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Preface to the Third Edition

The second edition of Statistical Mechanics was published in 1996. The new material added at
that time focused on phase transitions, critical phenomena, and the renormalization group —
topics that had undergone vast transformations during the years following the publication of
the first edition in 1972. In 2009, R. K. Pathria (R.K.P) and the publishers agreed it was time for
a third edition to incorporate the important changes that had occurred in the field since the
publication of the second edition and invited Paul B. Beale (P.D.B.) to join as coauthor. The two
authors agreed on the scope of the additions and changes and P.D.B. wrote the first draft of
the new sections except for Appendix F which was written by R.K.P. Both authors worked very
closely together editing the drafts and finalizing this third edition.

The new topics added to this edition are:

Bose-Einstein condensation and degenerate Fermi gas behavior in ultracold atomic gases:
Sections 7.2, 8.4, 11.2.A, and 11.9. The creation of Bose-Einstein condensates in ultracold
gases during the 1990s and in degenerate Fermi gases during the 2000s led to a revolution
in atomic, molecular, and optical physics, and provided a valuable link to the quantum
behavior of condensed matter systems. Several of P.D.B.’s friends and colleagues in physics
and JILA at the University of Colorado have been leaders in this exciting new field.
Finite-size scaling behavior of Bose-Einstein condensates: Appendix F. We develop an
analytical theory for the behavior of Bose-Einstein condensates in a finite system, which
provides a rigorous justification for singling out the ground state in the calculation of the
properties of the Bose-Einstein condensate.

Thermodynamics of the early universe: Chapter 9. The sequence of thermodynamic
transitions that the universe went though shortly after the Big Bang left behind mileposts
that astrophysicists have exploited to look back into the universe’s earliest moments. Major
advances in astronomy over the past 20 years have provided a vast body of observational
data about the early evolution of the universe. These include the Hubble Space Telescope’s
deep space measurements of the expansion of the universe, the Cosmic Background
Explorer’s precise measurements of the temperature of the cosmic microwave background,
and the Wilkinson Microwave Anisotropy Probe’s mapping of the angular variations in the
cosmic microwave background. These data sets have led to precise determinations of the
age of the universe, its composition and early evolution. Coincidentally, P.D.B.’s faculty
office is located in the tower named after George Gamow, a member of the faculty at the
University of Colorado in the 1950s and 1960s and a leader in the theory of nucleosynthesis
in the early universe.

Chemical equilibrium: Section 6.6. Chemical potentials determine the conditions
necessary for chemical equilibrium. This is an important topic in its own right, but also
plays a critical role in our discussion of the thermodynamics of the early universe in
Chapter 9.

Xiii
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Monte Carlo and molecular dynamics simulations: Chapter 16. Computer simulations have
become an important tool in modern statistical mechanics. We provide here a brief
introduction to Monte Carlo and molecular dynamics techniques and algorithms.
Correlation functions and scattering: Section 10.7. Correlation functions are central to the
understanding of thermodynamic phases, phase transitions, and critical phenomena. The
differences between thermodynamic phases are often most conspicuous in the behavior
of correlation functions and the closely related static structure factors. We have collected
discussions from the second edition into one place and added new material.
Fluctuation—dissipation theorem and the dynamical structure factor: Sections 15.3.A.,
15.6.A, and 15.6.B. The fluctuation—dissipation theorem describes the relation between
natural equilibrium thermodynamic fluctuations in a system and the response of the
system to small disturbances from equilibrium, and it is one of the cornerstones of
nonequilibrium statistical mechanics. We have expanded the discussion of the
fluctuation—dissipation theorem to include a derivation of the key results from linear
response theory, a discussion of the dynamical structure factor, and analysis of the
Brownian motion of harmonic oscillators that provides useful practical examples.

Phase equilibrium and the Clausius—Clapeyron equation: Sections 4.6 and 4.7. Much of the
text is devoted to using statistical mechanics methods to determine the properties of
thermodynamic phases and phase transitions. This brief overview of phase equilibrium
and the structure of phase diagrams lays the groundwork for later discussions.

Exact solutions of one-dimensional fluid models: Section 13.1. One-dimensional fluid
models with short-range interactions do not exhibit phase transitions but they do display
short-range correlations and other behaviors typical of dense fluids.

Exact solution of the two-dimensional Ising model on a finite lattice: Section 13.4.A. This
solution entails an exact counting of the microstates of the microcanonical ensemble and
provides analytical results for the energy distribution, internal energy, and heat capacity of
the system. This solution also describes the finite-size scaling behavior of the Ising model
near the transition point and provides an exact framework that can be

used to test Monte Carlo methods.

Summary of thermodynamic assemblies and associated statistical ensembles: Appendix H.
We provide a summary of thermodynamic relations and their connections to statistical
mechanical ensembles. Most of this information can be found elsewhere in the text, but we
thought it would be helpful to provide a rundown of these important connections in one
place.

Pseudorandom number generators: Appendix I. Pseudorandom number generators are
indispensable in computer simulations. We provide simple algorithms for generating
uniform and Gaussian pseudorandom numbers and discuss their properties.

Dozens of new homework problems.

The remainder of the text is largely unchanged.

The completion of this task has left us indebted to many a friend and colleague. R.K.P. has

already expressed his indebtedness to a good number of people on two previous occasions —
in 1972 and in 1996 — so, at this time, he will simply reiterate the many words of gratitude he
has already written. In addition though, he would like to thank Paul Beale for his willingness to
be a partner in this project and for his diligence in carrying out the task at hand both arduously
and meticulously.

On his part, P.D.B. would like to thank his friends at the University of Colorado at Boulder

for the many conversations he has had with them over the years about research and pedagogy
of statistical mechanics, especially Noel Clark, Tom DeGrand, John Price, Chuck Rogers, Mike
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Dubson, and Leo Radzihovsky. He would also like to thank the faculty of the Department of
Physics for according him the honor of serving as the chair of this outstanding department.

Special thanks are also due to many friends and colleagues who have read sections of
the manuscript and have offered many valuable suggestions and corrections, especially Tom
DeGrand, Michael Shull, David Nesbitt, Jamie Nagle, Matt Glaser, Murray Holland, Leo Radzi-
hovsky, Victor Gurarie, Edmond Meyer, Matthew Grau, Andrew Sisler, Michael Foss-Feig, Allan
Franklin, Shantha deAlwis, Dmitri Reznik, and Eric Cornell.

P.D.B. would like to take this opportunity to extend his thanks and best wishes to Professor
Michael E. Fisher whose graduate statistical mechanics course at Cornell introduced him to this
elegant field. He would also like to express his gratitude to Raj Pathria for inviting him to be part
of this project, and for the fun and engaging discussions they have had during the preparation
of this new edition. Raj’s thoughtful counsel always proved to be valuable in improving the text.

P.D.B.’s greatest thanks go to Matthew, Melanie, and Erika for their love and support.

R.K.P.
P.D.B.



Preface to the Second Edition

The first edition of this book was prepared over the years 1966 to 1970 when the subject of phase
transitions was undergoing a complete overhaul. The concepts of scaling and universality had
just taken root but the renormalization group approach, which converted these concepts into
a calculational tool, was still obscure. Not surprisingly, my text of that time could not do justice
to these emerging developments. Over the intervening years I have felt increasingly conscious
of this rather serious deficiency in the text; so when the time came to prepare a new edition, my
major effort went toward correcting that deficiency.

Despite the aforementioned shortcoming, the first edition of this book has continued to
be popular over the last 20 years or so. I, therefore, decided not to tinker with it unnecessar-
ily. Nevertheless, to make room for the new material, I had to remove some sections from the
present text which, I felt, were not being used by the readers as much as the rest of the book was.
This may turn out to be a disappointment to some individuals but I trust they will understand
the logic behind it and, if need be, will go back to a copy of the first edition for reference. I, on
my part, hope that a good majority of the users will not be inconvenienced by these deletions.
As for the material retained, I have confined myself to making only editorial changes. The sub-
ject of phase transitions and critical phenomena, which has been my main focus of revision,
has been treated in three new chapters that provide a respectable coverage of the subject and
essentially bring the book up to date. These chapters, along with a collection of more than 60
homework problems, will, I believe, enhance the usefulness of the book for both students and
instructors.

The completion of this task has left me indebted to many. First of all, as mentioned in
the Preface to the first edition, I owe a considerable debt to those who have written on this
subject before and from whose writings I have benefited greatly. It is difficult to thank them
all individually; the bibliography at the end of the book is an obvious tribute to them. As for
definitive help, I am most grateful to Dr Surjit Singh who advised me expertly and assisted me
generously in the selection of the material that comprises Chapters 11 to 13 of the new text;
without his help, the final product might not have been as coherent as it now appears to be. On
the technical side, I am very thankful to Mrs. Debbie Guenther who typed the manuscript with
exceptional skill and proof read it with extreme care; her task was clearly an arduous one but
she performed it with good cheer — for which I admire her greatly.

Finally, I wish to express my heartfelt appreciation for my wife who let me devote myself
fully to this task over a rather long period of time and waited for its completion ungrudgingly.

RK.P.



Preface to the First Edition

This book has arisen out of the notes of lectures that I gave to the graduate students at
the McMaster University (1964-1965), the University of Alberta (1965-1967), the University of
Waterloo (1969-1971), and the University of Windsor (1970-1971). While the subject matter, in
its finer details, has changed considerably during the preparation of the manuscript, the style
of presentation remains the same as followed in these lectures.

Statistical mechanics is an indispensable tool for studying physical properties of matter
“in bulk” on the basis of the dynamical behavior of its “microscopic” constituents. Founded
on the well-laid principles of mathematical statistics on one hand and Hamiltonian mechanics
on the other, the formalism of statistical mechanics has proved to be of immense value to the
physics of the last 100 years. In view of the universality of its appeal, a basic knowledge of this
subject is considered essential for every student of physics, irrespective of the area(s) in which
he/she may be planning to specialize. To provide this knowledge, in a manner that brings out
the essence of the subject with due rigor but without undue pain, is the main purpose of this
work.

The fact that the dynamics of a physical system is represented by a set of quantum states
and the assertion that the thermodynamics of the system is determined by the multiplicity of
these states constitute the basis of our treatment. The fundamental connection between the
microscopic and the macroscopic descriptions of a system is uncovered by investigating the
conditions for equilibrium between two physical systems in thermodynamic contact. This is
best accomplished by working in the spirit of the quantum theory right from the beginning;
the entropy and other thermodynamic variables of the system then follow in a most natural
manner. After the formalism is developed, one may (if the situation permits) go over to the
limit of the classical statistics. This message may not be new, but here I have tried to follow it as
far as is reasonably possible in a textbook. In doing so, an attempt has been made to keep the
level of presentation fairly uniform so that the reader does not encounter fluctuations of too
wild a character.

This text is confined to the study of the equilibrium states of physical systems and is
intended to be used for a graduate course in statistical mechanics. Within these bounds, the
coverage is fairly wide and provides enough material for tailoring a good two-semester course.
The final choice always rests with the individual instructor; I, for one, regard Chapters 1 to 9
(minus a few sections from these chapters plus a few sections from Chapter 13) as the “essential
part” of such a course. The contents of Chapters 10 to 12 are relatively advanced (not necessar-
ily difficult); the choice of material out of these chapters will depend entirely on the taste of
the instructor. To facilitate the understanding of the subject, the text has been illustrated with
a large number of graphs; to assess the understanding, a large number of problems have been
included. T hope these features are found useful.
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I feel that one of the most essential aspects of teaching is to arouse the curiosity of the
students in their subject, and one of the most effective ways of doing this is to discuss with them
(in areasonable measure, of course) the circumstances that led to the emergence of the subject.
One would, therefore, like to stop occasionally to reflect upon the manner in which the various
developments really came about; at the same time, one may not like the flow of the text to be
hampered by the discontinuities arising from an intermittent addition of historical material.
Accordingly, I decided to include in this account a historical introduction to the subject which
stands separate from the main text. I trust the readers, especially the instructors, will find it of
interest.

For those who wish to continue their study of statistical mechanics beyond the confines
of this book, a fairly extensive bibliography is included. It contains a variety of references — old
as well as new, experimental as well as theoretical, technical as well as pedagogical. I hope that
this will make the book useful for a wider readership.

The completion of this task has left me indebted to many. Like most authors, I owe con-
siderable debt to those who have written on the subject before. The bibliography at the end of
the book is the most obvious tribute to them; nevertheless, I would like to mention, in particu-
lar, the works of the Ehrenfests, Fowler, Guggenheim, Schrédinger, Rushbrooke, ter Haar, Hill,
Landau and Lifshitz, Huang, and Kubo, which have been my constant reference for several years
and have influenced my understanding of the subject in a variety of ways. As for the preparation
of the text,  am indebted to Robert Teshima who drew most of the graphs and checked most of
the problems, to Ravindar Bansal, Vishwa Mittar, and Surjit Singh who went through the entire
manuscript and made several suggestions that helped me unkink the exposition at a number
of points, to Mary Annetts who typed the manuscript with exceptional patience, diligence and
care, and to Fred Hetzel, Jim Briante, and Larry Kry who provided technical help during the
preparation of the final version.

As this work progressed I felt increasingly gratified toward Professors E C. Auluck and
D. S. Kothari of the University of Delhi with whom I started my career and who initiated me
into the study of this subject, and toward Professor R. C. Majumdar who took keen interest
in my work on this and every other project that I have undertaken from time to time. I am
grateful to Dr. D. ter Haar of the University of Oxford who, as the general editor of this series,
gave valuable advice on various aspects of the preparation of the manuscript and made several
useful suggestions toward the improvement of the text. I am thankful to Professors J. W. Leech,
J. Grindlay, and A. D. Singh Nagi of the University of Waterloo for their interest and hospitality
that went a long way in making this task a pleasant one.

The final tribute must go to my wife whose cooperation and understanding, at all stages
of this project and against all odds, have been simply overwhelming.

RKP.



Historical Introduction

Statistical mechanics is a formalism that aims at explaining the physical properties of matter
in bulk on the basis of the dynamical behavior of its microscopic constituents. The scope of the
formalism is almost as unlimited as the very range of the natural phenomena, for in principle it
is applicable to matter in any state whatsoever. It has, in fact, been applied, with considerable
success, to the study of matter in the solid state, the liquid state, or the gaseous state, mat-
ter composed of several phases and/or several components, matter under extreme conditions
of density and temperature, matter in equilibrium with radiation (as, for example, in astro-
physics), matter in the form of a biological specimen, and so on. Furthermore, the formalism
of statistical mechanics enables us to investigate the nonequilibrium states of matter as well as
the equilibrium states; indeed, these investigations help us to understand the manner in which
a physical system that happens to be “out of equilibrium” at a given time ¢ approaches a “state
of equilibrium” as time passes.

In contrast with the present status of its development, the success of its applications, and
the breadth of its scope, the beginnings of statistical mechanics were rather modest. Barring
certain primitive references, such as those of Gassendi, Hooke, and so on, the real work on this
subject started with the contemplations of Bernoulli (1738), Herapath (1821), and Joule (1851)
who, in their own individual ways, attempted to lay a foundation for the so-called kinetic the-
ory of gases — a discipline that finally turned out to be the forerunner of statistical mechanics.
The pioneering work of these investigators established the fact that the pressure of a gas arose
from the motion of its molecules and could, therefore, be computed by considering the dynam-
ical influence of the molecular bombardment on the walls of the container. Thus, Bernoulli
and Herapath could show that, if temperature remained constant, the pressure P of an ordi-
nary gas was inversely proportional to the volume V of the container (Boyle’s law), and that it
was essentially independent of the shape of the container. This, of course, involved the explicit
assumption that, at a given temperature T, the (mean) speed of the molecules was independent
of both pressure and volume. Bernoulli even attempted to determine the (first-order) correc-
tion to this law, arising from the finite size of the molecules, and showed that the volume V'
appearing in the statement of the law should be replaced by (V — b), where b is the “actual”
volume of the molecules.!

Joule was the first to show that the pressure P was directly proportional to the square of
the molecular speed ¢, which he had initially assumed to be the same for all molecules. Kronig
(1856) went a step further. Introducing the “quasistatistical” assumption that, at any time t,

I As is well known, this “correction” was correctly evaluated, much later, by van der Waals (1873) who showed that,
for large V, b is four times the “actual” volume of the molecules; see Problem 1.4.



xxii Historical Introduction

one-sixth of the molecules could be assumed to be flying in each of the six “independent”
directions, namely +x, —x, +y, —y, +z, and —z, he derived the equation

1 2
P:§nmc R 1)

where 7 is the number density of the molecules and m the molecular mass. Krénig, too,
assumed the molecular speed c to be the same for all molecules; so from (1), he inferred that
the kinetic energy of the molecules should be directly proportional to the absolute temperature
of the gas.

Kronig justified his method in these words: “The path of each molecule must be so irreg-
ular that it will defy all attempts at calculation. However, according to the laws of probability,
one could assume a completely regular motion in place of a completely irregular one!” It must,
however, be noted that it is only because of the special form of the summations appearing in the
calculation of the pressure that Kronig’s argument leads to the same result as the one following
from more refined models. In other problems, such as the ones involving diffusion, viscosity, or
heat conduction, this is no longer the case.

It was at this stage that Clausius entered the field. First of all, in 1857, he derived the
ideal-gas law under assumptions far less stringent than Kronig’s. He discarded both leading
assumptions of Kronig and showed that equation (1) was still true; of course, ¢2 now became
the mean square speed of the molecules. In a later paper (1859), Clausius introduced the con-
cept of the mean free path and thus became the first to analyze transport phenomena. It was in
these studies that he introduced the famous “Stosszahlansatz” — the hypothesis on the number
of collisions (among the molecules) — which, later on, played a prominent role in the monu-
mental work of Boltzmann.? With Clausius, the introduction of the microscopic and statistical
points of view into the physical theory was definitive, rather than speculative. Accordingly,
Maxwell, in a popular article entitled “Molecules,” written for the Encyclopedia Britannica,
referred to Clausius as the “principal founder of the kinetic theory of gases,” while Gibbs, in
his Clausius obituary notice, called him the “father of statistical mechanics.”?

The work of Clausius attracted Maxwell to the field. He made his first appearance with
the memoir “Illustrations in the dynamical theory of gases” (1860), in which he went much
farther than his predecessors by deriving his famous law of the “distribution of molecular
speeds.” Maxwell’s derivation was based on elementary principles of probability and was
clearly inspired by the Gaussian law of “distribution of random errors.” A derivation based on
the requirement that “the equilibrium distribution of molecular speeds, once acquired, should
remain invariant under molecular collisions” appeared in 1867. This led Maxwell to establish
what is known as Maxwell’s transport equation which, if skilfully used, leads to the same results
as one gets from the more fundamental equation due to Boltzmann.*

Maxwell’s contributions to the subject diminished considerably after his appointment,
in 1871, as the Cavendish Professor at Cambridge. By that time Boltzmann had already made
his first strides. In the period 1868-1871 he generalized Maxwell’s distribution law to poly-
atomic gases, also taking into account the presence of external forces, if any; this gave rise
to the famous Boltzmann factor exp(—pBe), where ¢ denotes the fofal energy of a molecule.
These investigations also led to the equipartition theorem. Boltzmann further showed that, just

2For an excellent review of this and related topics, see Ehrenfest and Ehrenfest (1912).

3For further details, refer to Montroll (1963) where an account is also given of the pioneering work of Waterston (1846,
1892).

“This equivalence has been demonstrated in Guggenheim (1960) where the coefficients of viscosity, thermal
conductivity, and diffusion of a gas of hard spheres have been calculated on the basis of Maxwell’s transport equation.
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like the original distribution of Maxwell, the generalized distribution (which we now call the
Maxwell-Boltzmann distribution) is stationary with respect to molecular collisions.

In 1872 came the celebrated H-theorem, which provided a molecular basis for the natural
tendency of physical systems to approach, and stay in, a state of equilibrium. This established
a connection between the microscopic approach (which characterizes statistical mechan-
ics) and the phenomenological approach (which characterized thermodynamics) much more
transparently than ever before; it also provided a direct method for computing the entropy
of a given physical system from purely microscopic considerations. As a corollary to the H-
theorem, Boltzmann showed that the Maxwell-Boltzmann distribution is the only distribution
that stays invariant under molecular collisions and that any other distribution, under the influ-
ence of molecular collisions, will ultimately go over to a Maxwell-Boltzmann distribution. In
1876 Boltzmann derived his famous transport equation, which, in the hands of Chapman and
Enskog (1916-1917), has proved to be an extremely powerful tool for investigating macroscopic
properties of systems in nonequilibrium states.

Things, however, proved quite harsh for Boltzmann. His H-theorem, and the consequent
irreversible behavior of physical systems, came under heavy attack, mainly from Loschmidt
(1876-1877) and Zermelo (1896). While Loschmidt wondered how the consequences of this
theorem could be reconciled with the reversible character of the basic equations of motion
of the molecules, Zermelo wondered how these consequences could be made to fit with the
quasiperiodic behavior of closed systems (which arose in view of the so-called Poincaré cycles).
Boltzmann defended himself against these attacks with all his might but, unfortunately, could
not convince his opponents of the correctness of his viewpoint. At the same time, the energeti-
cists, led by Mach and Ostwald, were criticizing the very (molecular) basis of the kinetic theory,’
while Kelvin was emphasizing the “nineteenth-century clouds hovering over the dynamical
theory of light and heat.”®

All this left Boltzmann in a state of despair and induced in him a persecution complex.”
He wrogte in the introduction to the second volume of his treatise Vorlesungen iiber Gastheorie
(1898):

I am convinced that the attacks (on the kinetic theory) rest on misunderstandings and
that the role of the kinetic theory is not yet played out. In my opinion it would be a blow
to science if contemporary opposition were to cause kinetic theory to sink into the oblivion
which was the fate suffered by the wave theory of light through the authority of Newton.
I am aware of the weakness of one individual against the prevailing currents of opinion.
In order to insure that not too much will have to be rediscovered when people return to
the study of kinetic theory 1 will present the most difficult and misunderstood parts of the
subject in as clear a manner as I can.

We shall not dwell any further on the kinetic theory; we would rather move on to the
development of the more sophisticated approach known as the ensemble theory, which may in
fact be regarded as the statistical mechanics proper.® In this approach, the dynamical state of a

SThese critics were silenced by Einstein whose work on the Brownian motion (1905b) established atomic theory once
and for all.

5The first of these clouds was concerned with the mysteries of the “aether,” and was dispelled by the theory of relativ-
ity. The second was concerned with the inadequacy of the “equipartition theorem,” and was dispelled by the quantum
theory.

“Some people attribute Boltzmann’s suicide on September 5, 1906 to this cause.

8Quotation from Montroll (1963).

9For a review of the historical development of kinetic theory leading to statistical mechanics, see Brush (1957, 1958,
1961a,b, 1965-1966).
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given system, as characterized by the generalized coordinates ¢g; and the generalized momenta
pi, is represented by a phase point G(q;, p;) in a phase space of appropriate dimensionality. The
evolution of the dynamical state in time is depicted by the trajectory of the G-point in the phase
space, the “geometry” of the trajectory being governed by the equations of motion of the system
and by the nature of the physical constraints imposed on it. To develop an appropriate formal-
ism, one considers the given system along with an infinitely large number of “mental copies”
thereof; that is, an ensemble of similar systems under identical physical constraints (though, at
any time ¢, the various systems in the ensemble would differ widely in respect of their dynam-
ical states). In the phase space, then, one has a swarm of infinitely many G-points (which, at
any time ¢, are widely dispersed and, with time, move along their respective trajectories). The
fiction of a host of infinitely many, identical but independent, systems allows one to replace
certain dubious assumptions of the kinetic theory of gases by readily acceptable statements of
statistical mechanics. The explicit formulation of these statements was first given by Maxwell
(1879) who on this occasion used the word “statistico-mechanical” to describe the study of
ensembles (of gaseous systems) — though, eight years earlier, Boltzmann (1871) had already
worked with essentially the same kind of ensembles.

The most important quantity in the ensemble theory is the density function, p(q;, pi;t),
of the G-points in the phase space; a stationary distribution (3p/dt = 0) characterizes a sta-
tionary ensemble, which in tum represents a system in equilibrium. Maxwell and Boltzmann
confined their study to ensembles for which the function p depended solely on the energy E of
the system. This included the special case of ergodic systems, which were so defined that “the
undisturbed motion of such a system, if pursued for an unlimited time, would ultimately tra-
verse (the neighborhood of) each and every phase point compatible with the fixed value E of
the energy.” Consequently, the ensemble average, (f), of a physical quantity f, taken at any given
time ¢, would be the same as the long-time average, f, pertaining to any given member of the
ensemble. Now, f is the value we expect to obtain for the quantity in question when we make
an appropriate measurement on the system; the result of this measurement should, there-
fore, agree with the theoretical estimate (f). We thus acquire a recipe to bring about a direct
contact between theory and experiment. At the same time, we lay down a rational basis for a
microscopic theory of matter as an alternative to the empirical approach of thermodynamics!

A significant advance in this direction was made by Gibbs who, with his Elementary Prin-
ciples of Statistical Mechanics (1902), turned ensemble theory into a most efficient tool for the
theorist. He emphasized the use of “generalized” ensembles and developed schemes which, in
principle, enabled one to compute a complete set of thermodynamic quantities of a given sys-
tem from purely mechanical properties of its microscopic constituents.'? In its methods and
results, the work of Gibbs turned out to be much more general than any preceding treatment
of the subject; it applied to any physical system that met the simple-minded requirements
that (i) it was mechanical in structure and (ii) it obeyed Lagrange’s and Hamilton’s equa-
tions of motion. In this respect, Gibbs’s work may be considered to have accomplished for
thermodynamics as much as Maxwell’s had accomplished for electrodynamics.

These developments almost coincided with the great revolution that Planck’s work of
1900 brought into physics. As is well known, Planck’s quantum hypothesis successfully resolved
the essential mysteries of the black-body radiation — a subject where the three best-established
disciplines of the nineteenth century, namely mechanics, electrodynamics, and thermodynam-
ics, were all focused. At the same time, it uncovered both the strengths and the weaknesses
of these disciplines. It would have been surprising if statistical mechanics, which linked
thermodynamics with mechanics, could have escaped the repercussions of this revolution.

10In much the same way as Gibbs, but quite independently of him, Einstein (1902, 1903) also developed the theory of
ensembles.
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The subsequent work of Einstein (1905a) on the photoelectric effect and of Compton
(1923a,b) on the scattering of x-rays established, so to say, the “existence” of the quan-
tum of radiation, or the photon as we now call it.'' It was then natural for someone to
derive Planck’s radiation formula by treating black-body radiation as a gas of photons in the
same way as Maxwell had derived his law of distribution of molecular speeds for a gas of
conventional molecules. But, then, does a gas of photons differ so radically from a gas of
conventional molecules that the two laws of distribution should be so different from one
another?

The answer to this question was provided by the manner in which Planck’s formula was
derived by Bose. In his historic paper of 1924, Bose treated black-body radiation as a gas of pho-
tons; however, instead of considering the allocation of the “individual” photons to the various
energy states of the system, he fixed his attention on the number of states that contained “a par-
ticular number” of photons. Einstein, who seems to have translated Bose’s paper into German
from an English manuscript sent to him by the author, at once recognized the importance of
this approach and added the following note to his translation: “Bose’s derivation of Planck’s
formula is in my opinion an important step forward. The method employed here would also
yield the quantum theory of an ideal gas, which I propose to demonstrate elsewhere.”

Implicit in Bose’s approach was the fact that in the case of photons what really mat-
tered was “the set of numbers of photons in various energy states of the system” and not the
specification as to “which photon was in which state”; in other words, photons were mutu-
ally indistinguishable. Einstein argued that what Bose had implied for photons should be
true for material particles as well (for the property of indistinguishability arose essentially
from the wave character of these entities and, according to de Broglie, material particles also
possessed that character).!? In two papers, which appeared soon after, Einstein (1924, 1925)
applied Bose’s method to the study of an ideal gas and thereby developed what we now call
Bose-Einstein statistics. In the second of these papers, the fundamental difference between
the new statistics and the classical Maxwell-Boltzmann statistics comes out so transparently
in terms of the indistinguishability of the molecules.'® In the same paper, Einstein discovered
the phenomenon of Bose-Einstein condensation which, 13 years later, was adopted by London
(1938a,b) as the basis for a microscopic understanding of the curious properties of liquid He*
at low temperatures.

Following the enunciation of Pauli’s exclusion principle (1925), Fermi (1926) showed that
certain physical systems would obey a different kind of statistics, namely the Fermi-Dirac
statistics, in which not more than one particle could occupy the same energy state (n; =0,1). It
seems important to mention here that Bose’s method of 1924 leads to the Fermi-Dirac dis-
tributior} as well, provided that one limits the occupancy of an energy state to at most one
particle.

1 Strictly speaking, it might be somewhat misleading to cite Einstein’s work on the photoelectric effect as a proof of
the existence of photons. In fact, many of the effects (including the photoelectric effect), for which it seems necessary
to invoke photons, can be explained away on the basis of a wave theory of radiation. The only phenomena for which
photons seem indispensable are the ones involving fluctuations, such as the Hanbury Brown-Twiss effect or the Lamb
shift. For the relevance of fluctuations to the problem of radiation, see ter Haar (1967, 1968).

120f course, in the case of material particles, the total number N (of the particles) will also have to be conserved; this
had not to be done in the case of photons. For details, see Section 6.1.

31t is here that one encounters the correct method of counting “the number of distinct ways in which g; energy states
can accommodate n; particles,” depending on whether the particles are (i) distinguishable or (ii) indistinguishable. The
occupancy of the individual states was, in each case, unrestricted, thatis, n; =0,1,2,....

4Dirac, who was the first to investigate the connection between statistics and wave mechanics, showed, in 1926, that
the wave functions describing a system of identical particles obeying Bose-Einstein (or Fermi-Dirac) statistics must be
symmetric (or antisymmetric) with respect to an interchange of two particles.
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Soon after its appearance, the Fermi-Dirac statistics were applied by Fowler (1926) to
discuss the equilibrium states of white dwarf stars and by Pauli (1927) to explain the weak,
temperature-independent paramagnetism of alkali metals; in each case, one had to deal with a
“highly degenerate” gas of electrons that obey Fermi-Dirac statistics. In the wake of this, Som-
merfeld produced his monumental work of 1928 that not only put the electron theory of metals
on a physically secure foundation but also gave it a fresh start in the right direction. Thus, Som-
merfeld could explain practically all the major properties of metals that arose from conduction
electrons and, in each case, obtained results that showed much better agreement with exper-
iment than the ones following from the classical theories of Riecke (1898), Drude (1900), and
Lorentz (1904-1905). Around the same time, Thomas (1927) and Fermi (1928) investigated the
electron distribution in heavier atoms and obtained theoretical estimates for the relevant bind-
ing energies; these investigations led to the development of the so-called Thomas—Fermi model
ofthe ag(s)rn, which was later extended so that it could be applied to molecules, solids, and nuclei
as well.

Thus, the whole structure of statistical mechanics was overhauled by the introduction
of the concept of indistinguishability of (identical) particles.'® The statistical aspect of the
problem, which was already there in view of the large number of particles present, was now
augmented by another statistical aspect that arose from the probabilistic nature of the wave
mechanical description. One had, therefore, to carry out a two-fold averaging of the dynamical
variables over the states of the given system in order to obtain the relevant expectation val-
ues. That sort of a situation was bound to necessitate a reformulation of the ensemble theory
itself, which was carried out step by step. First, Landau (1927) and von Neumann (1927) intro-
duced the so-called density matrix, which was the quantum-mechanical analogue of the density
function of the classical phase space; this was elaborated, both from statistical and quantum-
mechanical points of view, by Dirac (1929-1931). Guided by the classical ensemble theory, these
authors considered both microcanonical and canonical ensembles; the introduction of grand
canonical ensembles in quantum statistics was made by Pauli (1927).!7

The important question as to which particles would obey Bose-Einstein statistics and
which Fermi-Dirac remained theoretically unsettled until Belinfante (1939) and Pauli (1940)
discovered the vital connection between spin and statistics.'® It turns out that those particles
whose spin is an integral multiple of % obey Bose-Einstein statistics while those whose spin
is a half-odd integral multiple of & obey Fermi-Dirac statistics. To date, no third category of
particles has been discovered.

Apart from the foregoing milestones, several notable contributions toward the devel-
opment of statistical mechanics have been made from time to time; however, most of those
contributions were concerned with the development or perfection of mathematical techniques
that make application of the basic formalism to actual physical problems more fruitful. A review
of these developments is out of place here; they will be discussed at their appropriate place in
the text.

5For an excellent review of this model, see March (1957).

160f course, in many a situation where the wave nature of the particles is not so important, classical statistics continue
to apply.

17A detailed treatment of this development has been given by Kramers (1938).

18See also Liiders and Zumino (1958).



The Statistical Basis
of Thermodynamics

In the annals of thermal physics, the 1850s mark a very definite epoch. By that time the
science of thermodynamics, which grew essentially out of an experimental study of the
macroscopic behavior of physical systems, had become, through the work of Carnot, Joule,
Clausius, and Kelvin, a secure and stable discipline of physics. The theoretical conclusions
following from the first two laws of thermodynamics were found to be in very good agree-
ment with the corresponding experimental results.! At the same time, the kinetic theory of
gases, which aimed at explaining the macroscopic behavior of gaseous systems in terms of
the motion of their molecules and had so far thrived more on speculation than calculation,
began to emerge as a real, mathematical theory. Its initial successes were glaring; however,
areal contact with thermodynamics could not be made until about 1872 when Boltzmann
developed his H-theorem and thereby established a direct connection between entropy on
one hand and molecular dynamics on the other. Almost simultaneously, the conventional
(kinetic) theory began giving way to its more sophisticated successor — the ensemble the-
ory. The power of the techniques that finally emerged reduced thermodynamics to the
status of an “essential” consequence of the get-together of the statistics and the mechan-
ics of the molecules constituting a given physical system. It was then natural to give the
resulting formalism the name Statistical Mechanics.

As a preparation toward the development of the formal theory, we start with a few
general considerations regarding the statistical nature of a macroscopic system. These
considerations will provide ground for a statistical interpretation of thermodynamics. It
may be mentioned here that, unless a statement is made to the contrary, the system under
study is supposed to be in one of its equilibrium states.

1.1 The macroscopic and the microscopic states

We consider a physical system composed of N identical particles confined to a space of
volume V. In a typical case, N would be an extremely large number — generally, of order
10%3. In view of this, it is customary to carry out analysis in the so-called thermodynamic
limit, namely N — oo, V — oo (such that the ratio N/V, which represents the particle den-
sity n, stays fixed at a preassigned value). In this limit, the extensive properties of the system

I'The third law, which is also known as Nernst’s heat theorem, did not arrive until about 1906. For a general discussion
of this law, see Simon (1930) and Wilks (1961); these references also provide an extensive bibliography on this subject.

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00001-3 1
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become directly proportional to the size of the system (i.e., proportional to N or to V),
while the intensive properties become independent thereof; the particle density, of course,
remains an important parameter for all physical properties of the system.

Next we consider the total energy E of the system. If the particles comprising the system
could be regarded as noninteracting, the total energy E would be equal to the sum of the
energies ¢; of the individual particles:

E= Z ni&q, (D
i
where n; denotes the number of particles each with energy ¢;. Clearly,

N=Yn. @)
i

According to quantum mechanics, the single-particle energies ¢; are discrete and their val-
ues depend crucially on the volume V to which the particles are confined. Accordingly, the
possible values of the total energy E are also discrete. However, for large V, the spacing of
the different energy values is so small in comparison with the total energy of the system
that the parameter E might well be regarded as a continuous variable. This would be true
even if the particles were mutually interacting; of course, in that case the total energy E
cannot be written in the form (1).

The specification of the actual values of the parameters N, V, and E then defines a
macrostate of the given system.

At the molecular level, however, a large number of possibilities still exist because at
that level there will in general be a large number of different ways in which the macrostate
(N, V,E) of the given system can be realized. In the case of a noninteracting system, since
the total energy E consists of a simple sum of the N single-particle energies ¢;, there will
obviously be alarge number of different ways in which the individual ¢; can be chosen so as
to make the total energy equal to E. In other words, there will be a large number of different
ways in which the total energy E of the system can be distributed among the N particles
constituting it. Each of these (different) ways specifies a microstate, or complexion, of the
given system. In general, the various microstates, or complexions, of a given system can
be identified with the independent solutions v (ry,...,ryN) of the Schréodinger equation of
the system, corresponding to the eigenvalue E of the relevant Hamiltonian. In any case,
to a given macrostate of the system there does in general correspond a large number of
microstates and it seems natural to assume, when there are no other constraints, that at
any time ¢ the system is equally likely to be in any one of these microstates. This assump-
tion forms the backbone of our formalism and is generally referred to as the postulate of
“equal a priori probabilities” for all microstates consistent with a given macrostate.

The actual number of all possible microstates will, of course, be a function of N, V,
and E and may be denoted by the symbol Q(N,V,E); the dependence on V comes in
because the possible values ¢; of the single-particle energy ¢ are themselves a function
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of this parameter.” Remarkably enough, it is from the magnitude of the number £, and
from its dependence on the parameters N, V, and E, that complete thermodynamics of
the given system can be derived!

We shall not stop here to discuss the ways in which the number Q (N, V, E) can be com-
puted; we shall do that only after we have developed our considerations sufficiently so that
we can carry out further derivations from it. First we have to discover the manner in which
this number is related to any of the leading thermodynamic quantities. To do this, we con-
sider the problem of “thermal contact” between two given physical systems, in the hope
that this consideration will bring out the true nature of the number .

1.2 Contact between statistics and thermodynamics:
physical significance of the number Q (N, V,E)

We consider two physical systems, A; and A, which are separately in equilibrium; see
Figure 1.1. Let the macrostate of A; be represented by the parameters Ny, Vi, and Ej so
that it has Q1 (IV1, V1, E1) possible microstates, and the macrostate of A» be represented by
the parameters N», Vs, and E» so that it has Q2 (N>, V», E») possible microstates. The math-
ematical form of the function ©; may not be the same as that of the function Q,, because
that ultimately depends on the nature of the system. We do, of course, believe that all
thermodynamic properties of the systems A; and A, can be derived from the functions
Q1 (N1, V1, Ey) and Q2 (N», Vs, E»), respectively.

We now bring the two systems into thermal contact with each other, thus allowing the
possibility of exchange of energy between the two; this can be done by sliding in a con-
ducting wall and removing the impervious one. For simplicity, the two systems are still
separated by a rigid, impenetrable wall, so that the respective volumes V; and V, and the
respective particle numbers N; and N, remain fixed. The energies E; and E,, however,
become variable and the only condition that restricts their variation is

E©® = E| + E, = const. )]

A Ay
(Ny, Vi, Eq) | (Ng, Vo, Bp)

FIGURE 1.1 Two physical systems being brought into thermal contact.

2It may be noted that the manner in which the ¢; depend on V is itself determined by the nature of the system. For
instance, it is not the same for relativistic systems as it is for nonrelativistic ones; compare, for instance, the cases dealt
with in Section 1.4 and in Problem 1.7. We should also note that, in principle, the dependence of Q2 on V arises from
the fact that it is the physical dimensions of the container that appear in the boundary conditions imposed on the wave
functions of the system.
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Here, E©©) denotes the energy of the composite system A (= A; + A;); the energy of inter-
action between A; and Ay, if any, is being neglected. Now, at any time ¢, the subsystem A; is
equally likely to be in any one of the Q) (E;) microstates while the subsystem A, is equally
likely to be in any one of the Q. (E,) microstates; therefore, the composite system A is
equally likely to be in any one of the

Q1(E)Q(E) = 0 (ENQEQ - E) =20 E? E) @)

microstates.® Clearly, the number Q© itself varies with E;. The question now arises: at
what value of E; will the composite system be in equilibrium? In other words, how far
will the energy exchange go in order to bring the subsystems A; and Ay into mutual
equilibrium?

We assert that this will happen at that value of E; which maximizes the number
QO(EO® Ey). The philosophy behind this assertion is that a physical system, left to itself,
proceeds naturally in a direction that enables it to assume an ever-increasing number
of microstates until it finally settles down in a macrostate that affords the largest pos-
sible number of microstates. Statistically speaking, we regard a macrostate with a larger
number of microstates as a more probable state, and the one with the largest number of
microstates as the most probable one. Detailed studies show that, for a typical system,
the number of microstates pertaining to any macrostate that departs even slightly from
the most probable one is “orders of magnitude” smaller than the number pertaining to
the latter. Thus, the most probable state of a system is the macrostate in which the system
spends an “overwhelmingly” large fraction of its time. It is then natural to identify this state
with the equilibrium state of the system.

Denoting the equilibrium value of E; by E; (and that of E» by E»), we obtain, on
maximizing Q©,

021 (E — — 092 (E; oE.
( L 1)) - 92(E2>+91<E1>(—2( 2)) =)
8E1 E] =E1 aEZ E2=E2 aEl
Since dEz/dE; = —1, see equation (1), the foregoing condition can be written as

<3anl(E1)> _(311192(52))
E; B =F 0E> Ey=F, ’

Thus, our condition for equilibrium reduces to the equality of the parameters 8; and B2
of the subsystems A; and Ay, respectively, where 8 is defined by

dlnQ(N,V,E
p= <M) . @)
N,V,E=

OE &

31t is obvious that the macrostate of the composite system A© has to be defined by two energies, namely E; and E,
(or else E© and Ey).
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We thus find that when two physical systems are brought into thermal contact, which
allows an exchange of energy between them, this exchange continues until the equilibrium
values E; and E, of the variables E; and E, are reached. Once these values are reached,
there is no more net exchange of energy between the two systems; the systems are then
said to have attained a state of thermal equilibrium. According to our analysis, this hap-
pens only when the respective values of the parameter 8, namely g; and B2, become
equal.* It is then natural to expect that the parameter g is somehow related to the ther-
modynamic temperature T of a given system. To determine this relationship, we recall the
thermodynamic formula

(5),+
3E )Ny T

where S is the entropy of the system in question. Comparing equations (3) and (4), we
conclude that an intimate relationship exists between the thermodynamic quantity S and
the statistical quantity Q; we may, in fact, write for any physical system

AS 1
A(nQ) ~ BT

= const. (5)

This correspondence was first established by Boltzmann who also believed that, since
the relationship between the thermodynamic approach and the statistical approach seems
to be of a fundamental character, the constant appearing in (5) must be a universal
constant. It was Planck who first wrote the explicit formula

S=klnQ, (6)

without any additive constant Sy. As it stands, formula (6) determines the absolute value of
the entropy of a given physical system in terms of the total number of microstates acces-
sible to it in conformity with the given macrostate. The zero of entropy then corresponds
to the special state for which only one microstate is accessible (2 = 1) — the so-called
“unique configuration”; the statistical approach thus provides a theoretical basis for the
third law of thermodynamics as well. Formula (6) is of fundamental importance in physics;
it provides a bridge between the microscopic and the macroscopic.

Now, in the study of the second law of thermodynamics we are told that the law of
increase of entropy is related to the fact that the energy content of the universe, in its
natural course, is becoming less and less available for conversion into work; accordingly,
the entropy of a given system may be regarded as a measure of the so-called disorder or
chaos prevailing in the system. Formula (6) tells us how disorder arises microscopically.
Clearly, disorder is a manifestation of the largeness of the number of microstates the sys-
tem can have. The larger the choice of microstates, the lesser the degree of predictability
and hence the increased level of disorder in the system. Complete order prevails when and

4This result may be compared with the so-called “zeroth law of thermodynamics,” which stipulates the existence of
a common parameter T for two or more physical systems in thermal equilibrium.
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only when the system has no other choice but to be in a unique state (2 = 1); this, in turn,
corresponds to a state of vanishing entropy.
By equations (5) and (6), we also have

B= T )
The universal constant k is generally referred to as the Boltzmann constant. In Section 1.4
we shall discover how k is related to the gas constant R and the Avogadro number N4; see
equation (1.4.3).5

1.3 Further contact between statistics
and thermodynamics

In continuation of the preceding considerations, we now examine a more elaborate
exchange between the subsystems A; and A;. If we assume that the wall separating the
two subsystems is movable as well as conducting, then the respective volumes V; and V,
(of subsystems A; and Ay) also become variable; indeed, the total volume VO (=V; + V»)
remains constant, so that effectively we have only one more independent variable. Of
course, the wall is still assumed to be impenetrable to particles, so the numbers N; and
N, remain fixed. Arguing as before, the state of equilibrium for the composite system A®
will obtain when the number Q© (V@ ,E©; Vv, E) attains its largest value; that is, when

not only
(81n§21) =<Bln92> )
8E1 N1,Vi; EI:EI aEz N, Va; EZ:EZ
but also
(E)anl) =<Bln92> b
8Vl Nl'El; V1=V1 8V2 Nz,Ez; VZZVZ

Our conditions for equilibrium now take the form of an equality between the pair of
parameters (81,7n1) of the subsystem A; and the parameters (82,72) of the subsystem A,
where, by definition,

:(aan(N,V,E) o)

- v )N,E,V:V '

Similarly, if A} and A, came into contact through a wall that allowed an exchange of parti-
cles as well, the conditions for equilibrium would be further augmented by the equality

SWe follow the notation whereby equation (1.4.3) means equation (3) of Section 1.4. However, while referring to an
equation in the same section, we will omit the mention of the section number.
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of the parameter ¢; of subsystem A; and the parameter ¢» of subsystem A, where, by
definition,

3)

<8ln§2(N, V,E))
oN VEN=N

To determine the physical meaning of the parameters n and ¢, we make use of equa-
tion (1.2.6) and the basic formula of thermodynamics, namely

dE=TdS—PdV + pndN, 4)

where P is the thermodynamic pressure and i the chemical potential of the given system.
It follows that

n:% and ;:—%. (5)
From a physical point of view, these results are completely satisfactory because, thermo-
dynamically as well, the conditions of equilibrium between two systems A; and Ay, if the
wall separating them is both conducting and movable (thus making their respective ener-
gies and volumes variable), are indeed the same as the ones contained in equations (1a)
and (1b), namely

Tl = Tg and P1 = Pz. (6)

On the other hand, if the two systems can exchange particles as well as energy but
have their volumes fixed, the conditions of equilibrium, obtained thermodynamically, are
indeed

Tl = Tz and M1 = U2. (7)

And finally, if the exchange is such that all three (macroscopic) parameters become
variable, then the conditions of equilibrium become

T'=T,, Py=P;, and puj=puo. 8)°

It is gratifying that these conclusions are identical to the ones following from statistical
considerations.

Combining the results of the foregoing discussion, we arrive at the following recipe
for deriving thermodynamics from a statistical beginning: determine, for the macrostate
(N, V,E) of the given system, the number of all possible microstates accessible to the sys-
tem; call this number Q (V, V, E). Then, the entropy of the system in that state follows from

51t may be noted that the same would be true for any two parts of a single thermodynamic system; consequently, in
equilibrium, the parameters T, P, and . would be constant throughout the system.
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the fundamental formula
S(N,V,E) =kInQ (N, V,E), 9)

while the leading intensive fields, namely temperature, pressure, and chemical potential,

are given by
a8\ _ 1. (8S\ _ P (dS\ _ 10
E)ny T \oV)yp T \oN)yp T

Alternatively, we can write’

aS aS oE
P= (W)ME/ (a*E)N,V = ‘(W>N,s 4y
(iw),,/ (G8),, = (%)
w=—(22 Py (&) (12)
8N V,E BE N,V BN V,S

oE

Formulae (11) through (13) follow equally well from equation (4). The evaluation of P, i,
and T from these formulae indeed requires that the energy E be expressed as a function
of the quantities N, V, and S; this should, in principle, be possible once S is known as a
function of N, V, and E.

The rest of the thermodynamics follows straightforwardly; see Appendix H. For
instance, the Helmholtz free energy A, the Gibbs free energy G, and the enthalpy H are
given by

and

while

A=E-TS, (14)
G=A+PV=E-TS+PV
—uN (15)®

In writing these formulae, we have made use of the well-known relationship in partial differential calculus, namely
that “if three variables x, y, and z are mutually related, then (see Appendix H)

(3).(2),(8), =0

8The relation E — TS+ PV = uN follows directly from (4). For this, all we have to do is to regard the given system
as having grown to its present size in a gradual manner, such that the intensive parameters, 7, P, and u stayed constant
throughout the process while the extensive parameters N, V, and E (and hence S) grew proportionately with one another.
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and

H=E+PV=G+TS. (16)

The specific heat at constant volume, Cy, and the one at constant pressure, Cp, would be

given by
aS oE
o=1(57),, (7)., o

_(3S\ _(dE+PV)\ _ (oH
CP:T(ﬁ>N,P_( oT >N,P_(3T)N,P. 4o

1.4 The classical ideal gas

To illustrate the approach developed in the preceding sections, we shall now derive
the various thermodynamic properties of a classical ideal gas composed of monatomic
molecules. The main reason why we choose this highly specialized system for considera-
tion is that it affords an explicit, though asymptotic, evaluation of the number Q (N, V, E).
This example becomes all the more instructive when we find that its study enables us,
in a most straightforward manner, to identify the Boltzmann constant k in terms of
other physical constants; see equation (3). Moreover, the behavior of this system serves
as a useful reference with which the behavior of other physical systems, especially real
gases (with or without quantum effects), can be compared. And, indeed, in the limit of
high temperatures and low densities the ideal-gas behavior becomes typical of most real
systems.

Before undertaking a detailed study of this case it appears worthwhile to make a remark
that applies to all classical systems composed of noninteracting particles, irrespective
of the internal structure of the particles. This remark is related to the explicit dependence
of the number Q (N, V,E) on V and hence to the equation of state of these systems. Now,
if there do not exist any spatial correlations among the particles, that is, if the probability
of any one of them being found in a particular region of the available space is completely
independent of the location of the other particles,’ then the total number of ways in which
the N particles can be spatially distributed in the system will be simply equal to the prod-
uct of the numbers of ways in which the individual particles can be accommodated in the
same space independently of one another. With N and E fixed, each of these numbers will
be directly proportional to V, the volume of the container; accordingly, the total number
of ways will be directly proportional to the Nth power of V:

and

QN,E, V) oc VN, n

9This will be true if (i) the mutual interactions among particles are negligible, and (ii) the wave packets of individual
particles do not significantly overlap (or, in other words, the quantum effects are also negligible).
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Combined with equations (1.3.9) and (1.3.10), this gives

sz(aan(N,E,V)> :kg @)
N,E

T 1% v’

If the system contains # moles of the gas, then N = nN4, where N, is the Avogadro number.
Equation (2) then becomes

PV =NkT =nRT (R=kNy), 3)

which is the famous ideal-gas law, R being the gas constant per mole. Thus, for any
classical system composed of noninteracting particles the ideal-gas law holds.

For deriving other thermodynamic properties of this system, we require a detailed
knowledge of the way Q depends on the parameters N,V, and E. The problem essen-
tially reduces to determining the total number of ways in which equations (1.1.1) and
(1.1.2) can be mutually satisfied. In other words, we have to determine the total number of
(independent) ways of satisfying the equation

3N
Y er=E @
r=1

where ¢, are the energies associated with the various degrees of freedom of the N par-
ticles. The reason why this number should depend on the parameters N and E is quite
obvious. Nevertheless, this number also depends on the “spectrum of values” that the vari-
ables ¢, can assume; it is through this spectrum that the dependence on V comes in. Now,
the energy eigenvalues for a free, nonrelativistic particle confined to a cubical box of side
L (V =I3), under the condition that the wave function v (r) vanishes everywhere on the
boundary, are given by

LA S
e(Nx, Ny, Nz) = W(nx +ny+nz);, nyny,nz=123,.., (5)
where h is Planck’s constant and m the mass of the particle. The number of distinct
eigenfunctions (or microstates) for a particle of energy ¢ would, therefore, be equal to the
number of independent, positive-integral solutions of the equation

8 VZ/S
We may denote this number by Q(1,¢, V). Extending the argument, it follows that the
desired number Q(N,E,V) would be equal to the number of independent, positive-

integral solutions of the equation

3N 2/3
8mV*=/°E
an = =E*, say. )

r=1
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An important result follows straightforwardly from equation (7), even before the number
Q (N, E, V) is explicitly evaluated. From the nature of the expression appearing on the right
side of this equation, we conclude that the volume V and the energy E of the system enter
into the expression for € in the form of the combination (V?/3E). Consequently,

S(N,V,E) = S(N, v/ 3E). ®)
Hence, for the constancy of S and N, which defines a reversible adiabatic process,
V2/3E = const. 9)

Equation (1.3.11) then gives

oE 2E
p=_(7> _2E (10)
oV)ns 3V

that is, the pressure of a system of nonrelativistic, noninteracting particles is precisely
equal to two-thirds of its energy density.!? It should be noted here that, since an explicit
computation of the number 2 has not yet been done, results (9) and (10) hold for quan-
tum as well as classical statistics; equally general is the result obtained by combining these,
namely

PV5/3 — const,, (11

which tells us how P varies with V during a reversible adiabatic process.

We shall now attempt to evaluate the number €. In this evaluation we shall explicitly
assume the particles to be distinguishable, so that if a particle in state i gets interchanged
with a particle in state j the resulting microstate is counted as distinct. Consequently, the
number Q (N, V, E), or better Qn(E*) (see equation (7)), is equal to the number of positive-
integral lattice points lying on the surface of a 3N-dimensional sphere of radius /E*.!!
Clearly, this number will be an extremely irregular function of E*, in that for two given
values of E* that may be very close to one another, the values of this number could be very
different. In contrast, the number Xy (E*), which denotes the number of positive-integral
lattice points lying on or within the surface of a 3N-dimensional sphere of radius /E*,
will be much less irregular. In terms of our physical problem, this would correspond to
the number, (N, V, E), of microstates of the given system consistent with all macrostates
characterized by the specified values of the parameters N and V but having energy less

l"Cornbining (10) with (2), we obtain for the classical ideal gas: E = 3 NKT. Accordingly, equation (9) reduces to the
well-known thermodynamic relationship: V¥~ T = const., which holds during a reversible adiabatic process, with y = % .

1 the particles are regarded as indistinguishable, the evaluation of the number Q by countinglattice points becomes
quite intricate. The problem is then solved by having recourse to the theory of “partitions of numbers”; see Auluck and
Kothari (1946).
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than or equal to E; that is,

SN,V.E)= ) QW,V,E) (12)
E'<E
or
SN(E) = Y Qn(EY). (13)
E*/SE*

Of course, the number X will also be somewhat irregular; however, we expect that its
asymptotic behavior, as E* — oo, will be a lot smoother than that of Q. We shall see in
the sequel that the thermodynamics of the system follows equally well from the number =
as from .

To appreciate the point made here, let us digress a little to examine the behavior of
the numbers ©Q(¢*) and X;(¢*), which correspond to the case of a single particle con-
fined to the given volume V. The exact values of these numbers, for ¢* < 10,000, can be
extracted from a table compiled by Gupta (1947). The wild irregularities of the number
Q1(¢*) can hardly be missed. The number X;(¢*), on the other hand, exhibits a much
smoother asymptotic behavior. From the geometry of the problem, we note that, asymp-
totically, %1 (¢*) should be equal to the volume of an octant of a three-dimensional sphere
of radius ,/&*, that is,

GO
e*—o0 (1/6)e*3/2 L (14)

A more detailed analysis shows that, to the next approximation (see Pathria, 1966),

BN T «3/2 3n *.
(e )~€8 / — 5 (15)
the correction term arises from the fact that the volume of an octant somewhat overes-
timates the number of desired lattice points, for it includes, partly though, some points
with one or more coordinates equal to zero. Figure 1.2 shows a histogram of the actual val-
ues of X; (¢*) for * lying between 200 and 300; the theoretical estimate (15) is also shown.
In the figure, we have also included a histogram of the actual values of the corresponding
number of microstates, E’l (¢*), when the quantum numbers ny, ny, and n, can assume the
value zero as well. In the latter case, the volume of an octant somewhat underestimates the
number of desired lattice points; we now have

, b4 3
1)~ 68*3/2 + ?e*. (16)
Asymptotically, however, the number E’l(s*) also satisfies equation (14).

Returning to the N-particle problem, the number Xy(E*) should be asymptotically
equal to the “volume” of the “positive compartment” of a 3N-dimensional sphere of
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FIGURE 1.2 Histograms showing the actual number of microstates available to a particle in a cubical enclosure; the
lower histogram corresponds to the so-called Dirichlet boundary conditions, while the upper one corresponds to
the Neumann boundary conditions (see Appendix A). The corresponding theoretical estimates, (15) and (16), are

shown by dashed lines; the customary estimate, equation (14), is shown by a solid line.

radius /E*. Referring to equation (C.7a) of Appendix C, we obtain

* 1\V [ 73N/2 +3N /2
EN(E)N<5> {<3N/2>!E

which, on substitution for E*, gives

Y(N,V,E) ~ (K)

N @rnmE)3N/2
h3 (BN/2)!
Taking logarithms and applying Stirling’s formula, (B.29) in Appendix B,

In(n)y~nlnn—n (n>1),

17

(18)
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we get

3/2
lnE(N,V,E)%Nln[}‘;(Azln\;E) :|+2N. (19)

For deriving the thermodynamic properties of the given system we must somehow fix
the precise value of, or limits for, the energy of the system. In view of the extremely irreg-
ular nature of the function Q2 (N, V, E), the specification of a precise value for the energy
of the system cannot be justified on physical grounds, for that would never yield well-
behaved expressions for the thermodynamic functions of the system. From a practical
point of view, too, an absolutely isolated system is too much of an idealization. In the real
world, almost every system has some contact with its surroundings, however little it may
be; as a result, its energy cannot be defined sharply.!? Of course, the effective width of the
range over which the energy may vary would, in general, be small in comparison with the

mean value of the energy. Let us specify this range by the limits (E - %A) and (E + %A)
where, by assumption, A « E; typically, A/E = O(1/,/N). The corresponding number of
microstates, I'(V, V, E; A), is then given by

ISV, V,E) 3N A

T(N,V,EA) ~ 212 SN, V,E), 1
( ) °F > E ( ) (17a)
which gives
INT(N,V,EA) ~ Nin | = (42™ME e e (N im (2 (19a)
SR B\ 3N 2 2 E)|

Now, for N > 1, the first term in the curly bracket is negligible in comparison with any
of the terms outside this bracket, for A}im (InN)/N = 0. Furthermore, for any reasonable
—> 00

value of A /E, the same is true of the second term in this bracket.'® Hence, for all practical
purposes,

V (4xmE\3/?
lnl‘%lnE%Nln|:hg< Z\’; ) }LiN. 20)

We thus arrive at the baffling result that, for all practical purposes, the actual width of the
range allowed for the energy of the system does not make much difference; the energy

could lie between (E — %A) and (E + %A) or equally well between 0 and E. The reason
underlying this situation is that the rate at which the number of microstates of the system

12 Actually, the very act of making measurements on a system brings about, inevitably, a contact between the system
and its surroundings.

131t should be clear that, while A /E is much less than 1, it must not tend to 0, for that would make I' - 0 and InT" —
—o0. A situation of that kind would be too artificial and would have nothing to do with reality. Actually, in most physical
systems, A/E = O(N~'/2), whereby In(A/E) becomes of order InN, which again is negligible in comparison with the
terms outside the curly bracket.
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increases with energy is so fantastic, see equation (17), that even if we allow all values of
energy between zero and a particular value E, it is only the “immediate neighborhood” of
E that makes an overwhelmingly dominant contribution to this number! And since we
are finally concerned only with the logarithm of this number, even the “width” of that
neighborhood is inconsequential!

The stage is now set for deriving the thermodynamics of our system. First of all, we
have

V (4xmE\*?| 3 "

which can be inverted to give

3h’N 28
E(S,V,N)zmexp<m_l). (22)

The temperature of the gas then follows with the help of formula (1.3.10) or (1.3.13),
which leads to the energy-temperature relationship

3 3
E:N(EkT) =n<§RT>, (23)

where n is the number of moles of the gas. The specific heat at constant volume now
follows with the help of formula (1.3.17):

oE 3

3
== = —-Nk = -nR. 24
v (3T>N,V 2Ve=2" .

For the equation of state, we obtain

oE 2FE
p=_<7> _2E (25)
oV )ys 3V

which agrees with our earlier result (10). Combined with (23), this gives

NkT
P= Vv or PV =nRT, (26)

which is the same as (3). The specific heat at constant pressure is given by, see (1.3.18),

_(3E+PV)\ 5
cp_< - )N‘P_ZnR, 27)

4Henceforth, we shall replace the sign ~, which characterizes the asymptotic character of a relationship, by the sign
of equality because for most physical systems the asymptotic results are as good as exact.
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so that, for the ratio of the two specific heats, we have

y =Cp/Cy = g (28)

Now, suppose that the gas undergoes an isothermal change of state (T = const. and

N = const.); then, according to (23), the total energy of the gas would remain constant

while, according to (26), its pressure would vary inversely with volume (Boyle’s law). The

change in the entropy of the gas, between the initial state i and the final state f, would then
be, see equation (21),

S — Si = NkIn(Vp/Vy). (29)

On the other hand, if the gas undergoes a reversible adiabatic change of state (S = const.
and N = const.), then, according to (22) and (23), both E and T would vary as V—2/3; so,
according to (25) or (26), P would vary as V53, These results agree with the conventional
thermodynamic ones, namely

PVY =const. and TVY~!=const., (30)

with y = % It may be noted that, thermodynamically, the change in E during an adiabatic
process arises solely from the external work done by the gas on the surroundings or vice
versa:

2E
dE) u4ja, = —PdV = ——dV; 31
(dE)adiab 3V (€20

see equations (1.3.4) and (25). The dependence of E on V follows readily from this
relationship.

The considerations of this section have clearly demonstrated the manner in which
the thermodynamics of a macroscopic system can be derived from the multiplicity of its
microstates (as represented by the number Q or I' or £). The whole problem then hinges
on an asymptotic enumeration of these numbers, which unfortunately is tractable only
in a few idealized cases, such as the one considered in this section; see also Problems 1.7
and 1.8. Even in an idealized case like this, there remains an inadequacy that could not be
detected in the derivations made so far; this relates to the explicit dependence of S on N.
The discussion of the next section is intended not only to bring out this inadequacy but
also to provide the necessary remedy for it.

1.5 The entropy of mixing and the Gibbs
paradox

One thing we readily observe from expression (1.4.21) is that, contrary to what is logi-
cally desired, the entropy of an ideal gas, as given by this expression, is not an extensive
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FIGURE 1.3 The mixing together of two ideal gases 1 and 2.

property of the system! That is, if we increase the size of the system by a factor «, keep-
ing the intensive variables unchanged,'® then the entropy of the system, which should
also increase by the same factor «, does not do so; the presence of the InV term in the
expression affects the result adversely. This in a way means that the entropy of this system
is different from the sum of the entropies of its parts, which is quite unphysical. A more
common way of looking at this problem is to consider the so-called Gibbs paradox.

Gibbs visualized the mixing of two ideal gases 1 and 2, both being initially at the same
temperature T; see Figure 1.3. Clearly, the temperature of the mixture would also be the
same. Now, before the mixing took place, the respective entropies of the two gases were,
see equations (1.4.21) and (1.4.23),

SizNikln\/i+gNik{l+ln(MZ#)}; i=1,2. 1)
After the mixing has taken place, the total entropy would be

2

3 2 kT
ST=Z[Nikan+§Nik{H—ln(%)}], @)
i=1

where V = V; + V,. Thus, the net increase in the value of S, which may be called the entropy
of mixing, is given by

2
(AS) =St — ZSI' = k|:N1 In
i=1

+ Ny In

Vi+V;
; 3
v 3)

i+V;
Va
the quantity AS is indeed positive, as it must be for an irreversible process like mixing.

Now, in the special case when the initial particle densities of the two gases (and, hence, the
particle density of the mixture) are also the same, equation (3) becomes

N1+ N,

+ Nz In 4)

Ny +N:
(AS)*:k[Nlln s 2}

which is again positive.

15This means an increase of the parameters N, V, and E to aN, «V, and «E, so that the energy per particle and the
volume per particle remain unchanged.
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So far, it seems all right. However, a paradoxical situation arises if we consider the mix-
ing of two samples of the same gas. Once again, the entropies of the individual samples
will be given by (1); of course, now m; = my = m, say. And the entropy after mixing will be
given by

Sy =NkInV + §Nk{1+1n(M>}, (2a)
2 h?

where N = Nj + N»; note that this expression is numerically the same as (2), with m; = m.
Therefore, the entropy of mixing in this case will also be given by expression (3) and, if
N1 /Vi =Ny /Vo = (N1 + N2)/ (V1 + Va), by expression (4). The last conclusion, however, is
unacceptable because the mixing of two samples of the same gas, with a common initial
temperature T and a common initial particle density n, is clearly a reversible process, for
we can simply reinsert the partitioning wall into the system and obtain a situation that is
in no way different from the one we had before mixing. Of course, we tacitly imply that
in dealing with a system of identical particles we cannot track them down individually;
all we can reckon with is their numbers. When two dissimilar gases, even with a common
initial temperature T, and a common initial particle density n, mixed together the process
was irreversible, for by reinserting the partitioning wall one would obtain two samples of
the mixture and not the two gases that were originally present; to that case, expression (4)
would indeed apply. However, in the present case, the corresponding result should be

(AS)T_, =0. (4a)'6

The foregoing result would also be consistent with the requirement that the entropy of a
given system is equal to the sum of the entropies of its parts. Of course, we had already
noticed that this is not ensured by expression (1.4.21). Thus, once again we are led to
believe that there is something basically wrong with that expression.

To see how the above paradoxical situation can be avoided, we recall that, for the
entropy of mixing of two samples of the same gas, with a common T and a common n,
we were led to result (4), which can also be written as

(AS)* =81 — (81 + S2) & klIn{(N1 + N2)!} — In(N1]) — In(N2D)], 4)

instead of the logical result (4a). A closer look at this expression shows that we would
indeed obtain the correct result if our original expression for S were diminished by an
ad hoc term, kln(N!), for that would diminish S; by kIn(Ny!), S, by kIn(N,!) and St by
kIn{(N1 + N>)!}, with the result that (AS)* would turn out to be zero instead of the expres-
sion appearing in (4). Clearly, this would amount to an ad hoc reduction of the statistical
numbers I' and X by a factor N!. This is precisely the remedy proposed by Gibbs to avoid
the paradox in question.

1611 view of this, we fear that expression (3) may also be inapplicable to this case.
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If we agree with the foregoing suggestion, then the modified expression for the entropy
of a classical ideal gas would be

V. (4rmE\**| 5
14 3 5 2rmkT

which indeed is truly extensive! If we now mix two samples of the same gas at a common
initial temperature T, the entropy of mixing would be

_ Vi+V2\ iy V2
(AS)lEZ—k|:(N1+N2)1n<Nl+N2> N11n<N1> N21n<N2>] (3a)

and, if the initial particle densities of the samples were also equal, the result would be
(AS)i_, =0. (4a)

It may be noted that for the mixing of two dissimilar gases, the original expressions (3) and
(4) would continue to hold even when (1.4.21) is replaced by (1.4.21a).!” The paradox of
Gibbs is thereby resolved.

Equation (1a) is generally referred to as the Sackur-Tetrode equation. We reiterate the
fact that, by this equation, the entropy of the system does indeed become a truly extensive
quantity. Thus, the very root of the trouble has been eliminated by the recipe of Gibbs. We
shall discuss the physical implications of this recipe in Section 1.6; here, let us jot down
some of its immediate consequences.

First of all, we note that the expression for the energy E of the gas, written as a function
of N, V, and S, is also modified. We now have

3h2N5/3 25 5
EN,V,8) = 2 exp( =2 —2), 1.4.22
¢ )= demv2s exP(st 3) (1.4.22a)

which, unlike its predecessor (1.4.22), makes energy too a truly extensive quantity. Of
course, the thermodynamic results (1.4.23) through (1.4.31), derived in the previous
section, remain unchanged. However, there are some that were intentionally left out, for
they would come out correct only from the modified expression for S(V, V, E) or E(S, V,N).
The most important of these is the chemical potential of the gas, for which we obtain

oE 5 28
w= (87N>V’S:E|:37N_ 3N2k:|. (5)

"Because, in this case, the entropy Sy of the mixture would be diminished by kIn(N;!Na!), rather than by
kIn{(N1 + N2)!}.
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In view of equations (1.4.23) and (1.4.25), this becomes

M:%[mpv_mz , ©)

20

where G is the Gibbs free energy of the system. In terms of the variables N,V, and T,
expression (5) takes the form

N o\
Another quantity of importance is the Helmholtz free energy:
3/2
N{( h?

It will be noted that, while A is an extensive property of the system, p is intensive.

1.6 The “correct” enumeration of the microstates

In the preceding section we saw that an ad hoc diminution in the entropy of an N-particle
system by an amount kIn(N!), which implies an ad hoc reduction in the number of
microstates accessible to the system by a factor (IN!), was able to correct the unphysical fea-
tures of some of our former expressions. It is now natural to ask: why, in principle, should
the number of microstates, computed in Section 1.4, be reduced in this manner? The phys-
ical reason for doing so is that the particles constituting the given system are not only
identical but also indistinguishable; accordingly, it is unphysical to label them as No. 1,
No. 2, No. 3, and so on and to speak of their being individually in the various single-particle
states ¢;. All we can sensibly speak of is their distribution over the states ¢; by numbers, that
is, n; particles being in the state ¢1, n, in the state g2, and so on. Thus, the correct way of
specifying a microstate of the system is through the distribution numbers {7}, and not
through the statement as to “which particle is in which state.” To elaborate the point, we
may say that if we consider two microstates that differ from one another merely in an inter-
change of two particles in different energy states, then according to our original mode of
counting we would regard these microstates as distinct; in view of the indistinguishability
of the particles, however, these microstates are not distinct (for, physically, there exists no
way whatsoever of distinguishing between them).'®

180f course, if an interchange took place among particles in the same energy state, then even our original mode of
counting did not regard the two microstates as distinct.
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Now, the total number of permutations that can be effected among N particles,
distributed according to the set {n;}, is

N!

, (1)
nllngl...

where the n; must be consistent with the basic constraints (1.1.1) and (1.1.2)." If our parti-
cles were distinguishable, then all these permutations would lead to “distinct” microstates.
However, in view of the indistinguishability of the particles, these permutations must be
regarded as leading to one and the same thing; consequently, for any distribution set {n;},
we have one, and only one, distinct microstate. As a result, the total number of distinct
microstates accessible to the system, consistent with a given macrostate (N, V, E), would
be severely cut down. However, since factor (1) itself depends on the numbers n; consti-
tuting a particular distribution set and for a given macrostate there will be many such sets,
there is no straightforward way to “correct down” the number of microstates computed on
the basis of the classical concept of “distinguishability” of the particles.

The recipe of Gibbs clearly amounts to disregarding the details of the numbers 7; and
slashing the whole sequence of microstates by a common factor N1; this is correct for situa-
tions in which all N particles happen to be in different energy states but is certainly wrong
for other situations. We must keep in mind that by adopting this recipe we are still using a
spurious weight factor,

w{n;} = %, )
niing....
for the distribution set {n;} whereas in principle we should use a factor of unity, irre-
spective of the values of the numbers 7;.>° Nonetheless, the recipe of Gibbs does correct
the situation in a gross manner, though in matters of detail it is still inadequate. In fact,
it is only by taking w{n;} to be equal to unity (or zero) that we obtain true quantum
statistics!

We thus see that the recipe of Gibbs corrects the enumeration of the microstates, as
necessitated by the indistinguishability of the particles, only in a gross manner. Numeri-
cally, this would approach closer and closer to reality as the probability of the n; being
greater than 1 becomes less and less. This in turn happens when the given system is
at a sufficiently high temperature (so that many more energy states become accessible)
and has a sufficiently low density (so that there are not as many particles to accommo-
date). It follows that the “corrected” classical statistics represents truth more closely if the
expectation values of the occupation numbers n; are much less than unity:

(ni) <1, 3

9The presence of the factors (n;!) in the denominator is related to the comment made in the preceding note.
200r a factor of zero if the distribution set {n;} is disallowed on certain physical grounds, such as the Pauli exclusion
principle.
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thatis, if the numbers n; are generally 0, occasionally 1, and rarely greater than 1. Condition
(3) in a way defines the classical limit. We must, however, remember that it is because of the
application of the correction factor 1/N!, which replaces (1) by (2), that our results agree
with reality at least in the classical limit.

In Section 5.5 we shall demonstrate, in an independent manner, that the factor by
which the number of microstates, as computed for the “labeled” molecules, be reduced so
that the formalism of classical statistical mechanics becomes a true limit of the formalism
of quantum statistical mechanics is indeed N!.

Problems

1.1. (a) Show that, for two large systems in thermal contact, the number Q@ (E©®, E}) of Section 1.2
can be expressed as a Gaussian in the variable E;. Determine the root-mean-square deviation
of E) from the mean value E| in terms of other quantities pertaining to the problem.

(b) Make an explicit evaluation of the root-mean-square deviation of E; in the special case when
the systems A; and A, are ideal classical gases.

1.2. Assuming that the entropy S and the statistical number 2 of a physical system are related through

an arbitrary functional form

S=f(),

show that the additive character of S and the multiplicative character of Q necessarily require that
the function f(2) be of the form (1.2.6).

1.3. Two systems A and B, of identical composition, are brought together and allowed to exchange both
energy and particles, keeping volumes V4 and Vp constant. Show that the minimum value of the
quantity (dEs/dNp) is given by

uaTp —upTa
Tg— Ty

where the u’s and the T’s are the respective chemical potentials and temperatures.

1.4. Ina classical gas of hard spheres (of diameter D), the spatial distribution of the particles is no
longer uncorrelated. Roughly speaking, the presence of n particles in the system leaves only
avolume (V — nvy) available for the (n + 1)th particle; clearly, vp would be proportional to
D3. Assuming that Nvg < V, determine the dependence of (N, V,E) on V (compare to
equation (1.4.1)) and show that, as a result of this, V in the ideal-gas law (1.4.3) gets replaced
by (V — b), where b is four times the actual volume occupied by the particles.

1.5. Read Appendix A and establish formulae (1.4.15) and (1.4.16). Estimate the importance of the
linear term in these formulae, relative to the main term (17 /6)¢*3/2, for an oxygen molecule
confined to a cube of side 10 cm; take ¢ = 0.05 eV.

1.6. A cylindrical vessel 1 m long and 0.1 m in diameter is filled with a monatomic gas at P = 1 atm and
T =300K. The gas is heated by an electrical discharge, along the axis of the vessel, which releases
an energy of 10* joules. What will the temperature of the gas be immediately after the discharge?

1.7. Study the statistical mechanics of an extreme relativisitic gas characterized by the single-particle
energy states

he 5 5 \12
£, Ny, Nz) = o (nx+ny+nz) ,

instead of (1.4.5), along the lines followed in Section 1.4. Show that the ratio Cp/Cy in this case is
4/3, instead of 5/3.
1.8. Consider a system of quasiparticles whose energy eigenvalues are given by

e(n)=nhv; n=0,1,2,....
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Obtain an asymptotic expression for the number €2 of this system for a given number N of the
quasiparticles and a given total energy E. Determine the temperature T of the system as a function
of E/N and hv, and examine the situation for which E/(Nhv) > 1.

Making use of the fact that the entropy S(N, V, E) of a thermodynamic system is an extensive

quantity, show that
M) (1) e(S) -s
ON /vy g V) nE 0E /Ny

Note that this result implies that (-Nu + PV + E)/T = S, thatis, Nu = E+ PV — TS.

. Amole of argon and a mole of helium are contained in vessels of equal volume. If argon is at 300 K,

what should the temperature of helium be so that the two have the same entropy?

. Four moles of nitrogen and one mole of oxygen at P = 1 atm and T = 300K are mixed together to

form air at the same pressure and temperature. Calculate the entropy of mixing per mole of the air
formed.

. Show that the various expressions for the entropy of mixing, derived in Section 1.5, satisfy the

following relations:
(a) Forall Ny, V;,Np, and Vs,

(AS)1=2 = {(AS) — (AS)*} > 0,

the equality holding when and only when Ny /V; = Ny / V5.
(b) For a given value of (N} + Nb),

(AS)* < (N1 +No)kIn2,
the equality holding when and only when N = N,.

. If the two gases considered in the mixing process of Section 1.5 were initially at different

temperatures, say 71 and T», what would the entropy of mixing be in that case? Would the
contribution arising from this cause depend on whether the two gases were different or identical?

. Show that for an ideal gas composed of monatomic molecules the entropy change, between any

two temperatures, when the pressure is kept constant is 5/3 times the corresponding entropy
change when the volume is kept constant. Verify this result numerically by calculating the actual
values of (AS)p and (AS)y per mole of an ideal gas whose temperature is raised from 300 K to 400 K.

. We have seen that the (P, V)-relationship during a reversible adiabatic process in an ideal gas is

governed by the exponent y, such that
PVY = const.

Consider a mixture of two ideal gases, with mole fractions fi and f> and respective exponents y;
and y»,. Show that the effective exponent y for the mixture is given by

1 _ A £
y—=1 n-1 »r-1

. Establish thermodynamically the formulae

V(g) =S8 and V<£> =N.
aT /), on/)r

Express the pressure P of an ideal classical gas in terms of the variables u and T, and verify the
above formulae.
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In the preceding chapter we noted that, for a given macrostate (N,V,E), a statistical
system, at any time ¢, is equally likely to be in any one of an extremely large number of
distinct microstates. As time passes, the system continually switches from one microstate
to another, with the result that, over a reasonable span of time, all one observes is a behav-
ior “averaged” over the variety of microstates through which the system passes. It may,
therefore, make sense if we consider, at a single instant of time, a rather large number of
systems — all being some sort of “mental copies” of the given system — which are charac-
terized by the same macrostate as the original system but are, naturally enough, in all sorts
of possible microstates. Then, under ordinary circumstances, we may expect that the aver-
age behavior of any system in this collection, which we call an ensemble, would be identical
to the time-averaged behavior of the given system. It is on the basis of this expectation that
we proceed to develop the so-called ensemble theory.

For classical systems, the most appropriate framework for developing the desired for-
malism is provided by the phase space. Accordingly, we begin our study of the various
ensembles with an analysis of the basic features of this space.

2.1 Phase space of a classical system

The microstate of a given classical system, at any time ¢, may be defined by specifying the
instantaneous positions and momenta of all the particles constituting the system. Thus,
if N is the number of particles in the system, the definition of a microstate requires the
specification of 3N position coordinates qi,4o,...,qsny and 3N momentum coordinates
p1,P2,-..,psn- Geometrically, the set of coordinates (g;, p;), where i = 1,2,...,3N, may be
regarded as a point in a space of 6N dimensions. We refer to this space as the phase space,
and the phase point (g;, p;) as a representative point, of the given system.

Of course, the coordinates g; and p; are functions of the time #; the precise manner in
which they vary with ¢ is determined by the canonical equations of motion,

s 8H(qi’pi)
qi = 78]91-
oH(qi, pi)

aq;

i=1,2,...,3N, Y]

i =

where H(q;, p;) is the Hamiltonian of the system. Now, as time passes, the set of
coordinates (g;, p;), which also defines the microstate of the system, undergoes a continual
change. Correspondingly, our representative point in the phase space carves out a
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trajectory whose direction, at any time f, is determined by the velocity vector v = (g;, p;),
which in turn is given by the equations of motion (1). It is not difficult to see that the
trajectory of the representative point must remain within a limited region of the phase
space; this is so because a finite volume V directly limits the values of the coordinates g;,
while a finite energy E limits the values of both the g; and the p; [through the Hamiltonian
H(q;, p»]. In particular, if the total energy of the system is known to have a precise value,
say E, the corresponding trajectory will be restricted to the “hypersurface”

H(q;,p;) =E 2)

of the phase space; on the other hand, if the total energy may lie anywhere in the range
(E- %A,E + %A), the corresponding trajectory will be restricted to the “hypershell”
defined by these limits.

Now, if we consider an ensemble of systems (i.e., the given system, along with a large
number of mental copies of it) then, at any time ¢, the various members of the ensem-
ble will be in all sorts of possible microstates; indeed, each one of these microstates must
be consistent with the given macrostate that is supposed to be common to all members
of the ensemble. In the phase space, the corresponding picture will consist of a swarm of
representative points, one for each member of the ensemble, all lying within the “allowed”
region of this space. As time passes, every member of the ensemble undergoes a continual
change of microstates; correspondingly, the representative points constituting the swarm
continually move along their respective trajectories. The overall picture of this movement
possesses some important features that are best illustrated in terms of what we call a
density function p(q,p;t).! This function is such that, at any time ¢, the number of repre-
sentative points in the “volume element” (@*N qd®N p) around the point (g, p) of the phase
space is given by the product p(q, p;)d*Ngd®Np. Clearly, the density function p(q, p;t)
symbolizes the manner in which the members of the ensemble are distributed over all
possible microstates at different instants of time. Accordingly, the ensemble average (f) of a
given physical quantity f (g, p), which may be different for systems in different microstates,
would be given by

_ [f@pe@pind*NqdNp
[ p(q,p;ndNqdNp

(N 3)

The integrations in (3) extend over the whole of the phase space; however, it is only
the populated regions of the phase space (p # 0) that really contribute. We note that, in
general, the ensemble average (f) may itself be a function of time.
An ensemble is said to be stationary if p does not depend explicitly on time, that is, at
all times
o

i 0. 4)

!Note that (g, p) is an abbreviation of (¢;, pi) = (q1, ..., G3N, Pl - P3N)-
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Clearly, for such an ensemble the average value (f) of any physical quantity f(g, p) will
be independent of time. Naturally, a stationary ensemble qualifies to represent a system in
equilibrium. To determine the circumstances under which equation (4) may hold, we have
to make a rather detailed study of the movement of the representative points in the phase
space.

2.2 Liouville's theorem and its consequences

Consider an arbitrary “volume”  in the relevant region of the phase space and let the
“surface” enclosing this volume be denoted by o; see Figure 2.1. Then, the rate at which
the number of representative points in this volume increases with time is written as

% pdow, 1)

w

where do = (d*N qd®N p). On the other hand, the net rate at which the representative points
“flow” out of w (across the bounding surface o) is given by

/pv-fzda; 2

o

here, v is the velocity vector of the representative points in the region of the surface
element do while 72 is the (outward) unit vector normal to this element. By the divergence
theorem, (2) can be written as

/ div(pv)dw; 3)

of course, the operation of divergence here means

3N

9. ]
di = —(pg;)) + — (opi) ¢ 4
iv(pv) ;:1 {aCIi (pgi) o (ppl)} 4)

4

da'6

o

FIGURE 2.1 The “hydrodynamics” of the representative points in the phase space.
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In view of the fact that there are no “sources” or “sinks” in the phase space and hence the
total number of representative points remains conserved,? we have, by (1) and (3),

2 pdow= —/div(pv)dw, (5)
ot
that is,
ap .
f {E +div(pv) }dw =0. (6)

Now, the necessary and sufficient condition that integral (6) vanish for all arbitrary
volumes w is that the integrand itself vanish everywhere in the relevant region of the phase
space. Thus, we must have

oo .
e +div(pv) =0, @

which is the equation of continuity for the swarm of the representative points.
Combining (4) and (7), we obtain

ap N ap p I roq;  op
I NP 00N <7l+7l>:o. ®)
ot ;(aqiq’ ap,-p’> ; aq; ~ Ipi

The last group of terms vanishes identically because, by the equations of motion, we have,
for all ,
3qi _ 9°H(qipi) _ 9*H(qi,p) _  3pi

= = =L 9)
aq; aq;9p; ap;dq; ap;

Further, since p = p(g,p;t), the remaining terms in (8) may be combined to form the
“total” time derivative of p, with the result that

dp 0dp 3
—_— == ,H] =0. 1
prinirris [p,H] =0 (10)
Equation (10) embodies Liouville’s theorem (1838). According to this theorem, the “local”
density of the representative points, as viewed by an observer moving with a representa-

tive point, stays constant in time. Thus, the swarm of the representative points moves in

2This means that in the ensemble under consideration neither are any new members being added nor are any old
ones being removed.
3We recall that the Poisson bracket [p, H) stands for the sum
%": ( ap oH dp aH)
—\dq; 0pi  0p; 9g:)’

which is identical to the group of terms in the middle of (8).
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the phase space in essentially the same manner as an incompressible fluid moves in the
physical space!

A distinction must be made, however, between equation (10) on one hand and
equation (2.1.4) on the other. While the former derives from the basic mechanics of the
particles and is therefore quite generally true, the latter is only a requirement for equi-
librium which, in a given case, may or may not be satisfied. The condition that ensures
simultaneous validity of the two equations is clearly

3N ap . ap .

(o, H] =§<aqiqi+ Tmpi> =0. an

Now, one possible way of satisfying (11) is to assume that p, which is already assumed
to have no explicit dependence on time, is independent of the coordinates (g, p) as well,
that s,

p(q, p) = const. (12)

over the relevant region of the phase space (and, of course, is zero everywhere else). Physi-
cally, this choice corresponds to an ensemble of systems that at all times are uniformly
distributed over all possible microstates. The ensemble average (2.1.3) then reduces to

1
(fH= = / f g, p)dw; (13)

w

here, » denotes the total “volume” of the relevant region of the phase space. Clearly, in
this case, any member of the ensemble is equally likely to be in any one of the various
possible microstates, inasmuch as any representative point in the swarm is equally likely
to be in the neighborhood of any phase point in the allowed region of the phase space.
This statement is usually referred to as the postulate of “equal a priori probabilities” for
the various possible microstates (or for the various volume elements in the allowed region
of the phase space); the resulting ensemble is referred to as the microcanonical ensemble.

A more general way of satisfying (11) is to assume that the dependence of p on (g, p)
comes only through an explicit dependence on the Hamiltonian H(g, p), that is,

e(q,p) =plH(q,p)]; (14)

condition (11) is then identically satisfied. Equation (14) provides a class of density func-
tions for which the corresponding ensemble is stationary. In Chapter 3 we shall see that
the most natural choice in this class of ensembles is the one for which

p(q,p) x exp[—H(q,p)/kT). (15)

The ensemble so defined is referred to as the canonical ensemble.
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2.3 The microcanonical ensemble

In this ensemble the macrostate of a system is defined by the number of molecules N,
the volume V, and the energy E. However, in view of the considerations expressed in
Section 1.4, we may prefer to specify a range of energy values, say from (E — %A) to
(E+ %A), rather than a sharply defined value E. With the macrostate specified, a choice
still remains for the systems of the ensemble to be in any one of a large number of pos-
sible microstates. In the phase space, correspondingly, the representative points of the
ensemble have a choice to lie anywhere within a “hypershell” defined by the condition

(E—%A>SH(6I,P)S(E+%A>- ey

The volume of the phase space enclosed within this shell is given by

w:/dwz/(d3qu3Np>, ®)

where the primed integration extends only over that part of the phase space which con-
forms to condition (1). It is clear that » will be a function of the parameters N,V,E,
and A.

Now, the microcanonical ensemble is a collection of systems for which the density
function p is, at all times, given by

p(q,p) = const. if (E—%A)fH(q,p)S(E+%A)
©)
0 otherwise

Accordingly, the expectation value of the number of representative points lying in a vol-
ume element dw of the relevant hypershell is simply proportional to dw. In other words, the
a priori probability of finding a representative point in a given volume element dw is the
same as that of finding a representative point in an equivalent volume element dw located
anywhere in the hypershell. In our original parlance, this means an equal a priori probabil-
ity for a given member of the ensemble to be in any one of the various possible microstates.
In view of these considerations, the ensemble average (f), as given by equation (2.2.13),
acquires a simple physical meaning. To see this, we proceed as follows.

Since the ensemble under study is a stationary one, the ensemble average of any phy-
sical quantity f will be independent of time; accordingly, taking a time average thereof will
not produce any new result. Thus

(f) = the ensemble average of f

= the time average of (the ensemble average of f).
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Now, the processes of time averaging and ensemble averaging are completely indepen-
dent, so the order in which they are performed may be reversed without causing any
change in the value of (f). Thus

(f) = the ensemble average of (the time average of f).

Now, the time average of any physical quantity, taken over a sufficiently long interval of
time, must be the same for every member of the ensemble, for after all we are dealing
with only mental copies of a given system.* Therefore, taking an ensemble average thereof
should be inconsequential, and we may write

(f) = the long-time average of f,

where the latter may be taken over any member of the ensemble. Furthermore, the long-
time average of a physical quantity is all one obtains by making a measurement of that
quantity on the given system; therefore, it may be identified with the value one expects to
obtain through experiment. Thus, we finally have

(f ) =fexp- 4)

This brings us to the most important result: the ensemble average of any physical quantity
f is identical to the value one expects to obtain on making an appropriate measurement on
the given system.

The next thing we look for is the establishment of a connection between the mechanics
of the microcanonical ensemble and the thermodynamics of the member systems. To do
this, we observe that there exists a direct correspondence between the various microstates
of the given system and the various locations in the phase space. The volume w (of the
allowed region of the phase space) is, therefore, a direct measure of the multiplicity I" of the
microstates accessible to the system. To establish a numerical correspondence between

“To provide a rigorous justification for this assertion is not trivial. One can readily see that if, for any particular mem-
ber of the ensemble, the quantity f is averaged only over a short span of time, the result is bound to depend on the
relevant “subset of microstates” through which the system passes during that time. In the phase space, this will mean
an averaging over only a “part of the allowed region.” However, if we employ instead a sufficiently long interval of time,
the system may be expected to pass through almost all possible microstates “without fear or favor”; consequently, the
result of the averaging process would depend only on the macrostate of the system, and not on a subset of microstates.
Correspondingly, the averaging in the phase space would go over practically all parts of the allowed region, again “with-
out fear or favor.” In other words, the representative point of our system will have traversed each and every part of the
allowed region almost uniformly. This statement embodies the so-called ergodic theorem or ergodic hypothesis, which
was first introduced by Boltzmann (1871). According to this hypothesis, the trajectory of a representative point passes,
in the course of time, through each and every point of the relevant region of the phase space. A little reflection, however,
shows that the statement as such requires a qualification; we better replace it by the so-called quasiergodic hypothesis,
according to which the trajectory of a representative point traverses, in the course of time, any neighborhood of any point
of the relevant region. For further details, see ter Haar (1954, 1955), Farquhar (1964).

Now, when we consider an ensemble of systems, the foregoing statement should hold for every member of the
ensemble; thus, irrespective of the initial (and final) states of the various systems, the long-time average of any physical
quantity f should be the same for every member system.
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and I', we need to discover a fundamental volume v that could be regarded as “equivalent
to one microstate.” Once this is done, we may say that, asymptotically,

I'=w/wp. (5)

The thermodynamics of the system would then follow in the same way as in Sections 1.2—
1.4, namely through the relationship

S=kInT = kIn(w/wg), etc. (6)

The basic problem then consists in determining wg. From dimensional considerations,
see (2), wp must be in the nature of an “angular momentum raised to the power 3N.” To
determine it exactly, we consider certain simplified systems, both from the point of view
of the phase space and from the point of view of the distribution of quantum states.

