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Foreword

Modern cryptography depends heavily on number theory, with primality test-
ing, factoring, discrete logarithms (indices), and elliptic eurves being perhaps
the most prominent subject areas. Since my own graduate study had empha-
sized probability theory, statistics, and real analysis, when T started work-
ing in cryptography around 1970. T found myself swimming in an unknown,
murky sea. [ thus know from personal experience how inaccessible number
theory can be to the uninitiated. Thank you for your efforts to ease the
transition for a new generation of cryptographers.

Thank you also for helping Ralph Merkle receive the credit he deserves.
Diffie, Rivest, Shamir, Adleman and I had the good luck to get expedited
review of our papers, so that they appeared before Merkle’s seminal contribu-
tion. Your noting his early submission date and referring to what has come to
be called “Diffie-Hellman key exchange” as it should, “Diflie-Hellman-Merkle
key exchange”, is greatly appreciated.

1t has been gratifying to see how cryptography and number theory have
helped each other over the last twenty-five years. Number theory has been
the source of numerous clever ideas for implementing crvptographic systerns
and protocols while eryptography has been helpful in getting funding for this
area which has sometimes heen called “the queen of mathematics” because
of its seeming lack of real world applications. Little did they know!

Stanford, 30 July 2001 Martin E. Hellman
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Number theory 1s an ezpertmental science.

J. Wo 5. Cassers (1922- 3
Professor Emeritus of Mathematics, The University of Cambridge

If you teach a course on number theory nowadays, chances arve it will gen-
erate more interest among cotnputer science majors than among mathe-
matics majors. Many will care little about integers that can be expressed
as the sum of two squeres. They will prefer to learn how Alice can send a
messoge to Bob without fear of eavesdropper Eve deciphering it.

Brain E. BLANK, Professor of Mathematics
Washington University, St. Louis, Missouri

The success of the first edition of the book encouraged me to produce this
second edition. T have taken this opportunity to provide proofs of many the-
orems, that had not been given in the first edition. Some additions and cor-
rections have also been included.

Since the publication of the first edition, I have received many communica-
tions from readers all over the world. It is my great pleasure to thank the fol-
lowing pecple for their comments, corrections and encouragements: Prof. Jim
Austin, Prof. Friedrich L. Bauer, Dr. Hassan Daghigh Dr. Deniz Deveci,
Mr. Rich Fearn, Prof. Martin Hellman, Prof. Zixin Hou, Mr. Waseem Hus-
sain, Dr. Gerard R. Maze, Dr. Paul Maguire, Dr. Helmut Mevn. Mr. Robert
Pargeter, Mr. Mok-Kong Shen, Dr. Peter Shiu, Prof. Jonathan P. Sorenson,
and Dr. David L. Stern. Special thanks must be given to Prof. Martin Hell-
man of Stanford University for writing the kind Foreword to this edition and
also for his helpful advice and kind guidance. to Dr. Hans Wossner, Mr. Al-
fred Hofmann, Mrs. Ingeborg Mayer, Mrs. Ulrike Stricker, and Mr. Frank
Holzwarth of Springer-Verlag for their kind help and encouragements dur-
ing the preparation of this edition, and to Dr. Rodney Coleman, Prof. Glyn
James, Mr. Alexandros Papanikolaou, and Mr. Robert Pargeter for proof-
reading the final draft. Finally, I would like to thank Prof. Shiing-Shen Chern,
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Director Emeritus of the Mathematical Sciences Research Institute in Berke-
lev for his kind encouragements; this edition is dedicated to his 90th birthday!

Readers of the book are, of course, very welcome to communicate with
the anthor either by ordinary mail or by e-mail to s.yan@aston.ac.uk, 50
that your corrections, comments and suggestions can be incorporated into a
future edition.

Birmingham, February 2002 S.Y. Y.

Preface to the First Edition

Muathematicians do not study objects, but relations emong objects; they are
indifferent to the replacement of objects by others as long as relations do
not change. Matter is not tmportant, only form interests them.

HENRI POINCARE {1854-1912)

Computer scientists working on algorithms for factorization would be well
advised to brush up on their number theory.

IAN STEWART

Geometry Finds Factor Fast

Nature, Vol. 325, 15 January 1987, page 199

The theory of numbers, in mathematics, is primarily the theory of the prop-
erties of integers (i.e., the whole numbers), particularly the positive integers.
For example, Euclid proved 2000 years ago in his Elements that there ex-
ist infinitely many prime numbers. The subject had long been considered as
the purest branch of mathematics, with very few applications to other ar-
eas. However, recent years have seen considerable increase in interest in sev-
eral central topics of number theory, precisely because of their importance
and applications in other areas, particularly in computing and information
technology. Today, number theory has been applied to such diverse areas as
physics, chemistry, acoustics, biology, computing, coding and cryptography,
digital communications, graphics design, and even music and business'. In
particular, congruence theory has been used in constructing perpetual calen-
dars, scheduling round-robin tournaments, splicing telephone cables, devising
systematic methods for storing computer files, constructing magic squares,
generating random numbers, producing highly secure and reliable encryption
schemes and even designing high-speed (residue) computers. It is specifically
worthwhile pointing out that computers are basically finite machines; they

"' In his paper [96] in the International Business Week, 20 June 1994, pp. 62-64,
Fred Guterl wrote: “Number Theory, once the esoteric study of what happens
when whole numbers are manipulated in various ways, is becoming a vital prac-
tical science that is helping solve tough business problems”.
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have finite storage. can only deal with numbers of some finite length and can
only perform essentially finite steps of computation. Because of such limita-
tions, congruence arithmetic is particularly useful in computer hardware and
software design.

This book takes the reader on a journey, starting at elementary number
theory, going through algorithmic and computational number theory, and
finally finishing at applied number theory in computing science. It is divided
into three distinct parts:

(1) Elementary Number Theory,
(2} Computational/Algorithmic Numnber Theory,
(3) Applied Number Theory in Computing and Cryptography.

The first part is mainly concerned with the basic concepts and results of divis-
ibility theory, congruence theory, continued fractions, Diophantine equations
and elliptic curves. A novel feature of this part is that it contains an ac-
count of elliptic curves. which is not normally provided by an elementary
number theory book. The second part provides a brief introduction to the
hasic concepts of algorithms and complexity, and introduces some important
and widelv used algorithms in computational number theory, particularly
those for primality testing, integer factorization, discrete logarithms, and el-
liptic curve discrete logarithms. An important feature of this part is that
it contains a section on quantum algorithms for integer factorization and
discrete logarithms, which cannot be easily found, so far, in other texts on
computational/algorithmic number theory. This part finishes with sections
on algorithms for computing #(x). for finding amicable pairs, for verifying
Goldbach’s conjecture, and for finding perfect and amicable numbers. The
third part of the book discusses some novel applications of elementary and
computational number theory in computing and information technology, par-
tieularly in cryptography and information security; it covers a wide range of
topics such as secure communications, information systems security. com-
puter organisations and design, error detections and corrections, hash func-
tion design, and random number generation. Throughout the book we follow
the style “Definition-Theorem-Algorithm-Example” to present our material,
rather than the traditional Hardy-Wright “Definition-Theorem-Proof” style
f100}, although we do give proofs to most of the theorems. We believe this is
the most suitable way to present mathematical material to computing profes-
sionals. As Donald Knuth [121] pointed out in 1974: “It has often been said
that a person does not really understand something until he teaches it to
someone clse. Actually a person does not really understand something until
Le can teach it to a computer.” The author strongly recommends readers
to implement all the algorithms and methods introdnced in this book on a
computer using a mathematics (computer algebra) system such as Maple in
order to get a better understanding of the ideas behind the algorithns and

Preface to the First Edition xi

methods. A small number of exercises is also provided in some sections, and
it is worthwhile trying all of them.

The book is intended to be self-contained with no previous knowledge
of number theory and abstract algebra assumed, although some familiarity
with first-year undergraduate mathematics will be helpful. The book is suit-
able either as a text for an undergraduate/postgraduate course in Number
Theory/Mathematics for Computing/Cryptography. or as a basic reference
researchers in the field.
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Notation

All notation should be as simple as the nature of the operations to which

it s applied.

CHARLES BABBAGE (1791-1871)

Notation Explanation

N set of natural numbers: N = {1,2,3,---}

Z set of integers (whole numbers): Z = {0, n : n € N}

Z+ set of positive integers: Z1T = N

L+ set of positive integers greater than 1:
Zisy={n:né€Zandn>1}

. a

Q set of rational numbers: Q) = {5 ra.beZiand b # 0}

R set of real numbers:
R={n+0ddsdy---:neZ, d €{0,1,---,9}
and no infinite sequence of 9’s appears}

C set of complex numbers:
C={a+bi:a.beRandi= -1}

Z/nZ also denoted by Z,,, residue classes modulo n;
a ring of integers; a field if n is prime

(Z [nZ)* multiplicative group; the elements of this group are the
elements in Z /nZ that are relatively prime to n:
(Z/nZ) ={[a]n € Z/nZ: ged(a,n) = 1}.

F, finite field with p elements, where p is a prime number

Fy finite field with ¢ = p* a prime power

K (arbitrary) field

R ring
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Notation

group
order of group G

Bernoulli numbers:

+1
(T’/TI)Bn'f’“""i'(nn )B1+BG~O

Fermat numbers: F,, = 22" 11, n >0

Mersenne primes:
M, = 2P — 1 is prime whenever p is prime

square root of x

kth root of x

asymptotic equality

approximate equality

infinity

implication

equivalence

blank symbol; end of proof
space

probahility measure

cardinality of set S

member of

proper subset

subset

binary operations

binary operation (addition); exclusive or (XOR)
binary operation {multiplication)
flx) and g(x) are asymptotically equal
(G.*) and {H.*) are isomorphic
undefined

encryption key

decryption key

encryption process C' = E,, (M.
where M is the plaintext

decryption process M = Dy (C),

where (' is the ciphertext

Notation Xix
Sl function of @
! inverse of f
n . . L.
( ; ) binomial coeflicient
/ integration
, e . “dt
Li(z) logarithmic integral: Li{z) = oy
Joo ANF
11
3o sum: xy +axo 4o+ 2y,
i=1
T
1T = product: xyzs - - 1,
i=1
n! factorial: n(n — 1){(n —2)--.3-2-1
at x to the power k
kP kP =P@P@--- @ P owhere P is a point (x,y) on
~— —
k summands . r
an elliptic curve E: y* = 2% +qr + b
Op the point at infinity on an elliptic curve E over a field
1
e the transcendental number e = 3~ =7 & 2.7182818
n>0 U
log, = logarithm of « to the base b (b # 1): x = plo&e”
log x binary logarithm: log, z
Inx natural logarithm: log, x
e z”
exp(z) exponential of 2; e = ) -
n>0 T
alb a divides b
ath a does not divide b
| n p* | nbut p*Ti i

ged(a, b)
lem{a. b)
)
]
. mod n

xr =y modn

z =y (mod n)
¢ Zy (mod n)

greatest cornmon divisor of {a, b}
least common multiple of (a, )
the greatest integer less than or equal to

the least integer greater than or equal to

remainder: z —n | —
n

x is equal to y reduced to modulo n
x is congruent to y modulo n

x 18 not congruent to y modulo n



% mod n
kP mod n
ord,(a)

ind, pa

7(z)

m(n)

¢(s)

(%)
Qn

@,

Jn

@
K(k)n

Kk,

Notation

residue class of @ modulo n
addition modulo n
subtraction modulo n
multiplication modulo n
2 to the power k modulo n
kP modulo n
order of an integer a modulo n;
also denoted by ord{a, n)
index of a to the base g modulo n;
also denoted by indga whenever n is fixed

number of primes less than or equal to a:

rlzy= ¥, 1
iz
¥ prime

number of positive divisors of n: 7(n) = 371
din

sum of positive divisors of n: o(n) = 3 d

din
sum of proper divisors of n: s(n) =o(n) —n
Euler’s totient function: ¢{n) = 3 1

