) Construct a histogram of the data using only six classes. Discuss how this histogran
gives a qualitatively different impression than the histogram from part (a).

ean is the “poir
2.4 DESCRIPTIVE STATISTICS: MEASURES OF CENTER  weight-gain dar
For categorical data, the frequency distribution provides a concise and complets ‘ ,;O_H a weightless
summary of a sample. For quantitative variables, the frequency distribution cax Y

be usefully supplemented by a few numerical measures. A numerical measurg

calculated from data is called a statistic. Descriptive statistics are statistics thaf i/ The difference
describe a set of data. Usually the descriptive statistics for a sample are calculateq ion; = y, — y.’]
in order to provide information about a population of interest (see Section 2.8)} @ the mean is zerc
In this section we discuss measures of the center of the data. There are several diff Wihe distribution.

ferent ways to define the “center” or “typical value” of the observations in a sam:
ple. We will consider the two most widely used measures of center: the mean ang
the median.

The Mean

The most familiar measure of center is the ordinary average or mean (sometimeg
called the arithmetic mean). The mean of a sample (or “the sample mean”) is thg
sum of the observations divided by the number of observations. If we denote §
variable by Y, then we denote the observations in a sample by y;, y»,. .., y, and w§
denote the mean of the sample by the symbol y (read “y-bar). Example 2.15 illus
trates this notation.

Weight Gain of Lambs. The following are the two-week weight gains (Ib) of sij
young lambs of the same breed who had been raised on the same diet:"®

1 13 19 2 10 1
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Frequency Ble v = 11,y, = 13, and so on, and y; = 1. The sum of the observations is
h (number of - 13 + ... + 1 = 56. We can write this using “summation notation” as
individuals) 56. The symbol Xy, means to “add up the y’s.” Thus, when n = 6,
( 36 y1+y2+y3+y4+y5+y6.InthiscasewegetEy,~=11+13+19+
' 41 ' 0+1=56.
48 ' The mean weight gain of the 6 lambs in this sample is
3 28 U +13419+2+10+1
33 g ‘
23 _ 26
10
4
5
1
1
ne class for each intege !

ation that the 500 indi-

stuss how this histogra

i
3

‘H{ mean is the “point of balance” of the data. Figure 2.27 shows a dotplot of the = o *
ghb weight-gain data, along with the location of y. If the data points were chil- ¢ 5 10 15 20
on a weightless seesaw, then the seesaw would exactly balance if support- 7=9.33
R . t y. u . in (Ib
distribution can| ! Y Weight gain (1b)

lmerical measure;
re statistics that
nple are calculatedy
ee Section 2.8){
‘¢ are several dif
ervations in a sam
ter: the mean and|

Figure 2.27 Plot of the lamb

The difference between a data point and the mean is called a deviation: weight-gain data

viation; = y; — y. The mean has the property that the sum of the deviations

o the mean is zero—that is, T(y, — ¥) = 0.1In this sense, the mean is a center
the distribution.

ht Gain of Lambs. For the lamb weight-gain data, the deviations are as Example 2.16
Rllows:

deviation; =y, — 5 =11 - 933 = 1.67
deviation, =y, — 5 =13 -~ 933 = 367
deviation; = y; — 3 =19 — 933 = 967
deviation, =y, — y = 2 — 933 = —733
deviations; = ys — 3y = 10 — 933 = .67
deviationg =y, — y = 1 — 933 = —8.33

mean (sometimes|
mple mean”) is the
ns. If we denote a
..., y,and we
Example 2.15 illus+
1 lie sum of the deviations is 2(y, — ¥) = 167 + 3.67 + 9.67 — 733 + 0.67 —
3 = (), [ |
ht gains (Ib) of six g
pe diet:'’ '

1‘e will sometimes round values for clarity of presentation. Thus, we write 56/6 = 9.33,
fither than 9.33333 or 9.33.
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The Median fose now that t
The sample median is the value that most nearly lies in the middle of the sar ‘ n‘i r?gl ic}llfrrli;
ple. To find the median, first arrange the observations in increasing order. In thy ®odcal: the med
array of ordered observations, the median is the middle value (if # is odd) ¢ '
midway between the two middle values (if n is even). Example 2.17 illustratd ;If the 19 s ¢
these definitions. {1 change.

If the 19 is ¢

Example 2.17 Weight Gain of Lambs.

Preceding chan,
risen from the
g the 19 to |
fe median at a

(a) For the weight-gain data of Example 2.15, the ordered observations arg
1210 11 13 19 |

The median weight gain is

0+1
Median = 1 1

=10.51b i visualize the
linon. The medi:
it -divides the

(b) Suppose the sample contained one

more lamb, with the seven ranke]
observations as follows:

T ons may be 1
1210 10 11 13 19 ‘ ons within eac
For this sample, the median weight gain is E be visualiz

Median = 101b

(Notice that in this example there are two lambs whose weight gain |

equal to the median. The fourth observation—the second 10—is i
median.)

the frequen.
nd fall in the
, both measur
arther than t

A more formal way to define the median is in terms of rank position in tf
ordered array (counting the smallest observation as rank 1, the next as 2, and ¢
on). The rank position of the median is equal to

(S)(n+1)

2inging Time
ield researct
ntil the sing
of the 51 si
n and the mean
Thus, if n = 7, we calculate ( the long stra
largest observation; if n = 6,
midway between the third and
(:5)(n + 1) does not give the
ordered list of the data.

5)(n + 1) = 4, s0 that the median is the four§
we have (.5)(n + 1) = 3.5, so that the median
fourth largest observations. Note that the formu]
median; it gives the location of the median within ti

Robustance. A statistic is said to be robust or resistant
| is relatively unaffected by changes in a small portion of t
| are dramatic ones. The median is a robust statistic, but

cause it can be greatly shifted by changes in even one
illustrates this behavior.

if the value of the statis(]
he data, even if the changg
the mean is not robust b
observation. Example 2§

Example 2.18 Weight Gain of Lambs. Recall that for the lamb weight-gain data

1 2 10 11 13 19
we found

¥y = 9.3 and Median = 105




i

m,ﬁ now that the observation '19 is changed, or even omitted. How would the
gan and median be affected? You can visualize the effect by imagining moving
removing the right-hand dot in Figure 2.27. Clearly the mean could change a
kit deal; the median would generally be less affected. For instance,

. the middle of the sam{
increasing order. In th g

If the 19 is changed to 12, the mean becomes 8.2 and the median does not
change.

If the 19 is omitted, the mean becomes 7.4 and the median becomes 10.

preceding changes are not wild ones; that is, the changed samples might well
arisen from the same feeding experiment. Of course, a huge change, such as

finging the 19 to 100, would shift the mean drastically; note that it would not
it the median at all. u

dered observations are]

ualizing the Mean and Median

e can visualize the mean and the median in relation to the histogram of a dis-
pution. The median divides the area under the histogram roughly in half be-
ise it divides the observations roughly in half [“roughly” because some
Pservations may be tied at the median, as in Example 2.17(b), and because the ob-
grvations within each class are not uniformly distributed across the class). The
n can be visualized as the point of balance of the histogram: If the histogram
e made out of plywood, it would roughly balance if supported at the mean.

g If the frequency distribution is symmetric, the mean and the median are
gual and fall in the center of the distribution. If the frequency distribution is
Gewed, both measures are pulled toward the longer tail, but the mean is usually

Qulled farther than the median. The effect of skewness is illustrated by the fol-
{wing example.

 the seven ranked

se weight gain ig
econd 10—is thg

flicket Singing Times. Male Mormon crickets (Anabrus simplex) sing to attract
Wates. A field researcher measured the duration of 51 unsuccessful songs—that is,
@le time until the singing male gave up and left his perch.* Figure 2.28 shows the
listogram of the 51 singing times. Table 2.10 gives the raw data. The median is
7 min and the mean is 4.3 min, The discrepancy between these measures is due
ely to the long straggly tail of the distribution; the few unusually long singing
es influence the mean but not the median. u

20(

ian is the fourtl
iat the median i§
te that the formulg

T
[

Frequency
=
o
]
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Example 2.19

Figure 2.28 Histogram of
cricket singing times

(==}
m@an

g
3

Med

1 hm
—
20

I
10
Singing time (min)
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Mean Versus Median

Both the mean and the median are usually reasonable measures of the cente
a data set. The mean is related to the sum; for example, if the mean weight gainf
100 lambs is 9 1b, then the total weight gain is 900 b, and this total may be of f
mary interest since it translates more or less directly into profit for the farmer.
some situations the mean makes very little sense. Suppose, for example, that §
observations are survival times of cancer patients on a certain treatment protod
and that most patients survive less than 1 year, while a few respond well and s}
“ vive for 5 or even 10 years. In this case, the mean survival time might be greaj
I than the survival time of most patients; the median would more nearly represg
; the experience of a “typical” patient. Note also that the mean survival time cg
~ not be computed until the last patient has died; the median does not share {
| disadvantage. Situations in which the median can readily be computed, but f
’ mean cannot, are not uncommon in bioassay, survival, and toxicity studies.
|
|

We have noted that the median is more resistant than the mean. If a dg
set contains a few observations rather distant from the main body of the data—tf]
is, a long “straggly” tail—then the mean may be unduly influenced by these few y
usual observations. Thus, the “tail” may “wag the dog”—an undesirable situati
In such cases, the resistance of the median may be advantageous.

An advantage of the mean is that in some circumstances it is more efficig
than the median. Efficiency is a technical notion in statistical theory; roughly speg
ing, a method is efficient if it takes full advantage of all the information in the da}
“ Partly because of its efficiency, the mean has played a major role in classical mef
’ ods in statistics.

Exercises 2.14-2.29

2.14 Invent a sample of size 5 for which the sample mean is 20 and not all the obsery
tions are equal.

2.15 Invent a sample of size 5 for which the sample mean is 20 and the sample medj
is 15.

2.16 A researcher applied the carcinogenic (cancer-causing) compound benzo(a)pyr
to the skin of five mice and measured the concentration in the liver tissue after
hours. The results (nmol/g) were as follows:*!

63 59 70 69 59
Determine the mean and the median.

2.17  Consider the data from Exercise 2.16. Do the calculated mean and median supp}
the claim that, in general, liver tissue concentration after 48 hours is 6.3 nmol/g]

2.18 Six men with high serum cholesterol participated in a study to evaluate the eff¢]
of diet on cholesterol level. At the beginning of the study their serum choleste]
levels (mg/dLi) were as follows:?

366 327 274 292 274 230

Determine the mean and the median.

2.19 Consider the data from Exercise 2.18. Suppose an additional observation equal
400 were added to the sample. What would be the mean and the median of {
seven observations?
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i, The weight gains of beef steers were measured over a 140-day test period. The av-
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erage daily gains (Ib/day) of 9 steers on the same diet were as follows:*

3.89 351 397 331 321
336 3.67 324 327

Determine the mean and median.

Consider the data from Exercise 2.20. Do the calculated mean and median sup-

port the claim that, in general, steers gain 3.5 Ib/day? Do the data support a claim
of 4.0 Ib/ddy?

Consider the data from Exercise 2.20. Suppose an additional observation equal to
2.46 were added to the sample. What would be the mean and the median of the 10
observations?

As part of a classic experiment on mutations, ten aliquots of identical size were
taken from the same culture of the bacterium E. coli. For each aliquot, the number
of bacteria resistant to a certain virus was determined. The results were as follows:%*

14 15 13 21 15
14 26 16 20 13

(a) Construct a frequency distribution of these data and display it as a histogram.
(b) Determine the mean and the median of the data and mark their locations on
the histogram.

The accompanying table gives the litter size (number of piglets surviving to 21
days) for each of 36 sows (as in Example 2.4). Determine the median litter size.

Frequency
Number of (Number
piglets of sows)

5 1
6 0
7 2
8 3
9 3
10 9
11 8
12 5
13 3
14 2
Total 36

Consider the data from Exercise 2.24. Determine the mean of the 36 observations.

[Hint: Note that there is one 5 but there are two 7’s, three 8’s, and so on. Thus,
Zy=5+T7+7+8+8+8+ ... =5+2(7) +308) + ...]

Here is a histogram.
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(a) Estimate the median of the distribution.
(b) Estimate the mean of the distribution.

2.27  Consider the histogram from Exercise 2.26. By “reading” the histogram, estimaf
the percentage of observations that are less than 40. Is this percentage closest §
15%,25%,35%,0r 45%? Note: The frequency scale is not given for this histogra
because there is no need to calculate the number of observations in each clag
Rather, the percentage of observations that are less than 40 can be estimated
looking at area.

2.28 Here is a histogram.

I [ I I
0 25 50 75

(a) Estimate the median of the distribution.
(b) Estimate the mean of the distribution.

2,29 Consider the histogram from Exercise 2.28. By “reading” the histogram, estims
the percentage of observations that are greater than 55. Is this percentage closg
to 15%,25%,35%, or 45%? Note: The frequency scale is not given for this hj
togram, because there is no need to calculate the number of observations in ea
class. Rather, the percentage of observations that are greater than 55 can be e
mated by looking at area.

2.5 BOXPLOTS

One of the most efficient graphics, both for examining a single distribution and f{
making comparisons between distributions, is known as a boxplot, which is the top
of this section. Before discussing boxplots, however, we need to discuss quartileg

Quartiles and the Interquartile Range

The median of a distribution splits the distribution into two parts, a lower part af
an upper part. The quartiles of a distribution divide each of these parts in hq
thereby dividing the distribution into four quarters. The first quartile, denoted|
Q,, is the median of the data values in the lower half of the data set. The thil
quartile, denoted by Q;, is the median of the data values in the upper half of tf
data set.* The following example illustrates these definitions.

* Some authors use other definitions of quartiles, as does some computer software. A com-
mon alternative definition is to say that the first quartile has rank position (.25)(n + 1) and
that the third quartile has rank position (.75)(n + 1).Thus,if n = 10, the first quartile would
have rank position (.25)(11) = 2.75—that is, to find the first quartile we would have to in-
terpolate between the second and third largest observations. If » is large, then there is little
practical difference between the definitions that various authors use.



ressure. The systolic blood pressures (mm Hg) of seven middle-aged
, e as follows:

ing” the histogram, estimatg 151 124 132 170 146 124 113
), Is this percentage closest td

s not given for this histogramj
bt observations in each class]
+than 40 can be estimated by

hese values in rank order, the sample is
113 124 124 132 146 151 170

fnedian is the fourth largest observation, which is 132. There are three data
I3 in the lower part of the distribution: 113,124, and 124. The median of these
alues is 124. Thus, the first quartile, Q,, is 124.

ikewise, there are three data points in the upper part of the distribution:
51 and 170. The median of these three values is 151. Thus, the third quar-
O, is 151.

113 124 124 132 146 151 170

Median
First quartile Third quartile

Q Q; -

ng” the histogram, estimatg
Is this percentage closes|
¢-is not given for this his|
imber of observations in eacl]
greater than 55 can be estij

Note that the median is not included in either the lower part nor the upper
of the distribution. If the sample size, #, is even, then exactly half of the ob-
tions are in the lower part of the distribution and half are in the upper part.

The interquartile range is the difference between the first and third quar-
nd is abbreviated as IQR: IQR = Q; — Q. For the blood pressure data in
ple 2.20, the IQR is 151 — 124 = 27.

The pulses of twelve college students were measured.”® Here are the data,
ged in order, with the position of the median indicated by a dashed line:

62 64 68 70 70 74 {74 76 76 78 78 80

ingle distribution and fof
boxplot, which is the topi
eed to discuss quartiles. |

+ 74
median is = 74. There are 6 observations in the lower part of the

! ?ibution: 62,64,68,70,70,74. Thus, the first quartile is the average of the third
i fourth largest data values:

parts,a lower part and
¢h of these parts in half}

first quartile, denoted by
@f the data set. The third

68470

Q >

69

are 6 observations in the upper part of the distribution: 74, 76, 76,78,78, 80.
hs, the third quartile is the average of the ninth and tenth largest data values (the
f0d and fourth values in the upper part of the distribution):

]

pmputer software. A com-
position (.25)(n + 1) and

0, the first quartile would
artile we would have to in-
is large, then there is little

_76+78

Qs >

77

Is, the interquartile range is

IQR =77 - 69 =8
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We have

62 64 68 70 70 74,74 76 76 78 78 80
I
'
Median
First quartile Third quartile
Q Qs

The minimum pulse value is 62 and the maximum is 80.

The minimum, the maximum, the median, and the

quartiles, taken togethg
are referred to as the five-number summary of the data. :

Boxplots

A boxplot is a visual representation of the five-numb
plot, we first make a number line; the
median, Qs, and the maximum:

€r summary. To make a boj
n we mark the positions minimum, Qy, tf

=
<
E
S s 25 g
| ]
7 ] | ]
60 65 70 75 80

Next, we make a box connecting the quartiles:

ORI

RHI

— Min
Q

I I [ 1
60 65 70 75 80

Note that the interquartile ran

ge is equal to the length of the box. Finally, we ¢}
tend “whiskers” from Q,

down to the minimum and from Q; up to the maximuf

I I I L
60 65 70 75 80

A boxplot gives a quick visual summary of the distribution. We can immn
diately see where the center of the data is, from the line within the box that locat
the median. We see the spread of the total distribution, from the minimum up {
the maximum, as well as the spread of the middle half of the distribution—the i
terquartile range—from the length of the box. The boxplot also gives an indicatig
of the shape of the distribution; the preceding boxplot has a long lower whiskd

indicating that the distribution is skewed to the left. Example 2.22 shows a boxpl
for the radish growth data considered earlier.



rowth. The stem-and-leaf diagram of Figure 2.29 represents the data
lish growth in darkness from Example 2.8. The quartiles have been circled;
'¢ Q; = 15and Q3 = 30.The median, 21, is represented with a dashed line.
2.30 shows a boxplot of the same data, Figure 2.31 shows a vertica] boxplot
same data. |

10 135 T3
2100259
303’5 7

0 10 20 30 40

Key: 1|S means 15 mm. Growth: darkness

quartiles, taken together g
i Figure 2.29 Ordered stem-and-

leaf diagram of data on radish

growth in darkness. The

Quartiles are circled and the

median is represented with a

- dashed line.

Figure 2.30 Boxplot of data on
radish growth in darkness

summary. To make a box
sitions minimum, Q,, thy

! In Example 2.9 we used back-to-back stem-and-leaf diagrams
mpare radish growth in tota] darkness to growth in 12 hours of light followed

12 hours of darkness, There were actually three parts to the experiment de-
bed in Example 2.9, In the third part of the experiment, the students grew
seedlings in constant light. Figure 2.32 shows three parallel boxplots, one for

h of the three data sets, From these boxplots we can see how light inhibits

uch smaller than the IQRs of the other distributions. The third quartile of the
’distribution is equal to the first quartile of the “12 light/12 dark” distribu-
Rivand is less than the first quartile of the “darkness” distribution, n

of the box. Finally, we e
Qs up to the maximuri

from the minimum up §
the distribution—the if
ot also gives an indicatig
as a long lower whiske
ple 2.22 shows a boxpl
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Example2.22

40

Growth: darkness
8 S

—
[}

0

Figure 2.31 Boxplot of data on
radish growth in darkness

30 —
k=]
g 20 -
3

10

Darkness
12 light/12 dark
Light

Figure 2.32 Boxplots of data
on radish growth under three
conditions: constant darkness,
half light and half darkness, and
constant light



36 CHAPTER 2 DESCRIPTION OF SAMPLES AND POPULATIONS

e ————

People often use the term outlier informally. There is, however, a commor
definition of outlier in statistical practice. To give a definition of outlier, we first dis:
cuss what are known as fences. The lower fence of a distribution is

lower fence = Q; — 1.5+ IQR

The upper fence of a distribution is
upper fence = Q; + 1.5 * IQR

This means that the fences are located 1.5 IQRs (ie., 1.5 * the length of the box]
beyond the end of the box in a boxplot.

Note that the fences need not be data values; indeed, there might be ng
data near the fences. The fences just locate limits within the sample distribution|

These limits give us a way to define outliers. An outlier is a data point that fall
outside of the fences. That is, if

data point < Q; — 1.5 * IQR
or

data point > Q; + 1.5 * IQR

then we call the point an outlier.

Pulse. In Example 2.21 we saw that Q; =69,Q; = 77,and IQR = 8. Thus, the
lower fence is 69 — 1.5+ 8 = 69 — 12 = 57. Any point less than 57 would be af
outlier. The upper fence is 77 + 1.5*% 8 = 77 + 12 = 89. Any point greater thar
89 would be an outlier. Since there are no points less than 57 nor greater than 898
there are no outliers in this data set.

Radish Growth in Light. Figure 2.32 shows the distribution of growth for radis}
seedlings under three conditions. One of the three conditions was constant light}
There are 14 seedlings in this set of data. The observations, in order, are

3557 7 8 9,1010 10 10 14 20 21

Median

First quartile Third quartile
01 03

+
Thus, the median is 2 + 10

=9.5,Qqis 7,and Q; is 10. The interquartile range i

IQR = 10 — 7 = 3. The lower fence is 7 — 1.5 * 3 =7 - 4.5 = 25,50 any poinf
less than 2.5 would be an outlier. The upper fence is 10 + 1.5%3 = 10 + 4.5 o

14.5, so any point greater than 14.5 is an outlier. Thus, the two largest observationg
in this data set are outliers: 20 and 21.

The method we have defined for identifying outliers allows the bulk of th¢
data to determine how extreme an observation must be before we consider it t(
be an outlier, since the quartiles and the IQR are determined from the data them|
selves. Thus, a point that is an outlier in one data set might not be an outlier if



fier data set. For example, the observations of 20 and 21 are outliers in the
i distribution, but they would not be outliers in the “12 light/12 dark” distri-
We label a point as an outlier if it is unusual relative to the inherent vari-
n the entire data set.

After an outlier has been identified, people are often tempted to remove
lier from the data set. In general, this is not a good idea. If we can identify
outlier occurred due to an equipment error, for example, then we have
I reason to remove the outlier before analyzing the rest of the data. Howev-
fnite often outliers appear in data sets without any identifiable, external rea-
] uu them. In such cases, we simply proceed with our analysis, aware that there
outlier present. In some cases, we might want to calculate the mean, for
e, with and without the outlier and then report both calculations, to show
ffect of the outlier in the overall analysis. This is preferable to removing the
1, which obscures the fact that there was an unusual data point present. In pre-

1g data graphically, we can draw attention to outliers by using modified box-
which we now introduce.

is, however, a common:
b of outlier, we first dis-
ibution is

* the length of the box)

eed, there might be no |
the sample distribution.
{is a data point that falls

ified Boxplot

ndard variation on the idea of a boxplot is what is known as a modified box-
A modified boxplot is a boxplot in which the outliers, if any, are graphed as
prate points. The advantage of a modified boxplot is that it lets us quickly see
the outliers are, if there are any.

To make a modified boxplot, we proceed as we did when first making a
ot, except for the last step. After drawing the box for the boxplot, we check
ee if there are outliers. If there are no outliers, then we extend whiskers from
box out to the extremes (the minimum and the maximum). However, if there
outliers in the upper part of the distribution, then we identify them with as-

;and IQR = 8. Thus, the
lless than 57 would be an'}
). Any point greater than/
57 nor greater than 89,/
|
hution of growth for radish’
bitions was constant hght
pus, in order, are '
/ w tlfy them with asterisks and extend a whisker from Q, down to the smallest ob-
Rivation that is not an outlier. Figure 2.33 shows a boxplot and a modified box-
Vm of the data on radish seedlings grown in constant light.
L Most often, when people make boxplots they make modified boxplots. Com-
0 m software is typically programmed to produce a modified boxplot when the user
8t for a boxplot. Thus, we will use the term boxplot to mean “modified boxplot.”

Example 2.26 shows the power of boxplots to give us a visual comparison
everal distributions.

R0 21

Imperature. The high temperature in Oberlin, Ohio varies quite a bit over the
lirse of a year. Figure 2.34 shows 12 parallel boxplots of the daily high tempera-
Qe for one year, with one boxplot for each month.
These plots allow us to compare months quickly and to see how the high
i perature varies as the year progresses. Note that there is more variability in the
fhter months than in the summer, as indicated by the lengths of the boxes and the
kers. The only high outliers occurred in November, when there were two days
were unusually warm for November, with temperatures well above 60 de-
s. These would have been average days in September, however. There were two
outliers in December. These two cold days would not have been outliers in
ary, February, or March. |

¢ interquartile range is|

5 = 2.5,s0 any point}
*3 =10 + 4.5 =
largest observations|

the bulk of the
awe consider it tol
B the data them-
fibe an outlier in

s. We then extend a whisker from Qs up to the largest data point that is not ._
utlier. Likewise, if there are outliers in the lower part of the distribution, we

SECTION 2.5 BOXPLOTS

40

30 —

Growth
8
|

10 —

0
(2)
Figure 2.33
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Example 2.26
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Figure 2.34 Daily high
temperature in Oberlin, Ohio
for one year

100 —
80 — E
60 —
40 -

20 —

J F M A M J J A S OND

Computer note: To make a (modified) boxplot within the MINITAB Sys-
tem, use the command

[MTB > BOXPLOT C1 ]

Suppose the data are stored in column 1 and that column 2 holds an indicator vari
able (for example, if we are comparing men and women, then column 2 might have
a 1 for men and a 2 for women). Then the command

E&TB > BOXPLOT C1*C2

will produce parallel boxplots of the C1 data, one for each level of the variable if
C2 (e.g., a boxplot for the men and a parallel boxplot for the women).

Exercises 2.30-2.39

2.30 Here are the data from Exercise 2.23 on the number of virus-resistant bacteria if
each of 10 aliquots: q

14 15 13 21 15
14 26 16 20 13

(a) Determine the median and the quartiles.

(b) Determine the interquartile range.

(c) How large would an observation in this data set have to be in order to be 2
outlier?

2.31 Here are the 18 measurements of MAO activity reported in Exercise 2.5:

6.8 84 87 119 142 188
99 41 97 127 52 178
78 74 173 106 145 10.7
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(a) Determine the median and the quartiles.
(b) Determine the interquartile range.
() Construct a (modified) boxplot of the data.

In a study of milk production in sheep (for use in making cheese), a researcher
measured the three-month milk yield for each of 11 ewes. The yields (liters) were
as follows:?’

56.5 89.8 110.1 656 637 826
751 915 1029 444 1081

(a) Determine the median and the quartiles.
(b) Determine the interquartile range.
(c) Construct a (modified) boxplot of the data.

A group of college students were asked how many hours per week they exercise.?
The answers given by 12 men were as follows:

6 02 1 2 45 8 3 17 45 4 5
The answers given by 13 women were as follows:
513 326 14 31 15 15 3 8 4
Construct parallel boxplots of the male and female distributions,

Consider the data from Exericise 2.33. Describe the two boxplots, including how
they compare to each other.

For each of the following histograms, use the histogram to estimate the median
and the quartiles; then construct a boxplot for the distribution.

istant bacteria in

10
T o oo
i
i
i
| | [ I I
0 25 50 75 100 20 25 30 35

(a) (b)

The histogram below shows the same data that are shown in one of the four box-
plots. Which boxplot goes with the histogram? Explain your answer.

SECTION 2.5 BOXPLOTS
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2.37 The boxplot shows the five-number summary for a data set. For these data the min-
imum is 35, Q, is 42, the median is 49, Q3 is 56, and the maximum is 65. Is it possi-
ble that no observation in the data set equals 42? Explain your answer.

I I I [
30 40 50 60 70

2.38 Statistics software can be used to find the five-number summary of a data set. For
example, if data are stored within the MINITAB system in column 1, then the DE-
SCRIBE command produces the following:

MTB > Describe Cl

Variable N Mean Median TrMean StDev SEMean
cl 75 119.94 118.40 119.98 9.98 1.15
Variable Min Max Q1 Q3
cl 95.16 145.11 113.59 127 .42

(a) Use the MINITAB output to calculate the interquartile range.
(b) Are there any outliers in this set of data?

2.39  Consider the data from Exercise 2.37. Use the five-number summary that is given
to create a boxplot of the data.

2.6 MEASURES OF DISPERSION

We have considered the shapes and centers of distributions, but a good description
of a distribution should also characterize how spread out the distribution is—are
the observations in the sample all nearly equal, or do they differ substantially? In
Section 2.5 we defined the interquartile range, which is one measure of dispersion.

i We will now consider other measures of dispersion: the range, the standard devi-
| ation, and the coefficient of variation.

The Range

The sample range is the difference between the largest and smallest observations
in a sample. Here is an example.

FCIL I CWFA Blood Pressure. The systolic blood pressures (mm Hg) of seven middle-aged

men was given in Example 2.20 as follows:
113 124 124 132 146 151 170

For these data, the sample range is

! 170 — 113 = 57 mm Hg |
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The range is easy to calculate, but it is very sensitive to extreme values (i.e.,
it is not robust). If the maximum in the blood pressure sample had been 190 rather
than 170, the range would have been changed from 57 to 77.

We defined the interquartile range (IQR) in Section 2.5 as the difference be-
tween the quartiles. Unlike the range, the IQR is robust. The IQR of the blood pres-
sure data is 151 — 124 = 27. If the maximum in the blood pressure sample had
been 190 rather than 170, the IQR would not have changed; it would still be 27.

The Standard Deviation

The standard deviation is the classical and most widely used measure of dispersion.
Recall that a deviation is the difference between an observation and the sample mean:

deviation = observation — y

The standard deviation of the sample, or sample standard deviation, is deter-
mined by combining the deviations in a special way, as described in the accom-
panying box.

So, to find the standard deviation of a sample, first find the deviations. Then
(a) square
(b) add
(c) dividebyn — 1
(d) take the square root

To illustrate the use of the formula, we have chosen a data set that is espe-
cially simple to handle because the mean happens to be an integer.

Growth of Chrysanthemums. In an experiment on chrysanthemums, a botanist
measured the stem elongation (mm in 7 days) of five plants grown on the same
greenhouse bench. The results were as follows:?

76 72 65 70 82

The data are tabulated in the first column of Table 2.11. The sample
mean is

365
= —5— = 73 mm

The deviations (y; — ¥) are tabulated in the second column of Table 2.11; the first
observation is 3 mm above the mean, the second is 1 mm below the mean, and so on.

Example 2.28
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Example 2.29

The third column of Table 2.1 shows that the sum of the squared devi-
ations is

2y - ?)2 = 164

Since n = 5, the standard deviation is

6.4 mm

Note that the units of s (mm) are the same as the units of Y. This is because we have
squared the deviations and then later taken the square root. [ |

The sample variance, denoted by s, is simply the standard deviation
squared: variance = s Thus, s = \/variance.

Chrysanthemum Growth. The variance of the chrysanthemum growth data is
s* = 41 mm?

Note that the units of the variance (mm?) are not the same as the unitsof Y. M

An Abbreviation. We will frequently abbreviate “standard deviation” as SD; the
symbol s will be used in formulas.

Interpretation of the Definition of s

The magnitude (disregarding sign) of each deviation (y; — ¥) can be interpreted
as the distance of the corresponding observation from the sample mean y. Figure
2.35 shows a plot of the chrysanthemum growth data (Example 2.28) with each dis-
tance marked.

From the formula for s, you can see that each deviation contributes to the
SD. Thus, a sample of the same size but with less dispersion will have a smaller
SD, as illustrated in the following example.
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Chrysanthemum Growth. If the chrysanthemum growth data of Example 2.28
are changed to

75 72 73 75 70

then the mean is the same (y = 73 mm), but the SD is smaller (s = 2.1 mm), be-
cause the observations lie closer to the mean. The relative dispersion of the two

samples can be easily seen from Figure 2.36. ||
I
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|
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*® L] L
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Let us look more closely at the way in which the deviations are combined
to form the SD. The formula calls for dividing by (n — 1). If the divisor were » in-
stead of (n — 1), then the quantity inside the square root sign would be the aver-
age (the mean) of the squared deviations. Unless # is very small, the inflation due
to dividing by (n — 1) instead of » is not very great, so that the SD can be inter-
preted approximately as

s = \/sample average value of (y; — y)?

Thus, it is roughly appropriate to think of the SD as a “typical” distance of the
observations from their mean.

Why n—17 Since dividing by n seems more natural, you may wonder why the
formula for the SD specifies dividing by (n — 1). Note that the sum of the
deviations y; — ¥ is always zero. Thus, once the first # — 1 deviations have been
calculated, the last deviation is constrained. This means that in a sample with n
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Figure 2.35 Plot of
chrysanthemum growth data
with deviations indicated as
distances

Example 2.30

Figure 2.36 Two samples of
chrysanthemum growth data
with the same mean but
different standard deviations.
(a) s = 6.3 mm;

(b)s = 2.1 mm.
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observations there are only » — 1 units of information concerning deviation
from the average. The quantity n — 1 is called the degrees of freedom of the
} standard deviation or variance. We can also give an intuitive justification of why
n — 11is used by considering the extreme case when n = 1, as in the following
( example.

Chrysanthemum Growth. Suppose the chrysanthemum growth experiment
of Example 2.28 had included only one plant, so that the sample consisted of the
single observation

73

For this sample, n = 1 and y = 73. However, the SD formula breaks down (giv-
ing 7),so the SD cannot be computed. This is reasonable, because the sample gives
no information about variability in chrysanthemum growth under the experimental
conditions. If the formula for the SD said to divide by n, we would obtain an SD
of zero, suggesting that there is little or no variability; such a conclusion hardly
seems justified by observation of only one plant. |

The Coefficient of Variation

The coefficient of variation is the standard deviation expressed as a percentage of

. . L. § .
the mean: coefficient of variation = ; +100%. Here is an example.

1 m Chrysanthemum Growth. For the chrysanthemum growth data of Example

2.28, we have y = 73.0 mm and s = 6.4 mm. Thus,

| y

2.100% = —=-.100% = 088+ 100% = 8.8%
‘ y 73.0
The sample coefficient of variation is 8.8%. Thus, the standard deviation is 8.8%
| as large as the mean. |

Note that the coefficient of variation is not affected by multiplicative
f changes of scale. For example, if the chrysanthemum data were expressed in inch-
es instead of mm, then both ¥ and s would be in inches, and the coefficient of vari-
ation would be unchanged. Because of its imperviousness to scale change, the
| coefficient of variation is a useful measure for comparing the dispersions of two
or more variables that are measured on different scales.

m Girls Height and Weight.  As part of the Berkeley Guidance Study,” the heights

(in cm) and weights (in kg) of 13 girls were measured at age 2. At age 2, the aver-
age height was 86.6 cm and the SD was 2.9 cm. Thus, the coefficient of variation
of height at age 2 is

Freanenecy

5.100% = 22 .100% = .033-100% = 3.3%
5 86.6 |

For weight at age 2 the average was 12.6 kg and the SD was 1.4 kg. Thus, the co-
efficient of variation of weight at age 2 is

o I Sy B RN
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é +100% = 14 100% = .111:100% = 11.1%

y 12.6
There is considerably more variability in weight than there is in height, when we
express each measure of variability as a percentage of the mean. The SD of weight
is a fairly large percentage of the average weight, but the SD of height is a rather
small percentage of the average height. n

Visualizing Measures of Dispersion

The range and the interquartile range are easy to interpret. The range is the spread
of all the observations and the interquartile range is the spread of (roughly) the mid-
dle 50% of the observations. In terms of the histogram of a data set, the range can be
visualized as (roughly) the width of the histogram. The quartiles are (roughly) the val-
ues that divide the area into four equal parts and the interquartile range is the distance
between the first and third quartiles. The following example illustrates these ideas.

Daily Gain of Cattle. The performance of beef cattle was evaluated by mea-

_suring their weight gain during a 140-day testing period on a standard diet.

Table 2.12 gives the average daily gains (kg/day) for 39 bulls of the same breed
(Charolais); the observations are listed in increasing order.*' The values range
from 1.18 kg/day to 1.92 kg/day. The quartiles are 1.29,1.41, and 1.58 kg/day.
Figure 2.37 shows a histogram of the data, the range, the quartiles, and the
interquartile range (IQR). The shaded area represents the middle 50%
(approximately) of the observations. ]
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Figure 2.37 Histogram of 39
I daily gain measurements,

showing the range, the quartiles,
1.0 1.5 20 . .
. . and the interquartile range
Quartiles  Gain (kg/day) (IQR). The shaded area
j«—IQR—*

represents about 50% of the
observations.

I Range |

Example 2.34
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The typical percentages enable us to construct a rough mental image of a
frequency distribution if we know just the mean and SD. (The value 68% may
seem to come from nowhere. Its origin will become clear in Chapter 4.)

Estimating the SD from a Histogram

The empirical rule gives us a way to construct a rough mental image of a frequency
distribution if we know just the mean and SD: We can envision a histogram cen-
tered at the mean and extending out a bit more than 2 SDs in either directions. Of
course, the actual distribution might not be symmetric, but our rough mental image
will often be fairly accurate.

Thinking about this the other way around, we can look at a histogram and
estimate the SD. To do this, we need to estimate the endpoints of an interval that
is centered at the mean and that contains about 95% of the data. The empirical rule
implies that this interval is roughly the same as (y — 25,y + 2s), so the length of
the interval should be about 4 times the SD:

(y — 25,y + 2s) has length of 2s + 2s = 4s

This means
length of interval = 4s

sO
length of interval

4

Of course, our visual estimate of the interval that covers the middle 95% of the data
could be off. Moreover, the empirical rule works best for distributions that are
symmetric. Thus, this method of estimating the SD will only give a general esti-
mate. The method works best when the distribution is fairly symmetric, but it works
reasonably well even if the distribution is somewhat skewed.

estimate of s =

Pulse after Exercise. A group of 28 adults did some moderate exercise for five
minutes and then measured their pulses. Figure 2.39 shows the distribution of the
data.32 We can see that about 95% of the observations are between about 75 and
125. Thus, an interval of length 50 (125 — 75) covers the middle 95% of the data.
From this, we can estimate the SD to be % = 12.5. The actual SD is 13.4, which is
not far off from our estimate. n

The typical percentages given by the empirical rule may be grossly wrong
if the sample is small or if the shape of the frequency distribution is not “nice.”
For instance, the cricket singing-time data (Table 2.10 and Figure 2.28) has

= 4.4 mm, and the interval y + s contains 90% of the observations. This is much
higher than the “typical” 68% because the SD has been inflated by the long strag-
gly tail of the distribution. :

Comparison of Measures of Dispersion

The dispersion, or spread, of the data in a sample can be described by the standard
deviation, the range, or the interquartile range. The range is simple to understand,
but it can be a poor descriptive measure because it depends only on the extreme
tails of the distribution. The interquartile range, by contrast, describes the spread
in the central “body” of the distribution. The standard deviation takes account of

Example 2.36

r ]
L
L
s
N |
70 95 120

Pulse after exercise

Figure 2.39 Pulse after
moderate exercise for a group
of adults
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all the observations and can be roughly interpreted in terms of the spread of the
| observations around their mean. However, the SD can be inflated by observations
in the extreme tails. The interquartile range is a resistant measure, while the SD is
nonresistant. Of course, the range is highly nonresistant.

The descriptive interpretation of the SD is less straightforward than that of
the range and the interquartile range. Nevertheless, the SD is the basis for most
standard classical statistical methods. The SD enjoys this classic status for various
technical reasons, including efficiency in certain situations.

The developments in later chapters will emphasize classical statistical meth-
ods, in which the mean and SD play a central role. Consequently, in this book we
will rely primarily on the mean and SD rather than other descriptive measures.

Computer note: Calculating a sample standard deviation by hand is te-
dious. Statistics software can be used to find summary statistics, such as the mean,
median, and standard deviation. For example, if the daily-gain data of Example
2.34 are stored within the MINITAB system in column 1, then the DESCRIBE
command produces the following:

e A
MTB > Describe Cl1
Descriptive Statistics
Variable N Mean Median TrMean StDev SEMean
cl 39 1.4446 1.4100 1.4346 0.1831 0.02093
Variable Min Max Q1 03
L Cc1l 1.1800 1.9200 1.2900 1.5800 )

Exercises 2.40-2.55

2.40 Calculate the standard deviation of each of the following fictitious samples:

(a) 16,13,18,13 (b) 38,30,34,38,35
(c) 1,-1,5,—1 (d) 4,6,—-1,4,2

2.4

241  Calculate the standard deviation of each of the following fictitious samples:
(a) 8,6,9,4,8 (b) 4,7,5,4 (c) 9,2,6,7,6

242 (a) Invent a sample of size 5 for which the deviations (y;, — y) are =3, -1, 0,2,2.
(b) Compute the standard deviation of your sample. 1
(c) Should everyone get the same answer for part (b)? Why? | 2.4

243 Four plots of land, each 346 square feet, were planted with the same variety ,3
(“Beau”) of wheat. The plot yields (Ib) were as follows:® ‘

351 306 369 29.8 : | 24

(a) Calculate the mean and the standard deviation. 2.5
(b) Calculate the coefficient of variation. '

2.44 A plant physiologist grew birch seedlings in the greenhouse and measured the ATP
content of their roots. (See Example 1.3.) The results (nmol ATP/mg tissue) were
as follows for four seedlings that had been handled identically.* s

145 119 105 1.07 |

(a) Calculate the mean and the standard deviation.
(b) Calculate the coefficient of variation.
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Ten patients with high blood pressure participated in a study to evaluate the ef-
fectiveness of the drug Timolol in reducing their blood pressure. The accompany-
ing table shows systolic blood pressure measurements taken before and after two
weeks of treatment with Timolol.*® Calculate the mean and standard deviation of
the change in blood pressure (note that some values are negative).

Blood Pressure (mm Hg)
Patient Before After Change
1 172 159 =13
2 186 157 -29
3 170 163 -7
4 205 207 2
5 174 164 -10
6 184 141 -43
7 178 182 4
8 156 171 15
9 190 177 -13
10 168 138 -30

Dopamine is a chemical that plays a role in the transmission of signals in the brain.
A pharmacologist measured the amount of dopamine in the brain of each of seven
rats. The dopamine levels (nmol/g) were as follows:

68 53 60 59 68 74 62

(a) Calculate the mean and standard deviation.

(b) Determine the median and the interquartile range.

(c) Calculate the coefficient of variation.

(d) Replace the observation 7.4 by 10.4 and repeat parts (a) and (b). Which of the
descriptive measures display resistance and which do not?

In a study of the lizard Sceloporus occidentalis, biologists measured the distance (m)
run in two minutes for each of 15 animals. The results (listed in increasing order)
were as follows:*’

184 222 245 264 275 287 306 329
329 340 348 375 421 455 455

(a) Determine the quartiles and the interquartile range.
(b) Determine the range.

Refer to the running-distance data of Exercise 2.47. The sample mean is 32.23 m
and the SD is 8.07 m. What percentage of the observations are within

(a) 1SD of the mean? (b) 2 SDs of the mean?
Compare the results of Exercise 2.48 with the predictions of the empirical rule.

Listed in increasing order are the serum creatine phosphokinase (CK) levels (u/Li)
of 36 healthy men (these are the data of Example 2.6):

25 62 82 95 110 139
42 64 83 95 113 145
48 67 84 100 118 151
57 68 92 101 119 163
58 70 93 104 121 201
60 78 94 110 123 203
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2.51
2.52

2.53

2.54

2.55

The sample mean CK level is 98.3 u/Li and the SD is 40.4 u/Li. What percentage
of the observations are within

(a) 1SD of the mean? (b) 2 SDs of the mean? (c) 3 SDs of the mean?
Compare the results of Exercise 2.50 with the predictions of the empirical rule.

The girls in the Berkeley Guidance Study (Example 2.33) who were measured at
age two were measured again at age nine. Of course, the average height and weight
were much greater at age nine than at age two. Likewise, the SDs of height and of
weight were much greater at age nine than they were at age two. But what about
the coefficient of variation of height and the coefficient of variation of weight? It
turns out that one of these went up a moderate amount from age two to age nine,
but for the other variable the increase in the coefficient of variation was fairly
large. For which variable, height or weight, would you expect the coefficient of vari-
ation to change more between age two and age nine? Why? (Hint: Think about
how genetic factors influence height and weight and how environmental factors
influence height and weight.)

Consider the 13 girls mentioned in Example 2.33. At age 18 their average height
was 166.3 cm and the SD of their heights was 6.8 cm. Calculate the coefficient
of variation.

Here is a histogram. Estimate the mean and the SD of the distribution.
15

10

[ [ | I
0 25 50 75

Here is a histogram. Estimate the mean and the SD of the distribution.

15 —

10 — T

50 75 100 - 125 150

2.7

EFFECT OF TRANSFORMATION OF
VARIABLES (OPTIONAL)

Sometimes when we are working with a data set, we find it convenient to transform
a variable. For example, we might convert from inches to centimeters or from °F
to °C. Transformation, or reexpression, of a variable Y means replacing Y by a
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new variable, say Y'. To be more comfortable working with data, it is helpful to
know how the features of a distribution are affected if the observed variable is
transformed.

The simplest transformations are linear transformations, so called because
agraph of Y against Y’ would be a straight line. A familiar reason for linear trans-
formation is a change in the scale of measurement, as illustrated in the following
two examples.

Weight. Suppose Y represents the weight of an animal in kg, and we decide to
reexpress the weight in Ib. Then
Y = Weightinkg

Y' = Weightinlb

so
Y' ' =22Y

This is a multiplicative transformation, because Y is calculated from Y by multi-

plying by the constant value 2.2. |

Body Temperature. Measurements of basal body temperature (temperature
on waking) were made on 47 women.*® Typical observations Y, in °C, were

Y: 3623, 36.41, 36.77, 36.15,
Suppose we convert these data from °C to °F, and call the new variable Y':
Y': 9721, 97.54, 98.19, 97.07,
The relation between Y and Y’ is
Y' =18Y + 32

The combination of additive (+32) and multiplicative (X1.8) changes indicates a
linear relationship. |

Another reason for linear transformation is coding, which means trans-
forming the data for convenience in handling the numbers. The following is an
example.

Body Temperature. Consider the temperature data of Example 2.38. If we sub-
tract 36 from each observation, the data become

23, 41, 77, 15,

This is additive coding, since we added a constant value (—36) to each observation.
Now suppose we further transform the data to the form

23, 41, 77, 15,...
This step of the coding is multiplicative, since each observation is multiplied by a

constant value (100). |

As the foregoing examples illustrate, a linear transformation consists of
(1) multiplying all the observations by a constant, or (2) adding a constant to all
the observations, or (3) both.

Example 2.37

Example 2.38

Example 2.39
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Example 2.40

How Linear Transformations Affect
the Frequency Distribution

A linear transformation of the data does not change the essential shape of its fre-
quency distribution; by suitably scaling the horizontal axis, you can make the
transformed histogram identical to the original histogram. Example 2.40 illus-
trates this idea.

Body Temperature. Figure 2.40 shows the distribution of 47 temperature mea-
surements that have been transformed by first subtracting 36 from each observa-
tion and then multiplying by 100 (as in Examples 2.38 and 2.39). That is,
Y’ = (Y — 36) * 100. The figure shows that the two distributions can be repre-

sented by the same histogram with different horizontal scales. |
15 —
10 +— —‘—
&
g
S
&
=t
Bosl
Figure 2.40 Distribution of 47 T | f
temperature measurements 36.0 36.2 36.4 36.6 36.8 Y
showing original and linearly f T T T T
transformed scales 0 20 40 60 80 Y

How Linear Transformations Affect y and s

The effect of a linear transformation on y is “natural”; that is, under a linear trans-
formation, y changes like Y. For instance, if temperatures are converted from °C
to °F, then the mean is similarly converted:

Y' =18Y +32 so y =18y + 32

The effect of multiplying Y by a positive constant on s is “natural”;if Y’ = ¢ *Y,
with ¢ > 0, then s’ = ¢ * s. For instance, if weights are converted from kg to Ib, the
SD is similarly converted: s’ = 2.2s. IfY’ = ¢ * Y and ¢ < 0, then s’ = —cx*s.In
general,if Y’ = ¢ * Y, thens' = |cl * 5.

However, an additive transformation does not affect s. If we add or sub-
tract a constant, we do not change how spread out the distribution is, so s does not
change. Thus, for example, we would not convert the SD of temperature data from
°C to °F in the same way as we convert each observation; we would multiply the
SD by 1.8 but we would not add 32. The fact that the SD is unchanged by additive
transformation will appear less surprising if you recall (from the definition) that s
depends only on the deviations (y; — ¥), and these are not changed by an additive
transformation. The following example illustrates this idea.
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Consider a simple set of fictitious data, coded by subtracting 20 from each obser-
vation. The original and transformed observations are shown in Table 2.13.

The SD for the original observations is

_ \/(—1)2 +(0)" + (2" + (=1)°
B 3
=14

Because the deviations are unaffected by the transformation, the SD for the trans-
formed observations is the same:

s’ =14 [ |

An additive transformation effectively picks up the histogram of a distrib-
ution and moves it to the left or to the right on the number line. The shape of the
histogram does not change and the deviations do not change, so the SD does not
change. A multiplicative transformation, on the other hand, stretches or shrinks the
distribution, so the SD gets larger or smaller accordingly.

Other Statistics. Under linear transformations, other measures of center (for
instance, the median) change like y, and other measures of dispersion (for instance,
the interquartile range) change like s. The quartiles themselves change like y.

Nonlinear Transformations

Data are sometimes reexpressed in a nonlinear way. Examples of nonlinear trans-
formations are

Y' =VY
Y’ = log(Y)
1
Y' ==

Y
Y’ = Y2

These transformations are termed “nonlinear” because a graph of Y’ against Y
would be a curve rather than a straight line. Computers make it easy to use non-
linear transformations. The logarithmic transformation is especially common in

Example 2.41
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biology because many important relationships can be simply expressed in terms of
5 logs. For instance, there is a phase in the growth of a bacterial colony when
log(colony size) increases at a constant rate with time. [Note that logarithms are
used in some familiar scales of measurement, such as pH measurement or earth-
quake magnitude (Richter scale).]

Nonlinear transformations can affect data in complex ways. For example, the
mean does not change “naturally” under a log transformation; the log of the mean
is not the same as the mean of the logs. Furthermore, nonlinear transformations (un-
like linear ones) do change the essential shape of a frequency distribution.

In future chapters we will see that if a distribution is skewed to the right,
such as the singing time distribution shown in Figure 2.41, then we may wish to
apply a transformation that makes the distribution more symmetric, by pulling

in the right-hand tail. Using Y' = VY will pull in the right-hand tail of a distri-
bution and push out the left-hand tail. The transformation Y’ = log(Y’) is more
severe than VY in this regard. The following example shows the effect of these
transformations. ’
20 — 15—
15 []
10
10 —
5 —
5 —
| T — !_ | [ =
0 10 20 0.4 2.4 44
Singing time (min) Singing time
(2) (b)
15 —
10 I~
d u
| Figure 2.41 Distribution of Y, o ! .
I of V'Y, and of log (Y) for 51 -12 -08 04 00 04 08 12
observations of log (Singing time) ]
Y = singing time () ;
‘ ETNICPRYH  Cricket Singing Times.  Figure 2.41(a) shows the distribution of the cricket 2.5
! singing-time data of Table 2.10. If we transform these data by taking square roots, i
the transformed data have the distribution shown in Figure 2.41(b). Taking logs

(base 10) yields the distribution shown in Figure 2.41(c). Notice that the transfor-
mations have the effect of “pulling in” the straggly upper tail and “stretching out”
the clumped values on the lower end of the original distribution. |
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Computer note: Without the aid of technology, transforming data would be
very tedious. However, if the data are stored on a computer or graphing calcula-

ithms are . tor, then it is fairly easy to transform the data, so that one can try a variety of trans-
or earth- i formations, as was done in Example 2.42. For example, suppose the cricket singing
] ; times data of Example 2.42 are stored within the MINITAB system in column 1.
mple, the 1 ’: Then to transform the data by taking square roots, we use the command
the mean b '
tions (un- . ]
! ] MTB > Sqgrt C1 C2.
the right, | j ‘
y WISh. to This puts the transformed data (the square root values) in column 2.
’gp(‘;.utn,g To transform the data by taking logs (base 10), we use the command
a distri-
) is more

t of these ! [MTB > Log Ten C1 C2.

If we want to take the natural logarithm of each observation, we use the
command

LMTB > LogE C1 C2. j

‘ We can also create other transformations by typing in expressions. For ex-
- ' ample, to create a new variable in column 2 that contains the reciprocals of the
' square roots of data in column 1, we use the command

[MTB > Let C2 = 1/sqgrt (Cl). j

Exercises 2.56-2.61

2,56 A biologist made a certain pH measurement in each of 24 frogs; typical values
were”

743, 716, 751,...

She calculated a mean of 7.373 and a standard deviation of .129 for these original
pH measurements. Next, she transformed the data by subtracting 7 from each ob-
servation and then multiplying by 100. For example, 7.43 was transformed to 43. The
transformed data are

43, 16, 51,...

What are the mean and standard deviation of the transformed data?

e cricket ‘ 2.57 The mean and SD of a set of 47 body temperature measurements were as follows:*°
) i \
4r¢ roots, y = 36.497°C s = .172°C

king logs .
bitansfor- If the 47 measurements were converted to°F,
'ng out” ‘ (a) What would be the new mean and SD?

B (b) What would be the new coefficient of variation?
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2.58 A researcher measured the average daily gains (in kg/day) of 20 beef cattle; typi-
cal values were*!

1.39, 1.57, 1.44,...

The mean of the data was 1.461 and the standard deviation was .178.

(a) Express the mean and standard deviation in 1b/day. (Hint: 1 kg = 2.201b.)
(b) Calculate the coefficient of variation when the data are expressed (i) in kg/day;
(i) in Ib/day.

2.59 Consider the data from Exercise 2.58. The mean and SD were 1.461 and .178. Sup-
pose we transformed the data from

1.39, 157, 1.44,...

to

39, 57, 44,...

‘What would be the mean and standard deviation of the transformed data?

2.60 The following histogram shows the distribution for a sample of data:

15 —

[l m

One of the following histrograms is the result of applying a square root transfor-
mation and the other is the result of applying a log transformation. Which is which?
How do you know?

