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Preface

This book sets out to explain the major statistical analyses used by under-
graduate students in psychology. It should also satisfy many of the statist-
ical requirements of students of social and life sciences, education, health,
business and communication; indeed anyone with a need to understand
statistical analysis. The examples in the book are varied but there is a focus
on analysing data about people. The book examines many important statist-
ical techniques, providing explanations of how and why they are used.

When I was an undergraduate myself I learnt the appropriate statistics
to analyse my experimental data but was frustrated that the books I read
simply told me to do this, do that, like a cookbook, with no explanation of
why I was using such strange formulae or calculating numbers in the man-
ner suggested. As a graduate student I needed a more detailed knowledge
of statistics and there were some excellent books for the new researcher.
The only problem was that they were very weighty tomes, as thick as an
encyclopaedia and comprehensive to match. There were pages and pages of
mathematical formulae that tended to make the heart quail.

I discovered that the apparently mysterious formulae and calculations
actually made sense: indeed, they made common sense and the logic of
statistical tests was no more difficult than understanding a theory in psycho-
logy. As a lecturer I noticed that there was a tendency for students to view
statistical tests as difficult and esoteric. In part this was because they knew
the formulae for calculating the tests but did not know ‘how’ or ‘why’ the
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tests were as they were. Over the years as a lecturer I have gained much
satisfaction from students exclaiming: ‘so that’s what it means!’ when an
explanation is given. And often these are students who had the view that
statistics was something they would not be able to understand. Yet this is
not the case. Statistics are actually remarkably sensible – they make good
sense. The key to understanding statistics is to understand how and why
they were developed, what they set out to do, and how they do it. Unfortun-
ately this is sometimes missing. Unlike many theories and explanations of
human behaviour and experience which by their nature are the subject of
fierce debate, statistics are simply techniques to be used where necessary. A
statistical test is a tool, like any other, and so can be used wisely or foolishly.
If we know what it is for we can use it well. Few of us would choose to
use a fork to drink soup yet people choose inappropriate statistical tests to
analyse data. But statistical tests are like spoons and forks. If you know
what they can do and how to use them, there is no mystery, you just get on
and use them. But like any other tool it does take a little while to understand
how and why it works as it does, and then to get the hang of using it
oneself. Once the tools have been mastered they becomes easier to use.

I hope that, for students facing the purchase of a statistics book, this
book will be able to provide an account of statistical analysis where the
mysterious formulae are explained, but without weighing down the reader!

I would like to thank Sue Wilkinson for encouraging me to write this
book, Margaret Manning for many interesting statistical discussions and
David French for helping me find the time to write it. I would especially
like to thank Paul Hartmann for many helpful comments on the text. I have
taught an undergraduate course on the Analysis of Experiments for a number
of years and the feedback, questions and criticisms of the many students
who have taken the course have helped me to understand the problems and
delights of learning statistics. I have learnt a lot. This book is a response to
that experience and I thank them too. Finally, I would like to thank Anna,
Anthony and Emma, without whose support I could never have written
this book.

P R E F A C E



xix

Preface to the Second

Edition

I have been very pleased with the success of the first edition of this book.
I found it particularly gratifying when one of my students said that she
could hear me speaking when she read the book. I hope other readers have
felt like her, that the book reads like someone talking – hopefully a friendly,
helpful voice – as I believe that the best way of learning is having someone
explain the material to me clearly. Despite the wonders of new technology
we should strive to maintain that personal contact between teacher and
student, and writer and reader. I was therefore in a quandary when asked
to do a second edition. I had received a number of complimentary letters
and emails from lecturers and students so I felt the book was doing its job
well. As the old adage says ‘if it’s not broken don’t mend it’ and the age
of a book shouldn’t undermine its value – indeed one of my own favourite
books on statistics is Siegel (1956) despite the excellent new editions.
However, there are changes I want to make based on the experience of the
passing years along with the constructive comments of my readers. I have
also produced, with colleagues, a companion volume on the computer
statistics package SPSS, which informed some of my thoughts on the new
edition (Hinton et al., 2004). I hope my voice still comes through clearly
and comprehensibly.

Since the first edition the debate has developed around the importance
of significance testing (Wilkinson and Task Force on Statistical Inference,
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1999). Most academic papers are only published if the findings within them
are statistically significant. This may be giving a distorted picture of the
overall outcome of research, as we do not know how many studies did not
find a significant effect. So a greater prominence should be given to both
confidence intervals and statistical power in the reporting of findings. The
findings of one study showing a significant finding may in the long run be
far less important than a broader understanding of the size of an effect that
emerges with a number of studies. I have therefore gone into more detail
in explaining ‘power’ in Chapter 9 and also introduced the calculation of
confidence intervals into the book. However, I think that students need to
understand the basics of significance testing first so that they are able to
understand the issues and engage in the debate from a position of know-
ledge. I have, therefore, maintained the structure and explanation of signific-
ance testing from the first edition of the book.

I have also included a final chapter that introduces the reader to the
general linear model. Whilst it is quite possible to happily undertake statistical
analysis without knowing about the general linear model, I hope this chapter
provides, for the interested reader, a bridge between a good understanding
of the statistical techniques and a more in-depth understanding of the under-
lying principles of most of our statistical analyses. I have found that the
assumptions of statistical tests often appear strange but that some apprecia-
tion of this underlying model reveals what the assumptions are all about.

I would also like to thank the many students (hundreds in fact) on the
undergraduate course in Research and Experimentation II who, for seven
years, were able to interrogate the author of their set textbook. I appreciated
their (generally) kind comments and I am glad that the book helped a
number of them to realise that statistics were not so alien after all. I have
many happy memories of teaching on that course with my colleagues Victoria
West and Alfredo Gaitan, who I would also like to thank. Thanks also to Ian
Robertson for our many discussions on teaching and learning, especially on
how to make topics clear and comprehensible. Finally, I would especially
like to thank Charlotte Brownlow, Isabella McMurray and Bob Cozens, the
other members of the SPSS Explained team, without whose enthusiasm,
support and friendship I might not have taken on the task of writing this
new edition.

P R E F A C E  T O  T H E  S E C O N D  E D I T I O N
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Introduction

RE S E A R C H  I S  P E R F O R M E D  to find answers to ques-
tions: what events from their lives do people remember

best?; can we judge people’s occupations from the way they
dress?; what effect does tiredness have on our performance of
different tasks? To help us develop answers to these questions
we often collect data. We distinguish between two types of data:
quantitative and qualitative. Quantitative data concerns numbers
or quantities that we have collected using measuring devices
such as timers, performance tests or questionnaires. Qualitat-
ive data concerns accounts, descriptions and explanations –
linguistic rather than numeric data. Most researchers focus
on either quantitative or qualitative data collection analysis
(and this book is exclusively concerned with the former) but
ultimately it is a combination of the two that will provide the
fullest insight into our research questions. Consider students
undertaking an examination. We might collect information on
how many hours they spend studying, how many books they
have read and how well they perform in the examination
(quantitative data) but we might also ask them for their own
explanations of how well they studied, how motivated they
were and why, along with what they thought about the experi-
ence of taking the examination (qualitative data).
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Sometimes, but not often, it is possible to look at that research data
and see what it is telling us. Usually, however, the implications of the data
are not so obvious, especially when we have collected a large amount of
data in numeric form. Simply looking at lots and lots of numbers is usually
uninformative and possibly confusing. We need to draw from it the relevant
information for the research question posed. This is where statistics can
help us. A mass of data can be described and summarised or different sets
of data can be compared by the calculation of appropriate statistics. Thus
statistical analysis should not be seen as either incomprehensible or esoteric,
but as a useful technique for helping the researcher in finding answers to the
questions set.

Much of this book is about the various statistics we calculate. Whilst
we shall see in Chapter 5 that it has a technical definition, a statistic is
essentially a number that has been systematically obtained. A ‘total’ is a
statistic. We can find a total for the number of apples in a bowl or children
in a school: we just add them up. Some statistics are easy to obtain (such as
the number of fingers on my left hand) whereas others are a little more
difficult to work out (such as the F-ratio in the analysis of variance –
something we shall be looking at later in the book). However, the purpose
of calculating these statistics is to tell us something we want to know: are
girls performing better than boys at school?; which of two types of cola
do people prefer? It is not the calculation of statistics that is intrinsically
interesting (we have computers to do this) but what the statistic tells us
about the questions we are interested in. However, the ability to choose
the appropriate statistic, and the ability to see whether our calculations are
correct or not, are both crucial factors in obtaining a valid answer to our
questions, rather than making an error: we don’t want to do the statistical
equivalent of asking the time and being told it’s Tuesday.

We invariably need to calculate statistics when we undertake certain
forms of research and having an understanding of what they are and why
we calculate them can make us much better able to critically analyse the
work of others. If someone informs you that the statistical analysis of their
research shows that pigs can fly, and people sometimes do make wild claims
as a result of their research, then you might be sceptical about their choice
or use of statistics. However, there are many cases where the claims are not
so obviously in error yet a simple knowledge of statistical analysis can
reveal a flaw.

The purpose of this book is to explain the logic behind statistical
techniques, when you would use them and how you would calculate them.
Often the latter tends to dominate one’s experience, and there is a desire to
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just get the thing worked out, but with calculators and computers it is easy
to put data into an analysis but less easy to know we have done it correctly.
It is understanding why one is calculating a particular statistic that is of
crucial importance to data analysis.

The book begins with an explanation of the statistics that help us to
describe data, examining what ‘frequency distributions’ can show us and
which summary statistics we can calculate. It then moves on to the importance
of the ‘normal distribution’ and hypothesis testing. The difference between
populations and samples is considered along with the use of information from
samples to estimate the details of populations. Subsequently the various tech-
niques are introduced that allow us to compare data from different samples.

The book can be read straight through to see the way in which the
statistical tests have been developed. These tests all have a logical basis,
and explanations are provided for the particular formulae that we use for
our calculations. Alternatively, the book can be dipped in and out of, pro-
viding enough information on each test so that readers requiring a specific
analysis can see why it has been developed and undertake an analysis on
their own data by following the worked examples provided.

The final chapter provides an introduction to the model underlying
many of our statistical tests. In the explanation of this model we can see
why many statistical tests require a particular set of assumptions. Whilst
this chapter does not contain any new statistical techniques to learn it is
hoped that the reader who does tackle this chapter will gain a deeper under-
standing of the principles underlying statistical techniques which can lead
to a greater appreciation of what in practice is happening when carrying out
a statistical analysis.
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A M A J O R  R E A S O N  F O R  C A L C U L A T I N G  statistics is to describe and
summarise a set of data. A mass of numbers is not usually very

informative so we need to find ways of abstracting the key information that
allows us to present the data in a clear and comprehensible form. In this
chapter we shall be looking at an example of a collection of data and
considering the best way of describing and summarising it.

One hundred students sit an examination. After the examination the
papers are marked and given a score out of one hundred. You are given the
results and asked to present them to a committee that monitors examination
performance. You are faced with the following marks:

22 65 49 56 59 34 9 56 48 62
55 52 78 61 50 62 45 51 61 60
54 58 59 47 50 62 44 55 52 80
51 49 58 46 32 59 57 57 45 56
90 53 56 53 55 55 41 64 33 0
38 57 62 15 48 54 60 50 54 59
67 58 60 43 37 54 59 63 68 60
46 52 56 32 75 57 58 47 45 52
55 51 50 50 69 63 64 49 56 52
37 60 71 26 30 57 56 55 58 61

Fortunately, you are told the sort of questions the committee might ask:

• Can you describe the results of the examination?
• Can you give us a brief summary of them?
• What is the average mark?
• What is the spread of scores?
• What is the highest and lowest mark?
• Here are last year’s results, how do this year’s compare?

You sit looking at the above table. The answers to the questions are not
obvious from the ‘raw’ data, that is, the original data before any statistics
have been calculated. We need to do something to make it clearer. The first
thing that we can do is to list the data in order, from lowest to highest:
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0 9 15 22 26 30 32 32 33 34
37 37 38 41 43 44 45 45 45 46
46 47 47 48 48 49 49 49 50 50
50 50 50 51 51 51 52 52 52 52
52 53 53 54 54 54 54 55 55 55
55 55 55 56 56 56 56 56 56 56
57 57 57 57 57 58 58 58 58 58
59 59 59 59 59 60 60 60 60 60
61 61 61 62 62 62 62 63 63 64
64 65 67 68 69 71 75 78 80 90

With this ordering certain things are more apparent: we can now see the lowest
and highest scores more easily, with the scores falling between 0 and 90.

Another thing we can do to improve our presentation is to add up the
number of people who achieved the same mark. We work out the frequency
of each mark. For example, 5 people scored 52 and only 1 scored 69. When
we do this it allows us to see that the most ‘popular’ mark was 56 with a
frequency of 7. We should not forget that there are a number of possible
marks that no one achieved: no one scored 8 or 35 for example, so each of
these marks has a frequency of 0.

We can present this information in graphical form if we convert it to a
histogram, where the frequency of a mark is represented as a vertical bar. In
the histogram, shown in Figure 2.1, we list out all the possible marks that a

FIGURE 2.1 Frequency distribution of the examination results
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student could get, 0 to 100, and draw a bar above each mark, with the length
of the bar corresponding to the frequency of the mark in the set of results.
For a mark of 55 we draw a bar of length 6 (as 6 students obtained a mark
of 55) and for 64 we draw a bar of length 2. This gives a clear visual
presentation of the results.

This histogram is called a frequency distribution, as we can see how
the marks are distributed across the range of possible marks. Frequency
distributions are very important in statistical analysis as they provide the
basic representation of our information. The frequency distribution is a
clear infor-mative chart, providing us with a way of showing the pattern of
the marks we obtained: their distribution across the range of possible values.
We might wish to present the frequency distribution to the committee as it
provides us with a graphical representation of the marks. But what it doesn’t
do is provide us with a summary of the findings.

Is there a single mark that best represents the results? Can we provide the
committee with a typical mark to summarise the findings? The most reason-
able mark to use here is a central or middle mark. In statistical terms we are
trying to find a measure of central tendency. The question we are now faced
with is: what is the central position in our frequency distribution?

One answer is simply to select the most frequent mark, the longest bar
in the histogram. This statistic is called the mode. As you can see from
Figure 2.1 the longest bar is at the mark of 56, where seven people obtained
this result in the examination. In this case 56 appears to be a reasonable
estimate of a central mark. However, the mode is not often used as a measure
of central tendency for a number of reasons. First, what do we do if there were
two marks each having the same high frequency? What if seven people had
scored 52 and seven 56, which one would we choose? Second, there will be
occasions where the mode clearly does not represent a central mark. Imagine
that we had ten very weak students who all scored zero in the examination,
yet the rest of the distribution was the same as in Figure 2.1. Even though
there would be a clustering of the marks in the 50s our mode would be zero.
In this case the mode would be a poor measure of central tendency.

Another measure of central tendency that is used more often than the
mode is the median. This is the score that comes in the middle of the list
when we have ordered it from lowest to highest. If we had nine students in
all then the median would be the fifth mark in the list. However, we have

Measures of ‘central tendency’
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one hundred students and, with an even number, there is no middle mark.
The middle lies halfway between the fiftieth and fifty-first marks. In our
example the fiftieth and fifty-first marks are both 55, so the median is 55.
(If the fiftieth and fifty-first marks had been different the median would be
halfway between them. We would simply add them up and divide by two to
get our median value.1)

The median is a good measure of central tendency as it picks up the
score in the middle position of the distribution. Its weakness, if indeed it is
a weakness, is that, like the mode, it does not use all the information given
by the marks. The median is simply the score where we cut our list into two
halves. The marks either side of the median could be anything below or
above the median respectively. If we found that someone who had had been
given a mark of 9 in the examination really had a mark of 29 or 39,
correcting this score would not change the median as 55 would still be the
middle mark in the list. The median would stay the same even if a number
of marks were changed (as long as a mark below the median was not
changed to a value higher than the median or vice versa). The median
doesn’t take account of the values of all the scores, only the value of the
score at the middle position.

Whilst we might regard the median as a better choice of a central
value than the mode, as it finds the score at the middle position rather than
the most frequent score, there is a third measure of central tendency that is
used far more often than either of the above two measures. This is the mean.

We express the formula for calculating the mean using special sym-
bols. We use the Greek letter µ (pronounced ‘mu’) for the mean, the Greek
letter capital sigma, ∑, to mean ‘the sum of’ (or ‘add up’), X to indicate a
score (in our example, an examination mark) and N for the number of
scores. The symbols ∑ X means ‘add up all the scores’. The mean, µ is the
sum of the scores divided by N:

µ = ∑ X

N

When we talk of an ‘average’ we are usually referring to the mean (although
the word ‘average’ is often used much more loosely than the word ‘mean’
which has its statistical definition). To calculate the mean we add up all the
marks and divide them by the number of students. Adding up all the marks
we arrive at 5262. Dividing this by 100 gives us a mean of 52.62.

One way of thinking about the mean is by analogy with a see-saw.
Imagine that the horizontal axis of our frequency distribution is a beam of
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wood going from 0 to 100 in length. Each of the marks is a student sitting
on the beam at the position specified by their mark (so there are seven
students sitting on the beam at 56 and one at 75 etc.). Where would you
have to put a supporting post under the beam to make a perfectly balanced
see-saw? The answer is at the mean position. We can see it as the value that
balances the scores either side of it. Any change in the marks (we move a
student along the beam) results in a change in the mean (the see-saw will tip
to one side unless we move the supporting post to a new position to restore
balance). So the mean is a statistic that is sensitive to all the scores about it,
unlike the median, as we saw above.

There is another point about the mean that we can see from the see-
saw analogy; that is, the mean is very sensitive to extreme values. A very
large score or a very small score will have a greater effect on where the
support post ends up than a mark in the middle of the distribution. If you
have a number of people sitting on a balanced see-saw it tips up much more
easily if a new person sits on an end rather than near the middle. Thus, the
mean position, like the supporting post of a see-saw, is determined both by
the number of scores and also by their distance from it.

In our example we now have three measures of central tendency, a mode of
56, a median of 55 and a mean of 52.62. Which do we choose? The answer
is: whichever we want. We simply choose the one that best represents a
central value in our distribution, for our purpose. Usually this results in us
picking the mean as it takes into account all the scores but there are occasions
when we choose the mode or median.

The mode is quick and easy to determine once we have created the
frequency distribution, so we might use it as a ‘rough and ready measure’
without the need for further calculation. Also we cannot calculate the median
or mean with some types of data. For example, if I am planning a trip for
a group of friends and I suggest a range of places to visit, I’ll probably
select the place chosen by the largest number. Note that we cannot calculate
a mean or a median here as the names of places cannot be put in numeric
order or added up.

We use the median when we have an abnormally large or small value
in our frequency distribution, which would result in the mean giving us a
rather distorted value for the central tendency. As an example, six aircraft
have the following maximum speeds: 450 km/h, 480 km/h, 500 km/h,

Comparing measures of central tendency
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530 km/h, 600 km/h and 1100 km/h. We can see that most have a max-
imum speed around 500 km/h but the inclusion of the supersonic aircraft
with a speed of 1100 km/h gives us a mean of 610 km/h. This number
might not be appropriate to use as a central value as 610 km/h is faster than
five out of the six aircraft can fly. If we take the median, which is 515 km/h
(halfway between 500 and 530) we have a more representative value for our
central point.

However, in most cases of data collection the mean is the measure
chosen. We shall see further reasons for the importance of the mean in
Chapter 5.

So far we have charted our data on a frequency distribution and found
measures of central tendency. Another useful statistic for summarising the
data is a measure of ‘spread’. It is important for a number of reasons to find
out how spread out the scores are. Two groups of students taking the same
examination could produce different frequency distributions yet the means
might be the same. How then can we express the difference in the distribu-
tions? It is almost certain that the marks for one group of students are more
spread out than the other. A small spread of results in a study is often seen
as a good thing, as it indicates that all the people (or whatever produces the
scores) are behaving similarly, and hence the mean value represents the
scores very well. A large spread may be a problem as it indicates that there
are large differences between the individual scores and the mean is there-
fore not so representative. Thus, we want a statistic that gives us a small
number when the scores are clustered together and a large number when the
scores are spread out.

The simplest measure of spread is the range. The range is the difference
between the highest and lowest scores. In our example the highest score is
a mark of 90 and the lowest is 0. The range is therefore 90.

This measure is a little crude, it sets the boundaries to the scores but
does not tell us anything about their general spread. Indeed, even if our
marks were evenly spread between 0 and 90 rather than clustered in the 50s,
our range would still be 90. The range uses information from only two

The range

Measures of ‘spread’
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scores, the rest could be anything between, so it is rather limited in what it
tells us.

Another way of looking at the spread is to calculate quartiles. We saw
earlier that the median cuts the ordered data into halves; the quartiles simply
cut the ordered data into quarters. The first quartile indicates the score one
quarter of the way up the list from the lowest. The second quartile indicates
the score two quarters up the list. It does not take very much to realise that
the second quartile is halfway up the list and is therefore the median. The
third quartile is the score three quarters up the list. The fourth quartile is all
the way to the end of the list and so it is the highest score.

From our ordered list of examination results, one quarter along the
list of a hundred scores lies between the twenty-fifth and the twenty-sixth
person’s marks, so the first quartile is midway between 48 and 49, which is
48.5. We already know that the second quartile (between the fiftieth and
fifty-first person’s marks) is 55 as we worked out the median above. The
third quartile is three quarters along the list so is between the seventy-fifth
and seventy-sixth person’s marks: this is 59.5.2 And of course the fourth
quartile is 90, as it’s the highest score. If we use the symbol Q for quartile,
we have Q1 = 48.5, Q2 = 55, Q3 = 59.5, Q4 = 90.

A slightly more sophisticated measure of spread than the range is the
interquartile range: that is the difference between the third and first quartile,
Q3 − Q1. In our example this is 59.5 − 48.5 = 11. This is the range of half
the scores, those in the middle of the distribution. The reason why the inter-
quartile range is used is that, unlike the range, it is not going to be affected
by one particularly high or low score and may represent the spread of the
distribution more appropriately. (Some people use the semi-interquartile
range, which is simply half the interquartile range. In our example this
is 5.5.)

Calculating quartiles is quite useful as it can tell us a few interesting
things about the distribution, in particular whether the distribution is sym-
metric about the median within the interquartile range. Q2 − Q1 tells us the
range of the quarter of scores below the median and Q3 − Q2 tells us the
range of the quarter of the scores above the median. In our example the first
is 6.5 and the second is 4.5. We have the scores bunched closer together in
the quarter above the median than in the quarter below the median, as 4.5 is
a smaller range than 6.5, for the same number of scores.

Quartiles
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It is worth noting here how each new statistic tells us something
different about the data. It may be something we already know by looking
at the distribution but often the statistic makes it clearer and more explicit,
with a number attached. However, these statistics do not miraculously appear.
They have been created by people attempting to find ways of best describ-
ing their data. When we wish to describe our data we choose the most
appropriate statistic for our purposes.

Calculating quartiles does not use all the information available from the
scores in the data, and again, as in our discussion of the median, some
scores could be different and we would still end up with the same interquartile
range. The question therefore is whether we can devise a measure of spread
that takes into account each and every score. It is in answer to this question
that a number of measures of spread have been developed. The common
feature of them is that they all begin with the mean (once again indicating
the importance of the mean). Their logic is as follows. If we take the mean
as our ‘central’ position then we can compare each of the scores with the
mean and find out how far each score varies or deviates from it. If we add
up the deviation of each of the scores from the mean we will have a
measure of the total variability in the data. If we want to we can then divide
this total by the number of scores to find the average deviation of a score
from the mean.

We can calculate the deviation of a score from the mean by simply work-
ing out X − µ, where X is a score and µ is the mean. We can do this for
every score. However, we have a problem: when we add them up to find the
total variability, the deviations tend to cancel each other out. In our example,
a mark of 55 gives a deviation from the mean of 55 − 52.62 = +2.38 and a
mark of 50 gives a deviation from the mean of 50 − 52.62 = −2.62. If we add
up these deviations we get 2.38 plus −2.62, which equals −0.24. Due to the
minus sign, two scores, both over two marks from the mean, end up giving
a deviation of less than one when added up. We do not want this; it is not a
statistic that reflects the variability as it really is. Indeed, as the mean is the
position of ‘balance’ in the scores, adding up all the deviations will give us
a total of zero as all the positive deviations exactly cancel out the negative
deviations. As the sum of the deviations of our scores always turns out to be
zero whatever scores we have, it is useless as a statistic as it certainly does
not provide us with a measure of how spread out the scores are.

Variation
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When we consider it, all that the minus sign of a deviation is telling us
is that the score is lower than the mean. We are not actually interested in
whether the score is higher or lower than the mean only how far away it is
from the mean. What we need to do is to find a way of adding up the devi-
ations so that they do not cancel each other out, so that we end up with a reason-
able estimate of the real variability of the scores. There are two solutions:

We can solve our problem by ignoring the minus sign altogether and treat
all the deviations as positive. If we get a deviation of −2.62 we call it +2.62.
We put two vertical lines round a formula to indicate that we take the
absolute value, that is, ignore a minus sign in the solution and treat it as
positive. Absolute deviation is |X − µ |. We add up the deviations for all the
scores. To find the average deviation we divide it by the number of scores,
denoted by N. We call this the mean absolute deviation and represent it by
the following formula:

Mean absolute deviation =
| |X

N

−∑ µ

For our examination results the mean absolute deviation is 9.15.

An alternative solution to taking absolute values is to square the deviations,
as the square of a number is always positive. The square of −2.16 is +4.67.
We then add up the square of each of the deviations to produce a sums of
squares: ∑(X − µ)2. This formula can be can be translated into English as:
‘find the deviation of each score from the mean, square each deviation, then
add up the squared deviations’. We can then divide this figure by the number
of scores (N ) to find the average of the squared deviations. This value is
called the variance.

Variance =
(   )X

N

−∑ µ 2

In our example the variance is 176.52.

1 Absolute deviation

2 Variance
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The variance gives us a figure for the average variability of the scores
about the mean, expressed as squared deviations. It also does what we want:
gives us a large figure for scores that are spread out and a smaller one for
scores that are closer together. Interestingly, as it is dealing with squared
deviations, the variance gives more weight to extreme scores. For example,
a score that deviates by 2 from the mean will contribute 4 to the variance
but a score 4 away from the mean will contribute 16 to the variance, so even
though the second score is only twice as far from the mean as the first it
contributes four times as much to the variance.

If we just wanted a measure of variability then variance is fine. How-
ever, note that the figure we calculated of 176.52 cannot be placed on the
frequency distribution as a distance from the mean. This is because the
variance is the average of the squared deviations, rather than the average
deviation. To bring the statistic back to the terms we started with we need to
find the square root. (As we squared the deviations earlier to get rid of the
minus signs we need to ‘undo’ this now it has served its purpose.) We call
this statistic, the square root of the variance, the standard deviation and
represent it by the symbol σ (the lower case Greek letter sigma).

Standard deviation, σ =
(   )X

N

−∑ µ 2

A simple example will show how we calculate the standard deviation.
Imagine that we only had 4 scores 2, 2, 3, 5 in our data. The mean is 3.
We work out σ as follows:

Score Deviation Squared deviation
X X − µ (X − µ)2

2 −1 1
2 −1 1
3 0 0
5 2 4

∑(X − µ)2 = 6

Dividing the sums of squares (∑(X − µ)2 = 6) by the number of scores
(N = 4) gives a variance of 1.5. Taking the square root of 1.5 gives us a
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standard deviation of σ = 1.22. In the examination example the standard
deviation of the one hundred marks is 13.29.

The standard deviation gives us a measure of spread about the mean. In
many cases most of the scores (about two-thirds) will lie within one standard
deviation less than and one standard deviation greater than the mean, that is,
in the range X − σ to X + σ. The standard deviation gives us a measure of
the ‘standard’ distance of a score from the mean in this set of data.

W A R N I N G ! The above formulae for variance and standard deviation are
used when are interested in these data only. When our data is a subset or a
sample of a larger set of data that we want it to represent then we use slightly
different formulae, the same as the above except that we would divide the
sums of squares by the degrees of freedom df, rather than the sample size n,
where df = n − 1. If it was the case that our one hundred students were not
the complete set we were interested in but were a sample drawn from one
thousand students taking the examination then we would use the different
formulae:

Variance =
(   )

–

X

n

−∑ µ 2

1

Standard deviation, σ =
(   )

–

X

n

−∑ µ 2

1

The reason for the difference is explained in Chapter 5 when we consider
samples. Most of the time we use the formulae with n − 1 (the degrees of
freedom) rather than n (the sample size) as most of the time we wish to use
our samples to generalise to a wider population rather than treating our data
as all that we are interested in.

As with the measures of central tendency, the measure of spread that is
most useful depends on the reasons for calculating it.

The range and interquartile range are both easy measures to calculate,
giving a limited but potentially adequate measure of spread. Their weakness
is that they do not take into account all the scores in the data and may be
limited in their ability to represent the true variability of the scores. The
range, in particular, may not reflect the general spread of results very well if
there is one very low or very high score.

Comparison of measures of spread
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The variance is a good measure of the variability in the data. It uses
all the scores and will give a small number if all the scores cluster round the
mean and a large number if they are spread out. As we shall see in the
chapters on the analysis of variance this statistic is extremely important in
some statistical analyses. However, when we are describing a set of data the
variance may not be particularly useful as a description of the spread of
scores as the number it produces is not of the same order as the scores. It is
expressed in terms of the squared deviations from the mean. In our example
the variance of 176.52 appears large but this may be because it is expressed
in terms of marks squared, not marks.

The mean absolute deviation and the standard deviation are both good
descriptive statistics of the spread of a set of scores. They both use the
information from all the scores and both produce a number that expresses
an ‘average’ deviation from the mean in the terms we want (in our example:
marks). As they are expressed in the same terms as the scores they are easy
to understand. We can, if we wish, plot these figures as a distance from the
mean on the frequency distribution, so they can be graphically represented
as well.

Why is it that the spread of a set of results is almost always expressed,
in research reports, as the standard deviation and rarely as the mean absolute
deviation? If the data we are describing is all we are interested in then
there is not a compelling argument. However, there is a distinct advantage
of using the standard deviation when our data is a sample of a larger set
(a population) that we wish it to represent. In our example, the 100 students
were the only ones we were interested in. If, however, 1000 students had
taken the examination and our 100 were a representative sample then we
would want to use the standard deviation. The reasons, which are dealt with
in Chapter 5, concern samples representing populations and the use of
sample statistics to estimate population values.

When describing a set of data we want to summarise the frequency distribu-
tion by two measures, one indicating a central value indicating the ‘average’
score and a second to indicate the spread of the scores. The two most
commonly used statistics for these measures, because of their usefulness,
are the mean and the standard deviation. We can summarise the examination
results by the following statistics: mean = 52.62 marks, standard deviation =
13.29 marks.

Describing a set of data: in conclusion



S T A T I S T I C S  E X P L A I N E D

18

Summary statistics neatly and briefly describe the data but in most cases
people want to use the information to make certain points. In our example
a committee member might be concerned about possible falling standards
or the effect of a change in the student selection procedure. The summary
statistics can then be used to help make a decision about such questions.
Notice that the points raised by the committee member both require a
comparison with the previous year’s results. The calculation of statistics
is often used to go beyond description to allow us to answer specific
research questions and this invariably involves comparing different sets of
results.

For our example, the previous year’s results for the same examination,
where 100 students also sat the examination, are shown below. Note that it
would not be easy to see any similarities or differences between the results
for the two years very well by simply looking at the two tables of raw data.
Both years have a mixture of marks in them and, whilst we might be able to
pick out certain interesting results, such as the highest and lowest, the tables
do not provide a good way of allowing us to make any comparisons between
the two sets of data.

24 56 54 56 55 43 55 52 45 58
54 52 65 50 60 57 47 62 7 58
51 60 53 81 59 61 56 63 57 49
68 61 39 59 49 63 54 60 57 60
66 53 36 50 59 52 37 70 66 30
61 50 55 55 65 58 51 22 68 57
87 64 50 35 56 54 60 72 58 51
46 62 56 15 63 59 39 60 58 76
65 36 4 59 57 53 49 69 64 53
38 58 48 58 66 62 56 54 61 63

Again, if we order the data and create a frequency distribution we might
begin to see where any differences lie. Figure 2.2 shows the frequency dis-
tribution of last year’s results. We can compare Figure 2.2 with Figure 2.1
by eye. The distribution of results looks similar over the two years. This in
itself might be useful evidence indicating a year on year consistency in
performance. However, simply looking by eye cannot really tell us how
similar the two distributions are, as we may miss subtle differences between
them. This is where statistics can help.

Comparing two sets of data with descriptive statistics
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If we consider measures of central tendency first, we can compare the
two years directly:

Last year This year

Mode 58 56
Median 56.5 55.0
Mean 54.25 52.62

We can see that all three measures have dropped a little since last year. The
mode could easily change by the effect of just a few students and so in this
case is not the most useful statistic. The median does indicate that the
central point was higher last year. The mean value shows a drop of 1.63
from last year to this. It may not seem a lot but remember the mean takes
into account all the students, so there is a reduction of 1.63 marks per
student. Now this could be due to a number of factors that are worth further
investigation, such as: are there less able students this year or is it a harder
examination this year? Before we do that we want to eliminate a simple
alternative reason. Maybe last year there were a few particular good students
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or this year a few poor ones. These occur now and again and do not indicate
that the general standards are changing. The way we can look at this is by
considering the spread: maybe the spread was wider in one of the two years
indicating a greater mixture of student ability in that year?

We can compare the various measures of spread:

Last year This year

Range 83 90
Interquartile range 10.5 11.0
Mean absolute deviation 8.82 9.15
Variance 169.93 176.52
Standard deviation 13.04 13.29

There was a narrower range last year with no one scoring as low as 0 or as
high as 90, but there was not much difference in the interquartile range and,
more particularly, the standard deviations are not very different from each
other. It might be worth investigating further to see why there was the
reduction in the mean performance. Notice that these results alone cannot
distinguish between reasons for a difference, they can only be used to argue
that one has occurred. The reason for the slightly lower marks, be it lower
ability students, a harder paper, stricter marking or whatever, requires the
skill of the researcher to find out.

As can be seen from the above figures, the mean and the standard
deviation are generally the most informative statistics for a particular dis-
tribution. These are the statistics that are most commonly chosen, but there
may be occasions when you think that other statistics are more appropriate
or will tell you more accurately what you want to know. This leads to an
important point: it is NOT worth calculating statistics until you know why
you are doing it and what you want the statistics to show. It could be that
the raw data tells you all you need to know, so do not bother calculating
statistics. However, most of the time it is not possible to see the important
characteristics of the data without some further analysis. Calculating the
appropriate statistics can help you decide the answers to the questions you
are asking. The difficulty in describing and analysing data is NOT calculat-
ing the statistics (we have computer programs that do this) but in knowing
the questions you wish to find answers for, and the statistics that help
inform those answers.
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Note also that calculating statistics only gives you information. It is up
to you how you interpret and use that information. A difference in means,
or standard deviations, might be useful information, but that is all. Calculating
statistics will not explain similarities and differences between distributions.
What the statistics do is to provide us with pieces of information we can
work with: they are tools to be used for our own purposes. After that we
must use our judgement.

Details on how to produce statistics to describe a set of data using the
SPSS computer statistical package can be found in Chapter 3 of Hinton
et al. (2004).

Up to now we have been calculating statistics using sets of examination
results. This is fine as examination results are the types of number that it
makes sense to calculate means and other statistics on. But this is not the
case for all types of number. We need to know what type of data we have
before we know what statistics we are able to calculate.

Sometimes numbers are used like names. For example, in a sports squad of
22 players the number 15 on the back of a player’s shirt simply allows us to
identify him or her during play. It does not mean that player number 15 is
better than players 1 to 14 or worse than players 16 to 22. It is meaningless
to calculate statistics on these numbers as they are only nominal, used as
names.

When we categorise someone or something we can use numbers to
label the categories. For example, if we classify people by eye colour we
might choose to label brown as 1, blue as 2, green as 3 and so on. Notice
that the numbers are arbitrarily assigned to colours: we could have chosen
other numbers or assigned the same numbers in a different way. The use of
these numbers is nominal. We cannot use these numbers to calculate statistics:
it is nonsense to say that the mean of a brown eyed person (1) and a green
eyed person (3) is a blue eyed person (2)!

Some important information about numbers

Nominal data
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We can use numbers to define an order of performance. For example, Susan
is the best chess player in the class, followed by Robert, Marie and Peter.
We can give Susan the top rank of 1, Robert 2, Marie 3 and Peter 4. These
numbers tell us the rank order but little else. They do NOT tell us that the
difference between 1 and 2 (Susan and Robert) is the same as the difference
between 3 and 4 (Marie and Peter) despite there only being one place
between them in the ranks. Susan could be the best player for her age in the
country whereas the other three might not be as good as others of their age
from nearby schools. Because of this we cannot calculate means and standard
deviations on ordinal data. Chapter 16 discusses ordinal data further and
considers how we can calculate statistics with it.

Time, speed, distance and temperature can all be measured on interval
scales and we have clocks, speedometers, tape measures and thermometers
to do it. They are called interval scales because the differences between the
consecutive numbers are of equal intervals: the difference between 1 and 2
is the same as the difference between 3 and 4 or 10 and 11. Unlike an
ordinal scale where these could be different, on an interval scale they are all
the same. For example, the difference between 6 and 7 minutes is the same
as the difference between 20 and 21 minutes, it is 1 minute in both cases.
When our numbers come from a scale with equal intervals then we can
calculate means and standard deviations.

Ratio data is a special kind of interval data. With interval data the zero
value can be arbitrary, such as the position of zero on some temperature
scales: the Fahrenheit zero is at a different position to that of the Celsius
scale, whereas with ratio data zero actually indicates the point where ‘nothing’
is scored on the scale, such as zero on a speedometer when there is no
movement, and so this zero means the same thing regardless of whether
we are measuring in miles per hour or kilometres per second. We can illus-
trate the difference in the following example. In an examination there are
100 questions of equal difficulty and students are required to get at least
50 correct answers to pass the examination. The examiner could choose to
label the pass mark as zero. A score of 0 indicates 50 correct answers, +1
indicates 51 correct answers, −1 indicates 49 correct answers and so on.
This is an interval scale with an arbitrary zero: the examiner chose where to

Ordinal data

Interval and ratio data
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put it. Now let us consider the same examination where zero indicates no
correct answers and the pass mark is given a score of 50. This time the zero
is nonarbitrary as it specifies a score of ‘nothing’ in terms of examination
performance. Here the interval scale becomes a ratio scale.

Only on a ratio scale, with a genuine zero, can we make claims to do
with ratios, such as: Susan’s score is twice as good as John’s, Robyn’s score
is one third of Peter’s. If Susan had scored 80 and John 40 on a ratio scale
examination then her score really is twice John’s score. On an interval
scale with zero set arbitrarily at 50 their scores are 30 and −10. With the
interval scale we would not have been able to make the ratio judgements
appropriately.

Many of our statistics require interval or ratio data. In the majority of
the book (up to Chapter 16) we shall be considering only data that is
interval or ratio as these types of data allow us to perform the largest range
of statistical tests. For this reason, researchers often choose to collect inter-
val or ratio data for analysis. With human subjects research often focuses on
how fast or how accurately a task can be performed, where both speed and
accuracy can be measured on ratio scales.
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If you received a mark of 58 in an examination would you know how well
you had done relative to the other candidates? Were you the best in the class
or the worst? Clearly this is a case where you need further information.
With the mean and standard deviation you can begin to answer these ques-
tions. If the mean is 52 and the standard deviation is 5 then your score is
one of the best. If, however, the mean is 59 and the standard deviation is
3 then you are a little below average but as the scores are clustered around
59 there are likely to be a lot of students with similar results.

If you took two examinations and received a 58 for Psychology and a
49 for Statistics, which would you be most pleased with? You might want
to use these results to help a decision on which subject to major in. You
could choose the 58 because it is numerically higher. But if you found out
that everyone else who took the Psychology examination scored over 60
and all the others who took the Statistics examination scored under 45 then
you might change your mind. Even though you received a higher mark for
Psychology the distributions of the two sets of scores are different. It could
be that the Statistics examination is especially hard this year and 49 is a
very high mark compared to the rest of the class, whereas 58 in Psychology
might be a relatively low mark.

You then find out that, for the Statistics examination, the mean is 45
and the standard deviation is 4, and for Psychology the mean is 55 and the
standard deviation is 6. This at least tells you that you are above average
in both subjects but it doesn’t tell you which yielded the higher class
position.

To compare two scores that come from different distributions we need
to standardise them. We do this by calculating a statistic called, not surpris-
ingly, a standard score (or z score). This expresses the score relative to the
mean in terms of the standard deviation. Thus a score of 58 is 3 away from
a mean of 55. With a standard deviation of 6, this distance is 3/6th of the
standard deviation. The score is half a standard deviation from the mean.
Essentially the standard score tells us how many standard deviations the
score is from the mean of the distribution. We calculate the standard score
using the following formula:

Comparing scores from different distributions
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The standard score, z =
X − µ

σ
,

where X is the score to be standardised, µ is the mean and σ is the standard
deviation of the distribution.

Standard scores can be compared, because, no matter what your dis-
tribution is like to start with, converting scores to z scores always results in a
distribution of z scores with a mean of 0 and a standard deviation of 1. If the
examination scores are converted to standard scores then we can compare
them and see which examination result gives the higher class position.

In Psychology, X = 58, µ = 55, σ = 6:

z =
X −

=
−

=
µ

σ
58 55

6

3

6
= 0.5

In Statistics, X = 49, µ = 45, σ = 4:

z =
X −

=
−

=
µ

σ
49 45

4

4

4
= 1.0

In Psychology you are half a standard deviation above the mean and in
Statistics you are one standard deviation above the mean. The higher z score
for Statistics means that you are higher in the class results for Statistics than
you are for Psychology.

In the previous chapter we compared two sets of examination results,
from this year and last year. Notice that this year a score of 59 gives the
following z score:

z =
59 52 62

13 29

6 38

13 29

  .

.

.

.

−
= = 0.48

For last year’s distribution a score of 59 produces the following z score:

z =
59 54 25

13 04

4 75

13 04

  .

.

.

.

−
= = 0.36

From these two z scores we can see that a score of 59 is higher up the
distribution this year (z = 0.48) than last year (z = 0.36), so 59 is a better
score this year than last, possibly because the examination is harder this
year (or one of the other reasons cited earlier).
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If I decided to collect data on, say, women’s heights I might initially measure
the height of a large number of women and plot the results as a frequency
distribution on a histogram. What would the distribution look like? I start
by choosing the steps for my histogram, i.e. deciding on the range of values
to include for each bar. I’ll choose 5 centimetre steps and include in the
same bar all the women whose height falls within a particular 5 cm band.
(To stop overlapping bands, the band includes heights from the lowest
point of the band up to but not including the highest point of the band:
for example, the band 160 cm to 165 cm covers the women’s heights from
160 cm up to but not including 165 cm, so the woman whose height is
exactly 165 falls into one band only – the 165 cm to 170 cm band.) When
I have collected the data and added up all the women whose height falls
within each 5 cm band I would find lots of women whose height was
between 160 and 165 cm, or between 165 cm and 170 cm but not many
between 135 cm and 140 cm or between 185 cm and 190 cm. There are not
as many very short or very tall women compared to those in-between. In
fact, the distribution would probably look like the histogram in Figure 3.1.
Notice the distribution has a hump in the middle and tails off symmetrically
either side.

If I then kept on measuring more and more women and also made my
steps smaller and smaller (instead of 5 cm I choose 2 cm bands, then I plot

FIGURE 3.1 The distribution of women’s height: histogram
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FIGURE 3.2 The distribution of women’s height

the heights within 1 cm bands, then 0.5 cm and so on until my bands
become extremely small) I would end up with a very large number of
women’s heights plotted on a histogram with very small steps. Eventually
my histogram would become a smooth curve, as in Figure 3.2.

It is remarkable how many times we end up with this same bell-
shaped curve, irrespective of which variable we are studying, be it women’s
heights, the foot size of ten year old boys or the gestation period of babies.
As the curve is produced so often it is called the Normal Distribution. The
interesting and very useful feature of this curve is that it is actually quite
simple to express mathematically and can be calculated using only the mean
and standard deviation. That is, we can work out the formula for a normal
distribution precisely with only the knowledge of the mean and standard
deviation.3

The normal distribution is very important for statistical analysis for
the following reasons.

1 Many of the things we study and measure in our research (although
not all) are assumed to be come from a population of scores that are
normally distributed (such as women’s heights). If we took all the men
in the population we would expect to get normal distributions for
height, weight, foot size, etc. We would expect normal distributions
for the women’s data as well.
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2 Many of the statistical tests that we shall be examining in the course of
the book make the assumption that the distributions they are investigat-
ing are normally distributed. Indeed these tests rely on this assumption:
without it the logic of the test fails.

3 Interestingly, even if a distribution is not a normal distribution, when
we take a large number of samples of the same size and plot their
means on a frequency distribution this distribution tends to become
a normal distribution. This again is extremely useful for statistical
analysis.

These points are examined further in Chapter 5 when we consider samples,
but the important thing to note here is that we have a lot of useful informa-
tion when we know the mean and standard deviation of a set of scores and
also that the distribution of the scores is a normal distribution.

As it is such a useful distribution people have drawn up tables of the normal
distribution. However, the values would be different for all the various
means and standard deviations we could get, and we would end up with lots
and lots of different tables. So the values in the table are for a normal
distribution with a mean of 0 and a standard deviation of 1. This normal
distribution is called the Standard Normal Distribution.

If scores come from a normal distribution (such as height, weight)
then converting the scores to standard scores (z scores) converts the dis-
tribution to the standard normal distribution. When we convert a score
from a normal distribution to a z score we can then look up the z score in
the standard normal distribution tables. This is given in Table A.1 of the
Appendix. This information can be remarkably useful in statistical analysis.

The table tells us how many scores in the distribution are higher than
the score we are examining. It does this by providing us with a figure for
the area under the standard normal curve beyond the z scores, shown in
Figure 3.3. The area underneath the whole curve is 1 (we have one whole
area, like a whole cake before we cut it into portions) and the z score (like
the knife cutting the cake) cuts it into two portions and the table tells us
what proportion of the whole area we have cut off beyond the z score. If we
subtract this value from 1 we know how much of the area is below the
z score. Also, as the curve is symmetrical the mean value cuts the area
into halves (so there is 0.5 of the area above the mean and 0.5 below).

The Standard Normal Distribution
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FIGURE 3.3 The Standard Normal Distribution

In this case, proportions are linked to probability. I am a 180 cm tall
man. Let us assume, for the sake of this example, that the proportion of men
taller than me in the population is a fifth. Now one fifth is 1 divided by 5,
which equals 0.2, so we can express the proportion of men taller than me as
0.2 of the whole population. From this information I also know that the
chance or probability of finding a man taller than me in the population is
also one in five or 0.2. The area under the standard normal distribution
curve is linked to probability in this way. The whole area under the curve
(1) is linked to the probability of 1. Probability values range from 0 to 1. A
probability of 1 is a certainty that something is the case. There is a certainty
that any man I find will have a height somewhere on the men’s height
distribution so the whole area (1) is certain to include him. A probability of
0 is a certainty that something is not the case. The probability of finding a
man twice my height (360 cm!) is so small as to be virtually zero. As we
move from a probability of 0 to a probability of 1 we go from taking none
of the area to taking larger and larger portions until we have the whole area.

When people talk about the chances of something happening they do
not often talk in terms of probabilities (‘the probability of me passing the
examination is 0.5’), rather they prefer to use percentages (‘I’ve a 50 per
cent chance of passing the examination’). There is a simple relationship
between probabilities and percentages, a percentage is a probability multiplied
by 100. Thus, a probability of 0.3 is the same as a 30 per cent chance.
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By looking at the area under the standard normal distribution curve
above or below a z score we are able to obtain the probability of finding a
score from the distribution larger or smaller than the score we have selected.
In this way we are able to work out a whole range of interesting probabilities
concerning scores from a normal distribution.

The distribution of scores in a Statistics examination is a normal distribution
with a mean of 45 and a standard deviation of 4. You receive a mark of 49.

(a) What is the probability of someone scoring higher than you?
(b) What percentage of people are above the mean but lower than you?

As we have a normal distribution, the calculation of z scores will convert
the distribution to the standard normal distribution. The score of 49 gives a
z score as follows:

z
x

=
−

=
−

=
µ

σ
49 45

4
1

The standard normal distribution table (Table A.1 in the Appendix) will
give us the probability of a score greater than a z score of 1. We look up the
z score of 1.00 in the table and get a figure of 0.1587, so the probability of
a score greater than 49 is 0.1587. (This means that you are in the top 16 per
cent of the class, as 0.1587 × 100 = 15.87 per cent of the scores are better
than yours.)

We know the area above the mean is 0.5 (half of the area) and the
probability of a score greater than a z score of 1.00 is 0.1587, so if we
subtract 0.1587 from 0.5 we will find the probability of a score above the
mean and below your score: 0.5 − 0.1587 = 0.3413. If we multiply this by
100 we will obtain the percentage: 0.3413 × 100 = 34.13 per cent. There are
34.13 per cent of the scores lower than your score but above the mean.

If you calculate a z score and it turns out to be a minus number, all this
means is that the score is less than the mean. As you can see from the

An example of using the standard normal distribution table

z scores of less than zero
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standard normal distribution table you cannot look up negative z scores.
However, as we have seen, the normal distribution is symmetrical so the
proportion of scores greater than, say +1.52, is the same as the proportion
of scores less than −1.52. If you wish to look up a minus number in the
table ignore the minus and look up the number. The figure you get from the
table now tells you the probability of a score less than the z score. To find
the proportion of scores greater than the z score subtract the table figure
from 1. For example, if we calculated a z score of −1, this means the score
is below the mean. We cannot look up −1 in the tables. We ignore the
minus and look up 1 in the table. The probability value is 0.1587. This tells
us that the probability of a score lower than a z score of −1 is 0.1587 and the
probability of a z score greater than −1 is 1 − 0.1587 = 0.8413.
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IN  T H E  B O O K  S O  F A R  we have seen that frequency distributions can
be described by choosing appropriate statistics, usually the mean and

standard deviation. Furthermore, we can compare scores from different dis-
tributions by the use of standard scores. Finally, if scores are normally
distributed we can find out additional information about probability values
through the use of the standard normal distribution. Now we need to see
how we can exploit this information to help us answer the questions we
wish our research to answer. In this chapter we move from simply describing
data to seeing how we can use it to test hypotheses.

An hypothesis is a supposition: we state something we suppose to be the
case and then collect evidence that bears upon it. For example, we are
sitting talking with a group of friends about intelligence and one friend,
Peter, makes the surprising claim that his ‘genius’ is due to being hothoused
as a boy. Everyone laughs at this claim of genius but he continues seriously.
Hothousing, he explains, is where children are provided with lots of informa-
tion even before they can speak. He tells us that his mother used to show
him flashcards with pictures of different types of cars, buildings, and even
politicians and describe to him what they were as he gurgled back. Children
have untapped potential for learning at that age that is not exploited, he
argues. He even begins to get some of the sceptics to start to be swayed by
his view of the development of the intellect. Everyone is now interested so
we decide we want to test out Peter’s claim.

To do this we need to use a procedure called hypothesis testing. This
procedure underlies all the statistical tests that we shall be looking at in this
book. Hypothesis testing follows a logical sequence of stages from proposing
the hypothesis to deciding whether to accept or reject it.

The first problem we face is putting the hypothesis in a form that we
can test. There is no genius meter that we can attach to Peter to see if he
gives a genius reading. We have to find a way of expressing our hypothesis
in a form that can be tested. We might decide that intelligence can be
measured by the ability to solve mathematical problems or write essays on

Testing an hypothesis
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the current political situation. On this occasion we decide to operationally
define intelligence in terms of an Intelligence Quotient (IQ) test. Our opera-
tional definition is a redefinition of the original concept in terms of some-
thing we can measure, geniuses being those people who score very highly
on an IQ test. You might believe that this is a poor definition of genius
(given the criticisms of IQ tests) and you may be right. I would then demand
that you provide a more appropriate measure so we could continue. This
problem occurs often in research, different experimenters arguing for different
operational definitions. Clearly, we must use our judgement to produce a
suitable definition. In this case, Peter agrees that an IQ test is an acceptable
measure of his genius.

Peter’s argument is that hothousing enhanced his intellect; without the
hothousing he would not be so intelligent. Similarly, the rest of us who have
not had the advantage of being hothoused are not as intelligent as we would
have been had we had it. Therefore, the hypothesis we are testing is that
being hothoused (in the way Peter was) increases IQ. This is called the
research hypothesis. Note that we are being very specific here, there may be
different ways of being hothoused but we are only concerned with the form
that Peter experienced.

To decide whether this hypothesis is true or not all we need to do is to
compare two distributions: the distribution of IQ scores for everyone without
the benefit of Peter’s hothousing, which I’ll call the ‘usual-IQ’ distribution,
and the distribution of IQ scores for everyone with the benefit of Peter’s
hothousing, which I’ll call the ‘hothouse-IQ’ distribution. If we find that
the hothouse-IQ distribution is further up the IQ scale than the usual-IQ
distribution, giving a higher mean, then we can say that hothousing does
increase IQ scores. (We might not know why but we have shown that it
does.) In Figure 4.1 the two distributions are positioned to show an effect of
hothousing resulting in an IQ enhancement of 30 points, thus, in this example,
the research hypothesis is supported as hothousing shifts the usual-IQ dis-
tribution up the scale to produce the hothouse-IQ distribution.

If we found that hothousing had no effect then the hothouse-IQ dis-
tribution would be identical to the usual-IQ distribution. As a final possibility,
if hothousing actually resulted in a decrease of IQ then the hothouse-IQ
distribution would be lower on the IQ scale than the usual-IQ distribution
(to the left of it rather than the right as in Figure 4.1). Note that we have
identified three possibilities here: the hothouse-IQ distribution can be higher,
the same or lower than the usual-IQ distribution. Only if we found the first
of these would we accept Peter’s hypothesis, whereas if either of the other
two occurred we would reject it.
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FIGURE 4.1 A hothousing effect of 30 IQ points

This is all apparently very easy but of course impossible! How are we
going to find the hothouse-IQ distribution, given that this is the distribution
of IQ scores for everyone after they had been hothoused as a child like
Peter. The answer is we cannot. This distribution is something we simply
cannot find out. Indeed, we can only find out one score from this distribu-
tion and that is Peter’s score when we give him an IQ test.

Can we find out the usual-IQ distribution? It is simply too difficult to
give everyone an IQ test, so what can we do? One assumption we can make
is that IQ scores are normally distributed. If we do this then we will have
a distribution we know a lot about. We can justify the assumption on the
following grounds. First, as noted above, many human statistics are normally
distributed so why not intelligence, and, second, believing this to be the
case the creators of IQ tests deliberately constructed them to produce a
normal distribution of scores with a mean of 100 (µ = 100) and a standard
deviation of 15 (σ = 15).

Note that we either have to test everyone we are interested in to find a
particular distribution of scores (as in the examination example of Chapter
2) or make assumptions about the shape of the distribution. In the examination
example there were only 100 scores but in many cases we are considering
distributions comprising vast numbers of scores that are impossible to obtain,
such as IQ scores for the adult population of the country. Hence we have to
make assumptions about the distribution or else we cannot continue, and as
we shall see in Chapter 5, assuming a normal distribution is often quite valid.
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We now have one distribution we know about and one we do not.
Unfortunately, without the hothouse-IQ distribution we are unable to test
our research hypothesis. However, we are able to offer another hypothesis,
the null hypothesis. The null hypothesis predicts that the two distributions
are the same, that is, hothousing has no effect on IQ scores. Given that we
know what the usual-IQ distribution looks like we can assume that the
hothouse-IQ distribution is the same. If the null hypothesis is true then
Peter’s IQ score comes from the same distribution as the usual-IQ distribution.

We give Peter his IQ test and his score comes out at 120. We can find
the position of this score in the distribution by finding the z score.

z
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  .=
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=
−

=
µ

σ
120 100

15
1 33

As we are assuming that the distributions are normal, we can look up this
z score in the standard normal tables (Table A.1 in the Appendix) to find
the probability of an IQ score higher than Peter’s. A z score of 1.33 gives a
probability of 0.0918. Given that we are assuming the distributions are the
same, this means that 9.18 per cent of the usual-IQ distribution, who have
not been hothoused, score higher than Peter who had. Can we use this
evidence to support the null hypothesis that the distributions are the same or
does the evidence supoprt the view that the distributions are different and
Peter is from a distribution higher than the usual-IQ distribution? The fact
that over 9 per cent of the usual-IQ population have higher IQ scores than
Peter’s doesn’t convince me of the effect of hothousing. I would expect
geniuses to be rarer than 9.18 per cent which is equivalent to 1 person in
every 11 from the usual-IQ distribution scoring higher than Peter. On this
evidence I accept the null hypothesis and say that we have not found evidence
to support Peter’s view of hothousing.

Now imagine that Peter had scored 145 instead of 120. This gives a z
score of 3 and a probability of 0.0013 of a score higher than Peter’s. This
means that only 0.13 per cent of the usual-IQ population score are better
than Peter. This small percentage, 0.13 per cent, tells us that only 1 person
in every 769 from the usual-IQ distribution scores higher than Peter. On this
evidence, if the two distributions are the same Peter is very unusual indeed.
A score as high as Peter’s score is so rare in the usual-IQ distribution that
it seems more likely that it belongs to a different, higher, distribution.
Here, the chances are that the null hypothesis is false. So I reject the null
hypothesis and accept the hypothesis that Peter’s score comes from a
hothouse-IQ distribution higher up the IQ scale than the usual-IQ distribution.
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Thus, hypothesis testing is a gamble on the basis of probabilities. If the
probability of Peter’s score coming from a distribution the same as the
usual-IQ distribution is very low I reject the null hypothesis, if the probabil-
ity is not very low I accept it.

If I accept the null hypothesis when the probability is 0.0918 and
reject it when the probability is 0.0013 then where is my dividing line, at
which probability do I switch from acceptance to rejection? The answer is:
where ever I choose! However, it has been agreed for reasons discussed in
Chapter 9, to conventionally reject the null hypothesis when the probability
is less than or equal to 0.05 (written as: ‘p < 0.05’ or ‘significant at p =
0.05’). This means that when a score from the unknown distribution could
only arise from the known distribution (i.e. the distributions are the same)
with a chance of less than 5 times in 100 then we reject the null hypothesis
and say that the score really does come from a different distribution. Essen-
tially we are gambling on the probability that a score (such as Peter’s IQ)
comes from a unknown distribution (hothouse-IQ) identical to the known
distribution (usual-IQ). When the chances are 1 in 20 or less (that is, a
probability of 0.05 or less, as 1 divided by 20 = 0.05) we switch our gamble
and bet that the distributions are different. Thus, the probability of 0.05 is
called the significance level. If the probability of Peter’s score is greater
than or equal to the significance level we accept the null hypothesis and if it
is lower than the significance level then we reject the null hypothesis.

The significance level of 0.05 means that we are more than 95 per cent
certain that we are correct in accepting that the distributions are different.
We are allowing ourselves to get it wrong, and claim there is a difference in
the distributions when there is not, on 5 per cent or fewer occasions, as such
an extreme score could only arise by chance (i.e. come from a distribution
identical to the known distribution) 5 per cent or less of the time. Some-
times we want to be even more certain that we are correct in claiming a
difference between the distributions. In these cases we take the significance
level of p = 0.01, accepting only 1 chance in 100 or less that we have got
it wrong. With this level of significance we can be 99 per cent or more
certain that we have made the right choice in claiming a difference in the
distributions.

We tested the hypothesis that the hothousing Peter received produced his
genius by the following steps:

A summary of the hypothesis testing
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1 We chose IQ as a measure of performance on which intelligence could
be judged. This is our operational definition.

2 We set up a research hypothesis: hothousing of the form Peter experi-
enced increases a person’s IQ.

3 We set up the null hypothesis: hothousing of the form Peter experi-
enced does not affect a person’s IQ.

4 We cannot test the research hypothesis as we do not know both dis-
tributions. We can test the null hypothesis as we know the usual-IQ
distribution and the null hypothesis assumes that the unknown hothouse-
IQ distribution is the same.

5 We gave Peter the IQ test and obtained his score.
6 We worked out the probability of a score as high or higher than

Peter’s from the usual-IQ distribution by looking up the z score in the
standard normal distribution table. We can only do this because we
have assumed that the usual-IQ scores are normally distributed.

7 If the probability of a score as high or higher than Peter’s is very
small, smaller than the significance level, then we say that it is very
rare for a score as high as Peter’s score to come from a distribution
the same as the known usual-IQ distribution and we reject the null
hypothesis, concluding that the hothouse-IQ distribution is different,
higher up the IQ scale. If the probability is not smaller than the signific-
ance level then we accept the null hypothesis and do not conclude
that there is a difference in the distributions.

Despite the variety of statistical tests that we examine in this book they all
follow the same basic logic. A research hypothesis predicts a difference in
distributions whereas a null hypothesis predicts that they are the same. If we
have the details of the two distributions we simply compare them. Usually
we do not have these details. However, we can continue the analysis when
one of the distributions is known and one unknown. One is known because
we are able to make the assumption that it is normally distributed and we
know about normal distributions. We select a significance level. This is our
decision criterion for accepting or rejecting the null hypothesis. This is
conventionally set at p = 0.05 or p = 0.01. We select the significance level
before we collect the data. It is like betting on a horse race. We don’t place
a bet until we know the odds. We collect the data that provides a score from
the unknown distribution. We look up the probability of a score such as this

The logic of hypothesis testing
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arising from the known distribution to decide whether to accept the null
hypothesis and conclude that the distributions are the same. If the probability
is lower than the significance level we reject the null hypothesis and say
that the chances favour the score coming from a different distribution to the
known distribution. If the probability is not lower than the significance level
then we accept the null hypothesis.

Hypothesis testing is about deciding whether an unknown distribution is the
same or different to a known distribution. There are three possible arrange-
ments of the two distributions:

1 The unknown distribution is the same as the known distribution.
2 The unknown distribution is higher up the scale than the known

distribution.
3 The unknown distribution is lower down the scale than the known

distribution.

We always test the null hypothesis (1, above) that the distributions are the
same but our research hypothesis can take a number of different forms. Our
research hypothesis could predict 2 (above). In fact this was the prediction
about the hothousing-IQ distribution, that it was higher up the scale than the
usual-IQ distribution. Alternatively, we might predict 3, that the unknown
distribution is lower than the known distribution. Imagine another friend
David had a serious head injury through a car accident. In this case we
might predict that this type of injury leads to a lower IQ than would have
been achieved without it. Finally, there are occasions when we predict
either 2 or 3. Here we are predicting that the unknown distribution will
be different to the known distribution but leaving open the possibility that
it will be higher or lower. A third friend Susan grew up eating her grand-
mother’s special diet. We might predict that this diet affected her intellec-
tual performance. However, we might not be sure whether to predict that
the special diet improves IQ (maybe Susan was getting just the right mix of
foods for intellectual growth) or reduces IQ (maybe Susan was missing out
on important vitamins).

In the hothousing and brain injury examples we are predicting a
direction to the difference in the distributions as the research hypothesis is
stating in which direction along the scale the unknown distribution will be

One- and two-tailed predictions
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shifted in relation to the known distribution. These predictions are called
one-tailed predictions. If you look back to Figure 4.1 you can see that the
hothouse distribution is expected to overlap with only the higher end of
the usual-IQ distribution, only one tail of the known distribution. If the
hothouse-IQ distribution turned out to be the same as the usual-IQ distribu-
tion or even resulted in lower IQ scores then our hypothesis would not be
supported. Only if the distribution is at the one-tail we are interested in, the
upper end of the usual-IQ distribution, is our hypothesis supported (as in
Figure 4.1). We infer this by observing whether Peter’s IQ score occurs so
far into the end of the upper tail (the top 5 per cent) of the usual-IQ
distribution that we can claim that his score comes from a different distribu-
tion, higher up the scale.