0k <n
ged{k,ni=1

Carmichael’s function:
k
An) = lem (A(PTHA@E?) - Apg)) if n= 1:[1 P
Mobius function
Riemann zeta-function: {(s) = [] =
n=1
where s is a complex variable

Legendre symbol, where p is prime

Jacobi symbol, where n is composite

set of all quadratic residues of n

set of all quadratic nonresidues of n
a
J,, = {a e (Z/nZ)*: (E> = 1}
set of all pseudosquares of n: Qn=Jd.—Qn
set of all kth power residues of n, where k > 2

set. of all kth power nonresidues of n, where k > 2

Notation

xxi

[do.01.92.- - 4]

finite simple continued fraction

Cr = Z% k-th convergent of a continued fraction

lg0-q1. 42, ] infinite simple continued fraction

I(JO-,QI-,"' kGt L Dy 2 Gt
periodic simple continued fraction

P class of problems solvable in deterministic
polynomial time

NP class of problems solvable in nondeterministic
polynomial time

RP class of problems solvable in random polynomial
time with one-sided errors

BPP class of problems solvable in random polynomial
time with two-sided errors

ZPP class of problems solvable in random polynomial
time with zero errors

o) upper bound: f{(n) = O(g(n)) if there exists some

O(N*)
O ((log N)¥)

o ((10g Njeleg N)

constant ¢ > 0 such that f(n) < c¢-g(n)

upper bound that is not asymptotically tight:
fin) = O(g{n)), Ve > 0 such that f(n) < c-g{n)
low bound: f(n) = (2{g(n)) if there exists a
constant ¢ such that f(n) > 1 - g(n)

tight bound: f(n) = @{n) if f(n) = Olg{n))
and f(n) = 2(g(n))

polynomial-time complexity measured in terms of
arithmetic operations, where k > 0 is a constant

polynomial-time complexity measured in terms of
bit operations, where k& > 0 is a constant

superpolynomial complexity, where ¢ > 0 is a constant

O (exp (evlog Nloglog N })

O {exp(x))
O (N

CFRAC
ECM

subexponential complexity,

@ (exgp ((- E()g hY lUg l{)g N ) ) = (f\‘rc’ /loglog N/ log 1\:)

exponential complexity, sometimes denoted by O {(e®)

exponential complexity measured in terms of
bit operations; O (N¢) = O (2¢18 V)
where € > 0 is a constant

5

Continued FRACtion method (for factoring)

Elliptic Curve Method (for factoring)
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NFS Number Field Sieve (for factoring)

QS/MPQS Quadratic Sievo{ Multiple Polynomial Quadratic
Sieve (for factoring)

ECPP Elliptic Curve Primality Proving

DES Data Encryption Standard

AES Advanced Encryption Standard

DSA Digital Signature Algorithin

DSS Digital Signature Standard

RSA Rivest-Shamir-Adleman

WWW World Wide Web

1. Elementary Number Theory

The elementary theory of numbers should be one of the very best subjects
for early mathematical instruction. It demands very liftle previous knowl-
edge, 1ts subject matier is tangible and familiar; the processes of reasoning
which it employs are simple, general and few; and it 1s unigue amony the
mathematicel sciences in its appeal to natural human curiosity.

G. H. HARDY (1877-1947)

This chapter introduces the basic concepts and results of the elementary
theory of numbers. Its purpose is twofold:

— Provide a solid foundation of elementary number theory for Computational,
Algorithmic, and Applied Number Theory of the next two chapters of the
book.

— Provide independently a self-contained text of Elementary Number Theory
for Computing, or in part a text of Mathematics for Computing.

1.1 Introduction

In this section, we shall first give a brief review of the fundamental ideas of
number theory and then present some mathematical preliminaries of elemen-
tary number theory.

1.1.1 What is Number Theory?

Mathematics is the Queen of the seiences, and number theory is the Queen
of mathematics.

C. F. Gauss (1777-1855)
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Number theory, in mathematics, is primarily the theory of the properties
of integers (whole numbers), such as parity, divisibility, primality, additivity
and multiplicativity, etc. To appreciate the intrinsic mathematical beauty of
the theory of numbers, let us first investigate some of the properties of the
integers (the investigation is by no means complete: more detailed discussions
will be given later in the book).

(I) Parity. Perhaps the simplest property of an integer is its parity, that
is, whether it is odd or even. By definition, an integer is odd if dividing it
by 2 leaves a remainder of 1; otherwise, it is even. Of course. if the binary
representation of an integer is readily available for inspection. division hy 2
can be avoided, since we need only look to see if the integer’s rightmost bit is
a 1 (indicating oddness), or a 0 (indicating evenness). Two integers m and n
have the same parity if both m and n ave even or odd, otherwise. they have
opposite parity. Some well-known results, actually already known to Euclid',
about the parity property of integers are as follows:

(1) The sum of two numbers is even if hoth are even, or both are odd. More
generally, the sum of n even numbers is even, the sum of n odd numbers
is even if n is even and the sum of n odd numbers is odd if n is odd.

(2) The ditference of two numbers is even if both have the same parity. More
generally, the difference of n even numbers is even, the difference of n
odd numbers is even if n is even and the difference of n odd numbers is
odd if n is odd.

(3) The product of two numbers is even if at least one of them is even. More
generally, the product of n numbers is even if at least one of them is even.

That is,

even * even + even & - - - & even = even,

"~

n even numbers, n is even

Euclid (about 350 B.C.) was the author of the most successful
mathematical textbook ever written, namely his thirteen books
of Elements, which has appeared in over a thousand different edi-
tions from ancient to modern times. It provides an introduction to
plane and solid geometry as well as number theory. For example,
| some properties of the parity of integers are given in Propositions
21-29 of Book IX. Euclid’s algorithm for (omputing the greatest

o ¥ common divisor of two and three positive integers is found in Book
\ 11 Prog)osmon 2 and Proposition 3, respectively, and his proofs for the infinitude
of primes and a sufficient condition for even numbers to be perfect are found in
Book IX Proposition 20 and Proposition 36, respectively. The “Axiom-Definition-
Theorem-Proof” style of Euclid’s work has become the standard for formal math-
ematical writing up to the present day. (All portrait images in this book, unless
stated otherwise, are by courtesy of (¥’Connor and Robertson [177].)
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odd + odd +odd £ -- - £ odd = even,

n odd numbers, n is even

odd £ odd £odd £ --- & odd = odd,

n odd numbers, n is odd

odd x odd x odd x --- x odd = odd,

all odd

even X odd x odd x -+ x odd = even.

~

at least one even

Example 1.1.1. Following are some examples:

100 +4 + 54 + 26 + 12 = 196,

100 -4 —54—-20-18 = 4,

101 #1413+ 15+ 17+ 47 = 194,
101 —1-13-15-17—47 = R,
101+ 1 +13+154+17+ 47+ 3 = 197,
101 -1 -13-15~17 —47-3 =15,
23 % 67 x 71 x 43 = 4704673,

23 x 67 x 72 x 43 = 4770936.

It is worthwhile pointing out that the parity property of integers has im-
portant applications in error detection and correction codes, that are useful in
computer design and communications. For example, a simple error detection
and correction method, called parity check, works as follows. Let z,2; -+ - 2,
be a binary string (codeword), to be sent (from the main memory to the
central processing unit (CPU) of a computer, or from a computer to other
computers connected to a network). This code is of course in no way an error
detection and correction code. However, if an additional bit 1 (respect to 0)
is added to the end of the codeword when the number of 1’s in the codeword

is odd (respect to even), then this new code is error detecting. For instance,
let the two codewords be as follows:

Cy = 1101001001,
(% = 1001011011,
then the new codewords will become
T = 11010010011,
',5 = 10010110110.

These codes apparently have some error detec ting function. For example, if

after transimmission C becomes CJ = 11010110110, then we know there is an
error in the transmitted code, since

I+1+40+1+4+041+140+141+0="7mod2+#0.
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(The notation ¢ mod n is defined to be the remainder when a is divided by
n: for example, 10 mod 3 = 1.) Of course, the new codes are still not error
correction codes. However, if we arrange data in a rectangle and use parity
bits for each row and colummn, then a single bit error can be corrected.

(II) Primality. A positive integer n > 1 that has only two distinct factors, 1
and n itself {when these are different), is called pr;r'mp' otherwise, it is called
composite. It is evident that a positive integer n > 1 is either a prime or a
composite. The first few prime numbers are: 2,3,5,7,11,13,17,19,23. It is
interesting to note that primes thin out: there are eight up through 20 but
only three between 80 and 100, namely 83,89 and 97. This might lead one to
suppose that there are only finitely many primes. However as Euclid proved
2000 vears ago there arve infinitely many primes. It is also interesting to note
that 2 is the only even prime; all the rest are odd. The prime pairs (3,3),
(5,7) and (11, 13) are twin primes of the form (p, p + 2) where p and p+ 2
are prime; two of the largest known twin primes {both fqlmd in 1995) are:
570918348 - 107120 £ 1 with 5129 digits and 242206083 - 255 + 1 with 11713
digits. Tt is not known if there are infinitely many twin primes; however, it has
been proved by J. R. Chen that there are infinitely many pairs of integers
{(p, p+ 2), with p prime and p + 2 a product of at most two primes. The
triple primes are those prime triples of the form either (p, p+2, p+4) or
(p, p+2, p+6). For example, {3,5,7} s a prime triple of the formn (p. p+2., p+
4), whereas the prime triples (5,7,11), (11,13,17), (17,19.23), (41.43,47),
(101,103, 107), (107,109,113}, (191,193,167, (227,229.233), (311, 313, 317).
(347,349, 353). (347, 349. 353) are all of the form (p, p+2, p-+6). It is amusing
to note that there is only one prime triple of the form (p, p+2, p+4), namely
(3,5.7): however, we do not know whether or not there are infinitely many
prime triples of the form (p, p+ 2. p + 6). There are other forms of prime
triples such as (p, p+4, p+6); the fivst ten triples of this form are as follows:
(7,11,13), (13,17,19). {37,41.43), (67.71,73), (97.101.103). (103.107.109).
(193,197, 199), (223,227, 229), (277, 281,283), and (304,3114 313). Again, we
also do not know whether or not there are infinitely many prime triples of
this form. According to Dickson [65]. the ancient Chinese mathematicians,
even before Fermat (1601-1665). seem to have known that

p € Primes = p| (27 - 2). (1.1)

However, there are some composites n that are not prime but satisfy the
condition that n | (27 — 2); for example, n = 341 = 11 - 31 is not prime,
but 341 | (2% — 2). It is not an easy task to decide whether or not a large
number is prime. One might think that to test whether or not the number
n s prime. one only needs to test all the munbers (or just the primes) up to
vii. Note that the number n has about 3 = logn bits. Thus for a number
n with 8 bits, this would require about exp(/#/2) bit operations since /n =
exp (% logn) = exp(53/2), and hence, it is inefficient and essentially useless
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for large values of n. The current best algorithm for primality testing needs
at most 3780 bit operations. where ¢ is a real positive constant.,

(ITI) Multiplicativity. Any positive integer n > 1 can be written uniquely
in the following prime factorization form:

no=plltpst ek, (1.2)
where py << py < -+ < py are primes, and a), a9, -+ -, a4y are positive integers.