15 — 40
30
10
20
5 10
v ii
“\g? 2,61 (Computer problem) The file ‘dendnewb’ is included on the data disk packaged
- with this text. This file contains 36 observations on the number of dendritic branch 1 T
segments emanating from nerve cells taken from the brains of newborn guinea 3 a
pigs. (These data were used in Exercise 2.7.) Open the file and enter the data into ar
a statistics package, such as MINITAB. Make a histogram of the data, which are 7 T
skewed to the right. Now consider the following possible transformations: sqrt(Y), ] .
log(Y), and 1/sqrt(Y). Which of these transformations does the best job of meet- 1 n
ing the goal of making the resulting distribution reasonably symmetric? 1 3
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2.8 SAMPLES AND POPULATIONS:
STATISTICAL INFERENCE

In the preceding sections we have examined several ways of describing a set of
observations. We have called the data set a “sample.” Now we discuss the reason
for this terminology.

The description of a data set is sometimes of interest for its own sake. Usu-
ally, however, the researcher hopes to generalize, to extend the findings beyond the
limited scope of the particular group of animals, plants, or other units that were ac-
tually observed. Statistical theory provides a rational basis for this process of gen-
eralization, a basis that takes into account the variability of the data. The key idea
of the statistical approach is to view the particular data in an experiment as a sam-
ple from a larger population; the population is the real focus of scientific and/or
practical interest. The following example illustrates this idea.

Blood Types. In an early study of the ABO blood-typing system, researchers
determined blood types of 3,696 persons in England. The results are given in
Table 2.14.

These data were not collected for the purpose of learning about the blood
types of those particular 3,696 people. Rather, they were collected for their sci-
entific value as a source of information about the distribution of blood types in
a larger population. For instance, one might presume that the blood type
distribution of all English people should resemble the distribution for these 3,696
people. In particular, the observed relative frequency of Type A blood was

1,634 o

3.69 or 44% Type A
One might conclude from this that approximately 44% of the people in England
have Type A blood. u

Statistical Inference

The process of drawing conclusions about a population, based on observations in
a sample from that population, is called statistical inference. For instance, in Ex-
ample 2.43 the conclusion that approximately 44% of the people in England have
Type A blood would be a statistical inference. The inference is shown schematically
in Figure 2.42. Of course, such an inference might be entirely wrong—perhaps the
3,696 people are not at all representative of English people in general. We might
be worried about two possible sources of difficulty: (1) The 3,696 people might

Example 2.43
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Figure 2.42 Schematic
representation of inference
from sample to population
regarding prevalence of blood
Type A

Example 2.44

have been selected in a way that was systematically biased for (or against) Type A
people, and (2) the number of people examined might have been too small to per-
mit generalization to a population of many millions. In general, it turns out that the
population size being in the millions is #ot a problem, but bias in the way people
are selected is a big concern.

2. Select a representative sample
from the population

3. Tabulate data in
N\ the SAMPLE:
Blood types of
3,696 English people

1. POPULATION: Blood types 4. Perform analyses for statistical
of all English people inference about the population

In making a statistical inference, we would prefer that the sample resemble
the population closely—that the sample be representative of the population. How-
ever, we must ask about the likelihood of this happening. In other words, we must
ask the important question: How representative (of the population) is a sample like-
ly to be? We will see in Chapters 3 and 5 how statistical theory can help to answer
this question. But the question itself becomes meaningful only if the population has
been defined, a process that we now discuss in more detail.

Defining the Population

Ideally, the population should be defined in such a way that it is plausible to be-
lieve that a sufficiently large sample would be representative of the population. The
first step in defining the population is to ask how the observations were obtained.
Two important issues are, How were the observational units selected? and What
was the observed variable? The following example illustrates the reasoning in-
volved in defining the population.

Blood Types. How were the 3,696 English people of Example 2.43 actually cho-
sen? It appears from the original paper that this was a “sample of convenience,”
that is, friends of the investigators, employees, and sundry unspecified sources.
There is little basis for believing that the people themselves would be representa-
tive of the entire English population. Nevertheless, one might argue that their
blood types might be (more or less) representative of the population. The argument
would be that the biases that entered into the selection of those particular people
were probably not related to blood type (although an objection might be made on
the basis of race). The argument for representativeness would be much less plau-
sible if the observed variable were blood pressure rather than blood type; we know
that blood pressure tends to increase with age, and the selection procedure was un-
doubtedly biased against certain age groups (for example, elderly people). |

As Example 2.44 shows, whether a sample is likely to be representative of
a population depends not only on how the observational units (in this case people)
were chosen, but also on the variable that was observed. Generally, therefore, itis
most appropriate to think of the population as consisting of observations, rather
than of people or other observational units. We can conceptualize the population

o s e
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b as an indefinitely large extension of the sample. In other words, in order to try to

define the population from which our data came, we try to describe the set of ob-

L servations that we would obtain if the process generating the data were repeated

indefinitely. The following is another example.

£ Alcohol and MOPEG. The biochemical MOPEG (3-methoxy-4-hydrox-

yphenylethylene) plays a role in brain function. Seven healthy male volunteers
participated in a study to determine whether drinking alcohol might elevate the
concentration of MOPEG in the cerebrospinal fluid. The MOPEG concentration
was measured twice for each man—once at the start of the experiment, and again
after he drank 80 g of ethanol. The results (in pmol/mLi) are given in Table 2.15.9

Let us focus on the rightmost column, which shows the change in MOPEG
concentration (that is, the difference between the “after” and the “before” mea-
surements). In thinking of these values as a sample from a population, we need to
specify all the details of the experimental conditions—how the cerebrospinal spec-
imens were obtained, the exact timing of the measurements and the alcohol con-
sumption, and so on—as well as relevant characteristics of the volunteers themselves.
Thus, the definition of the population might be something like this:

Population Change in cerebrospinal MOPEG concentration in healthy
young men when measured before and after drinking 80 g of ethanol, both
measurements being made at 8:00 A.M., ... (other relevant experimental
conditions are specified here).

There is no single “correct” definition of a population for an experiment like this.
A scientist reading a report of the experiment might find the above definition too
narrow (for instance, perhaps it does not matter that the volunteers were mea-
sured at 8:00 A.M.) or too broad. She might use her knowledge of alcohol and brain
chemistry to formulate her own definition, and she would then use that definition
as a basis for interpreting these seven observations. |

A Dynamic Example

The concept of obtaining precise statements about populations from samples is at
the heart of statistical thinking. In the following example we dramatize this con-
cept by looking at larger and larger samples from the same population. (Of course,
in practice, one usually takes only one sample from a population rather than sam-
ples of various sizes.)

Example 2.45
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SEINTIPR LY  Sucrose Consumption. An entomologist is interested in the mechanism con-

trolling feeding behavior in the black blowfly (Phormia regina). One variable of
interest to him is the amount of sucrose (sugar) solution a fly will drink in 30 min-
utes. The measurement procedure is such that a given fly can be measured only
once. To study the inherent variability of the system, the researcher has measured
hundreds of flies under standardized conditions. Figure 2.43 shows histograms of
sucrose consumption values (mg) for samples of various numbers of individuals.*
The means and standard deviations of the samples are as follows:

n 20 40 100 400 900
y 155 147 143 15.0 14.9
s 65 59 5.0 5.4 5.4

Notice that, as the sample size is increased, the frequency distribution tends to
stabilize and, similarly, the mean and the SD tend to stabilize.

It is natural to define a population from which the samples came, as follows:
Population Sucrose consumption values for all P. regina individuals
under the standardized conditions |
Remark: As noted in Example 2.46, the SD tends to stabilize as the sam-
ple size is increased. To see intuitively why this should happen, recall from Section
| 2.6 that
i \/ —\2
: s =~ 'V Sample average value of (y;, — ¥)
\ n=20 n=40
I I I I [ [
0 10 20 30 0 10 20 30
Sucrose consumption (mg) Sucrose consumption (mg) ‘
(a) (b) ]
000 n=100 i a s
n= n =400 { kno
1 eral
] the
| [ — N N T T T — | | | = _ nec
| 0 4 10 14 20 24 30 34 0 10 20 30 0 10 20 30 the:
; Sucrose consumption (mg) Sucrose consumption (mg) Sucrose consumption (mg) ] pro|
i © © (@
| Figure 2.43 Histograms of various samples of sucrose consumption data
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The right-hand side of this expression depends only on the composition of the
sample, not on its size; thus, samples of different sizes but with similar compositions
(relative frequency distributions) will have similar SDs. Increasingly larger samples
from the same population will tend to have compositions increasingly similar to the
population, and so also to have means and SDs increasingly similar to the mean
and SD of the population.

Describing a Population

Because observations are made only on a sample, characteristics of biological pop-
ulations are almost never known exactly. Typically, our knowledge of a population
characteristic comes from a sample. In statistical language, we say that the sample
characteristic is an estimate of the corresponding population characteristic. Thus,
estimation is a type of statistical inference.

Just as each sample has a distribution, a mean, and an SD, so also we can en-
vision a population distribution, a population mean, and a population SD. In order
to discuss inference from a sample to a population, we will need a language for de-
scribing the population. This language parallels the language that describes the
sample. A sample characteristic is called a statistic; a population characteristic is
called a parameter.

Proportions

For a categorical variable, we can describe a population by simply stating the pro-
portion, or relative frequency, of the population in each category. The following is
a simple example.

OatPlants. Ina certain population of oat plants, resistance to crown rust disease
is distributed as shown in Table 2.16.% [ |

Remark: The population described in Example 2.47 is realistic, but it is not
a specific real population; the exact proportions for any real population are not
known. For similar reasons, we will use fictitious but realistic populations in sev-
eral other examples, here and in Chapters 3,4, and 5.

For categorical data, the sample proportion of a category is an estimate of
the corresponding population proportion. Because these two proportions are not
necessarily the same, it is essential to have a notation that distinguishes between
them. We denote the population proportion of a category by p and the sample
proportion by p (read “p-hat”):

p = Population proportion

p = Sample proportion

Example 2.47
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Example 2.48

Example 2.49

The symbol “*” can be interpreted as “estimate of.” Thus,
p is an estimate of p.
We illustrate this notation with an example.

Lung Cancer. Eleven patients suffering from adenocarcinoma (a type of lung
cancer) were treated with the chemotherapeutic agent Mitomycin. Three of the
patients showed a positive response (defined as shrinkage of the tumor by at least
50%).* Suppose we define the population for this study as “responses of all ade-
nocarcinoma patients.” Then we can represent the sample and population pro-
portions of the category “positive response” as follows:

p = Proportion of positive responders among all adenocarcinoma patients
p = Proportion of positive responders among the 11 patients in the study

~ 3
=— =727
P=1
Note that p is unknown, and p, which is known, is an estimate of p. |

We should emphasize that an “estimate,” as we are using the term, may or
may not be a good estimate. For instance, the estimate p in Example 2.48 is based
on very few patients; estimates based on a small number of observations are sub-
ject to considerable uncertainty. Of course, the question of whether an estimation
procedure is good or poor is an important one, and we will show in later chapters
how this question can be answered.

Other Descriptive Measures

If the observed variable is quantitative, one can consider descriptive measures
other than proportions—the mean, the quartiles, the SD, and so on. Each of these
quantities can be computed for a sample of data, and each is an estimate of its cor-
responding population analog. For instance, the sample median is an estimate of
the population median. In later chapters, we will focus especially on the mean and
the SD, and so we will need a special notation for the population mean and SD. The
population mean is denoted by u (mu), and the population SD is denoted by o
(sigma). We may define these as follows for a quantitative variable Y:

= Population average value of Y

o = V/Population average value of (Y — )2

The following example illustrates this notation.

Tobacco Leaves. An agronomist counted the number of leaves on each of 150
tobacco plants of the same strain (Havana). The results are shown in Table 2.17.%
The sample mean is

y = 19.78 = Mean number of leaves on the 150 plants
The population mean is

n = Mean number of leaves on Havana tobacco
plants grown under these conditions
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We do not know u, but we can regard y = 19.78 as an estimate of u. The sample
SDis

s = 1.38 = SD of number of leaves on the 150 plants
The population SD is

pe of lung ‘

ree of the '* o = SD of number of leaves on Havana tobacco

by at least i ] plants grown under these conditions

of all ade- |
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. measures L] In this chapter we have considered various ways of describing a set of data. We have

ch of these ] also introduced the notion of regarding a data set as a sample from a suitably de-

e of its cor- 1 fined population, and regarding features of the sample as estimates of corre-

~stimate of B sponding features of the population.

> mean and ]

nd SD. The L Parameters and Statistics

oted by o j N .
Some features of a distribution—for instance, the mean—can be represented by a
single number, while some—for instance, the shape—cannot. We have noted that
a numerical measure that describes a sample is called a statistic. Corresponding-
ly, a numerical measure that describes a population is called a parameter. For the
most important numerical measures, we have defined notations to distinguish be-
tween the statistic and the parameter. These notations are summarized in Table 2.18
for convenient reference.

cach of 150

able 2.17.% | AlLook Ahead

It is natural to view a sample characteristic (for instance, y) as an estimate of the
corresponding population characteristic (for instance, ). But in taking such a view
one must guard against unjustified optimism. Of course, if the sample were perfectly

* You may wonder why we use y and s instead of & and &. One answer is “tradition.” Another
means estimate, you might have other estimates in mind.

[73at1)

answer is that since
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representative of the population, then the estimate would be perfectly accurate. But
this raises the central question: How representative (of the population) is a sam-
ple likely to be? Intuition suggests that, if the observational units are appropri-
ately selected, then the sample should be more or less representative of the
population. Intuition also suggests that larger samples should tend to be more rep-
resentative than smaller samples. These intuitions are basically correct, but they are
too vague to provide practical guidance for research in the life sciences. Practical
questions that need to be answered are as follows:

1. How can an investigator judge whether a sample can be viewed as “more
or less” representative of a population?

2. How can an investigator quantify “more or less” in a specific case?

In Chapter 3 we will describe a theoretical model—the random sampling
model—that provides a framework for the judgment in question (1), and in Chapter
6 we will see how this model can provide a concrete answer to question (2).
Specifically, in Chapter 6 we will see how to analyze a set of data so as to quanti-
fy how closely the sample mean (y) estimates the population mean (). But be-
fore returning to data analysis in Chapter 6, we will need to lay some groundwork
in Chapters 3,4, and 5; the developments in these chapters are an essential prelude
to understanding the techniques of statistical inference.

Supplementary Exercises 2.62-2.80

2.62  Abotanist grew 15 pepper plants on the same greenhouse bench. After 21 days, she
measured the total stem length (cm) of each plant, and obtained the following

values:*
124 122 13.4 1
109 122 121
118 135 120
141 127 132
126 11.9 13.1

(a) Construct a stem-and-leaf display for these data, and use it to determine the

quartiles.

(b) Calculate the interquartile range.
2,63 Here are the 20 measurements of preening time reported in Exercise 2.12:

34 24 10 16 52
76 33 31 46 24
18 26 57 32 25
48 22 48 29 19
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(a) Determine the median and the quartiles.
(b) Determine the interquartile range.
(c) Construct a (modified) boxplot of the data.

,' 2,64 To calibrate a standard curve for assaying protein concentrations, a plant pathol-
ogist used a spectrophotometer to measure the absorbance of light (wavelength 500
nm) by a protein solution. The results of 27 replicate assays of a standard solution
containing 60 g protein per mLi water were as follows:*

J11 115 115 110 .099
J121 107 107 100 .110

urate. But ] 106 116 .098 .116 .108
) is a sam- 1 4 098 120 .123 124 122
appropri- ; A16 130 114 100 .123
ive of the ] ] 119 107
more rep- ' T . . .
1 .
it they are Construct a frequency distribution and display it as a table and as a histogram

s, Practical ‘, 2,65 Refer to the absorbance data of Exercise 2.64.

! (a) Prepare a stem-and-leaf display of the data.
d as “more ] (b) Use the stem-and-leaf display of part (a) to determine the median, the quar-
3 tiles, and the interquartile range.

0 (c) How large must an observation be to be an outlier?
ase’?

. 2,66  Twenty patients with severe epilepsy were observed for eight weeks. The following are
1 sampling 3 the numbers of major seizures suffered by each patient during the observation period:*

:;ticoh;“ztz"’)r 5096005061
‘toquanti: i 50000700 47
1). But be- » (a) Determine the median number of seizures.
-oundwork ! (b) Determine the mean number of seizures.
ial prelude ; (c) Construct a histogram of the data. Mark the positions of the mean and the me-
P dian on the histogram.
(d) What feature of the frequency distribution suggests that neither the mean nor
the median is a meaningful summary of the experience of these patients?
E  2.67 Calculate the standard deviation of each of the following fictitious samples:

21 days, she " (a) 11,8,4,10,7 (b) 23,29,24,21,23 (c) 6,0,-3,2,5
he following 1 3 2.68 To study the spatial distribution of Japanese beetle larvae in the soil, researchers di-

vided a 12 X 12-foot section of a cornfield into 144 one-foot squares. They counted
the number of larvae Y in each square, with the results shown in the following table.*!

Frequency
Number of (Number of
Larvae Squares)
0 13
etermine the 1 34
2 50
3 18
e 2.12: 4 16
5 10
6 2
7 1

Total 144
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2.69

2.70

2.71

2.72

(a) The mean and standard deviation of ¥ are y = 2.23 and s = 1.47. What per-
centage of the observations are within

I. 1standard deviation of the mean?
II. 2 standard deviations of the mean?

(b) Determine the total number of larvae in all 144 squares. How is this number
related to y?
(c) Determine the median value of the distribution.

One measure of physical fitness is maximal oxygen uptake, which is the maximum
rate at which a person can consume oxygen. A treadmill test was used to deter-
mine the maximal oxygen uptake of nine college women before and after partici-
pation in a ten-week program of vigorous exercise. The accompanying table shows
the before and after measurements and the change (after—before); all values are
in mLi O, per mm per kg body weight.*

Maximal Oxygen Uptake
Participant Before After Change
1 48.6 38.8 -9.8
2 38.0 40.7 27
3 31.2 32.0 .8
4 45.5 45.4 -1
5 41.7 432 1.5
6 41.8 453 35
7 37.9 38.9 1.0
8 39.2 43.5 43
9 47.2 45.0 -22

The following computations are to be done on the change in maximal oxygen
uptake (the right-hand column).

(a) Calculate the mean and the standard deviation.

(b) Determine the median.

(c) Eliminate participant 1 from the data and repeat parts (a) and (b). Which of
the descriptive measures display resistance and which do not?

A veterinary anatomist investigated the spatial arrangement of the nerve cells in
the intestine of a pony. He removed a block of tissue from the intestinal wall, cut
the block into many equal sections, and counted the number of nerve cells in each
of 23 randomly selected sections. The counts were as follows.*

35 19 33 34 17 26 16 40
28 30 23 12 27 33 22 31
28 28 35 23 23 19 29

Construct a stem-and-leaf diagram of the data.
Refer to the nerve-cell data of Exercise 2.70.

(a) Use the stem-and-leaf display of part (a) to determine the median, the quar-
tiles, and the interquartile range.
(b) Construct a boxplot of the data.

Part (a) of Exercise 2.71 asks for a stem-and-leaf display of the nerve-cell data.
Does this graphic support the claim that the data came from a reasonably sym-
metric and mound-shaped distribution?

1 % )
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. What per- | 2.73 A geneticist counted the number of bristles on a certain region of the abdomen of
4 the fruitfly Drosophila melanogaster. The results for 119 individuals were as shown
in the table.*

3 Number of Number of Number of Number of
this number . Bristles Flies Bristles Flies
29 1 38 18
o ‘ ; 30 0 39 13
€ maximum . 31 1 40 10
ed to deter- | 32 2 41 15
fter partici- 4 33 ) 4 10
table shows 34 6 43 2
1 values are
35 9 44 2
36 11 45 3
37 12 46 2

(a) Find the median number of bristles.

(b) Find the first and third quartiles of the sample.

(c) Make a boxplot of the data.

(d) The sample mean is 38.45 and the standard deviation is 3.20. What percentage
of the observations fall within 1 standard deviation of the mean?

2.74 The carbon monoxide in cigarettes is thought to be hazardous to the fetus of a
pregnant woman who smokes. In a study of this theory, blood was drawn from preg-
nant women before and after smoking a cigarette. Measurements were made of
the percent of blood hemoglobin bound to carbon monoxide as carboxyhemoglo-
bin (COHDb). The results for ten women are shown in the table.*

Blood COHDb (%)
mal oxygen
Subject Before After Increase
1 1.2 7.6 6.4
2 1.4 4.0 2.6
). Which of 3 1.5 5.0 35
4 2.4 6.3 3.9
. 5 3.6 5.8 22
erve cells in
nal wall, cut 6 5 6.0 5.5
cells in each 7 2.0 6.4 4.4
8 1.5 5.0 3.5
9 1.0 4.2 32
10 1.7 52 3.5

(a) Calculate the mean and standard deviation of the increase in COHb.
(b) Calculate the mean COHb before and the mean after. Is the mean increase
equal to the increase in means?
(c) Construct a stem-and-leaf diagram of the increase in COHb. Use the diagram
{ to determine the median increase.
n, the quar- B (d) Repeat part (c) for the before measurements and for the after measurements.
‘ Is the median increase equal to the increase in medians?

2,75  (Computer problem) A medical researcher in India obtained blood specimens
ve-cell data. from 31 young children, all of whom were infected with malaria. The following
onably sym- - data, listed in increasing order, are the numbers of malarial parasites found in 1

' ml of blood from each child.*®
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100 140 140 271 400 435 455 770

826 1,400 1,540 1,640 1,920 2280 2,340 3,672

4914 6,160 6,560 6,741 7,609 8,547 9,560 10,516
14960 16,855 18,600 22,995 29,800 83,200 134,232

(a) Construct a frequency distribution of the data, using a class width of 10,000; dis-
play the distribution as a histogram.

(b) Transform the data by taking the logarithm (base 10) of each observation. Con-
struct a frequency distribution of the transformed data and display it as a his-
togram. How does the log transformation affect the shape of the frequency
distribution?

(c) Determine the mean of the original data and the mean of the log-transformed
data. Is the mean of the logs equal to the log of the mean?

(d) Determine the median of the original data and the median of the log-trans-
formed data. Is the median of the logs equal to the log of the median?

2.76  Rainfall, measured in inches, for the month of June in Cleveland, Ohio, was record-
ed for each of 41 years.” The values had a minimum of 1.2, an average of 3.6, and
a standard deviation of 1.6. Which of the following is a rough histogram for the
data? How do you know?

2,77 The following histograms (a, b, and c) show three distributions.

AN

1 | I — I — i
60 20 40 60 20 40 60

20 40
(2) (b) ©

The computer output given below shows the mean, median, and standard deviation
of the three distributions, plus the mean, median, and standard deviation for a
fourth distribution. Match the histograms with the statistics. Explain your reason-
ing. (One set of statistics will not be used.)

T e R AT L

r B E  2.80
1. Count 100 2.Count 100 -
Mean 41.3522 Mean 39.6761
Median 39.5585 Median 39.5377 ]
Stdbev  13.0136 Stdbev 10.0476
3. Count 100 4. Count 100 !
Mean 37.7522 Mean  39.6493 B
Median 39.5585 Median 39.5448
stdpev  13.0136 stdpev 17.5126
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The following boxplots show mortality rates (deaths within one year per 100 pa-
tients) for heart transplant patients at various hospitals. The low-volume hospitals
are those that perform between 5 and 9 transplants per year.The high-volume hos-
] pitals perform 10 or more transplants per year.”® Describe the distributions, pay-
4 ing special attention to how they compare to one another. Be sure to note the
10,000 dis- ‘ shape, center, and spread of each distribution.
ation, Con- !
it as a his- ] |
frequency 1 i 40 —
ansformed
3 30
: log-trans- ]
an? i
‘ 2
vas record- 4 S o0
of 3.6,and 1 g 20
am for the ] =
L e s
0 -
Low High
! Volume
2.79  (Computer problem) Physicians measured the concentration of calcium (nM) in
blood samples from 38 healthy persons. The data are as follows.”
95 110 135 120 88 125
112 100 130 107 86 130
122 122 127 107 107 107
88 126 125 112 78 115
. 78 102 103 93 88 110
rd deviation | 104 122 112 80 121 126
iation for a | 90 96 .
our reason- ‘ e
Calculate appropriate measures of the center and spread of the distribution. De-
scribe the shape of the distribution and any unusual features in the data.
\ ] 2.80 The boxplot shows the same data that are shown in one of the three histograms.
] Which histogram goes with the boxplot? Explain your answer.
|
— [ ] |
[ [ [ I I 1
J 15 20 25 30 35 40
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Binomial Distribution

3.1 PROBABILITY AND THE LIFE SCIENCES

_ Probability, or chance, plays an important role in scientific thinking about

_ living systems. Some biological processes are affected directly by chance.

A familiar example is the segregation of chromosomes in the formation
metes; another example is the occurrence of mutations.

Even when the biological process itself does not involve chance,
the results of an experiment are always somewhat affected by chance:
chance fluctuations in environmental conditions, chance variation in
the genetic makeup of experimental animals, and so on. Often, chance
also enters directly through the design of an experiment; for instance,

ay be randomly allocated to plots in a field. (Ran-
om allocation is'discussed in Chapter 8.)
The conclusions of a statistical data analysis are often stated in
of probability. Probability enters statistical analysis not only be-
hance influences the results of an experiment, but also because
etical frameworks, or models, that are used as a basis for st

is chapter we will
dy the basic ideas of
obability, including

role of random
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each member of the population is represented by one ticket, and that the tickets
are placed in a large box and thoroughly mixed. Then # tickets are drawn from
the box by a blindfolded assistant, with new mixing after each ticket is removed;
these # tickets constitute the sample. (Equivalently, we may visualize that 7 assis-
tants reach in the box simultaneously, each assistant drawing one ticket.)

More abstractly, we may define random sampling as follows:

Simple random sampling can be thought of in other, equivalent, ways. We
may envision the sample members being chosen one at a time from the population;
under simple random sampling, at each stage of the drawing every remaining mem-
ber of the population is equally likely to be the next one chosen. Another view is
to consider the totality of possible samples of size #; if all possible samples are
equally likely to be obtained, then the process gives a simple random sample.

There are other kinds of sampling that are random in a sense but that are
not simple. For example, consider sampling from a human population as follows:
First choose some families at random, and then include in the sample all members
of those families. With this kind of sampling, which is called cluster sampling, all
members of the population have the same chance of being in the sample, but the
various members of the sample are not chosen independently of each other.

A sample chosen by random sampling is often called a random sample. But
note that it is actually the process of sampling rather than the sample itself that is
defined as random; randomness is not a property of the particular sample that
happens to be chosen.

Choosing a Random Sample

The technique of actually choosing a random sample from a concrete population
has two types of application in biological studies: (1) choosing a sample of units for
study from a large population that is available; and (2) random allocation of units
to treatment groups (as explained in Chapter 8). In addition, some of the exercises

* Technically, requirement (b) is that every pair of members of the population has the same
chance of being selected for the sample, every group of three members of the population has
the same chance of being selected for the sample, and so on. In contrast, suppose we had a
population with 30 persons in it and we wrote the names of three persons on each of 10 tick-
ets. Then we could then choose one ticket in order to get a sample of size n = 3, but this would
not be a simple random sample, since the pair (1,2) could end up in the sample but the pair
(1,4) could not. Here the selections of members of the sample are not independent of each
other. (This kind of sampling is known as “cluster sampling,” with 10 clusters of size 3.) If the
population is infinite, then the technical definition, that all subsets of a given size are equally
likely to be selected as part of the sample, is equivalent to the requirement that the members
of the sample are chosen independently.
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e tickets (“sampling exercises”) in this book require random sampling; by giving you some
wn from experience with drawing random samples and looking at the results, these exercises
emoved,; 1 ¥ are designed to help you feel more comfortable with statistical reasoning,

it 71 assis- 1 | The technique of random sampling is easy to learn. First, you need a source
) ] i of random digits. A calculator or computer can supply random digits. Alternatively,

you can use a table of random digits, such as Table 1 at the end of this book.

How to Read Random Digits from Your Calculator or Computer. Many calcula-
tors and computer programs generate random numbers. Sometimes these num-
bers are expressed as decimal numbers between 0 and 1; to convert these to random
digits, simply ignore the decimal and just read the individual digits in each ran-
dom number. If you need single-digit numbers, read only the first digit; if you need
two-digit numbers, read the first two digits; and so on.

How to Use the Table of Random Digits. For ease of reading, the rows and columns

ways. We i of Table 1 are numbered, and the digits in the table are grouped into 5 X 5 blocks.
pulation; j  Touse Table 1, begin reading at a random place in the table.* If you need single-
ing mem- : digit numbers, just read down the table; if you need two-digit numbers, read two
or view is R columns across, down the table; and so on. When you get to the bottom, go back
nples are .‘ v to the top, move over an appropriate number of columns so that you will not use
mple. S  the same column twice, and continue reading,

t that are ] Remark: In calling the digits in Table 1 or your calculator or computer
s follows: _ random digits, we are using the term random loosely. Strictly speaking, random
members ] digits are digits produced by a random process—for example, tossing a ten-sided
ipling, all . die. The digits in Table 1 or in your calculator or computer are actually
e, but the e pseudorandom digits; they are generated by a deterministic (although possibly
ther. very complex) process that is designed to produce sequences of digits that mimic
mple. But ‘: randomly generated sequences. For those readers who are curious about this, a
elf that is ] simple example of a procedure for generating pseudorandom digits is given in
mple that ' Appendix 3.1.

How to Choose a Random Sample. The following is a simple procedure for choos-
ing a random sample of 7 items from a finite population of items.

(a) Label the members of the population with identification numbers. All

opul'atlon identification numbers must have the same number of digits; for instance,

funits fpr if the population contains 75 items, the identification numbers could be

n of units

. 01,02,...,75.

exercises (b) Read numbers from Table 1 or your calculator or computer. Reject any
numbers that do not correspond to any population member. (For exam-
ple, if the population has 75 items that have been assigned identification

he same . numbers 01,02, ..., 75, then skip over the numbers 76,77, . .., 99 and 00.)

tion has ‘ Continue until » numbers have been acquired. (Ignore any repeated oc-

ve had a » currence of the same number.)

10 tick- 1 (c) The population members with the chosen identification numbers consti-

is would ‘ tute the sample.

the pair

 of each The following example illustrates this procedure.

3.) If the

> equally * There are various ways to choose a random starting place. One simple method is to close

nembers your eyes and drop a paper clip onto Table 1;start reading at the digit closest to the outer end

of the paper clip wire.
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Suppose we are to choose a random sample of size 6 from a population of 75 mem-
bers. Label the population members 01, 02,. . .,75. Suppose we dropped a paper
clip on Table 1 and selected a starting point at row 04, column 12; we obtain the
numbers shaded in Table 3.1, which is a reproduction of part of Table 1.

We ignore the numbers greater than 75, we ignore 00, and we ignore the sec-
ond occurrence of 23. Thus, the population members with the following identifi-
cation numbers will constitute the sample:

23 38 59 21 08 09 |

Remark: 1f the population is large, then computer software can be quite
helpful in generating a sample. If you need a random sample of size 15 from a pop-
ulation with 2,500 members, have the computer (or calculator) generate 15 random
numbers between 1 and 2,500. (If there are duplicates in the set of 15, then go back
and get more random numbers.)

The Random Sampling Model

We saw in Chapter 2 that, in order to generalize beyond a particular set of data,
an investigator may view the data as a sample from a population. But how can we
provide a rationale for inference from a limited sample to a very much larger pop-
ulation? The approach of statistical theory is to refer to an idealized model of the
sample-population relationship. In this model, which is called the random sam-
pling model, the sample is chosen from the population by random sampling. The
model is represented schematically in Figure 3.1.

Random sampling

_ Sample of n
Flgurg 3.1 The random Population T ==--"
sampling model Inference
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In Chapter 2 we posed a central question of statistical inference: How rep-
resentative (of the population) is a sample likely to be? The random sampling
model is useful because it provides a basis for answering this question. The model
can be used to determine how much an inference might be influenced by chance,
or “luck of the draw.” More explicitly, a randomly chosen sample usually will not
exactly resemble the population from which it was drawn. The discrepancy be-
tween the sample and the population is called chance error due to sampling. We
will see in later chapters how statistical theory derived from the random sampling
model enables us to set limits on the likely amount of error due to sampling in an
experiment. The quantification of such error is a major contribution that statisti-
cal theory has made to scientific thinking,

How does the random sampling model relate to reality? In some studies in
the life sciences, the observational units are literally chosen by random sampling.
In much biological research, however, the observations in a data set are not cho-
sen by an actual random sampling procedure. Before applying the random sampling
model to a real study, it is necessary to ask. Can the data in this study reasonably
be viewed as if they were obtained by random sampling from some population?
The first step in answering this question is to define the population. As discussed
in detail in Section 2.8, in defining the population one tries to identify those fac-
tors that are relevant to the observed variable Y. The next step is to scrutinize the
procedure by which the observational units were selected and to ask, Could the
observations have been chosen at random?

The most clear-cut kind of nonrandomness is sampling bias, which is a sys-
tematic tendency for some values of Y to be selected more readily than others.
The following two examples illustrate sampling bias.

Lengths of Fish. A biologist plans to study the distribution of body length in a
certain population of fish in the Chesapeake Bay. The sample will be collected
using a fishing net. Smaller fish can more easily slip through the holes in the net.
Thus, smaller fish are less likely to be caught than larger ones, so the sampling pro-
cedure is biased. u

Sizes of Nerve Cells. A neuroanatomist plans to measure the sizes of individ-
ual nerve cells in cat brain tissue. In examining a tissue specimen, the investigator
must decide which of the hundreds of cells in the specimen should be selected for
measurement. Some of the nerve cells are incomplete because the microtome cut
through them when the tissue was sectioned. If the size measurement can be made
only on complete cells, a bias arises because the smaller cells had a greater chance
of being missed by the microtome blade. |

When the sampling procedure is biased, the sample mean is a poor esti-
mate of the population mean because it is systematically distorted. For instance,
in Example 3.2 smaller fish will tend to be underrepresented in the sample, so the
sample mean length will be an overestimate of the population mean length.

The following example illustrates a kind of nonrandomness that is differ-
ent from bias.

Sucrose in Beet Roots. An agronomist plans to sample beet roots from a
field in order to measure their sucrose content. Suppose she were to take all her
specimens from a randomly selected small area of the field. This sampling

Example 3.4
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procedure would not be biased but would tend to produce too homogeneous a
sample because environmental variation across the field would not be reflected
in the sample. |

Example 3.4 illustrates an important principle that is sometimes overlooked
in the analysis of data: In order to check applicability of the random sampling
model, one needs to ask not only whether the sampling procedure might be bi-
ased, but also whether the sampling procedure will adequately reflect the vari-
ability inherent in the population. Faulty information about variability can distort
scientific conclusions just as seriously as bias can.

We now consider some examples where the random sampling model might
reasonably be applied.

Fungus Resistance in Corn. A certain variety of corn is resistant to fungus dis-
ease. To study the inheritance of this resistance, an agronomist crossed the resis-
tant variety with a nonresistant variety and measured the degree of resistance in
the progeny plants. The actual progeny in the experiment can be regarded as a
random sample from a conceptual population of all potential progeny of that par-
ticular cross. |

When the purpose of a study is to compare two or more experimental con-
ditions, a very narrow definition of the population may be satisfactory, as illus-
trated in the next example.

Nitrite Metabolism. To study the conversion of nitrite to nitrate in the blood,
researchers injected four New Zealand White rabbits with a solution of radioac-
tively labeled nitrite molecules. Ten minutes after injection, they measured for
cach rabbit the percentage of the nitrite that had been converted to nitrate.! Al-
though the four animals were not literally chosen at random from a specified pop-
ulation, nevertheless it might be reasonable to view the measurements of nitrite
metabolism as a random sample from similar measurements made on all New
Zealand White rabbits. (This formulation assumes that age and sex are irrelevant
to nitrite metabolism. ) [ |

Treatment of Ulcerative Colitis. A medical team conducted a study of two
therapies, A and B, for treatment of ulcerative colitis, All the patients in the study
were referral patients in a clinic in a large city. Each patient was observed for sat-
isfactory “response” to therapy. In applying the random sampling model, the re-
searchers might want to make an inference to the population of all ulcerative colitis
patients in urban referral clinics. First consider inference about the actual proba-
bilities of response; such an inference would be valid if the probability of response
to each therapy is the same at all urban referral clinics, However, this assumption
might be somewhat questionable, and the investigators might believe that the pop-
ulation should be defined very narrowly—for instance, as “the type of ulcerative
colitis patients who are referred to this clinic.” Even such a narrow population can
be of interest in a comparative study. For instance, if treatment A is better than
treatment B for the narrow population, it might be reasonable to infer that A

3.2



SECTION 3.2 RANDOM SAMPLING 77

neous a would be better than B for a broader population (even if the actual response prob-
eflected abilities might be different in the broader population). In fact, it might even be ar-
] gued that the broad population should include all ulcerative colitis patients, not
merely those in urban referral clinics. |
rlooked
ampling ; .
ht be bi- 1 - It often happens in research that, for practical reasons, the population ac-
the vari- 1 5 tually studied is narrower than the population that is of real interest. In order to
n distort ] | apply the kind of rationale illustrated in Example 3.7, one must argue that the re-
1 sults in the narrowly defined population (or, at least, some aspects of those re-
lel might ] ] sults) can be meaningfully extrapolated to the population of interest. This
: extrapolation is not a statistical inference; it must be defended on biological, not
statistical, grounds.
ngus dis- .
he resis- BB CExercises 3.1-3.2
stance 1n ;
ded as a 3.1 . ) . . .
. (Sampling exercise) Refer to the collection of 100 ellipses shown in the accompa-
that par- nying figure, which can be thought of as representing a natural population of the
u mythical organism C. ellipticus. The ellipses have been given identification numbers
] 00, 01, 99 for convenience in sampling. Certain individuals of C. ellipticus are mu-
ntal con- . tants and have two tail bristles.
, as illus- .

(a) Use your judgment to choose a sample of size 10 from the population that you
think is representative of the entire population. Note the number of mutants
in the sample.

he blood, (b) Use random digits (from Table 1 or your calculator or computer) to choose a
' radioac- . random sample of size 10 from the population and note the number of mu-
sured for 1 tants in the sample.

rate.! Al- ] 3.2 Sumpli A : :

fied pop- . (Sampling exercise) Refer to the collection of 100 ellipses.

of nitrite (a) Use random digits (from Table 1 or your calculator or computer) to choose a
1 all New 1 random sample of size 5 from the population and note the number of mutants
rrelevant ,‘ in the sample.

[ ] ] (b) Repeat part (a) nine more times, for a total of ten samples. (Some of the ten
= samples may overlap.)

dy of two - To facilitate pooling of results from the entire class, report your results in the
the study following format:

d for sat- '

'e,l’ the re- Number of Frequency
tive colitis Mutants Nonmutants (No. of Samples)
1al proba-
f response 0 5
ssumption ‘ 1 4
it the pop- 2 3

ulcerative 3 2
lation can 4 1
etter than 5 0 -
fer that A Total: 10
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In this section we introduce the language of probability and i
The probability of an event E

3.3 INTRODUCTION TO PROBABILITY

Basic Concepts
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iThe probability Pr{ £} is always a number between 0 and 1, inclusive.

i We can speak meaningfully about a probability Pr{ £} only in the context
pof a chance operation—that is, an operation whose outcome is determined at least
partially by chance. The chance operation must be defined in such a way that each

the chance operation is performed, the event E either occurs or does not occur.
he following two examples illustrate these ideas.

oin Tossing. Consider the familiar chance operation of tossing a coin, and
efine the event

E:Heads

ach time the coin is tossed, either it falls heads or it does not. If the coin is equally
flikely to fall heads or tails, then

. 1

,‘ Pr{E} = 5= 5
i Such an ideal coin is called a “fair” coin. If the coin is not fair (perhaps be-
fcause it is slightly bent), then Pr{ E} will be some value other than .5, for instance

Pr{E} = 6 |

Coin Tossing. Consider the event
E:3headsin a row

The chance operation “toss a coin” is not adequate for this event because

f‘«We cannot tell from one toss whether E has occurred. A chance operation that
"Would be adequate is

E !

b Chance operation: Toss a coin 3 times
'Another chance operation that would be adequate is

Chance operation: Toss a coin 100 times

th the understanding that E occurs if there is a run of 3 heads anywhere in the
1100 tosses. Intuition suggests that E would be more likely with the second defini-
ftion of the chance operation (100 tosses) than with the first (3 tosses). This intu-
tion is correct and serves to underscore the importance of the chance operation
hin interpreting a probability. |

The language of probability can be used to déscribe the results of random
s ampling from a population. The simplest application of this idea is a sample of size

1 = 1—that is, choosing one member at random from a population. The following
s an illustration.

{Sampling Fruitflies. A large population of the fruitfly Drosophila melanogaster
b maintained in a lab. In the population, 30% of the individuals are black because
01 a mutation, while 70% of the individuals have the normal gray body color. Sup-
pose one fly is chosen at random from the population. Then the probability that a
black fly is chosen is .3. More formally, define

] E:Sampled fly is black

-
! Pr{E} = 3 |

SECTION 3.3 INTRODUCTION TO PROBABILITY :

Example 3.8

Example 3.9

Example 3.10
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‘ Example 3.11

The preceding example illustrates the basic relationship between proba-
bility and random sampling: The probability that a randomly chosen individual has
a certain characteristic is equal to the proportion of population members with the
characteristic.

Frequency Interpretation of Probability

The frequency interpretation of probability provides a link between probability and -
the real world by relating the probability of an event to a measurable quantity,
namely, the long-run relative frequency of occurrence of the event.*

According to the frequency interpretation, the probability of an event E is
meaningful only in relation to a chance operation that can in principle be repeated
indefinitely often. Each time the chance operation is repeated, the event E either oc-
curs or does not occur. The probability Pr{ E} is interpreted as the relative frequency .
of occurrence of E in an indefinitely long series of repetitions of the chance operation.

Specifically, suppose that the chance operation is repeated a large number
of times, and that for each repetition the occurrence or nonoccurrence of E is
noted. Then we may write

Pr{E} < # of times E occurs

# of times chance operation is repeated

The arrow in the preceding expression indicates “approximate equality in the long
run”; that is, if the chance operation is repeated many times, the two sides of the
expression will be approximately equal. Here is a simple example.

Coin Tossing. Consider again the chance operation of tossing a coin and the

event
E:Heads
If the coin is fair, then
# of heads
Pr{E}) = 5o———
r{E} # of tosses

The arrow in the preceding expression indicates that, in a long series of tosses of
a fair coin, we expect to get heads about 50% of the time. |

The following two examples illustrate the relative frequency interpretation
for more complex events.

Coin Tossing. Suppose that a fair coin is tossed twice. For reasons that will be
explained in Section 3.4, the probability of getting heads both times is .25. This
probability has the following relative frequency interpretation.
Chance operation: Toss a coin twice
E:Both tosses are heads

* Some statisticians prefer a different view, namely that the probability of an event is a sub-
jective quantity expressing a person’s “degree of belief” that the event will happen. Statisti-
cal methods based on this “subjectivist” interpretation are rather different from those
presented in this book.
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Sampling Fruitflies. In the Drosophila population of Example 3.10, 30% of
the flies are black and 70% are gray. Suppose that two flies are randomly chosen
from the population. We will see in Section 3.4 that the probability that both flies
are the same color is .58. This probability can be interpreted as follows:

Chance operation: Choose a random sample of size n = 2

E: Both flies in the sample are the same color

# of times both flies are same color

PriE} = .58« # of times a sample of n = 2 is chosen

We can relate this interpretation to a concrete sampling experiment. Sup-
pose that the Drosophila population is in a very large container and that we have
some mechanism for choosing a fly at random from the container. We choose one
fly at random, and then another; these two constitute the first sample of n = 2.
After recording their colors, we put the two flies back into the container, and we
are ready to repeat the sampling operation once again. Such a sampling experiment
would be tedious to carry out physically, but it can be readily simulated using a com-
puter. Table 3.2 shows a partial record of the results of choosing 10,000 random
samples of size n = 2 from a simulated Drosophila population. After each repe-
tition of the chance operation (that is, after each sample of n = 2), the cumulative
relative frequency of occurrence of the event E was updated, as shown in the right-
most column of the table.

Figure 3.2 shows the cumulative relative frequency plotted against the num-
ber of samples. Notice that, as the number of samples becomes large, the relative
frequency of occurrence of E approaches .58 (which is Pr{E}). In other words,
the percentage of color-homogeneous samples among all the samples approach-
es 58% as the number of samples increases. It should be emphasized, however,
that the absolute number of color-homogeneous samples generally does not tend
to get closer to 58% of the total number. For instance, if we compare the results

shown in Table 3.2 for the first 100 samples and the first 1,000 samples, we find
the following:

Color- Deviation from 58%
Homogenous of Total
First 100 samples: 54 or 54 % -4 or -4 %

First 1,000 samples: 596 or 59.6% +16 or +1.6%

Note that the deviation from 58% is larger in absolute terms, but smaller in rela-
tive terms (i.e., in percentage terms), for 1,000 samples than for 100 samples. Like-
wise, for 10,000 samples the deviation from 58% is rather larger (a deviation of
—30), but the percentage deviation is quite small (30/10,000 is 0.3%). The deficit
of 4 color-homogeneous samples among the first 100 samples is not canceled by a

corresponding excess in later samples, but rather is swamped, or overwhelmed, by
alarger denominator. |

SECTION 3.3 INTRODUCTION TO PRO
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Exercises 3.3-3.5

3.3 (Sampling exercise) Consider a string of five randomly generated digits; that is,
each digit is equally likely to be any of 0, 1,2, ..., 9, regardless of the other digits.
Let E be the event that all five digits are different. It can be shown that
Pr{E} = .30. Use Table 1 (or your calculator or computer) to generate 20 strings
of 5 random digits each. Keep a record of your results, and tabulate the cumulative
relative frequency of occurrence of E (as in Table 3.2).To facilitate pooling the re-
sults from the entire class, also report the total number of occurrences of E.

3.4 (Sampling exercise) Proceed as in Exercise 3.3, but generate 50 strings of 5 ran-
dom digits each. Calculate the cumulative relative frequency of E only after every
tenth string.

3.5 In a certain population of the freshwater sculpin, Cottus rotheus, the distribution
of the number of tail vertebrae is as shown in the table.

No. of Percent
Vertebrae of Fish
20 3
21 51
22 40
23 6
Total W

Find the probability that the number of tail vertebrae in a fish randomly chosen
from the population

(a) equals 21 (b) is less than or equal to 22
(c) is greater than 21 (d) is no more than 21

3.4 PROBABILITY TREES

Often it is helpful to use a probability tree to analyze a probability problem. A
‘ | probability tree provides a convenient way to break a problem into parts and to
organize the information available. The following examples show some applications
of this idea.

Coin Tossing. If a fair coin is tossed twice, then the probability of heads is .5 on m

each toss. The first part of a probability tree for this scenario shows that there are
two possible outcomes for the first toss and that they have probability .5 each.

80 100

Heads

e

10,000

Tails
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Then the tree shows that, for either outcome of the first toss, the second toss can
be either heads or tails, again with probabilities .5 each.

Heads
Heads
Tails
Heads 1
Tails 3
Tails

To find the probability of getting heads on both tosses, we consider the path through ]
the tree that produces this event. We multiple together the probabilities that we i
encounter along the path. Figure 3.3 summarizes this example and shows that

Pr{heads on both tosses} = .5 X .5 = .25 [ |

Combination of Probabilities

If an event can happen in more than one way, the relative frequency interpretation
of probability can be a guide to the appropriate combination of the probabilities
of subevents. The following example illustrates this idea.

Event Probability
Heads Heads, heads 25
Heads ",
Tails Heads, tails 25
Heads Tails, heads 25
Figure 3.3 Probability tree for .
Tails Tails, tails 25

two coin tosses
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he second toss can Sampling Fruitflies. In the Drosophila population of Examples 3.10 and 3.13, m
| 30% of the flies are black and 70% are gray. Suppose that two flies are randomly

chosen from the population. Suppose we wish to find the probability that both

flies are the same color. A probability tree shown in Figure 3.4 shows the four pos-

sible outcomes from sampling two flies. From the tree, we can see that the proba-

bility of getting two black fliesis.3 X 3 = .09. Likewise, the probability of getting

two gray flies is .7 X .7 = 49,

To find the probability of the event

E: Both flies in the sample are the same color
we add the probability of black, black to the probability of gray, gray to get
09 + .49 = 58, |

Event Probability

Black Black, black 09

ler the path through
robabilities that we

and shows that Black

|
Gray Black, gray 21
Black Gray, black 21
lency interpretation ] Gray
of the probabilities
Figure 3.4 Proba
Gray Gray, gray 49 sampling two flie
robability
25 < In the coin tossing setting of Example 3.14, the second part of the proba-
' bility tree had the same structure as the first part—namely, a .5 chance of heads and
a.5 chance of tails—because the outcome of the first toss does not affect the prob-
ability of heads on the second toss. Likewise, in Example 3.15 the probability of the
second fly being black was .3, regardless of the color of the first fly, because the pop-
ulation was assumed to be very large, so that removing one fly from the popula-
tion would not affect the proportion of flies that are black. However, in some
25 situations we need to treat the second part of the probability tree different from
25 ] the first part.

Nitric Oxide. Hypoxic respiratory failure is a serious condition that affects some m
newborns. If a newborn has this condition, it is often necessary to use extracorpo-

real membrane oxygenation (ECMO) to save the life of the child. However, ECMO
is an invasive procedure that involves inserting a tube into a vein or artery near the
’ heart, so physicians hope to avoid the need for it. One treatment forhypoxic res-
25 ‘ piratory failure is to have the newborn inhale nitric oxide. To test the effectiveness
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Figure 3.5 Probability tree for
nitric oxide example

[ Example 3.17

of this treatment, newborns suffering hypoxic respiratory failure were assigned at

random to either be given nitric oxide or a control group.” In the treatment group, |
45.6% of the newborns had a negative outcome, meaning that either they needed |
ECMO or that they died. In the control group, 63.6% of the newborns had a neg- |

ative outcome. Figure 3.5 shows a probability tree for this experiment.

If we choose a newborn at random from this group, there is a .5 probabili- |
ty that the newborn will be in the treatment group and, if so, a probability of .456
of getting a negative outcome. Likewise, there is a .5 probability that the newborn 1
will be in the control group and, if so, a probability of .636 of getting a negative out-

come. Thus, the probability of a negative outcome is

5 X 456 + .5 X 636 = 228 + 318 = 546 m

Outcome Probability
Positive 272
544
Treatment
456
Negative . 228
Positive 182
364
Control
636
Negative 318

Medical Testing. Suppose a medical test is conducted on someone to try to de-
termine whether or not the person has a particular disease. If the test indicates
that the disease is present, we say the person has “tested positive.” If the test
indicates that the disease is not present, we say the person has “tested negative.”
However, there are two types of mistakes that can be made. It is possible that the

test indicates that the disease is present, but the person does not really have
the disease; this is known as a false positive. It is also possible that the person |

has the disease but the test does not detect it; this is known as a false negative.
Suppose that a particular test has a 95% chance of detecting the disease if
the person has it (this is called the sensitivity of the test) and a 90% chance of cor-
rectly indicating that the disease is absent if the person really does not have the
disease (this is called the specificity of the test). Suppose 8% of the population has

the disease. What is the probability that a randomly chosen person will test positive? |

Figure 3.6 shows a probability tree for this situation, The first split in the tree
shows the division between those who have the disease and those who don’t. If some-
one has the disease, then we use .95 as the chance of the person testing positive. If
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t ‘the person doesn’t have the disease, then we use .10 as the chance of the person test-
 'ing positive. Thus, the probability of a randomly chosen person testing positive is

08 X .95 + .92 X .10 = .076 + .092 = .168 |
Event Probability
Test True positive 076
positive
.95
Have
discase
.08 05
Test False negative .004
negative
Test False positive .092
positive
92
Don’t
have
disease
Test True negative 828
negative

False Positives. Consider the medical testing scenario of Example 3.17. If some-
one tests positive, what is the chance the person really has the disease? In Exam-
ple 3.17 we found that .168 (16.8%) of the population will test positive. The “true
positives” make up .076 of this .168, which is to say that the probability that

. . ‘ ... 076
someone really has the disease, given that the person tests positive,is —— ~ 452,

168

This probability is quite a bit smaller than most people expect it to be, given that
the sensitivity and specificity of the test are .95 and .90. |

Exercises 3.6-3.11

Figure 3.6 Proba
medical testing ex

3.6

3.7

3.8

In a certain college, 55% of the students are women., Suppose we take a sample of
two students. Use a probability tree to find the probability

(a) that both chosen students are women.
(b) that at least one of the two students is a woman.

Suppose that a disease is inherited via a sex-linked mode of inheritance, so that a
male offspring has a 50% chance of inheriting the disease, but a female offspring
has no chance of inheriting the disease. Further suppose that 51.3% of births are

male. What is the probability that a randomly chosen child will be affected by the
disease?

Suppose that a student who is about to take a multiple choice test has-only learned
40% of the material covered by the exam. Thus, there is a 40% chance that she will
know the answer to a question. However, even if she does not know the answer to
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a question, she still has a 20% chance of getting the right answer by guessing. If we
choose a question at random from the exam, what is the probability that she will
get it right?

3.9 If 2 woman takes an early pregnancy test, she will either test positive, meaning that ;
the test says she is pregnant, or test negative, meaning that the test says she is not |
pregnant. Suppose that if a woman really is pregnant, there is a 98% chance that |
she will test positive. Also, suppose that if a woman really is not pregnant, there is
a 99% chance that she will test negative.

(a) Suppose that 1,000 women take early pregnancy tests and that 100 of them
really are pregnant. What is the probability that a randomly chosen woman
from this group will test positive? ,

(b) Suppose that 1,000 women take early pregnancy tests and that 50 of them really
are pregnant. What is the probability that a randomly chosen woman from this |
group will test positive?