The brain injury example is also a one-tailed prediction as it follows
the same logic as the hothouse example, but here we are interested in the
lower tail of the known distribution. Only if David’s IQ falls into the bottom
5 per cent of the usual-IQ distribution would we accept the hypothesis that
the brain-injury-IQ distribution is lower than the usual-IQ distribution.

The diet example is a two-tailed prediction as we are hedging our bets,
we are saying that Susan’s diet might have reduced her IQ or enhanced it.
The diet-IQ distribution could overlap the lower tail of the usual-IQ dis-
tribution or the higher tail, either outcome supports our hypothesis of a
difference in distributions. Only if the two distributions are the same do we
accept the null hypothesis.

There are many instances where we are unable to make specific
directional, one-tailed predictions. For example, in an experiment on stress
and job satisfaction we might predict that a certain type of stress reduces
job satisfaction as it produces anxiety. However, it could also increase job
satisfaction if it results in interest and excitement. Where there is not enough
evidence to decide which hypothesis to follow, the experimenter might
decide to do a two-tailed test first of all, to see whether this type of stress
has any effect at all, be it positive or negative. In this case any difference in
the distributions would support the hypothesis.

When we undertake a one-tailed test we argue that if the test score has a
probability lower than the significance level then it falls within the tail-end
of the known distribution we are interested in. We interpret this as indicating
that the score is unlikely to have come from a distribution the same as the

Significance level and two-tailed predictions
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FIGURE 4.2 A one-tailed prediction and the significance level

known distribution but from a different distribution. If the score arises
anywhere outside this part of the tail cut off by the significance level we
reject the research hypothesis. This is shown in Figure 4.2. Notice that this
shows a one-tailed prediction that the unknown distribution is higher than
the known distribution. As an exercise try drawing this figure for a one-
tailed prediction where the unknown distribution is predicted to be lower
than the known distribution. (When you have tried this, look at Figure 6.1,
which shows a prediction of this kind.)

With a two-tailed prediction, unlike the one-tailed, both tails of the
known distribution are of interest, as the unknown distribution could be at
either end. However, if we set our significance level so that we take the
5 per cent at the end of each tail we increase the risk of making an error.
Recall that we are arguing that, when the probability is less than 0.05 that a
score arises from the known distribution, then we conclude that the distribu-
tions are different. In this case the chance that we are wrong, and the
distributions are the same, is less than 5 per cent. If we take 5 per cent at
either end of the distribution, as we are tempted to do in a two-tailed test,
we end up with a 10 per cent chance of an error, and we have increased the
chance of making a mistake.

We want to keep the risk of making an error down to 5 per cent
overall (our fixed amount of risk) as otherwise there will be an increase
in our false claims of differences in distributions which can undermine our
credibility with other researchers, who might stop taking our findings ser-
iously (one mustn’t cry wolf too often!). When we gamble on the unknown
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FIGURE 4.3 A two-tailed prediction and the significance level

distribution being at either tail of the known distribution, to keep the overall
error risk to 5 per cent, we must share out our 5 per cent between the two
tails of the known distribution, so we set our significance level at 2.5 per
cent at each end. If the score falls into one of the 2.5 per cent tails we then
say it comes from a different distribution. Thus, when we undertake a
two-tailed prediction the result has to fall within a smaller area of the tail
compared to a one-tailed prediction, before we claim that the distributions
are different, to compensate for hedging our bets in our prediction. This is
shown in Figure 4.3.

Hypothesis testing, as described here, where we are using a chosen
significance level to make our decision is often referred to as significance
testing. Whether we perform a one-tailed or a two-tailed test, the decision
to reject (or not to reject) the null hypothesis depends on which side of
the significance level our score falls. Significance testing has been extremely
useful in analysing research findings, as I hope you appreciate from the
example of Peter’s ‘genius’ above. However, we need to be aware of its
advantages and limitations, and these issues will be examined on page 71
and in Chapter 9.
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In the book so far we have been looking at what we call populations, that is
the complete set of the things we are interested in. The frequency distribu-
tions have included all the scores we are interested in, such as the scores of
all one hundred students who took the examination this year, the example
from Chapter 2. A population need not be a collection of people, even
though we are used to hearing the term used in this way, such as the
population of Britain. A population can be a complete set of anything. In
statistics it refers to a complete set of scores, such as the number of pages of
each book in a library, the IQ scores of fifteen year old girls living in
London, the number of goals scored in each football league match on a
particular Saturday, the times to complete a jigsaw by members of the
Robinson family, the number of food pellets eaten by each rat in an animal
learning experiment. The population is simply every member of the particular
category we wish to study.

Often, through the sheer size of the population we cannot study it
all. In this case we select a sample. A sample is a subset of a population.
Usually, we want to know about populations rather than samples yet we are
almost always only able to test samples. This is the fundamental problem of
statistical analysis. When and how can information from a sample give us
information about a population? The following sections will deal with this
key question. But first an example to illustrate the difficulty.

A doctor wishes to know the incidence of respiratory problems in
British men over the age of 50 years. This is a large population and extraor-
dinarily difficult to test them all. A sample must be tested instead. But the
doctor is not interested in the sample per se but what it tells him or her
about the population. If it is not possible to estimate details of the population
from the sample it is not worth studying it. What this doctor, and researchers
in general need to find is sample information that is useful for estimating
details of the population.

Populations and samples
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One of the difficulties of using samples to represent populations is the
selection of sample members. In most cases we want our sample to truly
represent the population so we can generalise our findings to the population
and claim the population will perform like the sample. If we have a sample
with the same characteristics as the population we will have a representative
sample. If the characteristics of the sample are different to those of the
population then any findings based on the sample could be biased and not
be generalisable to the population. Opinion pollsters will sometimes try to
get a representative sample of the voting population to question, making
sure that they have, for example, the same proportion of men and women in
the sample as there are in the population.

Consider the example of respiratory problems. Most people would
agree that a sample of men under 50 or a sample of women over 50 is
clearly not representative of the population we wish to generalise to. However,
will any group of men over 50 be acceptable? If we took all our men from
a hill top village where the air is clear, or from a coal mining town polluted
with coal dust we are likely to have a biased sample, as not all members of
the population live in a hill top village or a coal mining town. We would
need to take the sample from a range of locations, or from a place where
there is not a specific bias due to the location. We would need to consider
age as well. If our sample contained only men between 50 and 60 years old
could we generalise to a population where there are many men older than
60 in the population?

Any difference between the sample and the population could lead to a
problem of generalisation: location, age, occupation, class, whether they
smoke or not and so on. It is almost impossible to obtain a truly representative
sample, where every characteristic of the sample matches the population
characteristics. Rather than giving up, researchers do the best they can with
the available resources and try to be aware of any differences between the
sample and population. Here the judgement is not entirely statistical but
also depends on the researcher’s expertise in the subject. A medical practi-
tioner will know that certain factors are important with respect to respira-
tory problems, so will try to select a sample representative of the population
on these key factors, such as whether the person is a smoker or not, but not
on factors unlikely to be relevant to the study, such as a person’s hair
colour. It requires the professional judgement of the researcher (rather than
statistical knowledge) to make the decision on which characteristics the
sample must match the population on and which factors can be ignored.

Selecting a sample
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An alternative way of selecting a sample to represent a population is
through random selection. With a random sample the sample members are
selected at random from the entire population, with each member of the
population having an equal chance of being selected. If I take 100 ping
pong balls and write the numbers 1 to 100 on them, put them in a sack,
shake them up, then take five out without looking, I have a random sample
of five numbers from the population of numbers 1 to 100. Similarly, if I am
doing a survey, I might select names at random from the telephone directory
to select people to send the survey to. I have no idea who those people will
be, I am leaving it up to chance. By random selection I am not deliberately
biasing my sample, so any differences between the sample and the popula-
tion should be random and, therefore, not systematically influencing my
data in any way.

However, even so-called random sampling might not be quite so
random after all. If I am randomly selecting passers by in the street for a
survey, I am excluding all those people not passing by. If I perform my
survey at 3 pm then I will not get anyone whose occupation keeps them at
work at this time. I may not have a random selection of the population I am
interested in. Selecting numbers at random from a telephone book excludes
all those people not listed in the directory. If my population is ‘people listed
in the telephone book’ then it is fine, otherwise I need to be careful. Often
it is hard to collect a truly random sample of the population we are interested
in but, once again, we must do the best we can by deciding on the key
factors and selecting randomly within these factors.

In many cases it is not possible to be truly representative or random
but a good researcher will make it clear how the sample was selected so that
other researchers can decide if there was a systematic bias on an important
factor. Finally, there are a couple of useful points concerning a pragmatic
approach to sampling that many researchers adopt.

1 This is the only sample I have, or am able to test, so even though there
may be sampling problems I’ll test the sample anyway. If the results
are interesting I can investigate further, aware of the potential difficulties
in sampling.

It is called an opportunity sample when we simply select an available sample.
There are many experiments in psychology that use samples of psychology
students, who may not be representative of people in general. However,
often they are available for testing and if it turns out that something intriguing
comes up then other non-student samples can be tested as well. Furthermore
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we might decide that there is no serious reason to assume that the students
will perform differently to the general population on this experiment.

2 If I don’t find what I am interested in with a sample biased in my
favour then it is not worth spending more resources finding a more
representative sample.

If I am testing the hypothesis that people in Britain prefer the television to
radio I might deliberately be perverse and select a group of people who
have just bought a new radio. One might expect these people to be more
favourable to radio than the general population and if I found that they
preferred radio it would not be surprising. However, if I found that even
these people preferred the television despite my bias in favour of radio in
the sample selection then it is not unreasonable to infer that the general
population would also prefer the television.

At this point is worth explaining some terminology. To make the distinction
between sample details and population details, the word statistic is used to
refer to a sample figure and parameter for the population figure, so the
sample mean is a statistic but the population mean is a parameter. (In the
earlier chapters I have referred to a ‘statistic’ when I really should have
been using the term ‘parameter’. I did this because we are all familiar with
the term statistic but not parameter. It is only at this point in the book
that I believe the distinction should be made.) The term parameter for
population characteristics explains why the tests we shall be looking at until
Chapter 16 are referred to as parametric tests. In these tests we use sample
statistics as estimators of population parameters. The two most important
of these sample statistics are the sample standard deviation and the sample
mean.

Of the various measures of spread the mean absolute deviation and the
standard deviation both use information from all the scores. However, it has

Sample statistics and population parameters

Statistics and parameters

Sample standard deviation
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been found that the sample mean absolute deviation is an unstable estimator
of the population figure, that is, there is no consistent relationship between
the sample statistic and the population parameter. On the other hand the
standard deviation of a sample is a much more reliable estimator of the
population value. Because of this, when we do not know the population
standard deviation, we can use the sample standard deviation to estimate it.
This is a key reason for the preference for the standard deviation in statisti-
cal analysis.

The formula for a standard deviation of a population was given in
Chapter 1 and was designated by the symbol σ. However, if we apply that
formula to the sample scores we end up with a sample standard deviation
that underestimates the population value. To improve the estimate we change
the formula and always calculate a sample standard deviation by the formula:

Sample standard deviation (s) =
 

(   )X

n

−
−

∑ B 2

1

Notice we use ‘s’ rather than σ to indicate it is a sample standard deviation
rather than a population standard deviation. We also use the lower case ‘n’
for the sample size (the number of scores in the sample) and B for the mean
of the sample (to distinguish it from the population parameter µ).

The reason why we use n − 1 instead of n in the formula is a little
complicated but it helps when we consider the different purpose of the
sample and population standard deviations. In the latter case we are simply
seeking an average deviation and divide by the number of scores N. In the
former case we are seeking a good estimate rather than an average. This
estimate is more accurate when it is based not on the number of scores but
on the degrees of freedom, n − 1. Degrees of freedom concern the scores that
contain new information. As we have calculated the sample mean from the
sample scores we have used up some of the information in the scores. The
number of scores with new information, the degrees of freedom, is n − 1.

A simple example illustrates this fact. If I have a sample of four scores
(n = 4) with a sample mean of 5, how many scores must I tell you before
you can work out the rest? With 4 scores and a mean of 5 the total of the
scores is 20. If we label the four scores as X1, X2, X3, and X4 then:

X1 + X2 + X3 + X4 = 20

I tell you that one score is 6, X1 = 6, this gives us:
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6 + X2 + X3 + X4 = 20

X2 + X3 + X4 = 14

The other three scores could be any three numbers that add up to 14, there
is some freedom in what they could be. I now tell you that another score is
4, X2 = 4:

4 + X3 + X4 = 14

X3 + X4 = 10

It is still not certain what the other two scores are, they still have some
freedom, although now you know they add up to 10. The third score is 2,
X3 = 2. Given this information you can work out that the fourth score must
be 8:

2 + X4 = 10

X4 = 8

There is no freedom for this last score to vary. The final score can only
be 8 because we know that the mean is 5. As we started with the know-
ledge of the sample mean then only three (n − 1) of the scores give us any
new information, so there are only three (n − 1) degrees of freedom in this
sample.

In words, the sample standard deviation is the square root of the sums
of squares divided by the degrees of freedom. We shall meet these terms
often in our statistical analyses. The sums of squares, ∑(X − B)2, requires us

to calculate the sample mean first. However, we know that B =
∑ X

n
(which is the formula for the sample mean – add up all the scores in the

sample and divide by the sample size). If we replace B by 
∑ X

n
 in the sums

of squares formula we end up with an equivalent formula for the sample
standard deviation that does not require us to calculate the mean first:

Sample standard deviation (s) =
X

X

n
n

2
2

1

( )
−

−

∑∑
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In the formula ∑ X2 refers to the sum of the squared scores (we square each
of the scores first then add them up), whereas (∑ X )2 refers to the square of
the sum of the scores (we add up the scores before we square the total).

Notice that dividing by the degrees of freedom, n − 1, rather than the
sample size, n, makes less difference when the sample size is large but has
a much larger effect when the sample size is small. Dividing by 99 rather
than 100 will not change the calculation very much compared to dividing by
9 rather than 10. As we see below, small samples are not as good for
estimating population values as large samples.

We also want to know what a central figure is in the population but when
we only have a sample, rather than details of the population, we have to
estimate it with a statistic from the sample. Of the various measures of
central tendency (mode, median, mean), the sample mean is the best estimate
of the population value, again for reasons of stability. But how good an
estimate of µ is the sample mean B? It depends a lot on the size of the
sample, the larger the sample the better the sample mean is as an estimate of
the population mean. It also depends on the specific sample that we pick.
We can see this in the following example.

The population of IQ scores is normally distributed with a mean of
100 and a standard deviation of 15. If we took a sample of 20 people’s IQ
scores would our sample mean be 100? The answer is probably not. The
reason is that we might have a sample with a number of clever people in it
and so the sample mean would be higher than 100. Alternatively if we had
some less able people in the sample the mean would be lower. So sample
means will have a range of different values dependent on the scores we
select for our sample.

Imagine for a moment that we were able to select every possible
sample of 20 IQ scores and work out their sample means: what range of
values would we get and with what frequency? What would be the mean of
all these sample means?

So far we have only looked at the frequency distributions of scores,
but now we are interested not in the individual scores but in the mean of
every sample of size 20. If we plot this information as a frequency distribu-
tion, the curve determined by the number of sample means at each value,
we get the distribution of sample means. It turns out that the distribution of
sample means has some very interesting and useful characteristics.

Sample mean
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First, we find that, as we obtain more samples, the mean of the sample
means gets closer to the population mean. When we have selected all possible
samples we find that the mean of sample means is the same as the population
mean. Thus, if we collect the means of samples of 20 IQ scores, then the
mean of all the sample means will be 100. We refer to the mean of sample
means by the symbol µB. We use the Greek letter µ to show that it is still
a population mean and the subscript B to show that it is the mean of a
population of sample means.

Second, the distribution of sample means will tend to be a normal dis-
tribution. If the population of scores is normally distributed then the distri-
bution of sample means will definitely be normally distributed. Even if the
population of scores is not normally distributed the distribution of sample
means will still look rather like a normal distribution with a hump in the
middle and tails off to either side. The larger the samples we select the
closer the distribution approaches the normal distribution. This can be shown
by a mathematical proof, called the central limit theorem. Even though the
distribution of scores is not normally distributed, the distribution of sample
means will end up as a normal distribution as long as the samples are large
enough. When the sample size is 30 or more the sampling distribution
is almost exactly a normal distribution, regardless of whether the original
distribution was normally distributed or not. This is an extremely useful
piece of information for our statistical analysis as we now see.

Third, as the distribution of sample means is either normally distributed
or approximately normally distributed, we can work out the probability of
finding a sample with a particular mean value by calculating a z score for
our sample mean and looking up the probability in the standard normal
distribution tables.

Finally, we can easily work out the standard deviation of the distribu-
tion of sample means by a simple formula using the standard deviation of
the individual scores. We call this new standard deviation the standard error
of the mean and refer to it by the symbol σB. The standard error provides us
with the standard deviation of a sample mean from the population mean.

Standard error, σB =
σ
n

where σ is the standard deviation of the population and n is the sample size.
The standard error of the mean is precisely that, the standard distance,

or error, that a sample mean is from the population mean. In our statistical
tests we want to know how good an estimate the sample mean is of the
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population mean. The standard error tells us just that. Notice, as the sample
size (n) gets larger so the standard error gets smaller. Again this illustrates
that larger samples give better estimates of the population mean than smaller
samples.

The distribution of sample means turns out to be something we now
know a lot about without having to laboriously calculate means for all the
samples. The distribution of the sample means will be a normal distribution
(or similar to it) with a mean, µB, the same as the population mean, µ, and
a standard deviation, σB, the standard error of the mean, equal to the popula-
tion standard deviation divided by the square root of the sample size.

In the IQ example the distribution of sample means for samples of 20
scores will be a normal distribution with a mean of 100 and a standard error

of
15

20
, which is 3.35. As we have a normal distribution and we know

its mean and standard deviation we can calculate z scores and work out
probability values, just as we did for a score and a population in previous
chapters, but now we can do it with a sample mean and a population of
sample means (the sampling distribution of the mean).

To recap, we want to know about populations rather than samples but
usually we can only test samples. We want our sample to tell us about the
population. We therefore have to be careful in selecting our sample because
we would like to generalise from the sample to the population.

The sample mean and the sample standard deviation are the best esti-
mates of the population parameters but we use degrees of freedom rather
than sample size in calculating them as that improves their estimation.
Larger samples provide better estimations of population figures than smaller
samples. Degrees of freedom make more of a difference to the estimation
when the sample size is small than when it is large.

We can compare our sample to the population by calculating the sam-
pling distribution of the mean. This tells us what the distribution of sample
means would look like if we took every sample the same size as our own
(n) from the population and worked out their means. The sampling distribu-
tion of the mean turns out to be a distribution we know about because it
is almost certainly normally distributed and has a mean the same as the
population mean and a standard deviation, the standard error of the mean,
equal to the population mean divided by the square root of the sample size.

Summary
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As the distribution is normal and we know its mean and standard deviation
we can calculate z scores and work out probability values. This is exactly
what we need for hypothesis testing.

We shall see in the following chapters how the distribution of sample
means is extremely useful to hypothesis testing when we consider a sample
rather than a single score.



S T A T I S T I C S  E X P L A I N E D

58



H Y P O T H E S I S  T E S T I N G  W I T H  O N E  S A M P L E

59

C
h
a
p
te

r
6

C h a p t e r  6

Hypothesis testing

with one sample

n An example 60

n When we do not have the known
population standard deviation 64

n Confidence intervals 69

n Hypothesis testing with one
sample: in conclusion 72



S T A T I S T I C S  E X P L A I N E D

60

There was a leak of the gas Cyadmine4 at a chemical works and the gas
cloud hung over the town of Newtoncastle for a number of days before
dispersing into the atmosphere. There were some complaints of sore throats
amongst the townspeople but the chemical company assured the public that
there are no adverse effects of Cyadmine on the human body. However, a
scientist who worked on the Cyadmine project has gone on record as saying
that Cyadmine could have an effect on pregnant women and their unborn
children. The company has dismissed the scientist’s claim as nonsense,
noting that the scientist was unable to specify what problems could arise.
There is not a universal confidence in the chemical company and there is
some concern in the affected areas especially from parents of young children.
A doctor in the large maternity hospital has been keeping an eye on babies
born in the nine months after the cloud passed over the town. She has noted
that the babies appear healthy on all the usual checks but is suspicious that
the Cyadmine could have affected their birth-weights as many of the babies
appear rather small at birth. The doctor is worried about any long-term
effects and wants to test whether the ‘Cyadmine babies’ are smaller at birth
than usual. Essentially, the doctor is making a one-tailed prediction: the
distribution of the birth-weights of the Cyadmine affected population will
be different to the distribution of the birth-weights of the unaffected popula-
tion with the overlap of the distributions occurring at the lower end of the
unaffected distribution.

To test this hypothesis we need details of the two birth-weight
populations. Comparing the two distributions will tell us whether there
is a difference between the two, specifically whether the mean of the
Cyadmine-affected population is lower on the birth-weight scale than the
unaffected population. The problem is collecting the details of the two
populations.

We may be lucky here, in that medical records are very detailed and
let us assume in this case that there are detailed records of birth-weights.
We find from the records that, for babies born in this country, the mean
birth-weight is 3.2 kg and the standard deviation is 0.9 kg. These are the
details we take for the population unaffected by Cyadmine.

An example



H Y P O T H E S I S  T E S T I N G  W I T H  O N E  S A M P L E

61

The problem now is to collect details of the Cyadmine-affected popula-
tion. Essentially what we want to know is how the unaffected population
would be affected by Cyadmine were they to be affected by it, as the
doctor’s prediction is that the effect of Cyadmine is to shift everyone’s
birth-weight down the scale by a fixed amount. We can never get details
of this population, all we have are the babies of Newtowncastle who were
in the womb at the time of the leak. This is only a sample of the second
population. Not only that, but our sample is not necessarily representative
or random. We are unable to select freely from the Cyadmine-affected
population. Our sample could be influenced by other factors as well as, or
instead of, Cyadmine, such as a hospital inducing babies early, which might
also lead to lower birth-weights.

We decide to select one hundred of these babies, balancing home
births and hospital births, selecting a range of foetal ages when the cloud
appeared, and so forth, to try to select a sample that will not be systemat-
ically influenced by factors such as hospital practice, foetal age, etc. We
may not be able to account for all systematic differences, bar the Cyadmine
effects, between the sample and the unaffected population but we can
do our best to control for key confounding variables (see Chapter 7 for
further explanation of ‘confounding’). If we do find differences between
Cyadmine babies and unaffected babies it will be worth investigating
further to ascertain whether it is really due to Cyadmine or some other
reason. If we find no difference we might decide we need investigate no
further.

We obtain the birth-weights for the sample of Cyadmine babies and
calculate the sample mean. This turns out to be 3.0 kg. Can we compare this
mean with the population mean for the unaffected babies? The answer is no,
because we are not comparing like with like and this allows for the possib-
ility of bias. To explain this, let us consider the unaffected population for
a moment. Not all babies have the same birth-weight, some will be lighter
than others due to the normal spread of birth-weights. It is quite possible
that if you selected a sample of unaffected babies you might find their
sample mean lower than the population mean. By chance we might have
selected a group of babies with relatively low birth-weights despite the fact
that they come from a population with a higher mean birth-weight – we
could have just selected small babies. (I’m sure that you can see that,
equally, by chance, we might select a sample with a mean birth-weight
higher than the population mean.) Even though our sample of Cyadmine-
affected babies gave a sample mean lower than the unaffected population
mean, we cannot take this as evidence for the effect of Cyadmine on
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birth-weight. It might not be due to a difference in populations but simply
due to the nature of sampling.

If we cannot compare our sample mean with a population mean what
can we do? Recall that we can compare a score with a population of scores,
so we need to compare a sample mean with a population of sample means.
If we select all possible samples of size 100 from the unaffected population
and work out their sample means we can create a distribution of sample
means. In this way we are creating a ‘known distribution’, the distribution
of the mean for samples of size 100 from the unaffected population and an
‘unknown distribution’, the distribution of the mean for samples of size 100
from the affected population. Now we can compare these two populations
of sample means. If they are different, with the affected distribution having
a smaller mean, this will support the doctor’s hypothesis. Unfortunately, we
don’t have the details of these populations yet, in fact we only have one
value from the unknown population: the mean of our sample of 100 affected
babies.

Do we have details of the distribution of sample means for samples
of size 100 from the unaffected population? Here the answer is yes. For-
tunately, as we saw in the previous chapter, we don’t need to go out and
select every possible sample of size 100 from the unaffected population as
we know about sampling distributions – with a sample size greater than
30 the distribution of sample means will almost certainly be a normal dis-
tribution. Also, the mean of a sampling distribution, µB, is the same as the
population mean, µ, so it will be 3.2. And the standard deviation of the
sampling distribution, σB, the standard error, will be the population standard
deviation (σ = 0.9) divided by the square root of the sample size (n = 100),

so will be
0 9

100

.
= 0.09.

We have now created a logically identical framework for hypothesis
testing to the one we had in Chapter 4. We have a ‘score’ from an unknown
distribution, in this case our affected sample mean of 3.0, and we have a
known distribution, the sampling distribution of unaffected samples of the
same size. The distribution is known to be normally distributed with a mean
of 3.2 and a standard deviation of 0.09. All we need to do is choose a
significance level for the doctor’s hypothesis, find the z score, look up the
probability and make our decision as to whether the affected sample comes
from the same distribution as the unaffected samples or a lower one.

We find out how likely it is to get a sample of 100 unaffected babies
with a sample mean of 3.0 by working out the z score. Recall that a z score
is a score minus a population mean divided by the population standard
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deviation. Here the sample mean B is our ‘score’, the mean of the sampling
distribution, µB, and standard error, σB, are the mean and standard deviation
of the distribution we are interested in, so
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We can look up the probability of the z score in the standard normal distribu-
tion tables as our sampling distribution is normally distributed. Remember
the minus sign simply tells us that the score is lower than the mean of the
distribution. From the Table A.1 in the Appendix a z score of 2.22 gives a
probability of 0.0132. Thus, the probability of obtaining a sample mean as
low or lower than 3.0 kg from a sample of 100 unaffected babies is only
0.0132. This is well within the bottom 5 per cent of the unaffected sampling
distribution, well below the significance level of p = 0.05. We can conclude
that a sample mean of 3.0 kg is so rare in the unaffected population that our
affected sample mean of 3.0 kg indicates that the affected distribution is not
the same as the unaffected distribution, and we reject the null hypothesis,
concluding that Cyadmine-affected babies do have a lower birth-weight
than unaffected babies. This is shown graphically in Figure 6.1.

FIGURE 6.1 Hypothesis testing with a sample of Cyadmine-affected babies
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When we have a sample from an unknown population we cannot compare it
to a known population. We must find the sample mean, B. Then we find the
sampling distribution of the mean for all samples of the same size from the
known population. This distribution is usually a normal distribution with a
mean, µB, equal to the population mean µ, and a standard deviation (or
standard error), σB, equal to the population standard deviation, µ, divided by

the square root of the sample size, n .
Using this information in our example we tested the hypothesis that

the unknown distribution is lower on the scale than the known distribution.
As the known distribution is a normal distribution we worked out a z score
to find the probability of finding a sample mean from the known distribution
as small or smaller than the sample mean from the unknown distribution.
As the probability was smaller than the significance level we rejected the
null hypothesis and concluded that the unknown distribution is lower on
the scale than the known distribution: Cyadmine-affected babies do have a
lower birth-weight than unaffected babies.

The average number of purchases in a supermarket is 25 items. The company
would like to increase this figure and introduces an advertising campaign
to encourage shoppers to buy more products in the store. In the week after
the campaign a sample of 50 shoppers are tested to see if the number of
purchases has increased.

The following number of purchases were recorded:

30 44 19 32 25 30 16 41 28 45
28 20 18 31 15 32 40 42 29 35
34 22 30 27 36 26 38 30 33 24
15 48 31 27 37 45 12 29 33 23
20 32 28 26 38 40 28 32 34 22

The mean number of purchases for this sample is 30 items and the sample
standard deviation is 8.43.

Has the advertising campaign had an effect? As we saw above we
cannot compare the sample mean of the post-advertisement shoppers

In summary

When we do not have the known population
standard deviation
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(30 items) with the population mean of the pre-advertisement shoppers
(25 items) as one is a sample and the other a population. To compare a sample
mean with a distribution of sample means we must calculate the sampling
distribution of samples of size 50 from the pre-advertisement shoppers.
This distribution has a mean of µB = 25 (µB = µ, the same as the population

mean) and a standard error of σB =
σ
50

, where σ is the standard deviation

of the pre-advertisement population.
Our sampling distribution is almost certainly normally distributed so

we can look up a z score in the standard normal distribution table to find
the probability of finding a sample mean as large as 30 from the pre-
advertisement shoppers.

  

z

n

=
−

=
−

=
−B BB

B

µ
σ

µ
σ σ

30 25

50

Unfortunately, we are stuck, as in this case we do not know σ, the standard
deviation of the pre-advertisement shopper population. In order to continue
we have to make an estimate of σ. We assume that the effect of the advertis-
ing campaign is to shift the whole distribution of purchases up the scale:
that is, after the campaign the population mean is higher (people buy more
items) but that the standard deviation stays the same (the spread in the
number of purchases stays the same). The only standard deviation we have
is the post-advertisement sample standard deviation, s. Sample standard
deviations are quite stable estimates of the population figure so we could
use this to estimate the post-advertisement population standard deviation.
As we are assuming that the post-advertisement population has the same
standard deviation as pre-advertisement we can use our sample standard
deviation, s, as an estimate of the pre-advertisement population standard
deviation. (We are predicting that the effect of the advertisement will
be to shift the distribution up the scale but not change the shape of the
distribution in any way, so the standard deviation will remain the same.)
In order to use our sample standard deviation as an estimate of the popula-
tion parameter we must assume that our sample is not biased in any
way, such as made up only of wealthy shoppers, or it will not be a good
estimate. So we assume that our sample is randomly chosen from the
post-advertisement population. If this assumption is met then our sample
standard deviation should be a reasonable estimate of the pre-advertisement
population figure.
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To distinguish the fact that we do not have the population standard
deviation σ but are using s as an estimate, instead of calling the statistic z,
we call the new statistic t:

  

t s

n

=
−B µ

As we saw in the previous chapter a sample standard deviation has the
following formula:

s
X

X

n
n

( )

=
−

−

∑∑ 2
2

1

replacing s by its formula in the formula for t we get a new formula for t:

  

t

X
X

n
n n

( )

(   )

=
−

−

−

∑∑

B µ

2
2

1

Notice that t is influenced by the degrees of freedom of the sample (n − 1).
This is because t is not the same as z but an estimate of it. When the degrees
of freedom are small the t distribution is similar to a normal distribution but
flatter and more spread out. As the degrees of freedom get larger the t
distribution gets rapidly closer to a normal distribution and when the degrees
of freedom are infinite it is identical to the normal distribution. Figure 6.2
shows three t distributions for 1, 10 and infinity degrees of freedom. Even
at 10 degrees of freedom the t distribution is very similar to a normal distribu-
tion and at 30 degrees of freedom and above the differences are so small as
to be irrelevant.

We always look up a z score in the standard normal distribution tables.
We cannot do this with t as it is not a normal distribution. However, like the
standard normal distribution tables, the values of the t distribution have
been worked out. Indeed these have been worked out for the different t
distributions corresponding to the different degrees of freedom. We can
look up our calculated value of t in the table for the appropriate distribution
and find the probability of this value arising from the known distribution.
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FIGURE 6.2 Examples of the t distribution
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We can compare this value with our significance level and make a decision
whether to accept or reject the null hypothesis. Thus we are able engage in
hypothesis testing with a sample even when we do not know the standard
deviation of the known population.

In order to perform a t test we have to make three assumptions:

1 The known population is normally distributed. This is important as
(like a z score) we need our sampling distribution to be normally
distributed. If it is not then the t distribution in the table might not
provide us with the appropriate figures for our decision on the signi-
ficance of the t value we calculate. However, it is often stated that
the t test is ‘robust’: this is statistical jargon for saying that even if
the underlying sampling distribution is not normal the t test might still
provide a reasonably good figure for comparison. Certainly when the
sample size is 30 or more the sampling distribution will be very close
to normal, whatever the underlying population distribution.

2 The sample is randomly selected from the (unknown) population. We
want our sample standard deviation to be an unbiased estimate of the
population standard deviation, and hence a suitable estimate to use.
Otherwise it will affect our calculation of t.

3 The standard deviation of the unknown population is the same as the
known population. Only if we make this assumption can we take
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the sample standard deviation as an estimate of the standard deviation
of the known population.

Returning now to our example, the above assumptions are reasonable to
make here, as long as we have no reason to believe our sample 50 shoppers
was selected in a biased manner. We can now calculate t to find the
probability of finding a pre-advertisement sample with a mean as large as
30 items:

  

t

X
X

n
n n

( )

(   )

.
  .=

−

−

−

=
−
−

= =
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B µ

2
2

1

30 25

48482 45000

2450

5

1 1922
4 19

We must also work out the degrees of freedom: n − 1 = 50 − 1 = 49.
If we look at the table of t values given in Table A.2 of the Appendix

we note that, unlike the standard normal table, it does not have the figures
for the whole distribution. Otherwise we would have table after table, giving
all the values for each different t distribution. What the table shows is the
key values for each distribution, where the key values are the values of t
at the significance levels we commonly choose, i.e. which t value cuts off
exactly 5 per cent and which value cuts off 1 per cent of the tail of the
t distribution.

We have a one-tailed test (we are predicting the advertising campaign
will result in more purchases). Using a significance level of p = 0.05, we
look down the p = 0.05 column and along the row for 49 degrees of free-
dom and we find the t value is not there! There is a figure of 1.684 for
40 degrees of freedom and 1.671 for 60 degrees of freedom. The reason
for this is that, again, if every figure was listed the column would go on for
ever. We can see that there is there not much difference in these values
(0.013) so we know roughly what our value for 49 degrees of freedom will
be: somewhere between the two (1.671 and 1.684). We can find it out by a
process called linear interpolation, which is easier than it sounds! Between
40 and 60 is a gap of 20 and between 1.684 and 1.671 there is a gap of
0.013. So for every degree of freedom between 40 and 60 the difference in
the table is 0.013/20, which is 0.00065. For 9 degrees of freedom the gap is
9 × 0.00065, which is 0.00585. Therefore 49 degrees of freedom has a table
t value of 1.684 − 0.00585, which is 1.67815. (If you don’t want to do a
linear interpolation just take the larger of the two values in the table: 1.684.)
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As a t value of 1.67815 cuts off exactly 5 per cent of the tail of the t
distribution with 49 degrees of freedom, our value of t being larger will cut
off less of the tail and the probability of getting a t value of 4.19 from the
known distribution is less than 5 per cent, so we can reject the null hypo-
thesis and argue for a difference in the two distributions.

More simply we can conclude that, as our calculated value of t of
4.19, with 49 degrees of freedom, is larger than the table value of 1.67815
for a one-tailed test, at the p = 0.05 level of significance there is a significant
increase in the number of items purchased after the advertising campaign.
Notice that it is also significant at the more conservative p = 0.01 level
of significance and we would usually report the finding at the smaller
significance level to indicate how unlikely it is that the effect could have
occurred by chance. (See if you can work out by linear interpolation the table
value of t for 49 degrees of freedom for the p = 0.01 level of significance.
You should get a value of t of 2.40815.)

The t test is a test of significance and we seek evidence for a statistically
significant difference between populations based on the sample information
we have. An alternative approach is to use the sample information to estim-
ate the population parameters. Now you may say that we have already done
that by using our sample mean value as an estimate of the population value.
That is true but we can be a little more sophisticated by working out a
confidence interval for the mean. Rather than choosing a single value for
the population mean we can specify a range of values within which we are
confident that the value lies. We choose a level of confidence, usually either
95 per cent or 99 per cent confident, and then work out the range of values.
With a 95 per cent confidence interval we are saying that if we worked out
the confidence interval for 100 different samples from a population then
95 per cent of those confidence intervals would contain the population
mean value. So our confidence interval is a good estimate of where the true
mean lies.

In the above example we can work out the 95 per cent confidence
interval quite easily as we use the information we produced for the t cal-
culation to work it out. This is because for the t test the confidence interval
(CI) is specified as follows:

CI = Sample mean ± (critical t value × standard error of the mean)

Confidence intervals
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In this case the critical t value is the one that ‘captures’ the central 95 per
cent of the distribution, leaving only 5 per cent outside the range, so is the
two-tailed t value from the tables at p = 0.05, as this cuts off 0.025 from
each end of the distribution.5 We have 49 degrees of freedom so we can
now find the critical t value from the tables, which is 2.0116 (by linear
interpolation between the values for df = 40 and df = 60). We know the
sample mean is 30 and we know that the (estimated) standard error of the
mean is 1.1922 (as it is the bottom part of the t test formula).

So we have:

95%CI = 30 ± 2.0116 × 1.1922 = 30 ± 2.3982

which gives

95%CI = (27.6018, 32.3982)

This gives us a helpful indication of the position of the true population
mean. The narrower the confidence interval the more specific our estimate
of the population mean. Here we are confident that the population mean lies
between 27.6018 and 32.3982. Even the lowest of the two limits, 27.6018,
is still well above the 25 value for the pre-advertising purchases.

We can extend our confidence interval analysis to give the confidence
interval of the difference between our post- and pre-advertisement mean
values (B − µ). We use the same formula but replace the sample mean with
the difference in means:

CI = Difference in means ± (critical t value × standard error of the
difference in means)

The critical t value and the standard error are the same as in the previous
calculation and we know the value of µ so:

95%CI = (30 − 25) ± (2.0116 × 1.1922)

95%CI = (2.6018, 7.3982)

This provides us with a range of values that we are confident (95 per cent
of the time) contains the real difference in the populations. Notice that in
the ‘worst case’ (the lower limit) we still predict 2.60 more purchases after
the advertisement so we can be confident that it has had an effect. Had the
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lower limit been zero or even negative we would not be able to assume a
definite effect of the advertisement as the true difference could have been
zero.

The above confidence intervals have been worked out using the sample
statistic (the mean, or the difference in means), sample information (the
standard error) and the appropriate statistical distribution for the data (the t
distribution). We can calculate confidence intervals for many statistical analy-
ses using the same structure as above, but we write the general statement as
follows:

CI = Value of statistic ± critical value of appropriate distribution
× standard error of the statistic

We then need to select the appropriate statistic, critical value and standard
error to calculate the confidence interval. As we saw above, we work out
the statistic and the estimate of the standard error from our data, choose the
level of confidence we want (e.g. 90 per cent or 95 per cent) and then select
the correct critical value for that confidence level.

Significance tests and confidence intervals are both attempting to answer the
same question: what does our sample information tell us about the population
values and what can we conclude from it? In the first case, a significance
test, we are seeking whether the sample statistic exceeds a particular criterion
(the p = 0.05 significance level) to claim statistical significance (and reject
the null hypothesis). In the second case, confidence intervals, we are seeking
to find the range within which we can be confident that the population value
lies. If we look at confidence intervals of a difference we can examine this
range in relation to zero to give us an indication of whether we think the
difference is important or not. If the confidence interval contains zero then
the difference for the population values could well be zero and hence any
difference we found in the sample means is not important.

Significance tests have been traditionally used in data analysis in a
number of fields of study. However, confidence intervals are increasingly used.

The general structure of a confidence interval

Significance and confidence intervals
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This is because significance tests provide an ‘either–or’ outcome – either
the null hypothesis is rejected or it is not at a particular significance level –
whereas the confidence interval provides a range of values that provide a
useful estimate of the size of the difference.

In a real sense significance tests and confidence intervals are com-
plementary in that together they reveal a clearer picture of the data than
they might on their own. In many cases (with a highly significant finding,
for example) the conclusion is clear but where the finding is ‘close’ to
significance (with a probability of 0.06, for example, which we would say
is not significant) confidence intervals can help us evaluate the worth of
further investigation, particularly if, as we shall see in Chapter 9, there are
a number of factors that influence our statistical outcome.

The same logic applies whether we are testing a sample or we are testing
an individual score. However, with a sample the ‘score from the unknown
distribution’ becomes the sample mean from the unknown sampling distri-
bution and the ‘known distribution’ we compare it to is the distribution of
sample means from the known population for samples of the same size.
Once we have the details of the ‘score’ and the ‘known distribution’, then
the procedures are identical: we work out the z score and find the probability
in order to decide whether to accept or reject the null hypothesis. It is a little
more complicated if we do not have the standard deviation of the known
population but as long as we make the appropriate assumptions we can use
the sample standard deviation to estimate it. We then calculate t instead of
z. As the t distributions have all been worked out we can look up the critical
value of t, with the appropriate degrees of freedom, for our chosen level of
significance. If our calculated value is larger than the table value we can
reject the null hypothesis.

Confidence intervals provide an alternative way of representing our
findings as they provide a range of values within which we are confident
that the population value lies. We may choose this as an alternative to our
significance test or as supplementary information to it.

Hypothesis testing with one sample: in conclusion
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HY P O T H E S I S  T E S T I N G  with a single sample is used when we know
about a particular population and wish to decide whether the sample

comes from a different population or not. In most research we do not have
details of any populations at all. All we know about are the samples we
can obtain. In the majority of cases hypothesis testing is about comparing
samples rather than comparing a sample mean with a sampling distribution.
In the Cyadmine example considered in the previous chapter we had the
details of a birth-weight population unaffected by the gas. More usually
we will not have this information and can only collect a sample of babies
affected by the gas and a sample of babies unaffected by it for comparison.
We, of course, increase the problems of sample selection when we have two
samples rather than one, as each is required to represent a population.
Indeed, it is the fact that we want to use our samples to estimate populations
that causes problems in sample selection, for we do not want to introduce
biases that make our samples untypical of their population.

When we have two samples, not only do we wish them to represent
their respective populations but we also want them to be comparable. For
example, if we are comparing forty year old men and women on their degree
of fitness we would not select women who were athletes and men who were
taxi drivers as the samples are not comparable. Any difference in fitness
could be due simply to occupation rather than gender. It is this problem of
comparability we consider now.

The reason we undertake experiments is to test hypotheses. A major cause
for concern is whether the experiment is really examining the hypothesis we
wish it to test, to the exclusion of all others, or whether we have introduced
a bias in some way. Poor sample selection can lead to an ambiguous experi-
ment if we are unable to decide whether, say, a difference in fitness is due
to occupation or gender.

Designing experiments to compare samples
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All experiments look at the effects of variables or factors, the terms are used
synonymously. Variables are, not surprisingly, things that vary! Temperature,
reaction time, teaching methods, gender, class, drinking habits, accuracy of
performance are just a few examples.

In the simplest case of hypothesis testing we want to know whether
a single score comes from a known population distribution or from a dif-
ferent population distribution. An example is comparing the reaction time
of someone after a head injury with the population of reaction times from
the uninjured population. We can also compare a sample mean with a
known distribution of sample means. As an example we might compare the
mean IQ score of a group of children taught by a new teaching method with
the distribution of means of samples of the same size of children taught by
the traditional method. In both these cases we need a known distribution.

More usually we will compare two or more samples of subjects to
decide whether they come from the same or different populations, for example
do men and women differ on their memory for faces? Note the word subject
in this context simply refers to a member of a sample. A subject could be
anything. Quite often it will be a person but it could be an animal (if we are
studying rats learning mazes or dogs learning tricks) or indeed anything we
want to study (bolts made by one machine in one sample and bolts made by
another machine in a second sample). The use of the term ‘subject’ has been
criticised in the study of psychology when referring to people who agree
to take part in research. The modern terminology for such a person is
participant as it is viewed as more respectful of these helpful individuals,
without whom there would be little psychological research. However, in
statistical analysis we refer to ‘between subjects’ and ‘within subjects’ for
particular types of designs or calculations, so the term continues to have
currency in this context. Where it is clear that it is people taking part in a
study I will refer to them as participants rather than subjects.

In the examples we have considered so far each experiment has
at least two factors. In the Cyadmine gas example we have the variable
Cyadmine, varying between ‘affected’ and ‘unaffected’ and birth-weight,
varying between the individuals we are measuring. In the memory experiment
above we have gender, either ‘men’ or ‘women’, and memory for faces,
which we vary along the scale devised to measure it.

In an experiment there can be one or more independent variables. These
are the variables for which the experimenter selects the values in advance.
With the variable Cyadmine we chose to look at two values: affected and

Experimental variables
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unaffected (rather than looking at, say, badly affected, moderately affected
and slightly affected). With the variable gender we selected men and women
(rather than boys and girls). The experimenter controls the values of the
independent variables and the samples are selected so that they differ on
these values.

As well as independent variables there is also the dependent variable
in an experiment. This is the variable we measure and on which we obtain
the scores. Whilst the researcher selects what factor will be the dependent
variable in the experiment (birth-weight, reaction time, IQ score, memory
for faces) the researcher cannot control the values of that variable. We do
not know in advance what the scores will be on this variable. This is the
point of performing the experiment. Let us consider another example of the
two sample case: two groups of children engage in different methods of
learning a second language. Is one method better than the other? In statistical
terms we want to find a suitable dependent variable (such as amount learnt)
that is dependent (i.e. influenced by) the independent variable (learning
method) to see if the values of the dependent variables differ in our two
samples to such an extent that we can conclude that the sample scores come
from different distributions, and one method leads to a greater amount
learnt than the other.

Experiments are all about predicting relationships between independent and
dependent variables. A research hypothesis is a prediction that the dependent
variable will vary with (depend on) changes in the independent variable.

Imagine we set up an experiment to test whether girls are better than
boys at map reading. The first problem is deciding what we mean by ‘map
reading’. Reading a road map to get into town? Reading an ordnance survey
map to cross a moor? There is not an easy answer to the question. We must
make a choice and state it clearly. As we saw in Chapter 4, we must
operationally define map reading ability for the purpose of our experiment,
such as ‘the time it takes a child to get from a specific church, across the
fields to a specified post office, using an ordnance survey map only’. We
have to attempt to arrange the conditions equally for the children, such as
making sure that they are all unfamiliar with the route. And this highlights
a second problem.

What if we find a difference between the boys and the girls on map
reading ability: can we infer a relationship between gender and map reading

The problem of equivalent conditions
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ability? Not necessarily; the reason being the difficulty of arranging equivalent
conditions for the boys and girls. If the girls had undertaken the task
in bright daylight and the boys in the dusk we would not be surprised if
the boys were worse. In this case the independent variable gender was
confounded by another variable daylight. Likewise, if all the boys were
from an orienteering club and the girls had never seen a map before then a
difference between them would not necessarily indicate a relationship of
map reading ability to gender but to experience.

Confounding is an example of a systematic error. The experimental
conditions are consistently different for the two samples due to other
independent variables as well as the one under test. In addition to systematic
errors influencing an experiment we also have random errors. These occur
in an unsystematic way: a gust of wind makes it temporarily hard for one
boy to read his map, a road is busy when one girl tries to cross but is quiet
for another.

As it appears that we can never produce equivalent conditions for all
the participants in the study should we abandon experimentation altogether?
Unfortunately there is no research method without problems and there are
ways of dealing with these difficulties. Systematic errors can be avoided
when we are aware of them and it is the skill of the researcher to spot them.
We can deliberately select our participants so that they are matched on a
confounding variable. In our example, for each boy that has some map
reading experience we match him with a girl who has had the same amount
of experience. In this way the samples no longer differ on experience and
it should no longer bias our results in favour of one sample. We can also
monitor the daylight and make sure that the children perform in similar
daylight conditions. By being a little more sophisticated in the design and
operation of the experiment we can remove relevant systematic errors.

It is unlikely that we would match the children on hair colour as this is
a factor we would not expect to influence this experiment. In matching we
take account of only the factors we believe to be relevant. Again we can see
it is one’s expert knowledge of one’s own discipline rather than statistical
knowledge that guides these judgements. This is why an experiment should
always be accurately reported, stating how the samples were matched.
Another researcher might argue that an important confounding factor was
not controlled for in the experiment.

We cannot control for random errors. However, our statistical tests are
deliberately designed to help us decide if there is a difference between our
samples above the level of any ‘background noise’ caused by these random
errors, and we set a significance level to do this. We do not expect every



S T A T I S T I C S  E X P L A I N E D

78

boy to get the same score, nor every girl. We expect a distribution of scores:
not every boy runs at the same speed, not every girl trips up on the way.
Random errors produce a distribution of scores across each sample. Statistical
tests look for systematic differences between samples due to the independent
variable above the random variation within a sample.

Sometimes, as in the map reading experiment, there are different par-
ticipants in each sample. This is not surprising for the variable gender, as
most children are either a boy or a girl, not both. In other experiments it is
possible use the same participants in each sample. An example of this might
be an experiment on the effect of temperature on reading comprehension
where we test the participants’ comprehension at two different temperatures.
When a participant contributes a score to only one sample the experiment
is called an unrelated, independent or between-subjects design and when the
participants contribute a score to each sample the experiment is called a
related, repeated measures or within-subjects design.

Consider an experiment where a researcher is trying to find out whether
it is harder to understand the writing of Joseph Conrad (reputed to be dif-
ficult) compared to Charles Dickens. The researcher might select pieces
written by the two authors (matched on length at least) and give them to a
group of participants to read, followed by a comprehension test. This is a
related design, as each person is in both samples. This has the advantage
of matching the participants with themselves, so reducing possible errors
due to differences between individuals (we will not have all the English
enthusiasts in one sample). However, there are other problems to watch for.
If the participants read the Dickens piece first followed by the Conrad they
might perform worse on the Dickens, not due to comprehensibility, but
because they read it first and it is not so fresh in their minds. We have
introduced the confounding factor memory time into the experiment. To
overcome this we must counterbalance the order of presentation, so half the
participants read the Dickens first and half the Conrad. By this counterbal-
ancing we will have controlled for confounding factors such as memory
time, tiredness, boredom, experience of the test, etc.

The advantage of an independent design is that there are no carry-
over effects from one sample to the next, whereas the disadvantage is that
there may be systematic differences between the samples and therefore we
must take care in our sample selection. In many cases we have to have an

Related or independent samples
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independent design as we are testing an independent variable such as gender
or occupation where participants can only be a member of one sample:
people are normally working as either a doctor or a nurse but not both.

Essentially, in designing experiments, we would like to select our subjects
randomly from the largest population possible. If we do this then our results
have the greatest generalisability. However we also have the greatest chance
of confounding. Researchers compromise (as they must using any method-
ology) and lose some generalisability in favour of greater control over the
variables involved. In the Cyadmine example we considered babies born in
a single town where the gas cloud rested. This sample might not generalise
to all Cyadmine-affected babies. Maybe there is something specific to the
location that influenced the impact of the gas in some way. Yet this should
not stop the researcher carrying out the test. Important information can still
be found and it would also need to be demonstrated that the location does
have an influence on the effects of Cyadmine.

Finally, in this section, we wish to design experiments that actually
test out the hypothesis we are interested in! (It is amazing how many do
not.) If we wish to test whether a reading scheme improves children’s
reading performance we cannot simply test them before and after they have
taken part in the scheme. Any differences might be due to the fact that
the children are older rather than the reading scheme as such. We have
the confounding factor of age. To overcome this we match two groups of
children on reading ability and then give one, the experimental group, the
reading scheme but not the other, the control group. If the performance of
the experimental group improves more than that of the control group then
we may be able to relate it to the reading scheme as we have controlled for
the effects of age by the selection of the control group.

In all experiments we are trying to establish relationships between the
independent and dependent variables, controlling for extraneous variables
that could influence this relationship. We must be careful when we do find
a relationship that our interpretation is not in error. Experiments do not
establish causal relationships, they only support or do not support testable
hypotheses. For example, we might hypothesise that men and women differ
on a certain factor. If we find a significant difference it supports our hypo-
thesis but does not tell us why. The answer may be genetic, social or even a
confounding factor that we have not taken account of.

The interpretation of sample differences
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The reason for undertaking experiments is to give us some systematic
data on which to base our judgements and test our ideas. The more we learn
about experimental methods the more sophisticated our judgements can be
in assessing the worth of our findings. And it is the statistical analysis
which helps us to decide what we have actually found out.
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AT E A C H E R  R E A D  A B O U T  a new reading scheme introduced in
another country and wondered whether it could be used here. There

were reports in the educational literature of the other country that the
New Scheme resulted in better reading performance from the children. The
problem was that these data were for another language. The teacher wanted
to find out if the New Scheme was better than the Old Scheme currently
being used in the classroom in this country.

The teacher decided to teach half the class on the New Scheme and
half on the Old Scheme on the next class intake. The children were randomly
allocated to the two schemes, to avoid biasing the samples due to factors
such as intelligence. In this way the two samples were assumed to system-
atically differ only on the variable under study: reading scheme. The teacher
can now compare the samples. Yet the teacher is not really interested in the
samples as such but the population of children these samples are drawn
from. Is the New Scheme better for children of this age rather than just this
class? The question is whether the population distribution for the New
Scheme is higher up a scale of reading performance than the distribution for
the Old Scheme. This is a one-tailed prediction that the New Scheme will
result in better performance than the Old Scheme. Unfortunately the teacher
has no details of these populations, they are both unknown.

How can these samples be used to test the hypothesis? First of all we
can ask whether the samples are representative of the populations we want
to generalise to. How are the pupils selected for this school? What social
groups do they come from? These factors might limit the generalisation.
Second, we can look at the performance of the two samples on a test of
reading. If the difference between the samples is small we might be sceptical
of a difference in populations but if the difference is big we might decide
that the finding indicates a likely difference in the populations. The problem
we face is: how big must a difference be before we reject the null hypothesis
and decide the samples really do come from populations with different
distributions.

We can attack the problem in the following way. Let us assume
that the two samples really do come from the same distribution, the null
hypothesis is true and there is no difference in reading performance between
the populations. What differences would we expect between two samples
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0

Sample 1 mean smaller
than Sample 2 mean

Sample 1 mean minus Sample 2 mean

Sample 1 mean larger
than Sample 2 mean

FIGURE 8.1 The distribution of the difference between sample means

simply by chance alone? We can find this out if we take the mean of every
possible sample, of the size we are interested in, and compare it with the
mean of every other possible sample of this size. These differences (in
sample means) will tell us what differences we would expect when the null
hypothesis is true. If we plot these differences we get the distribution of
differences between sample means. Like the distribution of sample means
this will tend to be a normal distribution as it is a sampling distribution.
This will be especially the case if our sample size is large. The mean of this
distribution will be zero because, when we take samples from the same
distribution the differences will pile up around zero as there will be little or
no difference between most sample means. Only occasionally will there be
a large difference, say, when one sample has all the good readers and the
other all the bad readers. The distribution of differences between sample
means when the null hypothesis is true is shown in Figure 8.1.

Now, lo and behold, we have a known distribution: a normal distribu-
tion with a mean of zero. We also have a score to test: ‘the difference in our
sample means’. Hypothesis testing is all about comparing a score with a
known distribution. If the probability is high that our difference in sample
means comes from this distribution then the chances are that the null
hypothesis is true. If there is a low probability of finding a difference such
as ours from this distribution then the chances are that our samples come
from different population distributions, and the null hypothesis can be
rejected. All we need to do now is to construct a z score for the ‘score’ (the
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difference between our sample means) and we can find the probability of
this score coming from the ‘known distribution’ (the distribution of differ-
ences between sample means) to find the probability of the null hypothesis
being true.

A z score needs a score, a mean and a standard deviation. Our ‘score’
is the difference in sample means. If we call the mean of Sample 1 B1 and
the mean of Sample 2 B2 then the difference in sample means is B1 − B2.
The mean and standard deviation of the distribution of differences in sample
means, when the null hypothesis is true, are given the following symbols:
µB1−B2

 and σB1−B2
, respectively. (As it is the standard deviation of a distribu-

tion concerning sample means we must remember that σB1−B2
 is a standard

error. It gives us the standard distance of a difference in sample means from
the mean of the differences in sample means.) And we so can write the
following formula for z:

  
z

(   )  
=

− − −

−

B B1 2 B B

B B

1 2

1 2

µ
σ

Now we know that µB1−B2
= 0, so we can write z as follows:

  
z

(   )  
=

− −
=

−

− −

B B B B1 2

B B

1 2

B B1 2 1 2

0

σ σ

All we need to do now is look up the z score in the standard normal table to
find the appropriate probability value. The problem is that we do not know
σB1−B2

. We will have to estimate it. How do we estimate the standard error
of the distribution of differences between sample means when the null
hypothesis is true? We have to use our samples. We replace σB1−B2

 in the
formula with sB1−B2

, which is the standard error of the difference between
our sample means. It may look a little different to the one we created in
Chapter 6 but we have the t statistic once again, as an estimate of z by using
sample information to estimate the population standard error. The difference
is only in the appearance of the formula: we still have a ‘score’ (B1 − B2)
minus a mean (which in this case is zero) divided by an estimated standard
error (sB1−B2

):

  
t

s
=

−

−

B B1 2

B B1 2
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Recall from Chapter 6 that we know all about the t distribution so we are
able to find probability values in the tables. We must not forget that the t
distribution is influenced by the degrees of freedom of the samples, as
the larger the samples the closer the distribution approximates the normal
distribution. We must work out the degrees of freedom of our samples if
we are to compare our calculated t value to the correct t distribution.

We now have a statistic we can work out using the information from
our samples and we will be able to use it to make decisions concerning the
population distributions: just the thing for hypothesis testing using two
samples. Essentially, sB1−B2

 is (an estimate of ) how much we would expect
our means to differ by chance (when they come from the same distribution)
whereas B1 − B2 is the actual difference in means. (B1 − B2)/sB1−B2

 tells
us how much bigger our difference in means is relative to the difference
expected by chance alone. The larger this ratio the greater our confidence that
the mean difference is not due to chance but due to two different population
distributions. The tricky thing is working out sB1−B2

 but in subsequent sections
we will see how this is done.

The basic assumptions of the t test are the same whichever t test we are
undertaking. We require the sampling distribution to be normally distributed
so we usually assume that our samples come from normally distributed
populations. Fortunately, the t test is robust so that even if the distributions
are only vaguely normal: humped in the middle and tailing off to the sides,
then the t test is still likely to be valid. This is especially true for large
samples (greater than 30). Again, we must assume that the samples are
randomly chosen from their populations so that we can use sample statistics
(mean, standard deviation) as unbiased estimates of the population parameters.
Finally, we assume that the two samples come from populations with equal
variances (and equal standard deviations as one is simply the square root of
the other) to allow us to use the sample information to estimate population
standard deviations. Thus, we are assuming that any effect of the independent
variable is to shift the distribution of the dependent variable along the scale
(i.e. alter the population mean) but not change its shape (its variance, or
standard deviation).

The assumptions of the two sample t test
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As we saw in the previous chapter, related samples involve subjects providing
scores for both samples, whereas with independent samples each subject
contributes a score to only one sample. The way we calculate the two
sample t test depends on whether the two samples are related or independent:
there are different formulae that take account of the various differences this
entails. For example, if we have 10 subjects in our two samples, for related
samples we require only 10 different subjects as they are used twice, whereas
with independent samples we require 20 subjects, 10 for each sample. The
details of the different formulae are shown below.

We start with our formula for t:

  
t

s
=

−

−

B B1 2

B B1 2

We can work out B1 − B2 easily enough. The difficulty is to work out
sB1−B2

. Recall that the standard deviation of a distribution of sample means
is called a standard error of the mean. sB1−B2

 is still a standard error, as it
is still based on sample means, and so can be expressed as the standard
deviation of the difference between the scores divided by the square root of
the sample size:

  
s

s

n
X X

B B1 2

1 2

−
−=

We now need to work out the standard deviation of the difference in sample
scores, sX1−X2

. The difference in sample scores is easy to calculate with
related samples. For each subject we can calculate a difference score d
simply by subtracting the subject’s score in Sample 2 from their score in
Sample 1: d = X1 − X2. We can legitimately do this as the samples are
related. Consider the example of comparing the length of a night’s sleep. If
a person sleeps 8 hours on Monday and 7 hours on Tuesday the difference
for that person is 1 hour of sleep. The difference score for the participant is
8 − 7 = 1. We then find the standard deviation of the difference scores:

The related t test

Related or independent samples
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sX1−X2
= sd =

d
d

n
n

2
2

1

( )
−

−

∑∑

Here we have the usual standard deviation formula. With n subjects in each
sample there are n difference scores. We can now produce a formula for
sB1−B2

, the standard error, by dividing the above formula by n :

sB1−B2
=

d
d

n
n n

2
2

1

( )

(   )

−

−

∑∑

And now finally we have our formula for the two sample related t test:

  

t

d
d

n
n n

( )

(   )

=
−

−

−

∑∑

B B1 2

2
2

1

Note that, whilst the formula looks very different to the z formula, it
is still a score (B1 − B2) minus a population mean (0) divided by a
standard deviation, although in this case it’s rather a complex standard
deviation: the estimate of the standard error of the difference in sample
means.

A teacher believed that the children in her class were better at their work
in the morning than in the afternoon. She decided to test this out by using
a mathematics test as this required the children to concentrate. If there was
a post-lunch dip in performance the test should pick it up. She chose a
random sample of 8 children from the class and gave them two tests matched
on their difficulty. The samples were balanced on the two versions of the
test, and at what time they were tested first, to control for carry-over effects.
The tests gave a score out of 10, the higher the score the better the perform-
ance. The results were as follows:

A worked example
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Participant Morning Afternoon

1 6 5
2 4 2
3 3 4
4 5 4
5 7 3
6 6 4
7 5 5
8 6 3

This is a related two sample t test as all participants contributed a score to
both samples.

We must now find the values to fit into the formula:

  

t

d
d

n
n n

( )

(   )

=
−

−

−

∑∑

B B1 2

2
2

1

We can now relabel the columns, with Sample 1 for Morning and Sample 2
for Afternoon and find the means (B1 and B2), the difference scores (d ), the
sum of the difference scores (∑ d ), the square of the sum of the difference
scores ( (∑ d )2), the squared difference scores (d 2), and the sum of the squared
difference scores (∑ d 2). The number of participants in each sample is n.

Participant Sample 1 Sample 2 Difference Squared d
X1 X2 d d2

1 6 5 1 1
2 4 2 2 4
3 3 4 –1 1
4 5 4 1 1
5 7 3 4 16
6 6 4 2 4
7 5 5 0 0
8 6 3 3 9

n = 8 B1 = 5.25 B2 = 3.75 ∑ d = 12 ∑ d 2 = 36
(∑ d )2 = 144
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Inserting the figures into the t formula we get:

t
.   .

(   )

. .

.

.

.
  .=

−

−

−

=
−

= = =
5 25 3 75

36
144

8
8 8 1

1 50

36 18

56

1 50

0 321

1 50

0 567
2 65

The degrees of freedom (df ) for a related t test is always n − 1, so df = 7.
This is a one-tailed test as the prediction was that the children would

perform better in the morning, and the prediction is that the scores in
Sample 1 are larger than in Sample 2. As can be seen from the means
this is the case but we need to test the significance of the difference. At
the p = 0.05 level of significance, we find from the t distribution tables
(Table A.2 in the Appendix) that t = 1.895, df = 7 for a one-tailed test.

The calculated value of t of 2.65 being greater than the table value
of 1.895 allows us to reject the null hypothesis, at the p = 0.05 level of
significance, and conclude that the pupils did perform significantly better on
the mathematics test in the morning compared to the afternoon.

Sometimes we find that the calculated t has a minus sign. This simply
indicates that the mean of Sample 1 is smaller than the mean of Sample 2.
If we had found a minus sign in the above example we could have rejected
the one-tailed prediction straight away as it would have meant better scores
in the afternoon. If we had predicted that Sample 2 has the larger scores,
or made a two-tailed prediction, we simply ignore the minus sign when
comparing the calculated value with the table value.

We again start with our formula for t:
  

B B

B B1 2

1 2−

−s
. The difficulty with independ-

ent samples is working out sB1−B2
. How we do this is explained below. Now

this does include some rather horrible formulae, so, if you wish, do not
worry about following the derivation of the formula for the independent
t test, feel free to skip the mathematics. If you understand the logic that
we have to find a formula for sB1−B2

 and that this formula, though rather
cumbersome, is still an estimated standard error of the difference in sample
means then that’s fine.