This is the famous Fundamental Theorem of Arithmetic; it was possibly
known to Euclid (around 350 B.C.), but it was first, clearly stated and proved
by Gauss {1777 1855). It can be very easy to factor a positive integer n if
n is not very hig: the following are the prime factorizations of n for n =

1999.2000. - -, 2010:

1999 = 1999 2000=21.5%

2001 =3-23-29 2002=2-7-11-13
2003 = 2003 2004 = 2%.3- 167
2005 =5-401 2006 =2-17-59
2007 = 3% 223 2008 = 2% . 251
2009 = 7% - 41 2010=2-3-5-67

However, it can be very difficult to factor a large positive integer (c.g.. with
more than 100 digits at present) into its prime factorization form - a task even
more difficult than that of primality testing. The most recent and potentially
the fastest factoring method yet devised is the Number Field Sieve (NFS),
which can factor an integer N in approximately

exp ((:(}c)g N3 (loglog N)Z/S) (1.3)

bit operations, where ¢ is a positive real constant (an admnissible value is
¢ =(64/9)"7 ~ 1.9, but this can be slightly 10wercd to = (32/9)Y% x 1.5
for some special integers of the form N = ¢! + 35" see Huizing [107))
and exp stands for the (‘Xp()li@ﬂ’(ldl function. By using the NFS, the 9th
Fermat number Iy = 22’ + 1, a number with 155 digits, was (omplnr(‘i
factored in 1990. (However, the 12th Fermat number Fy» = 22" 4 1 has
still not completely been factored. even though its five smallest prirne factors
are known.) The most recent record of NFS is perhaps the factorization, by
a group led by Herman te Riele [206] in August 1999 of the random 1355
digit (512 bit) number RSA-155. which can be written as the product of two
78-digit primes:

1026395928297411057720541965739916 7590071656 TSOK0
38066803341933521790711307779,
1066034883801684548209272203600128786792079585759_
89291522270608237193062808643.



6 i. Elementary Number Theory

It is interesting to note that a number of recent proposals for cryptographic
systems and protocols, such as the Rivest- -Shamir-Adleman (RSA) public-
kev cryptography, rely for their security on the infeasibility of the integer
factorization problem. For example, let M be a message. To encrypt the
message M, one computes

C = M* (mod n), (1.4)

where e is the encryption key, and both e and n are public. (The notation
a = b (mod n) reads “a is congruent to b modulo n”. Congruences will be
studied in detail in Section 1.6.) To decrypt the encrypted message C, one
computes

M =% (mod n), (1.5)

where d is the private decryption key satisfying
ed = 1 (mod ¢(n}), (1.6)

where ¢(n) is Euler’s ¢-function {(¢(n), for n > 1, is defined to be the num-
ber of positive integers not exceeding n which are relatively prime to n;
see Definition 1.4.6). By (1.6), we have ed = 1 + k¢(n) for some integer
k. By Euler’s theorem (see Theorem 1.244), M @) = 1 (mod n), we have
M*e) = 1 (mod n). Thus,

C4 = Mt = MR = A (mod n). (1.7)

For those who do not have the private key but can factor n, say, e.g., n = pg.
they can find d by computing

d=e"! {mod é(n)) = e (mod (p—1)(¢ — 1)), (1.8)
and hence, decrypt the message.

(IV) Additivity. Many of the most difficult mathematical problems are in
additive number theory: Goldbach’s conjecture is just one of them. On 7th
June 1742 the German-born mathematician Christian Goldbach (1690-1764)
wrote a letter (see Figure 1.1) to the Swiss mathematician Euler (then both
in Russia), in which he proposed two conjectures on the representations of
integers as the sum of prime numbers. These conjectures may be rephrased
as follows:

(1) Every odd integer greater than 7 is the sum of three odd prime nurnhers.

(2) Every even integer greater than 4 is the sum of two odd prime numbers.

They may also be stated more strongly (requiring the odd prime numbers to
be distinct) as follows:

(1) Every odd integer greater than 17 is the sum of three distinct odd prime
numbers.
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Figure 1.1. Goldbach’s letter to Euler
(2) Every even integer greater than 6 is the sum of two distinct odd prime

numbers.

The following are some numerical examples of these conjectures:

9=3+3+3 6=3+3
11=34+3+5 8=3+5
13=3+3+7=3+5+5 100=34+7=5+5
15=3+5+7=54+5+5 12=5+7
17=3+3+11=3+7+7=5+5+7 14=3+11
199=3+3+13=34+5+11=53+7+7 16=3+13=5+11
21=3+5+13=34+7+11=5+5=+11 18=5+13=7+11

=T+7+7

It 1s clear that the second conjecture implies the first. As a result. the first
became known as the little Goldbach conjecture (or the ternary Goldbach
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conjecture). whereas the second became known ds the Goidb;}(?h conjecture
(or‘the binary Goldbach conjecture). Euler believed the (T(?Il_](?(_‘tLII'ES to he
true but was unable to produce a proof. The first great a('ln(!vmn-e%lt on the
study of the Goldbach conjecture was obtained by the two greas British math-
enmgicianm Hardy? and Littlewood?; using their powo,rful->aualy1;ic method
[99] (known as the “Hardy-Littlewood-Ramanujan method”, or the “Hardy-

Littlewood method” | the “circle method™ for short) they proved in 1923 that

If a certain hypothesis (a natural generalization of Riemann’s hy-
pothesis concerning the complex zeros of the (-function) is true, then
every sufficiently large odd integer is the sum of three odd primes.
and almost all even integers are sums of two primes.

2

Godfrey Harold Hardy (1877-1947), was born Cranleig?;,_
Englan\d, and was admitted to Trinity College. Camblridge m
1896. He studied and taught there until 1919, at which date
he was appointed as Savilian professor of geometry at '()xfc‘)rdl
He spent ahout 10 vears at Oxtord and one yvear at Prmcoton.,
then he returned to Cambridge in 1931 and remained there
until his death. Hardy collaborated with his friend John E.
Littlewood, an eminent British mathematician also at Cam-
. % bridge University, for more than 35 years . surely the most
i . successful collaboration ever in mathe‘matl(:h‘! Tl_l(?y u{'rot‘e a
hundred joint papers, with their last publication a vear after Hardy's death, In
the 1920s the eminent German mathematician Edmund Landau (18?77193%3) ex-
pressed the view that “the mathematician Hardy-Littlewood was the })Gst in th(
world, with Littlewood the more original genius and Hardy the better ']()ill‘llalééwt. .
Someone once even jokingly said that “nowadays, there are only i‘.hxe(* really great
English mathematicians: Hardy, Littlewood and Harc.iy-ptﬂe\vood’ . Hardy }pﬂf(le
significant contributions to number theory and mathematical analysis, and received
many honours for his work, among them the prestigions Copley M.(}da.l of the R()}"(.ll
Society in 1947: he learnt of this award only a few weeks bcf()rg his death., ’Hardy‘s
book An Introduction to the Theory of Numbers [100] is classic z}iad lps)sslbly the
best in the field, and influenced several generations of number theorists in the wo.rlfl.
Another book by Hardy A Mathematician’s Apology [98] is one of the most vivid
descriptions of Low a mathematician thinks and the pleasure of mathematics.

John Edensor Littlewood (1885-1977), is best known fer» 1115_33
vears collaboration with G. H. Hardy on summability. function
theorv and number theory. Littlewood studied at TI‘iI}iT‘_\_' C()_l!egci
Cambridge. From 1907 to 1910 he lectured at the University of
Manehester. He became a Fellow of Trinity College ﬁl{)()S) retirn-
ing there in 1910. He was to become Rouse Ball professor of mat!lw
ematics there in 1928, In World War I Littlewood also served in
the Roval Garrison Artillerv. Hardy once wrote of Littlewood tlllar
he know of no one else who could command such a combination of instght, tf;:;hmq'u._(:
and power. Note that Littlewood also wrote a very rvzjdabkf boc_.)k A A\fath(jn{(vk
cian's Miscellany [144] (a collection of Lirt!(!“s\'oc.)d s 15 articles in mathematics),
published in line with Hardy's A Mathematician's Apology.
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In 1937, without appealing to any form of Riemann’s hypothesis, the preat
Russian mathematician 1. M. Vinogradov! proved unconditionally that

Every sufficiently large odd integer can be written as the sum of three
odd prime numbers.

This is the famous Vinogradov's Three-Prime Theorem for the little Goldbach
conjecture. As for the Goldbach conjecture, the best result is still Chen’s
theorem {see Chen [46], or Halberstam and Richert [97]). in honour of the
Chinese mathematician J. R. Chen’:

Every sufficiently large even integer can he written as the sum of a
prime and a product of at most two primes.

Exercise 1.1.1. Let a representation of an even number as the sum of two
distinet primes (i.e., n = p; + po.n even, p; < ps) or a representation of
an odd number as the sum of three distinct primes {le., n = p; + py +

Ivan Matveevich Vinogradov (1891 -1983), a great Russian mathe-
matician, studied at St Petersburg and obtained his first degree in
1914 and master’s degree in 1913, respectively. Vinogradov tanght
at the State University of Perm from 1918 to 1920, and returned
to 5t Petershurg and was promoted to professor at the State Uni-
versity of St Petersburg in 1925, becoming head of the probability
and number theory section there. He moved to Moscow to become
the first director of the Steklov Institute of Mathematics in 1934,
a post he held until his death. Vinogradov used trigonometric sums to attack deep
problems in analytic number theory, particularly the Goldbach conjecture.

Jing Run Chen (1933-1996), one of the finest mathematicians in
China and a distinguished student of the eminent Chinese math-
ematician Loo Keng Hua (1909-1985), died on the 19th of March
1996 after fighting disease for many vears. In about 1955 Chen
sent Hua (then the Head of the Institute of Mathematics of the
Chinese Academy of Sciences, Beijing), a paper on Tarry’s proh-
lem. which improves Hua's own result on the problem. It was this
i paper that Hua decided to bring him from Xia Men University in a
Southern China Province to the Institute in Beijing. Chen devoted himself entirely
to mathematical research. particularly to some hard problems in number theory,
such as Waring’s problem, Goldback’s conjecture and the twin prime problem, and
even during the cultural revolution {1966-1976), a very chaotic period over the long
Chinese history, he did not stop his research in mathematics. During that difficulr
period, he worked on number theory, particularly on Goldbach’s conjecture almost
all day and all night. in a small dark room (about 6 square meters): there were no
electric lights (he had to use the kerosene to light the room in the night). no table
and no chairs in that room {he read and wrote by setting at the bed using a plate
on his legs), just a single bed and his many books and manuscripts; [t was in this
room that he completed the final proof of the famouns Chen’s theorem. (Photo by
courtesy of the Chinese Mathematical Society.) '
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ps,n odd, pr < p2 <p3) bea Goldbach partition of n, denoted by G(n). Let
also |Gi(n)] be the number of partitions of n. Then
G(lOO):3+97z11+89:17+83:29+71:41+59=4?+53.
G(lOl):3+19%79:3+31+67:3+37+61:5+7+89
—5+13+83=5+17+79=5+23+73=5+20+67
= 5437T+09=5+43+53=T+11+83=7+23+71
T4l 453 =11 4+174+73=11+19+ 71 =11+23 + 67
— 11429461 =114+31+59=11+37+533=11+43+47
=134+ 17+ 71 =13+29+ 59 = 13+ 41 +47 = 17 + 23 + 61
— 17431 +53=17T+37T+47 =17+ 41 +43 =19+ 23+ 59
—194+29 +53 =23+314+47 =23+ 37+41 =29+ 31 + 41

Hence |G(100)] = 6. and |G(101){ = 32.
(1) Find the values for |G(1000) and |(3(1001}]. (Hint: |G(1001)| > 1001.)
(2) List all the partitions of G(1000) and G(1001).
(3) Can you find any patterns from your above computation?