2.4 Examples

We consider, first of all, the problem of a classical ideal gas composed of monatomic par-
ticles; see Section 1.4. In the microcanonical ensemble, the volume » of the phase space
accessible to the representative points of the (member) systems is given by

:/.../<d3qu3Np>, )

where the integrations are restricted by the conditions that (i) the particles of the system
are confined in physical space to volume V, and (ii) the total energy of the system lies
between the limits (E — 1 A) and (E + } A). Since the Hamiltonian in this case is a function
of the p; alone, integrations over the g; can be carried out straightforwardly; these give a
factor of VV. The remaining integral is

[of e e

(Ef%A) (p /2m) (E+32) 2m(E-}a)< Zy2<2m(E+ A)

i=1 i=1

which is equal to the volume of a 3N-dimensional hypershell, bounded by hyperspheres
of radii

[fn(e+22)] o (e 1)

For A « E, this is given by the thickness of the shell, which is almost equal to A(m/2E)'/?,
multiplied by the surface area of a 3N-dimensional hypersphere of radius /(2mE). By
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equation (7) of Appendix C, we obtain for this integral

m\V2 [ 2n3N2 3N-1)/2
A(ﬁ) {[(SN/Z)—I]!(sz)( e

which gives

AN (2nmE)3N/2

T E [BN/2) — il @
Comparing (2) with (1.4.17 and 1.4.17a), we obtain the desired correspondence, namely

(w/ Masymp = wo = th;

see also Problem 2.9. Quite generally, if the system under study has & degrees of freedom,
the desired conversion factor is

wg = h?. 3)

In the case of a single particle, & = 3; accordingly, the number of microstates available
would asymptotically be equal to the volume of the allowed region of the phase space
divided by h3. Let £(P) denote the number of microstates available to a free particle con-
fined to volume V of the physical space, its momentum p being less than or equal to a
specified value P. Then

E(P)%i/.../(d3qd3p) _ VAT @)

from which we obtain for the number of microstates with momentum lying between p and
p+dp

ax v
g(p)dp = %dp ~ ﬁ4np2dp. (5)

Expressed in terms of the particle energy, these expressions assume the form
L Vin 3/2
(B~ B ?(ZmE) (6)

and

ds(e)
&

a(e)ds = de ~ h—V32n(2m)3/281/2d8. (@)

The next case we consider here is that of a one-dimensional simple harmonic oscillator.
The classical expression for the Hamiltonian of this system is

1 1
H@m=§mh5%ﬁ, 8
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where k is the spring constant and m the mass of the oscillating particle. The space
coordinate g and the momentum coordinate p of the system are given by

qg=Acos(wt+¢), p=mg=-—mwAsin(wt+ @), 9)
Abeing the amplitude and w the (angular) frequency of vibration:
w=/(k/m). (10

The energy of the oscillator is a constant of the motion, and is given by

1
E= 5mszZ’. (11)

The phase-space trajectory of the representative point (g, p) of this system is determined
by eliminating ¢ between expressions (9) for g(¢) and p(¢); we obtain

2 2

q LP
(2E/mw?) ' (2mE)

=1, (12)

which is an ellipse, with axes proportional to /E and hence area proportional to E; to be
precise, the area of this ellipse is 27 E/w. Now, if we restrict the oscillator energy to the
interval (E — %A,E + %A), its representative point in the phase space will be confined to
the region bounded by elliptical trajectories corresponding to the energy values (E + %A)
and (E — %A) The “volume” (in this case, the area) of this region will be

27(E+LiA) 27(E-1Lia
Iof - ode) =AY s
(E <H(q p)< E+ A)

According to quantum mechanics, the energy eigenvalues of the harmonic oscillator are
given by

1
En=<n+§>hw; n=0,1,2,... (14)

In terms of phase space, one could say that the representative point of the system must
move along one of the “chosen” trajectories, as shown in Figure 2.2; the area of the phase
space between two consecutive trajectories, for which A = hiw, is simply 27 h.° For arbitrary
values of E and A, such that E > A >» hw, the number of eigenstates within the allowed

SStrictly speaking, the very concept of phase space is invalid in quantum mechanics because there, in principle, it is
wrong to assign to a particle the coordinates g and p simultaneously. Nevertheless, the ideas discussed here are tenable
in the correspondence limit.
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FIGURE 2.2 Eigenstates of a linear harmonic oscillator, in relation to its phase space.

energy interval is very nearly equal to A /fiw. Hence, the area of the phase space equivalent
to one eigenstate is, asymptotically, given by

wo = 2rA/w)/(A/hw) =27k = h. (15)

If, on the other hand, we consider a system of IV harmonic oscillators along the same lines
as above, we arrive at the result: wg = hV (see Problem 2.7). Thus, our findings in these
cases are consistent with our earlier result (3).

2.5 Quantum states and the phase space

At this stage we would like to say a few words on the central role played here by the Planck
constant h. The best way to appreciate this role is to recall the implications of the Heisen-
berg uncertainty principle, according to which we cannot specify simultaneously both the
position and the momentum of a particle exactly. An element of uncertainty is inherently
present and can be expressed as follows: assuming that all conceivable uncertainties of
measurement are eliminated, even then, by the very nature of things, the product of the
uncertainties Aq and Ap in the simultaneous measurement of the canonically conjugate
coordinates g and p would be of order 7:

(AGAP)min ~ h. (1)

Thus, it is impossible to define the position of a representative point in the phase space of
the given system more accurately than is allowed by condition (1). In other words, around
any point (g, p) in the (two-dimensional) phase space, there exists an area of order 7 within
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which the position of the representative point cannot be pinpointed. In a phase space of
2V dimensions, the corresponding “volume of uncertainty” around any point would be
of order *V. Therefore, it seems reasonable to regard the phase space as made up of ele-
mentary cells, of volume ~ BV, and to consider the various positions within such a cell
as nondistinct. These cells could then be put into one-to-one correspondence with the
quantum-mechanical states of the system.

It is, however, obvious that considerations of uncertainty alone cannot give us the
exact value of the conversion factor wg. This could only be done by an actual counting
of microstates on one hand and a computation of volume of the relevant region of the
phase space on the other, as was done in the examples of the previous section. Clearly, a
procedure along these lines could not be possible until after the work of Schrédinger and
others. Historically, however, the first to establish the result (2.4.3) was Tetrode (1912) who,
in his well-known work on the chemical constant and the entropy of a monatomic gas,
assumed that

wp = (Y, )

where z was supposed to be an unknown numerical factor. Comparing theoretical results
with the experimental data on mercury, Tetrode found that z was very nearly equal to unity;
from this he concluded that “it seems rather plausible that z is exactly equal to unity, as has
already been taken by O. Sackur (1911).”°

In the extreme relativistic limit, the same result was established by Bose (1924). In his
famous treatment of the photon gas, Bose made use of Einstein’s relationship between the
momentum of a photon and the frequency of the associated radiation, namely

P=- 3)

and observed that, for a photon confined to a three-dimensional cavity of volume V, the
relevant “volume” of the phase space,

/ (dqd®p) = Varp?dp = V(axh®v?/c®)dv, 4)

would correspond exactly to the Rayleigh expression,
V(4rv?/c®)dv, (5)

for the number of normal modes of a radiation oscillator, provided that we divide phase
space into elementary cells of volume /3 and put these cells into one-to-one corre-
spondence with the vibrational modes of Rayleigh. It may, however, be added that a
two-fold multiplicity of these states (g = 2) arises from the spin orientations of the photon

8For a more satisfactory proof of this result, see Section 5.5, especially equation (5.5.22).
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(or from the states of polarization of the vibrational modes); this requires a multiplica-
tion of both expressions (4) and (5) by a factor of 2, leaving the conversion factor X

unchanged.
Problems
2.1. Show that the volume element
3N
dw = H(dqz' dpi)

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

i=1

of the phase space remains invariant under a canonical transformation of the (generalized)

coordinates (g, p) to any other set of (generalized) coordinates (Q, P).

[Hint: Before considering the most general transformation of this kind, which is referred to as a
contact transformation, it may be helpful to consider a point transformation — one in which the
new coordinates Q; and the old coordinates g; transform only among themselves.]

(a) Verify explicitly the invariance of the volume element dw of the phase space of a single particle
under transformation from the Cartesian coordinates (x,y,z, Px, Py, Pz) to the spherical polar
coordinates (1,0, ¢, pr, Po, Pg)-

(b) The foregoing result seems to contradict the intuitive notion of “equal weights for equal solid
angles,” because the factor siné is invisible in the expression for dw. Show that if we average
out any physical quantity, whose dependence on ps and py comes only through the kinetic
energy of the particle, then as a result of integration over these variables we do indeed recover
the factor siné to appear with the subelement (d6 d¢).

Starting with the line of zero energy and working in the (two-dimensional) phase space of a classical

rotator, draw lines of constant energy that divide phase space into cells of “volume” h. Calculate the

energies of these states and compare them with the energy eigenvalues of the corresponding
quantum-mechanical rotator.

By evaluating the “volume” of the relevant region of its phase space, show that the number of

microstates available to a rigid rotator with angular momentum < M is (M/#k)?. Hence determine

the number of microstates that may be associated with the quantized angular momentum

M= /{j(j+ 1)}k, where j=0,1,2,... or 4, 3,3,.... Interpret the result physically.

[Hint: It simplifies to consider motion in the variables 6 and ¢, with M? = p2 + (p,/ sin6)?2.]
Consider a particle of energy E moving in a one-dimensional potential well V(g), such that

av 3/2
mh’%’ < (ME-V)P¥2,

Show that the allowed values of the momentum p of the particle are such that

?gpdq: (n+ l)h
2
where 7 is an integer.

The generalized coordinates of a simple pendulum are the angular displacement 6 and the angular
momentum mi?6. Study, both mathematically and graphically, the nature of the corresponding
trajectories in the phase space of the system, and show that the area A enclosed by a trajectory is
equal to the product of the total energy E and the time period 7 of the pendulum.

Derive (i) an asymptotic expression for the number of ways in which a given energy E can be
distributed among a set of N one-dimensional harmonic oscillators, the energy eigenvalues of the

oscillators being (n + %) ho;n=0,1,2,..., and (ii) the corresponding expression for the “volume” of

the relevant region of the phase space of this system. Establish the correspondence between the
two results, showing that the conversion factor wy is precisely hN.
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Following the method of Appendix C, replacing equation (C.4) by the integral
o0

/e"rzdr =2,

0

show that

N
Van = / / l_[ (47‘[1’?[17‘1') = (871R3)N/(3N)!.
N i=1
0<> ri<R

i=1
Using this result, compute the “volume” of the relevant region of the phase space of an extreme
relativistic gas (¢ = pc) of N particles moving in three dimensions. Hence, derive expressions for
the various thermodynamic properties of this system and compare your results with those of

Problem 1.7.
(a) Solve the integral

// (dxy ...dxsN)
3N
0= Ixi|I<R

i=1

and use it to determine the “volume” of the relevant region of the phase space of an extreme
relativistic gas (¢ = pc) of 3N particles moving in one dimension. Determine, as well, the
number of ways of distributing a given energy E among this system of particles and show that,
asymptotically, wg = h3N

(b) Compare the thermodynamics of this system with that of the system considered in Problem 2.8.



The Canonical Ensemble

In the preceding chapter we established the basis of ensemble theory and made
a somewhat detailed study of the microcanonical ensemble. In that ensemble the
macrostate of the systems was defined through a fixed number of particles N, a fixed vol-
ume V, and a fixed energy E [or, preferably, a fixed energy range (E — %A,E + %A)]. The
basic problem then consisted in determining the number Q (N, V,E), or I'(N, V,E; A), of
distinct microstates accessible to the system. From the asymptotic expressions of these
numbers, complete thermodynamics of the system could be derived in a straightforward
manner. However, for most physical systems, the mathematical problem of determin-
ing these numbers is quite formidable. For this reason alone, a search for an alternative
approach within the framework of the ensemble theory seems necessary.

Practically, too, the concept of a fixed energy (or even an energy range) for a system
belonging to the real world does not appear satisfactory. For one thing, the total energy
E of a system is hardly ever measured; for another, it is hardly possible to keep its value
under strict physical control. A far better alternative appears to be to speak of a fixed tem-
perature T of the system — a parameter that is not only directly observable (by placing a
“thermometer” in contact with the system) but also controllable (by keeping the system
in contact with an appropriate “heat reservoir”). For most purposes, the precise nature of
the reservoir is not very relevant; all one needs is that it should have an infinitely large
heat capacity, so that, irrespective of energy exchange between the system and the reser-
voir, an overall constant temperature can be maintained. Now, if the reservoir consists of
an infinitely large number of mental copies of the given system we have once again an
ensemble of systems — this time, however, it is an ensemble in which the macrostate of
the systems is defined through the parameters N, V, and T. Such an ensemble is referred
to as a canonical ensemble.

In the canonical ensemble, the energy E of a system is variable; in principle, it can
take values anywhere between zero and infinity. The question then arises: what is the
probability that, at any time ¢, a system in the ensemble is found to be in one of the states
characterized by the energy value E,2! We denote this probability by the symbol P,. Clearly,
there are two ways in which the dependence of P, on E; can be determined. One consists
of regarding the system as in equilibrium with a heat reservoir at a common temperature T
and studying the statistics of the energy exchange between the two. The other consists of
regarding the system as a member of a canonical ensemble (N, V, T), in which an energy
€ is being shared by & identical systems constituting the ensemble, and studying the

1n what follows, the energy levels E, appear as purely mechanical quantities — independent of the temperature of
the system. For a treatment involving “temperature-dependent energy levels,” see Elcock and Landsberg (1957).
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statistics of this sharing process. We expect that in the thermodynamic limit the final result
in either case would be the same. Once P; is determined, the rest follows without difficulty.

3.1 Equilibrium between a system and a heat
reservoir

We consider the given system A, immersed in a very large heat reservoir A’; see Figure 3.1.
On attaining a state of mutual equilibrium, the system and the reservoir would have a
common temperature, say T. Their energies, however, would be variable and, in principle,
could have, at any time ¢, values lying anywhere between 0 and E©, where E© denotes
the energy of the composite system A (= A+ A’). If, at any particular instant of time, the
system A happens to be in a state characterized by the energy value E;, then the reservoir
would have an energy E;, such that

Er+E. = E9 = const. 1

Of course, since the reservoir is supposed to be much larger than the given system, any
practical value of E, would be a very small fraction of E©®: therefore, for all practical
purposes,

E, E;

5O = (1 - E(&) <1 &)
With the state of the system A having been specified, the reservoir A’ can still be in any
one of a large number of states compatible with the energy value E;. Let the number of
these states be denoted by @'(E;). The prime on the symbol 2 emphasizes the fact that
its functional form will depend on the nature of the reservoir; of course, the details of
this dependence are not going to be of any particular relevance to our final results. Now,
the larger the number of states available to the reservoir, the larger the probability of the
reservoir assuming that particular energy value E, (and, hence, of the system A assum-
ing the corresponding energy value E;). Moreover, since the various possible states (with
a given energy value) are equally likely to occur, the relevant probability would be directly
proportional to this number; thus,

Py x Q'(E) = Q' (EY - E,). 3)

A
(E/;T)

FIGURE 3.1 A given system A immersed in a heat reservoir A’; in equilibrium, the two have a common
temperature T.
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In view of (2), we may carry out an expansion of (3) around the value E, = E© | that is,
around E; = 0. However, for reasons of convergence, it is essential to effect the expansion
of its logarithm instead:

alnQ’

_ 0)
InQ'(E)) = InQ'(E¢ )+< Via

) (E;—E(O))—I—“‘
E'=E©
~ const — p'Er, 4)

where use has been made of formula (1.2.3), whereby

(almz) o )
9E N,V=ﬂ’

note that, in equilibrium, 8/ = 8 = 1/kT. From (3) and (4), we obtain the desired result:

Py o exp(—BE;). (6)

Normalizing (6), we get

exp(—BEy)
Pp=—"—, 7
"7 Y exp(—BEr) @
s

where the summation in the denominator goes over all states accessible to the system A.
We note that our final result (7) bears no relation whatsoever to the physical nature of the
reservoir A'.

We now examine the same problem from the ensemble point of view.

3.2 A system in the canonical ensemble

We consider an ensemble of & identical systems (which may be labelled as 1,2,...,V),
sharing a total energy €; let E,(r = 0,1,2,...) denote the energy eigenvalues of the systems.
If n, denotes the number of systems which, at any time ¢, have the energy value E;, then
the set of numbers {rn,} must satisfy the obvious conditions

anZeN
-

(1)
> mE=8=~NU,
;

where U(= &/NV') denotes the average energy per system in the ensemble. Any set {n,}
that satisfies the restrictive conditions (1) represents a possible mode of distribution of the
total energy & among the &' members of the ensemble. Furthermore, any such mode can
be realized in a number of ways, for we may effect a reshuffle among those members of
the ensemble for which the energy values are different and thereby obtain a state of the
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ensemble that is distinct from the original one. Denoting the number of different ways of
doing so by the symbol W{n,}, we have

Win,} = # (2)

np:ny.np....

In view of the fact that all possible states of the ensemble, which are compatible with con-
ditions (1), are equally likely to occur, the frequency with which the distribution set {rn,}
may appear will be directly proportional to the number W{n,}. Accordingly, the “most
probable” mode of distribution will be the one for which the number W is a maximum.
We denote the corresponding distribution set by {rn}}; clearly, the set {n}} must also satisfy
conditions (1). As will be seen in the sequel, the probability of appearance of other modes
of distribution, however little they may differ from the most probable mode, is extremely
low! Therefore, for all practical purposes, the most probable distribution set {n}} is the only
one we have to contend with.

However, unless this has been mathematically demonstrated, one must take into
account all possible modes of distribution, as characterized by the various distribution
sets {n,}, along with their respective weight factors W{n,}. Accordingly, the expectation
values, or mean values, (n;) of the numbers n, would be given by

Z/ nrWin;}
{nr}
Y Wing)

{nr}

(ny) = (3)

where the primed summations go over all distribution sets that conform to conditions (1).
In principle, the mean value (n,), as a fraction of the total number V', should be a natural
analog of the probability P, evaluated in the preceding section. In practice, however, the
fraction n;y /M also turns out to be the same.

We now proceed to derive expressions for the numbers n} and (n;), and to show that,
in the limit & — oo, they are identical.

The method of most probable values
Our aim here is to determine that distribution set which, while satisfying conditions (1),
maximizes the weight factor (2). For simplicity, we work with In W instead:

InW =In(N!) — Zln(nr!). 4)
r

Since, in the end, we propose to resort to the limit & — oo, the values of n, (which are
going to be of any practical significance) would also, in that limit, tend to infinity. It is,
therefore, justified to apply the Stirling formula, In(n!) ~ nlnn — n, to (4) and write

an=NlnN—anlnnr. (5)
r
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If we shift from the set {n;} to a slightly different set {n, + én,}, then expression (5) would
change by an amount

sAnw) = —Z(lnnr+ 1)én;. (6)
r

Now, if the set {n,} is maximal, the variation §(In W) should vanish. At the same time,
in view of the restrictive conditions (1), the variations én, themselves must satisfy the
conditions

Zénrzo

r (7)
ZE,Snr =0.
-

The desired set {n}} is then determined by the method of Lagrange multipliers,> by which
the condition determining this set becomes

Y (=(nnj+1)—a - BE)sn, =0, ®)

r

where « and g are the Lagrangian undetermined multipliers that take care of the restrictive
conditions (7). In (8), the variations én, become completely arbitrary; accordingly, the only
way to satisfy this condition is that all its coefficients must vanish identically, that is, for
allr,

Innf =—(¢+1) - BE,
which gives
ni = Cexp(—BEy), 9)

where C is again an undetermined parameter.
To determine C and g, we subject (9) to conditions (1), with the result that

n exp(—pE)

o o) 10
N = Sexp(—pEp) 1o
~
the parameter 8 being a solution of the equation
e >_Erexp(—BEy)
Iy § SN E— 11
N >_exp(—BEr) an
:

2For the method of Lagrange multipliers, see ter Haar and Wergeland (1966, Appendix C.1).
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Combining statistical considerations with thermodynamic ones, see Section 3.3, we can
show that the parameter 8 here is exactly the same as the one appearing in Section 3.1,
thatis, 8 =1/kT.

The method of mean values
Here we attempt to evaluate expression (3) for (n,), taking into account the weight factors
(2) and the restrictive conditions (1). To do this, we replace (2) by

R PROPN)
Moy o] 0, ...

Wins} = 1711 12!
nop:ny.no....

12)
with the understanding that in the end all w, will be set equal to unity, and introduce a
function

PN, U) =Y Win), (13)

{nr}
where the primed summation, as before, goes over all distribution sets that conform to
conditions (1). Expression (3) can then be written as

d
(ny) = w,a—(lnr) (14)

wr

all =1

Thus, all we need to know here is the dependence of the quantity InT" on the parameters
wr. Now,

/ a)no wnl wn2
F(W,U):N'Z (012> (15)

no! np! ny!
) \ 07T TR

but the summation appearing here cannot be evaluated explicitly because it is restricted
to those sets only that conform to the pair of conditions (1). If our distribution sets
were restricted by the condition ). n, = & alone, then the evaluation of (15) would have
been trivial; by the multinomial theorem, I'(sV/') would have been simply (wp 4+ w1 +---)?.
The added restriction ), n,E, = N U, however, permits the inclusion of only a “limited”
number of terms in the sum — and that constitutes the real difficulty of the problem.
Nevertheless, we can still hope to make some progress because, from a physical point
of view, we do not require anything more than an asymptotic result — one that holds in
the limit & — co. The method commonly used for this purpose is the one developed by
Darwin and Fowler (1922a,b, 1923), which itself makes use of the saddle-point method of
integration or the so-called method of steepest descent.
We construct a generating function G(NV, z) for the quantity I'(eV, U):

G(N,z) = Z TN, U)zNU (16)
U=0
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which, in view of equation (15) and the second of the restrictive conditions (1), may be
written as

oo

GV, =) Z/ﬁ (w02%)"™ (cr2)™ .. |. (17)

U=0 | {nr}

It is easy to see that the summation over doubly restricted sets {rn,}, followed by a summa-
tion over all possible values of U, is equivalent to a summation over singly restricted sets
{n;}, namely the ones that satisfy only one condition: ) . n, = V. Expression (17) can be
evaluated with the help of the multinomial theorem, with the result

G(N,2) = (wozEO + w1201 +...)W
=[f(@1", say. 18)

Now, if we suppose that the E, (and hence the total energy value & = N U) are all integers,
then, by (16), the quantity I'(«V, U) is simply the coefficient of zVU in the expansion of the
function G(eV,z) as a power series in z. It can, therefore, be evaluated by the method of
residues in the complex z-plane.

To make this plan work, we assume to have chosen, right at the outset, a unit of energy
so small that, to any desired degree of accuracy, we can regard the energies E; (and the pre-
scribed total energy &/ U) as integral multiples of this unit. In terms of this unit, any energy
value we come across will be an integer. We further assume, without loss of generality, that
the sequence Ey, Ey, . .. is a nondecreasing sequence, with no common divisor;® also, for the
sake of simplicity, we assume that Eyg = 0.* The solution now is

N
rv. oy~ L U@

oni ) eNUT (19

where the integration is carried along any closed contour around the origin; of course, we
must stay within the circle of convergence of the function f(z), so that a need for analytic
continuation does not arise.

First of all, we examine the behavior of the integrand as we proceed from the origin
along the real positive axis, remembering that all our w, are virtually equal to unity and
that 0 =Ep < E; < E,---. We find that the factor [f (2)]V starts from the value 1 at z=0,
increases monotonically and tends to infinity as z approaches the circle of convergence of
f(2), wherever that may be. The factor z~*¥U+D on the other hand, starts from a positive,
infinite value at z = 0 and decreases monotonically as z increases. Moreover, the relative
rate of increase of the factor [f(z)]*V itself increases monotonically while the relative rate

3Actually, this is not a serious restriction at all, for a common divisor, if any, can be removed by selecting the unit of
energy correspondingly larger.

4This too is not serious, for by doing so we are merely shifting the zero of the energy scale; the mean energy U then
becomes U — Ep, but we can agree to call it U again.
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of decrease of the factor z~*¥U+D decreases monotonically. Under these circumstances,
the integrand must exhibit a minimum (and no other extremum) at some value of z, say
Xp, within the circle of convergence. And, in view of the largeness of the numbers & and
N U, this minimum may indeed be very steep!

Thus, at z=xp the first derivative of the integrand must vanish, while the second
derivative must be positive and, hopefully, very large. Accordingly, if we proceed through
the point z = xp in a direction orthogonal to the real axis, the integrand must exhibit an
equally steep maximum.® Thus, in the complex z-plane, as we move along the real axis
our integrand shows a minimum at z = xy, whereas if we move along a path parallel to
the imaginary axis but passing through the point z = x, the integrand shows a maximum
there. It is natural to call the point xy a saddle point; see Figure 3.2. For the contour of
integration we choose a circle, with center at z = 0 and radius equal to xy, hoping that on
integration along this contour only the immediate neighborhood of the sharp maximum
at the point xo will make the most dominant contribution to the value of the integral.®

To carry out the integration we first locate the point x. For this we write our integrand
as

N

% = exp[N g(2)], (20
where

g(2) =Inf(z) — <U+ %)lnz, 21

lexp{Ng(2)}I

Saddle
K point
&
/‘/_ ; » Re z

0 0
™ Contour of integration

FIGURE 3.2 The saddle point.

5This can be seen by noting that (i) an analytic function must possess a unique derivative everywhere (so, in our case,
it must be zero, irrespective of the direction in which we pass through the point xp), and (ii) by the Cauchy-Riemann
conditions of analyticity, the second derivative of the function with respect to y must be equal and opposite to the second
derivative with respect to x.

51t is indeed true that, for large V', the contribution from the rest of the circle is negligible. The intuitive reason for this
is that the terms (w,z%"), which constitute the function f(z), “reinforce” one another only at the point z = xo; elsewhere,
there is bound to be disagreement among their phases, so that at all other points along the circle, |f(2)| < f(x0). Now, the
factor that actually governs the relative contributions is [|f(2)|/f (x0)]?; for & > 1, this will clearly be negligible. For a
rigorous demonstration of this point, see Schrodinger (1960, pp. 31-33).
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while

fz) = ZwrzE’. (22)

The number xj is then determined by the equation

_fo) NUHL

f(xo) N Xo (3)

g (%)

which, in view of the fact that &' U > 1, can be written as

E;
flag OB

U~ = .
OF@) T Y o

(24)

We further have

g//(x )= f//(xO) _ [f/(xO)]z NU+1
O\ T@ T @) TR
N f//(xo) B Uz _ U
f(x0) x3

(25)

It will be noted here that, in the limit & — oo and & (= N U) — oo, with U staying constant,
the number xy and the quantity g”(xp) become independent of V.

Expanding g(z) about the point z = xo, along the direction of integration, that is, along
the line z = xy + iy, we have

1
g(2) = g(xg) — 5g”(xo)y2 RPN

accordingly, the integrand (20) might be approximated as

N N
N 55‘2,)11 exp [—Tg”(xo)yz}. (26)
%o

Equation (19) then gives

1 NT N, ,
C(MN,U) ~ 2] [i(‘:’j(l)])‘]*l / exp [—7g/ (xo)yz] idy

_ feoI 1

= : , 27
g UFL (2m N g (x0)) 12 e

which gives

1 1 1 ,
Wlnl*(e/\/', U) ={Inf(xp) — Ulnxp} — Wlnxo - mln{ZmN’g (x0)}. (28)
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In the limit & — oo (with U staying constant), the last two terms in this expression tend
to zero, with the result

%lnF(W,U) =Inf(xp) — Ulnxp. (29)
Substituting for f(xp) and introducing a new variable 8, defined by the relationship
Xo = exp(—p), 30)

we get
1
WlnF(aV,U) =ln{ Er wrexp(—ﬂEr)} +BU. 31)

The expectation value of the number 7, then follows from (14) and (31):

> wrErexp(—BEr) 98
s
" S oreppE) TV [0 ' (32)
G all wr=1

(ny) | owrexp(—BEr) n
N | Y wrexp(—BEy)

The term inside the curly brackets vanishes identically because of (24) and (30). It has been
included here to emphasize the fact that, for a fixed value of U, the number (= —Inxp) in
fact depends on the choice of the wy; see (24). We will appreciate the importance of this
fact when we evaluate the mean square fluctuation in the number 7,; in the calculation of
the expectation value of n,, this does not really matter. We thus obtain

(nr): exp(—BEy)
N T Y exp(—pE)’

(33)

which is identical to expression (10) for n}/-V. The physical significance of the parameter
B is also the same as in that expression, for it is determined by equation (24), with all w, = 1,
that is, by equation (11) which fits naturally with equation (33) because U is nothing but
the ensemble average of the variable E;:

1
U=) EP = ~ > Er(ny). (34)
r r

Finally, we compute fluctuations in the values of the numbers n,. We have, first of all,

"n?Win
(,,z>=m2r>r{’}_1<w DY ()| 5)
Ty Wiy T\ e )\ d0r ) g wper
{nr}
see equations (12) to (14). It follows that
2 2 2 2 9 Y
((Anp)7) = ({nr = (np))7) = (ny) — (ny)° = (wrf) (wrf)lnr (36)
dor dor all wp=1




3.2 Asystem in the canonical ensemble 49

Substituting from (31) and making use of (32), we get

(An)?) _ 9 | orexp(—pEp)
N ’ dwr

- Y wrexp(—BEy)
-

> wrErexp(—BEy) 98
-
B R ' 57
r all wp=1

We note that the term in the curly brackets would not make any contribution because it
is identically zero, whatever the choice of the »,. However, in the differentiation of the first
term, we must not forget to take into account the implicit dependence of g on the wy,
which arises from the fact that unless the w, are set equal to unity the relation determining
B does contain w;; see equations (24) and (30), whereby

>_wrErexp(—BEy)
=L 38
> wrexp(—BEy) (38)
r all =1
A straightforward calculation gives
B E—-U (n;)
—_— = — . 39
<8wr>U all o;=1 (Er2> Uz N 49
We can now evaluate (37), with the result
2 2
((Anp)7) _ (nr) ((m)) n mr)(U—Er) (ﬁ)
N N N N dor J ylan wy=1
_ {nn) [1 () ) (Er=U)2 } , (40)
N N N ((Er—U)?)

For the relative fluctuation in n,, we get

An\2 1 1 (Ey — U)?
- S § DT A 41
<<<nr>>> (ny) uv{ <(Er—U)2>} @b

As N — o0, (n;) also — oo, with the result that the relative fluctuations in 7, tend to zero;
accordingly, the canonical distribution becomes infinitely sharp and with it the mean
value, the most probable value — in fact, any values of n, that appear with nonvanish-
ing probability — become essentially the same. And that is the reason why two wildly
different methods of obtaining the canonical distribution followed in this section have led
to identical results.
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3.3 Physical significance of the various statistical
quantities in the canonical ensemble
We start with the canonical distribution

P = (ny)  exp(—BEy) )

N Y exp(—BE)’

where 8 is determined by the equation

> Erexp(—BEy) 3
—_— r —_— e —_—
U= S op(FE) - In {Zexp( ﬂEr)} ) %)
r

We now look for a general recipe to extract information about the various macroscopic
properties of the given system on the basis of the foregoing statistical results. For this,
we recall certain thermodynamic relationships involving the Helmholtz free energy
A(= U — TS), namely

dA=dU — TdS — SdT = —SdT — PdV + ndN, 3)
Y dA 3A
5=‘<ﬁ)w’ P*(W)W “=(W)V,T’ @
and
3A 3 (A d(A/T)
U=A+TS=A-T| — =—T2[—<7)] =[ ] , (5)
<8T>N,V AaT\T) yy Lo/T) Iny

where the various symbols have their usual meanings. Comparing (5) with (2), we infer that
there exists a close correspondence between the quantities entering through the statistical
treatment and the ones coming from thermodynamics, namely

1 A
B= T’ ln{Xr:eXp(—ﬂEr)} = kT (6)

where k is a universal constant yet to be determined; soon we shall see that k is indeed the
Boltzmann constant.

The equations in (6) constitute the most fundamental result of the canonical ensemble
theory. Customarily, we write it in the form

A(N,V,T)=—-kTInQn(V,T), (7)
where

Qn(V,T) =) exp(—E/kT). (8)
r
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The quantity Qn(V, T) is referred to as the partition function of the system; sometimes it
is also called the “sum-over-states” (German: Zustandssumme). The dependence of Q on
T is quite obvious. The dependence on N and V comes through the energy eigenvalues
E;; in fact, any other parameters that might govern the values E, should also appear in the
argument of Q. Moreover, for the quantity A(N,V,T) to be an extensive property of the
system, In Q must also be an extensive quantity.

Once the Helmholtz free energy is known, the rest of the thermodynamic quantities
follow straightforwardly. While the entropy, the pressure and the chemical potential are
obtained from formulae (4), the specific heat at constant volume follows from

au 9%A
cr=(57) Z_T(29T2> ©
NV NV

and the Gibbs free energy from

G:A+PV:A—V<%> :N<%> =Ny; (10)
V)N v,T
see Problem 3.5.

At this stage it appears worthwhile to make a few remarks on the foregoing results. First
of all, we note from equations (4) and (6) that the pressure P is given by

9% exp(~BEy)
b= ep ey an
2

so that

PdV = — ZP,dE, =—dU. (12)
r

The quantity on the right side of this equation is clearly the change in the average energy
of a system (in the ensemble) during a process that alters the energy levels E;, leaving the
probabilities P unchanged. The left side then tells us that the volume change dV provides
an example of such a process, and the pressure P is the “force” accompanying that process.
The quantity P, which was introduced here through the thermodynamic relationship (3),
thus acquires a mechanical meaning as well.

The entropy of the system is determined as follows. Since P, = Q™! exp(—BE;),

(InPr)=—-InQ— B(E;) = BA—-U) =-S/k,
with the result that

S=—ki{lnP;)=—-k» P/InP;. (13)
r
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This is an extremely interesting relationship, for it shows that the entropy of a physical sys-
tem is solely and completely determined by the probability values P, (of the system being
in different dynamical states accessible to it)!

From the very look of it, equation (13) appears to be of fundamental importance;
indeed, it reveals a number of interesting conclusions. One of these relates to a system
in its ground state (T = 0K). If the ground state is unique, then the system is sure to be
found in this particular state and in no other; consequently, P; is equal to 1 for this state
and 0 for all others. Equation (13) then tells us that the entropy of the system is precisely
zero, which is essentially the content of the Nernst heat theorem or the third law of ther-
modynamics.” We also infer that vanishing entropy and perfect statistical order (which
implies complete predictability about the system) go together. As the number of acces-
sible states increases, more and more of the P, become nonzero; the entropy of the system
thereby increases. As the number of states becomes exceedingly large, most of the P-
values become exceedingly small (and their logarithms assume large, negative values); the
net result is that the entropy becomes exceedingly large. Thus, the largeness of entropy
and the high degree of statistical disorder (or unpredictability) in the system also go
hand in hand.

It is because of this fundamental connection between entropy on one hand and lack of
information on the other that equation (13) became the starting point of the pioneering
work of Shannon (1948, 1949) in the development of the theory of communication.

It may be pointed out that formula (13) applies in the microcanonical ensemble as well.
There, for each member system of the ensemble, we have a group of Q states, all equally
likely to occur. The value of P; is, then, 1/Q for each of these states and 0 for all others.
Consequently,

Q
S=—k2{éln<é)} =klnQ, (14)
r=1

which is precisely the central result in the microcanonical ensemble theory; see equa-
tion (1.2.6) or (2.3.6).

3.4 Alternative expressions for the partition function

In most physical cases the energy levels accessible to a system are degenerate, that is, one
has a group of states, g; in number, all belonging to the same energy value E;. In such cases
it is more useful to write the partition function (3.3.8) as

Qu(V,T) = giexp(—BEy); (1)

70f course, if the ground state of the system is degenerate (with a multiplicity €o), then the ground-state entropy is
nonzero and is given by the expression k InQp; see equation (14).
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the corresponding expression for P;, the probability that the system be in a state with
energy E;, would be

__8iexp(=BE) ©
" Y giexp(—BE)
L

Clearly, the g; states with a common energy E; are all equally likely to occur. As a result,
the probability of a system having energy E; becomes proportional to the multiplicity g; of
this level; g; thus plays the role of a “weight factor” for the level E;. The actual probability is
then determined by the weight factor g; as well as by the Boltzmann factor exp(—BE;) of the
level, as we have in (2). The basic relations established in the preceding section, however,
remain unaffected.

Now, in view of the largeness of the number of particles constituting a given system and
the largeness of the volume to which these particles are confined, the consecutive energy
values E; of the system are, in general, very close to one another. Accordingly, there lie,
within any reasonable interval of energy (E, E + dE), a very large number of energy levels.
One may then regard E as a continuous variable and write P(E)dE for the probability that
the given system, as a member of the canonical ensemble, may have its energy in the range
(E,E + dE). Clearly, this probability will be given by the product of the relevant single-state
probability and the number of energy states lying in the specified range. Denoting the
latter by g(E)dE, where g(E) denotes the density of states around the energy value E, we
have

P(E)dE x exp(—BE)g(E)dE 3)

which, on normalization, becomes

exp(—BE)g(E)dE

[ exp(—BE)g(E)dE
0

P(E)dE = 4)

The denominator here is yet another expression for the partition function of the system:

(o]

QN (V,T) = f ¢ PEg(E)dE. 5)
0

The expression for (f), the expectation value of a physical quantity f, may now be
written as

S f(Engie Pt [ f(E)e PE(E)dE
i 0

H=) iPi="—w—— > —= : (6)
i ;g,e - [ e PEg(E)dE
0
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Before proceeding further, we take a closer look at equation (5) and note that, with
B > 0, the partition function Q(p) is just the Laplace transform of the density of states g(E).
We may, therefore, write g(E) as the inverse Laplace transform of Q(8):

B’ +ico
1
gB = 5 f SPEQBYAB (B > 0) @)
Tl
B/ —ioco
=5 [ e i, ®
2

where 8 is now treated as a complex variable, g’ +i8”, while the path of integration
runs parallel to, and to the right of, the imaginary axis, that is, along the straight line
Re 8 = B’ > 0. Of course, the path may be continuously deformed so long as the integral
converges.

3.5 The classical systems

The theory developed in the preceding sections is of very general applicability. It applies to
systems in which quantum-mechanical effects are important as well as to those that can
be treated classically. In the latter case, our formalism may be written in the language of the
phase space; as a result, the summations over quantum states get replaced by integrations
over phase space.

We recall the concepts developed in Sections 2.1 and 2.2, especially formula (2.1.3) for
the ensemble average (f) of a physical quantity f(q, p), namely

_ [f@q.ppqpaNqdNp

= , 1
ek [ r(a,pd3Nqd*Np M

where p (g, p) denotes the density of the representative points (of the systems) in the phase
space; we have omitted here the explicit dependence of the function p on time ¢ because
we are interested in the study of equilibrium situations only. Evidently, the function p (g, p)
is a measure of the probability of finding a representative point in the vicinity of the phase
point (g, p), which in turn depends on the corresponding value H(q, p) of the Hamiltonian
of the system. In the canonical ensemble,

r(q,p) x exp{—pH(q,p)}; 2
compare to equation (3.1.6). The expression for (f) then takes the form

[f(q,p)exp(—H)dw
Jexp(—BH)dw

(= , 3)
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where dow(= d®*Nqd®N p) denotes a volume element of the phase space. The denomina-
tor of this expression is directly related to the partition function of the system. However,
to write the precise expression for the latter, we must take into account the relationship
between a volume element in the phase space and the corresponding number of distinct
quantum states of the system. This relationship was established in Sections 2.4 and 2.5,
whereby an element of volume dw in the phase space corresponds to

dw

N!h3N @

distinct quantum states of the system.? The appropriate expression for the partition
function would, therefore, be

Qu(V,T) = / e FH@D) gy 5

1
N3N
it is understood that the integration in (5) goes over the whole of the phase space.

As our first application of this formulation, we consider the example of an ideal gas.
Here, we have a system of N identical molecules, assumed to be monatomic (so there are
no internal degrees of motion to be considered), confined to a space of volume V and in
equilibrium at temperature 7. Since there are no intermolecular interactions to be taken
into account, the energy of the system is wholly kinetic:

N
H(g,p) =) _(p}/2m). 6)

i=1

The partition function of the system would then be

N

1 _ 2

Qv(V,T) = NI/BN /e (premzip; n(dSQidspi)- 7
’ i=1

Integrations over the space coordinates are rather trivial; they yield a factor of V. Integra-
tions over the momentum coordinates are also quite easy, once we note that integral (7) is
simply a product of N identical integrals. Thus, we get

N

N o0
2
On(V,T) = NN /'eip /2mkT (47Tp2dp> 8)
0
1]V N
=i [m(ankT)g‘/Z} ; )

8Ample justification has already been given for the factor h3N. The factor N! comes from the considerations of
Sections 1.5 and 1.6; it arises essentially from the fact that the particles constituting the given system are not only
identical but, in fact, indistinguishable. For a complete proof of this result, see Section 5.5.



56 Chapter 3 ® The Canonical Ensemble

here, use has been made of equation (B.13a). The Helmholtz free energy is then given by,
using Stirling’s formula (B.29),

N h2 3/2
AWN,V,T)=—kTInQn(V,T) = NkT | In v <271ka) -1 (10)

The foregoing result is identical to equation (1.5.8), which was obtained by following a very
different procedure. The simplicity of the present approach is, however, striking. Needless
to say, the complete thermodynamics of the ideal gas can be derived from equation (10) in
a straightforward manner. For instance,

5 3/2
ME<%) =kTIn g 7}1 . 11)
N )y 1 V \ 27 mkT
:_<%> _ NkT (12)
- \ov)yr  V
and
9A V [/ 2zmkT\%*?] 5

N e 15 B

These results are identical to the ones derived previously, namely (1.5.7), (1.4.2), and
(1.5.1a), respectively. In fact, the identification of formula (12) with the ideal-gas law,
PV =nRT, establishes the identity of the (hitherto undetermined) constant k as the
Boltzmann constant; see equation (3.3.6). We further obtain

UE—[i(an)} =_T2 [i (é)] =A+ TS=§NkT, (14)
Er NV 2

ap oT \T
and so on.
At this stage we have an important remark to make. Looking at the form of equation (8)
and the manner in which it came about, we may write

1
vV, T) = 1V, v, (15)

where Q;(V, T) may be regarded as the partition function of a single molecule in the sys-
tem. A little reflection will show that this result obtains essentially from the fact that the
basic constituents of our system are noninteracting (and hence the total energy of the
system is simply the sum of their individual energies). Clearly, the situation will not be
altered even if the molecules in the system had internal degrees of motion as well. What
is essentially required for equation (15) to be valid is the absence of interactions among
the basic constituents of the system (and, of course, the absence of quantum-mechanical
correlations).
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Going back to the ideal gas, we could as well have started with the density of states g(E).
From equation (1.4.17), and in view of the Gibbs correction factor, we have

d
8(E) =

N
1 ( V) (2mm)3N/2 N/2)-1 16
oF N' )

) {(3BN/2)—1}!

Substituting this into equation (3.4.5), and noting that the integral involved is equal to
{(3N/2) —1}!/B3N/2 we obtain

1/V 2 3N/2
Qv(B) = (hg) (”Tm) : a7)

which is identical to (9). It may also be noted that if one starts with the single-particle
density of states (2.4.7), namely

27V
a(e) ~ “2L 2m)32e1/2, (18)
3
computes the single-particle partition function,

v

QB = / e Pea(e)de = — (
0

2 3/2
Lm) , 19)

hs B

and then makes use of formula (15), one would arrive at the same result for Qn(V, T).
Lastly, we consider the question of determining the density of states, g(E), from

the expression for the partition function, Q(8) — assuming that the latter is already

known; indeed, expression (9) for Q(8) was derived without making use of any knowledge

regarding the function g(E). According to equation (3.4.7) and (9), we have

B’ +ico
VN /2 SNz ePE
g(E) = (’,Z” ) ~ ﬂsN/Zdﬁ 8 >0). 0)
/S’ ioco

Noting that, for all positive 7,

1 §'ioo o5t %’,l for x>0
= C ds= @n?
2mi s for x<0
§'—ioco -
equation (20) becomes
VN /27m\3N/2  EGN/2)-1
—_— for E>0
gE)=1 N!' \ h? {(3N/2) —1}! (22)
0 for E<O,

9For the details of this evaluation, see Kubo (1965, pp. 165-168).
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which is indeed the correct result for the density of states of an ideal gas; compare to
equation (16). The foregoing derivation may not appear particularly valuable because in
the present case we already knew the expression for g(E). However, cases do arise where
the evaluation of the partition function of a given system and the consequent evaluation of
its density of states turn out to be quite simple, whereas a direct evaluation of the density
of states from first principles is rather involved. In such cases, the method given here can
indeed be useful; see, for example, Problem 3.15 in comparison with Problems 1.7 and 2.8.

3.6 Energy fluctuations in the canonical ensemble:
correspondence with the microcanonical

ensemble

In the canonical ensemble, a system can have energy anywhere between zero and infinity.
On the other hand, the energy of a system in the microcanonical ensemble is restricted
to a very narrow range. How, then, can we assert that the thermodynamic properties of a
system derived through the formalism of the canonical ensemble would be the same as
the ones derived through the formalism of the microcanonical ensemble? Of course, we
do expect that the two formalisms yield identical results, for otherwise our whole scheme
would be marred by internal inconsistency. And, indeed, in the case of an ideal classical
gas the results obtained by following one approach were precisely the same as the ones
obtained by following the other approach. What, then, is the underlying reason for this
equivalence?

The answer to this question is obtained by examining the extent of the range over which
the energies of the systems in the canonical ensemble have a significant probability to
spread; that will tell us the extent to which the canonical ensemble really differs from the
microcanonical one. To explore this point, we write down the expression for the mean
energy

> Erexp(—BEy)
—

U -r
>_exp(—BEy)

(E) @

and differentiate it with respect to the parameter g, holding the energy values E, constant.
We obtain

2
oU ZE,Z exp(—BE;) [Xr:Er eXp(—ﬂEr)]
9B~ Lexp(—pEp

2
[Z eXp(—ﬁEr)]
~
= —(E%) +(B)®, @
from which it follows that

oy _ 2y 2 (U _ 2 (U _ o
((AE)*) = (E7) —(E)" = <3ﬂ)_kT <3T>_kT Cv. @)
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Note that we have here the specific heat at constant volume, because the partial differen-
tiation in (2) was carried out with the E; kept constant! For the relative root-mean-square
fluctuation in E, equation (3) gives

JUAB?)] _ JKT*Cy)

) T 4)

which is O(N~1/2), N being the number of particles in the system. Consequently, for large
N (which is true for every statistical system) the relative r.m.s. fluctuation in the values of E
is quite negligible! Thus, for all practical purposes, a system in the canonical ensemble has
an energy equal to, or almost equal to, the mean energy U; the situation in this ensemble
is, therefore, practically the same as in the microcanonical ensemble. That explains why
the two ensembles lead to practically identical results.

For further understanding of the situation, we consider the manner in which energy is
distributed among the various members of the (canonical) ensemble. To do this, we treat
E as a continuous variable and start with expression (3.4.3), namely

P(E)dE x exp(—BE)g(E)dE. (3.4.3)

The probability density P(E) is given by the product of two factors: (i) the Boltzmann factor,
which monotonically decreases with E, and (ii) the density of states, which monotonically
increases with E. The product, therefore, has an extremum at some value of E, say E*.!°
The value E* is determined by the condition

a
— (e PEg(E ' =0,
spte T 8( )}E:E*

that is, by

dlng(E) .

TOE gy ©
Recalling that

_ aS(E) 1
S=klng and <7BE )E:U =7= kB,
the foregoing condition implies that
E*=U. (6)

This is a very interesting result, for it shows that, irrespective of the physical nature of
the given system, the most probable value of its energy is identical to its mean value.
Accordingly, if it is advantageous, we may use one instead of the other.

19Subsequently we shall see that this extremum is actually a maximum — and an extremely sharp one at that.
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We now expand the logarithm of the probability density P(E) around the value E* ~ U;
we get

S\ 1 9%
—BE N c - —BE —_c....
ln[e g(E)]_< BU + k>+28E21n[e g(E)}E_U(E U+
_— — —_ 1 — 2 e
=—pU-TS) 2kTZCV(E Uy+---, (7)
from which we obtain
—BE g7y ~ p—B(U—TS) _(E-UY
P(E) xe "Fg(E)~e exp{ 2kT2Cy [ 8)

This is a Gaussian distribution in E, with mean value U and dispersion ,/(kT?Cy); compare
with equation (3). In terms of the reduced variable E/ U, the distribution is again Gaussian,
with mean value unity and dispersion /(kT?Cy)/U {which is O(N~1/2)}; thus, for N > 1,
we have an extremely sharp distribution which, as N — oo, approaches a delta-function!

It would be instructive here to consider once again the case of a classical ideal gas.
Here, g(E) is proportional to E©®N/2~D and hence increases very fast with E; the factor
e PE, of course, decreases with E. The product g(E)exp(—BE) exhibits a maximum at
E* = (3N/2 —1)p~!, which is practically the same as the mean value U = (3N/2)8~!. For
values of E significantly different from E*, the product essentially vanishes (for smaller val-
ues of E, due to the relative paucity of the available energy states; for larger values of E, due
to the relative depletion caused by the Boltzmann factor). The overall picture is shown in
Figure 3.3 where we have displayed the actual behavior of these functions in the special
case N = 10. The most probable value of E is now % of the mean value; so, the distribution
is somewhat asymmetrical. The effective width A can be readily calculated from (3) and
turns out to be (2/3N)'/2U, which, for N = 10, is about a quarter of U. We can see that,
as N becomes large, both E* and U increase (essentially linearly with V), the ratio E*/U
approaches unity and the distribution tends to become symmetrical about E*. At the same
time, the width A increases (but only as N 1/2). considered in the relative sense, it tends to
vanish (as N~1/2),

We finally look at the partition function Qn(V, T), as given by equation (3.4.5), with its
integrand replaced by (8). We have

o0
Qn(V,T) :e*WU*TS)/ef(E7U>2/2kT2chE
0

~ e PU=TS) s2kT?Cy) / e dx

—0o0

=e PV J@2nkT?Cy),
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1.0

g(E)ePE —b
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FIGURE 3.3 The actual behavior of the functions g(E), e #¥, and g(E)e #F for an ideal gas, with N = 10. The
numerical values of the functions have been expressed as fractions of their respective values at E = U.

so that
—kTInQn(V,T)=A>~ (U -1TS) — %len(ZﬂszCV). 9

The last term, being O(InN), is negligible in comparison with the other terms, which are
all O(N). Hence,

A~ U-TS. (10)

Note that the quantity A in this formula has come through the formalism of the
canonical ensemble, while the quantity S has come through a definition belonging to
the microcanonical ensemble. The fact that we finally end up with a consistent thermo-

dynamic relationship establishes beyond doubt that these two approaches are, for all
practical purposes, identical.

3.7 Two theorems — the “equipartition”
and the “virial”

To derive these theorems, we determine the expectation value of the quantity
x;(dH /3x;), where H(q,p) is the Hamiltonian of the system (assumed classical) while x;
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and x; are any two of the 6N generalized coordinates (g, p). In the canonical ensemble,

JOH ) ,—BH
LAY /(xlaxf)—edw (dw:df‘quWp) )
’axj fePHdw ’

Let us consider the integral in the numerator. Integrating over x; by parts, it becomes

1 (2 ax;
/[—7xi€_ﬂH +*/ i e_ﬂde]' da)(j);
B (X p 9x;

here, (xj)1 and (x;), are the “extreme” values of the coordinate x;, while dw ;) denotes “dw
devoid of dx;.” The integrated part here vanishes because whenever any of the coordinates
takes an “extreme” value the Hamiltonian of the system becomes infinite.!! In the integral
that remains, the factor dx;/dx;, being equal to §;;, comes out of the integral sign and we
are left with

1
75,']' / e PHgy.
B
Substituting this into (1), we arrive at the remarkable result:

oH

which is independent of the precise form of the function H.
In the special case x; = x; = p;, equation (2) takes the form

oH .
i— ) = (pidi) = kT, ®)
<P 3Pi> (Pigi)
while for x; = x; = g;, it becomes
oH .
<qi877,-> = —(qip;) =kT. (4)

Adding over all i, from i = 1 to 3N, we obtain

oH .
<Zpia> = <Zpi6/i> = 3NkT 5)
i Opi i

UFor instance, if x;j is a space coordinate, then its extreme values will correspond to “locations at the walls of the con-
tainer”; accordingly, the potential energy of the system would become infinite. If, on the other hand, x; is a momentum
coordinate, then its extreme values will themselves be o0, in which case the kinetic energy of the system would become
infinite.
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and
oH .
(i =-{pam) -

Now, in many physical situations the Hamiltonian of the system happens to be a quadratic
function of its coordinates; so, through a canonical transformation, it can be brought into
the form

H=Y) AP+ B;Q}, )
i i

where P; and Q; are the transformed, canonically conjugate, coordinates while A; and B;
are certain constants of the problem. For such a system, we clearly have

oH oH
Z(Pjapj+Qjan>=2H, )]

accordingly, by equations (3) and (4),

(H) = LT, ©)

where f is the number of nonvanishing coefficients in expression (7). We, therefore, con-
clude that each harmonic term in the (transformed) Hamiltonian makes a contribution
of %kT toward the internal energy of the system and, hence, a contribution of %k toward
the specific heat Cy. This result embodies the classical theorem of equipartition of energy
(among the various degrees of freedom of the system). It may be mentioned here that,
for the distribution of kinetic energy alone, the equipartition theorem was first stated by
Boltzmann (1871).

In our subsequent study we shall find that the equipartition theorem as stated here is
not always valid; it applies only when the relevant degrees of freedom can be freely excited.
At a given temperature T, there may be certain degrees of freedom which, due to the insuf-
ficiency of the energy available, are more or less “frozen” due to quantum mechanical
effects. Such degrees of freedom do not make a significant contribution toward the inter-
nal energy of the system or toward its specific heat; see, for example, Sections 6.5, 7.4,
and 8.3. Of course, the higher the temperature of the system the better the validity of this
theorem.

We now consider the implications of formula (6). First of all, we note that this formula
embodies the so-called virial theorem of Clausius (1870) for the quantity (), g;p;), which is
the expectation value of the sum of the products of the coordinates of the various particles
in the system and the respective forces acting on them; this quantity is generally referred to
as the virial of the system and is denoted by the symbol V. The virial theorem then states
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that
Y = —3NkT. (10)

The relationship between the virial and other physical quantities of the system is best
understood by first looking at a classical gas of noninteracting particles. In this case, the
only forces that come into play are the ones arising from the walls of the container; these
forces can be designated by an external pressure P that acts on the system by virtue of
the fact that it is bounded by the walls of the container. Consequently, we have here a force
—PdS associated with an element of area dS of the walls; the negative sign appears because
the force is directed inward while the vector dS is directed outward. The virial of the gas is
then given by

Vo= (Zmﬂ) = —P7§r- das, a1tz
i 0 S

where r is the position vector of a particle that happens to be in the (close) vicinity of
the surface element dS; accordingly, r may be considered to be the position vector of the
surface element itself. By the divergence theorem, equation (11) becomes

Vo= —P/(div rdV =—-3PV. (12)
v

Comparing (12) with (10), we obtain the well-known result:
PV = NkT. (13)

The internal energy of the gas, which in this case is wholly kinetic, follows from the
equipartition theorem (9) and is equal to %NkT, 3N being the number of degrees of
freedom. Comparing this result with (10), we obtain the classical relationship

vV =-2K, (14)

where K denotes the average kinetic energy of the system.

It is straightforward to apply this theorem to a system of particles interacting through
a two-body potential u(r). In the thermodynamic limit, the pressure of a d-dimensional
system depends only on the virial terms arising from the forces between pairs of particles:

P 1 I du(ry)
nkT—1+W<ZF(’WU>—I‘Nm<2 oy r”>' 1

i<j i<j

121t will be noted that the summation over the various particles of the system, which appears in the definition of the
virial, has been replaced by an integration over the surface of the container, for the simple reason that no contribution
to the virial arises from the interior of the container.
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Equation (15) is called the virial equation of state. This equation can also be written in
terms of the pair correlation function, equation (10.7.11), and is also used in computer
simulations to determine the pressure of the system; see Problem 3.14, Section 10.7, and
Section 16.4.

3.8 A system of harmonic oscillators

We shall now examine a system of N, practically independent, harmonic oscillators. This
study will not only provide an interesting illustration of the canonical ensemble formu-
lation but will also serve as a basis for some of our subsequent studies in this text. Two
important problems in this line are (i) the theory of the black-body radiation (or the “sta-
tistical mechanics of photons”) and (ii) the theory of lattice vibrations (or the “statistical
mechanics of phonons”); see Sections 7.3 and 7.4 for details.

We start with the specialized situation when the oscillators can be treated classically.
The Hamiltonian of any one of them (assumed to be one-dimensional) is then given by

1 1 .
H(ﬂi,pi)ngw2q§+%p§ (i=1,...,N). 1)

For the single-oscillator partition function, we readily obtain
i 1 1 dqd
_ gL, 22 1 o\|aqap
Q@)= [ [ewf-n(Gmae+ )|
—00 —00

_1< 2 )”2(2m>“2_1_kT @
" h \ Bme? B T Bhow ko’

where /i = h/27. This represents a classical counting of the average number of accessible
microstates — that is, kT divided by the quantum harmonic oscillator energy spacing. The
partition function of the N-oscillator system would then be

kT\N
QnB) = QBN = (Bho)™N = (—) ; (3)

hw
note that in writing (3) we have assumed the oscillators to be distinguishable. This is so
because, as we shall see later, these oscillators are merely a representation of the energy
levels available in the system; they are not particles (or even “quasiparticles”). It is actu-
ally photons in one case and phonons in the other, which distribute themselves over the
various oscillator levels, that are indistinguishable!
The Helmholtz free energy of the system is now given by
hw

A= —kTInQy = NkTIn (k—T>, (4)
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whereby
hw
/= kTIn (ﬁ> , (5)
P=0, (6)
S=Nk[ln<ﬂ)+l], (7)
hw
U = NkT, (8)
and
Cp=Cy = Nk. 9)

We note that the mean energy per oscillator is in complete agreement with the equiparti-
tion theorem, namely 2 x %kT, for we have here fwo independent quadratic terms in the
single-oscillator Hamiltonian.

We may determine the density of states, g(E), of this system from expression (3) for its
partition function. We have, in view of (3.4.7),

] 1 B’ +ico bE
_ L e /
8B =g | Swds @ >0,
B/ —ioco
that is,
1 ENfl
———— for E>0
N >
g(p)={ " V=1 (10)
0 for E<O.

To test the correctness of (10), we may calculate the entropy of the system with the help of
this formula. Taking N > 1 and making use of the Stirling approximation, we get

E
S(N,E):klng(E)~Nk|:ln<m>+l], an
which gives for the temperature of the system
T— (*LS T_E (12)
T \OE/)y Nk’

Eliminating E between these two relations, we obtain precisely our earlier result (7) for the
function S(N, T).
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We now take up the quantum-mechanical situation, according to which the energy
eigenvalues of a one-dimensional harmonic oscillator are given by

1
8n:<n+§)hw; n=0,1,2,... (13)
Accordingly, we have for the single-oscillator partition function

exp (— %ﬁhw)

_ —B(n+1/2)hew __
Qp=) e = e e

n=0

1 -1
= {Zsinh(gﬁhwﬂ . (14)

The N-oscillator partition function is then given by
1 -N
QvB) = QAN = [2 sinh (51372@)]
ze*(N/Z)ﬂhw{l _efﬂha)}fN' (15)

For the Helmholtz free energy of the system, we get

A= NkTIn [ZSinh (%ﬁhw)] =N|:%ha)+len{1 — e_ﬂh‘”}:|, (16)
whereby
u=A/N, (17)
P=0, (18)
1 1 . 1
S =Nk[fﬂhwcoth (ﬂShw) —ln{Zsmh (ﬂﬂhw) }]
2 2 2
_ ﬁha) —Bho
_Nk[m —In{l—e }], (19)
1 1 1 hw
and

1 2 1
Cp=Cy =Nk (Eﬁhw> cosech? (Eﬁhw)

Bhw

= Nk(Bhw)? 1)

(eﬂhw _ 1)2 :

Formula (20) is especially significant, for it shows that the quantum-mechanical oscil-
lators do not obey the equipartition theorem. The mean energy per oscillator is different
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kT/hw —»

FIGURE 3.4 The mean energy (¢) of a simple harmonic oscillator as a function of temperature. 1, the Planck
oscillator; 2, the Schrédinger oscillator; and 3, the classical oscillator.

from the equipartition value kT; actually, it is always greater than kT; see curve 2 in
Figure 3.4. Only in the limit of high temperatures, where the thermal energy kT is much
larger than the energy quantum /4w, does the mean energy per oscillator tend to the
equipartition value. It should be noted here that if the zero-point energy %hw were not
present, the limiting value of the mean energy would be (kT — %hw), and not kT — we
may call such an oscillator the Planck oscillator; see curve 1 in Figure 3.4. In passing, we
observe that the specific heat (21), which is the same for the Planck oscillator as for the
Schrodinger oscillator, is temperature-dependent; moreover, it is always less than, and at
high temperatures tends to, the classical value (9).

Indeed, for kT > ho, formulae (14) through (21) go over to their classical counterparts,
namely (2) through (9), respectively.

We shall now determine the density of states g(E) of the N-oscillator system from its
partition function (15). Carrying out the binomial expansion of this expression, we have

QN(,B) = Z <N +}}:_ 1) e_ﬂ(%th-ﬁ-Rha))‘ (22)

R=0

Comparing this with the formula
Qn(B) = / gEye P dE,
0
we conclude that

g(E):Z<N+§_I>S<E—{R+;N}hw), 23)

R=0
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where §(x) denotes the Dirac delta function. Equation (23) implies that there are
(N +R—-1D!/RI(N — 1)! microstates available to the system when its energy E has the dis-
crete value (R-+ %N Yhw, where R=0,1,2,..., and that no microstate is available for other
values of E. This is hardly surprising, but it is instructive to look at this result from a slightly
different point of view.

We consider the following problem that arises naturally in the microcanonical ensem-
ble theory. Given an energy E for distribution among a set of N harmonic oscillators, each
of which can be in any one of the eigenstates (13), what is the total number of distinct ways
in which the process of distribution can be carried out? Now, in view of the form of the
eigenvalues ¢, it makes sense to give away, right in the beginning, the zero-point energy
%hw to each of the N oscillators and convert the rest of it into quanta (of energy iw). Let R
be the number of these quanta; then

R= (E— %th) /hw. (24)

Clearly, R must be an integer; by implication, E must be of the form (R + %N Y. The prob-
lem then reduces to determining the number of distinct ways of allotting R quanta to N
oscillators, such that an oscillator may have 0 or 1 or 2... quanta; in other words, we have
to determine the number of distinct ways of putting R indistinguishable balls into N dis-
tinguishable boxes, such that a box may receive 0 or 1 or 2...balls. A little reflection will
show that this is precisely the number of permutations that can be realized by shuffling R
balls, placed along a row, with (N — 1) partitioning lines (that divide the given space into N
boxes); see Figure 3.5. The answer clearly is

(R+N-1)!

R(N-1!’ (25)

which agrees with (23).
We can now determine the entropy of the system from the number (25). Since N > 1,
we have

S~ k{In(R+ N)!—InR! —InN!}
~ k{(R+N)In(R+N) — RInR— NInN}; (26)

FIGURE 3.5 Distributing 17 indistinguishable balls among 7 distinguishable boxes. The arrangement shown here
represents one of the 23!/17!6! distinct ways of carrying out the distribution.
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the number R is, of course, a measure of the energy E of the system; see (24). For the
temperature of the system, we obtain

1 (38 38\ 1 k (R+N k (E+3Nho
T JoE J oR/Ny ho ho R ho E— %Nha)

E 1  exp(ho/kT)+1
N~ 2 " eptha/kD =1 (28)

so that

which is identical to (20). It can be further checked that, by eliminating R between (26) and
(27), we obtain precisely the formula (19) for S(V, T). Thus, once again, we find that the
results obtained by following the microcanonical approach and the canonical approach
are the same in the thermodynamic limit.

Finally, we may consider the classical limit when E/N, the mean energy per oscillator,
is much larger than the energy quantum % w, that is, when R > N. The expression (25) may,
in that case, be replaced by

(R+N-1D)@R+N-2)...(R+1) _ RV!

N-1)! W (259)
with
R~E/ho.
The corresponding expression for the entropy turns out to be
S~ k{Nln(R/N)-I—N}%Nk{ln(i)+1}, (26a)
Nho
which gives
% - (%)N ~ ka (27a)
so that
% ~ kT. (28a)

These results are identical to the ones derived in the classical limit earlier in this section.

3.9 The statistics of paramagnetism

Next, we study a system of N magnetic dipoles, each having a magnetic moment x. In the
presence of an external magnetic field H, the dipoles will experience a torque tending to
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align them in the direction of the field. If there were nothing else to check this tendency,
the dipoles would align themselves precisely in this direction and we would achieve
a complete magnetization of the system. In reality, however, thermal agitation in the
system offers resistance to this tendency and, in equilibrium, we obtain only a partial
magnetization. Clearly, as T — 0K, the thermal agitation becomes ineffective and the
system exhibits a complete orientation of the dipole moments, whatever the strength
of the applied field; at the other extreme, as T — oo, we approach a state of complete
randomization of the dipole moments, which implies a vanishing magnetization. At
intermediate temperatures, the situation is governed by the parameter (wH/kT).

The model adopted for this study consists of N identical, localized (and, hence, dis-
tinguishable), practically static, mutually noninteracting and freely orientable dipoles. We
consider first the case of classical dipoles that can be oriented in any direction relative to
the applied magnetic field. It is obvious that the only energy we need to consider here is
the potential energy of the dipoles that arises from the presence of the external field H and
is determined by the orientations of the dipoles with respect to the direction of the field:

E=) Ej=-) pi-H=-uH) cosb; 4))
The partition function of the system is then given by

Qn(B) = [Qu(AIY, @

where

Qi(B) =) _exp(BuH cosh). 3)
4

The mean magnetic moment M of the system will obviously be in the direction of the field
H; for its magnitude we shall have

> pcosOexp(BuH coso)
_ A7 0
Mz =N{ucost) =N > exp(BuH cos6)
0
N 0o 0A
=Eﬁan1(ﬁ)=—<ﬁ)T. 4)

Thus, to determine the degree of magnetization in the system all we have to do is to
evaluate the single-dipole partition function (3).

First, we proceed classically (after Langevin, 1905a,b). Using (sinfd6d¢) as the elemen-
tal solid angle representing a small range of orientations of the dipole, we get

2r 7w

Ql(ﬂ)://eﬁ“Hcosesin0d0d¢:4nSinh(ﬂ
00

) 5
Bull 5
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so that

_ M 1
M= =H {Coth(ﬁMH) TMH} = uL(BuH), (6)

where L(x) is the so-called Langevin function
1
L(x) = cothx — e (7)

a plot of the Langevin function is shown in Figure 3.6. We note that the parameter SuH
denotes the strength of the (magnetic) potential energy uH compared to the (thermal)
kinetic energy kT.

If we have Ny dipoles per unit volume in the system, then the magnetization of the
system, namely the mean magnetic moment per unit volume, is given by

Mz = Nojt, = NopuL(x)  (x = BuH). ®

For magnetic fields so strong (or temperatures so low) that the parameter x > 1, the
function L(x) is almost equal to 1; the system then acquires a state of magnetic saturation:

H,>~u and Mz >~ Nyu. 9)

For temperatures so high (or magnetic fields so weak) that the parameter x « 1, the
function L(x) may be written as

. (10)
3 45" "

which, in the lowest approximation, gives

Nop?
M,y >~ ——H. 11
z0 3kT ( )
1.0
I /
/
/
= /
=05
V,
/
0 1 1 1
0 4 8 12
X —»

FIGURE 3.6 The Langevin function L(x).
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The high-temperature isothermal susceptibility of the system is, therefore, given by

Mg\ Nou? _ C
r 3kT T’

Xp =IIii_r>r(1)( Vi —, say. (12)

Equation (12) is the Curie law of paramagnetism, the parameter C being the Curie constant
of the system. Figure 3.7 shows a plot of the susceptibility of a powdered sample of copper—
potassium sulphate hexahydrate as a function of T~!; the fact that the plot is linear and
passes almost through the origin vindicates the Curie law for this particular salt.

We shall now treat the problem of paramagnetism quantum-mechanically. The major
modification here arises from the fact that the magnetic dipole moment x and its compo-
nent i, in the direction of the applied field cannot have arbitrary values. Quite generally,
we have a direct relationship between the magnetic moment p of a given dipole and its
angular momentum I:

e
1= (850)b (13)
with
2 2. ;135
B=JUJ+DR% J=5.5. 20 or 0,12, (14)

The quantity g(e/2mc) is the gyromagnetic ratio of the dipole while the number g is Lande’s
g-factor. If the net angular momentum of the dipole is due solely to electron spins, then

0 20 40 60 80
(10¥TinK™ 1) —»

FIGURE 3.7 x versus 1/T plot for a powdered sample of copper-potassium sulphate hexahydrate (after Hupse,
1942).
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g =2; on the other hand, if it is due solely to orbital motions, then g=1. In general,
however, its origin is mixed; g is then given by the formula
3 SS+1)—L(L+1)

_3 , 1
8=t U+ (15

S and L being, respectively, the spin and the orbital quantum numbers of the dipole. Note
that there is no upper or lower bound on the values that g can have!
Combining (13) and (14), we can write

u?=g*usJ(J+1), (16)

where ug(= eh/2mec) is the Bohr magneton. The component u, of the magnetic moment
in the direction of the applied field is, on the other hand, given by

uz=8gugm, m=-—J,—J+1,....J-1,]J. (17)

Thus, a dipole whose magnetic moment u conforms to expression (16) can have no other
orientations with respect to the applied field except the ones conforming to the values (17)
of the component u;; obviously, the number of allowed orientations, for a given value of
J, is (2] +1). In view of this, the single-dipole partition function Q;(8) is now given by,
see (3),

]
QB = ) exp(BgugmH). (18)

m=—]

Introducing a parameter x, defined by

x=p@EgughHH, 19)
equation (18) becomes

e~ (e@+Dx/] _ 1)

J

m=—]
@AV _ @+ Dx/2]
ex/2] _ e—x/2]

. 1 . 1
=smh{<1+§>x}/smh{2—]x}. (20)

The mean magnetic moment of the system is then given by, see equation (4),

N 9
M, =Npu, = Ea—Hanl(ﬁ)

=N J 1 ! thi(1l ! 1 th ! 21)
= (gMB)[< +§)co {( —l—ﬂ)x}—ﬂco {Zx”
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Thus

Iz = (8upl)Bj(x), (22)

where By (x) is the Brillouin function of order J:

1 1 1 1
By(x) = (1—1—5) coth{(l—f—ﬂ)x} —ﬂcoth{ﬂx}. (23)
In Figure 3.8 we have plotted the function B;(x) for some typical values of the quantum
number J.
We shall now consider a few special cases. First of all, we note that for strong fields and
low temperatures (x > 1), the function Bj(x) ~ 1 for all ], which corresponds to a state of

magnetic saturation. On the other hand, for high temperatures and weak fields (x « 1), the
function Bj(x) may be written as

1
§(1+1/])x+..., (24)
so that
_ (gugh? 1\ gup/U+1D)
Ha="3kr <1+7>H_ 3kT (25)
The Curie law, x o« 1/T, is again obeyed; however, the Curie constant is now given by
N, 2,2 1 2
C = 08 MB](]-F ) _ Nou® 26)

3k T3k’

see equation (16). It is indeed interesting that the high-temperature results, (25) and (26),
directly involve the eigenvalues of the operator ;2.

X—»

FIGURE 3.8 The Brillouin function By (x) for various values of J.
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We now look a little more closely at the dependence of the foregoing results on the
quantum number /. First of all, we consider the extreme case /] — oo, with the understand-
ing that simultaneously g — 0, such that the value of x stays constant. From equation (23),
we readily observe that, in this limit, the Brillouin function B;(x) tends to become (i) inde-
pendent of J and (ii) identical to the Langevin function L(x). This is not surprising because,
in this limit, the number of allowed orientations for a magnetic dipole becomes infinitely
large, with the result that the problem essentially reduces to its classical counterpart
(where one must allow all possible orientations). At the other extreme, we have the case
J= %, which allows only two orientations. The results in this case are very different from
the ones for / > 1. We now have, with g =2,

T, = ugBi/2(x) = pgtanhx. (27)

For x > 1, u. is very nearly equal to up. For x « 1, however, i, >~ pupx, which corresponds
to the Curie constant

Nou?,
k

Cijp = : (28)
In Figure 3.9 we reproduce the experimental values of &z, (in terms of up) as a function
of the quantity H/T, for three paramagnetic salts; the corresponding theoretical plots,
namely the curves gJBj(x), are also included in the figure. The agreement between theory
and experiment is indeed good. In passing, we note that, at a temperature of 1.3 K, a field
of about 50,000 gauss is sufficient to produce over 99 percent of saturation in these salts.

7.00

6.00

0 10 20 30 40
1073H/T gauss/K—»

FIGURE 3.9 Plots of iz, /up as a function of H/T. The solid curves represent the theoretical results, while the points
mark the experimental findings of Henry (1952). Curve | is for potassium chromium alum (] = %,g = 2), curve Il for
iron ammonia alum (J = 3,g = 2), and curve lll for gadolinium sulphate octahydrate (J = Z,g = 2).
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3.10 Thermodynamics of magnetic systems:
negative temperatures

For the purpose of this section, it will suffice to consider a system of dipoles with J = %
Each dipole then has a choice of two orientations, the corresponding energies being —upH

and +upH; let us call these energies —e and +¢, respectively. The partition function of the
system is then given by

N
Qu(p) = (¢ +¢7°) " = (zcosh(Be)}"; M

compare to the general expression (3.9.20). Accordingly, the Helmholtz free energy of the
system is given by

A= —NkTIn{2cosh(e/kT)}, )

from which
S:—(%)H:Nk[lnPcosh(kg—T)]—%tanh(%)], 3)
U=A+TS=-Nstanh (=), @)
M:—(%)T:NMBtanh(kg—T> (5)

and, finally,
o= (57, =M(p) sech? (7)- ©

Equation (5) is essentially the same as (3.9.27); moreover, as expected, U = —MH.
The temperature dependence of the quantities S, U, M, and C is shown in Figures 3.10
through 3.13. We note that the entropy of the system is vanishingly small for kT « ¢; it rises

1.0
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0.5

2o

kTle —»

FIGURE 3.10 The entropy of a system of magnetic dipoles (with J = 1y as a function of temperature.
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FIGURE 3.11 The energy of a system of magnetic dipoles (with J = %) as a function of temperature.
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FIGURE 3.12 The magnetization of a system of magnetic dipoles (with J = %) as a function of temperature.

rapidly when kT is of the order of ¢ and approaches the limiting value Nkln2 for kT > «.
This limiting value of S corresponds to the fact that at high temperatures the orientation
of the dipoles assumes a completely random character, with the result that the system
now has 2V equally likely microstates available to it. The energy of the system attains
its lowest value, —N¢, as T — 0K; this clearly corresponds to a state of magnetic satura-
tion and, hence, to a state of perfect order in the system. Toward high temperatures, the
energy tends to vanish,'® implying a purely random orientation of the dipoles and hence

Note that in the present study we are completely disregarding the kinetic energy of the dipoles.
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FIGURE 3.13 The specific heat of a system of magnetic dipoles (with J = %) as a function of temperature.

a complete loss of magnetic order. These features are re-emphasized in Figure 3.12, which
depicts the temperature dependence of the magnetization M. The specific heat of the sys-
tem is vanishingly small at low temperatures but, in view of the fact that the energy of the
system tends to a constant value as T — oo, the specific heat vanishes at high tempera-
tures as well. Somewhere around T = ¢/k, it displays a maximum. Writing A for the energy
difference between the two allowed states of the dipole, the formula for the specific heat
can be written as

A\2
C =Nk <ﬁ) /KT (1 4 @2/KT)=2, 7)

A specific heat peak of this form is generally known as the Schottky anomaly; it is observed
in systems that have an excitation gap A above the ground state.

Now, throughout our study so far we have considered only those cases for which T > 0.
For normal systems, this is indeed essential, for otherwise we have to contend with canon-
ical distributions that blow up as the energy of the system is indefinitely increased. If,
however, the energy of a system is bounded from above, then there is no compelling reason
to exclude the possibility of negative temperatures. Such specialized situations do indeed
exist, and the system of magnetic dipoles provides a good example thereof. From equa-
tion (4), we note that, so long as U <0, T > 0 — and that is the only range we covered in
Figures 3.10 through 3.13. However, the same equation tells us that if U > 0 then T <0,
which prompts us to examine the matter a little more closely. For this, we consider the
variation of the temperature T and the entropy S with energy U, namely

1 k(U k. (Ne—U
7= tnh (m)—zln(*mu) (®)
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FIGURE 3.14 The entropy of a system of magnetic dipoles (with J = %) as a function of energy. Some values of the

parameter kT /¢ are also shown in the figure. The slope at the two endpoints diverges since both ends represent
zero temperature but it is difficult to see due to the logarithmic nature of the divergence.

and

N _Ne—f—Uln(Ns—l—U)_Ne—Uln<Ns—U); )

Nk 2Ne 2Ne 2Ne 2Ne

these expressions follow straightforwardly from equations (3) and (4), and are shown
graphically in Figures 3.14 and 3.15. We note that for U = —Ng, both S and T vanish.
As U increases, they too increase until we reach the special situation where U = 0. The
entropy is then seen to have attained its maximum value Nkln 2, while the temperature has
reached infinity. Throughout this range, the entropy had been a monotonically increasing
function of energy, so T was positive. Now, as U becomes 04, (dS/dU) becomes 0_ and
T becomes —oco. With a further increase in U, the entropy monotonically decreases; as a
result, the temperature continues to be negative, though its magnitude steadily decreases.
Finally, we reach the largest value of U, namely +N¢, where the entropy is once again zero
and T=0_.

The region where U > 0 (and hence T < 0) is indeed abnormal because it corresponds
to a magnetization opposite in direction to that of the applied field. Nevertheless, it can be
realized experimentally in the system of nuclear moments of a crystal in which the relax-
ation time #; for mutual interaction among nuclear spins is very small in comparison with
the relaxation time f, for interaction between the spins and the lattice. Let such a crystal
be magnetized in a strong magnetic field and then the field reversed so quickly that the
spins are unable to follow the switch-over. This will leave the system in a nonequilibrium
state, with energy higher than the new equilibrium value U. During a period of order 11,
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FIGURE 3.15 The temperature parameter kT /¢, and its reciprocal B¢, for a system of magnetic dipoles (with J = %)
as a function of energy.

the subsystem of the nuclear spins should be able to attain a state of internal equilibrium;
this state will have a negative magnetization and will, therefore, correspond to a negative
temperature. The subsystem of the lattice, which involves energy parameters that are in
principle unbounded, will still be at a positive temperature. During a period of order f,,
the two subsystems would attain a state of mutual equilibrium, which again will have a
positive temperature.'* An experiment of this kind was successfully performed by Purcell
and Pound (1951) with a crystal of LiF; in this case, r; was of order 10~° sec while 7, was of
order 5 min. A state of negative temperature for the subsystem of spins was indeed attained
and was found to persist for a period of several minutes; see Figure 3.16.

Before we close this discussion, a few general remarks seem in order. First of all, we
should note that the onset of negative temperatures is possible only if there exists an upper
limit on the energy of the given system. In most physical systems this is not the case,
simply because most physical systems possess kinetic energy of motion which is obvi-
ously unbounded. By the same token, the onset of positive temperatures is related to the

“Note that in the latter process, during which the spins realign themselves (now more favorably in the new direction
of the field), the energy will flow from the subsystem of the spins to that of the lattice, and not vice versa. This is in perfect
agreement with the fact that negative temperatures are hotter than positive ones; see the subsequent discussion in the
text.
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FIGURE 3.16 A typical record of the reversed nuclear magnetization (after Purcell and Pound, 1951). On the left we
have a deflection corresponding to normal, equilibrium magnetization (T ~ 300K); it is followed by the reversed
deflection (corresponding to T ~ —350K), which decays through zero deflection (corresponding to a passage from
T = —oo to T = +o00) toward the new equilibrium state that again has a positive T.

existence of a lower limit on the energy of a system; this, however, does not present any
problem because, if nothing else, the uncertainty principle alone is sufficient to set such
a limit for every physical system. Thus, it is quite normal for a system to be at a positive
temperature whereas it is very unusual for one to be at a negative temperature.

Now, suppose that we have a system whose energy cannot assume unlimited high
values. Then, we can surely visualize a temperature T such that the quantity NkT is
much larger than any admissible value, E,, of the energy. At such a high temperature, the
mutual interactions of the microscopic entities constituting the system may be regarded
as negligible; accordingly, one may write for the partition function of the system

N
Qn(B) = [Zeﬂsn} : (10)

Since, by assumption, all B¢, « 1, we have

N
Qn(B) = [Z {1 —Ben+ ;ﬂzsi}} : 1n

n

Let g denote the number of possible orientations of a microscopic constituent of the sys-
tem with respect to the direction of the external field; then, the quantities ), % (¢ =0,1,2)
may be replaced by ge®. We thus get

- P e Y
_N[lng Be+ 3B (e 8)] (12)
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The Helmholtz free energy of the system is then given by

AN, B) :—%lng—i—NE— gﬁm, (13)
from which
S(N,B)~NkIng — NTkﬂzm, (14)
U(N,B) ~ Ng—NB(e — &), (15)
and
C(N, B) ~ NkB? (e — ). 1e)'°

The formulae in equations (12) through (16) determine the thermodynamic properties of
the system for g >~ 0. The important thing to note here is that they do so not only for 8 > 0
but also for g < 0. In fact, these formulae hold in the vicinity of, and on both sides of, the
maximum in the S — U curve; see Figure 3.14. Quite expectedly, the maximum value of S is
given by NkIng, and it occurs at 8 = +0; S here decreases both ways, whether U decreases
(B > 0) or increases (8 < 0). It will be noted that the specific heat of the system in either
case is positive.

It is not difficult to show that if two systems, characterized by the temperature parame-
ters B; and B, are brought into thermal contact, then energy will flow from the system with
the smaller value of 8 to the system with the larger value of g; this will continue until the
two systems acquire a common value of this parameter. What is more important to note is
that this result remains literally true even if one or both of the 8 are negative. Thus, if g; is
—ve while 8, is +ve, then energy will flow from system 1 to system 2, that is, from the sys-
tem at negative temperature to the one at positive temperature. In this sense, systems at
negative temperatures are hotter than the ones at positive temperatures; indeed, negative
temperatures are above +oo, not below zero!

For further discussion of this topic, reference may be made to a paper by Ramsey (1956).

Problems

3.1. (a) Derive formula (3.2.36) from equations (3.2.14) and (3.2.35).
(b) Derive formulae (3.2.39) and (3.2.40) from equations (3.2.37) and (3.2.38).

3.2. Prove that the quantity g’ (xp), see equations (3.2.25), is equal to ((E — U)?) exp(28). Thus show that
equation (3.2.28) is physically equivalent to equation (3.6.9).

3.3. Using the fact that (1/n!) is the coefficient of x” in the power expansion of the function exp(x),
derive an asymptotic formula for this coefficient by the method of saddle-point integration.
Compare your result with the Stirling formula for n!.

15Compare this result with equation (3.6.3).
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3.4. Verify that the quantity (k/.V)InT, where

3.5.

3.6.

3.7.

(N, U) = Z/W{nr},

{nr}

is equal to the (mean) entropy of the given system. Show that this leads to essentially the same
result for InT if we take, in the foregoing summation, only the largest term of the sum, namely the
term W{n?} that corresponds to the most probable distribution set.

[Surprised? Well, note the following example:

For all N, the summation over the binomial coefficients ¥ C, = N!/[rl (N — r!)] gives

N
ZNCI‘ — 2N;
r=0

therefore,

N
ln{ZNCr} =Nln2. (@
r=0

Now, the largest term in this sum corresponds to r ~ N/2; so, for large N, the logarithm of the
largest term is very nearly equal to

In{N'} — 2In{(N/2)!}
~NlnN—2glng=Nln2, (b)

which agrees with (a).]
Making use of the fact that the Helmholtz free energy A(IV, V, T) of a thermodynamic system is an
extensive property of the system, show that

N(i) wv(Gy) =a

AN )y 1 vV /nr

[Note that this result implies the well-known relationship: Nu = A+ PV (= G).]

(a) Assuming that the total number of microstates accessible to a given statistical system is €,
show that the entropy of the system, as given by equation (3.3.13), is maximum when all
states are equally likely to occur.

(b) If, on the other hand, we have an ensemble of systems sharing energy (with mean value E),
then show that the entropy, as given by the same formal expression, is maximum when
P, o exp(—BE;), B being a constant to be determined by the given value of E.

(c) Further, if we have an ensemble of systems sharing energy (with mean value E) and also
sharing particles (with mean value N), then show that the entropy, given by a similar
expression, is maximum when P, ; o exp(—aNy — BE;), « and B being constants to be
determined by the given values of N and E.

Prove that, quite generally,
[ (), 11,

92InQ
V2 T

Verify that the value of this quantity for a classical ideal classical gas is Nk.

Cp—Cy=—-k > 0.
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Show that, for a classical ideal gas,

5 :1n<9) +T(L“‘?l> .
Nk N aT Jp
If an ideal monatomic gas is expanded adiabatically to twice its initial volume, what will the ratio
of the final pressure to the initial pressure be? If during the process some heat is added to the
system, will the final pressure be higher or lower than in the preceding case? Support your answer
by deriving the relevant formula for the ratio Py /P;.
(a) The volume of a sample of helium gas is increased by withdrawing the piston of the containing
cylinder. The final pressure P is found to be equal to the initial pressure P; times (V;/ Vf)l'z, Vi
and Vf being the initial and final volumes. Assuming that the product PV is always equal to

2y, will (i) the energy and (ii) the entropy of the gas increase, remain constant, or decrease
during the process?

(b) If the process were reversible, how much work would be done and how much heat would be
added in doubling the volume of the gas? Take P; = 1 atm and V; = 1m3.

Determine the work done on a gas and the amount of heat absorbed by it during a compression

from volume V; to volume V>, following the law PV" = const.

. If the “free volume” V of a classical system is defined by the equation

N
7V _ / o U-U@VAT [ g,
i=1

where U is the average potential energy of the system and U(g;,) the actual potential energy as a
function of the molecular configuration, then show that

V (2zmkT\*?*| 5
S=Nk|In{ = —— =1.
[ n { N ( 12 ) T3

In what sense is it justified to refer to the quantity V as the “free volume” of the system?

Substantiate your answer by considering a particular case — for example, the case of a hard sphere

gas.

(a) Evaluate the partition function and the major thermodynamic properties of an ideal gas
consisting of N1 molecules of mass m; and N, molecules of mass my, confined to a space
of volume V at temperature T. Assume that the molecules of a given kind are mutually
indistinguishable, while those of one kind are distinguishable from those of the other kind.

(b) Compare your results with the ones pertaining to an ideal gas consisting of (N7 + N>)
molecules, all of one kind, of mass m, such that m(N; + N») = m1 Ny + maNo.

. Consider a system of N classical particles with mass 7 moving in a cubic box with volume V = I3.

The particles interact via a short-ranged pair potential u(r;;) and each particle interacts with each
wall with a short-ranged interaction .y (2z), where z is the perpendicular distance of a particle
from the wall. Write down the Lagrangian for this model and use a Legendre transformation to
determine the Hamiltonian H.
(a) Show that the quantity P = — (%) = % (%) can clearly be identified as the instantaneous
pressure — that is, the force per unit area on the walls.
(b) Reconstruct the Lagrangian in terms of the relative locations of the particles inside the box
r; = Ls;, where the variables s; all lie inside a unit cube. Use a Legendre transformation to
determine the Hamiltonian with this set of variables.
(c) Recalculate the pressure using the second version of the Hamiltonian. Show that the pressure
now includes three contributions:
(1) acontribution proportional to the kinetic energy,
(2) a contribution related to the forces between pairs of particles, and
(3) acontribution related to the force on the wall.
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3.16.

3.18.

3.19.

3.20.

Show that in the thermodynamic limit the third contribution is negligible compared to the other
two. Interpret contributions 1 and 2 and compare to the virial equation of state (3.7.15).

. Show that the partition function Qn(V, T) of an extreme relativistic gas consisting of N monatomic

molecules with energy—-momentum relationship ¢ = pc, ¢ being the speed of light, is given by

VT—1 8VkT3N
QN(’)_MJT(H) .

Study the thermodynamics of this system, checking in particular that

1 4
PV=§U, U/N =3kT, and y=3

Next, using the inversion formula (3.4.7), derive an expression for the density of states g(E) of this
system.

Consider a system similar to the one in the preceding problem but consisting of 3N particles
moving in one dimension. Show that the partition function in this case is given by

1 kTN
QN (L, T) = 3V [ZL(%)] ,

L being the “length” of the space available. Compare the thermodynamics and the density of states
of this system with the corresponding quantities obtained in the preceding problem.

. If we take the function f(gq, p) in equation (3.5.3) to be U — H(q, p), then clearly (f) = 0; formally,

this would mean
/ (U — H(g, ple PHP dw — 0.

Derive, from this equation, expression (3.6.3) for the mean-square fluctuation in the energy of a
system embedded in the canonical ensemble.
Show that for a system in the canonical ensemble

(AE)®) = kP {T4 (ﬂ) +2T3CV} .
aT )y

Verify that for an ideal gas

ABNA_ 2 [(AEVY - &

7] " 3N U T9N?’
Consider the long-time averaged behavior of the quantity dG/dt, where
G= Z qibi
i

and show that the validity of equation (3.7.5) implies the validity of equation (3.7.6), and vice versa.
Show that, for a statistical system in which the interparticle potential energy u(r) is a
homogeneous function (of degree n) of the particle coordinates, the virial 'V is given by

VY =-3PV-nU
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3.22.