We cannot produce difference scores as we did for the related t test.
(If the samples are unrelated we cannot work out a difference score. If one

The independent t test
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person sleeps 8 hours on Monday and another person sleeps 7 hours on
Tuesday it is meaningless to subtract one from the other as they are from
different participants.) Indeed we may have different numbers of subjects
in the two samples (n1 and n2). We are helped out in this case by a math-
ematical finding called the Variance Sum Law, which provides us with a
relationship between sB1−B2

 and the standard deviations of the two samples
(s1 and s2):

  
s

s

n

s

nB B1 2

1
2

1

2
2

2
− = +    

The importance of this is that we cannot work out sB1−B2
 but we can work out

s1 and s2. Thus, we are able to produce a formula for the independent t that
we can calculate.

Our problems are not over yet in developing the formula for t. We
know that a sample standard deviation is a better estimate of the population
parameter the larger the sample size and also that the t test assumes that the
samples come from populations with equal standard deviations. From this
we can infer that when we have samples of different sizes the larger one is
likely to provide a better estimate of the population standard deviation than
the smaller one. What we do is to weight the contribution of the two sample
standard deviations by their sample size (more accurately, their variances
by their degrees of freedom) and produce a population estimate based on
the weighted average of the sample standard deviations, sw:

s
n s n s

n n
w
2 1 1

2
2 2

2

1 2

1 1

1 1

(   )   (   )

(   )  (   )
=

− − −
− + −

Now, instead of using the sample standard deviations in the formula for
sB1−B2

 we replace them both with sw:

  
s

s

n

s

n
s

n n
w w

wB B1 2

2

1

2

2

2

1 2

1 1
− = + = +⎛

⎝⎜
⎞
⎠⎟

       

We now expand sw in the formula:

  
s

n s n s

n n n nB B1 2

1 1
2

2 2
2

1 2 1 2

1 1

1 1

1 1
− =

− − −
− + −

⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

(   )   (   )

(   )  (   )
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Finally, we replace s1 with 
X

X

n
n

1
2 1

2

1

1 1

( )
−

−

∑∑
 and s2 with

X
X

n
n

2
2 2

2

2

2 1

( )
−

−

∑∑
, the standard deviation formulae for two samples.

After a little tidying up, we obtain the formula for calculating sB1−B2
:

  

s
X

X

n
X

X

n

n n n nB B1 2

1
2 1

2

1
2
2 2

2

2

1 2 1 21 1

1 1
− =

− + −

− + −

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

+⎛
⎝⎜

⎞
⎠⎟

∑ ∑∑∑
( )

    
( )

(   )  (   )
   

At last we are able to produce the formula for the two sample independent t:

  

t

X
X

n
X

X

n
n n n n

( )
    

( )

(   )  (   )
   

=
−

− + −

− + −

⎛

⎝
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⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

+⎛
⎝⎜

⎞
⎠⎟

∑ ∑∑∑

B B1 2

1
2 1

2

1
2
2 2

2

2

1 2 1 21 1

1 1

This is unfortunately rather a large formula to calculate but I hope you can
see how and why it was required by the above logic. Also on many occasions
we can use computer programs to aid us in our calculations. As demonstrated
below, t can be calculated without too much difficulty with just a calculator.
But the point here is that, while the formula looks very different from the
z formula, it is still an estimate of z being a ‘score’ (B1 − B2) minus a mean
(µB1−B2

= 0) divided by a standard deviation (sB1−B2
).

It is important to recall that we are using the assumption that the two
samples come from populations with equal variances (and hence equal stand-
ard deviations). If this is not the case it is inappropriate to average our standard
deviations for estimation. Only if the larger sample variance is more than
three times the other would we usually decide not to perform the test.

As the samples are unrelated, the degrees of freedom of the independ-
ent t test is the sum of the degrees of freedom of each sample: (n1 − 1) +
(n2 − 1).
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A new sleeping pill was being tested on a number of volunteers. It was
predicted that it would have a differential effect on men and women. There
were six men and eight women who agreed to take part in the experiment.
Over a two week period they took either a placebo (a pill that had no effect)
or the sleeping pill. Participants were not aware of which pill they were
taking each night. The number of extra hours slept during the seven ‘pill
nights’ compared to the seven ‘placebo nights’ was calculated. The men
slept 4, 6, 5, 4, 5 and 6 extra hours and the women slept 3, 8, 7, 6, 7, 6, 7
and 6 extra hours. Is the prediction supported?

We must find the values to fit into the t formula:

  

t

X
X

n
X

X

n
n n n n

( )
    

( )

(   )  (   )
   

=
−

− + −

− + −

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

+⎛
⎝⎜

⎞
⎠⎟

∑ ∑∑∑

B B1 2

1
2 1

2

1
2
2 2

2

2

1 2 1 21 1

1 1

I shall label the men as Sample 1 and the women as Sample 2.

Sample 1 Sample 2

X1 X1
2 X2 X2

2

4 16 3 9
6 36 8 64
5 25 7 49
4 16 6 36
5 25 7 49
6 36 6 36

7 49
6 36

n1 = 6 n2 = 8

∑ X1 = 30 ∑ X1
2 = 154 ∑ X2 = 50 ∑ X2

2 = 328
B1 = 5.0 B2 = 6.25
(∑ X1)

2 = 900 (∑ X2)
2 = 2500

A worked example
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Inserting the figures into the t formula we get:

t
.   .
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      .
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154 150 328 312 5

5 7

1

6

1

8

t
.

.   .

.

.

.

.
  .=

−
×

=
−

=
−

= −
1 25

1 625 0 292

1 25

0 474

1 25

0 688
1 82

The degrees of freedom, df = (n1 − 1) + (n2 − 1) = (6 – 1) + (8 – 1) = 12.
The minus sign simply indicates that Sample 2 (women) has the larger

scores. As we are testing a two-tailed test we simply treat it as +1.82. From
the tables of the t distribution t = 2.179, df = 12, p = 0.05 (from Table A.2
in the Appendix). As our calculated t value of 1.82 is not greater than the
table value of 2.18 we cannot reject the null hypothesis: we have not found
a significant difference in the extra sleep between men and women at the
5 per cent level of significance.

It is an interesting result however. Notice that the difference in means
is 1.25 in favour of the women. The difference in means we would expect
by chance is 0.688 (the bottom part of the t calculation). Even though this is
not significant at p = 0.05 the actual probability is 0.0945, which is still
quite small. There might actually be a genuine effect here ‘bubbling under’
but not quite strong enough to pick up in these data. If we had more
participants or had made a one-tailed prediction we might have achieved
significance. The reasons why this might be are explained in the next chapter.

We can work out confidence intervals for the differences in the mean values
when we are comparing two samples. Recall from Chapter 6 that:

CI = Difference in means ± (critical t value × standard error of
the difference in means)

Confidence intervals
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For the example of the related t test given in this chapter, we calculate the
95 per cent confidence interval as follows:

95%CI = (5.25 − 3.75) ± (2.365 × 0.567)

95%CI = 1.50 ± 1.341

95%CI = (0.159, 2.841)

The critical t value (2.365) is found in the tables for p = 0.05 for a
two-tailed test with df = 7. The standard error calculation (0.567) is the
denominator in the formula for the calculated t value. Notice that the interval
does not include the zero so we can confidently conclude that the difference
between the sample means is not zero but a positive value.

For the example of the independent t test the 95 per cent confidence
interval is calculcated thus:

95%CI = (5 −  6.25) ± (2.179 × 0.688)

95%CI = −1.25 ± 1.499

95%CI = (−2.749, 0.249)

The critical value of t of 2.179 is found from the tables at p = 0.05 for a
two-tailed test, df = 12. Again, the standard error value (0.688) is taken
from the t calculation. Notice that in this example the confidence interval
includes the zero value. In this case we are not confident that the ‘true’
difference in the means is different from zero. Just as the t value did not
reach significance so the confidence interval, whilst mostly below zero, still
contains zero within it. Both analyses are telling us that we do not have
enough evidence from these data to claim a difference in the sample means.

Details on how to undertake the two sample t test using the SPSS
computer statistical package can be found in Chapter 7 of Hinton et al.
(2004).
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Hypothesis testing is like digging for treasure on a treasure island. The
significance level sets the probability that we have actually found treasure
rather than made a mistake. We are very conservative here (that is why we
only accept a 5 in 100 chance of making a mistake). We do not wander
about picking up any old piece of rusting metal we chance upon and claim
that we have found treasure. Our fellow treasure hunters would soon get fed
up with us. We want to be sure that when we claim to have found treasure
then we are correct. In hypothesis testing we do not want to make a Type I
error: that is, claim that we have found a significant difference between the
population distributions when there is not one. We do not want to claim that
we have found treasure when we have not. That is why we set the signifi-
cance level at a small probability level.

In the one-tailed prediction illustrated in Figure 9.1 we are saying that
if the ‘score’ falls beyond the significance level then it belongs to a different
distribution to the known distribution, the unknown distribution. You can
see in this example, where the unknown distribution really is different to the
known distribution, that a score beyond the significance level is more likely
to come from the unknown distribution than the known distribution as more

FIGURE 9.1 The risk of a Type I and Type II error

Known distribution Unknown distribution

b a

Significance level

Type I and Type II errors
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of it is beyond the significance level. However, there is still a small risk that
such a score comes from the known distribution. The area labelled α is the
size of this risk, the risk of a Type I error, which is the amount of the known
distribution the ‘wrong’ side of the significance level. We specify the size
of this risk by setting the significance level. By setting a significance level
at p = 0.05 we are saying that only 5 per cent of the known distribution lies
beyond it.

If the score falls below the significance level we accept the null
hypothesis that the score comes from the known distribution. Looking again
at Figure 9.1 we can see that 95 per cent of the known distribution lies
below the significance level. Also there is more of the known distribution
below the significance level than the unknown distribution, so the chances
are that if a score lies this side of the significance level it comes from the
known distribution and we are correct in accepting the null hypothesis.

We must be clear in understanding what ‘accepting the null hypothesis’
entails. All acceptance means is that we have not found a significant differ-
ence in our experiment. In fact some authors (Cohen, 1988, p. 16., see also
Wilkinson and the Task Force on Statistical Inference, 1999) have argued
that it is wrong to say that we accept the null hypothesis, rather we should
always say ‘we have failed to reject the null hypothesis’ as this is a more
accurate account of the situation – we have not found enough evidence to
allow us to reject the null hypothesis. We have certainly not demonstrated
that the null hypothesis is true. We can claim that we do not have the
evidence to say it is not true, and there is a subtle difference between the
statements. Again, if we dig for treasure on a desert island and do not find
it, it does not mean that it is not there somewhere. When we ‘accept the null
hypothesis’ we are only saying that we have not found a big enough differ-
ence for us to reject the possibility that the difference arose by chance. The
probability of the difference arising by chance is too large for us to claim a
genuine difference in the distributions. If we do not find treasure there are
two possible reasons: one, there is no treasure there or, two, there is treasure
but we have not found it. Similarly, if we do not find a significant difference
when testing an hypothesis it could be that there really is no difference in
the distributions or that there is a difference and we have missed it. In the
former case all is well, we have not found a difference when there was not
one to find. In the latter case we have committed a Type II error. We have
not found a difference in the distributions by our test when there was a
genuine difference to be found.

If a score falls below the significance level then we accept the null
hypothesis that the score comes from the known distribution. However,
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there is a risk that the score comes from the unknown distribution (as part
of the unknown distribution lies below the significance level). The risk of
making a Type II error is the amount of the unknown distribution below the
significance level. This is the area labelled β in Figure 9.1. Note that the
risk of a Type II error, β, may well be larger than α. Researchers do not
want to make claims that turn out to be false so are happier to make Type II
errors than Type I errors. We would prefer to miss out on the treasure
occasionally rather than make a false claim. Most scientists publish their
significant results and these results are scrutinised by others so it is deemed
better to err on the side of caution rather than make a potentially embarrass-
ing claim. It is tempting to think that all we need do to avoid a mistake is to
set a very small value for α, say, 0.01 or 0.001. However, this would be an
error as statistical testing is not just about keeping the risk of a Type I error
low but also about the balance between the risk of Type I and Type II
errors. As we shall see below (in the discussion of power) ignoring the risk
of a Type II error could mean that our study, involving all the time and
effort to carry it out, is simply not powerful enough to find the effects we
are looking for – so we are wasting our time and effort.

Essentially we want a significance level that separates the known dis-
tribution from the unknown distribution. If we could find a position along
the scale where all the known distribution fell to one side of the significance
level and all the unknown distribution fell to the other side, then we would
not make a Type I or Type II error as the significance level would separate
the distributions perfectly. But, because of the overlap of the two distributions,
some of the known distribution (α) falls the ‘wrong’ side of the significance
level as does some of the unknown distribution (β ). If a score falls below
the significance level we ‘accept the null hypothesis’ as most of the known
distribution (1 − α) lies below it, with only β of the unknown distribution.
If a score falls beyond the significance level we reject the null hypothesis
as only α of the known distribution lies beyond it along with 1 − β of the
unknown distribution. Although we risk these two types of error, we want
the probability to favour the correct judgement.

For a moment let us assume that there really is treasure hidden on the desert
island. With a good map and proper digging equipment there is an excellent
chance of finding it. This is the analogy for a well-designed study, properly
carried out. Yet without a map and only a child’s bucket and spade the

Statistical power
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chances of finding the treasure are slim. Similarly with the statistical analyses
of our data. Some are very likely to find a difference in the two distributions
whereas others may be unlikely to find it even though it is really there. The
tests differ in their power. The power of a statistical test refers to its ability
to find a difference in distributions when there really is one. In this case the
unknown distribution is genuinely different to that of the known distribution.
What are our chances of finding it? A score that actually comes from the
unknown distribution will only be claimed to have come from the unknown
distribution when that score is beyond the significance level. So we will
correctly assign scores that belong to the part of the unknown distribution
beyond the significance level. This is the whole of the unknown distribution
excluding β. We call this area the power of the test.

The power of a test = 1 − β

The power tells us the probability of finding the unknown distribution when
it is really there. The more of the unknown distribution that lies beyond the
significance level, the smaller β becomes and the larger 1 − β. A more powerful
statistical test is more likely to find a significant result than a less powerful
test. Employing the treasure hunting analogy, a more powerful test is more
likely to find the treasure when it is really there: it is the mechanical digger
compared to the child’s bucket and spade.

There is a problem that sometimes gets overlooked in statistical analysis.
We do not want to use a test that is low in power as it is not likely to find
a genuine difference in distributions. We may have constructed an excellent
experiment only to fail to find a significant result due to the low power
of our statistical test. Interestingly, ‘power’ became an increasingly important
topic in statistical analysis in the latter part of the twentieth century, primarily
due to the work of Jacob Cohen (e.g. Cohen, 1988), who has argued that
much research has been carried out without a consideration of power in the
design stage to the detriment of the research process. As a result of Cohen’s
work more researchers consider ‘power’ in the early stages of their research
planning.

When undertaking research we want to have a good chance of finding an
effect if there really is one to be found. In treasure hunting terms it would
be helpful to know we are starting out with a mechanical excavator. Yet

The power of a test
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there are many occasions when researchers set out with the statistical
equivalent of buckets and spades. Clearly we want a powerful test but how
can we achieve it?

The first thing to decide is what is the level of power we want?
Crudely, just as we want α to be very small we also want 1 − β to be very
large – the more powerful the test the better. But just like our consideration
of α, we need to get the balance right. We want high power but not to the
detriment of all other considerations. Cohen (1988) suggests that a power of
0.80 is a suitable value for a test of high power. As a result a power of 0.80
has become something of the conventional value for 1 − β, just as 0.05 is
the conventional value for α.

The problem is how do we design a study with the required power
as many studies published in the journals have been shown to have much
lower power than 0.80? The answer is that power is related to three factors
that we can control: the size of α, the size of the effect we are looking for
and, third, the size of the samples we select.

The simplest way to increase the power of a test is to increase the size of α.
We usually set the significance level at p = 0.05, that is α = 0.05, but if we
increase the level to say p = 0.10 or p = 0.20 then it has the effect of shifting
more of the unknown distribution beyond the significance level. As α gets
bigger β gets smaller and hence 1 − β gets bigger. However, while this
reduces the risk of a Type II error it increases the chances of a Type I error.
A significance level of p = 0.10 means that we will claim an effect erron-
eously ten times in a hundred rather than five in a hundred. And we don’t
want to do this for the reasons stated earlier: researchers would prefer to
miss an effect than falsely claim one that could affect their reputation. Type
I and Type II errors are inextricably linked, a reduction in one increases the
other. Yet we can consider whether we really want to set a significance
value as low as 0.01 or even 0.001. As Cohen (1988) points out, if we end
up with such low power that the ratio of β to α is in the hundreds, then this
implies we are stating that a Type II error is hundreds of times worse than
a Type I error. If we don’t really believe this, we may be happy to set our α
value to a higher value (e.g. 0.05) and have a more powerful test.

However, there is a way of reducing β without increasing α: be more
specific in our prediction. A one-tailed test is more powerful than a two-
tailed test. In the latter case we have to consider both tails of the distribution

The choice of a level
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and we hedge our bets as to the position of the unknown distribution. For an
overall significance level of 0.05 we must set the cut-off point at each tail at
p = 0.025. It is like performing two one-tailed tests at the same time, one on
each tail. If the unknown distribution really is higher than the known dis-
tribution we will only find it if it is beyond the p = 0.025 significance level.
With a one-tailed test, we can focus on only one tail and at that tail α is
twice the size (0.05) than for a two-tailed test. Shifting from a two-tailed to
a one-tailed test increases 1 − β. (We should note that this does make our
one-tailed prediction more powerful but we now have no power in detecting
the effect if the result goes the ‘wrong way’.)

A crucial factor affecting ‘power’ is the size of the effect we are looking
for. If we look at Figure 9.1 we can see that the amount of overlap between
the two distributions is the cause of our difficulty in setting a significance
level with a low α and a high β. When there is a lot of overlap the risk of
a Type II error, missing a genuine difference, increases. If the overlap
between the distributions can be reduced, then β is reduced and we also
reduce the chance of a Type II error and increase power. If there was no
overlap between the distributions we would have no difficulty setting our
significance level as we could position it between the two distributions.
Sadly we will always have overlapping distributions but we can look at
specifying how much overlap we have and designing studies to maximise
their power.

The amount of overlap between two distributions depends on two factors:
the difference between the population means and the size of the standard
deviations. If the means are far apart then the overlap is less than when they
are close together. Also if the standard deviations are small then the overlap
is less than when they are large. (Recall that we always assume that the two
distributions have the same standard deviation.) We can sum up the overlap
by defining the effect size d (from Cohen, 1988). This is a standardised
measure of the difference between the means in terms of standard deviation
units. Using the label µ1 as the mean of the known distribution and µ2 as the
mean of the unknown distribution, and σ as their standard deviation, we can

Overlapping population distributions

Effect size
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express the effect size, when predicting the one-tailed hypothesis that the
unknown distribution will have the larger mean, as follows:

Effect size, d =
−µ µ
σ

2 1

For example, with µ1 = 100, µ2 = 110, and σ = 15, then the effect size
d = 0.67. Just like the z score d is a standardised measure and does not
depend on the measuring units we are using.

We need to know the size of the effect we are investigating in order to
work out the power of our test at the design stage (a priori). You might
think: how do I know the size of the effect before I have done the study?
One source of information is past studies. If we were examining the speed
of recognising different types of words we can look at the literature on the
topic to see what other people have found in related studies. We can use
these studies to get an estimate of the size of the effect we are looking for.
If there is little background literature – you are studying a new area – then
a pilot study might be worth carrying out to ‘get a feel’ for the type of
results you might get.

Cohen (1988) makes the distinction between ‘small’ (d = 0.2),
‘medium’ (d = 0.5) and ‘large’ effects (d = 0.8) as helpful guide to evaluating
the size of a predicted difference. He suggests that, rather than trying to
work out a specific effect size by estimating means and standard deviations
we can consider whether we expect a small, medium or large effect. He
argues that, for new areas of research, effects are often small, partly because
we may not have developed sophisticated measuring devices or experimental
control leading to relatively large standard deviations. So, if we believe that
the effect we are looking for is small then we can reasonably assume an
effect size of 0.2. Cohen suggests that medium effects are ‘visible to the
naked eye’ (Cohen, 1988, p. 26), meaning that we are aware of a difference
such as that between experienced machine operators and novices as it is
pretty clear to see but we want to examine it in detail. In cases like this we
can assume a medium effect size of 0.5. Finally, there are the large effects
which are blatantly obvious, or ‘grossly perceptible’ as Cohen (1988, p. 27)
puts it, and uses as his example the height difference between 13 and 18 year
old girls. If we believe that the effect we are looking for is large Cohen
recommends that we select an effect size of 0.8.

In our example we do not have to estimate the effect size as I have
stated the population means and standard deviations which we would not
normally have. It is interesting to note that in Cohen’s terms we are predicting
a medium-to-large effect as d lies between 0.5 and 0.8.
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You might be tempted to argue that you cannot change the effect size at
all – surely a small effect is a small effect. However, if we consider for
a moment what we actually mean by effect size then we can see how to
influence it. A large effect size indicates only a small overlap between
distributions whereas a small effect size indicates a large overlap of the
distributions. What we need to do, therefore, to increase the power of a test,
and increase the effect size, is to increase the difference between the means
of the distributions or reduce their standard deviations.

The one major way to decrease the overlap between distributions is to
design your studies well. It is very important to consider what a good design
entails – essentially it is one that minimises error or random variability in
the study and maximises the accuracy of measurement of the variables
under study.

The more you reduce random variability in the study (by proper con-
trols in the design and procedure) the greater will be the size of the effect.
Imagine we are examining face recognition. We might study it in a natural
setting such as an airport. However, we might choose to use computer
displays with accurate timing and keypad responses in a quiet laboratory
with no distractions in order to reduce the random variability in the study.

The effect of the sensitivity of the measuring device can crucially
affect the power of a test. If we are investigating happiness then we might
decide to use a more complex questionnaire than simply asking people if
they are happy or not. Similarly, if we are testing a subtle effect such as
speed of reading different passages of text then we may wish to use a more
accurate time than a stopwatch. The reason for this is that the error in
starting and stopping the stopwatch might be a second or two which could
swamp an effect of only a few hundred milliseconds. If we can increase the
accuracy of the measured times then we are more likely to find the effect (if
there is one.)

When we are studying samples to represent populations we use sampling
distributions to represent our known and unknown distributions. The stand-
ard deviation of a sampling distribution, the standard error of the mean,
decreases as the sample size increases. This is because the standard error is
based on both the population standard deviation and the sample size:

Sample size

Influencing effect size
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σ σ

B =
n

With a small sample size, such as 10, the standard error is:

  
σ σ σ σB    

.
  .= = =

10 3 16
0 32

The standard error here is just under one third of the population standard
deviation. With a larger sample of, say, 50, the standard error becomes:

  
σ σ σ σB    

.
  .= = =

50 7 07
0 14

This is just under a seventh of the population standard deviation. By increas-
ing the sample size from 10 to 50 we have reduced the standard error by
over a half (from a third to a seventh of the population figure). Increasing
the sample size has reduced the spread of the distribution.

An increase in sample size has the effect of reducing the overlap
between the distributions by reducing their standard deviations. As a result
of this, more of a genuinely different unknown distribution ends up beyond
the significance level (and there is an increase in power). Compare the
distributions in Figure 9.2 with those of Figure 9.1. This shows the effect of

FIGURE 9.2 The effect of increasing the sample size on the overlap of
the distributions

Known distribution Unknown distribution

Significance level
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reducing the standard error by half as a result of an increase in sample size.
The overlap is considerably reduced.

We can illustrate the effect of sample size on statistical power by
the following example. Assume that the known population is a normal dis-
tribution with a mean of 100 and a standard deviation of 15. We will also
assume that the unknown population is genuinely different with a mean of
110. In this case the population is not unknown any more so we would not
need to perform any statistics as we know all we need to know – but this is
for illustration only!

First we shall examine the situtation when a sample of 10 is used.
The sampling distributions of the two populations will have means of
100 and 110 but their standard deviations will be the standard error:

 
σ σ

B      .= = =
n

15

10
4 74 . The p = 0.05 significance level cuts off the last

5 per cent of the known distribution. As the distribution is normally distrib-
uted we can use the z tables (Table A.1 in the Appendix) to find which z cuts
off 0.05 of the distribution. This gives a value of z = 1.65. Remember than
z is expressed in standard deviation units, so the significance level is 1.65
standard deviations above the mean of 100. The standard deviation, the
standard error, of the known distribution is 4.74, so the significance level is
therefore 1.65 × 4.74 = 7.82 above the mean of the known distribution, so is
located at 107.82 on the scale.

We now perform a similar process in reverse on the unknown distribu-
tion to work out β and then 1 − β. The significance level at 107.82 positions
it 2.18 below the mean of the unknown distribution (110) on the scale. We
convert this to standard deviation units to find z. As we assume the standard
deviations of the two distributions are the same, the standard error of the

unknown distribution is also 4.74, and the significance level is
2 18

4 74

.

.
= 0.46

standard deviations below the mean. When we look up this figure in the
z tables we find that p = 0.32. There is 0.32 of the unknown distribu-
tion below the significance level, so β = 0.32 and the power of the test is
1 − β = 0.68. There is 68 per cent of the unknown distribution above the
significance level. So using a sample size of 10 gives a power of 0.68.

We can do the same calculations for a sample size of 50. In this

case the standard error is 
  
σ σ

B      .= = =
n

15

50
2 12. The significance level is

1.65 × 2.12 = 3.50 above the mean of the known distribution, at 103.50.
This is 6.50 below the mean of the unknown distribution, which gives a
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z of 
6 50

2 12
3 07

.

.
  .= . From the standard normal tables this gives p = 0.0011, so

β = 0.0011 and the power of the test (1 − β) is 0.9989. With a sample size
of 50 we now have 99.89 per cent of the unknown distribution above the
significance level. So changing the sample size from 10 to 50 has increased
the power from 0.68 to 0.9989.

An important decision for a researcher is deciding the appropriate number
of participants for a study. This is where the work of Cohen (1988) is
particularly helpful. As noted above, power is related to significance level,
effect size and sample size. We can turn this relationship around and see
that sample size is a function of significance level, power and effect size.

A researcher was investigating different visual displays for monitoring
equipment for hospitals. Two different types of display were to be com-
pared in the laboratory to see which one led to the fewest errors in reading
the display. The researcher wanted to know how many participants to use.
The researcher decided on a 0.05 level of significance for a two-tailed test.
The level of power required was chosen as 0.8 and it was assumed that the
effect size would be medium so 0.5 was specified as the effect size. A t test
was to be carried out on the error data.

Can we carry out a calculation like the one in the above section to
find the answer to our question? The answer is both yes and no. Yes, we
can carry out a calculation to find the number of participants and no, it
is not the same as the above section as that was worked out using popula-
tion data which we do not have here. When we are comparing two samples
we use the t distribution as the appropriate distribution for our analysis.
However, there is a complication as the t distribution we usually employ
for a t test calculation is based on samples drawn from the same dis-
tribution, i.e. when the samples come from the same population. This is
the t distribution assuming no effect. Yet in our power analysis we are
proposing an effect. So we have to use a special t distribution for our
power analysis called a noncentral t distribution. In order to do this we
need to calculate the noncentrality parameter δ which is quite easy as it

is a function of d (the effect size) and the sample sizes (δ = d ×
n n

n n
1 2

1 2

×
+

,

Choosing a sample size for a statistical test
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where n1 and n2 are the sizes of the samples. With the noncentrality
parameter (δ ), the significance level (α) and the degrees of freedom (df )
the power values can be calculated and, by a little reorganisation of the
calculations, the sample size can be produced for a specific level of
power.

Unfortunately, power analysis is not something to do by hand as we
need to use distribution tables for the noncentral distribution. Cohen (1988)
provided sets of useful tables that can be used to find the appropriate values.
However, there are a number of easy-to-use software packages that can
work out the power calculation and required sample sizes. A number of
these are available free (for noncomercial use) e.g. GPOWER6 which is
very easy to use. The required values for the significance level, the effect
size and the power are input and the output gives the required sample sizes.
Using such a software package we can find that for an unrelated two-
tailed test, using the 0.05 level of significance, examining a medium effect
(d = 0.5) and seeking a power of 0.8 we need 128 participants in total or 64
in each sample.

Quite often we will find that in order to achieve the power required
the sample sizes will be very large. If we had been examining a small effect
(d = 0.2) in the above example we would have needed 788 participants in
total or 394 in each sample. If we decide that it is not feasible to use groups
of this size we can undertake a compromise power analysis. Rather than
seek a sample size for a specific power (e.g. 0.8) we decide on the balance
of risk we are willing to accept between a Type I and a Type II error: the
ratio of β to α: where q = β /α. If we decide that q = 3 is the balance of risk
we can work with and we can afford to test 100 participants in each group
then we can work out the power for this compromise. In this case the power
is 0.5, so would be a test of medium power. We might be content with this
compromise solution.

Finally, I have focused on the power calculations for a two sample
t test. However, we can work out both an effect size and a noncentral
distribution for a range of other statistics included in this book. So we
can work out the power (or the sample size for a specific power) for the
different tests we shall be considering. Fortunately, the software packages
allow us to examine the power of different tests by including a menu
where we simply select the statistical test we wish to perform. In the
table below the ‘conventional’ effect size values for small, medium and
large effects (from Cohen, 1988) are shown for a number of key statistical
tests.
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Test Effect Small Medium Large
size effect effect effect

t test d 0.2 0.5 0.8

Correlation r 0.1 0.3 0.5

ANOVA f 0.1 0.25 0.4

Multiple
correlation
and regression f2 0.02 0.15 0.35

Chi-square w 0.1 0.3 0.5

Hypothesis testing involves making a decision concerning whether two dis-
tributions are the same or different. To make this decision we use a decision
criterion, the significance level. Due to the overlap of the distributions the
significance level cannot separate them completely when they are genuinely
different to each other. As a result we end up with α of the known distribu-
tion and β of the unknown distribution the ‘wrong’ side of it. To limit the
risk of Type I errors we set our significance level so that α = 0.05, giving
us a 5 in 100 chance, or smaller, of falsely rejecting the null hypothesis.
We don’t want to make Type I errors (and sometimes we are even more
conservative, setting the significance level at p = 0.01, reducing the risk to
0.01).

This leaves β, the risk of making a Type II error. We do not have the
same control over β as we do with α, as the distribution is unknown. Yet we
do not want to use a test that is low in power, 1 − β, as it reduces our chances
of finding a real effect when it is there. Unfortunately, researchers do too
often use tests of low power. To increase the power of our test we can do
three things: design better studies, choose one-tailed tests, look for big effects,
and increase the number of subjects.

When trying to decide whether the power of a test is adequate there
are a couple of useful points to consider. Select the largest sample size you
can sensibly test. If you have limited resources, time or access to subjects
these restrictions may have priority. Then check the power of your test. If
the power of your test is too low then you may be wasting your time
continuing. However, consider the balance of risk of Type I and Type II

Conclusion
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errors. You may wish to continue with the research as you have a reason-
able compromise of α and β. If you find a significant effect then you do not
need any more subjects. If the test yields no significant differences yet is
unexpected, or approaches significance, then repeat the test when you can
test more subjects. It is worth increasing sample size to increase both the
power of the test and your confidence in the findings. The new subjects may
confirm the previous results or produce a significant difference. One of the
major ways of deciding whether a finding is worthwhile or not is to replicate
(repeat) it. If a difference continues to be significant then other researchers
are more likely to accept its validity.

To recap for a moment: all we are doing is trying to decide if a ‘score’
comes from one distribution or another. The overlap in distributions, when
the distributions are different, makes it difficult to avoid the risk of error
in setting our decision criterion, the significance level. We set the risk of
a Type I error (α) by choosing the significance level. Yet we should not
ignore β, the risk of a Type II error, as it is no fun trying to dig up treasure
with a plastic bucket and spade. Increasing the power of a test reduces β
and gives us a better chance of finding treasure when it really is there.
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TH E t  T E S T  I S  L I M I T E D  in two ways. First, it allows a comparison
of only two samples at a time, such as old men versus young men on a

particular task. In many cases we want to compare a number of samples, not
just two, such as young men, middle-aged men and old men on the same
task, and the t test cannot do this. Second, the t test examines the effect of
only one independent variable, such as age or teaching method, at a time
whereas we may want to compare them in combination. The analysis of
variance is similar to the t test but is without these restrictions. It is for this
reason that the analysis of variance (or ANOVA as it is known) is a very
popular statistical technique in a range of research fields.

In the following chapters I shall be referring to independent variables as
factors as that is the term used in the analysis of variance, so age, hair
colour and type of school attended are all examples of factors. The conditions
are the categories of the independent variable we choose to study. These are
also referred to by other terms such as groups, levels or treatments, but
I shall use conditions throughout. If we were investigating the independ-
ent variable of age we might select the conditions: 20 year olds, 40 year olds
and 60 year olds. These age groups are the three conditions of the factor
under study. We could, of course, choose different conditions for the variable
age if we wish.

Consider the situation where you want to compare more than two conditions.
Rather than comparing children in a small school with children in a large
school, you might want to compare a range of schools of different sizes
(that we could label A, B, C, etc.). Similarly, you might want to compare
three different teaching methods (A, B and C) on a group of children. The
problem is to find a way to analyse the findings statistically. One solution

The problem of many conditions and the t test

Factors and conditions
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would be to perform a number of t tests, comparing each different pair of
conditions: A and B, B and C, C and A, when there are three conditions.
But we do not do this for the following reasons.

We have to perform three tests instead of one. If we had four condi-
tions we would have to undertake six different tests and if there were ten
conditions the number of tests would be forty-five! We really need one single
test that allows us to deal with more than two conditions simultaneously,
in fact a test that we do once and not have to do forty-five times.

The second and more important reason why we do not do lots of t tests
is that the more t tests we perform on the data the more likely we are to
make a Type I error (accept a result as significant when it occurred by
chance). With one test, with α = 0.05, we have a probability of 0.05 of
making a Type I error. This means we have a probability of 1 − α or 0.95 of
not making a Type 1 error. If we perform two tests, each at the 0.05 level
of significance, the probability of not making a Type I error becomes 0.95 ×
0.95 = 0.90. The probability of making a Type I error in the tests is 1 − 0.90
= 0.10. Already the probability of making at least one Type I error has
doubled. With ten tests the probability of at least one Type I error rises to
0.40, or a 40 per cent chance.

If we want the overall significance level of a number of tests to be
0.05, then we have to set the significance level of each of the individual
tests at a much more conservative level. If, for example, we undertake five
tests then the significance level for each individual test has to be set at
p = 0.01 for the overall risk of a Type I error to be 0.05 (as 1 − 0.99 × 0.99
× 0.99 × 0.99 × 0.99 = 0.05).

The alternative is to devise a single test which has the same effect
as the multiple comparisons but with an overall significance level set at
p = 0.05. It is this alternative test that we consider now.

If we look at a set of data we find that not all the scores are identical. Why
is there this variability in the data? The answer to this question holds the
key to the analysis of variance as a means of hypothesis testing. Let us take
an example to demonstrate this. We want to know the effect of the frequency
of a word in the language on anagram solution times. We select a number of
conditions, such as Common Words, Less Frequent Words, and Rare Words.
We might use a computer-based store of words in the language (accessible

Why do scores vary in an experiment?
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over the Internet, which gives the frequency of a word in a vast body of
text) to select words appropriate to our conditions. In choosing words we
make sure they differ in frequency but not in word length or other possible
confounding factors. We then record the time it takes participants to solve a
set of anagrams in each of the three conditions.

The null hypothesis predicts that the scores in all three conditions
come from the same distribution. If there are differences between the mean
solution times for the three conditions can we reject the null hypothesis
and claim a genuine difference between the distributions of solution times
according to word frequency? Unfortunately not, because even when the
null hypothesis is true we will still find that we do not get equal means in
the various conditions. What we need to find out is what causes the variation
in the scores and how we can detect when the variation has arisen because
of the manipulation of the factor, word frequency, and not for other reasons,
such as the chance variation we would expect even when the null hypothesis
is true.

It is unlikely that the participants in the same condition will produce exactly
the same time for solving the anagrams. These are scores from a distribution
and some participants will be fast and others slow rather than every one
producing the population mean. The result is a sample of scores from a
population and even if we select our sample randomly from the population
there will be unsystematic or random errors that can lead to differences in
the scores, and differences between the sample mean and the population
mean. Even when the null hypothesis is true we would still expect the scores
in the conditions to vary by random error and the means of the conditions to
vary for the same reason.

When the scores come from different subjects one major category of
random error is that of individual differences: participants will differ on
their anagram solving ability, crossword puzzle experience and so forth. We
can see from this why we need to select randomly from the population. If
we select in a biased way, such as choosing only good crossword puzzlers,
then their times would be systematically distorted from the population mean
making them a poor estimate of it and we would not be able to generalise
from our result to the wider population.

As well as individual differences, there will be a collection of other
random errors, due to the difficulty of setting up equivalent conditions for

Random variation in an experiment
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the participants. Someone might drop a pencil on the floor, another might
remember a word from the crossword in that morning’s newspaper and a
third might be distracted by a noise. These could influence the anagram
solution times. Thus we would expect scores to differ in an experiment due
to a range of random errors regardless of whether the null hypothesis is
true or not.

If the null hypothesis is true and there are no differences in the populations
of solution times for the different conditions of word frequency then any
differences we find between condition means should be due to random error
only. However, when the null hypothesis is false, the scores between con-
ditions might be drawn from different populations (unlike the scores within
a condition) and when this is the case we should find systematic differences
between the conditions. We have deliberately chosen the anagrams so that
they differ on word frequency between the conditions. If Common Word
anagrams really are easier to solve than Less Frequent Word anagrams then
we would expect this difference in population means to be reflected in our
scores. If word frequency does affect solution times then we should expect
systematic differences in the scores between conditions (known as a treatment
effect). This is what we are looking for, evidence that there are genuine
differences in the population means of the anagram solution times between
the conditions.

Scores in an experiment will vary due to random errors and systematic
differences. If we have selected our subjects appropriately we would expect
random errors to occur anywhere in the data rather than focused in any one
condition. However, if there is a genuine effect of the independent variable
and it does affect the scores then we would expect systematic differences
between the scores in the different conditions. The random errors will pro-
vide a certain level of variability in the data both within and between the
conditions, a sort of ‘background noise’ in the results. If the null hypothesis
is false and there really are differences between the conditions we would
expect this to appear as a systematic difference in the scores from the
different conditions, over and above the ‘background noise’.

Random errors and systematic differences

Systematic variation in the scores
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Look at the three examples of results to this experiment in the table
below.

(a) (b) (c)

CW LFW RW CW LFW RW CW LFW RW

17 16 19 18 18 40 20 30 40
16 18 25 21 18 44 19 30 41
22 21 19 16 20 38 21 31 39
16 18 25 21 18 42 20 29 41
23 24 18 18 23 37 21 29 40
20 23 20 20 23 39 19 31 39

Mean 19 20 21 19 20 40 20 30 40

(The initials CW, LFW and RW in the table stand for Common Words,
Less Frequent Words and Rare Words respectively. The scores are in
minutes.)

What can we say about the causes of the variability of the scores in
(a), (b) and (c)? The key thing is to decide whether there are systematic
differences in the scores between the conditions. In example (a) there are
differences between the condition means but only of 1. This is actually
quite small compared to the ‘background noise’ of the random variability:
there are both high and low scores in all three conditions. A set of results
like this could quite easily occur when the null hypothesis is true and there
are no genuine differences between the populations from which the samples
are drawn. Example (b) looks more indicative of an underlying difference,
but only between the Rare Words and the other conditions. All the high
scores are in the Rare Word condition and a mean of 40 differs by at least
10 from the other condition means and looks larger than the variability in
the data that could arise from random variability alone. In this example,
there appears to be a difference in the underlying population distribution for
Rare Words compared to the other two but not between Common Words
and Less Frequent Words. Finally, in example (c) we have large differences
between all three means that seem to dominate any random variability,
indicating that the three conditions have drawn samples from different
distributions.
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What we need to do now is to produce a statistic that formally analyses
the variability of the scores in an experiment, in an equivalent manner to
my informal ‘eyeballing’ of the above examples and allows us to decide
when the variability of the scores between conditions indicates genuine
differences between populations (such as in examples (b) and (c) ) and when
it indicates only the random variation that we would expect by chance,
when the null hypothesis is true (example (a) ).

We need to express the variability of the scores statistically. Up to now
we have used the standard deviation to do this for a sample of scores:

 

(   )X

n

−
−

∑ B 2

1
. Now we are interested in comparing different sources of

variability, to find whether there are systematic differences between con-
ditions as well as random variability in the data, rather than seeking a
standard difference from the mean. For this reason, and because we don’t
want to have to keep working out square roots, it is much easier for us to
use variance, the square of the standard deviation:
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At the heart of the variance calculation is the sums of squares: ∑(X − B2).
This measures the variability of the scores from the mean of the sample.
When the scores vary wildly from the mean the sums of squares is large and
when they cluster round the mean the sums of squares is small. This is what
we want for our analysis of variability.

The sums of squares is also affected by the number of scores in the
sample. The more scores we have the larger the sums of squares, even
though the variability of the scores is no greater, as each extra score (unless
exactly the same as the mean) will add to it. Consider the two samples,
Sample 1 with scores 1, 1, 2, 3, 3 and Sample 2 with scores 1, 2, 3. Their
variability looks about the same, with scores deviating from the mean by no
more than 1. We can see from the table below that because there are more
scores in Sample 1 the sums of squares is much larger.

Calculating the variability of scores
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Sample 1 Sample 2

X X − B (X − B)2 X X − B (X − B)2

1 −1 1 1 −1 1
1 −1 1 2 0 0
2 0 0 3 1 1
3 1 1
3 1 1

Sums of squares = ∑(X − B2) Sums of squares = ∑(X − B2)
= 4 = 2

In order to take account of this we need to divide the sums of squares
by the degrees of freedom, df = n − 1, to produce an ‘average’ variability of
a score in the sample. (Recall from Chapter 5 that we use the degrees
of freedom when dealing with samples as this produces a better estimate
of the population parameter we are interested in.) There are five scores
in Sample 1 so n = 5 and df = n − 1 = 5 − 1 = 4. This produces a variance
of 1. In Sample 2 n = 3 and df = 2. This also produces a variance of 1.
This matches our intuitive view that there is the same variability in these
two samples.

We are interested in the variability produced by different factors in our
data: random error and systematic differences and we can use the variance
formula to find it.

The useful thing about sums of squares is that we can calculate it for
different portions of the data. We can work out the total sums of squares,
taking into account every single score irrespective of condition. Using the
data below, the overall mean is 10, taking into account all 18 scores, and the
total sums of squares is 328.

The process of analysing variability
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Condition 1 Condition 2 Condition 3

5 11 14
6 10 15
7 9 17
5 11 13
3 9 17
4 10 14

Mean 5 10 15

We can also work out the sums of squares for the scores within a single
condition. The scores in Condition 1 have a mean of 5 and a sums of
squares of the six scores is 10, for Condition 2 the sums of squares is 4 and
for Condition 3 it is 14. If we add these up it will provide us with a measure
of the variability of the scores within the conditions. The within conditions
sums of squares is therefore 28 (the sum: 10 + 4 + 14). The scores also vary
between the conditions. If we take just the three condition means 5, 10 and
15 they have a mean of 10 and a sums of squares of 50. These are not scores
but means and each mean is composed of 6 scores so we multiply the figure
of 50 by 6 to get the variability of the scores (rather than the means) between
the conditions. The between conditions sums of squares is 300. If we use the
label SStotal for the total sums of squares and SSwith.conds and SSbet.conds for the
within and between conditions sums of squares respectively, we can see that:

SStotal = SSwith.conds + SSbet.conds

328 = 28 + 300

We can also separate the degrees of freedom in the same way. There are
18 scores in the experiment so the total degrees of freedom, dftotal = 18 − 1
= 17. There are 6 scores in each condition giving 6 − 1 = 5 degrees of
freedom within each condition. Adding up the degrees of freedom within
the three conditions we produce the within conditions degrees of freedom,
dfwith.conds, of 15. There are 3 conditions so there are 3 − 1 = 2 between
conditions degrees of freedom, dfbet.conds. We also see that:

dftotal = dfwith.conds + dfbet.conds

17 = 15 + 2
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As we can partition both the sums of squares and the degrees of freedom
into components we can also work out the variance within and between the
conditions.

What we want to do is to work out how much variability in the experiment
is due to our manipulation, that is, the systematic differences between the con-
ditions. The between conditions variance will tell us the ‘average’ variability
between the conditions. This will arise from systematic differences between
the conditions (if there are any) plus random errors (that will occur anywhere).
This is not enough on its own to detect a difference in populations because
this variance could be large for more than one reason; the systematic differ-
ences might be large or the random errors might be large, or both. What we
need to do now is estimate the size of the variability due to the random errors.

Within a condition the scores will only vary due to random errors but
not systematic differences (as the subjects within a condition will be perform-
ing in the same circumstances – we are not manipulating the independent
variable within a condition). Assuming that random errors affect all scores
equally (otherwise they would not be random) we can take the variance
within the conditions as an estimate of the variance due to random errors,
the error variance.7

Now if we compare the variance between conditions with the variance
within conditions we will have a statistic for uncovering systematic differ-
ences between our conditions if there are any. We call this statistic, F, the
variance ratio:

Variance ratio (
Between conditions variance

Error variance
F ) =

This can also be expressed as follows:

Variance ratio ( )
Systematic differences  Error variance

Error variance
F =

+

Note that the only difference between the top and the bottom of our equa-
tion is the systematic differences between the conditions, the error variance
affecting the top and bottom equally. If there really are systematic differences
between the conditions this should show up by a large value of F.

The variance ratio
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Alternatively, if the null hypothesis is true, and there are no differences
between the distributions that the samples are drawn from, then we would
expect to find no systematic differences between the conditions. Thus, when
the null hypothesis is true, we would expect:

F     =
+

= =
0

1
Error variance

Error variance

Error variance

Error variance

When the null hypothesis is true we expect F to equal 1 as the top and
bottom of the equation are the same. When the null hypothesis is false we
expect to find systematic differences between conditions and F to be greater
than 1, with large systematic differences producing a large value of F.

Clearly, we need to know how large our calculated value of F must be for
it to be significant at the level of significance chosen. What we need is the
sampling distribution of F when the null hypothesis is true. If we select
samples from the same distribution for our experimental conditions and
calculated F, what values of F would we get?

First, the F values would cluster around 1 as there are no systematic
differences between the conditions and the two variances making up the
equation are likely to be equal. Second, F will never be less than zero as it
is a ratio of numbers that have been squared and squares are never negative.
This also means that we are only interested in one tail of the F distribution,
the upper end: how much bigger than 1 the F value must be in order to
reject the null hypothesis.

Like the t distribution F is also an estimate. We are using the variances
of samples to estimate population values. Again, like t, the accuracy of this
estimation will depend on the degrees of freedom of the estimate. Unlike t,
however, the F statistic depends on two variances, the between conditions
variance and the error variance, and so will be influenced by the degrees of
freedom of both. This means that there is a different F distribution for each
combination of the two degrees of freedom. Fortunately, the F distributions
are known and the critical values for significance have been calculated for
each combination (Table A.3 of the Appendix). As a result we can compare
our calculated value of F with the appropriate table value to decide whether
there are significant differences between the conditions or not.

The F distribution
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FIGURE 10.1 An example of an F distribution (degrees of freedom = 4,8)
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In order to use the F distribution for comparison we have to make
a number of assumptions: the samples for our conditions come from
normally distributed populations, the samples come from distributions with
equal variance, and the samples are randomly selected. These are very
much the same assumptions that underlie the t test. When we perform the
analysis of variance we must make these assumptions too, otherwise it may
be inappropriate to compare our calculated value of F with those in the
tables.

It is not surprising that I have been saying ‘like t’ throughout this
section, for there is a simple relationship between F and t in the case where
we can compare them (with two conditions): F = t2. There is a demonstration
of this in the next chapter. Figure 10.1 gives an example of an F distribution.
It may look a little strange but imagine that all the scores in a t distribution
(such as in Figure 6.2) were squared. All the negative values would become
positive and it would turn into an F distribution like Figure 10.1. Another
point to note about the fact that F is made up of squared numbers is that we
no longer have the distinction between one-tailed and two-tailed tests. The
squared values mean that any differences between the condition means will
add to the size of F. Our prediction for F is simply that there are significant
systematic differences between the conditions somewhere. A large value of
F could mean that all the conditions differ significantly from each other or
it could mean that only one differs from the others. It often needs further
investigation to pin down the meaning of a significant F value.
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By studying the variability in the data we have produced a statistic, the
variance ratio F, that analyses the variance due to various factors in the
data. The variance between the conditions contains the systematic differ-
ences between the conditions that we are seeking out. It also comprises the
random errors that we expect with any data that we collect. Fortunately, we
can estimate this error variance by looking at the data that is not affected by
the systematic differences between conditions, the within conditions variance.
When we examine the ratio of these two variances we have a statistic that
provides an estimate of the systematic differences between conditions. If
the calculated value of F is greater than the critical value of the F distribution
at the chosen level of significance (say p = 0.05 or p = 0.01) then we can
reject the null hypothesis and conclude that there are significant differences
between at least some of the conditions.

By performing an analysis of variance we no longer have the problem
of increasing the risk of Type I errors, as all conditions are compared in the
one test, examined at a chosen level of significance. In the following chap-
ters we shall see how the analysis of variance can be used to analyse data
from a variety of different experimental designs.

Conclusion
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TH E  O N E  F A C T O R  independent measures ANOVA is similar to the
independent t test but allows us to compare more than two conditions.

It analyses data from an independent measures design, that is, employing
different subjects in each condition. If we wanted to compare only two
groups, such as 5 year old children to 7 year old children on a reading test
then we could use either the t test or the ANOVA. We would get the same
outcome regardless of which test we used. However, if we wanted to com-
pare more groups, say, 5, 6 and 7 year olds then we would undertake the
analysis of variance. (This form of ANOVA is also called the completely
randomised design ANOVA.)

In the previous chapter we saw that the variability of the scores between the
conditions arose from systematic differences between conditions plus ran-
dom errors. In the independent measures design there are different subjects
providing the scores for the different conditions, so part of the between
conditions variance will be due to individual differences between the subjects.
This is a random error as we are not systematically varying subjects across
the conditions. The other random errors can be termed experimental error as
we will always get some random errors in any experiment despite our attempts
to provide equivalent conditions for the subjects. The between conditions
variance can be seen as arising from three sources: systematic differences
between the conditions, individual differences and experimental error.

If we look at the variability of the scores within the conditions we see
that there are no systematic differences (if we have carried out the experi-
ment properly) but there are still different subjects within a condition so we
do expect variability due to individual differences. Again, as always, we
expect other random errors that once again we can term experimental error
as we expect it to occur at random anywhere in the experiment. The within
conditions variance thus comprises two components: individual differences
and experimental error. Therefore the within conditions variance provides
us with the ‘error variance’ we need as it is influenced by the same variability
as the between conditions variance apart from the systematic differences

Analysing variability in the independent measures ANOVA
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between conditions. Comparing the between conditions variance with the
within conditions variance will provide us with a variance ratio that we can
compute and compare with the distribution of F in the search for an effect
of our independent variable on the dependent variable.

We want to produce an F that is the following ratio:

F =
+Systematic differences Error variance

Error variance

We can achieve this with the following:

F =
Between conditions variance

Within conditions variance

This is because these variances only differ in the systematic differences
between the conditions:

F
    

=
+ +

+
Systematic differences Individual differences Experimental Error

Individual differences Experimental Error

To calculate F we must work out the between and within conditions variance.

The calculation of F requires us to build up the various components of
the analysis of variance: the sums of squares, the degrees of freedom, the
variances etc. In order to do this correctly and to display the results of the
calculation clearly we produce an ANOVA summary table.

The summary table lists the sources of the variation in the scores as
rows in the table. In the one factor independent measures ANOVA we are
concerned with the variance between conditions and within conditions. We
also need the total variability in the data in order to calculate the various
sums of squares required. The columns provide the intermediate stages in
the production of the variances needed for the variance ratio along with the
final calculation of F and whether it is significant or not. We need the sums
of squares and degrees of freedom to calculate variance. In the terminology
of the analysis of variance we refer to variance as mean square (MS). It is
simply an alternative label for the same thing. It can be considered more

The ANOVA summary table
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descriptive in this context because dividing the sums of squares by the
degrees of freedom produces an ‘average’ of the ‘squares’.

The significance or otherwise of the calculated value of F can be
indicated in the table in two ways. One, the specific probability of the F
score of this size arising from the null hypothesis can be given: for example,
p = 0.0145. In this case the reader can observe whether the probability is
larger or smaller than a chosen significance level, such as p = 0.05. Alterna-
tively, the probability can be given in relation to the significance level, such
as p < 0.05 to indicate that the F value is significant at the p = 0.05 level of
significance and p > 0.05 to indicate that it is not significant at the 0.05
significance level. I will use the latter convention.

For the one factor independent measures ANOVA the summary table
is laid out in the following manner:

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Between conditions dfbet.conds SSbet.conds MSbet.conds F p

Within conditions dferror SSerror MSerror

Total dftotal SStotal

Notice that we only fill in the cells in the table we need for the variance
ratio calculation. For example, we do not need the total variance as this is
not required in the calculation of F. Below are listed the formulae for the
calculation.

Degrees of freedom:

dftotal = N − 1 where N is the total number of scores.

dfbet.conds = k − 1 where k is the number of conditions.

dferror = dftotal − dfbet.conds

Sums of squares:
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SS X
X

N
total     

( )
= −∑ ∑2

2

where ∑ X2 is the sum of the
squared scores and (∑ X)2 is the
square of the sum of the scores.8

SS
T

n

X

N
bet conds.     

( )
= −∑ ∑2 2

where T refers to a total of the
scores in a condition. ∑ T2 is the
sum of the squared totals of the
conditions and n is the number
of scores in each condition.

SSerror = SStotal − SSbet.conds

Mean square:

MS
SS

df
bet conds

bet conds

bet conds
.

.

.

=

MS
SS

df
error

error

error

=

Variance ratio:

F
MS

Ms
bet conds

error

.=

We must always include the two degrees of freedom with our F value. We
write it thus:

F(dfbet.conds, dferror) = calculated value

We compare the calculated value with the critical value in the F distribution
tables at our chosen level of significance. When we look up the table value
(Table A.3 in the Appendix) we use dfbet.conds as our first degrees of freedom
(the columns in the table) and dferror as our second degrees of freedom (the
rows in the table). Our calculated value of F is only significant if it is equal
to or larger than the table value.
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A researcher was interested in the effects of hints on anagram solution. The
time it took a participant to solve five eight-letter anagrams was measured.
The same five anagrams were used in three conditions: First Letter (where
the first letter of the word was given), Last Letter (where the last letter was
given) and No Letter (where no help was given). Thirty participants were
chosen and ten were randomly allocated to each condition. The number of
minutes it took to solve the five anagrams was recorded. These results are
shown below. Is there an effect of type of hint (the independent variable) on
solution times (the dependent variable)?

First Letter Last Letter No Letter
Condition 1 Condition 2 Condition 3
X1 X2 X3

15 21 28
20 25 30
14 29 32
13 18 28
18 26 26
16 22 30
13 26 25
12 24 36
18 28 20
11 21 25

Mean B1 = 15.00 B2 = 24.00 B3 = 28.00
Total T1 = 150 T2 = 240 T3 = 280
Squared total T1

2 = 22500 T2
2 = 57600 T3

2 = 78400

Sum of the scores (overall total): ∑ X = 670
Square of the sum of the scores: (∑ X)2 = 448900
Sum of the squared scores: ∑ X2 = 16210

Number of conditions: k = 3
Number of scores per condition: n = 10
Total number of scores: N = 30

A worked example
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Degrees of freedom:

dftotal = N − 1 = 30 − 1 = 29

dfbet.conds = k − 1 = 3 − 1 = 2

dferror = dftotal − dfbet.conds = 29 − 2 = 27

Sums of squares:

SS X
X

N
total     

( )
    = − = −∑ ∑2

2

16210
448900

30

= 16210 − 149363.33 = 1246.67

SS
T

n

X

N
bet conds.     

( )     
= − =

+ +
−∑ ∑2 2 22500 57600 78400

10

448900

30

= 15850 − 14963.33 = 886.67

SSerror = SStotal − SSbet.conds = 1246.67 − 886.67 = 360.00

Mean square:

MS
SS

df
bet conds

bet conds

bet conds
.

.

.

    
.

  .= = =
886 67

2
443 33

MS
SS

df
error

error

error

    
.

  .= = =
360 00

27
13 33

Variance ratio (F ):

F
MS

MS
bet conds

error

    
.

.
  ..= = =

443 33

13 33
33 26

From the tables of the F distribution (Table A.3 in the Appendix) we find
that F(2,27) = 3.35, at p = 0.05. As our value of 33.26 is greater than the
table value we can reject the null hypothesis and claim that anagram solution
times are affected by the type of hint given. Note that the result is highly
significant, so we can adopt an even more conservative significance level.
From the tables F(2,27) = 5.49, at p = 0.01, so our finding is still significant
at p < 0.01.
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The fact that we have found a significant effect does not tell us which
conditions are significantly different although we can infer this by looking
at the means. We will be able to be more specific in the following chapter.
Also the F test has found significant differences between the conditions but
it does not give the cause. We hope the experiment is so well controlled that
it can only be due to type of hint but if the researcher introduced any
inadvertent confounding factor this could also have produced the systematic
differences picked up by the analysis of variance.

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Between conditions 2 886.67 443.33 33.26 p < 0.01

Within conditions 27 360.00 13.33

Total 29 1246.67

The above table clearly summarises the analysis. It also allows us to check
our calculations: do the degrees of freedom and the sums of squares add up
to the correct totals? You must never get a negative sums of squares as a
sum of squares has to be positive. If you do, check the calculations, there is
definitely an error.

When we reject the null hypothesis in an ANOVA, as we have done in the
example above, we are only concluding that there are systematic differences
between the conditions but not where they lie. In the case of three conditions
there are four alternative hypotheses to the null hypothesis:

1 All three conditions are significantly different, their samples come
from different population distributions.

2 Condition 1 is significantly different to conditions 2 and 3 but condi-
tions 2 and 3 are not significantly different. The sample in condition 1
comes from a different distribution to the samples of conditions 2 and 3.

Rejecting the null hypothesis
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3 Condition 2 is significantly different to conditions 1 and 3 but conditions
1 and 3 are not significantly different. The sample in condition 2 comes
from a different distribution to the samples of conditions 1 and 3.

4 Condition 3 is significantly different to conditions 1 and 2 but conditions
1 and 2 are not significantly different. The sample in condition 3 comes
from a different distribution to the samples of conditions 1 and 2.

With more conditions the number of alternative hypothesis increases. A
significant F value simply indicates that the null hypothesis is very unlikely
and hence we can reject it. We need to perform further tests to decide which
one of the alternative hypotheses to accept.

Researchers often organise the samples in the independent measures ANOVA
so that there are equal numbers of subjects in each condition. It is not
necessary but makes the calculation slightly easier. Yet the test, like the
independent t test, allows for different sample sizes. The formulae given
above are for equal sample sizes. However, the only change we need to make
for unequal sample sizes is to the first term in the SSbet.conds formula. We

replace SS
T

n

X

N
bet conds.     

( )
= −∑ ∑2 2

with SS
T

n

X

N
bet conds.     

( )
= ⎛

⎝⎜
⎞
⎠⎟

−∑ ∑2 2

.

We have a different n for each sample and we divide the squared total of
each condition by its sample size before we add them up. A worked example
is shown below.

Unequal sample sizes usually occur when you have planned for equal
numbers in each condition but for some reason a subject is unable to provide
a score. In the anagram example we might find a person who simply cannot
solve an anagram no matter how much time allowed. One solution is to
replace the participant with another. However, the change to the formula is
so small that unequal sample sizes are not really a problem (as long as the
equal population variance assumption is still met).

As an example of the calculation of unequal sample sizes I shall take the
data we used to calculate the independent t test in Chapter 8. This compared
the effects of a sleeping pill on 6 men and 8 women. The scores for the men

A worked example

Unequal sample sizes
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(Condition 1) were 4, 6, 5, 4, 5 and 6 extra hours slept and for the women
(Condition 2) were 3, 8, 7, 6, 7, 6, 7 and 6 extra hours.

Sum of the scores (overall total): ∑ X = 80
Square of the sum of the scores: (∑ X )2 = 6400
Sum of the squared scores: ∑ X2 = 482

Number of conditions: k = 2
Number of scores per condition: n1 = 6, n2 = 8
Total of the scores in condition 1, T1 = 30 and the squared total,

T1
2 = 900

Total of the scores in condition 2, T2 = 50 and the squared total,
T2

2 = 2500
Total number of scores: N = 14

Degrees of freedom:

dftotal = N − 1 = 14 − 1 = 13

dfbet.conds = k − 1 = 2 − 1 = 1

dferror = dftotal − dfbet.conds = 13 − 1 = 12

Sums of squares:

SS X
X

N
total     

( )
    = − = −∑ ∑2

2

482
6400

14

= 482 − 457.14 = 24.86

SS
T

n

X

N
bet conds.     

( )
      = ⎛

⎝⎜
⎞
⎠⎟

− = +⎛
⎝

⎞
⎠ −∑ ∑2 2 900

6

2500

8

6400

14

= 462.5 − 457.14 = 5.36

where
T

n

T

n

T

n

2
1
2

1

2
2

2

⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟∑      as there are two conditions.

SSerror = SStotal − SSbet.conds = 24.86 − 5.36 = 19.50
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Mean square:
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df
bet conds

bet conds

bet conds
.

.
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.

  .= = =
5 36

1
5 36

MS
SS

df
error

error

error

    
.

  .= = =
19 50
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1 625

Variance ratio (F ):

F
MS

MS
bet conds

error

    
.

.
  ..= = =

5 36

1 625
3 30

From the F distribution tables (Table A.3 in the Appendix) we find F(1,12)
= 4.75 at p = 0.05. As the calculated value of 3.30 is less than the table
value we cannot reject the null hypothesis at this level of significance.

The example in the section above allows us to compare an ANOVA with an
independent t test on the same two samples. If you look back to the t
calculations you can see the similarity in the calculations; for example note
the SSerror of 1.625 in the bottom of the t calculation. If we explored further
we could see how the two formulae are related. The calculated F of 3.30 is

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F )

Between conditions 1 5.36 5.36 3.30 p > 0.05

Within conditions 12 19.50 1.625

Total 13 24.86

The relationship of F to t
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indeed the square of the calculated t of 1.82.9 Similarly, the table values of
F and t are also related in the same way and so we have the same outcome
whichever of the tests we perform on the data.

Details on calculating the one factor independent measures ANOVA
using the SPSS computer statistical package can be found in Chapter
10 of Hinton et al. (2004).
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Multiple

comparisons

n The Tukey test
(for all pairwise comparisons) 140

n The Scheffé test
(for complex comparisons) 144
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WH E N  W E  C O M P A R E  more than two groups in an ANOVA a signifi-
cant F value does not indicate where the effect lies, simply that there

is an effect between the conditions somewhere. A researcher compared four
groups of children (6, 8, 10 and 12 year olds) on a test of social skills. She
found a significant F value and concluded that the scores from the four
conditions were not drawn from the same distribution. But this conclusion
does not really provide the researcher with the information about which
ages show the significant differences. Let us assume that the means were
respectively 10, 12, 18 and 23 on the test (out of 50). Given that there is a
significance variance ratio it seems likely that the scores of the 6 year olds
differ significantly from those of the 12 year olds as this comparison provides
the largest difference in means. Is the difference between the 6 and 8 year
olds or 8 year olds and 10 year olds significant? And what about the smallest
difference, between the 6 and 8 year olds? The data needs to be inspected
further to find the source of the significant F value.

The way we answer these questions is to perform post hoc tests. The
name comes from the Latin, meaning ‘after this’. The first stage in the analysis
is to find a significant F value in the ANOVA. Only then do we perform a
post hoc test. These tests are called multiple comparison tests as they allow
us to undertake various comparisons between the conditions. In the example
above we want to compare each of the four groups with each of the others
to show where the significant differences lie.