There are, of course, many other fascinating properties of positive integers
that interest mathematicians. The following well-known story of the “Hardy—
Ramanujan® taxi number” might also give us an idea of what numbervtheory
is. One rjay' Hardy went to visit Ramanujan in a hospital in England. W }}en he
arrived, he idly remarked that the taxi in which he had ridden had the license
number 1729, which, he said, seemed to him a rather uninteresting number.
Ramanujan replied immediately that it is an interesting number, since it is the

% Grinivasa Ramanujan (1887-1920) was one of India"s greatest
mathematical geniuses. He made substantial coutribumqns to the
analvtical theory of numbers and worked on elliptic functions, con-
tinued fractions. and infinite series. Despite his lack of a formal
education, he was well-known as a mathematical genius in Madras
(the place where he lived) and his friends suggested ‘that ‘he should
B cend his results to professors in England. Ramanujan first wrote
: to two Cambridge mathematicians E. W. Hobson and H. F. Baker
trving to interest them in his results but neither replied. In Jal}uary 19155 Ral—nanuw
ja}l then wrote to Hardy a long list of unproved theorems, saving that “I hav§ had
no university education but I have nndergone the ordinary school course. After
leaving school 1 have been employing the spare tirpe at my disposal to work dt
mathematics.” It did not take long for Hardy and Littlewood to (iozxclxide that Ra-
manujan was a man of exceptional ability in mathelinatac,s and decided to brm‘g }hlm
to Cambridge. Ramanujan arrived in Cambridge 111_Apr11 19_14. Hardyuwas soon
convinced that. in terms of natural talent, Ramanujan was in jclxe class of Euler
and Gauss. He worked with Hardy and made a series of outstanding breakthro.u'ghs
in mathematics, and was elected a Fellow of the Roval Society at the age of Just
31. It was Littlewood who said that every positive integer was one of Ramanﬂ]an"s:
personal friends. But sadly, in May 1917, Ramanujan fell ill: he returned to India
in 1919 and died in 1920, at the early age of 33.
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smallest positive integer expressible as a sum of two positive cubes in ezactly
two different ways, namely, 1729 = 1° + 123 = 9% + 10°. (Ramanujan could
have pointed out that 1729 was also the third smallest Carmichael number!)
Hardy then naturally asked Ramanujan whether he could tell him the solution
of the corresponding problem for fourth powers. Ramanujan replied, after a
moment’s thought. that he knew no obvious example, and supposed that the
first such number must be very large. It is interesting to note that the solution
to the fourth power was known to Euler [7]: 633318657 = 59% + 158¢ =
133% + 134%,

Exercise 1.1.2. Let r(m,n,s) denote the smallest integer that can be ex-
pressed as a sum of m positive (not necessarily distinct) n-th powers in s
different. ways. Then we have

r(2,2,2) =50 =57 4+52 =12+ 7%

r(2.3,2) = 1729 = 1% +12% = 9% + 10°

r(2,4,2) = 635318657 = 59% + 1587 = 133* 4 1341

r(6,4,4) =6625 =11 +2* + 20 424 424 p ot =21 20 4 21 1 30 71 48t
=204 6t T T =3 4 6 6 60 T

Find an example for each of the following numbers:

r(3,2,2), r{4,2,2), r(5.2.2), r(3,3,2),
r(2,2,3), r{3,4,2), r(3.5.2), (3,6, 2),
r(2,2,4), r{3,3,3), r(3,4.3), r{3,5,3).

Finally. we wish to remark that number theory is not only the oldest
subject of mathematics, but also a most active and lively branch in mathe-
matics. It uses sophisticated techniques and deep results from almost all areas
of modern mathematics; a good example would be the solution by Andrew
Wiles” to the famous Fermat’s Last Theorem (FLT), proposed by the great

7

Andrew J. Wiles, a well-kown number theorist and algebraic ge-
ometer, was born in 1953 in Cambridge, England. He attended
Merton College at the University of Oxford, starting from 1971,
and received his BA there in 1974. He then went to Clare College
at the University of Cambridge, earning his PhD there in 1980,
under the supervision of John Coates. He emigrated to the U.S.A.
in the 1980s and became a professor at Princeton University in
1982. Wiles was elected a Fellow of the Royal Society, London in
1989. He has recently received several prestigious awards in mathematics, includ-
ing the Wolf Prize and the U.S. National Academy of Sciences award in 1996, for
his proof of Fermat’s Last Theorem. It is interesting to note that Wiles became
interested in Fermat’s Last Theorem at the age of ten, when he read the book The
Last Problem (by Eric Temple Bell, 1962}, a book with only one problem and no
solution, in a Cambridge local library.
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[

French mathematician Fermat® 350 years ago. Wiles proof of Fermat’s Last
Theorem employed almost all the sophisticated modern pure mathematical
techniques.

It should also be noted that number theory has many different faces. and
hence different branches. This means that number theory can be studied
from e.g., an algebraic point of view, a geometrical point of view, or an
analytical point of view. Generally speaking. number theory, as a branch of
mathematics, can be broadly classified into the following sub-branches:

(1) Elementary number theory.
(2) Algebraic number theory,
{(3) Analytic number theory,
(i) Multiplicative number theory.
(ii) Additive number theory,
(4) Geometric number theory,
(5) Probabilistic number theory,
(6) Combinaterial number theory,
(7) Logic number theory,
(8) Algorithmic/Computational number theory,
(9) Arithmetic algebraic geometry, and
(10) Applied number theory.

These sub-branches reflect, either the study of the properties of the integers
from different points of view, or techniques used to solve the problems in
number theory. For example, probabilistic number theory makes extensive
use of probabilistic methods, whilst analytic number theory employs deep
results in mathematical analysis in solving number-theoretic problems. Note
that arithmetic algebraic geometry is a brand new subject of modern number
theory, which is the study of arithmetic properties of elliptic (cubic) curves.

The great amateur French scientist Pierre de Fermat (1601-1663)
led a quiet life practising law in Toulouse, and producing high
B uality work in number theory and other areas of mathematics
E 45 a hobby. He published almost nothing, revealing most of his
| results in his extensive correspondence with friends, and generally
kept his proofs to himself. Probably the most remarkable reference
to his work is his Last Theorem (called Fermat's Last Theorem
F ; / A (FLTY), which asserts that if # > 2, the equation " + y" = z"
cannot be solved in integers x,y, z, with zyz # 0. He claimed in a margin of his
copy of Diophantus’s book that he had found a beautiful proof of this theorem, but
the margin was too small to contain his proof. Later on mathematicians evervwhere
in the world struggled to find a proof for this theorem but without success. The
theorem remained open for more than 300 years and was finally settled in June 1995
by two English number theorists, Andrew Wiles, currently Professor at Princeton
University, and Richard Taylor, a [ormer student of Wiles and currently Professor
at Harvard University: the original result of Wiles (with a hole in it} was first
announced on 23 June 1993 at the Isaac Newton Institute in Cambridge.
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T}‘]IS book, however. shall be mainly concerned with elementary and algorith-
mic number theory and their applications in computer science.

1.1.2 Applications of Number Theory

Number theory is usually viewed as the purest branch of pure mathematics,
to be admired for its beauty and depth rather than its applicability. It is nbf
well known that number theory has, especially in recent vears, fouhd di§ers<>
“real-world™ applications, in areas such as ’ /
(1) Physics,

{2} Chemistry,

(3) Biology,

{(4) Computing,

(3) Digital information,

{6) Communications,

(7) Electrical and electronic engineering,

(8) Cryptography., ’

(9) Coding theory,

{10) Acoustic, and

(11) Music.

) It is impossible to discuss all the above applications of number theory.
We only concentrate ourselves on the applications of number theory in comn-
puting. In the pas few decades, numnber theory has been successfully applied
to the following computing-related areas: ‘ |

(1) Computer architecture and hardware design,
(2) Computer software systems design, ‘
(3) Computer and network security,

(4) Random mumber generation,

(3) Digital signal processing,

(6) Computer graphics and image processing,
(7) Error detection and correction.

(8) Faulty-tolerant computing,

(9) Algorithm analysis and design,

(10) Theory of Computation, and

(11) Secure computation and communications.

In this lv)ook. we, of course, cannot deal with all the applications of numbers
theory in computing: instead, we shall only deal with the applications of
number theory in the following three computing-related areas:

(1) Computer systems design,

(2) Information systems security, and

(3) Random number generation..’
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1.1.3 Algebraic Preliminaries

If you are faced by a difficulty or a coniroversy in science, an ounce of

algebra s worth o ton of verbal argument.
J. B. S. HALDANE (1892-1964)

The concepts and results in number theory are best described in certain types
of modern abstract algebraic structures, such as groups, rings and fields. In
this subsection, we shall provide a brief survey of these three widely used
algebraic structures. Let us first introduce some set-theoretic notation for
numbers.

(1) The set of natural numbers (positive integers, or counting numbers) N:
N={1,2,3---} (1.9)

Some authors consider 0 as a natural number. But like Kronecker?, we
do not consider 0 as a natural number in this book.
(2) The set of integers Z (the letter Z comes from the German word Zahlen):

Z={0,+1,42,£3, - }. (1.10)

We shall occasionally use
(i) Z o to represent the set of nonnegative integers:

Zwo={0.1,2,3,---}, (1.11)
(ii) Z1 to represent the set of positive integers:

7t =1{1,2,3,---} =N, (1.12)
(iii) Z~, to represent the set of positive integers greater than 1:

Zo1=1{2,3.4.--}. (1.13)

Leopold Kronecker {1823-1891) studied mathematics at Berlin
University, and did his doctoral thesis on algebraic number the-
ory under Dirichlet’s supervision. Kronecker was one of the few
of his generation to understand and master Evariste Galois's the-
orv. and is well known for his famous remark “Natural numbers
are made by God, all the rest are man made.” Kronecker believed
that mathomatics shonld deal only with finite numbers and with

a finite number of operations.
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{3) The set of all residue classes modulo a positive integer n, denoted by
Z [nZ (which is read “Z modulo n”):

ZinZ={0.1,2,-- n-1} =T, (1.14)

One of the main tasks in this chapter is to study the arithmetic in the
set Z /nZ. Note that some authors use Z,, to denote the set of all residue
classes modulo n.

(4) The set of rational numbers (J:

17

@2{6 ; a?bEZandb;é(J}. (1.15)

(5) The set of real numbers R:
R is defined to be the set of converging sequences of rational numbers
or decimals; they may or may not repeat. There are two subsets within
the set of real numbers: algebroic numbers and transcendental numbers.
An algebraic number is a real number that is the root of a polynomial
equation with integer coefficients; all rational numbers are algebraic, since
a/b is the root of the equation bz — a = 0. An érrational number is a
real number that is not rational. For example, /2 = 1.4142135.--, 7 =
3.1415926 - - - and e = 2.7182818- - - are all real mumbers but not rational,
and hence they are irrational. Some irrational numbers are algebraic: for
example, V2 is the root of equation 2> — 2 = 0, and hence V2 15 an
algebraic number. An irrational number that is not a root of a polynomial
equation with integer coeflicients (i.e., not algebraic, such as 7 and €) is
a transcendental number. Thus, we have

rational - algebraic,e.g., 5/4,2/3,20/7

algebraic,e.g., V2, 1+ v2
transcendental, e.g., 7. €

real number ¢ .
irrational

(6) The set of complex numbers C:
C={at+b : abeRandi=v~1} (1.16)

Definition 1.1.1. A binary operation = on a set S is a rule that assigns to
each ordered pair (a,b) of elements of S a unique element of S.

Example 1.1.2. Ordinary addition + is a binary operation on the sets N,

Z, R, or C. Ordinary multiplication - is another binary operation on the same
sets.

Definition 1.1.2. A group, denoted by (G.+), or (G, ), or simply G, is a
nonempty set G of elements together with a binary operation *, such that
the following axioms are satisfied:

(1) Closure: axbe G, VYa, be G,
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(2) Associativity: (axb)x e =ax (bxc), Va, b, ¢€4G.

(3) Existence of identity: Thereis a unique element e € G, called the identity,
such that ex g =axe =a, Ya€ .

(4) Existence of inverse: For every a € G there is a unique element & such
that axb=bxa — ¢. This b is denoted by a~! and called the inverse of
a.
The group {(G.x) is called a commutative group if it satisfies a further
axiom:

(5) Commutativity: axb=bxa, Va, bey.

A commutative group is also called an Abelian group, in honour of the
Norwegian mathematician N. H. Abel'Y.

Example 1.1.3. The set Z™ with operation + is not a group. since there is
no identity element for + in Z7. The set Z1 with operation - is nol a group;
there is an identity element 1, but no inverse of 3.

Example 1.1.4. The set of all nonnegative integers, Z~o, with operation +
is mot a group; there is an identity element 0. but no inverse for 2.

Example 1.1.5. The sets Q" and Rt of positive numbers and the sets ",
®* and C* of nonzero numbers with operation - are Abelian groups.

Definition 1.1.3. G is said to be a semigroup with respect to the binary
operation * if it only satisfies the group axioms (1) and (2} of Definition
1.1.2. G is said to be a monoid with respect to the binary operation * if it
only satisfies the group axioms (1), (2) and (3).