3.23.

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.
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and, hence, the mean kinetic energy K by

1. 1
K=—2%=2@PV+nl)=

TE) (3PV + nE);

here, U denotes the mean potential energy of the system while E = K + U. Note that this result

holds not only for a classical system but for a quantum-mechanical one as well.

(a) Calculate the time-averaged kinetic energy and potential energy of a one-dimensional
harmonic oscillator, both classically and quantum-mechanically, and show that the results
obtained are consistent with the result established in the preceding problem (with n = 2).

(b) Consider, similarly, the case of the hydrogen atom (n = —1) on the basis of (i) the Bohr-
Sommerfeld model and (ii) the Schrédinger model.

(c) Finally, consider the case of a planet moving in (i) a circular orbit or (ii) an elliptic orbit around
the sun.

The restoring force of an anharmonic oscillator is proportional to the cube of the displacement.

Show that the mean kinetic energy of the oscillator is fwice its mean potential energy.

Derive the virial equation of state equation (3.7.15) from the classical canonical partition function

(3.5.5). Show that in the thermodynamic limit the interparticle terms dominate the ones that come

from interactions of the particles with the walls of the container.

Show that in the relativistic case the equipartition theorem takes the form

(mou? (1 — u?/c?) V2 = 3kT,

where my is the rest mass of the particle and u its speed. Check that in the extreme relativistic case
the mean thermal energy per particle is twice its value in the nonrelativistic case.

Develop a kinetic argument to show that in a noninteracting system the average value of the
quantity ; p;q; is precisely equal to 3PV. Hence show that, regardless of relativistic
considerations, PV = NkT.

The energy eigenvalues of an s-dimensional harmonic oscillator can be written as

g =(j+s/2hw; j=0,1,2,...

Show that the jth energy level has a multiplicity (j+ s — 1)! /j! (s — 1)!. Evaluate the partition
function, and the major thermodynamic properties, of a system of N such oscillators, and compare
your results with a corresponding system of sV one-dimensional oscillators. Show, in particular,
that the chemical potential s = su;.

Obtain an asymptotic expression for the quantity In g(E) for a system of N quantum-mechanical
harmonic oscillators by using the inversion formula (3.4.7) and the partition function (3.8.15).
Hence show that

S E 1 ) E 1 E 1 1 E 1
Nk~ <Nha) + 2> n(th + 2) (th 2) n(th 2)'
[Hint: Employ the Darwin-Fowler method.]

(a) When a system of N oscillators with total energy E is in thermal equilibrium, what is the
probability p, that a particular oscillator among them is in the quantum state n?

[Hint: Use expression (3.8.25).]
Show that, for N> 1 and R>> n, p, ~ )"/ + 1)"*!, where 77 = R/N.

(b) When an ideal gas of N monatomic molecules with total energy E is in thermal equilibrium,
show that the probability of a particular molecule having an energy in the neighborhood of ¢
is proportional to exp(—fB¢), where § = 3N /2E.

[Hint: Use expression (3.5.16) and assume that N > 1 and E > ¢.]
The potential energy of a one-dimensional, anharmonic oscillator may be written as

V(q) =cq* - gq° - fq*,

where ¢, g, and f are positive constants; quite generally, g and f may be assumed to be very small
in value. Show that the leading contribution of anharmonic terms to the heat capacity of the
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oscillator, assumed classical, is given by

3..(f 5g°
Zk (02+4c3 d

and, to the same order, the mean value of the position coordinate g is given by

3git
4 ¢ -

The energy levels of a quantum-mechanical, one-dimensional, anharmonic oscillator may be

approximated as
1 1\?2
&n = n+§ how—x n+§ hw; n=0,1,2,...

The parameter x, usually « 1, represents the degree of anharmonicity. Show that, to the first order
in x and the fourth order in u(= hw/kT), the specific heat of a system of N such oscillators is given

by
1 1 1 1
=Nk|(1- =+ —u*)+ax( =+ —=iu®)]|.
¢ [( 2" +240”>Jr x<u+80u
Note that the correction term here increases with temperature.
Study, along the lines of Section 3.8, the statistical mechanics of a system of N “Fermi oscillators,”
which are characterized by only two eigenvalues, namely 0 and ¢.
The quantum states available to a given physical system are (i) a group of g1 equally likely states,
with a common energy ¢ and (ii) a group of g» equally likely states, with a common energy 2 > ¢;.
Show that this entropy of the system is given by

S =—klp1In(p1/g1) + p2In(p2/82)],

where p; and p» are, respectively, the probabilities of the system being in a state belonging to group
lortogroup 2: p1+p2=1.
(a) Assuming that the p; are given by a canonical distribution, show that

_x X
S=k [lngl +In{l+(g2/gne ™} + (gl/gz)ex] )
where x = (¢2 — £1)/kT, assumed positive. Compare the special case g; = g» = 1 with that of the
Fermi oscillator of the preceding problem.

(b) Verify the foregoing expression for S by deriving it from the partition function of the system.

() CheckthatatT — 0, S— klng;. Interpret this result physically.

Gadolinium sulphate obeys Langevin’s theory of paramagnetism down to a few degrees Kelvin. Its

molecular magnetic moment is 7.2 x 10~>amp-m?. Determine the degree of magnetic saturation

in this salt at a temperature of 2K in a field of flux density 2 weber/m?.

Oxygen is a paramagnetic gas obeying Langevin’s theory of paramagnetism. Its susceptibility

per unit volume, at 293K and at atmospheric pressure, is 1.80 x 10~® mks units. Determine its

molecular magnetic moment and compare it with the Bohr magneton (which is very nearly equal

t0 9.27 x 10~>*amp-m?).

(a) Consider a gaseous system of N noninteracting, diatomic molecules, each having an electric
dipole moment u, placed in an external electric field of strength E. The energy of such a
molecule will be given by the kinetic energy of rotation as well as translation plus the potential
energy of orientation in the applied field:

P { P, P
2m

2l 2[sin®0

} — nEcosé,
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where I is the moment of inertia of the molecule. Study the thermodynamics of this system,
including the electric polarization and the dielectric constant. Assume that (i) the system is a
classical one and (ii) |nE| <« kT.16
(b) The molecule H,0 has an electric dipole moment of 1.85 x 10718 e.s.u. Calculate, on the basis
of the preceding theory, the dielectric constant of steam at 100°C and at atmospheric pressure.
Consider a pair of electric dipoles u and u’, oriented in the directions (6, ¢) and (¢',¢"),
respectively; the distance R between their centers is assumed to be fixed. The potential energy in
this orientation is given by
up
R3

{2cos6 cosh’ —sindsind’ cos(¢p — ¢')}.

Now, consider this pair of dipoles to be in thermal equilibrium, their orientations being governed
by a canonical distribution. Show that the mean force between these dipoles, at high temperatures,
is given by

72 (up)® R
kT R’

R being the unit vector in the direction of the line of centers.
Evaluate the high-temperature approximation of the partition function of a system of magnetic
dipoles to show that the Curie constant Cj is given by

_ Nogzﬂéﬁ

G 2

Hence derive the formula (3.9.26).

Replacing the sum in (3.9.18) by an integral, evaluate Q; (8) of the given magnetic dipole and study

the thermodynamics following from it. Compare these results with the ones following from the

Langevin theory.

Atoms of silver vapor, each having a magnetic moment u (g = 2,J = 3), align themselves either

parallel or antiparallel to the direction of an applied magnetic field. Determine the respective

fractions of atoms aligned parallel and antiparallel to a field of flux density 0.1 weber/m? at a

temperature of 1,000 K.

(a) Show that, for any magnetizable material, the heat capacities at constant field H and at
constant magnetization M are connected by the relation

oH oM
Ci—Cu=-T(—) (=) .
M <8T>M(8T>H

(b) Show that for a paramagnetic material obeying Curie’s law
Cy — Cy = CH?/T?,

where C on the right side of this equation denotes the Curie constant of the given sample.
A system of N spins at a negative temperature (E > 0) is brought into contact with an ideal-gas
thermometer consisting of N’ molecules. What will the nature of their state of mutual equilibrium
be? Will their common temperature be negative or positive, and in what manner will it be affected
by the ratio N'/N?
Consider the system of N magnetic dipoles, studied in Section 3.10, in the microcanonical
ensemble. Enumerate the number of microstates, €2 (IV, E), accessible to the system at energy E
and evaluate the quantities S(V, E) and T'(INV, E). Compare your results with equations (3.10.8)
and (3.10.9).

16The electric dipole moments of molecules are generally of order 10~!8 e.s.u. (or a Debye unit). In a field of 1 e.s.u.
(=300volts/cm) and at a temperature of 300K, the parameter SuE = O(107%).
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3.43.

3.44.

Consider a system of charged particles (not dipoles), obeying classical mechanics and classical
statistics. Show that the magnetic susceptibility of this system is identically zero (Bohr-van
Leeuwen theorem).

[Note that the Hamiltonian of this system in the presence of a magnetic field H(= V x A) will be a

function of the quantities p; + (ej/¢)A(r;), and not of the p; as such. One has now to show that the

partition function of the system is independent of the applied field.]

The expression (3.3.13) for the entropy S is equivalent to Shannon’s (1949) definition of the

information contained in a message I = — ), PrIn(P;), where P; represents the probability of

message 1.

(@) Show that information is maximized if the probabilities of all messages are the same. Any other
distribution of probabilities reduces the information. In English, “e” is more common than “z”,
so P > P,, so the information per character in an English message is less than the optimal
amount possible based on the number of different characters used in an English text.

(b) The information in a text is also affected by correlations between characters in the text. For
example, in English, “q” is always followed by “u”, so this pair of characters contains the same
information as “q” alone. The probability of a character indexed by r followed immediately
by character indexed by r’ is P » = PPy G-, where G, is the character-pair correlation
function. If pairs of characters are uncorrelated, then G, » = 1. Show that if characters are
uncorrelated then the information in a two-character message is twice the information of a
single-character message and that correlations (G, # 1) reduce the information content.
[Hint: Use the inequality Inx <x —1.]

(c) Write a computer program to determine the information per character in a text file by
determining the single-character probabilities P, and character-pair correlations G, .
Computers usually use one full byte per character to store information. Since one byte can
store 256 different messages, the potential information per byte is In256 = 81n2 = 8bits. Show
that the information per character in your text file is considerably less than 8 bits and explain
why it is possible for file-compression algorithms to reduce the size of a computer file without
sacrificing any of the information contained in the file.
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The Grand Canonical Ensemble

In the preceding chapter we developed the formalism of the canonical ensemble and
established a scheme of operations for deriving the various thermodynamic properties of a
given physical system. The effectiveness of that approach became clear from the examples
discussed there; it will become even more vivid in the subsequent studies carried out in
this text. However, for a number of problems, both physical and chemical, the usefulness
of the canonical ensemble formalism turns out to be rather limited and it appears that a
further generalization of this formalism is called for. The motivation that brings about this
generalization is physically of the same nature as the one that led us from the microcanoni-
cal to the canonical ensemble — it is just the next natural step from there. It comes from the
realization that not only the energy of a system but the number of particles as well is hardly
ever measured in a “direct” manner; we only estimate it through an indirect probing into
the system. Conceptually, therefore, we may regard both N and E as variables and identify
their expectation values, () and (E), with the corresponding thermodynamic quantities.
The procedure for studying the statistics of the variables N and E is self-evident. We
may either (i) consider the given system A as immersed in a large reservoir A’ with which it
can exchange both energy and particles or (ii) regard it as a member of what we may call
a grand canonical ensemble, which consists of the given system A and a large number of
(mental) copies thereof, the members of the ensemble carrying out a mutual exchange of
both energy and particles. The end results, in either case, are asymptotically the same.

4.1 Equilibrium between a system
and a particle-energy reservoir

We consider the given system A as immersed in a large reservoir A’, with which it can
exchange both energy and particles; see Figure 4.1. After some time has elapsed, the system
and the reservoir are supposed to attain a state of mutual equilibrium. Then, according
to Section 1.3, the system and the reservoir will have a common temperature T and a
common chemical potential ;. The fraction of the total number of particles N and the
fraction of the total energy E(® that the system A can have at any time ¢ are, however,
variables (whose values, in principle, can lie anywhere between zero and unity). If, at a
particular instant of time, the system A happens to be in one of its states characterized by
the number N, of particles and the amount E; of energy, then the number of particles in
the reservoir would be N, and its energy E, such that

Ny +N.=N© = const. 1)

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00004-9 9 1
© 2011 Elsevier Ltd. All rights reserved.
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FIGURE 4.1 A statistical system immersed in a particle—energy reservoir.

and
Es+E,=E® = const. )
Again, since the reservoir is supposed to be much larger than the given system, the values

of N, and E; that are going to be of practical importance will be very small fractions of the
total magnitudes N® and E, respectively; therefore, for all practical purposes,’

Ny N
NO = (1 ~NO «1 3)
and
Es E,
50 = (1 Q) < 1. 4)

Now, in the manner of Section 3.1, the probability P, that, at any time ¢, the sys-
tem A is found to be in an (N, Es)-state would be directly proportional to the number
of microstates €'(N;,E;) that the reservoir can have for the corresponding macrostate
(N}, Eg). Thus,

Prsx 2 (NO - N, EO — E). (5)
Again, in view of (3) and (4), we can write

InQ'NO® - N, EQ —E) =InQ' (N©,E®)

+<81n$2’) ( NH_(aan/) (—E+
oN’ N/'=N©) r oE’ E'=E©) s

w 1

~InQ' N, E® Ny — —
mE N Tk

Es; (6)

see equations (1.2.3), (1.2.7), (1.3.3), and (1.3.5). Here, ' and T’ are, respectively, the
chemical potential and the temperature of the reservoir (and hence of the given system

!Note that A here could well be a relatively small “part” of a given system A©, while A’ represents the “rest” of A®.,
That would give a truly practical perspective to the grand canonical formalism.
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as well). From (5) and (6), we obtain the desired result:

Py s < exp (—aNy — BEy), @)
where

a=—u/kT, B=1/kT. 8)

On normalization, it becomes

exp (—aNy — BEs)
Py = ; 9
"= T exp(—aN; - BE;) ®

[
the summation in the denominator goes over all the (NN, E;)-states accessible to the
system A. Note that our final expression for P, is independent of the choice of the
reservoir.

We shall now examine the same problem from the ensemble point of view.

4.2 A system in the grand canonical ensemble

We now visualize an ensemble of V" identical systems (which, of course, can be labeled as
1,2,...,s/) mutually sharing a total number of particles® &N N and a total energy N E. Let
ny,s denote the number of systems that have, at any time ¢, the number N, of particles and
the amount E; of energy (r,s =0, 1,2,...); then, obviously,

D onrs=N, (1a)
r,Ss
> nrsNr =N, (1b)
s
and
anlsE‘g: eNE. (]-C)

s

Any set {n,}, of the numbers n, s, which satisfies the restrictive conditions (1), represents
one of the possible modes of distribution of particles and energy among the members
of our ensemble. Furthermore, any such mode of distribution can be realized in W{n,. ¢}
different ways, where

N!

W)= ey
s ’

)

2For simplicity, we shall henceforth use the symbols N and E instead of (N) and (E).
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We may now define the most probable mode of distribution, {n}gl, as the one that
maximizes expression (2), satisfying at the same time the restrictive conditions (1). Going
through the conventional derivation, see Section 3.2, we obtain for a large ensemble

n?,s _ exp (—aNy — BEs) 3)
N > exp(—aNy — BE;) '
TS

compare to the corresponding equation (3.2.10) for the canonical ensemble. Alternatively,
we may define the expectation (or mean) values of the numbers n, s, namely

Z/ ny,sWing,s}

{nr,s}

Y Winys) '

{nr,s}

4

(nr,s) =

where the primed summations go over all distribution sets that conform to conditions (1).
An asymptotic expression for (n,,) can be derived by using the method of Darwin and
Fowler — the only difference from the corresponding derivation in Section 3.2 being that,
in the present case, we will have to work with functions of more than one (complex)
variable. The derivation, however, runs along similar lines, with the result

Lim (nr.s) - nj,s _ €&Xp (—aNy — BEy)

Nooco N N _Zexp(—OINr—,BEs), ©
TS

in agreement with equation (4.1.9). The parameters « and g, so far undetermined, are
eventually determined by the equations

NS
>_exp (—aN; — BEs)
7,

> Nyexp(—aNy — BEy) 5
= {anexp (—aN; - ,BEs)} (6)

ns

and

> Esexp (—aN; — BEs)

T s . _i . -
E= S exp(—aN; —BEy) 0B {ln;exl)( aNy ﬂEs)} , )
ns y

where the quantities N and E here are supposed to be preassigned.
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4.3 Physical significance of the various
statistical quantities

To establish a connection between the statistics of the grand canonical ensemble and the
thermodynamics of the system under study, we introduce a quantity g, defined by

g=In Zexp(—aNr—ﬂEs) ; 1)

r,s

the quantity ¢ is a function of the parameters o and g, and also of all the E;.® Taking the
differential of g and making use of equations (4.2.5), (4.2.6), and (4.2.7), we get

dg=—Ndo — Edp — % Z(nr,s) dE;, @
T,

so that
— — - _ 1
d(g+aN+BE) =8 (ZdNerE— WZ(n,@d&). 3)
S

To interpret the terms appearing on the right side of this equation, we compare the
expression enclosed within the parentheses with the statement of the first law of thermo-
dynamics, that is,

8Q=dE +8W — dN, (4)

where the various symbols have their usual meanings. The following correspondence now
seems inevitable:

1
oW =—— > (nrg)dEs, p=—a/p, 5)
s
with the result that
d(q+aN + BE) = BSQ. (6)

The parameter 8, being the integrating factor for the heat §Q, must be equivalent to the
reciprocal of the absolute temperature T, so we may write

B =1/kT 7
and, hence,
a=—u/kT. (8)

3This quantity was first introduced by Kramers, who called it the g-potential.
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The quantity (g +«N + BE) would then be identified with the thermodynamic variable
S/k; accordingly,
S~ = TS+ uN —E
q=7 —aN-pE=—— 7. 9)
However, uN is identically equal to G, the Gibbs free energy of the system, and hence to
(E — TS+ PV). So, finally,

PV

g=In Zexp (—aN; — BEg) § = T (10

s

Equation (10) provides the essential link between the thermodynamics of the given sys-
tem and the statistics of the corresponding grand canonical ensemble. It is, therefore, a
relationship of central importance in the formalism developed in this chapter.

To derive further results, we prefer to introduce a parameter z, defined by the relation

z=e"% = gt/kT, (11)

the parameter z is generally referred to as the fugacity of the system. In terms of z, the
g-potential takes the form

qzln{ZereﬁEs} (12)

s

=In i 2N Qu, (v, T)} (with Qp=1), (13)
Ny=0
SO we may write
q(z,V,T)=InQ(z,V,T), (14)
where
Qi V,T) = i ZNrQn, (V,T)  (with Qo = 1). (15)
Ny=0

Note that, in going from expression (12) to (13), we have (mentally) carried out a sum-
mation over the energy values E;, with N, fixed, thus giving rise to the partition function
Qn, (V,T); of course, the dependence of Qn, on V comes from the dependence of the E;
on V. In going from (13) to (14), we have (again mentally) carried out a summation over all
the numbers N, =0,1,2,---, 00, thus giving rise to the grand partition function Q(z,V,T)
of the system. The g-potential, which we have already identified with PV /kT, is, therefore,
the logarithm of the grand partition function.
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It appears that in order to evaluate the grand partition function @(z, V, T) we have to
go through the routine of evaluating the partition function Q(N, V, T). In principle, this is
indeed true. In practice, however, we find that on many occasions an explicit evaluation
of the partition function is extremely hard while considerable progress can be made in
the evaluation of the grand partition function. This is particularly true when we deal with
systems in which the influence of quantum statistics and/or interparticle interactions is
important; see Sections 6.2 and 10.1. The formalism of the grand canonical ensemble then
proves to be of considerable value.

We are now in a position to write down the full recipe for deriving the leading ther-
modynamic quantities of a given system from its g-potential. We have, first of all, for the
pressure of the system

kT kT
PV, 1) =-4&V,T) = - In@& V,T). (16)

Next, writing N for N and U for E, we obtain with the help of equations (4.2.6), (4.2.7),
and (11)

NG V,T) = z[iq(z, v, T)] - kT[iqw, v, T)} a7)
9z v, T ou v,T
and
Uz, V,T)=— [i @V T)] = kT? [i zV T)] (18)
»y Vo - 3/36’ ) ’ oV - 8Tq y » ZYV-

Eliminating z between equations (16) and (17), one obtains the equation of state, that is,
the (P, V, T)-relationship, of the system. On the other hand, eliminating z between equa-
tions (17) and (18), one obtains U as a function of N, V, and T, which readily leads to the
specific heat at constant volume as (dU/3T)n,v. The Helmholtz free energy is given by the
formula

A=Nu—PV=NkThhz-kTInQ(z,V,T)

Qz,V,T)

= —kTIn =" (19)

which may be compared with the canonical ensemble formula A= —kTInQ(N, V,T); see
also Problem 4.2. Finally, we have for the entropy of the system

U-A aq
S= — = kT <ﬁ>z,v — Nklnz+ kq. (20)
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4.4 Examples

We shall now study a couple of simple problems, with the explicit purpose of demonstrat-
ing how the method of the g-potential works. This is not intended to be a demonstration of
the power of this method, for we shall consider here only those problems that can be solved
equally well by the methods of the preceding chapters. The real power of the new method
will become apparent only when we study problems involving quantum-statistical effects
and effects arising from interparticle interactions; many such problems will appear in the
remainder of the text.

The first problem we propose to consider here is that of the classical ideal gas. In
Section 3.5 we showed that the partition function Qn(V,T) of this system could be
written as

Q1 (V, DN

@

where Q;(V,T) may be regarded as the partition function of a single particle in the sys-
tem. First of all, we should note that equation (1) does not imply any restrictions on
the particles having internal degrees of motion; those degrees of motion, if present,
would affect the results only through Q;. Second, we should recall that the factor N!
in the denominator arises from the fact that the particles constituting the gas are, in
fact, indistinguishable. Closely related to the indistinguishability of the particles is the
fact that they are nonlocalized, for otherwise we could distinguish them through their
very sites; compare, for instance, the system of harmonic oscillators, which was studied
in Section 3.8. Now, since our particles are nonlocalized they can be anywhere in the
space available to them; consequently, the function Q; will be directly proportional
toV:

Qu(V,T) =Vf(D), )

where f(T) is a function of temperature alone. We thus obtain for the grand partition
function of the gas

[e%s) 00 V(T Ny
Qe V., D= QN (V. T)= ) {Zf]f,i,”
Ny=0 Ny=0 "
=exp {zVf(T)}, (3)

which gives
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Formula (4.3.16) through (4.3.20) then lead to the following results:

P =zkTf(T), 5)
N =zVf(T), (6)
U = zVKT?*f'(T), (7
A= NkTInz— zVKTf(T), (8)
and
S = —NkInz+ zVk{Tf (T) + f(T)}. )

Eliminating z between (5) and (6), we obtain the equation of state of the system:
PV = NkT. (10)

We note that equation (10) holds irrespective of the form of the function f(T). Next,
eliminating z between (6) and (7), we obtain

U = NkT*f'(T)/f(T), 11
which gives

/ 2 1/ / 2
o — 2T (D + T2 DS (D) — [ (D)
[f (112

(12)

In simple cases, the function f(T) turns out to be directly proportional to a certain
power of T. Supposing that f(T) « T", equations (11) and (12) become

U = n(NkT) (11a)
and
Cy = n(Nk). (12a)

Accordingly, the pressure in such cases is directly proportional to the energy density of the
gas, the constant of proportionality being 1/n. The reader will recall that the case n = 3/2
corresponds to a nonrelativistic gas while n = 3 corresponds to an extreme relativistic one.

Finally, eliminating z between equation (6) and equations (8) and (9), we obtain A
and S as functions of N,V, and T. This essentially completes our study of the classical
ideal gas.

The next problem to be considered here is that of a system of independent, localized
particles — a model which, in some respects, approximates a solid. Mathematically, the
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problem is similar to that of a system of harmonic oscillators. In either case, the micro-
scopic entities constituting the system are mutually distinguishable. The partition function
Qn(V,T) of such a system can be written as

Qn(V,T) =[Qu(V,DI". (13)

At the same time, in view of the localized nature of the particles, the single-particle par-
tition function Q; (V, T) is essentially independent of the volume occupied by the system.
Consequently, we may write

Qu(V,T) =¢(D), (14)

where ¢ (T) is a function of temperature alone. We then obtain for the grand partition
function of the system

Q= V,T)= ) [ep(DNV =[1-2¢(D]™"; (15)
Ny=0

clearly, the quantity z¢(T) must stay below unity, so that the summation over N, is
convergent.

The thermodynamics of the system follows straightforwardly from equation (15). We
have, to begin with,

T T
P= kvq(z, T) :—%ln{l—zd:(T)}. (16)
Since both z and T are intensive variables, the right side of (16) vanishes as V — oco. Hence,
in the thermodynamic limit, P = 0.* For other quantities of interest, we obtain, with the

help of equations (4.3.17) through (4.3.20),

=291
N = T—26(D)’ (17)
_ zkT2¢/(T)
=TT —26 (D)’ (18)
A=NkTInz+ kTIn{1 —z¢(T)}, 19)
and
o B B zkT¢' (T)
S=—Nklnz— kIn{l —z¢(T)} + 120D —26D)" (20)
From (17), we get
T) = N ~1 ! N>1 (21)
zp( )—TH— N (N> 1).

*It will be seen in the sequel that P actually vanishes like (InN)/N.
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It follows that
1 1
Equations (17) through (20) now give
U/N =KkT?¢/(T)/¢(T), (18a)
A/N = —kTIn¢(T) + O(lnTN) (19a)
and
, InN
S/Nk=In¢(T)+ T¢ (T)/¢(T)+O<T>. (20a)
Substituting
#(T) = [2sinh(hw/2kT)] ! (23)

into these formulae, we obtain results pertaining to a system of quantum-mechanical,
one-dimensional harmonic oscillators. The substitution

¢(T) = kT /hw, (24)

on the other hand, leads to results pertaining to a system of classical, one-dimensional
harmonic oscillators.

As a corollary, we examine here the problem of solid-vapor equilibrium. Consider a
single-component system, having two phases — solid and vapor — in equilibrium, con-
tained in a closed vessel of volume V at temperature T. Since the phases are free to
exchange particles, a state of mutual equilibrium would imply that their chemical poten-
tials are equal; this, in turn, means that they have a common fugacity as well. Now, the
fugacity zg of the gaseous phase is given by, see equation (6),

Ng

=—=—) 25
%8 = V(1) =

where Ny is the number of particles in the gaseous phase and Vi the volume occupied by
them; in a typical case, Vg >~ V. The fugacity z; of the solid phase, on the other hand, is
given by equation (21):

1
~ —_ 26
R (26)

Equating (25) and (26), we obtain for the equilibrium particle density in the vapor phase

Ng/Vg =f(T)/¢(T). 27)
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Now, if the density in the vapor phase is sufficiently low and the temperature of the system
sufficiently high, the vapor pressure P would be given by

VD)

Pyapor = g kT kT¢(T)

(28)

To be specific, we may assume the vapor to be monatomic; the function f(7T) is then of
the form

f(T) = @amkT)3? k3. (29)

On the other hand, if the solid phase can be approximated by a set of three-dimensional
harmonic oscillators characterized by a single frequency w (the Einstein model), the
function ¢ (T) would be

¢ (T) = [2sinh(hw/2kT)] 3. (30)

However, there is one important difference here. An atom in a solid is energetically more
stabilized than an atom that is free — that is why a certain threshold energy is required to
transform a solid into separate atoms. Let ¢ denote the value of this energy per atom, which
in a way implies that the zeros of the energy spectra sg and &5, which led to the functions
(29) and (30), respectively, are displaced with respect to one another by an amount ¢. A true
comparison between the functions f(T) and ¢ (T) must take this into account. As a result,
we obtain for the vapor pressure

2nmkT

3/2
7 ) [2sinh(hw/2kT)]3e¢/kT 31)

Pvapor = kT(

In passing, we note that equation (27) also gives us the necessary condition for the
formation of the solid phase. The condition clearly is:

f(
N>V—k=-=- 32
(1)’ o2
where N is the total number of particles in the system. Alternatively, this means that
T<T,, (33)
where T, is a characteristic temperature determined by the implicit relationship
f(Ty) N
= —_—, 34
T V G4

Once the two phases appear, the number Ng(T) will have a value determined by equa-
tion (27) while the remainder, N — Ng, will constitute the solid phase.
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4.5 Density and energy fluctuations in the grand
canonical ensemble: correspondence
with other ensembles

In a grand canonical ensemble, the variables N and E, for any member of the ensemble,
can lie anywhere between zero and infinity. Therefore, on the face of it, the grand canoni-
cal ensemble appears to be very different from its predecessors — the canonical and the
microcanonical ensembles. However, as far as thermodynamics is concerned, the results
obtained from this ensemble turn out to be identical to the ones obtained from the other
two. Thus, in spite of strong facial differences, the overall behavior of a given physical sys-
tem is practically the same whether it belongs to one kind of ensemble or another. The
basic reason for this is that the “relative fluctuations” in the values of the quantities that
vary from member to member in an ensemble are practically negligible. Therefore, in spite
of the different surroundings that different ensembles provide to a given physical system,
the overall behavior of the system is not significantly affected.

To appreciate this point, we shall evaluate the relative fluctuations in the particle den-
sity n and the energy E of a given physical system in the grand canonical ensemble.
Recalling that

ZNrefotNrfﬁEs

— T,s
N= "5 oaN—pE M
r,s
it readily follows that
(22’) — N24+N @)
/S’ES
Thus
(AN)ZENZ—N2=—<8N) =IcT<8N> . 3)
oo L
TV T,V

From (3), we obtain for the relative mean-square fluctuation in the particle density
n(=N/V)

An)? AN)2 kT [N
(Am? _(AN) :<> . @
T,V

In terms of the variable v (= V/N), we may write

(An)2  kTV? (3(V/v) kT [ ov
7 vz w Jrv Vv \ou/r
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To put this result into a more practical form, we recall the thermodynamic relation
du =vdP —sdT, 6)

according to which du (at constant T) = vdP. Equation (5) then takes the form

2
(an? kT1<au) _kr -
T

72 Vu\oP v
where «7 is the isothermal compressibility of the system.

Thus, the relative root-mean-square fluctuation in the particle density of the given sys-
tem is ordinarily O(N —1/2y and, hence, negligible. However, there are exceptions, like the
ones met with in situations accompanying phase transitions. In those situations, the com-
pressibility of a given system can become excessively large, as is evidenced by an almost
“flattening” of the isotherms. For instance, at a critical point the compressibility diverges,
so it is no longer intensive. Finite-size scaling theory described in Chapters 12 and 14 indi-
cates that at the critical point the isothermal compressibility scales with system size as
Kk (Te) ~ NY/4 where y and v are certain critical exponents and d is the dimension. For
the case of experimental liquid-vapor critical points, «,(T;) ~ N%63, Accordingly, the root-
mean-square density fluctuations grow faster than N'/?2 — in this case, like N%82, Thus,
in the region of phase transitions, especially at the critical points, we encounter unusu-
ally large fluctuations in the particle density of the system. Such fluctuations indeed exist
and account for phenomena like critical opalescence. It is clear that under these circum-
stances the formalism of the grand canonical ensemble could, in principle, lead to results
that are not necessarily identical to the ones following from the corresponding canonical
ensemble. In such cases, it is the formalism of the grand canonical ensemble that will have
to be preferred because only this one will provide a correct picture of the actual physical
situation.

We shall now examine fluctuations in the energy of the system. Following the usual
procedure, we obtain

(AER =F2—-F = —(aE) = kT? (ﬂ) . (8)
2,V aT z,V

To put expression (8) into a more comprehensible form, we write

oU oUu oU oN
Z) =(55) +(5e) (mr) ©)
oT ) ,v oT Jnv IN/ry\oT ),y

where the symbol N is being used interchangeably for N. Now, in view of the fact that

N:—(iln(,‘l> , U:—(iln(,‘l> , (10)
Ja ,BIV 3/3 a,V
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we have

(5 ).~ () a
Bﬂ a,V - Jo B,V

(ﬂ) _l(ﬂ) (12)
T )y T\ou /)1y

Substituting expressions (9) and (12) into equation (8) and remembering that the quantity
(dU/3T)n,v is the familiar Cy, we get

and, hence,

— U oU
AE)? = kT?C +kT<—> <7) ) 13
(AE) v N )y \an )y (13)
Invoking equations (3.6.3) and (3), we finally obtain
— U QN
(AE)2 = ((AE)*)can + { (W) } (AN)2. (14)
T,V

Formula (14) is highly instructive; it tells us that the mean-square fluctuation in the
energy E of a system in the grand canonical ensemble is equal to the value it would
have in the canonical ensemble plus a contribution arising from the fact that now the
particle number N is also fluctuating. Again, under ordinary circumstances, the relative
root-mean-square fluctuation in the energy density of the system would be practically
negligible. However, in the region of phase transitions, unusually large fluctuations in the
value of this variable can arise by virtue of the second term in the formula.

4.6 Thermodynamic phase diagrams

One of the great successes of thermodynamics and statistical mechanics over the last 150
years has been in the study of phase transitions. Statistical mechanics provides the basis
for accurate models for a wide variety of thermodynamic phases of materials and has led
to a detailed understanding of phase transitions and critical phenomena.

Condensed materials exist in a variety of phases that depend on thermodynamic
parameters such as temperature, pressure, magnetic field, and so on. Thermodynamics
and statistical mechanics can be used to determine the properties of individual phases,
and the locations and characteristics of the phase transitions that occur between those
phases. Thermodynamic phases are regions in the phase diagram where the thermody-
namics properties are analytic functions of the thermodynamic parameters, while phase
transitions are points, lines, or surfaces in the phase diagram where the thermodynamic
properties are nonanalytic. Much of the remainder of this text is devoted to using statistical
mechanics to explain the properties of material phases and phase transitions.
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(

FIGURE 4.2 Sketches (not-to-scale) of the P-T (a) and P-V (b) phase diagrams for argon. This geometry is generic
for a wide range of materials. The letters S, L, and V denote solid, liquid, and vapor phases.

It is instructive to examine the structure of phase diagrams. Argon provides a good
example because the structure of its phase diagram is similar to that of many other mate-
rials (see Figure 4.2). At moderate temperatures and pressures, the stable thermodynamic
phases of argon are solid, liquid, and vapor. At high temperatures there is a supercritical
fluid phase that smoothly connects the liquid and vapor phases. Most materials, includ-
ing argon, exhibit multiple solid phases especially at high pressures and low temperatures.
Figure 4.2(a) is the phase diagram in the P-T plane and shows the solid-liquid coexis-
tence line, the liquid—vapor coexistence line, and the solid-vapor coexistence line. The
three lines meet at the triple point (7%, P;) and the liquid—vapor coexistence line ends at
the critical point (T;, P;). The triple point values and critical point values for argon are
T; =83.8K, P; =68.9 kPa, T, = 150.7 K, and P, = 4.86 MPa, respectively.

Figure 4.2(b) is the phase diagram in the P-V plane and shows the pressure versus the
specific volume v(= V/N) on the coexistence lines. The dashed lines indicate the triple
point pressure and critical pressure in both figures. The horizontal tie lines are the por-
tions of isotherms as they cross coexistence lines and show the discontinuities of v. The tie
lines in order from bottom to top are: sublimation tie lines connecting the solid and vapor
phases, the triple point tie line that connects all three phases, and a series of solid-liquid
and liquid—vapor tie lines. Notice that the liquid and vapor specific volumes continuously
approach each other and are both equal to the critical specific volume v, at the critical
point.

The properties of the vapor, liquid, and solid phases are:

e The vapor phase is a low-density gas that is accurately described by the ideal-gas
equation of state P = nkT with corrections that are described by the virial expansion;
see Chapters 6 and 10.
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e Theliquid phase is a dense fluid with strong interactions between the atoms. The
fluid exhibits characteristic short-range pair correlations and scattering structure,
as discussed in Section 10.7. The structure factor and the pair correlation function
for argon, as determined from neutron scattering, are shown in Figure 10.8. For
temperatures above the critical temperature 7, one cannot distinguish between liquid
and vapor. The density in this supercritical phase is a smooth function of temperature
and pressure from the low-density vapor to the high-density liquid. Virial expansions
developed in Sections 10.1 through 10.3 aptly describe the supercritical region. Strictly
speaking, one can only distinguish between the liquid and vapor phases on the
liquid-vapor coexistence line since it is possible to evolve smoothly from one phase
to the other without crossing a phase boundary.

¢ The solid phase is a face-centered cubic crystal structure with long-range order, so the
scattering structure factor displays Bragg peaks as described in Section 10.7.B. The
thermodynamic properties of solid phases are described in Section 7.3.

All equilibrium thermodynamic properties within a single phase are analytic func-
tions of the thermodynamic parameters while phase transitions are defined as places in
the phase diagram where equilibrium thermodynamic properties are not analytic. Coexis-
tence lines, or first-order phase transition lines, separate different phases in the P-T phase
diagram as shown in Figure 4.2(a). Thermodynamic densities are discontinuous across
coexistence lines. This is displayed on the P-V phase diagram in Figure 4.2(b) by hori-
zontal tie lines that connect different values the specific volume takes in the two phases.
Generally, all densities such as the specific volume v = V /N, entropy per particle s = S/N,
internal energy density u = U/V, and so on, are discontinuous across first-order phase
transition lines. The slopes of the coexistence lines in the P-V phase diagram depend
on the latent heat of the transition and the specific volumes of the coexisting phases; see
Section 4.7. All three phases coexist at the triple point.

The liquid-vapor coexistence line extends from the triple point to the critical point at
the end of the first-order phase transition line. The specific volume is discontinuous on the
liquid—vapor coexistence line but the size of the discontinuty vanishes at the critical point
where the specific volume is v.; see Figure 4.2(b). All densities are continuous functions
of T and P through the critical point. For this reason, critical points are called continuous
transitions or, sometimes, second-order phase transitions. Even though thermodynamic
densities are continuous, the thermodynamic behavior at the critical point is nonanalytic
since, for example, the specific heat and isothermal compressibility both diverge at the
critical point. Another characteristic property of critical points is the divergence of the cor-
relation length, which results in a universal behavior of critical points for broad classes of
materials. The theory of critical points is developed in Chapters 12, 13, and 14.

Classical statistical mechanics provides a framework for understanding the phase dia-
grams and thermodynamic properties of a wide variety of materials. However, quantum
mechanics and quantum statistics play an important role at low temperatures when the
size of the thermal deBroglie wavelength A = h/v27mkT is of the same order as the



108 Chapter 4 » The Grand Canonical Ensemble

_S//
Ps

superfluid

A TC
T

P, L

'
1
'
1
'
'
l
'
'
'
'
'
'
'
'
'
'
'
'
'
l
'
'

FIGURE 4.3 Sketch of the P-T phase diagram for helium-4. The letters S, L, and V denote solid, liquid, and vapor
phases. The critical point is T, =5.19K and P, = 227kPa = 2.24 atm. The solid-liquid coexistence curve starts at
Pg=2.5MPa =25atm at T = 0K and does not intersect the liquid—vapor coexistence curve. The A-line is the
continuous phase transition between the normal liquid and the superfluid phase. The superfluid phase transition
temperature at the liquid-vapor coexistence line is T = 2.18K.

average distance between molecules. This is the case with liquid helium at temperatures
below a few degrees kelvin. The phase diagram of helium-4 is shown in Figure 4.3. Some
aspects of the phase diagram are similar to the phase diagram of argon. Both helium
and argon have liquid—-vapor coexistence lines that end in critical points and both have
crystalline solid phases at low temperatures.

Three differences between the two phase diagrams are most notable: the solid phase
for helium only exists for pressures greater than P; = 2.5GPa = 25atm, the liquid phase of
helium extends all the way to zero temperature, and helium-4 exhibits a superfluid phase
below T; =2.18K. The superfluid phase exhibits remarkable properties: zero viscosity,
quantized flow, propagating heat modes, and macroscopic quantum coherence. This
extraordinary behavior is due to the Bose-Einstein statistics of “He atoms and a Bose-
Einstein condensation into a macroscopic quantum state as discussed in Sections 7.1 and
11.2 through 11.6. Even the solid phase of helium-4 shows evidence of a macroscopic
quantum state with the observation of a “supersolid” phase by Kim and Chan (2004).

By contrast, 3He atoms obey Fermi-Dirac statistics and display very different behav-
iors from “He atoms at low temperatures. The geometry of the phase diagram of helium-3
is similar to that of helium-4 except that the critical temperature is lower (T, = 3.35K
compared to 5.19K) and the solid phase forms at 30 atm of pressure rather than 25atm.
The dramatic difference is the lack of a superfluid phase near 1K in helium-3. Helium-
3 remains a normal liquid all the way down to about 10 millikelvin. The properties of the
normal liquid phase of helium-3 are described by the theory of degenerate Fermi gases and
the Fermi liquid theory developed in Chapter 8 and Sections 11.7 and 11.8. The superfluid
state that forms at millikelvin temperatures is the result of Bardeen, Cooper, and Schrieffer

(BCS) p-wave pairing between atoms near the Fermi surface; this pairing is discussed in
Section 11.9.
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4.7 Phase equilibrium and the Clausius—Clapeyron
equation

The thermodynamic properties of the phases of a material determine the geometry of the
phase diagram. In particular, the Gibbs free energy

G(N,P,T) = U — TS+ PV = A+ PV = u(P,T)N 1)

determines the locations of the phase boundaries. Note that the chemical potential is the
Gibbs free energy per molecule; see Problem 4.6 and Appendix H. Consider a cylinder con-
taining NV molecules held at constant pressure P and constant temperature 7, that is, in an
isothermal, isobaric assembly. Suppose the cylinder initially contains two phases: vapor
(A) and liquid (B) so that the total number of molecules is N = Ny + N and the Gibbs
free energy is G = Gao(Na, P, T) + Gg(INg, P, T). If the two phases do not coexist at this pres-
sure and temperature, the numbers of molecules in each phase will change as the system
approaches equilibrium. As the number of molecules in each phase changes, the Gibbs
free energy changes by an amount

dG = <%)T,pdNA+ (%)T,PdNB = (1A — uB)dN, )
where dN, is the change in the number of molecules in phase A.

The Gibbs free energy is minimized at equilibrium, so dG < 0. If ua > ug, the number
of molecules in phase B will increase and the number in phase A will decrease as the sys-
tem approaches equilibrium. If ua < up, the number of molecules in phase A will increase
and the number in phase B will decrease. If the chemical potentials are equal, the Gibbs
free energy is independent of the number of molecules in the two phases. Therefore, the
chemical potentials are equal at coexistence:

HA = UB- 3)

Let’s consider the familiar example of water. At normal pressures and temperatures,
water has three phases: liquid water, solid ice, and water vapor, and its P-T phase diagram
is similar to that shown for argon in Figure 4.2(a) — the P-V phase diagram for water is
somewhat different because the density of the liquid phase is larger than the density of
the solid ice phase; see Problems 4.15 and 4.20. At P = 1 atm, water and water vapor coex-
istat T =100°C, the “boiling point” — while boiling is a nonequilibrium process, boiling
begins at the temperature at which the equilibrium vapor pressure is equal to the local
atmospheric pressure. Consider a two-phase sample of water and water vapor at T = 99°C.
A two-phase sample containing both liquid water and water vapor is easy to create in a
constant volume assembly. If there is sufficient volume available, liquid water will evapo-
rate until the water vapor pressure reaches the coexistence pressure at that temperature
P,(99°C) = 0.965atm. If the applied pressure is then increased to, and held constant at,
P = 1atm while maintaining a constant temperature of T = 99°C, the system will be out
of equilibrium. At constant pressure, the system will return to equilibrium by decreasing
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its volume as water vapor condenses into the liquid phase until the the system is com-
pletely liquid water. This lowers the Gibbs free energy until it has the equilibrium value
determined by the chemical potential of liquid water at this pressure and temperature.

On the other hand, if T=100°C and P = 1atm, the chemical potentials of the liquid
and vapor phases are equal, so any combination of water vapor and liquid water has the
same Gibbs free energy. The proportion of water and vapor will change as heat is added
or removed. The latent heat of vaporization of water L, = 540 cal/g = 2260kJ /kg is the heat
needed to convert liquid into vapor.

The coexistence pressure P, (T) defines the phase boundary between any two phases
in the P-T plane, as shown in Figure 4.2(a). From equation (3), the coexistence pressure
obeys

paPo (1), T) = pg(Po (1), T). 4

The derivatives of the chemical potentials are related by

3MA> <3MA> dP, (8/~LB> <3MB) dP,
— ] +|( =5 =\—-=) +|=5n ) ®)
(BTP aP ), dT oT Jp "\ 0P ) dT
while the entropy per particle s = S/N and specific volume v = V/N are given by
__ (%
= <8T)P’ (©2)
(o) .
'= <8P>T’ (6b)

see equation (4.5.6). Equations (5) and (6) give the Clausius—Clapeyron equation

dP, sp—sa As L
dT ~ vg—vs Av  TAV

Q]

where L = T As is the latent heat per particle. The slope of the coexistence curve depends
on the discontinuities of the entropy per particle and the volume per particle. Equation (7)
applies very generally to all first-order phase transitions and can be used to determine
the coexistence curve as a function of temperature; see Section 4.4, Problems 4.11, and
4.14 through 4.16.

At a triple point, the chemical potentials of three phases are equal:

HA = [AB = KC- ®)

The slopes of the three coexistence lines that define the triple point are related since
Asap+ Aspc + Asca =0 and Avag+ Avge + Avesa = 0. This guarantees that each coexis-
tence line between two phases at the triple point “points into” the third phase; see
Problem 4.17.
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Problems

4.1.

4.2,

4.3.

4.4.

4.5.

4.6.

4.7.

Show that the entropy of a system in the grand canonical ensemble can be written as

S= —kZPm InP;,
s

where P, s is given by equation (4.1.9).

In the thermodynamic limit (when the extensive properties of the system become infinitely large,
while the intensive ones remain constant), the g-potential of the system may be calculated by
taking only the largest term in the sum

> QN (V, T).

Ny=0

Verify this statement and interpret the result physically.

A vessel of volume V© contains N©®© molecules. Assuming that there is no correlation whatsoever

between the locations of the various molecules, calculate the probability, P(V, V), that a region of

volume V (located anywhere in the vessel) contains exactly N molecules.

(@) Showthat N=N©pand (AN);ms. = (NOp1 —p)}'/%, where p=V/ VO,

(b) Show that if both N©©p and N© (1 — p) are large numbers, the function P(N, V) assumes a
Gaussian form.

(c) Further,if p < 1and N « N, show that the function P(N, V) assumes the form of a Poisson

distribution:
@Y
P(N)=e¢e N
The probability that a system in the grand canonical ensemble has exactly N particles is given by
2NV, T)
N)y=————.
PN =4 v, T)

Verify this statement and show that in the case of a classical, ideal gas the distribution of particles
among the members of a grand canonical ensemble is identically a Poisson distribution. Calculate
the root-mean-square value of (AN) for this system both from the general formula (4.5.3) and from
the Poisson distribution, and show that the two results are the same.

Show that expression (4.3.20) for the entropy of a system in the grand canonical ensemble can also
be written as

a
S=k [ﬁ(Tq)]/L,V.

Define the isobaric partition function
1 o0
WP, T) = / Qn(V, Tye PPV av.
0

Show that in the thermodynamic limit the Gibbs free energy (4.7.1) is proportional to In Yx (P, T).
Evaluate the isobaric partition function for a classical ideal gas and show that PV = NkT. [The
factor of the cube of the thermal deBroglie wavelength, 13, serves to make the partition function
dimensionless and does not contribute to the Gibbs free energy in the thermodynamic limit.]
Consider a classical system of noninteracting, diatomic molecules enclosed in a box of volume V
at temperature T. The Hamiltonian of a single molecule is given by

H(r1,12,p1,P,) = L(pz+lnz)+ 1K|r1 1%
12 2m 1 2 2

Study the thermodynamics of this system, including the dependence of the quantity (r2,) on T.
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4.8.

4.9.

4.10.

4.12.

4.13.

4.14.

4.16.

Chapter 4 » The Grand Canonical Ensemble

Determine the grand partition function of a gaseous system of “magnetic” atoms (with J = % and
g = 2) that can have, in addition to the kinetic energy, a magnetic potential energy equal to upH
or —upH, depending on their orientation with respect to an applied magnetic field H. Derive an
expression for the magnetization of the system, and calculate how much heat will be given off by
the system when the magnetic field is reduced from H to zero at constant volume and constant
temperature.

Study the problem of solid—vapor equilibrium (Section 4.4) by setting up the grand partition
function of the system.

A surface with Ny adsorption centers has N(< Np) gas molecules adsorbed on it. Show that the
chemical potential of the adsorbed molecules is given by

N
w=kThh ———,
No — N)a(T)
where a(T) is the partition function of a single adsorbed molecule. Solve the problem by
constructing the grand partition function as well as the partition function of the system.
[Neglect the intermolecular interaction among the adsorbed molecules.]

. Study the state of equilibrium between a gaseous phase and an adsorbed phase in a single-

component system. Show that the pressure in the gaseous phase is given by the Langmuir
equation

Pg= x (a certain function of temperature),

1-6
where 6 is the equilibrium fraction of the adsorption sites that are occupied by the adsorbed
molecules.

Show that for a system in the grand canonical ensemble

— U\ ——s
{(NE)-NE) = (—) (AN)2.
N )1y

Define a quantity J as
J=E-Nu=TS—-PV.

Show that for a system in the grand canonical ensemble

2
—_— U —_—
2 _ 112 _ 2
(A? =kT CV+{(3N>T,V ,u} (AN)-.

Assuming that the latent heat of vaporization of water Ly = 2260k]J /kg is independent of
temperature and the specific volume of the liquid phase is negligible compared to the specific
volume of the vapor phase, vyapor = kT/P, (T), integrate the Clausius-Clapeyron equation (4.7.7)
to obtain the coexistence pressure as a function of temperature. Compare your result to the
experimental vapor pressure of water from the triple point to 200°C. The equilibrium vapor
pressure at 373K is 101kPa = 1 atm.

. Assuming that the latent heat of sublimation of ice Ls = 2500k]J /kg is independent of temperature

and the specific volume of the solid phase is negligible compared to the specific volume of the
vapor phase, vyapor = kT /P, (T), integrate the Clausius—Clapeyron equation (4.7.7) to obtain the
coexistence pressure as a function of temperature. Compare your result to the experimental vapor
pressure of ice from T = 0 to the triple point. The equilibrium vapor pressure at the triple point is
612Pa.

Calculate the slope of the solid-liquid transition line for water near the triple point T = 273.16K,
given that the latent heat of melting is 80 cal/g, the density of the liquid phase is 1.00g/cm?, and
the density of the ice phase is 0.92g/cm?. Estimate the melting temperature at P = 100 atm.
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. Show that the Clausius—Clapeyron equation (4.7.7) guarantees that each of the coexistence curves

at the triple point of a material “points into” the third phase; for example, the slope of the
solid-vapor coexistence line has a value in-between the slopes of the the the solid-liquid and
liquid—vapor coexistence lines.

. Sketch the P-V phase diagram for helium-4 using the sketch of the P-T phase diagram in

Figure 4.3.

. Derive the equivalent of the Clausius—Clapeyron equation (4.7.7) for the slope of the coexistence

chemical potential as a function of temperature. Use the fact that the pressures P(u, T) in two
different phases are equal on the coexistence curve.

Sketch the P-T and P-V phase diagrams of water, taking into account the fact that the mass
density of the liquid phase is larger than the mass density of the solid phase.
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Formulation of Quantum Statistics

The scope of the ensemble theory developed in Chapters 2 through 4 is extremely general,
though the applications considered so far were confined either to classical systems or to
quantum-mechanical systems composed of distinguishable entities. When it comes to
quantum-mechanical systems composed of indistinguishable entities, as most physical
systems are, considerations of the preceding chapters have to be applied with care. One
finds that in this case it is advisable to rewrite ensemble theory in a language that is more
natural to a quantum-mechanical treatment, namely the language of the operators and
the wavefunctions. Insofar as statistics are concerned, this rewriting of the theory may not
seem to introduce any new physical ideas as such; nonetheless, it provides us with a tool
that is highly suited for studying typical quantum systems. And once we set out to study
these systems in detail, we encounter a stream of new, and altogether different, physical
concepts. In particular, we find that the behavior of even a noninteracting system, such as
the ideal gas, departs considerably from the pattern set by the classical treatment. In the
presence of interactions, the pattern becomes even more complicated. Of course, in the
limit of high temperatures and low densities, the behavior of all physical systems tends
asymptotically to what we expect on classical grounds. In the process of demonstrating
this point, we automatically obtain a criterion that tells us whether a given physical sys-
tem may or may not be treated classically. At the same time, we obtain rigorous evidence in
support of the procedure, employed in the previous chapters, for computing the number,
T, of microstates (corresponding to a given macrostate) of a given system from the vol-
ume, o, of the relevant region of its phase space, namely I' ~ w/h/, where f is the number
of “degrees of freedom” in the problem.

5.1 Quantum-mechanical ensemble theory:
the density matrix

We consider an ensemble of & identical systems, where & > 1. These systems are char-
acterized by a (common) Hamiltonian, which may be denoted by the operator H. At time
t, the physical states of the various systems in the ensemble will be characterized by
the wavefunctions v (r;, ), where r; denote the position coordinates relevant to the sys-
tem under study. Let wk (r;,t) denote the (normalized) wavefunction characterizing the
physical state in which the kth system of the ensemble happens to be at time ¢; natu-
rally, k=1,2,...,s/. The time variation of the function I/Ik(t) will be determined by the

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00005-0 1 15
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Schrédinger equation’
Hy* @) = ing K (). 1)

Introducing a complete set of orthonormal functions ¢,, the wavefunctions v *(¢) may be
written as

VR0 =Y ay(n, )
n

where
ak(t) = / oLk (nde; 3)

here, ¢}, denotes the complex conjugate of ¢, while dr denotes the volume element of
the coordinate space of the given system. Clearly, the physical state of the kth system can
be described equally well in terms of the coefficients aX (). The time variation of these
coefficients will be given by

inak ) = ihf¢;;¢k(r)dr = /qﬁ;‘lﬁwk(t)dr
= / ¢;I€I{Za’,§1<r>¢m}dr
m
= Humap, (1), @)
m

where

Hpm = / ¢:Hpmdr. (5)

The physical significance of the coefficients aX(z) is evident from equation (2). They are
the probability amplitudes for the various systems of the ensemble to be in the various
states ¢y; to be practical, the number |cl’,“l(t)|2 represents the probability that a measure-
ment at time ¢ finds the kth system of the ensemble to be in the particular state ¢;. Clearly,
we must have

MlakmF =1 (forallk). 6)

We now introduce the density operator p(t), as defined by the matrix elements

N

pmn(t) = % > [a’,‘n(t)a’ft*(t)] ; )
k=1

clearly, the matrix element p;,,(¢) is the ensemble average of the quantity a,(t)a}(?),
which, as a rule, varies from member to member in the ensemble. In particular, the
diagonal element p,;,(f) is the ensemble average of the probability |a,(1)|?, the latter

1For simplicity of notation, we suppress the coordinates r; in the argument of the wavefunction y*.



5.1 Quantum-mechanical ensemble theory: the density matrix 117

itself being a (quantum-mechanical) average. Thus, we encounter here a double-averaging
process — once due to the probabilistic aspect of the wavefunctions and again due to the
statistical aspect of the ensemble. The quantity p,,(f) now represents the probability that
a system, chosen at random from the ensemble, at time ¢, is found to be in the state ¢,. In
view of equations (6) and (7),

> omn=1. ®
n

We shall now determine the equation of motion for the density matrix p, (). We
obtain, with the help of the foregoing equations,

N
() = — 3 [in [k a0+ abwak o]
k=1

N
1
=N ) H > Huaf (0 }a’,“,*(t) - a’fn(t){ ZH;’;laf*(t)”
k=1-% ;

= Z{Hmlpln(t) — pmi(OHip}
!

= (ﬁﬁ_ﬁﬁ)mm (9)

here, use has been made of the fact that, in view of the Hermitian character of the operator
H,H}, = Hp,. Using the commutator notation, equation (9) may be written as

ihp=1H,p]_. (10)

Equation (10) is the quantum-mechanical analog of the classical equation (2.2.10) of
Liouville. As expected in going from a classical equation of motion to its quantum-
meAchaIAlical counterpart, the Poisson bracket [p, H] has given place to the commutator
(oH — Hp)/ih.

If the given system is known to be in a state of equilibrium, the corresponding ensemble
must be stationary, thatis, o, = 0. Equations (9) and (10) then tell us that, for this to be the
case, (i) the density operator 4 must be an explicit function of the Hamiltonian operator &
(for then the two operators will necessarily commute) and (ii) the Hamiltonian must not
depend explicitly on time, that is, we must have (i) p = ,5(H ) and (ii) H = 0. Now, if the basis
functions ¢, were the eigenfunctions of the Hamiltonian itself, then the matrices H and
p would be diagonal:

Hmn = Endmn,  pmn = pndmn.- (11)?
2It may be noted that in this (so-called energy) representation the density operator p may be written as

A=Y Ibn)onidnl, (12)

for then

k1= Y _(Pk|bn) ondnldt) =Y Sknpndnr = picdir-

n n



118 Chapter 5 » Formulation of Quantum Statistics

The diagonal element p,, being a measure of the probability that a system, chosen at ran-
dom (and at any time) from the ensemble, is found to be in the eigenstate ¢, will naturally
depend on the corresponding eigenvalue E;, of the Hamiltonian; the precise nature of this
dependence is, however, determined by the “kind” of ensemble we wish to construct.

In any representation other than the energy representation, the density matrix may or
may not be diagonal. However, quite generally, it will be symmetric:

Pmn = Pnm- (13)

The physical reason for this symmetry is that, in statistical equilibrium, the tendency of a
physical system to switch from one state (in the new representation) to another must be
counterbalanced by an equally strong tendency to switch between the same states in the
reverse direction. This condition of detailed balancing is essential for the maintenance of
an equilibrium distribution within the ensemble.

Finally, we consider the expectation value of a physical quantity G, which is dynami-
cally represented by an operator G. This will be given by

1 & ks A k
(G) = W};/u/ *Gydr. (14)

In terms of the coefficients a¥,

1 N
G =— > { a’,g*a’,;c,,m] (15)
k=1Lm,n
where
Gnm = / ¢ Gomdr. (16)

Introducing the density matrix p, equation (15) becomes

(G)= ZPmnGnm = Z(ﬁé)mm = Tr(ﬁé) a7
m

m,n
Taking G= i, where 1 is the unit operator, we have
Tr(p) =1, (18)

which is identical to (8). It should be noted here that if the original wavefunctions ¥* were
not normalized then the expectation value (G) would be given by the formula

Tr(5G)
G =
Tr(p)

19)
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instead. In view of the mathematical structure of formulae (17) and (19), the expectation
value of any physical quantity G is manifestly independent of the choice of the basis {¢,},
as it indeed should be.

5.2 Statistics of the various ensembles
5.2.A The microcanonical ensemble

The construction of the microcanonical ensemble is based on the premise that the sys-
tems constituting the ensemble are characterized by a fixed number of particles N, a fixed
volume V, and an energy lying within the interval (E— 3A,E+1A), where A < E. The
total number of distinct microstates accessible to a system is then denoted by the sym-
bol I'(N, V,E; A) and, by assumption, any one of these microstates is as likely to occur as
any other. This assumption enters into our theory in the nature of a postulate and is often
referred to as the postulate of equal a priori probabilities for the various accessible states.

Accordingly, the density matrix p,, (which, in the energy representation, must be a
diagonal matrix) will be of the form

Pmn = Pndmn, (1
with

1/T for each of the accessible states,
on = 2)
0 for all other states;

the normalization condition (5.1.18) is clearly satisfied. As we already know, the thermody-
namics of the system is completely determined from the expression for its entropy which,
in turn, is given by

S=kInT. (3)

Since I', the total number of distinct, accessible states, is supposed to be computed
quantum-mechanically, taking due account of the indistinguishability of the particles right
from the beginning, no paradox, such as Gibbs’, is now expected to arise. Moreover, if
the quantum state of the system turns out to be unique (I' = 1), the entropy of the sys-
tem will identically vanish. This provides us with a sound theoretical basis for the hitherto
empirical theorem of Nernst (also known as the third law of thermodynamics).

The situation corresponding to the case I' = 1 is usually referred to as a pure case. In
such a case, the construction of an ensemble is essentially superfluous, because every sys-
tem in the ensemble has got to be in one and the same state. Accordingly, there is only one
diagonal element p;;, that is nonzero (actually equal to unity), while all others are zero. The
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density matrix, therefore, satisfies the relation
0% = p. (4)

In a different representation, the pure case will correspond to
1 N
o= Db’ = ®
k=1

because all values of k are now literally equivalent. We then have

2
Pin =D OmiPln = Y _ Am; aiay,
I 1

= ama;, (becauseZa;‘al = 1)

l

= Pmn- (6)

Relation (4) thus holds in all representations.

A situation in which " > 1 is usually referred to as a mixed case. The density matrix, in
the energy representation, is then given by equations (1) and (2). If we now change over to
any other representation, the general form of the density matrix should remain the same,
namely (i) the off-diagonal elements should continue to be zero, while (ii) the diagonal
elements (over the allowed range) should continue to be equal to one another. Now, had
we constructed our ensemble on a representation other than the energy representation
right from the beginning, how could we have possibly anticipated ab initio property (i)
of the density matrix, though property (ii) could have been easily invoked through a pos-
tulate of equal a priori probabilities? To ensure that property (i), as well as property (ii),
holds in every representation, we must invoke yet another postulate, namely the postulate
of random a priori phases for the probability amplitudes aX, which in turn implies that
the wavefunction wk, for all k, is an incoherent superposition of the basis {¢,}. As a con-
sequence of this postulate, coupled with the postulate of equal a priori probabilities, we
would have in any representation

N N
1 1 i(ok _ok
Pmn = N Zalrcnalrct* =N Z |a|zel(9m Gn)
k=1 k=1
= c<ei(9’]$179i]1c)>

= Cdmn, (7)

as it should be for a microcanonical ensemble.
Thus, contrary to what might have been expected on customary grounds, to secure the
physical situation corresponding to a microcanonical ensemble, we require in general two



5.2 Statistics of the various ensembles 121

postulates instead of one! The second postulate arises solely from quantum-mechanics
and is intended to ensure noninterference (and hence a complete absence of correlations)
among the member systems; this, in turn, enables us to form a mental picture of each
system of the ensemble, one at a time, completely disentangled from other systems.

5.2.B The canonical ensemble

In this ensemble the macrostate of a member system is defined through the parameters
N, V, and T; the energy E is now a variable quantity. The probability that a system, chosen
at random from the ensemble, possesses an energy E; is determined by the Boltzmann
factor exp (—BE;), where g =1/kT; see Sections 3.1 and 3.2. The density matrix in the
energy representation is, therefore, taken as

omn = PnSmn, (8)
with
pn = Cexp (—BEp); n=0,1,2,... 9

The constant C is determined by the normalization condition (5.1.18), whereby

1 1
C: = ,
2_exp(—BEn)  Qn(B)
n

(10)

where Qn(B) is the partition function of the system. In view of equations (5.1.12), see
footnote 2, the density operator in this ensemble may be written as

1
p Zn o) e !

1 A
= —PH n/\Pn
B ;w }(@nl
N —BH
L e (11)
On(B) Tr (eFH)

for the operator ), |¢n)(¢n| is identically the unit operator. It is understood that the
operator exp (—gH) in equation (11) stands for the sum

ad (BH)I
S i I,{) : (12)

j=0
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The expectation value (G)y of a physical quantity G, which is represented by an operator
G, is now given by
. 1 A7
G)n =Tr(pG) = ——Tr(Ge PH
Gy =Tr(pG) = ZsTr(Ge™)
Tr(@e*ﬁﬁ )
=— (13)
Tr(e—FH)
the suffix N here emphasizes the fact that the averaging is being done over an ensemble
with N fixed.

5.2.C The grand canonical ensemble

In this ensemble the density operator o operates on a Hilbert space with an indefi-
nite number of particles. The density operator must therefore commute not only with
the Hamiltonian operator H but also with a number operator 7 whose eigenvalues are
0,1,2,.... The precise form of the density operator can now be obtained by a straightfor-
ward generalization of the preceding case, with the result

1

—B(H—uh) 14
auwVv,n° ’ (14

=
where

Qw,V,T) = Ze—ﬁ(Er—V-Ns) — Tr{e_ﬁ(H_“ﬁ)}. (15)

s
The ensemble average (G) is now given by

1

- Ap—BH pBuit
= 8GV T)Tr(Ge el

(G)

> Z2N(GNQN(B)
= N=0 , (16)

o0

> Z2NQN(B)

N=0

where z(= eP*) is the fugacity of the system while (G) is the canonical-ensemble average,
as given by equation (13). The quantity @(u, V, T) appearing in these formulae is, clearly,
the grand partition function of the system.

5.3 Examples
5.3.A An electron in a magnetic field

We consider, for illustration, the case of a single electron that possesses an intrinsic spin
%h& and a magnetic moment up, where ¢ is the Pauli spin operator and up = efi/2mc.
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The spin of the electron can have two possible orientations, 4 or |, with respect to an
applied magnetic field B. If the applied field is taken to be in the direction of the z-axis, the
configurational Hamiltonian of the spin takes the form

H=—11,(6-B) = —u,Bé,. o))

In the representation that makes 6, diagonal, namely

01 0 —i 10
5 = y 5 = y 5 = y 2

the density matrix in the canonical ensemble would be

(1)
Tr(e~PH)

1 ePrsB 0
= eﬁMBB—’—e_ﬂMBB 0 e_ﬁMBB ’

We thus obtain for the expectation value o,

(p) =
3)

eﬁMBB _ e_ﬁMBB

(02) = Tr(p6z) = = tanh(Bu,B), 4

eﬁMBB + e_ﬁU«BB

in perfect agreement with the findings of Sections 3.9 and 3.10.

5.3.B A free particle in a box

We now consider the case of a free particle, of mass m, in a cubical box of side L. The
Hamiltonian of the particle is given by

- h? I A R
A=—— v [+ 4+ 2, 5
2m 2m <8x2 + ay? + 022 ©)

while the eigenfunctions of the Hamiltonian that satisfy periodic boundary conditions,

¢(x+L,y,2) =¢(x,y+L,2) =¢x,y,2+L)

=¢(x,),2), (6)
are given by
1
PE(r) = 1575 exp (ik 1), (7)

the corresponding eigenvalues E being

212
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and the corresponding wave vector k being

2
k= (ky, ky, kz) = Tﬂ(nx» ny, Nz); €))

the quantum numbers ny, n,, and n, must be integers (positive, negative, or zero).
Symbolically, we may write

_27t

k »
I n

(10
where n is a vector with integral components 0,+1,42,....

We now proceed to evaluate the density matrix (o) of this system in the canonical
ensemble; we shall do so in the coordinate representation. In view of equation (5.2.11),
we have

(rle iK'y = 3 (rEye PE(EIr)
E

(1m
=Y e PPepngp).
E
Substituting from equation (7) and making use of relations (8) and (10), we obtain
_BH, ./ 1 /37:"2 . /
(rle PH|ry = 3 Xk:exp |:—2mk2 +ik-(r—r )i|
~ /ex B e | dk
23 ] P " om

m 3/2 m /12

= (W> exp [—Zﬂh2|r—r| ], (12)

see equations (B.41) and (B.42) in Appendix B. It follows that

Tr(e ) = / (rlePH |rddr

m \3/2
=V<W) . (13)

The expression in equation (13) is indeed the partition function, Q;(8), of a single particle
confined to a box of volume V; see equation (3.5.19). Dividing (12) by (13), we obtain for
the density matrix in the coordinate representation

A _l _ m _ 12
(r|p|r>_Vexp[ 2ﬁh2|r r| } (14)

As expected, the matrix p, ,» is symmetric between the states r and r’. Moreover, the
diagonal element (r|p|r), which represents the probability density for the particle to be in
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the neighborhood of the point r, is independent of r; this means that, in the case of a sin-
gle free particle, all positions within the box are equally likely to obtain. A nondiagonal
element (r|p|r’), on the other hand, is a measure of the probability of “spontaneous tran-
sition” between the position coordinates r and r’ and is therefore a measure of the relative
“intensity” of the wave packet (associated with the particle) at a distance |r — 7’| from the
center of the packet. The spatial extent of the wave packet, which is a measure of the uncer-
tainty involved in locating the position of the particle, is clearly of order h/(mkT)'/?; the
latter is also a measure of the mean thermal wavelength of the particle. The spatial spread
found here is a purely quantum-mechanical effect; quite expectedly, it tends to vanish at
high temperatures. In fact, as 8 — 0, the behavior of the matrix element (14) approaches
that of a delta function, which implies a return to the classical picture of a point particle.

Finally, we determine the expectation value of the Hamiltonian itself. From equa-
tions (5) and (14), we obtain

2
(Hy =Tr(Hp) = h /{Vzexp[— - Ir—r/lz]} d3r
r=r’

- 2mV 282
_ L _1 _ 42 _ m 2 3
= ZﬂV/{[S ﬂh2|r r| ]exp[ 2ﬂh?_lr r| ]}r:r,d r
3 3

which was indeed expected. Otherwise, too,

Tr(He #H ;
_ IHe™) o InTr(e #H) (16)
Tr(e—#H) 9B

which, on combination with (13), leads to the same result.

5.3.C A linear harmonic oscillator

Next, we consider the case of a linear harmonic oscillator whose Hamiltonian is given by

. R 92 1
H=——" — 1 _mo’g?, 17
2m8q2+2mw 9 a7

with eigenvalues
1
Enz(n+§)hw; n=0,1,2,... (18)
and eigenfunctions

@)1/4 Hn®) a2, 19)

on(@) = ( i) G
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where
and
Hy(§) = (-1 (j@e)neﬂ?z. 21)

The matrix elements of the operator exp (—H) in the g-representation are given by

(e iq) =3 e PEngu(@én(q)

n=0
1/2 P Ho(EH, (€
_ (%) o~ (1/2E%+£72) » {e—(n+l/2)ﬂhw n(é;n:z(é ) } 22)

n=0

The summation over n is somewhat difficult to evaluate; nevertheless, the final result is®

. 1/2
—BH | /\ _ mw
(dle |q>_[2nhsinh(ﬂhw)}
_ o /N2 Bho N2 Bhw
xexp[ M {(q+q) ‘[anh(—2 >+(q q) coth(—2 )”, (23)
which gives

Tr(e #H) = / (qle " \qydq

o 12 F mog? Bhw
- |serarar ] | e"p[‘ - tanh (55 [

1 o—(1/2)Bho

B ZSinh(%ﬂhw) T 1 hhe

(24)

Expression (24) is indeed the partition function of a linear harmonic oscillator; see
equation (3.8.14). At the same time, we find that the probability density for the oscillator
coordinate to be in the vicinity of the value g is given by

ma)tanh(%ﬂhw) V2 Mmod? A
(67|/3|67>=|:} exp[—zqtanh(ﬂwﬂ: (25)

wh 2

3The mathematical details of this derivation can be found in Kubo (1965, pp. 175-177).
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we note that this is a Gaussian distribution in g, with mean value zero and root-mean-
square deviation

1/2
h
qrm.s. = . (26)
2mwtanh (%ﬁhw)

The probability distribution (25) was first derived by Bloch in 1932. In the classical limit
(Bhw « 1), the distribution becomes purely thermal — free from quantum effects:

ma? \ ' mw?q®

with dispersion (kT/mw?)'/2. At the other extreme (B%w > 1), the distribution becomes
purely quantum-mechanical — free from thermal effects:
} ) (28)

with dispersion (h/2mw)'/?. Note that the limiting distribution (28) is precisely the one
expected for an oscillator in its ground state (n = 0), that is one with probability density
¢g (9); see equations (19) through (21).

In view of the fact that the mean energy of the oscillator is given by

R mwn 1/2 Mwg?
@bl ~ (2r) exp[— 4

wh

0 2 1 1
__ - —BH\ _ -
() = — 2 nTr (e P) = Shocoth ( : ﬂhw), (29)
we observe that the temperature dependence of the distribution (25) is solely determined
by the expectation value (H). Actually, we can write

me? \7? me?q?
(qlplg) = (Zn(H)) exp [— 2(H) :|, (30)
with
17\ 172
qrm.s. = (#) . (31)

It is now straightforward to see that the mean value of the potential energy (%mwzqz) of
the oscillator is %(H ); accordingly, the mean value of the kinetic energy (p?/2m) will also
be the same.
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5.4 Systems composed of indistinguishable
particles

We shall now formulate the quantum-mechanical description of a system of N identical
particles. To fix ideas, we consider a gas of noninteracting particles; the findings of this
study will be of considerable relevance to other systems as well.

Now, the Hamiltonian of a system of N noninteracting particles is simply a sum of the
individual single-particle Hamiltonians:

N
H(g,p)=)_Hi@qipp; o))

i=1

here, (g;, p;) are the coordinates and momenta of the ith particle while H; is its Hamilto-
nian.* Since the particles are identical, the Hamiltonians H i(i=1,2,...,N) are formally the
same; they only differ in the values of their arguments. The time-independent Schrédinger
equation for the system is

Hyr(q) = Eve(q), @)

where E is an eigenvalue of the Hamiltonian and y'r(q) the corresponding eigenfunction.
In view of (1), we can write a straightforward solution of the Schrédinger equation, namely

N
vE@ = [ ue @, 3)
i=1

with
N
E= Zé‘i; (4)
i=1

the factor u,,(gq;) in (3) is an eigenfunction of the single-particle Hamiltonian H i(qi, pi),
with eigenvalue ¢;:

Hiug,(q) = eitte; (). (5)

Thus, a stationary state of the given system may be described in terms of the single-particle
states of the constituent particles. In general, we may do so by specifying the set of num-
bers {n;} to represent a particular state of the system; this would imply that there are n;
particles in the eigenstate characterized by the energy value ¢;. Clearly, the distribution set

*We are studying here a single-component system composed of “spinless” particles. Generalization to a system
composed of particles with spin and to a system composed of two or more components is quite straightforward.
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{n;} must conform to the conditions
Z ni=N (6)
i
and

> “njg;=E. @
i

Accordingly, the wavefunction of this state may be written as

ny ny+np
ve@=[]wmm ] wm.., (8)
m=1 m=nj+1

where the symbol u;(m) stands for the single-particle wavefunction u,, (qm).

Now, suppose we effect a permutation among the coordinates appearing on the right
side of (8); as a result, the coordinates (1,2,...,N) get replaced by (P1,P2,...,PN), say. The
resulting wavefunction, which we may call Py g(q), will be

ny ny+ny
Pyg@=[Jwm®m) [] wEm... ©)
m=1 m=nj+1

In classical physics, where the particles of a given system, even though identical, are
regarded as mutually distinguishable, any permutation that brings about an interchange
of particles in two different single-particle states is recognized to have led to a new, physi-
cally distinct, microstate of the system. For example, classical physics regards a microstate
in which the so-called 5th particle is in the state u; and the so-called 7th particle in the
state u;(j # i) as distinct from a microstate in which the 7th particle is in the state u; and
the 5th particle in the state u;. This leads to

N!

— (10)
nlll’lg!...

(supposedly distinct) microstates of the system, corresponding to a given mode of distri-
bution {n;}. The number (10) would then be ascribed as a “statistical weight factor” to
the distribution set {n;}. Of course, the “correction” applied by Gibbs, which has been
discussed in Sections 1.5 and 1.6, reduces this weight factor to

Welni} = (1D

nl! n2! e
And the only way one could understand the physical basis of that “correction” was in terms
of the inherent indistinguishability of the particles.

According to quantum physics, however, the situation remains unsatisfactory even
after the Gibbs correction has been incorporated, for, strictly speaking, an interchange
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among identical particles, even if they are in different single-particle states, should not
lead to a new microstate of the system! Thus, if we want to take into account the indistin-
guishability of the particles properly, we must not regard a microstate in which the “5th”
particle is in the state u; and the “7th” in the state u; as distinct from a microstate in which
the “7th” particle is in the state u; and the “5th” in the state u; (even if i # j), for the labeling
of the particles as No. 1, No. 2, and so on (which one often resorts to) is at most a matter of
convenience — it is not a matter of reality. In other words, all that matters in the descrip-
tion of a particular state of the given system is the set of numbers #; that tell us how many
particles there are in the various single-particle states u;; the question, “which particle is
in which single-particle state?” has no relevance at all.

Accordingly, the microstates resulting from any permutation P among the N parti-
cles (so long as the numbers n; remain the same) must be regarded as one and the
same microstate. For the same reason, the weight factor associated with a distribution set
{n;}, provided that the set is not disallowed on some other physical grounds, should be
identically equal to unity, whatever the values of the numbers n; may be:

Wylni}=1. (12)°

Indeed, if for some physical reason the set {n;} is disallowed, the weight factor Wy for that
set should be identically equal to zero; see, for instance, equation (19).

At the same time, a wavefunction of the type (8), which we may call Boltzmannian
and denote by the symbol g1, (q), is inappropriate for describing the state of a system
composed of indistinguishable particles because an interchange of arguments among the
factors u; and uj, where i # j, would lead to a wavefunction that is both mathematically and
physically different from the one we started with. Now, since a mere interchange of the
particle coordinates must not lead to a new microstate of the system, the wavefunction
¥E(q) must be constructed in such a way that, for all practical purposes, it is insensitive
to any interchange among its arguments. The simplest way to do this is to set up a lin-
ear combination of all the N! functions of the type (9) that obtain from (8) by all possible
permutations among its arguments; of course, the combination must be such that if a per-
mutation of coordinates is carried out in it, then the wavefunctions ¥ and Py must satisfy
the property

Py =y (13)
This leads to the following possibilities:

Py =+ forall P, (14)

5It may be mentioned here that as early as in 1905 Ehrenfest pointed out that to obtain Planck’s formula for the
black-body radiation one must assign equal a priori probabilities to the various distribution sets {n;}.
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which means that the wavefunction is symmetric in all its arguments, or

+y  if Pis an even permutation,
Py = (15)°
—y  if Pis an odd permutation,

which means that the wavefunction is antisymmetric in its arguments. We call these
wavefunctions s and ¥4, respectively; their mathematical structure is given by

¥s(q) = const. Y PYpoii, () (16)
P

and

Va(g) = const. Y 8pPYpoi(q), (17)
P

where §p in the expression for 4 is +1 or —1 according to whether the permutation P is
even or odd.
We note that the function ¥4(q) can be written in the form of a Slater determinant:

wi(l) wi2) - ui(N)
Ltj(l) uj(Z) u](N)

Ya(q) =const.| ' R (18)
w@ w@) - uN)

where the leading diagonal is precisely the Boltzmannian wavefunction while the other
terms of the expansion are the various permutations thereof; positive and negative signs in
the combination (17) appear automatically as we expand the determinant. On interchang-
ing a pair of arguments (which amounts to interchanging the corresponding columns of
the determinant), the wavefunction 4 merely changes its sign, as it indeed should. How-
ever, if two or more particles happen to be in the same single-particle state, then the
corresponding rows of the determinant become identical and the wavefunction vanishes.”
Such a state is physically impossible to realize. We therefore conclude that if a system com-
posed of indistinguishable particles is characterized by an antisymmetric wavefunction,

An even (odd) permutation is one that can be arrived at from the original order by an even (odd) number of “pair
interchanges” among the arguments. For example, of the six permutations

1,2,3), 23D, L2, (1,32, (321, and (21,3),

of the arguments 1, 2, and 3, the first three are even permutations while the last three are odd. A single interchange,
among any two arguments, is clearly an odd permutation.

"This is directly related to the fact that if we effect an interchange among two particles in the same single-particle
state, then Pyr4 will obviously be identical to y4. At the same time, if we also have Py4 = —v4, then ¥4 must be identically
Zero.
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then the particles of the system must all be in different single-particle states — a result
equivalent to Pauli’s exclusion principle for electrons.

Conversely, a statistical system composed of particles obeying an exclusion principle
must be described by a wavefunction that is antisymmetric in its arguments. The statistics
governing the behavior of such particles is called Fermi-Dirac, or simply Fermij statistics
and the constituent particles themselves are referred to as fermions. The statistical weight
factor W p {n;} for such a system is unity so long as the n; in the distribution set are either
0 or 1; otherwise, it is zero:

1 if Y n?=N,
i

Wep.{n} = (19)8
AR PRI SP-
i

No such problems arise for systems characterized by symmetric wavefunctions: in partic-
ular, we have no restriction whatsoever on the values of the numbers n;. The statistics
governing the behavior of such systems is called Bose-Einstein, or simply Bose, statis-
tics and the constituent particles themselves are referred to as bosons.? The weight factor
Ws g.{n;} for such a system is identically equal to 1, whatever the values of the numbers n;:

Weelnit=1 n;=0,1,2,.... (20)

It should be pointed out here that there exists an intimate connection between the
statistics governing a particular species of particles and the intrinsic spin of the particles.
For instance, particles with an integral spin (in units of #, of course) obey Bose-Einstein
statistics, while particles with a half-odd integral spin obey Fermi-Dirac statistics. Exam-
ples in the first category are photons, phonons, 7-mesons, gravitons, He*-atoms, and so
on, while those in the second category are electrons, nucleons (protons and neutrons),
u-mesons, neutrinos, He3-atoms, and so on.

Finally, it must be emphasized that, although we have derived our conclusions here
on the basis of a study of noninteracting systems, the basic results hold for interacting
systems as well. In general, the desired wavefunction ¢ (q) will not be expressible in terms
of the single-particle wavefunctions u;(¢q.,); nonetheless, it will have to be either of the
kind v¥s(q), satisfying equation (14), or of the kind v 4(q), satisfying equation (15).

8Note that the condition Y, ?:N would be implies that all n; are either 0 or 1. On the other hand, if any of the n;
are greater than 1, the sum }; nl2 would be greater than N.

9Possibilities other than Bose-Einstein and Fermi-Dirac statistics can arise in which the wavefunction changes by a
complex phase factor e when particles are interchanged. For topological reasons, this can only happen in two dimen-
sions. Quasiparticle excitations with this property are called anyons and, if 6 is a rational fraction (other than 1 or 1/2)
of 27, are said to have fractional statistics and they play an important role in the theory of the fractional quantum Hall
effect; see Wilczek (1990) and Ezawa (2000).
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5.5 The density matrix and the partition
function of a system of free particles

Suppose that the given system, which is composed of N indistinguishable, noninteracting
particles confined to a cubical box of volume V, is a member of a canonical ensemble
characterized by the temperature parameter 8. The density matrix of the system in the
coordinate representation will be'°

(P, INIBIFY, . Ty) = r.ornle PR, Ly, o))

1
Qu(B)

where Qn(B) is the partition function of the system:
Qu(p) =Tre ) = [(r1,.ccrvle Pir . r)dPr @

For brevity, we denote the vector r; by the letter i and the primed vector r; by 7. Further,
letyg(1,...,N) denote the eigenfunctions of the Hamiltonian, the suffix E representing the
corresponding eigenvalues. We then have

(L. Ne P, N =3 e PE[ys(L,. . Nywg(L, .. N, 3)
E

where the summation goes over all possible values of E; compare to equation (5.3.11).
Since the particles constituting the given system are noninteracting, we may express
the eigenfunctions ¥g(1,...,N) and the eigenvalues E in terms of the single-particle
wavefunctions u;(m) and the single-particle energies ¢;. Moreover, we find it advisable to
work with the wave vectors k; rather than the energies ¢;; so we write
R2K?  h?

E=— = (K +k+ k), )

where the k; on the right side are the wave vectors of the individual particles. Imposing
periodic boundary conditions, the normalized single-particle wavefunctions are

ue(ry = V"2 explitk - r)}, 5)
with
k=2nV"13p, (6)

here, n stands for a three-dimensional vector whose components have values 0,+1,+2, ....
The wavefunction ¢ of the total system would then be, see equations (5.4.16)

For a general survey of the density matrix and its applications, see ter Haar (1961).
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and (5.4.17),

YLy, N) = (ND V2 Y 7pPlug, (1) gy (N}, @
P

where the magnitudes of the individual k; are such that
(k5 +- +k3) = K2, ®

The number §p in the expression for ¥ is identically equal to +1 if the particles are bosons;
for fermions, it is +1 or —1 according to whether the permutation P is even or odd. Thus,
quite generally, we may write

sp= (D, 9)

where [P] denotes the order of the permutation; note that the upper sign in this expression
holds for bosons while the lower sign holds for fermions. The factor (N!)~!/? has been
introduced here to ensure the normalization of the total wavefunction.

Now, it makes no difference to the wavefunction (7) whether the permutations P are
carried out on the coordinates 1,...,N or on the wave vectors kji,..., ky, because after all
we are going to sum over all the N! permutations. Denoting the permuted coordinates by

P1,...,PN and the permuted wave vectors by Pk;, ..., Pky, equation (7) may be written as
YK(L,...,N)= (N2> " 8p {ug, (P1)... g (PN)) (10a)

P
= (N2> " 8p {upi, (1) ... upgey (N)). (10b)

P

Equations (10a and 10b) may now be substituted into (3), with the result

(L., NlePH|V,... Ny = (N)) "1 Y e #reKe/2m
K

x {Zap{ukl (Pl)...ukN(PN)}ZSP{u}E)kl(l/)...u;f)kN(N/)}:|, an
P P

where P and P are any of the N! possible permutations. Now, since a permutation among
the k; changes the wavefunction ¢ at most by a sign, the quantity [y4*] in (11) is insen-
sitive to such a permutation; the same holds for the exponential factor as well. The
summation over K is, therefore, equivalent to (1/N!) times a summation over all the
vectors ki, ..., ky independently of one another.

Next, in view of the N-fold summation over the k;, all the permutations P will make
equal contributions toward the sum (because they differ from one another only in the
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ordering of the k;). Therefore, we may consider only one of these permutations, say the
one for which Pk; =k, ...,Pky = ky (and hence 63 =1 for both kinds of statistics), and
include a factor of (V!). The net result is:

(L., NlePH, Ny =yt )

o BR20G 43 /2m |:Z§P [ukl (Pl)uzl(l/)] ... [ukN(PN)uicN (N/)]:| . (12)
P

Substituting from (5) and noting that, in view of the largeness of V, the summations over
the k; may be replaced by integrations, equation (12) becomes

a,....Nle PH|1, . N')

1 _pr2712 P SER Y,
~ S Z‘SP [/e B2RE [2meiky-(PL-1) B
: P

/ o~ Bh2RE /2mtiley-(PN-N') 43 kN] 13)
1 m \3N/2
=N (W) szﬁp[f(Pl —1)... f(PN-N")], (14)
where
_ o m s
f(E)—EXP< Zﬁhzg ) (15)

Here, use has been made of the mathematical result (5.3.12), which is clearly a special case
of the present formula.

Introducing the mean thermal wavelength, often referred to as the thermal deBroglie
wavelength,

3 h . (2np\'?
T @rmkT)12 h(?) ' (16)

and rewriting our coordinates as ry,...,ry, the diagonal elements among (14) take the
form

(rl,...,ere_’BH|r1,...,rN

N|A3N ZSP[f(Prl —r) ... f(Pry =), 17)

where

f =exp(—nr2/kz). (18)
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To obtain the partition function of the system, we have to integrate (17) over all the
coordinates involved. However, before we do that, we would like to make some observa-
tions on the summation ). First of all, we note that the leading term in this summation,
namely the one for which Pr; = r;, is identically equal to unity (because f(0) = 1). This
is followed by a group of terms in which only one pair interchange (among the coordi-
nates) has taken place; a typical term in this group will be f(r; — r;)f (r; — rj) where i # j.
This group of terms is followed by other groups of terms in which more than one pair
interchange has taken place. Thus, we may write

Zzlizﬁ'jﬁi+ Zﬁjﬁkfkii"', (19)

P i<j i<j<k

where fj; = f(r; — rj); again, note that the upper (lower) signs in this expansion pertain
to a system of bosons (fermions). Now, the function f;; vanishes rapidly as the distance
rij becomes much larger than the mean thermal wavelength A. It then follows that if the
mean interparticle distance, (V/N)!/3, in the system is much larger than the mean thermal
wavelength, that is, if

3
3 nh

="« 20
CrmkTy32 < (20)

ni

where n is the particle density in the system, then the sum ), in (19) may be approx-
imated by unity. Accordingly, the partition function of the system would become, see
equation (17),

—pH 1 3N AN

This is precisely the result obtained earlier for the classical ideal gas; see equation (3.5.9).
Thus, we have obtained from our quantum-mechanical treatment the precise classical
limit for the partition function Qn(V, T). Incidentally, we have achieved something more.
First, we have automatically recovered here the Gibbs correction factor (1/N!), which was
introduced into the classical treatment on an ad hoc, semi-empirical basis. We, of course,
tried to understand its origin in terms of the inherent indistinguishability of the parti-
cles. Here, we see it coming in a very natural manner and its source indeed lies in the
symmetrization of the wavefunctions of the system (which is ultimately related to the
indistinguishability of the particles); compare to Problem 5.4.

Second, we find here a formal justification for computing the number of microstates
of a system corresponding to a given region of its phase space by dividing the volume of
that region into cells of a “suitable” size and then counting instead the number of these
cells. This correspondence becomes all the more transparent by noting that formula (21)
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is exactly equivalent to the classical expression

3N, 43N
on(V,T) = % / e—ﬂ(p%+-..+pfv)/2m (WJ) , 22)

wo

with wg=h3N. Thirdly, in deriving the classical limit we have also evolved a criterion that
enables us to determine whether a given physical system can be treated classically; math-
ematically, this criterion is given by condition (20). Now, in statistical mechanical studies,
a system that cannot be treated classically is said to be degenerate; the quantity ni3 may,
therefore, be regarded as a degeneracy discriminant. Accordingly, the condition that clas-
sical considerations may be applicable to a given physical system is that “the value of the
degeneracy discriminant of the system be much less than unity.”