The problem with multiple comparisons is that the more comparisons
we make using the same data the greater the risk of making at least one
Type I error. We saw in Chapter 10 that this was the same problem we had
with undertaking multiple t tests: when we start undertaking multiple tests
on the data we increase the risk of finding differences by chance. The
solution is to find a post hoc test that takes account of this increased risk
and controls for it.

There are a range of multiple comparison tests. Some of these ignore
the problem completely. The Least Significant Difference test takes no
account of the number of comparisons being made and the increased risk of
a Type I error is simply accepted. Other tests such as the Newman–Keuls
and the Duncan tests take account of the number of comparisons being
made and compute different values accordingly. At the more conservative
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end of the scale the Tukey and Scheffé tests allow all comparisons to be
made as the test corrects for the increased risk of Type I errors by reducing
the significance level of the individual comparisons. The simplest and most
conservative method is to apply a Bonferroni correction to the significance
level. For example, if a one factor independent measures ANOVA had
shown a significant F value then follow-up t tests on each of the 6 pairs of
conditions could be undertaken with a Bonferroni correction to the signific-
ance level for these tests. The Bonferroni correction requires us to divide
the significance level by the number of tests, so in this case we would
compare each test against the 0.05/6 level of significance ( p = 0.0083)
rather than the 0.05 significance level. This does influence the power of the
test (see Chapter 9) and can be viewed as overly conservative due to the
reduction in power.

I am going to describe the Tukey and the Scheffé tests, both conservat-
ive tests, for the following reasons. Usually, after we have found a significant
varaince ratio in the ANOVA, we want to compare all the conditions to
find the interesting (significant) differences, such as in the social skills test
example above. The Tukey and Scheffé tests allow us to do this without
worrying unduly about the risks of Type I errors. Second, they are easy to
carry out, particularly the Tukey test. The fact that they set high critical
values for significance need not lead us to miss out on potentially significant
findings because we have set too rigorous a criterion for significance. We
might not accept some differences as significant when using these tests
when we would with some other tests but this does not have to be a problem
if we remember to use our judgment as researchers. If there is a difference
which does not quite reach significance using these tests yet we have reason
to believe that it is an important difference then, as in other cases of this
kind, we should trust our judgement and follow it up: replicate the experiment,
run more subjects, use a more sensitive design, essentially adopt measures
to improve the power of our test. If it is a genuine difference it will eventu-
ally show, even with a Tukey test. Statistics are only tools to help us. They
do not replace experimenter skill and intelligence. I happen to like a con-
servative test as it gives me confidence in the results of the analysis. But
I do not let it disturb my interest in the comparisons that ‘bubble under’ (do
not quite reach significance). I check these out in subsequent experiments.

The reason for presenting both the Tukey and the Scheffé tests is that
the Tukey test is more sensitive for pairwise comparisons, comparing two
conditions at a time, than the Scheffé test, in that it is more likely to accept
a difference as significant. The Scheffé test, however, is more sensitive
than the Tukey test for complex comparisons, combining conditions and
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comparing the composite condition with others, such as comparing the 8 year
olds with the combination of the 10 and 12 year olds on the social skills test.

The Tukey HSD (honestly significant difference) test allows us to compare
each pair of conditions to see if their difference is significant. What the
Tukey test does is to look at the random variation that exists between any
pair of means. This is the standard error of the difference between pairs of
means. If we then compare a specific difference between two means with
this standard error we have a statistic for telling us how big the difference
between the mean is compared to the random variation between means. We
call this statistic q:

q =
the difference between any two means

the standard error of the difference between any two means

We already have a measure of the error variance that we can take from the
ANOVA, MSerror. The standard deviation is the square root of the variance:

MSerror  and so the standard error of the differences in means is 
MS

n

error ,

where n is the number of subjects in each condition. Hence:

  

q
MS

n

i j

error

=
−B B

where Bi and Bj are any two means (the i and j standing for 1, 2, 3, etc. or
whichever means we choose to compare).

Notice the similarity of q to t. This is not by chance; the logic of the
two statistics is the same. With a t test we use a different standard error for
every pair of means:

t =
the difference between two means

the standard error of the difference between the two means

With q, however, we are using a ‘general purpose’ standard error that
can be used for any pair of means. Like t we can find the distribution of q

The Tukey test (for all pairwise comparisons)
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under the null hypothesis. Using this distribution we can decide whether
a specific difference in means is significant by observing whether the cal-
culated q exceeds the table value of q for the level of significance chosen.
The Tukey test overcomes the problem of the increased risk of Type I errors
that occurs with multiple t tests by setting an overall level of significance.
This means that the risk of a Type 1 error has a probability of, say, 0.05
when we compare every pair of means. Thus the Tukey test allows all
pairwise comparisons so we can work out q for each pair of means know-
ing that the risk of a Type I error will not exceed 0.05. In the social skills
test example we can make six pairwise comparisons as we have four con-
ditions. If we had five age groups: 6, 8, 10, 12 and 14 year olds, as long
as we achieved a significant F in the ANOVA, the Tukey test would allow
us to make every one of the 24 pairwise comparisons between condition
means.

Rather than working out a q every time we compare a pair of means
we can rearrange the formula as follows:

  
B Bi j

errorq
MS

n
    − =

If we no longer calculate q but use the critical value (for significance) of q
from the table in the formula we can write:

An honestly significant difference between means, HSD  = q
MS

n
error

All we need to do is look up q at the chosen significance level, work out
Tukey’s HSD and use HSD to compare any or all of the differences in
means. If a difference in means is greater than HSD then that difference is
significant (honestly!).

The statistic q is called the Studentized range statistic (after a famous
statistician who wrote under the pseudonym of Student. You also see t referred
to as Student’s t for the same reason). We find the appropriate value of q in
the table (Table A.4 in the Appendix) by deciding on the level of significance
we require (usually either 0.05 or 0.01), and then looking up the critical
value of q in the table using dferror, the degrees of freedom of the error
variance in the ANOVA and k, the number of conditions in the experiment.

(Normally, with equal numbers of subjects in each condition the Tukey
HSD test is easy to undertake but with different sample sizes we cannot put
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a single n in the equation for HSD as there are different ns: n1, n2, etc. To
deal with this we can be cautious and simply take the smallest sample size
as n. A more sophisticated way of producing a single (‘average’) n is by the
following formula:

n
k

n n nk

    . . .  
=

+ + +⎛
⎝⎜

⎞
⎠⎟

1 1 1

1 2

where n1 to nk are the sample sizes. However, we should be wary of using
the test with any but relatively small differences in sample sizes as the basic
assumptions of the test may be violated.)

The anagram example of the previous chapter provides a good example as
we found a significant effect of type of hint on anagram solution times. The
significant F value allows us to undertake post hoc tests, and see which differ-
ences in means are significant. The means are shown in the table below.

First Letter Last Letter No Letter
B1 B2 B3

Mean 15 24 28

Taking each pair of means we can work out the difference between them:

Difference of means B2 B3

B1 −9 −13

B2 −4

The differences in the table are calculated by subtracting the column mean
from the row mean. The fact that our differences are negative is a result of
the way we have subtracted the means. This indicates B1 is faster than B2 by

A worked example
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9 minutes, etc. For the moment we are only concerned about the difference
in the size of the means not whether the difference is positive or negative at
this point. For the Tukey test we treat all the differences as positive.

From the ANOVA summary table we have dferror = 27 and MSerror =
13.33. The number of conditions, k, is 3, and the number of participants in
each condition, n = 10. Selecting a significance level of p = 0.05, we can
work out HSD. From the tables (Table A.4 in the Appendix) at p = 0.05, for
k = 3 and dferror = 27, we find a value of q of 3.51. (As df = 27 is not in the
table we take the figure midway between that for df = 24 and df = 30 for our
value for df = 27.)

HSD    .   
.

  .   .   .= = × = × =q
MS

n
error 3 51

13 33

10
3 51 1 15 4 04

The differences between the First Letter and No Letter conditions (13) and
the First Letter and Last Letter conditions (9) are highly significant at p =
0.05 as they both exceed HSD. The difference between the Last Letter and
No Letter conditions (4) is not significant at p = 0.05 but further investiga-
tions might find an effect here as the difference does approach significance
but does not reach it. Now we know where the significant differences lie we
check to see which way the differences occur (which condition produces the
faster times) for our conclusion.

We can conclude that the First Letter condition results in significantly
faster solution times than both the Last Letter and No Letter conditions. The
Last Letter times are not significantly faster than the No Letter condition
(although there appears be a non-significant tendency for the Last Letter
times to be faster).

We can very easily work out confidence intervals for our comparisons,
as we know the difference in means, we have the appropriate critical value
and we also have a standard error (see Chapter 6 for an introduction to
confidence intervals). So we can write the confidence interval as follows:

  
95%       CI = − ±B Bi j

errorq
MS

n

where Bi and Bj are the two means we are comparing, q is the critical value

(and we found that above) and
MS

n
error  is the standard error of the compar-

ison (which we also found out above). Furthermore, q
MS

n
error = HSD, so:
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95%CI = Bi − Bj ± HSD

95%CI = Bi − Bj ± 4.04

And now we can produce the confidence intervals for our three comparisons:

For B1 − B2, 95%CI = −9 ± 4.04, producing 95%CI = (−13.04, −4.96)
For B1 − B3, 95%CI = −13 ± 4.04, producing 95%CI = (−17.04, −8.96)
For B2 − B3, 95%CI = −4 ± 4.04, producing 95%CI = (−8.04, +0.04)

It is interesting to note that for the first two comparisons the differences
are consistent across the confidence interval and even in the ‘worst case’ are
still quite large (4.96 and 8.96 seconds difference). However, the third
confidence interval includes zero so, even though the ‘best case’ gives us a
difference of 8.04 seconds, the difference might still be zero. Even though
the zero is near the end of the interval we cannot confidently exclude the
possibility. The confidence intervals are expressing the findings in a differ-
ent way to the significance test but the same implication arises: we can
be confident that only the first two differences imply genuine population
differences.

Out of the ‘between conditions sums of squares’ the Scheffé test calculates
the part of it relevant to the comparison being made. From the sums of
squares of the comparison we can then go on to produce a mean square and
then an F value for the comparison. We can test this against the F distribu-
tion to see if the comparison is significant. To correct for the increase in the
risk of a Type I error that could arise with multiple comparisons we adjust
the size of the table value of F according to the Scheffé correction. The
calculated value of F for the comparison has to be larger than the corrected
table value before we can claim a significant difference between the con-
ditions being compared.

The Scheffé test is most useful for complex post hoc comparisons. In
the example of the social skills experiment cited at the beginning of this
chapter we shall assume that the researcher was interested in the difference
between the children under 10 years old and the 10 year old group. Here we
have a complex comparison, as two groups are being combined (the 6 and
8 year olds) to compare with the 10 year olds with one group being left out
of the comparison (the 12 year olds) altogether.

The Scheffé test (for complex comparisons)
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The Scheffé test calculates a sums of squares for the comparison of
interest by the following formula:

SS
cT

n c
comp

( )
= ∑

∑
2

2

where the Ts are the totals of the scores in the conditions (T1 is the total of
the scores in condition 1, etc.), n is the number of subjects in each condition,
and the cs are the coefficients of the conditions (c1 is the coefficient of
condition 1, etc.).

The choice of coefficients allows us to select the conditions we are
interested in, in the correct combination, and exclude the conditions we do
not wish to be included in the comparison. Essentially they ‘weight’ the
contribution of the condition to the comparison. The conditions on one side
of the comparison are given positive coefficients and the ones of the other
side given negative coefficients. In order to properly balance the com-
parison the coefficients must sum to zero, ∑ c = 0. In an experiment with
three conditions where the comparison to be made is between condition 1
on one side with a combination of conditions 2 and 3 on the other then
the coefficients could be c1 = +1, c2 = −0.5, c3 = −0.5. Notice that the sum
of the coefficients equal zero: c1 + c2 + c3 = 1 − 0.5 − 0.5 = 0. Conditions
2 and 3 are equally weighted on their side of the comparison, as each is
given the same coefficient of −0.5. The two sides of the comparison are
equally weighted with +1 on one side and −1 on the other. (The actual
numbers we choose for the coefficients can be anything as long as the above
restrictions are met, so we could have chosen +2, −1, −1 for the coefficients
or +10, −5, −5. We usually choose the ones that make the calculations
easiest.)

The choice of coefficients results in a sums of squares for the com-
parison only. This comparison is always between two new conditions that
are combinations of the experimental conditions. In the above paragraph
the two new conditions are: condition 1 from the original experiment as the
first new condition and a combination of conditions 2 and 3 as the second
new condition. As there are always two conditions in the comparison the
degrees of freedom for the comparison is always 1.

Hence the mean square for the comparison is:

MS
SS

df

SS
SScomp

comp

comp

comp
comp      = = =

1
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The calculated variance ratio for the comparison uses the error mean square
from the original ANOVA, so the F value for the comparison is:

F
MS

MS
comp

error

=

At this point we must select the correct table value to compare our
calculated F with. This depends on whether the comparison is planned
prior to the calculation of the ANOVA or whether it was unplanned; that
is, a post hoc comparison made after the significant ANOVA F value had
been found.

With a planned comparison we are saying that, prior to knowing whether
the ANOVA F value was significant or not, we were interested in this
comparison in particular. In this case we are not concerned with the increased
risk of Type I errors with multiple comparisons as this is the only comparison
of interest. Hence we can look up the table value using the degrees of freedom
contributing to the comparison F value: dfcomp and dferror at the chosen level
of significance.

Unplanned comparisons are more usual in the use of the Scheffé test as post
hoc tests are used to seek out the interesting results after a significant
ANOVA. We may have certain comparisons in mind prior to the experiment
but the data can lead us to follow up the most interesting, and unexpected,
lines of research. As we wish to make any comparison post hoc we need to
correct for the increased risk of a Type I error. The Scheffé test does this by
creating a new, larger table value F ′. Only if the calculated value exceeds
F ′ can we say the comparison is significant. We calculate F ′ by the follow-
ing formula: F ′ = (k − 1)F, where k is the number of conditions in the
original experiment and F is the table value used in the original ANOVA,
found using degrees of freedom k − 1 and k(n − 1). The calculation of F ′
allows us to undertake any post hoc comparison without worrying about
increasing the risk of a Type I error.

Unplanned comparisons

A planned comparison
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At the beginning of this chapter I briefly mentioned a social skills study
looking at four different age groups of children. The researcher was looking
for an effect of age on the social skills test. The analysis produced the
following summary table for the one factor independent measures ANOVA,
with a highly significant F value:

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Between conditions 3 838.00 279.33 12.415 p < 0.01

Within conditions 28 630.00 22.50

Total 31 1468.00

In this experiment there were eight children in each condition. The totals of
the scores of the four conditions are shown below:

Condition 1 Condition 2 Condition 3 Condition 4
6 year olds 8 year olds 10 year olds 12 year olds

T1 T2 T3 T4

80 96 144 184

The researcher decided post hoc that she wanted to know whether there was
a significant difference between the 10 year olds and the younger children,
combining the 6 and 8 year olds. To produce this comparison she chose the
coefficients c1 = +1, c2 = +1, c3 = −2 and c4 = 0. These coefficients exclude
condition 4 and combine conditions 1 and 2, which are then balanced on the
other side of the comparison to condition 3.

The sums of squares of the comparison is calculated from the
formula:

A worked example
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SS
c T c T c T c T
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(       )

(       )
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2
2

3
2

4
2

SScomp

( (   )  (   )  (   )  (   ) )

( ( )   ( )   ( )   ( ) )
=

+ × + + × + − × + ×
+ + + + − +

1 80 1 96 2 144 0 184

8 1 1 2 0

2

2 2 2 2

=
−

×
= =    .

112

8 6

12544

48
261 33

2

As the degrees of freedom of the comparison is 1,

MS
SS

df
comp

comp

comp

    
.

  .= = =
261 33

1
261 33

Using the error variance from the ANOVA,

F
MS

MS
comp

error

    
.

.
  .= = =

261 33

22 50
11 61

We now calculate F ′:

F′ = (k − 1)F(k − 1,k(n − 1) ) = (4 − 1)F(4 − 1,4(8 − 1) )

= 3F(3,28)

From the tables F(3,28) = 2.95, p = 0.05, so

F ′ = 3 × 2.95 = 8.85

As the calculated value of F is greater than F ′ we can conclude that there is
a significant difference in the performance of the 10 year olds compared
to the combination of the 6 and 8 year olds on the social skills test, with the
10 year olds scoring significantly higher than the younger children.
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TH E  I N D E P E N D E N T  M E A S U R E S  ANOVA assumes that the scores in
each condition are unrelated and the subjects have contributed a score

to only one of them. However, there are many cases when we want to use
the same subjects in all conditions. This is particularly useful as it matches
subjects with themselves across the conditions. An experiment on memory,
comparing retention of different types of words might use the same partici-
pants in each condition (as long as the carry-over effects of practice or fatigue
are controlled for). The analysis of variance that deals with this form of data
is called a repeated measures design and, as we see below, the calculations
are a little different to the independent measures design but the general
logic of the ANOVA remains the same.

A research programme was set up to develop user-friendly computer equip-
ment for those people with physical disabilities. Three new designs of com-
puter keyboard for people with difficulties in hand and finger movement
were developed and prototypes created. The research task was to decide
which of these prototypes is the most successful. Four potential users of the
new equipment agreed to take part in a test of the new keyboards. Each
participant was asked to use the keyboard to input a piece of text and the
number of errors was recorded. Three equally difficult pieces of text were
used so that a participant did not improve performance by practice on the
same piece of text. The choice of text and the order in which the keyboards
were tested by each participant was controlled for, to account for possible
confounding variables. The results of the experiment are shown below.

Participant Keyboard 1 Keyboard 2 Keyboard 3

1 5 6 10
2 1 2 3
3 0 4 5
4 2 4 6

Deriving the F value
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Notice that there is quite a bit of subject variability, with Participant 1
making the most mistakes and Participant 2 the least. Yet the repeated
measures design matches the subjects with themselves across the conditions
so that, even though they differ markedly from each other, the question is
whether they follow a similar pattern across the conditions, i.e. is one con-
dition the worst for all despite their differences in general accuracy?

If we performed an independent measures ANOVA on these data it
would not be informative as it assumes that there is subject variability both
between and within the conditions. We can see this by considering the way
we calculate F for the independent measures design:

F =
Between conditions variance

Within conditions variance

F
    

=
+ +

+
Systematic differences Individual differences Experimental error

Individual differences Experimental error

Now as there are no individual differences between the conditions in the
repeated measures design (as the subjects are the same) the same formula
with repeated measures would produce:

F =
Between conditions variance

Within conditions variance

=
+
+

Systematic differences Experimental error

Individual differences Experimental error

This is not a very useful measure of the systematic differences between
conditions as F is no longer sensitive to only this one factor but to the
individual differences which are now only in the bottom of the equation. A
large value of F could mean a large treatment effect but it could mean small
individual differences. A small value of F might not mean a lack of systematic
differences but simply large individual differences swamping the effect. If
we can get rid of the individual differences from the within conditions
variance (the bottom part of the formula) we will end up with an excellent
formula for a repeated measures design as it will be highly sensitive to
systematic differences between conditions.

F =
+Systematic differences Experimental error

Experimental error
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To produce this we need to find a way of removing the individual differences
from the within conditions variance so that we can calculate the appropriate
F value.

F =
−

Between conditions variance

Within conditions variance Individual differences

Removing the individual differences

When we look at the keyboard data we can see that, despite the individual
differences in the participants, there is a general pattern across the participants
with Keyboard 1 producing the lowest errors, Keyboard 2 more errors and
Keyboard 3 the most. So despite the different level of performance the
pattern across the conditions is similar for each of the participants. It is the
strength of this pattern, the systematic differences between the conditions,
we wish to measure.

The key to extracting the subject differences lies in the sums of squares.
So far (see Chapter 10) we have only calculated sums of squares for the
conditions: between conditions and within conditions. The table below shows
the means of the conditions so that we can calculate these sums of squares.

Participant Keyboard 1 Keyboard 2 Keyboard 3 Participant
mean

1 5 6 10 7
2 1 2 3 2
3 0 4 5 3
4 2 4 6 4
Condition 2 4 6 Overall mean
mean = 4

The sums of squares within each condition is as follows:

Keyboard 1 (5 − 2)2 + (1 − 2)2 + (0 − 2)2 + (2 − 2)2 = 14
Keyboard 2 (6 − 4)2 + (2 − 4)2 + (4 − 4)2 + (4 − 4)2 = 8
Keyboard 3 (10 − 6)2 + (3 − 6)2 + (5 − 6)2 + (6 − 6)2 = 26

The within conditions sums of squares = 14 + 8 + 26 = 48.
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The sums of squares between the condition means = (2 − 4)2 + (4 − 4)2

+ (6 − 4)2 = 8. As there are four participants per condition the between
conditions sums of squares = 4 × 8 = 32.

In the above calculations of sums of squares we have focused on the con-
ditions, which are the columns in the above table, and we have calculated the
within columns variation and the between columns variation in the scores. The
same logic can be applied to the rows, where the sums of squares can be
calculated within and between the rows. Notice that the rows are the subjects.
Within the rows the variability is not due to differences in subjects as within
a row it is always the same subject. However, the variation between the rows
is the variation between the subjects. This is a measure of the individual
differences between the participants, exactly what we are trying to find.

The sums of squares within each subject is as follows:

Subject 1 (5 − 7)2 + (6 − 7)2 + (10 − 7)2 = 14
Subject 2 (1 − 2)2 + (2 − 2)2 + (3 − 2)2 = 2
Subject 3 (0 − 3)2 + (4 − 3)2 + (5 − 3)2 = 14
Subject 4 (2 − 4)2 + (4 − 4)2 + (6 − 4)2 = 8

The within subjects sums of squares = 14 + 2 + 14 + 8 = 38.
The sums of squares between the subject means = (7 − 4)2 + (2 − 4)2

+ (3 − 4)2 + (4 − 4)2 = 14. As there are three conditions per subject the
between subjects sums of squares = 3 × 14 = 42.

Notice that however we work out the sums of squares the total is
always 80. We are not interested in the within subjects sums of squares for
the ANOVA but we now have a measure of the individual differences (the
between subjects sums of squares of 42). We can now remove the individual
differences from the within conditions sums of squares. The residual, our
error sums of squares, is 48 − 42 = 6.

As we are able to take out the between subjects variability from the within
conditions variability we no longer use the within conditions variance in our
calculation of F but employ the new, smaller, error term. Thus, in the repeated
measures design we have more chance of finding a significant effect as we
have removed the individual differences completely from the calculation.10

The summary table for a repeated measures ANOVA has two extra rows
compared to the independent measures ANOVA because we have to separate

The ANOVA summary table



S T A T I S T I C S  E X P L A I N E D

154

the within conditions sums of squares into the between subjects sums of
squares and the error sums of squares.

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Between conditions dfbet.conds SSbet.conds MSbet.conds F p

Within conditions dfwith.conds SSwith.conds

Between subjects dfbet.subjs SSbet.subjs

Error dferror SSerror MSerror

Total dftotal SStotal

Below are listed the formulae for the calculations.

Degrees of freedom:

dftotal = N − 1 where N is the total number of scores

dfbet.conds = k − 1 where k is the number of conditions

dfwith.conds = dftotal − dfbet.conds

dfbet.subjs = n − 1 where n is the number of subjects
per condition

dferror = (n − 1)(k − 1)

Sums of squares:

SS X
X

N
total     

( )
= −∑ ∑2

2

where ∑ X 2 is the sum of the squared
scores and (∑ X )2 is the square of
the sum of the scores8
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SS
T

n

X

N
bet conds

c

.    
( )

= −∑ ∑2 2

where Tc refers to a total of the
scores in a condition, e.g. Tc1

 is the
total of the scores in condition 1.
∑ Tc

2 is the sum of the squared
totals of the conditions

(Notice that we use Tc for the condition totals and not just T. This is to
distinguish them from the subject totals Ts.)

SSwith.subjs = SStotal − SSbet.conds

SS
T

n

X

N
bet subjs

s

.    
( )

= −∑ ∑2 2

where Ts refers to a total of the
scores for a subject, e.g. Ts1

 is the
total of the scores for subject 1.
∑ Ts

2 is the sum of the squared
totals of the subjects

SSerror = SSwith.conds − SSbet.subjs

Mean square:

MS
SS

df
bet conds

bet conds

bet conds
.

.

.

=

MS
SS

df
error

error

error

=

Variance ratio:

F
MS

MS
bet conds

error

.=

The degrees of freedom accompanying F are the between conditions and
error degrees of freedom.

F(dfbet.conds, dferror) = calculated value

We compare the calculated value with the critical value in the F distribution
tables at our chosen level of significance (Table A.3 in the Appendix).
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When we look up the table value we use dfbet.conds as our first degrees of
freedom (the columns in the table) and dferror as our second degrees of
freedom (the rows in the table). Our calculated value of F is only significant
if it is equal to or larger than the table value.

The keyboard example provides us with some illustrative data for calculat-
ing the repeated measures ANOVA. First we calculate the totals for the
formulae.

Participant Keyboard 1 Keyboard 2 Keyboard 3 Participant
totals

1 5 6 10 Ts1
= 21

2 1 2 3 Ts2
= 6

3 0 4 5 Ts3
= 9

4 2 4 6 Ts4
= 12

Condition Tc1
= 8 Tc2

= 16 Tc3
= 24 Overall total

totals ∑ X = 48

We also need:

The number of subjects per condition, n = 4
The number of conditions, k = 3
The total number of scores, N = 12
The overall total squared, (∑ X )2 = 2304
The sums of the squared scores, ∑ X 2 = 52 + 12 + . . . + 52 + 62

= 272

We next calculate the degrees of freedom:

dftotal = N − 1 = 12 − 1 = 11
dfbet.conds = k − 1 = 3 − 1 = 2
dfwith.conds = dftotal − dfbet.conds = 11 − 2 = 9
dfbet.subjs = n −1 = 4 − 1 = 3
dferror = (n −1)(k −1) = 3 × 2 = 6

A worked example
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Sums of squares:

SS X
X

N
total     

( )
          = − = − = − =∑ ∑2

2

272
2304

12
272 192 80

SS
T

n

X

N
bet conds

c

.     
( )     

= − =
+ +

−∑ ∑2 2 2 2 28 16 24

4

2304

12

= 224 − 192 = 32

SSwith.conds = SStotal − SSbet.conds = 80 − 32 = 48

SS
T

n

X

N
bet subjs

s

.     
( )

= −∑ ∑2 2

=
+ + +

−
      21 6 9 12

3

2304

12

2 2 2 2

= 234 − 192 = 42

SSerror = SSwith.conds − SSbet.subjs = 48 − 42 = 6

Note that most of the variability of the scores within the conditions occurs
due to individual differences. Our error sums of squares is consequently a
lot smaller than the within conditions sums of squares.

We can now work out the appropriate mean squares and variance
ratio:

MS
SS

df
bet conds

bet conds

bet conds
.

.

.

      = = =
32

2
2

MS
SS

df
error

error

error

      = = =
6

6
1

F
MS

MS
bet conds

error

      .= = =
16

1
16

We therefore have the following summary table:
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THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Between conditions 2 32 16 16 p < 0.01

Within conditions 9 48

Between subjects 3 42

Error 6 6 1

Total 11 80
(Between
+ within)

From the F distribution table, Table A.3 in the Appendix, F(2,6) = 10.92 at
p = 0.01. As our calculated value of F is greater than the table value we can
reject the null hypothesis at p = 0.01. We can conclude that there is a
significant difference between the keyboards on the number of errors made.

(This particular example was deliberately chosen so that the calculations
are very simple with whole numbers throughout. This is not typical of the
numbers we would normally obtain but shows the working of the repeated
measures ANOVA very clearly. For interest we can consider what would
have happened if these data had come from 12 different people rather than
the same four in each condition. We would have had to perform an inde-
pendent measures ANOVA and used the within conditions mean square as
our error variance. We can see from the above table that this value would
have been 48 divided by 9, which equals 5.33. This would have resulted in
an F value of 3 (16/5.33) which would not have been significant, as the
critical value of F(2,9) = 4.26 at p = 0.05. The effect of different keyboards
would have been lost in all the subject variability.)

We can perform post hoc tests on a repeated measures design ANOVA to
find the source of the significant differences. The only difference from the
independent measures design is choosing the appropriate error term in the

Multiple comparisons
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comparison. Whilst not universally agreed on, it is reasonable to use the
MSerror and dferror , as calculated in the ANOVA, in the Tukey calculation of
HSD and not the within conditions variance.

For the keyboard example, our means are: B1 = 2, B2 = 4, B3 = 6. We
have MSerror = 1, dferror = 6, n = 4, k = 3. In the tables of the Studentized
range statistic q = 4.34 for 3 conditions and 6 error degrees of freedom at
p = 0.05, so:

HSD    .   .   .   .= = = × =q
MS

n
error 4 34

1

4
4 34 0 5 2 17

The difference of 4 between means of Keyboards 1 and 3 is significant at
p = 0.05 as it is larger than 2.17. The other differences in means are not
significant. The size of the difference in means of 2 between Keyboards 1
and 2, and also between Keyboards 2 and 3, might reach significance if
more participants were tested so it is worth exploring these non-significant
differences further.

We can look at this information in a slightly different way by calculating
confidence intervals. Quite simply, the 95% confdence interval of a mean
difference is 95%CI = Bi − Bj ± HSD, where Bi and Bj are any two means
(the i and j standing for 1, 2, 3 etc. or which ever means we choose to
compare). So,

For B1 − B2, 95%CI = −2 ± 2.17, producing 95%CI = (−4.17, +0.17)
For B1 − B3, 95%CI = −4 ± 2.17, producing 95%CI = (−6.17, −1.83)
For B2 − B3, 95%CI = −2 ± 2.17, producing 95%CI = (−4.17, +0.17)

Notice that the confidence intervals for B1 − B2 and B2 − B3 contain zero so
this shows why we cannot claim a genuine difference in means for these
conditions for the population. However, the zero value is close to one end
of the confidence interval, plus, with so few participants (as our example is
for illustration purposes), we have low power in our test. A more powerful
test with larger sample sizes might show a larger effect.

Details on calculating the one factor repeated measures ANOVA using
the SPSS computer statistical package can be found in Chapter 10 of
Hinton et al. (2004).
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QU I T E  O F T E N  R E S E A R C H E R S  wish to study the effects of more
than one independent variable in their research rather than just a single

factor, such as observing the effects of age and experience on motorway
driving performance. Fortunately, the analysis of variance can be applied to
more than a single independent variable. In fact we could consider any
number of independent variables in an analysis, the problem being to explain
the complexity of the results. However, as we shall see, the two factor
analysis of variance offers advantages over studying the two independent
variables separately, particularly as the two factor design allows us to examine
the effect of the interaction of the two variables on the scores. In this
chapter we shall see the importance of an interaction in data analysis. This
will be explained via the use of the following example.

It has been suggested to the city Education Committee that one school
in the city (Old School) has gained a reputation for discouraging girls from
studying the sciences. A researcher is commissioned to investigate the matter.
The researcher chooses another school in the city (New School) that matches
Old School on the range of subjects pupils can choose to study (and also
matches Old School on a number of other appropriate factors, such as size,
standards, ages taught, ratio of boys to girls, etc. to control for confounding
factors). In this city the maximum choice for pupils occurs at the age of
fifteen and this is also when the pupils study the widest range of subjects.
The researcher randomly selects 20 fifteen year old boys and 20 fifteen year
old girls from each school and finds out how many science subjects they
have chosen to study. In this experiment there are two independent variables,
school and gender, and the dependent variable measured is number of science
subjects chosen.

The researcher is not particularly interested in the separate effects of
the independent variables, but a combination of the two: is the difference
between the boys and girls, in terms of the number of science subjects chosen,
significantly greater for Old School than for New School? A two factor
analysis of variance can be performed on the data to answer this question.

The two factor analysis of variance provides us with not one but three
variance ratios. The first two of these concern the main effects of the two
factors, that is, taking each factor separately and looking at its effect on the
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dependent variable. The main effect of school will tell us whether there is a
significant difference in the number of science subjects chosen at Old School
compared to New School (combining the boys’ and girls’ scores at each
school). This might be of interest, as it will tell us which school is more
science-oriented but it will not tell us the difference between the boys and
girls. The main effect of gender will tell us whether there is a significant
difference between the boys and girls on the number of science subjects
chosen. This will combine the boys from both schools and the girls from
both schools. Again this might tell us something about differences in science
subjects chosen based on gender but will not tell us how they differ between
the two schools.

What the two factor ANOVA also tells us is whether there is a signific-
ant interaction between the factors or not. A significant interaction occurs
when the effect of one factor is different at the different conditions of the
other factor. Thus, the effect of school on the choice of science subjects for
the boys is different to the effect of school on the choice of science subjects
for the girls. If we found that school had no effect on the boys then there
would be no difference in number of science subjects chosen whichever
school they went to. However, if there was an effect of school on the girls
with the Old School girls taking fewer science subjects than the New School
girls then we would find an interaction in support of the experimental
hypothesis. Here the effect of school is different for the two conditions of
gender. The best way to understand a significant interaction is to plot the
means for the various conditions on a graph, as in Figure 14.1, where the
interaction described above is shown.

It is worth noting that if we obtained the significant interaction of the
form shown in Figure 14.1 we would almost certainly have a significant
main effect of school, as overall there are more science subjects taken at
New School compared to Old School, and a significant main effect of
gender, as overall the boys took more science subjects than the girls, but
these main effects are only a by-product of the interaction, not important
results in their own right. It is clear from this interaction that at Old School
the girls are taking fewer science subjects than the boys whereas at New
School there is no such difference.

Even if we had found that the boys in New School chose more science
subjects than the girls the experimental hypothesis would still be supported
if the boy–girl difference was larger at Old School than at New School. The
interaction would again show a significant difference between the two schools
in the effect of gender on the science subjects chosen.
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FIGURE 14.1 An interaction of school by gender

When the effect of one factor upon another is additive then there is not an
interaction in the results. Look at the example data from the schools study
in Figure 14.2(a). There is a significant main effect of gender here (the girls
choose significantly more science subjects than the boys) but no effect of
school (the same number of science subjects are chosen at the two schools).
It does not matter which school we take, the effect of gender is the same:
changing from boy to girl adds one science subject to the mean score. In
the example data of Figure 14.2(b) there is a main effect of school, more
science subjects are chosen at New School and a main effect of gender, the
boys take more science subjects than the girls. But despite having a different
pattern of main effects to Figure 14.2(a) there is still no interaction. Going
from girls to boys (at either school) simply adds a set amount (0.5) to the
mean score. Similarly going from Old School to New School adds a set
amount (1) to the mean score, regardless of whether we look at the boys’
scores across the two school or the girls’ scores. In any graph of means
from a two factor experiment we can tell there is not an interaction when
the lines on the graph are parallel, as this indicates that the effects of the
factors are additive.

The examples in Figures 14.2(c) and 14.2(d) are clearly not additive
as the lines on the graphs are not parallel. In these cases we will find an

Interactions
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FIGURE 14.2(a) No interaction in the data
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FIGURE 14.2(b) No interaction in the data again
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interaction and we can decide on its significance from the two factor ANOVA.
In Figure 14.2(c) there are no main effects but the interaction shows that the
gender effects reverse as we move from one school to the other. At Old
School the boys take one more science subject than the girls but at New
School it is the girls who take one more than the boys. In Figure 14.2(d) we
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FIGURE 14.2(c) An example of an interaction

also have an interaction as there is a wider boy–girl gap at Old School
compared to New School. There will also be a main effect of gender as
boys take more science subjects overall but not a main effect of school in
this example.

The above examples are not exhaustive but the basic rules apply
regardless of how many conditions we have for the two factors: parallel lines
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FIGURE 14.2(d) Another example of an interaction
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indicate additivity of factors and hence no interaction. When the lines are
not parallel we have an interaction which indicates (if significant) a different
effect of one factor at the different conditions of the other factor.

We have seen in the one factor ANOVA that it is the between conditions
variability that contains the systematic differences between conditions. It is
only the choice of the error term that differs when we choose repeated
measures as opposed to independent measures. The same is true of the
two factor ANOVA. However, in the two factor case we have systematic
differences that could arise from three possible sources: the effect of the
first factor (called Factor A, such as school ), the effect of the second factor
(called Factor B, such as gender) and the interaction of the two factors
(referred to as Factor A × B).

Just as we are able to partition the total sums of squares into two,
the between conditions sums of squares and the within conditions sums
of squares, we are also able to divide up the between conditions sums of
squares into the sums of squares due to Factor A, Factor B and Factor A × B.
Recall that the between conditions sums of squares is:

SS
T

n

X

N
bet conds.    

( )
= −∑ ∑2 2

This uses the totals for the conditions in the calculation of variability of the
scores between the conditions. If we used this formula for the two factor
design then it would indicate a significant difference between conditions but
not which factor is producing it. In our example we have four conditions
each with 20 subjects (n = 20): Old School-Boys, Old School-Girls, New
School-Boys and New School-Girls. If we consider for a moment that we
are only interested in Factor A (school ) then we combine the conditions
across Factor B to produce conditions of Factor A only: we combine Old
School-Boys with Old School-Girls and New School-Boys with New School-
Girls to give the conditions of Factor A, Old School (A1) and New School
(A2). We can then find a sums of squares for Factor A:

SS
T

bn

X

N
A

A= −∑ ∑
   

( )2 2

Dividing up the between conditions sums of squares
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This formula uses the totals of the conditions of Factor A (in this case TA1

and TA2
) and bn, the number of scores in each of the conditions of Factor A,

where b is the number of conditions of Factor B (in this case there are two:
Boys and Girls). Combining the 20 Old School-Boys and the 20 Old School-
Girls gives 40 (bn) subjects in Old School. We can then work out a mean
square using the degrees of freedom for Factor A (a − 1, where a is the
number of conditions of Factor A which, in this case, is 2).

We can do the same thing for Factor B, by combining the conditions
of Factor A within the conditions of Factor A. Old School-Boys are com-
bined with New School-Boys to produce condition B1, Boys, and Old School-
Girls and New School-Girls are combined to produce B2, Girls. We then
work out the formula for the sums of squares for Factor B:

SS
T

an

X

N
B

B= −∑ ∑
   

( )2 2

Dividing by the degrees of freedom (b − 1) gives us a mean square for
Factor B.

The interaction sums of squares can now be worked out. We do not
want to combine any conditions as we are interested in all the different
conditions of Factor A and Factor B, referred to as AB conditions. In our
example we have Old School-Boys (A1B1), Old School-Girls (A1B2), New
School-Boys (A2B1) and New School-Girls (A2B2). We can work out the
following sums of squares:

SS
T

n

X

N
bet conds

AB

.    
( )

= −∑ ∑2 2

Notice that this is the same formula as the overall between conditions sums
of squares. The only difference is one of labelling: the totals of conditions
are referred to as TAB, rather than T or Tc, as condition 1 is A1B1, condition
2 is A1B2, condition 3 is A2B1 and condition 4 is A2B2. This contains all the
variability in the scores due to Factor A, Factor B and the interaction Factor
A × B. If we now remove from it the sums of squares from Factor A and
Factor B then the remainder will provide us with the sums of squares of the
interaction:

SS
T

n

X

N
SS SSA B

AB

A B× = − − −∑ ∑
   

( )
    

2 2
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Dividing this by the degrees of freedom of the interaction, (a − 1)(b − 1),
gives us the interaction mean square.

All we need to do now is to find the appropriate error variances to
compare the mean squares to, in order to calculate F values for the three
factors. The choice of error mean square depends on whether the factors are
independent or repeated measures and the next chapter describes how this
is done.

If we find a significant interaction in a set of data we know that one factor
is having a different effect at the different conditions of the other factor. In
our schools example a significant interaction means that the effect of school
on Boys is different to the effect of school on Girls. We can, if we wish,
view it the other way round: the effect of gender is different on Old School
compared to the effect of gender on New School. Which way round we
choose to look at the interaction depends on our focus of interest. We are
concerned here with the effect of gender as we want to know what the
Boys–Girls difference is at Old School and how it compares to the Boys–
Girls difference at New School.

Following the discovery of a significant interaction we may choose to
look at the simple main effects of one factor at the conditions of the second
factor. Calculating simple main effects is like performing a single factor
ANOVA of one factor at each condition of the second factor. We can work
out the simple main effects of gender on Old School and the simple main
effects of gender on New School. For the simple main effects of gender on
Old School we completely ignore the results of New School and work out
a sums of squares between the Old School-Boys and the Old School-Girls.
We then work out a mean square and an F value for this simple main effect
which we compare to an appropriate table value. We can do the same for
the simple main effect of gender on New School by ignoring the Old School
results. If we had found the interaction as shown in Figure 14.1 we would
expect a significant effect of gender at Old School (as the girls take fewer
science subjects) but not a significant effect of gender at New School (where
boys and girls do not differ in the number of science subjects chosen). These
simple main effects would strongly support the experimental hypothesis.

The simple main effects of gender at Old School are only concerned
with Old School-Boys (A1B1) and Old School-Girls (A1B2). Notice that Factor
B (gender) varies between these two conditions but Factor A does not, it

Simple main effects
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stays at A1 (Old School), so we term this the simple main effect of B at A1.
The sums of squares of this simple main effect is calculated from the
following formula:

SS
T

n

T

bn
B at A

A B A   
1

1 1

2 2

= −∑

where ∑ T 2
A1B is sum of the squared totals of the A1 conditions: the squared

total of Old School-Boys (T 2
A1B1

) plus the squared totals of Old School-Girls
(T 2

A1B2
), and T 2

A1
 is the squared total of all the Old School participants (Boys

and Girls combined).
To find the sums of squares for the effects of B at A2 we work out a

similar formula but this time we are only concerned with New School (A2):

SS
T

n

T

bn
B at A

A B A   
2

2 2

2 2

= −∑

If we had wanted to find the simple main effects for Factor A instead of
Factor B all we would have done is use the same formula for the sums of
squares but replaced the Bs with As (and the b with a) and vice versa.

A two factor ANOVA allows us to examine the interaction of the two
factors. The way we do this is to separate the between conditions sums of
squares into the components due to the main effects of each factor and the
interaction. We can investigate a significant interaction further by looking at
the simple main effects of one factor at the various conditions of the other
factor, taken one at a time. In this way we can discover the source of the
interaction.

Conclusion
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ANOVA

n The two factor independent
measures ANOVA 172

n The two factor mixed design
ANOVA 181

n The two factor repeated
measures ANOVA 193

n A non-significant interaction 205
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TH E R E  A R E  T W O  I M P O R T A N T  considerations when calculating the
two factor ANOVA: first, it is necessary to lay out the data correctly

and second, the correct error terms must be chosen for the variance ratios.
In this chapter the three different types of two factor ANOVA are dealt
with: the two factor independent measures ANOVA where both the factors,
A and B, are independent measures; the two factor mixed design ANOVA
where Factor A is independent measures and Factor B is repeated measures,
and the two factor repeated measures ANOVA where both Factor A and
Factor B are repeated measures.

The simplest two factor ANOVA to calculate is where both factors are
independent measures. Here the between conditions variance has to be
separated into that arising from Factor A, Factor B and the interaction A × B,
as in all two factor ANOVAs. As there are individual differences in all sums
of squares calculations we can use the within conditions variance as the
error term for all three variance ratios. This makes the calculations relat-
ively easy. We, therefore, complete the following ANOVA summary table.

The two factor independent measures ANOVA

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Factor A dfA SSA MSA FA pA

Factor B dfB SSB MSB FB pB

Interaction A × B dfA×B SSA×B MSA×B FA×B pA×B

Error (Within dferror SSerror

conditions)

Total dftotal SStotal
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Organising the results table is important for all ANOVAs but which factor
we choose as the rows and which as the columns is not as crucial for the
two factor independent measures ANOVA as for the other types of two
factor ANOVA, but it is important to get the various totals of the different
conditions and combination of conditions correct. The following data layout
is a good example to use for clarity and organisation.11

THE RESULTS TABLE

Factor B

Factor A Condition B1 Condition B2 ... Condition Bb

Condition A1 X1 X... ... X...

X2 X... ... X...

� � ... �

Xn X... ... X...

TA1B1
TA1B2

... TA1Bb
TA1

Condition A2 X... X... ... X...

X... X... ... X...

� � �

X... X... ... X...

TA2B1
TA2B2

... TA2Bb
TA2

� � � � �

Condition Aa X... X... X...

X... X... X...

� � �

X... X... Xabn

TAaB1
TAaB2

... TAaBb
TAa

TB1
TB2

TBb
∑ X

The results table
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Degrees of freedom:

dfA = a − 1 where a is the number of condition of
Factor A.

dfB = b − 1 where b is the number of conditions of
Factor B.

dfA×B = (a − 1)(b − 1)

dferror = ab(n − 1) where n is the number of scores in an AB
condition.

dftotal = N − 1 where N is the total number of scores in
the data.

Sums of squares:

SS X
X

N
total     

( )
= −∑ ∑2

2

SS
T

nb

X

N
A

A
    

( )
= −∑ ∑2 2

where ∑ TA
2 is TA1

2 + TA2

2 + . . . + TAa

2

SS
T

na

X

N
B

B
    

( )
= −∑ ∑2 2

where ∑ TB
2 is TB1

2 + TB2

2 + . . . + TBb

2

SS
T

n

X

N
SS SSA B

AB

A B× = − − −∑ ∑
    

( )
    

2 2

where ∑ T 2
AB is

T 2
A1B1

+ T 2
A1B2

+ . . . + T 2
AaBb

SSerror = SStotal − SSA − SSB − SSA×B

(There is an alternative formula for SSerror:

SS SS X
T

n
error with conds

AB
      .= = −∑ ∑2

2

Both formulae should give the same answer.)

The formulae for calculation
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Mean square:

MS
SS

df
A

A

A

=

MS
SS

df
B

B

B

=

MS
SS

df
A B

A B

A B
×

×

×
=

MS
SS

df
error

error

error

=

Variance ratio:

F df df
MS

MS
A A error

A

error

( , )  =

F df df
MS

MS
B B error

B

error

( , )  =

F df df
MS

MS
A B A B error

A B

error
× ×

×=( , )  

The F values are then compared to the table values (Table A.3 in the
Appendix) at the chosen level of significance.

(The above calculations are based on equal numbers of scores, n,
in each of the AB conditions. It is possible to perform this analysis with
unequal numbers of scores in each condition, as with the single factor
independent measures ANOVA, but it will not be dealt with in this
book.)

An expanding company wanted to know how to introduce a new type of
machine into the factory. Should it transfer staff working on the old machine

A worked example
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to operate it or employ new staff who had not worked on any machine
before? A researcher selected 12 staff who had experience of the old machine
and 12 staff who had no such experience. Half the participants from each
group were allocated to the new machine and half to the old machine.
The number of errors made by the participants over a set time period was
measured. These errors are shown below.

Experience on Machine
old machine

Old New

Novice 4 5
5 6
7 5
6 6
8 5
5 6

Experienced 1 8
2 9
2 8
3 8
2 7
3 9

What are the effects of the two factors experience on old machine and type
of machine on the dependent variable number of errors?

Both factors are independent measures as a participant took part in
only one experience/machine condition. I will label experience on old
machine as Factor A, with two conditions (a = 2) ‘novice’ (A1) and ‘experi-
enced’ (A2), and type of machine as Factor B, also with two conditions
(b = 2), ‘old machine’ (B1) and ‘new machine’ (B2). There are four AB
conditions each with six participants (n = 6), giving twenty-four participants
in all (N = 24).
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Factor A Factor B

B1 B2

A1 4 5
5 6
7 5
6 6
8 5
5 6

TA1B1
= 35 TA1B2

= 33 TA1
= 68

A2 1 8
2 9
2 8
3 8
2 7
3 9

TA2B1
= 13 TA2B2

= 49 TA2
= 62

TB1
= 48 TB2

= 82 ∑ X = 130

Degrees of freedom:

dfA = a − 1 = 2 − 1 = 1

dfB = b − 1 = 2 − 1 = 1

dfA×B = (a − 1)(b − 1) = (2 − 1)(2 − 1) = 1

dferror = ab(n − 1) = 2 × 2 × (6 − 1) = 20

dftotal = N − 1 = 24 − 1 = 23

Sums of squares:

SS X
X

N
total     

( )
  (         )  = − = + + + + −∑ ∑2

2
2 2 2 2

2

4 5 7 9
130

24
K

= 127.83

SS
T

nb

X

N
A

A
    

( )
    .= − =

+
×

− =∑ ∑2 2 2 2 268 62

6 2

130

24
1 50
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SS
T

na

X

N
B

B    
( )

    .= − =
+
×

− =∑ ∑2 2 2 2 248 82

6 2

130

24
48 17

SS
T

n

X

N
SS SSA B

AB
A B× = − − −∑ ∑

    
( )

    
2 2

=
+ + +

− − −
      

    .   .
35 33 13 49

6

130

24
1 50 48 17

2 2 2 2 2

= 60.16

SSerror = SStotal − SSA − SSB − SSA×B

= 127.83 − 1.50 − 48.17 − 60.16 = 18.00

Mean square:

MS
SS

df
A

A

A

    
.

  .= = =
1 50

1
1 50

MS
SS

df
B

B

B

    
.

  .= = =
48 17

1
48 17

MS
SS

df
A B

A B

A B
×

×

×
= = =    

.
  .

60 16

1
60 16

MS
SS

df
error

error

error

    
.

  .= = =
18 00

20
0 90

Variance ratio:

F
MS

MS
A

A

error

( , )    
.

.
  .120

1 50

0 90
1 67= = =

F
MS

MS
B

B

error

( , )    
.

.
  .120

48 17

0 90
53 52= = =

F
MS

MS
A B

A B

error
×

×= = =( , )    
.

.
  .120

60 16

0 90
66 84
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THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Factor A 1 1.50 1.50 1.67 p > 0.05
Factor B 1 48.17 48.17 53.52 p < 0.01
A × B 1 60.16 60.16 66.84 p < 0.01
Error 20 18.00 0.90

Total 23 127.83

From the tables of the F distribution (A.3 in the Appendix), F(1,20)
= 4.35 at p = 0.05 and F(1,20) = 8.10 at p = 0.01. We can conclude that
the effect of experience on an old machine is not significant at p = 0.05
(F(1,20) = 1.67), the effect of type of machine (F(1,20) = 53.52) and the
interaction (F(1,20) = 66.84) are both highly significant ( p < 0.01).

We can examine the interaction by calculating the mean values. The
table of means is shown below:

Experience Machine
on old

Old Newmachine
machine machine

Novice 5.83 5.50
Experienced 2.17 8.17

These values are plotted in Figure 15.1. The first point to note is that the
lines are not parallel so we have further evidence of the interaction. Notice
that the experienced workers, not surprisingly, made fewest errors on the
old machine. However, they made most errors on the new machine. This
looks like a case of negative transfer, where previously learnt skills can be
a hindrance rather than a help. An example of this occurs when a visitor
to Britain, experienced in a left-hand drive car, reaches down to change
gear with the wrong hand when driving a right-hand drive car. The novice
workers appear to perform with equal accuracy on both machines.
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FIGURE 15.1 The interaction of experience and machine on the number of errors

In this case the interaction is quite clear. However, for illustration the
simple main effects will be calculated for the effect of type of machine on
the two levels of experience. In the two factor independent design ANOVA
the error term is once again the single error term from the summary table:
MSerror = 0.90, dferror = 20. This error term is used in all the simple main
effects.

The simple main effect of type of machine on the novice operators, B
at A1:

SS
T

n

T

bn
B at A

A B A        .
1

1 1

2 2 2 2 235 33

6

68

2 6
0 33= − =

+
−

×
=∑

dfB at A1
= b − 1 = 2 − 1 = 1 (as it is the effect of B and B has

2 conditions)

MS
SS

df
B at A

B at A

B at A

   
.

  .
1

1

1

0 33

1
0 33= = =

F
MS

MS
B at A

B at A

error

    
.

.
  .

1

1
0 33

0 90
0 37= = =

with degrees of freedom dfB at A1
= 1 and dferror = 20.
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From the F distribution tables we know that F(1,20) = 4.35 at p = 0.05, so
we can conclude, as the calculated value of F is smaller, that we have not
found an effect of type of machine on the novice operators.

The simple main effect of type of machine on the experienced oper-
ators, B at A2:

SS
T

n

T

bn
B at A

A B A       .
2

2 2

2 2 2 2 213 49

6

62

2 6
108 00= − =

+
−

×
=∑

dfB at A2
= b − 1 = 2 − 1 = 1 (as it is the effect of B, and B has

2 conditions)

MS
SS

df
B at A

B at A

B at A

   
.

  .
2

2

2

108 00

1
108 00= = =

F
MS

MS
B at A

B at A

error

   
.

.
  .

2

2
108 00

0 90
120 00= = =

with degrees of freedom dfB at A1
= 1 and dferror = 20.

From the F distribution tables we know that F(1,20) = 8.10 at p = 0.01, so
we can conclude, as the calculated value of F is considerably larger, that we
have a found a highly significant effect of type of machine on the experi-
enced operators.

The simple main effects usually explain the cause of an interaction but
we can perform post hoc tests such as the Tukey or Scheffé tests if we wish.
We need to be careful to select the appropriate comparison and the correct
error term although it is particularly easy with the independent measures
design as we use just the one error term.

The two factor mixed design ANOVA involves one independent measures
factor and one repeated measures factor. This design is often used when we
want to compare independent groups across a number of ‘trials’, such as
comparing men and women on, say, alertness at different times of the day,
or two groups of students on their knowledge at different points throughout
the academic year.

The two factor mixed design ANOVA
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For consistency we label the independent measures factor as Factor
A and the repeated measures factor as Factor B. This is important as the
error calculations are different for the two types of factor. This leads us
to produce two error terms and this makes the calculations a little more
complex than for the independent measures design. In the summary table
below we see how the subjects’ variability, S, needs to be considered in the
calculations.

We designate the independent measures factor (Factor A) as the rows and
the repeated measures factor (Factor B) as the columns in the results table
so that the results from a single subject form one row of the table. We must
be careful to lay out our results consistently so that we do not analyse the
results of the two factors incorrectly. Also if we use a computer program to
analyse our data it could analyse the factors the wrong way round if the
layout is different.11

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F )

Factor A dfA SSA MSA FA pA

Error for A dferrorA SSerrorA MSerrorA

(S within A)

Factor B dfB SSB MSB FB pB

Factor A × B dfA×B SSA×B MSA×B FA×B pA×B

Error for B dferrorB SSerrorB MSerrorB

and A × B
(B × AS)

Total dftotal SStotal

The results table
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THE RESULTS TABLE

Factor B

Factor A Condition B1 Condition B2 ... Condition Bb

Condition A1 S1 X1 X... ... X... TS1

S2 X2 X... ... X... TS2

� � � � � �

Sn Xn X... ... X... TSn

TA1B1
TA1B2

... TA1Bb
TA1

Condition A2 Sn+1 X... X... ... X... TS...

Sn+2 X... X... ... X... TS...

� � � � � �

S2n X... X... ... X... TS...

TA2B1
TA2B2

... TA2Bb
TA2

� � � � � �

Condition Aa S... X... X... X... ...
S... X... X... X... ...
� � � � �

San X... X... Xabn TSan

TAaB1
TAaB2

... TAaBb
TAa

TB1
TB2

TBb
... ∑ X

Degrees of freedom:

dfA = a − 1 where a is the number of conditions of
Factor A.

dferrorA = a(n − 1) where n is the number of scores in an
AB condition.

The formulae for calculation
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dfB = b − 1 where b is the number of conditions of
Factor B.

dfA×B = (a − 1)(b − 1)

dferrorB = a(b − 1)(n − 1)

dftotal = N − 1 where N is the total number of scores
in the data.

Sums of squares:

SS X
X

N
total     

( )
= −∑ ∑2

2

SS
T

nb

X

N
A

A
    

( )
= −∑ ∑2 2

where ∑ TA
2 is T 2

A1
+ T 2

A2
+ … + T 2

Aa

SS
T

b

X

N
SSerrorA

S

A    
( )

= − −∑ ∑2 2

where ∑ TS
2 is T 2

S1
+ T 2

S2
+ … + T 2

San

(The sums of squares between subjects, the first two components of the
error A sums of squares, comprises all the Factor A variation. If we take
away the variation between the A conditions, SSA, we are left with the
variation within the A conditions as our error term.)

SS
T

na

X

N
B

B    
( )

= −∑ ∑2 2

where ∑ TB
2 is T 2

B1
+ T 2

B2
+ … + T 2

Bb

SS
T

n

X

N
SS SSA B

AB
A B× = − − −∑ ∑

    
( )

    
2 2

where ∑ T 2
AB is

T 2
A1B1

+ T 2
A1B2

+ … + T 2
AaBb

SS X
T

b
SS SSerrorB

S
B A B        = − − −∑ ∑

×
2

2

(The variation within subjects, the first two components of the error B sums
of squares, contains the B and A × B variation. Removing the between
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condition variation for B and A × B leaves the error sums of squares for B
and A × B, unaffected by individual differences.)

Mean square:

MS
SS

df
A

A

A

=

MS
SS

df
errorA

errorA

errorA

=

MS
SS

df
B

B

B

=

MS
SS

df
A B

A B

A B
×

×

×
=

MS
SS

df
errorB

errorB

errorB

=

Variance ratio:

F df df
MS

MS
A A errorA

A

errorA

( , )  =

F df df
MS

MS
B B errorB

B

errorB

( , )  =

F df df
MS

MS
A B A B errorB

A B

errorB
× ×

×=( , )  

The F values are then compared to the table values (using Table A.3 in the
Appendix) at the chosen level of significance.

A company has introduced a new machine on the factory floor and it wants
to see how the workers gain skill on the machine. There is particular interest

A worked example
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in comparing the performance of workers experienced on the old machine
with that of novice operators who have not operated a machine on the
factory floor before. A researcher randomly selects 6 experienced operators
and 6 novices and monitors the errors they make on the new machine over
a three week period to see whether there are differences between the
two groups in their performance on the machine. The results are shown
below.

Participants Time

Week 1 Week 2 Week 3

Novices
1 7 6 5
2 4 4 3
3 6 4 4
4 7 6 5
5 6 5 4
6 4 2 2

Experienced
7 7 3 2
8 8 4 2
9 6 2 1

10 9 6 3
11 7 4 3
12 10 6 3

We have an independent factor experience which will be designated Factor
A, with ‘novice’ as A1 and ‘experienced’ as A2. The repeated measures
factor is time, so this is Factor B, with ‘Week 1’ as B1, ‘Week 2’ as B2 and
‘Week 3’ as B3. We can draw up the results table as follows.
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THE RESULTS TABLE

Factor B

Factor A B1 B2 B3

A1 S1 7 6 5 TS1
= 18

S2 4 4 3 TS2
= 11

S3 6 4 4 TS3
= 14

S4 7 6 5 TS4
= 18

S5 6 5 4 TS5
= 15

S6 4 2 2 TS6
= 8

TA1B1
= 34 TA1B2

= 27 TA1B3
= 23 TA1

= 84

A1 S7 7 3 2 TS7
= 12

S8 8 4 2 TS8
= 14

S9 6 2 1 TS9
= 9

S10 9 6 3 TS10
= 18

S11 7 4 3 TS11
= 14

S12 10 6 3 TS12
= 19

TA2B1
= 47 TA2B2

= 25 TA2B3
= 14 TA2

= 86

TB1
= 81 TB2

= 52 TB3
= 37 ∑ X = 170

Degrees of freedom:

dfA = a − 1 = 2 − 1 = 1

dferrorA = a(n − 1) = 2(6 − 1) = 10

dfB = b − 1 = 3 − 1 = 2

dfA×B = (a − 1)(b − 1) = (2 − 1)(3 − 1) = 2

dferrorB = a(b − 1)(n − 1) = 2(3 − 1)(6 − 1) = 20

dftotal = N − 1 = 36 − 1 = 35
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Sums of squares:
We can make our calculations easier if we work out the following

parts of the formulae first:

( )
    .

X

N

2 2170

36
802 78

∑ = =

T

nb
A
2 2 284 86

6 3
802 89

∑ =
+
×

=  .

T

na
B
2 2 2 281 52 37

6 2
886 17

∑ =
+ +

×
=

    
  .

T

b
S
2 2 2 2 218 11 14 19

3
852 00

∑ =
+ + + +

=
    . . .    

  .

T

n
AB
2 2 2 2 2 2 234 27 23 47 25 14

6
907 33

∑ =
+ + + + +

=
          

  .

∑X2 = 72 + 42 + . . . + 32 + 32 = 962.00

Now we can work out the sums of squares:

SS X
X

N
total     

( )
  .   .   .= − = − =∑∑ 2

2

962 00 802 78 159 22

SS
T

nb

X

N
A

A    
( )

  .   .   .= − = − =∑ ∑2 2

802 89 802 78 0 11

SS
T

b

X

N
SSerrorA

S
A    

( )
    .   .   .= − − = − −∑ ∑2 2

852 00 802 78 0 11

= 49.11

SS
T

na

X

N
B

B    
( )

  .   .   .= − = − =∑ ∑2 2

886 17 802 78 83 39
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SS
T

n

X

N
SS SSA B

AB
A B× = − − −∑ ∑

    
( )

    
2 2

= 907.33 − 802.78 − 0.11 − 83.39 = 21.05

SS X
T

b
SS SSerrorB

S
B A B        = − − −∑ ∑

×
2

2

= 962.00 − 852.00 − 83.39 − 21.05 = 5.56

Mean square:

MS
SS

df
A

A

A

    
.

  .= = =
0 11

1
0 11

MS
SS

df
errorA

errorA

errorA

    
.

  .= = =
49 11

10
4 91

MS
SS

df
B

B

B

    
.

  .= = =
83 39

2
41 70

MS
SS

df
A B

A B

A B
×

×

×
= = =    

.
  .

21 05

2
10 53

MS
SS

df
errorB

errorB

errorB

    
.

  .= = =
5 56

20
0 28

Variance ratio:

F
MS

MS
A

A

errorA

( , )    
.

.
  .110

0 11

4 91
0 02= = =

F
MS

MS
B

B

errorB

( , )    
.

.
  .2 20

41 70

0 28
148 93= = =

F
MS

MS
A B

A B

errorB
×

×= = =( , )    
.

.
  .2 20

10 53

0 28
37 61
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THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Factor A 1 0.11 0.11 0.02 p > 0.05

ErrorA 10 49.11 4.91

Factor B 2 83.39 41.70 148.93 p < 0.01

Factor A × B 2 21.05 10.53 37.61 p < 0.01

ErrorB 20 5.56 0.28

Total 35 159.22

In conclusion, the main effect of experience (F(1,10) = 0.02) is not significant
(F(1,10) = 4.96 at p = 0.05), whereas the main effect of time (F(2,20) =
148.93) and the interaction (F(2,20) = 37.61) are both highly significant
(F(2,20) = 5.85 at p = 0.01).

As we have found a significant interaction we can look at the means to
see the source of the interaction. The means are listed in the table below and
plotted in Figure 15.2.

Experience Time

Week 1 Week 2 Week 3

Novice 5.67 4.50 3.83
Experienced 7.83 4.17 2.33

We can see that, taken over the three weeks, the total number of errors of
the two groups of operators does not differ by very much which is why
there was no main effect of experience. All the operators made fewer errors
over time, which is responsible for the highly significant effect of time. The
highly significant interaction is interesting, as the experienced operators
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FIGURE 15.2 The interaction of time and experience on machine operator errors

began by making more errors than the novices but by Week 2 had caught
them up and at Week 3 were making fewer errors. The initial difficulty for
them might have been due to negative transfer (see page 179) from the old
machine to the new but after a while their experience began to help them
and they leapt ahead. Clearly this is speculation but it is consistent with the
outcome of the analysis.