Definition 1.1.4. If the binary operation of a group is denoted by +, then
the identity of a group is denoted by 0 and the inverse a by —a: this group
is said to be an edditive group.

Definition 1.1.5. If the binary operation of a group is denoted by *, then
the identity of a group is denoted by 1 or e; this group is said to be a
maltiplicative group.

Definition 1.1.6. A group is called a finite group if it has a finite number
of elements: otherwise it is called an infinite group.

Aany mathematicians have had brilliant but short careers; Niels
Henrik Abel (1802-1829), is one of such mathematicians. Abel
made his greatest contribution to mathematics at the age of
nineteen and died in poverty, just eight years later. of tuber-
culosis. Charles Hermite (1822-1901). a French mathematician
who worked in algebra and analysis, once said that Abel “has
loft mathematicians something to keep them busy for five hun-
dred vears”: it is certainly true that Abel's discoveries still have
a profound influence on today’s number theorists.
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Definition 1.1.7. The order of a group G, denoted by |G] (or by #(G)). is
the number of elements in G. .

Example 1.1.6. The order of Z is |Z] = oc.

Definition 1.1.8. A nonenipty set ¢’ of a group G which is itself a group.
under the same operation, is called a subgroup of G.

Definition 1.1.9. Let ¢ be an element of a multiplicative group G. The
elements a”, where r is an integer, form a subgroup of G, called the sub-
group generated by a. A group G is eyclic if there is an element a € g
such that the subgroup generated by a is the whole of G. If G is a finite
cyclic group with identity element e, the set of elements of ¢ may be writ-

N 2 n—1 - 3
.T(,il {e.a.a®,--- ,a" 1}, where a” = e and n is the smallest such positive
integer. If & is an infinite cyvclie group. the set of elements may be written
] — “ "
{.aatead® -}

By making appropriate changes, a cyclic additive group can be defined.
For example, the set {0,.1, 2,---,n — 1} with addition modulo n is a cyclic
group, and the set of all integers with addition is an infinite cvclic group.

Definition 1.1.10. A ring, denoted by (R, &, &), or {R, &, @), or simply R.
is a set of at least two elements with {fwe binary operations % and &, W(i}i(‘}i
we call addition and multiplication, defined on R such that the f()il()Wing
axioms are satisfied:

(1) The set is closed under the operation
eazbeR, Va, be R, (1.17)

(2) The associative law holds for &:

as(bzc)=(asb Fe, Va, b, ceR, (1.18)
(3) The commutative law holds for &
aEb=bFa, VYa. beR, (1.19)

(4) There is a special (zero) element 0 € R. called the additive identity of
R. such that ‘

as0=00a=a VaeR, {1.20)

{5) F(n: each @ € R, there is a corresponding element —q € R, called the
additive inverse of a, such that:

a®{—a)y=0, VaecR. (1.21)
(6) The set is closed under the operation

ambeR, Ya, be R, (1.22)
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(7) The associative law holds for ¢
am(bee)=(a®b e, VabceR, (1.23)
(8) The operation @ is distributive with respect to &
ac{bTe)=acbsade, YabeeR, (1.24)
(azb)me=a®edboe, VabeeR. (1.25)

From a group theoretic point of view, a ring is an Abelian group, with
the additional properties that the closure, associative and distributive laws
hold for .

Example 1.1.7. {Z,®,©), (@, &, @), (R.&, @Y, and (C, &, @) are all rings.
Definition 1.1.11. A commutative ring is a ring that further satisfies:
atb=bta, VabeR. (1.26)

Definition 1.1.12. A ring with identity is a ring that contains an element
1 satisfving:
atl=a=1¢a, YacR. (1.27)

Definition 1.1.13. An integral domain is a commutative ring with identity
1 # 0 that satisfies:
a.beR & ab=0 =2a=0 or b=0. (1.28)
Definition 1.1.14. A division ring is a ring R with identity 1 # 0 that
satisfies:
for each a # 0 € R, the equation ax = 1 and xa =1 have solutions
in R.

Definition 1.1.15. A field, denoted by K, is a division ring with commuta-
tive multiplication.

Example 1.1.8. The integer set Z, with the usual addition and multiplica-
tion, forms a commutative ring with identity, but is not a field.

It is clear that a field is a type of ring, which can be defined more generally
as follows:

Definition 1.1.16. A field, denoted by (K, 4, @), or (K, &, ©), or simply K,
is a set of at least two clements with two binary operations & and . which
we call addition and multiplication. defined on K such that the following
axioms are satisfied:

(1) The set is closed under the operation &:

acbe K, Va, be kK, (1.29)
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{2) The associative law holds for &:
ak(bsc)={a®sb)&c, Va, b, cek, (1.30)
(3} The conunutative law holds for =
a®b=bda, Va be Kk, (1.31)

(4} There is a special (zero) element 0 € X, called the additive identity of
K. such that ’

aBZl=02a=a, Vaclk, (1.32)

(5) For each ¢ € K, there is a corresponding element —a € K, called the
additive inverse of a, such that:

a&(—a) =0, Yaek, (1.33)
(6) The set is closed under the operation :
acbek, VYa, bel, (1.34)
(7) The associative law holds for
a@(boe)=(adb) e, Va,bece (1.35)

(8) The operation & is distributive with respect to -

am(bde)=acbdatce, Vabeek, (1.36)
(awbyoe=awedboe, Va, b, c€K. (1.37)

(9) There is an element 1 € K. called the multiplicative identity of K, such
that 1 # 0 and

atl=a, VYaek, (1.38)

(10) For egch nonzero element a € K there is a corresponding element
a~t ¢ K, called the multiplicative inverse of a, such that

axa b =1, (1.39)

(11) The commutative law holds for &
amb=bra, Va bek, (1.40)

. Again, from a group theoretic point of view, a field is an Abelian group
with respect to addition and also the non-zero field elements form an Abelian
group with respect to multiplication.

Flgure:% 1.2 gives a Venn diagram view of containment for algebraic struc-
tures having two binary operations.
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Integral Domains

Rings with\
i
Identity f

/

Commutative

Rings

\ \ Fields /

Figure 1.2. Containment of various rings

Example 1.1.9. Familiar examples of fields are the set of rational numbers.
@, the set of real numbers, R and the set of complex numbers, C; since Q.
R and C are all infinite sets, they are all infinite fields. The set of integers Z
is a ring but not a field, since 2, for example, has no multiplicative inverse; 2
is not a unit in Z. The only units in Z are 1 and —1. Another example of a
ring which is not a field is the set K[z] of polynomials in » with coeflicients
belonging to a field K.

Definition 1.1.17. A finite field is a field that has a finite number of ele-
ments in it; we call the number the order of the field.

The following fundamental result on finite fields was first proved by
Evariste Galois!'!

Theorem 1.1.1. There exists a field of order ¢ if and only if ¢ is a prime
power (Le., ¢ = p") with p prime and r € N. Moreover, if g is a prime power,
then there is. up to relabelling, only one field of that order.

A field of order g with ¢ a prime power is often called a Galois field, and
is denoted by GF(g). or just F,. Clearly, a Galois field is a finite field.

Evariste Galois { 1811-1832), a French mathematician who made
major contributions te the theory of equations (for example, he
proved that the general quintic equation is not solvable by radicals)
and groups before he died at the age of 21, shot in an illegal duel;
he spent the whole night before the duel writing a letter containing
notes of his discoveries. Galois’s unpublished mathematical papers
were copied and sent to Gauss, Jacobl and others by his brother
and a friend. No record exists of any comment from Gauss and
Ia(()bl However when the papers reached Liouville {1809-1882), he announced in
1843 to the French Academy that he had found deep results in Galois’s papers. and
subsequently published Galois’s work in 1846 in his Journal.
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Example 1.1.10. The finite field F5 has elements {0,1.2.3,4} and is de-
scribed by the following addition and multiplication table {see Table 1.1):

Table 1.1. The addition and maultiplication for Fs

TToTiT21371 i (

00T 1 1234 o |1p213/4
NENERERERE Lj1,2;3]4
7 (213 4]0 1 2244713
33717012 3311142
1130133 RN RN

The theory of groups, rings, and particularly finite fields plays a very im-
portant role in elementary, algorithmic and applied number theory, including
cryptography and information security.

1.2 Theory of Divisibility

The primary source of all mathematics is the inlegers.

H. MiNKOWSKI (1864-1909)

Divisibility has been studied for at least three thousand vears. From before
the time of Pythagoras, the Greeks considered questions about even and odd
numbers, perfect and amicable numbers, and the primes, among many others:
even today a few of these questions are still unanswered.

1.2.1 Basic Concepts and Properties of Divisibility

Definition 1.2.1. Let a and b be integers with a # 0. We say « divides b.
de xists an integer ¢ such that b = ac. When a divides
b, we say that a is a divisor (or factor) of b, and b is a multiple of a. If a does
not divide b, we write a fb. If a | b and 0 < a < b, then « is called a proper
divisor of b.

Remark 1.2.1. We never use 0 as the left member of the pair of integers in
a | b, however, 0 may occur as the right member of the pair. thus a |0 for
every integer a not zero. Under this restriction, for a | b, we may sav that b is
divisible by a, which 1s equivalent to say that a is a divisor of b. The notation
a® |} b is sometimes used to indicate that o® [ b but a® ! {5,
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Example 1.2.1. The integer 200 has the following positive divisors (note
that, as usual, we shall be only concerned with positive divisors, not negative
divisors, of an integer):

1,2.4,5,8,10, 20,25, 40, 50, 100, 200.
Thus, for example, we can write
& | 200, 50| 200, 71200, 3351 200.

Definition 1.2.2. A divisor of n is called a trivial divisor of n if it is either
1 or n itself. A divisor of n is called a nontrivial diviser if it is a divisor of n,
but is neither 1, nor n.

Example 1.2.2. For the integer 18, 1 and 18 are the trivial divisors, whereas
2. 3, 6 and 9 are the nontrivial divisors. The integer 191 has only two trivial
divisors and does not have any nontrivial divisors.

Somie basic properties of divisibility are given in the following theorem:
Theorem 1.2.1. Let a,b and ¢ be integers. Then

(Nif a | b and a| ¢, then a | {b+¢).
(2) if a | b, then a | be, for any integer c.
(3)ifajband b|e thenalc

Proof.
(1) Since a | b and a | ¢, we have

b=ma, c=na, mneci.

Thus b+ ¢ = (m + n)a. Hence, a | (m + n)a since m + n is an integer.

The result follows.
(2) Since a | b we have
b=ma, méewL.

Multiplving both sides of this equality by ¢ gives
be = {mc)a

which gives a | be, for all integers ¢ (whether or not ¢ = 0.
{3) Since a | b and b | ¢. there exists integers m and n such that

b=ma, c=nb.

Thus, ¢ = {mn)a. Since mn is an integer the result follows.
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Exercise 1.2.1. Let a,b and ¢ be integers. Show that

W 1lla,afa all

(2yifalband b | a, then a = b,

(3)if a| b and a | ¢, then for all integers m and n we have a | (mb + ne).
(4) if a | b and a and b are positive integers, then a < b.

The next result is a general statement of the outcome when any integer
a is divided by any positive integer b.

Theorem 1.2.2 (Division algorithm). For any integer ¢ and any positive
integer b, there exist unique integers ¢ and r such that

a=bg+r. 0<r<h, (1.41)

where a is called the dividend, g the quotient, and r the remainder. If b{ a,
then r satisfies the stronger inequalities 0 < r < a.