Next, we note that, in the classical limit, the diagonal elements of the density matrix are
given by

I\N
(rl,...,rN|;3|r1,...,rN)%<V> ) (23)
which is simply a product of N factors, each equal to (1/V). Recalling that, for a single
particle in a box of volume V, (r|p|r)=(1/V), see equation (5.3.14), we infer that in the
classical limit there is no spatial correlation among the various particles of the system. In
general, however, spatial correlations exist even if the particles are supposedly noninter-
acting; these correlations arise from the symmetrization of the wavefunctions and their
magnitude is quite significant if the interparticle distances in the system are comparable
with the mean thermal wavelength of the particles. To see this more clearly, we consider
the simplest relevant case, namely the one with N = 2. The sum ), is now exactly equal
to 14 [f(r12)]%. Accordingly,

A 1
(r1,rale PH|r o) = 736 [1 +exp (— 2nrf2/kz)] (24)

and hence

1
Q(V,T) = ﬁ// [1j:exp(—anfz/Az}dsrldgrg

2 o0
_ 1 (/\13) |:1:|:‘1//exp (—2nr2/kz)4ﬂr2dr:| (25)
0
V\? Ll A3
() |2z (v

1/V\?

\S]
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Combining (24) and (26), we obtain
1
(rl,rgl,ﬁlrl,rg}%W[lieXp(—Zﬂrfz/)»z)] @7

Thus, if r1» is comparable to 2, the probability density (27) may differ considerably from
the classical value (1/V)2. In particular, the probability density for a pair of bosons to
be a distance r apart is larger than the classical, r-independent value by a factor of
[1+exp (—277%/1?)], which becomes as high as 2 as r — 0. The corresponding result for
a pair of fermions is smaller than the classical value by a factor of [1 — exp (—2771%/2?)],
which becomes as low as 0 as r — 0. Thus, we obtain a positive spatial correlation among
particles obeying Bose statistics and a negative spatial correlation among particles obeying
Fermi statistics; see also Section 6.3.

Another way of expressing correlations (among otherwise noninteracting particles)
is by introducing a statistical interparticle potential vs(r) and then treating the particles
classically (see Uhlenbeck and Gropper, 1932). The potential vs(r) must be such that the
Boltzmann factor exp (—Bvy) is precisely equal to the pair correlation function [...] in (27),
that is,

vs(r) = —kTIn [1+ exp (- 27r/27)]. =

Figure 5.1 shows a plot of the statistical potential vs(r) for a pair of bosons or fermions.
In the Bose case, the potential is throughout attractive, thus giving rise to a “statistical
attraction” among bosons; in the Fermi case, it is throughout repulsive, giving rise to a
“statistical repulsion” among fermions. In either case, the potential vanishes rapidly as r
becomes larger than A; accordingly, its influence becomes less and less important as the
temperature of the system rises.

+1t

o« FD.
= (r/A)
% 0 - L (r/A
& 0.5 1.0

—In2

FIGURE 5.1 The statistical potential vs(r) between a pair of particles obeying Bose-Einstein statistics or Fermi-Dirac
statistics.
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Problems

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

Evaluate the density matrix p,,, of an electron spin in the representation that makes 6, diagonal.
Next, show that the value of (o;), resulting from this representation, is precisely the same as the one
obtained in Section 5.3.

Hint: The representation needed here follows from the one used in Section 5.3 by carrying out a
transformation with the help of the unitary operator

N RTCIRY
:(1/¢2 1/¢2)'

Prove that
N N ) ,
(gle?|qy = exp [—13H (—lh@,ﬂl)] 8q—q),

where H(—i%9/3q,q) is the Hamiltonian operator of the system in the g-representation, which
formally operates on the Dirac delta function §(q — ¢g’). Writing the §-function in a suitable form,
apply this result to (i) a free particle and (ii) a linear harmonic oscillator.

Derive the density matrix p for (i) a free particle and (ii) a linear harmonic oscillator in the
momentum representation and study its main properties along the lines of Section 5.3.

Study the density matrix and the partition function of a system of free particles, using the
unsymmetrized wavefunction (5.4.3) instead of the symmetrized wavefunction (5.5.7). Show that,
following this procedure, one encounters neither the Gibbs’ correction factor (1/N!) nor a spatial
correlation among the particles.

Show that in the first approximation the partition function of a system of N noninteracting,
indistinguishable particles is given by

1
QN(V, 7= WZN(V, 1),

where

Zvv 1) = [expl-p vy &

i<j

vs(r) being the statistical potential (5.5.28). Hence evaluate tht first-order correction to the equation
of state of this system.

Determine the values of the degeneracy discriminant (nA3) for hydrogen, helium, and oxygen at
NTP. Make an estimate of the respective temperature ranges where the magnitude of this quantity
becomes comparable to unity and hence quantum effects become important.

Show that the quantum-mechanical partition function of a system of N interacting particles
approaches the classical form

1 _
- f e PE@D) 3Ng N

as the mean thermal wavelength 1 becomes much smaller than (i) the mean interparticle distance
(V/N)1/3 and (ii) a characteristic length rq of the interparticle potential.!!
Prove the following theorem due to Peierls.!2

“If A is the hermitian Hamiltonian operator of a given physical system and {¢,,} an arbitrary
orthonormal set of wavefunctions satisfying the symmetry requirements and the boundary

1See Huang (1963, Section 10.2).
12Gee Peierls (1938) and Huang (1963, Section 10.3).
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conditions of the problem, then the partition function of the system satisfies the following
inequality:

QB = ) exp{—BlonlHlpn));

the equality holds when {¢,,} constitute a complete orthonormal set of eigenfunctions of the
Hamiltonian itself.”



The Theory of Simple Gases

We are now fully equipped with the formalism required for determining the macroscopic
properties of a large variety of physical systems. In most cases, however, derivations run
into serious mathematical difficulties, with the result that one is forced to restrict one’s
analysis either to simpler kinds of systems or to simplified models of actual systems. In
practice, even these restricted studies are carried out in a series of stages, the first stage
of the process being highly “idealized.” The best example of such an idealization is the
familiar ideal gas, a study of which is not only helpful in acquiring facility with the math-
ematical procedures but also throws considerable light on the physical behavior of gases
actually met with in nature. In fact, it also serves as a base on which the theory of real gases
can be founded; see Chapter 10.

In this chapter we propose to derive, and at some length discuss, the most basic pro-
perties of simple gaseous systems obeying quantum statistics; the discussion will include
some of the essential features of diatomic and polyatomic gases and chemical equilibrium.

6.1 Anideal gasin a quantum-mechanical
microcanonical ensemble

We consider a gaseous system of N noninteracting, indistinguishable particles confined
to a space of volume V and sharing a given energy E. The statistical quantity of interest
in this case is Q (IV, V, E) which, by definition, denotes the number of distinct microstates
accessible to the system under the macrostate (IV, V, E). While determining this number,
we must remember that a failure to take into account the indistinguishability of the parti-
cles in a proper manner could lead to results which, except in the classical limit, may not
be acceptable. With this in mind, we proceed as follows.

Since, for large V, the single-particle energy levels in the system are very close to one
another, we may divide the energy spectrum into a large number of “groups of levels,”
which may be referred to as energy cells; see Figure 6.1. Let ¢; denote the average energy of
alevel, and g; the (arbitrary) number of levels, in the ith cell; we assume thatall g; > 1. In
a particular situation, we may have n; particles in the first cell, n, particles in the second
cell, and so on. Clearly, the distribution set {n;} must conform to the conditions

> ni=N 6))
i

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00006-2 14 1
© 2011 Elsevier Ltd. All rights reserved.
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FIGURE 6.1 The grouping of the single-particle energy levels into “cells.”

and
Z nie; = E. (2)
i
Then
mem=;wmh 3)
nj

where W{n;} is the number of distinct microstates associated with the distribution set {rn;}
while the primed summation goes over all distribution sets that conform to conditions (1)
and (2). Next,

Win =] [wa, @
i

where w(i) is the number of distinct microstates associated with the ith cell of the spectrum
(the cell that contains n; particles, to be accommodated among g; levels) while the product
goes over all the cells in the spectrum. Clearly, w(i) is the number of distinct ways in which
the n; identical, and indistinguishable, particles can be distributed among the g; levels of
the ith cell. This number, in the Bose-Einstein case, is given by, see equation (3.8.25),

o _ (ni+g—1)!
=, 5
ws.E. (1) (g — 1)l ®)
so that
i+gi— 1)
Wee{ni} =[] gD (6)
i

nl(gi — 1!
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In the Fermi-Dirac case, no single level can accommodate more than one particle; accord-
ingly, the number n; cannot exceed g;. The number w(i) is then given by the “number of
ways in which the g; levels can be divided into two subgroups — one consisting of n; levels
(which will have one particle each) and the other consisting of (g; — n;) levels (which will
be unoccupied).” This number is given by

8!

g — v

wep. (i) =

so that

8!
nil(gi—ny!’

Wep.{ni} =]

i

8)

For completeness, we may include the classical — or what is generally known as the
Maxwell-Boltzmann — case as well. There, the particles are regarded as distinguishable,
with the result that any of the n; particles may be put into any of the g; levels, inde-
pendently of one another, and the resulting states may all be regarded as distinct; the
number of these states is clearly (g;)". Moreover, the distribution set {n;} in this case is
itself regarded as obtainable in

N!
nlli’lg!...

©

different ways which, on the introduction of the Gibbs correction factor, lead to a “weight
factor” of

1 1
=T1—; 10
I’llli’lg!... Uni! (10)

see also Section 1.6, especially equation (1.6.2). Combining these two results, we obtain

(8"
Wns.{ni} = U rlz,-! . (an
Now, the entropy of the system would be given by
S(N,V,E) = kInQ(N, V,E) = kln [Z W{ni}}. (12)
{n;}

It can be shown that, under the conditions of our analysis, the logarithm of the sum on
the right side of (12) can be approximated by the logarithm of the largest term in the sum;
see Problem 3.4. We may, therefore, replace (12) by

S(N,V,E) ~ kInW{nj}, (13)
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where {n}} is the distribution set that maximizes the number W{n;}; the numbers n} are
clearly the most probable values of the distribution numbers 7n;. The maximization, how-
ever, is to be carried out under the restrictions that the quantities NV and E remain constant.
This can be done by the method of Lagrange’s undetermined multipliers; see Section 3.2.
Our condition for determining the most probable distribution set {n7} now turns out to be,
see equations (1), (2), and (13),

sinWin;} — |:a28ni+/325i8nl} =0. (14)
i i

For In W{n;}, we obtain from equations (6), (8), and (11), assuming that not only all g; but
also all n; > 1 (so that the Stirling approximation In(x!) ~ xInx — x can be applied to all the
factorials that appear in these expressions),

InWi{n;} =Y Inw(i)

zZ[niln(&—a)—éan—aﬁ)], (15)
l. n; a gi

where a = —1 for the B.E. case, +1 for the F.D. case, and 0 for the M.B. case. Equation (14)
then becomes

Z[ln (& —a) —a—ﬁsi] sn;=0. (16)
n; ni=n}

i i

In view of the arbitrariness of the increments §#7; in (16), we must have (for all i)

ln(gi—a>—a—/38i=0» 17)
n;
so that!

x_ 8i

n; = ea+ﬂs,~+a' (18)

The fact that n} turns out to be directly proportional to g; prompts us to interpret the
quantity

*
n; 1

i A -, 18a
g eFita (18a)

which is actually the most probable number of particles per energy level in the ith cell, as
the most probable number of particles in a single level of energy ¢;. Incidentally, our final
result (18a) is totally independent of the manner in which the energy levels of the particles

1For a critique of this derivation, see Landsberg (1954a, 1961).
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are grouped into cells, so long as the number of levels in each cell is sufficiently large. As

shown in Section 6.2, formula (18a) can also be derived without grouping energy levels

into cells at all; in fact, it is only then that this result becomes truly acceptable!
Substituting (18) into (15), we obtain for the entropy of the gas

S _ oS (8 ) 81 o™
k“’an{”i}—Z[”iln<n>y a) aln<1 agi

i 1

:Z[n’; (a—i—ﬁe,-)—l—%lnll—i—ae’“’ﬁgi”. (19)
1

The first sum on the right side of (19) is identically equal to « N while the second sum is
identically equal to BE. For the third sum, therefore, we have

éZgiln{Hae*“*f’ai} - % —aN — BE. (20)
i

Now, the physical interpretation of the parameters & and 8 here is going to be precisely the
same as in Section 4.3, namely

A
o=z b= (21)

for confirmation see Section 6.2. The right side of equation (20) is, therefore, equal to

S wN E G—(E-TS) PV

ktYkr TkTT T kT kT 22)

The thermodynamic pressure of the system is, therefore, given by

pV = %T 3 [giln { 1+ ae—Pei }] . (23)

1

In the Maxwell-Boltzmann case (a — 0), equation (23) takes the form

PV =kT) gie * P =kT» n}=NkT, (24)
i i

which is the familiar equation of state of the classical ideal gas. Note that equation (24) for
the Maxwell-Boltzmann case holds irrespective of the details of the energy spectrum ;.

It will be recognized that the expression a~! )", ] in equation (23), being equal to the
thermodynamic quantity (PV/kT), ought to be identical to the g-potential of the ideal gas.
One may, therefore, expect to obtain from this expression all the macroscopic properties of
this system. However, before demonstrating this, we would like to first develop the formal
theory of an ideal gas in the canonical and grand canonical ensembles.
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6.2 An ideal gas in other quantum-mechanical
ensembles

In the canonical ensemble the thermodynamics of a given system is derived from its
partition function

Qv(V,T)=) e PF, 6))
E

where E denotes the energy eigenvalues of the system while 8 = 1/kT. Now, an energy
value E can be expressed in terms of the single-particle energies ¢; for instance,

E=Znss, )

where 7, is the number of particles in the single-particle energy state ¢. The values of the
numbers 7, must satisfy the condition

S ne=N. ®)

Equation (1) may then be written as

/ —BY nee
QN<V,T>={Z}g{na}e i @)
ne

where g{n.} is the statistical weight factor appropriate to the distribution set {n.} and the
summation " goes over all distribution sets that conform to the restrictive condition (3).
The statistical weight factor in different cases is given by

geE{n:} =1, (5)

1 ifalln,=0o0rl
grp.{n:}= . 6)
0 otherwise,

and

1
gus.inet =[] o @

&

Note that in the present treatment we are dealing with single-particle states as individ-
ual states, without requiring them to be grouped into cells; indeed, the weight factors (5),
(6), and (7) follow straightforwardly from their respective predecessors (6.1.6), (6.1.8), and
(6.1.11) by putting all g; = 1.
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First of all, we work out the Maxwell-Boltzmann case. Substituting (7) into (4), we get

Qu(V,T) = {; [(H nl') l—[ (e_ﬁg)m}

€

- IZ [Hng,]'[( ey’ } (8)

Since the summation here is governed by condition (3), it can be evaluated with the help
of the multinomial theorem, with the result

N
1 —pe
vV, =+ {Z@ P }
1
= 5lQw, Y 9)

in agreement with equation (3.5.15). The evaluation of Q; is, of course, straightforward.
One obtains, using the asymptotic formula (2.4.7) for the number of single-particle states
with energies lying between ¢ and ¢ + dk,

o0

27V
AWV, T)= Ze_ﬁg ~ %(Zm)g/zfe_ﬁgsl/zds
&
0

=V/A3, (10)
where A [= h/(2r mkT)'/?] is the mean thermal wavelength of the particles. Hence

VN

QnWV,T) = W; (a1
from which complete thermodynamics of this system can be derived; see, for example,

Section 3.5. Further, we obtain for the grand partition function of this system

Qi V,T)= Y ZNQnV,T) =exp(V/3’); (12)
N=0

compare to equation (4.4.3). We know that the thermodynamics of the system follows
equally well from the expression for Q.

In the Bose-Einstein and Fermi-Dirac cases, we obtain, by substituting (5) and (6)
into (4),

/ —B c€
QnvWV,T) = {Z} <e Fr ); (13)
Ne
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the difference between the two cases, B.E. and F.D., arises from the values that the
numbers n, can take. Now, in view of restriction (3) on the summation Z’, an explicit
evaluation of the partition function Qp in these cases is rather cumbersome. The grand
partition function @, on the other hand, turns out to be more easily tractable; we have

QeV, 1= [zNZ e_ﬁ§n€'£:| (14a)
{ne}

_ i [Z/]:[(ze—ﬂs)"g] (14b)

Now, the double summation in (14b) — first over the numbers n, constrained by a fixed
value of the total number N, and then over all possible values of N — is equivalent to
a summation over all possible values of the numbers n., independently of one another.
Hence, we may write

Qiz,V,T) = Z [(ze’ﬁfo)no (ze’ﬁal)nl...]

ng,ny,...

- {Z <ze‘ﬂ80)n0:| {Z (ze‘ﬁel)n1:| (15)

Now, in the Bose-Einstein case the n, can be either 0 or 1 or 2 or ..., while in the Fermi-
Dirac case they can be only 0 or 1. Therefore,

1
1_[ — —  _ intheB.E. case, with ze ™ #¢ < 1 (16a)
(1 —zeP¢)
Az, V,T) = &
l_[(l +ze P%)  inthe F.D. case. (16b)
&

The g-potential of the system is thus given by
14%
q(zr V; T) = ﬁ = ln(’{l(zi V) T)

=+ In(lFze ) a7

compare to equation (6.1.23), with g; = 1. The identification of the fugacity z with the
quantity e~* of equation (6.1.23) is quite natural; accordingly, « = —u/kT. As usual, the
upper (lower) sign in equation (17) corresponds to the Bose (Fermi) case.

In the end, we may write our results for g in a form applicable to all three cases:

PV 1
= — = — —pe
qz,V,T) = T2 Eg In(1 + aze *?), (18)
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where a = —1, +1, or 0, depending on the statistics governing the system. In particular, the
classical case (a — 0) gives

gus.=zy_e P =2Q, (19)
&€
in agreement with equation (4.4.4). From (18), it follows that
~_ _(dq 3 1
N:z<az>V'T—stzleﬂe+a (20)
and
E=—(3ﬂ) R D 1)
= 3B Z,V_ . Z—leﬂs+a.

At the same time, the mean occupation number (n.) of level ¢ turns out to be, see equa-
tions (14a) and (17),
T a

-

_ 1
~zlefeta’

(5)
de z,T, all other &

€ )z,T, all other ¢

(o8]

(22)

in keeping with equations (20) and (21). Comparing our final result (22) with its coun-
terpart (6.1.18a), we find that the mean value (n) and the most probable value n* of the
occupation number 7 of a single-particle state are indeed identical.

6.3 Statistics of the occupation numbers

Equation (6.2.22) gives the mean occupation number of a single-particle state with energy
¢ as an explicit function of the quantity (¢ — n)/kT:

1

ele—w)/kT 1 g° M

(ne) =
The functional behavior of this number is shown in Figure 6.2. In the Fermi-Dirac case
(a=+1), the mean occupation number never exceeds unity, for the variable n, itself
cannot have a value other than 0 or 1. Moreover, for ¢ < p and |¢ — | > kT, the mean occu-
pation number tends to its maximum possible value 1. In the Bose-Einstein case (a = —1),
we must have . < all ¢; see equation (6.2.16a). In fact, when u becomes equal to the low-
est value of ¢, say &g, the occupancy of that particular level becomes infinitely high, which
leads to the phenomenon of Bose-Einstein condensation; see Sections 7.1 and 7.2. For
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FIGURE 6.2 The mean occupation number (n.) of a single-particle energy state ¢ in a system of noninteracting
particles: curve 1 is for fermions, curve 2 for bosons, and curve 3 for the Maxwell-Boltzmann particles.

u < go, all values of (¢ — u) are positive and the behavior of all (rn.) is nonsingular. Finally,
in the Maxwell-Boltzmann case (a = 0), the mean occupation number takes the familiar
form

(ne)ms. = exp{(n — &)/kT} oc exp(—e/kT). v

The important thing to note here is that the distinction between the quantum statistics
(a = +1) and the classical statistics (@ = 0) becomes imperceptible when, for all values of ¢
that are of practical interest,

exp{(e — w)/kT} > 1. 3)
In that event, equation (1) essentially reduces to (2) and we may write, instead of (3),
(ne) < 1. 4)

Condition (4) is quite understandable, for it implies that the probability of any of the n,
being greater than unity is quite negligible, with the result that the classical weight factors
g{n.}, as given by equation (6.2.7), become essentially equal to 1. The distinction between
the classical treatment and the quantum-mechanical treatment then becomes rather
insignificant. Correspondingly, we find, see Figure 6.2, that for large values of (¢ — u)/kT
the quantum curves 1 and 2 essentially merge into the classical curve 3. Since we already
know that the higher the temperature of the system the better the validity of the classical
treatment, condition (3) also implies that u, the chemical potential of the system, must
be negative and large in magnitude. This means that the fugacity z[= exp(u/kT)] of the
system must be much smaller than unity; see also equation (6.2.22). One can see, from
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equations (4.4.6) and (4.4.29), that this is further equivalent to the requirement

N3
Vv <1, )

which agrees with condition (5.5.20).
We shall now examine statistical fluctuations in the variable n.. Going a step further
from the calculation that led to equation (6.2.22), we have

1 10\
<n§>:[<—) a} ; (6)
a p oe z,T, all other ¢
2
(n?) — (n.)* = [(—1;> ln(,‘z}
p oe z,T, all other ¢

19
“[ha) ], ”

For the relative mean-square fluctuation, we obtain (irrespective of the statistics obeyed
by the particles)

it follows that

2\ 2
(na) <n£) — (li) { 1 } =Zﬁl€ﬁ£; (8)
(ng)? B de ) [ (ne)

of course, the actual value of this quantity will depend on the statistics of the particles
because, for a given particle density (IN/V) and a given temperature 7, the value of z will
be different for different statistics.

It seems more instructive to write (8) in the form

()~ () _ 1
(ns)? (ne)

—a. 9

In the classical case (a = 0), the relative fluctuation is normal. In the Fermi-Dirac case, it
is given by 1/(n.) — 1, which is below normal and tends to vanish as (n.) — 1. In the Bose-
Einstein case, the fluctuation is clearly above normal.? Obviously, this result would apply
to a gas of photons and, hence, to the oscillator states in the black-body radiation. In the
latter context, Einstein derived this result as early as 1909 following Planck’s approach and
even pointed out that the term 1 in the expression for the fluctuation may be attributed
to the wave character of the radiation and the term 1/(n.) to the particle character of the
photons; for details, see Kittel (1958), ter Haar (1968).

Closely related to the subject of fluctuations is the problem of “statistical correlations
in photon beams,” which have been observed experimentally (see Hanbury Brown and

2The special case of fluctuations in the ground state occupation number, ng, of a Bose-Einstein system has been
discussed by Wergeland (1969) and by Fujiwara, ter Haar, and Wergeland (1970).



152 Chapter 6 * The Theory of Simple Gases

Twiss, 1956, 1957, 1958) and have been explained theoretically in terms of the quantum-
statistical nature of these fluctuations (see Purcell, 1956; Kothari and Auluck, 1957). For
further details, refer to Mandel, Sudarshan, and Wolf (1964); and Holliday and Sage (1964).

For greater understanding of the statistics of the occupation numbers, we evaluate
the quantity p,(n), which is the probability that there are exactly n particles in a state of
energy ¢. Referring to equation (6.2.14b), we infer that p, (n) o (ze~#¢)"*. On normalization,
it becomes in the Bose-Einstein case

pemlng. = (ze7)" [1 - ze77°]

_(dne N1 )"
_<(n£)+1) (ne>+1_((n8)+1)"+1' (10)

In the Fermi-Dirac case, we get

pemlep. = (27)"[1 +Ze_ﬁ£]_1

1-(n,) for n=0
= 11

{(ns) for n=1. (4
In the Maxwell-Boltzmann case, we have p.(n) « (ze~#¢)"/n! instead; see equation (6.2.8).
On normalization, we get

(e ) (e
pe(MIMmB. = exp(ee )~ nl e\l (12)

Distribution (12) is clearly a Poisson distribution, for which the mean square deviation of
the variable in question is equal to the mean value itself; compare to equation (9), with
a = 0. It also resembles the distribution of the total particle number N in a grand canonical
ensemble consisting of ideal, classical systems; see Problem 4.4. We also note that the ratio
pe(n)/pe(n— 1) in this case varies inversely with n, which is a “normal” statistical behavior
of uncorrelated events.

On the other hand, the distribution in the Bose-Einstein case is geometric, with a con-
stant common ratio (n.)/({n.) + 1). This means that the probability of a state ¢ acquiring
one more particle for itself is independent of the number of particles already occupying
that state; thus, in comparison with the “normal” statistical behavior, bosons exhibit a spe-
cial tendency of “bunching” together, which means a positive statistical correlation among
them. In contrast, fermions exhibit a negative statistical correlation.

6.4 Kinetic considerations

The thermodynamic pressure of an ideal gas is given by equation (6.1.23) or (6.2.18). In
view of the largeness of volume V, the single-particle energy states ¢ would be so close
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to one another that a summation over them may be replaced by integration. One thereby
gets

o0
kT _ 4rp?dp
_ Be(p)
pP= P /ln[1+aze ] i3
0

47 kT p3 —pe(p)
=3 |:31n[1+aze ”’]

T3 aze—he)
aze de
+ / 5 Trazerem P ap® |
0o 3 1+aze=PeW " dp
The integrated part vanishes at both limits while the rest of the expression reduces to

o0
47 1 de
P=—t | ——— (p== ) pPap. 1
3h3/z—1e/35(l’)+a<pdp)pdp )
0

Now, the total number of particles in the system is given by

(o]

Vdp 4nV 1 )
N= /(np) JEEE /z—leﬂs(p) va’ ap. @
0
Comparing (1) and (2), we can write
1N/ de 1
P= 3V <PdTQ> = gn(lm), (3)

where n is the particle density in the gas and u the speed of an individual particle. If the
relationship between the energy ¢ and the momentum p is of the form ¢ o p*, then

s s E
P:§n<€):§V’ 4)
the particular cases s =1 and s = 2 are pretty easy to recognize. It should be noted here
that results (3) and (4) hold independently of the statistics obeyed by the particles.

The structure of formula (3) suggests that the pressure of the gas arises essentially from
the physical motion of the particles; it should, therefore, be derivable from kinetic consid-
erations alone. To do this, we consider the bombardment, by the particles of the gas, on
the walls of the container. Let us take, for example, an element of area dA on one of the
walls normal to the z-axis, see Figure 6.3, and focus our attention on those particles whose
velocity lies between u and u + du; the number of such particles per unit volume may be

denoted by nf (u)du, where

/ fwdu=1. (5)

allu
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%LdA—»z

(udt)

FIGURE 6.3 The molecular bombardment on one of the walls of the container.

Now, the question is: how many of these particles will strike the area dA in time dt? The
answer is: all those particles that happen to lie in a cylindrical region of base dA and height
udt, as shown in Figure 6.3. Since the volume of this region is (dA - u)dt, the number of
such particles would be {(dA- u)dt x nf (u)du}. On reflection from the wall, the normal
component of the momentum of a particle would undergo a change from p, to —p;; as
a result, the normal momentum imparted by these particles per unit time to a unit area
of the wall would be 2 p,{u.nf(u)du}. Integrating this expression over all relevant u, we
obtain the total normal momentum imparted per unit time to a unit area of the wall by all
the particles of the gas which, by definition, is the kinetic pressure of the gas:

o0 o0 o0
P=2n / / / pzuzf wducduydu. 6)°
Uy=—00 Uy=—00 ;=0

Since (i) f(w) is a function of u alone and (ii) the product (p;u;.) is an even function of u;,
the foregoing result may be written as

P=n / (pzuz)f (w)du. (7)

allu

Comparing (7) with (5), we obtain

P = n(p,uz) = n(pucos?6) (8)
1
= §n(pu), 9)

which is identical to (3).

3Clearly, only those velocities for which u, > 0 are relevant here.
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In a similar manner, we can determine the rate of effusion of the gas particles through
a hole (of unit area) in the wall. This is given by, compared to (6),

R=n [ / / uzf (wyduxduydu, (10)

Ux=—00 Uy=—00 1z=0
2r m/2 oo

=n/ f /{ucosef(u)}(uZSinedudedgb); an

$=0 =0 u=0

note that the condition u, > 0 restricts the range of the angle 6 between the values 0 and
7 /2. Carrying out integrations over 6 and ¢, we obtain

R=nn /f(u)u3 du. (12)
0
In view of the fact that
/ fw@ru?du) =1, (5a)
0
equation (12) may be written as
R= 1 13
= Zn(u). (13)

Again, this result holds independently of the statistics obeyed by the particles.

It is obvious that the velocity distribution among the effused particles is considerably
different from the one among the particles inside the container. This is due to the fact that,
firstly, the velocity component u, of the effused particles must be positive (which intro-
duces an element of anisotropy into the distribution) and, secondly, the particles with
larger values of u, appear with an extra weightage, the weightage being directly propor-
tional to the value of u,; see equation (10). As a result of this, (i) the effused particles carry
with them a net forward momentum, thus causing the container to experience a recoil
force, and (ii) they carry away a relatively large amount of energy per particle, thus leaving
the gas in the container at not only a progressively decreasing pressure and density but
also a progressively decreasing temperature; see Problem 6.14.

6.5 Gaseous systems composed of molecules

with internal motion

In most of our studies so far we have considered only the translational part of the molecu-
lar motion. Though this aspect of motion is invariably present in a gaseous system, other
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aspects, which are essentially concerned with the internal motion of the molecules, also
exist. It is only natural that in the calculation of the physical properties of such a sys-
tem, contributions arising from these motions are also taken into account. In doing so,
we shall assume that (i) the effects of the intermolecular interactions are negligible and (ii)
the nondegeneracy criterion

3 nh®

A= K1 5.5.20
(2mrmkT)3/2 < ( )

is fulfilled; this makes our system an ideal, Boltzmannian gas. Under these assumptions,
which hold sufficiently well in a large number of applications, the partition function of the
system is given by

1
vV, T) = 5 1QuV, v, €))
where
V.

the factor within the curly brackets is the familiar translational partition function of a
molecule, while j(T) is the partition function corresponding to internal motions. The latter
may be written as

()= gie ti*T, 3)
i

where ¢; is the energy associated with a state of internal motion (characterized by the
quantum numbers i), while g; is the multiplicity of that state.

The contributions made by the internal motions of the molecules, over and above
the translational degrees of freedom, follow straightforwardly from the function j(T). We
obtain

Aint = —NkT1nj, 4
Hint = —kTInj, )
, .
Sint = Nk (ln i+ Tﬁ In ]> ) (6)
Uyt = NkT? 9 Inj @)
int = 9T J

and

R P
(Cv)int = Nkﬁ {T ﬁln]}- ®)
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Thus, the central problem in this study is to derive an explicit expression for the function
Jj(T) from a knowledge of the internal states of the molecules. For this, we note that the
internal state of a molecule is determined by (i) the electronic state, (ii) the state of the
nuclei, (iii) the vibrational state, and (iv) the rotational state. Rigorously speaking, these
four modes of excitation mutually interact; in many cases, however, they can be treated
independently of one another. We can then write

J(D) = jelec (Tjnuc (D) jvib (Tjrot (T), (3a)

with the result that the net contribution made by the internal motions to the various
thermodynamic properties of the system is given by a simple sum of the four respective
contributions. There is one interaction, however, that plays a special role in the case of
homonuclear molecules, such as AA, and which is between the states of the nuclei and the
rotational states. In such a case, we better write

](T) = jelec (T)jnuc—rot(T)jvib (T). (3b)

We now examine this problem for various systems in the order of increasing complexity.

6.5.A Monatomic molecules

For simplicity, we consider a monatomic gas at temperatures such that the thermal energy
kT is small in comparison with the ionization energy ¢iop; for different atoms, this amounts
to the condition T « ¢jon/k ~ 10* — 10° K. At these temperatures, the number of ionized
atoms in the gas would be insignificant. The same would be true of atoms in the excited
states, for the separation of any of the excited states from the ground state of the atom
is generally of the same order of magnitude as the ionization energy itself. Thus, we may
regard all atoms in the gas to be in their (electronic) ground state.

Now, there is a special class of atoms, namely He, Ne, A, .. ., which, in their ground state,
possess neither orbital angular momentum nor spin (L = S = 0). Their (electronic) ground
state is clearly a singlet, with g, = 1. The nucleus, however, possesses a degeneracy that
arises from the possibility of different orientations of the nuclear spin.? If the value of
this spin is Sy, the corresponding degeneracy factor g, = 2S5, + 1. Moreover, a monatomic
molecule cannot have any vibrational or rotational states. The internal partition function
(3a) of such a molecule is, therefore, given by

J( = (8)grst. = 8e 8n= 28, + 1. 9)

4As is well known, the presence of the nuclear spin gives rise to the so-called hyperfine structure in the electronic
states. However, the intervals of this structure are such that, for practically all temperatures of interest, they are small in
comparison with kT’ for concreteness, these intervals correspond to T-values of the order of 107! to 10° K. Accordingly,
in the evaluation of the partition function j(T), the hyperfine splitting of the electronic state may be disregarded while
the multiplicity introduced by the nuclear spin may be taken into account through a degeneracy factor.
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Equations (4) through (8) then tell us that the internal motions in this case contribute only
toward properties such as the chemical potential and the entropy of the gas; they do not
contribute toward the internal energy and the specific heat.

If, on the other hand, the ground state does not possess orbital angular momentum but
possesses spin (L =0, S # 0 — as, for example, in the case of alkali atoms), then the ground
state will still have no fine structure; it will, however, have a degeneracy g. =2S+1. As a
result, the internal partition function j(T) will get multiplied by a factor of (25+ 1) and
the properties such as the chemical potential and the entropy of the gas will get modified
accordingly.

In other cases, the ground state of the atom may possess both orbital angular momen-
tum and spin (L # 0, S # 0); the ground state would then possess a definite fine structure.
The intervals of this structure are, in general, comparable to kT; hence, in the evaluation
of the partition function, the energies of the various components of the fine structure will
have to be taken into account. Since these components differ from one another in the value
of the total angular momentum J, the relevant partition function may be written as

Jetee(T) = (2] + e I/kT, (10)
J

The foregoing expression simplifies considerably in the following limiting cases:

(@) kT > all ¢;; then

Jelee(D) > Y (2] +1) = 2L+ 1)(2S+ 1). (10a)
J
(b) kT « all g7; then
Jetec(T) = (2Jo + e 0/*T, (10b)

where Jj is the total angular momentum, and gg the energy, of the atom in the lowest state.
In either case, the electronic motion makes no contribution toward the specific heat of
the gas. Of course, at intermediate temperatures, we do obtain a contribution toward this
property. And, in view of the fact that both at high and low temperatures the specific heat
tends to be equal to the translational value %Nk, it must pass through a maximum at a
temperature comparable to the separation of the fine structure levels.® Needless to say, the
multiplicity (25, + 1) introduced by the nuclear spin must be taken into account in each
case.

6.5.B Diatomic molecules

Now we consider a diatomic gas at temperatures such that k7T is small compared to the
energy of dissociation; for different molecules, this amounts once again to the condition

5It seems worthwhile to note here that the values of Ag;/k for the components of the normal triplet term of oxygen
are 230 K and 320 K, while those for the normal quintuplet term of iron range from 600 to 1,400 K.
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T < egiss/k ~ 10* —10° K. At these temperatures the number of dissociated molecules in
the gas would be insignificant. At the same time, in most cases, there would be practi-
cally no molecules in the excited states as well, for the separation of any of these states
from the ground state of the molecule is in general comparable to the dissociation energy
itself. Accordingly, in the evaluation of j(T), we have to take into account only the lowest
electronic state of the molecule.

The lowest electronic state, in most cases, is nondegenerate: g, = 1. We then need not
consider any further the question of the electronic state making a contribution toward
the thermodynamic properties of the gas. However, certain molecules (though not very
many) have, in their lowest electronic state, either (i) a nonzero orbital angular momentum
(A #0) or (ii) a nonzero spin (S # 0) or (iii) both. In case (i), the electronic state acquires a
twofold degeneracy corresponding to the two possible orientations of the oribital angular
momentum relative to the molecular axis;’ as a result, g, = 2. In case (ii), the state acquires
a degeneracy 25 + 1 corresponding to the space quantization of the spin.?

In both these cases the chemical potential and the entropy of the gas are modified by
the multiplicity of the electronic state, while the energy and the specific heat remain unaf-
fected. In case (iii), we encounter a fine structure that necessitates a rather detailed study
because the intervals of this structure are generally of the same order of magnitude as kT.
In particular, for a doublet fine-structure term, such as the one that arises in the molecule
NO (ITy 2,3/2 with a separation of 178 K, the components themselves being A-doublets),
we have for the electronic partition function

Jelec(T) = go + g1~ 2/*T, a1

where gp and g; are the degeneracy factors of the two components while A is their separa-
tion energy. The contribution made by (11) toward the various thermodynamic properties
of the gas can be calculated with the help of formulae (4) through (8). In particular, we
obtain for the contribution toward the specific heat

Nk (A/KT)?
[1+ (80/81)eA/kTT [1 + (g1/g0)e~2/*T]

(CV)elec = (12)

We note that this contribution vanishes both for T« A /k and for T > A /k and is maxi-
mum for a certain temperature ~A /k; compare to the corresponding situation in the case
of monatomic molecules.

An odd case arises with oxygen. The separation between its normal term 3% and the first excited term ! A is about
11,250 K, whereas the dissociation energy is about 55,000 K. The relevant factor e~#! /KT therefore, can be quite significant
even when the factor e~¢dis/kT is not, say for 7'~ 2000 to 6000 K.

"Strictly speaking, the term in question splits into two levels — the so-called A-doublet. The separation of the levels,
however, is such that we can safely neglect it.

8The separation of the resulting levels is again negligible from the thermodynamic point of view; as an example, one
may cite the very narrow triplet term of Oy.
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We now consider the effect of the vibrational states of the molecules on the thermo-
dynamic properties of the gas. To have an idea of the temperature range over which this
effect would be significant, we note that the magnitude of the corresponding quantum of
energy, namely o, for different diatomic gases is of order 103 K. Thus, we would obtain full
contributions (consistent with the dictates of the equipartition theorem) at temperatures
of the order of 10* K or more, and practically no contribution at temperatures of the order
of 10% K or less. Let us assume that the temperature is not high enough to excite vibra-
tional states of large energy; the oscillations of the nuclei then remain small in amplitude
and hence harmonic. The energy levels for a mode of frequency » are then given by the
well-known expression (1 + 3)ho.’

The evaluation of the vibrational partition function j;,(T) is quite elementary; see
Section 3.8. In view of the rapid convergence of the series involved, the summation may
formally be extended to n = co. The corresponding contributions toward the various ther-
modynamic properties of the system are then given by equations (3.8.16) through (3.8.21).
In particular,

@y)z e‘@”/T hw

(Cv)vip = Nk (
We note that for T >»> ©,, the vibrational specific heat is very nearly equal to the equipar-
tition value Nk; otherwise, it is always less than Nk. In particular, for T « ©,, the specific
heat tends to zero (see Figure 6.4); the vibrational degrees of freedom are then said to be
“frozen.”

At sufficiently high temperatures, when vibrations with large n are also excited, the
effects of anharmonicity and of interaction between the vibrational and the rotational
modes of the molecule can become important.'® However, since this happens only at large
n, the relevant corrections to the various thermodynamic quantities can be determined
even classically; see Problems 3.29 and 3.30. One finds that the first-order correction to
Cyib is directly proportional to the temperature of the gas.

Finally, we consider the effect of (i) the states of the nuclei and (ii) the rotational states
of the molecule; wherever necessary, we shall take into account the mutual interaction of
these modes. This interaction is of no relevance in the case of heteronuclear molecules,
such as AB; it is, however, important in the case of homonuclear molecules, such as AA. We
may, therefore, consider the two cases separately.

The states of the nuclei in the heteronuclear case may be treated separately from
the rotational states of the molecule. Proceeding in the same manner as for monatomic
molecules, we conclude that the effect of the nuclear states is adequately taken care of

%It may be pointed out that the vibrational motion of a molecule is influenced by the centrifugal force arising from
the molecular rotation. This leads to an interaction between the rotational and the vibrational modes. However, unless
the temperature is too high, this interaction can be neglected and the two modes treated independently of one another.

%Tn principle, these two effects are of the same order of magnitude.
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FIGURE 6.4 The vibrational specific heat of a gas of diatomic molecules. At T = ©,, the specific heat is already
about 93 percent of the equipartition value.

through a degeneracy factor g,. Denoting the spins of the two nuclei by S4 and Sg,
8n=(2Sa+1D(2Sp+1). (14)

As before, we obtain a finite contribution toward the chemical potential and the entropy

of the gas but none toward the internal energy and the specific heat.
Now, the rotational levels of a linear “rigid” rotator, with two degrees of freedom (for
the axis of rotation) and the principal moments of inertia (I, I, 0), are given by

erot = l(l+ DAR%/2I, 1=0,1,2,...; (15)

here, I = Mrg where u[= mymy/(my + my)] is the reduced mass of the nuclei and ry the equi-
librium distance between them. The rotational partition function of the molecule is then
given by

00 B2
]rot(T) = I_E 0(2l+ I)EXP{—Z(Z-I- l)ﬁ }
},—LZ

-\ Or . _
_g(ZH—l)exp{—l(l—k 1) T }, Or= 3Tk (16)

The values of ®,, for all gases except the ones involving the isotopes H and D, are much
smaller than room temperature. For example, the value of ®, for HCl is about 15 K, for N>,
O, and NO it lies between 2 K and 3 K, while for Cl, it is about one-third of a degree. On
the other hand, the values of ®, for H,, D», and HD are, respectively, 85 K, 43 K, and 64 K.
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These numbers give us an idea of the respective temperature ranges in which the effects
arising from the discreteness of the rotational states are expected to be important.

For T > ©,, the spectrum of the rotational states may be approximated by a contin-
uum. The summation in (16) is then replaced by an integration:

T ® T
jrot(T)%/(21+l)exp{—l(l+ 1)—’}dl= —. 17)
T O
0
The rotational specific heat is then given by
(Cv)rot = NEK, (18)

consistent with the equipartition theorem.
A better evaluation of the sum in (16) can be made with the help of the Euler-Maclaurin
formula, namely

’;)f(n) /f(x)dx+ f(0)—*f (0)+ﬁf 0) - 30, 240f ) +-- (19)
Writing
fx) = @2x+1exp{—x(x+1)0/T},
one obtains
T 1 10, 4 [(6,\
]rot(T) 7+3+ET+315 <?> +- (20)

which is the so-called Mulholland’s formula; as expected, the main term of this formula is
identical to the classical partition function (17). The corresponding result for the specific

heat is
1 /0,\> 16 [0,\°
(CV)rot—Nk{l‘f'%(T) +%<T> +"'}, (21)

which shows that at high temperatures the rotational specific heat decreases with temper-
ature and ultimately tends to the classical value Nk. Thus, at high (but finite) temperatures
the rotational specific heat of a diatomic gas is greater than the classical value. On the other
hand, it must go to zero as T — 0. We, therefore, conclude that it passes through at least
one maximum. Numerical studies show that there is only one maximum that appears at a
temperature of about 0.80, and has a value of about 1.1Nk; see Figure 6.5.
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FIGURE 6.5 The rotational specific heat of a gas of heteronuclear diatomic molecules.

In the other limiting case, when T « ©,, one may retain only the first few terms of the
sum in (16); then

Jrot(T) =1+ 3e20r/T 4 56760r/T 4 .. , 22)

from which one obtains, in the lowest approximation,
® 2
(CV)rot ~ 12Nk <Tr> e_2®r/T_ (23)

Thus, as T — 0, the specific heat drops exponentially to zero; see again Figure 6.5. We,
therefore, conclude that at low enough temperatures the rotational degrees of freedom of
the molecules are also “frozen.”

At this stage it appears worthwhile to remark that, since the internal motions of the
molecules do not make any contribution toward the pressure of the gas (Ajy: being inde-
pendent of V), the quantity (Cp — Cy) is the same for a diatomic gas as for a monatomic
one. Moreover, under the assumptions made in the very beginning of this section, the
value of this quantity at all temperatures of interest would be equal to the classical value
Nk. Thus, at sufficiently low temperatures (when rotational as well as vibrational degrees
of freedom of the molecules are “frozen”), we have, by virtue of the translational motion
alone,

3 5 5
Cy = =Nk, Cp=_-NK; =-. 24
V=73 P=3 v=3 (24)
As temperature rises, the rotational degrees of freedom begin to “loosen up” until we
reach temperatures that are much larger than ©®, but much smaller than ®,; the rotational

degrees of freedom are then fully excited while the vibrational ones are still “frozen.”
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FIGURE 6.6 The rotational-vibrational specific heat, Cp, of the diatomic gases HD, HT, and DT.

Accordingly, for ©, « T <« 0y,

5 7 7
Cy ==Nk, Cp==Nk; =—. 25
V=75 P=3 v=s (25)

As temperature rises further, the vibrational degrees of freedom as well start loosening up,
until we reach temperatures that are much larger than ©,. Then, the vibrational degrees of
freedom are also fully excited and we have

Cy = gNk, Cp= gNk; y = g (26)
These features are displayed in Figure 6.6 where the experimental results for Cp are plot-
ted for three gases HD, HT, and DT. We note that, in view of the considerable difference
between the values of ®; and ©,, the situation depicted by (25) prevails over a consider-
ably large range of temperatures. In passing, it may be pointed out that, for most diatomic
gases, the situation at room temperatures corresponds to the one depicted by (25).

We now study the case of homonuclear molecules, such as AA. To start with, we consider
the limiting case of high temperatures where classical approximation is admissible. The
rotational motion of the molecule may then be visualized as a rotation of the molecular
axis, that is, the line joining the two nuclei, about an “axis of rotation” that is perpendic-
ular to the molecular axis and passes through the center of mass of the molecule. Then,
the two opposing positions of the molecular axis, namely the ones corresponding to the
azimuthal angles ¢ and ¢ + 7, differ simply by an interchange of the two identical nuclei
and, hence, correspond to only one distinct state of the molecule. Therefore, in the evalu-
ation of the partition function, the range of the angle ¢ should be taken as (0, =) instead of
the customary (0,27). Moreover, since the energy of rotational motion does not depend on
angle ¢, the only effect of this on the partition function of the molecule would be to reduce
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it by a factor of 2. We thus obtain, in the classical approximation,'!

T
Jnuc—rot(T) = (284 +1)? 27)

20,
Obviously, the factor 2 here will not affect the specific heat of the gas; in the classical
approximation, therefore, the specific heat of a gas of homonuclear molecules is the same
as that of a corresponding gas of heteronuclear molecules.

In contrast, significant changes result at relatively lower temperatures where the states
of rotational motion have to be treated as discrete. These changes arise from the cou-
pling between the nuclear and the rotational states that in turn arises from the symmetry
character of the nuclear-rotational wavefunction. As discussed in Section 5.4, the total
wavefunction of a physical state must be either symmetric or antisymmetric (depend-
ing on the statistics obeyed by the particles involved) with respect to an interchange of
two identical particles. Now, the rotational wavefunction of a diatomic molecule is sym-
metric or antisymmetric depending on whether the quantum number [ is even or odd.
The nuclear wavefunction, on the other hand, consists of a linear combination of the spin
functions of the two nuclei and its symmetry character depends on the manner in which
the combination is formed. It is not difficult to see that, of the (2S4 + 1)? different com-
binations that one constructs, exactly (S4 + 1)(2S4 + 1) are symmetric with respect to an
interchange of the nuclei and the remaining S4(2S4 + 1) antisymmetric.'? In constructing
the total wavefunction, as a product of the nuclear and the rotational wavefunctions, we
then proceed as follows:

(i) If the nuclei are fermions (S = %, %, ...), as in the molecule H>, the total wavefunction

must be antisymmetric. To secure this, we may associate any one of the S4(2S4 + 1)
antisymmetric nuclear wavefunctions with any one of the even-/ rotational
wavefunctions or any one of the (S4 + 1)(254 + 1) symmetric nuclear wavefunctions
with any one of the odd-I rotational wavefunctions. Accordingly, the nuclear-
rotational partition function of such a molecule would be

JED (T) = Sa(2Sa + 1reven + (Sa + 1)(2S4 + D)Foqds 28)

1t seems instructive to outline here the purely classical derivation of the rotational partition function. Specifying
the rotation of the molecule by the angles (9, ¢) and the corresponding momenta (ps, py), the kinetic energy assumes the
form

_ 1.2 12
€rot = 21 P + 75in75 Po

from which

. ¢ma}(
Jrot(T) = 7z [ €*/MT (dpydpydo dp) = 5L [ dg.
0

For heteronuclear molecules ¢yax = 27, while for homonuclear ones ¢max = 7.
125ee, for example, Schiff (1968, Section 41).
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where
Feven =y 21+ 1exp{—lI+1)0;/T) (29)
1=0,2,...
and
Todd= »_ l+Dexp{-ll+1)©,/T). (30)
1=1,3,...

(ii) If the nuclei are bosons (S4 =0,1,2,...), as in the molecule D,, the total wavefunction
must be symmetric. To secure this, we may associate any one of the (5S4 + 1)(2S4 + 1)
symmetric nuclear wavefunctions with any one of the even-/ rotational wavefunc-
tions or any one of the S4(254 + 1) antisymmetric nuclear wavefunctions with any
one of the odd-/ rotational wavefunctions. We then have

jg?lf.—)rot(T) = (Sa+ 1)(2S4 + Dreven +Sa(25a + Drodq- (31)
At high temperatures, it is the larger values of / that contribute most to the sums (29) and
(30). The difference between the two sums is then negligibly small, and we have

1,
Teven = T'odd = E]rot(T) =T/20y; (32)
see equations (16) and (17). Consequently,

.(B.E.) (F.D.) (2S4+1)2T/20),, (33)

Jnuc=rot =Jnuc-rot =

in agreement with our previous result (27). Under these circumstances, the statistics gov-
erning the nuclei does not make a significant difference to the thermodynamic behaviour
of the gas.

Things change when the temperature of the gas is in a range comparable to the value
of ©,. It seems most reasonable then to regard the gas as a mixture of two components,
generally referred to as ortho- and para-, whose relative concentrations in equilibrium are
determined by the relative magnitudes of the two parts of the partition function (28) or
(31), as the case may be. Customarily, the name ortho- is given to that component that
carries the larger statistical weight. Thus, in the case of fermions (as in Hy), the ortho- to
para-ratio is given by

n D) _ (Sa+ Droaq

(34)
SATeven
while in the case of bosons (as in D), the corresponding ratio is given by
nBE) (Sa+ l)reven. (35)

SaTodd
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As temperature rises, the factor ryqq/7even tends to unity and the ratio n, in each case,
approaches the temperature-independent value (Sg + 1)/S4. In the case of Hy, this lim-
iting value is 3 (since Sy = %) while in the case of D» it is 2 (since Sy = 1). At sufficiently
low temperatures, one may retain only the main terms of the sums (29) and (30), with the
result that

Todd

T'even

r

20
:3exp<— T) (T < ©y), (36)

which tends to zero as T — 0. The ratio n then tends to zero in the case of fermions and
to infinity in the case of bosons. Hence, as T — 0, the hydrogen gas is wholly para-, while
deuterium is wholly ortho-; of course, in each case, the molecules do settle down in the
rotational state [ = 0.

At intermediate temperatures, one has to work with the equilibrium ratio (34), or (35),
and with the composite partition function (28), or (31), in order to compute the thermody-
namic properties of the gas. One finds, however, that the theoretical results so derived do
not generally agree with the ones obtained experimentally. This discrepancy was resolved
by Dennison (1927) who pointed out that the samples of hydrogen, or deuterium, ordi-
narily subjected to experiment are not in thermal equilibrium as regards the relative
magnitudes of the ortho- and para-components. These samples are ordinarily prepared
and kept at room temperatures that are well above ®,, with the result that the ortho- to
para-ratio in them is very nearly equal to the limiting value (S5 + 1)S4.

If now the temperature is lowered, one would expect this ratio to change in accordance
with equation (34), or (35). However, it does not do so for the following reason. Since
the transition of a molecule from one form of existence to another involves the flipping
of the spin of one of its nuclei, the transition probability of the process is quite small. Actu-
ally, the periods involved are of the order of a year! Obviously, one cannot expect to attain
the true equilibrium ratio n during the short times available. Consequently, even at lower
temperatures, what one generally has is a nonequilibrium mixture of two independent
substances, the relative concentration of which is preassigned. The partition functions (28)
and (31) as such are, therefore, inapplicable; we rather have directly for the specific heat

Sa Sa+1
c®ED) _ C “2 " Cc 37
254 +1 even T o5, 4 Codd 57
and
Sa+1 Sa
cBE) — —2 _Codd, 38
254 +1 even‘*’zSA_’_1 odd (38)
where
0
Ceven/odd = Nkﬁ { Tz(a/a T)InTeven/odd } (39)

We have, therefore, to compute Ceven and Cyqq Separately and then derive the net value
of the rotational specific heat with the help of formula (37) or (38), as the case may be.
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(T10,) —»

FIGURE 6.7 The theoretical specific heat of a 1:3 mixture of para-hydrogen and ortho-hydrogen. The experimental
points originate from various sources listed in Wannier (1966).

Figure 6.7 shows the relevant results for hydrogen. Curves 1 and 2 correspond to the para-
hydrogen (Ceven) and the ortho-hydrogen (C,q4), respectively, while curve 3 represents the
weighted mean, as given by equation (37). The experimental results are also shown in the
figure; the agreement between theory and experiment is clearly good.

Further evidence in favor of Dennison’s explanation is obtained by performing exper-
iments with ortho—para mixtures of different relative concentration. This can be done by
speeding up the ortho—para conversion by passing hydrogen over activated charcoal. By
doing this at various temperatures, and afterwards removing the catalyst, one can fix the
ratio n at any desired value. The specific heat then follows a curve obtained by mixing Ceyen
and C,qq with appropriate weight factors. Further, if one measures the specific heat of the
gas in such a way that the ratio n, at every temperature 7T, has the value that is given by
formula (34), it indeed follows the curve obtained from expression (28) for the partition
function.

6.5.C Polyatomic molecules

Once again, the translational degrees of freedom of the molecules contribute their usual
share, %k per molecule, toward the specific heat of the gas. As regards the lowest electronic
state, it is, in most cases, far below any of the excited states; nevertheless, it generally pos-
sesses a multiplicity (depending on the orbital and spin angular momenta of the state)
that can be taken care of by a degeneracy factor g.. As regards the rotational states, they
can be treated classically because the large values of the moments of inertia characteris-
tic of polyatomic molecules make the quantum of rotational energy, 42 /21;, much smaller
than the thermal energy kT at practically all temperatures of interest. Consequently, the
interaction between the rotational states and the states of the nuclei can also be treated
classically. As a result, the nuclear-rotational partition function is given by the product of
the respective partition functions, divided by a symmetry number y that denotes the num-
ber of physically indistinguishable configurations realized during one complete rotation of
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the molecule:!3

gnucjg)t(T); (40)

jnucfrot(T) =
compare to equation (27). Here, jr%t(T) is the rotational partition function of the molecule
evaluated in the classical approximation (without paying regard to the presence of identi-
cal nuclei, if any); it is given by

C 1y g1/2 (20T 2 12 kT\Y? (213kT\'/? )
Jrot - 12 12 12

where I, I, and I3 are the principal moments of inertia of the molecule; see Prob-
lem 6.27.1* The rotational specific heat is then given by

d d . 3
Crot = Nkﬁ{Tzﬁ In ]rC(,t(T)} = 5K, (42)

consistent with the equipartition theorem.

As regards vibrational states, we first note that, unlike a diatomic molecule, a poly-
atomic molecule has not one but several vibrational degrees of freedom. In particular, a
noncollinear molecule consisting of 7 atoms has 3n — 6 vibrational degrees of freedom, six
degrees of freedom out of the total 3n having gone into the translational and rotational
motions. On the other hand, a collinear molecule consisting of n atoms would have 3n —5
vibrational degrees of freedom, for the rotational motion in this case has only two, not
three, degrees of freedom. The vibrational degrees of freedom correspond to a set of nor-
mal modes characterized by a set of frequencies w;. It might happen that some of these
frequencies have identical values; we then speak of degenerate frequencies.'®

In the harmonic approximation, these normal modes may be treated independently
of one another. The vibrational partition function of the molecule is then given by the
product of the partition functions corresponding to individual normal modes, that is,

' e—©i/2T Fie:
Juib(T) = 1_[ W; 0;= TZ, (43)

1

BEor example, the symmetry number y for H,O (isosceles triangle) is 2, for NH3 (regular triangular pyramid) it is 3,
while for CHy (tetrahedron) and CgHg (regular hexagon) it is 12. For heteronuclear molecules, the symmetry number is
unity.

4In the case of a collinear molecule, such as N>O or CO,, there are only two degrees of freedom for rotation; con-
sequently, jrcot(T) is given by (2IkT/ h2), where I is the (common) value of the two moments of inertia of the molecule;
see equation (17). Of course, we must also take into account the symmetry number y. In the examples quoted here,
the molecule N, O, being spatially asymmetric (NNO), has symmetry number 1, while the molecule CO,, being spatially
symmetric (OCO), has symmetry number 2.

5Eor example, of the four frequencies characterizing the normal modes of vibration of the collinear molecule OCO,

two that correspond to the (transverse) bending modes, namely g ¢ O, are equal while the others that correspond to

!

(longitudinal) oscillations along the molecular axis, namely «<-O C— <0 and «-O C O—, are different; see Problem 6.28.
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and the vibrational specific heat is given by the sum of the contributions arising from the
individual modes:

0;\* /T
Cyib = Nk <J> - L (44)
Vi ; { T) (e®/T —1)?

In general, the various ©; are of order 102 K; for instance, in the case of CO,, which was
cited in footnote 15, ®; = ®, =960 K, ©®3 =1,990 K, and ®4 = 3,510 K. For temperatures
large in comparison with all ®;, the specific heat would be given by the equipartition value,
namely Nk for each of the normal modes. In practice, however, this limit can hardly be
realized because the polyatomic molecules generally break up well before such high tem-
peratures are reached. Secondly, the different frequencies w; of a polyatomic molecule
are generally spread over a rather wide range of values. Consequently, as temperature
rises, different modes of vibration get gradually “included” into the process; in between
these “inclusions,” the specific heat of the gas may stay constant over considerably large
stretches of temperature.

6.6 Chemical equilibrium

The equilibrium amounts of chemicals in a chemical reaction are determined by the
chemical potentials of each of the species. Consider the following chemical reaction
between chemical species A and B to form species X and Y with stoichiometric coefficients
va, VB, Vx, and vy:

vaA+vgB = vx X +vyY. (1)

Each individual reaction that occurs changes the number of molecules of each species
according to the stoichiometric coefficients. If the initial numbers of molecules of the
species are N3, N9, N7, and N, then the numbers of each species after AN chemical reac-
tions have occurred would be Ny = N3 —voAN, Ng = Nj — vgAN, Nx = N +vxAN, and
Ny = Nl(} +vyAN. If AN > 0, the reaction has proceeded in the positive direction increas-
ing the numbers of X and Y. If AN < 0, the reaction has proceeded in the direction of
increasing the numbers of A and B. If the reaction takes place in a closed isothermal sys-
tem with fixed pressure, the Gibbs free energy G(Na, Np, Nx, Ny, P, T) is changed by the
amount

AG = (—vana —vpup +vxiux +vyuy)AN, 2)

where pa = (2% is the chemical potential of species A, and so on; see Sections 3.3,
ONaJT,p

4.7, and Appendix H. Since the Gibbs free energy decreases as a system approaches equi-
librium, AG < 0. When the system reaches chemical equilibrium, the Gibbs free energy
reaches its minimum value so AG = 0. This gives us the general relationship for chemical
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equilibrium of the reaction in equation (1), namely

VAMA + VBB = VXX + VY Y. 3)

Note that if a chemical species that acts as a catalyst is added in equal amounts to
both sides of equation (1), the equilibrium relation (3) is unaffected. Therefore, a cata-
lyst may serve to increase the rate of approach toward equilibrium, without affecting the
equilibrium condition itself.

If the free energy can be approximated as a sum of the free energies of the individual
species such as in an ideal gas or a dilute solution, then we can derive a simple rela-
tion between the equilibrium densities of the species. Following from equations (3.5.10)
and (6.5.4), the Helmholtz free energy of a classical ideal gas consisting of molecules with
internal degrees of freedom can be written as

3
A(N,V,T)=Nse —|—Nlen<N‘iL) — NkT — NkTInj(T), 4)

where ¢ is the ground state energy of the molecule, » = h/~/2nmkT is the thermal
deBroglie wavelength, and j(T) is the partition function for the internal degrees of freedom
of the molecule. This gives for the chemical potential of species A

0A 3 i
A = <m>T,v_8A+len (nAAA) — kTInja(T), (5)

where 74 is the number density of species A. The equilibrium condition then (3) gives

[(X]"x[y]™Y

Al = KD =ex (—5 Au“’)) ' 6)

where [A] = n4/ny, and so on,

0 0 0 0
Ap©® = VXME() + lel«g/) - VAV«E;) - VBHE;) ) (7a)

1) = ea+KTIn (o} ) — KTInja(T), etc. (7b)

and K (T) is the equilibrium constant.

Equation (6) is called the law of mass action. The quantity ng is a standard number
density and y,ff), and so on, are the chemical potentials of the species at temperature T
and standard number density ng. The quantity Au® represents the Gibbs free energy
change per chemical reaction at standard density. Note that the reaction constant K(T)
is a function only of the temperature and determines the densities of the components in
equilibrium at temperature T through equation (6). The standard number density for gases
is usually chosen to be the number density of an ideal gas at temperature T and standard
pressure, that is, np = (1atm)/kT. The standard density for aqueous solutions is usually
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chosen to be one mole per liter. The Gibbs free energy in chemical tables is expressed
relative to the standard states of the elements.

We now examine a specific example, the combustion of hydrocarbons with oxygen in
an internal combustion engine. The reaction used to power clean buses and automobiles
using natural gas is

CHj4 + 20, =2 CO2 4+ 2H0. 8)

The primary reaction products are carbon dioxide and water vapor but carbon monoxide
is also produced by the reaction

2CH4 4+ 302 =2 2CO +4H0. 9

A primary goal for a clean burning engine is to combust nearly all the hydrocarbon fuel
while producing as little carbon monoxide as possible. By combining reactions (8) and (9),
we get a direct reaction between carbon monoxide, oxygen, and carbon dioxide:

2CO+ 0, 2 2CO0;. (10)

Equation (6) now gives the equilibrium ratio of CO to CO; as

[CO] 1
= . 11
[CO2] | K(D)IOg] (1

At T~ 1,500K, as combustion occurs inside the cylinder of the engine, the equilibrium
constant K ~ 10'° so carbon monoxide is present as a combustion product in the few
parts per million range — combustion reactions that are not in equilibrium can have CO
concentrations well above the equilibrium value. The exhaust gases cool quickly during
the power stroke of the engine. As these gases exit the exhaust at T ~ 600K, the equilib-
rium constant K ~ 10%°, which should result in almost no carbon monoxide in the exhaust
stream. However, the reaction rate is typically too slow to keep the CO concentration in
chemical equilibrium during the rapid cooling, so the amount of CO present in the exhaust
stream remains close to the larger value determined at the higher temperature.'® Fortu-
nately, the leftover carbon monoxide can be converted into carbon dioxide at the exhaust
temperature in a catalytic converter that uses platinum and palladium as catalysts to
increase the reaction rate. Equation (11) indicates that the carbon monoxide fraction is
reduced by increasing the amount of oxygen present in the reaction. This is accomplished
by running the engine with a hydrocarbon/air ratio that is a little bit short of the stoichio-
metric point of equation (8). This reduces the amount of CO left from the combustion itself
and also leaves excess O3 in the exhaust stream for use in the catalytic converter.

16Very similar effects happened during the early stages of the universe as the temperature cooled but the cooling rate
was too rapid for some constituents to remain in thermal equilibrium; see Chapter 9.
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Problems

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

Show that the entropy of an ideal gas in thermal equilibrium is given by the formula

S=k) [(ne+1)In(n. +1) — (n;) In(n,))

in the case of bosons and by the formula

S=k) [-(1—n:)In(l - n) - (ne)In(ne)]

in the case of fermions. Verify that these results are consistent with the general formula

S=-k)_ {Zpg(n)lnpg(n)}y
£ n

where p, (n) is the probability that there are exactly n particles in the energy state «.
Derive, for all three statistics, the relevant expressions for the quantity (n2) — (n;)? from the
respective probabilities p, (n). Show that, quite generally,

(n2) — (ne)? kT(W‘S));
ow Jr

compare with the corresponding result, (4.5.3), for a system embedded in a grand canonical
ensemble.

Refer to Section 6.2 and show that, if the occupation number 7, of an energy level ¢ is restricted
to the values 0,1, ..., /, then the mean occupation number of that level is given by

1 I+1
“lefe —1 (g lebe)ll—1°

(ne) =
¥4

Check that while [ = 1 leads to (n.)g.p., [ — oo leads to (n.)pE..
The potential energy of a system of charged particles, characterized by particle charge e and

number density n(r), is given by
/f nl(:)nl(j)drdr’ +e/n(r)¢ext(r)dr,

where ¢ex (r) is the potential of an external electric field. Assume that the entropy of the system,
apart from an additive constant, is given by the formula

S= —k/ n(r)Inn(r)dr;

compare to formula (3.3.13). Using these expressions, derive the equilibrium equations satisfied
by the number density n(r) and the total potential ¢ (r), the latter being

n(r’)
r—r]

Show that the root-mean-square deviation in the molecular energy ¢, in a system obeying
Maxwell-Boltzmann distribution, is ,/(2/3) times the mean molecular energy . Compare this
result with that of Problem 3.18.

Show that, for any law of distribution of molecular speeds,

e

Check that the value of this quantity for the Maxwellian distribution is 4/x.

Pext(r) + 6/
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6.7.

6.8.

6.9.
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Through a small window in a furnace, which contains a gas at a high temperature T, the spectral
lines emitted by the gas molecules are observed. Because of molecular motions, each spectral line
exhibits Doppler broadening. Show that the variation of the relative intensity I(1) with wavelength
A in aline is given by
mc2(n — ig)?
I xexpy —————
(h) ocexp { 2).2kT

where m is the molecular mass, c the speed of light, and 1o the mean wavelength of the line.

An ideal classical gas composed of N particles, each of mass m, is enclosed in a vertical cylinder of

height L placed in a uniform gravitational field (of acceleration g) and is in thermal equilibrium;

ultimately, both N and L — oo. Evaluate the partition function of the gas and derive expressions for

its major thermodynamic properties. Explain why the specific heat of this system is larger than that

of a corresponding system in free space.

Centrifuge-based uranium enrichment: Natural uranium is composed of two isotopes: 238U and

2357, with percentages of 99.27% and 0.72%, respectively. If uranium hexafluoride gas UFg is

injected into a rapidly spinning hollow metal cylinder with inner radius R, the equilibrium pressure

of the gas is largest at the inner radius and isotopic concentration differences between the axis and

the inner radius allow enrichment of the concentration of 23°U.

(a) Write down the Lagrangian £({qy, gx}) for particles of mass m moving in a cylindrical
coordinate system rotating at angular velocity w and use a Legendre transformation

HAGe P = Y Prdi — £,
3

to show that the one-particle Hamiltonian #¢ in that cylindrical coordinate system is

P o —mrte? | pp

H(1,0,2,pr, P9, Pz) = .
( Pr»Po,Pz) om 2mr? om

Ignore the internal degrees of freedom of the molecules since they will not affect the density as
a function of position. Show that the one-particle partition function shown here can be written

as
1 [>9) o9 00 R 2 H
Q(V,T)= B f dpr / dpy f dpz/drfdG/dzexp(—ﬁJt’),
—00 —00 —00 0 0 0

by constructing the Jacobian of transformation between the cartesian and the cylindrical
coordinates for the phase space integral. Evaluate the partition function Q; in a closed form
and determine the Helmholtz free energy of this system.

(b) Determine the number density n(r) as a function of the distance r from the axis for the N
molecules of gas in the rotating cylinder. Show that, in the limit  — 0, the density becomes
uniform with the value n = N/7 R>H. Find an expression for the ratio of the pressure at the
inner radius of the cylinder R to the pressure at the axis of the cylinder as a function of w
and R.

(c) Evaluate the pressure ratios for the two isotopically different UFg gases at room temperature
for the case wR = 500m/s. Show that the pressure ratio for 238U is approximately 20% larger
than the pressure ratio for 235U so that extracting gas near the axis results in an enriched
concentration of 23°U. A series of centrifuges can be used to raise the concentration of 23>U
to create a fissionable grade of uranium for use in power-generating reactors or in nuclear
weapons. Not surprisingly, this technology is a major concern for possible nuclear
proliferation.
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6.10. (a) Show that, if the temperature is uniform, the pressure of a classical gas in a uniform
gravitational field decreases with height according to the barometric formula

P(z) = P(0) exp {—mgz/kT},

where the various symbols have their usual meanings.!”

(b) Derive the corresponding formula for an adiabatic atmosphere, that is, the one in which
(PV7), rather than (PV), stays constant. Also study the variation, with height, of the
temperature T and the density 7z in such an atmosphere.

6.11. (a) Show that the momentum distribution of particles in a relativistic Boltzmannian gas, with
e = c(p? + mc?)1/2, is given by

F(pydp = Ce P +mic)' 2 12 gy

with the normalization constant

B

- m3cK(Bmoc?)’

K, (z) being a modified Bessel function.
(b) Check that in the nonrelativistic limit (kT < mgc?) we recover the Maxwellian distribution,

g \¥2 ,
f(pdp = (m) e PP I2mo (47 p? dp),

while in the extreme relativistic limit (kT >> mgc?) we obtain

3
f(pdp= %e‘f‘wnﬁ dp).

(c) Verify that, quite generally,
(pu) =3kT.

6.12. (a) Considering the loss of translational energy suffered by the molecules of a gas on reflection
from a receding wall, derive, for a quasistatic adiabatic expansion of an ideal nonrelativistic
gas, the well-known relation

PVY = const.,

where y = (3a+ 2)/3a, abeing the ratio of the total energy to the translational energy of
the gas.
(b) Show that, in the case of an extreme relativistic gas, y = (3a+ 1)/3a.
6.13. (a) Determine the number of impacts made by gas molecules on a unit area of the wall in a unit
time for which the angle of incidence lies between 6 and 6 + d6.
(b) Determine the number of impacts made by gas molecules on a unit area of the wall in a unit
time for which the speed of the molecules lies between u and u + du.
(c) A molecule AB dissociates if it hits the surface of a solid catalyst with a normal translational
energy greater than 10~1° J. Show that the rate of the dissociative reaction AB — A + B is more
than doubled by raising the temperature of the gas from 300 K to 310 K.
6.14. Consider the effusion of molecules of a Maxwellian gas through an opening of area a in the walls of
a vessel of volume V.
(a) Show that, while the molecules inside the vessel have a mean kinetic energy %kT, the effused
ones have a mean kinetic energy 2 kT, T being the quasistatic equilibrium temperature of
the gas.

17This formula was first given by Boltzmann (1879). For a critical study of its derivation, see Walton (1969).
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6.16.

6.18.

6.19.

6.20.

6.21.

6.22.

6.23.
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(b) Assuming that the effusion is so slow that the gas inside is always in a state of quasistatic
equilibrium, determine the manner in which the density, the temperature, and the pressure of
the gas vary with time.

. A polyethylene balloon at an altitude of 30,000 m is filled with helium gas at a pressure of 1072 atm

and a temperature of 300 K. The balloon has a diameter of 10 m, and has numerous pinholes of
diameter 10~° m each. How many pinholes per square meter of the surface of the balloon must
there be if 1 percent of the gas were to leak out in 1 hour?

Consider two Boltzmannian gases A and B, at pressures P4 and Pp and temperatures T4 and T3,
respectively, contained in two regions of space that communicate through a very narrow opening
in the partitioning wall; see Figure 6.8. Show that the dynamic equilibrium resulting from the
mutual effusion of the two kinds of molecules satisfies the condition

Pa/Pp = (maTa/mpTp)"/?,

rather than P4 = P (which would be the case if the equilibrium had resulted from a hydrodynamic
flow).

(Pa Ta) | (Pg Tp)

FIGURE 6.8 The molecules of the gases A and B undergoing a two-way effusion.

. A small sphere, with initial temperature T, is immersed in an ideal Boltzmannian gas at

temperature Tp. Assuming that the molecules incident on the sphere are first absorbed and then
reemitted with the temperature of the sphere, determine the variation of the temperature of the
sphere with time.

[Note: The radius of the sphere may be assumed to be much smaller than the mean free path of the
molecules.]

Show that the mean value of the relative speed of two molecules in a Maxwellian gas is /2 times
the mean speed of a molecule with respect to the walls of the container.

[Note: A similar result for the root-mean-square speeds (instead of the mean speeds) holds under
much more general conditions.]

What is the probability that two molecules picked at random from a Maxwellian gas will have a
total energy between E and E + dE? Verify that (E) = 3kT.

The energy difference between the lowest electronic state 1Sy and the first excited state 3S; of the
helium atom is 159,843 cm~!. Evaluate the relative fraction of the excited atoms in a sample of
helium gas at a temperature of 6000 K.

Derive an expression for the equilibrium constant K(7T) for the reaction Hy + Dy <> 2HD at
temperatures high enough to allow classical approximation for the rotational motion of the
molecules. Show that K(o0) = 4.

With the help of the Euler—-Maclaurin formula (6.5.19), derive high-temperature expansions for
Teven and 7oqq, as defined by equations (6.5.29) and (6.5.30), and obtain corresponding expansions
for Ceven and Cyqq, as defined by equation (6.5.39). Compare the mathematical trend of these
results with the nature of the corresponding curves in Figure 6.7. Also study the low-temperature
behavior of the two specific heats and once again compare your results with the relevant parts of
the aforementioned curves.

The potential energy between the atoms of a hydrogen molecule is given by the (semiempirical)
Morse potential

V() = Vo{e*Z(r*ro)/a _ 26—(r—r0)/a}’
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where Vo =7 x 10712 erg, ry = 8 x 10~9 cm, and a = 5 x 10~ cm. Evaluate the rotational and
vibrational quanta of energy, and estimate the temperatures at which the rotational and vibrational
modes of the molecules would begin to contribute toward the specific heat of the hydrogen gas.
Show that the fractional change in the equilibrium value of the internuclear distance of a diatomic
molecule, as a result of rotation, is given by

2 2
Ar"~( n ) JU+1)=4<%> JU+1;
oy

To uriw

here, w is the angular frequency of the vibrational state in which the molecule happens to be.
Estimate the numerical value of this fraction in a typical case.
The ground state of an oxygen atom is a triplet, with the following fine structure:

&j=2 = gj=1 — 158.5 cm~! = £7=0 — 226.5 cm~L.

Calculate the relative fractions of the atoms occupying different J-levels in a sample of atomic
oxygen at 300 K.

Calculate the contribution of the first excited electronic state, namely ! A with g, = 2, of the O,
molecule toward the Helmholtz free energy and the specific heat of oxygen gas at a temperature
of 5000 K; the separation of this state from the ground state, namely ** with g, = 3, is 7824 cm™!.
How would these results be affected if the parameters ®, and ®, of the O, molecule had different
values in the two electronic states?

The rotational kinetic energy of a rotator with three degrees of freedom can be written as

2 2 2
M M, M
2L 2L 2L

Erot =

where (§,7,¢) are coordinates in a rotating frame of reference whose axes coincide with the
principal axes of the rotator, while (Mg, M,,, M, ) are the corresponding angular momenta. Carrying
out integrations in the phase space of the rotator, derive expression (6.5.41) for the partition
function jiot(T) in the classical approximation.

Determine the translational, rotational, and vibrational contributions toward the molar entropy
and the molar specific heat of carbon dioxide at NTP. Assume the ideal-gas formulae and use

the following data: molecular weight M = 44.01; moment of inertia I of a CO, molecule = 71.67 x
10740 gcm?; wave numbers of the various modes of vibration: v; = v, = 667.3cm™!
1383.3 cm~}, and vs = 2439.3 cm L.

Determine the molar specific heat of ammonia at a temperature of 300 K. Assume the ideal-gas
formula and use the following data: the principal moments of inertia: I; = 4.44 x 10~%%gcm?,

I = I3 = 2.816 x 10~%%gcm?; wave numbers of the various modes of vibration:

1 =72 =3336cm~!, 73 =74 =950 cm™ 1, U5 = 3414 cm~!, and v = 1627 cm ™.

Derive the equilibrium concentration equation (6.6.6) from the equilibrium condition (6.6.3).

Use the following values to determine the equilibrium constant for the reaction 2CO + Oy == 2COs.

At a combustion temperature of T = 1500K: ﬂu(c%z =—60.95, ﬁu(o) = —35.18, and ﬂu&) = —27.08.

y V3 =

co =~
Use this data to compute the fraction [CO]/[CO3] for the case of [O2] = 0.01. Repeat for a catalytic
converter temperature of T = 600K, where ﬂ'“g)g)z = —103.45, ﬂu(co()) = —45.38, and ,3#8)2) = —23.49.

Derive an expression for the equilibrium constant K(T) for the reaction N + O, = 2NO

in terms of the ground state energy change Agg = 2enp — €N, — €0, and the vibrational and
rotational partition functions of the diatomic molecules, using results from Section 6.5. Give
predictions for the ranges of temperatures where the rotational modes are classically excited but
the vibration modes are suppressed and for higher temperatures where both the rotational and
vibrational models are classically excited.

Analyze the combustion reaction

CH4 + 202 22 CO2 + 2H50, (6.6.8)
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assuming that at combustion temperatures the equilibrium constant K(7T) > 1. Show that
conducting combustion at the stoichiometric point or just a bit short of the stoichiometric point
(so there is enough oxygen to oxidize all of the methane) will lead to low amounts of CHy in the
exhaust. Determine the equilibrium amount of CHy in terms of the initial excess amount of O.

Determine the equilibrium constant at 7 = 1500K from the data ﬂ“(coc))z = —60.95, ﬂng)z) = —27.08,

,s@% — 3195, and ﬁugo — 4462
6.34. Determine the equilibrium ionization fraction for the reaction

Na=Na" +e"

in a sodium vapor. Treat all three species as ideal classical monatomic gases. The ionization energy
of sodium is 5.139 eV, Na™ ions are spin-zero, and neutral Na and free e~ are both spin- % Derive
the Saha equation for the ionized fraction [Na™]/([Na] 4 [Na']) for a neutral plasma as a function
of temperature at a fixed total density. Plot the ionized fraction as a function of temperature for
some chosen total density.

[Note that, this calculation is very similar to the one concerning ionized hydrogen fraction as a
function of temperature during the recombination era in the early universe; see Section 9.8.]



Ideal Bose Systems

In continuation of Sections 6.1 through 6.3, we shall now investigate in detail the physical
behavior of a class of systems in which, while the intermolecular interactions are still neg-
ligible, the effects of quantum statistics (which arise from the indistinguishability of the
particles) assume an increasingly important role. This means that the temperature 7 and
the particle density 7 of the system no longer conform to the criterion

3 nh’

M= «1, 5.5.20
@emkTyZ < ( )

where A{= h/(2rmkT)'/?} is the mean thermal wavelength or thermal deBroglie wave-
length of the particles. In fact, the quantity nA3 turns out to be a very appropriate
parameter, in terms of which the various physical properties of the system can be ade-
quately expressed. In the limit 723 — 0, all physical properties go over smoothly to their
classical counterparts. For small, but not negligible, values of n13, the various quantities
pertaining to the system can be expanded as power series in this parameter; from these
expansions one obtains the first glimpse of the manner in which departure from classi-
cal behavior sets in. When 113 becomes of the order of unity, the behavior of the system
becomes significantly different from the classical one and is characterized by quantum
effects. A study of the system under these circumstances brings us face to face with a set of
phenomena unknown in classical statistics.

It is evident that a system is more likely to display quantum behavior when it is at a
relatively low temperature and/or has a relatively high density of particles.! Moreover, the
smaller the particle mass the larger the quantum effects.

Now, when n23 is of the order of unity, then not only does the behavior of a system
exhibit significant departure from typical classical behavior but it is also influenced by
whether the particles constituting the system obey Bose-Einstein statistics or Fermi-Dirac
statistics. Under these circumstances, the properties of the two kinds of systems are them-
selves very different. In the present chapter we consider systems belonging to the first
category while the succeeding chapter will deal with systems belonging to the second
category.

! Actually it is the ratio n/ T3/2, rather than the quantities n and T separately, that determines the degree of degeneracy
in a given system. For instance, white dwarf stars, even at temperatures of order 107 K, constitute statistically degenerate

g Y p y aeg;
systems; see Section 8.5.
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7.1 Thermodynamic behavior of an ideal Bose gas

We obtained, in Sections 6.1 and 6.2, the following formulae for an ideal Bose gas:

PV
- = - _ _ oo Be
T =ln@ EE In(1 — ze™ %) (D

and
N=Sin =% ey @

where 8 = 1/kT, while z is the fugacity of the gas which is related to the chemical potential
u through the formula

z = exp(u/kT); 3)

as noted earlier, ze~#¢, for all ¢, is less than unity. In view of the fact that, for large V, the
spectrum of the single-particle states is almost a continuous one, the summations on the
right sides of equations (1) and (2) may be replaced by integrations. In doing so, we make
use of the asymptotic expression (2.4.7) for the nonrelativistic density of states a(e) in the
neighborhood of a given energy ¢, namely?

a(e)de = @V /h®)2m)3/2e1 /2 de. @)

We, however, note that by substituting this expression into our integrals we are inadver-
tently giving a weight zero to the energy level ¢ = 0. This is wrong because in a quantum-
mechanical treatment we must give a statistical weight unity to each nondegenerate
single-particle state in the system. It is, therefore, advisable to take this particular state
out of the sum in question before carrying out the integration; for a rigorous justification
of this (unusual) step, see Appendix E We thus obtain

o0
P _ 2 3/2f 121001 — ro—BEyde — L 11
T h3(2m) e/°In(1 — ze P%)de Vln(l z) (5)
0
and
N 2ﬂ(.Zm)f‘/Z]O Pl 1z ®)
V. h3 zlePe—1 V1-2
0

of course, the lower limit of these integrals can still be taken as 0, because the state ¢ = 0 is
not going to contribute toward them anyway.

Before proceeding further, a word about the relative importance of the last terms in
equations (5) and (6). For z « 1, which corresponds to situations not far removed from

2The theory of this section is restricted to a system of nonrelativistic particles. For the more general case, see Kothari
and Singh (1941) and Landsberg and Dunning-Davies (1965).
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the classical limit, each of these terms is of order 1/N and, therefore, negligible. How-
ever, as z increases and assumes values close to unity, the term z/(1 —z)V in (6), which
is identically equal to Ny/V (N being the number of particles in the ground state ¢ = 0),
can well become a significant fraction of the quantity N/V; this accumulation of a macro-
scopic fraction of the particles into a single state ¢ =0 leads to the phenomenon of
Bose-Einstein condensation. Nevertheless, since z/(1 — z) = Ny and hence z = Ny/(Ny + 1),
the term {—V~'In(1 — 2)} in (5) is equal to {V~In(Np + 1)}, which is at most O(N~!InN);
this term is, therefore, negligible for all values of z and hence may be dropped altogether.
We now obtain from equations (5) and (6), on substituting ¢ = x,

o0

P 27 (2mkT)3/? 1
= _% /xl/z In(1 — ze )dx = ﬁgs/z(z) (7)
0
and
N—Ny 2rx@mkD)32 [ x\2dx 1
= 3 /z—lex—l = }ngg,/z(z), 8)
0
where
A= h/QrmkT)'2, ©)

while g, (z) are Bose-Einstein functions defined by, see Appendix D,

1 T x4 2 .3
x"Lldx 2z
_ _ 10
82 F(v)fz*lex—l at ot t (10)
0

note that to write (7) in terms of the function gs,»(z) we first carried out an integration by
parts. Equations (7) and (8) are our basic results; on elimination of z, they would give us
the equation of state of the system.

The internal energy of this system is given by

_ (2 el (Y
U= (aﬂln&)z,V_kT {8T<kT)}z,V

d (1 3 \%4
:kTZVgS/Z(Z){ﬁ<)TS)} = EkTﬁgS/Z(Z); 11

here, use has been made of equation (7) and of the fact that A o« T~1/2, Thus, quite
generally, our system satisfies the relationship

P= %(U/V). (12)

For small values of z, we can make use of expansion (10); at the same time, we can neglect
Np in comparison with N. An elimination of z between equations (7) and (8) can then be
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carried out by first inverting the series in (8) to obtain an expansion for z in powers of ns3
and then substituting this expansion into the series appearing in (7). The equation of state
thereby takes the form of the virial expansion,

-1
PV K (A8
NkTZZal(v> ' 13
=1

where v(= 1/n) is the volume per particle; the coefficients a;, which are referred to as the
virial coefficients of the system, turn out to be

a =1,
ar=——_ — 017678
2_ 4ﬁ— . ’
(14)

4= _(L _ 1) — ~0.00330,

9v3 8

3 5 1
an=—(=+—>__ ) =_000011,
4 (32 322 2f6>

and so on. For the specific heat of the gas, we obtain

Cv_ 1 (oU)  _3[0 (PV
Nk~ Nk\oT )y, 2|0T\Nk/[,

-1
3,5-31 (a3
=325 aly
=1

2 3
3 A3 23 A3
=—-(1+0.0884{ — ] +0.0066( — | +0.0004{ — |} +---|. (15)
2 v v v

As T — oo (and hence » — 0), both the pressure and the specific heat of the gas approach
their classical values, namely nkT and %Nk, respectively. We also note that at finite, but
large, temperatures the specific heat of the gas is larger than its limiting value; in other
words, the (Cy, T)-curve has a negative slope at high temperatures. On the other hand, as
T — 0, the specific heat must go to zero. Consequently, it must pass through a maximum
somewhere. As seen later, this maximum is in the nature of a cusp that appears at a criti-
cal temperature T¢; the derivative of the specific heat is found to be discontinuous at this
temperature (see Figure 7.4 later in this section).

As the temperature of the system falls (and the value of the parameter A3/ grows),
expansions such as (13) and (15) do not remain useful. We then have to work with formulae
(7), (8), and (11) as such. The precise value of z is now obtained from equation (8), which
may be rewritten as

_ y @rmkT)*?

Ne = W3 83/2(2), (16)



7.1 Thermodynamic behavior of an ideal Bose gas 183

where N, is the number of particles in the excited states (¢ # 0); of course, unless z gets
extremely close to unity, N, >~ N.3 It is obvious that, for 0 <z <1, the function g; 2(2)
increases monotonically with z and is bounded, its largest value being
1 1 . 3 - .
g3/2(1)=1+23T+33ﬁ+~~=§ 3 ~2.612; (17)

see equation (D.5) in Appendix D. Hence, for all z of interest,

3
832(2) <¢ (E) (18)

Consequently, for given V and T, the total (equilibrium) number of particles in all the
excited states taken together is also bounded, that is,

(19)

3/2
- V(ankT) {(3)

Ne < 3

Now, so long as the actual number of particles in the system is less than this limiting value,
everything is well and good; practically all the particles in the system are distributed over
the excited states and the precise value of z is determined by equation (16), with N, ~ N.
However, if the actual number of particles exceeds this limiting value, then it is natural that
the excited states will receive as many of them as they can hold, namely

Ne (20)

., @rmkT)3? (3
=vET—(3)

while the rest will be pushed en masse into the ground state ¢ = 0 (whose capacity, under
all circumstances, is essentially unlimited):

3/2
NO:N_{V(Z’T”gT);G)}_ @1)

The precise value of z is now determined by the formula

No _,_1
No+1 = N

= (22)
which, for all practical purposes, is unity. This curious phenomenon of a macroscopi-
cally large number of particles accumulating in a single quantum state (¢ = 0) is generally
referred to as the phenomenon of Bose-Einstein condensation. In a certain sense, this
phenomenon is akin to the familiar process of a vapor condensing into the liquid state,
which takes place in the ordinary physical space. Conceptually, however, the two pro-
cesses are very different. Firstly, the phenomenon of Bose-Einstein condensation is purely

3Remember that the largest value z can have in principle is unity. In fact, as T — 0, z=Ny/(No +1) = N/(N +1),
which is very nearly unity (but certainly on the right side of it).
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of quantum origin (occurring even in the absence of intermolecular forces); secondly, it
takes place at best in the momentum space and not in the coordinate space.*
The condition for the onset of Bose-Einstein condensation is

2nrmk)3/2 (3
N> VT3/2%;(5> 23)

or, if we hold N and V constant and vary T,

2/3
h2 N

T < Tczm V;(%)

(24)°

here, T, denotes a characteristic temperature that depends on the particle mass m and
the particle density N/V in the system. Accordingly, for T < T, the system may be looked
on as a mixture of two “phases”:

(i) anormal phase, consisting of N, {= N(T/T,)%?} particles distributed over the excited
states (¢ # 0), and
(ii) a condensed phase, consisting of Ny {= (N — N,)} particles accumulated in the ground
state (¢ = 0).

Figure 7.1 shows the manner in which the complementary fractions (Ne/N) and (Np/N)
vary with T. For T > T,, we have the normal phase alone; the number of particles in the
ground state, namely z/(1 — z), is O(1), which is completely negligible in comparison with
the total number N. Clearly, the situation is singular at T = T,. For later reference, we note
that, at T — T, from below, the condensate fraction vanishes as follows:

(25)

A knowledge of the variation of z with T is also of interest here. It is, however, sim-
pler to consider the variation of z with (v/A3), the latter being proportional to T3/2.
For 0 < (v/23) < (2.612)"1, which corresponds to 0 < T < T, the parameter z~ 1; see
equation (22). For (v/A%) > (2.612)71, z < 1 and is determined by the relationship

g32(2) = (A3 /v) < 2.612; (26)6

40f course, the repercussions of this phenomenon in the coordinate space are no less curious. It prepares the stage
for the onset of superfluidity, a quantum manifestation discussed in Section 7.6.

5For a rigorous discussion of the onset of Bose-Einstein condensation, see Landsberg (1954b), where an attempt
has also been made to coordinate much of the previously published work on this topic. For a more recent study, see
Greenspoon and Pathria (1974), Pathria (1983), and Appendix E

6An equivalent relationship is gs/2(2)/g3/2(1) = (T./T)*? < 1.
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FIGURE 7.1 Fractions of the normal phase and the condensed phase in an ideal Bose gas as a function of the
temperature parameter (T/T;).
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FIGURE 7.2 The fugacity of an ideal Bose gas as a function of (v/A3).

see equation (8). For (v/A%)>> 1, we have 83/2(z) < 1 and, hence, z <« 1. Under these
circumstances, g3/2(z) ~ z; see equation (10). Therefore, in this region, z ~ (v/»3~L in
agreement with the classical case.” Figure 7.2 shows the variation of z with (v/13).