3.10 (a) Consider the setting of Exercise 3.9, part (a). Suppose that a woman tests

positive. What is the probability that she really is pregnant? |

(b) Consider the setting of Exercise 3.9, part (b). Suppose that a woman tests
positive. What is the probability that she really is pregnant? )

3.11  Suppose that a medical test has a 92% chance of detecting a discase if the person
has it (i.e., 92% sensitivity) and a 94% chance of correctly indicating that the dis-
case is absent if the person really does not have the disease (i.e., 94% specificity).
Suppose 10% of the population has the disease.

(a) What is the probability that a randomly chosen person will test positive?
(b) Suppose that a randomly chosen person does test positive. What is the proba-
bility that this person really has the disease?

3.5 PROBABILITY RULES (OPTIONAL)

We have defined the probability of an event, Pr{E}, as the long-run relative
frequency with which the event occurs. In this section we will briefly consider a few
rules that help determine probabilities. We begin with three basic rules.

Basic Rules

Rule 1: The probability of an event E is always between 0 and 1. That is,
0=Pr{E} =1

Rule 2: The sum of the probabilities of all possible events equals 1. That is,if
the set of possible events is E;, E,,.. ., E, then ZPr{E;} = 1.

Rule 3: The probability that an event E does not happen, denoted by E€,is
one minus the probability that the event happens. That is, '
Pr{EC} = 1 — Pr{E}. (We refer to E€ as the complement of E.)

We illustrate these rules with an example.

(FCITICEREE Blood Type. Inthe United States, 44% of the population has type O blood, 42

are type A, 10% are type B, and 4% are type AB. Congider choosing someone
random and determining the person’s blood type. The probability of a given bloof
type will correspond to the population percentage.
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(a) The probability that the person will have type O blood = Pr{O} = .44.
(b) Pr{O} + Pr{A} + Pr{B} + Pr{AB} = 44 + 42 + 10 + .04 = 1.
(c) The probability that the person will not have type O blood =

Pr{O°} =1 — .44 = .56. This could also be found by adding the prob-

abilities of the other blood types: Pr{O°} =Pr{A} +Pr{B} + Pr{AB}
= .42\;\F 10 + .04 = .56. ]

We often want to discuss two or more events at once; to do this we will find

| some terminology to be helpful. We say that two events are disjoint* if they can-

not occur simultaneously. Figure 3.7 is a Venn diagram that depicts a sample space

E Sofall possible outcomes as a rectangle with two disjoint events depicted as non-
- overlapping regions.

The union of two events is the event that one or the other occurs or both
occur. The intersection of two events is the event that they both occur. Figure 3.8
is a Venn diagram that shows the union of two events as the total shaded area,
with the intersection of the events being the overlapping region in the middie.

If two events are disjoint, then the probability of their union is the sum of
their individual probabilities. If the events are not disjoint, then to find the the
probability of their union we take the sum of their individual probabilities and
subtract the probability of their intersection (the part that was “counted twice”).

Addition Rules

Rule 4:1f two events E, and E, are disjoint, then

Pr{E or E,} = Pr{E\} + Pr{E,}.

Rule 5: For any two events E, and

Ez, Pr{ET or E2} = Pr{El} + Pr{Ez} - Pr{E1 and Ez}.

We illustrate these rules with an example.

Hair Color and Eye Color. Table 3.3 shows the relationship between hair color
and eye color for a group of 1,770 German men.*

(a) Because events “black hair” and “red hair” are disjoint, if we choose some-
one at random from this group, then Pr{black hair or red hair} =
Pr{black hair} + Pr{red hair} = 500/1,770 + 70/1,770 = 570/1,770.

- (b) If we choose someone at random from this group, then
Pr{black hair} = 500/1,770.

N

* Another term for disjoint events is “mutually exclusive” events.

SECTION 3.5 PROBABILITY RULES (OP"
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(c) If we choose someone at random from this group, then
Pr{blue eyes} = 1,050/1,770.
(d) The events “black hair” and “blue eyes” are not disjoint, since there|
are 200 men with both black hair and blue eyes. Thus, Pr{black hair}
orblueeyes} = Pr{black hair} + Pr{blue eyes} — Pr{black hair and]
blue eyes} = 500/1,770 + 1,050/1,770 — 200/1,770 = 1,350/1,770.

Two events are said to be independent if knowing that one of them occurred
does not change the probability of the other one occurring. For example, if a coin}
is tossed twice, the outcome of the second toss is independent of the outcome ofj
the first toss, since knowing whether the first toss resulted in heads or in tails does|
not change the probability of getting heads on the second toss.

Events that are not independent are said to be dependent. When events are
dependent, we need to consider the conditional probability of one event, given
that the other event has happened. We use the notation

Pr{E)|E;}
to represent the probability of E, happening, given that E; happened.

m Hair Color and Eye Color. Consider choosing a man at random from the group'

shown in Table 3.3. Overall, the probability of blue eyes is 1,050/1,770, or about
59.3%. However, if the man has black hair, then the conditional probability of blue |
eyes is only 200/500, or 40%; that is, Pr{blue eyes|black hair} = .40. Because the
probability of blue eyes depends on hair color, the events “black hair” and “blue
eyes” are dependent. |

Refer again to Figure 3.8, which shows the intersection of two regions (for |
E, and E,). If we know that the event E; has happened, then we can restrict our
attention to the E; region in the Venn diagram. If we now want to find the chance
that E, will happen, we need to consider the intersection of E; and E, relative to
the entire E; region. In the case of Example 3.21, this corresponds to knowing that
a randomly chosen man has black hair, so that we restrict our attention to the 500
men (out of 1,770 total in the group) with black hair. Of these men, 200 have blue|
eyes. The 200 are in the intersection of “black hair” and “blue eyes.” The fraction
200/500 is the conditional probability of having blue eyes, given that the man has
black hair. This leads to the following formal definition of the conditional proba-|
bility of E, given E;:

m Hair Color and Eye Color. Consider choosing a mas-at random from the group;

shown in Table 3.3. The probability of the man having blue eyes given that he has
black hair is
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Pr{blue eyes|black hair} = Pr{black hair and blue eyes}/Pr{black hair}
_ 2004770 200 _
©500/1,770 500 n

In Section 3.4 we used probability trees to study compound events. In doing
50, we implicitly used multiplication rules that we now make explicit.

‘E[,\/lultiplication Rules

Rule 6: If two events E, and E, are independent, then
Pr{E and E;} = Pr{E,} X Pr{E,}.

Rule 7: For any two events E, and

E2, PI{E1 and E2} = Pr{El} X Pr{EzlEl}

Coin Tossing. If a fair coin is tossed twice, the two tosses are independent of each
| other. Thus, the probability of getting heads on both tosses is

Pr{heads twice} = Pr{heads on first toss} x Pr{heads on second toss}
=5X.5=25 n

 Blood Type. In Example 3.19 we stated that 44% of the U.S, poplulation has

' type O blood. It is also true that 15% of the population is Rh negative and that this

is independent of blood group. Thus, if someone is chosen at random, the proba-
bility that the person has type O, Rh negative blood is

Pr{group O and Rh negative} = Pr{group O} X Pr{Rhnegative}
= 44 X .15 = 066 u

| Hair Color and Eye Color. Consider choosing a man at random from the group

S shown in Table 3.3. What is the probability that the man will have red hair and

brown eyes? Hair color and eye color are dependent, so finding this probability in-

| volves using a conditional probability. The probability that the man will have red

b hair is 70/1,770. Given that the man has red hair, the conditional probability of
brown eyes is 20/70. Thus,

Pr{red hair and brown eyes} = Pr{red hair} X Pr{brown eyes|red hair}

= 70/1,770 X 20/70 = 20/1,770 |

N

| Hand Size. Consider choosing someone at random from a population that is
i 60% female and 40% male. Suppose that for the women the average hand size, in
cm?, is 110, the standard deviation is 20, and the probability of having a hand size
smaller than 100 cm? is .31.> Suppose that for the men the average hand size, in
em?, is 135, the standard deviation is 25, and the probability of having a hand size

- smaller than 100 cm? is .08.* What is the probability that the randomly chosen per-
b son will have a hand size smaller than 100 cm??

.

| * The probabilities follow from the use of a “normal distribution model.” The normal curve
is presented in detail in Chapter 4.
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We are given that if the person is a woman, then the probability of a “small” |

hand size is .31 and that if the person is a man, then the probability of a “small”
hand size is .08.
Thus,

Pr{handsize < 100}
= Pr{woman} X Pr{handsize < 100|woman}
+ Pr{man} X Pr{handsize < 100/man}

=.6 X .31+ 4% .08=.186+.032 = 218 LB

Exercises 3.12-3.14

3.12  In a study of the relationship between health risk and income, a large group of |

people living in Massachusetts were asked a series of questions.® Some of the re-
sults are shown in the following table.

Income
Low Medium High Total
Smoke 634 332 247 1213
Don’t smoke 1846 1622 1868 5336
Total 2480 1954 2115 6549

(a) What is the probability that someone in this study smokes?

(b) What is the conditional probability that someone in this study smokes, given |

that the person has high income?
(c) Is being a smoker independent of having a high income? Why or why not?

3.13  The following data table is taken from the study reported in Exercise 3.12. Here

“stressed” means that the person reported that most days are extremely stressful
or quite stressful; “not stressed” means that the person reported that most days
are a bit stressful, not very stressful, or not at all stressful.

Income
Low Medium High Total
Stressed 526 274 216 1016
Not stressed | 1954 1680 1899 5533
Total 2480 1954 2115 6549

(a) What is the probability that someone in this study is stressed?
(b) What is the probability that someone in this study has low income?

(c) What is the probability that someone in this study either is stressed or has low

income (or both)?
(d) What s the probability that someone in this study either is stressed and has low
income?

3.14  Suppose that in a certain population of married couples 30% of the husbands
smoke, 20% of the wives smoke, and in 8% of the couples both the husband and
the wife smoke. Is the smoking status (smoker or ndhsmoker) of the husband
independent of that of the wife? Why or why not?

-
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3.6 DENSITY CURVES

The examples presented in Sections 3.3 and 3.4 dealt with probabilities for dis-
| crete variables. In this section we consider probability when the variable is
 continuous.

| Relative Frequency Histograms and Density Curves

| In Chapter 2 we discussed the use of a histogram to represent a frequency distri-
| bution for a variable. A relative frequency histogram is a histogram in which we
| indicate the proportion (i.e., the relative frequency) of observations in each cate-
| gory, rather than the count of observations in the category. We can think of the

relative frequency histogram as an approximation of the underlying true popula-

L tion distribution from which the data came.

It is often desirable, especially when the observed variable is continuous, to
describe a population frequency distribution by a smooth curve. We may visualize
the curve as an idealization of a relative frequency histogram with very narrow
classes. The following example illustrates this idea.

Blood Glucose. A glucose tolerance test can be useful in diagnosing diabetes.
The blood level of glucose is measured one hour after the subject has drunk 50 mg
of glucose dissolved in water. Figure 3.9 shows the distribution of responses to this
test for a certain population of women.” The distribution is represented by his-
tograms with class widths equal to (a) 10 and (b) 5,and by (¢) a smooth curve. B

-

i | | I
50 100 150 200 250
Blood glucose (mg/dLi)

(2)

m

I f [ [ ] [ f
50 100 150 200 250 50 100

Blood glucose (mg/dLi})
(®)

Figure 3.9 Different representations of the distribution of blood glucose levéls in a
population of women
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150 20(
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| Area = Proportion of ¥ A smooth curve representing a frequency distribution is called a density
values between  curve. The vertical coordinates of a density curve are plotted on a scale called a |
aandb density scale. When the density scale is used, relative frequencies are represented
as areas under the curve. Formally, the relation is as follows:

Density

a b Y

Figure 3.10 Interpretation of
area under a density curve

Density

Because of the way the density curve is interpreted, the density curve is entirely |

above (or equal to) the x-axis and the area under the entire curve must be equal
y tol,asshownin Figure 3.11.

Figure 3.11 The area under an The interpretation of density curves in terms of areas is illustrated con- |

entire density curve must be 1. cretely in the following example. . ‘

DETNT W N  Blood Glucose. Figure 3.12 shows the density curve for the blood glucose dis-

tribution of Example 3.27, with the vertical scale explicitly shown. The shaded
area is equal to .42, which indicates that about 42% of the glucose levels are be-
tween 100 mg/dLi and 150 mg/dLi. The area under the density curve to the left of
100 mg/dLi is equal to .50; this indicates that the population median glucose level |
is 100 mg/dLi. The area under the entire curve is 1. n

The Continuum Paradox. The area interpretation of a density curve has a para-
doxical element. If we ask for the relative frequency of a single specific Y value, |
the answer is zero. For example, suppose we want to determine from Figure 3.12
the relative frequency of blood glucose levels equal to 150. The area interpretation
gives an answer of zero. This seems to be nonsense—how can every value of Y
have a relative frequency of zero? Let us look more closely at the question. If
blood glucose is measured to the nearest mg/dLi, then we are really asking for the
relative frequency of glucose levels between 149.5 and 150.5 mg/dLi, and the cor-
responding area is not zero. On the other hand, if we are thinking of blood glucose
as an idealized continuous variable, then the relative frequency of any particular

015 —

Area= .42

010 —

Density

005 —

Figure 3.12 Interpretation of -
an area under the blood glucose 50 100 150 200 250
density curve Blood glucose (mg/dLi)
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| value (such as 150) is zero. This is admittedly a paradoxical situation. It is similar
 to the paradoxical fact that an idealized straight line can be 1 centimeter long, and
yet each of the idealized points of which the line is composed has length equal to
 zero. In practice, the continuum paradox does not cause any trouble; we simply

 do not discuss the relative frequency of a single Y value (just as we do not discuss
 the length of a single point).

Probabilities and Density Curves

| If a variable has a continuous distribution, then we find probabilities by using the
density curve for the variable. A probability for a continuous variable equals the
area under the density curve for the variable between two points.

Blood Glucose. Consider the blood glucose level, in mg/dLi, of a randomly m

chosen subject from the population described in Example 3.28. We saw in Exam-

| ple 3.28 that 42% of the population glucose levels are between 100 mg/dLi and
| 150 mg/dLi. Thus, Pr{100 =< glucose level < 150} = .42.

We are modeling blood glucose level as being a continuous variable, which

| means that Pr{glucose level = 100} = 0, as we noted previously. Thus,

i Pr{100 = glucose level = 150} = Pr{100 < glucose level < 150} = 42 [ |

Tree Diameters. The diameter of a tree trunk is an important variable in forestry. m
- The density curve shown in Figure 3.13 represents the distribution of diameters

(measured 4.5 feet above the ground) in a population of 30-year-old Douglas fir

| trees; areas under the curve are shown in the figure.® Consider the diameter, in

inches, of a randomly chosen tree. Then, for example, Pr{4 < diameter < 6} = .33,
If we want to find the probability that a randomly chosen tree has a diameter
greater than 8 inches, we must add the last two areas under the curve in Figure 3.11:
Pr{diameter > 8} = .12 + .07 = .19. [ |

Exercises 3.15-3.17

—

03 | 20 | 33 | 25 | 12 N

0 2 4 6 8 10 12 14
Diameter (inches)

Figure 3.13 Dian
year-old Douglas

3.15

Consider the density curve shown in Figure 3.13, which represents the distribution
of diameters (measured 4.5 feet above the ground) in a population of 30-year-old

Douglas fir trees. Areas under the curve are shown in the figure. What percentage
of the trees have diameters

(a) between 4 inches and 10 inches? .
(b) less than 4 inches?
(c) more than 6 inches?
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3.16 Inacertain population of the parasite Trypanosoma, the lengths of individuals are
distributed as indicated by the density curve shown here. Areas under the curve are ‘
shown in the figure.’ |

.01 .03

34 | 41 [ 21
f [ [ I |

10 15 20 25 30 35
Length (um)

Consider the length of an individual trypanosome chosen at random from the
population. Find

(a) Pr{20 < length < 30}
(b) Pr{length > 20}
(c) Pr{length < 20}

3.17  Consider the distribution of Trypanosoma lengths shown by the density curve in -
Exercise 3.16. Suppose we take a sample of two trypanosomes, What is the proba-
bility that

(a) Both trypanosomes will be shorter than 20 um?

(b) The first trypanosome will be shorter than 20 wm and the second trypanosome
will be longer than 25 um?

(c) Exactly one of the trypanosomes will be shorter than 20 um and one try-
panosome will be longer than 25 um?

e
S
3.7 RANDOM VARIABLES i
A random variable is simply a variable that takes on numerical values that depend .f’
on the outcome of a chance operation. The following examples illustrate this idea. A
m Dice. Consider the chance operation of tossing a die. Let the random variable Y |
represent the number of spots showing. The possible values of Y are Q
Y =1,2,3,4,5, or 6. We do not know the value of Y until we have tossed the die. ”
If we know how the die is weighted, then we can specify the probability that Y has ch
a particular value, say Pr{Y =4}, or a particular set of values, say
Pr{2 = Y = 4}. For instance, if the die is perfectly balanced so that each of the } A
six faces is equally likely, then ﬂ} |
1 o
Pr{Y = 4} = 3 ~ .17
and 1 ;
3 : )
Pr{2sYs4}=g=.5 bt - 1
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J amily Size. Suppose a family is chosen at random from a certain population, and
Jlet the random variable Y denote the number of children in the chosen family. The
Ipossible values of Y are 0,1,2,3, ... The probability that Y has a particular value

jis cqual to the percentage of families with that many children. For instance, if 23%
fof the families have 2 children, then

Pr{Y =2} = 23 |

| Medications. After someone has heart surgery, the person is usually given sev-
f eral medications. Let the random variable Y denote the number of medications that
| apatient is given following cardiac surgery. If we know the distribution of the num-
| ber of medications per patient for the entire population, then we can specify the
¢ probability that Y has a certain value or falls within a certain interval of values. For
| instance, if 52% of all patients are given 2,3, 4, or 5 medications, then

Pri2 =Y =5} =52 |

| Heights of Men. Let the random variable Y denote the height of a man chosen
- atrandom from a certain population. If we know the distribution of heights in the
f population, then we can specify the probability that Y falls in a certain range. For
| instance, if 46% of the men are between 65.2 and 70.4 inches tall, then

Pr{652 =Y = 704} = 46 |

Each of the variables in Examples 3.31-3.33 is a discrete random variable,

| because in each case we can list the possible values that the variable can take on.

In contrast, the variable in Example 3.34, height, is a continuous random variable:

| Height, at least in theory, can take on any of an infinite number of values in an in-

terval. Of course, when we measure and record a person’s height, we generally
measure to the nearest inch or half inch. Nonetheless, we can think of true height
as being a continuous variable. We use density curves to model the distributions
of continuous random variables, such as blood glucose level or tree diameter as dis-
cussed in Section 3.6.

Mean and Variance of a Random Variable

In Chapter 2 we briefly considered the concepts of population mean and popula-
tion standard deviation. For the case of a discrete random variable, we can calcu-
late the population mean and standard deviation if we know the probability
distribution for the random variable. We begin with the mean.

The mean of a discrete random variable Y is defined as
py = ZyPr(Y = y)

where the y;’s are the values that the variable takes on and the sum is taken
over all possible values.

The mean of a random variable is also known as the expected value and is often
written as E(Y); thatis, E(Y) = uy.

'
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| Example 3.36

Example 3.37

Fish Vertebrae. In a certain population of the freshwater sculpin, Cottus rotheus,
the distribution of the number of tail vertebrae, Y, is as shown in the Table 3.4.2 :

The mean of Yis
sy =20 X Pr{Y = 20} + 21 X Pr{Y = 21}
+ 22 X Pr{Y =22} + 23 X Pr{Y = 23}
=20 X .03 +21 X .51 + 22 X 40 + 23 X .06
=.6 + 10.71 + 88 + 1.38 ‘
= 21.49 L

Dice. Consider rolling a die that is perfectly balanced so that each of the six |
faces is equally likely to come up and let the random variable Y represent the }
number of spots showing. The expected value, or mean, of Y is

1 1 1 1 1 1
E(Y)=py=1X=+4+2X-4+3X>+4X=+5X 46X~
(¥) = n 6 6 TIX G T AN TIN T OXY
21
=2 =35
6 n

To find the standard deviation of a random variable, we first find the vari-
ance, o, of the random variable and then take the square root of the variance to
get the the standard deviation, . ] The sta

The variance of a discrete random variable Y is defined as 3
oy = 2 (% — wy)Pr(Y = y) i The def
- There are anal

where the y;’s are the values that the variable takes on and the sum is taken integral calcul

over all possible values.
We often write VAR(Y') to denote the variance of Y.

. Adding and
Fish Vertebrae. Consider the distribution of vertebrae given in Table 3.4.In §&

Example 3.35 we found that the mean of Y'is uy = 21.49. The variance of Yis | Ifweaddtwor

, - if we createan

VAR(Y) = oy = (20 — 21.49)* X Pr{Y = 20} [ subtract the in

+ (21 — 21492 X Pr{y = 21} | multiply a ranc

, to inches, so th:
+ (22 - 2149)° X Pr{Y =22} dom variable t

+ (23 — 21.49) X Pr{Y = 23} | then we add th




SECTION 3.7 RANDOM VARIABLES 9

culpin, Cottus rotheus, |

= (~149)2 X 03 + (—49) X 51
wn in the Table 3.4.2

+ (51)% X .40 + (1.51)? x .06
= 2.2201 X .03 + 2401 X .51 + 2601 X .40 + 2.2801 X .06
066603 + .122451 + 10404 + .136806

Il

= .4299
The standard deviation of Yis oy = V4299 ~ 6557. [ |
| Dice. In Example 3.36 we found that the mean number obtained fromrolling a (@€ ple 3.38
b fair die is 3.5 (i.e., uy = 3.5). The variance of the number obtained from rolling a
b fair die is
' oy = (1 =352 XPr{y =1} + (2 - 35)?
X Pr{¥Y =2} + (3 — 35)2 x Pr{Y = 3}
1 E
_2}3} | + (4 =352 X Pr{Y =4} + (5 - 3.5)?
3% 06 ‘ X Pr{Y =5} + (6 — 3.5)> X Pr{Y = 6}
38 B 1 L 1
= (=25 X =+ (=152 X = + (=52 X =
| u ( ) 6 ( ) 6 (=) 6
‘ , 1 , 1 , 1
that each of the six il +(:5)7 % A (1.5)% % i (25)° X 5
ble Y represent the § . 1 ,
1S = (625) X — + (2.25) X — + (25) X —
1 1 6 6 6
\.X —6‘ + 6 X g 1 1 1
| +(:25) X = + (225) X = + (6.25) X —
| | 6 6 6
| " — 175 % L
| ' 6
we first find the vari- : ~ 2.9167
ot of the variance to !
| _ The standard deviation of Yis oy = V/2.9167 ~ 1.708. [ ]

ied as

| i The definitions just given are appropriate for discrete random variables,
There are analogous definitions for continuous random variables, but they involve

and the sum is taken integral calculus and are not presented here.

Adding and Subtracting Random Variables (Optional)
iven in Table 3.4. In

e variance of Y is | If we add two random variables, it makes sense that we add their means, Likewise,
if we create a new random variable by subtracting two random variables, then we
subtract the individual means to get the mean of the new random variable, If we
multiply a random variable by a constant (for example, if we are converting feet
to inches, so that we are multiplying by 12), then we multiply the mean of the ran-

dom variable by the same constant. If we add a constant to a random variable,
then we add that constant to the mean.
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Example 3.39

Example 3.40

The following rules summarize the situation:
Rules for Means of Random Variables
Rule 1: If X and Y are two random variables, then
My+y = wx T Wy
Mx-y = My — My

Rule 2: If Y is a random variable and a and b constants, then
Marpy = a + buy.

Temperature. The average summer temperature, uy, in a city is 81°F. To con-
vert °F to °C, we use the formula °C = (°F — 32) X (5/9) or °C = (5/9) X
°F — (5/9) X 32. Thus, the mean in degrees Celsius is (5/9) X (81) — (5/9) X
32 =45 - 17.78 = 27.22. |

Dealing with standard deviations of functions of random variables is a bit
more compicated. We work with the variance first and then take the square root,
at the end, to get the standard deviation we want. If we rmultiply a random variable
by a constant (for example, if we are converting inches to centimeters by multi-
plying by 2.54), then we multiply the variance by the square of the constant. This
has the effect of multiplying the standard deviation by the constant. If we add a con-
stant to a random variable, then we are not changing the relative spread of the
distribution, so the variance does not change.

Feet to Inches. Let Y denote the height, in feet, of a person in a given popu-
lation; suppose the standard deviation of Yis oy = .35 (feet). If we wish to con-
vert from feet to inches, we can define a new variable X as X = 12Y. The
variance of Y is .35% (the square of the standard deviation). The variance of X is
12% X .35%, which means that the standard deviation of Xis oy = 12 X .35 = 4.2
(inches). [ |

If we add two random variables that are independent of one another, then
we add their variances.* Moreover, if we subract two random variables that are
independent of one another, then we add their variances. If we want to find the
standard deviation of the sum (or difference) of two independent random vari-
ables, we first find the variance of the sum (or difference) and then take the square
root to get the standard deviation of the sum (or difference).

* If we add two random variables that are not independent of one another, then the variance
of the sum depends on the degree of dependence between the variables. To take an extreme
case, suppose that one of the random variables is the negative of the other. Then the sum of
the two random variables will always be zero, so that the variance of the sum will be zero. This
is quite different from what we would get by adding the two variances together. As another
example, suppose Y is the number of questions correct on a 20-question exam and X is the
number of questions wrong. Then Y + X is always equal to 20, so that there is no variabili-
ty at all. Hence, the variance of Y + X is zero, even though the variance of Y is positive, as
is the variance of X.
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b Mass. Consider finding the mass of a 10-mLi graduated cylinder. If several mea-
| surements are made, using an analytical balance, then in theory we would expect
E the
| from one measurement to the next. Suppose that a given balance produces read-
| ings that have a standard deviation of .03g; let X denote the value of a reading
| made using this balance. Suppose that a second balance produces readings that
b have a standard deviation of .04g; let Y denote denote the value of a reading made
b using this second balance.!?

measurements to all be the same. In reality, however, the readings will vary

If we use each balance to measure the mass of a graduated cylinder, we

i might be interested in the difference, X — Y, of the two measurements. The stan-
- dard deviation of X — Y is positive. To find the standard deviation of X — Y, we

 first find the variance of the difference. The variance of X is .03? and the variance
i of Yis .04°. The variance of the difference is .032 + .04% = .0025. The standard
| deviation of X' — Y is the square root of .0025, which is .05. |

The following rules summarize the situation for variances:
Rules for Variances of Random Variables

Rule 3:1f Y is a random variable and a and b constants, then o2, ,, = b*o2.

a

Rule 4: If X and Y are two independent random variables, then
0k+y = 0% + 07

2 - 2 2
Ox-y = 0x t+ oy

rcises 3.18-3.25

Example 3.41

3.18

In a certain population of the European starling, there are 5,000 nests with young,
The distribution of brood size (number of young in a nest) is given in the accom-
panying table.!!

hd Frequency

Brood (No. of

Size Broods)
90
230
610
1,400
1,760
750
130
26
3

O 00NN R W N

10

Total 5,000

Suppose one of the 5,000 broods is to be chosen at random, and let Y be the size
of the chosen brood. Find N

(a) Pr{y =3} (b) Pr{Y = 7} (c) Pr{4 =Y = 6}
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3.19 Inthe starling population of Exercise 3.18, there are 22,435 young in all the broods
taken together. (There are 90 young from broods of size 1, there are 460 from

broods of size 2, etc.) Suppose one of the young is to be chosen at random, and let
Y’ be the size of the chosen individual’s brood.

(2) Find Pr{y’ = 3}.
(b) Find Pr{y’ = 7}.
(c) Explain why choosing a young at random and then observing its brood is not

equivalent to choosing a brood at random, Your explanation should show why
the answer to part (b) is greater than the answer to part (b) of Exercise 3.18.

3.20 Calculate the mean, uy, of the random variable ¥ from Exercise 3.18.

3.21 Considera population of the fruitfly Drosophila melanogaster in which 30% of the

Y (No. Black) Probability
0 343
1 441
2 1 s . s
3 Oig Albinism. 1
i - has probability
Total 1.000

same (1/4) wt
third child is ir
albino and “f
p = 1/4 andn

(a) Find Pr{y = 2}.
(b) Find Pr{y < 2}.

3.22 Calculate the mean, uy, of the random variable y from Exercise 3.21.

3.23  Calculate the standard deviation, oy, of the random variable Y from Exercise 3.21.

Mutants. Sy
tain mutant tra
ulation. As eag
chosen individ;

324 A group of college students were surveyed to learn how many times they had vis-

ited a dentist in the previous year.'? The probability distribution for Y, the number b
of visits, is given by the following table:

made, regardle

Y (No. Visits) Probability tants in the larg

0 A5 been removed:}

1 .50 the independe

2 35 :
Total 1.00

Calculate the mean, My , of the number of visits,

3.25 Calculate the standard deviation, oy, of th

e random variable Y from Exercise 3.24.

3.8 THE BINOMIAL DISTRIBUTION

To add some depth to the notion of probability and random variables, we now
consider a special type of random variable, the binomial. The distribution of a bi-

nomial random variable is a probability distribution associated with a special kind

of chance operation. The chance operation is defined in termsdf a set of conditions
called the independent-trials model.

interpretaf|{
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The Independent-Trials Model

| The independent-trials model relates to a sequence of chance “trials.” Each trial

| is assumed to have two possible outcomes, which are arbitrarily labeled “success”

- and “failure.” The probability of success on each individual trial is denoted by the

| letter p and is assumed to be constant from one trial to the next. In addition, the
| trials are required to be independent, which means that the chance of success or
. failure on each trial is independent of what happens on the other trials, The total
t number of trials is denoted by n. These conditions are summarized in the follow-

ing definition of the model.

The following examples illustrate situations that can be described by the
independent-trials model.

Albinism. If two carriers of the gene for albinism marry, each of their children
has probability 1/4 of being albino. The chance that the second child is albino is the
same (1/4) whether or not the first child is albino; similarly, the outcome for the
third child is independent of the first two, and so on. Using the labels “success” for
albino and “failure” for nonalbino, the independent-trials model applies with
p =1/4andn = the number of children in the family. [ ]

Mutants. Suppose that 39% of the individuals in a large population have a cer-
tain mutant trait and that a random sample of individuals is chosen from the pop-
ulation. As each individual is chosen for the sample, the probability is .39 that the
chosen individual will be mutant. This probability is the same as each choice is
made, regardless of the results of the other choices, because the percentage of mu-
tants in the large population remains equal to .39 even when a few individuals have
been removed. Using the labels “success” for mutant and “failure” for nonmutant,
the independent-trials model applies with p = .39 and n = the sample size. |

An Example of the Binomial Distribution

The binomial distribution specifies the probabilities of various numbers of suc-
cesses and failures when the basic chance operation consists of independent
trials. Before giving the general formula for the binomial distribution, we consider
asimple example.

Albinism. Suppose two carriers of the gene for albinism marry (see Exam-
ple 3.42) and have two children. Then the probability that bath of their children
are albino is

1\/1

Pr{both children are albino}, = (Z)(Z)

- L
16

T,

The reason for this probability can be seen by considering the relative frequency
interpretation of probability. Of a great many such families with two children, %

Example 3.42

Example 3.43

I “ I

Example 3.44
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Second child
1/4 albino
First ‘
albino 3/4 "\ Second child
not albino
Second child
3/4 \_First 1/4 albino
child
not
albino -
3/4°\ Second child
not albino

Figure 3.14 Probability tree for
albinism among two children of
carriers of the gene for albinism

would have the first child albino; furthermore,% of these would have the second
child albino; thus, } of }, or i, of all the couples would have both albino children.
A similar kind of reasoning shows that the probability that both children are not
albino is

3
Pr{both children are not albino} = (Z) (%) = %

A new twist enters if we consider the probability that one child is albino and
the other is not. There are two possible ways this can happen:

1
Pr{first child is albino, second is not} = <—>(§> -3

4)\4) 16

3
Pr{second child is albino, first is not} = <Z>(%> = 13—6

To see how to combine these possibilities, we again consider the relative frequen-

cy interpretation of probability. Of a great many such families with two children,
the fraction of families with one albino and one nonalbino child would be the total

of the two possibilities, or
(ie) + (i) -1
— + - —_
16 16 16

Thus, the corresponding probability is

Pr{one child is albino, the other isnot} = 6

Another way to see this is to consider a probability tree. The first split in the
tree represents the birth of the first child; the second split represents the birth of
the second child. The four possible outcomes and their associated probabilities
are shown in Figure 3.14. These probabilities are collected in Table 3.5. n

The probability distribution in Table 3.5 is called the binomial distribution
1 and n = 2. Note that the probabilities add to 1. This makes sense

because all p0551b111t1es have been accounted for: We expect = of the families to have
no albino children, % to have one albino child, and = 1z to have two albino children;
there are no other possible compositions for a two-child family. The number of
albino children, out of the two children, is an example of a inomial random vari-
able. A binomial random variable is a random variable that satisfies the following
four conditions, abbreviated as BInS:

with p =
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Binary outcomes: There are two possible outcomes for each trial (success
and failure).

Independent trials: The outcomes of the trials are independent of each other.
n is fixed: The number of trials, n, is fixed in advance.

Same value of p: The probability of a success on a single trial is the same for
all trials.

f The Binomial Distribution Formula

A general formula is available which can be used to calculate probabilities asso-

| ciated with a binomial random variable for any values of n and p. This formula
! can be proved using logic similar to that in Example 3.44. (The formula is dis-
 cussed further in Appendix 3.2.) The formula is given in the accompanying box.

The quantity ,C; appearing in the formula is called a binomial coefficient.
Each binomial coefficient is an integer depending on n and on j. Values of bino-

mial coefficients are given in Table 2 at the end of this book and can be found by
the formula

n!
jtn =
where x! (“x-factorial”) is defined for any positive integer x as
x!=x(x = 1)(x —2)...(2)(1)
and 0! = 1. For more details, see Appendix 3.2.
For example, for n = 5 the binomial coefficients are as follows:

o0 1 2 3 4 5
$Cro 1 5 10 10 5 1

Thus, for n = 5 the binomial probabilities are as indicated in Table 3.6. Notice the
pattern in Table 3.6: The powers of p ascend (0, 1, 2, 3, 4, 5) and the powers of
(1 = p) descend (5, 4, 3,2, 1, 0). (In using the binomial distribution formula,
remember that x° = 1 for any nonzero x.)

The following example shows a specific application of the binomial distri-
bution with n = 5.

an -

10
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Example 3.45

Probability
t
S
I

10 -

T 1T T T 1
01 2 3 4 5
Number of mutants

Figure 3.15 Binomial
distribution with n = 5 and
p=.39

Mutants. Suppose we draw a random sample of five individuals from a large |
population in which 39% of the individuals are mutants (as in Example 3.43).
The probabilities of the various possible samples are then given by the bino-
mial distribution formula with » = 5 and p = .39; the results are displayed in
Table 3.7. For instance, the probability of a sample containing 3 mutants and 2
nonmutants is

10(.39)%(.61)* = .22

Thus, Pr{Y = 3} ~ .22.This means that about 22% of random samples of size 5
will contain three mutants and two nonmutants.

Notice that the probabilities in Table 3.7 add to 1. The probabilities in a probabil-
ity distribution must always add to 1, because they account for 100% of the
possibilities. [

The binomial distribution of Table 3.7 is pictured graphically in Figure 3.15.
Such a graphical display of a probability distribution is called a probability
histogram.

Remark: In applying the independent-trials model and the binomial distrib-
ution, we assign the labels “success” and “failure” arbitrarily. For instance, in Exam-
ple 3.45, we could say “success” = “mutant” and p = .39; or, alternatively, we could
say “success” = “nonmutant” and p = .61. Either assignment of labels is all right; it
is only necessary to be consistent.

Notes on Table 2: The following features in Table 2 are worth noting:

(a) The first and last entries in each row are equal to 1. This will be true
for any row; that is,;,C, = 1 and ,,C,, = 1 for any value of n.

(b) Each row of the table is symmetric; that is, ,C; and ,C, ; are
equal.

(c) ‘The bottom rows of the table are left incomplete to save space,
but you can easily complete them using the symmetry of the ,C;
’s; if you need to know ,C; you can look up ,C,_; in Table 2. For
instance, consider n = 18; if you want to know 3C;5 you just
look up 13C5; both 1;C; and 13C;5 are equal to 816.

Computational note: Computer and calculator technology make it fairly
easy to handle the binomial distribution formula for smallor moderate values of n.
For example, suppose we want to find Pr{Y = 2} when Y is a binomial random
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| variable with n = 5and p = .39. In the MINITAB system this probability can be

| found with the following command:

MTB > PDF 2;
SUBC> Binomial 5 .39.

This command returns the following output, which agrees with Table 3.7
(although MINITARB uses the letter X to denote a random variable, whereas we
have used the letter Y):

Probability Density Function
Binomial with n = 5 and p = 0.390000

X P(X = x)
2.00 0.3452

If a list of possible values is stored in a column in MINITAB, then the Bi-
nomial command can be used to find several probabilities at once. Thus, if we want
to recreate Table 3.7, we enter the values 0, 1, 2,3,4,5 in column 1 and enter the
command

MTB > PDF C1;
SUBC> Binomial 5 .39.

MINITAB returns the following output:

( Probability Density Function )
Binomial with n = 5 and p = 0.390000
X P(X = x)
0.00 0.0845
1.00 0.2700
2.00 0.3452
3.00 0.2207
4.00 0.0706
\¥47 5.00 0.0090 y

For large values of , the use of the binomial formula gets to be tedious
and even a computer will balk at being asked to calculate a binomial probability.
However, the binomial formula can be approximated by other methods. One of
these is discussed in the optional Section 5.5.

Sometimes a binomial probability question involves combining two or more
possible outcomes. The following example illustrates this idea.

Sampling Fruitflies. In a large Drosophila population, 30% of the flies are
black (B) and 70% are gray (G). Suppose two flies are randomly chosen from the
population (as in Example 3.13). The binomial distribution with # = 2 and p=2.3

SECTION 3.8 THE BINOMIAL DISTRIBUTION 10
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gives probabilities for the possible outcomes as shown in Table 3.8. (Using the bi-
nomial formula agrees with the results given by probability tree shown in
Figure 3.4.) ‘

Let E be the event that both flies are the same color. Then E can happen
in two ways: Both flies are gray or both are black. To find the probability of E,
consider what would happen if we repeated the sampling procedure many times:
49% of the samples would have both flies gray, and 9% would have both flies
black. Consequently, the percentage of samples with both flies the same color
would be 49% + 9% = 58%. Thus, we have shown that the probability of E is

Pr{E} = 58

as we claimed in Example 3.13. H

Whenever an event E can happen in two or more mutually exclusive ways,
a rationale such as that of Example 3.46 can be used to find Pr{E}.

I3 EINAEER YA Blood Type. In the United States, 85% of the population has Rh positive blood.

Suppose we take a random sample of 6 persons and count the number with Rh pos- |
itive blood. The binomial model can be applied here, since the BInS conditions
are met: There is a binary outcome on each trial (Rh positive or Rh negative blood), |
the trials are independent (due to the random sampling), » is fixed at 6, and the
same probability of Rh positive blood applies to each person (p = .85).

Let Y denote the number of persons, out of 6, with Rh positive blood. The
probabilities of the possible values of Y are given by the binomial distribution for-
mula with n = 6 and p = .85; the results are displayed in Table 3.9. For instance,
the probability that Y = 4is

(Ca(85)4(15)% ~ 15(.522)(.0225) ~ .1762
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If we want to find the probability that at least 4 persons (out of the

6 sampled) will have Rh positive blood, we need to find Pr{Y =4} =

Pr{Y =4} + Pr{Y =5} + Pr{Y = 6} = .1762 + .3993 + 3771 = .9526. This
means that the probability of getting at least 4 persons with Rh positive blood in

I asample of size 6 is .9526. |

The probability of an event happening is 1 minus the probability that the
event does not happen: Pr{E} = 1 — Pr{FE does not happen}. In some problems,
such as in the following example, the easiest way to find Pr{E} is to first find

: Pr{ E does not happen} and then to subtract this probability from 1.

Blood Type. Asin Example 3.47, let Y denote the number of persons, out of 6,
with Rh positive blood. Suppose we want to find the probability that Y is less
than 6 (i.e., the probability that there is at least I person in the sample who has
Rh negative blood). We could find this directly as Pr{Y = 0} + Pr{Y = 1}
t -+ Pr{Y = 5}. However, it is easier to find Pr{Y # 6} and subtract this
from 1:

Pr{Y <6} =1-Pr{Y =6} =1 — 3771 = 6229 n

Mean and Standard Deviation of a Binomial

If we toss a fair coin 10 times, then we expect to get 5 heads, on average. This is an
example of a general rule: For a binomial random variable, the mean (that is, the av-
erage number of successes) is equal to np. This is an intuitive fact: The probability
of success on each trial is p, so if we conduct  trials, then np is the expected num-
ber of successes. In Appendix 3.3, we show that this result is consistent with the rule
given in Section 3.7 for finding the mean of the sum of random variables. The stan-
dard deviation for a binomial random variable is given by Vnp(1 — p). This for-
mula is not intuitively clear; a derivation of the result is given in Appendix 3.3. For
the example of tossing a coin 10 times, the standard deviation of the number of

heads is V10 X .5 X (1 — 5) = V2.5 ~ 1.58.

Blood Type. As discussed in Example 3.47, if Y denotes the number of persons
with Rh positive blood in a sample of size 6, then a binomial model can bé used
to find probabilities associated with Y. The single most likely value of Yis 5 (which
has probability .3993). The average value of Yis 6 X .85 = 5.1, which means that
if we take many samples, each of size 6, and count the number of Rh positive per-
sons in each sample, and then average those counts, we expect to get 5.1. The stan-
dard deviation of those counts is V6 X .85 X .15 ~ .87. u

Applicability of the Binomial Distribution

A number of statistical procedures are based on the binomial distribution. We
will study some of these procedures in later chapters. Of course, the binomial dis-
tribution is applicable only in experiments where the BInS conditions are satis-
fied in the real biological situation. We briefly discuss some aspects of these
conditions.

Application to Sampling. The most important application of the independent-
trials model and the binomial distribution is to describe random sampling from a
population when the observed variable is dichotomous—that is, a categorical

Example 3.48

Example 3.49
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variable with two categories (for instance, black and gray in Example 3.46). This A cer
application is valid if the sample size is a negligible fraction of the population size, that 2
so that the population composition is not altered appreciably by the removal of the | can b
individuals in the sample (thus the S part of BInS is satisfied: The probability of a | (a) al
success remains the same from trial to trial). However, if the sample is not a neg- (b) al
ligibly small part of the population, then the population composition may be altered (©) e
| by the sampling process, so that the “trials” involved in composing the sample are (d) e
| not independent and the probability of a success changes as the sampling pro-
| . yen . . . The sl
§ gresses. In this case, the probabilities given by the binomial formula are not cor- | treak
§§ rect. In most biological studies, the population is so large that this kind of difficulty ;;3: ‘
: does not arise. from
| Contagion. In some applications the phenomenon of contagion can invalidate the snails
\‘ condition of independence between trials. The following is an example. (a) 5
Chickenpox. Consider the occurrence of chickenpox in children. Each child in | Consi
| a family can be categorized according to whether he or she had chickenpox during | (a) W
a certain year. One can say that each child constitutes a “trial” and that “success” (b) W
is having chickenpox during the year, but the trials are not independent because the | The s
chance of a particular child catching chickenpox depénds on whether his or her sib- infant
ling caught chickenpox. As a specific example, consider a family with five children, |
and suppose that the chance of an individual child catching chickenpox during the (a) t
year is equal to .10. The binomial distribution gives the chance of all five children (b) a}
getting chickenpox as (©)
Neurc
Pr{5 children get chickenpox} = (.10)* = .00001 mand
of cas
However, this answer is not correct; because of contagion, the correct probability ;csle’
L would be much larger. There would be many families in which one child caught in 3::
\ chickenpox ahd then the other four children got chickenpox from the first child,
so that all five children would get chickenpox. [ (a) al
(b) o1
(c) tv
Exercises 3.26-3.34 p:
. ) . 3.33 Iftwo
3.26 The seeds of the garden pea (Pisum sativum) are either yellow or green. A certain ity 1 ¢
3 3 . 13 4
cross between pea plants produces progeny in the ratio 3 yellow: 1 green.™ If four the pr
randomly chosen progeny of such a cross are examined, what is the probability that
(a) three are yellow and one is green? ‘ E;; 2,[
(b) all four are yellow? 3 le
(c) all four are the same color?
- . . ) . 3.34 Child
3.27 In the United States, 42% of the population has type A blood. Consider taking a 1 tain p
sample of size 4. Let Y denote the number of persons in the sample with type A or mo
blood. Find is the
(a) Pr{Y = 0} : A
(b) Pr{Y = 1} Eﬁg o
(c) Pr{Y =2} ] (©) tw
(e) Pr{0 <Y =2} . ] pa
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A certain drug treatment cures 90% of cases of hookworm in children, ! Suppose
that 20 children suffering from hookworm are to be treated, and that the children
can be regarded as a random sample from the population. Find the probability that

(a) all 20 will be cured

(b) all but one will be cured
(c) exactly 18 will be cured
(d) exactly 90% will be cured

The shell of the land snail Limocolaria martensiana has two possible color forms:
streaked and pallid. In a certain population of these snails, 60% of the individuals
have streaked shells."” Suppose that a random sample of 10 snails is to be chosen

from this population. Find the probability that the percentage of streaked-shelled
snails in the sample will be

(a) 50% (b) 60% . (e) 0%
Consider taking a sample of size 10 from the snail population in Exercise 3.29.

(a) What is the mean number of streaked-shelled snails?
(b) What is the standard deviation of the number of streaked-shelled snails?

The sex ratio of newborn human infants is about 105 males 100 females.'® If four
infants are chosen at random, what is the probability that

(a) two are male and two are female?
(b) all four are male?
(c) all four are the same sex?

Neuroblastoma is a rare, serious, but treatable disease. A urine test, the vanilly
mandelic acid test, has been developed that gives a positive diagnosis in about 70%
of cases of neuroblastoma.'’ It has been proposed that this test be used for large-
scale screening of children. Assume that 300,000 children are to be tested, of whom
8 have the disease. We are interested in whether or not the test detects the disease
in the 8 children who have the disease. Find the probability that

(a) all 8 cases will be detected

(b) only one case will be missed . ‘

(¢) two or more cases will be missed [Hint: Use parts (a) and (b) to answer
part (c).]

If two carriers of the gene for albinism marry, each of their children has probabil-

ity% of being albino (see Example 3.42).If such a couple has six children, what is
the probability that

(a) none will be albino?

(b) atleast one will be albino? [Hint: Use part (a) to answer part (b); note that “at
least one” means “one or more.”]

Childhood lead poisoning is a public health concern in the United States. In a cer-

tain population, one child in eight has a high blood lead level (defined as 30 pg/dLi

or more).®Ina randomly chosen group of 16 children from the population, what
is the probability that '

(a) none has high blood lead?

(b) one has high blood lead?

(¢) two have high blood lead?

(d) three or more have high blood lead? [Hint: Use parts (a)z(c) to answer
part (d).]

1
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3.9 FITTING A BINOMIAL DISTRIBUTION TO
DATA (OPTIONAL)

Occasionally it is possible to obtain data that permit a direct check of the applic- ’
ability of the binomial distribution. One such case is described in the next example. |

m Sexes of Children. In a classic study of the human sex ratio, families were cat- |

egorized according to the sexes of the children. The data were collected in Germany |
in the nineteenth century, when large families were common. Table 3.10 shows the |
results for 6,115 families with 12 children." :

It is interesting to consider whether the observed variation among families
can be explained by the independent-trials model. We will explore this question by |
fitting a binomial distribution to the data. ]

The first step in fitting the binomial distribution is to determine a value for
p = Pr{boy}. One possibility would be to assume that p = .50. However, since it
is known that the human sex ratio at birth is not exactly 1:1 (in fact, it favors boys
slightly), we will not make this assumption. Rather, we will “fit” p to the data; that
is, we will determine a value for p that fits the data best. We observe that the total |
number of children in all the families is

(12)(6,115) = 73,380 children
Among these children, the number of boys is
(3)(0) + (24)(1) + -+ + (12)(7) = 38,100 boys

Therefore, the value of p that fits the data best is

38,100

P = 3iam0 = 19215
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g The next step is to compute probabilities from the binomial distribution
b formula with » = 12 and p = .519215. For instance, the probability of 3 boys and
- 9 girls is computed as

check of the applic- | 12Cs(p)’(1 = p)’ = 220(.519215)(.480785)°
in the next example. J ~ 042269

4

) . For comparison with the observed data, we convert each probability to a
10, fam1l1§s were cat- b theoretical or “expected” frequency by multiplying by 6,115 (the total number of
ollected in Germany ‘ » families). For instance, the expected number of families with 3 boys and 9 girls is
Table 3.10 shows the | 4

(6,115)(.042269) ~ 258.5

The expected and observed frequencies are displayed together in Table 3.11.
Table 3.11 shows reasonable agreement between the observed frequencies and
the predictions of the binomial distribution. But a closer look reveals that the dis-
crepancies, although not large, follow a definite pattern. The data contain more
unisexual, or preponderantly unisexual, sibships than expected. In fact, the ob-
served frequencies are higher than the expected frequencies for nine types of fam-
ilies in which one sex or the other predominates, while the observed frequencies
are lower than the expected frequencies for four types of more “balanced” fami-
lies. This pattern is clearly revealed by the last column of Table 3.11, which shows
the sign of the difference between the observed frequency and the expected fre-
quency. Thus, the observed distribution of sex ratios has heavier “tails” and a lighter
“middle” than the best-fitting binomial distribution. :
The systematic pattern of deviations from the binomial distribution sug-
gests that the observed variation among families cannot be entirely explained by
the independent-trials model.* What factors might account for the discrepancy?

ation among families
lore this question by

letermine a value for
50. However, since it
in fact, it favors boys
it” p to the data; that
ybserve that the total

 boys

* A chi-square goodness-of-fit test of the binomial model shows that there is strong evidence
that the differences between the observed and expected frequencies did not happen due to

chance error in the sampling process. We explore the topic of goodness-of-fit tests in
Chapter 10. :




114 CHAPTER 3 RANDOM SAMPLING, PROBABILITY, AND THE BINOMIAL DISTRIBUTION

This intriguing question has stimulated several researchers to undertake more
detailed analysis of these data. We briefly discuss some of the issues,

One explanation for the excess of predominantly unisexual families is that
the probability of producing a boy may vary among families. If p varies from one
family to another, then sex will appear 1o “run” in families in the sense that the
number of predominantly unisexual families will be inflated. In order to visualize
this effect, consider the fictitious data set shown in Table 3.12.

an extreme example of sex “running” in families. The real data set exhibits the |
same phenomenon more weakly.

One explanation of the fictitious data set would |
; be that some families can have only boys (p = 1) and other families can have only
" girls (p = 0). In a parallel Wway, one explanation of the real data set would be that
p varies slightly among families. Variation in p is biologically plausible, even though
the mechanism causing the variation has not yet been discovered.

magine how the bi-
the sexes of previous offspring.

data, which refer to many sets of n = 12 trials, are not often encountered.
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xercises 3.35-3.37
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35

3.37

The accompanying data on families with 6 children are taken from the same study
as the families with 12 children in Example 3.51. Fit a binomial distribution to the
data. (Round the expected frequencies to one decimal place.) Compare with the
results in Example 3.51; what features do the two data sets share?

Number of Number of

Boys Girls Families
0 6 1,096
6,233
15,700
22,221
17,332
7,908
1,579
72,069

(= R B o S
S = N W R W

An important method for studying mutation-causing substances involves killing
female mice 17 days after mating and examining their uteri for living and dead
embryos. The classical method of analysis of such data assumes that the survival
or death of each embryo constitutes an independent binomial trial. The accom-
panying table, which is extracted from a larger study, gives data for 310 females,

all of whose uteri contained 9 embryos; all of the animals were treated alike (as
controls).?

Number of Embryos Number of
Dead Living Female Mice
0 9 136 -
1 8 103
2 7 50,
3 6 13.
4 5 6 .
5 4 1
6 3 1:
7 2 0
8 1 0
9 0 0
310

(a) Fit a binomial distribution to the observed data. (Round the expected
frequencies to one decimal place.)

(b) Interpret the relationship between the observed and expected frequencies. Do
the data cast suspicion on the classical assumption?

Students in a large botany class conducted an experiment on the“germination of
seeds of the Saguaro cactus. As part of the experiment, each student planted five
seeds in a small cup, kept the cup near a window, and checked every day for
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germination (sprouting). The class results on the seventh day after planting were
as displayed in the table.”!

(a)
(b)

(©)

Number of Seeds Number
Germinated Not Germinated of Students

0 5 17
1 4 53
2 3 94
3 2 79
4 1 33
5 0 4

280

Fit a binomial distribution to the data. (Round the expected frequencies to
one decimal place.)

Two students, Fran and Bob, were talking before class. All of Fran’s seeds had
germinated by the seventh day, whereas none of Bob’s had. Bob wondered
whether he had done something wrong. With the perspective gained from see-
ing all 280 students’ results, what would you say to Bob? (Hint: Can the vari-
ation among the students be explained by the hypothesis that some of the seeds |
were good and some were poor, with each student receiving a randomly cho- |
sen five seeds?)

Invent a fictitious set of data for 280 students, with the same overall percent-
age germination as the observed data given in the table but with all the students
getting either Fran’s results (perfect) or Bob’s results (nothing). How would |
your answer to Bob differ if the actual data had looked like this fictitious data
set?

Supplementary Exercises 3.38-3.47

3.38

3.39

In the United States, 10% of adolescent girls have iron deficiency.”? Suppose two
adolescent girls are chosen at random. Find the probability that

(a)

both girls have iron deficiency

(b) one girl has iron deficiency and the other does not

In preparation for an ecological study of centipedes, the floor of a beech woods is
divided into a large number of one-foot squares.* At a certain moment, the dis-
tribution of centipedes in the squares is as shown in the table.