With the mixed design ANOVA, when we have a significant interaction,
we are much more likely to look at the simple main effects of the independent
measures factor at the various conditions of the repeated measures factor
than vice versa. In our example it is more interesting to look at the effect of
experience at Week 1 and then at Week 2, and Week 3 rather than looking
at the effect of time on novice operators, and then on experienced operators.
I shall therefore only look at the simple main effects of Factor A.12 The
simple main effects allow us to look at the effect of experience on the errors
at one week only, ignoring the data from the other weeks. In this design we
work out a different error term for each simple main effect.

The simple main effect of experience at Week 1:

SS
T

n

T

an
A at B

AB B      
1

1 1

2 2 2 2 234 47

6

81

2 6
= − =

+
−

×
∑

= 560.83 − 546.75 = 14.08
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dfA at B1
= a − 1 = 2 − 1 = 1

MS
SS

df
A at B

A at B

A at B

    
.

  .
1

1

1

14 08

1
14 08= = =

SS T
T

n
errorA at B AB S

AB
    

1 1

12
2

= −∑ ∑

= 72 + 42 + . . . + 72 + 102 − 560.83

= 581 − 560.83 = 20.17

where ∑ T 2
AB1S is the sum of the squared scores of each subject in each A

condition (novice and experienced) at B1 (Week 1).

dferrorA at B1
= a(n − 1) = 2(6 − 1) = 10

MS
SS

df
errorA at B

errorA at B

errorA at B

    
.

  .
1

1

1

20 17

10
2 02= = =

F
MS

MS
A at B

A at B

errorA at B

( , )  
1

1

1

110 =

= =
.

.
  .

14 08

2 02
6 97 (from Table A.3, F(1,10) = 4.96, p = 0.05)

There is a significant ( p < 0.05) simple main effect of experience at Week 1.
We can conclude that the experienced operators are making significantly
more errors than the novice operators in Week 1.

We replace B1 with B2 in the above calculations to find the simple
main effect of experience at Week 2. FAatB2

(1,10) = 0.14, so there is not a
significant difference between the errors made by the operators in Week 2.
We calculate the simple main effect of experience at Week 3 in the same
way and FAatB3

(1,10) = 6.64, which is significant at p = 0.05. In Week 3
there is a significant difference in the number of errors made between the
two groups of operators, with the experienced operators making signific-
antly fewer errors. Thus, the simple main effects have confirmed the source
of the interaction observed by ‘eyeballing’ the graph in Figure 15.2.
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The advantage of having repeated measures on both the factors under study
is that we can perform a two factor analysis with relatively few subjects. It
also allows us to extract out the subjects’ variability and consider whether
the subjects are performing at similar levels.

The calculation of the two factor ANOVA is most complex when
we have repeated measures on both factors. This is because we have
to calculate a different error term for each of the three factors under study
(A, B and A × B). In this design we are able to extract the variation between
subjects, so subjects (S) can be seen as a random (independent measures)
factor in the analysis. To produce an error term for a factor we select the
interaction of S with the factor under test. This is shown in the summary
table below.

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F )

Factor A dfA SSA MSA FA pA

Factor B dfB SSB MSB FB pB

Subjects S dfS SSS (MSB) (FS) (pS)

Factor A × B dfA×B SSA×B MSA×B FA×B pA×B

Error for A dferrorA SSerrorA MSerrorA

(A × S)

Error for B dferrorB SSerrorB MSerrorB

(B × S)

Error for A × B dferrorAB SSerrorAB MSerrorAB

(A × B × S)

Total dftotal SStotal

The two factor repeated measures ANOVA
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I have include the mean square and F for the subjects in parentheses as we
only need to calculate these when we are concerned that there are significant
individual differences between the subjects.

In the mixed design we arranged the data so that columns in the results
table refer to the repeated measures factor. We keep the same pattern
when both factors are repeated by laying out the table in the format shown
below, with the subjects as the rows and the conditions of Factors A and B
as the columns. As both factors are repeated measures it does not matter
which we choose as Factor A and Factor B as long as we are consistent
throughout.11

We also calculate two additional tables to aid the calculations: the AS matrix
and the BS matrix. We work out the former by adding up the scores across
B, and the latter by adding up the scores across A. For subject 1, TA1S1

 is
the total of the scores in condition A1 summed across B, so it is the sum
of subject 1’s scores in conditions A1B1 to A1Bb. Similarly, TB1S1

 is the sum of
subject 1’s scores in conditions A1B1 to AaB1.

THE RESULTS TABLE

Condition A1 ... Condition Aa

Subjects Condition ... Condition ... Condition ... Condition TS

B1 Bb B1 Bb

S1 X1 Xb X.. X.. TS1

S2 X.. X.. X.. X.. TS2

S3 X.. X.. X.. X.. TS3

� � � � � �

Sn X.. X.. X.. Xabn TSn

TA1B1
... TA1Bb

... TAaB1
... TAaBb

∑ X

The results table
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AS Matrix BS Matrix

Subject A1S ... AaS Subject B1S ... BbS

S1 TA1S1
... TAaS1

S1 TB1S1
... TBbS1

S2 TA1S2
... TAaS2

S2 TB1S2
... TBbS2

S3 TA1S3
... TAaS3

S3 TB1S3
... TBbS3

� � � � � � � �

Sn TA1Sn
... TAaSn

Sn TB1Sn
... TBbSn

TA1
... TAa

TB1
... TBb

Degrees of freedom:

dfA = a − 1 where a is the number of conditions
of Factor A.

dfB = b − 1 where b is the number of conditions
of Factor B.

dfS = n − 1 where n is the number of subjects.

dfA×B = (a − 1)(b − 1)

dferrorA = (a − 1)(n − 1)

dferrorB = (b − 1)(n − 1)

dferrorAB = (a − 1)(b − 1)(n − 1)

dftotal = N − 1 where N is the total number of scores
in the data.

Sums of squares:

SS X
X

N
total     

( )
= − ∑∑ 2

2

SS
T

nb

X

N
A

A
    

( )
= −∑ ∑2 2

where ∑ TA
2 is T 2

A1
+ T 2

A2
+ … + T 2

Aa

The formulae for the calculation
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SS
T

na

X

N
B

B    
( )

= −∑ ∑2 2

where ∑ TB
2 is T 2

B1
+ T 2

B2
+

… + T 2
Bb

SS
T

ab

X

N
S

S    
( )

= −∑ ∑2 2

where ∑ TS
2 is T 2

S1
+ T 2

S2
+

… + T 2
Sn

SS
T

n

X

N
SS SSA B

AB
A B× = − − −∑ ∑

    
( )

    
2 2

where ∑ T 2
AB is T 2

A1B1
+

T 2
A1B2

+ … + T 2
AaBb

SS
T

b

X

N
SS SSerrorA

AS
A S    

( )
    = − − −∑ ∑2 2

where ∑ T 2
AS is T 2

A1S1
+ …

+ T 2
AaSn

+ … + T 2
AaS1

 ... +
T 2

AaSn

SS
T

a

X

N
SS SSerrorB

BS
B S    

( )
    = − − −∑ ∑2 2

where ∑ T 2
BS is T 2

B1S1
+ …

+ T2
B1Sn

+ … + T 2
BbS1

… +
T 2

BbSn

SSerrorAB = SStotal − SSA − SSB − SSS − SSA×B − SSerrorA − SSerrorB

Mean square:

MS
SS

df
A

A

A

=

MS
SS

df
B

B

B

=

MS
SS

df
S

S

S

=

MS
SS

df
A B

A B

A B
×

×

×
=

MS
SS

df
errorA

errorA

errorA

=
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MS
SS

df
errorB

errorB

errorB

=

MS
SS

df
errorAB

errorAB

errorAB

=

Variance ratio:

F df df
MS

MS
A A errorA

A

errorA

( , )  =

F df df
MS

MS
B B errorB

B

errorB

( , )  =

F df df
MS

MS
S S errorAB

S

errorAB

( , )  =

F df df
MS

MS
A B A B errorAB

A B

errorAB
× ×

×=( , )  

The F values are then compared to the table values at the chosen level of
significance.

In a factory a machine produces two kinds of product, one that requires the
operator to follow a complex set of instructions and one that is very simple
to make. There are two shifts in the factory, a day shift and a night shift.
The factory manager wants the factory to make the products with the min-
imum of errors. A researcher decides to study the effect of shift (day versus
night) and product (complex versus simple to make) on the errors made
by the operators. All operators work both shifts on a rotation system. Six
operators are randomly selected and their error performance is measured
during a day shift and a night shift. Appropriate balancing is undertaken so
that carry-over effects from one shift to another are controlled for by testing
three operators on the day shift first and three on the night shift first. The
number of errors made during a shift are shown in the table below.

A worked example
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Operator Complex product Simple product

Day shift Night shift Day shift Night shift

1 5 9 3 2
2 5 8 2 4
3 7 7 4 5
4 6 10 5 4
5 4 8 3 3
6 6 9 5 6

There are repeated measures on both factors so the repeated measures
ANOVA can be used to test the effect of the independent variables
on performance. Due to the way I have laid out the conditions above,
I shall label product as Factor A, with ‘complex product’ as A1 and ‘simple
product’ as A2, and shift as Factor B, with ‘day shift’ as B1 and ‘night
shift’ as B2. There are two conditions of Factor A (a = 2), two of Factor
B (b = 2), six participants (n = 6) and twenty-four scores in total
(N = 24).

First we produce the results table:

Participants Condition A1 Condition A2

Condition Condition Condition Condition
B1 B2 B1 B2 TS

S1 5 9 3 2 TS1
= 19

S2 5 8 2 4 TS2
= 19

S3 7 7 4 5 TS3
= 23

S4 6 10 5 4 TS4
= 25

S5 4 8 3 3 TS5
= 18

S6 6 9 5 6 TS6
= 26

TA1B1
= 33 TA1B2

= 51 TA2B1
= 22 TA2B2

= 24 ∑ X = 130

The AS and BS matrices can be created from the results table.
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AS Matrix BS Matrix

Participant A1S A2S Participant B1S B2S

S1 14 5 S1 8 11
S2 13 6 S2 7 12
S3 14 9 S3 11 12
S4 16 9 S4 11 14
S5 12 6 S5 7 11
S6 15 11 S6 11 15

TA1
= 84 TA2

= 46 TB1
= 55 TB2

= 75

We can now calculate the F values:

Degrees of freedom:

dfA = a − 1 = 2 − 1 = 1

dfB = b − 1 = 2 − 1 = 1

dfS = n − 1 = 6 − 1 = 5

dfA×B = (a − 1)(b − 1) = (2 − 1)(2 − 1) = 1

dferrorA = (a − 1)(n − 1) = (2 − 1)(6 − 1) = 5

dferrorB = (b − 1)(n − 1) = (2 − 1)(6 − 1) = 5

dferrorAB = (a − 1)(b − 1)(n −1) = (2 − 1)(2 − 1)(6 − 1) = 5

dftotal = N − 1 = 24 − 1 = 23

Sums of squares:

We can make the calculations easier if we work out the components of the
formulae first:

( )
    .

X

N

2 2130

24
704 17

∑ = =

T

nb

A
2 2 284 46

6 2
764 33

∑ =
+
×

=  .
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T

na
B
2 2 255 75

6 2
720 83

∑ =
+
×

=  .

T

ab
S
2 2 2 2 2 2 219 19 23 25 18 26

2 2
719 00

∑ =
+ + + + +

×
=

          
  .

T

n
AB
2 2 2 2 233 51 22 24

6
791 67

∑ =
+ + +

=
      

  .

T

b
AS
2 2 2 2 2 2 214 13 14 9 6 11

2
783 00

∑ =
+ + + + + +

=
            

  .
K

T

a
BS
2 2 2 2 2 2 28 7 11 14 11 15

2
738 00

∑ =
+ + + + + +

=
            

  .
K

X2 820 00∑ = .

We can now work out the sums of squares:

SS X
X

N
total     

( )
  .   .   .= − = − =∑ ∑2

2

820 00 704 17 115 83

SS
T

nb

X

N
A

A    
( )

  .   .   .= − = − =∑ ∑2 2

764 33 704 17 60 16

SS
T

na

X

N
B

B    
( )

  .   .   .= − = − =∑ ∑2 2

720 83 704 17 16 66

SS
T

ab

X

N
S

S    
( )

  .   .   .= − = − =∑ ∑2 2

719 00 704 17 14 83

SS
T

n

X

N
SS SSA B

AB
A B× = − − −∑ ∑

    
( )

    
2 2

= 791.67 − 704.17 − 60.16 − 16.66 = 10.68
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SS
T

b

X

N
SS SSerrorA

AS
A S    

( )
    = − − −∑ ∑2 2

= 783.00 − 704.17 − 60.16 − 14.83

= 3.84

SS
T

a

X

N
SS SSerrorB

BS
B S    

( )
    = − − −∑ ∑2 2

= 738.00 − 704.17 − 16.66 − 14.83

= 2.34

SSerrorAB = SStotal − SSA − SSB − SSS − SSA×B − SSerrorA − SSerrorB

= 820.00 − 60.16 − 16.66 − 14.83 − 10.68 − 3.84 − 2.34

= 7.32

Mean square:

MS
SS

df
A

A

A

    
.

  .= = =
60 16

1
60 16

MS
SS

df
B

B

B

    
.

  .= = =
16 66

1
16 66

MS
SS

df
S

S

S

    
.

  .= = =
14 83

5
2 97

MS
SS

df
A B

A B

A B
×

×

×
= = =    

.
  .

10 68

1
10 68

MS
SS

df
errorA

errorA

errorA

    
.

  .= = =
3 84

5
0 77

MS
SS

df
errorB

errorB

errorB

    
.

  .= = =
2 34

5
0 47

MS
SS

df
errorAB

errorAB

errorAB

    
.

  .= = =
7 32

5
1 46
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Variance ratio:

F
MS

MS
A

A

errorA

( , )    
.

.
  .15

60 16

0 77
78 13= = =

F
MS

MS
B

B

errorB

( , )    
.

.
  .15

16 66

0 47
35 45= = =

F
MS

MS
S

S

errorAB

( , )    
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THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Factor A 1 60.16 60.16 78.13 p < 0.01

Factor B 1 16.66 16.66 35.45 p < 0.01

Subjects S 5 14.83 2.97 2.03 p > 0.05

Factor A × B 1 10.68 10.68 7.32 p < 0.05

ErrorA 5 3.84 0.77

ErrorB 5 2.34 0.47

ErrorAB 5 7.32 1.46

Total 23 115.83

In conclusion there is a highly significant effect of Factor A ( product)
with F(1,5) = 78.13, and of Factor B (shift) with F(1,5) = 35.45 (compared
to a table value of F(1,5) = 16.26, p = 0.01). The interaction of product
and shift (F(1,5) = 7.32) is significant at the p = 0.05 level of significance
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(F(1,5) = 6.61, p = 0.05). The effect of subjects (F(5,5) = 2.03) is not sign-
ificant (F(5,5) = 5.05, p = 0.05) which indicates no significant differences
between the participants in their level of performance.

The mean number of errors in each condition is shown in the table
below.

Complex product Simple product

Day shift Night shift Day shift Night shift

5.50 8.50 3.67 4.00

These means are plotted in Figure 15.3 to help us interpret the interaction.
More errors are made on the complex product than the simple product
(producing the effect of product) and more errors are made on the night
shift (producing the effect of shift). However, from Figure 15.3 we can see
that the difference in the errors between the day and night shifts is much
greater on the complex product. More errors are made at night relative to
the day for the complex product in comparison to day–night difference for
the simple product.

FIGURE 15.3 The interaction of product and shift on machine operator errors
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We can perform the simple main effects of shift on the two products
separately to confirm the above interpretation of the significant interaction.
There is a different error term of each simple main effect but the same
formula is used with the As and Bs adjusted accordingly, whichever of the
two factors we choose.13 First, the simple main effect of shift (Factor B) on
the complex product (A1).
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We can conclude that there is a highly significant effect ( p < 0.01) of shift
on the errors made on the complex product. Observing the means we see
that there is a significant increase in errors during the night shift compared
to the day shift.

We can perform the simple main effect of shift (Factor B) on the
simple product (A2) in the same way by replacing A1 in the formulae
with A2. We find that FB at A2

(1,5) = 0.47, so we have not found a significant
difference between the number of errors made on the simple product between
the two shifts ( p > 0.05).

In the examples chosen for the three types of two factor ANOVA there has
always been a significant interaction. This has been done to illustrate what
an interaction entails and also how we can examine the simple main effects
to explore the source of the interaction. There will be many cases when the
interaction will not be significant, because the effect of the factors is either
additive or non-significant. In these cases we can examine the main effects
in more detail if we wish by post hoc tests, such as the Tukey or Scheffé as
long as we select the appropriate error term for the analysis. In the Tukey
for example we would use the mean square error of a significant factor if we
wanted to consider the differences in means for the conditions of that factor.

Details on how to calculate the different types of two factor ANOVAs
using the SPSS computer statistical package can be found in Chapter 11
of Hinton et al. (2004).

A non-significant interaction
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CO N S I D E R  T H E  F O L L O W I N G  S I T U A T I O N . A researcher is interested
in investigating a number of possible differences in behaviour between

boys and girls in the classroom. One of the hypotheses the researcher wants
to test is that girls are more attentive in class than boys. Whilst the researcher
has access to a class of children that are suitable for testing it is not possible
to video the classroom and analyse the recordings. Although aware of the
problems, the researcher decides that the only solution in this specific case
is to rely on the teacher’s opinion. The teacher is asked to rate each of the
children in the class in terms of their attentiveness on a scale of 0–100. The
teacher is not, for obvious reasons, informed of the hypothesis of the test
until after completing the task. In a class of ten children the following
results are produced:

Child Teacher’s
rating

Susan 67
Linda 55
John 26
Mary 70
Peter 36
Ian 57
Trevor 32
Andrew 65
Helen 59
Christine 24

I have plotted the results on the 0–100 scale below and indicated the
teacher’s rating of each child by their initial. It does look here as though
there are more of the girls at the high end of the attentiveness scale and more
of the boys at the lower end. And if these data were of the sort we have
been considering up to now we could compare these results on a t test.
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0 10 20 30 40 50 60 70 80 90 100

Girls C L H S M
Boys J T P I A

The problem is that, in this case, we are making an assumption about the
data which may not be valid. The problem has to do with using any form
of rating scale. On the basis of the numbers there appears to be a small
difference between Christine and John and a large difference between Mary
and Linda. Also the difference between Christine and John, of 2, is the same
as the difference between Andrew and Susan. The assumption that we are
making is that the teacher is using the rating scale as an interval scale,
where the numbers progress in equal intervals along the scale, with the
difference between consecutive numbers always the same. (See Chapter 2
on different types of numbers.)

Why cannot we assume that the teacher is using the rating scale as an
interval scale? There are two reasons. First, the teacher is not a clock or a
thermometer or a tape measure. These are all measuring devices that have
been deliberately designed to measure in equal intervals. Human beings may
not be able to judge differences in the same formal way as other devices.
Second, we cannot check the teacher in the same way as we can calibrate a
clock to check that it is working properly.

In reality the teacher might see Christine and John as more similar
than Andrew and Susan. Also the difference between Peter and Linda could
be seen as the same as the difference between John and Trevor, even though
the gap between Peter and Linda is numerically greater. It is quite possible
that an interval scale is not being used. An interval scale is like a tape
measure made out of rigid material, the intervals are always the same. Now
consider a tape measure made out of an elastic material. The teacher’s ‘tape
measure’ (the rating scale) might be stretched at certain points and squashed
at others, providing quite a different scale. The teacher’s rating scale could
in reality look like the scale below.

0 10 20 30 40 50 60 70 80 90 100

Girls C LH S M
Boys J T P I A
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When we have doubts about whether a scale is interval or not we
should assume that it is not, otherwise we risk producing erroneous conclu-
sions in our data analysis. Unfortunately, this produces another problem.
All the statistical tests that we have examined so far in the book (z, t test,
ANOVA) assume that the dependent variable has been measured on an
interval scale. In fact they require it, in order that means, standard deviations
and other statistics can be properly calculated. Without an interval scale
these calculations are meaningless.

We can see the problem of calculating statistics in the above example.
To the teacher the difference between Andrew and Susan is larger than
the difference between Christine and John as the ‘tape measure’ is stretched
more between 60 and 70 than between 20 and 30. Even though both differ-
ences are written as 2 the Andrew–Susan difference is a larger ‘2’ than
the Christine–John ‘2’. Calculating a mean, or a standard deviation, is
clearly inappropriate as the numbers do not reflect the underlying scale
being used.

We can refer to two kinds of data here: that which comes from an
interval scale and we can perform statistics on, and that which comes from
an ordinal scale. Interval data is usually obtained from experiments where
the dependent variable is measured on a formal measuring device, such as
reaction times, weight loss, certain test scores and so forth. We can perform
parametric tests on these data, such as t tests or an ANOVA. Parametric
tests require interval data. The other important feature of parametric tests is
that they make parametric assumptions, assumptions concerning character-
istics of the underlying populations that the samples come from. These
include the assumptions that populations are normally distributed and that
samples come from distributions with equal variance. All the tests attempt
to estimate unknown population parameters by using the sample statistics
and these parameters are constrained by the assumptions. If we believe that
the assumptions of the parametric tests are not met then it is inappropriate
to use them as they may not test the hypothesis properly. When we are
concerned that our data is not interval or that the parametric assumptions
might not be valid we employ a nonparametric test instead, one that does
not make the interval assumption about the scale of measurement nor any
assumptions about the underlying distributions.

How can we analyse data nonparametrically? The first point to note,
for the reasons cited above, is that we cannot use the actual numbers in our
analysis. We cannot perform calculations on the raw data or make assump-
tions about the underlying population distributions. What we can assume
about the numbers produced in a rating scale, such as the one the teacher
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used, is that these numbers allow us to rank order the data. Whilst we are
unable to decide what the difference between ratings of 24 and 26 means
to the teacher, what we can say is that the teacher rates the person who
scored 26 as more attentive than the one who is rated at 24. Ratings are
therefore ordinal data, they place the subjects into a specific order. We can
look at the teacher’s ratings of the children and say, from the numbers, that
Mary is rated as the most attentive and Christine the least. Indeed we are
able to rank order the participants on the basis of the ratings. In the table
below I have ranked the children from least attentive (rank 1) to most
attentive (rank 10).

Child Teacher’s Rank
rating

Susan 67 9
Linda 55 5
John 26 2
Mary 70 10
Peter 36 4
Ian 57 6
Trevor 32 3
Andrew 65 8
Helen 59 7
Christine 24 1

We can be confident that the information we have extracted from the
data, the ranks, is valid as long as the data is ordinal. In analysing the ranks
we will not be making any assumptions about intervals or underlying distri-
butions. Essentially, all nonparametric analyses compare the ranks obtained
in the different conditions of the independent variable. We can compare
the ranks of the girls to those of the boys. If the girls receive all the high
ranks and the boys the low ones then this can be used in support of the
experimental hypothesis. How and when we can decide that one set of ranks
is significantly different from another set of ranks lies at the heart of the
various nonparametric tests. In many cases statisticians have developed
nonparametric tests that can be undertaken instead of a particular parametric
test when its assumptions are not met. The following table gives the
nonparametric equivalents of the most popular parametric tests.
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Number of samples Parametric test Nonparametric test

Two (independent) Independent t test Mann–Whitney U test
Two (related) Related t test Wilcoxon signed-ranks

test
Two or more One factor Kruskal–Wallis test
(independent measures) independent measures

ANOVA
Two or more One factor Friedman test
(repeated measures) repeated measures

ANOVA

When working out ranks it is usual in statistical analysis to give the lowest
score a rank of 1 and work up through the scores, giving the highest score
the top rank. In a number of tests it does not matter whether the data are
ranked from the top down or from the bottom up but when it does matter
the bottom up ranking is required. It is therefore a good idea to get into the
habit of ranking in this way.

It often occurs that more than one subject achieves the same score
in a test. In this case it is sensible to give these subjects the same rank.
The way to do this is to find out how many subjects have the same raw
score. We will refer to this number as s, so if three subjects scored the
same score then s = 3. The rank we are about to allocate is labelled r. If we
had ranked the first five scores before we got to the tied scores then r = 6.
The formula for calculating the rank to give to the tied subjects is as
follows:

rank  
  (   )    (     )

=
+ + + + + −r r r s

s

1 1K

With s = 3 and r = 6 then: rank  
    

=
+ +

=
6 7 8

3
7. The three subjects are all

given a rank of 7.
Looking at the example it is easy to see the reason for giving out these

ranks. If the numbers had been different they would have been given the

Calculating ranks
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ranks 6, 7 and 8. As they are the same we give then an equal share of these
three ranks. The next rank to be allocated is r + s. In our example, the next
rank to be allocated is 9.

Sometimes the rank allocated to identical values will not be a whole
number. If two subjects have identical scores and the next ranking to be
allocated is 6 then both subjects would be given a rank of 6.5. It is only
when scores are tied in this way that we obtain ranks that are not whole
numbers.

There are a number of calculations that we can perform with ranks.
These calculations can then be used in the construction of statistical tests.
Calculations with ranks rather than scores are often simpler as, say, ten
scores can be anything but ten ranks are always the numbers 1 to 10. With
ranks we only need to know the number of scores and then we can work
out a range of rank statistics. If the number of scores is n, and R refers to a
rank, then:

1 The sum of all the ranks ( )  
(   )

R
n n

is
+∑ 1

2
If we have 10 ratings (n = 10) and rank them then R∑ =
10 10 1

2
55

 (   )+
=

2 The sum of the top n1 ranks, where n1 + n2 = n is n n
n n

1 2
1 1 1

2

(   )
+

+

Again, with n = 10, if we wish to sum the top 3 ranks then n1 = 3,

n2 = 7. The sum of the top three ranks = × +
+

= (   )  
 (   )

3 7
3 3 1

2
27.

3 The mean of the ranks, which is
R

n

n∑⎛

⎝⎜
⎞

⎠⎟
=

+  1

2

When n = 10 the mean of the ranks =
+

=  .
10 1

2
5 5

4 The sum of the squared ranks ( )  
(   )(   )

R
n n n

2
1 2 1

6∑ + +
is  as long as

there are no tied ranks. For this reason there are some statistics that
become less valid the more tied ranks there are.

Calculations using ranks



S T A T I S T I C S  E X P L A I N E D

214

When n = 10 the sum of the squared ranks =
+ +

=
(   )(   )10 10 1 20 1

6
385

(as long as none of the ranks are tied).

In the following chapters we will use these calculations in the nonparametric
analysis of data.
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AC O M P A R I S O N  B E T W E E N  two samples, comparing two conditions
of an independent variable on a dependent variable, would normally

be analysed by a t test if we were able to make the assumptions that the t
test requires about the data in our samples. When we cannot make those
assumptions and can only assume that the data are ordinal, we have to build
a nonparametric analysis based on the rank ordering of the data. In this
chapter we will consider the nonparametric equivalents of the related and
independent t tests, namely the Mann–Whitney U test and the Wilcoxon
signed-ranks test.

The teacher’s ratings of pupils’ attentiveness from the previous chapter
provide us with a suitable example of a two sample case with independent
samples. We cannot assume that the teacher’s ratings are based on an interval
scale, nor can we assume any underlying distributions concerning these
ratings. The statistical analysis has to be based on the ranks. The rank ordering
of the participants is shown below.

Pupil Rank

Mary 10
Susan 9
Andrew 8
Helen 7
Ian 6
Linda 5
Peter 4
Trevor 3
John 2
Christine 1

The Mann–Whitney U Test (for independent samples)
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The researcher’s hypothesis was that the girls would be rated as
more attentive. If this was the case then we would expect the girls’ ranks
to be higher than the boys’ ranks. Alternatively, if the boys were more
attentive then they should achieve the higher ranks. And if there was no
difference between the groups on attentiveness then we would expect the
boys and girls to be evenly spread amongst the ranks. One way of finding
out whether the groups are clustered at the top or bottom of the ranks is to
find out how many participants from one group have a higher rank than
each member of the other group. If we look at the table below we can see
that no boys are above Mary and Susan, one above Helen, two above Linda,
and five above Christine. We can do this for the boys as well and this is also
shown in the table.

Pupil Rank Boys above Girls above

Mary 10 0
Susan 9 0
Andrew 8 2
Helen 7 1
Ian 6 3
Linda 5 2
Peter 4 4
Trevor 3 4
John 2 4
Christine 1 5

Total 8 17

Now if all five girls had been at the top of the rankings their total
would have been 5 × 0 = 0 (as they would have had no boys above any of
them) and the boys would have scored 5 × 5 = 25 (as all five of them would
have had five girls above them). If the boys had all been at the top then the
totals would have been reversed. With the researcher’s one-tailed test we
are focusing on the girls’ total being small, indicating their ranks are at the
top. If the girls score 0 then it seems reasonable to conclude that there is a
genuine difference between the girls’ and boys’ ratings. If the girls scored
25 then clearly they are not ranked higher than the boys. When the score is
midway between the two (12 or 13) then the two groups are mixed in their
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ranking. Our total for the girls is 8: is this low enough to conclude that they
are genuinely higher in the ranks as a group?

The analysis we are developing here is that of the Mann–Whitney U
test (for two independent samples). It compares the actual ranks achieved
with the ‘best possible ranks’, that is what the group would have scored if
all its members had been at the top of the ranks.

To work out the calculations we shall label the girls as Sample 1 with
a sample size of n1 = 5 and the boys as Sample 2, with n2 = 5. If the girls
had occupied the top n1(5) ranks then they would have had a rank total of
10 + 9 + 8 + 7 + 6 = 40, or as a formula:

n n
n n

1 2
1 1 1

2
5 5

5 5 1

2
40

(   )
      

(   )
+

+
= × +

+
=

How close did the girls get to this? If we add up the actual ranks of the girls
we find they achieved:

R1 10 9 7 5 1 32∑ = + + + + =            

The top ranks minus the actual ranks for Sample 1 is 40 − 32 = 8. We refer
to this figure as U1, U1 = 8.

We can also find a U for the boys. If they had occupied the top n2

ranks then they would have had a rank total of:

n n
n n

1 2
2 2 1

2
5 5

5 5 1

2
40

(   )
      

(   )
+

+
= × +

+
=

The boys’ actual rank total is: ∑ R2 = 8 + 6 + 4 + 3 + 2 = 23. For the boys
U2 = 40 − 23 = 17.

Notice that we have arrived at the same figures of 8 and 17 as in the
table above. The is because the two analyses are the same. The Mann–
Whitney U statistic is the difference between the sample’s actual ranks and
the maximum ranks they could have got, with a small value of U indicating
a group is close to the top. It is calculated using the formulae:

U n n
n n

R1 1 2
1 1

1

1

2
    

(   )
= +

+
− ∑ U n n

n n
R2 1 2

2 2
2

1

2
    

(   )
= +

+
− ∑

As a check it is worth noting that U1 + U2 = n1n2.
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To decide whether there is a significant difference between the samples we
need the probability of obtaining the two values of U when there really is
no difference between the populations the samples are drawn from. What
range of values, and with what probabilities, would we expect for U when
the null hypothesis is true?

Imagine for a moment that we had only tested two girls and two boys
and we had obtained a U for the girls of 1 and a U for the boys of 3. What
is the probability of getting this result by chance rather than as a result of a
genuine difference in populations? We can see that there are six possible
ways in which we can order two boys and two girls:

Rank Order 1 Order 2 Order 3 Order 4 Order 5 Order 6

4 Girl Girl Girl Boy Boy Boy
3 Girl Boy Boy Girl Girl Boy
2 Boy Girl Boy Girl Boy Girl
1 Boy Boy Girl Boy Girl Girl
U(Girls) 0 1 2 2 3 4
U(Boys) 4 3 2 2 1 0

When the null hypothesis is true we would expect each of these possibilities
to occur with equal probability. As there are six of them each one has a
probability of 1/6 or 0.167. We can now work out the probability of getting
a U value by chance. There is only one way for the girls to get a U of 0, 1,
3, or 4 so each has a probability of 0.167, but two ways of getting a U of 2,
with a probability of 0.33. In hypothesis testing we are concerned with
probabilities greater than or less than a certain value. In this example it is
the girls’ score of 1. The probability of getting 1 or less by chance is the
probability of getting 1 (0.167) plus the probability of getting 0 (0.167),
which equals 0.33. If we choose the p = 0.05 level of significance then we
can say that the probability of getting 1 or less by chance is so large (0.33)
that it is not significant at p = 0.05.

Returning to our example of 5 boys and 5 girls, we can do the same
calculation of probabilities. It is more tedious to work out as there are
252 different ways of ordering these samples but the logic is the same.
When the null hypothesis is true each possibility is equally likely and we are

The significance of U
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able to work out the probability of achieving a certain value. There is
one way of the girls obtaining a U of 0, so this has a probability of 1/252
or 0.004, one way of obtaining a U of 1 (probability = 0.004), two ways
of obtaining a U of 2 (probability 0.008) and so on, as shown in the table
below.

Number of ways Probability of Probability of
of getting this getting this value getting this value

U value by chance by chance or lower by chance

0 1 0.004 0.004
1 1 0.004 0.008
2 2 0.008 0.016
3 3 0.012 0.028
4 5 0.020 0.048 Ô p < 0.05
5 7 0.028 0.076

I stopped calculating U at 5 for two reasons. One, it is getting rather
hard work and two, if we look at the last column, we have found out which
values of U occur by chance with a probability less than 0.05 (our signific-
ance level). With five boys and five girls a value of U of 4 or less can be
taken as significant (at p = 0.05) as it is occurs by chance with a probability
less than the significance level.

Fortunately we do not have to work the probability tables ourselves,
they have been worked out and the critical value of U is listed for the level
of probability chosen (see Table A.5 in the Appendix). You will see that for
small values of n1 and n2 no critical value is given, there is a dash instead.
As we saw with two boys and two girls, it is not possible with these small
sample sizes to obtain a value with a probability lower than the significance
level of p = 0.05.

In looking up the values in the table we must decide whether we are
testing a one- or two-tailed prediction. In this example we have a one-tailed
prediction: we test the girls’ value of U(U1) as we are not interested in the
boys’ value. If we specify a two-tailed test then we simply select the smaller
of U1 and U2 to compare with the table value. When looking up the value in
the table it is important to remember that we want the calculated value to be
equal to or smaller than the table value to be significant for the reason given
above.
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We can now look up the table value (Table A.5) to compare with the
calculated value of U for the girls. For a one-tailed test, with n1 = 5 and
n2 = 5, the critical value of U is 4 at a significance level of p = 0.05. As the
girls’ value is larger (8) we cannot reject the null hypothesis at this level of
significance. We have not found a difference in the girls and boys in the
teacher’s ratings of the attentiveness.

When the null hypothesis is true, any variation in the ranks between the two
samples will have arisen from chance factors. Clearly we want to know
what differences we would expect by chance in order to make a decision
about our calculated value, so we need to know the distribution of U when
the null hypothesis is true. As we saw above a value of U is calculated for
each sample. The possible values of U range from 0 up to n1n2 but when the
null hypothesis is true we would not expect the extreme values very often and

we would expect both values of U to be similar, around 
n n1 2

2
, the midpoint

of the distribution. As we saw above it is not too difficult to work out the
distributions for small values of n1 and n2. These values are shown in the
tables. However, when the sample sizes are large (both 20 or more) then
the distribution of U turns out to approximate a normal distribution with:

µ σ      
(     )

= =
+ +n n n n n n1 2 1 2 1 2

2

1

12
and

With these large samples, we can work out a z score for the calculated value
of U and look up the probability in the standard normal tables (Table A.1),
where z is calculated as follows:

z
U

n n

n n n n(     )
=

−

+ +

1 2

1 2 1 2

2
1

12

We have to be a little careful in our use of U. The more tied values we have
the more inaccurate the test becomes. If we do get a lot of tied values then it
is worth questioning the use of the dependent variable; is it too crude a meas-
ure to differentiate between the subjects and rank order them appropriately?

The distribution of U



S T A T I S T I C S  E X P L A I N E D

222

1 Rank all the scores from lowest to highest.
2 Calculate a U value for each sample using the following formulae:

U n n
n n

R1 1 2
1 1

1

1

2
    

(   )
= +

+
− ∑ U n n

n n
R2 1 2

2 2
2

1

2
    

(   )
= +

+
− ∑

3 Compare the smaller value with the critical value in the table (Table A.5
in the Appendix). The calculated value must be equal to or smaller
than the table value for significance. (In a one-tailed test, if the sample
predicted to have the highest ranks does not produce the smallest of
the two U values then it certainly will not be significant!)

Two social clubs, the Hilltop Social Club and the Valley Social Club, decide
to join forces and hire a coach to take them to see a Shakespearian play in
the nearby city. One of the club secretaries decides to find out how much the
members enjoyed the play, so on the coach home asks everyone to rate their
enjoyment of the play on a 0 to 100 scale. The members of Valley Social
like to see themselves as very cultured people so the club secretary predicts
that they will rate their enjoyment of the play higher than the members of
Hilltop. Is the secretary’s prediction supported by the following data?

Hilltop Social Valley Social
Club Club

23 46
54 45
35 62
42 62
14 75
24 50
38 80

55
33

A worked example

Procedure for calculating the Mann–Whitney U statistic
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We are not going to make any assumptions about the data (except that it
is ordinal) or about the underlying distributions of the populations, so will
perform a Mann–Whitney U test.

First we rank the rating values across all conditions, taking into
account ties:

Sample 1 Sample 2

Hilltop Rank Valley Rank

23 2 46 9
54 11 45 8
35 5 62 13.5
42 7 62 13.5
14 1 75 15
24 3 50 10
38 6 80 16

55 12
33 4

n1 = 7 ∑ R1 = 35 n2 = 9 ∑ R2 = 101

We work out the two values of U:

U n n
n n

R1 1 2
1 1

1

1

2
7 9

7 7 1

2
35 56    

(   )
        

(   )
    = +

+
− = × +

+
− =∑

U n n
n n

R2 1 2
2 2

2

1

2
7 9

9 9 1

2
101 7    

(   )
        

(   )
    = +

+
− = × +

+
− =∑

The prediction is one-tailed so the Valley value is the U we choose. As this
is the smaller value the data do follow the direction predicted. To decide
if this is significant we look up the critical value using n1 and n2. From
Table A.5, U = 9, n1 = 7, n2 = 9, p = 0.01 for a one-tailed test. As the cal-
culated value of 7 is lower than the table value we can conclude that the
members of Valley Social Club gave significantly higher ratings of their
enjoyment of the play than the members of Hilltop Social Club.
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The nonparametric test for comparing two related samples is the Wilcoxon
signed-ranks test. This will be explained by considering an example. A
teacher wanted to test the effect of a new television programme designed
to encourage children’s interest in mathematics. A group of nine children
(n = 9) were asked to rate their interest in mathematics on a 0 to 10 scale
before and after the programme. The results are shown below.

Interest in mathematics

Child Before After

1 2 4
2 5 8
3 5 4
4 2 8
5 3 7
6 2 9
7 7 4
8 7 7
9 4 9

The Wilcoxon test often has the words matched pairs in its title. This
is because each score is matched in one sample with a score in the second
sample, in this example the children are matched with themselves. We
match the pairs in order to produce a difference score. It is not unreasonable
to assume that the scores of a matched pair can be compared despite any
differences in the way in which the rating scale is being used between the
children. If there really is a beneficial effect of the television programme
(the one-tailed prediction is correct) then we would expect the interest
ratings to be consistently higher after the programme than before. This con-
sistency should show up as a set of negative differences when we subtract
the rating after the programme from the rating before the programme.

A mixture of equal positive and negative differences would indicate
a lack of consistency in the differences between the samples, with some
children’s interest going up and others’ going down after the programme.
This is what we would expect with the null hypothesis. So, for significance

The Wilcoxon signed-ranks test (for related samples)
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we are looking for a consistent pattern where most difference scores are of
the same sign, either mostly positive or mostly negative.

The differences are shown in the table below. Notice that child 8 pro-
duces a difference score of zero. This cannot be used to support negative dif-
ferences or positive differences so we reject this participant from the analysis
as the data is unhelpful to our decision making. We reduce n by one to 8.

Before After Sign of Size of Rank of
Child Sample 1 Sample 2 difference difference difference

1 2 4 − 2 2
2 5 8 − 3 3.5
3 5 4 + 1 1
4 2 8 − 6 7
5 3 7 − 4 5
6 2 9 − 7 8
7 7 4 + 3 3.5
8 7 7 0
9 4 9 − 5 6

The Wilcoxon test does not just compare the sign of the differences, it
also compares the size of the differences. Clearly the inconsistent differ-
ences (in our example the positive ones) are more of a problem to the
research hypothesis if they are large rather than if they are small, as they are
harder to explain away. The Wilcoxon test considers this by ranking the
size of the differences (their absolute values) by ignoring the sign of the
differences and treating them all as positive for ranking purposes. The ranks
are shown in column six of the above table.

The inconsistent differences, the two positive differences (+) have
ranks of 1 and 3.5. Are these small enough for us to conclude that this result
is very unlikely to have occurred by chance? What is the probability of
getting such ranks by chance? What we do in the Wilcoxon test is to look
at the sum of the inconsistent ranks, 1 + 3.5 = 4.5, which we call T. What
is the probability of getting a T as small as 4.5 when the null hypothesis
is true? We are interested in T being small for significance as it indicates
a high degree of consistency: when T is zero there is no inconsistency in
the ranking and the higher of each pair of scores is always in the same
sample.
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By chance each rank could be positive (+) or negative (−), so we have
two equal possibilities for each participant when the null hypothesis is true.
With eight participants that gives us 28 = 256 different possibilities in total.
How many of these possibilities have positive rank totals as small as or
smaller than 4.5? There is only one way of achieving a positive rank total
of zero (every difference is negative), so the probability of getting zero by
chance is 1/256 or 0.004. There is only one way of getting a positive rank
total of 1 (the lowest difference is positive and the rest are negative) and
one way of a positive rank total of 2 (the second lowest difference is
positive and the rest are negative). We can get a positive rank total of 3 in
two ways: either the third lowest rank is the only positive one or the lowest
two ranks are positive and the rest negative. We can work out further values
as in the table below.

Number of ways Probability of Probability of getting
of getting this value getting this value this value or lower

T by chance by chance by chance

0 1 0.004 0.004
1 1 0.004 0.008
2 1 0.004 0.012
3 2 0.008 0.020
4 2 0.008 0.027
5 3 0.012 0.039 Ô p < 0.05
6 3 0.012 0.051

(Slight differences between the sums of the figures in columns 3 and 4 are
due to rounding of the third decimal place.)

Notice that the probability gets larger than 0.05 with a T of 6, but the
probability of obtaining a T of 5 and below is less than 0.05. In our example
with a T of 4.5 we can reject the null hypothesis at the p = 0.05 level of
significance and conclude that there is a significant increase in the ratings of
mathematical interest after the programme.

Fortunately, we do not have to work out the probability values under
the null hypothesis every time. Tables of these have been constructed
(Table A.6 in the Appendix). Our example was a one-tailed prediction but
if we had performed a two-tailed test we would have to consider both the
sum of the negative ranks and the sum of the positive ranks and taken the
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smaller value as T. The critical value of T for significance would also have
to take into account both tails of the distribution (i.e. the chances of getting
a small T with positive values or negative values) and hence be more
conservative than for the one-tailed test. We have to remember that when
we look up T we need the calculated value to be equal to or lower than the
table value for significance.

For small values of n, less than 25, we have the tables of the critical
values of T when the null hypothesis is true. However, the distribution of
T approximates a normal distribution as n (the number of subjects) gets
larger with:

µ σ(   )
    

(   )(   )
=

+
=

+ +n n n n n1

4

1 2 1

24
and

Hence, when n is 25 or larger, we can test the significance of T by calculating
a z score and comparing it to the standard normal distribution tables, where

z
T

n n

n n n

(   )

(   )(   )
=

− +

+ +

1

4
1 2 1

24

We must be cautious in the use of T when we are dealing with data that
includes more than a few tied ranks as it is unlikely to be appropriate to use.
In this case we should examine the measure of the dependent variable and
see if we can make it more sensitive, to produce more distinction between
the difference scores and hence fewer tied ranks.

1 Calculate a difference score for each subject, the score in Sample 1
minus the score in Sample 2. When a subject has a zero difference
score we remove the subject from the analysis and reduce the size of n
by 1 in each case.

Procedure for calculating the Wilcoxon signed-ranks test

The distribution of T
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2 Rank the difference scores from lowest to highest, ignoring the sign.
3 Sum the ranks of the positive differences (∑ R+) and sum the ranks of

the negative differences (∑ R−). The smaller of the positive and negative
sums of ranks is the calculated value of T. (If a one-tailed prediction
has been made the smaller of the two values should be consistent with
the prediction. If it is not then it certainly is not significant.) It is worth

checking that ∑ R+ + ∑ R− =
n n(   )+ 1

2
, as both sides of the equation

add up to the sum of the ranks.
4 Compare the calculated value of T with the critical value in the table

(Table A.6), using n to find the correct value, at the chosen level of
significance. The calculated value of T must be equal to or smaller
than the value in the table for significance.

An interview panel of ten interviewers were asked to rate the two final
candidates on a scale of 1 to 20 in terms of their suitability for a vacant post.
Is one candidate rated significantly higher than the other by the interviewers?

Interviewer Candidate 1 Candidate 2

1 14 10
2 17 7
3 12 14
4 16 6
5 14 14
6 10 4
7 17 10
8 12 4
9 6 11

10 18 6

We shall make no assumptions about the data or the population dis-
tributions except that the data is ordinal and so perform a Wilcoxon signed-
ranks test to examine the hypothesis. First we work out the difference
scores (Candidate 1 − Candidate 2) for each participant (interviewer). Zero

A worked example
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differences are excluded from the analysis and the differences are ranked on
their size as in the table below.

Interviewer Candidate 1 Candidate 2 Sign of Size of Rank
difference difference

1 14 10 + 4 2
2 17 7 + 10 7.5
3 12 14 − 2 1
4 16 6 + 10 7.5
5 14 14 0
6 10 4 + 6 4
7 17 10 + 7 5
8 12 4 + 8 6
9 6 11 − 5 3

10 18 6 + 12 9

Interviewer 5 is rejected from the analysis as the difference score is zero, so
the number of participants, n, is now 9. We next calculate the sum of ranks
for the positive differences and the negative differences.

∑ R+ = 2 + 7.5 + 7.5 + 4 + 5 + 6 + 9 = 41

∑ R− = 1 + 3 = 4

No specific prediction is being made so it is a two-tailed test. We take the
smaller value for the calculated value of T, so T = 4. At the p = 0.05 level
of significance, with n = 9, the table value of T is 5 for a two-tailed test. As
the calculated value of T is smaller than the table value we can say that the
interviewers significantly favour Candidate 1 in their ratings.
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WH E N  T H E  D A T A  F O R  A N A L Y S I S  is not from an interval scale or
the assumptions of the ANOVA are not met, we have to perform a

nonparametric test. With a one factor design where we are analysing more
than two samples we perform either the Kruskal–Wallis test, if the samples
are independent, or the Friedman test, if the samples are related. These tests
are the nonparametric equivalents of the one factor independent measures
ANOVA and the one factor repeated measures ANOVA.

The Kruskal–Wallis test performs an analysis that is very similar to an
analysis of variance on the ranks. The test is performed when the assump-
tions of the parametric ANOVA cannot be made. An example of such data
occurs in the following illustration. A researcher was interested in differ-
ences in attractiveness and the selection of candidates for jobs. As well as
examining female attractiveness a number of experiments were undertaken
on male attractiveness. One of the questions considered was whether differ-
ent types of facial hair led to different judgements of male attractiveness
by women. A female personnel officer in a large company agreed to rate
photographs of men’s faces on attractiveness on a 0 to 50 scale, with a high
value indicating a high level of attractiveness. Out of a large pool of photo-
graphs of different men, five men with beards, five men with moustaches
and five clean shaven men were randomly selected. (The photographs in the
pool had been matched on age, hairstyle and tidiness.) If we examine the
data below can we observe an effect of facial hair on the attractiveness
judgements?

Kruskal–Wallis test (for independent measures)
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Facial hair

Beard Moustache Clean shaven

Rating Rank Rating Rank Rating Rank

5 1 9 3 23 10
6 2 16 6 28 12

10 4 19 8 35 13
15 5 25 11 44 14
17 7 20 9 47 15

T1 = 19 T2 = 37 T3 = 64

As we have independent measures on the factor facial hair we rank all
the scores in the data, irrespective of condition. These ranks are shown
above. If there was no difference between the conditions we would expect
the ranks to be evenly scattered across them. If there is an effect of the
independent variable we would expect there to be systematic differences
between the conditions, such as all the high ranks in one condition. We
need to find a way of measuring the clustering of similar ranks within
specific conditions.

If we had been performing an ANOVA we would work out F, where

F
MS

MS
bet conds

error

.= . However, in the Kruskal–Wallis test we calculate a slightly

different statistic on the ranks, called H, where

H
SS

MS
bet conds

total

.=

We use the usual formulae for working out sums of squares and mean
square but as we are dealing with ranks we can work out much simpler
formulae for them in our calculation of H.

We know that SS X
X

N
total     

( )
= −∑ ∑2

2

but as we are dealing with

ranks (R) rather than scores (X), with no tied ranks we can replace some of
the terms in the formulae:
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X R
N N N

2 2
1 2 1

6∑ ∑= =
+ +

    
(   )(   )

 and

X R
N N∑ ∑= =

+
    

(   )1

2

From this we have that ( )   ( )   
(   )

X R
N N

2 2
2 21

4∑ ∑= =
+

Substituting these formulae for ranks into the formula for the total sums of
squares we get:

SS
N N N

total

(   )(   )
=

+ −1 1

12

As the total degrees of freedom in the data is N − 1, then:

MS
N N

total

(   )
=

+ 1

12

This means that whatever data we collect, the MStotal of the ranks will be a
fixed value for N. We can see why H is calculated rather than F here. MStotal

provides us with a fixed value of ‘average’ variance that we get with N
ranks regardless of the effect of the independent variable. If we measure
the between conditions variability against this fixed value we can see how
much greater the variability between the conditions actually is. For example,
with an N of 15 the MStotal will always be 20 (when there are no tied ranks).

From the usual formula for sums of squares:

SS
T

n

X

N
bet conds.    

( )
= −∑ ∑2 2

When we substitute the ranks formula for (∑ X 2) we get:

SS
T

n

N N
bet conds.    

(   )
= −

+∑ 2 21

4

where T is the total of the ranks in a condition and ∑ T2 = T 1
2 + T 2

2 + . . . + T k
2,

k being the number of conditions, and n the number of scores in each condition.
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From these calculations we can work out a relatively simple formula
for H:

H
N N

T

n
N

(   )
    (   )=

+
× − +∑12

1
3 1

2

H is a formula which tells us how much variability there is between the
conditions (the sums of squares) compared to the ‘average’ variance in the
ranks. As MStotal is always fixed for N the important degrees of freedom is
that between conditions, df = dfbet.conds = k − 1 as H is influenced by the
number of conditions under study.

In the facial hair example, N = 15, n = 5, k = 3, T1 = 19, T2 = 37,
T3 = 64 and

H df
(   )

    
  (   )  . ,   =

+
×

+ +
− + = =

12

15 15 1

19 37 64

5
3 15 1 10 26 2

2 2 2

So the variability between the ranks of the conditions (the between con-
ditions sums of squares) is 10.26 times larger than the ‘average’ variance
(the total mean squares) in the ranks.

Just like the independent measures ANOVA we can have a different number
of subjects in each condition. If this is the case then the formula for H is:

H
N N

T

n
N

(   )
    (   )=

+
× − +∑12

1
3 1

2

where ∑ = + +
T

n

T

n

T

n
k

k

2
1
2

1

2

      K , and n1 to nk are the number of subjects in

conditions 1 to k.

We can ask why we find H rather than F when we have ranks. There are a
number of reasons. As noted above, MStotal is a fixed value for N. In our

The distribution of H

Unequal sample sizes
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example, with N = 15, it will always be 20 regardless of the number of
conditions and the variability between them. We can therefore use MStotal

as a benchmark with which to compare the actual variability of the ranks
between the conditions. If there is no variability between the conditions
SSbet.conds will be zero as the total of ranks within each condition will be the
same, and if there is lots of variability between the conditions then SSbet.conds

will be large, as the similar ranks will cluster within specific conditions. But
how large is large? This is why we compare it to MStotal. In our example,
when we calculate them separately we find SSbet.conds = 205.2 and MStotal

= 20, so SSbet.conds is over 10 times larger than MStotal, implying that the
variability between conditions is not random, and indicates an effect of
facial hair on the judgements of attractiveness. We now need to find the
distribution of H under the null hypothesis to find the value of H required
for significance.

This is where we can see how useful H is as a statistic. It turns out that
the distribution of H is known, as H closely approximates a distribution
called the chi-square (χ2) distribution, which is known. As long as we have
at least 5 scores in each condition H is accurate to two decimal places.14 We
shall be looking at the χ2 distribution in more detail in the next chapter but
it is worth noting the following: z is a deviation from a mean divided by a
standard deviation. If we square z then z2 is a squared deviation divided by
a variance. A distribution of z2 is a χ2 distribution. A sum of z2s is also a χ2

distribution, and a sum of z2s is a sums of squares divided by a variance,
which is what we have with H.

Clearly, the size of H depends on the number of conditions and so we
must look up the significance of H using df = dfbet.conds = k − 1. Fortunately
the χ2 distribution has been worked out for different degrees of freedom.
In our example with df = 2 we can look up the appropriate value of χ2.
From the tables of the χ2 distribution, Table A.7 in the Appendix, χ2 = 9.21,
p = 0.01, df = 2. As our calculated value of H is larger than the table value
we can conclude that there is a significant difference (at p = 0.01) between
the different conditions of facial hair in the judgements of attractiveness.

If we have tied ranks we really should use the original formulae on the
ranks for SSbet.conds and MStotal. When we use the formula for H with tied
ranks the calculated value for H will tend to be smaller than it really should
be and we might miss a significant difference. To compensate we may wish

Tied ranks
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to employ a correction C, where: C
t

N N
    = −

∑
−

1
3

, and the corrected value

of H
H

C
c = . In the formula for C, N is the total number of scores in the data

(as above) but ∑ t = ∑(t i
3 − ti), which means that for each group of tied ranks

i, ti is their number. Consider the following ranks: 1, 2.5, 2.5, 4, 5, 7, 7, 7,
9, 10. Here there are two sets of tied ranks: 2 at 2.5 and 3 at 7, so:

∑ t = ∑(t i
3 − ti) = (23 − 2) + (33 − 3) = 6 + 24 = 30, giving

C      .= −
−

=1
30

10 10
0 97

3
, so our calculated value of H would be divided by

0.97 which would give us a slightly higher value for comparison with the
table value for significance.

However, it is only when the calculated value is close to significance
that this would arise and we should always pay attention to results that only
just miss significance. In most cases we can work out the value of H using
the simpler formula without worrying about tied ranks, as long as there are
not too many of them.

1 Rank all the scores in the experiment, irrespective of condition.
2 Add up the ranks for each condition to produce a rank total for each

condition: T1, . . . , Tk where k is the number of conditions.

3 Calculate H using the formula: H
N N

T

n(   )
=

+
× ∑12

1

2

− 3(N + 1),

which allows for different numbers of subjects in each condition. N is
the total number of subjects and n1, . . . , nk are the number of subjects
in the k conditions.

4 The calculated value of H must equal or exceed the table value of χ2

with k − 1 degrees of freedom at the chosen level of significance to
reject the null hypothesis. Table A.7 in the Appendix gives the critical
values of the χ2 distribution.

A group of 18 people who found it hard to relax agreed to take part in a test
of three relaxation techniques, a pill to aid restfulness, hypnosis and exercise.

A worked example

Procedure for calculating the Kruskal–Wallis test
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After a week employing the technique the participants were asked to rate
their ability to relax on a 50 point scale (ranging from 0 much worse, 25 no
change, through to 50 much better than before). Six people undertook the
pill methods, five hypnosis and seven exercise. Is there an effect of relaxa-
tion method on their ratings?

The data are shown in the table below with their ranks.

Condition 1 Condition 2 Condition 3

Pill Rank Hypnosis Rank Exercise Rank

14 2.5 29 11 44 18
10 1 38 15 30 12
18 4 27 9 40 16
22 6 25 7 28 10
14 2.5 26 8 33 13
20 5 35 14

42 17

n1 = 6 T1 = 21 n2 = 5 T2 = 50 n3 = 7 T3 = 100

We now calculate H:

H
N N

T

n
N

(   )
    (   )=

+
× − +∑12

1
3 1

2

=
+

+ +⎛
⎝⎜

⎞
⎠⎟

− +
(   )

      (   )
12

18 18 1

21

6

50

5

100

7
3 18 1

2 2 2

H  ( .     . )    .= + + − =
12

342
73 5 500 1428 57 57 13 25

Degrees of freedom, df = k − 1 = 3 − 1 = 2.
From the χ2 tables, at p = 0.01, χ2 = 9.21, df = 2. As the calculated

value of 13.25 is greater than the table value (Table A.7 in the Appendix)
we can conclude that there is a significant difference (at p = 0.01) between
the relaxation methods on the participants’ ratings.
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We can perform a post hoc multiple comparison test after a significant
Kruskal–Wallis test in a similar manner to a Tukey test. From Chapter 12
we can write: Tukey’s honestly significant difference = q × standard error,
where q is the Studentized range statistic. We use a variation of this called
the Nemenyi test to compare pairs of samples following a Kruskal–Wallis
test, where, instead of comparing the sample means, we compare the sample
rank totals. Futhermore the standard error (SE) is now calculated as follows:

SE  
( )(   )

=
+n nk nk 1

12
, where k is the number of conditions and n the number

of scores in each condition. We look up the value of q in Table A.4 using
the significance level (usually 0.05), the number of samples k and, in this
case, the infinity line of the degrees of freedom (∞). If the difference
between a pair of rank totals (e.g. T1 and T2) is greater than q × SE then the
difference between the conditions is significant at the chosen significance
level.

The problem with the Nemenyi test is that it requires all samples to be
of the same size (n). With unequal sample sizes we can use Dunn’s test with

SE  
(   )

=
+

+
⎛
⎝⎜

⎞
⎠⎟

N N

n ni j

1

12

1 1

where ni and nj are the sample sizes of the two conditions.15 We must
compare the mean rank for our conditions rather than the rank totals (e.g.

for condition 1 the mean rank will be 
T

n
1

1

). A difference in mean ranks must

be greater than Q × SE. Q is the statistic for differences in mean ranks and
the values of Q are found in the table overleaf for the different values of k
at the significance levels of 0.05 and 0.01.16

Post hoc multiple comparisons following the Kruskal–Wallis test



S T A T I S T I C S  E X P L A I N E D

240

Critical values of the Q statistic
k p = 0.05 p = 0.01

2 1.960 2.576
3 2.394 2.936
4 2.639 3.144
5 2.807 3.291
6 2.936 3.403
7 3.038 3.494
8 3.124 3.570
9 3.196 3.635

10 3.261 3.692

In the above worked example, the mean ranks are:

  
A A1 2      . ,       . ,= = = = = =

T

n

T

n
1

1

2

2

21

6
3 50

50

5
10 00

  
A3       .= = =

T

n
3

3

100

7
14 29

For a significance level of p = 0.05, with three conditions (k = 3), Q = 2.394.

For condition 1 versus condition 2: SE  
(   )

    .=
+

+⎛
⎝

⎞
⎠ =

18 18 1

12

1

6

1

5
3 23, so

Q × SE = 7.73. Hence the difference in mean ranks for conditions 1 and 2
of 6.5 is not significant at p = 0.05. For condition 1 versus condition 3,
SE = 2.97 and Q × SE = 7.11. The difference in mean ranks of 10.79 is
significant at p = 0.05. Finally, for conditions 2 and 3, SE = 3.13, giving
Q × SE = 7.49. Hence their difference in mean ranks of 4.29 is not significant
at p = 0.05.

The Friedman test is a nonparametric test that can be performed when we
cannot make the assumptions necessary for the parametric one factor repeated
measures ANOVA. In this test the analysis is performed on the ranks. As

The Friedman test (for related samples)
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there are repeated measures the scores are ranked within each subject rather
than across all the scores. In the example below six personnel officers were
asked to rate, on a 0–10 scale, colours of business suits in terms of profes-
sional image. Three suit colours were chosen for the conditions: brown,
black and blue.

Suit colour

Brown Black Blue
Rank

Participant Rating Rank Rating Rank Rating Rank total

1 5 1 8 2 9 3 6
2 4 1 6 3 5 2 6
3 3 1 4 2 9 3 6
4 5 2 4 1 8 3 6
5 4 1 5 2 6 3 6
6 5 2 3 1 7 3 6

T1 = 8 T2 = 11 T3 = 17

If there was no difference in the samples we would expect the ranks to
be evenly spread amongst the conditions. If there is an effect of the inde-
pendent variable then we would expect similar ranks to cluster in specific
conditions. In the above example most the Rank 1s are in the ‘brown’
condition, most of the Rank 2s in the ‘black’ condition and most of the
Rank 3s in the ‘blue’ conditions so we would expect our statistic to indicate
a significant difference between the conditions.

With the one way repeated measures ANOVA we work out F but in
the Friedman test we work out χ r

2 which is a chi-square on the ranks, where

χ r
bet conds

with subjs

SS

MS
2 .

.

=

Notice from the above table that when we rank the data for each participant
there is no variation between the subjects (SSbet.subjs = 0) as the rank total for
each subject is always the same, in our case they all add up to 6. So all the
variation in the ranks is within the subjects (SStotal = SSwith.subjs). We can see
from this the similarity of the Kruskal–Wallis and the Friedman tests.



S T A T I S T I C S  E X P L A I N E D

242

The formula for SSwith.subjs is:

SS X
T

k
with subjs

S

.     = −∑ ∑2
2

As we are dealing with ranks, if there are no tied ranks:

X R
nk k k

T
nk k

S
2 2 2

2 21 2 1

6

1

4∑ ∑ ∑= =
+ +

=
+

    
(   )(   )

    
(   )

and

These formulae for ranks are slightly different for those shown in Chapter
16 as we are ranking within each subject, not across all the scores in the
experiment. We can now replace the ANOVA formula for scores with the
replacement formulae for ranks.

SS
nk k k nk k

with subjs.

(   )(   ) (   )
=

+ +
−

+1 2 1

6

1

4

2

Simplifying the formula we get:

SS
nk k k

with subjs.

(   )(   )
=

+ −1 1

12

The degrees of freedom within the subjects is n(k – 1), so:

MS
k k

with subjs.

(   )
=

+ 1

12

This is a fixed value for each value of k. With three conditions, as in our
example, MSwith.subjs will always be 1.

The sums of squares between the conditions can be worked out from
the following formula:

SS
T

n

X

nk
bet conds.     

( )
= −∑ ∑2 2

where nk = N the total number of scores and T1, . . . , Tk are the totals of the
scores in each condition.
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As we have ranks, assuming no ties, we can replace ∑ X with 
nk k(   )+ 1

2
in the formula and T becomes the total of the ranks in a condition:

SS
T

n

nk k
bet conds.     

(   )
= −

+∑ 2 21

4

And finally,

χr
2 2

12

1
3 1

(   )
  (   )=

+
− +∑nk k

T n k  with k − 1 degrees of freedom

In our business suit colour example, n = 6, k = 3, T1 = 8, T2 = 11,
T3 = 17:

χr
2

12

6 3 3 1  (   )
=

× +
(82 + 112 + 172) − 3 × 6(3 + 1) = 7, with df = 2

As with the Kruskal–Wallis H statistic, χ r
2 compares the between conditions

sums of squares to a fixed value, the ‘average’ variance in the ranks. If the
null hypothesis is true we would expect the variability between conditions
to be zero. When the null hypothesis is false we would expect the between
conditions variability to be large. Our definition of large in this case is taken
relative to the fixed value MSwith.subjs.