Next, we examine the (P, T)-diagram of this system, that is, the variation of P with T,
keeping v fixed. Now, for T < T, the pressure is given by equation (7), with z replaced by
unity:

kT (5
P(T):F§(§>’ 27)

which is proportional to T°/? and is independent of v — implying infinite compressibility.
At the transition point the value of the pressure is

2nrm\3/? 5
P(Tc)=<7) (ch)S/Zc(E); (28)

"Equation (6.2.12) gives, for an ideal classical gas, In@ = zV /3. Accordingly, N = z(dIn@/dz) = z(V/A3), with the
result that z = (A3 /v).
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with the help of (24), this can be written as

«(3)

P(Te) = —- (%kn):o.m%(%kn). (29)
()

Thus, the pressure exerted by the particles of an ideal Bose gas at the transition temper-
ature T, is about one-half of that exerted by the particles of an equivalent Boltzmannian
gas.® For T > T, the pressure is given by

N 85/2(2)
P=—kT , 30
Vo g2 50)
where z(T) is determined by the implicit relationship
R\ s
83/2(2) = — (26a)

vV 2nmkT)3/2

Unless T is very high, the pressure P cannot be expressed in any simpler terms; of course,
for T > T, the virial expansion (13) can be used. As T — oo, the pressure approaches the
classical value NkT/V. All these features are shown in Figure 7.3. The transition line in
the figure portrays equation (27). The actual (P, T)-curve follows this line from 7 =0 up
to T = T, and thereafter departs, tending asymptotically to the classical limit. It may be
pointed out that the region to the right of the transition line belongs to the normal phase
alone, the line itself belongs to the mixed phase, while the region to the left is inaccessible
to the system.

In view of the direct relationship between the internal energy of the gas and its pres-
sure, see equation (12), Figure 7.3 depicts equally well the variation of U with T (of course,
with v fixed). Its slope should, therefore, be a measure of the specific heat Cy (T) of the gas.
We readily observe that the specific heat is vanishingly small at low temperatures and rises
with T until it reaches a maximum at T = T;; thereafter, it decreases, tending asymptoti-
cally to the constant classical value. Analytically, for T < T, we obtain [see equations (15)

and (27)]
Cy 3V (5\d T\ 15 (5\v
NE ENC(E> ar (73) = Zf@ PER (31)

8Actually, for all T < T, we can write
P(T) = P(T;) - (T/T.)%? ~ 0.5134(N.kT/V).

We infer that, while particles in the condensed phase do not exert any pressure at all, particles in the excited states are
about half as effective as in the Boltzmannian case.
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FIGURE 7.3 The pressure and the internal energy of an ideal Bose gas as a function of the temperature parameter

(T/To).

which is proportional to T3/2. At T = T,, we have

v _155(3)

Nk 1 ;(%) ~1.925, (32)

which is significantly higher than the classical value 1.5. For T > T;, we obtain an implicit

formula. First of all,
Cv [0 (3,.8r@)\].
Nk _[3T<2Tg3/2(z)>] (33)

’
v

see equations (11) and (26). To carry out the differentiation, we need to know (3z/37),;
this can be obtained from equation (26) with the help of the recurrence relation (D.10) in
Appendix D. On one hand, since gs/2(z) oc T~3/2,

0 3
[ﬁgyz (Z)] ) =- ﬁgs/z (2); (34)
on the other,

d
Z&gs/z(z) = g1/2(2). (35)

Combining these two results, we obtain

1/9z 3 g3/2(2)
() =2 . 36
Z(aT)y 2T g1/2(2) (36)
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Equation (33) now gives

Cv _ 15822 98202, 37)
Nk 4 g32(2) 48122

the value of z, as a function of T, is again to be determined from equation (26). In the
limit z— 1, the second term in (37) vanishes because of the divergence of gi,2(z), while
the first term gives exactly the result appearing in (32). The specific heat is, therefore, con-
tinuous at the transition point. Its derivative is, however, discontinuous, the magnitude of
the discontinuity being

2
<&) _ (@) _ M{;@)} ~3.665K. 38)
0T )r_g,g \ 0T )i qo 16xTc| \2 T,
see Problem 7.6. For T > T¢, the specific heat decreases steadily toward the limiting value
Cy 15 9 3
(%)..,~ %32 .

Figure 7.4 shows all these features of the (Cy, T)-relationship. It may be noted that it
was the similarity of this curve with the experimental one for liquid He* (Figure 7.5) that
prompted F. London to suggest, in 1938, that the curious phase transition that occurs in
liquid He* at a temperature of about 2.19K might be a manifestation of the Bose-FEinstein
condensation taking place in the liquid. Indeed, if we substitute, in (24), data for liquid
He*, namely m = 6.65 x 1072*g and V = 27.6cm3/mole, we obtain for T, a value of about
3.13K, which is not drastically different from the observed transition temperature of the
liquid. Moreover, the interpretation of the phase transition in liquid He* as Bose-Einstein
condensation provides a theoretical basis for the fwo-fluid model of this liquid, which was
empirically put forward by Tisza (1938a,b) to explain the physical behavior of the liquid
below the transition temperature.

According to London, the Ny particles that occupy a single, entropyless state (¢ = 0)
could be identified with the “superfluid component” of the liquid and the N, particles
that occupy the excited states (¢ # 0) with the “normal component.” As required in the

1.925
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FIGURE 7.4 The specific heat of an ideal Bose gas as a function of the temperature parameter (T/T;).
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FIGURE 7.5 The specific heat of liquid He* under its own vapor pressure (after Keesom and coworkers).

model of Tisza, the superfluid fraction makes its appearance at the transition tempera-
ture T, and builds up at the cost of the normal fraction until at T =0 the whole fluid
becomes superfluid; compare to Figure 7.1. Of course, the actual temperature dependence
of these fractions, and of other physical quantities pertaining to liquid He?, is consider-
ably different from what the simple-minded ideal Bose gas suggests. London had expected
that the inclusion of intermolecular interactions would improve the quantitative agree-
ment. Although this expectation has been partially vindicated, there have been other
advances in the field that provide alternative ways of looking at the helium problem; see
Section 7.6. Nevertheless, many of the features provided by London’s interpretation of this
phenomenon continue to be of value.

Historically, the experimental measurements of the specific heat of liquid He*, which
led to the discovery of this so-called He I-He II transition, were first made by Keesom in
1927 and 1928. Struck by the shape of the (Cy, T)-curve, Keesom gave this transition the
name A-transition; as a result, the term transition temperature (or transition point) also
came to be known as A-temperature (or A-point).

We shall now look at the isotherms of the ideal Bose gas; that is, the variation of the
pressure of the gas with its volume, keeping T fixed. The Bose-Einstein condensation now
sets in at a characteristic volume v, given by

3
ve=23/¢ (5); (40)

see (23). We note that v, o« T~3/2. For v < v,, the pressure of the gas is independent of v and
is given by

kT (5
P0=*§(*>; (41)
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FIGURE 7.6 The isotherms of an ideal Bose gas.

see (27). The region of the mixed phase in the (P, v)-diagram is marked by a boundary line
(called the transition line) given by the equation

<)

see Figure 7.6. Clearly, the region to the left of this line belongs to the mixed phase, while
the region to the right belongs to the normal phase alone.

Finally, we examine the adiabats of the ideal Bose gas. For this, we need an expression
for the entropy of the system. Making use of the thermodynamic formula

= const.; 42)

U-TS+PV=Np (43)
and the expressions for U and P obtained above, we get

585/2(2)

—Inz forT> T, (44a)
S U+PV pu  |28p@
Nk~ NkT kT
g)% (g) for T < T, (44b)

again, the value of z(T), for T > T, is to be obtained from equation (26). Now, a reversible
adiabatic process implies the constancy of S and N. For T > T, this implies the constancy
of z as well and in turn, by (26), the constancy of (v/A3). For T < T, it again implies the
same. We thus obtain, quite generally, the following relationship between the volume and
the temperature of the system when it undergoes a reversible adiabatic process:

vT3/2 = const. (45)
The corresponding relationship between the pressure and the temperature is

P/T%? = const,; (46)
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see equations (7) and (27). Eliminating T, we obtain
Pv*/? = const. 47

as the equation for an adiabat of the ideal Bose gas.
Incidentally, the foregoing results are exactly the same as for an ideal classical gas. There

is, however, a significant difference between the two cases; that is, while the exponent g in

formula (47) is identically equal to the ratio of the specific heats Cp and Cy in the case of

the ideal classical gas, it is not so in the case of the ideal Bose gas. For the latter, this ratio

is given by

Cr_1,4Cv8,2@

Cy 9 Nk g3/2(2)

_ 585/2(2)81/2(2) |
3 (g

y = (48a)

(48b)

see Problems 7.4 and 7.5. It is only for T > T, that y >~ % At any finite temperature, y > %

and as T — T,y — oo. Equation (47), on the other hand, holds for all T.
In the mixed-phase region (T < T;), the entropy of the gas may be written as

S=N,- Zkg(g> o Ng; (49)

«(2)
see equations (20) and (44b). As expected, the Ny particles that constitute the “condensate”

do not contribute toward the entropy of the system, while the N, particles that constitute
the normal part contribute an amount of %k; (%) /¢ ( %) per particle.

7.2 Bose-Einstein condensation in ultracold
atomic gases

The first demonstration of Bose-Einstein condensation in ultracold atomic gases came in
1995. Cornell and Wieman Bose-condensed 8’Rb (Anderson, Ensher, Matthews, Wieman,
and Cornell (1995)) and Ketterle Bose-condensed 23Na (Davis, Mewes, Andrews, van
Druten, Durfee, Kurn, and Ketterle (1995)) using magneto-optical traps (MOTs) and
magnetic traps to cool vapors of tens of thousands of atoms to temperatures of a few
nanokelvin.” A survey of the theory and experiments can be found in Pitaevskii and
Stringari (2003), Leggett (2006), and Pethick and Smith (2008).

The first step of the cooling of the atomic vapor uses three sets of counter-propagating
laser beams oriented along cartesian axes that are tuned just below the resonant frequency

9Since 1995, many isotopes have been Bose-condensed including “Li, 2*Na, 41K, 52Cr, 84Sr, 85Rb, 87Rb, 133Cs, and
174yh, The first molecular Bose-Einstein condensates were created in 2003 by the research groups of Rudolf Grimm at the
University of Innsbruck, Deborah S. Jin at the University of Colorado at Boulder, and Wolfgang Ketterle at Massachusetts
Institute of Technology.
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of the atoms in the trap. Atoms that are stationary are just off resonance and so rarely
absorb a photon. Moving atoms are Doppler shifted on resonance to the laser beam that is
propagating opposite to the velocity vector of the atom. Those atoms preferentially absorb
photons from that direction and then reemit in random directions, resulting in a net
momentum kick opposite to the direction of motion. This results in an “optical molasses”
that slows the atoms. This cooling method is constrained by the “recoil limit” in which the
atoms have a minimum momentum of the order of the momentum of the photons used
to cool the gas. This gives a limiting temperature of (hf)?/2mc?k ~ 1K, where f is the
frequency of the spectral line used for cooling and m is the mass of an atom.

In the next step of the cooling process, the lasers are turned off and a spatially vary-
ing magnetic field creates an attractive anisotropic harmonic oscillator potential near the
center of the magnetic trap

1
V(r)= Em (a)%xz + co%y2 + w§z2>. 1)

The frequencies of the trap w, are controlled by the applied magnetic field. One can then
lower the trap barrier using a resonant transition to remove the highest energy atoms in
the trap. If the atoms in the vapor are sufficiently coupled to one other, then the remaining
atoms in the trap are cooled by evaporation.

If the interactions between the atoms in the gas can be neglected, the energy of each
atom in the harmonic oscillator potential is

1
&l b Iy = ho1l + haogly + haosls + Eﬁ(wl + w2 +w3), 2

where [,(=0,1,2,...00) are the quantum numbers of the harmonic oscillator. If the
three frequencies are all the same, then the quantum degeneracy of a level with energy
& =hw(l+3/2)is (I+1)(I+2)/2; see Problem 3.26.

For the general anisotropic case, the smoothed density of states as a function of energy
(suppressing the zero point energy and assuming ¢ > fiw,) is given by

g2

- 3
2 (hwo)® ©)

00 00 0O
a(e) = / / / ) (8 — hw1l — hwoly — ha)glg) dldldls =
000

where wg = (wjwaw3)'/3; this assumes a single spin state per atom. The thermodynamic
potential I1, see Appendix H, for bosons in the trap is then given by

[e¢]

(k1)" /2 _ (k1)*
M, T)=———7" In(1—e*ef)dx= , 4
w,T) z(hw0)30 X n( e e )x (hw0)3g4(z) )
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where z =exp(Bu) is the fugacity and g,(z) is defined in Appendix D. Volume is not a
parameter in the thermodynamic potential since the atoms are confined by the har-
monic trap. The average number of atoms in the excited states in the trap is

ATl kT \°
N(M,T):(—a ) =(7) 8(2). 5)
nJjr hag

For fixed N, the chemical potential monotonically increases as temperature is lowered
until Bose-Einstein condensation occurs when u = 0 (z = 1). The critical temperature for
N trapped atoms is then given by

kT, ( N\
oo = () ©

where ¢ (3) = g3(1) ~ 1.202. While the spacing of the energy levels is of order fiwy, the crit-
ical temperature for condensation is much larger than the energy spacing of the lowest
levels for N > 1. A typical magnetic trap oscillation frequency f ~ 100Hz. For N = 2 x 10%,
as in Cornell and Wieman’s original experiment, kT./hwo =~ 25.5. The observed critical
temperature was about 170nK (Anderson et al. (1995)).

For T < T, the number of atoms in the excited states is

Nexcited _ £(3) kl 3 — 1 3 @
N N \ hwo T.) ’
so the fraction of atoms that condense into the ground state of the harmonic oscillator is
Np T\?
—=1—-|=; 8
v=1-(z) ©

see de Groot, Hooyman, and ten Seldam (1950), and Bagnato, Pritchard, and Kleppner
(1987). In the thermodynamic limit, a nonzero fraction of the atoms occupy the ground
state for T < T,. By contrast, the occupancy of the first excited state is only of order N'/3, so
in the thermodynamic limit the occupancy fraction in each excited state is zero. A compar-
ison of the experimentally measured Bose-condensed fraction with equation (8) is shown
in Figure 7.7.

7.2.A Detection of the Bose-Einstein condensate

The linear size of the ground state wavefunction in cartesian direction « is

ay = n ) 9)
Mwy
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FIGURE 7.7 Experimental measurement of the Bose-condensed fraction vs. temperature, as compared to

equation (8). The scaled temperature on the horizontal axis is the temperature divided by the N-dependent critical
temperature given in equation (6). The inset shows the total number of atoms in the trap after the evaporative
cooling. From Ensher et al. (1996). Reprinted with permission; copyright © 1996, American Physical

Society.

while the linear size of the thermal distribution of the noncondensed atoms in that

direction is
| kT | kT
Othermal = mwg =dy hon . (10)

At trap frequency f =100Hz and temperature T = 100nK, these sizes are about 1pm
and 5 pm, respectively. Instead of measuring the atoms directly in the trapping potential,
experimenters usually measure the momentum distribution of the ultracold gas by a time-
of-flight experiment. At time ¢ = 0, the magnetic field is turned off suddenly, eliminating
the trapping potential. The atomic cloud then expands according to the momentum dis-
tribution the atoms had in the harmonic trap. The cloud is allowed to expand for about 100
milliseconds. The speed of the atoms at this temperature is a few millimeters per second,
so the cloud expands to a few hundred microns in this period of time. The cloud is then
illuminated with a laser pulse on resonance with the atoms, leaving a shadow on a CCD
in the image plane of the optics. The size and shape of the light intensity pattern directly
measures the momentum distribution the atoms had in the trap at t = 0. The expanding
cloud can be divided into two components, the Ny atoms that had been Bose-condensed
into the ground state and the remaining N — N atoms that were in the excited states of the
harmonic oscillator potential. The Bose-condensed atoms have smaller momenta than the
atoms that were in the excited states. After time ¢, the quantum evolution of the ground
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state has a spatial number density

no(r,t) = No lyo(r, 01> =

_r2
d ; 11
e H[ mp( (1+wztz>>} "

see Pitaevskii and Stringari (2003), Pethick and Smith (2008), and Problem 7.15.

The atoms that are not condensed into the ground state can be treated semiclassi-
cally, that is, the position-momentum distribution function is treated classically while the
density follows the Bose-Einstein distribution function:

1
fa.p,0)= : (12)
exp <‘3p + B (0342 + wdy? + w3z?) —ﬁu) -1

After the potential is turned off at t = 0, the distribution evolves ballistically:
t
fpD =f<r+ %,p,o). (13)
The spatial number density of atoms in the excited states is
1 t
Nexcited (T, 1) = w3 /f (r+ %’p’ t) dp, (14)

which can be integrated to give

1 P 1 —Bjmawlr? )
Rexcited T 1) = — exp( & , (15)
excite 3; i3/2 [o[[l |: /l-l—a)(%tz 2(1—}-0)51‘2)

where L = h/~/27mkT is the thermal deBroglie wavelength; see Pethick and Smith (2008),
and Problem 7.16. The integrals over the condensed state and the excited states correctly
count all the atoms:

No = / no(r, Hdr, (16a)
N_Nozfnexcued(r DAr = Nexciteds (16b)

see Problem 7.18.

Note that at early times (wyt < 1) both the condensed and the excited distributions are
anisotropic due to the anisotropic trapping potential. However, at late times (v, ¢ > 1), the
atoms from the excited states form a spherically symmetric cloud because of the isotropic
momentum dependence of the ¢t =0 distribution function. By contrast, the atoms that
were condensed into the ground state expand anisotropically due to the different spa-
tial extents of the ground state wavefunction at £ = 0. The direction that has the largest



196 Chapter 7 * Ideal Bose Systems

FIGURE 7.8 The two-dimensional time-of-flight number density equations (11) and (15) at late times (wot > 1) for
T/T, = 0.98 using the experimental parameters in Anderson et al. (1995): N =2 x 10* atoms in the trap and

w2 = +/8wy. The plot shows the full density and, underneath, the broader isotropic density just due to the excited
states. The z-dimension has been integrated out. The Bose-condensed peak is anisotropic: the y-direction spread is
81/4 = 1.68 times larger than in the x-direction while the broad peak caused by the excited states is isotropic. The
distance scale vyt = t/hw; /m determines the width of the distribution that results from the Bose-condensed peak
in the x-direction at late times; compare to Figure 7.9.

wgy is quantum mechanically squeezed the most at ¢t = 0; so, according to the uncertainty
principle, it expands the fastest. This is an important feature of the experimental data that
confirms the onset of Bose-Einstein condensation;!’ see Figures 7.8 and 7.9.

7.2.B Thermodynamic properties of the Bose-Einstein condensate

The temperature, condensate fraction, and internal energy can all be observed using time-
of-flight measurements. The internal energy can also be written in terms of the function

& (2):

o0

Uu,T) = f
0

&3 1 _3(kT)4 @ a7
2(hao)® e — 1 (hawg)3 o4 "

Repulsive interactions between atoms create additional forces that modify the time-of-flight expansion. This is
especially important in condensates with a very large numbers of atoms, as many as 107 or more in some experiments;
see Section 11.2.A.
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FIGURE 7.9 Time-of-flight images from the first observation of Bose-Einstein condensation in a dilute vapor of 8Rb
by Anderson et al. (1995) at temperatures just above and below the phase transition temperature. The anisotropic
pattern of the Bose-condensed fraction is evident; compare to Figure 7.8. Courtesy of NIST/JILA/University of
Colorado.

The heat capacity at constant number can be written as

exen=(57), - (57),+ (52), G,
B <8U)M_ <W> <W>u .

=

— (18)

(5%),

Equations (5) and (6) can be used to determine the fugacity z numerically, as shown in
Figure 7.10(a). The fugacity can then be used in equation (17) to obtain the scaled internal
energy

aT

SE

T\" ¢4
S(Tc) @ forT< T,

T\* g1(2) -
3(T> (@ Tzl

U p—
NkT. —

(19)
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see Figures 7.10(b) and 7.12. The scaled specific heat is given by
12¢(4) ( T )3
Cn t@3) \Tc

Nk~ 3 2
! ( T) (12g4(z) _ 98 (Z)> for T > T,

forT < T,

B\ T, £2(2)

(20)

and is shown in Figure 7.11. Unlike the case of Bose-Einstein condensation of free parti-
cles in a box (Figure 7.4), the specific heat of a condensate in a harmonic trap displays a
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FIGURE 7.10 Fugacity (a) and scaled internal energy (b) vs. scaled temperature (T/T;) for a Bose-Einstein

condensate in a harmonic trap.
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FIGURE 7.11 Scaled specific heat of a Bose-Einstein condensate in a harmonic trap as a function of the scaled

temperature (T/T,); compare with Figure 7.4 for a free-particle Bose gas.
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discontinuity at the critical temperature:
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Figure 7.12 shows experimental data for the internal energy of a Bose-Einstein con-
densate of 87Rb. The break in slope is an indication of the discontinuous specific heat.
Naturally, in a system with a finite number of particles, all nonanalyticities associated with
the phase transition are removed. When N is finite, the condensate fraction approaches
zero smoothly and the discontinuity in the heat capacity is rounded off. Pathria (1998) has
derived N-dependent temperature markers that indicate the onset of Bose-Einstein con-
densation in terms of the condensate fraction and the specific heat; see also Kirsten and
Toms (1996) and Haugerud, Haugest, and Ravndal (1997).

TIT,

FIGURE 7.12 Comparison of the experimental measurements of Ensher et al. (1996) (diamonds) with the
noninteracting internal energy result — see equation (19) and Figure 7.10(b) — (dotted curve), the zero-order
solution including interactions (full curve), first-order perturbative treatment (dashed curve), and numerical
solution (circles). The straight line is the classical Maxwell-Boltzmann result. The inset is an enlargement of
the region around the critical temperature. The break in slope is an indication of the discontinuity in the
thermodynamic limit specific heat shown in Figure 7.11; from Minguzzi, Conti, and Tosi (1997). Reprinted
with permission; copyright © 1997, American Institute of Physics.
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7.3 Thermodynamics of the blackbody radiation

One of the most important applications of Bose-Einstein statistics is to investigate the
equilibrium properties of the blackbody radiation. We consider a radiation cavity of vol-
ume V at temperature T. Historically, this system has been looked on from two, practically
identical but conceptually different, points of view:

(i) asan assembly of harmonic oscillators with quantized energies (7, + %)hws, where
ns=0,1,2,..., and wy is the (angular) frequency of an oscillator, or
(ii) as a gas of identical and indistinguishable quanta — the so-called photons — the
energy of a photon (corresponding to the frequency ws of the radiation mode)
being fiws.

The first point of view is essentially the one adopted by Planck (1900), except that we
have also included here the zero-point energy of the oscillator; for the thermodynamics
of the radiation, this energy is of no great consequence and may be dropped altogether.
The oscillators, being distinguishable from one another (by the very values of w;), would
obey Maxwell-Boltzmann statistics; however, the expression for the single-oscillator par-
tition function Q; (V, T) would be different from the classical expression because now the
energies accessible to the oscillator are discrete, rather than continuous; compare to equa-
tions (3.8.2) and (3.8.14). The expectation value of the energy of a Planck oscillator of
frequency w; is then given by equation (3.8.20), excluding the zero-point term %ha)sz

hws

(€s) = SRa/hT 1 @

Now, the number of normal modes of vibration per unit volume of the cavity in the
frequency range (v, + dw) is given by the Rayleigh expression

1\? /1 w?dw
“”(1) d(x) = a3 @
where the factor 2 has been included to take into account the duplicity of the transverse
modes;!! the symbol ¢ here denotes the speed of light. By equations (1) and (2), the energy
density associated with the frequency range (v, ® + dw) is given by
h w3dw
u)do = —5 3 eho/kT _ 1’ ®)
which is Planck’s formula for the distribution of energy over the blackbody spectrum.
Integrating (3) over all values of w, we obtain the total energy density in the cavity.
The second point of view originated with Bose (1924) and Einstein (1924, 1925). Bose
investigated the problem of the “distribution of photons over the various energy levels”
in the system; however, instead of worrying about the allocation of the various photons

1 As is well-known, the longitudinal modes play no role in the case of radiation.
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to the various energy levels (as one would have ordinarily done), he concentrated on the
statistics of the energy levels themselves! He examined questions such as the “probability
of an energy level ¢;(= hw;) being occupied by ns photons at a time,” “the mean values of
ns and 5,” and so on. The statistics of the energy levels is indeed Boltzmannian; the mean
values of ng and &5, however, turn out to be

o0 o0
(ng) = Z nsefnshws/kT Z efnshws/kT
ns=0 ns=0

1

= ehws/kT _ | @

and hence

Awg

(es) = hows(ng) = Shas/kT _ 1’ )

identical with our earlier result (1). To obtain the number of photon states with momenta
lying between #w/c and 7 (w+ dw)/c, Bose made use of the connection between this
number and the “volume of the relevant region of the phase space,” with the result

2 2
g(w)dwgg.v?’{zm(hw) (ﬁdw>} _ Vo dw, 612

h c c w238

which is also identical to our earlier result (2). Thus, he finally obtained the distribution
formula of Planck. It must be noted here that, although emphasis lay elsewhere, the math-
ematical steps that led Bose to his final result went literally parallel to the ones occurring
in the oscillator approach!

Einstein, on the other hand, went deeper into the problem and pondered over the
statistics of both the photons and the energy levels, taken together. He inferred (from
Bose’s treatment) that the basic fact to keep in mind during the process of distributing
photons over the various energy levels is that the photons are indistinguishable — a fact
that had been implicitly taken care of in Bose’s treatment. Einstein’s derivation of the
desired distribution was essentially the same as given in Section 6.1, with one important
difference, that is, since the total number of photons in any given volume was indefinite,
the constraint of a fixed N was no longer present. As a result, the Lagrange multiplier « did
not enter into the discussion and to that extent the final formula for (n.) was simpler:

1
(ne) = m? (7

compare to equation (6.1.18a) or (6.2.22). The foregoing result is identical to (4), with
¢ = hws. The subsequent steps in Einstein’s treatment were the same as in Bose’s.

12The factor 2 in this expression arises essentially from the same cause as in the Rayleigh expression (2). However, in
the present context, it would be more appropriate to regard it as representing the two states of polarization of the photon
spin.
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FIGURE 7.13 The spectral distribution of energy in the blackbody radiation. The solid curve represents the
quantum-theoretical formula of Planck. The long-wavelength approximation of Rayleigh-Jeans and the
short-wavelength approximation of Wien are also shown.

Looking back at the two approaches, we note that there is a complete correspondence
between them — “an oscillator in the eigenstate n;, with energy (ns + %)ﬁws" in the first
approach corresponds to “the occupation of the energy level hws by ns photons” in the
second approach, “the average energy (es) of an oscillator” corresponds to “the mean
occupation number (n;) of the corresponding energy level,” and so on.!3

Figure 7.13 shows a plot of the distribution function (3), which may be written in the

dimensionless form

3
U (x)dx = ad fxl, (8
where
2333
U (x) = The u(x) and x= fw 9

(kT)4 kT’

For long wavelengths (x « 1), formula (8) reduces to the classical approximation of
Rayleigh (1900) and Jeans (1905), namely'*

u(x) ~ x2, (10)

while for short wavelengths (x > 1), it reduces to the rival formula of Wien (1896), namely

3 X (11)

u(x) ~x°e .

13 Compared to the standard Bose-Einstein result (7.1.2), formula (7) suggests that we are dealing here with a case for
which z is precisely equal to unity. It is not difficult to see that this is due to the fact that the total number of particles in
the present case is indefinite. For then, their equilibrium number N has to be determined by the condition that the free
energy of the system is at its minimum, that is, {(3A/dN) y_x}v,7 = 0, which, by definition, implies that . = 0 and hence

z=1.
YThe Rayleigh-Jeans formula follows directly if we use for (g5) the equipartition value kT rather than the quantum-

theoretical value (1).
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For comparison, the limiting forms (10) and (11) are also included in the figure. We note
that the areas under the Planck curve and the Wien curve are 74/15(~ 6.49) and 6, respec-
tively. The Rayleigh-Jeans curve, however, suffers from a high-frequency catastrophe!

For the total energy density in the cavity, we obtain from equations (8) and (9)

o0 o0
g —/u(x)dx *kD)* Xy
vV 2p3e3 ] e —1
0 0
72kA
= T4 12)15
15A3¢3 (12)

If there is a small opening in the walls of the cavity, the photons will “effuse” through
it. The net rate of flow of the radiation, per unit area of the opening, will be given by, see
equation (6.4.12),

1 U ﬂ2k4 4 4
v somal =0T =
where
2k4
o= _5670x 10 8Wm 2K (14)
60A3 2

Equation (13) describes the Stefan—Boltzmann law of blackbody radiation, o being the Ste-
fan constant. This law was deduced from experimental observations by Stefan in 1879; five
years later, Boltzmann derived it from thermodynamic considerations.
For further study of thermodynamics, we evaluate the grand partition function of the
photon gas. Using equation (6.2.17) with z = 1, we obtain
In@(V,T)= % = —ijln(l — e /KT, (15)

Replacing summation by integration and making use of the extreme relativistic formula

Anp?dp 8wV
B B3

a(e)ds =2V &2de, (16)

we obtain, after an integration by parts,

o0
PV 8zV 1 &3ds
n@V\D) =17 = 3553 ﬁ/ T 1"
0

I5Here, use has been made of the fact that the value of the definite integral is 67 (4) = =*/15; see Appendix D.
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By a change of variable, this becomes

8V
~ 3133

PV (kT

0

87V

1
— 4_ -
= 15133 (kT)* = 3 U. (17)

We thus obtain the well-known result of the radiation theory; that is, the pressure of the
radiation is equal to one-third its energy density; see also equations (6.4.3) and (6.4.4).
Next, since the chemical potential of the system is zero, the Helmholtz free energy is equal
to —PV; therefore

A=—PV = —%U, (18)
whereby
U-A 4U
= =-—— VI3 1
S T 3T & (19)
and
aS
=T|—=) =3S. 20
Cv <8T)V S (20)

If the radiation undergoes a reversible adiabatic change, the law governing the variation of
T with V would be, see (19),

VT3 = const. (21)

Combining (21) with the fact that P oc T#, we obtain an equation for the adiabats of the
system, namely

PV4/3 = const. (22)

It should be noted, however, that the ratio Cp/Cy of the photon gas is not 4/3; it is infinite!
Finally, we derive an expression for the equilibrium number N of photons in the
radiation cavity. We obtain

o0
Ne %4 o*dw
T 728 | ehw/kT _q
0
2¢(3)(kT)3
¢(3)(kT) o VI3,

72h3c3 @3

Instructive though it may be, formula (23) cannot be taken at its face value because in the
present problem the magnitude of the fluctuations in the variable N, which is determined
by the quantity (9P/d V)1 is infinitely large; see equation (4.5.7).
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One of the most important examples of blackbody radiation is the 2.7K cosmic
microwave background, which is a remnant from the Big Bang. Equations (12) and (23)
play an important role in our understanding of the thermodynamics of the early universe;
see Problem 7.24 and Chapter 9.

7.4 The field of sound waves

A problem mathematically similar to the one discussed in Section 7.3 arises from the
vibrational modes of a macroscopic body, specifically a solid. As in the case of black-
body radiation, the problem of the vibrational modes of a solid can be studied equally
well by regarding the system as a collection of harmonic oscillators or by regarding it as
an enclosed region containing a gas of sound quanta — the so-called phonons. To illus-
trate this point, we consider the Hamiltonian of a classical solid composed of N atoms
whose positions in space are specified by the coordinates (x1,x2,...,x3n5). In the state of
lowest energy, the values of these coordinates may be denoted by (1,3, ..., X3n5). Denoting
the displacements (x; — X;) of the atoms from their equilibrium positions by the variables
&(i=1,2,...,3N), the kinetic energy of the system in configuration (x;) is given by

A LY
2 £2
K:Emgxi :Emgsi, (D

and the potential energy by

P
D=0 =d(X)+ Y (—) (xX; — %)
i i : 9x; O i i

1 %o - -
+Zz<axlax]> o (X —X)(xj =X+ (2)
L,j (xp)=(x;)

The main term in this expansion represents the (minimum) energy of the solid when all
the atoms are at rest at their mean positions X;; this energy may be denoted by the symbol
®p. The next set of terms is identically zero because the function ®(x;) has a minimum
at (x;) = (x;) and hence all its first derivatives vanish there. The second-order terms of the
expansion represent the harmonic component of the vibrations of the atoms about their
mean positions. If we assume that the overall amplitude of these vibrations is not large we
may retain only the harmonic terms of the expansion and neglect all successive ones; we
are then working in the so-called harmonic approximation. Thus, we may write

1

1 .
H=@O+izzm‘§i2+zaij$i§j}; ®
ij
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where

1{ 920
%= 5\ oxion; - @
YT =)

We now introduce a linear transformation, from the coordinates &; to the so-called normal
coordinates q;, and choose the transformation matrix such that the new expression for the
Hamiltonian does not contain any cross terms, that is,

H:®0+Z%m<é]§+wfq§>, 5)
i

where w;(i=1,2,...,3N) are the characteristic frequencies of the normal modes of the sys-
tem and are determined essentially by the quantities «;; or, in turn, by the nature of the
potential energy function ®(x;). Equation (5) suggests that the energy of the solid, over
and above the (minimum) value ®(, may be considered as arising from a set of 3V one-
dimensional, noninteracting, harmonic oscillators whose characteristic frequencies w; are
determined by the interatomic interactions in the system.

Classically, each of the 3N normal modes of vibration corresponds to a wave of distor-
tion of the lattice, that is, a sound wave. Quantum-mechanically, these modes give rise to
quanta, called phonons, in much the same way as the vibrational modes of the electromag-
netic field give rise to photons. There is one important difference, however, that is, while
the number of normal modes in the case of an electromagnetic field is infinite, the num-
ber of normal modes (or the number of phonon energy levels) in the case of a solid is fixed
by the number of lattice sites.'® This introduces certain differences in the thermodynamic
behavior of the sound field in contrast to the thermodynamic behavior of the radiation
field; however, at low temperatures, where the high-frequency modes of the solid are not
very likely to be excited, these differences become rather insignificant and we obtain a
striking similarity between the two sets of results.

The thermodynamics of the solid can now be studied along the lines of Section 3.8. First
of all, we note that the eigenvalues of the Hamiltonian (5) are

1
E{n;) = <D0+Xi:(ni+2>ﬁwi, ®)
where the numbers n; denote the “states of excitation” of the various oscillators (or, equally

well, the occupation numbers of the various phonon levels in the system). The internal
energy of the system is then given by

ho;
U(T):{d)o—i—z ﬁwl}—i-zehwl/:; . @

160f course, the number of phonons themselves is indefinite. As a result, the chemical potential of the phonon gas is
also zero.
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The expression within the curly brackets gives the energy of the solid at absolute zero. The
term @ is negative and larger in magnitude than the total zero-point energy, >, %hwi, of
the oscillators: together, they determine the binding energy of the lattice. The last term
in (7) represents the temperature-dependent part of the energy,!” which determines the
specific heat of the solid:

(AU (hew;/kT)2eMwi/kT

To proceed further, we need to know the frequency spectrum of the solid. To obtain
this from first principles is not an easy task. Accordingly, one obtains this spectrum either
through experiment or by making certain plausible assumptions about it. Einstein, who
was the first to apply the quantum concept to the theory of solids (1907), assumed, for
simplicity, that the frequencies w; are all equal. Denoting this (common) value by wg, the
specific heat of the solid is given by

Cy(T) = 3NKE(x), 9

where E(x) is the so-called Einstein function:

x2e~
Ex) = W; (10)
with
X = hwg/kT = @g/T. (1)

The dashed curve in Figure 7.14 depicts the variation of the specific heat with tempera-
ture, as given by the Einstein formula (9). At sufficiently high temperatures, where T > ©f
and hence x « 1, the Einstein result tends toward the classical one, namely 3Nk.'® At
sufficiently low temperatures, where T <« O and hence x >> 1, the specific heat falls expo-
nentially fast and tends to zero as T — 0. The theoretical rate of fall, however, turns out to
be too fast in comparison with the observed one. Nevertheless, Einstein’s approach did at
least provide a theoretical basis for understanding the observed departure of the specific
heat of solids from the classical law of Dulong and Petit, whereby Cy = 3R =~ 5.96 calories
per mole per degree.

Debye (1912), on the other hand, allowed a continuous spectrum of frequencies, cut
off at an upper limit wp such that the total number of normal modes of vibration is 3N,

"The thermal energy of the solid may well be written as ¥";(n;)hw;, where (n;){= (e"*/kT —1)~1} is the mean
occupation number of the phonon level ¢;. Clearly, the phonons, like photons, obey Bose-Einstein statistics, with . = 0.
8 Actually, when the temperature is high enough, so that all (hw;/kT) <« 1, the general formula (8) itself reduces to the
classical one. This corresponds to the situation when each of the 3N modes of vibration possesses a thermal energy k7.
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FIGURE 7.14 The specific heat of a solid, according to the Einstein model: - — -, and according to the Debye
model: —. The circles denote the experimental results for copper.
that is
®p
/g(a))da) =3N, 12)
0

where g(w)dw denotes the number of normal modes of vibration whose frequency lies in
the range (w, w + dw). For g(w), Debye adopted the Rayleigh expression (7.3.2), modified so
as to suit the problem under study. Writing c;, for the velocity of propagation of the longi-
tudinal modes and c7 for that of the transverse modes (and noting that, for any frequency
o, the transverse mode is doubly degenerate), equation (12) becomes

T (otdo  w'd
/V(‘”Z“;erz ?):3N, (13)
J 2gec;  mwecr
from which one obtains for the cutoff frequency
-1
B=tar? (L 2 (14)
p=trvlgta) o

Accordingly, the Debye spectrum may be written as

9N
—w for w < wp,

g(w)=1{ %D (15)
0 for w > wp.

Before we proceed further to calculate the specific heat of solids on the basis of the
Debye spectrum, two remarks seem to be in order. First, the Debye spectrum is only an
idealization of the actual situation obtaining in a solid; it may, for instance, be compared
with a typical spectrum such as the one shown in Figure 7.15. While for low-frequency
modes (the so-called acoustic modes) the Debye approximation is reasonable, serious dis-
crepancies are seen in the case of high-frequency modes (the so-called optical modes). At
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g(w), in arbitrary units —»
w
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FIGURE 7.15 The normal-mode frequency distribution g(w) for aluminum. The solid curve is derived from
x-ray scattering measurements [Walker (1956)] while the dashed curve represents the corresponding Debye
approximation.

any rate, for “averaged” quantities, such as the specific heat, the finer details of the spec-
trum are not very important. Second, the longitudinal and the transverse modes of the
solid should have their own cutoff frequencies, wp,; and wp, say, rather than a common
cutoff at wp, for the simple reason that, of the 3N normal modes of the lattice, exactly N
are longitudinal and 2N transverse. Accordingly, we should have, instead of (13),

oD, op,T

2d 2d
/ VL‘U —N and / VL“’ —=2N. (16)
ZnZCi 7126‘3}
0

We note that the two cutoffs correspond to a common wavelength imin{= (47 V /3N)/3},
which is comparable to the mean interatomic distance in the solid. This is quite reasonable
because, for wavelengths shorter than A, it would be rather meaningless to speak of a
wave of atomic displacements.

In the Debye approximation, formula (8) gives

Cv(T) = 3NkD(xy), 17

where D(xp) is the so-called Debye function:

Xg
3 [ x*eFdx
Dixg) = = [ 2 & 1
(Xo) 3 @17 (18)
0
with
fn _ Op (19)

=% T



210 Chapter 7 ¢ Ideal Bose Systems

O®p being the so-called Debye temperature of the solid. Integrating by parts, the expression
for the Debye function becomes

X

3x0 12 [ x3dx

D =— — . 20

(x0) exo_1+xg/ex—1 20)
0

For T > ®p, which means xy « 1, the function D(xp) may be expressed as a power series
in xo:

X
Dxg)=1——+---. 21

20
Thus, as T — oo, Cy — 3Nk; moreover, according to this theory, the classical result should
be applicable to within % percent so long as T > 3@p. For T « ®p, which means xp > 1,
the function D(xp) may be written as

3 [ ex—1

X

0%
N 474 _ 4714( T )3 ©22)
5xg_ 5 \Op/ ’

Thus, at low temperatures the specific heat of the solid obeys the Debye T3-law:

T\3 T\3
Nk(—) :464.4(—) cal mole 1K1, (23)
®p ®p

127
Cy = 5
It is clear from equation (23) that a measurement of the low-temperature specific heat of
a solid should enable us not only to check the validity of the T3-law but also to obtain an
empirical value of the Debye temperature ®p.!Y The value of ®p can also be obtained by
computing the cutoff frequency wp from a knowledge of the parameters N/V,c; and c7;
see equations (14) and (19). The closeness of these estimates is further evidence in favor
of Debye’s theory. Once ©p is known, the whole temperature range can be covered theo-
retically by making use of the tabulated values of the function D(xp).?’ A typical case was
shown earlier in Figure 7.14. We saw that not only was the T3-law obeyed at low temper-
atures, but also the agreement between theory and experiment was good throughout the
range of observations.

97t can be shown that, according to this theory, deviations from the T3-law should not exceed 2 percent so long as
T < ©p/10. However, in the case of metals, one cannot expect to reach a true T3-region because, well before that, the
specific heat of the electron gas might become a dominant contribution (see Section 8.3); unless the two contributions
are separated out, one is likely to obtain a somewhat suppressed value of ©p from these observations.

20See, for example, Fowler and Guggenheim (1960, p. 144).
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As another illustration of agreement in the low-temperature regime, we include here
another plot, Figure 7.16, which is based on data obtained with the KCI crystal at temper-
atures below 5K; see Keesom and Pearlman (1953). Here, the observed values of Cy /T are
plotted against T2. It is evident that the data fall quite well on a straight line from whose
slope the value of ®p can be determined. One thus obtains, for KCl, ®p = 233 4+ 3K, which
is in reasonable agreement with the values of 230 to 246 K coming from various estimates
of the relevant elastic constants.

In Table 7.1 we list the values of ®p, for several crystals, as derived from the specific heat
measurements and from the values of the elastic constants.

In general, if the specific heat measurements of a given system conform to a 73-law, one
may infer that the thermal excitations in the system are accounted for solely by phonons.
We expect something similar to happen in liquids as well, with two important differences.
First, since liquids cannot withstand shear stress they cannot sustain transverse modes of
vibration; a liquid composed of N atoms will, therefore, have only N longitudinal modes
of vibration. Second, the normal modes of a liquid cannot be expected to be strictly har-
monic; consequently, in addition to phonons, we might have other types of excitation
such as vortex flow or turbulence (or even a modified kind of excitation, such as rotons
in liquid He?).

o
o
1

»
o
T

n
o
T

1
0 5 10 15 20
T2(in K2) —»

C\/T(in milli joules mole ™' K~2) —»

FIGURE 7.16 A plot of (Cy/T) versus T? for KCl, showing the validity of the Debye T3-law. The experimental points
are from Keesom and Pearlman (1953).

Table 7.1 The Values of the Debye Temperature ®p for Different Crystals

Crystal Pb Ag Zn Cu Al C Nadcl Kcl MgO

®p from the specific 88 215 308 345 398 ~1850 308 233 ~850
heat measurements

®p from the elastic 73 214 305 332 402 - 320 240 ~950

constants
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Now, helium is the only substance that remains liquid at temperatures low enough to
exhibit the T3-behavior. In the case of the lighter isotope, He3, the results are strongly influ-
enced by the Fermi-Dirac statistics; as a result, a specific heat proportional to the first
power of T dominates the scene (see Section 8.1). In the case of the heavier isotope, He?,
the low-temperature situation is completely governed by phonons; accordingly, we expect
its specific heat to be given by, see equations (16) and (23),

a7t kT \3
Cy=—Nk| — ) , 24
v 5 <ﬁwD) 24
where
_ 672N 13 25)
op=|— c

¢ being the velocity of sound in the liquid. The specific heat per unit mass of the liquid is
then given by

274
2mek 3

=———T°, 26
15ph3¢3 (26)

(4%
where p is the mass density. Substituting p = 0.1455g/cm? and ¢ = 238m/s, the foregoing
result becomes

cy =0.0209T3jouleg 'K~ 1. @27

The experimental measurements of Wiebes et al. (1957), for 0 < T < 0.6K, conformed to
the expression

cv = (0.0204 +0.0004) T3 jouleg 'K~ 1. (28)

The agreement between the theoretical result and the experimental observations is clearly
good.

7.5 Inertial density of the sound field

For further understanding of the low-temperature behavior of liquid He?*, we determine
the “inertial mass” associated with a gas of sound quanta in thermal equilibrium. For
this, we consider “a phonon gas in mass motion,” for then by determining the relation-
ship between the momentum P of the gas and the velocity v of its mass motion we can
readily evaluate the property in question. Now, since the total number of phonons in the
system is indefinite, the problem is free from the constraint of a fixed N; consequently,
the undetermined multiplier « may be taken to be identically zero. However, we now have
a new constraint on the system, namely that of a fixed total momentum P, additional to
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the constraint of the fixed total energy E. Under these constraints, the mean occupation
number of the phonon level ¢(p) would be

(n(p)) = (€8]

exp(Be+y-p)—1

As usual, the parameter 8 is equal to 1/kT. To determine p, it seems natural to evaluate
the drift velocity of the gas. Choosing the z-axis in the direction of the mass motion, the
magnitude v of the drift velocity will be given by “the mean value of the component u, of
the individual phonon velocities”:

v = (ucosb). )

Now, for phonons
e=pc and u=-—=c, 3)

where c is the velocity of sound in the medium. Moreover, by reasons of symmetry, we
expect the undetermined vector y to be either parallel or antiparallel to the direction of
mass motion; hence, we may write

Y P =YzPz = yzPCosH. 4)
In view of equations (1), (3), and (4), equation (2) becomes

_ 1o7 Jo lexp{Bpc(1 + (yz/Bc) cosd)} — 1171 (ccosd) (p?dp 2z sinodo)

5
107 Jo lexp{Bpc(l + (yz/Be) cost)} — 11~ 1 (p2dp 2 sinodp) ©)

Making the substitutions
cosd =n, p+(yz/Bom)=p
and cancelling away the integrations over p/, we obtain

o A Gz peyn)Pndn
S QA+ (rz/Boym)—3dn

= —vz/B.

It follows that

y =—pv. (6)

Accordingly, the expression for the mean occupation number becomes

1

) 7
exp{fe —v-p)} —1 @

(n(p)) =
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A comparison of (7) with the corresponding result in the rest frame of the gas, namely

(no(py)) = 8)

1
exp(Beg) — 1’
shows that the change caused by the imposition of mass motion on the system is noth-
ing but a straightforward manifestation of the Galilean transformation between the two

frames of reference.
Alternatively, equation (7) may be written as

1 1
exp(Bp'c) — 1 exp{Bpc(1 — (v/c)cosf)) — 1

(n(p)) = 9

As such, formula (9) lays down a serious restriction on the drift velocity v, that is, it must
not exceed c, the velocity of the phonons, for otherwise some of the occupation num-
bers would become negative! Actually, as our subsequent analysis will show, the formalism
developed in this section breaks down as v approaches c. The velocity ¢ may, therefore, be
regarded as the critical velocity for the flow of the phonon gas:

(We)ph = C. (10)

The relevance of this result to the problem of superfluidity in liquid helium II will be seen
in the following section.
Next we now calculate the total momentum P of the phonon gas:

P=> (n(p)p. ¢8)
p

Indeed, the vector P will be parallel to the vector v, the latter being already in the direction
of the z-axis. We have, therefore, to calculate only the z-component of the momentum:

P=P,=) (n(p))p:

p
oo T
_// pcosé Vi2dp2s sin6dd
= exp{Bpc(l — (v/c)cosH)} —1 3
00
27V & P/gdp/ .
- 1— 4 .
h3 /exp(ﬂp/c)_lf{ (v/c)cosf} " coshsinddo
0 0
5 2
-V 167 v/c N

45h3c38% (1 —12/c2)3
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The total energy E of the gas is given by

E=7) (n(p)pc
14

22Ve [ p3dp

_ —4 .
; eXp(ﬂp’C)_l‘O/.{l (v/c)cosb} sin6do

Ly dn® e gie (13)
15K 1 (1— 12/c2)3

It is now natural to regard the ratio P/v as the “inertial mass” of the phonon gas. The
corresponding mass density p is, therefore, given by

P 1675k*T? 1
p=—= . (14)
vV 45h3¢5 (1 —1v2/c?)3
For (v/c) « 1, which is generally true, the mass density of the phonon gas is given by
167%k* _, 4
(IOO)ph = mT = @(EO/V)- (15)

Substituting the value of ¢ for liquid He? at low temperatures, the phonon mass density, as
a fraction of the actual density of the liquid, is given by

(P0)ph/PHe = 1.22 x 1074 T*; (16)

thus, for example, at T = 0.3K the value of this fraction turns out to be about 9.9 x 107
Now, at a temperature like 0.3 K, phonons are the only excitations in liquid He* that need to
be considered; the calculated result should, therefore, correspond to the “ratio of the den-
sity pj,, of the normal fluid in the liquid to the total density p of the liquid.” It is practically
impossible to make a direct determination of a fraction as small as that; however, indirect
evaluations that make use of other experimentally viable properties of the liquid provide a
striking confirmation of the foregoing result; see Figure 7.17.

7.6 Elementary excitations in liquid helium I

Landau (1941, 1947) developed a simple theoretical scheme that explains reasonably well
the behavior of liquid helium IT at low temperatures not too close to the A-point. Accord-
ing to this scheme, the liquid is treated as a weakly excited quantum-mechanical system,
in which deviations from the ground state (7' = 0K) are described in terms of “a gas of ele-
mentary excitations” hovering over a quiescent background. The gas of excitations corre-
sponds to the “normal fluid,” while the quiescent background represents the “superfluid.”
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FIGURE 7.17 The normal fraction (p,/p), as obtained from experimental data on (i) the velocity of second sound
and (ii) the entropy of liquid He Il (after de Klerk, Hudson, and Pellam, 1953).

At T = 0K, there are no excitations at all (p,, = 0) and the whole of the fluid constitutes the
superfluid background (ps = pr1e). At higher temperatures, we may write

ps(T) = pue(T) — pn(1), (1)

so that at T =T,, p, = pue and ps =0. At T > T,, the liquid behaves in all respects as a
normal fluid, commonly known as liquid helium I.

Guided by purely empirical considerations, Landau also proposed an energy-
momentum relationship e(p) for the elementary excitations in liquid helium II. At
low momenta, the relationship between ¢ and p was linear (which is characteristic of
phonons), while at higher momenta it exhibited a nonmonotonic character. The excita-
tions were assumed to be bosons and, at low temperatures (when their number is not very
large), mutually noninteracting; the macroscopic properties of the liquid could then be
calculated by following a straightforward statistical-mechanical approach. It was found
that Landau’s theory could explain quite successfully the observed properties of liquid
helium IT over a temperature range of about 0 to 2 K; however, it still remained to be ver-
ified that the actual excitations in the liquid did, in fact, conform to the proposed energy
spectrum.

Following a suggestion by Cohen and Feynman (1957), a number of experimental work-
ers set out to investigate the spectrum of excitations in liquid helium II by scattering
long-wavelength neutrons () > 4A) from the liquid. At temperatures below 2K, the most
important scattering process is the one in which a neutron creates a single excitation in the
liquid. By measuring the modified wavelength Ar of the neutrons scattered at an angle ¢,
the energy ¢ and the momentum p of the excitation created in the scattering process could
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be determined on the basis of the relevant conservation laws:

e=h20.2 a7 /2m, @
pP =0t +Af*2 - 2A;1/\]?1 cos¢), ®

where 1; is the initial wavelength of the neutrons and m the neutron mass. By varying ¢, or
Ai, one could map the entire spectrum of the excitations.

The first exhaustive investigation along these lines was carried out by Yarnell et al.
(1959); their results, shown in Figure 7.18, possess a striking resemblance to the empiri-
cal spectrum proposed by Landau. The more important features of the spectrum, which
was obtained at a temperature of 1.1K, are the following:

(i) Ifwe fit a linear, phonon-like spectrum (¢ = pc) to points in the vicinity of

p/h= O.SSA_I, we obtain for ¢ a value of (239 & 5) m/s, which is in excellent
agreement with the measured value of the velocity of sound in the liquid, namely
about 238m/s.

(ii) The spectrum passes through a maximum value of ¢/k = (13.92 £ 0.10) K at
p/hi=(1.11£0.02)A"".

(iii) This is followed by a minimum at p/i = (1.92 + O.OI)A_I, whose neighborhood may
be represented by Landau’s roton spectrum:

(p—po)?
e(p)= A4 PP (4)
2u
/
15| /
T 10+
//
X
k= //
¥ /
[ 5 | //
/ T=11K
/
/
/
/
/
0 0.5 1.0 1.5 2.0 2.5

p/h,in A~ —»

FIGURE 7.18 The energy spectrum of the elementary excitations in liquid He Il at 1.1K [after Yarnell et al. (1959)];
the dashed line emanating from the origin has a slope corresponding to the velocity of sound in the liquid, namely
(239 +5) m/s.
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with

A/k = (8.65+0.04)K,

po/h=(1.92+0.0D)A ", (5)2!

and

1 = (0.16 £ 0.01) myge.

(iv) Above p/h~ 2.18A_1, the spectrum rises linearly, again with a slope equal to c. Data
were also obtained at temperatures 1.6 K and 1.8K. The spectrum was found to be of
the same general shape as at 1.1K; only the value of A was slightly lower.

In a later investigation, Henshaw and Woods (1961) extended the range of observation
at both ends of the spectrum; their results are shown in Figure 7.19. On the lower side,

they carried out measurements down to p/hi = 0.26A"" and found that the experimental

40

Temperature 1.12K
Neutron wavelength 4.04 A

W
N
T

Free particle \

n
~
T
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Energy change, in K —»

0 0.6 1.2 1.8 2.4 3.0
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FIGURE 7.19 The energy spectrum of the elementary excitations in liquid He Il at 1.12K (after Henshaw and Woods,
1961); the dashed straight lines have a common slope corresponding to the velocity of sound in the liquid, namely
237m/s. The parabolic curve rising from the origin represents the energy spectrum, ¢(p) = p?/2m, of free helium
atoms.

21The term “roton” for these excitations was coined by Landau who had originally thought that these excitations
might, in some way, represent local disturbances of a rotational character in the liquid. However, subsequent theoretical
work, especially that of Feynman (1953, 1954) and of Brueckner and Sawada (1957), did not support this contention.
Nevertheless, the term “roton” has remained.
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points indeed lie on a straight line (of slope 237m/s). On the upper side, they pushed their
measurements up to p/h = 2.68A~" and found that, after passing through a minimum at
1.9112\71, the curve rises with an increasing slope up to about 2.4A7" at which point the
second derivative 3%s/dp? changes sign; the subsequent trend of the curve suggests the
possible existence of a second maximum in the spectrum!??

To evaluate the thermodynamics of liquid helium II, we first of all note that at suf-
ficiently low temperatures we have only low-lying excitations, namely the phonons.
The thermodynamic behavior of the liquid is then governed by formulae derived in
Sections 7.4 and 7.5. At temperatures higher than about 0.5K, the second group of exci-
tations, namely the rotons (with momenta in the vicinity of py), also shows up. Between
0.5Kand about 1K, the behavior of the liquid is governed by phonons and rotons together.
Above 1K, however, the phonon contributions to the various thermodynamic properties
of the liquid become rather unimportant; then, rotons are the only excitations that need
to be considered.

We shall now study the temperature dependence of the roton contributions to the
various thermodynamic properties of the liquid. In view of the continuity of the energy
spectrum, it is natural to expect that, like phonons, rotons also obey Bose-Einstein statis-
tics. Moreover, their total number N in the system is quite indefinite; consequently, their
chemical potential p is identically zero. We then have for the mean occupation numbers
of the rotons

1

, 6
exp{Be(p)} —1 ©

(n(p)) =
where ¢(p) is given by equations (4) and (5). Now, at all temperatures of interest (namely
T < 2K), the minimum value of the term exp{8¢(p)}, namely exp(A /kT), is considerably
larger than unity. We may, therefore, write

(n(p)) ~ exp{—Be(p)}. )

The g-potential of the system of rotons is, therefore, given by

j21% _
qv,T)= = = —Xp:ln[l —exp{—Be(p)}] ~ Xp:exp{—ﬂs(p)} ~N, 8)

where N is the “equilibrium” number of rotons in the system. The summation over p may
be replaced by integration, with the result

]
N <

0 (p-po)?
I 2 . N kT
—:Nzﬁ/e { o ]/ (A pPdp). 9)
0

2This seems to confirm a remarkable prediction by Pitaevskii (1959) that an end point in the spectrum might occur
at a “critical” value p, of the excitation momentum where ¢, is equal to 2A and (d¢/9p). is zero.
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Substituting p = po + 2ukT)/?x, we get

5 2
I]z;{=N=We‘A/kT(zukT)l/Z/e—xz{l—f—(zul;?l/zx} dx. (10)
The “relevant” range of the variable x that makes a significant contribution toward this
integral is fairly symmetric about the value x = 0; consequently, the net effect of the linear
term in the integrand is vanishingly small. The quadratic term too is unimportant because
its coefficient 2ukT)/ pg « 1. Thus, all we have to consider is the integral of exp(—x?). Now,
one can readily verify that the limits of this integral are such that, without seriously affect-
ing the value of the integral, they may be taken as —oco and +o0; the value of the integral is
then simply 7 /2. We thus obtain

!

V  —  4npiV
_N="P

o -3 QrpkT)Y2eA/KT (1123

The free energy of the roton gas is given by (since u = 0)

A=—PV = —NKT o« T¥?e=2/kT 12)
which gives
A 3 A — (3 A
—(Z) —al 2y SN2 2 1
s=~(a7),=ar ez} =3+ i a2
U=A+TS=N<A+%I€T) a4)*
and
cv=(2Y) —mkl3+ 2, Ay (15)
V=\ar ), T ekt T \kT) [

Clearly, as T — 0, all these results tend to zero (essentially exponentially).
We now determine the inertial mass density of the roton gas. Proceeding as in
Section 7.5, we obtain for a gas of excitations with energy spectrum ¢(p)

My 1 asp
/00—7—11/1_{%; n(s—v-p)pﬁ, (16)

ZLooking back at integral (9), what we have done here amounts to replacing p? in the integrand by its mean value p?
and then carrying out integration over the “complete” range of the variable (p — py).

%4This result is highly suggestive of the fact that for rotons there is only one true degree of freedom, namely the
magnitude of the roton momentum, that is thermally effective!
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where n(e — v - p) is the mean occupation number of the state ¢(p), as observed in a frame
of reference K with respect to which the gas is in mass motion with a drift velocity v.*
For small v, the function n(e — v - p) may be expanded as a Taylor series in v and only the
terms n(e) — (v- p)on(e)/de retained. The integral over the first part denotes the momen-
tum density of the system, as observed in the rest frame Ky, and is identically zero. We are
thus left with

/p cos 9 (pzdensmGdG)

_ A / one) a4 (17)

33| Tae PP
0
which holds for any energy spectrum and for any statistics.
For phonons, we obtain

4r

(0)ph = ~313¢

dn(p) 4
dp p*dp

o0

— / n(p)-Ap*dp
0

[ee]

%4 4
np-p
0

3h3c

o0
4 4 p?d 4
= @/H(P) - pc (fﬁl’) = @(Eo)ph/vv (18)
0

which is identical to our earlier result (7.5.15).
For rotons, n(¢) ~ exp(—Be); hence, dn(e)/de ~ —pBn(e). Accordingly, by (17),

4
(00)rot = % / n(e)p*dp

_ B, N_ PN
=3Py =Ty

4 1/2
_ 47 p; <2ﬂM) e~ A/KT, 20)

(19)

3h3 \ kT

At very low temperatures (T < 0.3K), the roton contribution toward the inertia of the
fluid is negligible in comparison with the phonon contribution. At relatively higher tem-
peratures (T ~ 0.6K), the two contributions become comparable. At temperatures above
1K, the roton contribution is far more dominant than the phonon contribution; at such
temperatures, the roton density alone accounts for the density p, of the normal fluid.

Z5The drift velocity v must satisfy the condition (v - p) < &, for otherwise some of the occupation numbers will become
negative! This leads to the existence of a critical velocity v, for these excitations, such that for v exceeding v, the formalism
developed here would break down. It is not difficult to see that this (critical) velocity is given by the relation v; = (¢/p)min,
as in equation (24).
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It would be instructive to determine the critical temperature T, at which the theoreti-
cal value of the density p, became equal to the actual density pge of the liquid; this would
mean the disappearance of the superfluid component of the liquid (and hence a transition
from liquid He II to liquid He I). In this manner, we find that T, >~ 2.5K, as opposed to the
experimental value of T;, which is ~2.19 K. The comparison is not too bad, considering
the fact that in the present calculation we have assumed the roton gas to be a noninteract-
ing system right up to the transition point; in fact, due to the presence of an exceedingly
large number of excitations at higher temperatures, this assumption would not remain
plausible.

Equation (19) suggests that a roton excitation possesses an effective mass p% /3kT.
Numerically, this is about 10 to 15 times the mass of a helium atom (and, hence, orders of
magnitude larger than the parameter u of the roton spectrum). However, the more impor-
tant aspect of the roton effective mass is that it is inversely proportional to the temperature
of the roton gas! Historically, this aspect was first discovered empirically by Landau (1947)
on the basis of the experimental data on the velocity of second sound in liquid He II and its
specific heat. Now, since the effective mass of an excitation is generally determined by the
quantity (p?)/3kT, Landau concluded that the quantity (p?) of the relevant excitations in
this liquid must be temperature-independent. Thus, as the temperature of the liquid rises,
the mean value of p? of the excitations must stay constant; this value may be denoted by
p3. The mean value of ¢, on the other hand, must rise with temperature. The only way to
reconcile the two was to invoke a nonmonotonic spectrum with a minimum at p = py.

Finally, we would like to touch on the question of the critical velocity of superflow.
For this, we consider a mass M of excitation-free superfluid in mass motion; its kinetic
energy E and momentum P are given by %Mv2 and M, respectively. Any changes in these
quantities are related as follows:

SE= (v-§P). (21)

Supposing that these changes came about as a result of the creation of an excitation (p)
in the fluid, we must have, by the principles of conservation,

SE=—¢ and éP=-—p. (22)

Equations (21) and (22) lead to the result
e=(W-p) <vp. (23)
Thus, it is impossible to create an excitation ¢(p) in the fluid unless the drift velocity v of
the fluid is greater than, or at least equal to, the quantity (¢/p). Accordingly, if v is less than

even the lowest value of ¢ /p, no excitation at all can be created in the fluid, which will there-
fore maintain its superfluid character. We thus obtain a condition for the maintenance of
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superfluidity, namely
V < Ve = (¢/P)min, (24)

which is known as the Landau criterion for superflow. The velocity v, is called the criti-
cal velocity of superflow; it marks an “upper limit” to the flow velocities at which the fluid
exhibits superfluid behavior. The observed magnitude of the critical velocity varies signifi-
cantly with the geometry of the channel employed; as a rule, the narrower the channel the
larger the critical velocity. The observed values of v, range from about 0.1cm/s to about
70cm/s.

The theoretical estimates of v, are clearly of interest. On one hand, we find that if the
excitations obey the ideal-gas relationship, namely ¢ = p?/2m, then the critical velocity
turns out to be exactly zero. Any velocity v is then greater than the critical velocity; accord-
ingly, no superflow is possible at all. This is a very significant result, for it brings out very
clearly the fact that interatomic interactions in the liquid, which give rise to an excita-
tion spectrum different from the one characteristic of the ideal gas, play a fundamental
role in bringing about the phenomenon of superfluidity. Thus, while an ideal Bose gas
does undergo the phenomenon of Bose-Einstein condensation, it cannot support the phe-
nomenon of superfluidity as such! On the other hand, we find that (i) for phonons, v, =
¢~ 2.4 x 10* cm/s and (ii) for rotons, v, = {(p3 +2uA)Y2 — po}/u >~ A/py ~ 6.3 x 103 cm/s,
which are too high in comparison with the observed values of v.. In fact, there is another
type of collective excitations that can appear in liquid helium II, namely quantized vortex
rings, with energy-momentum relationship of the form: ¢ o p'/2. The critical velocity for
the creation of these rings turns out to be numerically consistent with the experimental
findings; not only that, the dependence of v, on the geometry of the channel can also be
understood in terms of the size of the rings created.

For a review of this topic, especially in regard to Feynman'’s contributions, see Mehra
and Pathria (1994); see also Sections 11.4 through 11.6 of this text.

Quantized dissipationless bosonic flow has also been observed in the solid phase of
helium-4. This “supersolid” behavior was observed by Kim and Chan (2004a, 2004b) using
a torsional oscillator containing solid helium infused silica with atomic-sized pores. At P =
60atm, the torsional frequency increases abruptly for temperatures below 175mK. These
authors interpret this result as helium atoms in the solid phase in the pores being free to
flow without dissipation.

Problems

7.1. By considering the order of magnitude of the occupation numbers (n,), show that it makes no
difference to the final results of Section 7.1 if we combine a finite number of (¢ # 0)-terms of the
sum (7.1.2) with the (¢ = 0)-part of equation (7.1.6) or include them in the integral over «.

7.2. Deduce the virial expansion (7.1.13) from equations (7.1.7) and (7.1.8), and verify the quoted values
of the virial coefficients.
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Combining equations (7.1.24) and (7.1.26), and making use of the first two terms of formula (D.9)
in Appendix D, show that, as T approaches T, from above, the parameter « (= —Inz) of the ideal

Bose gas assumes the form
oL (3562 \ (T T\
@ T 4 T, ’

l(iz) __5 8&p®,
z\oT /p Zng/g(Z)y

compare this result with equation (7.1.36). Hence show that

Cp _ (32/0T)p _ 5 85/2(2)81/2(2)
Cv  (03z/0T)y 3 {g32(2))

as in equation (7.1.48b). Check that, as T approaches T, from above, both y and Cp diverge as

(T—-To)~"

(a) Show that the isothermal compressibility k7 and the adiabatic compressibility s of an ideal
Bose gas are given by

Show that for an ideal Bose gas

Y =

op = 1 g12(2) ks = 3 g32(2)
nkT gg/g(z) ’ 5nkT g5/2 (Z) ’

where n(= N/V) is the particle density in the gas. Note that, as z — 0, «7 and «s approach their
respective classical values, namely 1/P and 1/y P. How do they behave as z — 12
(b) Making use of the thermodynamic relations

aP AV aP\?2
Cp—Cy=T ) =1ver( =
P (8T>V(8T)p ”T(8T>V

and

Cp/Cv =kr/Ks,

derive equations (7.1.48a) and (7.1.48b).
Show that for an ideal Bose gas the temperature derivative of the specific heat Cy is given by

2
L e 1145852(2) 9g32(2) 27 {g3/2(2)} g—13/z(Z) for T > T,
L (v _T| 8 gk 48,2 8 (81/2(2)}
Nk\ T 5 v
@ﬁ{(é) fOrT<Tc.

Using these results and the main term of formula (D.9), verify equation (7.1.38).
Evaluate the quantities (32P/dT?),, (3%11/8T?),, and (3211/3T?)p for an ideal Bose gas and check
that your results satisfy the thermodynamic relationships

a2p 2
=vr|{— ) -NT(=L ],
CV (8T2>V <8T2>U

Bzu
=-NT|{— ] .
e (BTZ)P

Examine the behavior of these quantities as T — T, from above and from below.

and
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The velocity of sound in a fluid is given by the formula
w=/(3P/dp)s,
where p is the mass density of the fluid. Show that for an ideal Bose gas

w2 = oK 852@) 5
3m g32(z) 9

)

where (%) is the mean square speed of the particles in the gas.
Show that for an ideal Bose gas

(u)<l> _ §g1(z)82(22),
ul m{gs32(2)}

u being the speed of a particle. Examine and interpret the limiting cases z — 0 and z — 1;
compare with Problem 6.6.

. Consider an ideal Bose gas in a uniform gravitational field of acceleration g. Show that the

phenomenon of Bose-Einstein condensation in this gas sets in at a temperature T, given by

8 1 [wmgl\'Y?
T,~T0(1+4° (ka> ,
c

9,(3

«(2)
where L is the height of the container and mgL « kT?. Also show that the condensation here is
accompanied by a discontinuity in the specific heat Cy of the gas:

9 3 wmgL 1/2
A -T.~——¢| = | N ;
(ACY)T=T, 87rC<2) k( K10 )

see Eisenschitz (1958).

. Consider an ideal Bose gas consisting of molecules with internal degrees of freedom. Assuming

that, besides the ground state g = 0, only the first excited state ¢; of the internal spectrum needs
to be taken into account, determine the condensation temperature of the gas as a function of ¢; .
Show that, for (sl/kTg) > 1,

2
T. 3 e /kT?

)

T¢ (1)2/3 243 /e \V/?
=) 205 )
= \z 3 (3) k12

2

while, for (&1 /kT?) < 1,

[Hint: To obtain the last result, use the first two terms of formula (D.9) in Appendix D.]

. Consider an ideal Bose gas in the grand canonical ensemble and study fluctuations in the total

number of particles N and the total energy E. Discuss, in particular, the situation when the gas

becomes highly degenerate.

Consider an ideal Bose gas confined to a region of area A in fwo dimensions. Express the number of

particles in the excited states, N, and the number of particles in the ground state, Ny, in terms of

z, T, and A, and show that the system does not exhibit Bose-Einstein condensation unless T — 0K.
Refine your argument to show that, if the area A and the total number of particles IV are held

fixed and we require both N, and Nj to be of order N, then we do achieve condensation when

T /|
mkl2 InN’
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where [~ /(A/N)] is the mean interparticle distance in the system. Of course, if both A and

N — o0, keeping [ fixed, then the desired T does go to zero.

Consider an n-dimensional Bose gas whose single-particle energy spectrum is given by ¢ « p*,
where s is some positive number. Discuss the onset of Bose-Einstein condensation in this system,
especially its dependence on the numbers 7 and s. Study the thermodynamic behavior of this
system and show that,

P= Y coT > o0)= "Nk, and cp(:r_>oo):(f+1)1vk.
n N N

At time t = 0, the ground state wavefunction of a one-dimensional quantum harmonic oscillator

with potential V(x) =  mw2x? is given by

A x
V0 = Smep (=55 ),

wherea =,/ miwo At t = 0, the harmonic potential is abruptly removed. Use the momentum

representation of the wavefunction at t = 0 and the time-dependent Schrodinger equation to
determine the spatial wavefunction and density at time ¢ > 0; compare to equation (7.2.11).

At time t = 0, a collection of classical particles is in equilibrium at temperature T in a three-
dimensional harmonic oscillator potential V(r) = %mwg |r|?. At t = 0, the harmonic potential is
abruptly removed. Use the momentum distribution at ¢t = 0 to determine the spatial density at
time ¢ > 0. Show that this is equivalent to the high temperature limit of equation (7.2.15).

. As shown in Section 7.1, n13 is a measure of the quantum nature of the system. Use equations

(7.2.11) and (7.2.15) to determine 123 at the center of the harmonic trap at T = T,/2 for the
condensed and noncondensed fractions.

Show that the integral of the semiclassical spatial density in equation (7.2.15) gives the correct
counting of the atoms that are not condensed into the ground state.

Construct a theory for N bosons in an isotropic two-dimensional trap. This corresponds to a trap in
which the energy level spacing due to excitations in the z direction is much larger than the spacing
in the other directions. Determine the density of states a(e) of this system. Can a Bose-Einstein
condensate form in this trap? If so, find the critical temperature as a function of the trapping
frequencies and N. How much larger must the frequency in the third direction be for the system

to display two-dimensional behavior?

The (canonical) partition function of the blackbody radiation may be written as

QV,T)=[[Qi@,D),

so that
Q. 1) = Y Q@ 1)~ [ 1nQu(o Dg(@)dos
@ 0

here, Q; (w, T) is the single-oscillator partition function given by equation (3.8.14) and g(w) is the
density of states given by equation (7.3.2). Using this information, evaluate the Helmholtz free
energy of the system and derive other thermodynamic properties such as the pressure P and the
(thermal) energy density U/V. Compare your results with the ones derived in Section 7.3 from the
g-potential of the system.

Show that the mean energy per photon in a blackbody radiation cavity is very nearly 2.7kT.
Considering the volume dependence of the frequencies w of the vibrational modes of the radiation
field, establish relation (7.3.17) between the pressure P and the energy density U/V.

The sun may be regarded as a black body at a temperature of 5800K. Its diameter is about

1.4 x 10 m while its distance from the earth is about 1.5 x 10''m.
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(a) Calculate the total radiant intensity (in W/m?) of sunlight at the surface of the earth.

(b) What pressure would it exert on a perfectly absorbing surface placed normal to the rays of
the sun?

(¢) Ifaflat surface on a satellite, which faces the sun, were an ideal absorber and emitter, what
equilibrium temperature would it ultimately attain?

Calculate the photon number density, entropy density, and energy density of the 2.725K cosmic

microwave background.

Figure 7.20 is a plot of Cy (T) against T for a solid, the limiting value Cy (co) being the classical

result 3Nk. Show that the shaded area in the figure, namely

oo

/ (Cy(00) — Cy(T)}dT,
0

is exactly equal to the zero-point energy of the solid. Interpret the result physically.

T—

FIGURE 7.20

Show that the zero-point energy of a Debye solid composed of N atoms is equal to %Nk@ D-
[Note that this implies, for each vibrational mode of the solid, a mean zero-point energy %k@ D>

thatis, @ = 3wp.]

Show that, for T « ®p, the quantity (Cp — Cy) of a Debye solid varies as T7 and hence the ratio

(Cp/Cy) > 1.

Determine the temperature T, in terms of the Debye temperature ®p, at which one-half of the

oscillators in a Debye solid are expected to be in the excited states.

Determine the value of the parameter Op for liquid He* from the empirical result (7.4.28).

(a) Compare the “mean thermal wavelength” At of neutrons at a typical room temperature with
the “minimum wavelength” A, of phonons in a typical crystal.

(b) Show that the frequency wp for a sodium chloride crystal is of the same order of magnitude as
the frequency of an electromagnetic wave in the infrared.

Proceeding under conditions (7.4.16) rather than (7.4.13), show that

Cv(T) = Nk{D(xo,1) + 2D(x0,7)},

where xo 1 = (hwp,1./kT) and xo,7 = (hwp,t/kT). Compare this result with equation (7.4.17), and
estimate the nature and the magnitude of the error involved in the latter.

A mechanical system consisting of n identical masses (each of mass m) connected in a straight line
by identical springs (of stiffness K) has natural vibrational frequencies given by

oy =2 (E)Sm(fﬂ)'r:lz n-1)
, -~ L2 )ir=12. .
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Correspondingly, a linear molecule composed of n identical atoms may be regarded as having a
vibrational spectrum given by
b
2
where v, is a characteristic vibrational frequency of the molecule. Show that this model leads to a
vibrational specific heat per molecule that varies as T! at low temperatures and tends to the
limiting value (n — 1)k at high temperatures.
Assuming the dispersion relation w = Ak®, where w is the angular frequency and k the wave number
of a vibrational mode existing in a solid, show that the respective contribution toward the specific
heat of the solid at low temperatures is proportional to T3/5.
[Note that while s = 1 corresponds to the case of elastic waves in a lattice, s = 2 applies to spin
waves propagating in a ferromagnetic system.]
Assuming the excitations to be phonons (o = Ak), show that their contribution toward the specific
heat of an n-dimensional Debye system is proportional to 7".
[Note that the elements selenium and tellurium form crystals in which atomic chains are arranged
in parallel so that in a certain sense they behave as one-dimensional; accordingly, over a certain
range of temperatures, the T'-law holds. For a similar reason, graphite obeys a T?-law over a
certain range of temperatures.]
The (minimum) potential energy of a solid, when all its atoms are “at rest” at their equilibrium
positions, may be denoted by the symbol ®¢(V), where V is the volume of the solid. Similarly, the
normal frequencies of vibration, w; (i = 1,2,...,3N — 6), may be denoted by the symbols w;(V).
Show that the pressure of this solid is given by
adg U

pP= % +v v’
where U’ is the internal energy of the solid arising from the vibrations of the atoms, while y is the
Griineisen constant:

v,:vcsin(%~ );r:l,Z,...(n—l),

_ dlnow 1
V=T omv T 3
Assuming that, for V ~ V,
(V- W)*
dg(V) = ———,
o(V) 20Vo

where «p and V are constants and xgCy T < Vj, show that the coefficient of thermal expansion (at

constant pressure P >~ 0) is given by
1 /oV ykoCy
o | == = .
V\OT /np Vo

Also show that
2, 2
Yy koCy T
Cp—Cy=—7——.
p—Cy Vo
Apply the general formula (6.4.3) for the kinetic pressure of a gas, namely
1
P=_ ,
3/1pu)

to a gas of rotons and verify that the result so obtained agrees with the Boltzmannian relationship
P =nkT.
Show that the free energy A and the inertial density p of a roton gas in mass motion are given by

sinhx

Aw) =A©0)
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and
3(xcoshx —sinhx
p() = p(0) OISR,

where x = vpo/kT.
Integrating (7.6.17) by parts, show that the effective mass of an excitation, whose energy—
momentum relationship is denoted by (p), is given by

= L (301

Check the validity of this result by considering the examples of (i) an ideal-gas particle, (ii) a
phonon, and (iii) a roton.

229



Ideal Fermi Systems

8.1 Thermodynamic behavior of an ideal Fermi gas

According to Sections 6.1 and 6.2, we obtain for an ideal Fermi gas

PV
— =ha=" ~Be
T =In@ S In(1 + ze %) (1)

and
1
NEZ(W:ZW’ 2)

where 8 =1/kT and z = exp(u/kT). Unlike the Bose case, the parameter z in the Fermi
case can take on unrestricted values: 0 < z < oco. Moreover, in view of the Pauli exclusion
principle, the question of a large number of particles occupying a single energy state does
not even arise in this case; hence, there is no phenomenon like Bose-Einstein condensa-
tion here. Nevertheless, at sufficiently low temperatures, Fermi gas displays its own brand
of quantal behavior, a detailed study of which is of great physical interest.

If we replace summations over ¢ by corresponding integrations, equations (1) and (2)
in the case of a nonrelativistic gas become

T= )%fS/Z(Z) 3
and

V=%@mx 0

where g is a weight factor arising from the “internal structure” of the particles (e.g., spin),
A is the mean thermal wavelength of the particles

A =h/CrmkT)\/?, 5)

while f, (z) are Fermi-Dirac functions defined by, see Appendix E,

W ldx Z2 z3
@ = f =z (6)
fv ') —lex 41 2v 3V
Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00008-6 23 1
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Eliminating z between equations (3) and (4), we obtain the equation of state of the Fermi
gas.
The internal energy U of the Fermi gas is given by

U=— (ilna> =kT? (iln&)
3;3 z,V oT z,V

f5/2(2)
22’

3. .8V 3
= EkTFfS/z(Z) = ENkT (7)

thus, quite generally, this system satisfies the relationship
2
pP= 3 ayv). (8)

The specific heat Cy of the gas can be obtained by differentiating (7) with respect to T,
keeping N and V constant, and making use of the relationship

}(E) :_i]%/z(z)
z\aT )/, 2T fij2(2)’

9

which follows from equation (4) and the recurrence formula (E.6) in Appendix E. The final
result is

Cv _15f52(2) 9 f32(2)

= =Dz . 10
Nk 4 f3p(2)  4f1)2(2) (10
For the Helmholtz free energy of the gas, we get
AEN,u—PV=NkT{lnz—f5/2(Z)}, (1n
f32(2)
and for the entropy
U-A 5f§/2(Z) }
S=—— =Nk{-“"+—-1 12
T {2f3/2(z) ne (12

In order to determine the various properties of the Fermi gas in terms of the particle den-
sity n(= N/V) and the temperature T, we need to know the functional dependence of the
parameter z on n and T; this information is formally contained in the implicit relationship
(4). For detailed studies, one is sometimes obliged to make use of numerical evaluation
of the functions f, (z); for physical understanding, however, the various limiting forms of
these functions serve the purpose well (see Appendix E).

Now, if the density of the gas is very low and/or its temperature very high, then the
situation might correspond to

nas nh3

f3/2(2) = ? = W @ H (13)
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we then speak of the gas as being nondegenerate and, therefore, equivalent to a classical
ideal gas discussed in Section 3.5. In view of expansion (6), this implies that z « 1 and
hence f, (z) >~ z. Expressions for the various thermodynamic properties of the gas then
become

P=NkT/V, U= gNkT, Cy = gNk, (14)

3
A:NkT{ln(r?)—l}, (15)
3
S— Nk{—l (”A )} (16)
g

If the parameter z is small in comparison with unity but not very small, then we should
make a fuller use of series (6) in order to eliminate z between equations (3) and (4). The
procedure is just the same as in the corresponding Bose case, that is, we first invert the
series appearing in (4) to obtain an expansion for z in powers of (1713/g) and then substi-
tute this expansion into the series appearing in (3). The equation of state then takes the
form of the virial expansion

and

I o 33 I-1
NET = Z <gv) : (17)

where v = 1/n, while the coefficients a; are the same as quoted in (7.1.14) but alternate in
sign compared to the Bose case. For the specific heat, in particular, we obtain

-1
3 115-31 (3

=1 8v

3 A3 23 2 A3 s
==-Nk|1-0.0884( =— ] +0.0066 — | —0.0004{ — ) +---|. (18)
2 8v 8gv 8gv

Thus, at finite temperatures, the specific heat of the gas is smaller than its limiting value
%Nk. As will be seen in the sequel, the specific heat of the ideal Fermi gas decreases mono-
tonically as the temperature of the gas falls; see Figure 8.2 later in the section and compare
it with the corresponding Figure 7.4 for the ideal Bose gas.

If the density 7 and the temperature T are such that the parameter (n13/g) is of order
unity, the foregoing expansions cannot be of much use. In that case, one may have to make
recourse to numerical calculation. However, if (n13/g) > 1, the functions involved can be
expressed as asymprotic expansions in powers of (Inz)~!; we then speak of the gas as being
degenerate. As (nA3/g) — oo, our functions assume a closed form, with the result that the
expressions for the various thermodynamic quantities pertaining to the system become
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highly simplified; we then speak of the gas as being completely degenerate. For simplicity,
we first discuss the main features of the system in a state of complete degeneracy.

In the limit T — 0, which implies (n13/g) — oo, the mean occupation numbers of the
single-particle state ¢(p) become

1 1 for e<pg

)= ———— =
{126 ee—mw/kT 1 0 for &> puo,

19)
where 1 is the chemical potential of the system at T'= 0. The function (n,) is thus a step
function that stays constant at the (highest) value 1 right from ¢ =0 to ¢ = ¢ and then
suddenly drops to the (lowest) value 0; see the dotted line in Figure 8.1. Thus, at T =0,
all single-particle states up to ¢ = ug are “completely” filled, with one particle per state
(in accordance with the Pauli principle), while all single-particle states with ¢ > o are
empty. The limiting energy 1o is generally referred to as the Fermi energy of the system
and is denoted by the symbol ¢F; the corresponding value of the single-particle momen-
tum is referred to as the Fermi momentum and is denoted by the symbol pr. The defining
equation for these parameters is

ep
/a(e)de =N, (20)
0

where a(e) denotes the density of states of the system and is given by the general expression

_ 8V 20
ae) = 13 A p e (21)
We readily obtain
AngV 4
=33 PP (22)
which gives
3N \'3
PF = <4ngV) h; (23)

0 f 4t 2 ¢ ir2eta

X—>

FIGURE 8.1 Fermi distribution at low temperatures, with x =¢/kT and & = u/kT. The rectangle denotes the limiting
distribution as T — 0; in that case, the Fermi function is unity for ¢ < o and zero for & > py.
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accordingly, in the nonrelativistic case,

F=\angv 2m” \ g 2m’

The ground-state, or zero-point, energy of the system is then given by

Pr,

_ Angv P 2
Bo=—3 f<2m)pdp
0
_ 2ngV o
= 5mmPP

(25)
which gives

Ey 3p% 3
L o L 2
N~ lom 57 (26)
The ground-state pressure of the system is in turn given by
2 2
Py = g(Eo/V) = g Ner- 27)

Substituting for ¢f, the foregoing expression takes the form

6n2\*° 2
Py= (g) %nf’/3 3. (28)

The zero-point motion seen here is clearly a quantum effect arising because of the Pauli
principle, according to which, even at T = 0K, the particles constituting the system cannot
settle down into a single energy state (as we had in the Bose case) and are therefore spread
over a requisite number of lowest available energy states. As a result, the Fermi system,
even at absolute zero, is quite live!

For a discussion of properties such as the specific heat and the entropy of the system,
we must extend our study to finite temperatures. If we decide to restrict ourselves to low
temperatures, then deviations from the ground-state results will not be too large; accord-
ingly, an analysis based on the asymptotic expansions of the functions f, (z) would be quite
appropriate. However, before we do that it seems useful to carry out a physical assessment
of the situation with the help of the expression

1

e(S—/i)/kT +1 ’ 29)

(ne) =
The situation corresponding to T = 0 is summarized in equation (19) and is shown as a step
function in Figure 8.1. Deviations from this, when T is finite (but still much smaller than
the characteristic temperature wo/k), will be significant only for those values of ¢ for which
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the magnitude of the quantity (¢ — u)/kT is of order unity (for otherwise the exponential
term in (29) will not be much different from its ground-state value, namely, et™): see the
solid curve in Figure 8.1.

We, therefore, conclude that the thermal excitation of the particles occurs only in a nar-
row energy range thatis located around the energy value ¢ = o and has awidth O(kT). The
fraction of the particles that are thermally excited is, therefore, O(kT /er) — the bulk of the
system remaining uninfluenced by the rise in temperature.! This is the most characteris-
tic feature of a degenerate Fermi system and is essentially responsible for both qualitative
and quantitative differences between the physical behavior of this system and that of a
corresponding classical system.

To conclude the argument, we observe that since the thermal energy per “excited” par-
ticle is O(kT), the thermal energy of the whole system will be O(Nk? T? /F); accordingly, the
specific heat of the system will be O(Nk - kT /¢r). Thus, the low-temperature specific heat
of a Fermi system differs from the classical value %Nk by a factor that not only reduces
it considerably in magnitude but also makes it temperature-dependent (varying as T1). It
will be seen repeatedly that the first-power dependence of Cy on T is a typical feature of
Fermi systems at low temperatures.

For an analytical study of the Fermi gas at finite, but low, temperatures, we observe
that the value of z, which was infinitely large at absolute zero, is now finite, though still
large in comparison with unity. The functions f,(z) can, therefore, be expressed as asymp-
totic expansions in powers of (Inz)~!; see Sommerfeld’s lemma (E.17) in Appendix E. For
the values of v we are presently interested in, namely %, %, and %, we have to the first
approximation

8 5/2 57T2 _2
f52(2) = m(lnz) 1+ e (Inz)~“+--- |, 30)
4 3/2 n? _2
f12@) = g7 I02°% | 1+ - (n2) ™ - 31)
and
2 1/2 2 _2
fipld = Y (Inz) l—ﬂ(lnz) o], 32)

Substituting (31) into (4), we obtain

3/2 2
% = MTg (%’?) (kTnz)%/? [1 + %(lnz)’z +} . (33)

'We, therefore, speak of the totality of the energy levels filled at T = 0 as “the Fermi sea” and the small fraction of
the particles that are excited near the top, when T > 0, as a “mist above the sea.” Physically speaking, the origin of this
behavior again lies in the Pauli exclusion principle, according to which a fermion of energy ¢ cannot absorb a quantum of
thermal excitation ¢ if the energy level ¢ + ¢7 is already filled. Since e = O(kT), only those fermions that occupy energy
levels near the top level er, up to a depth O(kT), can be thermally excited to go over to the unfilled energy levels.
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In the zeroth approximation, this gives

3N \?/3 B2
) (34)

kTInz=pu >~ —_
e=n <471gV 2m
which is identical to the ground-state result ;o = ¢F; see equation (24). In the next approxi-
mation, we obtain

2 2
kTInz=p~ ep [1—”(“) } 35)
12 \ e
Substituting (30) and (31) into (7), we obtain
U_ §(lenz) 1+ ”—Z(lnz)—2 +- |5 (36)
N ™5 2 ’
with the help of (35), this becomes
Ul (MY @
N 5F 12 \er :
The pressure of the gas is then given by
20 2 572 (kT \?

As expected, the main terms of equations (37) and (38) are identical to the ground-state
results (26) and (27). From the temperature-dependent part of (37), we obtain for the low-
temperature specific heat of the gas

Cy n%kT
Nk = 75 (39)
Thus, for T « Tr, where Tr (= ¢r/k) is the Fermi temperature of the system, the specific
heat varies as the first power of temperature; moreover, in magnitude, it is consider-
ably smaller than the classical value %Nk. The overall variation of Cy with T is shown in
Figure 8.2.

The Helmholtz free energy of the system follows directly from equations (35) and (38):

3,01 57 (kT 2+ (40)
= —¢ _— ] — e
5F 12 \ep
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FIGURE 8.2 The specific heat of an ideal Fermi gas; the dotted line depicts the /inear behavior at low temperatures.

which gives

i—”—zk—TJr (41)
Nk~ 2 &g

Thus, as T — 0,S — 0 in accordance with the third law of thermodynamics.

8.2 Magnetic behavior of an ideal Fermi gas

We now turn our attention to studying the equilibrium state of a gas of noninteracting
fermions in the presence of an external magnetic field B. The main problem here is to
determine the net magnetic moment M acquired by the gas (as a function of Band T) and
then calculate the susceptibility x (T). The answer naturally depends on the intrinsic mag-
netic moment p* of the particles and the corresponding multiplicity factor (2] + 1); see,
for instance, the treatment given in Section 3.9. According to the Boltzmannian treatment,
one obtains a (positive) susceptibility x (7) which, at high temperatures, obeys the Curie
law: x « T~1; at low temperatures, one obtains a state of magnetic saturation. However,
if we treat the problem on the basis of Fermi statistics we obtain significantly different
results, especially at low temperatures.

In particular, since the Fermi gas is pretty live even at absolute zero, no magnetic sat-
uration ever results; we rather obtain a limiting susceptibility xo, which is independent of
temperature but is dependent on the density of the gas. Studies along these lines were first
made by Pauli, in 1927, when he suggested that the conduction electrons in alkali metals
be regarded as a “highly degenerate Fermi gas”; these studies enabled him to explain the
physics behind the feeble and temperature-independent character of the paramagnetism of
metals. Accordingly, this phenomenon is referred to as Pauli paramagnetism — in contrast
to the classical Langevin paramagnetism.