Number of Percent Frequency
Centipedes (% of Squares)
0 45
1 36
2 14
3 4
4 1
100

Suppose that a square is chosen at random, and let Y b& the number of centipedes
in the chosen square. Find o

(a)

Pr{Y = 1} (b) Pr{Y = 2}
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SUPPLEMENTARY EXERCISES

Refer to the distribution of centipedes given in Exercise 3.39. Suppose five squares
are chosen at random. Find the probability that three of the squares contain cen-
tipedes and two do not.

Refer to the distribution of centipedes given in Exercise 3.39. Suppose five squares
are chosen at random. Find the expected value (i.e., the mean) of the number of
squares that contain at least one centipede.

Wavy hair in mice is a recessive genetic trait. If mice with wavy hair are mated with
straight-haired (heterozygous) mice, each offspring has probability % of having
wavy hair.* Consider a large number of such matings, each producing a litter of five
offspring. What percentage of the litters will consist of

(a) two wavy-haired and three straight-haired offspring?
(b) three or more straight-haired offspring?
(c) all the same type (either all wavy- or all straight-haired) offspring?

A certain drug causes kidney damage in 1% of patients. Suppose the drug is to be
tested on 50 patients. Find the probability that

(a) none of the patients will experience kidney damage
(b) one or more of the patients will experience kidney damage [Hint: Use part
(a) to answer part (b).]

Refer to Exercise 3.43. Suppose now that the drug is to be tested on » patients,
and let E represent the event that kidney damage occurs in one or more of the pa-
tients. The probability Pr{E} is useful in establishing criteria for drug safety.

(a) Find Pr{E} forn = 100.
(b) How large must 7 be in order for Pr{E} to exceed .95?

To study people’s ability to deceive lie detectors, researchers sometimes use the
“guilty knowledge” technique.?’ Certain subjects memorize six common words;
other subjects memorize no words. Each subject is then tested on a polygraph ma-
chine (lie detector), as follows. The experimenter reads, in random order, 24 words:
the six “critical” words (the memorized list) and, for each critical word, three “con-
trol” words with similar or related meanings. If the subject has memorized the six
words, he or she tries to conceal that fact. The subject is scored a “failure” on a crit-
ical word if his or her electrodermal response is higher on the critical word than on
any of the three control words. Thus, on each of the six critical words, even an in-
nocent subject would have a 25% chance of failing, Suppose a subject is labeled
“guilty” if the subject fails on four or more of the six critical words, If an innocent
subject is tested, what is the probability that he or she will be labeled “guilty”?

The density curve shown here represents the distribution of systolic blood pressures
in a population of middle-aged men.?® Areas under the curve are shown in the fig-
ure. Suppose a man is selected at random from the population, and let Y be his

blood pressure. Find
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Blood pressure (mm Hg)
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(a) Pr{120 < Y < 160}
(b) Pr{Y < 120}
(c) Pr{Y > 140}

Refer to the blood pressure distribution of Exercise 3.46. Suppose four men are |
selected at random from the population. Find the probability that

(a) all four have blood pressures higher than 140 mm Hg
(b) three have blood pressures higher than 140, and one has blood pressure 140 or
less

Pl
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The Normal
‘Distribution

4.1 INTRODUCTION

In Chapter 2 we introduced the idea of regarding a set of data as a sam-
ple from a population. In Section 3.6 we saw that the population dis-

ibution of a quantitative variable Y can be described by its mean u and '
rd deviation o and also by a density curve, which represents dy the normal .
relative frequencies as areas undet the curve, In this chapter we study ribution, including
the most important type of densuy curve: the normal curve. The normal he use of the normal
curve is a symmetric bell- shaped curye whose exact form we describe ‘
in this chapter. A distribution represented by a normal curve is called
a normal distribution. Lo

The family of normal distributions plays tw ¢ the normal curve

applications. Its more straightforward use is as a convenient approxi-
mation to the distribution of an observed variable ¥, The second role ssing normality of
of the normal distribution is more theoretical and will be explored in sets with the use of
Chapter 5. normal probability plots
An example of a natural opulation dlstnbutlon that can be

his chapter we will

applying “continuity
carrection” to improve
normal curve

Serum Cholesterol The relationship between the concentration of roximations

cholesterol in the blood and the occurrence of heart disease has been the
subject of much research. As part of a government health survey, re-
searchers measured serum cholesterol levels for a large sample of Amer-
icans: The distribution for 17-year-olds can be fairly well approximated
by a normal curve with mean . = 176 mg/dLi and standard deviation
o = 30 mg/dLi. Figure 4.1 shows a histogram based on a sample of 953
17-year-olds, with the normal curve superimposed.! . n

Ex ple 4.1




Figure 4.1 Distribution of
serum cholesterol in 17-year-
olds

Figure 4.2 Normal distribution
of serum cholesterol, with

n = 176 mg/dLi and

o = 30mg/dLi
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Serum cholesterol (mg/dL)

To indicate how the mean y and standard deviation o relate to the normaf
curve, Figure 4.2 shows the normal curve for the serum cholesterol distribution of
Example 4.1, with tick marks at 1,2, and 3 standard deviations from the mean.

| I I ] I I [
8 116 146 176 206 236 266

Serum cholesterol (mg/dL)

The normal curve can be used to describe the distribution of an observed |
variable Y in two ways: (1) as a smooth approximation to a histogram based on a
sample of Y values; and (2) as an idealized representation of the population dis-

tribution of Y. The normal curve in Figure 4.1 could be interpreted either way. For

simplicity, in the remainder of this chapter we consider the normal curve as rep- |

resenting a population distribution.

Further Examples

We now give three more examples of normal curves that approximately describe
real populations. In each figure, the horizontal axis is scaled with tick marks cen-
tered at the mean and one standard deviation apart.

Eggshell Thickness. In the commercial production of eggs, breakage is a major
problem. Consequently, the thickness of the eggshell is an important variable. In
one study, the shell thicknesses of the eggs produced by a large flock of White
Leghorn hens were observed to follow approximately a normal distribution with
mean p = 38mm and standard deviation ¢ = .03 mm. This distribution is
pictured in Figure 4.3.2 [
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I I I I I I I
29 32 35 38 41 4 47

Shell thickness (mm)

Figure 4.3 Normal distribution
of eggshell thickness, with
s = .38mm and o = .03 mm

Interspike Times in Nerve Cells. In certain nerve cells, spontaneous electrical
discharges are observed that are so rhythmically repetitive that they are called
“clock-spikes.” The timing of these spikes, even though remarkably regular, does
exhibit variation. In one study, the interspike-time intervals (in milliseconds) for
asingle housefly (Musca domestica) were observed to follow approximately a nor-
mal distribution with mean u = 15.6 ms and standard deviation o = 4 ms; this
distribution is shown in Figure 4.4. |

| I ] I I I |
144 148 152 156 160 164 168

Interspike-time intervals (ms)

Figure 4.4 Normal distribution
of interspike-time intervals, with
u=156msand o = 4ms

The preceding examples have illustrated very different kinds of popula-
tions. In Example 4.3, the entire population consists of measurements on only one
fly. Still another type of population is a measurement error population, consisting
of repeated measurements of exactly the same quantity. The deviation of an indi-
vidual measurement from the “correct” value is called measurement error. Mea-
surement error is not the result of a mistake, but rather is due to lack of perfect
precision in the measuring process or measuring instrument. Measurement error
distributions are often approximately normal; in this case the mean of the distri-
bution of repeated measurements of the same quantity is the true value of the
quantity (assuming that the measuring instrument is correctly calibrated), and the
standard deviation of the distribution indicates the precision of the instrument.

One measurement error distribution was described in Example 2.14. The follow-
ing is another example.

MeasurementError. When a certain electronic instrument is used for counting
particles such as white blood cells, the measurement error distribution is approx-
imately normal. For white blood cells, the standard deviation of repeated counts
based on the same blood specimen is about 1.4% of the true count. Thus, if the
true count of a certain blood specimen were 7,000 cells/mm?®, then thg{\standard
deviation would be about 100 cells/mm? and the distribution of repeated counts
on that specimen would resemble Figure 4.5.* |

Example 4.3

Example 4.4
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Figure 4.6 A normal curve with
mean u and standard deviation o

Figure 4.5 Normal distribution

of repeated white blood cell

counts of a blood specimen

whose true value is

@ = 7,000 cells/mm?>. The | ‘ | [ | | |
standard deviation is 6,700 6,800 6,900 7,000 7,100 7,200 7,300

o = 100 cells/mm®. White blood cell count (cells/mm?)

4.2 THE NORMAL CURVES

As the examples in Section 4.1 show, there are many normal curves; each partic-
ular normal curve is characterized by its mean and standard deviation. If a variable
Y follows a normal distribution with mean u and standard deviation o, then it is
common to write Y ~ N(u, o). All of the normal curves can be described by a
single formula. Even though we do not make any direct use of the formula in this
book, we present it here, both as a matter of interest and also to emphasize that a
normal curve is not just any symmetric curve but rather a specific kind of sym-
metric curve.

If a variable Y follows a normal distribution with mean w and standard
deviation o, then the density curve of the distribution of Y is given by the fol-
lowing formula:

2
LA

fly) = 0_\/2—7?_6

This function, f(y), is called the density function of the distribution and express-
es the height of the curve as a function of the position y along the y-axis. The quan-
tities e and 7 that appear in the formula are constants, with e approximately equal
to 2.72 and 7 approximately equal to 3.14.

Figure 4.6 shows a graph of a normal curve. The shape of the curve is like
a symmetric bell, centered at y = u. The direction of curvature is downward (like
an inverted bowl) in the central portion of the curve, and upward in the tail por-
tions. The points where the curvature changes direction are y = u — o and
y = u + o;notice that the curve is almost linear near these points. In principle the
curve extends to +00 and —o0, never actually reaching the y-axis; however, the
height of the curve is very small for y values more than three standard deviations
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from the mean. The area under the curve is exactly equal to 1. (Note: It may seem
paradoxical that a curve can enclose a finite area, even though it never descends
to touch the y-axis. This apparent paradox is clarified in Appendix 4.1)

All normal curves have the same essential shape, in the sense that they can
be made to look identical by suitable choice of the vertical and horizontal scales
for each. (For instance, notice that the curves in Figures 4.2-4.5 look identical.)
But normal curves with different values of w and o will not look identical if they
are all plotted to the same scale, as illustrated by Figure 4.7. The location of the nor-
mal curve along the y-axis is governed by w since the curve is centered at y =
the width of the curve is governed by 0. The height of the curve is also determined
by o: Since the area under each curve must be equal to 1, a curve with a smaller
value of o must be taller. This reflects the fact that the values of Y are more high-
ly concentrated near the mean when the standard deviation is smaller.

20 40 60 80 100 120 140 160

4.3 AREAS UNDER A NORMAL CURVE

As explained in Section 3.6, a density curve can be quantitatively interpreted in
terms of areas under the curve. While areas can be roughly estimated by eye, for
some purposes it is desirable to have fairly precise information about areas.

The Standardized Scale

The areas under a normal curve have been computed mathematically and tabulated
for practical use. The use of this tabulated information js much simplified by the
fact that all normal curves can be made equivalent with respect to areas under
them by suitable rescaling of the horizontal axis. The rescaled variable is denoted
by Z; the relationship between the two scales is shown in Figure 4.8.

T I I I I T l Y
L-3c u-26 p-o w

123

Figure 4.7 Three normal curves

with different means and

standard deviations

L+o pu+2c p+3c

Figure 4.8 A normal curve,
showing the relationship
between the natural scale (Y)
and the standardized scale (Z)
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\ q
’ As Figure 4.8 indicates, the Z scale measures standard deviations from thef
mean: z = 1.0 corresponds to 1.0 standard deviation above the mean, z = —2.5
corresponds to 2.5 standard deviations below the mean, and so on. The Z scale is 1s
referred to as a standardized scale.

The correspondence between the Z scale and the Y scale can be expressed’
by the formula given in the box.

The variable Z is referred to as the standard normal; the distribution of Z |
follows a normal curve with mean zero and standard deviation one. Table 3 at the
end of this book gives areas under the standard normal curve, with distances along |
the horizontal axis measured in the Z scale. Each area tabled in Table 3 is the area |
under the standard normal curve below a specified value of z. For example, for |
z = 1.53 the tabled area is .9370; this area is shaded in Figure 4.9. ‘

. 95% are

- 86 mg/d]
/ Area =.9370
Figure 4.9 Illustration of the z 1,
use of Table 3 0 1.53 .
If we want to find the area above a given value of z, we subtract the tabu- -3
lated area from 1. For example, the area above z = 1.53 is 1.0000 — .9370 = .0630 ]
(Figure 4.10). { I
‘ abo
1 abo
] abol
Area =.0630 1
Figure 4.10 Area under a
o standard normal curve above Z
‘ 153 0 15
To find the area between two z numbers, we can subtract the areas given in
Table 3. For example, to find the area under the Z curye between z = —1.2 and
z = 0.8 (Figure 4.11), we take the area below 0.8, which is .7881, and subtract the 86

area below —1.2, which is .1151, to get .7881 — .1151 = .6730.




SECTION 4.3 AREAS UNDER A NORMAL CURVE 125

yiations from the
mean, z = —2.5
n. The Z scale is

/ Area = .6730

an be expressed

Figure 4.11 Area under a

Z  standard normal curve between
-12 0.8 —1.2and 0.8

Using Table 3, we see that the area under the normal curve between
z=-landz = +1is.8413 — .1587 = .6826. Thus, for any normal distribution,
about 68% of the observations are within +1 standard deviation of the mean.
Likewise, the area under the normal curve between z = —2 and 7 = +2 is
9772 — 0228 = .9544 and the area under the normal curve between z = —3 and
Z = +3is 9987 — .0013 = .9974. This means that for any normal distrib
1 distances along about 95% of the observations are within +2 standard deviations of the mea
ble 3 is the area about 99.7% of the observations are within +3 standard deviations of the mean.
‘or example, for ’ (see Figure 4.12.) For example, about 68% of the serum cholesterol values in the

idealized distribution of Figure 4.2 are between 146 mg/dLi and 206 mg/dLi, about
95% are between 116 mg/dLi and 236 mg/dLi, and virtually all are between
86 mg/dLi and 266 mg/dLi. Figure 4.13 shows the percentages

listribution of Z
1e. Table 3 at the . ution

n and

\rea = .9370

.,

btract the tabu- 1 -3 -2 4 0 1 2 3
- .9370 = .0630

Figure 4.12 Areas under a
standard normal curve between
—1and +1, between —2 and
+2, and between —3 and +3

If the variable Y follows a normal distribution, then
about 68% of the y’s are within +1 SD of the mean;

about 95% of the y’s are within +2 SDs of the mean;
about 99.7% of the y’s are within +3 SDs of the mean.

/ Area =.0630

€ areas given in

nz=—1.2and ‘ 2

ind subtract the j | 86 116 146 176 206 236 266
| Serum cholesterol (mg/dL)

Figure 4.13 The 68/9%99.7 rule
and the serum cholesterol
distribution
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These statements provide a definite interpretation of the standard deviation
in cases where a distribution is approximately normal. (In fact, the statements are
often approximately true for moderately nonnormal distributions; that is why, in
Section 2.6, these percentages—68%, 95%, and >99%—were described as “typi-
cal” for “nicely shaped” distributions.)

Determining Areas for a Normal Curve

By taking advantage of the standardized scale, we can use Table 3 to answer de-
tailed questions about any normal population when the population mean and stan-
dard deviation are specified. The following example illustrates the use of Table 3.
(Of course, the population described in the example is an idealized one, since no
actual population follows a normal distribution exactly.)

S ETIIERRN  Lengths of Fish. In a certain population of the herring Pomolobus aestivalis, the

lengths of the individual fish follow a normal distribution. The mean length of the
fish is 54.0 mm, and the standard deviation is 4.5 mm.> We use Table 3 to answer
various questions about the population.

(a) What percentage of the fish are less than 60 mm long?
Figure 4.14 shows the population density curve, with the desired areain- - Jl
dicated by shading. In order to use Table 3, we convert the limits of the area | (d)
from the Y scale to the Z scale, as follows: -
For y = 60, the value of z is

Yy —p 60 —54
o 45

Thus, the question “What percentage of the fish are less than 60 mm long?”
is equivalent to the question “What is the area under the standard normal |
curve below the z value of 1.33?” Looking up z = 1.33 in Table 3, we find §& —
that the area is .9082; thus, 90.82% of the fish are less than 60 mm long, ‘

(b) What percentage of the fish are more than 51 mm long?
The standardized value for y = 51 is

i Z = 1.33

- 1—54
_ YK _5 5:—67 .

Z

o 4.5 ’
Area = .9082

J

i

|

8

2

Figure 4.14 Area under the 54 60 Y

\ normal curve in Example 4.5(a) 0 1.33 z

Thus, the question “What percentage of the fish are more than 51 mm
long?” is equivalent to the question “What is thg area under the standard
normal curve above the z value of —.67?” Figure 4.15 shows this rela-
tionship. Looking up z = —.67 in Table 3, we find that the area is below
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—.67 is .2514. This means that the area above —.67is 1 — 2514 = .7486.
Thus, 74.86 % of the fish are more than 51 mm long.

Area =.2514 = Area = 7486

51 54 Y Figure 4.15 Area under the
-67 0 . V4 normal curve in Example 4.5(b)

(c) What percentage of the fish are between 51 and 60 mm long?
Figure 4.16 shows the desired area. This area can be expressed as a dif-
ference of two areas found from Table 3. The area below y = 60 is .9082,
as found in part (a), and the area below y = 51 is .2514, as found in
part (b). Consequently, the desired area is computed as

9082 — 2514 = 6568

Thus, 65.68% of the fish are between 51 and 60 mm long.
(d) What percentage of the fish are between 58 and 60 mm long?

Area = .6568

51 54 60 Y Figure 4.16 Area under the
—-67 0 133 z normal curve in Example 4.5(c)

Figure 4.17 shows the desired area. This area can be expressed as a dif-
ference of two areas found from Table 3. The area below y = 60 is .9082,

as was found in part (a). To find the area below y = 58, we first calculate
the z value that corresponds to y =58

_Y - m _S8-54

b4 = .89
o 4.5
Area = .0949
I [ e
54 58 60 Y Figure 4.17 Area under the
0 .891.33 Z normal curve in Example 4.5(d)
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The area under the Z curve below .89 is .8133. Consequently, the desired |
area is computed as

9082 — .8133 = .0949
Thus, 9.49% of the fish are between 58 and 60 mm long. |

Each of the percentages found in Example 4.5 can also be interpreted in
terms of probability. Let the random variable Y represent the length of a fish ran- |
domly chosen from the population. Then the results in Example 4.5 imply that

Pr{Y < 60} = .9082
Pr{Y > 51} = .7486
Pr{§1 <Y < 60} = .6568
and

Pr{58 < Y < 60} = .0949

Thus, the normal distribution can be interpreted as a continuous probability |
distribution.

Note that because the idealized normal distribution is perfectly continu-
ous, probabilities such as

Pr{Y > 48} and Pr{Y = 48}

means th
tribution
we need

are equal (see Section 3.6). That is, 6985, cor

Pr{Y = 48} = Pr{Y > 48} + Pr{Y = 48}

= Pr{Y > 48} + O(since Y is taken to be continuous)

Al
= Pr{Y > 48} b

If, however, the length were measured only to the nearest mm, then the measured
variable would actually be discrete, so that Pr{Y > 48} and Pr{Y = 48} would
differ somewhat from each other. In cases where this discrepancy is important, the |
computation can be refined to take into account the discontinuity of the measured -
distribution (see the optional Section 4.5). '

Length
(a)

Inverse Reading of Table 3

In determining facts about a normal distribution, it is sometimes necessary to read

Table 3 in an “inverse” way—that is, to find the value of z corresponding to a given
area rather than the other way around. For example, suppose we want to find the
value on the Z scale that cuts off the top 2.5% of the distribution. This numberis
1.96, as shown in Figure 4.18. '

Area=.9750

Area =.0250

Figure 4.18 Area under the

normal curve above 1.96 0 1.96 z
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We will find it helpful, for future reference, to introduce some notation. We
use the notation Z, to denote the number such that Pr{Z < Z,} =1 — a and
Pr{Z > Z,} = a, as shown in Figure 4.19. Thus, Z s = 1.96.

Area=1-o

Figure 4.19 Area under the
normal curve above a

We often need to determine a Z, value when we want to determine a
percentile of a normal distribution. The percentiles of a distribution divide the dis-
tribution into 100 equal parts, just as the quartiles divide it into four equal parts
[from the Latin roots centum (hundred) and quartus (fourth)]. For example, sup-
pose we want to find the 70th percentile of a standard normal distribution. That
means that we want to find the number Z 5, that divides the standard normal dis-
tribution into two parts: the bottom 70% and the top 30%. As Figure 4.20 illustrates,
we need to look in Table 3 for an area of .7000. The closest value is an area of
6985, corresponding to a z value of .52. Thus, Z 5, = .52.

Area=.70

Figure 4.20 Determining the
70th percentile of a normal
0 .52 Z  distribution

Lengths of Fish.

(a) Suppose we want to find the 70th percentile of the fish length distribu-
tion of Example 4.5. Let us denote the 70th percentile by y*. By definition,
y" is the value such that 70% of the fish lengths are less than y* and 30%
are greater, as illustrated in Figure 4.21.

Example 4.6

Figure 4.21 Determining the
70th percentile of a normal
distribution, Example 4.6(a)
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To find y* we use the value of Z 3y = .52 that we just determined. Nexj
we convert this z value to the ¥ scale. We know that the if we were giver
the value of y*, we could convert it to a standard normal (z scale) and the

result would be .52. Thus, from the standardization formula we obtain the
equation

y' — 54
4.5

52 =

which can be solved to give y* = (:52) (4.5) + 54 = 56.3. The 70th per-
centile of the fish length distribution is 56.3 mm.

(b) Suppose we want to find the 20th percentile of the fish length distribu- |
tion of Example 4.5. Let us denote the 20th percentile by y*. By definition, |

y* is the value such that 20% of the fish lengths are less than y*and 80% |
are greater, as illustrated in Figure 4.22. ‘

Figure 4.22 Determining the
20th percentile of a normal y 54 Y
distribution, Example 4.6(b) -84 0 Z

To find y* we first determine the value of Z g, which is the 20th percentile
in the Z scale. As Figure 4.22 illustrates, we need to look in Table 3 for an
area of .2000. The closest value is an area of .2005 , corresponding to

z = —.84.The next step is to convert this z value to the Y scale. From the
standardization formula we obtain the equation

y' — 54
4.5

~84 =

which can be solved to give y* = (—.84)(4.5) + 54 = 50.2. The 20th per-
centile of the fish length distribution is 50.2 mm. |

[ 44
‘ i
3 ’ Problem-Solving Tip. In solving problems that require the use of Table 3,a sketch
I%[ of the distribution (as in Figures 4.14-4.17 and 4.20-4.22) is a very handy aid to
'3 straight thinking, B
. Computer note: Computer software can be used to find normal probabli- | 4.5
il

ties. For example, in Example 4.5, part (a), we found that the percentage of fish less |
’ than 60 mm long, for a population with mean length 54 mm and standard devia- |
tion 4.5 mm, is 90.82%. The statistical package MINITAB has a built-in version of
a standard normal table (Table 3), which can be used to find this percentage. The

following command, which makes use of a “cumulative distribution function” (cdf),
will produce the percentage
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MTB > CDF 60;
SUBC > NORMAL 54 4.5,

(Note that MINITAB returns an answer of 9088, which differs slightly from the
answer of .9082 found in Example 4.5. This is due to the fact that MINITAB car-
ries out calculations to four decimal places, whereas we rounded off to the second
decimal place when calculating the value of z in Example 4.5.)

MINITAB can also be used to find percentiles. In Example 4.6, part (a), we found
that the 70th percentile of the fish length distribution is 56.3 mm. To find this value

using MINITAB, we use the “inverse cumulative distribution function” (invcdf),
as follows:

MTB > INVCDF .7;
SUBC > NORMAL 54 4.5.

Exercises 4.1-4.16
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4.1 Suppose a certain population of observations is normally distributed. What per-
centage of the observations in the population

(a) are within +1.5 standard deviations of the mean?
(b) are more than 2.5 standard deviations above the mean?
(c) are more than 3.5 standard deviations away from (above or below) the mean?

4,2 (a) The 90th percentile of a normal distribution is how many standard deviations
above the mean?

(b) The 10th percentile of a normal distribution is how many standard deviations
below the mean?

4.3 The brain weights of a certain population of adult Swedish males follow approxi-
mately a normal distribution with mean 1,400 g and standard deviation 100 g.°
What percentage of the brain weights are

(a) 1,500 g or less?

(b) between 1,325 and 1,500 g?
(c) 1,325 g or more?

(d) 1,475 g or more?

(e) between 1,475 and 1,600 g?
(f) between 1,200 and 1,325 g?

4.4 Let Y represent a brain weight randomly chosen from the population of Exer-
cise 4.3. Find

(a) Pr{Y = 1,325}
(b) Pr{1,475 < Y = 1,600}

4.5 In an agricultural experiment, a large uniform field was planted with a single vari-
ety of wheat. The field was divided into many plots (each plot being 7 X 100 ft)
and the yield (Ib) of grain was measured for each plot. These plot yields followed
approximately a normal distribution with mean 88 Ib and standard deviation 7 1b.7
What percentage of the plot yields were e

(a) 801b or more?
(b) 90 Ib or more?
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(c) 751bor less?

(d) between 75 and 90 1b?
(e) between 90 and 100 1b?
(f) between 75 and 80 1b?

4.6 Refer to Exercise 4.5. Let Y represent the yield of a plot chosen at random from i
the field. Find

(a) Pr{Y > 90}
(b) Pr{75 < ¥ < 90}

4.7 Consider a standard normal distribution, Z. Find

(a) Zy
(b) Z5s
(©) Zys
(d) Zy

4.8 For the wheat-yield distribution of Exercise 4.5 find

(a) the 65th percentile
(b) the 35th percentile

4.9 The serum cholesterol levels of 17-year-olds follow a normal distribution with mean
176 mg/dLi and standard deviation 30 mg/dLi. What percentage of 17-year-olds
have serum cholesterol values

(a) 186 or more?

(b) 156 or less?

(c) 216 or less?

(d) 121 or more?

(e) between 186 and 216?
(f) between 121 and 156?
(g) between 156 and 186?

4.10 Refer to Exercise 4.9. Suppose a 17-year-old is chosen at random and let Y be the
person’s serum cholesterol value. Find

(a) Pr{Y = 180}
(b) Pr{180 < Y < 210}
4.11  For the serum cholesterol distribution of Exercise 4.9, find
(a) the 80th percentile Many |
(b) the 20th percentile In this
CUrve |
4.12 When red blood cells are counted using a certain electronic counter, the standard 1
deviation (SD) of repeated counts of the same blood specimen is about .8% of
the true value, and the distribution of repeated counts is approximately normal ® 2 ab
For example, this means that if the true value is 5,000,000 cells/mm?, then the SD ; at
is 40,000.
1 at
(a) If the true value of the red blood count for a certain specimen is 3
5,000,000 cells/mm?’, what is the probability that the counter would give a read- ] We ca
ing between 4,900,000 and 5,100,000? data.
(b) If the true value of the red blood count for a certain specimen is p, what is the ‘; _
probability that the counter would give a reading between .98u and 1.024.? L Serur
(c) A hospital lab performs counts of many specimens every day. For what per- _ :‘ mean

centage of these specimens does the reported bl86d count differ from the cor-
rect value by 2% or more?
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The amount of growth, in a 15-day period, for a population of sunflower plants
was found to follow a normal distribution with mean 3.18 cm and standard devia-
tion 0.53 cm.” What percentage of plants grow

(a) 4 cm or more?
(b) 3 cmor less?
(c) between 2.5 and 3.5 cm?

Refer to Exercise 4.13. In what range do the middle 90% of all growth values lic?

For the sunflower plant growth distribution of Exercise 4.13, what is the 25th
percentile?

Many cities sponsor marathon races each year. The following histogram shows the
distribution of times that it took for 3,700 runners to complete the Rome marathon
in 1996, with a normal curve superimposed. The fastest runner completed the 26.3-
mile course in 2 hours and 12 minutes, which is 132 minutes. The average time was
230 minutes, and the standard deviation was 36 minutes. Use the normal curve to
answer the following questions.

(a) What percentage of times were greater than 200 minutes?

(b) What is the 60th percentile of the times?

(c) Notice that the normal curve approximation is fairly good except around
the 240 minute mark. How can we explain this anomalous behavior of the
distribution?

Y~

[ I I | [ I
130 160 190 220 250 280 310

4.4 ASSESSING NORMALITY

Many statistical procedures are based on having data from a normal population.
In this section we consider ways to assess whether it is reasonable to use a normal
curve model for a set of data and, if not, how we might proceed.

Recall from Section 4.3 that if the variable Y follows a normal distribution, then

about 68% of the y’s are within +1 SD of the mean;
about 95% of the y’s are within +2 SDs of the mean;
about 99.7% of the y’s are within 4+3 SDs of the mean.

We can use these facts as a check of how closely a normal curve model fits a set of
data.

Serum Cholesterol. For the serum cholesterol data of Example 4.1 the sample
mean is 176 and the sample SD is 30. The interval “mean + SD”is  y.

(176 — 30,176 + 30) or (146,206)

Example 4.7
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Example 4.8
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Figure 4.23 Moisture content
in freshwater fruit

This interval contains 659 of the 953 observations, or 69.2% of the data. Likewise,
the interval

(176 — 230,176 + 2-30) is (116,236)
which contains 901, or 94.5%, of the 953 observations. Finally, the interval
(176 — 330,176 + 3-30) is (86,266)
which contains 951, or 99.8%, of the 953 observations. The three observed percentages
69.2%,94.5%, and 99.8%
agree quite well with the theoretical percéntages of
» 68%,95%, and 99.7%.
This agreement supports the claim that serum cholesterol levels for 17-year-olds

have a normal distribution. This reinforces the visual evidence of Figure4.1. N

Moisture Content. Moisture content was measured in each of 83 freshwater
fruit." Figure 4.23 shotws that this distribution is strongly skewed to the left. The
sample mean of these data is 80.7 and the sample SD is 12.7. The interval

(80.7 — 12.7,80.7 + 12.7)
contains 70, or 84.3%, of the 83 observations. The interval
(80.7 — 2-12.7,80.7 + 2+12.7)
contains 78, or 93.8%, of the 83 observations. Finally, the interval
(80.7 — 3-12.7,80.7 + 3-12.7)
contains 80, or 96.4%, of the 83 observations. The three percentages
84.3%, 93.8%, and 96.4%
differ from the theoretical percentages of
68%, 95%, and 99.7 %
because the distribution is far from being bell-shaped. This reinforces the visual
evidence of Figure 4.23. |
Normal Probability Plots

A normal probability plot is a special statistical graph that is used to assess
normalilty. We present this statistical tool with an example using the heights (in
inches) of a sample of 11 women, sorted from smallest to largest:

61,62.5,63, 64, 64.5, 65, 66.5, 67, 68, 68.5, 70.5

Based on these data, does it make sense to use a normal curve to model the dis-
tribution of women’s heights? Figure 4.24 shows a histogram of the data with a
normal curve superimposed, using the sample mean of 65.5 and the sample stan-
dard deviation of 2.9 as the parameters of the normal curve. This histogram is fair-
ly symmetric, but when we have a small sample it can B hard to tell the shape of
the population distribution by looking at a histogram.
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~—

1 I | | Figure 4.24 Histogram of the
60.0 62.5 65.0 675 70.0 725  heights of 11 women

A normal probability plot is a tool to help assess whether a population is
normal. Most statistical computer packages provide normal probability plots. Figure
4.25 shows a normal probability plot for the height data.

70.0 —
675 —

65.0 — .

Height

62.5 — .

-1 0 1 Figure 4.25 Normal probability
Normal score plot of the height data

When we look at a normal probability plot, we hope to see a straight line.
It the points fall along a straight line, then we infer that the population distribu-
tion is normal. Many statistical procedures are based on the condition that the
data came from a normal population, so it is important to be able to assess nor-
mality. It is easier to assess whether or not a graph of points is straight than whether
or not a histogram is bell-shaped.

How Normal Probability Plots Work

In our sample the median height is 65 inches and the sample mean height is 65.5
inches. If the population distribution of heights is N(65.5,2.9) then the popula-
tion median is 65.5 (the same as the population mean of 65.5). If we were to take
several random samples of size 11 from a N (65.5, 2.9) distribution, then we would
expect the average of the sample medians to be 65.5.

The shortest woman in our sample is 61 inches tall. If we were to take sev-
eral random samples of size 11 from a N(65.5, 2.9) distribution, on average how
small would the smallest value be? That is, if heights of women really follow a nor-
mal distribution, with mean 65.5 and standard deviation 2.9, then how short would
we expect the shortest woman in a sample of size 11 to be? Unlike the case of the
median, this is not a simple question to answer. ,

One way to think about this issue is to consider what would happen if we
took repeated samples from a N (0, 1) distribution. We know thatif Y ~ N(u, o)

Y —
then Z = i

>

~ N(0, 1),so that Yand Z are related by the linear relationship

Y=uwn+oZ

The expected values of the ordered observations in a sample of size 11 from
aN(0, 1) distribution are called “normal scores.” Using computer software, we can
find that the first normal score—the expected value of the smallest observation—

135
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Figure 4.26 Normal probability
plots for normal data

is approximately —1.56.* This means that if we take repeated samples of size 11
from a N(0, 1) distribution and find the smallest value in each sample, these small-
est values average approximately —1.56. By symmetry, the largest normal score—
the expected value of the largest observation from a N(0, 1) distribution—is 1.56.
The only normal score that we can easily find without using computer software is
the 6th normal score—the expected value of the median of 11 observations from a
N(0, 1) distribution—which is 0 [since the N(0, 1) curve is symmetric about 0].
To make a normal probability plot, we find all 11 normal scores and match
them with the 11 data values, creating 11 ordered pairs of the form (normal score,
observed height), which we then graph."! Of course, we would want to use a com-
puter (or a graphing calculator) to carry out this process. If the points in the plot
show a linear pattern, then we infer that there is a linear relationship between Y and
Z,of the formY = p + oZ. Since we know that Z has a N(0, 1) distribution, we
infer that Y also has a normal distribution, with mean x and standard deviation o.
Of course, even when we sample from a perfectly normal distribution, we
have to expect that there will be some variability between the sample we obtain
and the theoretical normal scores. Figure 4.26 shows six normal probability plots
based on samples taken from a N (0, 1) distribution. Notice that all six plots show
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* This value was found using the program Data Desk. Data Desk calcyjates the ith normal score
as Zy_,,where a = (i — 1/3)/(n + 1/3). That is, the ith normal score is the value on the Z
scale that cuts off the bottom area under the Z curve of (i — 1/3)/(n + 1/3). Some other
software programs use slightly different conventions for calculating normal scores.
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a general linear pattern. It is true that there is a fair amount of “wiggle” in some
of the plots, but the important feature of each of these plots is that we can draw a
line that follows the majority of the data points.
If the points in the normal probability plot do not fall more or less along a
straight line, then we infer that the population is not normal. For example, if the
top of the plot bends up, that means the y values at the upper end of the distribu-
tion are too large for the distribution to be bell shaped (i.e., the distribution is
skewed to the right or has large outliers, as in Figure 4.27).

ly skewed to the left.
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If the bottom of the plot bends down, that means the y values at the lower
end of the distribution are too small for the distribution to be bell shaped (i.e., the
distribution is skewed to the left or has small outliers). Figure 4.28 shows the dis-
tribution of moisture content in freshwater fruit, from Example 4.8, which is strong-
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If a distribution has a very long left-hand tail and a long right-hand tail,
when compared with a normal curve, then the normal probability plot will have
something of an S shape. Figure 4.29 shows such a distribution.
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Figure 4.27 Histogram and
normal probability plot of a
distribution that is skewed to
the right

Figure 4.28 Histogram and
normal probability plot of a
distribution that is skewed to
the left

Figure 4.29 Histogram and
normal probability plot of a
distribution that has long tails
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[

| Example 4.9

|
|
!

Sometimes the same value shows up repeatedly in a sample, due to round- |
ing in the measurement process. This leads to granularity in the normal probabil- :
ity plot, as in Figure 4.30, but this does not stop us from inferring that the underlying |}

distribution is normal.

6.25 — - -
= 5.00 _-“
2 —
< 375 - -
P50
3 | | | Figure 4.30 Normal probability
-1.25 0.00 1.25 plot of lengths of 48 seeds from
n scores freshwater fruit °

Computer note: Creating a normal probability plot requires a great deal of .

computation and thus is almost always done with the aid of technology. In the sta-
tistical package MINITAB, if the data are stored in column 1, then the following
command will produce a normal probability plot:

Note that MINITAB puts the data, Y, on the horizontal axis and normal proba-
bilities on the verical axis, rather than using the approach presented here (with
the data on the vertical axis). Nonetheless, the basic idea remains the same: Cre-
ate the plot and look to see if there is a linear pattern.

CM‘I‘B >% NormPlot C1

Transformations for Nonnormal Data

A normal probability plot can help us assess whether or not the data came from
a normal distribution. Sometimes a histogram or normal probability plot shows
that our data are nonnormal, but a transformation of the data gives us a symmet-
ric, bell-shaped curve. In such a situation, we may wish to transform the data and
continue our analysis in the new (transformed) scale.

Lentil Growth. Figures 4.31(a) and (b) show the distribution of the growth rate,
in cm per day, for a sample of 47 lentil plants.'”? This distribution is skewed to the
right. If we take the natural logarithm of each observation, we get a distribution
that is much more nearly symmetric. Figures 4.32(a) and (b) show that in log scale
the growth rate distribution is approximately normal. (In Figure 4.32 the natural
logarithm, log,, is used, but we could use any base, such as log;,, and the effect on
the shape of the distribution would be the same.) |

In general, if the distribution is skewed to the right, then one of the following
transformations should be considered:

VY, log Y

~|=
(]

1
7W—7

These t
left-har
more dr
a mildly
tion ma
in Exan
right-ha
If the d;
greater

Exerci:

4.17 |
1
]
i

4.18




e, due to round-
ormal probabil-
it the underlying

ormal probability

of 48 seeds from
{10

s a great deal of
ology. In the sta-
en the following

)

i normal proba-
nted here (with
s the same: Cre-

data came from
bility plot shows
yes us a symmet-
rm the data and

 the growth rate,
is skewed to the
et a distribution
v that in log scale
- 4.32 the natural
and the effect on

]
e of the following

20 - .
15 r
10 —
5 [
I I
0.0 0.9 1.8
Growth
15
10
5 e
] [
-3.2 -12 0.8
log (growth)

Growth

log (growth)

20

1.6

0.8 —

04 —

SECTION 4.4 ASSESSING NORMALITY 139

H.,.f-'—

| I |

0.75 —
0.00 —
-0.75 I~
-1.50 —
225

-1.25  0.00 125
n scores

-125 000 125
nscores

These transformations will pull in the long right-hand tail and push out the short
left-hand tail, making the distribution more nearly symmetric. Each of these is
more drastic than the one before. Thus, a square root transformation will change
a mildly skewed distribution into a symmetric distribution, but a log transforma-
tion may be needed if the distribution is more heavily skewed. For example, we saw
in Example 2.42 (in Section 2.7) how a square root transformation pulls in a long
right-hand tail and how a log transformation pulls in the right-hand tail even more.
If the distribution of a variable Y is skewed to the left, then raising Y to a power

greater than 1 can be helpful.

Exercises 4.17-4.21

Figures 4.31 (a) and 4.31 (b)
Histogram and normal
probability plot of growth rates
of 47 lentil plants'?

Figures 4.32 (a) and 4.32 (b)
Histogram and normal
probability plot of the
logarithms of the growth rates
of 47 lentil plants

4.17

4.18

In Example 4.2 it was stated that shell thicknesses in a population of eggs follow a
normal distribution with mean u = .38 mm and standard deviation o = .03 mm,
Use the 68%-95%-99.7% rule to determine intervals, centered at the mean, that
include 68%,95%, and 99.7% of the shell thicknesses in the distribution.

The following three normal probability plots, (a), (b), and (c), were generated from
the distributions shown by histograms I, II, and III. Which normal probability plot
goes with which histogram? How do you know? e
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4,19 The June precipitation totals, in inches, for the city of Cleveland, Ohio for the years
1964-1978 are given in the following table together with the corresponding normal
scores.”® (Note that the data are given in chronological order, so the normal scores
are not listed in increasing order.) Use these values to create a normal probability
plot of the data. Do you conclude that the distribution is normal?

Year Rainfall Normal score BE Althou
1964 2.06 ~0.94 S commo
1965 3.05 -0.52 l  of adis
1966 1.83 -1.23 l outintr
1967 1.17 -171 L ot dist
1968 2.32 -0.71 n
1969 4.61 0.52 g Dhovevw
1970 4.98 0.94 | thecon
1971 3.79 0.16 P lowing
1972 9.06 171 4
1973 6.72 1.23 F Litter!
1974 3.57 -0.16 B  berofl
1975 4.10 0.33 B meani
1976 3.64 0.00 B withp
1977 4.91 0.71 | o
1978 3.30 -0.33 !

4.20 For each of the following normal probability plots, sketch the corresponding ,

histogram of the data. ‘
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4.21  The following normal probability plot was created from the times that it took 166
bicycle riders to complete the Stage 11 Time Trial, from Grenoble to Chamrousse,
France, in the 2001 Tour de France cycling race.
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(a) Consider the fastest riders. Are their times better than, worse than, or roughly
equal to the times one would expect the fastest riders to have if the data came
from a truly normal distribution?

(b) Consider the slowest riders. Are fheir times better than, worse than, or rough-
ly equal to the times one would expect the slowest riders to have if the data
came from a truly normal distribution?

4.5 THE CONTINUITY CORRECTION (OPTIONAL)

Although a normal curve theoretically represents a continuous distribution, it is
common practice to use a normal curve to describe approximately the distribution
of a discrete variable. Often the discreteness of the variable can be ignored with-
out introducing any serious error; indeed, in the computations of Section 4.3 we did
not distinguish between discrete and continuous variables. For greater accuracy,
however, we can take account of discreteness by applying a correction, known as
the continuity correction, when calculating areas under the normal curve, The fol-
lowing example illustrates the use of the continuity correction.

Litter Size. Table 4.1 shows the distribution of litter size (defined as the num-
ber of live young in the first litter) for a population of female mice; the population
mean is 7.8 and the standard deviation is 2.3." Figure 4.33 shows a normal curve
with u = 7.8 and o = 2.3, superimposed on the litter size distribution; the nor-
mal curve fits the distribution quite well.

.2’—

Example 4.10

Figure 4.33 Litter size
distribution and approximating
normal curve
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(a) Let us compare an actual population relative frequency with the rela-

tive frequency predicted by the normal curve. From Table 4.1, the per-
centage of litters with sizes between 5 and 10, inclusive, is

8.0 + 13.0 + 155 + 17.8 + 15.0 + 11.5 = 80.8%
In other words, if Y represents the size of a randomly selected litter, then
Pr{S =Y =10} = .808

This is the sum of the areas of the six histogram bars fromy = Stoy = 10.
What is the corresponding area under the normal curve? If we were to take
the approach shown in Section 4.3, we would find that

Pr{S=Y =10} = Pr{ 23 - 73

Pr{-122 < Z < 96}
= 8315 — 1112 = .7203

5-78 Y —pu 10—7.8}
< <

Q

However, this calculation gives the area between 5.0 and 10.0, which means
that it excludes the area for half of the histogram bar for y = 5 and half
of the histogram bar for y = 10. To adjust for the discreteness of Y, we
should calculate the area under the curve between y = 4.5 and y = 10.5,
which is shaded in Figure 4.33; the use of 4.5 instead of 5, and 10.5 instead
of 10, represents the continuity correction. Using Table 3, we have

Pr{5 =Y =10} = Pr{45 <Y < 10.5}
— Y — —
P {4.5 7.8 - B 10.5 7.8}

2.3 o 2.3
~ Pr{—143 < Z < 1.17} = .8790 — .0764 = .8026

Thus, the value found from the normal approximation with the continu-
ity correction (.8026) is quite close to the actual value (.808).

(b) The continuity correction is especially important if we want to consider the

probability of a single Y value. For example, the normal approximation to
Pr{Y = 10} is the area from y = 9.5 to y = T0.5, which is shaded in
Figure 4.34. This area can be calculated to be

(c)
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5-78 Y- 5_7
Pr{9.5<Y<1O.5}=Pr{95 78 _Y —p _ 105 78}

23 g 2.3
Pr{.74 < Z < 1.17} = 8790 — .7704
.1086 or 10.9%
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This is reasonably close to the actual value of 11.5% (from Table 4.1). The
normal approximation without the continuity correction would be the
area from y = 10 to y = 10, which is zero—not a sensible answer.
Suppose we want to find the probability that Y is at least 9, that is,
Pr{Y = 9}. Thinking about the raw data and the histogram, we see that
Pr{Y = 9} = Pr{Y =9} + Pr{y = 10} + ... +Pr{Y = 15}.Thatis,
we want to include the histogram bar for Y = 9in our calculation, but we
want to leave out the histogram bar for ¥ = 8. Thus we draw the line
halfway between 8 and 9, at 8.5 (see Figure 4.35):

Y-p_ 85-7.
Pr{Y29}=Pr{Y>8.5}=Pr{ —£> 3 8}

~Pr{Z > 30} =1 — .6179 = 3821
This agrees quite well with the actual value of 38% found by adding the per-

cent frequencies in Table 4.1 from 9 through 15. ]
2
2
21t
Q0
a
0

(7.
15 Litter size

Figure 4.34 Litter size
distribution and approximating
normal curve

Figure 4.35 Litter size
distribution and approximating
normal curve '
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In Example 4.10, the continuity correction always involved an adjustment
of +.5, for example from 5 to 4.5 or from 10 to 10.5. This was due to the fact that
the raw data were integer valued, so that when a histogram was made using the |
smallest bin width possible for the data (a width of 1), one-half of the bin width
was .5. This will often be the case, but not always. For example, if we have data
that are recorded in units of 100 (e.g., 100,200, 300, ... ), then applying a continu- !
ity correction would involve an adjustment of £50. ‘

Whenever a discrete distribution is approximated by a normal curve, the |
continuity correction can be used to obtain more accurate values for predicted §
relative frequencies. This applies not only to variables that are inherently discrete !
(such as litter size) but also to variables that are actually continuous but are mea-
sured on a discrete scale because of rounding. For instance, blood pressure is a |
{ continuous variable, but it is usually measured to the nearest mm Hg, so that the
| actual measurements fall on a discrete scale. If the “spaces” between the possible
values of a variable are small compared with the standard deviation of the distri-
bution, then the continuity correction has little effect. For instance, if the standard |
deviation of a distribution of blood pressures is 20 mm Hg, then (because 1 is small
compared to 20) for most purposes the continuity correction for this distribution
could be ignored.

skewed,
similarly

Exercises 4.22-4.25

even a
4.22  In genetic studies of the fruitfly Drosophila melanogaster, one variable of interest (2.13(b)
is the total number of bristles on the ventral surface of the fourth and fifth ab- _ \
dominal segments. For a certain Drosophila population,’ the bristle count follows specific
approximately a normal distribution with mean 38.5 and standard deviation 2.9. | 3" P '
Find (using the continuity correction) 1 normal
o . ¥ method
(a) the percentage of flies with 40 or more bristles i ) r
(b) the percertage of flies with exactly 40 bristles ‘ 1 |
(c) the percentage of flies whose bristle count is between 35 and 40, inclusive s El;ltlg’rli
4.23  Refer to the fruitfly population of Exercise 4.22. Let Y be the bristle count of a fly 4 tributic
chosen at random from the population. 1 cal dists
(a) Use the continuity correction to calculate Pr{35 < Y = 40}. m of datz
(b) Calculate Pr{35 = Y = 40} without the continuity correction and compare - mately
with the result of part (a). in the s

4,24 The litter sizes of a certain population of female mice follow approximately a nor- ]
mal distribution with mean 7.8 and standard deviation 2.3 (as in Example 4.10). Let } Su pp\
Y represent the size of a randomly chosen litter. Use the continuity correction to '
find approximate values for each of the following probabilities:
(a) Pr{Y = 6}
(b) Pr{Y = 6}
(c) Pr{i8 =Y =11}

4.26

425 In a certain population of healthy people the mean total protein concentration in
the blood serum is 6.85 g/dLi, the standard deviation is .42 g/dLi, and the distrib-
ution is approximately normal.' Let Y be the total protein value of a randomly se-
lected person, as given by an instrument that reports the value to the nearest !
.1 g/dLi. Use the continuity correction to calculate

(a) Pr{Y = 6.5} e~
(b) Pr{6.5 =Y = 8.0}
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l 46 PERSPECTIVE

,‘\’ The normal distribution is also called the Gaussian distribution, after the German
' mathematician K. F. Gauss. The term normal, with its connotations of “typical” or
b “usual,” can be seriously misleading. Consider, for instance, a medical context,
} where the primary meaning of “normal” is “not abnormal.” Thus, confusingly, the
| phrase “the normal population of serum cholesterol levels” may refer to choles-
terol levels in ideally “healthy” people, or it may refer to a Gaussian distribution
such as the one in Example 4.1. In fact, for many variables the distribution in the
normal (nondiseased) population is decidedly not normal (i.e., not Gaussian).
The examples of this chapter have illustrated one use of the normal
distribution—as an approximation to naturally occurring biological distributions.
If a natural distribution is well approximated by a normal distribution, then the

normal curve, the
ues for predicted
herently discrete
lous but are mea-
ood pressure is a
m Hg, so that the
veen the possible

tion of the distri- ; mean and standard deviation provide a complete description of the distribution:
e, if the standard ] i The mean is the center of the distribution, about 68% of the values are within 1
be,cause 1is small 1 | standard deviation of the mean, about 95% are within 2 standard deviations of

the mean, and so on.

As noted in Section 2.6, the 68% and 95% benchmarks can be roughly ap-
plicable even to distributions that are rather skewed. (But if the distribution is
skewed, then the 68 % is not symmetrically divided on both sides of the mean, and
similarly for the 95%.) However, the benchmarks do not apply to a distribution

S (cven a symmetric one) for which one or both tails are long and thin [see Figures
variable of i.nterest 2.13(b) and 2.20].
:iuilth and tﬁfﬁﬁ ab- B We will see in later chapters that many classical statistical methods are
ds ;gou.n (OTIOWS S spccifically designed for, and function best with, data that have been sampled from
ard deviation 2.9. | ; . ; . . .
S normal populations. We will further see that in many practical situations these
methods work very well also for samples from nonnormal populations.
; The normal distribution is of central importance in spite of the fact that
nd 40, inclusive f i many, perhaps most, naturally occurring biological distribytions could be describfed
1 better by a skewed curve than by a normal curve. A major use of the normal dis-
tribution is not to describe natural distributions, but to describe certain theoreti-
§B caldistributions, called sampling distributions, that are used in the statistical analysis
0},‘ M of data. We will see in Chapter 5 that many sampling distributions are approxi-
tion and compare » mately normal; it is this property that makes the normal distribution so important
in the study of statistics.
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Supplementary Exercises 4.26-4.45

4.26 The activity of a certain enzyme is measured by counting emissions from a
radioactively labeled molecule. For a given tissue specimen, the counts in consec-
utive 10-second time periods may be regarded (approximately) as repeated inde-
pendent observations from a normal distribution.!’ Suppose the mean 10-second

1 concentration in k| count for a certain tissue specimen is 1,200 and the standard deviation is 35. Let ¥
i, and the distrib- = denote the count in a randomly chosen 10-second time period. Find
> of a randomly se- : (a) Pr{Y = 1,250}

lue to the nearest

(b) Pr{Y = 1,175}
(©) Pr{1,150 < ¥ = 1,250}
(d) Pr{1,150 < Y = 1,175}
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4.27  The shell thicknesses of the eggs produced by a large flock of hens follow ap-
proximately a normal distribution with mean equal to .38 mm and standard devi-
ation equal to .03 mm (as in Example 4.2). Find the 95th percentile of the thickness
distribution.

4.28 Refer to the eggshell thickness distribution of Exercise 4.27. Suppose an egg is
defined as thin-shelled if its shell is -32 mm thick or less.

(a) What percentage of the eggs are thin shelled?

(b) Suppose a large number of eggs from the flock are randomly packed into
boxes of 12 eggs each. What percentage of the boxes will contain at least one
thin-shelled egg? (Hint: First find the percentage of boxes that will contain
no thin-shelled egg,)

4.29  The heights of a certain population of corn plants follow a normal distribution
with mean 145 cm and standard deviation 22 cm, 18 What percentage of the plant
heights are

(a) 100 cm or more?
(b) 120 cm or less? a4

(¢) between 120 and 150 cm? . 4.40
(d) between 100 and 120 cm?
(e) between 150 and 180 cm?
(f) 180 cm or more?

(g) 150 cm or less?

4.30 Suppose four plants are to be chosen at random from the corn plant population of
Exercise 4.29. Find the probability that none of the four plants will be more than

150 cm tall. 4.41
4.31  Refer to the corn plant population of Exercise 4.29. Find the 90th percentile of the

height distribution.
4.32  For the corn plant population described in Exercise 4.29, find the quartiles and the

interquartile range.
4.33  Suppose a certain population of observations is normally distributed. Find the value

of z* such that 95% of the observations in the population are between —z* and

+z*, on the Z scale. -

» 4.42

4.34  In the nerve-cell activity of a certain individual fly, the time intervals between
“spike” discharges follow approximately a normal distribution with mean 15.6 ms ,:
and standard deviation .4 ms (as in Example 4.3). Let Y denote a randomly selected i
interspike interval. Find

(@) Pr{Y > 15} 1 4.43
(b) Pr{Y > 16.5} “
(© Pr{15<Y < 16.5}
(d) Pr{15 < Y < 155}

4.44
4.35  For the distribution of interspike-time intervals described in Exercise 4.34, find the
quartiles and the interquartile range.