Again, as with the Kruskal–Wallis H statistic, χ r
2 approximates the χ 2

distribution, with the appropriate distribution found using the degrees of
freedom between the conditions, k − 1. However, when there are few condi-
tions and a small number of subjects (k = 3 and n < 10 or k = 4 and n < 5)
then the χ 2 distribution is not such a good fit for χ r

2.17 In these cases we
must work out the various probabilities for χ r

2 when the null hypothesis is
true. Let us take, for example, the case where k = 3 and n = 3. For each
subject there are six ways in which the ranks 1, 2, and 3 could be arranged
across the three conditions, so for three subjects there are 6 × 6 × 6 = 216
ways of arranging the ranks in total. The maximum value of χ r

2 is 6. This
occurs when, for every subject, the same rank is in the same condition. This
can occur in six ways. This gives us a probability of 6/216 or p = 0.028 of

The distribution of χ r
2
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obtaining a value of χ r
2 = 6 by chance. The next largest value of χ r

2 is 4.67
and the probability of obtaining this value is larger than 0.05. Thus, with
k = 3 and n = 3 only χ r

2 = 6 is significant at p = 0.05. The critical values of
χ r

2 for small sample sizes are shown in Table A.8 in the Appendix.
The example of the business suits is a small sample case with k = 3 and

n = 6. The table value for p < 0.05, is 7. As the calculated value of χ r
2 = 7

is the same we can conclude that there is a significant effect (at p = 0.05)
of business suit colour on the judgements of professional image.

We must be careful if there are a lot of tied ranks in the data as this
might make the analysis inaccurate. Fortunately as we are ranking within
each subject this is not likely to occur often. However, if there are more
than a few tied ranks it is worth considering whether it is possible to make
the dependent variable more sensitive and reduce the number of ties.

1 Set out the data with the subjects as rows and the conditions as columns.
2 Rank each of the n subjects’ scores separately, from lowest to highest.
3 Work out the rank total (T ) for each condition: T1, . . . , Tk, where k is

the number of conditions.
4 Calculate χ r

2 using the following formula:

χr
2 2

12

1
3 1

(   )
  (   )=

+
− +∑nk k

T n k with k − 1 degrees of freedom.

5 The calculated value of χ r
2 must be larger than or equal to the appropriate

table value of χ2 (Table A.7 in the Appendix) or larger or equal to the
value of χ r

2 in the small samples table (Table A.8).

Ten people stay at a hotel where they eat all their meals. On one day they
are asked to rate the quality of food for the three meals, breakfast, lunch
and dinner, on a scale of 0 to 100 (from bad to good). Is there a difference
between the three meals in their rated quality?

The results of the ratings are shown in the table below. The data is
assumed only to be ordinal and no assumptions are made about the underlying
distributions.

A worked example

Procedure for calculating the Friedman test
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Breakfast Lunch Dinner

Participant Rating Rank Rating Rank Rating Rank

1 50 1 58 3 54 2
2 32 2 37 3 25 1
3 60 1 70 3 63 2
4 41 1 66 3 59 2
5 72 1 73 2 75 3
6 37 3 34 2 31 1
7 39 1 48 3 44 2
8 25 2 29 3 18 1
9 49 2 54 3 42 1

10 51 1 63 2 68 3
n = 10
k = 3 T1 = 15 T2 = 27 T3 = 18

The ratings are ranked for each participant as in the table above and the
total of the ranks in each condition is calculated. We now calculate χ r

2:

χr
2 2

12

1
3 1

(   )
  (   )=

+
− +∑nk k

T n k

=
× ×

+ +
    

(     )
12

10 3 4
15 27 182 2 2 − 3 × 10 × 4

= 0.1 × 1278 − 120 = 7.8 with df = k − 1 = 3 − 1 = 2

From Table A.7, p = 0.05, df = 2, χ2 = 5.99. As our calculated value of χ r
2

is larger than the table value of χ2 we can conclude that there is a significant
difference between the meals in terms of the ratings of meal quality.

We can employ a Nemenyi test, a variation of the Tukey test, to undertake
pairwise comparisons of the conditions after a significant Friedman test. In
this test we compute a standard error (SE) using the formula:

Post hoc multiple comparisons following a Friedman test
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SE  
(   )

=
+nk k 1

12

We then look up the appropriate value of the Studentized range statistic q
from Table A.4 using the chosen significance level (e.g. 0.05), the number
of conditions k, and the infinity row for the degrees of freedom (∞). If a
difference in the rank totals of two conditions is larger than q × SE then we
can claim a significant difference between the conditions.

In the above example, with n = 10 and k = 3, SE  
    (   )

=
× × +10 3 3 1

12
=

3.16 and q = 3.31 at p = 0.05. From these values we work out that q × SE
= 10.46. As T1 = 15, T2 = 27 and T3 = 18 we can conclude the following.
There is a significant difference between conditions 1 and 2 (as the rank
total difference of 12 is greater than 10.46), but the differences between
conditions 1 and 3 (rank total difference of 3) and between conditions 2 and
3 (rank total difference of 9) are not significant at p = 0.05.

Details on how to calculate the Kruskal–Wallis and Friedman tests
using the SPSS computer statistical package can be found in Chapter 13
of Hinton et al. (2004).



A N A L Y S I N G  F R E Q U E N C Y  D A T A :  C H I - S Q U A R E

247

C
h
a
p
te

r
19

C h a p t e r  1 9

Analysing

frequency data:

chi-square

n Nominal data, categories and
frequency counts 248

n Introduction to χχχχχ2 248

n Chi-square ( χχχχχ2) as a ‘goodness
of fit’ test 250

n Chi-square ( χχχχχ2) as a test of
independence 254

n The chi-square distribution 256

n The assumptions of the χχχχχ2 test 257



S T A T I S T I C S  E X P L A I N E D

248

There are many occasions when we want to examine the effects of an
independent variable on the dependent variable when the data are nominal:
the numbers indicate the category the subject belongs to rather than a position
on an ordinal or interval scale. An experimenter interested in hair length of
female students might categorise hair length into two categories: long (on or
below the shoulder) and short (above the shoulder). Female students could
then be sampled to see whether there is a preference for long or short hair
on campus. Note that the data collected from the students is neither a score
nor a rating. The researcher is collecting frequency data, that is adding up
the number of participants in each category. If 100 female students were
randomly sampled and 62 had long hair and 38 short hair can we conclude
that there is a significant preference for long hair? The statistic examined in
this chapter, chi-square (χ2), allows us to analyse frequency data to answer
such questions. We are not limited in the number of (independent) categories
we choose, which makes this a very useful statistic, particularly when we
are undertaking questionnaires or surveys. If we wanted to compare liberals
and conservatives on, say, a proposed piece of new taxation legislation we
could ask a number of liberals and conservatives whether they are for or
against the legislation. Here we have four categories: liberals-for, liberals-
against, conservatives-for and conservatives-against, with their respective
frequency counts. If we included the category ‘don’t know’ for each political
group we would increase our categories to six.

The simplest way to view the χ2 statistic is as the square of the z statistic:

χ µ
σ

2 2
2

2
    

(   )
= =

−
z

X

χ2 is the square of the deviation of a score from its population mean divided
by the population variance, where the population is normally distributed.

Introduction to χχχχχ2

Nominal data, categories and frequency counts
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Just as we saw that the F statistic in its simplest case is t2 and therefore
never negative we also find that χ2, also a squared value, is always positive.
Like F we are only interested in the high values of the χ2 distribution but it
is always a two-tailed test in that a large positive z score or a large negative
z score both square to a large positive χ2.

In most cases we are testing samples rather than individual scores and
this is where χ2 turns out to be so useful in data analysis. If we select
mutually independent samples from which to obtain X then it turns out that
the sum of the individual χ2s is also a χ2:

χ µ
σ

2 2
2

2
    

(   )
= =

−⎛
⎝⎜

⎞
⎠⎟∑ ∑z

X

This means that we can find a χ2 for each sample and the sum of the χ2s
will also be a χ2. This allows us to compare samples against the sampling
distribution of χ2. However, the shape of the χ2 distribution depends on the
number of χ2s that are summed, so we must take into account the degrees of
freedom of the samples (the number of samples minus one). If we have four
categories then the degrees of freedom for χ2 is c − 1 = 3, where c is the
number of categories.

In the hair length example there are two categories (c = 2). The two
samples are mutually independent as a student cannot be in both categories.
Imagine that we tested 100 women students (N = 100). If there was no
preference for hair length then we would expect to find half the students
with long hair (probability, p1 = 0.5, where ‘long hair’ is Category 1) and
half the students with short hair (probability, p2 = 0.5, where ‘short hair’ is
Category 2). Thus, when the null hypothesis is true we would expect Np1

students (100 × 0.5 = 50) to have long hair and Np2 (50 as well) to have
short hair. Are the figures of 62 and 38 significantly different from the 50
we would expect in each category under the null hypothesis? This is where
χ2 comes in. The following formula turns out to approximate the χ2 dis-
tribution when the null hypothesis is true.

χ 2
2(   )

=
−⎛

⎝⎜
⎞
⎠⎟∑ X Np

Np
with c − 1 degrees of freedom

where X is the observed frequency count in a category and Np is the frequency
count we would expect when the null hypothesis is true.

This is not exactly a χ2 distribution but the approximation is very good
as long as we make sure that Np is at least 5, that is the expected frequency
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of each category under the null hypothesis must be at least 5. This formula
provides us with a distribution to compare our actual values to in order to
test the significance of our differences between frequency counts.

There are two categories in the hair length experiment, so we can
work out a χ2 using the new formula.

χ 2 1 1
2

1

2 2
2

2

2 262 50

50

38 50

50

(   ) (   ) (   ) (   )
=

−
+

−
=

−
+

−X Np

Np

X Np

Np

= + =     .
144

50

144

50
5 76

with df = c − 1 = 2 − 1 = 1 degree of freedom.
If we look up the tables for the χ2 distribution (Table A.7 in the

Appendix) the critical value for χ2 = 3.84 with df = 1 and p = 0.05. As the
calculated value is greater than the table value we can conclude that there is
a significant preference for long hair by the female students on campus.

The more usual way to express the above formula for χ2 is to rename
X as the observed frequency (O) and Np as the expected frequency (E) so
the χ2 formula that we use is:

χ 2
2

1
(   )

      =
−⎛

⎝⎜
⎞
⎠⎟

= −∑ O E

E
df cwith

In many cases we wish to examine whether a pattern of frequencies signific-
antly differs from an expected pattern of frequencies. Usually the expected
frequencies are those found when the null hypothesis is true but they do not
have to be, we can compare the observed frequencies with any pattern of
expected frequencies we wish to choose. This is why the test is called a
‘goodness of fit’ test: we can use it to decide if a set of observed frequencies
are a good fit for a particular pattern of expected frequencies.

An experimenter set out to test whether there is a difference in colour pre-
ference for cars. One hundred participants were given four pictures of cars,

Chi-square (χχχχχ2) as a ‘goodness of fit’ test

A worked example



A N A L Y S I N G  F R E Q U E N C Y  D A T A :  C H I - S Q U A R E

251

identical but for the colour, and asked to state their preference. The colours
presented were red, blue, black and white.

If there was no preference then we would expect each colour to be
chosen equally, so we would expect the probability of each category being
chosen to be 1/4 or p = 0.25 when the null hypothesis is true. With a total
(N ) of 100, we would expect each category to be chosen by Np of them,
100 × 0.25, which is 25. On performing the experiment, the researcher finds
48 participants choose the red car, 15 the blue, 10 the black and 27 the
white. Do these observed frequencies differ significantly from the expected
frequencies?

We compare the pattern of observed frequencies with that of the
expected frequencies by calculating χ2.

χ 2
2(   )

=
−⎛

⎝⎜
⎞
⎠⎟∑ O E

E

=
−

+
−

+
−

+
−

=
(   ) (   ) (   ) (   )

  .
48 25

25

15 25

25

10 25

25

27 25

25
34 32

2 2 2 2

with df = c − 1 = 4 − 1 = 3.

From Table A.7, χ2 = 11.34, df = 3, p = 0.01. As our calculated value of
χ2 is greater than the table value we can reject the null hypothesis. There
is a significant difference ( p < 0.01) between the observed and expected
frequencies; the four colours are not equally preferred.

In most cases we will compare observed frequencies with those found under
the null hypothesis but there is one case in particular where we might choose
another set of expected frequencies. We are often making the assumption
with parametric tests that the sample or samples come from normally distrib-
uted populations. There might be occasions when we actually want to check
this out. This is where the χ2 goodness of fit test can be used.

Two hundred people were tested on a complex hand–eye co-ordination
test and the number of errors each participant made was measured. The scores
range from 22 to 69. The sample has a mean of B = 46.86 and a standard
deviation of s = 6. Does this sample differ significantly from the normal
distribution?

Testing the ‘goodness of fit’ to the normal distribution
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First we choose the categories to adopt. The more categories we
choose the more sensitive the test but we end up with fewer scores in each
category. With a range from 22 to 69 categories of size 5 will result in 10
categories. These are shown in the first column of the table below. The
boundaries of the categories are chosen at 0.5, half the smallest possible
difference between the scores. (The minimum possible difference between
the scores is 1, one error.) This is done so no two categories overlap. If I
had taken 25 as a category boundary then a score of 25 could go into both
the 20–25 and the 25–30 category but with 25.5 as a boundary it only goes
into the 20.5–25.5 category and not the 25.5–30.5. It also means that there
are no gaps between the categories, they cover the whole range. The next
thing to do is to allocate the 200 scores to their correct categories. These
are our observed frequencies and they are shown in the second column of
the table.

We now need to work out the expected frequencies. To do this we
convert the category boundaries to z scores using the z formula. Unfortun-
ately we do not have the population mean and standard deviation which
we need to work out a z score so we estimate them using the sample values,
B and s.

  
Estimated   

  .
z

X

s

X
=

−
=

−B 46 86

6

For the first category, scores of 20.5 and 25.5 convert to z scores of −4.39
and −3.56. We do this for all the category boundaries. These results are
shown in the third column of the table.

If we look these figures up in the standard normal distribution table
(Appendix A.1) we can find the probabilities associated with each score.
These probabilities are shown in the fourth column. (Recall that the prob-
ability of a z score less than −4 is so small as to be taken as zero.) The
difference in the probability between the category boundaries will tell us
the probability of finding a score in this category when the distribution is
normal. These are shown in the fifth column. (It is a little difficult finding
the probability of the category surrounding the mean as one z score is
positive and one negative. We simply take the difference of each from 0.5
and add the results.)

Multiplying the probability of finding a score in a category when the
distribution is normal ( p) by the number of participants (N = 200) will give
us the expected frequency in each category. These are shown in the sixth
column.
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Category Observed z score Diff. Expected χ2

boundary frequency Probability in prob. frequency

20.5 1 −4.39 0.0000 0.0002 0.04
25.5 −3.56 0.0002

25.5 2 −3.56 0.0002 0.0030 0.60
0.1317

30.5 −2.73 0.0032

30.5 2 −2.73 0.0032 0.0262 5.24
35.5 −1.89 0.0294

35.5 26 −1.89 0.0294 0.1152 23.04 #
0.380340.5 −1.06 0.1446 $

40.5 55 −1.06 0.1446 0.2644 52.88 #
0.085045.5 −0.23 0.4090 $

45.5 60 −0.23 0.4090 0.3201 64.02 #
0.252450.5 0.61 0.2709 $

50.5 34 0.61 0.2709 0.1960 39.20 #
0.689855.5 1.44 0.0749 $

55.5 16 1.44 0.0749 0.0633 12.66
60.5 2.27 0.0116

60.5 3 2.27 0.0116 0.0107 2.14 1.6823
65.5 3.11 0.0009

65.5 1 3.11 0.0009 0.0009 0.18
70.5 3.94 0.0000

We are nearly ready to calculate χ2, however, there are categories with
expected frequencies less than 5 and we must not allow this for the test to be
valid. What we can do to overcome this is to combine categories. If we com-
bine the top three categories to make one new one and also do the same with
the bottom three categories we end up with six categories all with expected
frequencies greater than 5. The new category 20.5–40.5 has an observed fre-
quency of 5 and an expected frequency of 5.88. the new category 55.5–70.5
has an observed frequency of 20 and expected frequency of 14.98. Finally,

χ 2
2

=
−⎛

⎝⎜
⎞
⎠⎟∑ (   )O E

E

= 0.1317 + 0.3803 + 0.0850 + 0.2524 + 0.6898 + 1.6823

χ2 = 3.2215

5
4
4
6
4
4
7

5
4
4
6
4
4
7
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The degrees of freedom are one less than the number of categories so are
6 − 1 = 5. However, in this case we did not know the population mean and
standard deviation and used our sample to estimate them. In doing this we
‘used up’ a degree of freedom on each estimation, so we take our degrees
of freedom as 3. From tables χ2 is 7.82, df = 3, p = 0.05. We can conclude
that as the calculated value is less than the table value we have not found a
significant difference between the distribution of our scores and a normal
distribution.

The χ2 test of independence operates in the same way as the goodness of
fit test in that it compares observed with expected frequencies, but in the
test of independence we are comparing two or more patterns of frequencies
to see if they are different from each other (independent or not). If we
sampled conservatives and liberals on new taxation legislation then we
could see if the pattern of frequencies ‘for’ and ‘against’ was different for
the conservatives compared to the liberals using the χ2 test.

A researcher wanted to test the difference of opinion between conservat-
ives and liberals on some new taxation legislation. In a survey, 120 people
were identified as conservatives and 80 as liberals. A question on the
survey asked whether the respondent agreed with the new taxation legis-
lation (‘for’), disagreed with it (‘against’), or had no opinion or did not
know about it (‘don’t know’). The results, the observed values, are shown
in the table below.

Observed For Against Don’t know Row totals
frequencies

Conservatives 78 30 12 120
Liberals 18 50 12 80
Column totals 96 80 24 200

A worked example

Chi-square (χχχχχ2) as a test of independence
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Notice that, with different numbers of conservatives and liberals, we would
not expect the same numbers in the various categories even under the null
hypothesis. As there are more conservatives than liberals the 12 conservat-
ives in the ‘don’t know’ category are 12/120 or 10 per cent of their group
whereas the 12 liberals in the same category are 12/80 or 15 per cent of
their group. Relatively more liberals gave this answer than conservatives.
What we would expect, when there is no difference between the groups in
their pattern of responses, is that there is the same proportion of each group
total in each category. We can work out the expected values, when the null
hypothesis is true, by the following formula.

The expected value of a cell
row total column total

overall total
=

×

A cell is a category, so we have six cells, c = 6. Let us take the first cell
(conservatives-for) as an example. If there was no difference between the
two political groups in terms of the proportion answering ‘for’ then the
96 people who actually responded ‘for’ should be divided into conservative
and liberal in proportion to their relative number. Out of the 200 people the
proportion of conservatives is 120/200. So, of the 96 people answering ‘for’
we would expect the following to be the number of conservatives if there is
no difference between the groups:

E   .=
×

=
96 120

200
57 6

We can do this for all the cells to produce the expected values.

Expected For Against Don’t know Row totals
frequencies

Conservatives 57.6 48.0 14.4 120
Liberals 38.4 32.0 9.6 80
Column totals 96 80 24 200

We now work out χ2 using the usual formula.
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χ 2
2 2 2 278 57 6

57 6

30 48 0

48 0

12 14 4

14 4
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(   . )
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(   . )

.
=

−⎛
⎝⎜

⎞
⎠⎟

=
−

+
−

+
−

+∑ O E

E

(   . )

.

(   . )

.

(   . )
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18 38 4

38 4

50 32 0

32 0

12 9 6

9 6

2 2 2−
+

−
+

−

χ2 = 7.23 + 6.75 + 0.4 + 10.84 + 10.13 + 0.6 = 35.95

To decide whether this is significant we must compare it to the appropriate
χ2 distribution. We have to be careful here, the degrees of freedom is not
the number of categories minus one, c − 1. This is because we are interested
in comparing the rows (the two political groups) on pattern of results across
the columns (the different opinions). This is a difference between the good-
ness of fit and test of independence. Here, we have 2 rows, R = 2, and two
columns, C = 3. For the test of independence the degrees of freedom is:

df = (R − 1)(C − 1)

In our example df = (2 − 1)(3 − 1) = 2. From tables χ2 = 9.21, df = 2,
p = 0.01. As our calculated value is greater than the table value we can
reject the null hypothesis at the p = 0.01 level of significance. There is a
significant difference in the patterns of responses of the conservatives and
liberals to the taxation legislation.

We must make sure that the expected frequencies are 5 or larger for
the χ2 distribution to be appropriate. In this case there was not a problem. If
the ‘don’t know’ responses had been too few for an expected frequency of
5 then we could leave out the ‘don’t know’ category and compare just the
‘for’ and ‘against’ for a valid test, or collect more data to make the frequencies
larger.

Being a squared value or a sums of squares χ2 will always be greater than
zero. However, the shape of the distribution will alter with changes in the
degrees of freedom. Under the null hypothesis we would expect the sums of
squares to be around zero but random variation will mean that they will not
always be exactly zero when the null hypothesis is true. If we sum a number
of positive values, each a little bigger than zero, the sum will gradually get
larger the more numbers we add. The more degrees of freedom there are,

The chi-square distribution
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FIGURE 19.1 The chi-square distribution
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then the more sums of squares we have and the larger these sums of squares
become.

When df = 1 we expect, under the null hypothesis, most results to be
close to zero with little difference between the observed and expected values
(see Figure 19.1). Consider what the standard normal distribution would
look like if we squared the values. Now when we increase the degrees of
freedom we are adding together a set of independent χ2s each with df = 1.
Taking df = 5, for example, we have a sum of five independent χ2s. Whilst
each individual χ2 will pile up close to zero, when added together their sum
will pile up further along the scale (see Figure 19.1). As we increase the
degrees of freedom the mean of the distribution moves up the scale. Whilst
the distribution is very asymmetrical when the degrees of freedom are small,
it becomes more symmetrical as df gets larger (see df = 10 in Figure 19.1).
When the degrees of freedom get as large as 30 and above the distribution
approximates the normal distribution. As a result of this tables of the χ2

distribution usually only go up to df = 30, as beyond that we can use the
tables of the normal distribution (Table A.7 in the Appendix).

In order that we compare our calculated value of χ2 with the appropriate
distribution we must make certain assumptions when performing a χ2 test.

The assumptions of the χχχχχ 2 test
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As with most distributions we must have randomly sampled from the popula-
tion otherwise a biased sample will affect the resultant statistic. For χ2 it is
crucial that we have mutually independent categories. Essentially we must
check that a subject could not possibly contribute to the frequency of more
than one cell.

The chi-square distribution is ‘continuous’, meaning that there are
no breaks in it, the curve is continuous. However, the values we calculate
in the χ2 test are not from a continuous scale but a discrete one. This is
because observed frequencies vary in discrete units. We can observe a
frequency of 10 or 11 but not 10.4 or 10.6. With degrees of freedom greater
than 1 and with expected frequencies of at least 5 (and preferably 10) this is
not a problem as the difference between the statistic and the true sampling
distribution is so small. This is why large cell frequencies are encouraged.
For example, the difference between 100 and 101 is small. It is a step of
1/100 or 1 per cent of the original frequency. However the step from 5 to 6
is 1/5 or 20 per cent, so is a large jump. Furthermore, because we are
limited by the size of these steps (we cannot step in smaller units than
whole numbers) any difference between observed and expected frequencies
(even as small as 1) will appear large when we have small cell frequencies
and χ2 will tend to be significant (and possibly a Type I error).

To compensate for this problem when df = 1 we can apply the Yates’
correction for discontinuity. This adjusts the χ2 formula in the following
manner.

Corrected   
(     . )χ 2

20 5
=

− −∑ | |O E

E

The lines either side of the O − E refer to the absolute value, meaning
that if the difference is negative we ignore the minus sign and treat it as
positive. Thus, the χ2 for every cell is reduced by 0.5 before it is squared.
This will result in a smaller calculated value of χ2 and will reduce the risk
of a Type I error. However, the Yates’ correction does tend to overcom-
pensate for discontinuity and may result in a more conservative decision
than necessary. As a simple rule, if a result is still significant with the
correction or still nonsignificant without it, then we can be confident in our
decision. It is only when a significant result becomes nonsignificant with
the correction that a problem arises. In this case we should be cautious
in making inferences from such a finding. As with any result that is
‘bubbling under’ (close but not quite significant) we should consider
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resolving the ambiguity by increasing the sample size or exploring the
question further.

Details on how to calculate the chi-square statistic using the SPSS
computer statistical package can be found in Chapter 14 of Hinton
et al. (2004).
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Do the students who spend the most time studying achieve the highest
marks in examinations and do those who spend the least time studying get
the lowest marks? What we are asking here is whether the variable study
time correlates with the variable examination performance. If we found that
this was the case then we would say that there is positive correlation between
the variables, that is, as a score on one variable increases so the correspond-
ing score on the other variable does the same. Sometimes we find a correla-
tion between two variables where as one goes up the other goes down. This
is termed a negative correlation. We are likely to find a negative correlation
between smoking and health as the more a person smokes the less healthy
that person tends to be.

If we find that two variables do correlate then we can use this
information to predict the value of a score on one variable by using the
corresponding score on the other variable. In this chapter we shall be look-
ing at how we can produce a regression equation to allow us to do this. If
we do not find a relationship between two variables we say that they are
uncorrelated and a change in one cannot be used to predict a change in the
other.

As an example we shall use the following data, giving the results of
ten first year university students, showing how much time they spent studying
(on average per week throughout the year) along with their end of year
examination mark (out of 100). Do these data show a correlation?

Introduction
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Student Study time Examination
mark

1 40 58
2 43 73
3 18 56
4 10 47
5 25 58
6 33 54
7 27 45
8 17 32
9 30 68

10 47 69

There appears to be a positive correlation when we look at these results by
eye but a clearer way to show this is to produce a scatterplot, that is a graph
of the data, where the axes are the two variables. Figure 20.1 provides a
scatterplot of these results.

Note that the points are not randomly scattered about the graph (which
we would expect if there was not a correlation) but generally fall within a
band, indicating a correlation. (To illustrate this, imagine cutting out a piece
of paper to cover up all, or most of, the points in the graph. We can do this,

FIGURE 20.1 Scatterplot of study time by examination performance
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in this case, with a fairly narrow strip of paper.) When this occurs we argue
that, but for random errors, the scores would have fallen along a line, the
regression line, and in our analysis we can calculate which line would ‘best
fit’ the data. In many cases, but not all, we assume that the line of best fit is
a straight line. When we make this assumption we are assuming that we
have a linear correlation, and we calculate a linear regression. This is also
referred to as a linear model as we are assuming that the model for the
relationship between the variables is a straight line (see Chapter 23 on linear
models). This is a reasonable assumption in our example as the points on
the graph fall within a band that appears straight. If the pattern of points
had been along a curved line there would still be a correlation but it would
not be linear. In this book I am only considering linear correlation and
regression.

What we need to do is to find a way to measure the strength of the
correlation. If all the points lie exactly along a straight line then we have
a perfect correlation. A correlation such as the one in Figure 20.1 is not
perfect as the points are more widely scattered but they still fall within a
fairly narrow band. This is a reasonable correlation, as we could infer that
the points would lie on a straight line but for random errors. As the points
become more scattered so the correlation gets weaker until we say that they
are randomly scattered, and there is no correlation at all. The measurement
we use to describe the degree with which the points cluster along a straight
line is the Pearson correlation coefficient, r.

In our example, as in most we examine, the two variables are measured on
different interval scales. This makes it difficult to decide how well the
scores on one variable correlate with the scores on the other variable. Is 30
hours per week as large a study time score as 60 out of 100 on examination
performance? To overcome this problem we need to standardise the scores.
We do this by finding the z scores of the scores on the two variables.18 The
standard scores find the position of a score relative to its mean in terms of
its standard deviation. By calculating standard scores we can compare the
relative position of each score on the distribution of the variable. Study time
has a mean of 29 and a standard deviation of 11.42. We will call this
variable X. Examination performance has a mean of 56 and a standard
deviation of 11.80. We will call this variable Y. The z scores for each
variable are shown in the table below.

Pearson r correlation coefficient
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Student Study time Study time Examination Examination Product of
z score mark z score the z scores

X zX Y zY zXzY

1 40 0.96 58 0.17 0.16
2 43 1.23 73 1.44 1.77
3 18 −0.96 56 0.00 0.00
4 10 −1.66 47 −0.76 1.26
5 25 −0.35 58 0.17 −0.06
6 33 0.35 54 −0.17 −0.06
7 27 −0.18 45 −0.93 0.17
8 17 −1.05 32 −2.03 2.13
9 30 0.09 68 1.02 0.09

10 47 1.58 69 1.10 1.74

We can now see whether the score on one variable corresponds to the
same position on its distribution as the score on the second variable for
each participant. Looking at the table above, the z scores tend to be similar
for each participant: a similar size of z score indicates a correlation and
the same sign (either both positive or both negative) indicates a positive
correlation. (Had the sizes been similar but the signs different we would
have been looking at a negative correlation.) How can we acknowledge
this similarity mathematically? One way is to multiply the z scores on
the two variables for each participant. When there is a correlation the size
of the z scores will be similar, so large numbers will be multiplied by
large numbers and small numbers by small numbers. With a positive cor-
relation we will mostly multiply z scores of the same sign together (either
both positive or both negative) to produce products that will be mostly
positive. With a negative correlation we will multiply mostly z scores
with different signs and the products will be mostly negative. Thus, if we
sum the products of the z scores (∑ zXzY) we should get a large positive
number when there is a positive correlation and a large negative number
when there is a negative correlation. If there is no correlation at all we
should get some positive products and some negative products which
will tend to cancel each other out and the sum ends up around zero.
If there is a perfect correlation the participants will get the same z score
on both variables. Multiplying these together is like squaring the z
scores of one of them. The sum of N squared z scores always equals N
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(try it!) so a perfect positive correlation will result in the sum of the pro-
duct of the z scores equalling N. When there is a perfect negative correlation
the sum will be −N. In our example, ∑ zXzY = 7.2, so it is a positive correla-
tion (above 0) but not perfect as N = 10 (we have 10 participants).

Finally, if we divide the sum of the products of the z scores by
N we produce a statistic that equals 1 when there is a perfect positive
correlation, −1 when there is a perfect negative correlation and 0 when
there is no correlation at all. This statistic is called the Pearson correlation
coefficient r.

r
z z

N

X Y= ∑

A positive correlation is shown by an r greater than zero and a negative
correlation by r less than zero. The strength of the correlation is shown
by how close r is to 1 (or −1 if the correlation is negative). In our example
r = 0.72, which is a high positive correlation as it is much closer to 1 than 0.
We will see whether it is significant in a moment.

The importance of r is that, as well as telling us the strength and
direction of a correlation, it also provides us with a formula for predicting
the scores on one variable by using the scores of the other variable. If we
plotted the z scores of the two variables on a scatterplot we would find
that r is the slope of the regression line (the straight line that best repre-
sents the linear relationship between the variables, the ‘line of best fit’),
the line we assume the z scores would fall along but for random error. If
we write the formula for the line on the graph that best fits the z scores
it is zY = rzX. Thus, given any z score on one variable we can use this
formula, now we know r, to predict what the z score would be on the other
variable if the scores fell along a straight line. This is all very well but
we are not actually interested in z scores! We need to get back to the
original scores.

We do not need to work out z scores to find r. We can use an altern-
ative formula that is identical to that above but involves only the original
scores.

A convenient way to work out r
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Pearson’s r
SP

SS SSX Y

=
×

SP is called the sums of products and gives a measures of how the scores of
the two variables vary together:

  
SP X Y XY

X Y

N
  (   )(   )    

( )( )
= − − = −∑ ∑ ∑∑

B C

SSX is the sums of squares of the scores of the first variable, labelled X (in
our example study time). This gives a measure of how these scores vary on
their own:

  
SS X X

X

N
X   (   )     

( )
= − = −∑ ∑ ∑

B 2 2
2

SSY is the sums of squares of the scores of the second variable, labelled Y (in
our example examination performance). This gives a measure of how these
scores vary on their own:

  
SS Y Y

Y

N
Y   (   )     

( )
= − = −∑ ∑ ∑

C 2 2
2

We can see that SP will be large if each X score is the same distance from
its mean B as each Y score is from its mean C. If the X and Y scores do not
vary together SP will be small and in the case of no correlation it will

become zero. The formula SS SSX Y× gives us a measure of individual

variability of the scores in the two variables. If we can explain all the
individual variability of the scores by the joint variability (SP) then

SS SSX Y× and SP will be the same size and r will be +1 for a positive

correlation and −1 for a negative correlation.
We can use our example to show the calculation:
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Participant X X2 Y Y2 XY

1 40 1600 58 3364 2320
2 43 1849 73 5329 3139
3 18 324 56 3136 1008
4 10 100 47 2209 470
5 25 625 58 3364 1450
6 33 1089 54 2916 1782
7 27 729 45 2025 1215
8 17 289 32 1024 544
9 30 900 68 4624 2040

10 47 2209 69 4761 3243

N = 10 ∑ X = 290 ∑ X2 = 9714 ∑ Y = 560 ∑ Y 2 = 32752 ∑ XY = 17211

The distribution of r

SP XY
X Y

N
    

( )( )
    = − = −

×
=∑ ∑∑

17211
290 560

10
971

SS X
X

N
X     

( )
    = − = −

×
=∑ ∑2

2

9714
290 290

10
1304

SS Y
Y

N
Y     

( )
    = − = −

×
=∑ ∑2

2

32752
560 560

10
1392

r
SP

SS SSX Y

  .=
×

=
×

=
971

1304 1392
0 72

We now have to work out the probability of finding a value of r as large
or larger than 0.72 by chance, that is when there really is no correlation
between the variables. Only then can we decide if we have found a significant
correlation.

When there is no correlation between two variables we would expect r to be
zero. However, there will be random variation around this point. We will,
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FIGURE 20.2 The distribution of Pearson’s r
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by chance, obtain values of r that deviate from zero but this will become
less likely as we get closer to +1 or −1. We can see from this that the
distribution of r under the null hypothesis will be symmetrical about a mean
of 0, tailing off towards +1 and −1. The distribution will be flatter when
there are fewer subjects and more bunched around the mean when there
are more subjects. When there are more subjects the effect of individual
subjects will have less influence on the correlation so there will be less
chance of r deviating so far from zero.

It is not the actual number of subjects that is important when considering
which distribution of r to compare our calculated value to, but the degrees
of freedom. For r the degrees of freedom is N − 2 (and not N − 1) for the
following reason. r is actually the slope of the ‘best fit’ regression line for
the z scores. We need the information from at least two points to draw a
specific straight line, so we have ‘used up’ two of our degrees of freedom
in finding this line. (In other tests we use up only one degree of freedom on
the sample mean.) The distribution of r is shown in Figure 20.2.

A prediction about a correlation can be one-tailed or two-tailed. A
one-tailed test specifically states whether the correlation will be positive or
negative, whereas a two-tailed prediction merely predicts a significant
correlation. We need to take account of this in setting the significance level.
In our example we are predicting a positive correlation, that examination
performance increases as study time increases, so we have a one-tailed test.
From the tables of r (Table A.9 in the Appendix), for a one-tailed test at
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p = 0.05, with 8 degrees of freedom, r = 0.5494. As our calculated value
of 0.72 is greater than the table value we can reject the null hypothesis and
claim a significant correlation between the variables.

There are books that separate linear correlation from linear regression by
putting them in different chapters. It can appear neater that way but we
should not lose sight of the fact that correlation and regression are like the
two sides of a coin. A linear correlation tells us how close the relationship
between two variables is to a straight line. A linear regression is the straight
line that best describes the linear relationship between the two variables.
With a high correlation we are able to see (more or less) where the regression
line occurs by drawing the scatterplot. It is not so obvious when the cor-
relation is weak as the points might be scattered more widely than a narrow
band. Yet even though we get a low correlation we can still ask: if there is
a linear relationship between these variables what would that line be?

With a regression line we can predict what a score on one variable will
be given a score of the other variable. We saw that r is the slope of the
regression line for the z scores but this is not what we want. We would like
to know the line of best fit for the actual scores so that we can predict a
score on one variable from the other directly without having to go through
the z scores.

We need a little algebra here, although it should not be too painful.
The formula for a straight line relationship between two variables X and Y,
is Y = a + bX, where ‘a’ and ‘b’ are constants (they always stay the same
even though X and Y vary) and X and Y are the two variables. You can
choose any numbers for a and b, then put any values of X you choose into
the equation, work out Y, plot X and Y on a graph and the points will fall
along a straight line every time. For example, if I choose, say a = 2 and
b = 3 then Y = 2 + 3X is a straight line. I can take any value of X, say 4, then
find Y = 2 + (3 × 4) = 14. I can do this for any value of X and if I plot X
and Y on a graph the points will fall along a straight line. When X = 0 then
Y = a (in my example when X = 0, Y = 2), so a is the point where the
straight line cuts the Y axis. The slope of the line is given by the constant
b, which tells us how steeply the line rises or falls. It is like walking along a
straight road going up or down hill. A slope of more than 1 is steep, as with
every step we take along the X axis we are going up hill, along the Y axis,
by at least the same amount and the line lies relatively close to the Y axis.

Linear regression
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A slope of less than 1 is shallow, as with every step along the X axis we
rise, along the Y axis, by less than that amount and the line lies closer to
the X axis than the Y axis. Try making up a few straight line equations and
plotting some points for each line on a graph with a horizonal X axis and a
vertical Y axis.

We can employ the straight line formula in working out the regression
line for the two variables under study. If there is a perfect correlation
(r = +1 or −1) then the points on the scatterplot will all lie along a straight
line. This is our regression line. More usually we do not get a perfect
correlation and the regression line is less obvious. With the linear model we
are assuming that the points would lie on a straight line but for the random
variation. So we need to work out what is the most likely straight line for
the data. Notice that a significant correlation gives us the confidence that
there is a genuine linear relationship between the two variables. When the
correlation is weak we can still work out a regression line but the linear
relationship might not be genuine.

First we must decide which variable to predict (in our case we choose
examination performance, variable Y ) and which variable to use for predic-
tion (study time, variable X ). The first stage in the logic of regression analysis
is to assume that the scores for variable X are correct and the reason why
the Y scores do not fall along a straight line is due to random error. We are
basing our analysis on the X scores. We express this in a formula in the
following way:

Y = Regression (on X ) + Error

Y = Y ′ + E

We are assuming that the actual Y scores are a combination of the ones
along the straight line (Y ′) plus a deviation from that straight line due to
error (E ). What we want to know is what Y values we would get if they
really did fall along a straight line and we could get rid of the error: what
are the values of Y ′ where Y ′ = Y − E? The straight line that we are looking
for is therefore:

Y ′ = a + bX

which is the regression line of Y on X without the error (E ). What we now
have to find are the appropriate values for a and b.

Next in the analysis we use the fact that the ‘line of best fit’ is the line
that gives the smallest error values. We do not want a line that is nowhere
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FIGURE 20.3 Finding the regression line by minimising the error values (E)

near the points on the scatterplot. The regression line should be the straight
line that goes closest to the data points. We want to find the line that
produces the smallest values for E, where E = Y − Y ′. A mathematical way
of putting it is to say that we want the line that ‘minimises’ E where E is the
distance of an actual data point from the regression line. Figure 20.3 shows
this for our example.

We work out the minimum values of E by a procedure called the least
squares method of linear regression. We could add up the error (Y − Y ′) for
each subject to produce ∑ E = ∑(Y − Y ′) but some errors will be positive
and some negative and so cancel each other out (as you can see from Figure
20.3), hiding the size of the error. To overcome this we square the errors
so that they all become positive, to produce the sums of squares: ∑ E2 =
∑(Y − Y ′)2. (Once again we can see the importance of ‘sums of squares’ at
the heart of a statistical analysis.) Now we need to find when this sums of
squares is at its smallest. We can replace Y ′ by a + bX in the sums of
squares to give a formula containing only X and Y, which are the values we
know rather than Y ′ which we want to find out: ∑(Y − a − bX )2. We now
want to know what values of a and b would minimise this formula so that
∑ E2 = ∑(Y − a − bX )2 is the smallest it can be. The way we do this is by
employing a mathematical technique called differentiation. (There is not
space to explain differentiation here, but for readers not familiar with it, all
that is necessary to know for the logic of the current argument is that this
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technique exists and helps us at this point in deriving the regression line.)
As a result of this, the above sums of squares is at its minimum when:

b
SP

SSX

= and a = C − bB

where B and C are the means of the scores of the two variables, and SP is
the sums of products and SSX the sums of squares for the scores on variable
X that we worked out in the calculation of r.

All we need to do now is work out a and b to produce the regression
line. For our example, looking back to the calculation of r, we have SP =
971, SSX = 1304, B = 29 and C = 56 so:

b    .= =
971

1304
0 7446 and a = 56 − (0.7446 × 29) = 34.4057

Finally, replacing a and b by their actual values in the formula for Y ′, we
are able to express the regression line by the following formula:

Y ′ = 34.41 + 0.74X (to two decimal places).

We can now use this formula to predict the values of Y (examination perfor-
mance) from the values of X (study time). Below is a table of the predicted
values of Y based on the regression on X.19

Student Study time Examination Predicted
mark examination mark

X Y Y ′

1 40 58 64.01
2 43 73 66.23
3 18 56 47.73
4 10 47 41.81
5 25 58 52.91
6 33 54 58.83
7 27 45 54.39
8 17 32 46.99
9 30 68 56.61

10 47 69 69.19
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We can also use the regression line to predict other values. For example,
no one studied for 35 hours per week. What examination mark would we
predict for someone who did study for this time? Using the formula for Y ′
we get: Y ′ = 34.41 + (0.74 × 35) = 60.31. We would expect a student who
studied for 35 hours per week to get a mark of 60.31 in the examination.

We have found b, the slope of the regression line, and r, the correlation
coefficient, which is the slope of the z scores regression line. There is a
simple relationship between the two:

b r
Y

X
= ⎛

⎝
⎞
⎠

standard deviation of 

standard deviation of 

b takes account of the fact that the two variables are measured on two
different scales, whereas r standardises them. In our example: b =

0 72
11 80

11 42
0 74.

.

.
  .⎛

⎝
⎞
⎠ = . So, whichever way we work out b we get the same

value.20

There is nothing in the logic of the regression analysis that prevents us from
performing the regression the other way round, by assuming the Y values
are correct and that it is the X values that deviate from a regression line due
to error. The logic works in the same way to predict X from Y by the
regression of X on Y. In this case we find X ′ = a + bY (which is also a

formula for a straight line), where b
SP

SSY

= and a = B − bC. In our example,

we find X′ = 0.70Y − 10.06. From this formula we can predict that someone
who obtained a 60 in the examination studied for (0.70 × 60) − 10.06 =
31.94 hours per week.

If we plot both the regression lines (Y on X, and X on Y ) on the same
graph we find, in our case, that they are close together (see Figure 20.4).
This is because the stronger the correlation the closer the regression lines
are to each other. With a perfect correlation the lines are the same. As the

Predicting X from Y

r and the slope of the regression line
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FIGURE 20.4 Regression of Y on X and the regression of X on Y

correlation gets weaker the regression lines separate until, when r = 0, the
lines are orthogonal, that is at right angles to each other and have no predictive
value as there is not a linear relationship between the variables.

We must be careful when we interpret a significant correlation coefficient.
The first point to note is that a smaller value of r is needed for significance
as N increases. With a df of 70 for a one-tailed test, or a df of 100 for a
two-tailed test, r is still significant (at p = 0.05) when it is as low as 0.2.
With correlation coefficients we need to ask not just is it significant but is it
big? One way of deciding the importance of the correlation is to consider
how much of the variability of the scores in one variable can be explained
(predicted) by the variability of the scores of the other variable. We might
have a significant correlation but if it only explains a tiny amount of the
variability then it may not be of much predictive worth.

Recall that Y = Regression on X + Error. We also find that the
variability of the Y scores (SSY = ∑(Y − C )2) equals the variability due to
the regression (SSregression = ∑(Y ′ − C )2) plus the variability due to error
(SSerror = ∑(Y ′ − Y)2). It is reasonable to ask how much of the total variabil-
ity of Y can be explained by that of the regression. We can express this as

The interpretation of correlation and regression
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Variability of X Variability of Y

r 2

FIGURE 20.5 The coefficient of determination (r 2)

SSregression as a proportion of SSY. How much of the total Y sums of squares
can be explained by the sums of squares of the regression on X? It turns out
that:

SS

SS

SP

SS SS
rregression

Y X Y

    = =
2

2

We find that the proportion of the variability in one set of scores that can
be explained by the regression is actually the square of the regression
coefficient, r2, called the coefficient of determination. We can represent r2

diagrammatically in Figure 20.5. A circle represents the total variability of
the scores for one variable. The overlap of the two circles indicates the
amount of variability of one variable that can be explained by the variability
of the other variable, r2.

With a perfect correlation of r = +1 or −1 then r2 = 1 and all variability
in the Y scores can be explained by the regression. The regression line is a
perfect predictor of the Y scores. A high correlation, such as r = 0.7, yields
an r2 of 0.49 which tells us not quite half of the variability in Y can be
explained by changes in X (and vice versa). With a correlation of 0.2 only
0.04 of the variability of the Y scores can be explained by the regression on
X, so, in this case, despite the statistical significance we have every right to
question the value of X as a predictor of Y.

We must be careful to check that our data has homoscedasticity when
we are undertaking a correlation. Homoscedasticity essentially means that
the relationship between the two variables stays the same at all points, with

Problems with correlation and regression
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the scores evenly spread along and around the regression line. Isolated
points and clusters can both have a powerful influence on the correlation
coefficient, and disguise the underlying relationship between the variables,
particularly if we use a limited range of scores from the variables.

An example will illustrate these points. A researcher predicts that
the more shop assistants smile at customers the more items are sold by the
assistant. Each assistant in a store is videotaped during one day and the
amount of smiling is calculated from the time an assistant greets a customer
to the moment the customer decides to buy or not to buy an item. The
researcher examined the correlation between the mean smiling time per
customer for each assistant (in minutes) and the total number of items sold
by each assistant during the day. The results for 9 assistants are shown
below.

Assistant Smiling time Items sold
X Y

1 0.4 16
2 0.8 12
3 0.8 20
4 1.2 16
5 1.4 34
6 1.8 30
7 2.2 26
8 2.6 22
9 3.0 38

When we take all 9 participants into account we find that r = 0.69 (SP =
43.56, SSX = 6.28, SSY = 627.56, df = 7). This is significant at p < 0.05 (from
Table A.9 in the Appendix we find that r = 0.5822, p = 0.05, df = 7, for a
one-tailed test). However, looking at the scatterplot, Figure 20.6, we see
that participant 9 is isolated from the rest. Without this participant r = 0.52
(SP = 20.80, SSX = 4.00, SSY = 400.00, df = 6) which is no longer significant
(as r = 0.6215, p = 0.05, df = 6, for a one-tailed test). Thus the effect of
participant 9 is to make the correlation significant yet participant 9 is not
typical, and so we should not take the result as practically useful despite its
statistical significance. This shows how one ‘outlier’ can strongly affect the
correlation.
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FIGURE 20.6 The scatterplot of smiling time by items sold

If we look at the scatterplot we can also see that the pattern of results
is not the same for all participants: the relationship between smiling and
items sold is not the same all along the regression line. If we limit our range
to participants 1 to 4 we find that r = 0 (SP = 0, SSX = 0.32, SSY = 32.00,
df = 2). There is no correlation at all for these participants alone. If we
now select only participants 5 to 8 we produce a correlation coefficient
of r = −1 (SP = −8.0, SSX = 0.8, SSY = 80, df = 2), which is a perfect negat-
ive correlation. These two clusters produce very different results which
illustrates why we do not want a limited range in our study. The lack of
homoscedasticity has resulted in a positive, zero and negative correlation
dependent on which participants we select.

A similar spread of data along the regression line provides evidence
that the correlation does in fact indicate a genuine underlying relationship
between the variables. Isolated points, clusters and a limited range can all
provide spurious correlations. We must look a little further than a statistic-
ally significant r when we are interpreting the meaning of a correlation.

We can always find a regression line for our data, regardless of the value of
r, but just because we can calculate it does not mean that it is of theoretical

The standard error of the estimate
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significance. To be confident that our predictions are based on a genuine
underling relationship we really want all the points to be close to the regres-
sion line. A way of determining how close the points are to the regression
line is to calculate the standard error of the estimate, which, for the regres-
sion of Y on X, is the standard deviation of the Y scores from the regression
line of Y on X. Recall that a variance is a sums of squares divided by a
degrees of freedom. So the error variance, the amount by which the Y scores

vary from the regression line, is 
SS

N
error

− 2
. We find the square root to produce

a standard deviation.

Standard error of the estimate  =
−

SS

N
error

2

We also know from above that SSY = SSregression + SSerror and r
SS

SS
regression

Y

2 = .

From these two formulae we can show that SSerror = (1 − r2)SSY. Replacing
SSerror in the formula for the standard error of the estimate we get:

Standard error of the estimate  
(   )

=
−

−
1

2

2r SS

N
Y

For the study time/examination performance example we have r2 = 0.52
and SSY = 1392, so the standard error of the estimate, the standard distance

of a Y score from the regression line is: 
(   ) (   . )1

2

1 0 52 1392

10 2

2−
−

=
−

−
r SS

N
Y

= 9.14.

There will be times when we wish to correlate data that is not measured on
a interval scale. As long as the data are ordinal we can perform a correlation
on the ranks using the Spearman rS correlation coefficient. Each set of
scores is ranked separately from lowest to highest. A Pearson’s r is then
calculated on the ranks. However, with ranks, as long as there are no ties,
we can use a simpler formula. There will be the same ranks for both sets of
scores so SSX = SSY. If we replace SSY with SSX in the formula for r we get:

The Spearman rS correlation coefficient



S T A T I S T I C S  E X P L A I N E D

280

r
SP

SS SS

SP

SS
X Y X

=
×

=

It is also the case that with ranks SP SS
D

X    = − ∑ 2

2
, where D is the dif-

ference between a subject’s ranks on the two variables. Furthermore, with

ranks, SS
N N

X =
−3

12
. Replacing SP and SSX in the formula for r we get:

Spearman’s     r
D

N N
S = −

−
∑

1
6 2

3

All we have to do for ranked data is work out rS. We then look up the figure
in the tables for rS at the chosen level of significance (Table A.10 in the
Appendix). In this case we do not use the degrees of freedom to find the
correct table value of rS but N, the number of ranks. As with all analyses on
ranks we have to be careful if there are many tied ranks and should consider
employing a more sensitive measure of the variable to reduce them. Altern-
atively, the original Pearson formula can be used.

The Spearman coefficient is useful if we are concerned that the scores
on two variables appear to correlate but not linearly. As long as the two
variables vary monotonically, that is as one increases the other also increases
consistently or as one increases the other decreases consistently, then the rS

coefficient can be used.

Two teachers were asked to rate the same six teenagers on the variable how
likely to do well academically at University on a 0–20 scale, from unlikely
to highly likely. The results are shown below. Is there a positive correlation
between the teachers’ ranking?

A worked example
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Teenager Teacher 1 Teacher 2 Teacher 1 Teacher 2 D D2

ratings ratings ranks ranks

1 15 8 4 3 1 1
2 12 13 3 5 −2 4
3 18 16 6 6 0 0
4 4 5 1 2 −1 1
5 8 2 2 1 1 1
6 17 10 5 4 1 1

∑ D2 = 8

The ratings for each teacher are ranked separately. From these we produce
the difference scores (D), showing the difference in ranks between the
teachers, and the squared difference scores (D2). The sum of the difference
scores, ∑ D2 = 8. There are 6 participants so N = 6. We now work out rS.

r
D

N N
S           .= −

−
= −

×
−

=∑
1

6
1

6 8

6 6
0 77

2

3 3

We have a one-tailed test as the prediction is for a positive correla-
tion. From Table A.10 in the Appendix, rS = 0.829, p = 0.05, N = 6 for a
one-tailed test. The calculated value does not exceed the table value so we
have not found a significant correlation in the rankings. (Notice how, with
a small number of subjects, we need a high value of the coefficient for
significance.)

Details on how to calculate a linear correlation and linear regression
using the SPSS computer statistical package can be found in Chapter 15
of Hinton et al. (2004).
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Up to now we have looked at the correlation between two variables. Yet we
can consider the correlation between three or more variables, say IQ, school
grades, university grades and occupational performance. Dealing with many
variables at the same time is referred to as multivariate analysis. In this
chapter we shall be examining both correlation and regression with more
than two variables as this is often an important form of analysis when we
collect information about a number of factors (such as in a questionnaire or
survey) and we want to investigate the relationships between them. For
example, we might wish to study the relationship between housing quality,
housing density, social support networks and pollution levels on health.

In the previous chapter we analysed some example data to show a significant
correlation between study time and examination performance. We might
decide that a third variable, intelligence, could be influencing the correla-
tion. If intelligence positively correlates with study time, that is, the more
intelligent students spend the most time studying, and if it also positively
correlates with examination performance, that is, the more intelligent students
get the higher marks in the examination, then the correlation of study time
and examination performance might simply be due to the third factor, intel-
ligence. If this is the case then the relationship between study time and
examination performance is not genuine, in that the reason they correlate is
because they are both an outcome of intelligence. That is, the more intelligent
students both study more and get higher marks in the examination. If we
take out the effect of intelligence the relationship of study time to examina-
tion performance could disappear.

It is worth noting here that a correlation does not indicate a causal
relationship. We might find that over a period of years the number of houses
positively correlates with the amount of pollution in a town. It would be
wrong to claim that the houses cause the pollution or that more pollution
causes more houses. In this case, the correlation might arise due to a third

Introduction to multivariate analysis

Partial correlation



M U L T I P L E  C O R R E L A T I O N  A N D  R E G R E S S I O N

285

factor population, which correlates with both. An increase in population
(and human activity) might result in both more houses and also greater
pollution. The correlation between houses and pollution is simply an outcome
of a third factor rather than an important correlation in its own right.

To answer the question of the influence of intelligence on the study
time/examination performance correlation we need to examine the correla-
tion of study time and examination performance after removing the effects
of intelligence. If the correlation disappears then we know it was due to the
third factor. We do this by calculating a partial correlation. The first stage
is to find out how well the factor intelligence correlates with study time
and examination performance separately. To find this out we measure the
students’ intelligence on a standard test of intelligence. The results of this
test along with the study times and examination marks are shown in the
following table.

Student Intelligence Study Examination
score time mark

1 118 40 58
2 128 43 73
3 110 18 56
4 114 10 47
5 138 25 58
6 120 33 54
7 106 27 45
8 124 17 32
9 132 30 68
10 130 47 69

Mean 122 29 56

Standard deviation 9.72 11.42 11.80

Using the techniques outlined in the previous chapter we find the following
correlation coefficients:

Study time and Examination performance r = 0.72
Study time and Intelligence r = 0.37
Examination performance and Intelligence r = 0.48
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The correlations indicate that intelligence is positively correlated with the
other two variables so there is reason to continue the investigation.

Recall from the previous chapter that the regression allows us to predict
one variable from a second. If we perform a regression of study time on
intelligence this will tell us what study time scores we would predict from
intelligence. Thus, the difference between the actual study time scores and
those predicted by intelligence should give us the study time scores with the
effects of intelligence removed. These differences are termed residuals rather
than ‘error’ here because, whilst the difference is an ‘error’ in the ability of
intelligence to predict study time, in this case it is what we are interested
in, that is, what is left (the residual variability in the scores) after taking out
the effects of intelligence on study time.

Performing a regression of study time on intelligence we get the
following equation: Study time = 0.44 × Intelligence − 24.50. From this
we can work out the predicted study time scores and then subtract them
from the actual scores to give the residuals. The following table shows
this (see Note 19).

Student Study time Study time predicted Residual
by intelligence study time

1 40 27.42 12.58
2 43 31.82 11.18
3 18 23.90 −5.90
4 10 25.66 −15.66
5 25 36.22 −11.22
6 33 28.30 4.70
7 27 22.14 4.86
8 17 30.06 −13.06
9 30 33.58 −3.58

10 47 32.70 14.30

This has removed the effect of intelligence from study time. We now need
to remove it from the examination performance. We follow the same method
and perform a regression of examination performance on intelligence.
This gives us the regression equation: Examination performance = 0.59 ×
Intelligence − 15.60. We use this equation to work out the residuals for
examination performance.
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Student Examination Examination Residual
mark mark predicted examination

by intelligence mark

1 58 54.02 3.98
2 73 59.92 13.08
3 56 48.30 6.70
4 47 51.66 −4.66
5 58 65.82 −7.82
6 54 55.20 −1.20
7 45 46.94 −1.94
8 32 57.56 −25.56
9 68 62.28 5.72

10 69 61.10 7.90

We can now correlate the residual study time scores with the residual
examination marks, having removed the effects of intelligence from the two
factors. The correlation of these scores yields an r of 0.665. This is called a
partial correlation as it is the correlation of study time and examination
performance having partialled out the effect of intelligence. In this case
the size of the correlation has been reduced but it is still significant (at
p = 0.05), so the original correlation was not entirely due to the third
variable, intelligence. There is still a significant relationship between the
amount of time spent studying and performance in the examination after we
have accounted for the effects of intelligence.

We can illustrate what we have done by representing the variability of
the scores of each variable by a circle. As we can see from Figure 21.1 the
three circles overlap. The area SE + SIE is the portion of the examination
performance variability explained by study time, the area SI + SIE the portion
of study time explained by intelligence and IE + SIE the portion of examina-
tion performance explained by intelligence. The size of these areas can be
found by calculating r2 for each correlation. When we remove the effects of
intelligence we take away the intelligence circle (I + SI + SIE + IE) leaving
S + SE of the study time variability and E + SE of the examination per-
formance variability. The partial correlation of study time and examination
performance, having removed the effect of intelligence, leaves us with the
area SE as the residual variability of examination performance explained by
the residual variability of study time.
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FIGURE 21.1 The variability of the scores on three variables

Fortunately, there is an easier method of calculating a partial correla-
tion, than finding the residuals, when we know the three separate correlation
coefficients. We label the variables as 1, 2 and 3 (rather than X and Y ) as
it makes it easier to label additional variables. I will label examination
performance as variable 1, study time as variable 2 and intelligence as
variable 3. The correlation coefficients are labelled as r12 for the correlation
of variables 1 and 2, r13 for the correlation of variables 1 and 3 and r23 for
the correlation of variables 2 and 3. The partial correlation of variables 1
and 2 having removed the effects of variable 3 is termed r12.3 and can be
calculated with the following relatively simple formula.

r
r r r

r r
12.3

12 13 23

13 23    
=

−
− −1 12 2

For our example,

r12.3

.   ( .   . )

. .
  .=

− ×
− −

=
0 72 0 48 0 37

1 0 48 1 0 37
0 665

2 2

We are not restricted to finding just the one partial correlation. We
can also find r13.2 (the correlation between examination performance and
intelligence having partialled out the effect of study time) and r23.1 (the
correlation of study time and intelligence having partialled out the effect of
examination performance) by using the same formula with the correlation
coefficients adjusted appropriately, so for r13.2 we would replace r12 with r13

and so on. Notice that some of these are more meaningful to work out than

Study time Examination
performance

SE

SIE
SI IE

S E

I

Intelligence
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others. Just because the statistical reasoning provides us with the possibility
of an analysis it does not mean that we decide it is worthwhile undertaking.

We can extend the analysis to partial out the effects of more than one
variable from a correlation. We can remove the effects of variable 4 if we
wish by the following formula:

r
r r r

r r
12.34

12.3 14.3 24.3

14.3 24.3    
=

−
− −1 12 2

Notice that the formula contains the partial correlations of the variables
having removed variable 3. The logic allows us to go on to remove variables
5, 6, etc. However, the formulae make one key assumption, that is, the
variables are linearly correlated with variables 1 and 2. We are extending
the linear model to all the variables. If this assumption is not valid we
will only partial out the linear components of the variables, not all their
effects.

We can use partial correlations to help us calculate a multiple correlation. A
multiple correlation coefficient, R, gives us a measure of how well three or
more variables correlate together. We do some relabelling again here. We
specify a particular variable to label as Y. This is the dependent variable and
we are calculating how it correlates with the rest. It is usually the variable
we wish to predict (as we shall see in multiple regression later). I shall
choose examination performance as this is an interesting one to predict. We
call the other variables 1, 2, 3, etc. We have only two others so I shall call
study time variable 1 and intelligence variable 2.

R is easier to explain if we work with R2, the coefficient of determina-
tion for the multiple correlation. We take each of the variables 1, 2, 3, etc.
in turn and find out what proportion of the Y variability it can explain that
has not already been explained by previous variables. Adding up these
portions gives us a measure of how much of the Y variability can be explained
by the combination of the other variables.

The first question we must ask is how much of the variability of the Y
scores (examination performance) can be explained by variable 1, study time?
This is simply the coefficient of determination of the correlation of the two
variables, r2

Y1. Now we ask how much of the remaining variability of Y
can be explained by variable 2, intelligence? It is not r2

Y2 as some of this

Multiple correlation
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area has already been explained. If we look back to the interlocking circles
in Figure 21.1 we see that r2

Y2 is the areas SIE and IE. Yet we have already
explained the areas SE and SIE by r2

Y1. We have already predicted the area
SIE so we do not want to do it twice. Because intelligence and study time
are correlated they both explain some of the same variability of examination
performance (the area SIE). To overcome this we remove the effect of study
time (variable 1) before finding out what of the remaining variability in the
examination performance can be explained by intelligence. The residual
portion of examination performance after removing the effects of study time
is 1 − r2

Y1 (that is, the whole area, I, minus that portion explained by study
time, leaving E + IE). The amount of the area 1 − r2

Y1 explained by intelli-
gence is the partial correlation of examination performance and intelligence
having removed the effect of study time. This is r2

Y2.1 (the area IE). Expressed
as a portion of the residual Y variability this amount (IE as a portion of
E + IE) is r2

Y2.1(1 − r2
Y1). In conclusion we can say that the amount of Y

variability explained by variables 1 and 2 is:

R2
Y.12 = r2

Y1 + r2
Y2.1(1 − r2

Y1)

(In terms of part of the examination performance circle in Figure 21.1, this
is SE + SIE for variable 1 plus IE for variable 2.)

The multiple correlation coefficient, RY.12, is simply the square root
of this figure. In our example, rY1 = 0.72 and rY2.1 = 0.33, so R2

Y.12 = 0.722 +
0.332(1 − 0.722) = 0.57, and the coefficient of multiple correlation, RY.12, is

0 57 0 75.   .= . This tells us that more of the variability in Y (examination
performance) can be explained by study time and intelligence (R2

Y.12 = 0.57)
than by study time alone (r2

Y1 = 0.52), although not a lot more.
We can calculate a multiple correlation coefficient for any number of

variables, with each new variable used to explain variability in Y unexplained
by any previous variable. For four variables, R2

Y.123 = R2
Y.12 + r2

Y3.12(1 − R2
Y.12)

where the Rs in the formula are themselves multiple correlation coeffi-
cients. The problem is that as each additional variable is brought in, we
chip away at the variability of Y so that R becomes larger. Yet as each new
variable is added we increase the risk of increasing R by random variation
rather than by genuine relationships. Therefore multiple correlations should
be undertaken with caution and when a large number of variables are used
as ‘predictor’ variables then a correction should be made to R to compen-
sate for the increased risk of error. (Statistical computer programs such as
SPSS provide an ‘Adjusted R’ value to correct for this – see Hinton et al.,
2004.)
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We can test the significance of a multiple correlation by using a variance
ratio (F) test, comparing the estimated variance of the ‘explained variability’
to the estimated variance of the ‘unexplained variability’:

R

k
R

N k

2

21

1    

−
− −

where N is the number of subjects and k is the number of predictor vari-
ables. Thus,

F
R N k

k R

(    – )

(   )
=

−
−

2

2

1

1
with degrees of freedom k, N − k − 1

In our example, with R2 = 0.57, N = 10, k = 2, F(2,7) = 
0 57 10 2 1

2 1 0 57

. (     )

(   . )

− −
−

= 4.64. From the tables of the F distribution, Table A.3 in  the Appendix,
F(2,7) = 4.74, p = 0.05, so the multiple correlation is not significant at
p = 0.05. Note that if we had had the same value of R2 but just one more
participant (N = 11) the result would have been significant. This shows the
importance of sample size when dealing with correlations.