In quantum statistics, we encounter yet another effect which is totally absent in clas-
sical statistics. This is diamagnetic in character and arises from the quantization of the
orbits of charged particles in the presence of an external magnetic field or, one may say,
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from the quantization of the (kinetic) energy of charged particles associated with their
motion perpendicular to the direction of the field. The existence of this effect was first
established by Landau (1930); so, we refer to it as Landau diamagnetism. This leads to an
additional susceptibility x (T), which, though negative in sign, is somewhat similar to the
paramagnetic susceptibility, in that it obeys Curie’s law at high temperatures and tends
to a temperature-independent but density-dependent limiting value as T — 0. In gen-
eral, the magnetic behavior of a Fermi gas is determined jointly by the intrinsic magnetic
moment of the particles and the quantization of their orbits. If the spin—orbit interaction
is negligible, the resultant behavior is given by a simple addition of the two effects.

8.2.A Pauli paramagnetism
The energy of a particle, in the presence of an external magnetic field B, is given by

2
14 *

= — . B, 1
E=o -~ H €))]
where p* is the intrinsic magnetic moment of the particle and m its mass. For simplicity,
we assume that the particle spin is %; the vector p* will then be either parallel to the vector

B or antiparallel. We thus have two groups of particles in the gas:

(i) those having u* parallel to B, with ¢ = p?/2m — 1*B, and
(i) those having p* antiparallel to B, with & = p?/2m + u*B.

At absolute zero, all energy levels up to the Fermi level ¢ will be filled, while all levels
beyond ¢y will be empty. Accordingly, the kinetic energy of the particles in the first group
will range between 0 and (¢r + 1*B), while the kinetic energy of the particles in the second
group will range between 0 and (¢r — u*B). The respective numbers of occupied energy
levels (and hence of particles) in the two groups will, therefore, be

AnV

* 3/2
Nt = W{Zm(sl:—ku B/ 2
and
__A4nV * T13/2
N~ = W{2m(elz—u B)13/2. 3)

The net magnetic moment acquired by the gas is then given by

47 p*V(2m)3/2

g Ert B — (ep = B, 4)

M=u*(NtT—N") =

We thus obtain for the low-field susceptibility (per unit volume) of the gas

X0 = Iéin(l) (5)

2(9m)3/261/2
MY _Amptem ey
VB h3 '
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Making use of formula (8.1.24), with g = 2, the foregoing result may be written as

3
X0 = Enu*z/ef:. (6)

For comparison, the corresponding high-temperature result is given by equation (3.9.26),
withg=2and/ =3

Xoo = n*? KT @)

We note that xo/xcc = O(kT/¢F).

To obtain an expression for x that holds for all T', we proceed as follows. Denoting the
number of particles with momentum p and magnetic moment parallel (or antiparallel) to
the field by the symbol 1} (or n;,), the total energy of the gas can be written as

P 5y p* -
P
=Y+ p)y = w*B(NT —N7), ®)
P

where N and N~ denote the total number of particles in the two groups, respectively. The
partition function of the system is then given by

QN = Y exp(—BEw), ©)

() {ngy)
where the primed summation is subject to the conditions

np,np =0orl, (10)

and

Zn;+2n;=N++N—=N. (11)

To evaluate the sum in (9), we first fix an arbitrary value of the number Nt (which auto-
matically fixes the value of N~ as well) and sum over all n;; and n,, that conform to the
fixed values of the numbers N+ and N~ as well as to condition (10). Next, we sum over all
possible values of N, namely from N* =0 to N* = N. We thus have

N ” 2 1
Q(N) = Z eﬁu*B(2N+7N) Z exp (_ﬁip:fmn;) Z exp ( Xp: Lm ) ; (12)

N+=0 (n5) {np}



8.2 Magnetic behavior of an ideal Fermi gas 241

here, the summation )" is subject to the restriction }_,,n,; = N*, while =" is subject to
the restriction 3, n, = N - N*.

Now, let Qo(N) denote the partition function of an ideal Fermi gas of A/ “spinless”
particles of mass m; then, obviously,

’ 2
QoN) =) exp (—ﬁzz”mnp) = exp{—BAo(\)}, (13)
P

{np}

where Ap(N) is the free energy of this fictitious system. Equation (12) can then be
written as

N

QUN) = e PIBN 57 (2B BNT Qo (N ) Qo(N — N'H)], (14)
N+=0
which gives
1 1 * 1 al * + + +
§ Q) =B+ In D7 [exp(2pnBNT — BA(N™) — Ao (N = N)}l. (15)
Nt=0

As before, the logarithm of the sum ) _,+ may be replaced by the logarithm of the largest
term in the sum; the error committed in doing so would be negligible in comparison with
the term retained. Now, the value N+, of N+, which corresponds to the largest term in
the sum, can be ascertained by setting the differential coefficient of the general term, with
respect to Nt, equal to zero; this gives

dAg(NT dAg(N —NT
ZM*B—[ of )] _[ of )] _o,
INt | N+_NF ONT N+—NF
that is
1o(N+) = uo(N — NT) = 214*B, (16)

where o (/N) is the chemical potential of the fictitious system of N “spinless” fermions.
The foregoing equation contains the general solution being sought. To obtain an
explicit expression for x, we introduce a dimensionless parameter r, defined by

M=p* (Nt —N-)=pu*@N+t—N)=p*Nr (0<r<l); 17

equation (16) then becomes

1 1-
o (%N> — 1o (TrN> =2u"B. (18)

If the magnetic field B vanishes so does r, which corresponds to a completely random ori-
entation of the elementary moments. For small B, r would also be small; so, we may carry
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out a Taylor expansion of the left side of (18) about r = 0. Retaining only the first term of
the expansion, we obtain

2u*B
T 49

0x |x=1/2

The low-field susceptibility (per unit volume) of the system is then given by

M  u*Nr 2np*2
TTVBT VB T ey (20)
0x x=1/2

which is the desired result valid for all T.
For T — 0, the chemical potential of the fictitious system can be obtained from
equation (8.1.34), with g = 1:

3xN \*/3 n?

N=("%) —,

#o () (47rV> 2m
which gives

dpo(xN)
0x

24/3 7 3N \2/3 p2
)

2m’

=12 3

On the other hand, the Fermi energy of the actual system is given by the same equa-
tion (8.1.34), with g = 2:

3N \23 p2
(=) L. 22
eF (smv) 2m @2)

Making use of equations (21) and (22), we obtain from (20)

2nu*® 3
0= T— = S er, 23)
36F 2

in complete agreement with our earlier result (6). For finite but low temperatures, one has
to use equation (8.1.35) instead of (8.1.34). The final result turns out to be

72 (kT\?
X—X0|:1—12<8F>i|- (24)

On the other hand, for T — oo, the chemical potential of the fictitious system follows
directly from equation (8.1.4), with g = 1 and f3/2(z) > z, with the result

wo(xN) = kTIn(xNA3/V),
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which gives

o eN) = 2kT. (25)
X =12
Equation (20) then gives
Yoo = N*? /KT, (26)

in complete agreement with our earlier result (7). For large but finite temperatures, one
has to take f3/2(2) ~ z — (z2/2%/?). The final result then turns out to be

na3
X = Xoo 1_25T ) (27)

the correction term here is proportional to (Tr/T)%/? and tends to zero as T — oc.

8.2.B Landau diamagnetism

We now study the magnetism arising from the quantization of the orbital motion of
(charged) particles in the presence of an external magnetic field. In a uniform field of
intensity B, directed along the z-axis, a charged particle would follow a helical path whose
axis is parallel to the z-axis and whose projection on the (x,y)-plane is a circle. Motion
along the z-direction has a constant linear velocity u,, while that in the (x,y)-plane has a
constant angular velocity eB/moc; the latter arises from the Lorentz force, e(u x B)/c, expe-
rienced by the particle. Quantum-mechanically, the energy associated with the circular
motion is quantized in units of ehiB/mc. The energy associated with the linear motion
along the z-axis is also quantized but, in view of the smallness of the energy intervals, this
may be taken as a continuous variable. We thus have for the total energy of the particle?

2

e=%<j+%)+2’% (j=0,1,2,...). (28)
Now, these quantized energy levels are degenerate because they result from a “coalescing
together” of an almost continuous set of zero-field levels. A little reflection shows that all
those levels for which the value of the quantity (p2 + pJZ,) /2m lay between efiBj/mc and
eliB(j+ 1)/mc now “coalesce together” into a single level characterized by the quantum
number j. The number of these levels is given by

1 LyLy ehB . .
ﬁ/dxdydpxdpy ==z 7 [Zm%{(]ﬁ- D —]}]
B

e.
:LxLy%,

(29)

2See, for instance, Goldman et al. (1960); Problem 6.3.
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FIGURE 8.3 The single-particle energy levels, for a two-dimensional motion, in the absence of an external magnetic
field (B=0) and in the presence of an external magnetic field (B > 0).

which is independent of j. The multiplicity factor (29) is a quantum-mechanical measure
of the freedom available to the particle for the center of its orbit to be “located” anywhere
in the total area LL, of the physical space. Figure 8.3 depicts the manner in which the
zero-field energy levels of the particle group themselves into a spectrum of oscillator-like
levels on the application of the external magnetic field.

The grand partition function of the gas is given by the standard formula

In@=> In(1+ze ), (30)
&

where the summation has to be carried over all single-particle states in the system. Sub-
stituting (28) for ¢, making use of the multiplicity factor (29) and replacing the summation
over p, by an integration, we get

o0
L ad B ;
In@ — / zZPz |:Z <LxLy%> In [1 +ZeﬁehB[;+(1/2)]/mcﬁp§/2m]:| ‘ 31)
s j=0

At high temperatures, z « 1; so, the system is effectively Boltzmannian. The grand parti-
tion function then reduces to

o0 00
In@— zVeB / e—ﬂp%/ZmdeZe—ﬂehBU+(l/2)]/mc

2
h°c I i
zVeB (2xm\? (. . . (BehB\] !
=S (7/3 > {Zsmh(zmc)} . (32)

The equilibrium number of particles N and the magnetic moment M of the gas are then
given by
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— 0
N- (z— In a) , (33)
0z BV,T

and

oH 1/ 9
M = <_873> = 5 (ﬁln(Q)z,v,T’ (34)

where H is the Hamiltonian of the system; compare with equation (3.9.4). We thus obtain

— V. x
N= 3 sinhx’ (35)
and
zV 1 xcoshx
= S e~ s | .
where A {= h/(2nmkT)'/?} is the mean thermal wavelength of the particles, while
X =PBuesrB  (1efr =eh/dmmc). (37

Clearly, if e and m are the electronic charge and the electronic mass, then p.g is the familiar
Bohr magneton . Combining (35) and (36), we get

M = —NpegL(x), (38)

where L(x) is the Langevin function:
1
L(x) = cothx — m (39)

This result is very similar to the one obtained in the Langevin theory of paramagnetism;
see Section 3.9. The presence of the negative sign, however, means that the effect obtained
in the present case is diamagnetic in nature. We also note that this effect is a direct con-
sequence of quantization; it vanishes if we let i — 0. This is in complete accord with the
Bohr-van Leeuwen theorem, according to which the phenomenon of diamagnetism does
not arise in classical physics; see Problem 3.43.

If the field intensity B and the temperature T are such that u.B <« kT, then the
foregoing results become

zV

N~ 3 (40)

and

M ~ —Nu2yB/3kT. (41)
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Equation (40) is in agreement with the zero-field formula z >~ ni3, while (41) leads to the
diamagnetic counterpart of the Curie law:

M _
Xoo = 5 = —Tgg/3KT; (42)

see equation (3.9.12). It should be noted here that the diamagnetic character of this
phenomenon is independent of the sign of the electric charge on the particle. For an elec-
tron gas, in particular, the net susceptibility at high temperatures is given by the sum of
expression (7), with u* replaced by up, and expression (42):

B Gt L) a

where uj, = eh/4mm’c, m' being the effective mass of the electron in the given system.

We now look at this problem at all temperatures, though we will continue to assume
the magnetic field to be weak, so that ueiB < kT. In view of the latter, the summation in
(31) may be handled with the help of the Euler summation formula,

Zf <]+ ) / f(x)dx+—f ), (44)

with the result

In@ ~ VeB |:/dxf dpzln 1+ze 5(2#eff3x+l72/2m)}

0 —0o0

o0
1 dp;
_- B — . (45)
1o Phett ,/zleﬁ(Pg/Zm)+1i|

The first part here is independent of B, which can be seen by changing the variable from x
to X' = Bx. The second part, with the substitution ,Bpg /2m =y, becomes

V232 T 12g
S a2 [ L (46)
The low-field susceptibility (per unit volume) of the gas is then given by
_M_ 1 <i In a)
"=vBT pvB\9B ).ur
27 m)3/2
L P (47)

3n3p1/2
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which is the desired result. Note that, as before, the effect is diamagnetic in character —
irrespective of the sign of the charge on the particle.

Forz« 1, fi/2(z) @z~ 712.3; we then recover our previous result (42). For z >> 1 (which
corresponds to T <« Tr), fi2(2) ~ (2/7/?)(Inz)!/?; we then get

1/2
21 (2m)3/zuifst/

1
X0~ — T = —5 Mg/ er (48)

here, use has also been made of the fact that (87!Inz) ~ . Note that, in magnitude, this
result is precisely one-third of the corresponding paramagnetic result (6), provided that we
take the u* of that expression to be equal to the g of this one.

8.3 The electron gas in metals

One physical system where the application of Fermi-Dirac statistics helped remove a
number of inconsistencies and discrepancies is that of conduction electrons in metals.
Historically, the electron theory of metals was developed by Drude (1900) and Lorentz
(1904-1905), who applied the statistical mechanics of Maxwell and Boltzmann to the
electron gas and derived theoretical results for the various properties of metals. The
Drude-Lorentz model did provide a reasonable theoretical basis for a partial understand-
ing of the physical behavior of metals; however, it encountered a number of serious
problems of a qualitative as well as quantitative nature. For instance, the observed spe-
cific heat of metals appeared to be almost completely accountable by the lattice vibrations
alone and practically no contribution seemed to be coming from the electron gas. The
theory, however, demanded that, on the basis of the equipartition theorem, each electron
in the gas should possess a mean thermal energy %kT and hence make a contribution
of %k to the specific heat of the metal. Similarly, one expected the electron gas to exhibit
the phenomenon of paramagnetism arising from the intrinsic magnetic moment up of the
electrons. According to the classical theory, the paramagnetic susceptibility would be given
by (8.2.7), with u* replaced by up. Instead, one found that the susceptibility of a normal
nonferromagnetic metal was not only independent of temperature but had a magnitude
which, at room temperatures, was hardly 1 percent of the expected value.

The Drude-Lorentz theory was also applied to study transport properties of met-
als, such as the thermal conductivity K and the electrical conductivity o. While the
results for the individual conductivities were not very encouraging, their ratio did con-
form to the empirical law of Wiedemann and Franz (1853), as formulated by Lorenz
(1872), namely that the quantity K/o T was a (universal) constant. The theoretical value
of this quantity, which is generally known as the Lorenz number, turned out to be
3(k/e)? ~ 2.48 x 10~ B e.s.u./deg?; the corresponding experimental values for most alkali
and alkaline—earth metals were, however, found to be scattered around a mean value of
2.72 x 10 B e.s.u./deg?. A still more uncomfortable feature of the classical theory was the
uncertainty in assigning an appropriate value to the mean free path of the electrons in
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a given metal and in ascribing to it an appropriate temperature dependence. For these
reasons, the problem of the transport properties of metals also remained in a rather
unsatisfactory state until the correct lead was provided by Sommerfeld (1928).

The most significant change introduced by Sommerfeld was the replacement of
Maxwell-Boltzmann statistics by Fermi-Dirac statistics for describing the electron gas in
a metal. With this single stroke of genius, he was able to set most of the things right. To
see how it worked, let us first estimate the Fermi energy ¢r of the electron gas in a typical
metal, say sodium. Referring to equation (8.1.24), with g = 2,

3N \?3 p2 W
er=\|——= —,
F=\8v) 2m

where m' is the effective mass of an electron in the gas.® The electron density N/V, in the
case of a cubic lattice, may be written as

N  neng
- 4 2
|4 as @)

where n, is the number of conduction electrons per atom, n, the number of atoms per
unit cell and a the lattice constant (or the cell length).* For sodium, n, =1, n, =2,and a =
429 A. Substituting these numbers into (2) and writing m’ = 0.98m,, we obtain from (1)

(6F)Na =5.03 x 107 1% erg =3.14eV. 3)
Accordingly, for the Fermi temperature of the gas is

(Tr)Na = (1.16 x 10%) x ep(in eV)
=3.64 x 10%K, 4)

which is considerably larger than the room temperature T (~ 3 x 102K). The ratio T/Tr
being of the order of 1 percent, the conduction electrons in sodium constitute a highly
degenerate Fermi system. This statement, in fact, applies to all metals because their Fermi
temperatures are generally of order 10* — 10° K.

Now, the very fact that the electron gas in metals is a highly degenerate Fermi system
is sufficient to explain away some of the basic difficulties of the Drude-Lorentz theory. For
instance, the specific heat of this gas would no longer be given by the classical formula,

3To justify the assumption that the conduction electrons in a metal may be treated as “free” electrons, it is necessary
to ascribe to them an effective mass m’ # m. This is an indirect way of accounting for the fact that the electrons in a metal
are not really free; the ratio m’/m accordingly depends on the structural details of the metal and, therefore, varies from
metal to metal. In sodium, m’/m ~ 0.98.

4Another way of expressing the electron density is to write N/V = fp/M, where f is the valency of the metal, p its
mass density, and M the mass of an atom (p/M, thus, being the number density of the atoms).
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Cy= %Nk, but rather by equation (8.1.39), namely

7T2
Cy = 7Nk(kT/aF); )

obviously, the new result is much smaller in value because, at ordinary temperatures,
the ratio (kT /er) = (T/Tr) = O(10~2). It is then hardly surprising that, at ordinary tem-
peratures, the specific heat of metals is almost completely determined by the vibrational
modes of the lattice and very little contribution comes from the conduction electrons. Of
course, as temperature decreases, the specific heat due to lattice vibrations also decreases
and finally becomes considerably smaller than the classical value; see Section 7.4, espe-
cially Figure 7.14. A stage comes when the two contributions, both nonclassical, become
comparable in value. Ultimately, at very low temperatures, the specific heat due to lattice
vibrations, being proportional to T3, becomes even smaller than the electronic specific
heat, which is proportional to T'. In general, we may write, for the low-temperature
specific heat of a metal,

Cy=yT+8T5, 6)

where the coefficient y is given by equation (5) or, more generally, can be shown to be
proportional to the density of states at the Fermi energy (see Problem 8.13), while the coef-
ficient § is given by equation (7.4.23). An experimental determination of the specific heat
of metals at low temperatures is, therefore, expected not only to verify the theoretical result
based on quantum statistics but also to evaluate some of the parameters of the problem.
Such determinations have been made, among others, by Corak et al. (1955) who worked
with copper, silver and, gold in the temperature range 1 to 5 K. Their results for copper are
shown in Figure 8.4. The very fact that the (Cy/T) versus T? plot is well approximated by a
straight line vindicates the theoretical formula (6). Furthermore, the slope of this line gives
the value of the coefficient §, from which one can extract the Debye temperature ®p of
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FIGURE 8.4 The observed specific heat of copper at low temperatures (after Corak et al., 1955).
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the metal. One thus gets for copper: ®p = (343.8 + 0.5) K, which compares favorably with
Leighton’s theoretical estimate of 345 K (based on the elastic constants of the metal). The
intercept on the (Cy/T)-axis yields the value of the coefficient y, namely (0.688 & 0.002)
millijoule mole™! deg™2, which agrees favorably with Jones’ estimate of 0.69 millijoule
mole ! deg™? (based on a density-of-states calculation).

The general pattern of the magnetic behavior of the electron gas in nonferromagnetic
metals can be understood likewise. In view of the highly degenerate nature of the gas, the
magnetic susceptibility yx is given by the Pauli result (8.2.6) plus the Landau result (8.2.48),
and not by the classical result (8.2.7). In complete agreement with the observation, the
new result is (i) independent of temperature and (ii) considerably smaller in magnitude
than the classical one.

As regards transport properties K and o, the new theory again led to the Wiedemann-
Franz law; the Lorenz number, however, became (7?/3)(k/e)?, instead of the classical
3(k/e)2. The resulting theoretical value, namely 2.71 x 10~ 3 e.s.u./deg?, turned out to
be much closer to the experimental mean value quoted earlier. Of course, the situa-
tion regarding individual conductivities and the mean free path of the electrons did not
improve until Bloch (1928) developed a theory that took into account interactions among
the electron gas and the ion system in the metal. The theory of metals has continued
to become more and more sophisticated; the important point to note here is that this
development has all along been governed by the new statistics!

Before leaving this topic, we would like to give a brief account of the phenomena of
thermionic and photoelectric emission of electrons from metals. In view of the fact that
electronic emission does not take place spontaneously, we infer that the electrons inside
a metal find themselves caught in some sort of a “potential well” created by the ions. The
detailed features of the potential energy of an electron in this well must depend on the
structure of the given metal. For a study of electronic emission, however, we need not
worry about these details and may assume instead that the potential energy of an elec-
tron stays constant (at a negative value, —W, say) throughout the interior of the metal and
changes discontinuously to zero at the surface. Thus, while inside the metal, the electrons
move about freely and independently of one another; however, as soon as any one of them
approaches the surface of the metal and tries to escape, it encounters a potential barrier
of height W. Accordingly, only those electrons whose kinetic energy (associated with the
motion perpendicular to the surface) is greater than W can expect to escape through this
barrier. At ordinary temperatures, especially in the absence of any external stimulus, such
electrons are too few in any given metal, with the result that there is practically no spon-
taneous emission from metals. At high temperatures, and more so if there is an external
stimulus present, the population of such electrons in a given metal could become large
enough to yield a sizeable emission. We then speak of phenomena such as thermionic effect
and photoelectric effect.

Strictly speaking, these phenomena are not equilibrium phenomena because electrons
are flowing out steadily through the surface of the metal. However, if the number of elec-
trons lost in a given interval of time is small in comparison with their total population in
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the metal, then the magnitude of the emission current may be calculated on the assump-
tion that the gas inside continues to be in a state of quasistatic thermal equilibrium. The
mathematical procedure for this calculation is very much the same as the one followed in
Section 6.4 (for determining the rate of effusion R of the particles of a gas through an open-
ing in the walls of the container). There is one difference, however; whereas in the case of
effusion any particle that reached the opening with u, > 0 could escape unquestioned,
here we must have u, > (2W/m)'/?, so that the particle in question could successfully
cross over the potential barrier at the surface. Moreover, even if this condition is satisfied,
there is no guarantee that the particle will really escape because the possibility of an inward
reflection cannot be ruled out. In the following discussion, we shall disregard this possi-
bility; however, if one is looking for a numerical comparison of theory with experiment,
the results derived here must be multiplied by a factor (1 — r), where r is the reflection
coefficient of the surface.

8.3.A Thermionic emission (the Richardson effect)
The number of electrons emitted per unit area of the metal surface per unit time is given
by

o0

A

hs ele—w/kT 4 1
pz=2mW)1/2 Px=—00py==0

compare with the corresponding expression in Section 6.4. Integration over the variables
px and p, may be carried out by changing over to polar coordinates (¢, ¢), with the result

_ 2 % Pz o0 Zﬂp/dp’
f= n3 7dpz 5 a
h m exp{l(p”®/2m) + (pz/2m) — ul/kT} + 1
pz=2mWw) 1/2 p'=0
An kT
pz=2mw)1/2
dmkT [
= T[Zg / dezIn[1 4+ e(l‘-—az)/kT]‘ o
e,=W

It so happens that the exponential term inside the logarithm, at all temperatures of inter-
est, is much smaller than unity; see Note 5. We may, therefore, write In(1 + x) >~ x, with the
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result

00

ArmkT _

PR e
ez=W

_ 47ka2T2 e(M*W)/kT'

3 )

The thermionic current density is then given by

2
J = er = TR 213‘3’“ T2eW-WI/KT, (10)
It is only now that the difference between the classical statistics and the Fermi statistics

really shows up! In the case of classical statistics, the fugacity of the gas is given by (see
equation (8.1.4), with f3/2(2) ~ 2)

3 3
— oi/kT _ ﬂ — nh . 11
=e g  2Q2mmkT)3/%’ (1)
accordingly,
ko\/2
Jelass = ne <%> TV2e~/KT (o =W). 12)

In the case of Fermi statistics, the chemical potential of the (highly degenerate) electron
gas is practically independent of temperature and is very nearly equal to the Fermi energy
of the gas (u =~ uo = ¢F); accordingly,

2
Jep. = %Tze—"’/” (=W —ep). (13)

The quantity ¢ is generally referred to as the work function of the metal. According to (12),
¢ is exactly equal to the height of the surface barrier; according to (13), it is equal to the
height of the barrier over and above the Fermi level (see Figure 8.5).

QOutside Outside
7'y
| Femnilevel |y

l Fermi sea I

FIGURE 8.5 The work function ¢ of a metal represents the height of the surface barrier over and above the
Fermi level.
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The theoretical results embodied in equations (12) and (13) differ in certain important
respects. The most striking difference seems to be in regard to the temperature depen-
dence of the thermionic current density /. However, the major dependence on T comes
through the factor exp(—¢/kT) — so much so that whether we plotIn(J/T'/?) against (1/T)
or In(J/T?) against (1/T) we obtain, in each case, a fairly good straight-line fit. Thus, from
the point of view of the temperature dependence of ], a choice between formulae (12) and
(13) is rather hard to make. However, the slope of the experimental line should give us
directly the value of W if formula (12) applies or of (W — ¢f) if formula (13) applies!

Now, the value of W can be determined independently, for instance, by studying the
refractive index of a given metal for de Broglie waves associated with an electron beam
impinging on the metal. For a beam of electrons whose initial kinetic energy is E, we have

h h
Aout = 7\/(2mE) and A = \/7[2’/”(}5_’_ Wy’ (14)
so that the refractive index of the metal is given by
ot (E+WN\'?

By studying electron diffraction for different values of E, one can derive the relevant value
of W. In this manner, Davisson and Germer (1927) derived the value of W for a number of
metals. For instance, they obtained for tungsten: W >~ 13.5eV. The experimental results on
thermionic emission from tungsten are shown in Figure 8.6. The value of ¢ resulting from
the slope of the experimental line was about 4.5 eV. The large difference between these

2.0 F

-
o
T

o
[$)]
T

In(J/T?), in arbitrary units —»

0 1 1 1 1 1 1 1 1 1
43 44454647 4849505152
(10%TinK™") —»

FIGURE 8.6 Thermionic current from tungsten as a function of the temperature of the metal. The continuous line
corresponds to r = % while the broken line corresponds to r = 0,7 being the reflection coefficient of the surface.
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two values clearly shows that the classical formula (12) does not apply. That the quantum-
statistical formula (13) applies is shown by the fact that the Fermi energy of tungsten is
very nearly 9eV; so, the value 4.5eV for the work function of tungsten is correctly given
by the difference between the depth W of the potential well and the Fermi energy ¢r. To
quote another example, the experimental value of the work function for nickel was found
to be about 5.0V, while the theoretical estimate for its Fermi energy turns out to be about
11.8eV. Accordingly, the depth of the potential well in the case of nickel should be about
16.8 eV. The experimental value of W, obtained by studying electron diffraction in nickel,
isindeed (17 +1)eV.?

The second point of difference between formulae (12) and (13) relates to the actual
value of the current obtained. In this respect, the classical formula turns out to be a com-
plete failure while the quantum-statistical formula fares reasonably well. The constant
factor in the latter formula is

471;’:736]62 =120.4 amp cm—2 deg_z; (16)
of course, this has yet to be multiplied by the transmission coefficient (1 —r). The corre-
sponding experimental number, for most metals with clean surfaces, turns out to be in the
range 60 to 120 amp cm 2 deg’z.

Finally, we examine the influence of a moderately strong electric field on the thermionic
emission from a metal — the so-called Schottky effect. Denoting the strength of the electric
field by F and assuming the field to be uniform and directed perpendicular to the metal
surface, the difference A between the potential energy of an electron at a distance x above
the surface and of one inside the metal is given by

2
AX)=W—eFx— = (x> 0), a7
4x

where the first term arises from the potential well of the metal, the second from the (attrac-
tive) field present, and the third from the attraction between the departing electron and the
“image” induced in the metal; see Figure 8.7. The largest value of the function A(x) occurs
at x = (e/4F)'/2, so that

Amax = W — &3/2F1/2, (18)

thus, the field has effectively reduced the height of the potential barrier by an amount
e3/2F1/2_ A corresponding reduction should take place in the work function as well.

5In light of the numbers quoted here, one can readily see that the quantity e**~#2)/kT in equation (8), being at most
equal to e(o=W)/KT — o=¢/kT g at all temperatures of interest, much smaller than unity. This means that we are oper-
ating here in the (Maxwellian) tail of the Fermi-Dirac distribution and hence the approximation made in going from
equation (8) to equation (9) was justified.
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°+e
FIGURE 8.7 A schematic diagram to illustrate the Schottky effect.

Accordingly, the thermionic current density in the presence of the field F would be
higher than the one in the absence of the field:

Jr =Joexp(e¥/2F'2/kT). (19)

A plot of In(Jr/Jo) against (F'/?/T) should, therefore, be a straight line, with slope e3/2/k.
Working along these lines, De Bruyne (1928) obtained for the electronic charge a value of
4.84 x 10710 e.s.u., which is remarkably close to the actual value of e.

The theory of the Schottky effect, as outlined here, holds for field strengths up to about
108 volts/cm. For fields stronger than that, one obtains the so-called cold emission, which
means that the electric field is now strong enough to make the potential barrier practically
ineffective; for details, see Fowler and Nordheim (1928).

8.3.B Photoelectric emission (the Hallwachs effect)

The physical situation in the case of photoelectric emission is different from that in the
case of thermionic emission, in that there exists now an external agency, the photon in the
incoming beam of light, that helps an electron inside the metal in overcoming the potential
barrier at the surface. The condition to be satisfied by the momentum component p, of an
electron in order that it could escape from the metal now becomes

P2/2m)+h > W, (20)6

where v is the frequency of the incoming light (assumed monochromatic). Proceeding in
the same manner as in the case of thermionic emission, we obtain, instead of (8),

47 mkT
R= 3

o0
/ dezIn[1 + e—e2)/KT] 1)
ez=W—-hv

We cannot, in general, approximate this integral the way we did there; so the integrand
here stays as it is. It is advisable, however, to change over to a new variable x, defined by

X=(e,— W+ hv)/kT, (22)

8n writing this condition, we have tacitly assumed that the momentum components px and py of the electron remain
unchanged on the absorption of a photon.
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whereby equation (21) becomes

armkD)? [ h(v —vo)
_T/dxln[l+exp{ - —x}], (23)

where
hvo:W—/,LZW—epz([). (24)

The quantity ¢ will be recognized as the (thermionic) work function of the metal; accord-
ingly, the characteristic frequency vo(= ¢/h) may be referred to as the threshold frequency
for (photoelectric) emission from the metal concerned.

The current density of photoelectric emission is thus given by

4 mek

J= T2 / dxIn(1 + &), (25)

where
8 =h( —vg)/kT. (26)

Integrating by parts, we find that

/dxln(1+e‘3‘x) = J exidil =fo(e); 27)
see equation (8.1.6). Accordingly,
= g ), (28)

For h(v — vg) > kT, €’ > 1 and the function f>(e?) ~ §?/2; see Sommerfeld’s lemma (E.17)
in Appendix E. Equation (28) then becomes

2nrme

J~ v —0)?, (29)
which is completely independent of T; thus, when the energy of the light quantum is much
greater than the work function of the metal, the temperature of the electron gas becomes
a “dead” parameter of the problem. At the other extreme, when v < vg and h|v — vg| > kT,
then e® « 1 and the function f>(e’) ~ €’. Equation (28) then becomes

2
J~ %T%WQ’V”, (80)
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which is just the thermionic current density (13), enhanced by the photon factor
exp(hv/kT); in other words, the situation now is very much the same as in the case of
thermionic emission, except for a diminished work function ¢'(= ¢ — hv). At the threshold
frequency (v = 1), 8 = 0 and the function f>(¢®) = f>(1) = 72/12; see equation (E.16), with
j = 1. Equation (28) then gives

73 mek?

2
33 T=. (31)

Jo=

Figure 8.8 shows a plot of the experimental results for photoelectric emission from
palladium (¢ = 4.97eV). The agreement with theory is excellent. It will be noted that the
plot includes some observations with v < vy. The fact that we obtain a finite photocur-
rent even for frequencies less than the so-called threshold frequency is fully consistent
with the model considered here. The reason for this lies in the fact that, at any finife tem-
perature T, there exists in the system a reasonable fraction of electrons whose energy &
exceeds the Fermi energy er by amounts O(kT). Therefore, if the light quantum hv gets
absorbed by one of these electrons, then condition (20) for photoemission can be satisfied
even if hv < (W — er) = hyg. Of course, the energy difference h(vy — v) must not be much
more than a few times kT, for otherwise the availability of the right kind of electrons will be
extremely low. We, therefore, do expect a finite photocurrent for radiation with frequencies
less than the threshold frequency vy, provided that i(vg — v) = O(kT).

The plot shown in Figure 8.8, namely In(J/T?) versus &, is generally known as the
“Fowler plot.” Fitting the observed photoelectric data to this plot, one can obtain the
characteristic frequency vg and hence the work function ¢ of the given metal. We have
previously seen that the work function of a metal can be derived from thermionic data as
well. It is gratifying to note that there is complete agreement between the two sets of results
obtained for the work function of the various metals.
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FIGURE 8.8 Photoelectric current from palladium as a function of the quantity h(v — vy)/kT. The plot includes
data taken at several temperatures T for different frequencies v.
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8.4 Ultracold atomic Fermi gases

After the demonstration of Bose-Einstein condensation in ultracold atomic gases in 1995
(Section 7.2), researchers began using laser cooling and magnetic traps to cool gases of
fermions to create degenerate Fermi gases of atoms. DeMarco and Jin (1999) created the
first degenerate atomic Fermi gas by cooling a dilute vapor of “°K in an atomic trap into
the nanokelvin temperature range. The density of states in a harmonic trap is a quadratic
function of the energy:

g2

a(e) 1

" 2(hao)®
where wg = (w1w2w3)'/3 is the geometric mean of the trap frequencies in the cartesian
directions; see equation (7.2.3). The chemical potential and the number of fermions in
the trap are related by

1 T e2de
N, T) = , 2
(w, T) 2(hw0)3/e5<8*“)+1 2)
0
which gives for the Fermi energy
eF = hwg(6N)/3, 3)

a Fermi temperature Tr = ¢r/k = 870nK for 10® atoms in a 100 Hz trap, and a ground-state
energy Uy = %N&‘F. The internal energy of the trapped gas can be obtained by time-of-
flight measurements as described in Section 7.2 and can be directly compared with the
theoretical result

T\* 3
U _ (T _Pdx W
Uy Tr efe~Pr 41
0

where the temperature and the chemical potential are related by

o0

T\3 x2dx

31— ——=1; 5

(TF> ee=Pr 41 ®)
0

see Figures 8.9 and 8.10. At low enough temperatures, attractive interactions lead to BEC-
BCS condensation, as discussed in Section 11.9.
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FIGURE 8.9 Scaled internal energy (U/Uy) versus scaled temperature (T/Tr) for an ideal Fermi gas in a harmonic
trap from equations (4) and (5). The dotted line is the corresponding classical result U(T) = 3NkT.
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FIGURE 8.10 Experimental results for the mean energy per particle divided by the equipartition value of 3kT versus
scaled temperature (T/Tr) for ultracold “°K atoms in a harmonic trap compared to the theoretical Fermi gas value
from equations (4) and (5). This shows the development of the Fermi degeneracy of the gas at low temperatures;
from Jin (2002). Figure courtesy of the IOP. Reprinted with permission; copyright ©2002, American Institute of
Physics.

8.5 Statistical equilibrium of white dwarf stars

Historically, the first application of Fermi statistics appeared in the field of astrophysics
(Fowler, 1926). It related to the study of thermodynamic equilibrium of white dwarf stars —
the small-sized stars that are abnormally faint for their (white) color. The general pattern
of color-brightness relationship among stars is such that, by and large, a star with red color
is expected to be a “dull” star, while one with white color is expected to be a “brilliant” star.
However, white dwarf stars constitute an exception to this rule. The reason for this lies in
the fact that these stars are relatively old whose hydrogen content is more or less used up,
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with the result that the thermonuclear reactions in them are now proceeding at a rather
low pace, thus making these stars a lot less bright than one would expect on the basis of
their color. The material content of white dwarf stars, at the present stage of their career, is
mostly helium. And whatever little brightness they presently have derives mostly from the
gravitational energy released as a result of a slow contraction of these stars — a mechanism
first proposed by Kelvin, in 1861, as a “possible” source of energy for all stars!

A typical, though somewhat idealized, model of a white dwarf star consists of a mass
M(~ 10%3g) of helium, packed into a ball of mass density p(~ 10’gcm™3), at a central
temperature T(~ 107K). Now, a temperature of the order of 10K corresponds to a mean
thermal energy per particle of the order of 103 eV, which is much greater than the energy
required for ionizing a helium atom. Thus, practically the whole of the helium in the star
exists in a state of complete ionization. The microscopic constituents of the star may,
therefore, be taken as N electrons (each of mass m) and %N helium nuclei (each of mass
~ 4myp). The mass of the star is then given by

M ~N(m+ 2myp) ~2Nmy,, @

and, hence, the electron density by

n_NNM/sz_ o

VT M/p  2my

2

A typical value of the electron density in white dwarf stars would, therefore, be O(103°)
electrons per cm®. We thus obtain for the Fermi momentum of the electron gas [see
equation (8.1.23), with g = 2]

( 3n ) 1o 17 -1
pr=|— h=0(10""")gcmsec™ ", 3)
8

which is rather comparable with the characteristic momentum mc of an electron. The
Fermi energy ¢r of the electron gas will, therefore, be comparable with the rest energy mc?
of an electron, that is, er = O(10%) eV and hence the Fermi temperature Tr = O(10'%) K. In
view of these estimates, we conclude that (i) the dynamics of the electrons in this problem
is relativistic, and (ii) the electron gas, though at a temperature large in comparison with
terrestrial standards, is, statistically speaking, in a state of (almost) complete degeneracy:
(T/Tr) = O(10~3). The second point was fully appreciated, and duly taken into account,
by Fowler himself; the first one was taken care of later, by Anderson (1928) and by Stoner
(1929, 1930). The problem, in full generality, was attacked by Chandrasekhar (1931-1935)
to whom the final picture of the theory of white dwarf stars is chiefly due; for details, see
Chandrasekhar (1939), where a complete bibliography of the subject is given.

Now, the helium nuclei do not contribute as significantly to the dynamics of the prob-
lem as do the electrons; in the first approximation, therefore, we may neglect the presence
of the nuclei in the system. For a similar reason, we may neglect the effect of the radia-
tion as well. We may thus consider the electron gas alone. Further, for simplicity, we may
assume that the electron gas is uniformly distributed over the body of the star; we are thus
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ignoring the spatial variation of the various parameters of the problem — a variation that
is physically essential for the very stability of the star! The contention here is that, in spite
of neglecting the spatial variation of the parameters involved, we expect that the results
obtained here will be correct, at least in a qualitative sense.

We study the ground-state properties of a degenerate Fermi gas composed of N
relativistic electrons (g = 2). First of all, we have

PF
87V 5 87V 4
N=" [ rar= gt @
0
which gives
3n 1/3
pp = (7) h, (5)
87

The energy-momentum relation for a relativistic particle is
e =mc®[{1+ (p/me)*)'/% 1], 6)

the speed of the particle being

de (p/m)

dp = {1+ (p/mey2 /2’ @

u=

here, m denotes the rest mass of the electron. The pressure Py of the gas is then given by,
see equation (6.4.3),

PF
Py= %%(PWO = %/ {I_FEZZ:C?Z}WP%P- )
0
We now introduce a dimensionless variable 6, defined by
p = mcsinhg, 9)
which makes
u=ctanh@. (10)
Equations (4) and (8) then become
N= 787{;/;363 sinh®6p = 78ﬂ?‘j}’g303x3 (11
and
8rmicd T 4 amtcd
Py = 33 /smh 0do = 33 A(x), (12)

0
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where

A(x) = x(x*> + 1)V/2(2x*> —3) +3sinh 1 x, (13)
with

x = sinh6p = pp/mc = (3n/87)Y/3(h/mc). (14)

The function A(x) can be computed for any desired value of x. However, asymptotic results
for x « 1 and x > 1 are often useful; these are given by (see Kothari and Singh, 1942)

Ax) = 85 — 17+ 3% — x4 for x«1 as)
=2xt—2x? +3(n2x— 5)+3x2+... for x>»1 ’

We shall now consider, somewhat crudely, the equilibrium configuration of this model.
In the absence of gravitation, it would be necessary to have “external walls” for keeping the
electron gas at a given density n. The gas will exert a pressure Py(n) on the walls and any
compression or expansion (of the gas) will involve an expenditure of work. Assuming the
configuration to be spherical, an adiabatic change in V will cause a change in the energy
of the gas, as given by

dEy = —Py(n)dV = —Py(R) - 4w R*dR. (16)

In the presence of gravitation, no external walls are needed, but the change in the kinetic
energy of the gas, as a result of a change in the size of the sphere, will still be given by for-
mula (16); of course, the expression for Py, as a function of the “mean” density n, must
now take into account the nonuniformity of the system — a fact being disregarded in the
present simple-minded treatment. However, equation (16) alone no longer gives us the net
change in the energy of the system; if that were the case, the system would expand indefi-
nitely till both n and Py(n) — 0. Actually, we have now a change in the potential energy as
well; this is given by

dE 2
dEg = (T}?) dR=a P ar, a7

R2
where M is the total mass of the gas, G the constant of gravitation, while « is a number (of
the order of unity) whose exact value depends on the nature of the spatial variation of n
inside the sphere. If the system is in equilibrium, then the net change in its total energy
(Eo + Eyg), for an infinitesimal change in its size, should be zero; thus, for equilibrium,

o GM?

Pl =4 i

(18)
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For Py (R), we may substitute from equation (12), where the parameter x is now given by

e 3n\'2 h _( 9N 3 nyme
T\ 87 mc \32n2 R

or, in view of (1), by

M \1/3 M\ /3
x=( 92 ) h/mc:(Qn ) h/mc' 19)
64m<my R 8my R
Equation (18) then takes the form
{971M}1/3 h/mc 3ahd®  GM?
A =
8my R Ar2mAc® R4
3 2
— 6ra A/mc\~ GM /R; 20)
R mc?

the function A(x) is given by equations (13) and (15).

Equation (20) establishes a one-to-one correspondence between the masses M and
the radii R of white dwarf stars; it is, therefore, known as the mass—radius relationship for
these stars. It is rather interesting to see the combinations of parameters that appear in
this relationship; we have here (i) the mass of the star in terms of the proton mass, (ii) the
radius of the star in terms of the Compton wavelength of the electron, and (iii) the grav-
itational energy of the star in terms of the rest energy of the electron. This relationship,
therefore, exhibits a remarkable blending of quantum mechanics, special relativity, and
gravitation.

In view of the implicit character of relationship (20), we cannot express the radius of the
star as an explicit function of its mass, except in two extreme cases. For this, we note that,
since M ~ 103g, my, ~ 1072*g, and h/mc ~ 107! cm, the argument of the function A(x)
will be of the order of unity when R ~ 108 cm. We may, therefore, define the two extreme
cases as follows:

(i) R> 108 cm, which makes x < 1 and hence A(x) ~ x5, with the result

R 3(97.[)2/3 h2M71/3

o M~1/3, 1)
400 Gmm?,/g

(ii) R <« 108 cm, which makes x > 1 and hence A(x) ~ 2x* — 2x2, with the result

1/3 1/3 2/3)1/2
R~ Om) i (ﬁ) 1— (%) , (22)
2 mc \ myp My
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where

1/2 3/2
9 (3n> (he/G)*F2. 3

T 64 \a? 3
We thus find that the greater the mass of the white dwarf star, the smaller its size. Not
only that, there exists a limiting mass My, given by expression (23), that corresponds to a
vanishing size of the star. Obviously, for M > My, our mass-radius relationship does not
possess any real solution. We, therefore, conclude that all white dwarf stars in equilibrium
must have a mass less than My — a conclusion fully upheld by observation.

The correct limiting mass of a white dwarf star is generally referred to as the
Chandrasekhar limit. The physical reason for the existence of this limit is that for a mass
exceeding this limit the ground-state pressure of the electron gas (that arises from the fact
that the electrons obey the Pauli exclusion principle) would not be sufficient to support
the star against its “tendency toward a gravitational collapse.” The numerical value of the
limiting mass, as given by expression (23), turns out to be ~ 1033g. Detailed investigations
by Chandrasekhar led to the result:

5.75
My=—-0, (24)

e

where ® denotes the mass of the sun, which is about 2 x 1033g, while . is a number
that represents the degree of ionization of helium in the gas. By definition, u. = M /Nmy;
compare to equation (1). Thus, in most cases, i >~ 2; accordingly My ~ 1.440.

Figure 8.11 shows a plot of the theoretical relationship between the masses and the radii
of white dwarf stars. One can see that the behavior in the two extreme regions, namely for
R>land R « I, is described quite well by formulae (21) and (22) of the treatment given
here. The Chandrasekhar limit (24) is the mechanism responsible for stellar collapse into
neutron stars and black holes. In particular, white dwarf stars whose mass exceeds the
Chandrasekhar limit due to influx of matter from a companion binary star are thought to
be the primary mechanism for type Ia supernovae; see Hillebrandt and Niemeyer (2000).
Such events happen in a typical galaxy on the order of once per hundred years. For a few
days after the collapse and subsequent explosion, these supernovae can be comparable in
brightness to the remainder of the stars in the galaxy combined. Their well-calibrated light
curves provide a bright “standard candle” for determining the distance to remote galaxies
used to measure the expansion rate of the universe; see Chapter 9.

8.6 Statistical model of the atom

Another application of the Fermi statistics was made by Thomas (1927) and Fermi (1928)
for calculating the charge distribution and the electric field in the extra-nuclear space of
a heavy atom. Their approach was based on the observation that the electrons in this sys-
tem could be regarded as a completely degenerate Fermi gas of nonuniform density n(r).
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FIGURE 8.11 The mass—radius relationship for white dwarfs (after Chandrasekhar, 1939). The masses are
expressed in terms of the limiting mass My and the radii in terms of a characteristic length [, which is given
by 7.71;;' x 108cm ~ 3.86 x 108 cm.

By considering the equilibrium state of the configuration, one arrives at a differential equa-
tion whose solution gives directly the electric potential ¢ (r) and the electron density n(r)
at point r. By the very nature of the model, which is generally referred to as the Thomas-
Fermi model of the atom, the resulting function n(r) is a smoothly varying function of r,
devoid of the “peaks” that would remind one of the electron orbits of the Bohr theory.
Nevertheless, the model has proved quite useful in deriving composite properties such
as the binding energy of the atom. And, after suitable modifications, it has been success-
fully applied to molecules, solids, and nuclei as well. Here, we propose to outline only the
simplest treatment of the model, as applied to an atomic system; for further details and
other applications, see Gombas (1949, 1952) and March (1957), where references to other
contributions to the subject can also be found.

According to the statistics of a completely degenerate Fermi gas, we have exactly two
electrons (with opposite spins) in each elementary cell of the phase space, with p < pr; the
Fermi momentum pr of the electron gas is determined by the electron density n, according
to the formula

pr = (37°n)3h. (0

In the system under study, the electron density varies from point to point; so would the
value of pr. We must, therefore, speak of the limiting momentum pr as a function of r,
which is clearly a “quasiclassical” description of the situation. Such a description is jus-
tifiable if the de Broglie wavelength of the electrons in a given region of space is much
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smaller than the distance over which the functions pr(r), n(r), and ¢ (r) undergo a signifi-
cant variation; later on, it will be seen that this requirement is satisfied reasonably well by
the heavier atoms.

Now, the total energy ¢ of an electron at the top of the Fermi sea at the point r is given
by

1
e(r)= %p%m —eg(r), )

where e denotes the magnitude of the electronic charge. When the system is in a stationary
state, the value of ¢(r) should be the same throughout, so that electrons anywhere in the
system do not have an overall tendency to “flow away” toward other parts of the system.
Now, at the boundary of the system, pr must be zero; by a suitable choice of the zero of
energy, we can also have ¢ = 0 there. Thus, the value of ¢ at the boundary of the system is
zero; so must, then, be the value of ¢ throughout the system. We thus have, for all r,

1, B
5o PE(r) —ep (1) =0. 3)

Substituting from (1) and making use of the Poisson equation,

V29 (r) = —4np(r) = 4en(r), 4)
we obtain
) _ 4e(2me)3/? 3/
Vi) = — s lem)2. (5)

Assuming spherical symmetry, equation (5) takes the form

1df,d _ 4e(2me)’/? 32
,Tza{r E‘/’(r)}—w{fp(r)} , (6)

which is known as the Thomas-Fermi equation of the system. Introducing dimensionless
variables x and ®, defined by

2/3
h2 0.88534agp

and

_ o)

CI)()C)_Ze/r’

®)
where Z is the atomic number of the system and ap the first Bohr radius of the hydrogen
atom, equation (6) reduces to

d2q> q>3/2

PN ©
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Equation (9) is the dimensionless Thomas-Fermi equation of the system. The boundary
conditions on the solution to this equation can be obtained as follows. As we approach the
nucleus of the system (r — 0), the potential ¢ (r) approaches the unscreened value Ze/r;
accordingly, we must have: ®(x — 0) = 1. On the other hand, as we approach the bound-
ary of the system (r — 1), ¢ (r) in the case of a neutral atom must tend to zero; accordingly,
we must have: ®(x — xg) = 0. In principle, these two conditions are sufficient to determine
the function @ (x) completely. However, it would be helpful if one knew the initial slope of
the function as well, which in turn would depend on the precise location of the boundary.
Choosing the boundary to be at infinity (rp = c0), the appropriate initial slope of the func-
tion ®(x) turns out to be very nearly —1.5886; in fact, the nature of the solution near the
origin is

4
() =1-15886x+ X2 4 - 10

For x > 10, the approximate solution has been determined by Sommerfeld (1932):

5~/
x3
@(x)wll-i-(m) } , (11)
where
A= % ~ 0.257. (12)

As x — oo, the solution tends to the simple form: ®(x) ~ 144 /x3. The complete solution,
which is a monotonically decreasing function of x, has been tabulated by Bush and Cald-
well (1931). As a check on the numerical results, we note that the solution must satisfy the
integral condition

o0
/ 325125 = 1, (13)
0

which expresses the fact that the integral of the electron density n(r) over the whole of the
space available to the system must be equal to Z, the total number of electrons present.

From the function ®(x), one readily obtains the electric potential ¢ (r) and the electron
density n(r):

Ze rz1/3 4/3
and
(2me)3/2
nn =" {p(NY/? oc 22 (15)
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FIGURE 8.12 The electron distribution function D(r) for an atom of mercury. The distance r is expressed in terms
of the atomic unit of length a(= h?/me?).

A Thomas-Fermi plot of the electron distribution function D(r){= n(r) - 47 r?} for an atom
of mercury is shown in Figure 8.12; the actual “peaked” distribution, which conveys unmis-
takably the preference of the electrons to be in the vicinity of their semiclassical orbits, is
also shown in the figure.

To calculate the binding energy of the atom, we should determine the total energy of the
electron cloud. Now, the mean kinetic energy of an electron at the point r would be %s r(r);
by equation (3), this is equal to %eq’)(r). The total kinetic energy of the electron cloud is,
therefore, given by

%e/ d () - Axrdr. (16)
0

For the potential energy of the cloud, we note that a part of the potential ¢ (r) at the point
r is due to the nucleus of the atom while the rest of it is due to the electron cloud itself;
the former is clearly (Ze/r), so the latter must be {¢ (r) — Ze/r}. The total potential energy
of the cloud is, therefore, given by

o0

—e/ [é—kl{¢(r)—§}i|n(r)-47rr2dr. 17)
ro 2 r
0

We thus obtain for the total energy of the cloud

o0 2
Eo=/{1loe¢’(”;Zf}”<r)~4nr2dr; (8)
0
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of course, the electron density n(r), in terms of the potential function ¢(r), is given by
equation (15).
Now, Milne (1927) has shown that the integrals

/{d)(r)}S/zrzdr and /{¢(r)}3/2rdr, (19)
0 0

which appear in the expression for Ey, can be expressed directly in terms of the initial slope
of the function ®(x), that is, in terms of the number —1.5886 of equation (10). After a little

calculus, one finds that
1.5886 [ €% 1
Eo = — |\ Z"B(=-1), (20)
0.88534 \ 2ap 7

from which one obtains for the (Thomas—Fermi) binding energy of the atom:

Eg=—Ey=1.5382"3y, 21

where yx (= €?/2ap ~ 13.6€V) is the (actual) binding energy of the hydrogen atom.

It is clear that our statistical result (21) cannot give us anything more than just the first
term of an “asymptotic expansion” of the binding energy Ep in powers of the parameter
Z~1/3, For practical values of Z, other terms of the expansion are also important; however,
they cannot be obtained from the simple-minded treatment given here. The interested
reader may refer to the review article by March (1957).

In the end we observe that, since the total energy of the electron cloud is proportional to
Z/3, the mean energy per electron would be proportional to Z%/3; accordingly, the mean
de Broglie wavelength of the electrons in the cloud would be proportional to Z=2/3. At
the same time, the overall linear dimensions of the cloud are proportional to Z~1/3; see
equation (7). We thus find that the quasiclassical description adopted in the Thomas-
Fermi model is more appropriate for heavier atoms (so that Z~%/3 « Z~1/3). Otherwise,
too, the statistical nature of the approach demands that the number of particles in the
system be large.

Problems

8.1 Let the Fermi distribution at low temperatures be represented by a broken line, as shown in
Figure 8.13, the line being tangential to the actual curve at ¢ = u. Show that this approximate
representation yields a “correct” result for the low-temperature specific heat of the Fermi gas,
except that the numerical factor turns out to be smaller by a factor of 4/72. Discuss, in a qualitative
manner, the origin of this numerical discrepancy.

8.2 For a Fermi-Dirac gas, we may define a temperature Ty at which the chemical potential of the gas is
zero (z = 1). Express Ty in terms of the Fermi temperature Tr of the gas.
[Hint: Use equation (E.16).]
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FIGURE 8.13 An approximate representation of the Fermi distribution at low temperatures: here,
x=¢/kT and & = u/kT.

8.3 Show that for an ideal Fermi gas

1(%) __5hp@,
z\oT P 2Tf3/2(z)'

compare with equation (8.1.9). Hence show that

_Cp _32/3D)p _ 5f52@f12(2)

YZCv T 0z/0T), T 3 (fp@)

Check that at low temperatures
72 (kT\?
y~l+—\(— ) .
3 \er

8.4 (a) Show that the isothermal compressibility 7 and the adiabatic compressibility «s of an ideal
Fermi gas are given by

. :Lfl/z(z) o 3 f32(2)
"T0kT oo’ 0T 50kT fip(2)’

where n (= N/V) is the particle density in the gas. Check that at low temperatures

3 |, 72 (kT\? 3 |, 572 (kT \?
KT —|[1—— | — , ks -—— | — .
r 2ner 12 \ e $ 2neg 12 \ ¢

(b) Making use of the thermodynamic relation

aP F% aP\?2
Cp—Cy=T(—= ) =T1ver (=)
r-cr=1(57), (57), =™ (57),

Cpr—Cv _ 4Cv fip@
CV 9Nkf3/2(z)

2 /kT\?
:1(—)<H«w»
3 \er

show that
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(c) Finally, making use of the thermodynamic relation y = «7/«s, verify the results of

Problem 8.3.
Evaluate (3°P/8T?),, (82u/8T?)y, and (3%11/8 T?)p of an ideal Fermi gas and check that your results
satisty the thermodynamic relations

92p 92
Cv=vr|— | =NT|—=
Y <8T2>U (BTZ v

Bzu
Cp=—-NT|— ] .
i <8T2>P

Examine the low-temperature behavior of these quantities.
Show that the velocity of sound w in an ideal Fermi gas is given by

and

W2 = KL fsp@ _

5 2
= = —u
3m f},/z(z) 9

)

where (1?) is the mean square speed of the particles in the gas. Evaluate w in the limit z — oo and
compare it with the Fermi velocity ur.
Show that for an ideal Fermi gas

u><1>: 4 [@hE)
ul 7w {fzp@)?

u being the speed of a particle. Further show that at low temperatures

a (D)= 2] (FTY.
u/ 8 12 \ e ’
compare with Problem 6.6.

Obtain numerical estimates of the Fermi energy (in eV) and the Fermi temperature (in K) for the
following systems:

(@) conduction electrons in silver, lead, and aluminum;

(b) nucleons in a heavy nucleus, such as g ngooy and

(¢) He® atomsin liquid helium-3 (atomic volume: 63 A3 per atom).

Making use of another term of the Sommerfeld lemma (E.17), show that in the second
approximation the chemical potential of a Fermi gas at low temperatures is given by

72 (kT\?> =* (kT\*
~ 1-——|— ) —=|— , 8.1.35
* SF[ 12(61:) 80<5F> ( %)
and the mean energy per particle by
. KTVt (kTN (8.1.37a)
N 5" 12 \er 16\cr/) | -

Hence determine the T3-correction to the customary T -result for the specific heat of an electron
gas. Compare the magnitude of the T®-term, in a typical metal such as copper, with the low-
temperature specific heat arising from the Debye modes of the lattice. For further terms of these
expansions, see Kiess (1987).
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8.12

8.13
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Consider an ideal Fermi gas, with energy spectrum ¢ « p°, contained in a box of “volume” V in a
space of n dimensions. Show that, for this system,

@) PV:%U:
Cv ng/n Joy1@  n\2 fuys(2)
b) — =2 (D) leit® (BTt
(b) Nk~ s (s + ) fn/s(Z) ( ) Jas-1@)
© Cp—Cy (SCV) f(n/s) 1(2)
Nk nNk) fus@ ’

(d) the equation of an adiabat is PV'+¢/™ = const., and

(e) theindex (1 + (s/n)) in the foregoing equation agrees with the ratio (Cp/Cy) of the gas only
when T > Tr. On the other hand, when T « Tr, the ratio (Cp/Cy) ~ 1 + (w2/3)(kT/eF)?,
irrespective of the values of s and n.

Examine results (b) and (c) of the preceding problem in the high-temperature limit (7' > Tr) as well

as in the low-temperature limit (T « Tr), and compare the resulting expressions with the ones

pertaining to a nonrelativistic gas and an extreme relativistic gas in three dimensions.

Show that, in two dimensions, the specific heat Cy (N, T) of an ideal Fermi gas is identical to the

specific heat of an ideal Bose gas, for all N and T.

[Hint: It will suffice to show that, for given N and T, the thermal energies of the two systems differ

at most by a constant. For this, first show that the fugacities, zr and zp, of the two systems are

mutually related:

(14+zp)(1—2zp) =1, ie, zp=2zr/(1+2zp).

Next, show that the functions f>(zr) and g»(zp) are also related:

P (zr) :/Mdz

Z
0

_ ZF 1.2
_g2<1+ZF>+21n (1+zp).

It is now straightforward to show that
Er(N,T) = Eg(N,T) + const.,
the constant being Er (N, 0).]

Show that, quite generally, the low-temperature behavior of the chemical potential, the specific
heat, and the entropy of an ideal Fermi gas is given by

el dlna(e) kT\?
n=er 6 \ dlne /,_. \er ’

and
2
Cy~S~ ?sza(sF),

where a(e) is the density of (the single-particle) states in the system. Examine these results for a gas
with energy spectrum ¢ « p*, confined to a space of n dimensions, and discuss the special cases:
s=1and 2, with n =2 and 3.

[Hint: Use equation (E.18) from Appendix E.]

Investlgate the Paull paramagnetism of an ideal gas of fermions with intrinsic magnetic moment p*
and spin JhA(J = 2, 2, ..), and derive expressions for the low-temperature and high-temperature
susceptibilities of the gas.
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Show that expression (8.2.20) for the paramagnetic susceptibility of an ideal Fermi gas can be
written in the form

_ n*? fi2(2)
kT fg/g(Z).

Using this result, verify equations (8.2.24) and (8.2.27).
The observed value of y, see equation (8.3.6), for sodium is 4.3 x 10~# cal mole ™ 'K~2. Evaluate
the Fermi energy er and the number density » of the conduction electrons in the sodium
metal. Compare the latter result with the number density of atoms (given that, for sodium,
p=0.954gcm™3 and M = 23).
Calculate the fraction of the conduction electrons in tungsten (¢ = 9.0eV) at 3000 K whose kinetic
energy ¢ (= %muz) is greater than W (= 13.5eV). Also calculate the fraction of the electrons whose
kinetic energy associated with the z-component of their motion, namely (%mug), is greater than
13.5eV.
Show that the ground-state energy E, of a relativistic gas of electrons is given by

T Vmtcd

Ey = ———=—Bx),
0 33 (x)

where
B(x) =83 {(x* + D% -1} — A(w),

A(x) and x being given by equations (8.5.13) and (8.5.14). Check that the foregoing result for Ey and
equation (8.5.12) for Py satisfy the thermodynamic relations

Eo+PyV=Nuo and Py=—(3E/dV)y.

Show that the low-temperature specific heat of the relativisitic Fermi gas, studied in Section 8.5, is
given by

Cv L, +1)V2 kT PFr
Nk X2 mc? (x_ mc)'

Check that this formula gives correct results for the nonrelativistic case as well as for the extreme
relativistic one.

Express the integrals (8.6.19) in terms of the initial slope of the function ®(x), and verify
equation (8.6.20).

The total energy E of the electron cloud in an atom can be written as

E =K+ Viye+ Vee,

where K is the kinetic energy of the electrons, V,, the interaction energy between the electrons and
the nucleus, and V,, the mutual interaction energy of the electrons. Show that, according to the
Thomas-Fermi model of a neutral atom,

7 1
K=-E Vee=+gE and Ve=-3E

so that total V = V};, + V. = 2E. Note that these results are consistent with the virial theorem; see
Problem 3.20, with n = —1.

Derive equations (8.4.3) through (8.4.5) for a Fermi gas in a harmonic trap. Evaluate equations
(8.3.4) and (8.3.5) numerically to reproduce the theoretical curves shown in Figures 8.9 and 8.10.



Thermodynamics of
the Early Universe

Over the course of the twentieth century, astronomers and astrophysicists gathered a vast
body of evidence that indicates the universe began abruptly 13.75 £ 0.11 billion years ago
in what became known as the “Big Bang.”!'? The intense study of the origin and evolution
of the universe has led to a convergence of physics and astrophysics. Thermodynamics
and statistical mechanics play a crucial role in our understanding of the sequence of transi-
tions that the universe went though shortly after the Big Bang. These transitions left behind
mileposts that astrophysicists have exploited to look back into the earliest moments of the
universe. The early universe provides particularly good examples for utilizing the proper-
ties of ideal classical, Bose, and Fermi gases developed in Chapters 6, 7, and 8, and the
theory of chemical equilibrium developed in Section 6.6.

9.1 Observational evidence of the Big Bang

Observational evidence of the Big Bang has grown steadily since Edwin Hubble’s discovery
in the late 1920s that the universe was expanding. Since that time a coherent standard
model for the beginning of the universe has emerged. The following three items describe
the key bodies of evidence.

1. Nearly every galaxy in the universe is moving away from every other galaxy and the
recessional velocities display an almost linear dependence on the distance between
galaxies; see Figure 9.1. Hubble was the first to observe this by measuring both the
distances to nearby galaxies and their velocities relative to our own galaxy. The former
is based on standard candles, in Hubble’s case Cepheid variable stars with known
absolute mean luminosity. The latter is based on measurements of the Doppler red
shift of spectral lines. Type Ia supernovae are used as the standard candle in the most
distant observations made using the Hubble Space Telescope. The data are

For excellent overviews and history of the study of the Big Bang, see The First Three Minutes: A Modern View of the
Origin of the Universe by Weinberg (1993) and The Big Bang by Singh (2005). Cosmology by Weinberg (2008) provides
an excellent technical survey. The organization of this chapter is based on Weinberg (1993). The 2010 decadal survey
of astrophysics New Worlds, New Horizons in Astronomy and Astrophysics by the National Academies Press provides an
overview of the current state of the field; see www.nap.edu.

2Steady state cosmology advocate Fred Hoyle coined the term “Big Bang” derisively in a BBC radio broadcast in 1950.
To his eternal dismay, the name quickly became popular.

Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00009-8 275
© 2011 Elsevier Ltd. All rights reserved.
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FIGURE 9.1 Hubble diagram of the spectral red-shift velocity of relatively nearby galaxies versus their distance
using several astronomical standard candles. The velocity is in km/s and the distance is measured in megaparsecs,
where 1 Mpc = 3.26 x 10° light-years. The best fit to the data gives a value of the Hubble parameter as Hy =
724+ 8kms~!Mpc~!. The Hubble parameter has been recently updated by Riess et al. (2009) to give Hy =
74.24+3.6kms~!Mpc~!. The figure is from Freedman et al. (2001) and is reproduced by permission of the AAS.

encapsulated in the Hubble-Friedmann relation (Friedmann, 1922, 1924),

da 87 Gu
U_E_Ha_,lwa. (@)}

Here a represents the distance between any two points in space that grows with time
as the universe expands, v is the recessional velocity, G is the universal constant of
gravitation, c is the speed of light, and u is the energy density of the universe.® The
Hubble parameter, H, is the characteristic expansion rate and is of the order of the
inverse of the age of the universe. The particular form of equation (1) assumes, as
appears to be the case, that the energy density u is equal to the critical value so that the

3Cosmological and general relativistic calculations are usually expressed in terms of the equivalent mass density

p =u/c? = T% where T is the energy-momentum tensor. Astrophysicists usually describe the length scale parameter a

in terms of the Doppler shift factor z = (1 /A5, — 1), where Ay, is the laboratory wavelength of a spectral line and 1 is the

red-shifted value. This gives z = (T/Tp — 1) where Ty is the current cosmic microwave background temperature and 7 is
the photon temperature of that era. For example, the Doppler shift from the era of last scattering is

~ 3000K

“=2725K

—1~1100,

so the universe has expanded by a factor of 1100 since that time.
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space-time is flat. This means that the universe is balanced on a knife edge between
expanding forever and recollapsing due to gravity. For excellent technical surveys, see
Borner (2003) and Weinberg (2008). The measured value of the Hubble parameter is

Hy=74.2+3.6kms™ 'Mpc!, 2)

where Mpc is a megaparsec, about 3.26 x 10° light-years; see Freedman et al. (2001)
and Riess et al. (2009).

2. Penzias and Wilson (1965) observed a nearly uniform and isotropically distributed
microwave radiation noise coming from deep space with a blackbody temperature of
about 3K. This cosmic microwave background (CMB) was quickly identified as the
remnant blackbody radiation from the era following the Big Bang. Later, balloon
experiments and space-based measurements by the Cosmic Background Explorer
(COBE) NASA mission showed that the CMB is extremely uniform and isotropic with
an average temperature of Ty = 2.725 +0.002K; see Mather et al. (1994, 1999),
Wright et al. (1994), Fixsen et al. (1996), and Figure 9.2. The NASA Wilkinson
Microwave Anisotropy Probe (WMAP) mission mapped the angular variation of the
CMB temperature. Figure 9.3 shows the 200 K CMB temperature variations mapped
onto galactic coordinates.

The CMB represents the photons that were in thermal equilibrium with the
high-temperature plasma that existed from the very first moments of the universe
until it cooled down to approximately 3000 K about 380,000 years after the Big Bang.

1.2 T T T T
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0.0

FIGURE 9.2 Cosmic microwave background spectrum from COBE fit numerically to the Planck distribution with an
average temperature T = 2.725 + 0.002K; see equations (7.3.8) and (7.3.9), and Figure 7.13. The error bars at the 43
equally spaced frequencies from the Far Infrared Absolute Spectrophotometer (FIRAS) data are too small to be seen
on this scale. Figure courtesy of NASA.



278 Chapter 9 » Thermodynamics of the Early Universe

FIGURE 9.3 Measurement of temperature variations in the CMB using 7 years of data from WMAP. This shows the
distribution of the CMB blackbody temperature mapped onto galactic coordinates. The variations represent
temperature fluctuations of £200 K. Figure courtesy of NASA and the WMAP Science Team.

As the temperature fell below 3000K, the electrons and protons in the plasma
combined for the first time into neutral hydrogen atoms, a period that is known rather
oxymoronically as the era of recombination. After this era of “last scattering” of
photons by free electrons, the quantum structure of the atoms prevented them from
absorbing radiation except at their narrow spectral frequencies, so the universe
became transparent and the blackbody radiation quickly fell out of equilibrium with
the neutral atoms. As the universe continued to expand, the wavelengths of the
blackbody radiation grew linearly with the expansion scale of the universe a. The
photon number density fell as a3 and the energy density as a4, so the Planck
distribution, equations (7.3.8) and (7.3.9), was preserved with a blackbody
temperature that scaled as

T(t)a(t) = const. 3

Measurements of the Hubble parameter and the COBE and WMAP measurements
of the temperature and temperature fluctuations of the CMB allow a determination of
the current total energy density of the universe and its composition. The current
energy density of the universe is

3¢2H?
u= FGO =8.36x 10710 m3, 4)
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and is comprised of approximately 72.8 percent dark energy, 22.7 percent dark matter,
and 4.56 percent baryonic matter (protons and neutrons).? This gives a baryon
number density 7 of 0.26m~3. The number density of photons in a blackbody
enclosure as a function of temperature is given by equation (7.3.23):

2¢3) (kT3
ny(T)=£< ) (5)

w2 hc

At the current temperature of 2.725K, this gives a CMB photon number density of
n, =4.10 x 108m=3, so the current baryon-to-photon ratio is

n
n=-2~6x10710, 6)
ny

The ratio n has remained constant as the universe has expanded since both these
quantities scale as a=3(r). As we will see later, the numerical value of n played a very
important role in the thermal evolution of the early universe.’

3. The relative abundances of the light elements 'H, 2H, 3He, “He, “Li, and so on
created during the first few minutes of the universe are sensitive functions of the
baryon-to-photon ratio »; see Figure 9.4. This connection was first explored by George
Gamow, Ralph Alpher, and Robert Herman in the late 1940s and early 1950s; see
Alpher, Bethe, and Gamow (1948), and Alpher and Herman (1948, 1950).°

“The energy content of the universe is parameterized in terms of the fraction of the critical density contained in the
various constituents. The current values are dark energy: Q2 = 0.728 £+ 0.016; baryonic matter: €2, = 0.0456 £+ 0.0016; and
cold dark matter: Q. = 0.227 4 0.014. The current age of the universe, or lookback time, is fp = 13.75+0.11 x 109 years.
The relative contribution from blackbody radiation is about 6 x 10~°. These concordance values of the parameters are
based on WMAP 7-year data and are tabulated in Komatsu et al. (2010). The dark energy is responsible for the accelerating
expansion of the universe. The energy density proportions were vastly different in the early universe because they scale
differently with the expansion parameter a. At the time of recombination, the proportions were: dark matter 63 percent,
baryonic matter 12 percent, relativistic radiation (photons and neutrinos) 25 percent. During the first few moments,
relativistic particles provided the dominant contribution to the energy. Using the photon:neutrino:electron ratios of 2 :
21/4:7/2 from Table 9.2, the energy content was photons 18.6 percent, neutrinos and antineutrinos 48.8 percent, and
electrons and positrons 32.5 percent. While dark energy is currently the dominant contribution to the energy density
of the universe, it played only a small role in the early evolution of the universe. Cold dark matter was crucial for the
development of the first stars and galaxies at the end of the “dark ages” 100 to 200 million years after the last scattering.

>The proper measure here is the ratio of the baryon number density to photon entropy density but, since the CMB
photon entropy density and number density both scale as T2, the ratio is usually quoted in terms of the ratio of the
number densities.

5George Gamow and Ralph Alpher in 1948, and Alpher and Robert Herman in 1950, proposed a model for nucleo-
synthesis in a hot, expanding primordial soup of protons, neutrons, and electrons. Alpher and Gamow called this
material “ylem.” To account for the present abundance of “He in the universe, Alpher and Herman (1950) proposed
a baryon-to-photon ratio of roughly 10~ and predicted a current cosmic microwave background temperature of about
5K. Gamow added his friend Hans Bethe’s name as second author to Alpher, Bethe, and Gamow (1948) as a pun on
the Greek alphabet. The paper was published, perhaps not coincidentally, on April 1; see Alpher and Herman (2001),
Weinberg (1993), and Singh (2005).
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FIGURE 9.4 Calculated primordial abundances of light elements (*He, D=2H, 3He, and “Li) as functions of the
baryon-to-photon ratio. The baryon-to-photon ratio is given by n = 2.7 x 1078, h?, where h is the Hubble
parameter in units of 100(km/s)/Mpc and ;, = 0.046 is the current baryonic fraction of the mass-energy density of
the universe; see Copi, Schramm, and Turner (1997), Schramm and Turner (1998), and Steigman (2006). The
experimentally allowed range is in the grey vertical bands. Figure from Schramm and Turner (1998). Reprinted with
permission; copyright © 1998, American Physical Society.

9.2 Evolution of the temperature of the universe

As the universe expanded and cooled, the cooling rate was proportional to the Hubble
parameter, that is, of the order of the inverse of the age of the universe at that point in
its expansion. This led to a sequence of important events when different particles and
interactions fell out of equilibrium with the gas of blackbody photons. The neutrinos and
neutron-proton conversion reactions fell out of equilibrium at ¢ ~ 1 second. Nuclear reac-
tions that formed light nuclei fell out of equilibrium at ¢ ~ 3 minutes. Neutral atoms fell
out of equilibrium at ¢ ~ 380,000years. All these degrees of freedom froze out when the
reaction rates that had kept them in equilibrium with the blackbody photons fell far below
the cooling rate of the expanding universe. Each component that fell out of equilibrium
left behind a marker of the properties of the universe characteristic of that era. It is these
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markers that provide evidence of the properties and behavior of the universe during its
earliest moments.

From the first moments of the universe up until the recombination era 380,000 years
later, the cosmic plasma was in thermal equilibrium with the blackbody radiation through
Thomson scattering. Due to the high density of charged particles, the photon scattering
mean free time was much shorter than the time scale for temperature changes of the uni-
verse as it expanded and cooled, which kept the plasma in thermal equilibrium with the
photons. For the first few hundred thousand years of its expansion, the energy density of
the universe was dominated by photons and other relativistic particles. This is because the
energy density of the blackbody radiation scales as a~* whereas the energy density of non-
relativistic matter scales as a—3. The temperature of the blackbody photons as a function
of the age of the universe is shown in Figure 9.5 and Table 9.1.

During the first one-hundredth of a second, the universe expanded and cooled from its
singular beginning to a temperature of about 10! K. The physics from this time onward
was controlled by the weak and electromagnetic interactions. The strong interactions
could be ignored since the baryon-to-photon ratio was so small and the temperature was
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FIGURE 9.5 Sketch of the photon temperature versus the age of the universe. At early times, radiation dominated
the energy density, so T ~ t~1/2. At later times (¢ > 10!3s) nonrelativistic matter dominated the energy density, so
T ~ t=2/3, In the current dark energy dominated stage, the universe is beginning to expand exponentially with
time, so the photon temperature is beginning to fall exponentially.
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Table 9.1 Temperature
vs. Age of the Universe

Time (s) Temperature (K)
0.01 1x 1011
0.1 3 x 1010
1.0 1 x 1010
12.7 3 x 10°
168 1x10°
1980 3x 108
1.78 x 10% 108
1.20 x 1013 3000
4.34 x 1017 2.725

Source: Weinberg (2008).

too low to create additional hadrons.”® We will follow the thermodynamic behavior of the
universe from ¢ = 0.01 second when the temperature was 101 K to £ = 380,000 years when
the temperature fell below 3000K. At that point neutral atoms formed, photon scattering
ended, and the universe became transparent to radiation. After recombination and last
scattering there were no new sources of radiation in the universe since the baryonic mat-
ter consisted entirely of neutral atoms. This state of affairs lasted until atoms were first
reionized by the gravitational clumping that formed the first stars and galaxies 100 to 200
million years after the Big Bang. This reionization epoch ended the so-called cosmic dark
ages.

9.3 Relativistic electrons, positrons, and neutrinos

During the earliest moments of the universe, the temperature was high enough to cre-
ate several kinds of relativistic particles and antiparticles. If kT >> mc?, then particle-
antiparticle pairs each with mass m can be created from photon-photon interactions.
At these temperatures, almost all of the particles that are created will have an energy-
momentum relation described by the relativistic limit, namely

ek ~ hek, 1)

“Before time ¢ = 0.01s, the analysis is more difficult due to the production of strongly interacting particles and
antiparticles. At even earlier times, when the temperature was above kT ~ 300MeV (T = 4 x 10'2K), hadrons would
have broken apart into a strongly interacting relativistic quark-gluon plasma. The Relativistic Heavy Ion Collider at
Brookhaven National Laboratory has succeeded in creating a quark-gluon plasma with the highest temperature matter
ever created in the laboratory, T =4 x 1012K; see Adare et al. (2010).

8The exact mechanism for baryogenesis (i.e., nonzero baryon-to-photon ratio ») is unsettled. It requires, as shown by
Sakharov (1967), three things: baryon number nonconservation, C and CP violation, and deviation from equilibrium. All
these conditions were satisfied in the earliest moments of the universe (far earlier than the time scales we examine here)
but a consensus theory that allows for a baryon asymmetry nearly as large as the observed value of = 6 x 10710 has not
yet emerged.
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where 7k is the magnitude of the momentum. This relation applies to photons, neutrinos,
antineutrinos, electrons, and positrons. The threshold for electron-positron pair forma-
tion is mec?/k = 5.9 x 10°K. Neutrinos are very light, so we can safely assume that they
are relativistic.” The relativistic dispersion relation 1 gives essentially the same density of
states for all species of relativistic particles:

2
/ K28 (e — hck)dk = _ & 2

a(e) = 8 /8(8 —ep)dk = 322 (he

(2r)3 (2 )3

where g; is the spin degeneracy. Photons have a spin degeneracy g; = 2 (left and right cir-
cularly polarized). The other species are all spin-% fermions. Electrons and positrons have
spin degeneracy g; =2 while neutrinos and antineutrinos have spin degeneracy g; =1
since all neutrinos have left-handed helicity.

During this era, because of the charge neutrality of the universe and the small size of the
baryon-to-photon ratio 5, the number densities of the electrons and positrons were nearly
equal, so their chemical potentials were both rather small. Assuming that the net lepton
number of the universe is also small, the same applies to the neutrinos and antineutrinos.
As explained in Section 7.3, the chemical potential for photons is exactly zero. The pres-
sure, number density, energy density, and entropy density of a relativistic gas of fermions
(+) or bosons (—) with zero chemical potential are are given by

k) T
P(T) = £kT / a(e)In(l + e P*)de = 2(32((}12)3 O/ *In(1+e™)dx, (3a)
n(T)—/a() L oo 8 (’CT>3 widx 3b)
=) e 1Y T 202 \ e 1
0
_ e &s kT
u(T)_/a(a)eﬂE:tld 2n2(h0)3/ele:1 ’ 3¢)
0P\ 2gk (kT\} [ , .
s(T) = <8T> = (hc) /x In(1+e™)dx. 3d)
0

9All three neutrino families are known to have small (but nonzero) mass from neutrino oscillation observations.
The electron neutrino is probably the lightest with the experimental limit of m,,c? < 2.2¢eV. The distribution of angular
fluctuations of the CMB measured by WMAP puts a limit on the sum of the masses of the neutrinos, ) myc? < 0.58¢€V,
so we can safely assume that all neutrino species are far lighter than the value of kT during the early universe.
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Using the values of the Bose integrals from Appendix D, we arrive at the following
expressions for the blackbody photons:

P(T) = g% (42)
() = 2 (’;)3 (4b)
1y (T) = ’%Z ((’;3: (40)
5, (T) = T(g)s. (4d)

All relativistic species with © = 0 have the same power law temperature dependences for
the pressure, energy density, and so on, as the photons, while the Fermi and Bose integrals
are the same except for a constant prefactor:

-
de=(1-——
1 < 2"*1>/

0

0

1

x"-
er—1

dx; 5)

see Appendices D and E. The contributions to the pressure, energy density, and entropy
density result from counting the spin degeneracies, the number of particles and antiparti-
cles, and accounting for the different Fermi/Bose factors (1 for bosons, 7/8 for fermions).
The photons, three generations of neutrinos (electron, muon, and tau neutrinos and their
antiparticles), and the electrons and positrons contribute to the total pressure, number
density, energy density, and entropy density in the proportions shown in Table 9.2. The
counting is presented here, as is usually done in the literature, relative to the contribu-
tion per spin state of the photons. The contributions to the number densities are the same
except that the Fermi/Bose factor is now 3/4.

Table 9.2 Relativistic Contributions to Pressure, Energy
Density, and Entropy Density

Particles Fermi/Bose Factor Spin Degeneracy Number of Species 2 Pyyq1/Py

y 1 2 1 2
Ve,V Vg % 1 3 %
Ve, Dy, Ut z 1 3 i

— 7 7
e 8 2 1 1
et z 2 1 z
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The totals then are

7\ P, (T 43

Piotal(T) = <2+ E) 7/2( ) = (@) P, (T), (6a)
7 T 43

Utotal (T) = (2 —+ E) uy?f ) = (E) uy (1), (6b)
7 T 43

Stotal(T) = (2+ -+ ) yé ) = <§>SV(T)» (6¢)

T 1
notal(T) = (2+ > +3) Vz( ) - (I) ny (7). (6d)

The density of the universe was high enough in this era, so the weak and electromagnetic
interaction rates kept all these species in thermal equilibrium with one other. Therefore,

as the universe expanded adiabatically, the entropy in a comoving volume of linear size a

remained constant as the volume expanded from some initial value ag to a final volume a*i’:

Stotal (T0) @y = Stotal (1145 . )

Since the entropy density is proportional to T3, the temperature and length scale at time 7
are related by

T(t)a(t) = const. (8)

This is the same relation that applies for a freely expanding photon gas, see equa-
tion (9.1.3), but here it arises from an adiabatic equilibrium process. From equations (9.1.1)
and (8), the temperature of the universe as a function of the age of the universe ¢ during

this era is
0.992s
T(t) = 101°K,/f; )]

see Problem 9.1.

9.4 Neutron fraction

During the first second of the universe, when T > 10'°K, and before protons and neu-
trons combined into nuclei, the weak interaction kept the free neutrons and protons in
thermal “beta-equilibrium” with each other and with the photons, neutrinos, electrons,
and positrons through the processes

n+vee2p+e +y, (1a)
ntet 2p+ivty, (1b)

nepte +v+y. (1c)
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We can treat this as a chemical equilibrium process, as described in Section 6.6. Since the
chemical potentials of the photons, electrons, positrons, neutrinos, and antineutrinos are
all zero, the neutron and proton chemical potentials must be equal at equilibrium:

Mn = Kp- (2)

At these temperatures (~ 10!! K) and densities (=~ 1032 m~3), the protons and neutrons can
be treated as a classical nonrelativistic ideal gas. Following equation (6.6.5), the spin-%
proton and neutron chemical potentials are

pp = m,gc2 4+ kTIn (npkg) —kT1n2, (3a)
ftn = muc® +kTln (nnx;’;) — kTIn2. (3b)

where A(= h/v2rxmkT) is the thermal deBroglie wavelength. The rest energy of the
neutron is greater than the rest energy of the proton by

Muc® — mpc? = Ae = 1.293MeV. )

Ignoring the small mass difference in the thermal deBroglie wavelength in equations (3a)
and (3b) gives

nn,= npe”mg. 5)
The baryon number density is the sum of the neutron and proton number densities
ng = np+ Np, (6)

so the equilibrium neutron fraction is given by

ny 1
ng  ePhe 41’

@)

The mass difference gives a crossover temperature Ty, = Ae/k ~ 1.50 x 101°K, so the
neutron fraction drops from 46 percent when T = 10! K to 16 percent when T =9 x 109K
at f; ~ 1 second. As the temperature fell below 10'°K (kT = 0.86 MeV), the weak interaction
rate began to fall far below the cooling rate of the universe, so the baryons quickly fell out of
equilibrium with the neutrinos. From that time onward the neutrons began to beta-decay
with their natural radioactive decay lifetime of 7, = 886 seconds, so the neutron fraction
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fell exponentially:

q%O.IGexp<M> fort>t1 = 1s. @)

Tn

By the time of nucleosynthesis, about 3.7 minutes later, the neutron fraction had dropped
to g ~ 0.12. At that point, the remaining neutrons bound with protons to form deuterons
and other light nuclei. For a discussion of nucleosynthesis, see Section 9.7.

9.5 Annihilation of the positrons and electrons

About one second after the Big Bang, the temperature approached the crossover tempera-
ture T, for creating electron-positron pairs:

kT, = mec® = 0.511MeV, 8]

with T, =5.93 x 109K. As the temperature fell below T,, the rate of creating ete~ pairs
began to fall below the rate at which pairs annihilated. The full relativistic dispersion

relation for electrons is
gk =4/ (hck)? + (mec?)? , 2

which gives for density of states

8
(2m)3

oo
2 22

5 e/ &% — (MeC?) 2

[k S(S—Sk)dk: W fOrSZmeC . (3)

0

ae(e) =

Since the electrons and positrons were in equilibrium with the blackbody photons via the
reaction

efte  2y+y, @)

the equilibrium equation (6.6.3) implied that the chemical potentials of the species were
related by

M_—|—M+:2,U,V:0. (5)

The ratio of the number density of the electrons to that of the photons then was

n _ 1 /o‘o x\/xz—(ﬂmecz)zdx
2¢(3)

n- , 6
1y eXe Pu- 11 ©)

Bmec?
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while the positron density ratio was

ny _ 1 7 x\/xz—(ﬁmecz)zdx_
2¢(3)

n+ , 7
1y evePr- +1 @

Bmec?

see equation (9.1.5). The electron and positron densities became unbalanced as the
universe cooled.

Eventually all the positrons got annihilated leaving behind the electrons that currently
remain. Charge neutrality of the universe required the difference between the number
density of electrons and the number density of positrons to be equal to the number density
of protons, (1 — g)np, where q is defined in Section 9.4; hence

(n_—ny) _sinh(Buo) [ x/x2— (Bmec?)?
n, T 20(3) cosh(x) + cosh(Bu_)

Bmec?

dx=1—-q)n. (8)

We can use equation (8) to determine the electron chemical potential as a function of tem-
perature numerically and then use that value in equations (6) and (7) to determine the
electron and positron densities; see Figure 9.6.

Initially, the electron and positron densities both decreased proportional to
exp(—pBmec?) as the temperature fell below the electron-positron pair threshold, but they
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FIGURE 9.6 The ratio of the electron and positron densities to the photon density as a function of gm.c? during the
ete~ annihilation for 5 =6 x 1071°. This era began around temperature 10'°K (8m.c?* = 1.7) at time t = 1 second
and ended when the temperature was about 3 x 108K (8m,.c? = 20) at time ¢ = 33 minutes when the electron
number density leveled off at the proton number density.
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remained nearly equal to each other until T ~ m,c? /kln[l /(1 — q)n] ~ 3 x 108K. At that
temperature, the electron density began to level off at the proton density while the positron
density continued to fall.

Using the baryon-to-photon ratio n = 6 x 1071%, we infer that during the first second
of the universe that for every 1.7 billion positrons there must have been one extra elec-
tron. It is these few extra electrons that will combine with nuclei during the recombination
era composing all the atoms now present in the universe. All baryonic matter currently
in the universe is the result of this initial asymmetry between matter and antimatter;
see footnote 8.

9.6 Neutrino temperature

For temperatures above T = 10'°K, the rates for the weak interaction reactions (9.4.1) kept
the neutrinos in “beta-equilibrium” with the electrons, positrons, and photons. Starting at
time ¢ ~ 1s, when T = 10!°K, the weak interaction rates began to fall far below the expan-
sion rate of the universe so the neutrinos quickly fell out of equilibrium. Following the
decoupling, the neutrinos expanded freely so the neutrino temperature scaled with the
expansion length scale following equation (9.1.3).

The system of electrons, positrons, and photons remained in thermal equilibrium with
each other and expanded adiabatically during the electron-positron annihilation era from
temperature Ty = 101K when the annihilations began, until temperature T; =3 x 108K
when nearly all of the positrons had been annihilated. Since this was an adiabatic expan-
sion, we can determine the temperature evolution using entropy conservation. Consider
a comoving cubical volume that expanded from an initial linear size ap to a final size a;
during the same time period. The total entropy in the comoving volume at temperature Ty
was due to the photons, electrons, and positrons (refer to Table 9.2):

11
S(Top) = Zsy(TomS, 1)

while the entropy at temperature T; was due solely to the photons since, by then, nearly
all of the electrons and positrons had been annihilated:

S(Ty) = s, (Th)as. )

Entropy conservation during the adiabatic expansion relates the initial and final tem-
peratures as

11\ 1/3
<Z> Toag = Tha;. (3)

In essence, the entropy of the annihilating electrons and positrons was transferred to the
photons. Since the neutrino and photon temperatures were equal before the electron-
positron annihilation and the neutrinos expanded freely during the annihilation, the
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neutrino temperature decreased more than the photon temperature during the annihi-
lation era:

Ty = (4/1D)Y3 1y, 4)

After the eTe™ annihilation, both the neutrino and the photon temperatures evolved
according to equation (9.1.3) and (9.3.8), so the current temperature of the relic Big Bang
neutrinos should be

T, = (4/11)'/3 Tepp ~ 1.945K. (5)

A measurement of the cosmic neutrino background would provide an excellent additional
test of the standard model of the Big Bang but we do not currently have a viable means to
measure these very low-energy neutrinos.!°

9.7 Primordial nucleosynthesis

Light nuclei other than hydrogen first formed between 3 and 4 minutes after the Big Bang
when the temperature had cooled to about 10°K. Prior to that time, the high-temperature
blackbody radiation rapidly photodissociated any deuterium nuclei that happened to
form. The first step for the formation of light nuclei from the protons and neutrons is the
formation of deuterium because all of the rates for forming nuclei at these densities are
dominated by two-body collisions. Once deuterons formed, most of these nuclei would
have been quickly converted to helium and other more stable light nuclei in a series of
two-body collisions with the remaining protons, neutrons, and with each other. As dis-
cussed in Section 9.4, the proton/neutron mixture at this time was about g = 12 percent
neutrons and 1 — g = 88 percent protons. By ¢t ~ 3minutes the temperature had fallen to
T ~ 109K so protons and neutrons could begin to bind themselves into deuterons via the
process

p+n=d+y. 1
The chemical equilibrium relation for this reaction, see equation (6.6.3), is
Up + n = a, 2

since the chemical potential of the blackbody photons is zero. At these temperatures and
densities the protons, neutrons, and deuterons can be treated as classical ideal gases.