4.36 Among American women aged 20-29 years, 10% are less than 60.8 inches tall, 80% 4.45
are between 60.8 and 67.6 inches tall and 10% are more than 67.6 inches tal].'? As- ‘
suming that the height distribution can be adequately approximated by a normal
curve, find the mean and standard deviation of the dBtribution.
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SUPPLEMENTARY EXERCISES

The intelligence quotient (IQ) score, as measured by the Stanford-Binet 1Q test,
is normally distributed in a certain population of children. The mean IQ score is 100
points, and the standard deviation is 16 points.?’ What percentage of children in
the population have 1Q scores

(a) 140 or more?

(b) 80 or less?

(c) between 80 and 120?
(d) between 80 and 140?
(e) between 120 and 140?

Refer to the IQ distribution of Exercise 4.37. Let Y be the IQ score of a child
chosen at random from the population. Find Pr{80 = Y = 140}.

Refer to the IQ distribution of Exercise 4.37. Suppose five children are to be cho-
sen at random from the population. Find the probability that exactly one of them
will have an IQ score of 80 or less and four will have scores higher than 80. (Hint:
First find the probability that a randomly chosen child will have an IQ score of 80
or less.)

A certain assay for serum alanine aminotransferase (ALT) is rather imprecise. The
results of repeated assays of a single specimen follow a normal distribution with
mean equal to the true ALT concentration for that specimen and standard devia-
tion equal to 4 U/Li (see Example 2.14). Suppose that a certain hospital lab mea-
sures many specimens every day, performing one assay for each specimen, and that
specimens with ALT readings of 40 U/Li or more are flagged as “unusually high.”
If a patient’s true ALT concentration is 35 U/Li, what is the probability that his
specimen will be flagged as “unusually high”? ,

Resting heart rate was measured for a group of subjects; the subjects then drank 6
ounces of coffee. Ten minutes later their heart rates were measured again. The
change in heart rate followed a normal distribution, with a mean increase of 7.3
beats per minute and a standard deviation of 11.1.*! Let Y denote the change in
heart rate for a randomly selected person. Find

(a) Pr{Y > 10}
(b) Pr{Y > 20}
(c) Pr{5 <Y < 15}

Refer to the heart rate distribution of Exercise 4.41. The fact that the standard de-
viation is greater than the average and that the distribution is normal tells us that
some of the data values are negative, meaning that the person’s heart rate went
down, rather than up. Find the probability that a randomly chosen person’s heart
rate will go down. That is, find Pr{Y < 0}.

Refer to the heart rate distribution of Exercise 4.41. Suppose we take a random
sample of size 400 from this distribution. How many observations do we expect to
obtain that fall between 0 and 15?

Refer to the heart rate distribution of Exercise 4.41. If we use the 1.5+ IQR rule,
from Chapter 2, to identify outliers, how large would an observation need to be in
order to be labeled an outlier?

The following four normal probability plots, (a), (b), (c), and (d), were generéted
from the distributions shown by histograms I, II, and III and another histogram
that is not shown. Which normal probability plot goes with which his ogram? How
do you know? (There will be one normal probability plot that is not used.)
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1 The mean of the samp‘lmg*dlstnbﬁtion of ¥ is equal to the popu-
lation mean. In symbols,

My =
] d_S*tm?tI)’“tI}g 3 Standard deviation The standard deviation of the sampling distribution
] of Y is equal population standard deviation divided by the square

size. In symbols;

o
Oy = —=

Vn

E

jb e aware of two the population distribution of Y is normal, then the sampling

mean equals the ; \1s”tr\ibution of ¥ is normal; regardless of the sample size n.
nof ¥ is u. The 1 (b) Q_e_ntral Limit Theorem If nis large, then the sa_mpliflg c.listr‘ibution of A v >
the standard de- | 1 Y is approximately normal, even if the population distribution of Y is
t is, the standard | i not normal. : % %
3 ’ . N
(a) (b)
s follow a normal

Parts 1 and 2 of Theorem 5.1 specify the relationship between the mean Fi .
: .. . . igure 5.7 (a) The population
' and standard deviation of the population being sampled, and the mean and stan- distribution of a normally
' dard deviation of the sampling distribution of ¥. Part 3a of the theorem states distributed variable Y.
' that, if the observed variable Y follows a normal  distribution in the population (b) The sampling distribution of
being sampled, then the sampling distribution of Y is also a normal distribution. ¥ i samples from the
he sample mean These relationships are indicated in Figure 5.7. population of part (a).
indard deviation  § The following example illustrates the meaning of parts 1, 2, and 3(a) of
' Theorem 5.1.

= 30mg/dLi. If
on of the sample

ample mean, Y,

t ¥ would vary

p,the variability S Weights of Seeds. A large population of seeds of the princess bean Phaseotus
n vulgaris is to be sampled. The weights of the seeds in the population follow a nor-
S  mal distribution with mean # = 500 mg, and standard deviation & = 120 mg.” Sup-
pose now that a random sample of four seeds is to be weighed, and let Y represent

atical statistics; the mean weight of the four seeds. Then, according to Theorem 5.1, the sampling

 distribution of | distribution of Y will be a normal distribution with mean and standard deviation
tedbyoy),and SN a5 follows:

;ing distribution

mean, not the

and
ly, that we are i 120
ple without re- 1 o= _ 12V
get the right ; 7Y vr V4 60 mg
lled the finite _ Thus, on average the sample mean will equal 500, but the variability from one sam- _
spulation size - ple of size 4 to the next sample of size 4 is such that about two-thirds of the time T T T T T TT°Y
] Y will be between 500 — 60 and 500 + 60 (i.e., between 440 and 560). Likewise, 320 380 440 500 360 620 680
. Thus, if 7 is allowing for 2 standard deviations, we expect that ¥ will be between 500 — 120 and Sample mean weight (mg)
1 and can be 500 + 120 about 95% of the time. The sampling distribution of ¥ is shown 1n Figure Figure 5.8 Sampling distri-

5.8; the ticks are 1 standard deviation apart.

B bution of ¥ for Example 5.9
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500 550
0 .83

Figure 5.9 Calculation of
Pr{Y > 550} for Example 5.9

N =

The sampling distribution of Y expresses the relative likelihood of the var-
ious possible values of ¥. For example, suppose we want to know the probability
that the mean weight of the four seeds will be greater than 550 mg. This probabil-
ity is shown as the shaded area in Figure 5.9. Notice that the value of y = 550 must
be converted to the Z scale using the standard deviation oy = 60, not o = 120:

¥y~ uy _ 550 — 500 _
oy 60

z= .83

From Table 3, z = .83 corresponds to an area of .7967. Thus, Py
ples of var
“thqt for lar
ﬁ;’llation me
is larger fo

of u, that i
on n.

Pr{¥ > 550} = Pr{Z > 83} = 1 — .7967
= 2033 ~ 20

This probability can be interpreted in terms of a meta-experiment as follows: If we
were to choose many random samples of four seeds each from the population,
then about 20% of the samples would have a mean weight exceeding 550 mg.

Part 3(b) of Theorem 5.1 is known as the Central Limit Theorem. The Cen-
tral Limit Theorem states that, no matter what distribution Y may have in the pop-
ulation,* if the sample size is large enough, then the sampling distribution of Y
will be approximately a normal distribution.

The Central Limit Theorem is of fundamental importance because it can be
applied when (as often happens in practice) the form of the population distribution
is not known. It is because of the Central Limit Theorem (and other similar theo-
rems) that the normal distribution plays such a central role in statistics.

It is natural to ask how large a sample size is required by the Central Limit
Theorem: How large must # be in order that the sampling distribution of Y be well
approximated by a normal curve? The answer is that the required n depends on
the shape of the population distribution. If the shape is normal, any 7 will do. If the
shape is moderately nonnormal, a moderate n is adequate. If the shape is highly
nonnormal, then a rather large n will be required. (Some specific examples of this - ‘
phenomenon are given in the optional Section 5.4.)

Remark: We stated in Section 5.1 that the theory of this chapter is valid if
the sample size is small compared with the population size. But the Central Limit
Theorem is a statement about large samples. This may seem like a contradiction: A
How can a large sample be a small sample? In practice, there is no contradiction. | | T
In a typical biological application, the population size might be 10%asample of sizc SR 30 |
n = 100 would be a small fraction of the population but would nevertheless be "
large enough for the Central Limit Theorem to be applicable (in most situations).

Es

Dependence on Sample Size The mean

1 i sample, bt

Consider the possibility of choosing random samples of various sizes from the . ple provid
same population. The sampling distribution of ¥ will depend on the sample size ] !

n in two ways. First, its standard deviation is B Populat

oy = o : t  In thinkir

Vn SR different

Yinthegp

* Technically, the Central Limit Theorem requires that the distribﬁion of Y have a standard b pling dist

deviation. In practice this condition is always met. / | are sumn
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d this is inversely proportional to V7. Second, if the population distribution is
 not normal, then the shape of the sampling distribution of ¥ depends on n, being
§ more nearly normal for larger n. However, if the population distribution is normal,

f then the sampling distribution of Y is always normal, and only the standard
| deviation depends on ».

The more important of the two effects of sample size is the first: Larger n

gives a smaller value of oy and consequently a smaller expected sampling error
if y is used as an estimate of u. The following example illustrates this effect for
| sampling from a normal population.

. Weights of Seeds. Figure 5.10 shows the sampling distribution of ¥ for sam-
b ples of various sizes from the princess bean population of Example 5.9. Notice
| that for larger n the sampling distribution is more concentrated around the pop-
i ulation mean . = 500 mg. As a consequence, the probability that Y is close to it
. islarger for larger n. For instance, consider the probability that ¥ is within +50 mg

of u, that is, Pr{450 =Y = 550}. Table 5.6 shows how this probability depends

- onn. [ |

Example 5.10

n=4
(¢}
L -60
vn
T T I I T
300 400 500 600 700
(a)
n=9 n=16
[e) (¢}
2_=40 —=—=30
¥ s
T T T | —Y T I | T
300 400 500 600 700 300 400 500 600 700
®) (©

Example 5.10 illustrates how the closeness of to ¥ to 4 depends on sample size.
The mean of a larger sample is not necessarily closer to it than the mean of a smaller
sample, but it has a greater probability of being close. It is in this sense that a larger sam-
ple provides more information about the population mean than a smaller sample.

Populations, Samples, and Sampling Distributions i

In thinking about Theorem 5.1, it is important to distinguish clearly among three
different distributions related to a quantitative variable Y: (1) the distribution of
Y in the population; (2) the distribution of Y in a sample of data, and (3) the sam-
pling distribution of Y. The means and standard deviations of thece dictrihig anc

Figure 5.10 Sampling
distribution of Y for
various sample sizes n
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The following example illustrates the distinction among the three distributions.

m Weights of Seeds. For the princess bean population of Example 5.9, the pop-

Figure 5.11 Three distributions
related to Y = seed weight of
princess beans. (a) Population
distribution of Y;

(b) Distribution of 25
observations of Y; (c) Sampling
distribution of ¥ for n = 25

ulation mean and standard deviation are . = 500 mg and o = 120 mg; the popu-
lation distribution of Y = weight is represented in Figure 5.11(a). Suppose we
weigh a random sample of n = 25 seeds from the population and obtain the data
in Table 5.8.

1 =500
c=120
Y
I I R B iy = 500
100 300 500 700 900 oy =24
(a)
y=5261
s=113.7
= ' %
[ | I [ [ | I [ [ [
300 500 700 300 500 700
(b) ©

For the data in Table 5.8, the sample mean is y = 526.1 mg and the sample
standard deviation is s = 113.7 mg. Figure 5.11(b) shows a histogram of the data;
this histogram represents the distribution of Y in the sample. The sampling distri-
bution of Y is a theoretical distribution that relates not to the particular sample
shown in the histogram but rather to the meta-experiment of repeated samples of
size n = 25. The mean and standard deviation of the sampling distribution are

py = 500mg and oy = 120/\/2—5'“= 24 mg

the sa;
there i
there i
. sampl
| sampli
i closely
i value |

100

- V=5
s=11

100

V=4
s=11
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| The sampling distribution is represented in Figure 5.11(c). Notice that the distri-
i butions in Figures 5.11(a) and (b) are more or less similar; in fact, the distribution
I in (b) is an estimate (based on the data in Table 5.8) of the distribution in (a). By
| contrast, the distribution in (c) is much narrower because it represents a distribu-
tion of means rather than of individual observations. ]

Other Aspects of Sampling Variability

I The preceding discussion has focused on sampling variability in the sample mean,
v ~ Y. Two other important aspects of sampling variability are (1) sampling variability
4 E in the sample standard deviation, s; and (2) sampling variability in the shape of
the sample, as represented by the sample histogram. Rather than discuss these
aspects formally, we illustrate them with the following example.

Weights of Seeds. In Figure 5.11(b) we displayed a random sample of 25
observations from the princess bean population of Example 5.9;now we display
in Figure 5.12 eight additional random samples from the same population. (All
nine samples were actually simulated using a computer.) Notice that, even though
the samples were drawn from a normal population [pictured in Figure 5.11(a)],
there is very substantial variation in the forms of the histograms. Notice also that
there is considerable variation in the sample standard deviations. Of course, if the
sample size were larger (say, n = 100 rather than n = 25), there would be less
sampling variation; the histograms would tend to resemble a normal curve more
closely, and the standard deviations would tend to be closer to the population

value (o = 120). |
nnlEln !—l—]——’_ﬂ—\ - %
I | I I [ | I I
100 400 700 100 400 700 100 400 700
=500 (a) =451  (b) =491  (c)
s=112 s=109 s=106 '
I [ [ I [ [ I [ [
100 400 700 100 400 700 100 400 700
v =477 (d) ¥=501 (e) ¥ =479 )
s=111 s=129 s =98
T ] _‘ — T | i Figure 5.12 Eight random
100 400 700 100 400 700 samples, each of size n = 25,
7=488 (g 7 =473 (h) from a normal population with
5s=80 s=108 p = 500and o = 120
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i Exercises 5.11-5.28

o
.
/

L
o

5.11 (Sampling exercise) Refer to Exercise 3.1.The collection of 100 ellipses shown there
can be thought of as representing a natural population of the organism C. ellipticus.
Use your judgment to choose a sample of five ellipses that you think should be rea-
sonably representative of the population. (In order to best simulate the analogous
judgment in a real-life setting, you should make your choice intuitively, without any
detailed preliminary study of the population.) With a metric ruler, measure the length
of each ellipse in your sample. Measure only the body, excluding any tail bristles; mea-
surements to the nearest millimeter will be adequate. Compute the mean and standard
deviation of the five lengths. To facilitate the pooling of results from the entire class,
express the mean and standard deviation in millimeters, keeping two decimal places.

5.12  (Sampling exercise) Proceed as in Exercise 5.11, but use random sampling rather
than “judgment” sampling. To do this, choose 10 random digits (from Table 1 or
your calculator). Let the first 2 digits be the number of the first ellipse that goes into
your sample, etc. The 10 random digits will give you a random sample of five ellipses.

5.13  (Sampling exercise) Proceed as in Exercise 5.12, but choose a random sample of
20 ellipses.

5.14 Refer to Exercise 5.12. The following scheme is proposed for choosing a sample of
5 ellipses from the population of 100 ellipses. (i) Choose a point at random in the
ellipse “habitat” (that is, the figure); this could be done crudely by dropping a pencil
point on the page, or much better by overlaying the page with graph paper and
using random digits. (ii) If the chosen point is inside an ellipse, include that ellipse
in the sample, otherwise start again at step (i). (iii) Continue until five ellipses have
been selected. Explain why this scheme is not equivalent to random sampling. In |
what direction is the scheme biased—that is, would it tend to produce a y that istoo ]
large or a y that is too small?

5.15 The serum cholesterol levels of a population of 17-year-olds follow a normal 4
distribution with mean 176 mg/dLi and standard deviation 30 mg/dLi (as in Ex-  } L 5.20
ample 4.1). )

(a) What percentage of the 17-year-olds have serum cholesterol values between
166 and 186 mg/dLi?

(b) Suppose we were to choose at random from the population a large number of
groups of nine 17-year-olds each. In what percentage of the groups would the
group mean cholesterol value be between 166 and 186 mg/dLi?

(¢) If ¥ represents the mean cholesterol value of a random sample of nine 17-year-
olds from the population, what is Pr{166 =Y = 186}?

5.21

5.16 Animportant indicator of lung function is forced expiratory volume (FEV), which
is the volume of air that a person can expire in one second. Dr. Jones plans to

%Q measure FEV in a random sample of 7 young women from a certain population, | ] 5.2
% and to use the sample mean ¥ as an estimate of the population mean. Let E be the | i -
Q\*@ \ event that Jones’s sample mean will be within £100 mLi of the population mean.
| M‘M Assume that the population distribution is normal with mean 3,000 mLi and
. standard deviation 400 mLi.* Find Pr{E} if
(@ n=15 »
(b) n =60 - 5.2

(c) How does Pr{E} depend on the sample size? That is, as n increases, does Pr{ E'}
increase, decrease, or stay the same?

5.17 Refer to Exercise 5.16. Assume that the populat‘i"c?h distribution of FEV is normal
with standard deviation 400 mLi.
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SECTION 5.3 QUANTITATIVE OBSERVATIONS

(a) Find Pr{E} if n = 15 and the population mean is 2,800 mLi.
(b) Find Pr{E} if n = 15 and the population mean is 2,600 mLi.
(c) How does Pr{E} depend on the population mean?

The heights of a certain population of corn plants follow a normal distribution with
mean 145 cm and standard deviation 22 cm (as in Exercise 4.29).

(a) What percentage of the plants are between 135 and 155 cm tall?

(b) Suppose we were to choose at random from the population a large number of
samples of 16 plants each. In what percentage of the samples would the sample
mean height be between 135 and 155 cm?

(c) If Y represents the mean height of a random sample of 16 plants from the
population, what is Pr{135 =Y = 155}?

(d) If Y represents the mean height of a random sample of 36 plants from the
population, what is Pr{135 =Y = 155}?

The basal diameter of a sea anemone is an indicator of its age. The density curve
shown here represents the distribution of diameters in a certain large population
of anemones; the population mean diameter is 4.2 cm, and the standard deviation
is 1.4 cm.* Let Y represent the mean diameter of 25 anemones randomly chosen
from the population.

[ I I I I I
0 2 4 6 8 10

Diameter (cm)

(a) Find the approximate value of Pr{4 =Y = 5}.

(b) Why is your answer to part (a) approximately correct even though the popu-
lation distribution of diameters is clearly not normal? Would the same ap-
proach be equally valid for a sample of size 2 rather than 25? Why or why not?

In a certain population of fish, the lengths of the individual fish follow approxi-
mately a normal distribution with mean 54.0 mm and standard deviation 4.5 mm.
We saw in Example 4.5 that in this situation 65.68% of the fish are between 51 and
60 mm long. Suppose a random sample of four fish is chosen from the population.
Find the probability that

(a) all four fish are between 51 and 60 mm long
(b) the mean length of the four fish is between 51 and 60 mm

In Exercise 5.20, the answer to part (b) was larger than the answer to part (a).
Argue that this must necessarily be true, no matter what the population mean and
standard deviation might be. [Hint: Can it happen that the event in part (a) occurs
but the event in part (b) does not?]

Professor Smith conducted a class exercise in which students ran a computer pro-
gram to generate random samples from a population that had a mean of 50 and a
standard deviation of 9 mm. Each of Smith’s students took a random sample of
size n and calculated the sample mean. Smith found that about 68% of the stu-
dents had sample means between 48.5 and 51.5 mm. What was n? (Assume that n
is large enough that the Central Limit Theorem is applicable.)

A certain assay for serum alanine aminotransferase (ALT) is rather imprecise. The
results of repeated assays of a single specimen follow a normal distribution with
mean equal to the ALT concentration for that specimen and standard deviation
equal to 4 U/Li (as in Exercise 4.40). Suppose a hospital lab measu™s many spec-
imens every day, and specimens with reported ALT values of 40 or more are flagged
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as “unusually high.” If a patient’s true ALT concentration is 35 U/Li, find the prob-
ability that his specimen will be flagged as “unusually high”

(a) if the reported value is the result of a single assay
(b) if the reported value is the mean of three independent assays of the same
specimen

The mean of the distribution shown in the histogram is 41.5 and the standard
deviation is 4.7. Consider taking random samples of size # = 4 from this distribution
and calculating the sample mean, y, for each sample.

| I I
35 40 45 50

(2) What is the mean of the sampling distribution of ¥?
(b) What is the standard deviation of the sampling distribution of ¥?

Refer to the histogram in Exercise 5.24. Suppose that 100 random samples are
taken from this population and the sample mean is calculated for each sample. If
we were to make a histogram of the distribution of the sample means from 100
samples, what kind of shape would we expect the histogram to have for each of
the following?

(a) if n = 2 for each random sample
(b) if n = 25 for each random sample

Refer to the histogram in Exercise 5.24. Suppose that 100 random samples are
taken from this population and the sample mean is calculated for each sample. If
we were to make a histogram of the distribution of the sample means from 100
samples, what kind of shape would we expect the histogram to have if n = 1 for
each random sample? That is, what does the sampling distribution of the mean
look like when the sample size is n = 17

A medical researcher measured systolic blood pressure in 100 middle-aged men.’
The results are displayed in the accompanying histogram; note that the distribution
is rather skewed. According to the Central Limit Theorem, would we expect the
distribution of blood pressure readings to be less skewed (and more bell shaped)
if it were based on n = 400 rather than #n = 100 men? Explain.

20
15
10
5
| ! [
90 - 140 190
Blood pressure (mm Hg)

The partial pressure of oxygen, Péoz, is a measure of the amount of oxygen in the
blood. Assume that the distribution of PaO, levels among newborns has an average
of 38 (mm Hg) and a standard deviation of 9.° If we take a sample of size n = 25,

(a) what is the probability that the sample average will be greater than 367
(b) what is the probability that the sample average will be greater than 41?




/Li, find the prob-

ssays of the same

‘and the standard
ym this distribution

:

of V7

dom samples are
o1 each sample, If
> means from 100
 have for each of

dom samples are
or each sample. If
‘means from 100
have if n = 1 for
tion of the mean

iddle-aged men.’
it the distribution
Id we expect the
ore bell shaped)

of oxygen in the
s has an average
of size n = 25,

r thari 367
r than 41?

5.4 ILLUSTRATION OF THE CENTRAL LIMIT

THEOREM (OPTIONAL)

- The importance of the normal distribution in statistics is due largely to the Central
- Limit Theorem and related theorems. In this section we take a closer look at the
| Central Limit Theorem.

According to the Central Limit Theorem, the sampling distribution of ¥ is

i approximately normal if 7 is large. If we consider larger and larger samples from
 a fixed nonnormal population, then the sampling distribution of ¥ will be more
nearly normal for larger n. The following examples show the Central Limit Theo-
. rem at work for two nonnormal distributions: a moderately skewed distribution
| (Example 5.13) and a highly skewed distribution (Example 5.14).

: Eye Facets. The number of facets in the eye of the fruitfly Drosophila

melanogaster is of interest in genetic studies. The distribution of this variable in a

certain Drosophila population can be approximated by the density function shown
| in Figure 5.13. The distribution is moderately skewed; the population mean and
- standard deviation are u = 64 ando =227

Figure 5.14 shows the sampling distribution of ¥ for samples of various
sizes from the eye-facet population. In order to clearly show the shape of these dis-
tributions, we have plotted them to different scales; the horizontal scale is stretched
more for larger n. Notice that the distributions are somewhat skewed to the right,

but the skewness is diminished for larger n; for n = 32 the distribution looks very
nearly normal. |

20 40 60 80 100 120

n=4 n=8
T ] T T T—Y I T —
40 60 80 100 40 60T 80
m n
n=32
n=16
T T T Y T I I e
40 60 80 40 60 80
n mn

—m

SECTION 5.4 ILLUSTRATION OF THE CENTRAL LIMIT THEOREM (OPTIONAL) 167

T T T T 1T 7
20 40 60 80 100 120 140

Number of facets

Figure 5.13 Distribution of eye
facet number in a Drosophila
population

Figure 5.14 Sampling
distributions of ¥ for samples
from the Drosophila eye-facet
population
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Example 5.14
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Figure 5.15 Distribution of time
scores in a button-pushing task

Figure 5.16 Sampling
distributions of Y for samples
from the time-score population

ReactionTime. A psychologist measured the time required for a person to reach
up from a fixed position and operate a pushbutton with his or her forefinger. The
distribution of time scores (in milliseconds) for a single person is represented by
the density shown in Figure 5.15. About 10% of the time, the subject fumbled, or
missed the button on the first thrust; the resulting delayed times appear as the
second peak of the distribution.® The first peak is centered at 115 ms and the sec-
ond at 450 ms; because of the two peaks, the overall distribution is violently
skewed. The population mean and standard deviation are p = 148 ms and

o = 105 ms, respectively.

Figure 5.16 shows the sampling distribution of Y for samples of various
sizes from the time-score distribution. To show the shape clearly, the Y scale has
been stretched more for larger n. Notice that for small # the distribution has several
modes. As 7 increases, these modes are reduced to bumps and finally disappear,
and the distribution becomes increasingly symmetric.
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SECTION 5.4 ILLUSTRATION OF THE CENTRAL LIMIT THEORgM (OPTIONAL)

Examples 5.13 and 5.14 illustrate the fact, mentioned in Section 5.3, that
e meaning of the requirement “» is large” in the Central Limit Theorem depends
n the shape of the population distribution. Approximate normality of the sampling
distribution of ¥ will be achieved for a moderate n if the population distribution
giks only moderately nonnormal (as in Example 5.13), while a highly nonnormal
population (as in Example 5.14) will require a larger n. Note, however, that
Example 5.14 indicates the remarkable strength of the Central Limit Theorem.
The skewness of the time-score distribution is so extreme that we might be reluc-
tant to consider the mean as a summary measure. Even in this worst case, you can

I see the effect of the Central Limit Theorem in the relative smoothness and sym-

metry of the sampling distribution for n = 64,
The Central Limit Theorem may seem rather like magic. To demystify it
somewhat, we look at the time-score sampling distributions in more detail in the

' following example.

Reaction Time. Consider the sampling distributions of ¥ displayed in Figure 5.16.
Consider first the distribution for n = 4, which is the distribution of the mean of four
button-pressing times. The high peak at the left of the distribution represents cases
in which the subject did not fumble any of the four thrusts, so that all four times were
about 115 ms; such an outcome would occur about 66% of the time [from the
binomial distribution, because (.9)* = .66]. The next lower peak represents cases in
which three thrusts took about 115 ms each, while one was fumbled and took about
450 ms. (Notice that the average of three 115’s and one 450 is about 200, which is
the center of the second peak.) Similarly, the third peak (which is barely visible)
represents cases in which the subject fumbled two of the four thrusts. The peaks
representing three and four fumbles are too low to be visible in the plot.

Now consider the plot for n = 8. The first peak represents eight good
thrusts (no fumbles), the second represents seven good thrusts and one fumble, the
third represents six good thrusts and two fumbles, and so on. The fourth and later
peaks are blended together. For n = 16 the first peak is lower than the second be-
cause the occurrence of 16 good thrusts is less likely than 15 good thrusts and one
fumble (as you can verify from the binomial distribution). For larger n, the first
peaks are lower still and the later peaks are higher. For n = 32 the most likely
outcome is three fumbles (about 10%) and 29 good thrusts; this outcome gives a
mean time of about

(3)(450) + (29)(115)
7}

~ 146 ms

which is the location of the central peak. For similar reasons, the distribution for
larger n is centered at about 148 ms, which is the population mean. |

Exercises 5.29-5.31

5.29  Refer to Example 5.15. In the sampling distribution of ¥ for n = 4 (Figure 5.16),
approximately what is the area under
(a) the first peak?
(b) the second peak?
(Hint: Use the binomial distribution.)
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5.30 Refer to Example 5.15. Consider the sampling distribution of Y for n = 2 (which
is not shown in Figure 5.16).

(a) Make a rough sketch of the sampling distribution. How many peaks does it
have? Show the location (on the Y-axis) of each peak.

(b) Find the approximate area under each peak. (Hint: Use the binomial
distribution.)

5.31 Refer to Example 5.15. Consider the sampling distribution of Y for n = 1 (which
is not shown in Figure 5.16). Make a rough sketch of the sampling distribution.
How many peaks does it have? Show the location (on the Y-axis) of each peak.

5.5 THE NORMAL APPROXIMATION TO THE
BINOMIAL DISTRIBUTION (OPTIONAL)

In Section 5.2 we saw that, for random sampling from a large dichotomous popu-
lation, the sampling distribution of p is governed by the binomial distribution.
Probabilities for the binomial distribution can be calculated from the formula

ncjpj(1 - P)"_j
However, this formula can be burdensome if # is not small. Fortunately, a

convenient approximation is available. In this section we show how the binomial
distribution can be approximated by a normal distribution, if # is large.

The Normal Approximation

The normal approximation to the binomial distribution can be expressed in two
equivalent ways: in terms of the binomial distribution itself, or in terms of the
sampling distribution of p. We state both forms in the following theorem. In this
i | theorem, n represents the sample size (or, more generally, the number of inde-
! pendent trials) and p represents the population proportion (or, more generally,
" i the probability of success in each independent trial).
"B

THEOREM 5.2: NORMAL APPROXIMATION TO BINOMIAL DISTRIBUTION

| a& | .‘ (a) If n is large, then the binomial distribution can be approximated by a
) ! normal distribution with
] Mean = np

and

Standard deviation = Vnp(1l - p)

it (b) If n is large, then the sampling distribution of p can be approximated by
lP“““ ' ~a normal distribution with

| i :

| : Mean = p

i and

1=
Standard deviation = M

n
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Remarks:

1. It is true, but not obvious, that the normal approximation to the
binomial distribution is an application of the Central Limit The-
orem (Section 5.3). The relationship is explained more fully in
Appendix 5.1.

2. As shown in Appendix 5.2, for a population of 0’s and 1’s, where
the proportion of 1’s is given by p, the standard deviation is

o = Vp(l — p). Theorem 5.1 (Section 5.3) stated that the
standard deviation of a mean is given by —Z_ We can think of pin
n

part (b) of Theorem 5.2 as a special kind of sample average, for the
setting in which all of the data are 0’s and 1’s. Thus, Theorem 5.1

Vp(l - p)

tells us that the standard deviation of p should be R or

n
1 —
N E(—n—p)—, which agrees with the result stated in Theorem 5.2(b).

The following two examples illustrate the use of Theorem 5.2.

We consider a binomial distribution with n = 20 and p = .3. Figure 5.17(a) shows
this binomial distribution; superimposed is a normal curve with

Mean = np = (20)(.3) = 6

and

SD = Vnp(1 — p) = V(20)(:3)(.7) = 2.049

Note that the curve fits the distribution fairly well. Figure 5.17(b) shows the
sampling distribution of p for n = 20and p = .3 (the same distribution was shown
in Figure 5.4); superimposed is a normal curve with

Mean = p = .3

SD = \P(ln_ p) _ \/('3;(()'7) = 1025

Note that Figure 5.17(b) is just a relabeled version of Figure 5.16(a).

and

[ 1T T T 1T 1 | I

N -
B~ —
n
[=))

I
0 2 4 6 8 10 12 0 1 3
Number of successes b
(a) ()
L.

Figure 5.17 The normal approximation to the binomial distribution
withn =20andp = 3
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Number of
4555  successes

Figure 5.18 Normal
approximation to the
probability of five successes

i Example 5.17

225 375 p

Figure 5.19 Normal approxi-
mation to Pr{.25 < p =< 35}

To illustrate the use of the normal approximation, let us consider the event
that 20 independent trials result in 5 successes and 15 failures. In Example 5.5 we
found that the exact probability of this event is .179; this probability can be visu-
alized as the area of the bar above the 5 in Figure 5.18. The normal approximation
to the probability is the corresponding area under the normal curve, which is
shaded in Figure 5.18. The boundaries of the shaded area are 4.5 and 5.5, which
correspond in the Z scale to

45 -6

i 0
and
55-6
2= o - M
From Table 3, we find that the area is .4052 — .2327 = .1725, which is fairly close
to the exact value of .179. [ |

To illustrate part (b) of Theorem 5.2, we again assume thatn = 20 and p = .3.In
Example 5.6 we found that

Pr{25 =< p = 35} = .535

The normal approximation to this probability is the shaded area in Figure 5.19.
The boundaries of the area are p = .225 and p = .375, which correspond on the
Z scale to

25 -3
=g
and
375 -3
=105 P

The resulting approximation (from Table 3) is then
Pr{25 = p = 35} = 7673 — 2327 = .5346

which agrees very well with the exact value. n

The Continuity Correction

anc
Notice that the calculation in Example 5.17 used the boundaries p = .225 and .375
rather than p = .25 and .35; this is an example of a continuity correction.* The rea- \
son for the continuity correction can be seen from Figure 5.19. The exact proba- L
¢ bility is the area of the three rectangles corresponding to p = .25,.30, and .35; the Th
boundaries of this region are .225 and .375. Without the continuity correction, we . 23
would calculate the area between p = .25 and p = .35, which is equal to .3758; ’
this value is too small because it omits half of the p = .25 rectangle and half of the ]
p = .35 rectangle. 1 Hc
In general, when using a continuity correction, the first step is to calculate 4 The
the half-width of a histogram bar; the desired area is then extended by this amount i dist
i L apy

* The continuity correction was also discussed in the optional Section 4.5. ) the
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in each direction. For instance, in Example 5.17 the half-width of a histogram bar

is equal to
1\/ 1
(3)(%) = o

and the boundaries of the shaded region in Figure 5.19 can be calculated as
250 — .025 = 225 and .350 + .025 = 375

If the area to be calculated includes many bars of the probability histogram, then
the continuity correction can be omitted without causing much error. If the area
includes only a few bars, then the continuity correction greatly improves the ac-
curacy of the approximation; as an extreme example, if the area includes only one
bar (as in Figure 5.18), then omitting the continuity correction would give a prob-
ability of zero, which is not at all a useful approximation. (In Example 5.16, we
applied the continuity correction by using the boundaries 4.5 and 5.5 J)

Remark: Any problem involving the normal approximation to the binomial
can be solved in two ways: in terms of Y, using part (a) of Theorem 5.2, or in terms
of p, using part (b) of the theorem. Although it is natural to state questions in
terms of proportions (e.g.,“What is Pr{p > .70}?”), it is often easier to solve prob-
lems in terms of the binomial count Y (e.g., “What is Pr{Y > 70}?”), particular-
ly when using continuity correction. The following example illustrates the approach
of converting a question about a sample proportion into a question about the num-
ber of successes for a binomial random variable.

Consider a binomial distribution with n = 20 and p = .3. The sample proportion
of successes, out of the 20 trials, is p. Figure 5.17(b) shows the sampling distribution
of p with a normal curve superimposed.

Suppose we wish to find the probability that .25 < p = .35. Since
p = Y20, this is the probability that .25 < Y/20 = .35, which is the same as the
probability that 5 < ¥ =< 7. Thatis,Pr{.25 < p =< 35} = Pr{5 < Y =< 7).

We know that Y has a binomial distribution with mean = np = (20)(3) =6
and SD = Vnp(1 — p) = \/(20)(.3)(.7) = 2.049. Using continuity correction,
we would find the Z-scale values of

45 -6
2% Zoag -
and
75-6
2= 09 73

Then, using Table 3, we have Pr{25 < p < 35} = Pr{S5 <Y = 7} ~ 7673 —
2327 = .5346. |

How Large Must n Be?

Theorem 5.2 states that the binomial distribution can be approximated by a normal
distribution if 7 is “large.” It is helpful to know how large n must be in grder for the
approximation to be adequate. The required n depends on the value of pIfp =5,
then the binomial distribution is symmetric and the normal approximation is quite
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good even for r as small as 10. However, if p = .1, the binomial distribution for
n = 101is quite skewed and is poorly fitted by a normal curve; for larger n the skew-
ness is diminished and the normal approximation is better. A simple rule of thumb
is the following:

The normal approximation to the binomial distribution is fairly good if
both np and n(1 — p) are at least equal to 5.

For example, if n = 20 and p = .3, as in Example 5.16, then np = 6 and
n(l — p) = 14; since 6 = 5 and 14 = 5, the rule of thumb indicates that the
normal approximation is fairly good.

Exercises 5.32-5.41

5.32 A fair coin is to be tossed 20 times. Find the probability that 10 of the tosses will
fall heads and 10 will fall tails

(a) using the binomial distribution formula
(b) using the normal approximation with the continuity correction

5.33 Inthe United States, 44% of the population has type O blood. Suppose a random
sample of 12 persons is taken. Find the probability that 6 of the persons will have
type O blood (and 6 will not)

(a) using the binomial distribution formula
(b) using the normal approximation with the continuity correction

5.34 Anepidemiologist i$ planning a study on the prevalence of oral contraceptive use
in a certain population.® She plans to choose a random sample of » women and to
use the sample proportion of oral contraceptive users (p) as an estimate of the
population proportion ( p). Suppose that in fact p = .12. Use the normal approx-
imation (with the continuity correction) to determine the probability that p will be
within +.03 of p if
(a) n =100
(b) n =200
[Hint: If you find using part (b) of Theorem 5.2 to be difficult here, try using part
(a) of the theorem instead.]

5.35 In a study of how people make probability judgments, college students (with no
background in probability or statistics) were asked the following question.!’ A
certain town is served by two hospitals. In the larger hospital about 45 babies are
born each day, and in the smaller hospital about 15 babies are born each day. As
you know, about 50% of all babies are boys. The exact percentage of baby boys,
however, varies from day to day. Sometimes it may be higher than 50%, some-
times lower.

For a period of one year, each hospital recorded the days on which at least 60%
of the babies born were boys. Which hospital do you think recorded more such
days?

e The larger hospital
¢ The smaller hospital
e About the same (i.e., within 5% of each other)

(a) Imagine that you are a participant in the study. Which answer would you
choose, based on intuition alone? &

(b) Determine the correct answer by using the nofHial approximation (without 8 of da
the continuity correction) to calculate the appropriate probabilities. “‘, in the
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SECTION 5.6 PERSPECTIVE

Consider random sampling from a dichotomous population with p = .3, and let E
be the event that p is within +.05 of p. Use the normal approximation (without
the continuity correction) to calculate Pr{E} for a sample of size n = 400. Your
answer should agree with the value given in Table 5.5.

Refer to Exercise 5.36. Calculate Pr{E} for n = 40 (rather than 400)

(a) with the continuity correction
(b) without the continuity correction
Your answer to part (a) should agree with the value given in Table 5.5.

5.38 A certain cross between sweet-pea plants will produce progeny that are either
purple flowered or white flowered;'" the probability of a purple-flowered plant is

9 N .
=16 Suppose n progeny are to be examined, and let p be the sample proportion

of purple-flowered plants. It might happen, by chance, that p would be closer to -;—

9
than to —. Find the probability that this misleading event would occur if

16
(ayn=1
(b) n =64
(c) n =320

(Use the normal approximation without the continuity correction.)

5.39 A fair coin is to be tossed 10 times. Find the probability that between 30% and
40% (inclusive) of the tosses will fall heads

(a) using the binomial distribution formula
(b) using the normal approximation with the continuity correction

5.40 In a certain population of mussels (Mytilus edulis), 80% of the individuals
are infected with an intestinal parasite.'> A marine biologist plans to examine
100 randomly chosen mussels from the population. Find the probability that
85% or more of the sampled mussels will be infected, using the normal
approximation

(a) without the continuity correction
(b) with the continuity correction

5.41  Refer to Exercise 5.40. Suppose that the biologist takes a random sample of size
50. Find the probability that fewer than 35 of the sampled mussels will be infected,
using the normal approximation

(a) without the continuity correction
(b) with the continuity correction

5.6 PERSPECTIVE

In this chapter we have presented two important sampling distributions—the sam-
pling distribution of p and the sampling distribution of Y. Of course, there are many
other important sampling distributions, such as are the sampling distribution of the
sample standard deviation and the sampling distribution of the sample median.
The ethereal concept of a sampling distribution is linked to the solid reality
of data through the random sampling model. Let us take another look at this model
in the light of Chapter 5. As we have seen, a random sample is not necessarily a
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representative sample.* But using sampling distributions, we can specify the degree
of representativeness to be expected in a random sample. For instance, it is intu-
itively plausible that a larger sample is likely to be more representative than a small-
er sample from the same population. In Sections 5.2 and 5.3 we saw how a sampling
distribution can make this vague intuition precise by specifying the probability that
a specified degree of representativeness will be achieved by a random sample. Thus,
sampling distributions provide what has been called “certainty about uncertainty.”"?

In Chapter 6 we will see for the first time how the theory of sampling
distributions can be put to practical use in the analysis of data. We will find that,
although the calculations of Chapter 5 seem to require the knowledge of un-
knowable quantities (such as u and o), nevertheless when analyzing data we can
estimate the probable magnitude of sampling error using only information con-
tained in the sample itself.

In addition to their application to data analysis, sampling distributions provide
a basis for comparing the relative merits of different methods of analysis. For ex-
ample, consider sampling from a normal population with mean u. Of course, the
sample meanY is an estimator of u. But since a normal distribution is symmetric, it
is also the population median, so the sample median is also an estimator of u. How,
then, can we decide which estimator is better? This question can be answered in
terms of sampling distributions, as follows: Statisticians have determined that, if the
population is normal, the sample median is inferior to the sample mean in the sense
! that its sampling distribution, while centered at u, has a standard deviation larger

than —=. Consequently, the sample median is less efficient (as an estimator of

Vn
w) than the sample mean; for a given sample size n, the sample median provides
less information about u than does the sample mean. (If the population is not
normal, however, the sample median can be much more efficient than the mean.)

* It is true, however, that sometimes the investigator can force the sample to be representa-
tive with respect to some variable (not the one under study) whose population distribution
is known. For example, suppose we are sampling from a human population in order to study
Y = blood pressure;since blood pressure is age related, we might want to construct the sam-
ple so that it matches the population in age distribution. This kind of sampling is not simple
random sampling, and the methods of analysis given in this book cannot be applied without
suitable modification.

Supplementary Exercises 5.42-5.55

[Note: Exercises preceded by an asterisk refer to optional sections.]

5.42 In an agricultural experiment, a large field of wheat was divided into many plots
(each plot being 7 X 100 ft) and the yield of grain was measured for each plot.
These plot yields followed approximately a normal distribution with mean 88 b and
standard deviation 7 Ib (as in Exercise 4.5). Let Y represent the mean yield of five
plots chosen at random from the field. Find Pr{l7 > 90}.

5.43 Ina certain population,83% of the people have Rh-positive blood type.* Suppose
a random sample of n = 10 people is to be chosen from the population and let p
represent the proportion of Rh-positive people in the sample. Find

(a) Pr{p = 8} b
(b) Pr{p = .9}
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SUPPLEMENTARY EXERCISES

The heights of men in a certain population follow a normal distribution with mean
69.7 inches and standard deviation 2.8 inches.!®

(a) If a man is chosen at random from the population, find the probability that he
will be more than 72 inches tall.

(b) If two men are chosen at random from the population, find the probability
that (i) both of them will be more than 72 inches tall; (ii) their mean height
will be more than 72 inches.

Suppose a botanist grows many individually potted eggplants, all treated identi-
cally and arranged in groups of four pots on the greenhouse bench. After 30 days
of growth, she measures the total leaf area Y of each plant. Assume that the pop-

ulation distribution of Y is approximately normal with mean = 800 cm? and
SD = 90 cm?216

(a) What percentage of the plants in the population will have leaf area between
750 cm? and 850 cm??

(b) Suppose each group of four plants can be regarded as a random sample from
the population. What percentage of the groups will have a group mean leaf
area between 750 cm? and 850 cm??

Refer to Exercise 5.45. In a real greenhouse, what factors might tend to invalidate
the assumption that each group of plants can be regarded as a random sample from
the same population?

In a population of flatworms (Planaria) living in a certain pond, one in five indi-
viduals is adult and four are juvenile.'” An ecologist plans to count the adults in a
random sample of 20 flatworms from the pond; she will then use p, the proportion
of adults in the sample, as her estimate of p, the proportion of adults in the pond
population. Find

(a) Pr{p = p}
(b) Pr{p — 05=p = p+ .05}

Refer to Exercise 5.47. Use the normal approximation (with the continuity cor-
rection) to calculate the probabilities.

Consider taking a random sample of size 25 from a population in which 42% of the
people have type A blood. What is the probability that the sample proportion with
type A blood will be greater than .44? Use the normal approximation to the bino-
mial with continuity correction.

The activity of a certain enzyme is measured by counting emissions from a ra-
dioactively labeled molecule. For a given tissue specimen, the counts in consecu-
tive 10-second time periods may be regarded (approximately) as repeated
independent observations from a normal distribution (as in Exercise 4.26). Suppose
the mean 10-second count for a certain tissue specimen is 1,200 and the standard
deviation is 35. For that specimen, let Y represent a 10-second count and let ¥ rep-
resent the mean of six 10-second counts. Find Pr{1,175 = Y = 1,225} and
Pr{1,175 =Y = 1,225}, and compare the two. Does the comparison indicate that
counting for one minute and dividing by 6 would tend to give a more precise result
than merely counting for a single 10-second time period? How?

In a certain lab population of mice, the weights at 20 days of age follow approxi-
mately a normal distribution with mean weight = 83g and standard
deviation = 1.7 g.!® Suppose many litters of 10 mice each are to be weighed. If each
litter can be regarded as a random sample from the population, whaf, percentage
of the litters will have a total weight of 90 g or more? (Hint: How is the total weight
of a litter related to the mean weight of its members?)
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5.52

5.53

5.54

5.55

5.56

Refer to Exercise 5.51. In reality, what factors would tend to invalidate the assump-
tion that each litter can be regarded as a random sample from the same population?

A certain drug causes drowsiness in 20% of patients. Suppose the drug is to be
given to five randomly chosen patients, and let p be the proportion who experience
drowsiness.

(a) Compute the sampling distribution of p.
(b) Display the distribution of part (a) as a histogram.

Consider taking a random sample of size 28 from the population of plants and
measuring the height of each plant. In the context of this setting, explain what is
meant by the sampling distribution of the sample average.

Refer to the setting of Exercise 5.54. Suppose that the population mean is 18 cm
and the population standard deviation is 4 cm. If the sample size is 28, what is the
standard deviation of the sampling distribution of the sample average?

The skull breadths of a certain population of rodents follow a normal distribution
with a standard deviation of 10 mm. Let Y be the mean skull breadth of a random
sample of 64 individuals from this population, and let u be the population mean
skull breadth.

(a) Suppose p = 50 mm. Find Pr{l7 is within +2 mm of p,}.
(b) Suppose p = 100 mm. Find Pr{? is within +2 mm of p,}.

(c) Suppose p is unknown. Can you find Pr{l7 is within +2 mm of p,}‘? If so, do it.
If not, explain why not.
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6.1 STATISTICAL ESTIMATION

In this chapter we undertake our first adventure
ence. Recall that statistical inference is based ¢

P
bout the pop-
ulation. Statistical estimation is a form of statistical inference in which
we use the data to (1) determine an estimate of some feature of the

yf/-‘}? Ifso, do it population; and (2) assess the precision of the estimate. Let us consider Y
an example.

physiologist grew 13 individually potted soybean seedlings of th
called Wells II. She raised the plants in a greenhouse under identical
environmental conditions (light, temperature, soil, and so on). Sh
measured the total stem length (cm) for each plant after 16 days of

I ;

’ " Soybean Growth. As part of a study on plant growth
E

F

l\ growth. The data are given in Table 6.1

Y

|

[f

y =21.3385 ~ 21.34cm and  s=1.

Suppose we regard the 13 observations as a rand
tion; the population could be described by (among
and its standard deviation, o. We might define u

= the (population) mean stem length
plants grown under the spéecified co
= the (population) SD of stem lengths
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Population Sample of n

Figure 6.1 Notation for means
and SDs of sample and
population

It is natural to estimate u by the sample mean and o by the sample standard
deviation. Thus, from the data on the 13 plants,

21.34 is an estimate of u;

1.22 is an estimate of o.
We know that these estimates are subject to sampling error. Note that we are not
speaking merely of measurement error; no matter how accurately each individual

plant was measured, the sample information is imperfect due to the fact that only
13 plants were measured, rather than the entire infinite population of plants. M

In general, for a sample of observations on a quantitative variable Y, the
sample mean and SD are estimates of the population mean and SD:
y is an estimate of u;
s is an estimate of .
The notation for these means and SDs is summarized schematically in Figure 6.1.

Our goal is to estimate u. We will see how to assess the reliability or precision of
this estimate, and how to plan a study large enough to attain a desired precision.

6.2 STANDARD ERROR OF THE MEAN

It is intuitively reasonable that the sample mean y should be an estimate of u. It
is not so obvious how to determine the reliability of the estimate. As an estimate
of u, the sample mean ¥ is imprecise to the extent that it is affected by sampling
error. In Section 5.3 we saw that the magnitude of the sampling error-—that is, the
amount of discrepancy between y and u—is described (in a probability sense) by
the sampling distribution of Y. The standard deviation of the sampling distribu-
tion of Y is

oy = ,
Y n
o s
Since s is an estimate of o, a natural estimate of — would be —=; this quantit
Vi Vo R

is called the standard error of the mean. We will denote it as SE; or sometimes
simply SE.*

The following example illustrates the definition.

.
* Some statisticians prefer to reserve the term standard error for o/ V/n and to call s/V/n the
estimated standard error.




t n =13,y = 21.3385 = 21.34 cm, and s = 1.2190 ~ 1.22 cm. The standard error
. of the mean is

SE; =

y

<-

1.2190

[y

= 338 cm, which we will round to .34 cm* -

3

i

As we have seen, the SE is an estimate of oy. On a more practical level, the
SE can be interpreted in terms of the expected sampling error: Roughly speaking,
’ the difference between ¥ and p is rarely more than a few standard errors. Indeed,
i ; we expect y to be within about one standard error of u quite often. Thus, the stan-
| S dard error is a measure of the reliability or precision of y as an estimate of u; the
smaller the SE, the more precise the estimate. Notice how the SE incorporates the

pf plants. W

{ariable Y, the

in Figure 6.1. two factors that affect reliability: (1) the inherent variability of the observations
or precision of (expressed through s), and (2) the sample size (n).
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Standard Error Versus Standard Deviation

The terms standard error and standard deviation are sometimes confused. It is
extremely important to distinguish between standard errot (SE) and standard
deviation (s, or SD). These two quantities describe entirely different aspects of the
data. The SD describes the dispersion of the data, while the SE describes the
uncertainty (due to sampling error) in the mean of the data. Let us consider a

concrete example.

Lamb Birthweights. A geneticist weighed 28 female lambs at birth. The lambs
were all born in April, were all the same breed (Rambouillet), and were all single
births (no twins). The diet and other environmental conditions were the same for
all the parents. The birthweights are shown in Table 6.2.2

* Rounding Summary Statistics
For reporting the mean, standard deviation, and standard error of the mean, the following pro-
cedure is recommended:

1. Round the SE to two significant digits.

2. Round y and s to match the SE with respect to the decimal position of the last sig-
nificant digit. (The concept of significant digiits is reviewed in Appendix 6.1.) For ex-
ample, if the SE is rounded to two decimal places, then y and s are also rsmnded to
two decimal places.

SECTION 6.2 STANDARD ERROR OF THE MEAN 181

. Soybean Growth. For the soybean growth data of Example 6.1, we have Example 6.2

Example 6.3
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Example 6.4

Figure 6.3 Samples of various
sizes from the lamb birthweight
population

6

%’ 4

: ]

Q

s 2

I ]
3.6 4.5 5.4 6.3
Birthweight (kg)

Figure 6.2 Birthweights of 28 SE
lambs s

For these data, the mean is y = 5.17 kg, the standard deviation is s = .65 kg, and
the standard error is SE = .12 kg. The SD, s, describes the variability from one
lamb to the next, while the SE indicates the variability associated with the sample
mean (5.17 kg), viewed as an estimate of the population mean birthweight. This
distinction is emphasized in Figure 6.2, which shows a histogram of the lamb birth-
weight data; the SD is indicated as a deviation from ¥, while the SE is indicated as
variability associated with y itself. ]

Another way to highlight the contrast between the SE and the SD is to
consider samples of various sizes. As the sample size increases, the sample mean
and SD tend to approach more closely the population mean and SD; indeed, the
distribution of the data tends to approach the population distribution. The standard
error, by contrast, tends to decrease as » increases; when # is very large the SE is
very small and so the sample mean is a very precise estimate of the population
mean. The following example illustrates this effect.

Lamb Birthweights. Suppose we regard the birthweight data of Example 6.3
as a sample of size n = 28 from a population, and consider what would happen if
we were to choose larger samples from the same population—that is, if we were
to measure the birthweights of additional female Rambouillet lambs born under
the specified conditions. Figure 6.3 shows the kind of results we might expect; the
values given are fictitious but realistic. For very large #, ¥ and s would be very
close to u and o, where

@ = Mean birthweight of female Rambouillet lambs born under the
conditions described

Sample size
n =28 n=280 n=2800 R
y 517 519 5.14 j — U
s .65 .67 .65 § —=o©
SE 12 .040 012 SE— 0
Sample ‘
distribution |

A
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sraphicai Presentation of the SE and the SD

The clarity and impact of a scientific report can be greatly enhanced by well-
 designed displays of the data. Data can be displayed graphically or in a table. We
| briefly discuss some of the options.

! Let us first consider graphical presentation of data. Here is an example.

k MAO and Schizophrenia. The enzyme monoamine oxidase (MAO) is of in-
| terest in the study of human behavior. Figures 6.4 and 6.5 display measurements
| of MAO activity in the blood platelets in five groups of people: Groups I, II, and
| 11T are three diagnostic categories of schizophrenic patients (see Example 1.4),
and groups IV and V are healthy male and female controls.? The MAO activity
| values are expressed as nmol benzylaldehyde product per 10® platelets per hour.
| In both Figures 6.4 and 6.5, the dots represent the group means; the vertical lines

| represent + SE in Figure 6.4 and + SD in Figure 6.5.
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Figures 6.4 and 6.5 convey very different information. Figure 6.4 conveys

(1) the mean MAO value in each group, and (2) the reliability of each group mean,

viewed as an estimate of its respective population mean. Figure 6.5 conveys (1) the
mean MAO value in each group, and (2) the variability of MAO within each group.
For instance, group V shows greater variability of MAO than group I (Figure 6.5)
but has a much smaller standard error (Figure 6.4) because it is a much larger group.