We can calculate a linear regression for more than two variables. Again we
need to label one of the variables as Y because this will be the dependent
variable. The other variables, the independent variables or predictor variables,
will be used to predict it. Instead of having a single variable X for the linear
regression we use a number of variables X1, X2, . . . , Xk for the regression,
where k is the number of predictor variables. To work out the regression
line we calculate the following linear equation:

Y = a + b1X1 + b2X2 + . . . + bkXk

I shall only consider the case of two predictor variables here, the simplest
case, to illustrate multiple regression. The logic is the same for more predictor

The significance of R2

Multiple regression
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variables but the calculation becomes rather complex and will not be
explained in this book.

With two predictor variables we wish to solve the equation:

Y = a + b1X1 + b2X2

Recall that with just one predictor variable, Y = a + bX, where b
s

s
rY

X
YX= ⎛

⎝⎜
⎞
⎠⎟

where sY and sX are the standard deviations of the scores of the two variables.20

In the two variable case we cannot work out b1 and b2 by using b
s

s
rY
Y11

1

= ⎛
⎝⎜

⎞
⎠⎟

and b
s

s
rY
Y22

2

= ⎛
⎝⎜

⎞
⎠⎟

 unless X1 and X2 are not correlated (where sY, s1 and s2

are the standard deviations of the three variables). The problem is that, as
in multiple correlation, we will have some overlap in the variability of Y
that the two predictor variables can explain. If we are not careful we will
count this variability twice, once with X1 and once with X2 and our pre-
diction will be distorted. The way to solve this problem is for the bs to be
partial regression coefficients, that is, coefficients where the effect of one
variable is partialled out when working out the b for the other. In the two
predictor case:

b
s

s
b

s

s
Y Y

1 1
1

2 2
2

    = ⎛
⎝⎜

⎞
⎠⎟

= ⎛
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β βand

where β1 and β2 are the standard partial regression coefficients:

β β1 2 2 21 1
=

−
−

=
−
−

r r r

r

r r r

r
Y1 Y2 12

12

Y2 Y1 12

12

and

Just as r is the slope of the line when we convert X and Y to z scores in the
two variable case, β1 and β2 are the partial slopes of the regression of Y by
the predictor variables when all the scores are converted to z scores.

To complete the linear regression we use the following formula to find a:

a = C − b1B1 − b2B2

We can illustrate the calculation by predicting examination performance
(Y ) using study time (X1) and intelligence (X2) as predictor variables. We
first work out β1 and β2:
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β1 2

0 72 0 48 0 37

1 0 37
0 63

.   ( .   . )

  .
  .=

− ×
−

= β2 2

0 48 0 72 0 37

1 0 37
0 25

.   ( .   . )

  .
  .=

− ×
−

=

Next we work out b1 and b2 using the values for the standard deviations of
the variables (found from the table on p. 285):

b1 0 63
11 80

11 42
0 65  .

.

.
  .= ⎛

⎝
⎞
⎠ = b2 0 25

11 80

9 72
0 30  .

.

.
  .= ⎛

⎝
⎞
⎠ =

Finally we calculate a:

a = 56 − (0.65 × 29) − (0.30 × 122) = 0.55

We now have the equation for the multiple regression:19

Y ′ = 0.55 + 0.65X1 + 0.30X2

Replacing the symbols with the variable names gives us the formula for
predicting examination performance using study time and intelligence:

Examination mark = 0.55 + 0.65 Study time + 0.30 Intelligence

From this we can predict, for example, a student with an intelligence score
of 110 and who studies for 30 hours per week will obtain the following
examination mark:

Examination mark = 0.55 + (0.65 × 30) + (0.30 × 110) = 53.05

Thus, on the basis of the linear multiple regression we predict that the
student would get an examination mark of 53.05.

When our predictor variables are highly correlated with each other we have
what is referred to as multicollinearity. This can be a problem for multiple
regression. First, the predictors are explaining much the same variability in
the dependent variable Y. Consider the case of two predictor variables.
When the two variables are not correlated then the Y variability explained
by one is different to the Y variability explained by the other but when they
are correlated there is an overlap in the Y variability they explain. Second,

Multicollinearity
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we do not know which of the predictor variables is the more important due
to the common variability explained. With many predictor variables this
problem can arise quite easily. A solution to multicollinearity is to combine
variables into a single variable or to leave one out if it is essentially predict-
ing the same variability as another. As an example, imagine that you were
predicting a person’s height from other bodily dimensions, such as foot
length, forearm length, index finger length, etc. If you had included the
length of the left foot and the length of the right foot as two separate
variables then you might find that these two measurements are so highly
correlated that you really do not need or want both in your regression due to
multicollinearity. You might decide to include only the right foot length or
even the average of the two feet lengths for each person.

In our example we have included all the predictor variables in the regres-
sion, not surprisingly since there were only two, and this is called direct
regression. When there are more predictor variables, the researcher might
start by calculating the multiple regression by working out the equation
using the predictor variable that correlated most highly with the dependent
variable. Predictor variables are then added into the regression on the basis
of the additional variance they can explain. The process is terminated when
a variable no longer significantly increases R2. This is called forward regres-
sion. An alternative is to include all the predictor variables initially but to
remove variables one at a time, taking out the one that contributes the least
to R2, until removing a variable would significantly reduce R2. At which
point the regression calculation stops. This is called backward regression.
Stepwise regression combines the above two methods, adding variables and
taking others away at the same time. The reason why we use alternatives
to the direct method is that the most predictive regression is where few
variables explain lots of the variability in the dependent variable. Not only
is it parsimonious, it also means that we are not including a lot of additional
variables which contribute little to the prediction.

Details on how to calculate a multiple correlation and multiple regres-
sion using the SPSS computer statistical package can be found in
Chapter 16 of Hinton et al. (2004).

Calculating multiple regression
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Throughout this book I have been explaining how to perform a range of
statistical analyses. So the next piece of advice may seem a little unexpected:
don’t use up your valuable time undertaking statistical analysis when you
can get a computer to do it for you! There are many excellent statistics
programs, such as SPSS (see Hinton et al., 2004), the calculations are
done quickly with a degree of consistent accuracy that we can rarely match
as human beings. The key point I hope to have made in the book is
that it is important to know why and how statistical analysis operates,
the reasoning behind it, the assumptions made and the types of data that
particular analyses can deal with. This knowledge not only allows you to
perform the calculations with a calculator but it is also invaluable when
using a computer. If you do not understand what you are doing then using
a computer simply compounds the problem. When performing, say, a t
test by hand you might learn something about the operation and logic of
the test but with a computer the test gets ‘magically’ done and the result
appears like a rabbit out of a hat. If you didn’t know what you were doing
beforehand, you certainly will not be any the wiser afterwards. It is only
when we know what we are doing that the computer comes into its own.
The person who understands statistical analysis can appreciate what the
computer is doing, and more importantly, know when it is NOT DOING
what is really wanted.

A key thing to remember when using a computer is the acronym
GIGO – garbage in, garbage out. If you put a lot of nonsense into the
computer you will get a lot of nonsense out! Computers do not know when
you have made a mistake, in fact they do not ‘know’ anything, they simply
do as they are told. If you choose the wrong analysis, or type in the wrong
data, the computer program will still perform the analysis on that data. If
you do not realise your mistake then you can unknowingly take away the
results of an incorrect or inappropriate analysis. If this is for an important
research programme with much depending on the results then the ramifica-
tions of your mistake may be profound.

Undertaking data analysis by computer
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There are a number of checks you can perform to make sure that you
have input the data correctly into a computer program or computer file
for subsequent analysis. The first thing to do is to obtain a printout of the
data after it has been input into the computer. You will then be able to make
a check on the data that was actually analysed rather than the data you
hoped was analysed. Look at the printout and ask yourself the following
questions.

1 Are there any large numbers where you did not expect them? If you
leave your finger on a key for too long you might input that digit twice
by mistake. Check that numbers that should be 2 are not 22 or even
222.

2 Are there missing values where there should not be? When reading
down a list of numbers to input, it is quite possible to miss one out.
Check that the correct number of figures have been input.

3 Does the pattern of data look correct? Often with a large amount of
data you can see patterns on the page of numbers, such as all 1s in a
particular column. As you scan down the data is there an unusual
figure somewhere? If so, check that it is correct rather than an error
on input.

4 Has the data been input in the correct order for the analysis? This
can be a very important question. If the analysis is complex such as
a two factor mixed design ANOVA the data must be input in the
correct order. If not, the computer might analyse the data for the
independent factor as though it were the repeated measures factor and
vice versa.

Once the computer has performed the analysis the program will present a
display or a printout of the results of the analysis. When interpreting this
analysis keep in mind one question: is this what you expected when you
input the data? If not then why were your expectations out? This illustrates
why knowledge of statistical analysis is so useful. If you know that a certain
analysis cannot produce what you have obtained then you know there is an
error somewhere, whereas someone who has no knowledge of statistical
analysis might simply accept the result as correct.

Interpreting output

Errors in data input
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The first area to check is the means, totals, standard deviations, etc.
You may already have worked out the means of the various conditions
before performing the analysis. Does the computer come up with the same
values? Has it the correct means in the correct conditions? A basic check of
the simple calculations can confirm that the data has been input correctly
and the correct numbers are in the appropriate conditions.

Next check that the statistical analysis is the one you wanted. Often
the name of the analysis will appear on the output. Does it say ‘related
or repeated measures’ when you really wanted independent? Does it say
‘completely randomised or independent measures’ when you wanted to
perform a repeated measures analysis? Simply looking at the information
at the top of the output can often be the most useful. But always make sure
you know what analysis you want to perform before you ask the computer
to do it!

Occasionally the computer program will have an error in it. The chances
of a commercially available one containing a ‘bug’ are very small but if you
are using a helpful little program you downloaded from the Internet (often
written by academics then generously offered to others for free) then make
sure that the results match your expectations. Recall that there are certain
results you should never get, such as a negative value for a sums of squares
in an ANOVA summary table. Always check the data first but do not always
trust the program.

There are differences between the ways computer programs present
the results and the ways it is done when working out the analysis by hand.
The most common difference is in the presentation of the significance of
a finding. Computer programs often give the actual probability of the
result occurring by chance rather than whether it exceeds the significance
level or not. For example, rather than stating ‘p < 0.05’ or ‘significant at
p = 0.05’ the computer might display ‘p = 0.034215’, which is the actual
probability of the result under the null hypothesis. It is up to you to decide
whether this is significant at the significance level you have chosen. A
result with a probability 0.034215 is less than 0.05 so is significant at the
p = 0.05 level of significance but not at p = 0.01. Sometimes the computer
will output the probability as p = 0.000000. This appears to indicate that
the result could never occur under the null hypothesis, which is obviously
impossible. The true explanation lies in the way the computer displays
numbers. As there can never be a probability of zero that the data occurred
by chance it must be that the probability is so small that there is not enough
space for the computer to display enough decimal places. Therefore we
should replace the last zero with a 1 so that we read 0.000000 as 0.000001.
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We know that the probability is smaller than this so we are erring on the
side of safety in reporting this probability. If we incorrectly reported a
probability of zero other researchers would spot the error immediately
whereas more correctly reporting a probability of 0.000001 clearly indicates
a highly significant result. If you get a probability this low then check that
your calculated value of the statistic under test is very large (or very small
depending on the test) as we would expect with such a small probability
value.

Always be wary of unusual figures, especially ones you did not expect.
It is tempting to believe that a highly significant result must be true, particu-
larly if it is a ‘better’ result than you were hoping for. Do not be seduced
by the computer output. Is this really the result you would have expected
by looking at the data? In this book, mainly for illustration purposes most
of the statistical analyses have been found to be significant. It does not
work like this in research. Often there are many non-significant findings.
A significant finding is often cherished, particularly as it is more likely to be
published than a non-significant finding. Yet we should still treat significant
results with some scepticism as, if there is an error, the cost will be that
much greater.

There are a number of statistical analyses that are commonly used today
which would have only been undertaken by a statistician in the past. This is
due to the development of sophisticated computer programs for statistical
analyses and the advance of computer technology. The computing power
required to undertake complex analysis would have been owned only by
major institutions (such as universities) only two decades ago. And prior to
the advent of computers a statistician would have possibly taken days
to carry out certain calculations. Now a standard personal computer can
undertake these complex analyses in just a few seconds or less. The
major time-consuming activity is inputting the data rather than carrying out
the analysis. Thus it is outside the scope of this book to provide worked
examples for complex analyses that would take forever by hand but which
the modern computer can perform in considerably less time than it takes
to boil a kettle!

However, the reason why certain complex analyses are now popular
is that researchers are able to collect large amounts of data and then exam-
ine these data for underlying relationships between the various variables

Complex analyses



S T A T I S T I C S  E X P L A I N E D

300

under study. This is particularly the case when a number of participants
are asked to provide scores on a wide range of variables. This might be
a study in the laboratory where a group of people are tested on a number
of skilled tasks such as logic, mathematical, spatial and verbal tasks.
The research aim here is to find out which tasks are related, with the
implication that they might rely on the same cognitive processing systems.
Alternatively, a consumer questionnaire might be constructed where the
questions ask for both a range of background information as well as
finding out about the participants’ product use and product preference.
Indeed, the data layout in statistical computer programs often reflects
this format:

Variable 1 Variable 2 . . . Variable k

Participant 1

Participant 2

�

Participant n

In the following analyses I am going to use the data in the table below
for illustration purposes. In many real cases – for example questionnaire
data – a researcher will have a lot more data, often hundreds if not
thousands of data points. This is one reason why we usually would not
contemplate undertaking these analyses by hand. However, to demonstrate
the analyses the dataset will be small. I am also describing the data in rather
a general way, labelling the variables Question 1, Question 2, etc. to again
illustrate the wide applicability of the analyses. As long as the data satisfy
the assumptions of the test then we can see that the analyses are very
versatile and can be used in a number of different instances with a range
of research topics.

An example data input table



C O M P L E X  A N A L Y S E S  A N D  C O M P U T E R S

301

Participant Question 1 Question 2 Question 3 Question 4 Question 5

1 1 1 7 8 6

2 3 4 3 3 5

3 3 3 8 7 8

4 4 2 2 1 2

5 5 5 2 2 2

6 7 5 4 5 6

7 7 7 7 7 4

8 6 8 9 9 8

9 9 7 5 5 4

10 8 10 10 9 7

Mean 5.30 5.20 5.70 5.60 5.20

Stand.dev. 2.54 2.82 2.91 2.88 2.20

Variance 6.4556 7.9556 8.4556 8.2667 4.8444

When we develop a questionnaire or other measure of a construct (such as
‘honesty’ or ‘verbal ability’) we want that measure to be both valid and reli-
able. A valid measure is one that genuinely measures the underlying construct.
This is not always easy to achieve and often there is debate in the literature
on the validity of a test, for example, do IQ tests really examine intelligence?
Deciding on the validity of a measure is an academic issue rather than one
for statistical analysis. However, reliability can be examined statistically.

When data are collected on a number of different measures we may be
interested in examining their reliability. Reliability is defined as the ability

Reliability
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of a measuring instrument to measure the concept in a consistent manner.
Imagine I had a tape measure and recorded a person’s height as 1 metre 65
centimetres. It would be most odd if I measured them a second time with
the same tape measure ten minutes later and read off a height of 1 metre 42
centimetres. The tape measure would be a highly unreliable measuring device.
Similarly we want a questionnaire to be reliable across people and occasions.
One way of testing reliability is to examine the ‘test–retest’ reliability. Does
the test give the same results on different occasions? All we need to do is
to give the test twice and correlate the findings. A high correlation indicates
a high level of reliability. However, it is not quite as simple as that, as the
participants may have remembered their answers from the first test and this
might influence the way they respond on the second test. To avoid this
some researchers construct two measures (version A and version B of their
questionnaire) with slightly different questions which they hope are equival-
ent. However, this may double the work.

Within a questionnaire (or indeed similarly structured dataset) we can
examine the internal reliability of the items within it. If the five questions in
the above questionnaire are measuring different aspects of the concept of
‘happiness’ then we can examine whether participants are responding to the
different items in a consistent manner. I have used the term item here rather
than question as it is a more general term and the item could be a question
or a score on any specific task. Thus, we can examine the internal reliability
of our questionnaire by looking at the relationships between the answers to
the different questions.

One measure of reliability is called ‘split-half’ reliability, where the
answers on the first half of the questionnaire are compared to the answers
on the second half of the questionnaire. So, if there is a high correlation
between the two halves of the questionnaire we can argue that there is
internal consistency in the questionnaire.

The most popular measure of internal consistency is Cronbach’s alpha,
which is a more sophisticated test of reliability than the split-half analysis as
it examines the average inter-item correlation of the items in the questionnaire.
It also takes into account the number of items in the questionnaire:

Cronbach’s α
(   )

( )

( )
=

−
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑k

k

i

sum1
1

var

var

where k is the number of items, var(i) is the variance of an item, and
var(sum) is the variance of the totals for each participant. (In the above
example participant 1 has a total of 23, and participant 2 has a total of 18).
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Essentially, if all the items are measuring exactly the same thing
(without any error), we can refer to this as the ‘true score’, and the scores
will reflect this in the following way: all the individual item variances will
be identical and var(sum) will simply be k × var(i). This will result in α = 1.
However, at the other extreme, if there is no shared variance in the items,
then they are reflecting only ‘error’ rather than an underlying true score,
resulting in var(sum) = ∑ var(i) and α = 0.

In our example:

α
(   )

.   .   .   .   .

.
=

−
−

+ + + +⎡
⎣⎢

⎤
⎦⎥

5

5 1
1

6 4556 7 9556 8 4556 8 2667 4 8444

107 7778

= .0 8327

It is conventional to view an α of 0.7 or greater as indicating a reliable
scale, so we would view this limited questionnaire data as reliable.

Interestingly, we can argue that if the items are measuring the same
underlying dimension on the same scale then they should have the same
variance. If we make this assumption then we can calculate a slightly differ-
ent Cronbach’s alpha, called the standardised Chronbach’s alpha, based on
the inter-item correlations rather than on item variances. This is expressed
as follows:

Standardised Cronbach’s
  
α

  (   )
=

+ −
k

k

D

D1 1

where k is the number of items and D is the average inter-item correlation.
The inter-item correlations for the questionnaire example are shown in the
table below, referred to as the correlation matrix.

Question 1 Question 2 Question 3 Question 4 Question 5

Question 1 1 0.8434 0.1790 0.1551 −0.0517
Question 2 0.8434 1 0.4958 0.4494 0.2434
Question 3 0.1790 0.4958 1 0.9675 0.8090
Question 4 0.1551 0.4494 0.9675 1 0.8217
Question 5 −0.0517 0.2434 0.8090 0.8217 1
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There are 10 different correlations (of each question with another question),
giving the average iter-item correlation D, as 0.4913. Thus for our example:

Standardised α   .

  .   (   )
  .=

×
+ × −

=
5 0 4913

1 0 4913 5 1
0 8284

Notice that there is a small difference between our two alpha values. This is
due to the difference in the variances of the items rather than one alpha
being ‘better’ than the other. We would use the standardised alpha when we
have comparable items (i.e. measured on the same scale as in the example
here) or we have standardised the data, but otherwise we would report the
‘raw’ value based on the item variances.

A further reason why we undertake the analysis by computer is that we
can get a printout of the alpha value when a particular item is removed from
the analysis. If we do this for each item in turn then we can see which com-
bination of items gives the highest alpha value, and hence highest reliability.
This allows us to refine a questionnaire and maximise its reliability.

Details on how to perform a reliability analysis using the SPSS com-
puter statistical package can be found in Chapter 18 of Hinton et al.
(2004).

In the above example we found a high level of reliability of our items in the
questionnaire (α = 0.83) so we might wish to employ the questionnaire as it
is. However, if we had found a low reliability then it would have informed
us that the scores on the different items were not varying in a consistent
manner. The reason for this might be that different questions are ‘tapping’
different underlying factors. For example in developing a cognitive test
battery where a group of children are given four tests, of arithmetic, geometry,
verbal reasoning and story comprehension, we might find that there is a
high correlation between the scores on the arithmetic and geometry and
a high correlation between the verbal reasoning and story comprehension
scores but low correlations between the scores on arithmetic and verbal
reasoning, arithmetic and story comprehension, geometry and verbal reason-
ing, geometry and story comprehension. Thus, arithmetic and geometry scores

Factor analysis
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are correlated and verbal reasoning and story comprehension are correlated
indicating (possibly) two underlying factors that we might label ‘mathematical
ability’ and ‘language ability’.

Factor analysis is a procedure that examines the relationship between
the scores on the different items and uses the correlations between them to
specify where the relationships are strong enough to indicate underlying
factors. This is not a procedure that we would wish to undertake by hand. In
the past factor analysis would be the domain of statisticians who would take
many hours of calculation in order to determine the factors underlying a
dataset.

A factor analysis is essentially a data reduction technique as it is used
to see whether there is a set of factors that can explain the variation of the
variables under study. It is only useful if we can find fewer factors than
variables which are able to explain the variation in the data. It can be
undertaken for two reasons: exploratory (to discover underlying factors)
or confirmatory (to confirm factors already proposed). We shall look at
exploratory factor analysis in this example.

The first thing we need to consider is whether the data is suitable for a
factor analysis. Essentially we need samples large enough to ensure that the
correlations are a good representation of their population values. There are
a number of ‘rules of thumb’ proposed to indicate what constitutes a large
enough dataset: there should be at least 200 scores overall, with at least 10
scores per item and at least five times as many subjects as items. There
clearly are not enough scores in our example data to satisfy these criteria
but we shall continue for the purpose of illustration.

Two useful tests on the data are often carried out before a factor
analysis. The Kaiser–Meyer–Olkin (KMO) test examines the data for sampl-
ing adequacy. This gives a measure of the common variance amongst the
variables that the factors will be able to account for. The KMO statistic
ranges from 0 to 1. In our example, the KMO value is 0.655. Any value
over 0.6 is regarded as acceptable for a factor analysis as values below this
would mean that the factor analysis will not be able to account for much of
the variability in the data and so is not worth undertaking.

The second test is the Bartlett’s test of sphericity. This examines the
correlation matrix (see above). If there was no correlation at all between
any of the variables then the values in the correlation matrix would have 1s
down the diagonal with all the other values as zero. This is called an
identity matrix. Our example gives a Bartlett χ2 = 38.11, df = 10, p < 0.001.
This indicates that our correlation matrix is significantly different from an
identity matrix so there are correlations worth investigating.
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Now that we are confident that it is worth proceeding with the factor
analysis we undertake a principal component analysis to find the factors.
The scores on each item are standardised to a mean of 0 and a standard
deviation of 1. Thus, the variance of every item becomes 1. With 5 items
the total variance to explain is 5. Factors are then identified. Each factor has
an eigenvalue which gives a value or ‘weight’ of each factor, in terms of the
variance explained. These are shown in the following table.

Component Eigenvalue Percentage of Cumulative percentage
overall variance of variance

1 3.0838 61.6750 61.6750
2 1.5896 31.7925 93.4675
3 0.1956 3.9113 97.3789
4 0.1020 2.0393 99.4182
5 0.0291 0.5818 100.0000

Total 5.0000 100.0000

We can see from the table that 5 components or factors have been
identified. It is conventional to select only those factors with eigenvalues
greater than 1 as an eigenvalue of 1 indicates that a factor can only explain
as much variance as a single item. Only the first two factors are selected
as their eigenvalues are greater than 1. Notice also that they can explain
61.6750 per cent and 31.7925 per cent of the variance in the items, so
2 factors can explain over 93 per cent of the total variability in the five
items.

An alternative way of selecting the important factors is to produce
a ‘scree plot’ of the components against eigenvalues. Imagine the profile
of a mountain. If it was a real mountainside the scree falling down the
slope would settle at a point where the slope flattens out. In Figure 22.1
this would be at component 3. We then take factors before this ‘elbow’
in the graph. So, in Figure 22.1, we can identify two factors as important
from the scree plot, supporting the choice of factors from the table of
eigenvalues.

We can now look at the correlation of each of the items with our two
selected factors (shown in the following table, part (a), referred to as the
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FIGURE 22.1 Scree plot of the eigenvalues
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component matrix). Notice that Question 1 correlates 0.4105 with Factor 1
and 0.8850 with Factor 2.

(a) Unrotated (b) Rotated

Factor 1 Factor 2 Factor 1 Factor 2
Question 1 0.4105 0.8850 0.0349 0.9750
Question 2 0.6893 0.6858 0.3040 0.9236
Question 3 0.9498 −0.2239 0.9482 0.2306
Question 4 0.9395 −0.2617 0.9561 0.1922
Question 5 0.8096 −0.4663 0.9330 −0.0491

The unrotated values give us some idea of the relationship between items and
factors but we can make this much clearer by a procedure called rotation.
This rotates our factors to ‘line them up’ better with the variables. Imagine
placing a painting on a wall. You notice it is a little skewed so you rotate it
to line it up straight. Rotating factors is a little like this: we are not changing
the relationships – simply making them clearer. There are different methods
of rotation, with the second version of the component matrix, (b) above,
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showing the effect of a varimax rotation which endeavours to produce 1s
and 0s in the Factor columns of the component matrix. Now we have a
clearer picture with Questions 1 and 2 ‘loading’ onto Factor 2 and Questions
3, 4, and 5 loading onto Factor 1. Question 2 does load onto both Factors
but the rotation indicates that Factor 2 is the more important.

Finally we can ask how much of the variance in each of our items can
be explained by the two factors we have produced. We can answer this by
squaring the correlations in the component matrix and adding them for each
item. Should we take the unrotated or the rotated correlations? The answer is
that it does not matter: the rotation does not change the factors. I will take the
rotated values but you can work them out for the unrotated values if you wish.

Question 1: Variance explained = (−0.0349)2 + 0.97502 = 0.9518
Question 2: Variance explained = 0.30402 + 0.92362 = 0.9455
Question 3: Variance explained = 0.94822 + 0.23062 = 0.9522
Question 4: Variance explained = 0.95612 + 0.19222 = 0.9511
Question 5: Variance explained = 0.93302 + (−0.0491)2 = 0.8728

Remember that the variance in each item has been standardised to 1, so our
factors are able to explain a very large amount of the variability in the data.
The figures in the final column above are referred to as the communalities,
which provide a measure of the variability in that item shared with other
items, in our case supporting the factors we have produced.

In conclusion factor analysis examines the correlations between the
items in the dataset and produces a set of underlying factors. If we find
factors that can explain a lot of the variability in the items then we can
argue that our items can be reduced to the fewer factors we have elicited.
In our example, the factor analysis revealed two factors, one underlying
Questions 3, 4, and 5 and the second factor underlying Questions 1 and 2.

Details on how to perform a factor analysis using the SPSS computer
statistical package can be found in Chapter 17 of Hinton et al. (2004).

In many instances of data analysis we wish to compare different groups of
participants on our measuring device, such as a questionnaire, to examine

Multivariate analysis of variance (MANOVA)
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hypotheses such as, ‘Are younger adults going to score higher on happiness
than older adults?’ If we obtain an overall score on our measuring device
then the data is suitable for a univariate analysis: that is, analysing a single
dependent variable – the participant’s score on the test. We can then under-
take a univariate test such as a t test (if we have two groups of participants)
or an analysis of variance (if we have more). However, we may not produce
a composite score for the questionnaire but wish to analyse the different
questions as separate dependent variables. In this case we could do lots and
lots of univariate tests on each separate dependent variable. The problem
with this is that we will undertake lots of tests and increase the risk of
a Type I error. A solution to this is to perform a multivariate analysis of
variance (MANOVA) which allows the analysis of more than one dependent
variable. In the table below I have added an additional question from the
questionnaire where participants indicate their income level.

Participant Income Question Question Question Question Question
1 2 3 4 5

1 Low 1 1 7 8 6
2 Low 3 4 3 3 5
3 Low 3 3 8 7 8
4 Low 4 2 2 1 2
5 Low 5 5 2 2 2

Group mean 3.20 3.00 4.40 4.20 4.60

6 High 7 5 4 5 6
7 High 7 7 7 7 4
8 High 6 8 9 9 8
9 High 9 7 5 5 4

10 High 8 10 10 9 7

Group mean 7.40 7.40 7.00 7.00 5.80

Overall mean 5.30 5.20 5.70 5.60 5.20

We now have a single independent variable of ‘income’ and we could
examine the effect of this on the responses to each question by five separate
t tests. However, an alternative is to analyse the data employing a MANOVA
with the five questions as five dependent variables in the analysis.
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Like the ANOVA the MANOVA requires the assumptions of norm-
ally distributed populations and homogeneity of variances. However, as we
have a multivariate design we also have the assumption of homogeneity of
covariance, that is, the intercorrelations are similar across the conditions of
the variables.

The logic of the MANOVA follows that of the ANOVA but the
calculations involve matrix algebra which is beyond the scope of this book
(although see the end of Chapter 23). Our data table is actually a matrix
of responses. In a MANOVA we analyse the dependent variables in com-
bination to provide a composite dependent variable to test for the effect of
the independent variable. In an ANOVA we work out the sums of squares
for the ‘treatment’ and a sums of squares for the ‘error’. We then calculate
the mean square (or variance) for the treatment and the mean square for the
error to produce a variance ratio (or F value). In a MANOVA we still work
out the sums of squares but we also work out cross-products. With one
dependent variable Y, the sums of squares is ∑(Y − C )2. When there is more
than one dependent variable (Y1, Y2, etc.) we can still work out sums of
squares for each one, i.e. ∑(Y1 − C1)

2 for Y1, but we can also work out the
cross-products, with the cross product of Y1 and Y2 being (Y1 − C1)(Y2 − C2)
and then we work out a sums of cross-products. We have seen this type of
product before in the description of the Pearson correlation coefficient.
Essentially a cross-product is a measure of how much two variables co-
vary. A matrix called the ‘sums of squares and cross-products’ (SSCP) is
at the heart of the MANOVA just as the sums of squares is at the heart of
the ANOVA. So the MANOVA analyses the covariation of the dependent
variables. Thus, it is able to determine the effect of the independent variable
on the composite dependent variables.

Just like in an ANOVA, where we divide the total sums of squares
into the sums of squares between groups and the sums of squares within
groups, the total SSCP matrix (T) is calculated as well as an SSCP matrix
for the treatment effect between groups (B) and for the ‘error’ or within
groups (E). Now we would like to compare these last two: B and E in the
same way as we compare the sums of squares in an ANOVA. (Actually we
compare the mean squares in the ANOVA rather than the sums of squares
but the principle is the same.) Unfortunately, B and E are not single values
but matrices. However, there is a mathematical way of finding out the
variation of the values in a matrix and this is referred to as the determinant
of the matrix, with the notation |B | for the determinant of B, which returns
a single figure. This now allows us to work out a statistic to evaluate
the significance of the effect under investigation. (I appreciate that matrix
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mathematics may be a new concept but I think you can appreciate from the
above description the similarity in the logic of MANOVA and ANOVA.)

A number of different statistics have been produced for MANOVA
but the most commonly used is Wilks’ lambda which is calculated as
follows:

Wilks’ lambda Λ =
+

| |
| |

E
B E

This will range from 0 when there is no error (and all the variation is due
to the treatment effect) to 1 when the variation is due to error and there is
no treatment effect. So we are looking for a small value of Λ to indicate a
significant effect.

In comparison to the variance ratio (F ) in an ANOVA, where the F
value is the treatment effect plus error divided by the error, Λ is like an
upside down F ratio. Indeed, Λ can be converted to an F value quite easily
and so you will usually see an F value as well as a Λ value in a computer
printout for a MANOVA. In the above example, with income as the
independent factor and the five questions as the five dependent variables we
obtain Λ = 0.0542, p < 0.05 (which converts to F(5,4) = 13.9675). Thus we
have found an effect of income on the dependent variables.

We can then undertake separate one factor independent measures
ANOVAs on each question to examine the effect of income on them indi-
vidually. These give the following results:

Question 1 F(1,8) = 25.20 p < 0.01
Question 2 F(1,8) = 16.69 p < 0.01
Question 3 F(1,8) = 2.28 p > 0.05
Question 4 F(1,8) = 2.86 p > 0.05
Question 5 F(1,8) = 0.72 p > 0.05

From this array we can see that income is having a significant effect on the
first two questions but not the remaining three.

When we undertake a number of tests on the same data we often
correct the significance level for the increased risk of Type I errors. This is
called a Bonferroni correction and involves dividing the significance level
by the number of tests, so with five tests, instead of choosing the p = 0.05
level of significance we would choose p = 0.01 (see Chapter 12). In this
example the pattern of results of the univariate ANOVAs remains the same
even with the stricter criterion for significance.
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Details on how to perform a MANOVA using the SPSS computer
statistical package can be found in Chapter 12 of Hinton et al. (2004).

Whereas a MANOVA examines the effect of an independent variable or
variables on a number of dependent variables, a discriminant function analysis
works in the opposite direction by examining which combination of inde-
pendent variables is best able to predict a dependent variable. Interestingly,
a discriminant function analysis is a useful follow-up analysis after a signific-
ant independent measures MANOVA as it is actually employing the same
sums of squares and cross-products matrices as the MANOVA calculations.
For this reason it requires the same assumptions as a MANOVA.

Essentially the discriminant function analysis produces functions of the
independent variables that discriminate between the conditions of the depend-
ent variable. To undertake this analysis on the example the independent and
dependent variables are swapped round. The five questions are treated as
the independent variables in this analysis and income becomes the dependent
variable. Can we find functions of our five questions that are able to predict
a person’s income level? With only two income levels (low and high) there
will only be one function produced. If we had three or more income levels
then more than one function might emerge. With more than one function
each will explain a certain percentage of the variation in the data and the
functions (like factors in factor analysis) can be examined to see how much
variation they can explain (and whether this is a significant amount). Con-
ventionally functions are seen as worthy of further consideration if their
eigenvalue is over 1 and the canonical correlation is over 0.6. A canonical
correlation is essentially the correlation of the function with the depend-
ent variable – in this case the multiple correlation coefficient (R – see
Chapter 21). In the current example there is evidence of the strength of the
discrimination as the eigenvalue of the function is 17.4594 and the canon-
ical correlation is 0.9725, both high values. The significance of the function
is shown by Wilks’ lambda, in this case 0.0542, p < 0.01, so the function
is highly significant in being able to discriminate the two income condi-
tions. Notice also that this is exactly the same value of Wilks’ lambda we
produced in the MANOVA above, illustrating the link between the two
analyses.

Discriminant function analysis
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As we have only one function, this function is actually the multiple
regression equation. The unstandardised canonical discriminant function
coefficients (produced in this analysis) provide the regression coefficients,
so the function for our example can be expressed as:

Discriminant function = a + b1X1 + b2X2 + b3X3 + b4X4 + b5X5

Discriminant function

= −10.6089 + 1.4508 × Question1 − 0.0639 × Question2

− 1.1093 × Question3 + 1.5500 × Question4 + 0.1721 × Question5

The point about this function is that when we input the values of questions
1–5 for a participant in the equation it should provide us with an outcome
that we can use to classify the person into the categories of the dependent
variable (i.e. predict their income level). You can see from the following
table that the function is able to classify all the participants correctly: by
producing a negative value for all low income participants and a positive
value for all the high income participants.

Participant Income group Function

1 Low −3.5545
2 Low −4.3295
3 Low −3.0958
4 Low −5.2579
5 Low −2.4488
6 High 3.5726
7 High 2.8727
8 High 2.9278
9 High 4.8929

10 High 4.4202

The mean values of the function for each group, referred to as the group
centroids, provide information to make a classification. In this case the group
centroids are −3.7373 and +3.7373. As we have equal numbers of participants
in each group we can choose our cut-off point at the middle position between
them (i.e. their average = zero). (With unequal sample sizes we would
weight them by their sample size to find a weighted average position for the
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cut-off point.) We can now use the function to predict the income group
of a new participant once we have their results for Questions 1–5. If the
function gives a negative value we classify them as ‘low income’ and if the
function produces a positive value we classify them as ‘high income’. A
person who scores 7, 4, 8, 3, 5 on Questions 1–5 will score −4.0728 on the
function and hence we predict them to be in the low income group.

Finally, we can examine the structure matrix (the table below) that
shows the correlation of each variable with the function which, as in factor
analysis, allows us to see which variables correlate highly with the function.
The structure matrix has the correlation coefficients for each of the questions
in order of size, with Questions 1 and 2 showing the highest values, echoing
what we showed above in the MANOVA analysis.

Question Function

1 0.4284
2 0.3457
4 0.1431
3 0.1279
5 0.0718

In this particular example, we saw a simple case of discriminant function
analysis. With a more complex design we might find two or more functions
and therefore reveal a pattern of the underlying relationship between variables
responsible for a significant Wilks’ lambda.

The advent of fast computers, available to all, has meant that even the most
complicated statistical analysis can be undertaken on research data at the
touch of a button. However, the crucial point is not whether an analysis can
be done but whether it should be undertaken. The question for the researcher
is whether they have enough understanding of the analysis to decide if it is
appropriate for their data and whether they are able to correctly interpret the
output of the analysis when it is produced. It may well be that a relatively
simple analysis is able to properly demonstrate the key findings of a piece
of research in a clear and comprehensible manner.

Conclusion
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FO R  S O M E  P E O P L E  it a surprise to learn that the basic principles under-
lying the t test, the analysis of variance, correlation and regression, plus

the multivariate tests considered in the previous chapter, are the same – they
all are examples of the general linear model. The tests seem to have differ-
ent aims, the calculations appear to be different, the outcomes produce
different statistics, such as t, F or r, so that superficially they appear not the
same at all. However, underlying these different tests is a model of how we
expect the data to behave in order for us to perform the tests. Indeed, you
may have observed that the assumptions underlying the tests are very much
the same.

Now it is quite possible that you find this all very interesting but not
relevant to you. Just as a person can happily drive a car without understand-
ing the workings of the engine we can undertake statistics without knowing
about the general linear model. However, if the car breaks down and you
know the basics of the engine you might be able to get it going again
(especially if it’s a simple blockage or a lack of fuel) whereas not knowing
might lead to a costly wait for the breakdown truck. Similarly, a basic
understanding of the general linear model provides an awareness of what
is happening in a test and whether the data are appropriate to that test.
Understanding the general linear model can lead to an understanding of
why we have the assumptions of the statistical tests and what it means if
those assumptions are not met.

In everyday conversation, when we think of a model (and not a fashion
model) we often think of a small object such as a model car or a model of
the Eiffel Tower. Notice that these models are representations of the thing
they are modelling. Some models are very good representations, such as a
detailed scale model of the Eiffel Tower, and some are not, such as the
fluffy pink models of the Eiffel Tower you can buy in the souvenir shops of
Paris. Yet even the poor models have to resemble the original to some
extent – even the fluffy models of the Eiffel Tower have four feet and a

Models
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FIGURE 23.1 An orrery

pointed top. So models seek to represent the essential pattern of the thing
they are modelling.

A classic example of a model is an orrery. This is a model of the solar
system and you may have seen them in museums and collections of antiques.
The first one was made by the clockmaker John Rowley in 1712 for Charles
Boyle, the 4th Earl of Orrery (from whence it got its name). The one in
Figure 23.1 is based on an orrery in the Smithsonian Institution in Washington
DC.

To operate the model you turn the handle and the planets rotate around
the sun. Notice that the model had the extremely useful function of being
able to demonstrate in a simple manner the workings of the solar system –
how the planets move relative to each other, what a year means and so on.
In fact it is an extremely helpful teaching aid. However, at another level it is
a very poor model. The objects are not to scale – the sun at the centre would
need to be much, much bigger – and the real planets do not go round the
sun in circular orbits but in ellipses. It is certainly not a model you could
use to guide an astronaut in space.

Yet men have been to the moon and spacecraft have landed on other
planets and the space centres have needed models of the solar system to
get them there successfully. Clearly these models are enormously more
complicated than the simple orrery but more importantly these models are
no longer built by clockmakers in their workshops but are constructed by
using mathematics. They are no longer physical objects but mathematical
formulae, written down and stored on computer. If we want to estimate
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where Mars and Venus will be in six months time we no longer turn the
handle on the orrery and look at the new positions of the planets but input
the time data into the mathematical model on the computer and print out the
details of the new positions of the planets predicted by the model. If it is a
good model then the positions will be accurate predictions.

Models share the same features in that they attempt to represent the
relationships within a particular system (such as the movement of the
planets). As soon as we decide a system is not random we can seek out a
model to represent the pattern we observe. From the beginning of time
people have noted the rising and setting of the sun and the change of the
seasons and tried to make sense of the patterns they observe. Our current
mathematical models are quite impressive as we can use them to land a
spacecraft on another planet. But, who knows, in three hundred years time
they may look as crude and simplistic to the people of the future as the
orrery does to us today.

When we collect data we are not interested in the specific scores produced
at a specific time but what the collection of scores can tell us about the
relationships between variables in order to make predictions. The way we
do this is by assuming that there is an underlying relationship between the
variables and then we attempt to model that relationship. And, like the
orrery, we can decide if the model is any good or not.

One specific type of model that is central to statistical analysis is
referred to as a linear model. As we saw in Chapter 20, in its simplest case,
with only the relationship between two variables, a linear model is a straight
line. The mathematical formula for a straight line is Y = a + bX, where X
and Y are the variables, ‘a’ is a constant (the value of Y when X is zero, the
point at which the line crosses the Y axis) and ‘b’ is the slope of the line.

Imagine that you give a person a pack of playing cards and ask them
to sort the pack as quickly as they can (but without making mistakes) into
2 piles, one of red cards and one of black cards. You shuffle the pack
thoroughly and accurately measure the time it takes them to complete the
task. It takes them 20.8 seconds. Now you shuffle the pack again and, this
time, ask them to sort the cards into the four suits. This takes 31.2 seconds.
Finally you ask them to sort the pack into 8 piles: low hearts (ace to seven),
high hearts (8 to king), low diamonds, high diamonds, etc. This takes 41.6
seconds. We now plot these figures on a graph (Figure 23.2).

An example of a linear model
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FIGURE 23.2 A graph of card sorting times
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You can see that the X-axis is labelled ‘information units’ rather than
‘number of piles’. A single choice (two options: e.g. on/off or red/black)
contains one information unit (one ‘bit’ of information). Four choices involve
two information units (two bits) and eight choices involve three information
units (3 bits). The reason we use information units rather than number of
choices is that the researchers who first did this study in the early 1950s
noticed that the pattern of results when plotted on a graph in this way
followed a straight line. They obviously collected considerably more data
(which was much more varied) than the simple example I have given above.
The resulting model, a linear relationship between amount of information
and speed of processing, has immortalised the researchers who found it, and
it is referred to as the Hick–Hyman Law.

For our participant, we can work out the formula for the straight line
that passes through these three points, by putting the three points into the
formula Y = a + bX and working out ‘a’ and ‘b’ to give: Y = 10.40 + 10.40X,
which states that:

Sorting time = 10.40 + (10.40 × Information units)

We can now use this model to predict what we do not know. If the person had
to sort the pack into the high, middle and low numbers of each suit (12 choices
or 3.585 bits) we would expect them to take 10.40 + (10.40 × 3.585) =
47.68 seconds.
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Underlying most of our statistical techniques is the assumption that a linear
model represents the pattern of the relationship between variables. Without
this model we would not be able to draw the conclusions we do from our
statistical analysis. Just as the space scientists need their models to land a
spacecraft on Mars we need a model to make a statistical decision. In this
example we shall be taking a more complex case than the three points
considered in the card sorting example above, and in this new example our
points will not all lie neatly along a straight line.

A researcher is interested in the relationship between a child’s age and
their general knowledge. We shall assume, for the sake of argument, that
the researcher is able to appropriately select a suitable school and randomly
selects 6 children from classes across three school years: Class 1 (roughly
8 years old), Class 2 (roughly 9 years old) and Class 3 (roughly 10 years
old). Each child is given the same test of general knowledge and the scores
are recorded. The results are shown in the table below.

Class Child’s age in months General knowledge score

1 91 6
1 93 9
1 95 8
1 96 10
1 98 9
1 100 12
2 103 11
2 105 14
2 107 13
2 108 15
2 110 14
2 112 17
3 115 16
3 117 19
3 119 18
3 120 20
3 122 19
3 124 22

Modelling data
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FIGURE 23.3 A plot of the children’s general knowledge scores by age

Are the results random or is there a systematic relationship between age and
general knowledge score? Certainly it looks from the table that the scores
get larger as age increases. We can see this rather better if we plot the
results, as in Figure 23.3.

I could look at the data in the graph and say that these are the results
and that is that: what do we need a model for? I could claim that each point
is a true representation of the child’s age and score. However, this does not
tell us anything we really want to know. We are not really interested in the
finding that on Thursday February 21st John Peterson aged 8 years 4 months
scored 12 on a general knowledge test. What we really wish to learn is
whether there is an underlying relationship between age and general know-
ledge. If there is then we can use this relationship to make predictions about
what level of general knowledge we can expect in children we have not
tested. We can generalise our findings to a wider population.

When we look closely at the data it does look as though the scores
more or less follow a straight line. Notice that they are all contained within
a narrow band going from the bottom left to the top right of Figure 23.3 –
with no scores in the top left or bottom right. So I could propose that the
relationship between the general knowledge scores and age is linear (a
straight line in this case) and that the underlying model for the data is a
linear model. So, if the relationship between the variables really is a straight
line, then that line should lie somewhere in the middle of the points, as in
Figure 23.4.
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FIGURE 23.4 A proposed linear relationship between general knowledge and age

Now there is a problem here. None of the points actually lie on the
line! Does this mean that this straight line is a poor model of the relation-
ship between the general knowledge scores and age? Not necessarily. First
the points seem pretty close to the line (which surely indicates that the
model is not that bad). Second I could argue, the points would lie on the
line had it been a perfect world but we live in a world of error and chance.
Maybe one child under-performed due to having a cold and another did
better than usual because they guessed an answer correctly. There are a
number of factors in our everyday lives that make it messy rather than well
ordered. Maybe if we took away the messiness (or random errors) then the
underlying pattern would emerge (if there is one). I am suggesting that in an
ideal world all the points would lie along the line. In this example, it could
be that the scores have not quite fallen on the line due to these random
errors that occur in any human activity, such as research, despite our best
efforts at control (see Chapter 10 for a related argument).

I, therefore, argue that the underlying model of the relationship between
the general knowledge scores and age is a straight line and that the reason
the scores have not fallen exactly on the straight line is due to random error.
Hence each observed score is made up of that predicted by the model
(‘explained variation’) plus a random error (‘unexplained variation’).

Each point in Figure 23.5 shows a child’s general knowledge score.
Notice that a very large proportion of each general knowledge score can be
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FIGURE 23.5 Separating each score into predicted score plus residual

accounted for by the model (the sloping line) as the points more or less
follow the line. The ‘error’ scores – that is the difference between the actual
score and that predicted by the model – seem quite small. The size of the
error score is shown by the vertical bar joining the point to the line.

If we take one child’s general knowledge score, that I will call Y, then
we can explain most of that score by our model (i.e. a point on the straight
line where we would predict the score would be) which we can call Y ′. But,
because the score does not lie on the straight line, Y is not equal to Y ′. As
a result I argue that E, the difference between Y and Y ′, is the ‘error’, as
I believe that this is a result of random error, and cannot be explained by my
model. Another term for E is residual as each of these values is the residual
amount of the general knowledge score after we have taken away the amount
explained by the model. So for each score:

Actual score (Y ) = Predicted score (Y ′) + Residual (E)

I predicted a straight line as a model for the relationship between age and
general knowledge score. The problem is: which line? We can begin to
work out the answer to this by looking at Figure 23.6.

The model: the regression equation
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FIGURE 23.6 Different linear models

Model C is clearly not a good model as the line is way below the
actual data points. We can demonstrate this mathematically as the residuals
will all be positive values and their sum will be a large positive number.
Similarly Model A does not fit the data very well as, again, the residuals
will add to a large negative number. Adding them up will give us a large
but negative sum. Model B not only looks to be the best model as it lies
amongst the data points but also has smaller residual values than both
Models A and C. With some of the residuals positive (the point lies above
the line) and some negative (the point lies below the line), when we add up
the residuals they will cancel each other out. So our best fitting model will
be the straight line where the residuals add up to zero.

Another way of putting this is that the residuals have a mean of zero
for our best fitting line. This makes sense as, in this case, the ‘average’
amount of error will be zero. Looking back to Models A and C on the above
graph we can see that the residuals will not have a mean of zero as the
models are not a good fit for the data, with their mean values telling us how
far they are from the best model we can produce for the data. A mean of
zero also indicates that the line passes through the mean values for age and
general knowledge.

Unfortunately, if we now look at Models B, D and E we see all three
pass through the mean values for age and general knowledge (107.5 months
and a score of 14). All three models will have residuals that add up to zero
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(you can work them out if you wish) and the mean of their residuals will
also be zero. However, it does not require much observation to see that both
Models D and E are a very poor fit to the data. The difference between
Model B and Models D and E is that Model B is the model with the
smallest residuals.

We now need to find the equation of the line with the smallest residual
values, which add up to zero (Model B). We do this by working out the
regression of age on the general knowledge scores (described in Chapter 20),
which gives us the model of ‘best fit’ to the data. The linear regression
technique is built upon the assumption of a linear model and relies on the
in-built assumptions of linearity in order for it to produce its analysis. In
this case it finds the linear model that minimises the size of the residuals
and hence explains more variation in the data than any other linear model.

We are assuming that the observed general knowledge scores (Y ) are
a combination of the linear model (the regression line Y ′ ) plus the errors or
residuals (E) then:

Y = Y ′ + E

As we know the formula for a straight line we have: Y ′ = a + bX (where Y ′
is the predicted general knowledge score and X is the child’s age), so:

Y = a + bX + E

This gives us a formula for E:

E = Y − a − bX

Now we can add up all the residuals:

E Y a bX  (     )= − −∑∑
This sum needs to be zero for the ‘best fit’ line. But we also need to find the
values of ‘a’ and ‘b’ that result in the smallest residuals to get the best
fitting model (Model B rather than Model D or E). There is no point simply
adding up the residuals as they will cancel each other out to give a total of
zero. So to find the smallest residuals we square all the residual values to
get rid of the pluses and minuses and then find the line that gives us the
smallest value for the sum of the squared residuals (the ‘least squares method’
– see Chapter 20 – that finds the minimised value for ∑(Y − a − bX )2).
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The outcome of this analysis gives us the following formula for the
straight line that provides the best fitting straight line for the data:

Y ′ = −31.77 + 0.43X (To be more accurate,
a = −31.7665 and b = 0.4257)

This formula, our model, predicts:

General knowledge = −31.77 + (0.43 × Age)

We can now use this model to work out the values of the residuals by
putting the age values in the equation and finding the predicted general
knowledge scores. These are shown in the table below.

Child’s General knowledge General knowledge Residuals Squared
age in score from score predicted residuals
months the test by model

91 6 6.98 −0.98 0.96
93 9 7.83 1.17 1.37
95 8 8.68 −0.68 0.46
96 10 9.10 0.90 0.81
98 9 9.96 −0.96 0.92

100 12 10.81 1.19 1.42
103 11 12.08 −1.08 1.17
105 14 12.94 1.06 1.12
107 13 13.79 −0.79 0.62
108 15 14.21 0.79 0.62
110 14 15.06 −1.06 1.12
112 17 15.92 1.08 1.17
115 16 17.19 −1.19 1.42
117 19 18.04 0.96 0.92
119 18 18.90 −0.90 0.81
120 20 19.32 0.68 0.46
122 19 20.17 −1.17 1.37
124 22 21.02 0.98 0.96

Total 252 252 0 17.71
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The first point to note is that the residuals add up to zero, with some
positive residuals and some negative residuals that cancel each other out
when added up. Furthermore, the sum of the squared residuals (17.71) is
smaller for this line than any other.

There are two qualities of a good model. The first is that the model follows
the pattern of the data. If we plot the data on a graph and it follows an
S-shaped curve then a straight line might not be a very good model to apply.
We want to be convinced that a linear model is the appropriate model for
the data. This is where the residuals come into play. The decision on what
makes a good model and whether it is a good fit to the data is determined
first by the characteristics of the residuals.

Second the model needs to explain as much of the data as possible. If
the model can explain only 10 per cent of the variation in the scores we
might not consider it as good a model as one that can explain 90 per cent of
the variation. We shall be examining this second aspect later but first we
consider the characteristics of the residuals.

A good model is one where the error or residual values are random. If our
model leaves systematic variation in the residuals then the implication is
that there is a better model than the one we proposed that is able to take
account of this systematic variation as well.

We want the model to explain the data equally well regardless of
where we examine the data. If the model is a close fit to the data for the
first few points (leaving small residuals) but then is a poor fit to sub-
sequent points (resulting in large residuals) then it is not a good model.
This is where the equality of variance assumption (or homoscedasticity)
is required: the residuals should be randomly spread out at whichever
point of the model we examine. Thus, we predict that the variance of
the residuals at any point on the model should be the same – as there is
no systematic reason why they should be larger or smaller at one point or
another.

To be certain that our model is a good model and the residuals are
truly random we make three further assumptions about them:

Characteristics of the residuals

Selecting a good model
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• they add to zero and have a mean of zero;
• they are from a normally distributed population; and
• they are independent of each other.

We have seen from the above analysis that only a model where the residuals
add up to zero can provide an appropriate linear model for the data. Taking
the reverse position, if the residuals do not add up to zero then we know that
there is a better fitting model for the data. With the residuals summing to
zero we guarantee that the model maps onto the mean values of the data.

Given that we are assuming that the linear model underlies the data then the
errors (i.e. the residuals) should be random with a normal distribution. Think
about what a normal distribution means. If the errors are occurring randomly
then we should occasionally get a large positive residual and occasionally we
should get a large negative residual; however, most residuals should cluster
round zero. So the assumption that the residuals are drawn from a normal
distribution is the assumption that the residuals are indeed random (and
there are no systematic patterns in the data that the model has not accounted
for). If the residuals were not from a normally distributed population then
the model we are proposing may be an inappropriate model for these data.

If the sizes of the residuals were related to the order that the children were
tested or the class they were in, then there would be a non-random element
in the residuals. If the residuals got larger with increasing age of the child
then the residuals would not be independent of each other. This is a concern
because it demonstrates a relationship in the data not accounted for by the
model.

However, if the residuals are independent of each other then there is
no relationship between them and hence the ‘error’ remaining after we have

Characteristics of the residuals: they are independent of each other

Characteristics of the residuals: they are drawn from a normally
distributed population

Characteristics of the residuals: they add up to zero
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imposed the model is random, leaving no systematic variation to be explained.
Thus a good model explains all the systematic variation in the data, leaving
only random variation.

If we do not meet these assumptions then it is quite possible that the
residuals are not completely random and there is still some systematic
variation within them that could be accounted for by an alternative model.
Indeed the common assumptions we make with our statistical tests (homo-
geneity of variance, etc.) arise from these assumptions concerning the
residuals.

We have found, in our example, the linear model that best fits the data. No
other linear model is as good as the one we have worked out. The character-
istics of the residuals satisfy the assumptions. Now that we have found the
best linear model we can ask a second question: how good is it? To explain
what I mean, I’ll rephrase the question: how much of the data is now
explained by the model and how much of the data remains unexplained as
error data (shown by the residuals)?

If we look at Figure 23.7 we can see that the same model (the same
line) fits both sets of data (one indicated by the crosses +++++ and the second
indicated by the dots •). However, the crosses are more spread out around
the line compared to the dots. We can restate this by saying that the residuals
are larger for the first dataset than in the second. We can restate this again
by saying that for the first dataset there is more data unexplained by the
model than in the second.

This leads us on to the second judgement of a good model. A good
model takes into account the variation in the data. From the data we see that
as the children get older the general knowledge scores get higher. The
model should predict this. There are two related methods for examining
the amount of data explained by a linear model: linear correlation and the
analysis of variance. Both make the assumption that the underlying model
is linear, so they require the above assumptions concerning the residuals to
be met.

The variation in the data explained by the model

Conclusion
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FIGURE 23.7 The same linear model for two sets of data

We can examine whether a linear model is able to explain a lot or only a
little of the variation in the data by working out the linear correlation
coefficient. The technique it employs (described in Chapter 20) examines
the variation in the data measured on one variable in relationship to vari-
ation on the second variable. However, it can only do that by assuming that
the relationship between the two variables is linear, and then testing the
strength of that relationship. It cannot detect a complex non-linear correlation
– it will simply tell us that the data follows a linear relationship very badly.

In our example, the linear correlation of age and general knowledge
scores is r = 0.975, which is an extremely high correlation ( p < 0.01, for a
two-tailed prediction, df = 16). Essentially, this is telling us that, assuming
the relationship to be linear, the variation in the general knowledge scores
can be accounted for by the variation in age to a large extent. Recall from
Chapter 20 that r2 tells us the amount of the variation in one variable
explained by the other, so r2 = 0.951, which means that 95.1 per cent of
the variation in the general knowledge scores is explained by the variation
in age.

Put simply, the linear correlation undertakes the following analysis:
assuming an underlying linear relationship between the variables, how much
of the variation in the data can be attributed to that relationship and how

The linear model and correlation
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much cannot? With 95.1 per cent of the variation in the data accounted for
we can be confident that there is a linear relationship between these two
variables.

Interestingly, the correlation coefficient is the slope of the ‘best fit’
regression line for the z scores for general knowledge and age (see Chap-
ter 20 on z scores in the correlation calculation). A z score standardises a
score so that the mean becomes zero and the standard deviation becomes 1.
So instead of producing a regression for the actual scores we can produce
a regression line for the z scores. This will have a = 0, as the line passes
through (0, 0) because the means of the z scores will both be 0. It will have
b = 0.975, as r is the slope of the line.

For the z scores:

zY = 0 + 0.975zX

So:

The z score of general knowledge = 0.975 × the z score of age

The good thing about this is that it shows a strong linear relationship.
However, the formula is not very useful in making predictions about general
knowledge scores from age, as it is couched in terms of z scores, which is
why we use the standard regression equation.

We can also provide an answer to the question about how much of the
variation in the data is explained by the model by employing an analysis of
variance. The analysis of variance technique is built on the assumption of a
linear model. The ANOVA proportions the data into variance explained by
the model and the variance that remains unexplained (the error variance). In
the ANOVA we consider the variation of the scores from the mean to give a
measure of the variation in the general knowledge scores. The mean general
knowledge score is 14. If we take the first child’s score of 6 we find that
the model would predict 6.98 for this child. Thus, the model can explain
6.98 − 14 = −7.02 of the variation of this child’s score from the mean. We
then square this difference (we always do this to give us a measure of the
size of a difference and to get rid of the awkward minus signs at the same
time). For the first child this value is 49.35. Finally we add up these squared

The linear model and the analysis of variance
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differences to give us a ‘sums of squares’ for the amount of variation in the
data explained by our model. These figures are shown in the table below.

Class Child’s General General Explained Explained Residuals: Squared
age in knowledge knowledge variation variation unexplained residuals:
months score score from mean squared variation unexplained

predicted variation
by model squared

1 91 6 6.98 −7.02 49.35 −0.98 0.96
1 93 9 7.83 −6.17 38.11 1.17 1.37
1 95 8 8.68 −5.32 28.32 −0.68 0.46
1 96 10 9.10 −4.90 23.97 0.90 0.81
1 98 9 9.96 −4.04 16.36 −0.96 0.92
1 100 12 10.81 −3.19 10.20 1.19 1.42
2 103 11 12.08 −1.92 3.67 −1.08 1.17
2 105 14 12.94 −1.06 1.13 1.06 1.12
2 107 13 13.79 −0.21 0.05 −0.79 0.62
2 108 15 14.21 0.21 0.05 0.79 0.62
2 110 14 15.06 1.06 1.13 −1.06 1.12
2 112 17 15.92 1.92 3.67 1.08 1.17
3 115 16 17.19 3.19 10.20 −1.19 1.42
3 117 19 18.04 4.04 16.36 0.96 0.92
3 119 18 18.90 4.90 23.97 −0.90 0.81
3 120 20 19.32 5.32 28.32 0.68 0.46
3 122 19 20.17 6.17 38.11 −1.17 1.37
3 124 22 21.02 7.02 49.35 0.98 0.96

Total 252 252 0 342.29 0 17.71

(I have given the accurate total for the sixth column. If you added up the
figures to only two decimal places you would get a figure of 342.32 due to
rounding errors.)

Now we have both the ‘sums of squares’ for the general knowledge
scores explained by age (342.29) plus the ‘sums of squares’ for the error
term (the sum of the squared residuals: 17.71). Thus, of the total variation in
the data (total sums of squares = 360.00) we can explain 342.29 of it by the
linear model, leaving 17.71 unexplained. It is a simple matter to complete an
ANOVA summary table – we just need to supply the degrees of freedom to
finalise the calculations.
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THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean F Significance
variation freedom squares square

Model (linear
regression) 1 342.29 342.29 309.25 p < 0.01

Residual (error) 16 17.71 1.11

Total 17 360.00

The results of the analysis of variance tell us that the model can explain a
highly significant amount of the variation in the data.

We have employed a regression, correlation and analysis of variance
on our data. Each of these analyses assumes that there is a linear rela-
tionship between the two variables we have measured. In the example of
age and general knowledge all three statistical techniques have supported a
linear relationship between the two variables. A linear model is a good fit to
the data and it can explain a considerable amount of the variation in the
scores.

It is relatively easy to see the underlying assumption of a linear model
in a linear regression and linear correlation. However, it is not always
so clear that this assumption is also inherent in the analysis when we
are comparing samples (e.g. in a t test or ANOVA). We can illustrate
this assumption by once again looking at the general knowledge and
age data. We can use a one factor independent measures ANOVA to
compare the general knowledge scores for the different Classes (Class 1,
Class 2 and Class 3). By placing them in the category of Class rather
than taking their age we are placing all of the 6 children in each class at
the same position on the X-axis. But the same logic that we employed
above when looking at age still applies. We can see a plot of the data in
Figure 23.8.

Comparing samples (the analysis of variance once again)
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FIGURE 23.8 Plot of general knowledge scores for each class

Now we can do exactly as we did before with the scatterplot of
general knowledge scores and age. Is there a linear model that underlies
Figure 23.8? Although we do not normally think of undertaking a correla-
tion with category data like this, computer statistical programmes will often
print out the correlation coefficient r, or r2, with the ANOVA summary
table.

Correlating the general knowledge scores with Class produces a high
linear relationship between the two variables (r = 0.913, p < 0.01 for a
two-tailed prediction, df = 16) with r2 = 0.833, indicating that the variable
Class can explain 83.3 per cent of the variation in the general knowledge
scores. Even though we are comparing the categories Class 1, Class 2, and
Class 3, we are still examining the fit of a linear model.

We can find the best linear model to fit these data by performing a
regression analysis. The result of this gives us the following formula:

Y = 4 + 5X

So our ‘best fit’ linear model predicts:

General knowledge = 4 + 5 × Class

This model is shown in Figure 23.9.
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FIGURE 23.9 A linear model for the class data

Interestingly you can see, from Figure 23.9, why we have the equality of
variance assumption with comparisons and the homoscedasticity assump-
tion with correlations. We are assuming that the data is evenly spread around
the regression line in both cases.

Now that we have our model we can work out the general knowledge
scores as predicted by the model and the ‘error’ scores or residuals. Notice,
from the third column in the following table, that the scores predicted by the
model are the category means, so the predicted score for all the children in
Class 1 is the mean of Class 1 (a score of 9). The residuals are shown in the
sixth column. Just as we did in the previous analysis of variance, we work
out the variation from the mean for each data point predicted by the model
(as this is the variation the model is able to explain). We square these values
to produce a measure of explained variation. If we add these up we get a
‘sums of squares’ for the explained variation. We also square the residuals
to get a value for the size of the unexplained variation. Adding these up
gives us the ‘sums of squares’ for the error variation. These are also listed
in the table below.
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Class General General Explained Explained Residuals: Squared
knowledge knowledge variation variation unexplained residuals:
score score from squared variation unexplained

predicted mean variation
by model squared

1 6 9 −5 25 −3 9
1 9 9 −5 25 0 0
1 8 9 −5 25 −1 1
1 10 9 −5 25 1 1
1 9 9 −5 25 0 0
1 12 9 −5 25 3 9
2 11 14 0 0 −3 9
2 14 14 0 0 0 0
2 13 14 0 0 −1 1
2 15 14 0 0 1 1
2 14 14 0 0 0 0
2 17 14 0 0 3 9
3 16 19 5 25 −3 9
3 19 19 5 25 0 0
3 18 19 5 25 −1 1
3 20 19 5 25 1 1
3 19 19 5 25 0 0
3 22 19 5 25 3 9

Total 252 252 0 300 0 60

We now have all the information to draw up the analysis of variance
summary table:

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean F Significance
variation freedom squares square

Model (linear
regression) 2 300.00 150.00 37.50 p < 0.01

Residual (error) 15 60.00 4.00

Total 17 360.00
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Analysing the data by Class rather than age divides the total sums of
squares (360.00) into that explained by the model (300.00) and the remainder
not explained by the model (60.00). It is clear that our underlying model
can account for a significantly large proportion of the variation in the data
( p < 0.01). Hence we can reject the null hypothesis that the means are
drawn from the same population distribution.