9The neutrino elastic scattering cross-section scales like the fourth power of the energy, so the collisions are both
very rare and involve very small energy and momentum transfers. This makes direct laboratory detection of the cosmic
neutrino background (CvB) infeasible at present; see Gelmini (2005).
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The proton and neutron are spin-% particles so they have two spin states each while the
deuteron is spin-1 and has three spin states:

wp = mpc2 + kTIn (nﬂf,) —kTIn2, (3a)
fin = Mpc? + kTln (nnxi) —kTIn2, 3b)
wa = mgc® + kT1n (ndkfi) —kTIn3. (30)

The binding energy of the deuteron is j = mpc® + m,c® — mgc? = 2.20MeV. Since the
deuteron is approximately twice as massive as protons or neutrons, the deuteron number
density is given by

3
ePen ~ —zn,,n,,k3 ePeb. 4)

The total number density of baryons is determined by the baryon-to-photon ratio: »:
ng = nn, = np+ Ny + 2n,. The neutron number density is gng = n, + ng4, so the deuteron
fraction is given by

n

fi= =2 =a-qg-fpa-fos (5)
np

where the parameter s is

3/2
. 12;(3)( kT ) yebon; -

VT \mpc?

see also equation (9.1.5). Equation (5) is similar to the Saha equation for the ionization of
hydrogen atoms that will be discussed in Section 9.8 and has solution

_1+s—/(0+92-4s%q(1 - q)
- 2s )

fa @)

For high temperatures, s is small and f; ~ g(1 — g)s while for low temperatures, s is large
and f; =~ g, that is, all the neutrons are bound into deuterons. The deuterium fraction as a
function of temperature is shown in Figure 9.7. The small values of the baryon-to-photon
ratio n and e;/m,c? delayed the nucleosynthesis until the temperature had fallen to

p
32\ ’
In| 1 mpc? /
n\ e

providing the time for the neutron fraction to have decayed to g = 0.12.

kT, ~ (8)
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FIGURE 9.7 Plot of the equilibrium deuterium fraction f; versus temperature T for neutron fraction g =0.12
and baryon-to-photon ratio n = 6 x 10710, As T falls below about 6 x 108K the neutrons are nearly all bound into
deuterons. Further two-body reactions convert most of the deuterium into heavier nuclei, primarily He.

The simple equilibrium calculation presented here assumes that no further reactions
take place. Including the fast nonequilibrium two-body reactions, namely

d+d—3H+p+y, (9a)
d+d—3He+n+y, (9b)
d+3H —>*He+n+y, (90)
d+3He »'He+p+y, (9d)

results in almost all of the deuterons being cooked into the very stable isotope *He and
small amounts of other light nuclei. Since each *He nucleus is composed of two protons
and two neutrons, this gives a helium mass fraction of 2g = 24 percent and proton mass
fraction of 1 — 2g = 76 percent. The complete calculation involves nonequilibrium effects
modeled with rate equations for each of the nuclear interactions, including those for heav-
ier isotopes, but that only changes the predicted concentration for *He slightly;!' see
Weinberg (2008). The largest theoretical uncertainty is, remarkably, the uncertainty in the
radioactive decay time of the neutron in equation (9.4.8); see Copi, Schramm, and Turner
(1997). Calculations of this type were first performed by Gamow, Alpher, and Herman in the
late 1940s and early 1950s. Based on current amounts of helium and other light elements

UNuclear reactions continued slowly at a rate that had fallen out of equilibrium and shifted the isotopic ratios until
about 7 ~ 10 minutes.
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in the universe, Alpher and Herman predicted a 5K cosmic microwave background over a
decade before Penzias and Wilson’s discovery; see footnote 6.

9.8 Recombination

After the nucleosynthesis took place in the first few minutes, the universe continued to
cool, with the nuclei and electrons remaining as an ordinary plasma in thermal equilib-
rium with the photons. It took several hundred thousand years for the temperature to drop
below the atomic ionization energies of a few electron volts needed for nuclei to capture
electrons and form atoms. Hydrogen was the last neutral species to form since it has the
smallest ionization energy of a Rydberg (1Ry = mee* /8¢5 h? = 13.6057 eV). At first glance,
one would think that atoms form when the temperature falls below Ry/k =158,000K
but, as we will see, the huge number of photons per proton delayed recombination until
T ~ 3000K. Once all the electrons and protons formed into neutral hydrogen atoms, the
universe became transparent due to the last scattering of radiation from free electrons.
These CMB blackbody photons were suddenly free to propagate and hence have been
traveling unscattered since that time.

The recombination reaction (that is, the inverse of the hydrogen photoionization
reaction) is

p+e=H+y, ()
so the chemical equilibrium relation from Section 6.6 gives
Up+ e = UH (2)

since, again, the chemical potential of the blackbody photons is zero.'? At the temperatures
and densities prevailing during this era (a few thousand degrees Kelvin and only about 10°
atoms per cubic meter), the electrons, protons, and hydrogen atoms can all be treated as
classical ideal gases, with the result

pp = mpc® + kTn(np) — kTIn2, (3a)
e = MeC® + len(ne)Lg) —kTIn2, (3b)
pn = muc® 4+ kTIn(ngrd) — kT1n4. (3c)

The binding energy of hydrogen is myc? + mec® — myc® = 1Ry. The equilibrium condition
(6.6.3) and the ideal gas chemical potential (6.6.5) then give a simple relation between the
number densities of the three species:

nyg = n,,ne)\geﬂRy, 4)

12The same reaction occured for the deuterons that remained after nucleosynthesis at ¢ ~ 3 minutes but the density
of the deuterons was 3 x 10~ times the proton density; refer to Figure 9.4.
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where

o= ®

V2rnmekT

is the electron thermal deBroglie wavelength. The number densities of free electrons and
protons are the same due to charge neutrality:

Ne = Np. (6)

The protons remaining after nucleosynthesis are either free or combined into hydrogen
atoms, so

np+nyg=1-2q)ng=(1-2q9)nn,. @)

Putting equations (3), (4), (6), and (7) together and making use of (9.1.5) gives the Saha
equation for the neutral hydrogen fraction:

ng 2
= =1 - fip)?s, 8
fu P (I—fi)“s )
where the parameter s is
3/2
s= 453,/ 20 -2 (k—Tz) . )
T MeC

The solution to equation (8), namely

1425 —4/1+4s

Ju 75

) (10)

is shown in Figure 9.8. At temperatures above the recombination temperature, s is small so
fr is small, making the plasma fully ionized. At low temperatures s is large so fiy approaches
unity, leaving just neutral atoms. The small values of the baryon-to-photon ratio n and
Ry/me.c? make the onset of recombination at temperature

Ry
ln<% (%)3/3 |

which delays the last scattering until T ~ 3000K; see Figure 9.8.

kT, ~ 1n
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FIGURE 9.8 The equilibrium neutral hydrogen fraction as a function of temperature for baryon-to-phonon ratio
n=6x 10710 and proton fraction 1 —2q = 0.76. By the time temperature T = 3000K, 99.5 percent of the free
protons and electrons had combined into neutral hydrogen resulting in “last scattering” and the universe became
transparent. The age of the universe at that time was about 380,000 years.

9.9 Epilogue

The formation of neutral atoms about 380,000 years after the Big Bang effectively
ended the scattering of photons from free charges. The universe became transparent and
entered the “dark ages” before the first star formation. The CMB photons were no longer
in equilibrium but maintained their Planck distribution as the universe expanded. Small
density fluctuations that were present in the electron—-proton plasma just before recom-
bination were imprinted on the CMB as temperature fluctuations. The CMB shown in
Figure 9.3 earlier displays temperature fluctuations of the order of 200 1K that represent
the density fluctuations in the plasma at the time of recombination. These small mass
density fluctuations led to gravitational clumping that resulted in the formation of the first
stars and galaxies 100 to 200 million years after the Big Bang. The large fraction of nonbary-
onic cold dark matter was crucial in this process. Early stars that exploded as supernovae
spewed their heavy elements (carbon, oxygen, silicon, iron, gold, uranium, etc.) into the
cosmos. Our own solar system formed from a gas and dust cloud that included heavy
elements that had been created in an earlier supernova event. Indeed, “we are stardust.”!

3Joni Mitchell, Woodstock; copyright © Siquomb Publishing Company:
“We are stardust
Billion year old carbon
We are golden
Caught in the devil’s bargain
And we’ve got to get ourselves
back to the garden”
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Problems

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

Use the Hubble expansion relation (9.1.1), the temperature scaling relation (9.1.3), and the energy
density relation before the electron-positron annihilation (9.3.6b) to show that the temperature as a

function of time during the first second of the universe was T(t) ~ 10'°K &?25.

Determine the average energy per particle and average entropy per particle for the photons,
electrons, positrons and neutrinos during the first second of the universe.

While the electromagnetic interaction between the photons and the charged electrons and
positrons kept them in equilibrium with each other during the early universe, show that the direct
electromagnetic Coulomb interaction energy between the electrons and positrons was small
compared to the relativistic kinetic energy of those species. Show that the ratio between the
Coulomb and kinetic energies is of the order of the fine structure constant:

Ucoulomb e 1
—— Ny = =

Ue 4reghc ~ 137.036°

Show that during the early part of the electron-positron annihilation era, the ratio of the electron
number density to the photon number density scaled with temperature as

3/2
n- _ng kT 5
?y A E ~ (mecz) exp(—ﬁmec )

Show that after nearly all of the positrons were annihilated and the electron number density had
nearly leveled off at the proton density, the ratio of the positron number density to the photon
number density scaled with temperature as

n+ ( kT )3/2 exp(—Zﬁmecz).

ny MeC?

After the positrons were annihilated, the energy density of the universe was dominated by the
photons and the neutrinos. Show that the energy density in that era was: t = (1+ (4/1D*3)u,,.
Next, use the Hubble expansion relation (9.1.1), the temperature scaling relation (9.1.3), and the
energy density after the electron-positron annihilation to show that the photon temperature as a

function of time was T(f) ~ 10'1°K / 1788 This relation held from ¢ ~ 1005 until £ ~ 200,000 years

when the energy density due to baryonic and cold dark matter began to dominate.

How would the primordial helium content of the universe have been affected if the present cosmic
background radiation temperature was 27K instead of 2.7 K? What about 0.27K?

Gold-on-gold nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven
National Laboratory create a quark-gluon plasma with an energy density of about 4 GeV/fm3; see
Adare et al. (2010). Treat nuclear matter as composed of a noninteracting relativistic gas of quarks
and gluons. Include the low-mass up and down quarks and their antiparticles (all spin-%), and
spin-1 massless gluons. Like photons, the gluons are bosons, have two spin states each, and are their
own antiparticle. There are eight varieties of gluons that change the three color states of the quarks.
Only the strongly interacting particles need to be considered due to the tiny size of the plasmas.
What is the temperature of the quark-gluon plasma?

Calculate the energy density versus temperature very early in the universe when the tempera-
tures were above kT = 300 MeV. At those temperatures, quarks and gluons were released from
individual nuclei. Treat the quark-gluon plasma as a noninteracting relativistic gas. At those
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temperatures, the species that are in equilibrium with one other are: photons, the three neutrino
species, electrons and positrons, muons and antimuons, up and down quarks and their antiparticles
(all spin-%), and spin-1 massless gluons. Like photons, the gluons are bosons, have two spin states
each, and are their own antiparticle. There are eight varieties of gluons that change the three color
states of the quarks. The strange, charm, top, and bottom quarks and tau leptons are heavier than
300MeV, so they do not contribute substantially at this temperature. Use your result and equation
(9.1.1) to determine the temperature evolution as a function of the age of the universe during this
era and its age when kT ~ 300 MeV.
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Statistical Mechanics of Interacting

Systems: The Method of
Cluster Expansions

All the systems considered in the previous chapters were composed of, or could be
regarded as composed of, noninteracting entities. Consequently, the results obtained,
though of considerable intrinsic importance, may have limitations when applied to sys-
tems that actually exist in nature. For a real contact between the theory and experiment,
one must take into account the interparticle interactions operating in the system. This
can be done with the help of the formalism developed in Chapters 3 through 5 which,
in principle, can be applied to an unlimited variety of physical systems and problems;
in practice, however, one encounters in most cases serious difficulties of analysis. These
difficulties are less stringent in the case of systems such as low-density gases, for which
a corresponding noninteracting system can serve as an approximation. The mathema-
tical expressions for the various physical quantities pertaining to such a system can be
written in the form of series expansions, whose main terms describe the correspond-
ing ideal-system results while the subsequent terms provide corrections arising from the
interparticle interactions in the system. A systematic method of carrying out such expan-
sions, in the case of real gases obeying classical statistics, was developed by Mayer and his
collaborators (1937 onward) and is known as the method of cluster expansions. Its gener-
alization, which equally well applies to gases obeying quantum statistics, was initiated by
Kahn and Uhlenbeck (1938) and was perfected by Lee and Yang (1959a,b; 1960a,b,c).

10.1 Cluster expansion for a classical gas

We start with a relatively simple physical system, namely a single-component, classical,
monatomic gas whose potential energy is given by a sum of two-particle interactions u;;.
The Hamiltonian of the system is then given by

1 ..

H:Z(Zmp,?>+zj;uij (i,j=1,2,...,N); o))
13 1<

the summation in the second part goes over all the N(IN — 1)/2 pairs of particles in the

system. In general, the potential u;; is a function of the relative position vector ryj(= rj — r;);
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however, if the two-body force is a central one, then the function u;; depends only on the
interparticle distance rj;.

With the preceding Hamiltonian, the partition function of the system is given by, see
equation (3.5.5),

1 1
QN(V;T):]WV/GXP{—ﬁ2<2rnp?>_ﬂzuij}d3di3Nr. @)
i

i<j

Integration over the momenta of the particles can be carried out straightforwardly, with
the result

1 1
vV, 1) = oy / exp [ —ﬂzuif]dwr: N ANV, 3)

i<j

where A{= h/(2nmkT)'/?} is the mean thermal wavelength of the particles, while the
function Zy(V, T) stands for the integral over the space coordinates ry,ry,...,ry:

Znv,T) = f exp[— ISZuij]dSNr= f [T na™r. 4)

i<j i<j

The function Zy(V, T) is generally referred to as the configuration integral of the system.
For a gas of noninteracting particles, the integrand in (4) is unity; we then have

N

NI ®)

zZQw, =vN and QV(V,T)=

in agreement with our earlier result (3.5.9).
To treat the nonideal case we introduce, after Mayer, the two-particle function fj;,
defined by the relationship

fi=ePui—1. ©6)

In the absence of interactions, the function fj; is identically zero; in the presence of interac-
tions, it is nonzero but at sufficiently high temperatures it is quite small in comparison with
unity. We, therefore, expect that the functions f;; would be quite appropriate for carrying
out a high-temperature expansion of the integrand in (4).

A typical plot of the functions u;; and f;; is shown in Figure 10.1; we note that (i) the
function fj; is everywhere bounded and (ii) it becomes negligibly small as the interparticle
distance r;; becomes large in comparison with the “effective” range, ro, of the potential.
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FIGURE 10.1 A typical plot of the two-body potential function u;; and the corresponding Mayer function f;;.

Now, to evaluate the configuration integral (4), we expand its integrand in ascending
powers of the functions f;;:

ZN(V,T) = /H(l +fpdir - dPry

i<j
:[|:1+Zﬁ'j+2ﬁ'jfkl+"']dsrl"'der- @

A convenient way of enumerating the various terms in (7) is to associate each term with a
corresponding N-particle graph. For instance, if N were 8, the terms

tA=/]%4f68d3r1-~-d3r8 and tB:/fIZfl4f67d3rl“‘d3r8 8

in the expansion of the configuration integral Zg could be associated with the 8-particle

graphs
ONORONG) ONOXOJO
5000 ™ 506 ©

respectively. A closer look at the terms t4 and t5 (and at the corresponding graphs) suggests
that we better regard these terms as suitably factorized (and the graphs correspondingly
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decomposed), that is,

tA—/d3r1/d3r2/d3r5/d3r7/f34d3r3d3r4/f68d3r6d3r3

2 ONORORGH (10

and similarly

tB:/d3r3/d3r5/d3r8[f12f14d3r1d3r2d3r4/f67d3r6d3r7

(1)
s[@].@].[].[].[ ]. (1)

We may then say that the term f4 in the expansion of the integral Zg represents a
“configuration” in which there are four “clusters” of one particle each and two “clusters” of
two particles each, while the term 75 represents a “configuration” in which there are three
“clusters” of one particle each, one “cluster” of two particles and one “cluster” of three
particles.

In view of this, we may introduce the notion of an N-particle graph which, by definition,
is a “collection of N distinct circles, numbered 1,2,...,N, with a number of lines linking
some (or all) of the circles”; if the distinct pairs (of circles), which are linked through these
lines, are denoted by the symbols «, 8, ..., A (each of these symbols denoting a distinct pair
of indices out of the set 1,2,..., N), then the graph represents the term

/ s fodry —-dry 12)

of expansion (7). A graph having the same number of linked pairs as this one but with the
set (o/,8,...,1)) distinct from the set («, 8,...,A) will be counted as a distinct graph, for it
represents a different term in the expansion; of course, these terms will belong to one and
the same group in the expansion. Now, in view of the one-to-one correspondence between
the various terms in the expansion (7) and the various N-particle graphs, we have

Zn(V,T) = sum of all distinct N-particle graphs. (13)

Further, in view of the possible factorization of the various terms (or the possible decom-
position of the various graphs), we may introduce the notion of an I-cluster which, by
definition, is an “/-particle graph in which each of the [ circles, numbered 1,2,...,/, is
directly or indirectly linked with every other circle.” As an example, we write here a
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5-particle graph, which is also a 5-cluster:

(1) (2
= /fl2f14f15fzsf34d3 r--drs. (14)
(3 (4) (5)

Itis obvious that a cluster as such cannot be decomposed into simpler graphs inasmuch
as the corresponding term cannot be factorized into simpler terms. Furthermore, a group
of [ particles (except when [ = 1 or 2) can lead to a variety of /-clusters, some of which may
be equal in value; for instance, a group of three particles leads to four different 3-clusters,

namely
(15)

of which the first three are equal in value. In view of the variety of ways in which an /-cluster
can appear, we may introduce the notion of a cluster integral b;, defined by

by (V,T)= x (the sum of all possible I-clusters). (16)

130Dy

So defined, the cluster integral b;(V,T) is dimensionless and, in the limit V — oo,
approaches a finite value, b;(T), which is independent of the size and the shape of the
container (unless the latter is unduly abnormal). The first property is quite obvious. The
second one follows by noting that if we hold one of the [ particles fixed, at the point r;
say, and carry out integration over the coordinates of the remaining (I — 1) particles, then,
because of the fact that the functions f;; extend only over a small finite range of distances,
this integration would extend only over a limited region of the space available — a region
whose linear dimensions are of the order of the range of the functions fj;' the result of
this integration will be practically independent of the volume of the container.? Finally, we
integrate over the coordinates ry of the particle that was held fixed and obtain a straight
factor of V; this cancels out the V in the denominator of the defining formula (16). Thus,
the dependence of the cluster integral b;(V,T) on the size of the container is no more
than a mere “surface effect” — an effect that disappears as V — oo, and we end up with
a volume-independent number 5;(T).

'Hence the name “cluster.”
20f course, some dependence on the geometry of the container will indeed arise if the fixed particle happened to be
close to the walls of the container. This is, however, unimportant when V — oco.



304 Chapter 10  Statistical Mechanics of Interacting Systems

Some of the simpler cluster integrals are

1 1
bl:V[CD]:V/dSrlEI’

1 1 3. 3
b2=m[®—®]=m//f12d ndr

o0
~ %/ﬁgd?’rlg = %T/f(r)rz dr 17
0
oo
- 2; /( e UO/KT _1yp24r, (18)

0

b3 = x [sum of the clusters (15)]

618V

= oo | izfia +fiafoa + fiafoa + fafiafior d*r dradry

6)\6V [SV//ﬁ2f13d3r12d3713 + V/ fi2fizfozd r12d3r13]
1
=2b3 + 56 //flzﬁsfzsdgrlzdghs, (19)

and so on.

We now proceed to evaluate the crucial expression in (13). Obviously, an N-particle
graph will consist of a number of clusters of which, say, m; are l-clusters, m, are 2-clusters,
mg are 3-clusters, and so on; the numbers {m;} must satisfy the restrictive condition

N
> lmy=N, m=0,12,...,N. (20)
=1

However, a given set of numbers {m;} does not specify a unique, single graph; it represents
a “collection of graphs” the sum total of which may be denoted by the symbol S{m;}. We
may then write

Zn(V,T) = D Stmy), 1)
{my}

where the primed summation Y’ goes over all sets {m;} that conform to the restrictive
condition (20). Equation (21) represents a systematic regrouping of the graphs, as opposed
to the simple-minded grouping that first appeared in equation (7).
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Our next task consists of evaluating the sum S{m;}. To do this, we observe that the
“family of graphs” under the distribution set {7} arises essentially from the following two
causes:

(i) there are, in general, many different ways of assigning the N particles of the system to
the ), m clusters, and

(ii) for any given assignment, there are, in general, many different ways of forming the
various clusters, for even with a given group of [ particles an I-cluster (if / > 2) can be
formed in a number of different ways; see, for example, the four different ways of
forming a 3-cluster with a given group of three particles, as listed in (15).

For cause (i), we obtain a straightforward factor of

N! N!

(AhHmihymz ...~ H(l!;ml' (22)
1

Now, if cause (ii) were not there, that is, if all /-clusters were unique in their formation,
then the sum S{m;} would be given by the product of the combinatorial factor (22) with
the value of any one graph in the setup, namely

1_[ (the value of an I-cluster)™, (23)
1

further corrected for the fact that any two arrangements that differ merely in the exchange
of all the particles in one cluster with all the particles in another cluster of the same size,
must not be counted as distinct, the corresponding correction factor being

[ Ja/mh. (24)
1

A little reflection now shows that cause (ii) is completely and correctly taken care of if we
replace the product of the expressions (23) and (24) by the expression®

l_[ [ (the sum of the values of all possible I-clusters)™! /m;!] (25)
!

which, with the help of equation (16), may be written as
I1 [(bll! H30=Dyymy ] 26)
I

3To appreciate the logic behind this replacement, consider expression [ ] in (25) as a multinomial expansion and
interpret the various terms of this expansion in terms of the variety of the /-clusters.
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The sum S{m;} is now given by the product of factor (22) and expression (26). Substituting
this result into (21), we obtain for the configuration integral

' V™1
Zn(V, Ty = NSV Y [HKblﬁ) mz'ﬂ @7
l !

{my}
Here, use has been made of the fact that

H()‘Sl)ml — )LSEllml — }LSN’ (28)
1

see the restrictive condition (20). The partition function of the system now follows from
equations (3) and (27), with the result

Qn(V,T) = Z/ [ﬁ { (bz%)ml th'}:| (29)

tmud |y

The evaluation of the primed sum in (29) is complicated by the restrictive condi-
tion (20), which must be obeyed by every set {m;}. We, therefore, move over to the grand
partition function of the system:

Q= V, 1) =) 2NQuV, 1. (30)
N=0
Writing
ZN — ZEllml — l_[(zl)mlr (31)

l

substituting for Qn(V, T) from (29), and noting that a restricted summation over sets {m;},
subject to the condition ), Im; = N, followed by a summation over all values of N (from
N =0to N = o0) is equivalent to an unrestricted summation over all possible sets {m;}, we

obtain
= A%N!
(e5) "

=1

()" )

ml=0

Qi V,T) = Z {
ml,mz,...:O
=1

= v e 14
= 1—[ [exp (blzl)\—sﬂ =exp |:Z blzl)\s:| (32)
I=1

=1
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and, hence,
1 1,
yne=-5>"hd. (33)
=1
In the limit V — oo,
P _ 1 1o
L= Lim (Vln(,‘z> -5 ; b, (34)
and
N z dln@ J
— = Li == .
v vinc}o(V 9z ) 33 l;lblz (35)

Equations (34) and (35) constitute the famous cluster expansions of the Mayer—Ursell for-
malism. Eliminating the fugacity z among these equations, we obtain the equation of state
of the system.

10.2 Virial expansion of the equation of state

The approach developed in the preceding section leads to exact results only if we apply it to
the gaseous phase alone. If we attempt to include in our study the phenomena of conden-
sation, the critical point, and the liquid phase, we encounter serious difficulties relating
to (i) the limiting procedure involved in equations (10.1.34) and (10.1.35), (ii) the conver-
gence of the summations over /, and (iii) the volume dependence of the cluster integrals
b;. We, therefore, restrict our study to the gaseous phase alone. The equation of state may
then be written in the form

-1
P & A3
=) <V) , M
=1

where v(= V/N) denotes the volume per particle in the system. Expansion (1), which
is supposed to have been obtained by eliminating z between equations (10.1.34) and
(10.1.35), is called the virial expansion of the system and the numbers a;(T) the virial coef-
ficients.* To determine the relationship between the coefficients a; and the cluster integrals
b;, we invert equation (10.1.35) to obtain z as a power series in (A3 /v) and substitute this

4For various manipulations of the virial equation of state, see Kilpatrick and Ford (1969).
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into (10.1.34). This leads to equation (1), with

ay=b= 1, 2
2 o0

a=—bp = —)L—Z/. (e‘””)/kT - 1) rAdr, 3)

o0 o0
2 1 3.3

az=4b; —2b3 = —ﬁ//flzﬁsfzsd r12d°113, (4)
00

d4:_20bg+1852ﬁ3—3b4:, (5)

and so on; here, use has also been made of formulae (10.1.17) to (10.1.19). We note that

the coefficient a; is completely determined by the quantities b, b2, ..., b;, that is, by the

sequence of configuration integrals 71,725, ..., Z;; see also equations (10.4.5) to (10.4.8).
From equation (4) we observe that the third virial coefficient of the gas is determined

solely by the 3-cluster ;( )z . This suggests that the higher-order virial coefficients may

also be determined solely by a special “subgroup” of the various /-clusters. This is indeed
true, and the relevant result is that, in the limit of infinite volume,®
l—

1
al:_T’Bl*l (I1=2), 6)

where 8;_, is the so-called irreducible cluster integral, defined as

1

m x (the sum of all irreducible I-clusters); 7

Bl-1=

by an irreducible I-cluster we mean an “I-particle graph that is multiply-connected (in the
sense that there are at least two entirely independent, nonintersecting paths linking each
pair of circles in the graph).” For instance, of the four possible 3-clusters, see (10.1.15),
only the last one is irreducible. Indeed, if we express equation (4) in terms of this particular
cluster and make use of definition (7) for 82, we do obtain for the third virial coefficient

2
as = —gﬂz, 8

in agreement with the general result (6).°
The quantities 8;_;, like b;, are dimensionless and, in the limit V — oo, approach
finite values that are independent of the size and the shape of the container (unless the

5Fora proof of this result, see Hill (1956, Sections 24 and 25); see also Section 10.4 of the present text.
51t may be mentioned here that a 2-cluster is also regarded as an irreducible cluster. Accordingly, 1 = 2b,; see
equations (10.1.16) and (10.2.7). Equation (3) then gives: a, = —b, = — % B1, again in agreement with the general result (6).
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latter is unduly abnormal). Moreover, the two sets of quantities are mutually related; see
equations (10.4.27) and (10.4.29).

10.3 Evaluation of the virial coefficients

If a given system does not depart much from the ideal-gas behavior, its equation of state
is given adequately by the first few virial coefficients. Now, since a; = 1, the lowest-order
virial coefficient that we need to consider here is a,, which is given by equation (10.2.3):

[e¢]

2
= —bp = TZ / (1 e O*T) 2 ar, M
0

u(r) being the potential energy of interparticle interaction. A typical plot of the function
u(r) was shown earlier in Figure 10.1; a typical semi-empirical formula (Lennard-Jones,
1924) is given by

o-e[(2)-©)]

The most significant features of an actual interparticle potential are well-simulated by the
Lennard-Jones formula (2). For instance, the function u(r) given by (2) exhibits a “mini-
mum,” of value —e¢, at a distance ro(= 21/65) and rises to an infinitely large (positive) value
for r < o and to a vanishingly small (negative) value for r >> 0. The portion to the left of the
“minimum” is dominated by repulsive interaction that comes into play when two particles
come too close to one another, while the portion to the right is dominated by attractive
interaction that operates between particles when they are separated by a respectable dis-
tance. For most practical purposes, the precise form of the repulsive part of the potential
is not very important; it may as well be replaced by the crude approximation

u(r) =+oo (forr <rnp), 3)

which amounts to attributing an impenetrable core, of diameter ry, to each particle. The
precise form of the attractive part is, however, important; in view of the fact that there
exists good theoretical basis for the sixth-power attractive potential (see Problem 3.36),
this part may simply be written as

u(r) = —ug(ro/n°  (r = o). @
The potential given by expressions (3) and (4) may, therefore, be used if one is only inter-

ested in a qualitative assessment of the situation and not in a quantitative comparison
between the theory and experiment.
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Substituting (3) and (4) into (1), we obtain for the second virial coefficient

) o0
_27T 2 Uug (1o 6 2
ag_k—g fr dr—i—/[l—exp{ﬁ(?) ”r dr|. (5)
0 )

The first integral is straightforward; the second one is considerably simplified if we
assume that (uo/kT) < 1, which makes the integrand very nearly equal to —(uo/kT)(r/1)5.
Equation (5) then gives

2nr3 U
=33 (1-57) ®

Substituting (6) into the expansion (10.2.1), we obtain a first-order improvement on the
ideal-gas law, namely

kT 2nr3 U
P_U{1+ 3 (1——) (7a)

(7b)

=E{1+BZ(T)},sa
v v

The coefficient By, which is also sometimes referred to as the second virial coefficient of
the system, is given by

3
By = a3~ Z”Sro (1- %) ®)

In our derivation it was explicitly assumed that (i) the potential function u(r) is given
by the simplified expressions (3) and (4), and (ii) (uo/kT) <« 1. We cannot, therefore, expect
formula (8) to be a faithful representation of the second virial coefficient of a real gas. Nev-
ertheless, it does correspond, almost exactly, to the van der Waals approximation to the
equation of state of a real gas. This can be seen by rewriting (7a) in the form

-1
2nriu kT 2nrd kT 2nrd
P+ T %o ~— |1+ 7o ~— 11— 7o ,
32 v 3v v 3v

which readily leads to the van der Waals equation of state

a
<P+ 7) (v—b) ~ kT, €)
1%
where
2713 2713
a:y and b= Zroz4vo. (10)
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FIGURE 10.2 A dimensionless plot showing the temperature dependence of the second virial coefficient of several
gases (after Hirschfelder et al., 1954).

We note that the parameter b in the van der Waals equation of state is exactly four times
the actual molecular volume vy, the latter being the “volume of a sphere of diameter ry”;
compare with Problem 1.4. We also note that in this derivation we have assumed that
b « v, which means that the gas is sufficiently dilute for the mean interparticle distance to
be much larger than the effective range of the interparticle interaction. Finally, we observe
that, according to this simple-minded calculation, the van der Waals parameters a and b
are temperature-independent, which in reality is not true.

A realistic study of the second virial coefficient requires the use of a realistic potential,
such as the one given by Lennard-Jones, for evaluating the integral in (1). This has indeed
been done and the results obtained are shown in Figure 10.2, where the reduced coefficient
B, (=Bz/ rg) is plotted against the reduced temperature T’ (= kT/¢):

oo
L(T') = 27 / (1—e @) 2 ar, (1n
0

L 1 12 1 6
r r

r’ being equal to (r/ro); expressed in this form, the quantity B, is a universal function of
T'. Included in the plot are experimental results for several gases. We note that in most
cases the agreement is reasonably good; this is especially satisfying in view of the fact
that in each case we had only two adjustable parameters, ro and ¢, against a much larger
number of experimental points available. In the first place, this agreement vindicates

with
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the adequacy of the Lennard-Jones potential for providing an analytical description of a
typical interparticle potential. Secondly, it enables one to derive empirical values of the
respective parameters of the potential; for instance, one obtains for argon: ro =3.82 A
and ¢/k = 120K.” One cannot fail to observe that the lighter gases, hydrogen and helium,
constitute exceptions to the rather general rule of agreement between the theory and
experiment. The reason for this lies in the fact that in the case of these gases quantum-
mechanical effects assume considerable importance — more so at low temperatures. To
substantiate this point, we have included in Figure 10.2 theoretical curves for H, and He
taking into account the quantum-mechanical effects as well; as a result, we find once again
a fairly good agreement between the theory and experiment.

As regards higher-order virial coefficients (I > 2), we confine our discussion to a gas of
hard spheres with diameter D. We then have

0 ifr>D,
= 13
u(n {oo ifr <D, (13)
and, hence,
Fr = 0 ifr>D, (14)
“]-1 ifr<b.

The second virial coefficient of the gas is then given by

2n D3 1)
ap = =4—; 15
2= 33 3 (15)

compare with equation (6). The third virial coefficient can be determined with the help of
equation (10.2.4), namely

oo
1
a3=—7275 fizfizfosd®rizd® 1. (16)

0

To evaluate this integral, we first fix the positions of particles 1 and 2 (such that r;» < D)
and let particle 3 take all possible positions so that we can effect an integration over the
variable r3; see Figure 10.3. Since our integrand is equal to —1 when each of the distances
r13 and rp3 (like rq2) is less than D and 0 otherwise, we have

D

1 "3 3

a3=7% {/ d rlS}d 2, 17)
I’12=0

where the primed integration arises from particle 3 taking all possible positions of interest.
In view of the conditions r13 < D and r»3 < D, this integral is precisely equal to the “volume

7Corre'sponding values for various other gases have been summarized in Hill (1960, p. 484).
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23

FIGURE 10.3 1

FIGURE 10.4

common to the spheres S; and S», each of radius D, centered at the fixed points 1 and
2”; see Figure 10.4. This in turn can be obtained by calculating the “volume swept by the
shaded area in the figure on going through a complete revolution about the line of centers.”
One gets:

, VIDP=(112/2)%]
/ d®ris = / {Z(D2 —yz)l/2 - rlz} 2nydy. (18)
0

While the quantity within the curly brackets denotes the length of the strip shown in the
figure, the element of area 27y dy arises from the revolution; the limits of integration for
y can be checked rather easily. The evaluation of the integral (18) is straightforward;
we get

! 4x 3D%r, 13
Bpa— 2L I3 _ 12 T2
/ a’r3 3 { 1 + 16 (19)
Substituting (19) into (17) and carrying out integration over r;2, we finally obtain

e — 572D%
37 7186

5 5
= o (20)
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The fourth virial coefficient of the hard-sphere gas has also been evaluated exactly. It is
given by (Boltzmann, 1899; Majumdar, 1929) 8

1283 3 73/(2)+1377{tan"! J/(2) —7/4} | 4
ag = + - a,
8960 ' 2 11207
= 0.28695a;. 1)

The fifth and sixth virial coefficients of this system have been computed numerically, with
the results (Ree and Hoover, 1964)

as = (0.1103 £ 0.003)@1, (22)
and
ag = (0.0386 + 0.004)(12. (23)

Ree and Hoover’s estimate of the seventh virial coefficient is 0.0127a$. Terms up through
10th order have been determined numerically; see Hansen and McDonald (1986) and
Malijevsky and Kolafa (2008). If the virial equation of state for hard spheres is written in
terms of the volume packing fraction = 7nD?3/6, the first ten terms are

P
=1t 1072 4 18.364768,° + 28.224457* + 39.815457°

+53.34187% 4 68.53477 + 85.8051% +105.87 + - - - . (24)

Carnahan and Starling (1969) proposed a simple form for the equation of state that
closely approximates all of the known virial coefficients:

P 14+n+n*—n°
nkT 1-n3

=1+ 4n+ 109% + 187> + 28n* + 40°

+ 5415 +70n" + 8818 + 1081 + 130710 + ... (25)

This gives an excellent fit to the hard sphere equation of state for the entire fluid phase
as determined in computer simulations. The fluid phase is the equilibrium phase for
0 < 1 £0.491. The high-density equilibrium phase of hard spheres is a face-centered cubic
solid; see Chapter 16. Many other approximate analytical forms have also been proposed
to closely reproduce the virial series; see for instance Mulero et al. (2008).

8See also Katsura (1959).
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10.4 General remarks on cluster expansions

Shortly after the pioneering work of Mayer and his collaborators, Kahn and Uhlenbeck
(1938) initiated the development of a similar treatment for quantum-mechanical systems.
Of course, their treatment applied to the limiting case of classical systems as well but it
faced certain inherent difficulties of analysis, some of which were later removed by the
formal methods developed by Lee and Yang (1959a,b; 1960a,b,c). We propose to examine
these developments in the next three sections of this chapter. First, however, we would like
to make a few general observations on the problem of cluster expansions. These obser-
vations, due primarily to Ono (1951) and Kilpatrick (1953), are of considerable interest
insofar as they hold for a very large class of physical systems. For instance, the system
may be quantum-mechanical or classical, it may be a multicomponent one or single-
component, its molecules may be polyatomic or monatomic, and so on. All we have to
assume is that (i) the system is gaseous in state and (ii) its partition functions Qn(V, T),
for some low values of N, can somehow be obtained. We can then calculate the “cluster
integrals” b;, and the virial coefficients a;, of the system in the following straightforward
manner.
Quite generally, the grand partition function of the system can be written as

ZUOEVERR M

Qe V,D=) QuV,Nz" =" e

N=0 N=0

where we have introduced the “configuration integrals” Zn(V, T), defined in analogy with
equation (10.1.3) of the classical treatment:

Zn(V,T) = N3N Qu(V, T). )

Dimensionally, the quantity Zy is like (a volume)”'; moreover, the quantity Zy (like Qo) is
supposed to be identically equal to 1, while Z; (= A3Qy) is identically equal to V. We then
have, in the limit V — oo,

pP 1 _1 Z1rzN\Y Zy s z\2
ﬁ=vln@—vh‘{”f(ﬁ) +5 () +} @
1 [o¢]
2732 b“lzl, say. 4)

Again, the last expression has been written in analogy with the classical expansion
(10.1.34); the coefficients b; may, therefore, be looked upon as the cluster integrals of the
given system. Expanding (3) as a power series in z and equating respective coefficients with
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the p; of (4), we obtain

1= %Zl =1, 5)
be = 5y %2 = 2D, ®)
bs = ﬁ (Z3 — 327y +273), @)
ba= M%V(ZL; — 4737y — 375 +122,7¢ — 6Z}), (8)

and so on. We note that, for all / > 1, the sum of the coefficients appearing within the
parentheses is identically equal to zero. Consequently, in the case of an ideal classical gas,
for which Z; = Vi, see equation (10.1.4), all cluster integrals with [ > 1 vanish. This, in turn,
implies the vanishing of all the virial coefficients of the gas (except, of course, a;, which is
identically equal to unity).

Comparing equations (6) through (8) with equation (10.1.16), we find that the expres-
sions involving the products of the various Z; that appear within the parentheses play the
same role here as “the sum of all possible /-clusters” does in the classical case. We there-
fore expect that, in the limit V' — oo, the b; here would also be independent of the size and
the shape of the container (unless the latter is unduly abnormal). This, in turn, requires
that the various combinations of the Z; appearing within the parentheses here must all be
proportional to the first power of V. This observation leads to the very interesting result,
first noticed by Rushbrooke, namely

b1 x (the coefficient of V' in the volume expansion of Z;). 9)

~ 130D

At this stage, it seems worthwhile to point out that the expressions appearing within
the parentheses of equations (6) through (8) are well-known in mathematical statistics as
the semi-invariants of Thiele. The general formula for these expressions is

(.0 = ﬁl{l!)\g(lfl)V}
e (Zi/ i)™
:l!{%}(—l)zz 1[(;%—1)!]:[ ml'” (10)

where the primed summation goes over all sets {m;} that conform to the condition

1
Zimi:l; m; =0,1,2,.... (11
i=1
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Relations inverse to (10) can be written down by referring to equation (10.1.29) of the
classical treatment; thus

r MO (Vi /a3)m
N n{/}

tm) 4 my!

where the primed summation goes over all sets {m;} that conform to the condition

M
Zlmle; m;=0,1,2.... (13)
=1

The calculation of the virial coefficients a; now consists of a straightforward step that
involves a use of formulae (5) through (8) in conjunction with formulae (10.2.2) through
(10.2.5). It appears, however, of interest to demonstrate here the manner in which the gen-
eral relationship (10.2.6) between the virial coefficients a; and the “irreducible cluster inte-
grals” B;_; arises mathematically. As a bonus, we will acquire yet another interpretation of

the .
Now, in view of the relations
P A 1.
b= Lim (Vln(fz) =% 1; biz (14)
and
1 . [(zdna 1 X,
;=VLLTO<V 7 )‘pgl’”z’ (19
we can write
P(z) ; 1 d
Z Z
—_— = ——. 16
kT / v(z) z (16)
0
We introduce a new variable x, defined by
x=n3=23/v. 17
In terms of this variable, equation (15) becomes
o0
x(2) = Z 15,2, (18)

=1

the inverse of which may be written (see Mayer and Harrison, 1938; Harrison and Mayer,
1938; also Kahn, 1938) as

z(x) = xexp{—¢(x)}. (19)
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In view of the fact that, for z « 1, the variables z and x are practically the same, the function
¢ (x) must tend to zero as x — 0; it may, therefore, be expressed as a power series in x:

p0) = prxt. 20)
k=1

It may be mentioned beforehand that the coefficients g of this expansion are ulti-
mately going to be identified with the “irreducible cluster integrals” 8;_; . Substituting from
equations (17), (19), and (20) into equation (16), we get

P(x) xx 1 , 1 [ &
IcT:/A?'{x_d)(x)}dx:)ﬁ[x_/izkﬁka=dx:|
0

0 k=1

. X s k k
- [1 _kz (mﬁkx )} 1)

Combining (17) and (21), we obtain

Pv [ k k
()

k=1

Comparing this result with the virial expansion (10.2.1), we arrive at the desired relation-
ship:
-1

aj=———

7P (I>D. (23)

For obvious reasons, the i appearing here may be regarded as a generalization of the
irreducible cluster integrals of Mayer.

Finally, we would like to derive a relationship between the 8 and the ;. For this, we
make use of a theorem due to Lagrange which, for the present purpose, states that “the
solution x(z) to the equation

z2(x) = x/f (x) (24)

is given by the series

”

> [ a1 ‘
=Y 2| = ; (25)
x(2) j:zlf’ [ dff‘l{f@)}jlzo

itis pbvious that the expression within the square brgckets is (j — 1! times “the coefficient
of £/~1 in the Taylor expansion of the function {f(£)}/ about the point £ = 0.” Applying this
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theorem to the function

oo oo
@) =explpn)} =exp{ > pex* t = [ exp(Bix), (26)
k=1 k=1
we obtain
x(2) = Z (=Dl x the coefficient ofé/~! in the Taylor expansion
j=1"

of l_[ exp(jﬂk%‘k) about & = 0} .
k=1

Comparing this with equation (18), we get

1 : 1 T UJB™ k.
bj=— x Ithe coefficient of £/~ in ][[1 |: Z Tklé M

2
] mkz()

15 (o
1y

— 27)
Jm o e
where the primed summation goes over all sets {m;} that conform to the condition
j-1
D kmp=j-1; mp=0,12,.... (28)
k=1

Formula (27) was first obtained by Maria Goeppert-Mayer in 1937. Its inverse, however,
was established much later (Mayer et al., 1942; Kilpatrick, 1953):

! =2+ 3;m)! — o)™
= (-pzmi1 T : 29
Bi—1 {Zi}( ) a—1! i K (29)

where the primed summation goes over all sets {r;} that conform to the condition

!
Y G-Dmi=1-1 m;=0,1.2,.... (30)
i=2
It is not difficult to see that the highest value of the index i in the set {m;} would be !
(the corresponding set having all its m; equal to 0, except m; which would be equal to 1);
accordingly, the highest order to which the quantities #; would appear in the expression
for B;_; is that of ;. We thus see, once again, that the virial coefficient a; is completely
determined by the quantities by, by, ..., b;.
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10.5 Exact treatment of the second

virial coefficient

We now present a formulation, originally from Uhlenbeck and Beth (1936) and Beth and
Uhlenbeck (1937), that enables us to make an exact calculation of the second virial coeffi-
cient of a quantum-mechanical system from a knowledge of the two-body potential u(r).?
In view of equation (10.4.6),

1 2
o= —ap = 2ﬁv(zz—zl). o))
For the corresponding noninteracting system, one would have

ﬁgo) ) _

—a¥ = 70 - 7\%%); @

2A3V< 2

the superscript (0) on the various symbols here implies that they pertain to the noninteract-
ing system. Combining (1) and (2), and remembering that Z; = 7] 0 =V, we obtain

B — B = (22-2") 3)

2)3V

which, by virtue of relation (10.4.2), becomes
43 N
_ O _ (0) —pi, _—pHY
b2 — by <Q Q )_VTr<e e P2 ). 4)

For evaluating the trace in (4), we need to know the eigenvalues of the two-body
Hamiltonian which, in turn, requires solving the Schrédinger equation!®

HyWy (r1,12) = By Wy (r1,12), (5)
where
[ hz 2 2
Hg——ﬂ< 1+V2)+u(r12). ®6)

Transforming to the center-of-mass coordinates R {: %(rl + 1‘2)} and the relative coordi-
nates r{= (r, — r1)}, we have

Yo (R1) = Yj(R)Yn(r) = { ’<"1R’/"’}w ), (7)

with
2
Pj

2(2m) +én ®

o =

9For a discussion of the third virial coefficient, see Pais and Uhlenbeck (1959).
YFor simplicity, we assume the particles to be “spinless.” For the influence of spin, see Problems 10.11 and 10.12.
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Here, P denotes the total momentum of the two particles and 2m their total mass, while ¢
denotes the energy associated with the relative motion of the particles; the symbol « refers
to the set of quantum numbers j and n that determine the actual values of the variables P
and ¢. The wave equation for the relative motion will be

2(im)

%m being the reduced mass of the particles; the normalization condition for the relative
wavefunction will be

VZ+u(r) § Yn(r) = enn(r), 9)

/ [Yn(r)2d®r = 1. (10)

Equation (4) thus becomes

o _» “BEy _ ~pEY
br— by =) je e —e Pl

o

23 _pp? ©
== e ﬂpf/4m2=e—ﬂ8n—e—ﬂ8n I 1)
j n
For the first sum, we obtain
2 4V | 8l2y
Ze—ﬂPj /am % /e—ﬂp2/4mP2dP: = (12)
j 0
so that equation (11) becomes
0) _ 172 —pe —pel0
ba— by =812) fePen e Fon 1, (13)

n

The next step consists of examining the energy spectra, ¢, and e of the two systems.
In the case of a noninteracting system, all we have is a “continuum”

2 h2k2
e =—F === (k=p/n), (14)
2(m)

with the standard density of states g'® (k). In the case of an interacting system, we may
have a set of discrete eigenvalues ep (that correspond to “bound” states), along with a
“continuum”

h2k?
&n = o (k=p/h), (15)
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with a characteristic density of states g(k). Consequently, equation (13) can be written as

[e¢]

Bo— 5 =812 eFen 4 gl/2 / PR m g () — g© (ko)) dik, (16)
B 0

where the summation in the first part goes over all bound states made possible by the
two-body interaction.

The next thing to consider here is the density of states g(k). For this, we note that, since
the two-body potential is assumed to be central, the wavefunction ¢, (r) for the relative
motion may be written as a product of a radial function x(r) and a spherical harmonic
Y(0,0):

Yiim (1) = Agim X%(r) Y m(0,90). 17

Moreover, the requirement of symmetry, namely v (—r) = v (r) for bosons and ¥ (—r) =
— (r) for fermions, imposes the restriction that the quantum number [ be even for bosons
and odd for fermions. The (outer) boundary condition on the wavefunction may be written
as

xki(Ro) =0, (18)

where Ry is a fairly large value (of the variable r) that ultimately goes to infinity. Now, the
asymptotic form of the function y;(r) is well-known:

l
Xkl(T)CXSiH{kT—g+m(k)}; 19
accordingly, we must have
I
kRo—?-l—nl(k):nrr, n=0,1,2,.... (20)

The symbol 5;(k) here stands for the scattering phase shift due to the two-body potential
u(r) for the Ith partial wave of wave number k.

Equation (20) determines the full spectrum of the partial waves. To obtain from it an
expression for the density of states g;(k), we observe that the wave number difference Ak
between two consecutive states n and n + 1 is given by the formula

dn;(k)
dk

{Ro—|— }Ak:n, (21

with the result that

; (22)

214+1  21+1 on(k
gi(k) = _ {Ro+ it )}

Ak ok
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the factor (2/+ 1) has been included here to take account of the fact that each eigenvalue
k pertaining to an /th partial wave is (2/+ 1)-fold degenerate (because the magnetic quan-
tum number m can take any of the values /, (I — 1),...., —I, without affecting the eigenvalue).
The total density of states, g(k), of all partial waves of wave numbers around the value k is
then given by

(23)

/ 3 k
g =2 g = 2(21+1){R0+ m( )}

note that the primed summation )’ goes over [ = 0,2,4, ... in the case of bosons and over
[=1,3,5,... in the case of fermions. For the corresponding noninteracting case, we have
(since all n;(k) =

g0k = %Z @I+1). (24)
1

Combining (23) and (24), we obtain

g —g® k) = LY @141y k). 25)
T 1 ak

Substituting (25) into (16), we obtain the desired result
81/2 T an(k
bo— b =823 e Pn =) (al+ 1)/e’ﬂh2k2/’"mdk (26)
B T ! ak

which, in principle, is calculable for any given potential u(r) through the respective phase
shifts n;(k).

Equation (26) can be used for determining the quantity &, — Y

» . To determine b, itself,

we must know the value of bg)). This has already been obtained in Section 7.1 for bosons
and in Section 8.1 for fermions; see equations (7.1.13) and (8.1.17). Thus

1
B = 0¥ =+ 7 27)

where the upper sign holds for bosons and the lower sign for fermions. It is worthwhile to
note that the foregoing result can be obtained directly from the relationship

(0) (0) 0)2 (0) 2002
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by substituting for Qg)) the exact expression (5.5.25):

o A3 1V2i1 1A% le_il og)11
=y 2\is) T i) [T2s) |TF e “0)
It is of interest to note that this result can also be obtained by using the classical for-

mula (10.1.18) and substituting for the two-body potential u(r) the “statistical potential”
(5.5.28); thus

o0
5(20) = i—ﬂ / (e*”S(’)/kT - 1) redr
0

o0
27 [ _2nr?pi2 2 1
—+5 [ P = (29)
0
As an illustration of this method, we now calculate the second virial coefficient of a gas
of hard spheres. The two-body potential in this case may be written as

30
0 for r> D. (30)

u(r) = {—i—oo for r<D
The scattering phase shifts ;(k) can now be determined by making use of the (inner)
boundary condition, namely yx () =0 for all r < D and hence it vanishes as r — D from
the above. We thus obtain (see, for example, Schiff, 1968)

_1 JikD)

(D)’ @31

ny(k) = tan

where j;(x) and n;(x) are, respectively, the “spherical Bessel functions” and the “spherical
Neumann functions”:

. sinx . sinx — xcosx
Jot) ===, jit) =",

(3 — x%)sinx — 3xcosx

Jo(x) =

3 Ve
and
CcoSXx CosSXx + xsinx
no(x) = — y mX)=———m—5—,
X X
(3 —x%)cosx+ 3xsinx
n2(x) = —

x3

UThis calculation incidentally verifies the general formula (10.4.9) for the case [ = 2. By that formula, the “cluster
integral” %, of a given system would be equal to 1/(213) times the coefficient of V! in the volume expansion of the
“configuration integral” Z, of the system. In the case under study, this coefficient is +13/2%/2; hence the result.
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Accordingly,

no(k) = tan~{—tan(kD)} = —kD, (32)
_ 1 _tan(kD)—kD _ 1

n (k) = tan { 71+than(kD)}_ {kD — tan™ " (kD)}

kD)3 (kD)5

_ 3) L 5) o 33)
_ .. 1) tan(kD)—3(kD)/[3 — (kD)*]

2(k) = tan { 1+ 3(kD)tan(kD)/[3 — (kD)2]
_ iy eooo1 3KD) | (kD
= {kD tan 3_(kD)2}_ TR (34)

and so on. We now have to substitute these results into formula (26). However, before doing
that we should point out that, in the case of hard-sphere interaction, (i) we cannot have
bound states at all and (ii) since, for all /,7;(0) = 0, the integral in (26) can be simplified by
a prior integration by parts. Thus, we have

1/252 ®
P ) PYCTRSY f e IR My (ke k. (35)
I
0

T

Substituting for / = 0 and 2 in the case of bosons and for / =1 in the case of fermions, we
obtain (to fifth power in D/))

D\! 1072 /D\°
52—}j§0):—2<x> - ;T <K> —..- (Bose) (36)
3 5
- (?) +1872 (%) —...  (Fermi), (37

which may be compared with the corresponding classical result —(27/3)(D/1)3.

10.6 Cluster expansion for a quantum-mechanical
system

When it comes to calculating &; for [ > 2 we have no formula comparable in simplicity to

formula (10.5.26) for by. This is due to the fact that we have no treatment of the /-body
problem (for [ > 2) that is as neat as the phase-shift analysis of the two-body problem.
Nevertheless, a formal theory for the calculation of higher-order “cluster integrals” has
been developed by Kahn and Uhlenbeck (1938); an elaboration by Lee and Yang (1959a,b;
1960a,b,c) has made this theory almost as good for treating a quantum-mechanical sys-
tem as Mayer’s theory has been for a classical gas. The basic approach in this theory is to
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evolve a scheme for expressing the grand partition function of the given system in essen-
tially the same way as Mayer’s cluster expansion does for a classical gas. However, because
of the interplay of quantum-statistical effects and the effects arising from interparticle
interactions, the mathematical structure of this theory is considerably involved.

We consider here a quantum-mechanical system of N identical particles enclosed in a
box of volume V. The Hamiltonian of the system is assumed to be of the form

R &,

HN=—ﬂZvi +Zu(rij>. e))
i=1 i<j

Now, the partition function of the system is given by

Qn(V,T) = Tr(e PNy = 3 e FFa

:Z/{\IJ;‘(I,.,.,N)e’ﬂﬁN\lla(l,...,N)}dsNr, (2)
“v

where the functions ¥, are supposed to form a complete set of (properly symmetrized)
orthonormal wavefunctions of the system, while the numbers 1,...,N denote the posi-
tion coordinates ry,...,ry, respectively. We may as well introduce the probability density
operator Wy of the system through the matrix elements

(U, N WL .., N) = NSV S (W0 (1, Ne PN w2 (L, )
o

= NN (W, (1., NYWEQ,...,N)je Pre. €)

We denote the diagonal elements of the operator WN by the symbols Wi (1,...,N); thus

Wy (,...,N) =NV (W, (1,...,N)wi,...,N)je Pre, ()

whereby equation (2) takes the form

1 1 N
V) = gy [ W N = o T ) ©
14

A comparison of equation (5) with equations (10.1.3) and (10.4.2) shows that the “trace of
the probability density operator Wy” is the analogue of the “configuration integral” Zy,
and the quantity Wy (1,...,N)d®"r is a measure of the probability that the “configuration”
of the given system is found to be within the interval [(r1,...,rN), (r1 +dri,...,ry +dry)l.

Before we proceed further, let us acquaint ourselves with some of the basic properties
of the matrix elements (3):



(i)

(ii)

(iii)

(iv)
(v)
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iy 32| L L o
p

3 1% 13
Ry —
1% K3
—00

— e*}'[|r/1 7r1|2/)L2; (6)

compare with equation (5.3.14) for the density matrix of a single particle. The
foregoing result is a manifestation of the quantum-mechanical, not
quantum-statistical, correlation between the positions r and r’ of a given particle (or,
for that matter, any particle in the system). This correlation extends over distances
of the order of A which is, therefore, a measure of the linear dimensions of the wave
packet representing the particle. As T — oo, and hence A — 0, the matrix element (6)
tends to zero for all finite values of [r] —ry].

1W|1) =1; (7)
consequently, by equation (5),
1 \%
oV, T) = 73/ 1d3r = I )
v

Whatever the symmetry character of the wavefunctions W, the diagonal elements

Wn(1,...,N) of the probability density operator Wy are symmetric in respect of a

permutation among the arguments (1,...,N).

The elements Wy (1,...,N) are invariant under a unitary transformation of the set

{Wo}.

Suppose that the coordinates r1, ..., ry are such that they can be divided into two

groups, A and B, with the property that any two coordinates, say r; and r;, of which

one belongs to group A and the other to group B, satisfy the conditions that

(a) the separation r;; is much larger than the mean thermal wavelength 2 of the
particles, and

(b) itis also much larger than the effective range ry of the two-body potential, then

Wy (ry,...,tN) = Wa(ra)Wg(rp), 9)

where r4 and rp denote collectively the coordinates in group A and group B,
respectively. It is not easy to furnish here a rigorous mathematical proof of this
property, though physically it is quite understandable. One can see this by noting
that, in view of conditions (a) and (b), there does not exist any spatial correlation
between the particles of group A on one hand and the particles of group B on the
other (either by virtue of statistics or by virtue of interparticle interactions). The two
groups, therefore, behave toward each other like two independent entities. It is then
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natural that, to a very good approximation, the probability density Wy of the
composite configuration be equal to the product of the probability densities Wy
and Wj.

We now proceed with the formulation. First of all, to fix ideas about the approach to be
followed, we may consider the case with N = 2. In that case, as 2 — oo, we expect, in view
of property (v), that

W2(1,2) > Wi(HW1(2) = 1. (10

In general, however, W»(1,2) will be different from W;(1)W;(2). Now, if we denote the
difference between W>(1,2) and W (1) W;(2) by the symbol Ux(1,2), then, as rj2 — oo,

Us(1,2) — 0. an
It is not difficult to see that the quantity U,(1,2) is the quantum-mechanical analogue of

the Mayer function fj;. With this in mind, we introduce a sequence of cluster functions U,
defined by the hierarchy'?

(V|Wi 1) = (1|07 1), 12)
(1,2'|Wa|1,2) = (1| U1 1) (2|07 12) + (1, 2'|U211,2), (13)

(1,2/,3'|W3|1,2,3) = (1'|U11)(2'|U112)(3'| U113)
+(U|0111)(2',3'|U2]2,3)
+(2'10112)(1,3|U2]1,3)
+(310113)(1,2'|U2]1,2)
+(1,2,3'|1U3]1,2,3), (14)

and so on. A particular U; is thus defined with the help of the first [ equations of the
hierarchy. The last equation in this hierarchy will be (writing only the diagonal elements)

Wr (Lo N) = 2 SO0+ U020 -+ Uz 01+ | (15)

m} P m, factors my factors

where the primed summation goes over all sets {m;} that conform to the condition

N
Y Imy=N; m=0,12,.... (16)
=1

2The functions U; were first introduced by Ursell, in 1927, in order to simplify the classical configuration integral.
Their introduction into the quantum-mechanical treatment is due to Kahn and Uhlenbeck (1938).
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Moreover, in selecting the arguments of the various U; appearing in (15), out of the num-
bers 1,...,N, one has to remember that a permutation of the arguments within the same
bracket is not regarded as leading to anything distinctly different from what one had
before the permutation; the symbol ), then denotes a summation over all distinct ways
of selecting the arguments under the set {m;}.

Relations inverse to the preceding ones are easy to obtain. One gets

(U10111) = (1|W1]1), 17)
(1,2'10211,2) = (I, 2/[Wa|1,2) — (1| Wy 1) (2| W7 |2), (18)
(1,2,3'|05]1,2,3) = (1',2',3'|W5]1,2,3)

— (V|W1[1)(2,3'|W22,3)

— (2/[Wh|2)(1',3|Wa|1,3)

— (3|Wy[3)(1,2|Wa1,2)
+2(1 | Wy |1)(2'|Wh |2)(3 | W1 3), (19)
and so on; compare the right sides of these equations with the expressions appear-

ing within the parentheses in equations (10.4.5) through (10.4.7). We note that (i) the
coefficient of a general term here is

o (Tm- 1), 20)
1

where ), m; is the number of the W), in the term, and (ii) the sum of the coefficients of
all the terms on the right side of equations (18), (19), ... is identically zero. Moreover, the
diagonal elements Uj(1, ..., 1), just like the diagonal elements of the operators W,,, are sym-
metric in respect of permutations among the arguments (1,...,/), and are determined by
the sequence of the diagonal elements Wy, Ws, ..., W;. Finally, in view of property (v) of the
Wy, as embodied in formula (9), the U; possess the following property:

U,....,hD~0 if rj> a1 (21)

here, r;; is the separation between any two of the coordinates (1,...,1 )18
We now define the “cluster integral” b; by the formula

_ 1 3.
bl(V,T)—m/Ul(l,”,l)d r, (22)

compare with equation (10.1.16). Clearly, the quantity b;(V,T) is dimensionless and, by
virtue of property (21) of the diagonal elements U(1, ..., 1), is practically independent of V/
(so long as V is large). In the limit V — oo, b;(V, T) tends to a finite volume-independent

3This can be seen by examining the break-up of the structure on the right side of any equation in the hierarchy
(18,19, ...) when one or more of the / coordinates in the “cluster” get sufficiently separated from the rest.
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value, which may be denoted by 5;(T). We then obtain for the partition function of the
system, see equations (5) and (15),

1 /
Qv(V,T) = /d3Nr{Z |:Z[U1'“U1][Uz-~~U2]~-~:“ (23)
p

N3N {my}

1 ' N!

x/d3Nr{[U1U1][U2U2]} (24)

In writing the last result we have made use of the fact that, since a permutation among
the arguments of the functions U; does not affect the value of the integral concerned,
the summation over P may be replaced by any one term of the summation, multiplied
by the number of distinct permutations allowed by the set {m;}; compare with the corre-
sponding product of the numbers (10.1.22) and (10.1.24). Making use of the definition (22),
equation (24) can be written as

1 vV | Y
Qu(V, T) = ATN{;} [Tb30-vy™ gty
D=1

3 )l

I=1
again, use has been made of the fact that

lml

3y
]_[(W)’"l —x 1 =), (26)

l

Equation (25) is formally identical to equation (10.1.29) of Mayer’s theory. The subsequent
development of the formalism, leading to the equation of state of the system, is formally
identical to that theory. Thus, we finally obtain
[e.¢] [e.¢]
%:/\%Zblzl and %:)\%Zlblzl. 27
1=1 1=1
There are, however, important physical differences. We may recall that the calculation
of the cluster integrals #; in the classical case involved the evaluation of a number of finite,
3[/-dimensional integrals. The corresponding calculation in the quantum-mechanical case
requires a knowledge of the functions U; and hence of all W,, with n < [; this in turn
requires solutions of the n-body Schrédinger equation for all n < [. The case [ =2 can
be handled neatly, as was done in Section 10.5. For / > 2, the mathematical procedure

is rather cumbersome. Nevertheless, Lee and Yang (1959a,b; 1960a,b,c) have evolved a
scheme that enables us to calculate the higher #; in successive approximations. According
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to that scheme, the functions U; of a given system can be evaluated by “separating out”
the effects of statistics from those of interparticle interactions, that is, we first take care of
the statistical aspect of the problem and then tackle the dynamical aspect of it. Thus, the
whole feat is accomplished in two steps.

First, the U-functions pertaining to the given system are expressed in terms of U-
functions pertaining to a corresponding quantum-mechanical system obeying Boltzmann
statistics, that is, a (fictitious) system described by unsymmetrized wavefunctions. This
step takes care of the statistics of the given system, that is, of the symmetry properties
of the wavefunctions describing the system. Next, the U-functions of the (fictitious) Boltz-
mannian system are expanded, loosely speaking, in powers of a binary kernel B which is
obtainable from a solution of the two-body problem with the given interaction. A com-
mendable feature of this method is that it can be applied even if the given interaction
contains a singular, repulsive core, that is, even if the potential energy for certain configu-
rations of the system becomes infinitely large. Though the method is admirably systematic
and fairly straightforward in principle, its application to real systems is quite complicated.
We will, therefore, turn to a more practical method — the method of quantized fields (see
Chapter 11) — which has been extremely useful in the study of quantum-mechanical sys-
tems composed of interacting particles. For a detailed exposition of the (binary collision)
method of Lee and Yang, see Sections 9.7 and 9.8 of the first edition of this book.

In passing, we note yet another important difference between the quantum-
mechanical case and the classical one. In the latter case, if interparticle interactions are
absent, then all p;, with [ > 2, vanish. This is not true in the quantum-mechanical case;
here, see Sections 7.1 and 8.1,

by = ED, (28)

of which equation (10.5.27) was a special case.

10.7 Correlations and scattering

Correlations and scattering play an extremely important role in modern statistical
mechanics. Different phases most are easily distinguished by different spatial orderings
they display. Molecules in a low-density vapor are nearly uncorrelated whereas molecules
in a dense liquid can be strongly correlated and display short-range order due to their
strong steric repulsions but the correlations decay away rapidly at large distances. In crys-
talline solids, the location of every particle is highly correlated with the location of all the
others, and these correlations do not decay away to zero at large distances between the
particles; this is called long-range order. At a critical point, systems display order that lies
between short-range and long-range, with so-called quasi-long-range order characterized
by a power-law decay of correlations. Crystals and liquid-crystal phases display molecu-
lar orientational correlations that can be short-range, long-range, or quasi-long-range in
addition to the various spatial orderings of the molecules. Different phases of magnets
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are distinguished by the spatial orderings of the magnetic dipoles: short-range ordering in
paramagnets, long-range ordering in ferromagnets and antiferromagnets, and power-law
decay of correlations at magnetic critical points.

Spatial correlation functions are based on n-particle densities. The one-body number
density is defined by the average quantity

nl(r):<ZS(r—ri)>. (1
i

This defines the local number density in which n;(r)dr is a measure of the probabil-
ity of finding a particle inside an infinitesimal volume dr located at position r. If the
system is translationally invariant, the one-body density is the usual number density
ny(r) = n=(N)/V. The spatial integral of the one-body density over volume V gives the
average number of particles in that volume:

/nl(r)dr =(N). )

The two-body number density is defined as

na(r,r') = <Za(r— s’ — r,-)>. 3)
i

The quantity ny(r, r’)drdr’ is a measure of the probability of finding one particle inside the
infinitesimal volume dr located at position r and another particle inside the infinitesimal
volume dr’ located at position r'. In a dilute classical gas, the particles interact only when
they are close to one another, so the probability of finding two different particles at two
different locations many atomic diameters apart is simply the product of finding either
particle individually, that is, na(r,r’) — ni(r)n;(r’) as |[r — r'| — oo. It is the deviation from
this uncorrelated behavior that is both interesting and important. The integral of the two-
body density over volume V gives

/ 1y (r, ¥ )drdr’ = <N2> —(N). @

If the system is translationally and rotationally invariant, the one-body number density is
independent of position and the two-body number density depends only on the magni-
tude of the distance between r and r’. This allows us to define the pair correlation function

g(r):

no(r,r’) =n?g(jr—r'|). (5)
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FIGURE 10.5 An approximate pair correlation function for hard spheres with diameter D in three dimensions. The
volume fraction n = 7nD3/6 ~ 0.49 is the fraction of the volume occupied by the particles and is close to the liquid
side of the solid-liquid phase transition in the model. The correlation function is calculated using the exact solution
of the Percus—Yevick approximation; see Percus and Yevick (1958), Wertheim (1963), and Hansen and McDonald
(1986). The correlation length for this case is & ~ 2D.

In three dimensions, 47nr? g(r)dr is the probability of finding a particle in a spherical
shell of radius r and thickness dr, given that another particle is simultaneously located
at the origin. The pair correlation function of a classical ideal gas is equal to unity; see the
footnote to Problem 10.17.

Figure 10.5 displays the pair correlation function g(r) for a system of hard spheres
interacting via pair potential

0 ifr>D,
= 6
u(r) oo ifr<D. ©

Clearly, the pair correlation function vanishes for r < D since no two particles in the system
can be closer to each other than D due to the infinite repulsion. These steric repulsions
result in an oscillatory decay of g(r). The pair correlation function is greater than unity
at separations slightly greater than D since the local geometry of the fluid enhances the
probability of finding two particles a distance slightly more than D apart; for illustration,
see Figure 10.6. The pair correlation function is less than unity at slightly larger distances
due to the repulsion of the cluster of particles just outside the hard repulsion distance.
The oscillating correlations decay rapidly with distance, so that g(r) approaches unity at
large separations. This behavior of the pair correlation function is typical of all dense fluids
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FIGURE 10.6 An equilibrium configuration of hard disks that displays steric effects leading to oscillations in the pair
correlation function. The inner dashed circle with radius D is the closest approach distance to the central disk. In
this case, the centers of five disks are close to the distance D which contributes to the enhancement in g(r) near

r = D. The outer dashed circle shows the next shell of particles that contribute to the second peak in g(r).
In-between these distances, we have a reduced probability of finding the center of a particle, leading to g(r) < 1.

and is called short-range order since the correlations decay exponentially with distance:
g(r)—1~exp(—r/&), where ¢ is called the correlation length.

The pair correlation function can be used to directly calculate the pressure in a fluid.
For a classical fluid whose potential energy can be written as a sum of pair potentials,

Un(r1,Ta,...,TN) = > u(ry), @

i<j

the pressure is determined by the average of the quantity r(du/dr) between pairs of par-
ticles, as discussed in Section 3.7. In the canonical ensemble, the pressure P is given by

0A kT (3Z
PE—(— - (ZX) ®)
3V T,N ZN BV T,N

where Zy is the configurational partition function

1
ZN = M/dNr exp —ﬂZu(rij) ) )

i<j

The d-dimensional integrals over the volume V can be rewritten in terms of a set of scaled
variables {s;} defined by r; =V ds;, so the scaled integrals are over regions with unit
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volume:

ZN = N /st exp( ﬁZu(Vl/dsl])) (10)

i<j

Equations (8) and (10) then give

= nkT( deT/ rg(r)dr) (a1

This is called the virial equation of state and is useful for determining pressure from
approximate expressions for the pair correlation function. Compare equation (11) with
the form of the virial equation of state in equation (3.7.15).

For the particular case of hard spheres, the discontinuous potential results in the pres-
sure being determined by the pair correlation function at contact. In one, two, and three
dimensions, the hard sphere pressure is given by

pHS 1+ng(D"Y) n=nD d=1,
Py L 2ng(DY) n=72ZnD* d=2, (12)
1+4ng(D") n=%nD® d=3,

where g(D") is the correlation function at contact and 7 is the volume fraction, that is, the
fraction of the d-dimensional volume of the sample occupied by the spheres; see Problem
10.14. Likewise, the internal energy of the fluid can be written as an integral over the pair
correlation function and the pair potential:
dNkT nN
UWN,V,T) = (H) = ——+ — [ ungnadr. (13)
The pair correlation function itself contains all the statistical information needed to
construct the full thermodynamic behavior of the system. For example, equation (4) can
be used to show that the isothermal compressibility, which is proportional to the number
density fluctuations, is also proportional to an integral over the pair correlation function:

(NZ) - ()2

nkTkr = -t
= (V)

“14n / (@(r) — dr = (14)

1dea1

aP
on

equation (14) to determine the pressure and free energy of the system by performing
thermodynamic integrations with respect to the particle density.

this is known as the compressibility equation of state. Since /ch = n( ) , one can use
T

10.7.A Static structure factor

The pair correlation function g(r) can be measured experimentally using quasielastic
scattering. If a sample is illuminated with a monochromatic beam of x-rays, neutrons, vis-
ible light, and so on, the scattered intensity as a function of the angle from the incident
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beam direction is proportional to the Fourier transform of g(r). The quasielastic scattering
amplitude from a single particle at location r; illuminated by a plane wave with amplitude
¢o and wavevector kg into a detector at location R is

etkori piky-(R—r;)

) (15)
[R—r;]

@1 (k) = ¢of (k)

where k= k; — ky is the wavevector transfer and f(k) is the single-particle scattering
form factor; see Figure 10.7. The total scattering amplitude from the N particles in the
sample is

Py (k) ~

¢of (K) ik RN —iker;
R el ;e ) (16)

where we have assumed that the detector is far from the sample. The scattered intensity
from the N-particle sample is

K ,
Iy(k) = [N () |* ~ % <Ze”"“i’f°> = NI (k)S(k), (17)

)

FIGURE 10.7 Scattering from two particles. The incident wavevector is ko, the scattered wavevector toward the
detector is k;, and the wavevector transfer is k = k; — ky. Since |k1| = |ko| for quasielastic scattering, the magnitude
of the wavevector transfer is k = 2kgsin(9/2), where 6 is the angle between ky and k;.
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where [ (k) is the scattering intensity from a single particle and
1
S(k) = N<Zexp (—ik-(ri— r,~))> (18)
i

is the static structure factor. It represents the actual scattering intensity divided by the
scattering intensity from an imaginary randomly distributed and, therefore, uncorrelated
sample of atoms at the same particle density n.

If the sample is translationally invariant and isotropic, as in a uniform fluid, the
static structure factor depends only on the magnitude of the wavevector transfer, that is
S(k) = S(k). For that case, S(k) can be written as the Fourier transform of the pair correla-
tion function:

2

N kT N\ [ ier
Stk)y=1+ V/(g(r) e dr+ V2 ‘/e dr (19)

The final term in equation (19) represents the forward shape scattering of the sample
volume. The shape scattering term is negligible for k >> 1/L, so in the thermodynamic limit
it can be ignored for k # 0. The structure factor for isotropic fluids in one, two, and three
dimensions is then given by

Sk)y=1 +2n/ (g(r) — 1)cos(kr)dr d=1, (20a)
0
Stk)=1+ Znn/ r(g(r) — VJo(kr)dr d=2, (20b)
0
S(k) =1+ 4”7” f r(g(r) — 1)sin(kr)dr d=3. (20¢)
0

The pair correlation function g(r) can be determined using the inverse Fourier trans-
form of the measured structure factor, as shown in Figure 10.8. For liquids and other
short-range ordered materials, the structure factor tends to unity as k — co. The value of
S(k) as k — 0 is a measure of the number density fluctuations in the sample:

Ky (N?)—(N)?

e T ) .

lim S(k) = 141 f (g(r) — Ddr =

Equation (21) is called the fluctuation-compressibility relation and is the equilibrium limit
of the fluctuation-dissipation theorem we will discuss in Section 15.6.
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FIGURE 10.8 Experimentally measured pair correlation function g(r) and structure factor S(k) for liquid argon

at 85K. The structure factor (b) is determined from neutron scattering and the pair correlation function (a) is
determined from the inverse Fourier transform of the structure factor. The small oscillations in g(r) near r =0 are an
experimental artifact of the Fourier transformation of the scattering data. This figure displays the typical features
of correlations in fluids: nearly zero g(r) at short distances, large g(r) for particles separated by approximately a
molecular diameter, oscillatory decay of correlations to unity at large separations, small S(k) at small wavevector
due to the small compressibility of dense fluids, and S(k) approaching unity at large wavevectors. Figures from
Yarnell, Katz, Wenzel, and Koenig (1973). Reprinted with permission; copyright ©1973, American Physical Society.

10.7.B Scattering from crystalline solids

In an ideal crystalline solid, the atoms in the crystal are located at the sites of a periodic
structure. For a simple crystal, identical atoms are sited on a Bravais lattice {R}. For exam-
ple, a simple cubic lattice has lattice vectors R € {(n1X + nyy + nsz)a}, where n;, n,, and
n3 are integers and a is the lattice constant. The reciprocal lattice {G} is defined by the
set of reciprocal lattice vectors G — such that G- R = 27 m, where m is an integer for all
{G} and {R}. The reciprocal lattice of the simple cubic lattice is also a simple cubic lat-
tice: G € {(m1x + moy + mgé)%”}, where my, my, and mg, are integers. For a perfect Bravais
lattice, the structure factor S(k) is of the form

S(k) = Ib<zeik.(R_R’)> =N b6 22)
G

RR

where 8 ¢ is the Kronecker delta. The structure factor is enhanced by a factor of N on
each reciprocal lattice vector due to the coherent constructive interference of scattering
from the long-range ordered array of atoms. One can determine the crystal structure of the
solid from the experimental pattern of these sharp Bragg peaks; see Ashcroft and Mermin
(1976).

Thermal excitations cause atoms to deviate from their equilibrium positions. The dis-
placed position of an atom whose equilibrium position is R can be written R+ u(R),
where u(R) denotes the displacement from equilibrium. As long as the atoms remain
close to their lattice sites, the sharp Bragg peaks in the structure factor will also remain
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but the intensity of each peak will be reduced by an amount dependent on the aver-
age of the squares of the deviations (|u(R)|2). This turns out to be the case for normal
three-dimensional solids. The structure factor then takes the form

_ 1 ik-(R—R') | ik-(w(R)—u(R'))
Sy = ~ I%e <e ) 23)

If the excitations about the equilibrium positions are Gaussian (i.e., the terms in the Hamil-
tonian higher than second order in #(R) can be ignored), then the average of the deviations
in the exponential can be simplified to give

< eik.<u<R)—u(R’)>> _ o 3{lewm—um)R) 24

If the displacements of the atoms far from each other on the lattice are uncorrelated, as
they are in three-dimensional crystals,

2(12
l<|k-(u(R) - u(R/)|2> LS . IR—R| — oo, 25)
2 3
then the structure factor takes the form
Sy =N _ Wedk,c, (26)
G
where
G? (u?)
Wg=exp|— 3 27)

is called the Debye-Waller factor. The random atomic deviations from lattice sites reduces
the intensity in the Bragg peaks but the sharp scattering indicative of long-range crystalline
order remains intact; see Ashcroft and Mermin (1976).

An interesting variant of this calculation occurs in two-dimensional solids. Peierls
(1935) and Landau (1937) showed that harmonic thermal fluctuations in two dimensions
destroy crystalline long-range order. This was generalized by Mermin (1968) to show that
long-range crystalline order was not possible for any two-dimensional system of parti-
cles with short-range interactions. Two-dimensional solids exhibit power-law decay of
translational correlations while maintaining long-range order in the lattice orientational
correlations. This leads to power-law singularities rather than delta-functions in the static
structure factor. It is possible for the solid to melt via two Kosterlitz-Thouless-like continu-
ous transitions rather than a single first-order transition. The intervening “hexatic” phase
exhibits short-range translational correlations and quasi-long-range orientational corre-
lations; see Section 13.7, Kosterlitz and Thouless (1972, 1973), Halperin and Nelson (1978),
and Young (1979).
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Problems

10.1.

10.2.

10.3.

10.4.

10.5.

For imperfect-gas calculations, one sometimes employs the Sutherland potential

_Joo for r <D
urn = —e(D/r)¢  for r>D.

Using this potential, determine the second virial coefficient of a classical gas. Also determine
first-order corrections to the ideal-gas law and to the various thermodynamic properties of the
system.

According to Lennard-Jones, the physical behavior of most real gases can be well understood if
the intermolecular potential is assumed to be of the form

B

where n is very nearly equal to 6 while m ranges between 11 and 13. Determine the second virial
coefficient of a Lennard-Jones gas and compare your result with that for a van der Waals gas; see
equation (10.3.8).

(a) Show that for a gas obeying van der Waals equation of state (10.3.9),
2a 9 -1
CP_CV_Nk{l_kTUS(v_b) } .

(b) Also show that, for a van der Waals gas with constant specific heat Cy, an adiabatic process
conforms to the equation

(v —b) TNk — const;

compare with equation (1.4.30).
(c) Further show that the temperature change resulting from an expansion of the gas (into
vacuum) from volume V) to volume V5 is given by

oo Na(1l 1
T\ v )

The coefficient of volume expansion « and the isothermal bulk modulus B of a gas are given by
the empirical expressions

1 3d a \7!
a=?<l+yT2> and B:P(l“l‘ﬁ) y

where a’ is a constant parameter. Show that these expressions are mutually compatible. Also
derive the equation of state of this gas.
Show that the first-order Joule-Thomson coefficient of a gas is given by the formula

aT N [, 8(ar3) 3
—) ==—|T — a3,
(ap)H Cr ( o ®

where a, (T) is the second virial coefficient of the gas and H its enthalpy; see equation (10.2.1).
Derive an explicit expression for the Joule-Thomson coefficient in the case of a gas with
interparticle interaction

+oo for 0 <r<D,
ury=3{-uy forD<r<nm,
0 forr <r<oo,

and discuss the temperature dependence of this coefficient.
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Assume that the molecules of the nitrogen gas interact through the potential of the previous
problem. Making use of the experimental data given next, determine the “best” empirical values
for the parameters D, ry, and ugp/k:

T (inK) 100 200 300 400 500
ap)3 (inKperatm) | —1.80 —4.26x1071 —549x1072 +1.12x1071 +42.05x107L.

Determine the lowest-order corrections to the ideal-gas values of the Helmholtz free energy, the
Gibbs free energy, the entropy, the internal energy, the enthalpy, and the (constant-volume and
constant-pressure) specific heats of a real gas. Discuss the temperature dependence of these
corrections in the case of a gas whose molecules interact through the potential of Problem 10.5.
The molecules of a solid attract one another with a force F(r) = a(l/r)°. Two semi-infinite solids
composed of n molecules per unit volume are separated by a distance d, that is, the solids fill the
whole of the space with x < 0 and x > d. Calculate the force of attraction, per unit area of the
surface, between the two solids.

Referring to equation (10.5.31) for the phase shifts n;(k) of a hard-sphere gas, show that for kD « 1

(kD)ZH—l
T @I+ D13 RI-1))2

m(k) ~

Using the wavefunctions
1 i(prh
up(ry=——e
p(1) NG
to describe the motion of a free particle, write down the symmetrized wavefunctions for a pair of
noninteracting bosons/fermions, and show that
(1,2/105/411,2) = £2'|Wh 1) (1| W1 12).
Show that for a gas composed of particles with spin J
By() =+ D@+ DB 0) +](2] + D 55'(0)

and

D) =J @]+ 1)B50) + (J + 1)(2] + 1) B2 (0).

Show that the coefficient 5 for a quantum-mechanical Boltzmannian gas composed of
“spinless” particles satisfies the following relations:

1 1 sl _ s 1 A
b _Jlir?o{ @ +172 Ez(])} _JLE?O{(ZH 12 P (])}
1
= E{75§<o>+*5§‘<0)}.

Obtain the value of b, to fifth order in (D/A), by using the Beth-Uhlenbeck expressions in
equations (10.5.36) and (10.5.37), and compare your result with the classical value of b,
namely —(27/3)(D/))3.
Use a virial expansion approach to determine the first few nontrivial order contributions to the
pair correlation function g(r) in d dimensions. Show that the pair correlation function is of the
form g(r) = e #“"y(r), where u(r) is the pair potential and y(r) is a smooth function of r. Show
that even for the case of hard sphere interaction, y(r) and its first few derivatives are continuous.
For the particular case of hard spheres, the pressure in the virial equation of state is determined
by evaluating the pair correlation function at contact. Write the pair correlation function as
g(r) = e P“Dy(r) and derive equations (10.7.12) for hard spheres in one, two, and three
dimensions.

[Hint: For hard spheres, the Boltzmann factor e #*") is a Heaviside step function].
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10.15. Derive the probability distribution w(r) for the distance to the closest neighboring particle using
the pair correlation function g(r) and the number density n. Show that in three dimensions

’
w(r) :4nnr2g(r) exp —/4nns2g(s)ds )
0

and the average closest-neighbor distance for an ideal gas is

_f war—r () ()
rn= | rw(rydr= (3)( 3) .
0

10.16. Consider a gas, of infinite extent, divided into regions A and B by an imaginary sheet running
through the system. The molecules of the gas interact through a potential energy function u(r).
Show that the average net force F experienced by all the molecules on the A-side of the sheet
caused by all the molecules on the B-side are perpendicular to the plane of the sheet, and that its
magnitude (per unit area) is given by

F  2zn? [ (du 3
i= _T/ <E>g(r)r dr.
0

10.17. Show that for a gas of noninteracting bosons, or fermions, the pair correlation function g(r) is
given by the expression

g =1+

’

g T eipn/h g p
n2h® / eP*/2m—w)/kT £ 1
— 00
where g; (= 25+ 1) is the spin multiplicity factor. Note that the upper sign here applies to bosons,
the lower one to fermions.
[Hint: To solve this problem, one may use the method of second quantization, as developed in
Chapter 11. The particle density operator i1 is then given by the sum,

Zalaﬁ wy (ryug(r),
B
whose diagonal terms are directly related to the mean particle density 7 in the system. The
nondiagonal terms give the density fluctuation operator (it — n), and so on; see equation (11.1.25).]
10.18. Show that, in the case of a degenerate gas of fermions (T « TF), the correlation function g(r), for
r > h/pr, reduces to the expression

2 —2
gn—-1= _3(n§kT) {sinh(nkar> } .
4th7'2 prh

Note that, as T — 0, this expression tends to the limiting form
3h 1

1= o
g(r) 4712PFT4 & r4

“Note that, in the classical limit (% — 0), the infinitely rapid oscillations of the factor exp{i(p - r)/} make the integral
vanish. Consequently, for an ideal classical gas, the function g(r) is identically equal to 1. Quantum-mechanical systems
of identical particles exhibit spatial correlations due to Bose and Fermi statistics even in the absence of interactions. It is
not difficult to see that, for nA% « 1 where A = h/\/2rmkT),

81 = 1= g exp(~2rr®/1%);

compare with equation (5.5.27).
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(a) For a dilute gas, the pair correlation function g(r) may be approximated as
8(r) ~ exp{—u(r)/kT}.

Show that, under this approximation, the virial equation of state (10.7.11) takes the form

o0

PV

——~1-2 2dr,

NeT nn/f(r)r dr
0

where f(r) [= exp{—u(r)/kT} — 1] is the Mayer function, equation (10.1.6).
(b) What form will this result take for a gas of hard spheres? Compare your result with that of
Problem 1.4.
Show that the pressure and Helmholtz free energy of a fluid at temperature T can be determined
by performing a thermodynamic integration of the inverse of the isothermal compressibility from
the chosen density to the ideal gas reference state.
Show that, for a general Gaussian distribution of variables u;, the average of the exponential of a
linear combination of the variables obeys the relation

2
1
<exp (Zajuj>> =exp |:2<(Zajuj) >:| .
i i
Calculate the isothermal compressibility and Helmholtz free energy for the Carnahan-Starling

equation of state (10.3.25) and show that the Helmholtz free energy is given by

@ 3 ﬂAideal n(4—3n)
N N 1-m?’

where Aldedl i the Helmholtz free energy of a classical monatomic ideal gas at the same density.
The virial expansion for a two-dimensional system of hard disks gives the following series when
expressed in terms of the two-dimensional packing fraction n = 7 nD?/4:

P
=1t 3.1280181% + 4.257854n° + 5.336896647,* + 6.3630267°

+7.35208015 + 8.3186687 +9.272361° +10.21617° + - -;

see Malijevsky and Kolafa (2008). Propose some simple analytical functions f(») that closely
approximate this series.



Statistical Mechanics

of Interacting Systems: The
Method of Quantized Fields

In this chapter we present another method of dealing with systems composed of interact-
ing particles. This method is based on the concept of a quantized field that is characterized
by the field operators v (r), and their hermitian conjugates v (r), which satisfy a set of
well-defined commutation rules. In terms of these operators, one defines a number oper-
ator N and a Hamiltonian operator H that provide a suitable representation for a system
composed of any finite number of particles and possessing any finite amount of energy. In
view of its formal similarity with the Schrédinger formulation, the formulation in terms
of a quantized field is generally referred to as the second quantization of the system.
For convenience of calculation, the field operators v (r) and v (r) are often expressed as
superpositions of a set of single-particle wavefunctions {u, (r)}, with coefficients a, and
a.; the latter turn out to be the annihilation and creation operators, which again satisfy
a set of well-defined commutation rules. The operators N and H then find a convenient
expression in terms of the operators a, and a},, and the final formulation is well-suited
for a treatment based on operator algebra; as a result, many calculations, which would
otherwise be tedious, can be carried out in a more or less straightforward manner.

11.1 The formalism of second quantization

To represent a system of particles by a quantized field, we invoke the field operators v (r)
and v (r), which are defined for all values of the position coordinate r and which operate
on a Hilbert space; a vector in this space corresponds to a particular state of the quantized
field. The values of the quantities v and ¢, at all r, represent the degrees of freedom of the
field; since r is a continuous variable, the number of these degrees of freedom is innumer-
ably infinite. Now, if the given system is composed of bosons, the field operators v (r) and
¥ T (r) satisfy the commutation rules

W),y (@) =8a—r) (1a)
W), () =y @),y ) =0, (1b)
Statistical Mechanics. DOI: 10.1016/B978-0-12-382188-1.00011-6 345
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where the symbol [4, B] stands for the commutator (AB — BA) of the given operators A and
B. If, on the other hand, the given system is composed of fermions, then the field operators
satisfy the rules

@),y )y =8r—r) (2a)
@,y = @,y =0, (2b)

where the symbol {4, B} stands for the anticommutator (AB + BA) of the given operators
A and B. In the case of fermions, the operators ¥ (r) and v (r) possess certain explicit
properties that follow directly from (2b), namely

YY) =—y @), . y@ya) =0 forallr; (2¢)

similarly,
vy )y =—y @i, cyTeyie)=0 forallr. 2d)

Clearly, no such property holds for the field operators pertaining to bosons. In the sequel
we shall see that the mathematical difference between the commutation rules (1) for the
boson field operators and rules (2) for the fermion field operators is intimately related to
the fundamental difference in the symmetry properties of the respective wavefunctions in
the Schrédinger formulation. Of course, in their own place, both sets of rules, (1) and (2),
are essentially axiomatic.

We now introduce two hermitian operators, the particle-number operator N and the
Hamiltonian operator H, through definitions that hold for bosons as well as fermions:

N= / Bryt@va) 3
and
. K2
f=— 7/d3rw(r)v2¢<r>
2m
1 .
+5 / Brd®roy’ r)y r)ur, r) v ) ), @

where u(ry,r2) denotes the two-body interaction potential in the given system. It is quite
natural to interpret the product v ' (r)y (r) as the number density operator of the field. The
similarity between the foregoing definitions and the expressions for the expectation values
of the corresponding physical quantities in the Schrodinger formulation is fairly obvious.
However, the similarity is only “formal” because, while there we are concerned with the
wavefunctions of the given system (which are c-numbers), here we are concerned with
the operators of the corresponding matter field. We can easily verify that, irrespective of
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the commutation rules obeyed by the operators v (r) and v ' (r), the operators N and H do
commute:

N, F] = 0; (5)

accordingly, the operators N and H can be diagonalized simultaneously.