Proof. Consider the arithmetic progression
<o, =3b,—2b,—0,0,b.2b,3b, - -
then there must be an integer ¢ such that
gb <a < (g+ 1)b

Let ¢ — gb = r, then a = bg + r with 0 <r < b. To prove the uniqueness of ¢
and 7, suppose there is another pair ¢; and r satisfyving the same condition
in (1.41), then

a=>bg +r, 0<r; <h

We first show that vy = r. For if not, we may presume that r < r, so that
0<ry —7 < b and then we see that blg —q) = ry = r,and so b | (ry — 1),
which is impossible. Hence, r = ry, and also g = ¢;. O

Remark 1.2.2. Theorem 1.2.2 is called the division algorithm. An algorithm
is a mathematical procedure or method to obtain a result (we will discuss
algorithms and their complexity in detail in Chapter 2). We have stated in
Theorem 1.2.2 that “there exist unique integer ¢ and r” and this wording
suggests that we have an existence theorem rather than an elgorithm. How-
ever, it may be observed that the proof does provide a method for obtaining
the integer ¢ and r, since ¢ and r can be obtained by the arithmetic division
a/b.

Example 1.2.3. Let 5 = 15. Then

(1) when a = 255, a = b-17+ 0. 50 ¢ = 17 and r = 0 < 15.
(2) when a =177, a = b-11+ 12, s0 ¢ == 11 and r = 12 < 15.
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(3) when @ = =783, a = b (=52) + 3,50 ¢ = =52 and r =3 < 15.
Definition 1.2.3. Consider the following equation
a=2q+r, aqres 0<r<q. (1.42)
Then if + = 0, then a is even, whereas if r = 1. then a is odd.

Definition 1.2.4. A positive integer n greater than 1 is called prime if its
only divisors are n and 1. A positive integer n that is greater than 1 and is
not prime is called composite.

Example 1.2.4. The integer 23 is prime since its only divisors are 1 and 23.
whereas 22 is composite since it is divisible by 2 and 11.

Prime numbers have many special and nice properties, and play a cen-
tral role in the development of number theory. Mathematicians throughout
history have been fascinated by primes. The first result on prime numbers is
due to Fuclid:

Theorem 1.2.3 (Euclid). There are infinitely many primes.

Proof. Suppose that py,pe, -, pe are all the primes. Consider the number
N = pips---pi + 1. If it is a prime, then it is a new prime. Otherwise, it
has a prime factor q. If ¢ were one of the primes p;. i = 1,2,--- |k, then
q | (pips- - pr), and since g | (pips - <+ pe + 1), ¢ would divide the difference
of these numbers, namely 1, which is impossible. So ¢ cannot be one of the
p; for i = 1,2,--- ,k, and must therefore be a new prime. This completes the
proof. 0O

Remark 1.2.3. The above proof of Euclid’s theorem is based on the modern
algebraic language. For Euclid’s original proof, translated in English, see
Figure 1.3,

Two other related elementary results about the infinitude of primes are

as follows.

Theorem 1.2.4. If n is an integer > 1, then there is a prime p such that
n<p<n+1.

Proof. Consider the integer N = n!+ 1. If N is prime, we may take p = V.
If NV is not prime. it has some prime factor p. Suppose p < n. then p | nk
hence. p{ (N = n!), which is ridiculous since N —nl = 1. Therefore. p > n. O

Theorem 1.2.5. Given any real number z > 1, there exists a prime between
o and 2z.
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Prornsirias 20,
Prime numbers are more fhan auy asiggued malfitude of
preme mumbers.
Let A, &, C be the assigned prime pumbers ;

I say that there are wore
prime numbers than A, §, ¢ a—

For let the least number B B
measures by A, B b
raken, Eour o D

and let it be J2E
et the unit J3F be added w 285

Then £F s either prime or not

First, let it be prime .
then the prime numbers 4, &, €, EF have been found whick
are more than A, 8, O

Next, let £F not be prime |
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But it also measures £5

Therefore &, being a number, will measure the remainder,
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A A

And by hypothesis it is prime.

Therefore the prime numbers A4, &, (, & have been found
which are more thas the assigned maolatude of 4. 8 C.

g B D

Figure 1.3. Proposition 20 of the Elements Book IX (by courtesy of Thomas L.
Heath [73])

This is the famous Bertrand’s postulate, conjectured by Joseph Bertrand
(1822-1900) in 1845, and proved by Chebyshev in 1850, The proof of this
result is rather lengthy; interested readers are advised to consult Hardy and
Wright's book [100]. However, there do exist long sequences of consecutive
integers which are barren of primes, as the next result shows.

Proposition 1.2.1. If n is an integer > 2, then there are no primes between
!l + 2 and n! + n.

Proof. Since if n!is a product of all integers between 1 and n, then 2 | n!+2,
3 nl+3, n|nt+n O
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Theorem 1.2.6. If n is a composite, then n has a prime divisor p such that
pE<n.

Proof. Let p be the smallest prime divisor of n. I n = rs, then p < r and
p < 5. Hence, p? < rs = n. That is, p < /n. ]

Theorem 1.2.6 can be used to find all the prime numbers up to a given
positive integer x; this procedure is called the Sieve of Eratosthenes, at-
tributed to the ancient Greek astronomer and mathematician Eratosthenes
of Cyrene'?, assuming that z is relatively small. To apply the sieve. list all
the integers from 2 up to # i order:

2.3,4,5.6,7,8,9,10.11,12,13,14, 15, - -- , .
Starting from 2, delete all the multiples 2m of 2 such that 2 < 2m < z:
2,3,5,7,9,11,13,15,- -, =
Starting from 3, delete all the multiples 3 of 3 such that 3 < 3m < a:
2.3.5.7,11,13, - ,a.
In general, if the resulting sequence at the kth stage is
2,3,5,7,11,13,---.p,- -, 1.

then delete all the multiples prm of p such that p < prn < x. Continue this
exhaustive computation, until p < }v/z]. The remaining integers are all the
primes between | /x| and « and if we take care not to delete 2,3,5,--- ,p <
||, the sieve then gives all the primes less than or equal to z. For example,
let & = 36, then +/z = 6, there are only three primes 2,3 and 5 below 6, and
all the positive integers from 2 to 36 are as follows.

2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36

First of all, we delete (marked with the syvmbol ") all the multiples of 2
with 2 < 2m < 36, for mm = 1,2,--- , 18, and get:

12

Eratosthenes of Cyrene (274-194 B.C.) was born in Cyrene which
i is now in Libyva in North Africa, was one of the great men in the
t ancient world. He was the first to calculate the size of the Earth
by making measurements of the angle of the Sun at two different
places a known distance apart. His other achievements include
measuring the tilt of the Earth’s axis. Eratosthenes also worked on
prime numbers. He ig best remembered by generations of number
i theorists for his prime number sieve, the “Sieve of Eratosthenes”
which, in modified form, is still an important teol in number theory research.
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23 - 3 - 7T - 9 _ 11 _
3 - 1 - 17 - 19 _ 21 . 23 .
25 . 27 _ 29 _ 31 . 33 _ 35 _

Then we delete (marked with the symbol “.”) all the multiples of 3 with
3<3m <36, form=1.2,--- .11, and get:

2.3 . 5 - 7T - . .11 .
B3 . - 17 - 19 . . - 23 .
2 - . - 29 _ 31 _ L. _ 33 _

Finally, we delete (marked with the symbol .} all the multiples of 5 with

H5<dm <35, form=12-.-,7, and get:
2 3 . 5 _ 7 _ L+ _ 11 _
3 - . - 17 19 - . - 23 _
v o- o - 029 _ 3t . 4

The remaining numbers 2,3,5,7,11,13,17,19, 23,29, 31 are then the primes
up to 36.

According to the above analysis, we can get the following algorithm for
the Sieve of Eratosthenes:

Algorithm 1.2.1 (The Sieve of Eratosthenes). Given a positive integer
n > 1, this algorithm will find all prime numbers up to n.

[1] Create a list of integers from 2 to n;

[2] For prime numbers p; (i = 1,2,---) from 2,3,5 up to |\/n], delete all the
multiples p; < p;m < n from the list;

{3] Print the integers remaining in the list.

1.2.2 Fundamental Theorem of Arithmetic

First, let us investigate a simple but important property of composite mim-
bers.

Theorem 1.2.7. Every composite number has a prime factor.
Proof. Let n be a composite number. Then
=Tyl

wI}(sro n: and ny are positive integers with n, cno < r. If either ny or ny is a
prime, then the theorem is proved. If n; and ns are not prime, then

Th = Nany
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where ns and ny are positive integers with ng, ny <n;. Again if ny or ny 1s a
prime. then the theorem is proved. If riy and rny are not prime, then we can
write
3 = Nxilg
where ns and ng are positive integers with ns,ng < nsz. In general, after &
steps we write
Nog—1 = N2k M2p+2

where nage and 1ag 0 are positive integers with nopr1, ok < Na2g—1. Since
n>mng >ng > ng > nagg >0

for any value k, the process must terminate. So there must exist an nyp 1 for
some value of k. that is prime. Hence, every composite has a prime factor. O

Prime numbers are the huilding blocks of positive integers, as the following
theorem shows:

Theorem 1.2.8 (Fundamental Theorem of Arithmetic). Every posi-
tive integer n greater than 1 can be written uniquely as the product of primes:

k
n=plipst oot = [0 (1.43)

i=1

where pi,pa, -+, pg ave distinct primes, and o, a2, -+ @ are natural num-
bers. The equation (1.43) is often called the prime power decomposition of
n, or the standard prime factorization of n.

Proof. We shall first show that a factorization exists. Starting from n > 1, if
n is a prime, then it stands as a product with a single factor. Otherwise, n can
be factored into. say, ab, where a > 1 and b > 1. Apply the same argument
to @ and b: each is either a prime or a product of two numbers hoth > 1.
The numbers other than primes involved in the expression for n are greater
than 1 and decrease at every step: hence eventually all the numbers must be
prime.

Now we come to uniqueness. Suppose that the theorem is false and let
n > 1 be the smallest number having more than one expression as the product
of primes, say

no=pipec P = Qg2 s

where each p; (i = 1,2,--+ ) and each ¢; (j = 1.2.--- ,§) is prime. Clearly
both + and s must be greater than 1 (otherwise n is prime, or a prime is equal
to a composite). If for example p; were one of the g; (7 = 1,2,--- .8}, then
n/p; would have two expressions as a product of primes, but n/p; < n s0
this would contradict the definition of n. Hence pp is not equal to any of the
q; (7= 1.2, ,s5), and similarly none of the p; (i = 1,2, ,r) equals any
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of the ¢; (j = 1.2,--- . s). Next, there is no loss of generality in presuming

that p1 < g1, and we define the positive integer N as
N =g —pOgts - qe = pulpaps - pr — qaus - gs)-

Certainly 1 < N < n. so N is uniquely factorable into primes. However,
pi ¥ qu—p1).since py < g and ¢ is prime. Hence one of the above expressions
for N contains p; and the other does not. This contradiction proves the result:
there cannot be any exceptions to the theorem. 0

Note that if n is prime, then the product is, of course, n itself.

Example 1.2.5. The following are some sample prime factorizations:

643 = 643 231 1 = 2147483647

644 =22 .7.23 231 11 = 3. 715827883

645 =3-5-43 232 1 =3-5-17-257- 65537
646 =2-17-19 232 L1 = 641 - 6700417

647 = 647 2% 1 2=2.52.13-41-61 1321

Definition 1.2.5. Let a and b be integers, not both zero. The largest divisor
d such that d | a and d | b is called the greatest common divisor (ged) of a
and b. The greatest common divisor of a and b is denoted by ged(a, b).

Example 1.2.6. The sets of positive divisors of 111 and 333 are as follows:

1.3,37,111,
1,3.9.37, 111,333,

so ged(111,333) = 111. But ged(91.111) = 1, since 91 and 111 have no
common divisors other than 1.

The next theorem indicates that ged{a, b} can be represented as a linear
combination of ¢ and b.

Theorem 1.2.9. Lei a and b be integers, not both zero. Then there exists
integers = and y such that

d = ged(a, b) = axr + by. (1.44)

Proof. Consider the set of all linear combinations au + b, where # and #
range over all integers. Clearly this set of integers {au + b} includes positive,
pegativ@ as well as 0. Choose x and y such that m = az + by is the smallest
integer in the set. Use the Division algorithm. to write ¢ = mq + r. where
0 < r <. Then .

r=a—-—mqg=a-—qglar+by})=(1—qgria+ (—qy)b

;’.md hence r is also a linear combination of a and b. But r < m. so it follows
from the definition of m that r = 0. Thus a = mq. that is. m fas sﬁnila.rh:
m | b. Therefore, m is a common divisor of a and b. Since d [ a and d | b
d < m. Since d = ged(a, ), we must have d = m. ' EJ
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Remark 1.2.4. The greatest common divisor of @ and b can also be char-
acterized as follows:

(Lydlaandd]b,
(2)if c|aand ¢|b. then c¢|d.