Figure 6.4 invites the viewer to compare the means and gives some indi-
cation of the reliability of the comparisons. (A full discussion of comparison of two
or more means must wait until Chapter 7 and later chapters.) Figure 6.5 invites
the viewer to compare the means and also to compare the standard deviations.
Furthermore, Figure 6.5 gives the viewer some information about the extent of
overlap of the MAO values in the various groups. For instance, consider groups
IV and V; whereas they appear quite “separate” in Figure 6.4, we can easily see
from Figure 6.5 that there is considerable overlap of individual MAO values in the
two groups. |

In some scientific reports, data are summarized in tables rather than
graphically. Table 6.3 shows a tabular summary for the MAO data of Example 6.5.

Exercises 6.1-6.7

6.1 A pharmacologist measured the concentration of dopamine in the brains of several
rats. The mean concentration was 1,269 ng/g and the standard deviation was
145 ng/g.* What was the standard error of the mean if

(a) 8rats were measured?
(b) 30 rats were measured?

6.2 An agrononiist measured the heights of n corn plants’ The mean height was 220 cm
and the standard deviation was 15 cm. Calculate the standard error of the mean if

(a) n =125
(b) n =100
6.3 In evaluating a forage crop, it is important to measure the concentration of various

constituents in the plant tissue. In a study of the reliability of such measurements,
a batch of alfalfa was dried, ground, and passed through a fine screen. Five small
(.3 g) aliquots of the alfalfa were then analyzed for their content of insoluble ash.5
The results (g/kg) were as follows:

10.0 8.9 9.1 n7 79
For these data, calculate the mean, the standard deviation, and the standard error
of the mean.
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A zoologist measured tail length in 86 individuals, all in the 1-year age group, of the
deermouse Peromyscus. The mean length was 60.43 mm and the standard deviation
was 3.06 mm. The table presents a frequency distribution of the data.’

Tail Number
Length (mm) of Mice
52-53 1
54-55 3
56-57 11
58-59 18
60-61 21
62-63 20
64-65 9
66-67 2
68-69 1
Total 86

(a) Calculate the standard error of the mean.
(b) Construct a histogram of the data and indicate the intervals y = SD and
y + SE on your histogram. (See Figure 6.2.)

Refer to the mouse data of Exercise 6.4. Suppose the zoologist were to measure 500
additional animals from the same population. Based on the data in Exercise 6.4,

(a) What would you predict would be the standard deviation of the 500 new
measurements?

(b) What would you predict would be the standard error of the mean for the 500
new measurements?

In a report of a pharmacological study, the experimental animals were described
as follows:® “Rats weighing 150 + 10 g were injected ... ” with a certain chemical,
and then certain measurements were made on the rats. If the author intends to
convey the degree of homogeneity of the group of experimental animals, then
should the 10 g be the SD or the SE? Explain.

For each of the following, decide whether the description fits the SD or the SE.

(a) This quantity is a measure of the accuracy of the sample mean as an estimate
of the population mean.

(b) This quantity tends to stay the same as the sample size goes up.

(¢) This quantity tends to go down as the sample size goes up.
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In Section 6.2 we said that the standard error of the mean (the SE) measures how

v i far y is likely to be from the population mean . In this section we make that idea
1 precise.

Confidence Interval for u: Basic Idea

Figure 6.6 is a drawing of an invisible man walking his dog. The dog, which is vis-
ible, is on a spring-loaded leash. The tension on the spring is such that the dog is

oy within one SE of the man about two-thirds of the time. The dog is within 2 standard

Figure 6.6 Invisible man
walking his dog
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errors of the man 95% of the time. Only 5% of the time is the dog more than two
SEs from the man—unless the leash breaks, in which case the dog could be any-
where. We can see the dog, but we would like to know where the man is. Since the
man and the dog are usually within two SEs of each other, we can take the interval
“dog + 2-SE” as an interval that typically would include the man. Indeed, we
could say that we are 95% confident that the man is in this interval.

This is the basic idea of a confidence interval. We would like to know the
value of the population mean u—which corresponds to the man—but we cannot
see it directly. What we can see is the sample mean y—which corresponds to the
dog. We use what we can see, y, together with the standard error, which we can
calculate from the data, as a way of constructing an interval that we hope will
include what we cannot see, the population mean u. We call the interval “position
of the dog + 2+ SE” a 95% confidence interval for the position of the man. (This
all depends on having a model that is correct: We said that if the leash breaks, then
knowing where the dog is doesn’t tell us much about where the man is. Likewise,
if our statistical model is wrong [for example, if we have a biased sample], then
knowing y doesn’t tell us much about u!)

Confidence Interval for u: Mathematics

In the invisible man analogy,* we said that the dog is within 1 SE of the man
about two-thirds of the time and within 2 SEs of the man 95% of the time. This
is based on the idea of the sampling distribution of ¥ when we have a random
sample from a normal distribution. If Z is a standard normal random variable,
then the probability that Z is between +2 is about 95%. More precisely,
Pr{-1.96 < Z < 1.96} = .95. From Chapter 5 we know that if Y has a normal

distribution, then £ has a standard normal (Z) distribution, so
n

0/\/_ \
Pr{—1.96 Yok 1.96} = 95 (6.1)
olVn
Thus,
Pr{~196+0/Vn <¥ — p < 196-0/Vn} = 95
and
Pr{-¥ - 1.96-0/Vn < —p < ¥ +196-0/Vn} = .95
SO

Pr{Y ~ 1.96+0/Vn < p <Y + 1.96-0/Vn} = 95

That is, the interval

g

y + 1.96
Y Vn

(62) |
will contain u for 95% of all samples. ’
The interval (6.2) cannot be used for data analysis because it contains a

quantity—namely, o—that cannot be determined from the data. If we replace o by !
W

* Credit for this analogy is due to Geoff Jowett.
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stimate—namely, s—then we can calculate an interval from the data, but what
flappens to the 95% interpretation? Fortunately, it turns out that there is an escape
from this dilemma. The escape was discovered by a British scientist named
V. S. Gosset, who was employed by the Guinness Brewery; he published his find-
Ings in 1908 under the pseudonym “Student,” and the method has borne his name
ever since.” “Student” discovered that if the data come from a normal population
ind if we replace o in the interval (6.2) by the sample SD, s, then the 95%

i terpretatlon can be preserved if the multiplier of —= (that is, 1.96) is replaced

,» asuitable quantity; the new quantity is denoted ¢ 5 and isrelated to a distribu-
ition known as Student’s ¢ distribution.

Student’s ¢ Distribution

i The Student’s ¢ distributions are theoretical continuous distributions that are used
| for many purposes in statistics, including the construction of confidence intervals.
 The exact shape of a Student’s ¢ distribution depends on a quantity called degrees
of freedom, abbreviated df. Figure 6.7 shows the density curves of two Student’s ¢
distributions with df = 3 and df = 10, and also a normal curve. A ¢ curve is sym-
 metric and bell shaped like the normal curve, but has a larger standard deviation.
| As the df increase, the ¢ curves approach the normal curve; thus, the normal curve
can be regarded as a ¢ curve with infinite df (df = o0).

df=10

] I
4 6

The quantity ¢ is called the two-tailed 5% critical value of Student’s ¢ distribu-
| tion-and is defined to be the value such that the interval between —,s and +¢,s
| contains 95% of the area under the curve, as shown in Figure 6.8.* That is, the

combined area in the two tails—below —¢,s and above +t,5—is 5%. The total
- shaded area in Figure 6.8 is equal to .05; note that the shaded area consists of two

“pieces” of area .025 each.

—Los 0 Loos
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Figure 6.7 Two Student’s ¢
curves and a normal curve

(df = 00)

Figure 6.8 Definition of the

critical value ¢ s
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Figure 6.9 Histogram (a) and
normal probability plot (b) of
soybean growth data

Example 6.6

Critical values of Student’s ¢ distribution are tabulated in Table 4. The values
of £ o5 are shown in the column headed “Two-Tailed Area .05.” If you glance down :
this column, you will see that the values of s decrease as the df increase; for |
df = oo (that is, for the normal distribution) the value is £ g5 = 1.960. You can |
confirm from Table 3 that the interval +1.96 (on the Z scale) contains 95% of the |
area under a normal curve. 1

Other columns of Table 4 show other critical values, which are defined
analogously; for instance, the interval +¢s contains 90% of the area under a
Student’s ¢ curve. 4

Confidence Interval for u: Method

We describe Student’s method for constructing a confidence interval for u, based |
on a random sample from a normal population. First, suppose we have chosena |
confidence level equal to 95% (i.e., we wish to be 95% confident). To construct |
a 95% confidence interval for u, we compute the lower and upper limits of the |
interval as

y - t.OZSSEy and y + t.OZSSE?

that is,
y+ t.ozs_s_
Vn
where the critical value f s is determined from Student’s ¢ distribution with
df=n-1

The following example illustrates the construction of a confidence interval.

Soybean Growth. For the soybean stem length data of Example 6.1, we have
n =13,y = 21.3385cm, and s = 1.2190 cm. Figure 6.9 shows a histogram and a
normal probability plot of the data; these support the belief that the data came

from a normal population. We have 13 observations, so the-value o&if is\
N

df=n-1=13-1=12 ~
From Table 4 we find
t'025 = 2.179
4 — ] .
23 - .
n g nt R
2 | g [ 3N )
= 21k
E [ ]
1+ @ 20 o *
L ]
L ]
| | |
| | -1 0 1
18.75 21.00 23.25 n scores
Stem length
(b)
(a)
[V .

* In some statistics textbooks, you may find other notations, such as £ 65 01 £ 975, rather than't gps.




able 4. The values '

i 95% confidence interval for y is
you glance dowrt .

e df increase; fo 21.3385 + 2.179——1’2190
= 1.960. You ca: V13

intains 95% of th 213385 + 2.179(.3381)

21.3385 + .7367

l approximately
21.34 + .74

fhe confidence interval may be left in this form. Alternatively, the endpoints of the
erval may be explicitly calculated as

[ 3
erval for u, based -4
we have chosen a
bnt). To construct
pper limits of the
[

21.34 — 74 = 20.60 and 21.34 + .74 = 22.08
the interval may be written compactly as
(20.6,22.1)
for in a more complete form as the following confidence statement:
‘ 206cm < u < 22.1cm
} The confidence statement asserts that the population mean stem length of Wells

| 11 soybean plants, grown under the specified conditions, is between 20.6 cm and
221 cm. [ ]

bution with

ce interval. | The interpretation of the “95% confidence” will be discussed after the next

| example.
] Confidence coefficients other than 95% are used analogously. For instance,
f- 2 90% confidence interval for u is constructed using ¢ o5 instead of ¢ g5 as follows:

1ple 6.1, we have
histogram and a
at the data came

n ] — N
e of df is y £ t'osh\77—z

| The following is an example.

g '?Soybean Growth. From Table 4, we find that tos = 1.782 with df = 12. Thus,
," the 90% confidence interval for u from the soybean growth data is

3 ’ 1.2190
. . ’ | 21.3385 + 1.782W
N L 21.3385 + 6025
or
207 < u <219 |
‘ s As you see, the choice of a confidence level is somewhat arbitrary. For the
] | soybean growth data, the 95% confidence interval is

E : 2134 + 74
' I and the 90% confidence interval is e

—— | 21.34 + .60

oo/
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|

Thus, the 90% confidence interval is narrower than the 95% confidence interval.
If we want to be 95% confident that our interval contains w, then we need a wider
interval than we would need if we only wanted to be 90% confident: The higher
the confidence level, the wider the confidence interval.

Remark: The quantity (n — 1) is referred to as degrees of freedom be-
cause the deviations (y, — y) must sum to zero, and so only (n — 1) of them are
free to vary. A sample of size n provides only (n — 1) independent pieces of
information about variability; that is, about o. This is particularly clear if we con-
sider the case n = 1; a sample of size 1 provides some information about u, but
no information about ¢, and so no information about sampling error. It makes
sense, then, that when n = 1 we cannot use Student’s  method to calculate a con-
fidence interval: The sample standard deviation does not exist (see Example 2.31)
and there is no critical value with df = 0. A sample of size 1 is sometimes called
an anecdote; for instance, an individual medical case history is an anecdote. Of
course, a case history can contribute greatly to medical knowledge, but it does
not (in itself) provide a basis for judging how closely the individual case resem-
bles the population at large. :

Confidence Intervals and Randomness ‘, i

In what sense can we be confident in a confidence interval? To answek this question,
let us assume that we are dealing with a random sample from a ng];rﬁal population.
Consider, for instance, a 95% confidence interval. One way to int‘@rpret the confi-
dence level (95% ) is to refer to the meta-experiment of repeated samples from the
same population. If a 95% confidence interval for . is constructed for each sample,
then 95% of the confidence intervals will contain w. Of course, the observed
data in an experiment comprise only one of the possible samples; we can hope
confidently that this sample is one of the lucky 95%, but we will never know.

The following example provides a more concrete visualization of the meta-
experiment interpretation of a confidence level.

Eggshell Thickness. In acertain large population of chicken eggs (described in Ex-
ample 4.2), the distribution of eggshell thickness is normal with mean u = .38 mm
and standard deviation o = .03 mm. Figure 6.10 shows some typical samples from
this population; plotted on the right are the associated 95% confidence intervals. The
sample sizes are n = 5 and n = 20. Notice that the second confidence interval with
n = 5 does not contain u. In the totality of potential confidence intervals, the per-
centage that would contain y is 95% for either sample size; as Figure 6.10 shows, the
larger samples tend to produce narrower confidence intervals. |

A confidence level can be interpreted as a probability, but caution is
required. If we consider 95% confidence intervals, for instance, then the following
statement is correct:

Pr{the next sample will give us a confidence interval that contains w} =95

However, we should realize that it is the confidence interval that is the random
item in this statement, and it is not correct to replace this item with its value from
the data. Thus, for instance, we found in Example 6.6 that the 95% confidence
interval for the mean soybean growth is e

206cm < u < 22.1cm (6.3)
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Nevertheless, it is not correct to say that
Pr{20.6cm < g < 22.1cm} = .95

because this statement has no chance element; either w is between 20.6 and 22.1 or it
is not. If w = 21, then Pr{20.6cm < p < 22.1cm} = Pr{20.6cm < 21 <22.1cm}
=1 (not .95). The following analogy may help to clarify this point. Suppose we let Y
represent the number of spots showing when a balanced die is tossed; then

Pr{Y =2} =%

On the other hand, if we now toss the die and observe five spots, it is obviously not
correct to substitute this datum in the probability statement to conclude that

Pr{5 = 2} =%

As the preceding discussion indicates, the confidence level (for instance, 95%) is a
property of the method rather than of a particular interval. An individual
statement—such as (6.3)—is either true or false; but in the long run, if the researcher
constructs 95% confidence intervals in various experiments, each tim&®producing
a statement such as (6.3), then 95% of the statements will be true.

SECTION 6.3 CONFIDENCE INTERVAL FOR u

Figure 6.10 Confidence
intervals for mean eggshell
thickness
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Example 6.9

Interpretation of a Confidence Interval

Bone Mineral Density. Low bone mineral density often leads to hip fractures
in the elderly. In an experiment to assess the effectiveness of hormone replace-
ment therapy, researchers gave conjugated equine estrogen (CEE) to a sample of
94 women between the ages of 45 and 64.° After taking the medication for 36
months, the bone mineral density was measured for each of the 94 women. The
average density was .878 g/cm?, with a standard deviation of .126 g/cm?.

The standard error of the mean is thus -—1—2£ = .013. It is not clear that the

V94
distribution of bone mineral density is a normal distribution, but as we will see in
Section 6.5, when the sample size is large, the condition of normality is not crucial.
There were 94 observations, so there are 93 degrees of freedom. To find the ¢
multiplier for a 95% confidence interval, we will use 80 degrees of freedom (since
Table 4 doesn’t list 93 degrees of freedom); the ¢ multiplier is 7 ;s = 1.990. A 95%
confidence interval for u is

878 + 1.990(.013)

or approximately

878 + .026
or

(.852,.904)

Thus, we are 95% confident that the average hip bone mineral density of all women
age 45 to 64 who take CEE for 36 months is between .852 g/cm?* and .904 g/cm?®. B

Seeds per Fruit. The number of seeds per fruit for the freshwater plant Vallis-
neria Americana varies considerably from one fruit to another. A researcher took
a random sample of 12 fruit and found that the average number of seeds was 320,
with a standard deviation of 125.) The researcher expected the number of seeds
to follow, at least approximately, a normal distribution. A normal probability plot
of the data is shown in Figure 6.11. This supports the use of a normal distribution
model for these data.

500 — *
400 — «®
7] P *
E 300 — .
[75) L]
200 —
. L]
Figure 6.11 Normal probability * I | |
plot of seeds per fruit for -1 0 1
Vallisneria Americana n scores

The standard error of the mean is 125 = 36. There are 11 degrees of freedom.

V12
The ¢ multiplier for a 90% confidence interval is ¢ o5 = 1.796. A 90% confidence

interval for u is -

320 + 1.796(36)




ads to hip fractures | 320 + 65
f hormone replace- |

I-'EE) to a sample of |

> medication for 36 ,; (255,385)

the 94 women. The
5126 g/cm?,

‘is not clear that the

s, we are 90% confident that the (population) average number of seeds per fruit
Vallisneria Americana is between 255 and 385. |
‘Computer note: Statistical software can be used to calculate confidence

intervals. For example, in the MINITAB system the command
ut as we will see in

nality is not crucial.
dom. To find the ¢
s of freedom (since |
s = 1990 A 95%

MTB > TInterval 90 C1 j

i will produce a 90% confidence interval for the population mean, using whatever
t data are stored in column 1. If the seeds per fruit data from Example 6.10 are
¢ stored in column 1, then the output of this command is

Variable N Mean StDhev SE Mean 90.0 % C.I.
cl 12 319.5 125.2 36.1 (254.6, 384.4)

, ; which, except for rounding off, agrees with the calculations shown in Exam-
sity of all women | ple 6.10.

ind 904g/cm?. M
vater plant Vallis- Relationship to Sampling Distribution of Y
A researcher took
of seeds was 320,
‘number of seeds ; o
1 probability plot S mecan of the sampling distribution is  and its standard deviation is —=. Figure 6.12

rmal distribution Vn
; shows a particular sample mean () and its associated 95% confidence interval

for u, superimposed on the sampling distribution of Y. Notice that the particular
confidence interval does contain u; this will happen for 95% of samples.

At this point it may be helpful to look back and see how a confidence interval for
| u is related to the sampling distribution of Y. Recall from Section 5.3 that the

Sampling
distribution of ¥

|

ges of freedom. S p

0% confidence

<

; ] \ A particular confidence
i i interval
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Figure 6.12 Relationship
between a particular confidence
interval for u and the sampling
distribution of ¥
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Exercises 6.8-6.26

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

(Sampling exercise) Refer to Exercise 5.11. Use your sample of five ellipse lengths
to construct an 80% confidence interval for w, using the formula y + (1.533)s/ V.
To facilitate the pooling of results from the entire class, compute the two endpoints
explicitly.

(Sampling exercise) Refer to Exercise 5.13. Use your sample of 20 ellipse lengths
to construct an 80% confidence interval for u using the formula ¥ + (1.328)s/Vn.
To facilitate the pooling of results from the entire class, compute the two endpoints
explicitly.

As part of a study of the development of the thymus gland, researchers weighed the
glands of five chick embryos after 14 days of incubation. The thymus weights (mg)
were as follows:!? ’

29.6 215 280 346 449
For these data, the mean is 31.7 and the standard deviation is 8.7.

(a) Calculate the standard error of the mean.
(b) Construct a 90% confidence interval for the population mean.

Consider the data from Exercise 6.10.

(a) Construct a 95% confidence interval for the population mean.
(b) Interpret the confidence interval you found in part (a). That is, explain what the
numbers in the interval mean. (See Examples 6.9 and 6.10.)

Six healthy three-year-old female Suffolk sheep were injected with the antibiotic
Gentamicin, at a dosage of 10 mg/kg body weight. Their blood serum concentra-
tions (ug/mLi) of Gentamicin 1.5 hours after injection were as follows:"?

33 26 34 31 23 25
For these data, the mean is 28.7 and the standard deviation is 4.6.

(a) Construct a 95% confidence interval for the population mean.
(b) Define in words the population mean that you estimated in part (a). (See
Example 6.1.)
(c) The interval constructed in part (a) nearly contains all of the observations; will
this typically be true for a 95% confidence interval? Explain.

A zoologist measured tail length in 86 individuals, all in the one-year age group, of
the deermouse Peromyscus. The mean length was 60.43 mm and the standard
deviation was 3.06 mm. A 95% confidence interval for the mean is (59.77, 61.09).

(a) True or false (and say why): We are 95% confident that the average tail length
of the 86 individuals in the sample is between 59.77 mm and 61.09 mm.
(b) True or false (and say why): We are 95% confident that the average tail length
of all the individuals in the population is between 59.77 mm and 61.09 mm.

Researchers measured the bone mineral density of the spines of 94 women who had
taken the drug CEE. (See Example 6.9, which dealt with hip bone mineral density.)
The mean was 1.016 g/cm? and the standard deviation was .155 g/cm* A 95%
confidence interval for the mean is (.984, 1.048). True or false (and say why): 95%
of the data are between .984 and 1.048.

There was a control group in the study described in Example 6.9. The 124 women
in the control group were given a placebo, rathe™tan an active medication. At the
end of the study they had an average bone mineral density of .840 g/cm” The
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following are three confidence intervals, one of which is a 90% confidence inter-
val, one of which is an 85% confidence interval, and the other of which is an 80%
confidence interval. Without doing any calculations, match the intervals with the
confidence levels and explain how you determined which interval goes with which
level.

f five ellipse lengths i
y £ (1.533)s/Vn. |

e the two endpoints §

| : Confidence levels: 90% 85% 80%

bf 20 ellipse lengths ,- Intervals (in scrambled order): (.826, .854) (.824, .856) (.822, .858)
.y £ (1.328)s/Vn. }

> the two endpoints Human beta-endorphin (HBE) is a hormone secreted by the pituitary gland under
conditions of stress. A researcher conducted a study to investigate whether a
program of regular exercise might affect the resting (unstressed) concentration of
HBE in the blood. He measured blood HBE levels, in January and again in May,
in ten participants in a physical fitness program. The results were as shown in the
table.!

irchers weighed the
ymus weights (mg)

(a) Construct a 95% confidence interval for the population mean difference in

.7, HBE levels between January and May. (Hint: You need to use only the values
| in the right-hand column.)
ean. ’
HBE Level (pg/mLi)
Participant January May Difference
an. 1 42 22 20
is,explain what the
2 47 29 18
with the antibiotic 3 37 ? 28
serum concentra- 4 9
follows:!3 5 33 26
6 70 36 34
6. 7 54 38 16
an, 8 27 32 -5
1in part (a). (See 9 41 33 8
. . 10 18 14 4
observations; will 4 3
1. 1 3 Mean 37.8 24.8 13.0
] ' SD 17.6 10.9 12.4

year age group, of

and the standard

s (59.77, 61.09). (b) Interpret the confidence interval from part (a). That is, explain what the interval
g J tells you about HBE levels. (See Examples 6.9 and 6.10.)

wverage tail length | ,

161.09 mm. i i 6,17  Consider the data from Exercise 6.16. If the sample size is small, as it is in this case,
werage tail length ’ then in order for a confidence interval based on Student’s ¢ distribution to be valid,
' and 61.09 mm. ¥ 4 the data must come from a normally distributed population. Is it reasonable to

‘ think that difference in HBE level is normally distributed? How do you know?

4 women who had j

> mineral density.) | 6.18 Invertase is an enzyme that may aid in spore germination of the fungus
55g/cm? A 95% / Colletotrichum graminicola. A botanist incubated specimens of the fungal tissue
nd say why): 95% |} | in petri dishes and then assayed the tissue for invertase activity. The specific activity

values for nine petri dishes incubated at 90% relative humidity for 24 hours are

; .15
) The 124 women summarized as follows:

nedication. Atthe g Mean = 5,111 units ~ SD = 818 units
f 840 g/cm®. The
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6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

e

(a) Assume that the data are a random sample from a normal population.
Construct a 95% confidence interval for the mean invertase activity under
these experimental conditions.

(b) Interpret the confidence interval you found in part (a). That is, explain what the
numbers in the interval mean. (See Examples 6.9 and 6.10)

(c) If you had the raw data, how could you check the condition that the data are
from a normal population?

As part of a study of the treatment of anemia in cattle, researchers measured the
concentration of selenium in the blood of 36 cows who had been given a dietary sup-
plement of selenium (2 mg/day) for one year. The cows were all the same breed
(Santa Gertrudis) and had borne their first calf during the year. The mean selenium
concentration was 6.21 ug/dLi and the standard deviation was 1.84 ug/dLi."
Construct a 95% confidence interval for the population mean.

In a study of larval development in the tufted apple budmoth (Platynota idaeusalis),
an entomologist measured the head widths of 50 larvae. All 50 larvae had been
reared under identical conditions and had moulted six times. The mean head width
was 1.20 mm and the standard deviation was .14 mm. Construct a 90% confidence
interval for the population mean.”’

In a study of the effect of aluminum intake on the mental development of infants, a
group of 92 infants who had been born prematurely were given a special aluminum-
depleted intravenous-feeding solution.!® At age 18 months the neurologic devel-
opment of the infants was measured using the Bayley Mental Development Index.
(The Bayley Mental Development Index is similar to an IQ score; with 100 being
the average in the general population.) A 95% confidence interval for the mean is
(93.8,102.1). Interpret this interval. That is, what does the interval tell us about
neurologic development in the population of prematurely born infants who receive
intravenous-feeding solutions?

A group of 101 patients with end-stage renal disease were given the drug epoetin.'’
The mean hemoglobin level of the patients was 10.3 (g/dLi), with an SD of 0.9.
Construct a 95% confidence interval for the population mean.

In Table 4 we find that s = 1.960 when df = oo. Show how this value can be
verified using Table 3.

Use Table 3 to find the value of s when df = 00, (Do not attempt to interpolate
in Table 4.)

Data are often summarized in this format:  + SE. Suppose this interval is inter-
preted as a confidence interval. If the sample size is large, what would be the
confidence level of such an interval? That is, what is the chance that an interval
computed as

3 + (1.00)SE

will actually contain the population mean? [Hint: Recall that the confidence level
of the interval y £ (1.96)SE is 95%.]

(Continuation of Exercise 6.25)

(a) If the sample size is small but the population distribution is normal, is the
confidence level of the interval 7 + SE larger or smaller than the answer to
Exercise 6.25? Explain.

(b) How is the answer to Exercise 6.25 affected if thg population distribution of Y
is not approximately normai?
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PLANNING A STUDY TO ESTIMATE w

I'planning an experiment, it is wise to consider in advance whether the estimates
erated from the data will be sufficiently precise. It can be painful indeed to
liscover after a long and expensive study that the standard errors are so large that
Hlic primary questions addressed by the study cannot be answered.

: The precision with which a population mean can be estimated is determined
In -two factors: (1) the population variability of the observed variable Y, and (2)
fihe sample size.

In some situations the variability of Y cannot, and perhaps should not, be
duced. For example, a wildlife ecologist may wish to conduct a field study of a
tural population of fish; the heterogeneity of the population is not controllable,
d in fact is a proper subject of investigation. As another example, in a medical
investigation, in addition to knowing the average response to a treatment, it may
also be important to know how much the response varies from one patient to
 another, and so it may not be appropriate to use an overly homogeneous group of
| patients.

: On the other hand, it is often appropriate, especially in comparative stud-
 ies, to reduce the variability of Y by holding extraneous conditions as constant as
E possible. For example, physiological measurements may be taken at a fixed time
| of day; tissue may be held at a controlled temperature; all animals used in an
experiment may be the same age.

] Suppose, then, that plans have been made to reduce the variability of Y as
t much as possible, or desirable. What sample size will be sufficient to achieve a
i desired degree of precision in estimation of the population mean? If we use the
. standard error as our measure of precision, then this question can be approached
L in a straightforward manner. Recall that the SE is defined as

N

SE; v
In order to decide on a value of n, we must (1) specify what value of the SE is
considered desirable to achieve, and (2) have available a preliminary guess of the
SD, either from a pilot study or other previous experience, or from the scientific
literature. The required sample size is then determined from the following
equation:

Guesed SD
Vn

The following example illustrates the use of this equation.

Desired SE =

Soybean Growth. The soybean stem-length data of Example 6.1 yielded the
following summary statistics:

y =21.34 cm
s = 1.22cm
SE = 34cm

Suppose the researcher is now planning a new study of soybean grg\Tvth and has

decided that it would be desirable that the SE be no more than .2 cm. As a

SECTION 6.4 PLANNING A STUDY TO ESTIMATE n
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preliminafy guess of the SD, she will use the value from the old study, namely
1.22 cm. Thus, the desired n must satisfy the following relation:

122
SE=—F+=12
Vn
This equation is easily solved to give n = 37.2. Since we cannot have 37.2 plants,
the new experiment should include 38 plants. |

You may wonder how a researcher would arrive at a value such as .2 cm for
the desired SE. Such a value is determined by considering how much error we are
w1111ng to tolerate in the estimate of . For example, suppose the researcher in Ex-
ample 6.11 has decided that she would like to be able to estimate the population
mean, u, to within +.4 with 95% confidence. That is, she would like her 95%
confidence interval for u to be y + .4. The “+ part” of the confidence interval,
which is sometimes called the margin of error, is ¢ s * SE. The precise value of ¢ s
depends on the degrees of freedom, but typically ¢ 5 is approximately 2. Thus, the
researcher wants 2 + SE to be no more than .4. This means that the SE should be
no more than .2 cm.

~ In comparative experiments, the primary consideration is usually the size
of anticipated treatment effects. For instance, if we are planning to compare two
experimental groups, the anticipated SE for each experimental group should be
substantially smialler than (preferably less than one-fourth of) the anticipated dif-
ference between the two group means.* Thus, the soybean researcher of Example
6.11 might arrive at the value .2 cm if she were planning to compare two environ-
mental conditions that she expected to produce stem lengths differing (on the
average) by about .8 cm. She would then plan to grow 38 plants in each of the two
environmental conditions.

To see how the required n depends on the specified precision, suppose the
soybean researcher specified the desired SE to be .1 cm rather than .2 cm. Then the
relation would be

122 _
SE = =1
Vn
which yields n = 148.84, so that she would plan to include 149 plants in each group.
Thus, to double the precision (by cutting the SE in half) requires not twice as many,
but four times as many observations. This phenomenon of diminishing returns is
due to the square root in the SE formula.

* This is a rough guideline for obtaining adequate sensitivity to discriminate between treat-
ments. Such sensitivity, technically called power, is discussed in Chapter 7.

Exercises 6.27-6.30

6.27 An experlment is being planned to compare the effects of several diets on the
weight gain of beef cattle, measured over a 140-day test period.” In order to have
enough precision to compare the diets, it is desired that the standard error of the
mean for each diet should not exceed 5 kg.

(a) If the population standard deviation of weight gain is guessed to be about 20
kg on any of the diets, how many cattle should be put on each diet in order to
achieve a sufficiently small standard error?
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(b) If the guess of the standard deviation is doubled, to 40 kg, does the required
number of cattle double? Explain.

A medical researcher proposes to estimate the mean serum cholesterol level of a
certain population of middle-aged men, based on a random sample of the popula-
tion. He asks a statistician for advice. The ensuing discussion reveals that the
researcher wants to estimate the population mean to within +6 mg/dLi or less,
with 95% confidence. Thus, the standard error of the mean should be 3 mg/dLi or
less. Also, the researcher believes that the standard deviation of serum cholesterol
in the population is probably about 40 mg/dLi.?! How large a sample does the
researcher need to take?

Suppose you are planning an experiment to test the effects of various diets on the
weight gain of young turkeys. The observed variable will be Y = weight gain in
three weeks (measured over a period starting one week after birth and ending
three weeks later). Previous experiments suggest that the standard deviation of Y
under a standard diet is approximately 80 g.”? Using this as a guess of o, determine
how many turkeys you should have in a treatment group, if you want the standard
error of the group mean to be no more than

(a) 20 g
(b)15¢

A researcher is planning to compare the effects of two different types of lights on
the growth of bean plants. She expects that the means of the two groups will differ
by about 1 inch and that in each group the standard deviation of plant growth will
be around 1.5 inches. Consider the guideline that the anticipated SE for each
experimental group should no more than be one-fourth of the anticipated differ-
ence between the two group means. How large should the sample be (for each
group) in order to meet this guideline?
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6.5 CONDITIONS FOR VALIDITY OF ESTIMATION
METHODS

For any sample of quantitative data, we can use the methods of this chapter to
compute the mean, its standard error, and various confidence intervals; indeed,
computers can make this rather easy to carry out. However, the interpretations
that we have given for these descriptions of the data are valid only under certain
conditions.

Conditions for Validity of the SE Formula

First, the very notion of regarding the sample mean as an estimate of a population
mean requires that the data be viewed as if they had been generated by random
sampling from some population. To the extent that this is not possible, any inference
beyond the actual data is questionable. The following example illustrates the
difficulty.

Marijuana and Intelligence. Ten people who used marijuana heavily were
found to be quite intelligent; their mean IQ was 128.4, whereas the mean 1Q for
the general population is known to be 100. The ten people belonged to a religious
group that uses marijuana for ritual purposes; since their decision to join the group

Example 6.12
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might very well be related to their intelligence, it is not clear that the ten can be
regarded (with respect to IQ) as a random sample from any particular population,
and therefore there is no apparent basis for thinking of the sample mean (128.4)
as an estimate of the mean 1Q of a particular population (such as, for instance, all
heavy marijuana users). An inference about the effect of marijuana on IQ would
be even more implausible, especially because data were not available on the 1Qs
| of the ten people before they began marijuana use.”” |

Second, the use of the standard error formula SE = s/V/n requires two
further conditions: ‘

1. The population size must be large compared with the sample size. This
requirement is rarely a problem in the life sciences; the sample can be
as much as 5% of the population without seriously invalidating the SE
formula.*

2. ' The observations must be independent of each other. This requirement
means that the n observations actually give n independent pieces of
information about the population.

Data often fail to meet the independence requirement if the experiment
has a hierarchical structure, in which observational units are nested within sampling
units, as illustrated by the following example.

. DETNTIENNEN Canine Anatomy. The coccygeus muscle is a bilateral muscle in the pelvic region
i ’

“ of the dog. As part of an anatomical study, the left side and the right side of the
u:‘[‘ ‘ coccygeus muscle were weighed for each of 21 female dogs. There were thus
thx 2-21 = 42 observations, but only 21 units chosen from the population of interest

w (female dogs). Because of the symmetry of the coccygeus, the information
(l contained in the right and left sides is largely redundant, so that the data contain
,j l not 42, but only 21, independent pieces of information about the coccygeus muscle
; of female dogs. It would therefore be incorrect to apply the SE formula as if the
iﬂ“ [ data comprised a sample of size n = 42. The hierarchical nature of the data set is
m‘ | indicated in Figure 6.13.% [ |

Dog: 1 2 3
Figure 6.13 Hierarchical data / \ / \ / \

structure of Example 6.13 Muscle L R L R L R .-

A

Hierarchical data structures are rather common in the life sciences. For

k instance, observations may be made on 90 nerve cells that come from only three
: different cats; on 80 kernels of corn that come from only four ears; on 60 young
mice who come from only 10 litters. A particularly clear example of nonindepen-

A8 dent observations is replicated measurements on the same individual; for instance,
if a physician makes triplicate blood pressure measurements on each of 10 patients,

* If the sample size, #, is a substantial fraction of the population size, N, then the finite

| . N —n

[ population correction factor should be applied. This factor is o1 The standard error
| N-n el

{ of the mean then becomes 7’_; N1
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her situations, however, lack of independence can be more subtle. For instance,
bse 60 young mice from 10 litters are included in an experiment to compare
ets. Then the choice of a correct analysis depends on the design of the
riment—on such aspects as whether the diets are fed to the young mice
Ives or to the mothers, and how the animals are allocated to the two diets.
i subject of design of experiments will be discussed in detail in Chapter 8.
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Figure 6.14 The three
populations of Example 6.13
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confidence interval will contain u, for samples from three different populations.?
The forms of the population distributions are shown in Figure 6.14. Population 1
is a normal population, population 2 is moderately skewed, and population 3 is a
violently skewed, L-shaped distribution. (Populations 2 and 3 were discussed in op-
tional Section 5.4.) ' '

For population 1, Table 6.4 shows that the confidence interval method is exactly
valid for all sample sizes, even n = 2. For population 2, the method is approxi-
mately valid even for fairly small samples. For population 3, the approximation is
very poor for small samples and is only fair for samples as large asn = 64. In a
sense, population 3 is a worst case; it could be argued that the mean is not a
meaningful measure for population 3, because of its bizarre shape.

Population 1 Population 2

Population 3

Summary of Conditions

In summary, Student’s t method of constructing a confidence interval for u is
appropriate if the conditions stated in the box hold.

The required “largeness” in condition 2(b) depends (as shown in Example 5.14) on
the degree of nonnormality of the population. Ifmany practical situations,
moderate sample sizes (say, n = 20 to 30) are large enough.
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fication of Conditions

il practice, the preceding conditions are often assumptions rather than known
ts. However, it is always important to check whether the conditions are
sonable in a given case.

To determine whether the random sampling model is applicable to a
ticular study, the design of the study should be scrutinized, with particular
ttention to possible biases in the choice of experimental material and to possible
nindependence of the observations due to hierarchical data structures.

As to whether the population distribution is approximately normal, infor-
tion on this point may be available from previous experience with similar data.
he only source of information is the data at hand, then normality can be rough-
y checked by making a histogram (or stem-and-leaf display) and normal proba-
ty plot of the data. Unfortunately, for small or moderate sample size, this check
Lis fairly crude; for instance, if you look back at Figure 5.12, you will see that even
samples of size 25 from a normal population often do not appear partlcularly
normal Of course, if the sample is large, then the sample histogram gives us good
4 Z1nf0rmat10n about the population shape; however, if n is large, the requirement of
| normality is less important anyway.

i In any case, a crude check is better than none, and every data analysis should
i begin with inspection of a graph of the data, with special attention to any obser-
| vations that lie very far from the center of the distribution.

] Sometimes a histogram or normal probability plot of the data indicates that
| the data did not come from a normal population. If the sample size is small, then
i Student’s # method will not give valid results. However, it may be possible to trans-
- form the data to achieve approximate normality and then analyze the data in the
L transformed scale.
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SedimentYield. Sediment yield, which is a measure of the amount of suspended
sediment in water, is a measure of water quality for a river. The distribution of
- sediment yield often has a skewed distribution. However, taking the logarithm of
each observation can produce a distribution that follows a normal curve quite well.
~ Figure 6.15 shows normal probability plots of sediment yields of water samples
from the Black River in Northern Ohio for n = 9 days (a) in mg/Li and (b) in log
scale (i.e., log(mg/Li)).2

interval for u is
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The logarithms of the sediment yields have an average of y = 3.21 and
a standard deviation of s = 1.33. Thus, the standard error of the mean is

1.33

5 44. The ¢ multiplier for a 95% confidence interval is #(8) o5 = 2.306. A

95% confidence interval for w is .y

321 + 2.306(.44)
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Example 6.14

Figure 6.15 Normal probability
plots of sediment yields of
water samples from the Black
River for 9 days (a) in mg/Li
and (b) after taking the
logarithm of each observation
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or approximately
321 +£1.01

or
(2.20,4.22)

Thus, we are 95% confident that the average logarithm
Black River is between 2.20 and 4.22. 1
| Note that we have constructed a confidence interval for the population |
‘ average logarithm of sediment yield. Because the logarithm transformation isnot

logarithms is not the logarithm of the mean, sO We cannot |

linear, the mean of the
| convert this confidence interval into a confidence interval for the population mean i
.

in the original scale of mg/Li.

of sediment yield for the |

Exercises 6.31-6.35 ‘

6.31 Serum Glutamic-Oxaloacetic Transamiase (SGOT) is an enzyme that shows
elevated activity when the heart muscle is damaged. In a study of 31 patients who
underwent heart surgery, serum levels of SGOT were measured 18 hours after
surgery? The mean was 49.3 U/Li and the standard deviation was 68.3 U/Li. If we
regard the 31 observations as a sample from a population, what feature of the data
would cause us to doubt that the population distribution is normal?

6.32 A dendritic tree is a branched structure that emanates from the body of a nerve cell.
In a study of brain development, researchers examined brain tissue from seven
adult guinea pigs. The investigators randomly selected nerve cells from a certain
region of the brain and counted the number of dendritic branch segments

emanating from each selected cell. A total of 36 cells were selected, and the resulting
counts were as follows?®®

38 42 25 35 35 33 48 53 17
24 26 26 47 28 24 35 38 26
38 29 49 26 41 26 35 38 44
25 45 28 31 46 32 39 59 53

i
b

The mean of these counts is 35.67 and the standard deviation is 9.99.
Suppose we want to construct a 95% confidence interval for the population

mean. We could calculate the standard error as

and obtain the confidence interval as
35.67 + (2.042)(1.67)

or
23 < p <391

(a) On what grounds might the preceding analysis be criticized? (Hint: Are the

observations independent?) ’
(b) Using the classes 15-19, 20-24, and so on, construct a histogram of the data.

Does the shape of the distribution support the Siticism you made in part (a)?
If so, explain how.
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In an experiment to study the regulation of insulin secretion, blood samples were
obtained from seyen dogs before and after electrical stimulation of the vagus nerve.
The following values show, for each animal, the increase (after minus before) in the
immunoreactive insulin concentration (wU/mLi) in pancreatic venous plasma.”

30 100 60 30 130 1,060 30

For these data, Student’s ¢ method yields the following 95% confidence interval
for the population mean:
—145 < p < 556
Is Student’s # method appropriate in this case? Why or why not?
In a study of parasite-host relationships, 242 larvae of the moth Ephestia were

exposed to parasitization by the Ichneumon fly. The following table shows the
number of Ichneumon eggs found in each of the Ephestia larva.*

Number of Eggs (Y) Number of Larvae

0 21

1 77

2 52

3 41

4 23

5 13

6 9

7 1

8 2

9 0
10 2
11 0
12 0
13 0
14 0
15 1
Total 242

For these data, y = 2.368 and s = 1.950. Student’s ¢ method yields the following
95% confidence interval for u, the population mean number of eggs per larva:

212 < p < 261

(a) Does it appear reasonable to assume that the population distribution of Y is
approximately normal? Explain.

(b) In view of your answer to part (a), on what grounds can you defend the
application of Student’s ¢ method to these data?

The following normal probability plot shows the distribution of the diameters, in
cm, of each of nine American sycamore trees.!
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The normal probability plot is not linear, which suggests that a transformation of
the data is needed before a confidence interval can be constructed using Student’s
¢t method. The raw data are

124 448 282 776 34 175 415 255 275

(a) Take the square root of each observation, and then construct a 90% confidence
interval for the mean.

(b) Interpret the confidence interval from part (). That is, explain what the interval
tells you about the square root of the diameters of these trees.

Sample of n
Population

Figure 6.16 Notation for
population and sample
proportion

6.6 CONFIDENCE INTERVAL FOR A POPULATION
- PROPORTION

Up to this point in Chapter 6 we have described confidence intervals when the
observed variable is quantitative. Now we will turn our attention to situations
in which the variable is categorical and the parameter of interest is a population
proportion. We assume that the data can be regarded as a random sample from
some population. The population distribution of a categorical variable can be de-
scribed in terms of the population proportion, or probability, of each category.
In this section we discuss construction of a confidence interval for a population
proportion. '

~Consider a random sample of n categorical observations, and let us fix
attention on one of the categories. For instance, suppose a geneticist observes n
guinea pigs whose coat color can be either black, sepia, cream, or albino; let us fix
attention on the category “black.” Let p denote the population proportion of the
category, and let p denote the corresponding sample proportion. (This is the same
notation used in Chapter 3 and in Section 5.2.). The notation is schematically
represented in Figure 6.16.

Under the random sampling model, a natural estimate of the population
proportion, p, is the sample proportion, p. How close to p is p likely to be? Recall
from Chapter 5 that this question can be answered in terms of the sampling
distribution of p (which in turn is computed from the binomial distribution).

In Section 6.3 we showed how to use sample data on a quantitative variable
to construct a confidence interval for the population mean, p; the rationale for
the method was based on the sampling distribution of Y. In 4 similar way, sample
data on the relative abundance of a category can be used to construct a confidence
interval for the population proportion, p.

A confidence interval for p can be constructed directly from the binomial
distribution. However, for many practical situations a simple approximate method
can be used instead. When the sample size, n, is large, the sampling distribution of
p is approximately normal; this approximation is related to the Central Limit
Theorem. If you review Figure 5.5, you will see that the sampling distributions
resemble normal curves, especially the distribution with n = 80. (The approxi-
mation is described in detail in optional Section 5.5.) If the sample size is small, then
the normal approximation can be quite inadequate. However, there is a method
available for constructing approximate confidgnce intervals that is based on a
modification of p and that is related to the normal approximation. We present that
method here.




I,

:h 90% confidence
Lwhat the interval
€S,

ansformation of
S

In Section 6.3 we stated that when the data come from a normal populations,
% confidence interval for a population mean u is constructed as

Y £ tsSE;

 confidence interval for a population proportion p is constructed analogously.
The first step is to calculate an estimate of p from the data. Recall that the

ample proportion, p, is defined as p = ;);—, where y is the number of observations,

ON

rvals when the
n to situations
is a population
m sample from
iable can be de-
“each category.
or a population

s, and let us fix
icist observes n
albino; let us fix
oportion of the
This is the same
s schematically

the population
ly to be? Recall
f the sampling
stribution).
titative variable
he rationale for
ilar way, sample
ict a confidence

m the binomial
ximate method
2 distribution of
> Central Limit
ng distributions
. (The approxi-
ize is small, then
ere is a method
bt is based on a
We present that

: ut of , that fell into the category in question. Related to the sample proportion
the estimate p (“p tilde”) given by

y+2
n+4

fp‘:

We will use P as the center of a 95% confidence interval for p. (Note that if # is
| large, then p and P are very nearly equal.)
Next, we need to calculate a standard error for p.

Standard Error of p

' The standard error of the estimate is found using the formula given in the box.

|

| This formula for the standard error of the estimate looks similar to the formula for

the standard error of a mean, but with \VV3(1 — ) playing the role of s and with
E n + 41in place of n.

 Iron Deficiency. As part of the National Health and Nutrition Examination
| Survey (NHANES), iron levels were checked for a sample of 786 girls aged 12 to
| 15 Tron deficiency was detected in 71 of those sampled, which is 9%

{ ~. 71 +2 73 ,
i = .09 %). ror T = o = .092;
| (71/786 = .09 or 9%). Thus, P is 86 14~ 790 092; the standard error is
| /.092(1 — .092) - . .

T 0 o .010 or 1%. A sample value P is typically within +2 standard

errors of the population proportion p. Based on this standard error, we can expect
that the proportion, p, of all girls aged 12 to 15 who have iron deficiency is in the
interval (.07, .11) or (7%, 11%). A confidence interval for p makes this idea more
precise. - n

95% Confidence Interval for p

] | Once we have the standard error of 7, we need to know how likely itds that 7 will
; be close to p. The general process of constructing a confidence interval for a pro-
portion is similar to that used in Section 6.3 to construct a confidence interval for
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| a mean. However, when constructing a confidence interval for a mean we multi-
‘ plied the standard error by a t multiplier. This was based on having a sample from
a normal distribution. When dealing with proportion data we know that the popu-
lation is not normal—there only are two values in the population!—but the Central
Limit Theorem tells us that the sampling distribution of P is approximately normal
if the sample size, n, is large. Moreover, it turns out that even for moderate or small
satnples, intervals based on P and Z multipliers do a very good job of estimating
the population proportion, p.* ’

For a 95% confidence interval, the appropriate Z multiplier is Z s = 1.960.
This, the approximate 95% confidence interval for a population proportion p is
constructed as shown in the box.*

Critical values for the confidence interval are obtained from the normal
distribution; these can be found most easily from Table 4 with df = oo. (Recall
from Section 6.3 that the ¢ distribution with df = oo is a normal [ Z] distribution.)
The following example illustrates the confidence interval method.

mﬂi FC IR  Breast Cancer. BRCALI is a gene that has been linked to breast cancer. Re-
| searchers used DNA analysis to search for BRCAI mutations in 169 women with
family histories of breast cancer. Of the 169 women tested, 27 (16%) had BRCAI

mutations.* Let p denote the probability that a woman with a family history of

breast cancer will have a BRCAI mutation. For these data,p = - .168. The
; .. |.1e8(1 — .168) ) .
standard error for p is 173 = 028. Thus, a 95% confidence interval
for p is
168 £ (1.96)(.028)
or
168 + .055
or
113 < p <223

Thus, we are 95% confident that the probability of a BRCAI mutation in a woman
with a family history of breast cancer is between .113 and .223 (i.e., between 11.3 %
and 22.3%). H ]

* Most statistics books present the confidence interval for a proportion as
R pA-p) . . N ,
p £ 196 - This commonly used interval is similar to the interval we present,

particularly if 7 is large. For small or moderate sample sizes, the interval we present is more
likely to cover the population proportion p. The value D is swmetimes called the Wilson est-
mate of p, in honor of Edwin B. Wilson, who first proposed its use. A technical discussion of
the Wilson estimate is given in Appendix 6.2.




mean we multi- } MO. Extracorporeal membrane oxygenation (ECMO) is a potentially life-

asample from | ng procedure that is used to treat newborn babies who suffer from severe
that the popu- § iratory failure. An expirement was conducted in which 11 babies were treated
but the Central

Pith ECMO; none of the 11 babies died.?® Let p denote the probability of death
a baby treated with ECMO. For these data, the sample proportion of deaths is

0/11 = 0. However, the fact that none of the babies died should not lead us
elieve that the probability of death, p, is precisely zero—only that it is close to
. The estimate given by p is 2/15 = .133. The standard error of 7 is

imately normal
derate or small
b of estimating
|
JS Z 05 = 1.960.

Iproportlon pis 133(.867)

= *
15 088

us,a 95% confidence interval for p is

133 + (1.96)(.088)

'om the normal
f = 00. (Recall
7] distribution.)
)

133 £ .172

—.039 < p < .305
ast cancer. Re-

60 women with | We know that p cannot be negative, so we state the confidence interval as (0, .305).

| Thus, we are 95% confident that the probability of death in a newborn with severe

%)‘had'BRCAI | respiratory failure who is treated with ECMO is between 0 and .305 (i.e., between
suily history of | 0% and 30.5%). n
— = 168. The

173

fidence interval 1 Other Confidence Levels

The procedure outlined previously can be used to construct 95% confidence

| intervals. In order to construct intervals with other confidence coefficients, some
| modifications to the procedure are needed. The first modification concerns . For

‘ +2
¢ a95% confidence interval we defined P to be Y T2

| interval of level 100(1 — a)%, P is defined as

. In general, for a confidence

y + .5(Z%))

“' p= n + Z af2
tion in a woman “
0,
between 11.3% ] ’ . ' ' L oy+ .5(1.962) o
g . For a 95% confidence interval Z,,, is 1.96,s0 that p = T 196 This is equal
5 ; n .
y + 1.92 ) y+2 .
. 3 | to —————, which we rounded off as . However, any confidence level can
proportion  as ] n + 3.84 n+4
val we present, :
N , -\ 1og [PD)
present 1s more . * Note that if we used the commonly presented method of p + 1.96,/———— we
the Wilson est- s well
al discussion of : | would find that the standard error is zero, leading to a confidence interval of 0 + 0. Such an

interval would not seem to be very useful in practice!
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y + 5(1.645%)

o . . ~ hi
be used. As an example, for a 90% confidence interval, p 1645 this

y + 1.35

is equal to PR

The second modification concerns the standard error. For a 95% confidence |}

=15 ’
interval we used E_(_:_f_), as the standard error term. In general, we use |
=1 -5
p(—f) as the standard error term.
n + Za/Z

Finally, the Z multiplier must match the confidence level (1.645 for a 90%
confidence interval, etc.). The following example illustrates these modifications.

Left-Handedness. In asurvey of English and Scottish college students, 40 of 400
male students were found to be left-handed. Let us construct a 90% confidence
interval for the proportion, p, of left-handed individuals in the population.

The sample estimate of the proportion is

40 + .5(1.645%) _40+135

. = ~ 10
P="000 + 1645 400 + 27 ~ 103
and the SE is
103(897) _
4027

A 90% confidence interval for p is
103 + (1.645)(.015)
or
078 < p < .128

Thus, we are 90% confident that between 7.8% and 12.8% of the sampled population
are left-handed. |

Note that the size of the standard error is inversely proportional to Vn,
as illustrtated in the following example.