We now choose a complete orthonormal basis of the Hilbert space, such that any vec-
tor |®,) among the basis is a simultaneous eigenstate of the operators N and H. We
may, therefore, denote any particular member of the basis by the symbol |¥yg), with the
properties

N|WnE) = N[Wng), H|WnE) = E|WnE) 6)
and
(UNEIWNE) = 1. (7)

The vector |Wgo), which represents the vacuum state of the field and is generally denoted
by the symbol |0), is assumed to be unique; it possesses the obvious properties

N|0)=H|0)=0 and (0/0)=1. €)

Next we observe that, regardless of whether we employ the boson commutation rules
(1) or the fermion rules (2), the operator N and the operators v (r) and vir) satisfy the
commutation properties

[y@),N1=y@) and [y @),Nl=-y'@), €)
from which it follows that
Ry ()1 Wng) = (¥ (N =y (1) W) = (N = Dy (1) [ Ung) (10)
and

Ryt )ene) = (I OR+97 @) 1Wng) = N+ Dyt ()] W), (an

Clearly, the state ¥ (r)|¥yg) is also an eigenstate of the operator N, but with eigenvalue
(N — 1); thus, the application of the operator v (r) onto the state |¥yg) of the field anni-
hilates one particle from the field. Similarly, the state ' (r)|Wyg) is an eigenstate of the
operator N, with eigenvalue (N + 1); thus, the application of the operator v ' (r) onto the
state |Wyg) of the field creates a particle in the field. In each case, the process (of annihi-
lation or creation) is tied down to the point r of the field; however, the energy associated
with the process, which also means the change in the energy of the field, remains undeter-
mined; see equations (18) and (19). By a repeated application of the operator ¥ onto the
vacuum state |0), we find that the eigenvalues of the operator Nare0,1,2,....
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On the other hand, the application of the operator ¢ onto the vacuum state |0) gives
nothing but zero because, for obvious reasons, we cannot admit negative eigenvalues for
the operator N. Of course, if we apply the operator  onto the state |Wyg) repeatedly N
times, we end up with the vacuum state; we then have, by virtue of the orthonormality of
the basis chosen,

(Pl (r)Y(r2) ... ¥ (rn) | WNE) =0 (12)

unless the state |®,) is itself the vacuum state, in which case we would obtain a nonzero
result instead. In terms of this latter result, we may define a function of the N coordinates
ri,r2,...,rN, namely

WNE(F, .., TN) = (ND Y201y (r) ... (rn) [ WNE)- (13)

Obviously, the function Yng(ry, ..., rN) has something to do with an assemblage of N par-
ticles located at the points ry, ..., ry of the field because their annihilation from those very
points of the field has led us to the vacuum state of the field. To obtain the precise meaning
of this function, we first note that in the case of bosons (fermions) this function is sym-
metric (antisymmetric) with respect to an interchange of any two of the N coordinates;
see equations (1b) and (2b), respectively. Secondly, its norm is equal to unity, which can be
seen as follows.
By the very definition of Wng(ry,...,rN),

/d3Nr\Il}‘{,E(r1,...,rN)\IJNE(rl,...,rN)
=<N!)*1fdwrwNEW(rN)...w*<r1)|0><0|¢<r1)...¢<rN>\~IJNE>

=(N!)‘l/d3NrZ<wNEW<rN>...w*<r1)|<1>n><d>n|w<r1>...wrN)wNE)
n

= / ANl N T )Y DY DY ) - (i) [ WNE);
here, use has been made of equation (12), which holds for all |®,) except for the vacuum
state, and of the fact that the summation of |®,)(®,| over the complete orthonormal set

of the basis chosen is equivalent to a unit operator. We now carry out integration over ry,
yielding the factor

/dgrlerl)w(rl) =N.
Next, we carry out integration over r», yielding the factor

f Broy (r)Ny (rp) = / Broy  (r) Y r) (N —1) = N(V - 1);
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see equation (10). By iteration, we obtain

/dSNr\Ith,E(rl,.‘.,rN)\IJNE(rl,...,rN)

= (N) N WnpIN(N —1)(N —2)... up to N factors|Wyg)
= (N!)" N (Wng|WnE) = 1. (14)

Finally, we can show that, for bosons as well as fermions, the function Yng(ry,...,rN)
satisfies the differential equation, see Problem 11.1,

2 &
(—2m DOVi+). uz]) WNE(TY,...,TN) = EUNE(TY,..., TN), (15)
i=1

i<j

which is simply the Schrédinger equation of an N-particle system. The function
WNg(ry, ..., ry) is, therefore, the Schrodinger wavefunction of the system, with energy
eigenvalue E; accordingly, the product Wy, Wn is the probability density for the particles
of the system to be in the vicinity of the coordinates (ry,...,ry), when the system hap-
pens to be in an eigenstate with energy E. This establishes the desired correspondence
between the quantized field formulation and the Schrédinger formulation. In passing, we
place on record the quantized-field expression for the function W5(r1,...,rn), which is
the complex conjugate of the wavefunction Wng(ry,...,ry), namely

YE(r, ) = (N T2 gy ) - T 10). (16)

We now introduce a complete orthonormal set of single-particle wavefunctions u,(r),
where the suffix o provides a label for identifying the various single-particle states; it
could, for instance, be the energy eigenvalue of the state (or the momentum p, along

with the spin component o pertaining to the state). In view of the orthonormality of these
wavefunctions,

/d3r W (P g (r) = 8up. 17)
The field operators ¥ (r) and v (r) may now be expanded in terms of the functions u, (r):

V() = lylia(r) (18)

and

vim = aluim. (19)
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Relations inverse to equation (18) and (19) are
Ay = fd3rw(r)u;(r) (20)
and

a :/derT(r)ua(r)- 1)

The coefficients a, and al, like the field variables v (r) and v (r), are operators that oper-
ate on the elements of the relevant Hilbert space. Indeed, the operators a, and al now take
over the role of the degrees of freedom of the field.

Substituting (18) and (19) into the set of rules (1) or (2), and making use of the closure
property of the u,, namely

D (M) =5r—r), (22)

we obtain' for the operators a, and aZ the commutation relations

[aa,afg] = dup (23a)

(a0, ag] = lal, ay) =0 (23b)
in the case of bosons, and

(A, @) = Sup (24a)

(ao, ag) = {al, aj} =0 (24b)

in the case of fermions. In the latter case, the operators a, and a, possess certain explicit
properties that follow directly from (24b), namely

agapg = —agay, . .4qdy =0 foralle; (24c)

similarly

az,a; = —ajga:;, alaf; =0 foralla. (24d)
No such property holds for operators pertaining to bosons. We will see very shortly that
this vital difference between the commutation rules for the boson operators and those for
the fermion operators is closely linked with the fact that while fermions have to conform
to the restrictions imposed by the Pauli exclusion principle, there are no such restrictions
for bosons.

1Alternatively, one may employ equations (20) and (21), and make use of rules (1) or (2) along with equation (17).
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We now proceed to express operators N and H in terms of a, and as. Substituting (18)
and (19) into (3), we obtain

N= /d3r2a;a,guj;(r)uﬁ(r) = Zaz,agsa,g
a,B a,f
=Y dia. (25)
o

It seems natural to speak of the operator alag as the particle-number operator pertaining

to the single-particle state «. We denote this operator by the symbol N, :
N, = ajaq. (26)

It is easy to verify that, for bosons as well as fermions, the operators Na commute with one
another; hence, they can be simultaneously diagonalized. Accordingly, we may choose a
complete orthonormal basis of the Hilbert space in such a way that any vector belonging
to the basis is a simultaneous eigenstate of all the operators N,.2 Let a particular member
of the basis be denoted by the vector |ng, 1y, ..., 1y, . ..), or by the shorter symbol |®;,), with
the properties

No|®p) = g | Bp) 27)
and
(®n|®p) = 1; (28)

the number n,, being the eigenvalue of the operator N, in the state |®,) of the field,
denotes the number of particles in the single-particle state « of the given system. One par-
ticular member of the basis, for which n, = 0 for all «, will represent the vacuum state of
the field; denoting the vacuum state by the symbol |®g), we have

Ny|®g) =0 foralle, and (®g|®g) = 1. (29)

Next we observe that, regardless of whether we employ the boson commutation rules
(23) or the fermion rules (24), the operator N, and the operators a, and al satisfy the
commutation properties

[ae, No] = aq  and  [al, Ny ] = —ap, (30)
from which it follows that

Nyy|®n) = (Ao Ny — a0)|Pp) = (Mg — 1)ae | D) 31)

2This representation of the field is generally referred to as the particle-number representation.
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and
Nyal|®n) = (b Ny + al)|®n) = (ng + Dal | ®p). (32)

Clearly, the state a,|®,) is also an eigenstate of the operator N, but with eigenvalue
(ny — 1); thus, the application of the operator a, onto the state |®,) of the field annihi-
lates one particle from the field. Similarly, the state al |®,) is an eigenstate of the operator
N, with eigenvalue (n, + 1); thus, the application of the operator al onto the state |®,,)
creates a particle in the field. The operators a, and al are, therefore, referred to as the
annihilation and creation operators. Of course, in each case the process (of annihilation
or creation) is tied down to the single-particle state «; however, the precise location of the
event (in the coordinate space) remains undetermined; see equations (20) and (21). Now,
since the application of the operator a, or aI, onto the state |®,) of the field does not affect
the eigenvalues of the particle-number operators other than N, we may write

ao{an,nl’-~~,naJ-~~> =A(not)|n0yn1)~-~ynot - ]-v> (33)
and
al;ll’l(),nl,...,na,...> = B(ng)Ing,ny,...,Ng +1,...), (34)

where the factors A(n,) and B(n,) can be determined with the help of the commutation
rules governing the operators a, and a,,. For bosons,

A(ng) = \/nou B(ny) = \/(na +1); (35)

consequently, if we regard the state |®,) to have arisen from the vacuum state |®y) by a
repeated application of the creation operators, we can write

1
- Jmplngl.ng!..)

NN i\ e
|®n) (ag) (ay) ---(aq)  ---|Po). (36)

f ] i

In the case of fermions, the operators a), anticommute, with the result that ala;g =—ay ’

o
consequently, there would remain an uncertainty of a phase factor =1 unless the order
in which the a, operate on the vacuum state is specified. To be definite, let us agree
that, as indicated in equation (36), the al are arranged in the order of increasing sub-
scripts and the phase factor is then +1. Second, since the product al,al, now vanishes,
none of the n, in (36) can exceed unity; the eigenvalues of the fermion operators Na are,
therefore, restricted to 0 and 1, which is precisely the requirement of the Pauli exclusion
principle.® Accordingly, the factor [I1,(7,!)]~'/2 in (36) would be identically equal to unity.

3This can also be seen by noting that the fermion operators N, satisfy the identity
N§ = a; aaaZaa = aZ(l — azaa)aa = a;aa = Na (since aZaZaaaa =0).

The same would be true of the eigenvalues n,. Hence, ng = Ny, which means that n, = 0 or 1.
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In passing, we note that in the case of fermions, operation (33) has meaning only if n, =1
and operation (34) has meaning only if n, = 0.

Finally, the substitution of expressions (18) and (19) into (4) gives for the Hamiltonian
operator of the field

N h? 1
H:—%Z(alvzlﬂ)alaﬂ-i-i > (aﬂlulw\mlla,@ayax, (37
a,B B,y
where
(@|V?|B) = / Aru (1) V2ug(r) (38)
and
(aBlulyr) = // A rid®ryul, (r)uh (r2) ey, (r2) . (r1). (39)

Now, if the single-particle wavefunctions are chosen to be
U (F) = —elPurt/ (40)
o \/V )

where p, denotes the momentum of the particle (assumed “spinless”), then the matrix
elements (38) and (39) become

2 V(s e PE\ ipgrin P
(@|V |,8>=V/d re~PaT/ <—h2>e”ﬁ / = =7 % (41)
and
(@Blulyr) = % / d*ridPrye e PO y(ry — py)e” WETPO TN, (42)
In view of the fact that the total momentum is conserved in each collision,

Po +Pg =P, + P (43)

the matrix element (42) takes the form
(@Blulyr) = %/ d*rid3rye’ Py —Pp 2T Ry ry — )
= %/d%@i"”/hu(l‘), (44)
where p denotes the momentum transfer during the collision:

pz(py_pﬁ)z_(pk_pa) (45)
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Substituting (41) and (44) into (37), we finally obtain
P PP
= Z “nan +t3 Z Up, p; “:, Ap, ap,» (46)

where uﬁi:gg denotes the matrix element (44), with

p=(p,—py) =—(p;—p)) 47)

note that the primed summation in the second term of (46) goes only over those values of
P1, P>, Py, and p), that conserve the total momentum of the particles: p| + p, = p; +p,.Itis
obvious that the main term in (46) represents the kinetic energy of the field (a;,a,, being the
particle-number operator pertaining to the single-particle state p), while the second term
represents the potential energy.

In the case of spin-half fermions, the single-particle states have to be characterized not
only by the value p of the particle momentum but also by the value o of the z-component of
its spin; accordingly, the creation and annihilation operators would carry double indices.
The operator H then takes the form

_ pl"l P05 i
Z aPUaPU+ Z P101, szfzap’a{a 4 /apzazam(fl' (48)

the summation in the second term now goes only over those states (of the two particles)
that conform to the conditions of both momentum conservation and spin conservation.

In the following sections we shall apply the formalism of second quantization to inves-
tigate low-temperature properties of systems composed of interacting particles. In most
cases we shall study these systems under the approximating conditions a/A « 1 and
na’® « 1, where a is the scattering length of the two-body interaction, A the mean thermal
wavelength of the particles, and n the particle density in the system. Now, the effective
scattering cross-section for the collision of two particles, each of mass m, is primarily
determined by the “scattering amplitude” a(p), where

a(p) = / ur)ePrh @B, (49)

m
A h?
p being the momentum transfer during the collision; if the potential is central, equa-
tion (49) takes the form

_m T s1n(kr) 5 _p
ap) = 4ﬂh2/ u(r) Anrldr (k_ ﬁ). (50)
0

For low-energy scattering (which implies “slow” collisions), we have the limiting result

- miuy _ 3
= uo_/u(r)d r, (51
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the quantity a being the scattering length of the given potential.* Alternatively, one may
employ the S-wave scattering phase shift g (k), see Section 10.5, and write on one hand

k
tanng (k) ~ — ym h2 / u( )Slgc ()2r) arédr (52)
and on the other
cotno(k)=—$+%kr*+-~-, (53)

where a is the “scattering length” and r* the “effective range” of the potential. For low-
energy scattering, equations (52) and (53) once again lead to (51). In passing, we note that
a is positive or negative according as the potential in question is predominantly repulsive
or predominantly attractive; unless a statement is made to the contrary, we shall assume a
to be positive.

11.2 Low-temperature behavior of an imperfect
Bose gas

The Hamiltonian of the quantized field for spinless bosons is given by the expression
(11.1.46), where the matrix element u,’;}:gg is a function of the momentum p transferred
during the collision and is given by formula (11.1.44). At low temperatures the particle
momenta are small, so we may insert for the matrix elements u(p) their value at p =0,
namely ug/V, where yy is given by equation (11.1.51). At the same time, we may retain
only those terms in the sum Y’ that pertain to a vanishing momentum transfer. We then

have

p? 271 ah?
B3 om | o paneny
P p
P P
+ Z (“m ap, Ap, Ap, + p, ap, Ap, al’l) . 1)
P1#P2
Now
Za;,a;,apap = Za;(apa;, —Dap = Z(n,z, —np) = Z n,z, —N, (2)
p P 2 p

4This result is consistent with the pseudopotential approach of Huang and Yang (1957) in which u(r) is replaced by
the singular potential (4wak?/m)s(r), so the integral uy becomes 4w ah?/m. For an exposition of the pseudopotential
approach, see Chapter 10 of the first edition of this book.
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whereas

Toor 2 2
Z ap, ap, ap, dp, = Z Np, Np, = Z np, (N —np,) = N* — Z Ny @)
P1#P2 P17#P2 p1 r

the same being true of the sum over the exchange terms aI,ZaI,I ap,ap, . Collecting these
results, the energy eigenvalues of the system turn out to be

2 2
p 2mah’ 5 2
E{np} = E np% + mv 2N —N — E l’lp
p p
2 2
N p 2rak 2 9 5
= §p Mpy o+ — o @N" = ). )

We first examine the ground state of the given system, which corresponds to the dis-
tribution set

_JN for p=0

np =~ 5
P 0 for p#0, ®)
with the result that
2nah?N?
) e — 6)
mV

The ground-state pressure is then given by

) @

po__ (0B _2wah’N? _ 2mah’n®
0T \v )y T mvZ T m

where n (= N/V) is the particle density in the system. This leads to the velocity of sound,
¢o, given by

2_ Lar _ 47mh2n' @
" m dn m?

Inserting numbers relevant to liquid He?, namely a ~ 22A n=1 /v where v ~ 45A3 and
m=~6.65x 10~%*g, we obtain: ¢y ~ 125m/s. A comparison with the actual velocity of
sound in the liquid, which is about 240 m/s, should not be too disheartening, for the theory

5In the last step we have replaced the sum Zp n%, by the single term ng, thus neglecting the partial sum Z#o n;l, in
comparison with the number (2N? — n). Justification for this step lies in the fact that, by the theory of fluctuations, the
neglected part here will be O(N), and not O(N?).
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developed here was never intended to be applicable to a liquid. Finally, the chemical
potential of the system at T = 0 K turns out to be

9)

9Ey Arah®N  4Awah’n
,u,O = = = .
14

AN mV m

At finite but low temperatures, the physical behavior of the system may be studied through
its partition function

QN,V,T) =) exp(~BE{np))

{np}
2 2wah®N? n2
=Y exp [_ﬂizn”zianﬂ/(Z_N%)H' (10)
{np} p

In the lowest approximation, the quantity (n9/N) appearing here may be replaced by its
ideal-gas value, as given in Section 7.1, namely

R ___ _ 1/3]
N 23 |:)\_ (Zﬂka)l/z’ re ={v¢(3/2)} (11a)
v 1% 23
=1 {U:N' o= 4(3/2)} (11b)

We thus obtain, to first order in q,

InQN,V,T) ~InQ;y(N,V,T) — B

2mah?N? 2 2
cman-iv” <1+“_” . (12)
mV

The Helmholtz free energy, per particle, is then given by®

1 kT 1 2rak? (1 2 v
NA(N, V,T) = N InQWN,V,T) ~ NA,-d(N, V,T)+ - (7 + = - f). (13)

The pressure P and the chemical potential x now follow straightforwardly:

9A 3(A/N) ) 2rah? (1 1
(8V)N,T ( oV T ld+ m U2 +U% ( )
and
A drak? (1 1
= _ 4+ Pv=uyu; 4+ =), 15
p= T PU=piat — (v+yc> (15)

which may be compared with the ground-state results (7) and (9) that pertain to v, = cc.

5This and the subsequent results were first derived by Lee and Yang (1958, 1960c) using the binary collision method
and by Huang (1959, 1960) using the pseudopotential method.
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At the transition point (where v=v, and A = A¢), the pressure P, and the chemical
potential y. turn out to be

Arah? 3\1? kT, 5 3\)? a
re=ra+ (e (3)] :xz[f(z)”{@@} » (a6

8rah? 3 3 a
=puig+——10=)=4¢( = ) kTc—; 17
Me = MHiq A? ((2> §<2> C)&c 17)

and

the corresponding value of the fugacity, z., is given by
zc = exp(uc/kTe) ~1+45(3/2)(a/Ae). (18)

For a slightly different approach to this result, see Problem 11.2.

11.2.A Effects of interactions on ultracold atomic
Bose-Einstein condensates

In Section 7.2 we discussed Bose-Einstein condensation of noninteracting bosons con-
fined in magnetic traps. The low-energy interactions between atoms are described by the
scattering length a, see equation (11.1.51), and the effect of the scattering length on the
Bose-condensed ground state of a uniform gas is described by equations (6) through (9).
We can include the effect of atomic interactions on the spatially nonuniform ground state
using the Gross-Pitaevskii equation; see Pitaevskii (1961), Gross (1961, 1963), Pitaevskii
and Stringari (2003), and Leggett (2006). The magnetic trap potential can be approximated
by an anisotropic harmonic oscillator potential

1
V(r) = Em(wfxz + w3y* + wiz?), 19)

which leads to the unperturbed single-particle ground-state wavefunction

q’>(r)—;exp E x—z—i—ﬁ-i-é (20)
713/4 /aiazas 2 a% a% a% ’

where a, = +/i/maw, is the linear size of the unperturbed harmonic oscillator ground state
in Cartesian direction «.

For the noninteracting case at T = 0, all the N atoms in the trap occupy this same single-
particle state to form a macroscopic quantum state W (r) = VN¢(r). At low energies, the
interactions can be approximated by an effective contact potential uyd(r — r’) with scat-
tering length a and coupling 1y = 4w ah?/m. This provides a fairly accurate description
of interactions in ultracold gases since the kinetic energies and densities of the particles
are so small; see equation (11.1.51). If the scattering length a is positive, the interaction is
repulsive while if a is negative the interaction is attractive. For atoms, the scattering length
is normally of the order of a few Bohr radii but in some atomic isotopes the scattering
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length can be tuned over a large range, including a change of sign, with only small changes
in the magnetic field via a Feshbach resonance. When interactions are included, the mean
field energy can be written in terms of the macroscopic quantum-state wavefunction
W (r), where the macroscopic ground-state number density is given by n(r) = |¥(r)|?. The
Gross-Pitevskii energy functional then is

2
E[W] = /dr [;ﬂ VW ()2 + V() W)+ %Mo |x1/(r)|4} 1)

see Bahm and Pethick (1996), Pitaevskii and Stringari (2003), Leggett (2006), and Pethick
and Smith (2008). The energy E[V¥] can be minimized with respect to ¥*, with the
constraint

N=/n(r)dr=f|\11(r)|2dr, (22)

using a Lagrange multiplier u. Setting 6 E — udN = 0 gives the Gross—Pitaevskii equation

2
—Zh—mvzllf(r)—l—V(r)lIJ(r)+u0|\Il(r)|2\I!(r) = u¥(r). (23)

Equations (21) and (23) are quite appropriate for describing the zero-temperature
nonuniform Bose gas when the scattering length a is much smaller than the average spac-
ing between the particles. Equation (23) is in the form of a single-particle Schrédinger
equation with the addition of a nonlinear term proportional to uy|¥(r)|* that gives a
mean field coupling of one particle to all the remaining particles in the condensate. To
determine the mean field ground-state energy, one solves equation (23) for ¥ (r) and uses
that solution to evaluate (21). When a =0, the solution is the noninteracting ground-
state wavefunction ¥(r) = v/N¢(r). The dimensionless parameter that controls the size
of the interaction term is Na/aosc where agsc = (a1a2az)'/3, so the effects of interactions
are largest in systems with large numbers of atoms in the condensate.

Equation (23) can be analyzed analytically in several limiting cases; it can also be stud-
ied numerically. In particular, solving equations (21) and (23) for a uniform system with
V =0 reproduces the results given in equations (6) through (9). For a > 0, the conden-
sate wavefunction expands in every direction relative to the noninteracting Bose-Einstein
condensate. For Na/assc > 1, the kinetic energy term can be neglected in the style of a
Thomas-Fermi analysis, so the wavefunction becomes approximately

V() ~/(n—V(r)/ug, (24)

where the Thomas-Fermi wavefunction vanishes for V(r) > n. The chemical potential x
and the number of bosons N are related by

8 2 3/2
N ”(M) ”® 05)

T 15 ma)g Ug
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where wg = (w1w2w3)1/3, so

1 (15Na\?*/®
u=— ( ) hawy. (26)
2\ dosc

The total energy of the condensate in this limit is

5
E=2uN. 27)

The linear extents of the condensate in the three directions of the trap are given by

2 15Na\ /% w,
R, = i = dosc ( ) 70» (28)

mwg Aosc W

so the repulsive interactions expand the size of the condensate, making the aniostropy of
the system larger than that of the noninteracting Bose-Einstein condensate; see Pitaevskii
and Stringari (2003); Leggett (2006), and Pethick and Smith (2008). In time-of-flight mea-
surements, the repulsive interactions result in higher velocities in the directions that were
most confined in the trap, so the time-of-flight distributions are also more anisotropic than
in the noninteracting case; see Holland and Cooper (1996) and Holland et al. (1997).

For attractive interactions with negative scattering lengths, the condensate is ultimately
unstable because of the formation of pairs, but a long-lived atomic condensate exists for
small negative Na/a,sc. For the isotropic case, the atomic condensate is metastable in the
mean field theory for —0.575 < Na/aqsc < 0. Even in the anisotropic case, the condensate is

1.5
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FIGURE 11.1 Ground-state energy of a Bose-Einstein condensate in an isotropic harmonic trap as a function of the
scattering length a. The energy is plotted in units of Nhwy, where wy is the trap frequency. The “nonlinear
constant” is proportional to Na/aesc, where N is the number of atoms and agsc = +/A/may is the width of the
harmonic oscillator ground state wavefunction. Figure from Ruprecht et al. (1995). Reprinted with permission;
copyright © 1995, American Physical Society.
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nearly spherical since the solution of equation (23) is dominated by the kinetic and inter-
action terms; see Ruprecht et al. (1995) and Figure 11.1. Roberts et al. (2001) have used
a Feshbach resonance to tune the scattering length of 8Rb to find that the condensate
becomes unstable at N|a|/dgsc ~ 0.46.

11.3 Low-lying states of an imperfect Bose gas

In the preceding section we examined first-order corrections to the low-temperature
behavior of an imperfect Bose gas arising from interparticle interactions in the system.
One important result emerging in that study was a nonzero velocity of sound, as given
by equation (11.2.8). This raises the possibility that phonons, the quanta of sound field,
might play an important role in determining the low-temperature behavior of this system
— arole not seen in Section 11.2. To look into this question, we explore the nature of the
low-lying states of an imperfect Bose gas, in the hope that we thus discover an energy-
momentum relation ¢(p) obeyed by the elementary excitations of the system, of which
phonons may be an integral part. For this, we have to go a step beyond the approximation
adopted in Section 11.2 which, in turn, requires several significant improvements. To keep
matters simple, we confine ourselves to situations in which the fraction of particles occu-
pying the state with p = 0 is fairly close to 1 while the fraction of particles occupying states
with p # 0 is much less than 1.
Going back to equations (11.2.1) through (11.2.4), we first write

2N? —nd = N2+ (N? —n3) ~ N>+ 2N(N —ng) = N> +2N > _ aap. )
p0

Next, we retain another set of terms from the sum }_" in equation (11.1.46) — terms that
involve a nonzero momentum transfer, namely

Z u(p) [a;aipaoao + agagapa,p]. 2)
p#0

Now, since agao =ng = O(N) and (aoag — a;')ag) =1« N, it follows that aoag =(mp+1)~

agao. The operators ag and ag may, therefore, be treated as c-numbers, each equal to n(l)/ 2
N1/2_ At the same time, the amplitude u(p) in the case of low-lying states may be replaced

by uy/V, as before. Expression (2) then becomes

ugN + o+
A Z(a,‘,afp + apa_p). 3)
p0
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In view of these results, the Hamiltonian of the system assumes the form

2
H= me apap + W N? + NZ(Za;,ap + a;,aip +apa_p) |- (4)
p p#0

Our next task consists of determining an improved relationship between the quantity
up and the scattering length a. While the (approximate) result stated in equation (11.1.51)
is good enough for evaluating the term involving N}, it is not so for evaluating the
term involving N. For this, we note that “if the probability of a particular quantum tran-
sition in a given system under the influence of a constant perturbation V is, in the first
approximation, determined by the matrix element V?, then in the second approximation
we have instead

VIV
v +
0 Z Ey —En
n#0

the summation going over the various states of the unperturbed system.”
In the present case, we are dealing with a collision process in the two-particle system
(with reduced mass %m), and the role of V(? is played by the quantity

1 Up
g = V/u(r)d3r= =

see equation (11.1.44) for the matrix element u,’;} ,’Z Making use of the other matrix ele-
ments, we find that in going from the first to second approximation, we have to replace

uo/V by
ABretpr/h 2 u
Ly B R s, .
p0 p s P
Equating (5) with the standard expression 4z ah? /mV, we obtain, instead of (11.1.51),

4mah? 4mah? 1
Uy =~ p (l—l— % Zz) (6)

pzo P

Substituting (6) into (4), we get

szmth: (1+4nah2 12)

v 7
" pzo P

Zﬂahz N t o p2 +
v E (apap + apa_,+ apa—p) + E %apap. (7
p#0 p#0




11.3 Low-lying states of an imperfect Bose gas 363

To evaluate the energy levels of the system one would have to diagonalize the Hamilton-
ian (7), which can be done with the help of a linear transformation of the operators a, and
a;,, first employed by Bogoliubov (1947):

+ .
_ ap + ozpa_p bT _ ap + apQ—p

Y N - ) (8)
Pova-ad) P Ja-ad)

where

2 2
mV {47th p_g(p)}, ©)

= gmaN )| mv_ | 2m

with

207 12 2\ 2] "2
_ 4mah”N p p )
e(p) = { v m + (2 ) ] ; (10)

clearly, each o < 1. Relations inverse to (8) are

;
B by — otpb,p

b;, _apbfp
ap == 3 T ——
NACES ap)

. 11
JA—ad) b

+
ap =
It is straightforward to check that the new operators by, and b;, satisfy the same commuta-
tion rules as the old operators ap and a;, did, namely
Bp, biy) = Sy (12a)
Al
(bp, by] = by, by, ] = 0. (12b)

Substituting (11) into (7), we obtain our Hamiltonian in the diagonalized form:

H=Ey+Y ep)bybp, (13)
p#0
where
2
2rah®N? 1 p*  4mak®N  [4mak’N\ m
Bp="""""" 4 2 - =1 14
0T v +2; R P R W ) (14)

In view of the commutation rules (12) and expression (13) for the Hamiltonian oper-
ator H, it seems natural to infer that the operators by and b;, are the annihilation and
creation operators of certain “quasiparticles” — which represent elementary excitations of
the system — with the energy-momentum relation given by (10); it is also clear that these
quasiparticles obey Bose-Einstein statistics. The quantity b;, by is then the particle-number
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operator for the quasiparticles (or elementary excitations) of momentum p, whereby the
second part of the Hamiltonian (13) becomes the energy operator corresponding to the
elementary excitations present in the system. The first part of the Hamiltonian, given
explicitly by equation (14), is therefore the ground-state energy of the system. Replacing
the summation over p by integration and introducing a dimensionless variable x, defined

by
~ v 1/2
*=P\granzn)

we obtain for the ground-state energy of the system

1/2
g _2mal®N? - 128Na |/
OT v 4%

2x2

x/dx[xz (x\/(x2+2)—x2—l+i)] . (15)
0

The value of the integral turns out to be (128)1/2/15, with the result

Ey 2mahk?n [ 12
— = + 1

8
N m 57172 (nas)l/z] ’ (o

where n denotes the particle density in the system. Equation (16) represents the first
two terms of the expansion of the quantity Ey/N in terms of the low-density parameter
(na®)1/?; the first term was already obtained in Section 11.2.7

The foregoing result was first derived by Lee and Yang (1957) using the binary collision
method; the details of this calculation, however, appeared somewhat later (see Lee and
Yang, 1960a; see also Problem 11.6). Using the pseudopotential method, this result was
rederived by Lee, Huang, and Yang (1957).

The ground-state pressure of the system is now given by

Py— <3E0) _ 22 E/N)

WV )y an
2mah?n? 64
== [1 + 7 (na3>1/2], an

"The evaluation of higher-order terms of this expansion necessitates consideration of three-body collisions as well;
hence, in general, they cannot be expressed in terms of the scattering length alone. The exceptional case of a hard-sphere
gas has been studied by Wu (1959), who obtained (using the pseudopotential method)

Ey _2mak®n
N~ m

1+ 128 (na®>'? +8 il —V3) (na®) In(127na®) + 0(na) |,
1571/2 3

which shows that the expansion does not proceed in simple powers of (na3)'/2.
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from which one obtains for the velocity of sound

1dPy A4mah?n 16
2_ - G@ho  =ran it 10 301/2
cp = an = 5 [l Y (na’) } (18)

Equations (17) and (18) are an improved version of the results obtained in Section 11.2.

The ground state of the system is characterized by a total absence of excitations;
accordingly, the eigenvalue of the (number) operator b;,bp of the quasiparticles must be
zero for all p # 0. As for the real particles, there must be some that possess nonzero ener-
gies even at absolute zero, for otherwise the system cannot have a finite amount of energy
in the ground state. The momentum distribution of the real particles can be determined
by evaluating the ground-state expectation values of the number operators a;,ap. Now, in
the ground state of the system,

ap| Vo) = (b~ apbl )00 = — bW (19)

1
V(1 —aj N

because bp|¥o) = 0. Constructing the hermitian conjugate of (19) and remembering that
ap is real, we have

(Wolaj, = (Wolb_p. 20)

_ Y%
VA —ap)
The scalar product of expressions (19) and (20) gives

2 2

o 4 o

(Wolapap|Wo) = " (Wolb_pbl | ¥o) = ——"; 21)
p p

here, use has been made of the facts that (i) bpb:, — b:,b,, =1 and (ii) in the ground state,
forallp #0, b;bp =0 (and hence b,,b:, =1). Thus, for p # 0,
_ o ¥ +1 1

np = = - =,
PT1-ad  2x/(2+2) 2

(22)

where x = p(8rah?n)~1/2. The total number of “excited” particles in the ground state of
the system is, therefore, given by

o 1{ 2?+1
- _ p _ - _
T3 - (s )

P
p#0 p5£01 % x=0

32 "2 [ 2+
_N{;(na )} /dx X mil . (23)
0
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The value of the integral turns out to be (2)!/2/3, with the result

8

= 3\1/2
Zn,,_Nngl/2 (na*)'2. 24)
p#0
Accordingly,
o=N-) 7fp~N|1- 8 (na®)1/2 (25)
" £0 . 3 l/2 '
p

The foregoing result was first obtained by Lee, Huang, and Yang (1957), using the pseu-
dopotential method. It may be noted here that the importance of the real-particle occupa-
tion numbers 7, in the study of the ground state of an interacting Bose system had been
emphasized earlier by Penrose and Onsager (1956).

11.4 Energy spectrum of a Bose liquid

In this section we propose to study the most essential features of the energy spectrum of a
Bose liquid and to examine the relevance of this study to the problem of liquid He*. In this
context we have seen that the low-lying states of a low-density gaseous system composed
of weakly interacting bosons are characterized by the presence of the so-called elementary
excitations (or “quasiparticles”), which are themselves bosons and whose energy spectrum
is given by

e(p) = (PPu? + (p* )2m)*} /2, o)
where
u= (dram)'?(h/m); 2

see equations (11.3.10), (11.3.12), and (11.3.13).% For p <« mu, that is, p <« hi(an)/?, the
spectrum is essentially linear: ¢ ~ pu. The initial slope of the (g, p)-curve is, therefore, given
by the parameter u, which is identical to the limiting value of the velocity of sound in the
system; compare (2) with (11.3.18). It is then natural that these low-momentum excita-
tions be identified as phonons — the quanta of the sound field. For p > mu, the spectrum
approaches essentially the classical limit: ¢ ~ p?/2m 4 A*, where A* = mu? = 4wanh?/m.
Itis important to note that, all along, this energy—-momentum relationship is strictly mono-
tonic and does not display any “dip” of the kind propounded by Landau (1941, 1947) (for

8Spectrum (1) was first obtained by Bogoliubov (1947) by the method outlined in the preceding sections. Using the
pseudopotential method, it was rederived by Lee, Huang, and Yang (1957).
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liquid He*) and observed experimentally by Yarnell et al. (1959), and by Henshaw and
Woods (1961); see Section 7.6. Thus, the spectrum provided by the theory of the preceding
sections simulates the Landau spectrum only to the extent of phonons; it does not account
for rotons. This should not be surprising, for the theory in question was intended only for
a low-density Bose gas (na® <« 1) and not for liquid He* (na® ~ 0.2).

The problem of elementary excitations in liquid He* was tackled successfully by
Feynman who, in 1953 to 1954, developed an atomic theory of a Bose liquid at low tem-
peratures. In a series of three fundamental papers starting from first principles, Feynman
established the following important results.’

0)

(if)

(iii)

In spite of the presence of interatomic forces, a Bose liquid undergoes a phase
transition analogous to the momentum-space condensation occurring in the ideal
Bose gas; in other words, the original suggestion of London (1938a,b) regarding
liquid He?, see Section 7.1, is essentially correct.

At sufficiently low temperatures, the only excited states possible in the liquid

are the ones related to compressional waves, namely phonons. Long-range motions,
which leave the density of the liquid unaltered (and consequently imply nothing
more than a simple “stirring” of the liquid), do not constitute excited states

because they differ from the ground state only in the “permutation” of certain
atoms. Motions on an atomic scale are indeed possible, but they require a minimum
energy A for their excitation; clearly, these excitations would show up only at
comparatively higher temperatures (T ~ A/k) and might well turn out to be
Landau’s rotons.

The wavefunction of the liquid, in the presence of an excitation, should be
approximately of the form

v=>0) fr, 3)
i

where ® denotes the ground-state wavefunction of the system while the summation
of f(r;) goes over all the N coordinates ry, ..., ry; the wavefunction W is, clearly,
symmetric in its arguments. The exact character of the function f(r) can be
determined by making use of a variational principle that requires the energy of the
state ¥ (and hence the energy associated with the excitation in question) to be a
minimum.

The optimal choice for f(r) turns out to be, see Problem 11.8,

f@r) =expi(k-r), 4)

9The reader interested in pursuing Feynman’s line of argument should refer to Feynman’s original papers or to a
review of Feynman’s work on superfluidity by Mehra and Pathria (1994).
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with the (minimized) energy value

K2 k2

o) =5 s’

5)

where S(k) is the structure factor of the liquid, that is, the Fourier transform of the pair
correlation function g(r):

Sky=1+n / g — ek dr; (6)

it may be recalled here that the function ng(r. — r;) is the probability density for finding
an atom in the neighborhood of the point r» when another one is known to be at the point
r1; see Section 10.7. The optimal wavefunction is, therefore, given by

v=0) ek, @)
i
Now the momentum associated with this excited state is ik because

Py = (—ihZVl)\IJ = hkW, ®)

1

P being identically equal to zero. Naturally, this would be interpreted as the momentum
p associated with the excitation. One thus obtains, from first principles, the energy-
momentum relationship for the elementary excitations in a Bose liquid.

On physical grounds one can show that, for small k, the structure factor S(k) rises lin-
early as hk/2mec, reaches a maximum near k =27 /ry (corresponding to a maximum in
the pair correlation function at the nearest-neighbor spacing ro, which for liquid He* is
about 3.6 A) and thereafter decreases to approach, with minor oscillations (corresponding
to the subsidiary maxima in the pair correlation function at the spacings of the next near-
est neighbors), the limiting value 1 for large k; the limiting value 1 arises from the presence
of a delta function in the expression for g(r) (because, as r» — r1, one is sure to find an
atom there).'? Accordingly, the energy ¢ (k) of an elementary excitation in liquid He* would
start linearly as hkc, show a “dip” at ko >~ 2A7" and rise again to approach the eventual
limit of #2k?/2m."! These features are shown in Figure 11.2. Clearly, Feynman’s approach
merges both phonons and rotons into a single, unified scheme in which they represent

Y¥For a microscopic study of the structure factor S(k), see Huang and Klein (1964); also Jackson and Feenberg (1962).
Tt is natural that at some value of k < ko, the (¢, k)-curve passes through a maximum; this happens when
dsS/dk =2S/k.



11.4 Energy spectrum of a Bose liquid 369

1.5}

T1.o—

» 05

40

35

—_

25 2

20 /

&(k), in K —»

15F
Iy exptl

10F / /

1/

V.

0 05 1.0 15 20 25 3.0 35 4.0
kinA™l —»

FIGURE 11.2 The energy spectrum of the elementary excitations in liquid He*. The upper portion shows the
structure factor of the liquid, as derived by Henshaw (1960) from experimental data on neutron diffraction. Curve 1
in the lower portion shows the energy-momentum relationship based on the Feynman formula (5) while curve 2 is
based on an improved formula by Feynman and Cohen (1956). For comparison, the experimental results of Woods
(1966) obtained directly from neutron scattering are also included.

different parts of a common (and continuous) energy spectrum ¢(k), as determined by the
structure of the liquid through the function S(k). Since no motion of a rotational character
is involved here, the name “roton” is clearly a misnomer.

It seems appropriate to mention here that, soon after the work of London, which advo-
cated a connection between the phase transition in liquid He* and the phenomenon of
Bose-Einstein condensation, Bijl (1940) investigated the mathematical structure of the
wavefunctions appropriate to an interacting Bose gas and the excitation energy associ-
ated with those wavefunctions. His picture corresponded very closely to Feynman’s and
indeed led to the wavefunction (7). Bijl also derived an expression for ¢(k) that was exactly
the same as (5). Unfortunately, he could not make much use of his results — primarily
because he leaned too heavily on the expansion

S(k) = S(0) + Cok? 4+ Cak* + -, 9)

which, as we now know, represents neither phonons nor rotons.
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11.5 States with quantized circulation

We now proceed to examine the possibility of “organized motion” in the ground
state of a Bose fluid. In this context, the most important concept is embodied in the cir-
culation theorem of Feynman (1955), which establishes a physical basis for the existence
of “quantized vortex motion” in the fluid. In the case of liquid helium II, this concept has
successfully resolved some of the vital questions that baffled superfluid physicists for a
long time.

The ground-state wavefunction of a superfluid, composed of N bosons, may be
denoted by a symmetric function ®(ry,...,ry); if the superfluid does not partake in any
organized motion, then ® will be a pure real number. If, on the other hand, it possesses a
uniform mass-motion with velocity vs, then its wavefunction would be

v = (bei(PyR)/ﬁ — (beim(vs-zl-r,-)/h’ (1)
where P; denotes the total momentum of the fluid and R its center of mass:

P; = Nmug; R:N_IZr,-. (2)

1

The wavefunction (1) is exact if the drift velocity v is uniform throughout the fluid. If v,
is nonuniform, then the present wavefunction would still be good locally — in the sense
that the phase change A¢ resulting from a “set of local displacements” of the atoms (over
distances too small for velocity variations to be appreciable) would be practically the same
as the one following from expression (1). Thus, for a given set of displacements Ar; of
the atoms constituting the fluid, the change in the phase of the wavefunction would very
nearly be

ap="3 - ary, ®)
i

where v is now a function of r.

The foregoing result may be used for calculating the net phase change resulting from
a displacement of atoms along a ring, from their original positions in the ring to the
neighboring ones, so that after displacement we obtain a configuration that is physically
identical to the one we started with; see Figure 11.3. In view of the symmetry of the wave-
function, the net phase change resulting from such a displacement must be an integral
multiple of 27 (so that the wavefunction after the displacement is identical to the one
before the displacement):

%Z;(vﬂ--m,-)zznn, n=0,4+1,42,.. . @)

the summation Y " here goes over all the atoms constituting the ring. We note that, for the
foregoing result to be valid, it is only the individual Ar; that have to be small, not the whole
perimeter of the ring. Now, for a ring of a macroscopic size, one may regard the fluid as a
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FIGURE 11.3 The wavefunction of the fluid must not change as a result of a permutation of the atoms. If all the
atoms are displaced around a ring, as shown, the phase change must be a multiple of 2x.

continuum; equation (4) then becomes
h
vs-dr=n—, n=0,£1,42,.... (5)
m

The quantity on the left side of this equation is, by definition, the circulation (of the flow)
associated with the circuit of integration and is clearly quantized, the “quantum of circu-
lation” being h/m. Equation (5) constitutes the circulation theorem of Feynman; it bears a
striking resemblance to the quantum condition of Bohr, namely

% pdq = nh, (6)

though the region of application here is macroscopic rather than microscopic.'?
By Stokes’ theorem, equation (5) may be written as

/(curl vs)~dS=n%, n=0,+1,+£2,..., (@]
S

where S denotes the area enclosed by the circuit of integration. If this area is “simply-
connected” and the velocity v, is continuous throughout the area, then the domain of
integration can be shrunk in a continuous manner without limit. The integral on the
left side is then expected to decrease continuously and finally tend to zero. The right
side, however, cannot vary continuously. We infer that in this particular case the quan-
tum number n must be zero, that is, our integral must be identically vanishing. Thus,
“in a simply-connected region, in which the velocity field is continuous throughout, the
condition

curl vs; =0 (8)

12That the vortices in a superfluid may be quantized, the quantum of circulation being /m, was first suggested by
Onsager (1949) in a footnote to a paper dealing with the classical vortex theory and the theory of turbulence!



372 Chapter 11 e Statistical Mechanics of Interacting Systems

holds everywhere.” This is precisely the condition postulated by Landau (1941), which has
been the cornerstone of our understanding of the hydrodynamic behavior of superfluid
helium.'3

Clearly, the Landau condition is only a special case of the Feynman theorem. It is quite
possible that in a “multiply-connected” domain, which cannot be shrunk continuously to
zero (without encountering singularities in the velocity field), the Landau condition may
not hold everywhere. A typical example of such a domain is provided by the flow of a vortex,
which is a planar flow with cylindrical symmetry, such that

K

=—, =0, 9
27p Uz 9

v, =0, vy
where p is the distance measured perpendicular to the axis of symmetry while K is the
circulation of the flow:

jgv'dr=?§v¢(pd¢)=l<; (10)

note that the circuit of integration in (10) must enclose the axis of the vortex.
Another version of the foregoing result is

/(curl v)-dS:/{li(pv(ﬁ)}(andp):K. 11)
S S e dp

Now, at all p # 0, curl v = 0 but at p = 0, where v is singular, curl v appears to be indeter-
minate; it is not difficult to see that, at p = 0, curl v diverges (in such a way that the integral
in (11) turns out to be finite). In this context, it seems worthwhile to point out that if we
carry out the integration in (10) along a circuit that does not enclose the axis of the vortex,
orin (11) over aregion that does not include the point p = 0, the result would be identically
Zero.

At this stage we note that the energy associated with a unit length of a classical vortex
is given by

b
I3 1 K \? mngk?
7 =/§{2n’p dp(mmﬂ}(m) =, nw/a. (12)

a

B¥Drawing on the well-known analogy between the phenomena of superfluidity and superconductivity, and the
resulting correspondence between the mechanical momentum muw;s of a superfluid particle and the electromagnetic
momentum 2eA/c of a Cooper pair of electrons, we observe that the relevant counterpart of the Landau condition, in
superconductors, would be

curlA=B=0, (8a)
which is precisely the Meissner effect; furthermore, the appropriate counterpart of the Feynman theorem would be
h
/B~dS=n—c, (7a)
2e

S

which leads to the “quantization of the magnetic flux,” the quantum of flux being hc/2e.
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Here, (mnyp) is the mass density of the fluid (which is assumed to be uniform), the upper
limit bis related to the size of the container while the lower limit a depends on the structure
of the vortex; in our study, a would be comparable to the interatomic separation.

In the quantum-mechanical case we may describe our vortex through a self-consistent
wavefunction v (r), which, in the case of cylindrical symmetry, see equation (9), may be
written as

Y (r) = n*12eS fy(p), (13)

so that

n(r) = [y (1% = n*f2(p). (14)

As p — o0, fs(p) — 1, so that n* becomes the limiting particle density in the fluid in regions
far away from the axis of the vortex. The velocity field associated with this wavefunction
will be

W VY =y VYT

v(r) =

o
2im(y*y)

_ sy = (o,si,o>. (15)14
m mp

Comparing (15) with (9), we conclude that the circulation K in the present case is sh/m;
by the circulation theorem, s must be an integer:

§=0,+1,42,.... (16)

Clearly, the value 0 is of no interest to us. Furthermore, the negative values of s differ from
the positive ones only in the “sense of rotation” of the fluid. It is, therefore, sufficient to
consider the positive values alone, namely

s=1,2,3,.... a7

The function f;(p) appearing in equation (13) may be determined with the help of a
Schrédinger equation in which the potential term is itself ' -dependent, namely

hZ
<—2mv2+u0|1//|2)¢=sw, (18)

141t is of interest to see that the angular momentum per particle in the fluid is given by
L(ho v | =sh(=muyp)
—\ ===V | =sh(= ;
v\ i 9¢ 4

this is again reminiscent of the quantum condition of Bohr.
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where 1 is given by equation (11.1.51):
up = Awah®/m, (19)

a being the scattering length of the interparticle interaction operating in the fluid. The
characteristic energy ¢ follows from the observation that, at large distances from the axis
of the vortex, the fluid is essentially uniform in density, with n(r) — n*; equation (18) then
gives

& = upn* = dwah®n*/m, (20)

which may be compared with equation (11.2.9). Substituting (20) into (18) and remember-
ing that the flow is cylindrically symmetrical, we get

1d( d § v s3 «
-== {p—fs(m} — =5 fi(p) | +8ran*f2(p) = Bran*fs(p). 1)
pdp | dp P

Expressing p in terms of a characteristic length /,

p=1lp {l=@ran*)"1/?}, (22)
we obtain
dzfs 1 dfs s2 3
— 1 _— — = U. 2
a2t yag T\ )l =0 @)

Toward the axis of the vortex, where p — 0, the very high velocity of the fluid (and the very
large centrifugal force accompanying it) will push the particles outward, thus causing an
enormous decrease in the density of the fluid. Consequently, the function f; should tend to
zero as p — 0. This will make the last term in equation (23) negligible and thereby reduce
it to the familiar Bessel’s equation. Accordingly, for small p,

fs(o") ~Ts(p") ~ p°, (24)

Js being the ordinary Bessel function of order s. For p’ > 1,f; >~ 1; then, the first two terms
of equation (23) become negligible, with the result

§2

fs(p) =1~ 27 (25)
The full solution is obtained by integrating the equation numerically; the results so
obtained are shown in Figure 11.4 where solutions for s = 1,2, and 3 are displayed.

We thus find that our model of an imperfect Bose gas does allow for the presence of
quantized vortices in the system. Not only that, we do not have to invoke here any special
assumptions regarding the nature of the “core” of the vortex (as one has to do in the classi-

cal theory); our treatment naturally leads to a continual diminution of the particle density
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p—>

FIGURE 11.4 Solutions of equation (23) for various values of s (after Kawatra and Pathria, 1966).

n as the axial line is approached, so that there does not exist any specific distribution of
vorticity around this line. The distance scale, which governs the spatial variation of n, is
provided by the parameter [ of equation (22); for liquid He* 1~ 1A.

Pitaevskii (1961), who was among the first to demonstrate the possibility of obtaining
solutions whose natural interpretation lay in quantized vortex motion (see also Gross,
1961; Weller, 1963), also evaluated the energy per unit length of the vortex. Employ-
ing wavefunction (13), with known values of the functions f;(p), Pitaevskii obtained the
following results for the energy per unit length of the vortex, with s = 1,2, or 3,

*7,2

4”};”{lln(l.46R/l), 41n(0.59R/1), 9In(0.38R/D)}, (26)

where R denotes the outer radius of the domain involved. The above results may be
compared with the “semiclassical” ones, namely

n0h2
y— {1In(R/a), 4In(R/a), 9In(R/a)}, 27)

which follow from formula (12), with K replaced by sh/m and b by R. It is obvious
that vortices with s > 1 would be relatively unstable because energetically it would be
cheaper for a system to have s vortices of unit circulation rather than a single vortex of
circulation s.

The existence of quantized vortex lines in liquid helium IT has been demonstrated con-
vincingly by the ingenious experiments of Vinen (1958-1961) in which the circulation K
around a fine wire immersed in the liquid was measured through the influence it exerts on
the transverse vibrations of the wire. Vinen found that while vortices with unit circulation
were exceptionally stable those with higher circulation too made an appearance. Repeat-
ing Vinen’s experiment with thicker wires, Whitmore and Zimmermann (1965) were able
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to observe stable vortices with circulation up to three quantum units. For a survey of this
and other aspects of the superfluid behavior, see Vinen (1968) and Betts et al. (1969). Kim
and Chan (2004) have even observed a “supersolid” phase of helium-4 at low temperatures
that has the crystalline structure of a solid while also exhibiting superfuid-like flow.

For the relevance of quantized vortex lines to the problem of “rotation” of the super-
fluid, see Section 10.7 of the first edition of this book.

11.6 Quantized vortex rings and the breakdown
of superfluidity

Feynman (1955) was the first to suggest that the formation of vortices in liquid helium II
might provide the mechanism responsible for the breakdown of superfluidity in the liquid.
He considered the flow of liquid helium II from an orifice of diameter D and, by tentative
arguments, found that the velocity vy at which the flow energy available would just be
sufficient to create quantized vortices in the liquid is given by

h

Thus, for an orifice of diameter 10~° cm, vg would be of the order of 1m/s.' It is tempting
to identify vy with v, the critical velocity of superflow through the given capillary, despite
the fact that this theoretical estimate for vy is an order of magnitude higher than the cor-
responding experimental values of v,; the latter, for instance, are 13 cm/s,8 cm/s, and
4 cm/s for capillary diameters 1.2 x 107> cm, 7.9 x 10~°cm, and 3.9 x 10~*cm, respec-
tively. Nevertheless, the present estimate is far more desirable than the prohibitively large
ones obtained earlier on the basis of a possible creation of phonons or rotons in the liquid;
see Section 7.6. Moreover, one obtains here a definitive dependence of the critical veloc-
ity of superflow on the width of the capillary employed which, at least qualitatively, agrees
with the trend seen in the experimental findings. In what follows, we propose to develop
Feynman’s idea further along the lines suggested by the preceding section.

So far we have been dealing with the so-called linear vortices whose velocity field pos-
sesses cylindrical symmetry. More generally, however, a vortex line need not be straight —
it may be curved and, if it does not terminate on the walls of the container or on the free
surface of the liquid, may close on itself. We then speak of a vortex ring, which is very much
like a smoke ring. Of course, the quantization condition (11.5.5) is as valid for a vortex ring
as for a vortex line. However, the dynamical properties of a ring are quite different from
those of a line; see, for instance, Figure 11.5, which shows schematically a vortex ring in
cross-section, the radius r of the ring being much larger than the core dimension I. The
flow velocity v at any point in the field is determined by a superposition of the flow velo-
cities due to the various elements of the ring. It is not difficult to see that the velocity field

15We have taken here: [ ~ 14, so that In(D/I) ~ 7.
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FIGURE 11.5 Schematic illustration of a quantized vortex ring in cross-section.

of the ring, including the ring itself, moves in a direction perpendicular to the plane of the
ring, with a velocity'®

v~ h/2mr; (2)

see equation (11.5.15), with s = 1 and p ~ 2r. An estimate of the energy associated with the
flow may be obtained from expression (11.5.12), with L =27 r,K = h/m, and b ~ r; thus

g~ 2n2h2n0m_1rln(r/l). 3)

Clearly, the dependence of ¢ on r arises mainly from the factor r and only slightly from
the factor In(r/I). Therefore, with good approximation, v o« ¢!, that is, a ring with larger
energy moves slower! The reason behind this somewhat startling result is that firstly the
larger the ring the larger the distances between the various circulation-carrying elements
of the ring (thus reducing the velocity imparted by one element to another) and secondly
a larger ring carries with it a larger amount of fluid (M o %), so the total energy associated
with the ring is also larger (essentially proportional to Mv?, i.e., o r). The product ve, apart
from the slowly varying factor In(r/1), is thus a constant, which is equal to 7213 ngy/m?.

It is gratifying that vortex rings such as the ones discussed here have been observed
and the circulation around them is found to be as close to the quantum //m as one could
expect under the conditions of the experiment. Figure 11.6 shows the experimental results
of Rayfield and Reif (1964) for the velocity-energy relationship of free-moving, charge-
carrying vortex rings created in liquid helium II by suitably accelerated helium ions. Vortex
rings carrying positive as well as negative charge were observed; dynamically, however,
they behaved alike, as one indeed expects because both the velocity and the energy asso-
ciated with a vortex ring are determined by the properties of alarge amount of fluid carried

6This result would be exact if we had a pair of oppositely directed linear vortices, with the same cross-section as
shown in Figure 11.5. In the case of a ring, the velocity would be somewhat larger.
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FIGURE 11.6 The velocity-energy relationship of the vortex rings formed in liquid helium Il (after Rayfield and Reif,
1964). The points indicate the experimental data, while the curve represents the theoretical relationship based on
the “quantum of circulation” h/m.

along with the ring rather than by the small charge coupled to it. Fitting experimental
results with the notion of the vortex rings, Rayfield and Reif concluded that their rings
carried a circulation of (1.00 +0.03) x 1073 cm? /s, which is close to the Onsager—Feynman
unit h/m (= 0.997 x 1073 cm?/s); moreover, these rings seemed to have a core radius of
about 1.2A, which is comparable with the characteristic parameter [ of the fluid.

We shall now show that the dynamics of the quantized vortex rings is such that their
creation in liquid helium II does provide a mechanism for the breakdown of superfluidity.
To see this, it is simplest to consider the case of a superfluid flowing through a capillary of
radius R. As the velocity of flow increases and approaches the critical value v, quantized
vortex rings begin to form and energy dissipation sets in, which in turn brings about the
rupture of the superflow. By symmetry, the rings will be so formed that their central plane
will be perpendicular to the axis of the capillary and they will be moving in the direction
of the main flow. Now, by the Landau criterion (7.6.24), the critical velocity of superflow is
directly determined by the energy spectrum of the excitations created:

Ve = (¢/P)min- 4)

We, therefore, require an expression for the momentum p of the vortex ring. In analogy
with the classical vortex ring, we may take

p=2n2hngr?, (5)

which seems satisfactory because (i) it conforms to the general result: v = (d¢/dp), though
only to a first approximation, and (ii) it leads to the (approximate) dispersion relation:
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& o« p!/2, which has been separately verified by Rayfield and Reif by subjecting their rings
to a transverse electric field. Substituting (3) and (5) into (4), we obtain

Ve ~ {iln(r/l)} . (6)
mr min

Now, since the r-dependence of the quantity ¢/p arises mainly from the factor 1/r, the

minimum in (6) will be obtained when r has its largest value, namely R, the radius of the

capillary. We thus obtain

h

which is very much the same as the original estimate of Feynman — with D replaced by R.
Naturally, then, the numerical values of v, obtained from the new expression (7) continue
to be significantly larger than the corresponding experimental values; however, the theory
is now much better founded.

Fetter (1963) was the first to account for the fact that, as the radius r of the ring
approaches the radius R of the capillary, the influence of the “image vortex” becomes
important. The energy of the flow now falls below the asymptotic value given by (3) by a
factor of 10 or so which, in turn, reduces the critical velocity by a similar factor. The actual
result obtained by Fetter was

11
h 46 h

24mR_ " mR ®

Ve =

Kawatra and Pathria (1966) extended Fetter’'s calculation by taking into account the
boundary effects arising explicitly from the walls of the capillary as well as the ones aris-
ing implicitly from the “image vortex”; moreover, in the computation of ¢, they employed
actual wavefunctions, obtained by solving equation (11.5.23), rather than the analytical
approximation employed by Fetter. They obtained

h
Ve >~ 0.59——, 9
c R 9

which is about 30 percent higher than Fetter’s value; for comments regarding the “most
favorable” location for the formation of the vortex ring in the capillary, see the original
reference of Kowatra and Pathria (1966).

11.7 Low-lying states of an imperfect Fermi gas

The Hamiltonian of the quantized field for spin-half fermions (o = +% or — %) is given by
equation (11.1.48), namely

_ l? ”1"1 P03 a T
Z aPGaPU+ Z P101,P202 p'g/a’ /apzﬂzaplﬂl’ ey
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where the matrix elements u are related to the scattering length a of the two-body inter-
action; the summation in the second part of this expression goes only over those states (of
the two particles) that conform to the principles of momentum and spin conservation. As
in the Bose case, the matrix elements « in the second sum may be approximated by their
values at p = 0, that is,

o0 = oy oy @
Then, in view of the antisymmetric character of the product ap, 0, Ap,0,, SEE €equa-
tion (11.1.24¢), all those terms of the second sum in (1) that contain identical indices o;
and o2 vanish on summation over p; and p,. Similarly, all those terms that contain iden-
tical indices o{ and ¢} vanish on summation over p) and p,."” Thus, for a given set of
values of the particle momenta, the only choices for the spin components remaining in
the sum are

(|) 0'1:‘}‘%, 0'22—%; 0’{:—}—%, 0'2’:—%
(i) ov=+3, o2=—-13 oj=—3 o0oy3=+3
(i) o1=—3, o2=-+3 oj=-—3 o03=+3
(iv) Ul:—%, 02=+%; 0{:—}—%, aﬁ:—%‘

It is not difficult to see that the contribution arising from choice (i) will be identi-
cally equal to the one arising from choice (iii), while the contribution arising from choice
(ii) will be identically equal to the one arising from choice (iv). We may, therefore, write

_ Z apgapa Uo Z @, @y ap,-p @3

where
5= (ugrm — ugd?), @
while the indices + and — denote the spin states o = +% and o = —%, respectively; the

summation in the second part of (3) now goes over all momenta that conform to the
conservation law

Pi+P, =P +Ps ®)

To evaluate the eigenvalues of Hamiltonian (3), we shall employ the techniques of the
perturbation theory.

7physically, this means that in the limiting case of slow collisions only particles with opposite spins interact with one
another.
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First of all, we note that the main term in the expression for His already diagonal, and
its eigenvalues are

0 P
EO = %npm (6)

where np, is the occupation number of the single-particle state (p,o); its mean value, in
equilibrium, is given by the Fermi distribution function
1

Npe = . )]
P zal exp(p?/2mkT) + 1

The sum in (6) may be replaced by an integral, with the result (see Section 8.1, with g = 2)

3kT
EQ =V=rfsa(z0), ®)
where 1 is the mean thermal wavelength of the particles,
A =h/CrmkT)'/?, 9

while f, (zo) is the Fermi-Dirac function

[ 0 ldx - lflz(l)
b -1 —=; 10
folzo) = mof = e §< ) (10)

the ideal-gas fugacity zp is determined by the total number of particles in the system:

2
N=) npo=V-5f32(z0)- (11
p.o

The first-order correction to the energy of the system is given by the diagonal elements

of the interaction term, namely the ones for which p| = p, and p/, = p,; thus

1 Uo Up _

ED = v > npnp, = VN, (12)
P1P2

where N* (N ™) denotes the total number of particles with spin up (down). Substituting the

equilibrium values N* = N— = QN we obtain
u 122 2
ED = ﬁNz = VA—g {f3/2(z0))°. (13)

Substituting 1y ~ 4w ah?/m, see equation (11.1.51), we obtain to first order in a

rnah? N 2kT
Eil) m VN V— )\3 ( ) {f?)/Z(ZO)} (14)
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The second-order correction to the energy of the system can be obtained with the help of
the formula

" En—Em’

m#n

where the indices n and m pertain to the unperturbed states of the system. A simple
calculation yields:

2 — 7 — /
E(Z) — 2@ Z npl+np27 (1 npl+) (1 npz_) , (16)
PLP2PY (p% +p3—pf —n’f)/Zm

where the summation goes over all p;,p,, and p) (the value of p/, being fixed by the
requirement of momentum conservation); it is understood that we do not include in the
sum (16) any terms for which p? + p3 = p/? + p;. It will be noted that the numerator of
the summand in (16) is closely related to the fact that the squared matrix element for the
transition (p;, p,) — (p},p5) is directly proportional to the probability that “the states p,
and p, are occupied and at the same time the states p and p/, are unoccupied.”

Now, expression (16) does not in itself exhaust terms of second order in a. A contribution
of the same order of magnitude arises from expression (12) if for uy we employ an expres-
sion more accurate than the one just employed. The desired expression can be obtained
in the same manner as in the Bose case; check the steps leading to equations (11.2.5) and
(11.2.6). In the present case, we obtain

drak®? u u? 1
mv 14 vz P2 2 2 2
pup2P | P1+P; — P — Py )/12m

from which it follows that

[ Aman? | 8rah? 3 1

~ 17
Ho m mV (17)

pLP2P (p% +p5—pf - p/f)/zm

Substituting (17) into (12), we obtain, apart from the first-order term already given in (14),
a second order term, namely

2
Ey = —2(4mhz) > Pt (18)
mV )
PPy (zﬁ +p5—pE- n’22>/2m
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For a comparable term given in (16), the approximation ug >~ 4w ah?/m is sufficient, with
the result

2
E(Z) _ 2<4ﬂ[lhz> nPH—an— (]' - np,1+) (]' - np/27> (19)
2 = I .
p1.P2.Py

mV
(p? +p3—pf - p’22>/2m
Combining (18) and (19), we obtain'®

Nip,+Np,— (np’l+ + np/zf)

(20)

2

2
Ey— B 4 g2 — o 47 ah’ .
2 2 mV (22 2 2

pup2Py \ PT+P5 — Py — by |/2m

To evaluate the sum in (20), we prefer to write it as a symmetrical summation over
the four momenta p;, p,, p}, and p), by introducing a Kronecker delta to take care of the
momentum conservation; thus

2
4 ah? ”p+”p—(”’++”%>5 +P2. P+,
E2=—2< T ) Z 1 2 P Py P1+P2,Py Pz‘ 1)

mvV
P1.P2:P) Py (,ﬁ +pE—pP- p’22>/2m
It is obvious that the two parts of the sum (21), one arising from the factor n

other from the factor n
write

p,+ and the
Pl would give identical results on summation. We may, therefore,

(22)

2
Ey=— (4” an’ ) Z My +1py— Ty 8, 1, 1,

mV
PLP2P Py (p? +p5—pE- p/zz)/Zm

The sum in (22) can be evaluated by following a procedure due to Huang, Yang, and
Luttinger (1957), with the result'?

8kT ( a®
B =V (;) Fzo), (23)
where
= (—z9) 5+
Flao) = _rél JasHT+s)r+10° @)

o

8We have omitted here terms containing a “product of four n’s” for the following reason: in view of the fact that
the numerator of such terms would be symmetric and the denominator antisymmetric with respect to the exchange
operation (py,p,) <> (P}, p,), their sum over the variables p,, p,, p| (and p,) would vanish identically.

YFor a direct evaluation of the sum (22), in the limit T — 0, see Abrikosov and Khalatnikov (1957). See also
Problem 11.12.
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Combining (8), (14), and (23), we obtain to second order in the scattering length a
kT 2 8a?
E= Vﬁ |:3]%/2(Zo) + Ta{f\%/z(zo)}2 + ;F(Zo):| ) (25)

where zj is determined by (11).

It is now straightforward to obtain the ground-state energy of the imperfect Fermi gas
(zo — 00); we have simply to know the asymptotic behavior of the functions involved. For
the functions f;,(zp), we have from the Sommerfeld lemma (see Appendix E)

fi(zo0) = (Inzp)”/T(v+ 1), (26)
so that
8
Fop2(20) ~ 1oz n20%% - foy2(20) ~ o5 (Inzg) ¥, 27)
Equation (11) then gives
_ N " 8 3/2
n= v m(lnzo) , (28)
so that
2/3
1/2
Inzg ~ A2 (3” ”) . (29)
8
The asymptotic behaviour of F(zp) is given by
F(zp) ~ M(IHZQ)WZ; (30)

10573/2
see Problem 11.12. Substituting (27) and (30) into (25), and making use of relation (29), we
finally obtain

Ey 3 K? 2 9 rnah? 6 3\3
N =10 B n)~’* + n +35( n2) n'‘a (31)

The ground-state pressure of the gas is then given by

2 a(Eo/N)
on

1 k2 h2 8 3\!/3
=f—(37r2n)2/3n+&n2 1+ —(11-2In2)( = nBal. (32)
5m m 35 T

Py =



11.8 Energy spectrum of a Fermi liquid 385

We may also calculate the velocity of sound, which directly involves the compressibility of
the system, with the result

0Py
d(mn)

1 k2 2 ah? 4 3\1/3
:2(371211)2/3—1—7;52n{1+15(11—21n2)<ﬂ> nBal. (33)

2 _
o=

3Im

The leading terms of the foregoing expressions represent the ground-state results for
an ideal Fermi gas, while the remaining terms represent corrections arising from the
interparticle interactions.

The result embodied in equation (31) was first obtained by Huang and Yang (1957) by
the method of pseudopotentials; Martin and De Dominicis (1957) were the first to attempt
an estimate of the third-order correction.?’ Lee and Yang (1957) obtained (31) on the basis
of the binary collision method; for the details of their calculation, see Lee and Yang (1959b,
1960a). The same result was derived somewhat later by Galitskii (1958) who employed the
method of Green’s functions.

11.8 Energy spectrum of a Fermi liquid: Landau’s
phenomenological theory!

In Section 11.4 we discussed the main features of the energy spectrum of a Bose liquid;
such a spectrum is generally referred to as a Bose type spectrum. A liquid consisting of
spin-half fermions, such as liquid He?, is expected to have a different kind of spectrum
which, by contrast, may be called a Fermi type spectrum.

Right away we should emphasize that a liquid consisting of fermions may not neces-
sarily possess a spectrum of the Fermi type; the spectrum actually possessed by such a
liquid depends crucially on the nature of the interparticle interactions operating in the
liquid. The discussion here assumes that the interactions are strictly repulsive so that the
fermions have no opportunity to form bosonic pairs. In the present section, we propose to
discuss the main features of a spectrum which is characteristically of the Fermi type. The
effects of attractive interactions will be discussed in Section 11.9

According to Landau (1956), whose work provides the basic framework for our discus-
sion, the Fermi type spectrum of a quantum liquid is constructed in analogy with the
spectrum of an ideal Fermi gas. As is well-known, the ground state of the ideal Fermi
gas corresponds to a “complete filling up of the single-particle states with p < pr and a
complete absence of particles in the states with p > pr”; the excitation of the system corre-
sponds to a transition of one or more particles from the occupied states to the unoccupied
states. The limiting momentum pr is related to the particle density in the system and, for

20The third-order correction has also been discussed by Mohling (1961).
2lFor a microscopic theory of a Fermi liquid, see Nozieres (1964); see also Tuttle and Mohling (1966).
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spin-half particles, is given by
pr=hEa*N/V)'°. )

In a liquid, we cannot speak of quantum states of individual particles. However, as a
basis for constructing the desired spectrum, we may assume that, as interparticle inter-
actions are gradually “switched on” and a transition made from the gaseous to the liquid
state, the ordering of the energy levels (in the momentum space) remains unchanged. Of
course, in this ordering, the role of the gas particles is passed on to the “elementary exci-
tations” of the liquid (also referred to as “quasiparticles”), whose number coincides with
the number of particles in the liquid and which also obey Fermi statistics. Each “quasipar-
ticle” possesses a definite momentum p, so we can speak of a distribution function n(p)
such that

/ n(pydr =N/V, @

where dt = 2d3p/h3. We then expect that the specification of the function n(p) uniquely
determines the total energy E of the liquid. Of course, E will not be given by a simple sum of
the energies ¢(p) of the quasiparticles; it will rather be a functional of the distribution func-
tion n(p). In other words, the energy E will not reduce to the simple integral [ ¢(p)n(p) Vdr,
though in the first approximation a variation in its value may be written as

SE = V/s(p)Sn(p)dr, (3)

where §n(p) is an assumed variation in the distribution function of the “quasiparticles.”
The reason E does not reduce to an integral of the quantity e(p)n(p) is related to the fact
that the quantity e(p) is itself a functional of the distribution function. If the initial distri-
bution function is a step function (which corresponds to the ground state of the system),
then the variation in ¢(p) due to a small deviation of the distribution function from the
step function (which implies only low-lying excited states of the system) would be given
by a linear functional relationship:

se(p) = / Fp)sn@)dr'. )

Thus, the quantities ¢(p) and f(p,p’) are the first and second functional derivatives of E
with respect to n(p). Inserting spin dependence, we may now write

1

8E=Zs<p,o>an<p,a>+ﬁ > fpo;p,0))snp,o)snp o), ®)

p,o p.o;p,o’

where §n are small variations in the distribution function n(p) from the step function (that
characterizes the ground state of the system); it is obvious that these variations will be sig-
nificant only in the vicinity of the limiting momentum pr, which continues to be given
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by equation (1). It is thus understood that the quantity ¢(p,o) in (5) corresponds to the
distribution function n(p, o) being infinitesimally close to the step function (of the ground
state). One may also note that the function f(p,o;p’,0’), being a second functional deriva-
tive of E, must be symmetric in its arguments; often, it is of the form a -+ bs$; - §,, where
the coefficients a and b depend only on the angle between the momenta p and p’.?*> The
function f plays a central role in the theory of the Fermi liquid; for an ideal gas, f vanishes.

To discover the formal dependence of the distribution function n(p) on the energy ¢(p),
we note that, in view of the one-to-one correspondence between the energy levels of the
liquid and of the ideal gas, the number of microstates (and hence the entropy) of the liquid
is given by the same expression as for the ideal gas; see equation (6.1.15), with all g; = 1 and
a=+1, or Problem 6.1:

% = —Z{nlnn—f— 1-nln(1-n}~ —V/{nlnn—f— (1-n)In(1 —n)}dr. (6)
P
Maximizing this expression, under the constraints §E =0 and §N = 0, we obtain for the
equilibrium distribution function

1

n= . 7
" exple — m/kT) +1 @

It should be noted here that, despite its formal similarity with the standard expression
for the Fermi-Dirac distribution function, formula (7) is different insofar as the quantity
¢ appearing here is itself a function of 77; consequently, this formula gives only an implicit,
and probably a very complicated, expression for the function 7.

A word may now be said about the quantity ¢ appearing in equation (5). Since this ¢ cor-
responds to the limiting case of n being a step function, it is expected to be a well-defined
function of p. Equation (7) then reduces to the usual Fermi-Dirac distribution function,
which is indeed an explicit function of ¢. It is not difficult to see that this reduction remains
valid so long as expression (5) is valid, that is, so long as the variations é7n are small, which
in turn means that T « Tr. As mentioned earlier, the variation §n will be significant only
in the vicinity of the Fermi momentum pr; accordingly, we will not have much to do with
the function ¢(p) except when p ~ pr. We may, therefore, write

de

EGV:PF)=8F+-<ap

> (p—pF)+--~er+ur(p—pr), (8)
p=pF

where ur denotes the “velocity” of the quasiparticles at the Fermi surface. In the case of an
ideal gas (¢ = p?/2m), ur = pr/m. By analogy, we define a parameter m* such that

«_PF__ PF (9)
urp  (3¢/0p)p=pg

220f course, if the functions involved here are spin-dependent, then the factor 2 in the element dr (as well as in dt’)
must be replaced by a summation over the spin variable(s).
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and call it the effective mass of the quasiparticle with momentum pr (or with p >~ pr).
Another way of looking at the parameter m* is due to Brueckner and Gammel (1958),
who wrote
P2 P

ep=pr) =5+ V(p) = 2 T const; (10

the philosophy behind this expression is that “for quasiparticles with p ~ pr, the modifi-
cation, V(p), brought into the quantity e(p) by the presence of inter-particle interactions
in the liquid may be represented by a constant term while the kinetic energy, p?/2m, is
modified so as to replace the particle mass m by an effective, quasiparticle mass m*”; in
other words, we adopt a mean field point of view. Differentiating (10) with respect to p and
setting p = pr, we obtain

1 1 1 \%4
L1y o
m*m o pp\ dp ), p,

The quantity m*, in particular, determines the low-temperature specific heat of the
Fermi liquid. We can readily see that, for T « TF, the ratio of the specific heat of a Fermi
liquid to that of an ideal Fermi gas is precisely equal to the ratio m*/m:

(Cv)real _ ﬂ* (12)

(Cv)ideal S om’

This follows from the fact that (i) expression (6) for the entropy S, in terms of the distri-
bution function n, is the same for the liquid as for the gas, (ii) the same is true of relation
(7) between 72 and ¢, and (iii) for the evaluation of the integral in (6) at low temperatures
only momenta close to pr are important. Consequently, the result stated in Problem 8.13,
namely

72
Cy~S~ ?kZTCl(é‘F), (13)

continues to hold — with the sole difference that in the expression for the density of states
a(er), in the vicinity of the Fermi surface, the particle mass m gets replaced by the effective
mass m*; see equation (8.1.21).

We now proceed to establish a relationship between the parameters m and m* in terms
of the characteristic function f. In doing so, we neglect the spin-dependence of f, if any;
the necessary modification can be introduced without any difficulty. The guiding principle
here is that, in the absence of external forces, the momentum density of the liquid must
be equal to the density of mass transfer. The former is given by [ pndr, while the latter is
given by m [(d¢/dp)ndr, (3¢/9p) being the “velocity” of the quasiparticle with momentum
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p and energy ¢.?® Thus

/pndr = m/i—;ndr. (14)

Varying the distribution function by §n and making use of equation (4), we obtain

/pdndr = m/ a—géndr +m// {M(Sn/dt’} ndz
ap ap
= m/ a—géndr — on
op

in obtaining the last expression, we have interchanged the variables p and p’ and have
also carried out an integration by parts. In view of the arbitrariness of the variation én,
equation (15) requires that

(15)

8 /
- / fp.p) aZ’ dr'. (16)

We apply this result to quasiparticles with momenta close to pr; at the same time, we
replace the distribution function n’ by a “step” function, whereby

on p/8(p’ PF)
M _ P s — pp).
ap/ p/

This enables us to carry out integration over the magnitude p’ of the momentum, so that

, on' 2p”?dp do’ 2
ff( n 2pcap dw’ P o _ _2pF ff(@)dea), a7

do’ being the element of a solid angle; note that we have contracted the arguments of
the function f because in simple situations it depends only on the angle between the
two momenta. Inserting (17) into (16), with p = pr, making a scalar product with p; and
dividing by p#%, we obtain the desired result

1 1
= —+m 4ff(6)cos9dw (18)

If the function f depends on the spins s; and s, of the particles involved, then the factor 4
in front of the integral will have to be replaced by a summation over the spin variables.

ZSince the total number of quasiparticles in the liquid is the same as the total number of real particles, to obtain the
net transport of mass by the quasiparticles one has to multiply their number by the mass m of the real particle.
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We now derive a formula for the velocity of sound at absolute zero. From first principles,
we have®*

2__ 0 _ V2 (9Py
07 9mN/V) T mN\ oV )y
In the present context, it is preferable to have an expression in terms of the chemical poten-

tial of the liquid. This can be obtained by making use of the formula Nduy = VdPy, see
Problem 1.16, from which it follows that?®

dmo _ V[(duo\ _ V2 (0P,
N )y  N\aV )y N2\aV )y

and hence

N (duo
2
=—|— . 19
K m(&N)V (19}

Now, uo = e(pr) = ¢r; therefore, the change §u¢ arising from a change SN in the total
number of particles in the system is given by

d
S = ﬁépp +/f(pF,p’)8n’dr/. (20)
opr
The first part in (20) arises from the fact that a change in the total number of particles in

the system inevitably alters the value of the limiting momentum pr; see equation (1), from
which (for constant V)

1
8pr/pr = 38N/N

and hence

der o _ Pp ON
apr 7T T 3mr N
pr m

21

2At T =0,S=0; so there is no need to distinguish between the isothermal and adiabatic compressibilities of the
liquid.
%Gince uo is an intensive quantity and, therefore, it depends on N and V only through the ratio N/V, we can write:

1o = no(N/V). Consequently,
o\ _ (0 _ 1
aN ), e\ TN ), Ty

o) _ (AN N
av )y T\ Ty ) T oy

o _ YV (no
AN )y, N\aV /)y

and

Hence
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The second part arises from equation (4). It will be noted that the variation §n’ appearing
in the integral of equation (20) is significant only for p’ ~ pr; we may, therefore, write

SN
/ fppp)ondd = — / fO)do'. 22)

Substituting (21) and (22) into (20), we obtain

all,o PIZ: 1 /- ,
— +— [ f(®)do'. 2
<3N )V 3m*N 47V ©) 23)

Making use of equations (18) and (1), we finally obtain

3

" m\aN /), 3m2 " emhd

~4/f(9)(1 —cosf)do'. (24)

Once again, if the function f depends on the spins of the particles, then the factor 4 in front
of the integral will have to be replaced by a summation over the spin variables.

For illustration, we shall apply this theory to the imperfect Fermi gas studied in
Section 11.7. To calculate f(p,o;p’,0’), we have to differentiate twice the sum of expres-
sion (11.7.12), with ug = 4w ah?/m, and expression (11.7.22) with respect to the distribution
function n(p,o) and then substitute p = p’ = pr. Performing the desired calculation, then
changing summations into integrations and carrying out integrations by simple means, we
find that the function f is spin-dependent — the spin-dependent term being in the nature
of an exchange term, proportional to §; - §,. The complete result, according to Abrikosov
and Khalatnikov (1957), is

fp,o;p',0’) =A®) +B@®)S; - 52, (25)
where
2w ah? 3N\1/3 cosé 1+sin(@/2)
AO) =— [1 +2a (ﬁ) {2 * 2sin@/2) "1 -sin@/2) }
and

8rah? 3N\ /3 1. [0\, 1+4sin(6/2)
B@®) =— p {1—1—26;(7”) {I_ESIH<§)IHW}'

a being the scattering length of the two-body potential and 6 the angle between the
momentum vectors pr and pj,. Substituting (25) into formulae (18) and (24), in which the
factor 4 is now supposed to be replaced by a summation over the spin variables, we find
that while the spin-dependent term B(6)S; - §2 does not make any contribution toward the
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final results, the spin-independent term A(9) leads to?°

2/3
L1 8 omeoy <31§) a? 26)

b3

m* m 15m
and
2 2 1/3
, P 2mah®N 4 3N
= — — |1+ —=(11-2In2){ — ; 27
O3t T v 1! nm2N\zv) @ 27

the latter result is identical to expression (11.7.33) derived in the preceding section. Pro-
ceeding backward, one can obtain from equation (27) corresponding expressions for the
ground-state pressure Py and the ground-state energy Ey, namely equations (11.7.32) and
(11.7.31), as well as the ground-state chemical potential n, as quoted in Problem 11.15.

11.9 Condensation in Fermi systems

The discussion of the T = 0 Fermi liquid in Sections 11.7 and 11.8 applies when the inter-
actions between the fermions are strictly repulsive. The resulting Fermi liquid has a ground
state and quasiparticle excitations that are qualitatively similar to the ideal Fermi gas.
However, for fermions with attractive interactions, no matter how weak, the degenerate
Fermi gas is unstable due to the formation of bosonic pairs. This leads to a number of
important phenomena including superconductivity in metals, superfluidity in 3He, and
condensation in ultracold Fermi gases. In low-temperature superconductors, screening
and the electron-phonon interaction result in a retarded attraction between quasiparti-
cles on opposite sides of the Fermi surface. The formation of these so-called Cooper pairs
leads to the creation of a superconducting state with critical temperature

1
kT, ~ hop exp( Niep) o] ), 1)
where N(er) is the density of states per spin configuration at the Fermi surface, uy is
the weak attractive coupling between electrons, and fiwp is the Debye energy discussed
in Section 7.4 since the coupling is due to the acoustic phonons. As can be seen from
equation (1), the phase transition temperature is nonperturbative in 1. A complete treat-
ment of superconductivity is far beyond the scope of this section, so we refer the reader
to the original papers by Cooper (1956) and Bardeen, Cooper, and Schrieffer (1957) and
the texts on superconductivity by Tilley and Tilley (1990) and Tinkham (1996). The case of
superfluidity in 3He is surveyed by Vollhardt and Wélfle (1990).

Bosonic condensation has also recently been observed in trapped ultracold atomic
Fermi gases. The sign and size of the atomic interactions in ultracold gases can be tuned

%In a dense system, such as liquid He?, the ratio m*/m would be significantly larger than unity. The experimen-
tal work of Roberts and Sydoriak (1955), on the specific heat of liquid He®, and the theoretical work of Brueckner and
Gammel (1958), on the thermodynamics of a dense Fermi gas, suggest that the ratio (m*/ M)ye3 = 1.85.
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with a magnetic field near Feshbach resonance allowing unprecedented experimental
control of interactions. In particular, experimenters can create a low-lying molecular
bound state or a weakly attractive interaction without allowing a molecular bound state
to form. If interaction between pairs of fermions allows the formation of bound bosonic
molecules, the ground state of a degenerate Fermi gas will be destablized since molecules
will form and, if the density of the bosonic molecules is large enough, they will Bose-
condense — see Greiner, Regal, and Jin (2003); Jochim et al. (2003); and Zwierlein et al.
(2003).

For weakly attractive interactions, the fermionic system condenses into a BCS-like state
and provides an excellent experimental environment for testing theoretical predictions
due to the well-understood nature and experimental control of the atomic interactions.
Theory predicts a smooth crossover from BCS to Bose-Einstein condensation (BEC)
behavior as the magnitude of the attractive interaction parameter uy is varied from values
small to large. BCS theory describes the behavior for weak coupling. For broad Fesh-
bach resonances of trapped fermions, the most common experimental situation, the BCS
critical temperature is given by

kT, €F

~

T a
~ - exp (- ~Ne (_7) 2
hoo . hao Xp( 2kF|a|> P\ T 121aN16 g (@)

where wy = (w1wpw3)!/? is the average oscillation frequency of atoms in the trap, dosc =
Vh/mawyg, and kr = /2meg/h is the Fermi wavevector; see Pitaevskii and Stringari (2003),
Leggett (2006), and Pethick and Smith (2008). For large negative scattering lengths, the
transition temperature smoothly crosses over to the BEC limit with noninteracting Bose-
condensation temperature, see equation (7.2.6),

kT, ( N \'7°
ﬁwow<2§(3)> ’ ®

since the number of Cooper pairs is N/2. The ratio of the transition temperature in the
BEC limit and the Fermi temperature from equation (8.4.3) is

1/3
KT < 1 ) ~ 0.4l )
€F 12¢(3)

Mean-field analysis of the broad resonance limit (Leggett, 2006) and analytical analysis of
the narrow resonance limit (Gurarie and Radzihovsky, 2007) both indicate that the phase
transition temperature has a maximum at intermediate coupling. Figure 11.7 is a sketch of
the critical temperature as a function of the coupling parameter .

Experimental observations of condensation in a degenerate Fermi gas in the BEC-BCS
crossover region by Regal, Greiner, and Jin (2004) are shown in Figure 11.8. They used a
Feshbach resonance to tune the scattering length of °K into an attractive range (a < 0) that
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KT,
BEC-BCS Fermi liquid
— U
BCS limit

FIGURE 11.7 Sketch of the BEC-BCS phase diagram on the BCS side of the Feshbach resonance for ultracold
fermions in an atomic trap. The scattering length a and coupling 1y = 47 h%a/m can be tuned from positive values
to negative with the help of a magnetic field. Positive (repulsive) couplings result in a Fermi liquid. Negative
(attractive) couplings result in a BCS condensation at low temperatures. The nature of the condensed phase varies
smoothly from BCS behavior for small negative coupling to Bose-Einstein behavior for large negative coupling.
The phase transition temperature has a maximum at intermediate coupling.

FIGURE 11.8 Time-of-flight images showing condensation of fermions in an ultracold atomic gas. The images show
the quantum mechanical projection of the fermionic system onto a molecular gas and are shown for three values of
the magnetic field on the BCS side of the Feshbach resonance for an ultracold trapped gas of “°K. The temperature
of the Fermi gas is (kT/er) ~ 0.07. The condensed fraction varies from about 1 to 10 percent of the original cold
fermions in the trap; see Regal, Greiner, and Jin (2004). Figure courtesy of NIST/JILA/University of Colorado.

does not allow a two-particle molecular bound state and observed the fermions condens-
ing into a BCS-like macroscopic quantum state. They explored the BEC-BCS crossover
behavior by tuning |a| from small values to large.

Problems

11.1. (a) Show that, for bosons as well as fermions,
. R, 5+
[y (@rj), Hl = _%Vj +/d ry (Nur, rpy(r) | ¥ (ry),

where H is the Hamiltonian operator defined by equation (11.1.4).
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(b) Making use of the foregoing result, show that the equation

1 A 1
w(oll/f(h)ml/f(m)Hl‘PNE) :Eww“//(rl)n-l/f(rN)N'NE)

= EVYNE(ry,...TN)

is equivalent to the Schrédinger equation (11.1.15).
11.2. The grand partition function of a gaseous system composed of mutually interacting bosons is
given by

PV V a a?
In@ = T = 3 |:g5/2(Z) 72{g3/2(Z)}2X + O()\2>j| .

Study the analytic behavior of this expression near z = 1 and show that the system exhibits the
phenomenon of Bose-Einstein condensation when its fugacity assumes the critical value

3 2
zC=1+44<2>;+o<zz>.
c c

Further show that the pressure of the gas at the critical point is given by (Lee and Yang 1958,

1960b)
P _ 1 <§>+2{ §)}23+O£ .
v 3| \2 ;(2 e \22) ]

compare these results to equations (11.2.16) through (11.2.18).

11.3. For the imperfect Bose gas studied in Section 11.2, calculate the specific heat Cy near absolute
zero and show that, as T'— 0, the specific heat vanishes in a manner characteristic of a system
with an “energy gap” A = 4wah®n/m.

11.4. (a) Show that, to first order in the scattering length a, the discontinuity in the specific heat Cy of

an imperfect Bose gas at the transition temperature T is given by

9
(C)1=t,- = (CV)r=t,0 =Nk, -2(3/2),

while the discontinuity in the bulk modulus K is given by

4rah?
Kyr=1,- —K)r=14 =—— 5"
mu?

(b) Examine the discontinuities in the quantities (3>P/dT?), and (3%11/3dT?), as well, and show
that your results are consistent with the thermodynamic relationship

9P %pu
Cv=VvT|— | -NT|=L] .
! <8T2>U <8T2>U
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11.10.

.5. (a) Complete the mathematical steps leading to equations (11.3.15) and (11.3.16).

(b) Complete the mathematical steps leading to equations (11.3.23) and (11.3.24).

.6. The ground-state pressure of an interacting Bose gas (see Lee and Yang, 1960a) turns out to be

Py = -
0= 8ran? 157 &

2 1/2_1/2
m 64 m’“a
Ho [1 Dt Ky WAL } ,
where 1 is the ground-state chemical potential of the gas. It follows that

172172
dP 16 m'/“a
o) _ _Hom [1 Mo+..}

n= (dTO) “arar?| 37 &

and

1/2_1/2
Ey