Corollary 1.2.1. If @ and b are integers. not both zero, then the set
S={av+by: x.y €L}

is precisely the set of all multiples of d = ged(a. b).

Proof. It follows from Theorem 1.2.9, because d is the smallest positive

values of ar + by where x and y range over all integers. ]

Definition 1.2.6. Two integers a and b are called relatively prime if
ged{a, b) = 1. We say that integers ny,na, ... ng are pairwise relatively prime
if, whenever i # j, we have ged(ns, n;) = 1.

Example 1.2.7. 91 and 111 are relatively prime, since ged(91,111) = 1.

The following theorem charaterizes relatively primes in terms of linear
combinations.

Theorem 1.2.10. Let ¢ and b be integers, not both zero, then a and b
are relatively prime if and only if there exsit integers z and y such that
ax + by = 1.

Proof. If ¢ and b are relatively prime, so that ged(e, b) = 1, then Theorem
1.2.9 guarantees the existence of integers & and y satisfying ax + by = 1. As
for the converse, suppose that ax + by = 1 and that d = ged(a.b). Since d | a
and d | b, d | (ax + by), that is, d | 1. Thus d = 1. The results follows. O

Theorem 1.2.11. If a | be and ged(a.b) = 1, then a | ¢

Proof. By Theorem 1.2.9, we can write ar + by = 1 for some choice of
integers x and y. Multiplying this equation by ¢ we get

acxr + bey = c.
Since a | ac and a | be, it follows that a | (acx + bey). The result thus follows.
0
For the greatest common divisor of more than two integers. we have the
following result.
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Theorem 1.2.12. Let ay,ay,-- -, a, be n integers. Let also

ged{ay, a2) = dy.
ged{ds, ay) = ds,
(1.45)

ged(dp—1.ay,) = d,,.
Then

ged(ar, az, -+ L an) = d,,. (1.46)

Proof. By (1.45). we have d,, | a, and d,, | dy_;. But d,,_, | an_1 and
dp—1 | dyn. 50 dy, | ay_y and d,, | d,—». Continuing in this way, we fi-
nally have d,, | ay, d,, | an_1, -+, dy | a1, 50 dy is a common divisor of
a1,az2, . a,. Now suppose that d is any common divisor of a), a9, ,ap,
then d | a; and d | ds». Observe the fact that the common divisor of a and
b and the divisor of ged(e,b) are the same, so d | dy. Similarly, we have
d | ds, - .d| d,. Therefore, d < |d| < d,. So, d,, is the greatest common
divisor of a;,as, -, a,. 0

Definition 1.2.7. If d i3 a multiple of a and also a multiple of b, then d
Is a common multiple of @ and b. The least common multiple (lem) of two
integers a and b, is the smallest of the common multiples of @ and . The
least commeon multiple of ¢ and b is denoted by lem(a, b).

Theorem 1.2.13. Suppose a and b are not both zero (i.e.. one of the @ and
b can be zero, but not both zero), and that m = lem{a, b). If z is a common
multiple of @ and b, then m | z. That is. every common multiple of @ and &
is a multiple of the least common multiple.

Proof. If any one of « and b is zero, then all common multiples of ¢ and &
are zero, so the statement is trivial. Now we assume that both o and b are
not. zero. Dividing & by m, we get

r=mg+7r where()<r <m.

Now a]w and b |z and also « | m and b | m: so by Theorem 1.2.1, a | r and
b|r. That is. r is a common multiple of @ and b. But m is the least common
multiple of a and b, so r = 0. Therefore, x = myg, the result follows. O

For the lest common multiple of more than two integers, we have the
following result.

Theorem 1.2.14. Let ay.as,--- .a, ben integers. Let also

lem{ay, aq) = my,
lem(ms, as) = ms,
. (1.47)

lem(mp_y,a,) = m,.
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Then

lem(ay, aa. -+ ap) = My, {1.48)
Proof. By (1.47), we have my [y, #=2.3,-.n—1L and ay | mo.
a; | my @o= 2,3, So. 1, 15 a common multiple of ay.as. - . ay.
Now let m is any common multiple of ay,as, -+ a,, then a; | m. ay | m.

Observe the result that all the common multiples of ¢ and b are the multiples
of lem{a, by d,, | an and d,, | dy1. S0 my | m and ay | m. Continuing the
process in this way, we finally have m, | m. Thus. m, < imm|. Therefore,
iy, = lem(a),as, -+ Q) 0

One way to caleulate the ged(a, b) or the lem(a . b) is to use the standard
prime factorizations of a and b. That is:

Theorem 1.2.15. If

&
a= ]‘_[pi1 w; >0,
i=1

and
b= HP B >0,
1=
then
’\.
ged(a, b) = Hp: (1.49)
i=1
lem(a, Hp (1.50)
=1
where v = min(a;, 3;) and §; = max{e;. 3;) for i = 1.2, -~ k.
Proof. It is casy to see that
ged{a, H p;’. where v; is the lesser of a; and 3,
lem(e. b) H p . where §; is the greater of o; and 3.
i=1
The result thus follows. 0

Of course. if we know any one of the ged(a.b) or lem({a. b), we can casily
find the other via the following corollary which follows immediately from
Theorem 1.2.15:

Corollary 1.2.2. Suppose a and b are positive integers, then

ab

ped(a )’ (151)

lem(a, b) =
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Proof. Since ~; + §; = a; + 75, it 1s now obvious that
ged(a, b) - lem{a. by = ab.
The result thus follows. 0
Example 1.2.8. Find gcd (240, 560) and lem(240. 560).
Since the prime factorizations of 240 and 360 are

240=2'-3.5=2%.31.51 .7
560 =24.5.7=21.30. 5.7,

then

g(d(2—1(} 360) — 2min(—1.r~l) ‘gmin(l.(}) . Bmm(l 1), ~mm(U 1)
:2(‘1'30_5] 470
= &80.

1(3111(240: 560) — Qmax(&l) 'Snmx(l,()) . 5111&}:(}..1) 3 71\1ax((}.1)
=21.3.5t.7
= 1680.

Of course, if we know ged(240,560) = 80, then we can find lem(240, 560) by
lem (240, 560) = 240 - 560/80 = 1680.

Similarly, if we know lem(240, 560), we can find ged(240, 560) by
ged(240, 560) = 240 - 560/1680 = 80.

1.2.3 Mersenne Primes and Fermat Numbers
In this section, we shall introduce some basic concepts and results on
Mersenne primes and perfect numbers.

Definition 1.2.8. A number is called a Mersenne'® number if it is in the
form of

13

Marin Mersenne (1588-1648) was a French monk, philosopher and
mathematician who provided a valuable channel of communica-
tion between such contemporaries as Descartes, Fermat, Galileo
and Pascal: “to inform Mersenne of a discovery is to publish
it throughout the whole of Europe”. Mersenne stated in Cogni-
tata Physico-Mathematice but without proof that M, is prime for
p=2,3,5,7,13,17.19,31,67,127,257 and for no other primes p
with p < 2): Of course, Mersenne's list is not quite correct. It
took over 300 vears to totally settle this claim made by Mersenne, and finally in
1947, it was shown that Mersenne made five errors in his work: namely, Afs7 and
\I:-- are composite and hence should be deleted from the list, whereas ’\1'(); Mg,
M7 are all primes and hence should be added to the list.
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M, =21, (1.52)

where p is a prime. If a Mersenne number Af, = 27 — 1 is a prime, then it is
called a Mersenne prime.

Example 1.2.9. The following numbers

22 ~1 =3, 2% - 1=T7,
25 —1 =31, 27 — 1 = 127,
213 1 = 8191 217 1 = 131071

are all Mersenne numbers as well as Mersenne primes, but 2! — 1 is only a
Mersenne number. not a Mersenne prime, since 2'7 — 1 = 2047 = 23 x 89 is
a composite.

In Table 1.2, we list all thirty-nine Mersenne primes known to date {where
GIMPS is the short for the Great Internet Mersenne Prime Search). There
seems to be an astounding amount of interest in the world’s largest known
prime. When Curt Noll and Laura Nickel, two 18-year-old American high-
school students in California, discovered the 25th Mersenne prime in October
1987, the announcement was carried by every major wire service in the United
States and even announced by Walter Cronkite on the CBS Evening News.
Currently the largest known prime is the 37th Mersenne prime 25021977 —
1, a 909526 digit number. In fact, since 1876, when Lucas determined the
primality of 2'%7 — 1 {confirmed later in 1914) the largest known prime has
always been a Mersenne prime, except for a brief interregnum between June
1951 and January 1952. In this period Miller and Wheeler found the prime
934(2'27 — 1) + 1 and later 180(2'*7 — 1) + 1. Also Ferrier in 1952 found, by
hand calculation, that (2'® + 1)/17 is a prime. This is probably the largest
prime that will ever be identified without using a computer (Williams [255]).
It is amusing to note that after the 23rd Mersenne prime was found at the
University of Tllinois, the mathematics department there was so proud that
they had their postage meter changed to stamp “2'1%1% — 1 IS PRIME” on
each envelope (see Figure 1.4}, at no profit to the U.S. Post Office. considering
the zero value of the stamp.

IPRERE———L L

2112&3_“]?

1S PRIME ]

AR R]

PRl

A E KA BB R

Figure 1.4. A stamp of the 23rd Mersenne prime (by courtesy of Schroeder [222])

1.2 Theory of Divisibility

Table 1.2. The thirty-nine known Mersenne primes M, = 2° — 1

No. P digits in discoverer(s)
A, and time
1 2 1 -
2 3 1 —
3 5 2 -
4 7 3 —
5 13 4 anonymous, 1456
6 17 6 Cataldi, 1588
7 19 6 Cataldi, 1588
8 31 10 Eualer, 1772,
9 61 19 Pervushin, 1883
10 89 27 Powers, 1911
11 107 33 Powers, 1914
12 127 39 Lucas, 1876
13 521 157 Robinson, 1952
14 607 183 Robinson, 1952
15 1279 386 Robinson, 1952
16 2203 664 Robinson, 1952
17 2281 687 Robinson, 1952
18 3217 969 Riesel, 1957
19 4253 1281 Hurwitz, 1961
20 4423 1332 Hurwitz, 1961
21 9689 2917 Gillies, 1963
22 9941 2993 Gillies, 1963
23 11213 3376 Gillies, 1963
24 19937 6002 Tuckerman, 1971
25 21701 6533 Noll & Nickel, 1978
26 23209 G987 Noll, 1979
27 44497 13395 Nelson & Slowinski, 1979
28 86243 25962 Slowinski, 1982
29 110503 33265 Colquitt & Welsh, 1988
30 132049 39751 Slowinski, 1983
31 216091 65050 Slowinski, 1985
32 756839 227832 Slowinski & Gage, 1992
33 859433 258716 Slowinski & Gage, 1994
34 1257787 378632 Slowinski & Gage. 1996
35 1398269 420921 Armengaud & Woltman et al.
(GIMPS), 1996
36 2976221 895932 Spence & Woltman et al.
(GIMPS), 1997
37 3021377 909526 Clarkson, Woltman & Kurowski et al.
(GIMPS, PrimeNet), 1998
38 6972593 2098960 | Hajratwala, Woltman & Kurowski et al.
(GIMPS, PrimeNet), 1999
39 13466917 4053946 Cameron, Woltman & Kurowski et al.
{GIMPS, PrimeNet), 2001
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There are some probabilistic estimates for the distribution of Mersenne
primes: for example, in 1983, Wagstaff proposed the following conjecture:

Conjecture 1.2.1. (1) Let the number of Mersenne primes less than x be
TTAS (;!Z). then

war () = B loglogx = (2.5695--- ) Ininz, {1.53)
In2
where v = (L5772 is Euler’s constant.
(2) The expected number of Mersenne primes M, with » <g¢ <2z is about
e = 1.7806---.
(3) The probability that A, is a prime is about
Inagq

¢"  Inag T =
— . = {2.5695 - - - , 1.54
In2 In2 (2.5695---) g ( )

where

2 fgz=3 {(modd)
a =
6 ifg=1 (mod4d).