You may have wondered why in both of the above analyses of variance we
worked out the explained variation relative to the mean value. The answer
arises from the way we calculate variation in the data. If we simply square
the general knowledge scores and add them up we get a total of 3888. This
value would only be a measure of the total variability of the scores in the
data if the mean equals zero. Consider two scores 99 and 101. These scores
vary by 2, with 99 one below their mean of 100, and 101 one above their
mean of 100. Now consider two other scores 25 and 35. These vary by 10
with 25 five below their mean of 30, and 35 five above their mean of 30. It
is obvious that there is greater variation in the second two scores compared
to the first, despite the fact that 25 and 35 are smaller than 99 and 101. So
when considering the variation of scores in our data we are not interested
in their actual values but the amount of variation between them so that is
why we compare them to the mean. Sometimes you will see, in the output
of statistical computer programs, the sum of the squared scores referred to
as the ‘total’ and the sum of the squared scores-minus-the-mean as the
‘corrected total’ as it is the second of these two sums that gives us the
correct measurement of the total variability in the data. In our example
the corrected total is 360 (the value we have used in the above calculations
for the total variability in the scores). The difference between the total and
the corrected total, 3888 − 360 = 3528, is simply an indication of how far
the mean value differs from zero.

We now have undertaken two analyses of variance on the general
knowledge data. The first looked at the relationship between the general
knowledge scores and age and the second compared the general knowledge
scores across the three classes. In both cases the analyses were only possible
because we had postulated an underlying linear model for the data. The
models that best fitted the data were different in the two cases as the first
analysis included the age information whereas the second included only the
class information. However, given that the analysis was undertaken on the

Explaining variations in the data
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same general knowledge scores it is no surprise to see that the total varia-
tion in the data (the ‘sums of squares’) added up to 360 in both cases. With
the assumption of a linear model we were able to separate this into the
‘variability explained by the model’ and the unexplained variability in the
data. In our first analysis the ‘explained sums of squares’ was 342.29 and
the ‘unexplained sums of squares’ was 17.71. In the second analysis these
figures were 300 and 60 respectively.

Up to now we have deal with the simplest case of a linear model, that is,
a straight line relationship between two variables, shown by the formula
Y = a + bX. However, this is the simplest case of a much more general
model that can include not just one independent or X variable but many
independent variables (indeed we have seen two independent variables in
the two factor ANOVAs in Chapter 15). Furthermore, it also allows for
multiple Y or dependent variables. To illustrate this we need first to display
our model in terms of matrix representation.

Consider once again the general knowledge and age data. To find our linear
model we minimised the error for Y = a + bX + E, where Y is the test score
and X the age and E the error or residual. So for our children we can put
each of their scores into the formula, one at a time:

Y1 = a + bX1 + E1 � or with the � 6 = a + b × 91 + E1

Y2 = a + bX2 + E2 values of general 9 = a + b × 93 + E2

Y3 = a + bX3 + E3 knowledge and 8 = a + b × 95 + E3

M age inserted M
Y16 = a + bX16 + E16 20 = a + b × 120 + E16

Y17 = a + bX17 + E17 19 = a + b × 122 + E17

Y18 = a + bX18 + E18 22 = a + b × 124 + E18

(I have used the small dots to indicate that the rest of the values need to be
included here, otherwise I would have had to list out the formulae for all
eighteen children.)

Our two variable example using matrix representation

The general linear model
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We can represent this in matrix terms as follows:

Y

Y

Y

Y

Y

Y

X

X

X

X

X

X

a

b

E

E

E

E

E

E

1

2

3

16

17

18

1

2

3

16

17

18

1

2

3

16

17

18

1

1

1

1

1

1

M M M M

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

    

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

6

9

8

20

19

22

1 91

1 93

1 95

1 120

1 122

1 124

1

2

3

16

17

18

M M M M

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

    
a

b

E

E

E

E

E

E

Using large bold characters to represent matrices rather than the smaller
letters we have been using to represent individual values we can replace the
matrices as follows:
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So, in matrix terms:

Y = XB + E

Employing matrix algebra (which is a little too complicated for this
book) we can find the values of ‘a’ and ‘b’ that minimise the error quite
easily as:

B = (X′X)−1X′Y

where X′ is the transpose of X and is worked out by swapping the rows and
columns of X, and the inverse matrix (a matrix raised to the power of −1)
can be calculated by a mathematical formula.

I hope you will appreciate that we are able work out the appropriate
values of ‘a’ and ‘b’ using matrix algebra (which I am not expecting you to
know about) using the information we already have. And it turns out that:

� or with the �

values of

general

knowledge

and age

inserted

(We have a column of
1s in the X matrix to
represent the intercept,
‘a’, in our model. If we
did not put in this column
then our line would be
forced to go through zero.)
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B =

−⎡

⎣

⎢
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⎢

⎤
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⎥
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C Bb

SP

SSx

(You can see from Chapter 20 on regression that
these are the formulae for ‘a’ and ‘b’.)

Hopefully, even for readers not familiar with matrix algebra, it is clear that
all we have done is represent the same model but in a different way.

We can extend the linear model by looking at more than two variables. If
you refer back to Chapter 21 on multiple regression, we see that the formula
we employ is of the form:

Y = a + b1X1 + b2X2 + b3X3 + . . .

This is still a linear model as it still contains the intercept ‘a’ plus the slope
‘b’ but here we have a b-value for each of the X variables. Essentially the
linear model means that there are no squared or higher values of X in the
formula. As we are no longer working with only two variables the linear
model is no longer a straight line but a multidimensional space. However,
we can use the same logic to examine as many independent or X variables
as we wish in our analysis and perform multiple correlation and regression
operations as well as performing multifactorial analyses of variance, such as
a two factor analysis of variance.

This is still a linear model of the form:

Y = XB + E

In this case the X matrix is now

1

1

1

11 21 1

12 22 2

1 2

1

2

X X X

X X X

X X X
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n n kn
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and B

where n is the number of participants and k is the number of independent
variables so, for example, X12 is the value of participant 2 on the first
independent variable.

Multiple X variables
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We can generalise the linear model further to allow more than one Y variable
as well as more than one X variable. We refer to analysis involving multiple
dependent variables as multivariate analysis as compared to the single Y
variable or univariate analysis (as we saw in Chapter 22). But the matrix
notation does not change. We still have:

Y = XB + E

But in this case the Y matrix is now

Y Y Y

Y Y Y

Y Y Y

m

m

n n mn

11 21 1

12 22 2

1 2

L

L

M M M M

L

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where m is the number of dependent variables and Y21 is the score of the
first participant on the second dependent variable.

Thus, the model is now referred to as the General Linear Model as
it can include multiple independent and multiple dependent variables. You
may have noticed that in Chapter 22 on multivariate analyses there is mention
of matrices at various points in the discussions of complex analyses (such as
factor analysis and MANOVA).

The important point here is that, regardless of whether we are dealing
with one independent and one dependent variable or many of them, we can
map our data onto a linear model and, as long as we satisfy the assump-
tions of the model, we have a powerful tool for making sense of research
findings. Just as scientists use their models of the solar system to predict
the movements of the planets, we can use a linear model to predict the
relationships between our variables. We may be excited by the prospect
of exploring other planets but we need to get there safely first and we can
only do that with a good model. Similarly we may wish to discover excit-
ing relationships between variables in our own field of study and it is
well worth appreciating the role of the general linear model in the processes
of quantitative data analysis and how it helps us to reach conclusions to
our studies.

I hope this brief account of the underlying linear model in statistical
analysis has given you some insight into the construction and application of

The general linear model and multivariate analysis
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many statistical tests. In particular an awareness of the importance of residuals
is crucial to understanding the assumptions required for these tests. Unfortun-
ately, further explanation requires a deeper foray into matrix algebra, which
is beyond the scope of this book.
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Notes

1 There is a possible problem when accurately calculating the
median when the same score is obtained by the positions that
surround the median position. In our case 55 is the score obtained
by six positions: 48, 49, 50, 51, 52 and 53. The 47th score is 54
and the 54th score is 56. The median, between positions 50 and
51, is halfway between positions 48 and 53. To be completely
accurate, a score of 55 could actually be anything ranging
between 54.5 and 55.5 (as we would round the decimal points up
or down respectively to the nearest whole number, so the score
at position 48 in reality could be as low as 54.5 and the score at
position 53 as high as 55.5). As our median value is halfway
along the six positions scoring 55, it is also halfway along the
range 54.5 to 55.5, and is 55. This might seem a convoluted way
of demonstrating what appears obvious, but imagine that the
positions scoring 55 were 47, 48, 49, 50, 51 and 52. Here the
median is not halfway but 4/6ths of the way along the positions
scoring 55. Now, again, a score of 55 could be as low as 54.5 and
as high as 55.5 so our median, in this second example, is actually
4/6ths of the way between 54.5 and 55.5, and hence turns out
to be 55.167.

2 If we have the same score at positions surrounding a quartile
then we have to do the same sort of calculation we did with the
median (see Note 1 above) to produce an accurate value. Interest-
ingly, there are different ways to calculate quartiles depending on
the method used. The technique suggested here is a simple method.
However, statistical programs (such as SPSS) may give you a
different result such as 48.25 instead of 48.5 for the first quartile
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and 59.75 rather than 59.5 for the third quartile due to the way they weight the
values when they divide the set of numbers into four quartiles.

3 The formula for the normal distribution is: f X e
X

( )  
( )

=
− −1

2 2

2

2

2

πσ

µ
σ  where µ and

σ are the mean and standard deviation of the population and π and e are constants.
You may be more familiar with π than e but they are both known fixed values. We
can plot the function f (X) by putting values of X into the formula and we get the
familiar bell-shaped curve of the normal distribution.

4 Cyadmine is a purely fictitious name that I made up for this example. Any similar-
ity of the name with a real chemical is purely coincidental.

5 Sometimes ‘the critical t value’ is referred to as tα /2,df as we want the t value from
the tables that cuts off α/2 of each end of the distribution for a confidence of
(1 − α)% and df is the degrees of freedom.

6 The reference for GPOWER is Faul and Erdfelder (1992). It can be found at
the following web page: http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/
index.html. Interested readers are referred to the paper by Thomas and Krebs
(1997) which reviews a number of different software packages that perform power
calculations.

7 When we have the same subjects in each condition we only use part of the within
conditions variance as an estimate of the error variance as we are able to produce
a more sensitive measure of the systematic differences between conditions. This is
explained in Chapter 13.

8 The formula here is a sums of squares as ∑(X − B)2 can be also be expressed by the
alternative formula that does not require us to work out the mean first:

X
X

N
2

2

∑ ∑−
( )

.

9 F = t2 when df = 1. In the calculation we introduce some minor ‘rounding errors’
when we round to two decimal places. This is why the square of the t of 1.82
(producing t2 = 3.31) is not quite the same as the F of 3.30. If we had performed all
calculations to more decimal places we would have found them to be identical.

10 One disadvantage of the repeated measures ANOVA is that it also requires a
further assumption called ‘sphericity’. Essentially this means that the effects of the
factor are consistent across the participants and the conditions. When analysing
data by a computer program (e.g. SPSS) we can employ a test of sphericity to
check our data. See Hinton et al. (2004) for a fuller discussion of this topic.

11 Laying out data for analysis by hand or for a report needs to be done in a manner
that is clear and easy to read, so it minimises the possibility of misinterpretation.
However, when inputting data into computer statistical analysis programs there are
a few simple rules. Each row contains the data from a single subject. Independent
measures variables are often referred to as ‘grouping variables’ and the different
conditions are organised by rows. For example, if you had the scores for ten men
and ten women on a task, you would not input two columns of ten results with one
column labelled ‘men’ and the second labelled ‘women’. You would put the scores
in one column of 20 rows and distinguish between the men and women by a
second column (the grouping variable) with a category label for men (i.e. 1) and a
category label for the women (i.e. 2), so the second column would contain 10 ones
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and 10 twos. Thus, when you read along a row you would know whether it was a
man or a women by the category label in the appropriate column. A repeated
measures variable does have each condition as a separate column. For example, if
20 people performed a task on Monday and then again on Tuesday, the results
would be input in two columns the first headed ‘Monday’ and the second headed
‘Tuesday’. Each row would have two values in it – the score for a participant on
Monday and the same person’s score for Tuesday.

12 I have followed Keppel (1973) in the choice of error term here. The reader is
referred to this text for a discussion of the choice of error terms for the simple
main effect in this case. The text also provides further details of the simple main
effects for all the two factor ANOVAs.

13 Keppel (1973) contains further details of the simple main effects (see Note 12
above).

14 From Winer (1971).
15 If we wish to use a correction for ties we can work out SE using the following

formula:

N N t

N n ni j

(   )

(   )

+
−

−
+

⎛

⎝⎜
⎞

⎠⎟
∑1

12 12 1

1 1

16 From Zar (1996) with permission.
17 See Winer (1971) for further details of χ r

2.
18 The correlation coefficient r uses z scores in its analysis. The z score requires the

population mean and standard deviation. Due to this the scores are viewed as a
population and the formula for calculating the standard deviation is the population
standard deviation formula given in Chapter 2. Also, as we are working out means
and standard deviations the scores must be measured on interval scales.

19 I am working to two decimal places here to aid the clarity of the explanation and
the simplicity of the workings out. More usually we would employ more decimal
places to improve the accuracy of the calculation. Most statistical analysis computer
programs work to an accuracy of many decimal places.

20 With the same number of subjects for X and Y,
s
s

Y

X
will be the same regardless of

whether we use the formula for a population standard deviation for both sX and sY

or a sample standard deviation for both sX and sY as the degrees of freedom will
cancel out in the calculation.
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Glossary

absolute deviation When we subtract the mean value from a
score the result (the deviation from the mean) is positive
(+) if the score is larger than the mean and negative (−)
if it is smaller. If we ignore the sign of the deviation
and always treat it as positive we produce the absolute
deviation.

ANOVA An acronym for the ANalysis Of VAriance.
between subjects Also known as independent measures. In

this design, the samples we select for each condition of the
independent variable are independent, in that the samples
come from different subjects.

causal relationship A relationship where variation in one vari-
able causes variation in another. Statistical tests can show
a relationship between variables but not that it is causal.
Other factors might be involved in the relationship. We
might find that it snows more when the leaves have fallen
from the trees, but we cannot claim the fallen leaves cause
the snow. Factors such as the season and temperature are
involved.

component The term used in the principal components method
of factor analysis for a potential underlying factor.

condition A researcher chooses levels or categories of the
independent variable to observe its effect on the dependent
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variable. These are referred to as conditions, levels, treatments or groups.
For example, ‘morning’ and ‘afternoon’ might be chosen as the conditions
for the independent variable of time of day.

confidence interval In statistics we use samples to estimate population values,
such as the mean or the difference in means. The confidence interval
provides a range of values within which we predict lies the population
value (to a certain level of confidence). The 95 per cent confidence inter-
val of the mean worked out from a sample indicates that the estimated
population mean would fall between the upper and lower limits for 95 per
cent of the samples chosen.

confounding factor An independent variable (in addition to the one under
test) that has a systematic influence on the dependent variable.

control group A group of subjects or participants matched with the experi-
mental group on all relevant factors except the experimental manipulation.
For example, a placebo group (who do not take a particular drug) could
be used as a control group for a drug group (who do) to examine the
effect of the drug on performance.

correlation The degree to which the scores (from a set of subjects) on two
variables co-relate. That is, the extent to which a variation in the scores
on one variable results in a corresponding variation in the scores on the
second variable. Usually the relationship we are looking for is linear. A
multiple correlation examines the relationship between a combination of
predictor variables with a dependent variable.

critical value We reject the null hypothesis after a statistical test if the
probability of the calculated value of the statistic (under the null hypo-
thesis) is lower than the significance level (e.g. 0.05). Textbooks print
tables of the critical values of the statistic, which are the values of the
statistic at a particular significance level (e.g. 0.05). We then compare
our calculated value with the critical value from the table. For example,
if the calculated value of a t statistic is 4.20 and the critical value is
2.31 (at the 0.05 level of significance) then clearly the probability of the
test statistic is less than 0.05 and the result is significant. Computer pro-
grams do not give a critical value but print out the actual probability
of the calculated value (e.g. 0.023765) and we can examine this to see
if it is higher or lower than the significance level for the significance of
the result.

degrees of freedom When calculating a statistic we use information from the
data (such as the mean or total) in the calculation. The degrees of freedom
is the number of scores we need to know before we can work out the rest
using the information we already have. It is the number of scores that are
free to vary in the analysis.
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dependent variable The variable measured by the researcher and predicted
to be influenced by (that is, depend on) the independent variable.

descriptive statistics Usually we wish to describe our data before conducting
further analysis or comparisons. Descriptive statistics such as the mean
and standard deviation enable us to summarise a set of data.

deviation The difference of a score from the mean. When we subtract the
mean value from a score the result is the deviation.

discriminant function A discriminant function is one derived from a set
of independent (or predictor) variables that can be used to discriminate
between the conditions of a dependent variable.

distribution The range of possible scores on a variable and their frequency of
occurrence. In statistical terms we refer to a distribution as a ‘probability
density function’. We use the mathematical formulae for known distribu-
tions to work out the probability of finding a score as high as or as low as
a particular score.

effect size The size of the difference between the means of two populations,
usually expressed in standard deviation units.

eigenvalue In a factor analysis an eigenvalue provides a measure of the amount
of variance that can be explained by a proposed factor. If a factor has an
eigenvalue of 1 then it can explain as much variance as one of the original
independent variables.

equality of variance see homogeneity of variance.
factor Another name for ‘variable’, used commonly in the analysis of

variance to refer to an independent variable. In factor analysis we
analyse the variation in the data to see if it can be explained by fewer
factors (i.e. ‘new’ variables) than the original number of independent
variables.

general linear model The underlying mathematical model employed in
parametric statistics. When there are only two variables, X and Y, the
relationship between them is linear when they satisfy the formula Y = a +
bX (where a and b are constants). The general linear model is a general
form of this equation allowing as many X and Y variables as we wish in
our analysis.

frequency The number of times a score, a range of scores, or a category is
obtained in a set of data is referred to as its frequency.

frequency data The data collected is simply the number of scores that fall
into each of certain specified categories. See also ‘nominal data’.

histogram A plot of data on a graph, where vertical bars are used to represent
the frequency of the scores, range of scores or categories under study.

homogeneity of variance Underlying parametric tests is the assumption that
the populations from which the samples are drawn have the same variance.
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We can examine the variances of the samples in our data to see whether
this assumption is appropriate with our data or not.

homoscedasticity The scores in a scatterplot are evenly distributed along and
about a regression line. This is the assumption made in linear correlation
and regression. (This is the correlation and regression equivalent of the
homogeneity of variance assumption.)

hypothesis A predicted relationship between variables. For example: ‘As sleep
loss increases so the number of errors on a specific monitoring task will
increase’.

independent measures A term used to indicate that there are different subjects
in each condition of an independent variable.

independent variable A variable chosen by the researcher for testing, predicted
to influence the dependent variable.

inferential statistics Statistics that allow us to make inferences about the data
– for example whether samples are drawn from different populations or
whether two variables correlate.

interaction When there are two or more factors in an analysis of variance
then we can examine the interactions between the factors. An interaction
indicates that the effect of one factor is not the same at each condition of
another factor. For example, if we find that more cold drinks are sold in
summer and more hot drinks sold in winter then we have an interaction of
‘drink temperature’ and ‘time of year’.

intercept A linear regression finds the best fit linear relationship between two
variables. This is a straight line based on the formula Y = a + bX, where
b is the slope of the line and a is the intercept, or point where the line
crosses the Y-axis.

interval data Data produced by the use of an interval scale. Parametric tests
require interval data.

interval scale A scale of measurement where the interval between consecutive
numbers is always the same. Most measuring devices, such as timers,
thermometers, tape measures, employ interval scales.

item When we employ a test with a number of variables (such as questions in
a questionnaire) we refer to these variables as items, particularly in reliability
analysis where we are interested in the correlation between items in the test.

linear correlation The extent to which two variables correlate in a linear
manner. That is, how close their scatterplot is to a straight line.

main effect The effect of a factor on the dependent variable in an analysis of
variance measured separately from other factors in the analysis.

MANOVA A Multivariate ANalysis Of VAriance. An analysis of variance
technique where there can be more than one dependent variable in the
analysis.
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matching subjects Subjects are matched on relevant criteria across the
conditions of the independent variable to control for possible confounding
variables. For example, participants may be matched on intelligence or
experience to control for these factors.

mean A measure of the ‘average’ score in a set of data. The mean is found by
adding up all the scores and dividing by the number of scores.

mean square A term used in the analysis of variance to refer to the variance
in the data due to a particular source of variation.

median If we order a set of data from lowest to highest the median is the
point that divides the scores into two, with half the scores below and half
above the median.

mixed design A mixed design is one that includes both independent measures
factors and repeated measures factors. For example, a group of men and a
group of women are tested in the morning and the afternoon. In this test
‘gender’ is an independent measures variable (also known as ‘between
subjects’) and time of day is a repeated measures factor (also known as
‘within subjects’), so we have a mixed design.

mode The score which has occurred the highest number of times in a set of
data.

multiple comparisons The results of a statistical test with more than two con-
ditions will often show a significant result but not where that difference
lies. We need to undertake a comparison of conditions to see which ones
are causing the effect. If we compare them two at a time this is known as
pairwise comparisons. Multiple comparisons are either ‘planned’ and a
specific comparison is planned in advance of the main test or ‘unplanned’
where comparisons are undertaken after discovering the significant finding.

multiple correlation The correlation of one variable with a combination of
other variables.

multivariate Literally this means ‘many variables’ but is most commonly
used to refer to a test with more than one dependent variable (as in the
MANOVA).

nominal data When we use numbers as labels for categories we refer to the
data collected as nominal (names). We cannot perform mathematical oper-
ations on these numbers: for example if we label the category ‘men’ as
1 and ‘women’ as 2 we cannot add up two men and claim it equals one
woman! The data are usually the frequency of responses in each category.

nonparametric test Statistical tests that do not use, or make assumptions
about, the characteristics (parameters) of populations.

normal distribution A bell-shaped frequency distribution that appears to
underlie many human variables. The normal distribution can be worked
out mathematically using the population mean and standard deviation.



S T A T I S T I C S  E X P L A I N E D

352

null hypothesis A prediction that there is no relationship between the inde-
pendent and dependent variables.

one-tailed test A prediction that two samples come from different popula-
tions, specifying the direction of the difference: that is, which of the two
populations will have the larger mean value.

opportunity sample An available sample, which is neither randomly chosen
nor chosen to be representative of the population.

ordinal data When we cannot assume that the intervals between consecutive
numbers on a scale of measurement are of equal size we have ordinal data
and can only use the data to rank order the subjects. Ratings are assumed
to be ordinal data. We perform nonparametric tests on ordinal data.

outlier An extreme value in a scatterplot – in that it lies outside the main
cluster of scores. When calculating a linear correlation or regression an
outlier will have a disproportionate influence on the statistical calculations.

parameter A characteristic of a population, such as the population mean.
parametric tests Statistical tests that use the characteristics (parameters) of

populations or estimates of them (when assumptions are also made about
the populations under study).

partial correlation The correlation of two variables after having removed the
effects of a third variable from both.

participant A person taking part as a ‘subject’ in a study. The term ‘participant’
is preferred to ‘subject’ as it acknowledges the person’s agency: i.e. that
they have consented to take part in the study.

population A complete set of objects or events. In statistics this usually
refers to the complete set of subjects or scores we are interested in, from
which we have drawn a sample.

post hoc tests When we have more than two conditions of an independent
variable a statistical test (such as an ANOVA) may show a significant
result but not the source of the effect. We can perform post hoc tests
(literally post hoc means ‘after this’) to see which conditions are showing
significant differences. Post hoc tests should correct for the additional risk
of Type I errors when performing multiple tests on the same data.

power of a test The probability that, when there is a genuine effect to be
found, the test will find it (that is, correctly reject a false null hypothesis).
As an illustration, one test might be like a stopwatch that gives the same
time for two runners in a race but a more powerful test is like a sensitive
electronic timer that more accurately shows the times to differ by a fiftieth
of a second.

probability The chance of a specific event occurring from a set of possible
events, expressed as a proportion. For example, if there were 4 women
and 6 men in a room the probability of meeting a woman first on entering
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the room is 4/10 or 0.4 as there are 4 women out of 10 people in the
room. A probability of 0 indicates an event will never occur and a prob-
ability of 1 that it will always occur. In a room of only 10 men there is
a probability of 0 (0/10) of meeting a woman first and a probability of
1 (10/10) of meeting a man.

quartile If we order a set of scores from the lowest to the highest the
quartiles are the points that divide the scores into four equal groups, with
a quarter of the scores in each group. The second quartile is the median.

random error There will always be random factors influencing subjects’
scores in an experiment. Random error is the influence of these random
factors on the data. Statistical tests take account of random factors.

random sample A sample of a population where each member of the
population has an equal chance of being chosen for the sample.

range The difference between the highest and lowest scores in a set of data.
rank When a set of data is ordered from lowest to highest the rank of a score

is its position in this order.
rank order A method of ordering scores, listing them from lowest to highest.
ratio data Data measured on a ratio scale.
ratio scale An interval scale with an absolute zero. A stopwatch has an abso-

lute zero as 0 indicates ‘no time’ and so we can make ratio statements:
20 seconds is twice as long as 10 seconds. The Celsius and Fahrenheit
scales of temperature are interval but not ratio scales and indeed have 0
at different temperatures.

regression The prediction of subjects’ scores on one variable by their scores
on a second variable. This prediction is usually based on the relationship
between the variables being linear and hence the prediction can be made
using the formula Y = a + bX. The larger the correlation between the
variables the more accurate the prediction. A multiple regression predicts
the variation in a variable by a number of predictor variables.

reliability A reliable test is one that that will produce the same result when
repeated (in the same circumstances). We can investigate the reliability of
the items in a test (such as the questions in a questionnaire) by examining
the relationship between each item and the overall score on the test.

repeated measures A term used to indicate that the same subjects are provid-
ing data for all the conditions of an independent variable.

representative sample A subset of a population that shares the same key
characteristics of the population. For example, the sample has the same
ratio of men to women as the population.

residual A linear regression provides a prediction of the subjects’ scores on
one variable by their scores on a second. The residual is the difference
between a subject’s actual score and their predicted score on the first
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variable. (A linear regression predicts that the data follow a linear model.
The residuals indicate the extent to which the data do not fit the model, so
are often referred to as ‘errors’.)

scatterplot A graph of subjects’ scores on one variable plotted against
their scores on a second variable. The graph shows how the scores are
‘scattered’.

significance level The risk (probability) of erroneously claiming a relation-
ship between an independent and a dependent variable when there is
not one. Statistical tests are undertaken so that this probability is
chosen to be small, usually set at 0.05 indicating that this will occur
no more than 5 times in 100. This sets the probability of making a Type
I error.

simple main effects A significant interaction in a two factor analysis of
variance indicates that the effect of one variable is different at the various
conditions of the other variable. Calculating simple main effects tell us
what these different effects are. A simple main effect is the effect of one
variable at a single condition of a second variable.

standard deviation A measure of the standard (‘average’) difference (devi-
ation) of a score from the mean in a set of scores. It is the square root of
the variance. (There is a different calculation for standard deviation when
the set of scores are a population as opposed to a sample.)

standard error of the estimate A measure of the ‘average’ distance (standard
error) of a score from the regression line.

standard error of the mean The standard deviation of the distribution of
sample means. It is a measure of the standard (‘average’) difference of a
sample mean from the mean of all sample means of samples of the same
size from the same population.

standard normal distribution A normal distribution with a mean of 0 and a
standard deviation of 1.

standard score The position of a score within a distribution of scores. It
provides a measure of how many standard deviation units a specific score
falls above or below the mean. It is also referred to as a z score.

statistic Specifically, a characteristic of a sample, such as the sample mean.
More generally, statistic and statistics are used to describe techniques for
summarising and analysing numerical data.

subject The term used for the source of data in a sample. If people are the
subjects of the study it is viewed as more respectful to refer to them as
participants, which acknowledges their role as helpful contributors to the
investigation.

sums of squares The sum of the squared deviations of scores from their
mean value.
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systematic error Data that has been systematically influenced by another
variable in addition to the independent variable under test is said to contain
systematic error. The additional variable is said to confound the experiment.

two-tailed test A prediction that two samples come from different populations,
but not stating which population has the higher mean value.

Type I error The error of rejecting the null hypothesis when it is true. The
risk of this occurring is set by the significance level.

Type II error The error of accepting the null hypothesis when it is false.
univariate A term used to refer to a statistical test where there is only one

dependent variable. ANOVA is a univariate analysis as there can be more
than one independent variable but only one dependent variable.

variance A measure of how much a set of scores vary from their mean value.
Variance is the square of the standard deviation.

within subjects  Also known as repeated measures. We select the same sub-
jects for each condition of an independent variable for a within-subjects
design.



S T A T I S T I C S  E X P L A I N E D

356



A P P E N D I X

357

References

Cohen, J. (1988) Statistical Power Analysis for the Behavioral
Sciences. 2nd edition. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Faul, F. and Erdfelder, E. (1992) GPOWER: A priori, post-hoc,
and compromise power analysis of MS-DOS (Computer
program). Bonn: Bonn University, Dept of Psychology.

Hinton, P.R., Brownlow, C., McMurray, I. and Cozens, B. (2004)
SPSS Explained. Hove: Routledge.

Keppel, G. (1973) Design and Analysis: A Researcher’s Hand-
book. Englewood Cliffs, NJ: Prentice Hall Inc.

Siegel, S. (1956) Nonparametric Statistics. New York: McGraw-
Hill.

Thomas, L. and Krebs, C.J. (1997) A review of statistical power
analysis software. Bulletin of the Ecological Society of
America, 78(2), 126–139. Web page: http://www.zoology.
ubc.ca/~krebs/power.html, accessed 01.10.2003.

Wilkinson, L. and Task Force on Statistical Inference (1999)
Statistical methods in psychology journals: Guidelines and
explanations. American Psychologist, 54(8), 594–604.

Winer, B.J. (1971) Statistical Principles in Experimental Design.
2nd edition. Tokyo: McGraw-Hill Kogakusha Ltd.

Zar, J.H. (1996) Biostatistical Analysis. 3rd edition. Upper Saddle
River, NJ: Prentice Hall.

R
e
fe

re
n
ce

s



S T A T I S T I C S  E X P L A I N E D

358



A P P E N D I X

359

Appendix

Acknowledgements

I am grateful to the following sources for allowing me to reprint or adapt the
following statistical tables:

A.1 The standard normal distribution tables

From: Table IIi of of R.A. Fisher and F. Yates (1974) Statistical Tables for Bio-
logical, Agricultural, and Medical Research, 6th edition. London: Pearson Education
Limited (previously published by Oliver and Boyd Ltd, Edinburgh).

A.2 Critical values of the t distribution

From: Table III of of R.A. Fisher and F. Yates (1974) Statistical Tables for Bio-
logical, Agricultural, and Medical Research, 6th edition. London: Pearson Education
Limited (previously published by Oliver and Boyd Ltd, Edinburgh).

A.3 Critical values of the F distribution

From: M. Merrington and C.M. Thompson (1943) Tables of percentage points of
the inverted Beta (F) distribution, Biometrika, 33 (1943–6), 73–88, by permission
of the Biometrika Trustees and Oxford University Press.
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A.4 Critical values of the Studentized range statistic, q

From: Tables 2 and 3 in J. Pachares (1959) Table of the upper 10% points of the
studentized range, Biometrika, 46, 461–6, by permission of the Biometrika Trustees
and Oxford University Press.

A.5 Critical values of the Mann–Whitney U statistic

From: Table K of S. Siegel (1956) Nonparametric Statistics for the Behavioral
Sciences, New York: McGraw-Hill. Reproduced with the permission of The McGraw-
Hill Companies.

A.6 Critical values of the Wilcoxon T statistic

From: Table J of R.P. Runyan and A. Haber (1991) Fundamentals of Behavioral
Statistics, 7th edition. New York: McGraw-Hill. Reproduced with the permission
of The McGraw-Hill Companies.

A.7 Critical values of the chi-square (χχχχχ 2) distribution

From: Table IV of R.A. Fisher and F. Yates (1974) Statistical Tables for Biological,
Agricultural, and Medical Research, 6th edition. London: Pearson Education Limited
(previously published by Oliver and Boyd Ltd, Edinburgh).

A.8 Table of probabilities for χχχχχ r
2 when k and n are small

From: M. Friedman (1937) The use of ranks to avoid the assumption of normality
implicit in the analysis of variance, Journal of the American Statistical Association,
32, 200, 675–701. Reprinted with permission. Copyright (1937) by the American
Statistical Association. All rights reserved.

A.9 Critical values of the Pearson r correlation coefficient

From: Table VII of R.A. Fisher and F. Yates (1974) Statistical Tables for Biological,
Agricultural, and Medical Research, 6th edition. London: Pearson Education Limited
(previously published by Oliver and Boyd Ltd, Edinburgh).
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A.10 Critical values of the Spearman rS ranked
correlation coefficient

From: E.G. Olds (1949) The 5% significance levels for sums of squares of rank
differences and a correction, Annals of Mathematical Statistics, volume 9, pages
133–48. With the permission of The Institute of Mathematical Statistics.

Table on page 240 – extract from the larger table of the Q Statistic in Zar, J., BIO-
STATISTICAL ANALYSIS, 3/e, copyright © 1996. Adapted by permission of
Pearson Education, Inc., Upper Saddle River, New Jersey.

I am grateful to Pearson Education Limited, on behalf of the Literary Executor of
the late Sir Ronald Fisher, FRS, and Dr Frank Yates, FRS for permission to reprint
Tables IIi, III, IV, V and VII from their book Statistical Tables for Biological,
Agricultural, and Medical Research, 6th edition, 1974.
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A.1 The standard normal distribution tables

z 0 1 2 3 4 5 6 7 8 9

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1294 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

To look up the probability of a z score use the first column, headed ‘z’, to find the first decimal
place of the z score. The other columns represent the second decimal place. For example, if we
wish to look up the probability of a z score of 1.8641 we first round it to two decimal places: 1.86.
We go down the z column until we find 1.8. We move along the 1.8 row until we are in the column
headed ‘6’ (as the second decimal place is 6) and we find the probability of 0.0314. The probability
of finding a score as high or higher than 1.86 is 0.0314.

Notice that there are no z scores in the table greater than 3.99 even though we might
calculate them in our analyses. Observe also that the probability values of 3.9 or greater are given
as 0.0000. The probability of a z score of 3.9 or larger is not actually zero but is so small that we
cannot represent it in a table with only four decimal places.
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A.2 Critical values of the t distribution

0.05 Level of significance 0.01 Level of significance

df One-tailed test Two-tailed test One-tailed test Two-tailed test

1 6.314 12.706 31.821 63.657
2 2.920 4.303 6.965 9.925
3 2.353 3.182 4.541 5.841
4 2.132 2.776 3.747 4.604
5 2.015 2.571 3.365 4.032
6 1.943 2.447 3.143 3.707
7 1.895 2.365 2.998 3.499
8 1.860 2.306 2.896 3.355
9 1.833 2.262 2.821 3.250

10 1.812 2.228 2.764 3.169
11 1.796 2.201 2.718 3.106
12 1.782 2.179 2.681 3.055
13 1.771 2.160 2.650 3.012
14 1.761 2.145 2.624 2.977
15 1.753 2.131 2.602 2.947
16 1.746 2.120 2.583 2.921
17 1.740 2.110 2.567 2.898
18 1.734 2.101 2.552 2.878
19 1.729 2.093 2.539 2.861
20 1.725 2.086 2.528 2.845
21 1.721 2.080 2.518 2.831
22 1.717 2.074 2.508 2.819
23 1.714 2.069 2.500 2.807
24 1.711 2.064 2.492 2.797
25 1.708 2.060 2.485 2.787
26 1.706 2.056 2.479 2.779
27 1.703 2.052 2.473 2.771
28 1.701 2.048 2.467 2.763
29 1.699 2.045 2.462 2.756
30 1.697 2.042 2.457 2.750
40 1.684 2.021 2.423 2.704
60 1.671 2.000 2.390 2.660

120 1.656 1.980 2.358 2.617
∞ 1.645 1.960 2.326 2.576

The values indicate the size of t that cuts off either 0.05 or 0.01 of the t distribution at the different
degrees of freedom. For example, for a one-tailed test with df = 20, a value of t = 1.725 cuts off
0.05 of the distribution. Thus, for a calculated value of t to be significant it must be greater than or
equal to the appropriate table value. That is to say, if the calculated value of t is greater than the
table value then the probability that such a result occurred by chance is less than 0.05.

When you have calculated a degrees of freedom that is not in the table (i.e. df = 32) use the
next lowest value in given the table (i.e. df = 30 for a calculated df = 32). If you really want to you
can use linear interpolation if you wish to be a little more accurate. When the degrees of freedom
is very large (into the hundreds) use the infinity (∞) value.
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A.3 Critical values of the F distribution

0.05 Level of significance

df1
df 2 1 2 3 4 5 6 7 8 9 10 20 ∞

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 248.01 254.32
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.45 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.15 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.77 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.65 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.54 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.46 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.39 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.33 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.28 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.23 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.19 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.16 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.12 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.10 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.07 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.05 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.03 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.01 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 1.99 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 1.97 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 1.96 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 1.94 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 1.93 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.84 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.75 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.66 1.25
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.57 1.00

The calculated value of F must be larger than or equal to the table value for significance.
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A.3 Critical values of the F distribution (continued)

0.01 Level of significance

df1
df 2 1 2 3 4 5 6 7 8 9 10 20 ∞

1 4052.2 4999.5 5403.3 5624.6 5763.7 5859.0 5928.3 5981.6 6022.5 6055.8 6208.7 6366.0
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.45 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 26.69 26.12
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.02 13.46
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.55 9.02
6 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.40 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.16 5.67
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.36 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.81 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.41 3.91
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.10 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 3.86 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.66 3.17
14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.51 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.37 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.26 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.16 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.08 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.00 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 2.94 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 2.88 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 2.83 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 2.78 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 2.74 2.21
25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13 2.70 2.17
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.66 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.63 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.60 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.57 2.03
30 7.58 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.55 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.37 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.20 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.03 1.38
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 1.88 1.00

The calculated value of F must be larger than or equal to the table value for significance.



S T A T I S T I C S  E X P L A I N E D

366

A.4 Critical values of the Studentized range statistic, q

0.05 Level of significance

Error Number of conditions (k)
df 2 3 4 5 6 7 8 9 10 11 12

5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32
6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.36 5.51 5.61
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35
17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31
18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00
40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81

120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71
∞ 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62

A.4 Critical values of the Studentized range statistic, q (continued)

0.01 Level of significance

Error Number of conditions (k)
df 2 3 4 5 6 7 8 9 10 11 12

5 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70
6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.48
7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71
8 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03 8.18
9 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78

10 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.49
11 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25
12 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06
13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90
14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77
15 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66
16 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56
17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48
18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41
19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34
20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28
24 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11
30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93
40 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76
60 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60

120 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37 5.44
∞ 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29
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A.5 Critical values of the Mann–Whitney U statistic

The calculated value of U must be smaller than or equal to the table value for significance. Dashes in the
table indicate that no value is possible for significance.

0.05 Level of significance: One-tailed test

n1

n2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 – – – – – – – – – – – – – – – – – – 0 0
2 – – – – 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4
3 – – 0 0 1 2 2 3 3 4 5 5 6 7 7 8 9 9 10 11
4 – – 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
5 – 0 1 2 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25
6 – 0 2 3 5 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32
7 – 0 2 4 6 8 11 13 15 17 19 21 24 26 28 30 33 35 37 39
8 – 1 3 5 8 10 13 15 18 20 23 26 28 31 33 36 39 41 44 47
9 – 1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

10 – 1 4 7 11 14 17 20 24 27 31 34 37 41 44 48 51 55 58 62
11 – 1 5 8 12 16 19 23 27 31 34 38 42 46 50 54 57 61 65 69
12 – 2 5 9 13 17 21 26 30 34 38 42 47 51 55 60 64 68 72 77
13 – 2 6 10 15 19 24 28 33 37 42 47 51 56 61 65 70 75 80 84
14 – 2 7 11 16 21 26 31 36 41 46 51 56 61 66 71 77 82 87 92
15 – 3 7 12 18 23 28 33 39 44 50 55 61 66 72 77 83 88 94 100
16 – 3 8 14 19 25 30 36 42 48 54 60 65 71 77 83 89 95 101 107
17 – 3 9 15 20 26 33 39 45 51 57 64 70 77 83 89 96 102 109 115
18 – 4 9 16 22 28 35 41 48 55 61 68 75 82 88 95 102 109 116 123
19 0 4 10 17 23 30 37 44 51 58 65 72 80 87 94 101 109 116 123 130
20 0 4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 138

0.05 Level of significance: Two-tailed test

n1

n2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 – – – – – – – – – – – – – – – – – – – –
2 – – – – – – – 0 0 0 0 1 1 1 1 1 2 2 2 2
3 – – – – 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
4 – – – 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13
5 – – 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20
6 – – 1 2 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27
7 – – 1 3 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
8 – 0 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41
9 – 0 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48

10 – 0 3 5 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55
11 – 0 3 6 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62
12 – 1 4 7 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69
13 – 1 4 8 12 16 20 24 28 33 37 41 45 50 54 59 63 67 72 76
14 – 1 5 9 13 17 22 26 31 36 40 45 50 55 59 64 67 74 78 83
15 – 1 5 10 14 19 24 29 34 39 44 49 54 59 64 70 75 80 85 90
16 – 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75 81 86 92 98
17 – 2 6 11 17 22 28 34 39 45 51 57 63 67 75 81 87 93 99 105
18 – 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99 106 112
19 – 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 119
20 – 2 8 13 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127
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A.5 Critical values of the Mann–Whitney U statistic (continued)

The calculated value of U must be smaller than or equal to the table value for significance. Dashes in the
table indicate that no value is possible for significance.

0.01 Level of significance: One-tailed test

n1

n2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 – – – – – – – – – – – – – – – – – – – –
2 – – – – – – – – – – – – 0 0 0 0 0 0 1 1
3 – – – – – – 0 0 1 1 1 2 2 2 3 3 4 4 4 5
4 – – – – 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10
5 – – – 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6 – – – 1 2 3 4 6 7 8 9 11 12 13 15 16 18 19 20 22
7 – – 0 1 3 4 6 7 9 11 12 14 16 17 19 21 23 24 26 28
8 – – 0 2 4 6 7 9 11 13 15 17 20 22 24 26 28 30 32 34
9 – – 1 3 5 7 9 11 14 16 18 21 23 26 28 31 33 36 38 40

10 – – 1 3 6 8 11 13 16 19 22 24 27 30 33 36 38 41 44 47
11 – – 1 4 7 9 12 15 18 22 25 28 31 34 37 41 44 47 50 53
12 – – 2 5 8 11 14 17 21 24 28 31 35 38 42 46 49 53 56 60
13 – 0 2 5 9 12 16 20 23 27 31 35 39 43 47 51 55 59 63 67
14 – 0 2 6 10 13 17 22 26 30 34 38 43 47 51 56 60 65 69 73
15 – 0 3 7 11 15 19 24 28 33 37 42 47 51 56 61 66 70 75 80
16 – 0 3 7 12 16 21 26 31 36 41 46 51 56 61 66 71 76 82 87
17 – 0 4 8 13 18 23 28 33 38 44 49 55 60 66 71 77 82 88 93
18 – 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88 94 100
19 – 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101 107
20 – 1 5 10 16 22 28 34 40 47 53 60 67 73 80 87 93 100 107 114

0.01 Level of significance: Two-tailed test

n1

n2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 – – – – – – – – – – – – – – – – – – – –
2 – – – – – – – – – – – – – – – – – – 0 0
3 – – – – – – – – 0 0 0 1 1 1 2 2 2 2 3 3
4 – – – – – 0 0 1 1 2 2 3 3 4 5 5 6 6 7 8
5 – – – – 0 1 1 2 3 4 5 6 7 7 8 9 10 11 12 13
6 – – – 0 1 2 3 4 5 6 7 9 10 11 12 13 15 16 17 18
7 – – – 0 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22 24
8 – – – 1 2 4 6 7 9 11 13 15 17 18 20 22 24 26 28 30
9 – – 0 1 3 5 7 9 11 13 16 18 20 22 24 27 29 31 33 36

10 – – 0 2 4 6 9 11 13 16 18 21 24 26 29 31 34 37 39 42
11 – – 0 2 5 7 10 13 16 18 21 24 27 30 33 36 39 42 45 48
12 – – 1 3 6 9 12 15 18 21 24 27 31 34 37 41 44 47 51 54
13 – – 1 3 7 10 13 17 20 24 27 31 34 38 42 45 49 53 56 60
14 – – 1 4 7 11 15 18 22 26 30 34 38 42 46 50 54 58 63 67
15 – – 2 5 8 12 16 20 24 29 33 37 42 46 51 55 60 64 69 73
16 – – 2 5 9 13 18 22 27 31 36 41 45 50 55 60 65 70 74 79
17 – – 2 6 10 15 19 24 29 34 39 44 49 54 60 65 70 75 81 86
18 – – 2 6 11 16 21 26 31 37 42 47 53 58 64 70 75 81 87 92
19 – 0 3 7 12 17 22 28 33 39 45 51 56 63 69 74 81 87 93 99
20 – 0 3 8 13 18 24 30 36 42 48 54 60 67 73 79 86 92 99 105
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A.6 Critical values of the Wilcoxon T statistic

The calculated value of T must be lower than or equal to the table value for significance.
Dashes in the table indicate that no value is possible for significance.

0.05 Level of significance 0.01 Level of significance

n One-tailed test Two-tailed test One-tailed test Two-tailed test

5 0 – – –
6 2 0 – –
7 3 2 0 –
8 5 3 1 0
9 8 5 3 1

10 10 8 5 3
11 13 10 7 5
12 17 13 9 7
13 21 17 12 9
14 25 21 15 12
15 30 25 19 15
16 35 29 23 19
17 41 34 27 23
18 47 40 32 27
19 53 46 37 32
20 60 52 43 37
21 67 58 49 42
22 75 65 55 48
23 83 73 62 54
24 91 81 69 61
25 100 89 76 68
26 110 98 84 75
27 119 107 92 83
28 130 116 101 91
29 140 126 110 100
30 151 137 120 109
31 163 147 130 118
32 175 159 140 128
33 187 170 151 138
34 200 182 162 148
35 213 195 173 159
36 227 208 185 171
37 241 221 198 182
38 256 235 211 194
39 271 249 224 207
40 286 264 238 220
41 302 279 252 233
42 319 294 266 247
43 336 310 281 261
44 353 327 296 276
45 371 343 312 291
46 389 361 328 307
47 407 378 345 322
48 426 396 362 339
49 446 415 379 355
50 466 434 397 373
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A.7 Critical values of the chi-square (χχχχχ 2) distribution

df 0.05 Level of 0.01 Level of
significance significance

1 3.84 6.64
2 5.99 9.21
3 7.82 11.34
4 9.49 13.28
5 11.07 15.09
6 12.59 16.81
7 14.07 18.48
8 15.51 20.09
9 16.92 21.67

10 18.31 23.21
11 19.68 24.72
12 21.03 26.22
13 22.36 27.69
14 23.68 29.14
15 25.00 30.58
16 26.30 32.00
17 27.59 33.41
18 28.87 34.80
19 30.14 36.19
20 31.41 37.57
21 32.67 38.93
22 33.92 40.29
23 35.17 41.64
24 36.42 42.98
25 37.65 44.31
26 38.88 45.64
27 40.11 46.97
28 41.34 48.28
29 42.56 49.59
30 43.77 50.89

The calculated value of χ2 must be larger than or equal to the table value for significance.
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A.8 Table of probabilities for χχχχχ 2
r when k and n are small

0.05 Level of significance 0.01 Level of significance
k n χ2

r Probability χ2
r Probability

3 2 – – – –
– – – –

3 3 6.00 0.028 – –
4.67 0.194 – –

3 4 6.50 0.042 8.00 0.005
6.00 0.069 6.50 0.042

3 5 6.40 0.039 8.40 0.009
5.20 0.093 7.60 0.024

3 6 7.00 0.029 9.00 0.008
6.33 0.052 8.33 0.012

3 7 7.14 0.027 8.86 0.008
6.00 0.052 8.00 0.016

3 8 6.25 0.047 9.00 0.010
5.25 0.079 7.75 0.018

3 9 6.22 0.048 8.67 0.010
6.00 0.057 8.22 0.016

4 2 6.00 0.042 – –
5.40 0.167 – –

4 3 7.40 0.033 9.00 0.002
7.00 0.054 8.20 0.017

When k and n are small χ 2
r can only take a few values. For each combination

of k and n there are two values given for χ2
r. The table gives the two values closest

to the significance level with their actual probabilities. For example, when k = 3 and
n = 6, χ2

r = 7.00 or greater with a probability of 0.029. This is less than 0.05 and so is
significant. The next value below 7.00 that χ2

r can be is 6.33, with a probability of 0.052,
which is not quite significant at 0.05. Dashes in the table indicate that no value is
possible for significance.
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A.9 Critical values of the Pearson r correlation coefficient

0.05 Level of significance 0.01 Level of significance

df One-tailed test Two-tailed test One-tailed test Two-tailed test
(directional) (non-directional) (directional) (non-directional)

1 0.9877 0.9969 0.9995 0.9999
2 0.9000 0.9500 0.9800 0.9900
3 0.8054 0.8783 0.9343 0.9587
4 0.7293 0.8114 0.8822 0.9172
5 0.6694 0.7545 0.8329 0.8745
6 0.6215 0.7067 0.7887 0.8343
7 0.5822 0.6664 0.7498 0.7977
8 0.5494 0.6319 0.7155 0.7646
9 0.5214 0.6021 0.6851 0.7348

10 0.4973 0.5760 0.6581 0.7079
11 0.4762 0.5529 0.6339 0.6835
12 0.4575 0.5324 0.6120 0.6614
13 0.4409 0.5139 0.5923 0.6411
14 0.4259 0.4973 0.5742 0.6226
15 0.4124 0.4821 0.5577 0.6055
16 0.4000 0.4683 0.5425 0.5897
17 0.3887 0.4555 0.5285 0.5751
18 0.3783 0.4438 0.5155 0.5614
19 0.3687 0.4329 0.5034 0.5487
20 0.3598 0.4227 0.4921 0.5368
25 0.3233 0.3809 0.4451 0.4869
30 0.2960 0.3494 0.4093 0.4487
35 0.2746 0.3246 0.3810 0.4182
40 0.2573 0.3044 0.3578 0.3932
45 0.2428 0.2875 0.3384 0.3721
50 0.2306 0.2732 0.3218 0.3541
60 0.2108 0.2500 0.2948 0.3248
70 0.1954 0.2319 0.2737 0.3017
80 0.1829 0.2172 0.2565 0.2830
90 0.1726 0.2050 0.2422 0.2673

100 0.1638 0.1946 0.2301 0.2540

The calculated value of r must be larger than or equal to the table value for significance.
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A.10 Critical values of the Spearman rS ranked
correlation coefficient

0.05 Level of significance 0.01 Level of significance

N One-tailed test Two-tailed test One-tailed test Two-tailed test
(directional) (non-directional) (directional) (non-directional)

5 0.900 1.000 1.000 –
6 0.829 0.886 0.943 1.000
7 0.714 0.786 0.893 0.929
8 0.643 0.738 0.833 0.881
9 0.600 0.683 0.783 0.833

10 0.564 0.648 0.746 0.794
12 0.506 0.591 0.712 0.777
14 0.456 0.544 0.645 0.715
16 0.425 0.506 0.601 0.665
18 0.399 0.475 0.564 0.625
20 0.377 0.450 0.534 0.591
22 0.359 0.428 0.508 0.562
24 0.343 0.409 0.485 0.537
26 0.329 0.392 0.465 0.515
28 0.317 0.377 0.448 0.496
30 0.306 0.364 0.432 0.478

The calculated value of rs must be larger than or equal to the table value for significance.
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Index

absolute deviation 14
additivity of factors 164–7, 205
analysis of variance (ANOVA):

compared to t test 133; interaction of
factors 161–70; introduction 111–23;
and linear model 333–7; multiple
comparisons 137–48; nonparametric
equivalents 212, 231; non-significant
interaction 205; one factor independent
measures 125–36; one factor repeated
measures 149–60; two factor
independent measures 172–81; two
factor mixed design 181–92; two factor
repeated measures 193–205

ANOVA see analysis of variance
averages 9

backward regression 294
Bartlett’s test of sphericity 305
between conditions degrees of freedom

119–20
between conditions sums of squares 119,

167–9
biased samples 49–51, 61, 74

categories 248
causal relationships 79; and correlation

284
central limit theorem 55

central tendency 8; in comparisons 19;
measures of 8–11; see also mean

certainty 31
chi-square χ 2 236, 241, 243–4;

assumptions of 257–9; critical values
370; distribution of 236, 243–4,
256–7; as goodness of fit test 250–4;
introduction to 248–50; as test of
independence 254–6

coefficient of determination (r2) 276
Cohen, J. 97, 99–102, 107
comparisons:

descriptive statistics 18–21; different
distributions 26–7; multiple 138–48,
158–9, 239, 245; planned 146; samples
74–9; unplanned 146

complex comparisons (Scheffé test)
139–40, 144–8, 205

computers:
using statistics programmes 296–9

conditions 112; multiple 112–13
confidence intervals 67–71, 93–4, 143–4,

159; and significance 71–2
confounding factors 61, 76–7
control:

of variables 79
control groups 79
correlation, linear 262–70; interpretation

275–6; multiple 289–91; partial 284–9;
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problems 276–8; see also Pearson r
correlation coefficient; Spearman rs,
correlation coefficient

counterbalancing 78
Cronbach’s α 302–4

d see effect size
data:

computing error 297; frequency
248–59; interval 22–3, 209–10;
nominal 21, 248; ordering 6–7, 18–19;
ordinal 22, 210–13; ratio 22; raw 6, 18

degrees of freedom 16, 52–4, 118–20; one
factor ANOVA 128, 154; two factor
ANOVA 174, 183–4, 195

dependent variables 76
descriptive statistics 6–23
deviation 13–16
discriminant function analysis 312–14
differentiation 272
direct regression 294
distribution, normal see normal distribution;

standard normal distribution
distribution of differences between sample

means 83
distribution of sample means 54–6, 61–4
Dunn’s test 139

effect size 101–3
effects see main effects
eigenvalues 306–7
equivalent conditions 76–7
error variance 120–1, 127
errors:

with computers 297; and power 98–109;
random 77, 115–18, 120, 126; and
significance 96–8; standard error of the
estimate 278; standard error of the mean
55–6; systematic 77, 115–18; Type I
errors 96–8; Type II errors 97–8

expected frequency (E) 250
experimental error 126
experimental groups 79
experiments:

designing to compare samples 4–9

F see variance ratio
factors 75–6, 112; interaction in ANOVA

162–70; one factor independent
measures ANOVA 126–36, 212; one
factor repeated measures ANOVA
150–8, 212; two factor independent
measures ANOVA 172–81; two factor
mixed design ANOVA 181–92; two

factor repeated measures ANOVA
193–205

factor analysis 304–8
forward regression 294
frequency 7
frequency counts 248
frequency data:

analysing 248–59
frequency distribution 7–8, 17, 18–19
Friedman test 212, 240–5; distribution of

χ r
2 243–4; formula 244

general linear model 338–41
generalisability 79
groups 112

H see Kruskal–Wallis test
histogram 7
homoscedasticity 276–8
hypothesis testing:

comparing samples 74–9; introduction
to 36–45; with one sample 60–9; with
two samples 82–94

independent measures:
one factor ANOVA 126–36, 212; one
factor nonparametric 232–40; two factor
ANOVA 172–81

independent samples 78, 86; independent
t test 89–93; nonparametric analysis
232–40

independent t tests 89–93, 212
independent variables 75, 112
individual differences 114, 126; removing

152–3
interactions:

in analysis of variance 162–70;
non-significant 205

interpretation:
computer analyses 297–9; of correlation
and regression 275–6; of sample
differences 79

interquartile range 12, 16, 20
interval data 22–3
interval scales 22–3, 209–10

Kaiser–Meyer–Olkin test 305
known distribution:

and unknown distribution 41, 62
Kruskal–Wallis test 212, 232–8;

distribution of H 235; formula 235

least squares method 272
levels 112



I N D E X

377

linear correlation see correlation
linear interpolation 68–9
linear model 264, 318–27; and correlation

330–1; and analysis of variance 331–3;
see also general linear model

linear regression see regression

main effects 162–3; simple 169–70
Mann–Whitney U test 212, 216–23; critical

values 367–8; distribution of U 221;
formula 218; significance of U 219–21

MANOVA see multivariate analysis of
variance

matched pairs 224
matching subjects 77
matrix representation 310–11, 338–41
mean 9–11, 17, 19; deviation from 13–16;

formula 9; standard error of 55–6;
see also sample mean

mean absolute deviation 14, 17, 20, 51;
formula 14

mean square 127; one factor ANOVA 128,
154; two factor ANOVA 175, 185, 196

median 8–11, 19
mixed design ANOVA:

two factor 181–92
mode 8, 10, 19
models 316–18
multicollinearity 293
multiple comparisons 138–48, 158–9,

239–40, 245–6
multiple correlation 289–91; significance of

R2 291
multiple correlation coefficient R 289–90
multiple regression 291–4; formula 291
multiple t tests 112–13
multivariate analysis 284–94; general linear

model 341
multivariate analysis of variance

(MANOVA) 308–12

negative correlation 262
negative transfer 179, 191
Nemenyi test 239, 245–6
nominal data 21, 248
noncentral distribution 106–7
nonparametric tests:

calculating ranks 212–14; independent
measures 232–40; introduction to
208–12; parametric equivalents 212;
related samples 240–6; tied ranks 236;
two sample 216–24

normal distribution 28–33; and goodness of
fit 251–4

null hypothesis 39–42; accepting 97;
rejecting in ANOVA 132

numbers 21–3

observed frequency (O) 250
one-tailed tests 42–3; and significance level

43–4
operational definitions 37, 76
opportunity sample 50–1
ordering data 6–7, 18–19; rank order 22,

210–11
ordinal data 22, 210–11
overlap:

distributions 101–6

pairwise comparisons (Tukey test) 138–44,
205

parameters, population 51–7
parametric tests 51, 210; nonparametric

equivalents 212; see also specific tests
e.g. ANOVA, t tests

partial correlation 284–9; formulae 288–9,
partial regression coefficients 292–3
participant 75
patterns of data 8
Pearson r correlation coefficient 264–70;

critical values 372; distribution of
268–70; formula 268; and regression
line 274–5

percentages 31–2
planned comparisons 146
populations 48; compared to sample 60–72;

parameters 51–7
positive correlation 262
post hoc tests 138–48, 158, 205
power of a test 98–100; increasing 101–6;

and sample size 103–8
principal component analysis 305
probability 31–3

q see Studentized range statistic q
quartiles 12–13

r see Pearson r correlation coefficient
R see multiple correlation coefficient
rs see Spearman rs correlation coefficient
R2 see multiple correlation
random errors 77, 114–18, 120, 126
random sample 50
range 11–12, 16, 20; interquartile 12;

semi-interquartile 12
rank order 22, 211–13
ranks see nonparametric analysis
rating scale 209
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ratio data 21–2
raw data 6, 18
regression, linear 262, 264, 270–5, 286–8,

323–6, 340; interpretation of 275–6;
multiple 291–4; problems 276–8

related samples 78; nonparametric analysis
224–9, 240–5; related t test 86–9

related t tests 86–9, 212
reliability 301–4
repeated measures ANOVA: one factor

150–9, 212; two factor 193–205
representative sample 49
research hypothesis 37, 41
residuals 286–9, 327–9

sample means 54–6, 61–5; distribution of
difference between 83–4

sample sizes:
choosing 106–8; and power of the test
103–8; unequal 133–5, 235

sample standard deviation 51–4; formulae
52–3

samples and sampling 16, 17, 48–57;
hypothesis testing with 60–72; selection
49–51, 74–9; see also independent
samples; related samples

scatterplot 263–4
Scheffé test 138–40, 144–8, 205
scores:

calculating variability 117–18;
variability of 113–14; see also standard
scores

scree plot 306–7
semi-interquartile range 12
significance level 40, 41–2; computer

programs 296–9; and error 96–8; and
one- and two-tailed predictions 43–5;
and power 96–101

significance testing 45, 71, 96–106
simple main effects: 169–70, 180–1,

191–2, 205
Spearman rs correlation coefficient 279–81;

critical values 373; formula 280
spread 20; measures of 11–17
SPSS 296
standard deviation:

of a population 15–17, 20; formula 15;
estimating that of a population 64–9; of
a sample 51–4; see also standard error
of the mean

standard error of the estimate 278–9
standard error of the mean 55–6; and

power 103–5

standard normal distribution 30–3; tables
362

standard partial regression coefficients
292–3

standard scores 26–33; formula 27; less
than zero 32–3; tables 362; one sample
62–3, 65; two samples 84

statistical tables 362–73
statistical tests:

parametric and nonparametric 212;
power of 99–100; using computers
296–9; see also specific tests, e.g.
ANOVA, Friedman

statistics 1–2, 51; descriptive 6–23; and
parameters 51–7

stepwise regression 294
Studentized range statistic q 140–1; critical

values 366
subjects 75; matched 77; see also

individual differences
sums of products 267
sums of squares 14, 53–4, 118–19, 267;

one factor ANOVA 128–9, 154–5,
167–9; two factor ANOVA 174, 184,
195–6

systematic errors 77, 115–18

t tests:
assumptions 67–8; critical values 363;
distribution 66–7; formulae 66, 84, 87,
91; independent t test 89–93, 212;
multiple 112–13; nonparametric
equivalents 212; related t test 86–9,
212; relationship to F 122, 135–6; two
samples 84–5

T see Wilcoxon signed-ranks test
tables:

statistical 362–73
tied ranks 212, 236; see also Kruskal–

Wallis test
total degrees of freedom 119
treatment effect 115
treatments 112
Tukey test 139–44, 159, 205
two-tailed tests 42–3; and significance level

43–5; and power 100–1
Type I errors 96–98; and power of a test

106–8
Type II errors 97–8; and power of a test

106–8

U test see Mann–Whitney
univariate analysis 309, 341
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unknown distribution:
and known distribution 40–1, 62

unplanned comparisons 146

variability: in independent measures
ANOVA 126–32; process of analysing
118–21; of scores 113–18

variables 75–6, 112; see also factors
variance 14–16, 20, 117; formulae 14–16,

117; see also analysis of variance
variance ratio 120–1; critical values 364–5;

distribution of F 121–3; independent
measures ANOVA 126–36, 175; one
factor ANOVA 129, 150–9; relationship
of F with t 122, 135–6; two factor
ANOVA 175, 185, 197

Variance Sum Law 90
variation 13

Wilcoxon signed-ranks test 212, 224–9;
critical values 369; distribution of T 227

Wilks’ lambda 311
within conditions degrees of freedom 119
within conditions sums of squares 119

χ z see chi-square

χ r
2 see Friedman test

Yates’ correction for discontinuity 258

z score see standard score
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