Left-Handedness. Suppose, as in Example 6.18, that a sample of » individuals
contains approximately 10% left-handers. Then p ~ .10 and

_ [10(90)

SE; n+4

We saw in Example 6.18 that if n = 400, then
SE; = .015

If n = 1,600, then
SEy = .0075




5(1.645%)

95% confidence |

Fgeneral, we use "_

(1.645 for a 90%
> modifications.

udents, 40 of 400
90% confidence
»pulation.®

wled population
]

ortional to Vn,

of n individuals

; this §

, a sample with the same composition (that is, 10% left-handers) but four
#s as large would yield twice as much precision in the estimation of p. |
«4( i

ning a Study to Estimate p

dection 6.4 we discussed a method for choosing the sample size 7 so that a pro-

d study would have sufficient precision for its intended purpose. The approach
pended on two elements: (1) a specification of the desired SEj; and (2) a
liminary guess of the SD. In the present context, when the observed variable is
égorical, a similar approach can be used. If a desired value of SEj is specified,

hd if a rough informed guess of P is available, then the required sample size # can
¢ determined from the following equation:

[}

Desired SE = \/ (Guessed ﬁ)(1+_4 Guessed p)
n

"Ifl he following example illustrates the use of the method.

left-Handedness. Suppose we regard the left-handedness data of Example 6.18

s a pilot study, and we now wish to plan a new study large enough to estimate p
h a standard error of one percentage point; that is, .01. Our guessed value of p

from the pilot study is .10, so the required 7 must satisfy the following relation:

3 .10(.90)
— =,
n+4

 This equation is easily solved to give n + 4 = 900. We should plan to examine
1896 students. [ |

Planning in Ignorance. Suppose no preliminary informed guess of p is available.
| Remarkably, in this situation it is still possible to plan an experiment to achieve a
 desired value of SE;.* Such a “blind” plan depends on the fact that the crucial
| quantity \/ P(1 — D) islargest whenp = .5; you can see this in the graph of Figure
6.17. It follows that a value of n calculated using “guessed p ” = .5 will be
| conservative—that is, it will certainly be large enough. (Of course, it will be much

; larger than necessary if 7 is really very different from .5.) The following example
| shows how such worst-case planning is used.

| Left-Handedness. Suppose, as in Example 6.20, that we are planning a study
of left-handedness and that we want SE; to be .01, but suppose that we have no

 preliminary information whatsoever. We can proceed as in Example 6.20, but using
|- a guessed value of P of .5. Then we have

S5(.5
( )S.Ol
n+4

i which means that #n + 4 = 2,500, so we need n = 2,496. Thus, a sample of 2,496
| persons would be adequate to estimate p with a standard error of .01, regardless

of the actual value of p. (Of course, if p = .1, this value of » is much larger than
 is necessary.) |

W

* By contrast, it would not be possible if we were planning a study to estimate a population
mean w and we had no information whatsoever about the value of the SD.
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Example 6.20

R oW R

Figure 6.17 How Vp(1 — p)

depends on p

Example 6.21
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Exercises 6.36-6.50

6.36 A series of patients with bacterial wound infections were treated with the antibiotic
Cefotaxime. Bacteriologic response (disappearance of the bacteria from the wound)
was considered satisfactory in 84% of the patients.”’ Determine the standard error
of the observed proportion of satisfactory responses if the series contained

(a) 50 patients (b) 200 patients

6.37 In an experiment with a certain mutation in the fruitfly Drosophila, n individuals
were examined; of these, 20% were found to be mutants. Determine the standard
error of the sample proportion of mutants if
(a) n =100 (b) n = 400

6.38 Refer to Exercise 6.37. In each case (n = 100 and n = 400) construct a 95%
confidence interval for the population proportion of mutants.

6.39 In a natural population of mice (Mus musculus) near Ann Arbor, Michigan, the
coats of some individuals are white-spotted on the belly. In a sample of 580 mice
from the population, 28 individuals were found to have white-spotted bellies.
Construct a 95% confidence interval for the population proportion of this trait.

6.40 To evaluate the policy of routine vaccination of infants for whooping cough, adverse
reactions were monitored in 339 infants who received their first injection of vaccine.
Reactions were noted in 69 of the infants.*

(a) Construct a95% confidence interval for the probability of an adverse reaction
to the vaccine.

(b) Interpret the confidence interval from part (a). What does the interval say
about whooping cough vaccinations?

=

.

6.41 Researchers tested patients with cardiac pacemakers to see if use of a cellular
telephone interferes with the operation of the pacemaker. There were 959 tests con-
ducted for one type of cellular telephone; interference with the pacemaker (detected
with electrocardiographic monitoring) was found in 15.7% of these tests. 0

(a) Use these data to construct an appropriate 90% confidence interval.
(b) The confidence interval from part (a) is a confidence interval for what quantity?
Answer in the context of the setting.

6.42 In astudy of human blood types in nonhuman primates, a sample of 71 orangutans
were tested and 14 were found to be blood type B.*! Construct a 95% confidence
interval for the relative frequency of blood type B in the orangutan population.

6.43  Inpopulations of the snail Cepaea, the shells of some individuals have dark bands,
while other individuals have unbanded shells.*” Suppose that a biologist is planning
a study to estimate the percentage of banded individuals in a certain natural
population, and that she wants to estimate the percentage—which she anticipates
will be in the neighborhood of 60%—with a standard error not to exceed 4 per-
centage points. How many snails should she plan to collect?

6.44 (Continuation of Exercise 6.43) What would the answer be if the anticipated
percentage of banded snails were 50% rather than 60%?

6.45 The ability to taste the compound phenylthiocarbamide (PTC) is a genetically con-
trolled trait in humans. In Europe and Asia, about 70% of people are “tasters.”®
Suppose a study is being planned to estimate the relative frequency of tasters ina
certain Asian population, and it is desired that the standard error of the estimated
relative frequency should be .01. How many pec‘)Rle should be included in the study?

6.46  Refer to Exercise 6.45. Suppose a study is being planned for a part of the world for
which the percentage of tasters is completely unknown, so that the 70% figure used |
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in Exercise 6.45 is not applicable. What sample size is needed so that the standard
error will be no larger than .01?

Refer to Exercise 6.45. Suppose the SE requirement is relaxed by a factor of 2—
from .01 to .02. Would this reduce the required sample size by a factor of 2? Explain,

A group of 1,438 sexually active patients were counseled on condom use and the
risk of contracting a sexually transmitted disease (STD). After six months 103 of
the patients had new STDs.* Construct a 95% confidence interval for the proba-
bility of contracting an STD within six months after being part of a counseling
program like the one used in this study.

The Luso variety of wheat is resistant to the Hessian fly. In order to understand the
genetic mechanism controlling this resistance, an agronomist plans to examine the
progeny of a certain cross involving Luso and a nonresistant variety. Each proge-
ny plant will be classified as resistant or susceptible and the agronomist will esti-
mate the proportion of progeny that are resistant.*” How many progeny does he
need to classify in order to guarantee that the standard error of his estimate of this
proportion will not exceed .05?

(Continuation of Exercise 6.49) Suppose the agronomist is considering two
possible genetic mechanisms for the inheritance of resistance; the population ratio
of resistant to susceptible progeny would be 1:1 under one mechanism and 3:1
under the other. If the agronomist uses the sample size determined in Exercise
6.49, can he be sure that a 95% confidence interval will exclude at least one of the
mechanisms? That is, can he be sure that the confidence interval will not contain
both .50 and .75? Explain.

SECTION 6.7 PERSPECTIVE AND SUMMARY

.7 PERSPECTIVE AND SUMMARY

n this section we place Chapter 6 in perspective by relating it to other chapters
nd also to other methods for analyzing a single sample of data. We also present
condensed summary of the methods of Chapter 6.

ampling Distributions and Data Analysis

L The theory of the sampling distribution of Y seemed to require knowledge of
quantities—u and o—that in practice are unknown. In Chapter 6, however, we have
 seen how to make an inference about u, including an assessment of the precision of
F that inference, using only information provided by the sample. Likewise, the sam-
' pling distribution of  depends on the unknown population proportion p. However,
E we have seen how to use 7 to assess the precision of an inference concerning p. Thus,
| the theory of sampling distributions has led to a practical method of analyzing data.
In later chapters we will study more complex methods of data analysis.
Each method is derived from an appropriate sampling distribution; in most cases,
i however, we will not study the sampling distribution in detail.

Choice of Confidence Level

i Inillustrating the confidence interval methods, we have often chosen a confidence

| level equal to 95%. However, it should be remembered that the confidence level
is arbitrary. It is true that in practice the 95% level is the confidence,Jevel that is

 most widely used; however, there is nothing wrong with an 80% confidence
interval, for example.
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Characteristics of Other Measures

This chapter has primarily discussed estimation of a population average—u for
; continuous distributions and p for dichotomous distributions. In some situations,
; we may wish to estimate other parameters of a population. For example, in evalu-
| ating a measurement technique, interest may focus on the repeatability of the tech-
nique, as indicated by the standard deviation of repeated determinations. As another
example, in defining the limits of health, a medical researcher might want to esti-
mate the 95th percentile of serum cholesterol levels in a certain population. Just as
the precision of the mean can be indicated by a standard error or a confidence
interval, statistical techniques are also available to specify the precision of estima-
tion of parameters such as the population standard deviation or 95th percentile.

Summary of Estimation Methods

For convenient reference, we summarize in the box the confidence interval methods
presented in this chapter. .
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pplementary Exercises 6.51-6.71
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To study the conversion of nitrite to nitrate in the blood, researchers injected four
rabbits with a solution of radioactively labeled nitrite molecules. Ten minutes after
injection, they measured for each rabbit the percentage of the nitrite that had been
converted to nitrate. The results were as follows:*

51.1 554 48.0 495

(a) For these data, calculate the mean, the standard deviation, and the standard
error of the mean.
(b) Construct a 95% confidence interval for the population mean percentage.

'.95th percentile. (c) Without doing any calculations, would a 99% confidence interval be wider,
narrower, or the same width as the confidence interval you found in part (b)?
Why?

Liﬁterval methods The diameter of the stem of a wheat plant is an important trait because of its

relationship to breakage of the stem, which interferes with harvesting the crop. An
agronomist measured stem diameter in eight plants of the Tetrastichon cultivar of
soft red winter wheat. All observations were made three weeks after flowering of
the plant. The stem diameters (mm) were as follows:*

23 26 24 22 23 25 19 20
The mean of these data is 2.275 and the standard deviation is .238.

(a) Calculate the standard error of the mean.

(b) Construct a 95% confidence interval for the population mean.

(c¢) Define in words the population mean that you estimated in part (b). (See
Example 6.1.)

Refer to Exercise 6.52.

(a) What conditions are needed for the confidence interval to be valid?
(b) Are these conditions met? How do you know?
(c) Which of these conditions is most important?

Refer to Exercise 6.52. Suppose that the data on the eight plants are regarded as
a pilot study, and that the agronomist now wishes to design a new study for which
he wants the standard error of the mean to be only .03 mm. How many plants
should be measured in the new study?

A sample of 20 fruitfly (Drosophila melanogaster) larva were incubated at 37°C for
30 minutes. It is theorized that such exposure to heat causes polytene chromosomes
located in the salivary glands of the fly to unwind, creating puffs on the chromo-
some arm that are visible under a microscope. The following normal probability plot
supports the use of a normal curve to model the distribution of puffs.*®
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The average number of puffs for the 20 observations was 4.30, with a standard
deviation of 2.03.

(a) Construct a 95% confidence interval for p.
(b) In the context of this problem, describe what p represents. That is, the confi-
dence interval from part (a) is a confidence interval for what quantity?

Over a period of about nine months, 1,353 women reported the timing of each of ]
their menstrual cycles. For the first cycle reported by each woman, the mean cycle
time was 28.86 days, and the standard deviation of the 1,353 times was 4.24 days®

(a) Construct a 99% confidence interval for the population mean cycle time. i
(b) Because environmental rhythms can influence biological rhythms, we might
hypothesize that the population mean menstrual cycle time is 29.5 days, the
Jength of the lunar month. Is the confidence interval of part (a) consistent with
this hypothesis? '

Refer to the menstrual cycle data of Exercise 6.56.

(a) Over the entire time period of the study, the women reported a total of 12,247
cycles. When all of these cycles are included, the mean cycle time is 28.22 days.
Explain why we would expect that this mean would be smaller than the value
28.86 given in Exercise 6.50. (Hint: If each woman reported for a fixed time pe-
riod, which women contributed more cycles to the total of 12,247 observations?)

(b) Instead of using only the first reported cycle as in Exercise 6.56, we could use
the first four cycles for each woman, thus obtaining 1,353+ 4 = 5,412 observa-
tions. We could then calculate the mean and standard deviation of the 5,412 ob-
servations and divide the SD by V5412 to obtain the SE; this would yield a
much smaller value than the SE found in Exercise 6.51. Why would this
approach not be valid?

For the 28 lamb birthweights of Example 6.3, the mean is 5.1679 kg, the SD is
6544 kg, and the SE is .1237 kg. Construct

(a) a95% confidence interval for the population mean
(b) a99% confidence interval for the population mean
(c) Interpret the confidence interval you found in part (a).That is, explain what the

numbers in the interval mean. (Hint: See Examples 6.9 and 6.10.)

Refer to Exercise 6.58.

(a) What conditions are required for the validity of the confidence intervals?
(b) Which of the conditions of part (a) can be checked (roughly) from the
histogram of Figure 6.27 ]
(c) Twin births were excluded from the lamb birthweight data. If twin births had
been included, would the confidence intervals be valid? Why or why not?

Researchers measured the number of tree species in each of 69 vegetational plots

in the Lama Forest of Benin, West Africa.®® The number of species ranged from a i
low of 1 to a high of 12.The sample mean was 6.8 and the sample SD was 2.4, which §
results in a 95% confidence interval of (6.2,7.4). However, the number of tree
species in a plot takes on only integer values. Does this mean that the confidence |
interval should be (7,7)? Or does it mean that we should round off the endpoints
of the confidence interval and report it as (6,7)? Or should the confidence inter-
val really be (6.2,7.4)? Explain. ‘

As part of a study of natural variation in blood chemistry, serum potassium
concentrations were measured in 84 healthy wosen. The mean concentration was |
4.36 mEg/Li, and the standard deviation was .42 mEq/Li. The table presents a |
frequency distribution of the data”! ]
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Serum
Potassium Number of
(mEq/Li) Women
3.1-33 )
3.4-36 2
3.7-39 7
4.0-42 »
4345 28
| 4.6-4.8 16
?e time, . 4951 °
eht 52-5.4 5
sstent with | 5557 1
‘ 1 Total 84

(a) Calculate the standard error of the mean.

: LY (b) Construct a histogram of the data and indicate the intervals y + SD and
al of 12,247

y £ SE on the histogram. (See Figure 6.2.)

28.22 days. § (¢) Construct a 95% confidence interval for the population mean.
n the value § (d) Interpret the confidence interval you found in part (c). That is, explain what the
ed time pe- numbers in the interval mean. (Hint: See Examples 6.9 and 6.10.)
fwatllons?) Refer to Exercise 6.61. In medical diagnosis, physicians often use reference limits
EZCgll:sgrl\l;? for judging blood chemistry values; these are the limits within which we would

‘ expect to find 95% of healthy people. Would a 95% confidence interval for the
© 5’41,2 ob- mean be a reasonable choice of reference limits for serum potassium in women?
uld yield 2 Why or why not?
would this

Refer to Exercise 6.61. Suppose a similar study is to be conducted next year, to
include serum potassium measurements on 200 healthy women. Based on the data

the SD is in Exercise 6.60, what would you predict would be

(a) the SD of the new measurements?
(b) the SE of the new measurements?

n what the An agronomist selected six wheat plants at random from a plot, and then, for each

plant, selected 12 seeds from the main portion of the wheat head; by weighing,

drying, and reweighing, she determined the percent moisture in each batch of seeds.
The results were as follows: ™

rvals? 627 63.6 609 630 627 637
from the
‘ (a) Calculate the mean, the standard deviation, and the standard error of the mean.
births had 4 3 (b) Construct a 90% confidence interval for the population mean.
2 1 1
y not! i 6.65 Ina study of environmental effects upon reproduction, 123 adult white-tailed deer
y p
onalplots | 1 from the central Adirondack area were captured and 97 were found to be
edfroma § ] pregnant.” Construct a 95% confidence interval for the proportion of females
24,which ] pregnant in this deer population.
e (.)f tree | 6.66 Refer to Exercise 6.65. Which of the conditions for validity of the confidence
onfidence . . . L
. interval might have been violated in this study?
endpoints ;
nce inter- 4 } 6.67  Gene mutations have been found in patients with muscular dystrophy. In one study,
‘ : it was found that there were defects in the gene coding of sarcoglycan proteins in
. 23 of 180 patients with limb-girdle muscular dystrophy.™
otassium
ation was ] (a) Use these data to construct an appropriate 90% confidence interval.  wa.
resents a 3 - (b) What conditions are necessary for the confidence interval from part (a) to be

1 ] valid?
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(c) Interpret your confidence interval from part (a) in the context of this setting.
That is, what do the numbers in the confidence interval mean?

As part of the National Health and Nutrition Examination Survey (NHANES),
hemoglobin levels were checked for a sample of 1139 men age 70 and over.” The
sample mean was 145.3 g/Li and the standard deviation was 12.87 g/Li.

(a) Use these data to construct a 95% confidence interval for .

(b) Does the confidence interval from part (a) give limits in which we expect 95%
of the sample data to lie? Why or why not?

(c) Does the confidence interval from part (a) give limits in which we expect 95%
of the population to lie? Why or why not?

At a certain university there are 25,000 students. Suppose you want to estimate
the proportion of those students who are nearsighted. The prevalence of near-
sightedness in the general population is 45%.°® Using this as a preliminary guess
of p, how many students would need to be included in a random sample if you
want the standard error of your estimate to be less than or equal to 2 percentage
points?

Refer to Exercise 6.69. Suppose you do not trust that the 45% nearsightedness rate |
for the general population is a useful guess for the university population. How |
many students would need to be included in a random sample if you want the |
standard error of your estimate to be less than or equal to 2 percentage points,no 1
matter what the value of p is?

The blood pressure (average of systolic and diastolic measurements) of each of 38 ~
persons was measured.”’ The average was 94.5 (mm Hg). A histogram of the data
is shown.

SR SORC NS
I

75 95 115
Blood pressure

Which of the following is an approximate 95% confidence interval for the |
population mean blood pressure? Explain. i

(a) 94.5 + 16
(b) 945 + 8

(c) 945 + 2.6
(d) 945 + 1.3
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‘Comparison of Two

In Chapter 6 we considered the analysis of a smgle sample of quanti-
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resent chapter we introduc

p
Two-sample comparisons can arise in a variety of ways. Here
are two examples. '

Hematocrit in Males and Females, Hemato
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W

Figure 7.1 atocrit values in 17-year-
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i

The following features can be seen from Figure 7.1 and Table 7.1. Firstl
' males tend to have higher levels than the females. (Nevertheless, the two dis fuii' ! By contr:
| utions do overlap quite a bit, so that many females have higher levels than m§ B e define
males.) Second, in spite of the substantial difference in means, the two distribut{®
have very nearly the same standard deviation and are quite similar in shape. TIf
the main difference between the two distributions is a shift along the Y-axis. "

: SENN WM Pargyline and Sucrose Consumption. A study was conducted to deter i

the effect of the psychoactive drug Pargyline on feeding behavior in the bl
blowfly Phormia regina. The response variable was the amount of sucrose (sug ten the sai
solution a fly would drink in 30 minutes. The experimenters used two sepa: what differ
groups of flies: a group injected with Pargyline (905 flies) and a control grou; pyline causes
b jected with saline (900 flies). Comparing the responses of the two groups provigg N
‘ an indirect assessment of the effect of Pargyline. (One might propose that a m When the
direct way to determine the effect of the drug would be to measure each fly twicg
on one occasion after injecting Pargyline and on another occasion after inject son of mean
saline. However, this direct method is not practical because the measurement pi@ pes. In this c]

cedure disturbs the fly so much that each fly can be measured only once.) Figure /8 be on comps
shows the data for the two groups, and Table 7.2 shows the means and stand4g
deviations.? i
gure 7.3 preser
actly parallel 1
Fentiate betwe
ing populati
>fined by certa
Figure 7.2 Sucrose | f | | | | I | | | - ‘:“ i?;?icl)?l cach:
consumption of flies. (a) 900 0 20 4 60 80 100 0 20 40 60 8 i '
control flies; (b) 905 Pargyline- Sucrose consumption (mg) Sucrose consumption (mg)
treated flies. (a) Control (b) Pargyline

Population 1

Z Look Ahead

Ih this chapter we
« omparlson of tw

It is clear from Figure 7.2 that the two distributions differ in two disting 1. The conf
ways: First, the Pargyline distribution is shifted to the right, and second, the Pa§ 2. The hypc
gyline distribution is more dispersed. This impression issconfirmed by Table 7.2 2 The confid
which shows that the Pargyline distribution has both a larger mean and a largg] iechnique of Char

standard deviation than the control distribution. Wil first (Section:



Examples 7.1 and 7.2 both involve two-sample comparisons,
the two studies differ in a fundamental way.

rom populations that occur naturally;

But notice that
In Example 7.1 the samples come
the investigator is merely an observer:
Population 1: Hematocrit values of 17-year-
United States
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: By contrast, the two populations in Example 7.2 do not actually exist, but
] are defined in terms of specific experimental conditions; in a sense, the pop-
ulations are created by experimental intervention:

| Population 1:

Sucrose consumptions of blowtlies when injected with saline
Population 2:

Sucrose consumptions of blowflies when injected with Pargyline

as conducted to determine These two types of two-sam

ling behavior in the black’
amount of sucrose (sugar)]
nenters used two separatel
es) and a control group i
of the two groups provides{
might propose that a mOTe S
0 measure each fly twice— can include—as we saw in Exam
ler occasion after injecti parison of means,
wuse the measurement pr
sured only once.) Figure 7.2}
s the means and standard}

INotation

Figure 7.3 presents our notation for comparison of two samples. The notation is
exactly parallel to that of Chapter 6, but now a subscript (1 or 2) is used to dif-
ferentiate between the two samples. The two “populations” can be naturally oc-
curring populations (as in Example 7.1) or they can be conceptual populations
defined by certain experimental conditions (as in Example 7.2). In either case,

the data in each sample are viewed as a random sample from the corresponding
population.

| 1 | T
40 60 80 100 §
se consumption (mg)

¢

(b) Pargyline

Population 1 Sample of Population 2 Sample of n,

A Look Ahead

o this chapter we will discuss two different

but complementary approaches to the
comparison of two means:

. di tincti 1. The confidence interval approach
tions differ in two dis ] . .
right, and second, the Par- 38 2. The hypothesis testing approach _ -
is confirmed by Table 7.2, The confidence interval approach (Section 7.3) is a natural extension of the
1 larger mean and a largerfilicchnique of Chapter 6. The hypothesis testing approach involves new concepts. We
il first (Sections 7.4-7.9) introduce the basic ideas of hypothesis testing in the

SECTION 7.1 INTRODUCTION

Figure 7.3 Notation for
comparison of two samples
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Example 7.3

context of comparing two means. We will then (Section 7.10) discuss these ideg
in more generality, and (Section 7.11) consider another hypothesis testing prog
dure for comparing two samples. 1

We begin by describing, in the next section,some simple computations thg
are used both for confidence intervals and for hypothesis testing. :

7.2 STANDARD ERROR OF (¥; — ¥»)

In this section we introduce a fundamental quantity for comparing two sampleg
the standard error of the difference between two sample means. ’

Basic Ideas

We saw in Chapter 6 that the precision of a sample mean y can be expressed by

its standard error, which is equal to
s

SE;Z—\/;

To compare two sample means, it is natural to consider the difference betweel]
them: J

% — s tice that thi
1T % 1 Ve have two |
which is an estimate of the quantity (u, — ). To characterize the sampling errof d them, and

of estimation, we need to be concerned with the standard error of the differencs It may
(3, — ;). We illustrate this idea with an example. liian subtract
| Bissed in Sect
Vital Capacity. Vital capacity is a measure of the amount of air that someong bach part. Wh
can exhale after taking a deep breath. One might expect that musicians who play h y, (i.e.,S
brass instruments would have greater vital capacities, on average, than would othei greater t
persons of the same age, sex, and height. In one study the vital capacities of eigh‘ ccounts for 1
brass players were compared to the vital capacities of seven control subjects; We illt
Table 7.3 shows the data.’
Vital Capaci

‘esults in Tab

v

| The SE of (§

The difference between the sample means is ™ i Note that

¥y — ¥, = 4.83 — 474 = 0.09




7.10) discuss these ideas
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imple computations that
S testing.

comparing two samples: }

> means.

n y can be expressed by

- the difference between |

terize the sampling error |
d error of the difference |

ount of air that someone |
that musicians who play |
werage, than would other |
e vital capacities of eight
f seven control subjects; |

SECTION 7.2 STANDARD ERROR OF (7, — )

| We know that both y, and y, are subject to sampling error, and consequently the
difference (0.09) is subject to sampling error. The standard error of y; — ¥, tells us

| how much precision to attach to this difference between ¥, and 7. |

The following alternative form of the formula shows how the SE of the
difference is related to the individual SEs of the means:

SE, 5, = VSE? + SE}

| where
§
SE, = SE,, = \/;_
1
hy
SE, = SE;, = —\/—;:
2

Notice that this version of the formula shows that “SEs add like Pythagorus.” When
we have two independent samples, we take the SE of each mean, square them,
add them, and then take the square root of the sum. Figure 7.4 illustrates this idea.
' It may seem odd that in calculating the SE of a difference we add rather
than subtract within the formula SE;, ;) = V SE} + SE3. However, as was dis-
cussed in Section 3.7, the variability of the difference depends on the variability of
each part. Whether we add ¥, to y; or subtract y, from y,, the “noise” associated
with ¥, (i.e., SE,) adds to the overall uncertainty. The greater the variability in 3,,
the greater the variability in y; — 3. The formula SE;, 5, = VSE? + SE3
accounts for this variability.
We illustrate the formulas in the following example.

Vital Capacity. For the vital capacity data, preliminary computations yield the
results in Table 7.4. ¢

 The SE of (5, — 7,) is

A892 1232
—_——— + -

SE(Yl“Pz) = 7 5

= 227 =~ .23

Note that -~
227 = V/(164)* + (.157)?

223

{ SE,

Figure 7.4 SE for a difference

Example 7.4
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Example 7.5

Example 7.6

Notice that the SE of the difference is greater than either of the individual SEs b i
less than their sum. |

Hematocrit Levels. The data in Table 7.1 showed that the standard devigg
tion of hematocrit levels in 489 males was 2.8. Thus, the SE for the male meaj
is 2.8/V/489 = .1266. For 469 females the SD was 2.9, which gives an SE
of 2.9/V469 = .1339. The SE for the difference in the two means i

V12667 + 1339* = .1843 ~ .18. |

variance
Both the
dtandard de
vn that the

The Pooled Standard Error (Optional)

The standard error just presented is known as the “unpooled” standard erroig
Many statistics software packages allow the user to specify use of what is knowg
as the “pooled” standard error, which we will discuss briefly.

Recall that the square of the standard deviation, s, is the sample vananc
5%, defined as

,_ -y

n—1

the resem
In analy
£ Bcide whether

N

The pooled variance is a weighted average of s7, the variance of the first sample}

and s3, the variance of the second sample, with weights equal to the degrees o ol (0-1 and o,
freedom from each sample, n; — 1: 1 uld be used
DR T O R V1 O U Ol GOl S However,

pooled (n — 1) + (n, — 1) (n, + my — 2) similar to

The pooled standard error is defined as

1 1
SEpooled = \/sgooled<n_l + ;;)

We illustrate with an example.

y agree whe
sticians pre
n pooling i

Vital Capacity. For the vital capacity data we found that s7 = .1892 an
= ,1232. The pooled variance is« 4

(7 - 1).1892 + (5§ — 1).1232 Data fro
Slzjooled = (7 +5— 2) = .,1628
and the pooled SE is
1 1
SE jooted = 4/ 1628\ 7 + = ) = .236
705 Comput
Recall from Example 7.4 that the unpooled SE for the same data was .227. Co
mput

If the sample sizes are equal (n; = n,) or if the sample standard deviationg
are equal (s; = s,), then the unpooled and the pooled method will give the samg
answer for SE;, _s,). The two answers will not differ substantially unless both the
sample sizes and the sample SDs are quite discrepant. »‘
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f the individual SEs b ‘ To show the analogy between the two SE formulas, we can write them
: s follows:
at the standard devia-] ; SE(il—ﬁz) = ~ + ~
SE for the male mea ; 1 2
9, which gives an S
n the two means 5 =
_ pooled pooled
SEPooled - Tl + Tz

In the pooled method, the separate variances—s{ and sj—are replaced by the
Single variance sf,ooled , which is calculated from both samples.

Both the unpooled and the pooled SE have the same purpose—to estimate

the standard deviation of the sampling distribution of (17] - 72) In fact, it can be
shown that the standard deviation is

ooled” standard errof’.

y use of what is knownj
ly. :

) . & o2 2
is the sample variance, } TFry = |2 + 2
‘ e nom

Note the resemblance between this formula and the formula for SE5,-5,)-

In analyzing data when the sample sizes are unequal (n, # n,), we need to
decide whether to use the pooled or unpooled method for calculating the standard
error. The choice depends on whether we are willing to assume that the population

Ds (o, and o, ) are equal. It can be shown that if 01 = 03, then the pooled method
khould be used, because in this case Spooled 18 the best estimate of the population

D. However, in this case the unpooled method will typically give an SE that is
quite similar to that given by the pooled method. If o, # 07, then the unpooled
method should be used, because in this case Spooled 1S NOt an estimate of either o or
77, 50 that pooling would accomplish nothing, Because the two methods substan-
tially agree when 01 = 0, and the pooled method is not valid when o1 # 0,, most
statisticians prefer the unpooled method. There is little to be gained by pooling
when pooling is appropriate and there is much to be lost when pooling is not ap-
propriate. Many software packages use the unpooled method by default; the user
must specify use of the pooled method if she or he wishes to pool the variances.

nce of the first samplﬁe,;
>qual to the degrees of §

+ (ny — 1)s3
n, —2)

ts3=.182 and QN
d that s Bxercises 7.1-7.9

¥

1628 y 7.1 Data from two samples gave the following results:

Sample 1 Sample 2

n 6 12
, ¥y 40 50
, 3 s 43 5.7
) ]

Compute the standard error of 3 — ).

ne data was .227. -’:' 72 Compute the standard error of (%1 — %) for the following data:

ple standard deviations } Sample 1 Sample 2
thod will give the same 1 n 10 10 -
antially unless both the | y 125 217

i N 442 28.7
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7.3

74

7.5

7.6

7.7

Compute the standard error of (3, — ¥,) for the following data: Some so:
pect ord

Sample 1 Sample 2 a solutio

n 25 29 The two

y 18 16 The dish

s 5 .6 each dist

Compute the standard error of (¥, — %) for the following data:

Sample 1 Sample 2

n 5 7
y 44 47
K3 6.5 8.4

Consider the data from Exércise 7.4. Suppose the sample sizes were doubled, but}
the means and SDs stayed the same, as follows. Compute the standard error off
(31 — ).

Sample 1 Sample 2

n 10 14
y 44 47
s 6.5 8.4

Data from two samples gave the following results:

Sample 1 Sample 2

y 96.2 87.3
SE 3.7 46

Compute the standard error of (3, — %).
Data from two samples gave the following results:

Sample 1 Sample 2

n 22 21
y 1.7 2.4 gity (m1 — ). R
SE 0.5 0.7 i of a single pop

Compute the standard error of (3, — ¥,).

Two varieties of lettuce were grown for 16 days in a controlled environment.
following table shows the total ¢ry weight (in grams) of the leaves of nine plant§

F Agalogously, a 9
of the variety “Salad Bowl]” and six plants of the variety “Bibb.”* i

Salad Bowl Bibb 1
3.06 131 : The critical value
578 117 - freedom given as
2.87 1.72
352 1.20  (7.1)
3.81 1.55 !
3.60 1.53 : 4
330 } | where SE; = 5,/
2.77 ‘S
7 3259 1.413 !  * Strictly speaking, t
s 400 220w '  on the unknown poy

| tion. However, Stude
Compute the standard error of (3, — ¥,) for these data. | good approximation.
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ving data: Some soap manufacturers sell special “antibacterial” soaps. However, one might ex-
2 pect ordinary soap also to kill bacteria. To investigate this, a researcher prepared
’ a solution from ordinary, non-antibiotic soap and a control solution of sterile water.
The two solutions were placed onto petri dishes and E. coli bacteria were added.
The dishes were incubated for 24 hours and the number of bacteria colonies on
each dish were counted.’ The data are given in the following table,
ng data: Control Soap
2 (Group 1) (Group 2)
30 76
1 , 36 27
4 ; 66 16
p ' 21 30
le sizes were doubled, b 63 2%
ute the standard error g 38 46
‘ 35 6
2 *3
4 45
n 8 7
A y 41.8 324
s 15.6 22.8
i SE 55 8.6
2 Compute the standard error of (7, — ¥,) for these data.
»
8
‘SN7.3 CONFIDENCE INTERVAL FOR (12, — p,)
2 1

; One way to compare two sample means is to construct a confidence interval for
3 the difference in the population means—that is, a confidence interval for the quan-

1 ity (141 — po). Recall from Chapter 6 that a 95% confidence interval for the mean
1 of a single population that is normally distributed is constructed as

i 5-7 + t.OzssEy
itrolled environment. The o . ) .
 the leaves of nine plants ‘ Analogously, a 95% confidence interval for (k1 — mo) is constructed as

,«B'bb.”4 v v
i =)+ 1025SE(5,-,)

The critical value ¢y is determined from Student’s ¢ distribution using degrees of
freedom given as*

SE} + SE2)?
(7.1) df = — (SE: 24)
‘ SEi/(m — 1) + SEj/(n, — 1)

| where SE; = s,/\/n, and SE, = 52/ Vn,.

¥ Strictly speaking, the distribution needed to construct a confidence interval here deﬁends
on the unknown population standard deviations o and 0, and is not a Studentss distribu-
tion. However, Student’s ¢ distribution with degrees of freedom given by formula (7.1)is avery
good approximation. This is sometimes known as Welch’s method or Satterthwaite’s method.
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Example 7.7

Of course, calculating the degrees of freedom from formula (7.1) is co 3
plicated and time consuming. Most computer software uses formula (7.1), as d{j
some graphing calculators. However, another option, which does not require techg
nology, is to use Student’s ¢ distribution with degrees of freedom given by th
smaller of (n; — 1) and (n, — 1). This option gives a confidence interval that i
somewhat conservative, in the sense that the true confidence level is a bit largef§
than 95% when 7,5 is used. A third approach is to use Student’s ¢ distribution wit(
degrees of freedom n; + n, — 2. This approach is somewhat liberal, in the sens
that the true confidence level is a bit smaller than 95% when ¢ 5 is used. ]

Intervals with other confidence coefficients are constructed analogousl
for example, for a 90% confidence interval one would use ¢ 5 instead of #s.

21
The following example illustrates the construction of a confidence 1nterva
for (u; — wy). 3 18
g 15
1 g
Fast Plants. The “Wisconsin Fast Plant,” Brassica campestris, has a very rapiQ 1

growth cycle that makes it particularly well suited for the study of factors that af§
fect plant growth. In one such study, seven plants were treated with the substance]
Ancymidol (ancy) and were compared to eight control plants that were giver]
ordlnary water. Heights of all of the plants were measured, in cm, after 14 days of
growth.® The data are given in Table 7.5. 1

tJsing a comput
o1 12.8 degrees
g und down the
flhis change fror
'he confidence

" i 1 e 95% confid
Parallel dotplots and normal probability plots (Figure 7.5) show that both

sample distributions are reasonably symmetric and bell shaped. Moreover, we]
would expect that a distribution of plant heights might well be normally distrib-j
uted, since height distributions often follow a normal curve. The dotplots show
that the ancy distribution is shifted down a bit from the control distribution; thej
difference in sample means is 159 — 11.0 = 4.9. The SE for the difference inj
sample means is '

Rounding off, w

- Thus, we are 95%
t when water is u
| average 14-day h

4.82 47
SE(yl“yz) = 8 7 =2.46
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for the difference in
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0F 1 .
5=
n 1
10~ =« )
sL .
Control ancy
; (a)
! 21 o .
§ _ 18 ' 16
f Qo
£ 15 & 12 -
=) . " 5] -
“12 8 .
] | 1 t [ |
-0.75 000 0.75 -075 000 075
n SCOores n scores
(b)

| Using formula (7.1), we find the degrees of freedom to be 12.8:

fo (718 18
177+ 186 7

Using a computer, we can find that for a 95% confidence interval the t-multiplier
| for 12.8 degrees of freedom is #(12.8) o5 = 2.164. (Without a computer, we could

round down the degrees of freedom to 12, in which case the r-multiplier is 2.179.

| This change from 12.8 to 12 degrees of freedom has little effect on the final answer.)
The confidence interval formula gives

(15.9 ~ 11.0) & (2.164)(2.46)

| or

49 £+ 532

| The 95% confidence interval for (g — mp)is

(—0.42,10.22).

: Rounding off, we have

(~0.4,10.2)

Thus, we are 95% confident that the population average 14-day height of fast plants
when water is used (u,) is between 0.4 cm lower and 10.2 cm higher than the
average 14-day height of fast plants when ancy is used (u,). |

LN

SECTION 7.3 CONFIDENCE INTERVAL FOR (g, — u,) 22

Figure 7.5 Parallel dotplots (a)
and normal probability plots (b’
of heights of fast plants
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Example 7.8

Example 7.9

600 —

525

NE concentration

450 -

Control  Toluene

Figure 7.6 Parallel dotplots of
NE concentration

CHAPTER 7 COMPARISON OF TWO INDEPENDENT SAMPLES

Fast Plants. We said that a conservative method of constructing a confider§
interval for a difference in means is to use the smaller of n; — 1 and n, — 1. kg

the data given in Example 7.7, this method would use 6 degrees of freedom a lil: -
: € 95% cor

t-multiplier of 2.447. In this case, the 95% confidence interval for (u; — u,) is!
(15.9 — 11.0) £ (2.447)(2.46)
or
49 + 6.02 ng off, w
The 95% confidence interval for (u; — u,) is
(-1.1,10.9) | ] r’ding to th

This interval is a bit conservative in the sense that the interval is wider than Qi
interval found in Example 7.7.

Toluene and the Brain. Abuse of substances containing toluene (for examp g
glue) can produce various neurological symptoms. In an investigation of the mecg
anism of these toxic effects, researchers measured the concentrations of variog
chemicals in the brains of rats who had been exposed to a toluene-laden atmdg
phere, and also in unexposed control rats. The concentrations of the brain che:
cal norepinephrine (NE) in the medulla region of the brain, for six toluene-exp

7. 7
rats and five control rats, are given in Table 7.6 and displayed in Figure 7.6. the 90% cor

ding off, w

ording to th
} mean NE c
trol rats (u,

ng/g.

hapter 6 we
d: We requir
. = =y ormal populs
For the data in Table 7.6, the SE for (y; — ¥,) is dent, randor
66.12  69.6° n the conditi
SE 5,5, = 0 + s = 41.195
Formula (7.1) gives degrees of freedom xercises 7.1
(272 + 312)2 .....................
= 847

In Table 7
ple of 46S
with an S]
data to cc
ulation ax

274/5 + 314/4
For a 95% confidence interval the -multiplier is #(8.47) o5 = 2.284*. (We coul{ ul
round the degrees of freedom to 8, in which case the t-multiplier is 2.306. Thi
change from 8.47 to 8 degrees of freedom has only a small effect on the final a g
swer.) The confidence interval formula gives A

(540.8 — 444.2) + (2.284)(41.195)

Ferulic a
botanist
in the dar
as shown

* Some software packages may produce slightly different values, but this should not be a
cause for concern.
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. Or

96.6 + 94.17

| and the 95% confidence interval for (u; — p,) is

(2.43,190.77)

i Rounding off, we have

(2,191)

val is wider than the f
. 3

1 191 ng/g.

oluene (for example, §
tigation of the mech- 4
ntrations of various
oluene-laden atmos-
s of the brain chemi- §
r six toluene-exposed
1 in Figure 7.6.

The confidence interval formula gives
| (540.8 — 444.2) + (1.846)(41.195)
or
96.6 + 76.05

 and the 90% confidence interval for (u, — ;) is

(20.55,172.65)

Rounding off, we have
(21,173)

According to the confidence interval, we can be 90% confident that the popula-
tion mean NE concentration for toluene-exposed rats (u, ) is larger than that for
control rats (u,) by an amount that might be as small as 21 ng/g or as large as
173 ng/g. |

Conditions for Validity

| In Chapter 6 we stated the conditions that make a confidence interval for a mean
valid: We require that the data can be thought of as (1) a random sample from (2)
i anormal population. Likewise, when comparing two means, we require two inde-
pendent, random samples from normal populations. If the sample sizes are large,
| then the condition of normality is not crucial (due to the Central Limit Theorem).

Exercises 7.10-7.22

| According to the confidence interval, we can be 95% confident that the popula-
tion mean NE concentration for toluene-exposed rats (u, ) is larger than that for
| control rats (u,) by an amount that might be as small as 2 ng/g or as large as

Likewise, for a 90% confidence interval the t-multiplier is #(8.47) os = 1.846.

W

/ { 710 InTable 7.1, data were presented from a sample of 489 17-year-old males and a sam-

1 ple of 469 17-year-old females. The average hematocrit level of the males was 45.8,
= 2.284*. (We coul.d 1 with an SD of 2.8. For the females, the average was 40.6 with an SD of 2.9, Use these
ltiplier is 2.306. Thls ; data to construct a 95% confidence interval for the male-female difference in pop-
ffect on the final an- ulation averages. Note: Formula (7.1) yields 950 degrees of freedom for these data.

711 Ferulic acid is a compound that may play a role in disease resistance in corn: A
i botanist measured the concentration of soluble ferulic acid in corn seea‘ﬁngs grown

in the dark or in a light/dark photoperiod. The results (nmol acid per g tissue) were

this should not be a as shown in the table.8
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CHAPTER 9 COMPARISON OF PAIRED SAMPLES

mCPP tells us something about how the subject did on placebo, and vice versa.
We want to use this information when we analyze the data.

In Section 9.2 we show how to analyze paired data using methods based |

on Student’s t distribution. In Sections 9.4 and 9.5 we describe two nonparametric

tests for paired data. Sections 9.3, 9.6, and 9.7 contain more examples and discus-

sion of the paired design.

9.2 THE PAIRED-SAMPLE t TEST AND
CONFIDENCE INTERVAL

In this section we discuss the use of Student’s ¢ distribution to obtain tests and |

confidence intervals for paired data.

Analyzing Differences

In Chapter 7 we considered how to analyze data from two independent samples.

When we have paired data we make a simple shift of viewpoint: Instead of |

considering Y; and Y, separately, we consider the difference d, defined as
d=Y, - Y,

Note that it is often natural to consider a difference as the response variable of in-

terest in a study. For example, if we were studying the growth rates of plants, we
might grow plants under control conditions for a while at the beginning of a study |

and then apply a treatment for one week. We would measure the growth that

takes place during the week after the treatment is introduced as d = Y; — Y, |
where Y; = height one week after applying the treatment and Y, = height before |
the treatment is applied. Sometimes data are paired in a way that is less obvious, |
but whenever we have paired data, it is the observed differences that we wish to ‘

analyze.

Let us denote the mean of the d’s as d. The quantity d is related to the in- ]

dividual sample means as follows:

d= (3 — »)

The relationsl

Thus, we may
means. Becau.
be carried out
The sta
a single sampl
ing formula:

where s, is th

- following exar

Weight Loss
differences d.

w

- Note that the r

Figure 9.1 shov
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The relationship between population means is analogous:
Mg = M1 — Mo

Thus, we may say that the mean of the difference is equal to the difference of the
means. Because of this simple relationship, a comparison of two paired means can
be carried out by concentrating entirely on the d’s.

The standard error for d is easy to calculate. Because d is just the mean of

a single sample, we can apply the SE formula of Chapter 6 to obtain the follow-
ing formula:

where s, is the standard deviation of the d’s and n, is the number of d’s. The

+ following example illustrates the calculation.

Weight Loss. Table 9.2 shows the weight loss data of Example 9.1 and the
differences d.

Note that the mean of the difference is equal to the difference of the means:

d=100=.91-—09

[ Figure 9.1 shows the distribution of the 9 sample differences.

0.75
B o .
* 0 *
0.00 — N
-
* -0.75 — *
—-0.75 * ™ .
. : 150 L ¢
~1.50 1~ b
»
. | | !
225 - -0.75 0.75
d n scores

Example 9.2

Figure 9.1 Dotplot of
differences in weight loss when
on mCPP and when on placebo,
along with 4 normal probability
plot of the data
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Example 9.3

"
W

1|
i

l- Example 9.4

We calculate the standard error of the mean difference as follows:

S = 72
n; = 9
72
SE;=—F—==.24 | |
d \/§

Confidence Interval and Test of Hypothesis

The standard error described in the preceding subsection is the basis for the paired-
sample ¢ method of analysis, which can take the form of a confidence interval or
a test of hypothesis.

A 95% confidence interval for w, is constructed as

C_i Zt tAozssE(_[
where the constant s is determined from Student’s ¢ distribution with
df=n,; -1

Intervals with other confidence coefficients (such as 90%, 99%, etc.) are con-
structed analogously (using ¢s, s, etc.). The following example illustrates the
confidence interval.

Weight Loss.
we find that #(8) o5 = 2.306; thus, the 95% confidence interval for u, is

1.00 + (2.306)(.24)
or
1.00 + .55
or
(45,1.55)

Thus, we are 95% confident that the population average weight loss (in a two- |

week period) is between .45 kg and 1.55 kg greater when taking mCPP than when
taking a placebo. » ; [ |

We can also conduct a ¢ test. To test the null hypothesis

Hypg =0
we use the test statistic

tza—o

5 SE;

Critical values are obtained from Student’s ¢ distribution (Table 4) with |

df = n; — 1. The following example illustrates the ¢ test.

Weight Loss. For the weight loss data, let us formulate the null hypothesis and |

nondirectional alternative:

H,: Mean weight loss is the same when on mCPP and when on placebo.

For the weight loss data, we have df = 9 — 1 = 8. From Table 4 |

H ,: Mear
In symbols,

Hypy =
HA: Mg #

Let us test H,

From Table 4,
4.17 is betwee
ject Hy and fii
that mean wei
computer give

Result of Ig|

Suppose that
ignored in the
that the sampl
sis can be misl

Hunger Ratir
subjects were :
period. The hu

—

i For the hunger
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H ,4: Mean weight loss when on mCPP is different than when on placebo.
In symbols,

H()Z,LLd =0
HA:,lLd #0

Let us test Hy against H , at significance level & = .05. The test statistic is

1.00 - 0

= T =417

T T :
From Table 4,¢(8) oos = 3.355 and #(8) 05 = 5.041, so the upper tail area beyond
4.17 is between .0005 and .005. Thus, the P-value is between .001 and .01. We re-
ject Hy and find that there is sufficient evidence (.001 < P < .01) to conclude

that mean weight loss is greater when on mCPP than when on placebo. (Using a
computer gives the P-value as P = .003.) |

Result of Ignoring Pairing

Suppose that a study is conducted using a paired design, but that the pairing is
ignored in the analysis of the data. Such an analysis is not valid because it assumes
that the samples are independent when in fact they are not. The incorrect analy-
sis can be misleading, as the following example illustrates.

Hunger Rating. As part of the weight loss study described in Example 9.1, the
subjects were asked to rate how hungry there were at the end of each two week
period. The hunger rating data are shown in Table 9.3 2

For the hunger rating data, the SE for the mean difference is

SE; =

s

Example 9.5
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Figure 9.2 Dotplot of
differences in hunger rating
when on mCPP and when on
placebo, along with a normal
probability plot of the data
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Figure 9.2 shows the distribution of the 9 sample differences.
A test of

Hy:py =0vs. Hy:uy # 0

gives a test statistic of

-30-0
= = — .
; 11 273

This test statistic has 8 degrees of freedom. Using a computer gives the P-value as
P = .026.
Looking at the mCPP and placebo data separately, the two sample SDs are

s; = 32 and 5, = 34. If we proceed as if the samples were independent and apply
the SE formula of Chapter 7, we obtain

2 2
=[5, %
SE(%—%) - " ",
322 342
==+ 2 2156
9 9

This SE is quite a bit larger than the value (SE; = 11) that we calculated using

the pairing. Continuing to proceed as if the samples were independent, the test

statistic is

55 — 85
= - -1
L= 156 92

The P-value for this test is .073, which is much greater than the P-value for the
correct test, .026. '

To compare further the paired and unpaired analysis, let us consider the
95% confidence interval for (u, — M) For the unpaired analysis, formula (7.1)

yields 15.9 degrees of freedom,; this gives a t-multiplier of #(15.9) ¢,s = 2.121 and
yields a confidence interval of

(55 — 85) + (2.121)(15.6)
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| or
L ; —30 + 33.1
or ‘
(—63.1,3.1)

This confidence interval is wider than the correct confidence interval from a paired
analysis. A paired analysis yields the narrower interval

I ]
0.75 ; —30 + (2.306)(11)
| or
-30 £ 254
or
(—55.4,-4.6)

The paired-sample interval is narrower because it uses a smaller SE; this effect is
slightly offset by a larger value of # s (2.306 vs. 2.121).

Why is the paired-sample SE smaller than the independent-samples SE cal-
culated from the same data (SE = 11 vs. SE = 15.6)? Table 9.3 reveals the reason.
The data show that there is large variation from one subject to the next. For in-
stance, subject 4 has low hunger ratings (both when on mCPP and when on place-
bo) and subject 6 has high values. The independent-samples SE formula
incorporates all of this variation (expressed through s; and s,); in the paired-sample
approach, intersubject variation in hunger rating has no influence on the calcula-
tions because only the d’s are used. By using each subject as her own control, the
experimenter has increased the precision of the experiment. But if the pairing is
ignored in the analysis, the extra precision is wasted. |

r gives the P-value as

> two sample SDs are
dependent and apply

The preceding example illustrates the gain in precision that can result from
a paired design coupled with a paired analysis. The choice between a paired and
an unpaired design will be discussed in Section 9.3.

, Conditions for Validity of Student’s t Analysis
t we calculated using

ndependent, the test 8@ The conditions for validity of the paired-sample ¢ test and confidence interval are
] as follows:

1. It must be reasonable to regard the differences (the d’s) as a random
sample from some large population.

‘ 2. The population distribution of the d’s must be normal. The methods are

n the P-value for the approximately valid if the population distribution is approximately normal
' ' or if the sample size (n,) is large.

is, let us consider the

nalysis, formula (7.1) The preceding conditions are the same as those given in Chapter 6;in the present

15.9) 05 = 2.121 and i case the conditions apply to the d’s because the analysis is based on the d’s. Veri-
‘ ’ fication of the conditions can proceed as described in Chapter 6. First, the design
should be checked to assure that the d’s are independent of each other, and espe-
cially that there is no hierarchical structure within the d’s. (Note, however, that the
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Y}’s are not independent of the Y,’s because of the pairing.) Second, a histogram,

stem-and-leaf display, or dotplot of the d’s can provide a rough check for approx- |

imate normality. A normal probability plot can also be used to assess normality.
Notice that normality of the Y;’s and Y,’s is not required, because the analy-
sis depends only on the d’s. The following example shows a case in which the Y;’s

and Y,’s are not normally distributed but the d’s are.

Squirrels. If you walk toward a squirrel that is on the ground, it will eventual-
ly run to the nearest tree for safety. A researcher wondered whether he could get

closer to the squirrel than the squirrel was to the nearest tree before the squirrel
would start to run. He made 11 observations, which are given in Table 9.4. Figure 9.3

Person

Figure 9.3 Normal probability
plots of distance from squirre)
to person and from squirrel to
tree
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Second, a histogram, i shows that the distribution of distances from squirrel to person appear to be rea-
gh check for approx- | sonably normal, but that the distances from squirrel to tree are far from being nor-
to assess normality. | mally distributed. However, panel (¢) of Figure 9.3 shows that the 11 differences
d, because the analy- Jil8 do meet the normality condition. Since a paired ¢ test analyzes the differences, a ¢
case in which the Y;’s § test (or confidence interval) is valid here [ |
und, it will eventual- S Summary of Formulas

whether he could get |

For convenient reference, we summarize in the box the formulas for the paired-
sample methods based on Student’s ¢.

e before the squirrel
n Table 9.4. Figure 9.3

Exercises 9.1-9.9

+ 1 9.1 In an agronomic field experiment, blocks of land were subdivided into two plots of
] 346 square feet each. The plots were planted with two varieties of wheat, using a
N n randomized blocks design. The plot yields (Ib) of wheat are given in the table.*

. ] Variety
B I ] .
: Block 1 2 Difference

cores ] 1 32.1 34.5 24
(b) ] 2 30.6 32.6 -2.0
1 3 33.7 34.6 -0.9

4 29.7 31.0 -1.3

Mean 31.53 33.18 —1.65
SD 1.76 1.72 0.68

(a) Calculate the standard error of the mean difference between the varieties.

(b) Test for a difference between the varieties using a paired ¢ test at o = .05. Use
a nondirectional alternative.

(c) Test for a difference between the varieties the wrong way, using an independent-
samples test. Compare with the result of part (b).
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9.2

9.3

9.4

In an experiment to compare two diets for fattening beef steers, nine pairs of ani-
mals were chosen from the herd; members of each pair were matched as closely as
possible with respect to hereditary factors. The members of each pair were ran-
domly allocated, one to each diet. The following table shows the weight gains (1b)
of the animals over a 140-day test period on diet 1 (¥;) and on diet 2 (¥3).°

Pair Diet 1 Diet 2 Difference

1 596 498 - 98

2 422 460 —-38

3 524 468 56

4 454 458 -4

5 538 530 8

6 552 482 70

7 478 528 -50

8 564 598 -34

9 556 456 100
Mean 520.4 497.6 229
SD 571 473 59.3

(a) Calculate the standard error of the mean difference. ’

(b) Test for a difference between the diets using a paired ¢ test at « = .10. Use a
nondirectional alternative.

(c) Construct a 90% confidence interval for u,.

(d) Interpret the confidence interval from part (c) in the context of this setting.

Cyclic adenosine monophosphate (cAMP) is a substance that can mediate cellular
response to hormones. In a study of maturation of egg cells in the frog Xenopts lae-
vig, oocytes from each of four females were divided into two batches; one batch was
exposed to progesterone and the other was not. After two minutes, each batch was as-
sayed for its cAMP content, with the results given in the table.’ Use a ¢ test to inves-
tigate the effect of progesterone on cAMP. Let H , be nondirectional and let« = .10.

cAMP (pmol/oocyte)
Frog Control Progesterone  d
1 6.01 5.23 0.78
2 2.28 121 . 1.07
3 1.51 1.40 0.11
4 212 1.38 0.74
Mean 2.98 231 0.68
SD 2.05 1.95 0.40

Under certain conditions, electrical stimulation of a beef carcass will improve the
tenderness of the meat. In one study of this effect, beef carcasses were split in half;
one side (half) was subjected to a brief electrical current and the other side was an
untreated control. For each side, a steak was cut and tested in various ways for ten-
derness. In one test, the experimenter obtained a specimen of connective tissue
(collagen) from the steak and determined the temperature at which the tissue
would shrink; a tender piece of meat tends to yield a low collagen shrinkage tem-
perature. The data are given in the following table.’
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(a) Construct a 95% confidence interval for the mean difference between the treat-
ed side and the control side.

(b) Construct a 95% confidence interval the wrong way, using the independent-
samples method. How does this interval differ from the one you obtained in
part (a)?

Collagen Shrinkage Temperature (°C)

Carcass Treated Side  Control Side Difference
1 69.50 70.00 -.50
2 67.00 69.00 ~2.00
3 70.75 69.50 1.25
4 68.50 69.25 -.75
5 66.75 67.75 —-1.00
6 68.50 66.50 2.00
7 ' 69.50 68.75 75
8 69.00 70.00 —1.00
9 66.75 66.75 .00
10 69.00 68.50 - .50
11 69.50 69.00 50
12 69.00 69.75 =75
13 70.50 70.25 25
14 68.00 66.25 1.75
15 69.00 68.25 75
Mean 68.750 68.633 117
SD 1.217 1.302 1.118

Refer to Exercise 9.4. Use a t test to test the null hypothesis of no effect against the
alternative hypothesis that the electrical treatment tends to reduce the collagen
shrinkage temperature. Let o = .10,

Trichotillomania is a psychiatric illness that causes its victims to have an irre-
sistible compulsion to pull their own hair. Two drugs were compared as treat-
ments for trichotillomania in a study involving 13 women. Each woman took
clomipramine during one time period and desipramine during another time pe-
riod in a double-blind experiment. Scores on a trichotillomania-impairment scale,
in which high scores indicate greater impairment, were measured on each woman
during each time period. The average of the 13 measurements for clomipramine
was 6.2; the average of the 13 measurements for desipramine was 4.2.8 A paired
t test gave a value of £, = 2.47 and a two-tailed P-value of .03. Interpret the re-
sult of the ¢ test. That is, what does the test indicate about clomipramine, de-
sipramine, and hair pulling?

A scientist conducted a study of how often her pet parakeet chirps. She recorded
the number of distinct chirps the parakeet made in a 30-minute period, sometimes
when the room was silent and sometimes when there was music playing. The data
are shown in the following table.” Construct a 95% confidence interval for the
mean increase in chirps (per 30 minutes) when music is playing over when music
is not playing,
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Chirps in 30 Minutes Examples
Day With Music ~ Without Music ~ Difference | Paired desigl
1 12 3 9 ]
) 14 1 13 | Random
3 11 2 9 . Observa
4 13 1 12 " Repeate
2 ig _3, ﬁ Blocking
7 10 0 10 I Randomized
8 12 2 10 | paired design
9 8 6 2 . experimental
10 13 3 10 ]
11 14 2 12 BB Fertilizers fc
12 15 4 1 B izer treatmen
13 12 3 9 BB house bench
14 13 2 1 . chosen) plant
15 8 0 8
16 18 5 13 SR Observationa
17 15 3 12 ‘ b ferred over ot
18 12 2 10 | arise within a
19 17 2 15 PR tional study m
20 15 4 11 B as the observ:
21 11 3 8 S smoke” it wou
22 22 4 18 | each pair, one
23 14 2 12 | cause sets of ty
24 18 4 14 } groups are ma
25 15 5 10 b Here is an exa
26 8 1 7
27 13 2 11 ‘ Smoking and
28 16 3 13 - Cer patients we
Mean 137 2.8 10.9 | ually matched
SD 3.4 1.5 3.0  habits of the cz
9.8 Consider the data in Exercise 9.7. There are two outliers among the 28 differences: p Repeated Mea
the smallest value, which is 2, and the largest value, which is 18. Delete these two ]
observations and construct a 95% confidence interval for the mean increase, using
the remaining 26 observations. Do the outliers have much of an effect on the con- measurements
fidence interval? 9 . |
-only two times
9.9 Invent a paired data set, consisting of five pairs of observations, for which 3 and Lfollowing is anc
y, are not equal, and SE; > 0 and SE;, > 0, but SE; = 0. ]
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Ideally, in a paired design the members of a pair are relatively similar to each
0 other—that is, more similar to each other than to members of other pairs—wit}
; ‘ respect to extraneous variables. The advantage of this arrangement is that, wher
i members of a pair are compared, the comparison is free of the extraneous varia
| tion that originates in between-pair differences. We will expand on this theme aftes
‘ giving some examples. g

Blocking by Tim
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Examples of Paired Designs
Paired designs can arise in a variety of ways, including the following:

Randomized blocks experiments with two experimental units per block
Observational studies with individually matched controls

Repeated measurements on the same individual at two different times
Blocking by time

Randomized Blocks Experiments. A randomized blocks design (Chapter 8) is a
paired design if there are only two treatments. Each block would then contain two
experimental units, one to receive each treatment. The following is an example.

Fertilizers for Eggplants. In a greenhouse experiment to compare two fertil-
izer treatments for eggplants, individually potted plants are arranged on the green-
house bench in blocks of two (that is, pairs). Within each pair, one (randomly
chosen) plant will receive treatment 1 and the other will receive treatment 2. W

Observational Studies. Asnoted in Chapter 8, randomized experiments are pre-
ferred over observational studies, due to the many confounding variables that can
arise within an observational study. If no experiment is possible and an observa-
tional study must be carried out, then the researcher can try to use identical twins
as the observational units. For example, in a study of the effect of “second-hand
smoke” it would be ideal to enroll several sets of nonsmoking twins for which, in
each pair, one of the twins lived with a smoker and the other twin did not. Be-
cause sets of twins are rarely, if ever, available, matched-pair designs, in which two

groups are matched with respect to various extraneous variables, are often used.
Here is an example.

Smoking and Lung Cancer. In a case-control study of lung cancer, 100 lung can-
cer patients were identified. For each case, a control was chosen who was individ-
ually matched to the case with respect to age, sex, and education level. The smoking
habits of the cases and controls were compared. |

‘Repeated Measurements. Many biological investigations involve repeated mea-

surements made on the same individual at different times. These include studies
of growth and development, studies of biological processes, and studies in which
measurements are made before and after application of a certain treatment. When

only two times are involved, the measurements are paired, as in Example 9.1. The
following is another example.

Exercise and Serum Triglycerides. Triglycerides are blood constituents that
are thought to play a role in coronary artery disease. To see whether regular ex-
ercise could reduce triglyceride levels, researchers measured the concentration of
triglycerides in the blood serum of seven male volunteers, before and after par-
ticipation in a 10-week exercise program. The results are shown in Table 9.5.!1
Note that there is considerable variation from one participant to another. For in-
stance, participant 1 had relatively low triglyceride levels both before and after,
while participant 3 had relatively high levels. |

Blocking by Time. In some situations, blocks or pairs are formed implicitly when
replicate measurements are made at different times. The following is an example.

Example 9.7

Example 9.8

I | I

Example 9.9
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Growth of Viruses. In aseries of experiments on a certain virus (mengovirus),
a microbiologist measured the growth of two strains of the virus—a mutant strain
and a nonmutant strain—on mouse cells in petri dishes. Replicate experiments
were run on 19 different days. The data are shown in Table 9.6. Each number rep-
resents the total growth in 24 hours of the viruses in a single dish."

Note that there is considerable variation from one run to another. For instance, run
1 gave relatively large values (160 and 97), whereas run 2 gave relatively small val-
ues (36 and 55). This variation between runs arises from unavoidable small varia-
tions in the experimental conditions. For instance, both the growth of the viruses
and the measurement technique are highly sensitive to environmental conditions
such as the temperature and CO, concentration in the incubator. Slight fluctuations
in the environmental conditions cannot be prevented, and these fluctuations cause

the variation that is reflected in the data. In this kind of situation the advantage of |
running the two strains concurrently (that is, in pairs) is particularly striking. W

Examples 9.9 and 9.10 both involve measurements at different times. But
notice that the pairing structure in the two examples is entirely different. In Ex-
ample 9.9 the members of a pair are measurements on the same individual at two
times, whereas in Example 9.10 the members of a pair are measurements on two
petri dishes at the same time. Nevertheless, in both examples the principle of pair-
ing is the same: Members of a pair are similar to each other with respect to extra-
neous variables. In Example 9.10 time is an extraneous variable, whereas in
Example 9.9 the comparison between two times (before and after) is of primary
interest and interperson variation is extraneous.
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Purposes of Pairing

Pairing in an experimental design can serve to reduce bias, to increase precision,
or both. Usually the primary purpose of pairing is to increase precision. We noted
in Chapter 8 that blocking or matching can reduce bias by controlling variation due
to extraneous variables. The variables used in the matching are necessarily bal-
anced in the two groups to be compared, and therefore cannot distort the com-
parison. For instance, if two groups are composed of age-matched pairs of people,
then a comparison between the two groups is free of any bias due to a difference
in age distribution. ,

In randomized experiments, where bias can be controlled by randomized al-
location, a major reason for pairing is to increase precision. Effective pairing in-
creases precision by increasing the information available in an experiment. An
appropriate analysis, which extracts this extra information, leads to more power-
ful tests and narrower confidence intervals. Thus, an effectively paired experiment
is more efficient; it yields more information than an unpaired experiment with the
same number of observations.

We saw an instance of effective pairing in the hunger rating data of Exam-
ple 9.5. The pairing was effective because much of the variation in the measure-
ments was due to variation between subjects, which did not enter the comparison
between the treatments. As a result, the experiment yielded more precise infor-
mation about the treatment difference than would a comparable unpaired
experiment—that is,an experiment that would compare hunger ratings of 9 women
given mCPP to hunger ratings of 9 different control women who were given the
placebo.

The effectiveness of a given pairing can be displayed visually in a scatter-
plot of Y, against Y;; each point in the scatterplot represents a single pair (Yy, Y,).
Figure 9.4 shows a scatterplot for the virus growth data of Example 9.10, togeth-
er with a boxplot of the differences; each point in the scatterplot represents a sin-
gle run. Notice that the points in the scatterplot show a definite upward trend. This
upward trend indicates the effectiveness of the pairing: Measurements on the same
run (i.c., the same day) have more in common than measurements on different
runs, so that a run with a relatively high value of Y; tends to have a relatively high
value of Y,, and similarly for low values.
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Figure 9.4 Scatterplot for the
virus growth data, with a
boxplot of the differences



362 CHAPTER 9 COMPARISON OF PAIRED SAMPLES

Example 9.11

Note that pairing is a strategy of design, not of analysis, and is therefore carried out
before the Y’s are observed. It is not correct to use the observations themselves to
form pairs. Such a data manipulation could distort the experimental results as se-
verely as outright fakery.

Randomized Pairs Design Versus Completely
Randomized Design

In planning a randomized experiment, the experimenter may need to decide be-
tween a paired design and a completely randomized design. We have said that ef-
fective pairing can greatly enhance the precision of an experiment. On the other
hand, pairing in an experiment may not be effective, if the observed variable Y is not
related to the factors used in the pairing, For instance, suppose pairs were matched
on age only, but in fact Y turned out not to be age related. It can be shown that in-
effective pairing actually can yield less precision than no pairing at all. For instance,
in relation to a ¢ test, ineffective pairing would not tend to reduce the SE, but it
would reduce the degrees of freedom, and the net result would be a loss of power.

The choice of whether to use a paired design depends on practical consid-
erations (pairing may be expensive or unwieldy) and on precision considerations.
With respect to precision, the choice depends on how effective the pairing is
expected to be. The following example illustrates this issue.

Fertilizers for Eggplants. A horticulturist is planning a greenhouse experi-
ment with individually potted eggplants. Two fertilizer treatments are to be com-
pared and the observed variable is to be Y = yield of eggplants (pounds). The
experimenter knows that Y is influenced by such factors as light and temperature,
which vary somewhat from place to place on the greenhouse bench. The allocation
of pots to positions on the bench could be carried out according to a completely
randomized design, or according to a randomized blocks (paired) design, as in Ex-
ample 9.7. In deciding between these options, the experimenter must use her knowl-
edge of how effective the pairing would be—that is, whether two pots sitting
adjacent on the bench would be very much more similar in yield than pots farther
apart. If she judges that the pairing would not be very effective, she may opt for
the completely randomized design. |

Note that effective pairing is not the same as simply holding experimental

conditions constant. Pairing is a way of organizing the unavoidable variation that |

still remains after experimental conditions have been made as constant as possi-
ble. The ideal pairing organizes the variation in such a way that the variation with-
in each pair is minimal and the variation between pairs is maximal.

Choice of Analysis

The analysis of data should fit the design of the study. If the design is paired, a |
paired-sample analysis should be used; if the design is unpaired, an independent-
samples analysis (as in Chapter 7) should be used.

Note that the extra information made available by an effectively paired
design is entirely wasted if an unpaired analysis is used. (We saw an illustration of
this in Example 9.5.) Thus, the paired design does not increase efficiency unless it
is accompanied by a paired analysis.

Exercises 9.1
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SECTION 9.3 THE PAIRED DESIGN

Exercises 9.10-9.13

9.10

9.11

| 9.12

(Sampling exercise) This exercise illustrates the application of a matched-pairs
design to the population of 100 ellipses (shown with Exercise 3.1). The accompa-
nying table shows a grouping of the 100 ellipses into 50 pairs.

Ellipse ID Ellipse ID Ellipse ID
Pair Numbers Pair Numbers Pair Numbers

01 20 45 18 11 46 35 16 66
02 03 49 19 09 29 36 18 58
03 07 27 20 19 39 37 30 50
04 42 82 21 00 10 38 76 86
05 81 91 22 40 55 39 17 83
06 38 72 23 21 56 40 04 52
07 60 70 24 08 62 41 12 64
08 31 61 25 24 78 42 23 57
09 77 89 26 67 93 43 98 99
10 01 41 27 35 80 44 36 96
11 14 48 28 74 88 45 44 84
12 59 87 29 94 97 46 06 51
13 22 68 30 02 28 47 85 90
14 47 79 31 26 71 48 37 63
15 05 95 32 25 65 49 43 69
16 53 73 33 15 75 50 34 54
17 13 33 34 32 92

To better appreciate this exercise, imagine the following experimental setting, We
want to investigate the effect of a certain treatment, T, on the organism C. ellipticus.
We will observe the variable Y = length. We can measure each individual only
once, and so we will compare n treated individuals with » untreated controls. We
know that the individuals available for the experiment are of various ages, and we
know that age is related to length, so we have formed 50 age-matched pairs, some
of which will be used in the experiment. The purpose of the pairing is to increase
the power of the experiment by eliminating the random variation due to age. (Of
course, the ellipses do not actually have ages, but the pairing shown in the table has
been constructed in a way that simulates age matching.)

(a) Use random digits (from Table 1 or your calculator) to choose a random sample
of five pairs from the list.

(b) For each pair, use random digits (or toss a coin) to allocate one member to
treatment (T) and the other to control (C).

(c) Measure the lengths of all ten ellipses. Then, to simulate a treatment effect,
add 6 mm to each length in the T group.

(d) Apply a paired-sample  test to the data. Use a nondirectional alternative and
leta = .05.

(e) Did the analysis of part (d) lead you to a Type 11 error?
(Continuation of Exercise 9.10) Apply an independent-samples ¢ test to your data.

Use a nondirectional alternative and let & = .05. Does this analysis lead you to a
Type II error?

(Sampling exercise) Refer to Exercise 9.10. Imagine that a matched-pairs exper-
iment is not practical (perhaps because the ages of the individuals cannot be

measured), so we decide to use a completely randomized design to evaluate the
treatment T.
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(a) Use random digits (from Table 1 or your calculator) to choose a random sam-
ple of ten individuals from the ellipse population (shown with Exercise 3.1).
From these ten, randomly allocate five to T and five to C. (Or, equivalently, just
randomly select five from the population to receive T and five to receive C.)

(b) Measure the lengths of all ten ellipses. Then, to simulate a treatment effect,
add 6 mm to each length in the T group.

(c) Apply an independent-samples ¢ test to the data. Use a nondirectional alter-
native and let « = .05.

(d) Did the analysis of part (c) lead you to a Type II error?

9.13  Refer to each exercise indicated. Construct a scatterplot of the data. Does the
appearance of the scatterplot indicate that the pairing was effective?

(a) Exercise 9.1
(b) Exercise 9.2
(c) Exercise 9.4

\
]

Example 9.12

9.4 THE SIGNTEST

The sign test is a nonparametric test that can be used to compare two paired sam-
ples. It is not particularly powerful, but it is very flexible in application and is
especially simple to use and understand—a blunt but handy tool.

Method

Like the paired-sample ¢ test, the sign test is based on the differences
d=Y, - Y,

The only information used by the sign test is the sign (positive or negative) of each
difference. If the differences are preponderantly of one sign, this is taken as evi-
dence against the null hypothesis. The following example illustrates the sign test.

Skin Grafts. Skin from cadavers can be used to provide temporary skin grafts
for severely burned patients. The longer such a graft survives before its inevitable
rejection by the immune system, the more the patient benefits. A medical team
investigated the usefulness of matching graft to patient with respect to the HL-A
(Human Leukocyte Antigen) antigen system. Each patient received two grafts,
one with close HL-A compatibility and the other with poor compatibility. The sur-
vival times (in days) of the skin grafts are shown in the Table 9.7.*

Notice that a ¢ test could not be applied here because two of the observa-
tions are incomplete; patient 3 died with a graft still surviving and the observation
on patient 10 was incomplete for an unspecified reason. Nonetheless, we can pro-
ceed with a sign test, since the sign test depends only on the sign of the difference
for each patient and we know that ¥; — Y, is positive for both of these patients.

Let us carry out a sign test to compare the survival times of the two sets of
skin grafts using @ = .05. The null hypothesis is

H,: The survival time distribution is the same for close compatibility as it is for
poor compatibility.
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A directional alternative is appropriate for this experiment:

H ,: Skin grafts tend to last longer when the HL-A compatibility is close.
The first step is to determine the following counts:
N, = Number of positive differences

N_ = Number of negative differences

Because H, is directional and it predicts that most of the differences will be
positive, the test statistic B, is

Bs = N+
For the present data, we have

N, =9

N.=2

B~

The next step is to find the P-value. We use the letter B in labeling the test
statistic B, because the distribution of B, is based on the binomial distribution. Let
p represent the probability that a difference will be positive. If the null hypothe-
sis is true, then p = .5. Thus, the null distribution of B, is a binomial with n = 11
and p = .5. That is, the null hypothesis implies that the sign of each difference is
like the result of a coin toss, with heads corresponding to a positive difference and
tails to a negative difference.

For the skin graft data, the P-value for the test is the probability of getting
9 or more positive differences in 11 patients if p = .5.This is the probability that
a binomial random variable with n = 11 and p = .5 will be greater than or equal
to 9. Using the binomial formula, from Chapter 3, we find that this probability is

11C9(.5)9(.5)2 + 11C10(.5)10(.5)1 + 11C11(.5)11 = .02686 + 00537 + 00049 = .03272

Because the P-value is less than a, we reject Hy and conclude that skin grafts tend
to last longer when the HL-A compatibility is close than when it is poor. |
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SEINT I RER Growth of Viruses. Table 9.8 shows the virus growth data of Example 9.10,

together with the signs of the differences.

Let’s carry out a sign test to compare the growth of the two strains, using
a = .10. The null hypothesis and nondirectional alternative are
H,: The two strains of virus grow equally well.
H ,: One of the strains grows better than the other.
For these data
N, =15
N.=4

When the alternative is nondirectional, B, is defined as

B, = Larger of N, and N_

so for the virus growth data,
B, =15

The P-value for the test is the probability of getting 15 or more successes, plus the
probability of getting 4 or fewer successes, in a binomial experiment with n = 19.
We could use the binomial formula to calculate the P-value. As an alternative, crit-
ical values for the sign test are given in Table 7 (at the end of the book). Using
Table 7 with n, = 19, we obtain the critical values shown in Table 9.9.

To bracket the P-value, we find the rightmost column in the table with crit-
ical value less than or equal to B,; then the P-value is bracketed between that col-
umn heading and the next one. In the present case the result is

.01 < P-value < .02
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We reject Hy and find that the data provide sufficient evidence to conclude that
the nonmutant strain grows better (at 24 hours) than the mutant strain of the
virus, |

Brackting the P-Value. Like the Wilcoxon-Mann-Whitney test, the sign test has a
discrete null distribution. The sign test statistic B; may be exactly equal to an entry
in Table 7, and in such a case the P-value is less than the column heading.* Also,
certain critical value entries in Table 7 are blank. Both these situations are already
familiar from our study of the Wilcoxon-Mann-Whitney test. Table 7 has another
peculiarity that is not shared by the Wilcoxon-Mann-Whitney test: Some critical
values appear more than once in the same row. This feature is also due to the
discreteness of the null distribution and does not cause any particular difficulty; to
bracket the P-value, we move to the right in Table 7 as far as possible, stopping
when the next critical value in the table is larger than the observed value B,.

Directional Alternative. To use Table 7 if the alternative hypothesis is directional,
we proceed with the familiar two-step procedure:

Step 1. Check directionality (see if the data deviate from H, in the direction

specified by H ).

(a) If not, the P-value is greater than .50.
(b) If so, proceed to step 2.

Step 2. The P-value, which is half what it would be if H 4 were nondirectional,
is found by reading the “one tail” column headings.

Caution: Table 7, for the sign test, and Table 4, for the ¢ test, are organized
differently: Table 7 is entered with n,, while Table 4 is entered with (ny = 1).

Treatment of Zeros. It may happen that some of the differences (Y1 — Y,) are
equal to zero. Should these be counted as positive or negative in determining B,?
A recommended procedure is to drop the corresponding pairs from the analysis
and reduce the sample size n, accordingly. In other words, each pair whose differ-
ence is zero is ignored entirely; such pairs are regarded as providing no evidence
against H in either direction. Notice that this procedure has no parallel in the ¢ test;
the 7 test treats differences of zero the same as any other value.

Null Distribution. Consider an experiment with ten pairs,so that n, = 10. If H,
is true, then the probability distribution of N, is a binomial distribution with » = 10
and p = .5. Figure 9.5(a) shows this binomial distribution, together with the as-
sociated values of N, and N_. Figure 9.5(b) shows the null distribution of B, which
is a “folded” version of Figure 9.5(a). [We saw a similar relationship between parts
(a) and (b) of Figure 7.31.]

If N, is 7 and H, is directional (and predicts that positive differences are
more likely than negative differences), then the P-value is the probability of 7 or
more (+) signs in 10 trials. This can be calculated from the binomial formula as

10C1(:5)7(.5)° + 10Cs(.5)%(.5)* + 10Co(:5)°(.5)" + 14Cio(.5)1°
= 11719 + .04395 + .00977 + .00098 = .17189

*In a few cases the P-value would be exactly equal to (rather than less than) the column
heading. To simplify the presentation, we neglect this fine distinction.

4

Example 9.14
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Figure 9.5 Null distributions
for the sign test when ny = 10.
(a) Distribution of N, and N_.
(b) Distribution of B.

Example 9.15
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(b)

This value (.17189) is the sum of the shaded bars in the right-hand tail in Figure
9.5(a). If H, is nondirectional, then the P-value is the sum of the shaded bars
in the left-hand tail and of the right-hand tail of Figure 9.5(a). The two shaded
areas are both equal to .1719; consequently, the total shaded area, which is the
P-value, is
P = 2(.17189) = 34378 ~ .34

In terms of the null distribution of By, the P-value is an upper-tail probability; thus,
the sum of the shaded bars in Figure 9.5(b) is equal to .34. ]
How Table 7 is Calculated. Throughout your study of statistics you are asked to
take on faith the critical values given in various tables. Table 7 is an exception; the
following example shows how you could (if you wished to) calculate the critical
values yourself. Understanding the example will help you to appreciate how the
other tables of critical values have been obtained.

Suppose ny; = 10. We saw in Example 9.14 that
If B, = 7 the P-value of the data is .34378.

Similar calculations using the binomial formula show that

If B, = 8, the P-value of the data is .1094.
If B, = 9, the P-value of the datais .0215.
If B, = 10, the P-value of the data is .00195.
For n,; = 10, the critical values are given in Table 7 as shown in Table 9.10.

These critical values have been determined from the preceding P-values, using the
principle that the P-value corresponding to each entry should be as close as possible
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to the column heading without exceeding it. Thus, for instance, the critical value in
the .05 column is equal to 9 because the P-value for B, = 9(.0215) is less than .03,
but the next larger P-value (.1094) is greater than .05.In fact, 1094 is also greater
than .10, and this is why 9 (rather than 8) is also listed in the .10 column. Look
now at the .02 column. The only possible P-value less than .02 is .00195, which is
also less than .01 and less than .002; this accounts for the three critical values list-
ed as 10. On the other hand, .00195 is the smallest possible P-value and yet is
greater than .001; for this reason the .001 column is left blank. ]

Applicability of the Sign Test

The sign test is valid in any situation where the d’s are independent of each other
and the null hypothesis can be appropriately translated as

Hy: Pr{d is positive} = .5
Thus, the sign test is distribution free; its validity does not depend on any condi-
tions about the form of the population distribution of the d’s, This broad validity
is bought at a price: If the population distribution of the d’s is indeed normal, then
the sign test is much less powerful than the ¢ test.

The sign test is useful because it can be applied quickly and in a wide vari-
ety of settings. In fact, sometimes the sign test can be applied to data that do not
permit a t test at all, as was shown in Example 9.12. There is another test for paired
data, the Wilcoxon signed-ranks test, which is presented in Section 9.5, that is gen-
erally more powerful than the sign test and yet is distribution free. However, the
Wilcoxon signed-ranks test is more difficult to carry out than the sign test and,

like the ¢ test, there are situations in which it cannot be conducted. The following
is another example in which only a sign test is possible.

THC and Chemotherapy. Chemotherapy for cancer often produces nausea and
vomiting. The effectiveness of THC (tetrahydrocannabinol the active ingredient of
marijuana) in preventing these side effects was compared with the standard drug

- Compazine. Of the 46 patients who tried both drugs (but were not told which was

which), 21 expressed no preference, while 20 preferred THC and 5 preferred Com-
pazine. Since “preference” indicates a sign for the difference, but not a magnitude,
attest is impossible in this situation. For a sign test, we have n; = 25and B, = 20,
so that .002 < P < .01;even ata = .01 we would reject Hy and find that the data

| provide sufficient evidence to conclude that THC is preferred to Compazine.'* W

Exercises 9.14-9.27

Example 9.16

9.14  Use Table 7 to bracket the P-value for a sign test (against a nondirectional alter-
native), assuming that n, = 9 and

(a) B,=6
(b) B, =7
(c) B,=8
(d) B,=9

9.15  Use Table 7 to bracket the P-value for a sign test (against a nondirectional alter-
native), assuming that n, = 15 and
(a) B, =10
(b) B, =11
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(¢) B, =12 ] *9.21  (Thi
(d) B, =13 | 9.16.
(e) B, =14 ‘ nuity
() B, =15 B (Not
9.16 A group of 30 postmenopausal women were given oral conjugated estrogen for Sl  9.22  Ane
one month. Plasma levels of plasminogen-activator inhibitor type 1 (PAI-1) went the (
down for 22 of the women, but went up for 8 women.'*> Use a sign test to test the j Nort
null hypothesis that oral conjugated estrogen has no effect on PAI-1 level. Use 1 jor fc
a = .10 and use a nondirectional alternative. ] ferer
9.17 Can mental exercise build “mental muscle”? In one study of this question, twelve ?ISPI
littermate pairs of young male rats were used; one member of each pair, chosen at rom
.7 o N . . . alter:
random, was raised in an “enriched” environment with toys and companions, while
its littermate was raised alone in an “impoverished” environment. (See Example
8.19.) After 80 days, the animals were sacrificed and their brains were dissected by

a researcher who did not know which treatment each rat had received. One vari-
able of interest was the weight of the cerebral cortex, expressed relative to total
brain weight. For 10 of the 12 pairs, the relative cortex weight was greater for the
“enriched” rat than for his “impoverished” littermate; in the other 2 pairs, the “im-
poverished” rat had the larger cortex. Use a sign test to compare the environments
at @ = .05; let the alternative hypothesis be that environmental enrichment tends
to increase the relative size of the cortex.'s

9.18 Refer to Exercise 9.17. Calculate the exact P-value of the data as analyzed by the
sign test. (Note that H , is directional.)

9.19 Twenty institutionalized epileptic patients participated in a study of a new anticon-
vulsant drug, valproate. Ten of the patients (chosen at random) were started on \
daily valproate and the remaining 10 received an identical placebo pill. Duringan @& 9,23  Refes
eight-week observation period, the numbers of major and minor epileptic seizures

were counted for each patient. After this, all patients were “crossed over” to the : sient
other treatment, and seizure counts were made during a second eight-week ob- i 9.24 (a) S
servation period. The numbers of minor seizures are given in the accompanying : P
table.!” Test for efficacy of valproate using the sign test at @ = .05. Use a direc- ~ al
tional alternative. (Note that this analysis ignores the possible effect of time—that ‘ (M) E
is, first versus second observation period.) \ c
Patient Placebo  Valproate Patient Placebo  Valproate N 925 (a) s
Number Period Period Number Period Period " as
1 37 5 11 7 8 (b) ](_:,1
2 52 22 12 9 8 ' B
3 63 41 13 65 30 ‘ (c) If
4 2 4 14 52 22 i n,

5 25 32 15 6 11 ‘
6 29 20 16 17 1 | 926 ;‘:ulf:
7 15 10 17 54 31 f each t
8 52 25 18 27 15 ‘ mCPF
9 19 17 19 36 13 ‘ was
10 12 14 20 5 5 "' forma
on m(
*9.20  (This exercise is based on material from optional Section 5.5.) Refer to Exercise ‘ placet
9.19. Use the normal approximation to the binomial distribution (with the conti- 9.27 Refer

nuity correction) to calculate the P-value of the data as analyzed by the sign test. )
(Note that H  is directional.) e te
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(This exercise is based on material from optional Section 5.5. ) Refer to Exercise
9.16. Use the normal approximation to the binomial distribution (with the conti-
nuity correction) to calculate the P-value of the data as analyzed by the sign test.
(Note that H , is nondirectional.)

An ecological researcher studied the interaction between birds of two subspecies,
the Carolina Junco and the Northern Junco. He placed a Carolina male and a
Northern male, matched by size, together in an aviary and observed their behav-
ior for 45 minutes beginning at dawn. This was repeated on different days with dif-
ferent pairs of birds. The table shows counts of the episodes in which one bird
displayed dominance over the other—for instance, by chasing it or displacing it

from its perch.'® Use a sign test to compare the subspecies. Use a nondirectional
alternative and let & = .01.

Number of Episodes in Which
Northern Was Carolina Was

Pair Dominant Dominant
1 0 9
2 0 6
3 0 22
4 2 16
5 0 17
6 2 33
7 1 24
8 0 40

Refer to Exercise 9.22. Calculate the exact P-value of the data as analyzed by the
sign test. (Note that H , is nondirectional.)

(a) Suppose a paired data set has n, = 7 and B, = 7. Calculate the exact
P-value of the data as analyzed by the sign test (against a nondirectional
alternative).

(b) Explain why, in Table 7 with n, = 7, no critical value is given in the .01
column.

(a) Suppose a paired data set has n, = 15. Calculate the exact P-value of the data
as analyzed by the sign test (against a nondirectional alternative) if (i) B, = 13;
(ii) B, = 14; (iii) B, = 15.

(b) Explain why, in Table 7 with n, = 15, the critical value in the .002 column is
B, = 14.

(c) If Table 7 had a .005 column, what would be the entry in that column for

The study described in Example 9.1, involving the compound mCPP, included a
group of men. The men were asked to rate how hungry they were at the end of
each two-week period and differences were computed (hunger rating when taking
mCPP — hunger rating when taking the placebo). The distribution of the differences
was not normal. Nonetheless, a sign test can be conducted using the following in-
formation: Out of 8 men who recorded hunger ratings, 3 reported greater hunger
on mCPP than on the placebo and 5 reported lower hunger on mCPP than on the
placebo.! Conduct a sign test at the « = .10 level; use a nondirectional alternative,

Refer to Exercise 9.26. Calculate the exact P-value of the data as analyzed by the
sign test. (Note that H 4 is nondirectional.)
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9.5 THE WILCOXON SIGNED-RANKTEST

The Wilcoxon signed-rank test, like the sign test, is a nonparametric method that
can be used to compare paired samples. Conducting a Wilcoxon signed-rank test
is somewhat more complicated than conducting a sign test, but the Wilcoxon test is
more powerful than the sign test. Like the sign test, the Wilcoxon signed-rank test
does not require that the data be a sample from a normally distributed population.

The Wilcoxon signed-rank test is based on the set of differences,
d = Y; — Y,. It combines the main idea of the sign test—“look at the signs of the
differences”—with the main idea of the paired ¢ test—*“look at the magnitudes of
the differences.”

Method

" The Wilcoxon signed-rank test proceeds in several steps, which we present here in
the context of an example.

Nerve Cell Density. For each of nine horses, a veterinary anatomist measured
the density of nerve cells at specified sites in the intestine. The results for site I
(midregion of jejunum) and site II (mesenteric region of jejunum) are given in the
accompanying table."” Each density value is the average of counts of nerve cellsin
five equal sections of tissue. The null hypothesis of interest is that in the popula-
tion of all horses there is no difference between the two sites.

1. The first step in the Wilcoxon signed-rank test is to calculate the differ- | “' -
ences, as shown in Table 9.11. ‘ 6. Tobr

of Ta

: »l nima
m 1 50.6
" 2 392
i 3 352
§ 4 17.0
. 5 12
I 6 142
i 7 04 g
8 M . F
9 352 24.4 rom
s e 10 crj
celld
2. Next we find the absolute value of each difference. ‘ mode
3. We then rank these absolute values, from smallest to largest, as shown in ‘_' ence i
Table 9.12. j larger
4. Next we restore the + and — signs to the ranks of the absolute differences I .
to produce signed ranks, as shown in Table 9.13. i Gracketingthe

crete null distri

5. We sum the positive signed ranks to get W, ; we sum the absolute values | ;
8, and in such

of the negative signed ranks to get W_. For the nerve cell data,
W.=8+9+7+4+5+6=39andW_=2+ 3 + 1= 6. The test
statistic, W, is defined as

W, = Larger of W, and W- * As with the sig;
For the nerve cell data, W, = 39. ! than) the column
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SECTION 9.5 THE WILCOXON SIGNED-RANK TEST

6. To bracket the P-value, we consult Table 8 (at the end of the book). Part
of Table 8 is reproduced in Table 9.14.

From Table 9.14, we note that our value of W, is between 37, which is the
10 critical value, and 40, which is the .05 critical value. Thus, for the nerve
cell data the P-value is between .10 and .05. We conclude that there is
moderately strong evidence (.05 < P value < .10) that there is a differ-
ence in nerve cell density in the two regions. (We reject Hy if a is .10 or
larger.) |

Bracketing the P-Value. Like the sign test, the Wilcoxon signed-rank test has a dis-
crete null distribution. The test statistic W, may be exactly equal to an entry in Table
8, and in such a case the P-value is less than the column heading.* For example,

* As with the sign test, in a few cases the P-value would be exactly equal to (rather than less

than) the column heading. To simplify the presentation, we neglect this fine distinction.
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suppose n; = 9 and W, = 37. The entry 37 is in the (two-tailed) .10 column, but
the P-value is actually .0977 (to four decimal places). Also, certain critical value
entries in Table 8 are blank; this situation is familiar from our study of the Wilcoxon-
Mann-Whitney test and the sign test. For example, if n; = 9, then the strongest
possible evidence against H, occurs when all 9 differences are positive, in which
case W, = 45. But the chance that W, will equal 45 when H,is true is (1/2)®, which
is approximately .0039. Thus, it is not possible to have a two-tailed P-value smaller
than .002, let alone .001. This is why the last two entries are blank in the n; = 9 row
of Table 8.

Directional Alternative. To use Table 8 if the alternative hypothesis is directional,
we proceed with the familiar two-step procedure:

Step 1. Check directionality (see if the data deviate from Hj in the direction
specified by H ).

(a) If not, the P-value is greater than .50.
(b) If so, proceed to step 2.

Step 2. The P-value, which is half what it would be if H , were nondirection-
al, is found by reading the “one tail” column headings.

Treatment of Zeros. 1If any of the differences (Y; — Y,) are zero, then those data
points are deleted and the sample size is reduced accordingly. For example, if one
of the 9 differences in Example 9.17 had been zero, we would have deleted that
point when conducting the Wilcoxon test, so that the sample size would have
become 8.

Treatment of Ties. If there are ties among the absolute values of the differences
(in step 3), we average the ranks of the tied values. If there are ties, then the P-value
given by the Wilcoxon signed-rank test is only approximate.

Applicability of the Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test can be used in any situation in which the d’s are in- |

dependent of each other and come from a symmetric distribution; the distribution
need not be normal.* The null hypothesis of “no treatment effect” or “no difference
between populations” can be stated as

HO:I"(‘d =0

Sometimes the Wilcoxon signed-rank test can be carried out even with in-
complete information. For example, a Wilcoxon test is possible for the skin graft
data of Example 9.12. It is true that an exact value of d cannot be calculated for
two of the patients, but for both of these patients the difference is positive and is
larger than either of the negative differences. The data in Table 9.15 show that
there only are two negative differences. The smaller of these is —1, for patient 11.
This is the smallest difference in absolute value, so it has signed rank —1. The only
other negative signed rank is for patient 7; all of the other signed ranks are posi-
tive. (The rest of this example is left as an exercise.)

* Strictly speaking, the distribution must be continuous, which means that the probability of
a tie is zero.
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SECTION 9.5 THE WILCOXON SIGNED-RANK TEST

As with the Wilcoxon-Mann-Whitney test for independent samples, there
i a procedure associated with the Wilcoxon signed-rank test that can be used to
construct a confidence interval for u,. The procedure is beyond the scope of this

b book.

When dealing with paired data we have three inference procedures: the
paired ¢ test, the Wilcoxon signed-rank test, and the sign test. The ¢ test requires that
the data come from a normally distributed population; if this condition is met, then
the 1 test is recommended, as it is more powerful than the Wilcoxon test or sign test.
The Wilcoxon test does not require normality but does require that we can rank
the set of differences; it has more power than the sign test. The sign test is the least
powerful of the three methods, but the most widely applicable, since it only re-
quires that we determine whether each difference is positive or negative.

1 Exercises 9.28-9.33

9.28 Use Table 8 to bracket the P-value for a Wilcoxon signed-rank test (against a
nondirectional alternative), assuming that n, = 7 and

(a) W, =22
(b) W, =24
(c) W, =26
(d) W, =28

9.29  Use Table 8 to bracket the P-value for a Wilcoxon signed-rank test (against a
nondirectional alternative), assuming that n, = 12 and

(a) B, =55
(b) B, = 63
(c) B,=T1
(d) B, = 73

9.30  The study described in Example 9.1, involving the compound mCPP, included a
group of nine men. The men were asked to rate how hungry they were at the end
of each two-week period and differences were computed (hunger rating when tak-
ing mCPP — hunger rating when taking the placebo). Data for one of the subjects
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9.31

9.32

9.33

are not available; the data for the other eight subjects are given in the accompanying
table.! Analyze these data with a Wilcoxon signed-rank test at the & = .10 level;use
a nondirectional alternative.

Hunger Rating

mCPP Placebo Difference

Subject » » d=y—»n
1 64 69 -5
2 119 112 7
3 0 28 —28
4 48 95 -47
5 65 145 -80
6 119 112 7
7 149 141 8
8 NA NA NA
9 99 119 -20

As part of the study described in Example 9.1 (and in Exercise 9.30), involving the
compound mCPP, weight change was measured for nine men. For each man two
measurements were made: weight change when taking mCPP and weight change
when taking the placebo. The data are given in the accompanying table.! Analyze
these data with a Wilcoxon signed-rank test at the & = .05 level; use a nondirec-
tional alternative.

Weight Change

mCPP Placebo Difference

Subject » V2 d=y—n
1 0.0 -11 1.1
2 -11 0.5 -1.6
3 -1.6 0.5 -2.1
4 -0.3 0.0 -0.3
5 -11 -0.5 -0.6
6 -0.9 13 -22
7 -0.5 -1.4 09
8 0.7 0.0 0.7
9 -12 -0.8 -0.4

Consider the skin graft data of Example 9.12. Table 9.15, at the end of Section 9.5,

shows the first steps in conducting a Wilcoxon signed-rank test of the null hypoth-

esis that HL-A compatibility has no effect on graft survival time. Complete this |

test. Use a = .05 and use the directional alternative that survival time tends to be
greater when compatibility score is close.

In an investigation of possible brain damage due to alcoholism, an X-ray procedure

known as a computerized tomography (CT) scan was used to measure brain den- |

sities in eleven chronic alcoholics. For each alcoholic, a nonalcoholic control was se-
lected who matched the alcoholic on age, sex, education, and other factors. The
brain density measurements on the alcoholics and the matched controls are re-
ported in the accompanying table.2? Use a Wilcoxon signed-rank test to test the
null hypothesis of no difference against the alternative that alcoholism reduces
brain density. Let & = .02.
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en in the accompanying Pair Alcoholic Control  Difference
atthe o = .10level; use 1 40.1 413 12
2 385 402 -1.7
3 36.9 37.4 -5
S 4 41.4 46.1 —-47
Difference 5 40.6 439 -33
ShTr 6 23 41.9 4
-5 7 372 39.9 -27
7 8 38.6 40.4 -1.8
-28 9 385 38.6 -1
-47 10 384 38.1 3
~80 11 38.1 39.5 ~14
7 Mean 39.14 40.66 -1.52
8 SD 1.72 2.56 1.58
NA
-20

cise 9.30), involving the

men. For each man two ’ | 9.6 FURTHER CONSIDERATIONS IN PAIRED

CPP and weight change

panying table.! Analyze EXPERIMENTS

5 level; use a nondirec- | In this section we discuss two additional topics: the interpretation of before-after

| studies and the reporting of paired data.

g iff;:efciz Before-After Studies
1.1 3 Many studies in the life sciences compare measurements before and after some ex-
-1.6 @ perimental intervention. These studies can be difficult to interpret, because the ef-
-21 @ fect of the experimental intervention may be confounded with other changes over
—0.3 B time. One way to protect against this difficulty is to use randomized concurrent con-
-0.6 i trols, as in the following example.
-22
0.9 @ Biofeedback and Blood Pressure. A medical research team investigated the
0.7 P cffectiveness of a biofeedback training program designed to reduce high blood
-0.4 &l pressure. Volunteers were randomly allocated to a biofeedback group or a con-
J (ol group. All volunteers received health education literature and a brief lecture.
1t the end of Section 9.5, Il In addition, the biofeedback group received 8 weeks of relaxation training, aided
k test of the null hypoth- ' by biofeedback, meditation, and breathing exercises. The results for systolic blood

ival time. Complete this = pressure, before and after the 8 weeks, are shown in Table 9.16 2!
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Example 9.19

Let us analyze the before—after changes by paired ¢ tests at « = .05. In the
biofeedback group, the mean systolic blood pressure fell by 13.8 mm Hg. To eval-
uate the statistical significance of this drop, the test statistic is

13.8
ts—-ng——103

which is highly significant (P-value << .0001). However, this result alone does
not demonstrate the effectiveness of the biofeedback training; the drop in blood
pressure might be partly or entirely due to other factors, such as the health edu-
cation literature or the special attention received by all the participants. Indeed, a
paired ¢ test applied to the control group gives

t, = 40 _ 508

= R < P<.
130 001 01

Thus, the people who received no biofeedback training also experienced a statis-
tically significant drop in blood pressure.

To isolate the effect of the biofeedback training, we can compare the expe-
rience of the two treatment groups, using an independent-samples ¢ test. We again
choose a = .05. The difference between the mean changes in the two groups is

13.8 — 4.0 = 9.8 mm Hg
and the standard error of this difference is
V1342 + 130> = 1.87
Thus, the ¢ statistic is

9.8
t, = 187~ 5.24

This test provides strong evidence (P < .0001) that the biofeedback programiis

effective. If the experimental design had not included the control group, then this

last crucial comparison would not have been possible, and the support for effica- |
cy of biofeedback would have been shaky indeed. LI

Reporting of Data

In communicating experimental results, it is desirable to choose a form of report
ing that conveys the extra information provided by pairing. With small samples,a
graphical approach can be used, as in the following example.

Plasma Aldosterone in Dogs. Aldosterone is a hormone involved in main-
taining fluid balance in the body. In a veterinary study, six dogs with heart failure

were treated with the drug Captopril, and plasma concentrations of aldosterone |

were measured before and after the treatment. The results are displayed in
Figure 9.6.”* The experience of each dog is represented by two points joined by a
line. Note that the lines carry crucial information. For instance, all the lines slope
downward, which indicates that all six dogs experienced a fall (rather than a rise)
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in plasma aldosterone. Also, lines that are parallel represent falls of equal magni-  ggp —
tude; in Figure 9.6 four of the lines are approximately parallel. If the lines were
omitted from the plot, the reader have difficulty assessing either the statistical or

600 —

the practical significance of the before-after change. |
400 —

In published reports of biological research, the crucial information related
to pairing is often omitted. For instance, a common practice is to report the means 200

and standard deviations of ¥; and Y, but to omit the standard deviation of the dif-
ference, d! This is a serious error. It is best to report some description of d, using |
either a display like Figure 9.6, or a histogram of the s, or at least the standard 0 Betore After
deviation of the d’s. Captopril
Computer note: Statistical software can be used to check conditions for
a paired data analysis and to aid in completing calculations. The inference pro-
cedures presented in this chapter—the paired ¢ test and confidence interval, the
sign test, and the Wilcoxon signed-rank test—can all be carried out with common
statistical software. In the MINITAB system one would first calculate the dif-
ferences in the paired data and then proceed to a test on the new column of dif-
ferences. For example, suppose the weight loss data from Example 1 are stored

Captopril

Figure 9.6 Plasma aldosterone
in six dogs before and after
treatment with Captopril

- in the columns “mCPP” and “Placebo.” Then we can calculate the differences

with the command

To conduct a paired ¢ test, we use the command

which indicates that the null hypothesis is Hy: uq = 0 and the alternative is ;
Hy:py # 0. The resulting output is v *

T-Test of the Mean
Test of mu = 0.000 vs mu not = 0.000
Variable N Mean StDev SE Mean T

C3 9 1.000 0.719 0.240 4.17

P-Value
0.0032

To conduct a Wilcoxon signed-rank test we use the command

MTB > WTest 0.0 C3;
SUBC> Alternative 0.
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which produces

Wilcoxon Signed Rank Test

TEST OF MEDIAN = 0.000000 VERSUS MEDIAN N.E. 0.000000
N FOR WILCOXON ESTIMATED

N TEST STATISTIC P-VALUE MEDIAN

C3 9 9 44 .0 0.013 1.000

Note that MINITAB states the hypotheses in terms of the median, rather than the
mean. Since we are assuming that the differences have a symmetric distribution,
this is equivalent to stating the hypotheses in terms of the mean.

Finally, for a sign test we use the command

which produces

Sign Test for Median

Sign test of median = 0.00000 versus N.E. 0.00000
N BELOW EQUAL ABOVE P-VALUE MEDIAN
C3 9 1 0 8 0.0391 1.100

Exercises 9.34-9.35

MTB > STest 0.0 C3;
SUBC> Alternative 0. ]

9.34

terol level. Twenty-five of the men (chosen at random) drank no coffee for S weeks,
while the remaining eight men drank coffee as usual. The accompanying table
shows the serum cholesterol levels (in mg/dLi) at baseline (at the beginning of the
study) and the change from baseline after 5 weeks.?

No Coffee (n = 25) Usual Coffee (n = 8)

Mean SD Mean SD

Baseline 341 37 331 30
Change from

baseline =35 27 +26 56

For the following ¢ tests, use nondirectional alternatives and let & = .05.

Use a ¢ test to assess the statistical significance of this drop.

Use a ¢ test to assess the statistical significance of this rise.

Thirty-three men with high serum cholesterol, all regular coffee drinkers, partici- |
pated in a study to see whether abstaining from coffee would affect their choles-

(a) The no-coffee group experienced a 35 mg/dLi drop in mean cholesterol level.

(b) The usual-coffee group experienced a 26 mg/dLi rise in mean cholesterol level.
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(c) Use attest to compare the no-coffee mean change (—35) to the usual-coffee
mean change (+26).

(d) State the conclusion of the test from part (c) in the context of this setting.

9.35 Eight young women participated in a study to investigate the relationship be-

tween the menstrual cycle and food intake. Dietary information was obtained
every day by interview; the study was double blind in the sense that the partici-
pants did not know its purpose and the interviewer did not know the timing of their
menstrual cycles. The table shows, for each participant, the average caloric intake
for the 10 days preceding and the 10 days following the onset of the menstrual
period (these data are for one cycle only). For these data, prepare a display like

that of Figure 9.6.24
Food Intake (Calories)
Participant Premenstrual Postmenstrual

1 2,378 1,706
2 1,393 958
3 1,519 1,194
4 2,414 1,682
5 2,008 1,652
6 2,092 1,260
7 1,710 1,239
8 1,967 1,758
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9.7 PERSPECTIVE

We have discussed several statistical methods of comparing two samples. In ana-
lyzing real data, it is wise to keep in mind that these statistical methods address only

| limited questions.

The paired ¢ test is limited in two ways:

1. Ttis limited to questions concerning d.
2. Ttis limited to questions about aggregate differences.

The second limitation is very broad; it applies not only to the methods of this chap-
ter but also to those of Chapter 7 and to many other elementary statistical tech-
niques. We will discuss these two limitations separately.

 Limitation of d

One limitation of the paired ¢ test and confidence interval is simple but too often
overlooked: When some of the d’s are positive and some are negative, the magni-
tude of d does not reflect the “typical” magnitude of the d’s. The following exam-

| ple shows how misleading d can be.

Measuring Serum Cholesterol. Suppose a clinical chemist wants to compare
two methods of measuring serum cholesterol; she is interested in how closely the
two methods agree with each other. She takes blood specimens from 400 patients,
splits each specimen in half, and assays one half by method A and the other by
method B. Table 9.17 shows fictitious data, exaggerated to clarify the issue.

Example 9.20
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Example 9.21

In Table 9.17, the sample mean difference is small (d = .7). Furthermore, the data
indicate that the population mean difference is small (a 95% confidence interval
is —1.1 mg/dLi < p, < 2.5 mg/dLi). But such discussion of d or u, does not ad-
dress the central question, which is: How closely do the methods agree? In fact,
Table 9.17 indicates that the two methods do not agree well; the individual differ-
ences between method A and method B are not small. The mean d is small because
the positive and negative differences tend to cancel each other. A graph similar to
Figure 9.4 (in Section 9.3) would be very helpful in visually determining how well

the methods agree. We would examine such a graph to see how closely the points |

cluster around the y = x line as well as to see the spread in the boxplot of differ-

ences. To make a numerical assessment of agreement between the methods we |

should not focus on the mean, d. It would be far more relevant to analyze the ab-
solute (unsigned) magnitudes of the d’s (that is, 34,12, 7,13, 26, and so on). These

magnitudes could be analyzed in various ways: We could average them, we could |

count how many are “large” (say, more than 10 mg/dLi), and so on. |

Limitation of the Aggregate Viewpoint

Consider a paired experiment in which two treatments, say A and B, are applied |
to the same person. If we apply a # test, a sign test, or a Wilcoxon signed-rank test, ]
we are viewing the people as an ensemble rather than individually. This is appro- |

priate if we are willing to assume that the difference (if any) between A and B is
in a consistent direction for all people—or, at least, that the important features of

the difference are preserved even when the people are viewed en masse. The fol- |

lowing example illustrates the issue.

Treatment of Acne.
tions for treating acne. Twenty patients participate. Each patient uses lotion A on
one side of his face and lotion B on the other side. After 3 weeks, each side of the
face is scored for total improvement.

First, suppose that the A side improves more than the B side in ten patients,

while in the other ten the B side improves more. According to a sign test, this re- |

sult is in perfect agreement with the null hypothesis. And yet, two very different
interpretations are logically possible:

Consider a clinical study to compare two medicated lo- |
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Interpretation 1: Treatments A and B are in fact completely equivalent; their
action is indistinguishable. The observed differences between A and B sides of
the face were entirely due to chance variation.

Interpretation 2: Treatments A and B are in fact completely different. For
some people (about 50% of the population), treatment A is more effective
than treatment B, whereas in the remaining half of the population treatment
B is more effective. The observed differences between A and B sides of the face
were biologically meaningful.*

The same ambiguity of interpretation arises if the results favor one treat-
ment over another. For instance, suppose the A side improved more than the B side
in 18 of the 20 cases, while B was favored in 2 patients. This result, which is
statistically significant (P < .001), could again be interpreted in two ways. It could

urthermore, the data , mean that treatment A is in fact superior to B for everybody, but chance variation
, confidence interval | obscured its superiority in two of the patients; or it could mean that A is superior
d or p, does not ad- | to B for most people, but for about 10% of the population (2/10 = .10) B is
thods agree? In fact, , | superior to A. =
the individual differ-

an d is small because  § The difficulty illustrated by Example 9.21 is not confined to randomized
er. A graph similar to blocks experiments. In fact, it is particularly clear in another type of paired ex-
ieterrrlining how well 4 periment—the measurement of change over time. Consider, for instance, the blood
ow closely the points | pressure data of Example 9.18. Our discussion of that study hinged on an aggre-
the boxplot of differ- § gate measure of blood pressure: the mean. If some patients’ pressures rose as a
een the methods we R result of biofeedback and others fell, these details were ignored in the analysis
nt to analyze the ab- : based on Student’s #; only the average change was analyzed.

26, and so on). These | Neither‘is the difficulty confined to human experiments. Suppose, for in-
erage them, we could @ stance, that two fertilizers, A and B, are to be compared in an agronomic field ex-
150 on. n periment using 4 randomized blocks design, with the data to be analyzed by a

| paired ¢ test. If treatment A is superior to B on acid soils, but B is better than A