Schroeder [222] also refers to a conjecture of Eberhart, namely:

Conjecture 1.2.2. Let g, be the nth prime such that M, is a Mersenne

prime. Then _
3 il .
Gy R (§> . (1.53)

Definition 1.2.9. Numbers of the form F, = 22" + 1. whether prime or
composite, are called Fermat numbers. A Fermat number Is called a prime
Fermat nawmber if it is prime. A Fermat number is called a composite Fermat
number if it is composite.

These special numbers obey the simple recursion:
Fop1 = (F, — 17 +1 (1.56)

or

Fop —2=F(F, -2} {1.57)
which leads to the interesting product:

Foo —2=FF - F, (1.58)
In other words, F,,; — 2 is divisible by all lower Fermat numbers:

Fo_p | (Fap —2), 1<k <n. (1.59)

Fermat in 1640 conjectured, in a letter to Mersenne, that all numbers of
the form F, = 22" + 1 were primes after he had verified it up to n = 4
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but Euler in 1732 found that the fifth Fermat number is not a prime. since
Fy = 27" + 1 is the product of two primes 641 and 6700417. Later, it was
found that Fg. F7. and many others are not primes. Fermat was wrong! To
date, the Fermat numbers Iy, Fy. -+ -, F|; have been completely factored:

(1) F; was factored by Euler in 1732:
22" 41=2%7 41 = 6416700417
{2} Fs was factored by Landry and Lasseur in 188(:
22" 41 =25 41 = 274177 - 67280421310721

(3) F7 was factored by Morrison and Brillhart in 1970 using the Continued
FRACtion (CFRAC) method:

227 4 1 = 2128 4 | = 50640580127497217 - 5704689200685129054721

(4) Fy was factored by Brent and Pollard in 1980 by using Brent and Pol-
lard’s *rho” (Monte Carlo) method:

27 +1 = 2% 4 1 = 1238026361552807 - pa

(5) Fy was factored by Lenstra et al. in 1990 by using the Number Field
Sieve (NFS) method:

27 41 = 221241 =2421833.
7455602825647884208337395736200454918783366342657 - pay

(6) Fio was factored by Brent in 1995 by using the Elliptic Curve Method
(ECM):

27+ 1 = 29 1 = 45592577 - 6487331309 -

4659775785220018543264560743076778192897 - poss

(7) 1y was factored by Brent in 1989 by using again the Elliptic Curve
Method (ECM):

27 L1 = 228 {1 — 310480 . 974849
167988556341 760475137 - 3560841906445833920513 - pass

In the above list, pes, pep. pase and psey are primes with 40, 49, 63, 99, 252
and 564 decimal digits. respectively. As a summary, we give the factorization
status for the Fermat numbers F,, with 0 < n < 24 in Table 1.3 (where p
denotes a proven prime, and ¢ a proven composite; ? means that the pri-
mality/compositeness of the number is not known). Four Fermat numbers in
Table 1.3, namely, Fiy, Fag, I3e and Fay are known to be composite. though
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Table 1.3. The factorization status for Fermat numbers

i) F,

0.1,2,3,4 | p

5 641 - 6700417

6 274177 - 67280421310721

7 59649580127497217 - 5704689200685129054721

8 1238926361552897 - p

9 2424833-
7455602825647884208337395736200454918783366342657 - p

10 45592577 - 6487031809-
4659775785220018543264560743076778192897 - p

11 310480 - 974849 - 167988556341760475137

-3560841906445833920513 - p
12 114689 - 26017793 - 63766529-
190274191361 - 1256132134125569 - ¢

13 2710954639361 - 2663848877152141313 - 36031098445229199
-3603109844542281969 - ¢

14 c

15 1214251009 - 2327042503868417 - ¢

16 825753601 - 188981757975021318420037633 - ¢

17 31065037602817 - ¢

18 13631489 - ¢

19 70525124609 - 6467302195621 - ¢

20 c

21 4485296422913 - ¢

22 c

23 167772161-7

24 c

no factors have yet been found (see Crandall, Doenias, et al [55], Crandall
and Pomerance [56]). Table 1.3 also shows that the smallest not completely
factored Fermat number is F}», thus, it is the moest wanted number at present.
The smallest Fermat numbers which are not known to be prime or composite
are Fyy and Fos. Riesel [207] lists 99 prime factors of the form k-2 + 1 in
Fermat numbers, the largest being 5 - 22%473 + 1 of Fyg47;. Combining Riesel
1207] and Young [263]. we give in Table 1.4 the known prime factors of the
form k- 2™ + 1 for Fermat numbers F,, with 23 <n < 303088,

There are still many open problems related to the Fermat numbers: some
of them are the following:

(1) Are there infinitely many prime Fermat numbers?
(2) Are there infinitely many composite Fermat numbers?

(3) Is every Fermat number square-free?
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Table 1.4. Prime factors of the form A-2" +1in F, = 22" +1 for 23 < n < 303088

Iy Prime Factor of F), F, Prime Factor of F,
23 5.92% 11 Fos 18413227 1 1
Fas 1522849979 - 2°7 + 1 || Fg 143165 - 22° + 1

For 141015 - 2% + 1 Fo- 430816215 - 2% + 1
Fag 1120049 - 2%! + 1 Fao 149041 . 232 4 1
Fao 127589 - 233 4 1 Fias 1479 . 93% 41
Fis 52+ 1 Fag 3750613 - 2% + 1
Fix 3-20 +1 Fis 2653 - 210 1+ 1
Fag 212 +1 Fi» 43485 - 2% 41
s 4119 2% +1 Fs» 21626655 - 27 + 1
Fs;5 29257+1 Fsp 952b1+1

Fy 54985063 - 255 +1 Fa» 697 . 26 4+ 1

Fa 927 +1 Fis 17853639 - 277 4 1
Fes 7551 -2% 41 oy 683-27% 4+ 1

Fa 5-27 41 Frs 3447431 277 4 1
Fez 42527 +1 Fi, 271 2% 41

Fou 1421 -2 41 Fas | 92341-2% 11
Fog 16233 - 219 41 Fiie 7.9120 | 4

Fiay 5234775 - 212 41 Fizs 52127 4

Fia 8152599 - 2% +1 Fiag 17247 41

Fuyy 3125 -2 4 1 Fiso 1575 - 2157 £ 1
Fiso | 5439270 41 Foor | 458527 41
Faog 232005 - 22%% 41 Fyor 3.9209 4 1

Fars 32111 - 227 41 Foog 15.9229 4 |
Faog 29 . 9% Fasg 1039752 11
Fasy 629 - 277 + 1 Ioer 1772271 41
Foss 21287 41 Iz 223472777 11
Fouy 79790 4 Fogy 5915 - 9299 4 1
Fags 247 . 2792 1 Faig 7.9%0 4 4

Fizo 1211 - 2% 41 Fang 27609 - 231 4+ 1
Fios 120845 - 2491 11 Fiis 8619 - 291% 1+ ]
Fire 38039 _'%439 +1 Fiss 97.2%% 4 ]

Fhay 225 .97 1 Frso 127258 41 1
Fesr 11969 - 2645 41 Fioa 717-29% 41
Fray 17 - 2?4? el FQOG 57063 - 22}08 +1
Fyz 1985 - 29%% 4 1 Fisa 291 . 21598 | {
Floas 5 - 219‘%7 f+ 1 Foass 29 . 92027 4
Fagsg 431 - 22999 41 Foase 85 . 9245% 4 |
Faao 5 2331_3 +1 Fyras 29 . 94727 | 4
Fesar 1729538 4 4 Fieas 19 98838 |
Faizs 9. 2?43i‘+ 1 Fiaga 19. 99430 4 |
Faaan 52200 4 Fas006 5727910 4
FQ:iTga‘« 21 ; 2?)480] + 1 FQS&'Z& 7 . 295330 + 1
Firiasgs | 13- 2811206 4 Flonso | 5. 2129418 4
Fisrgr | 32157189 4 Forazya | 3-2213320 4
E}Ol%(){sé}: 3 X 23(),”;092 4+ 1
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1.2.4 Euclid’s Algorithm

We might call Buclid’s method the granddaddy of all elgorithms, because
it is the oldest nontrivial algorithm that has survived to the present day.

DoxaLp E. KnuTH
The Art of Computer Programming: Seminumerical Algorithms [123]

Euclid’s algorithm for finding the greatest common divisor of two integers is
perhaps the oldest nontrivial algorithm that has survived to the present day.
It is based on the division theorem (Theorem 1.2.2). In fact, it is based on
the following fact.

Theorem 1.2.16. Let a,b,g.r be integers with & > 0 and 0 < r < b such
that @ = bg + r. Then ged(a. by = ged(b, r).

Proof. Let X = ged(a,b) and Y = ged(b, r), it suffices to show that X' = Y.
If integer ¢ is a divisor of a and b, it follows from the equation a = bg+r and
the divisibility properties that ¢ is a divisor of r also. By the same argument,
every common divisor of b and r is a divisor of a. |

Theorem 1.2.16 can be used to reduce the problem of finding ged(a, b)
to the simpler problem of finding ged(b,r). The problem is simpler because
the numbers are smaller, but it has the same answer as the original one.
The process of finding ged(a, b) by repeated application of Theorem 1.2.16 is
called Euclid’s algorithm which proceeds as follows.

a = bgy + 1y, 0<rm <b (dividing b into a),

b=riqy +r, 0<rs <n (dividing ry into b},

Ty = Togs + Py, 0<rg<i {dividing o into 1),
Pa = PGy Ty, 0<ry <y (dividing 73 into ra).
Fre2 = Tp—1Gn—1 T Tn. 0<r, <ry— {dividing 7p—1 into r,.2).
Fhn_1 = Tntn + U, Ppay =0 (arriving at a zero-remainder),

or, diagrammatically,
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(i

— byo o b

Ty 1 — n"q

— g2 2 7 Z

3 q3 r3qs

Fn—1 | dn-1 — Tn—14n—1

= Tnfp Un rn_
Tuy1 =0

Then the greatest common divisor ged of a and & is r,,. That is,
d = ged{a, b) = r,. {1.60)
We now restate it in a theorem form.

T.heorem 1.2.17 (Euclid’s algorithm). Let a and & be positive integers
with @ > b. If b | a, then ged(a,b) = b. If b 1 a, then apply the division
algorithm repeatedly as follows:

a = bgy + 1y, 0<r <b,

b=rq +rs, b <re <y,

Ty = oy s, b <ry <y,

Ty = Ty b Ty, b<ry <ry, (1.61)

Th—2 =Th_1Gn—1 + T'n. O <ry <rpoy,

Tro1 = Tagn + 0.

Then r,,. the last nonzero remainder, is the greatest common divisor of a and
b. That is,

ged(a, b) = r,. (1.62)
Values of 2z and y in

ged{a,b) = ax + by (1.63)

can be obtained by writing each r; as a linear combination of a and b.
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*e

Proof. The chain of equations is obtained by dividing b into a, ry into b. r2
into ry, -+ -. o1 into r,. {Note that we have written the inequalities for the
remainder without an equality sign.) The process stops when the division Is
exact. that is, whenever r; =0 fori=1,2--- 7.

We now prove that r; is the g;eatest common divisor of a and b. by
Theorem 1.2.16, we have

ged(a, b) gcd(a — bgg, b)

Il

= gcd(r.b)

= ged(r.b— i)
= ged{ri.m)

= ged{ry — raga,12)
= ged(rg.ra)

Continuing by mathematical induction, we have
ged(a,b) = ged(rj_q,r;) = ged{r;,0) = r;.

To see that r; is a linear combination of a and b, we argue by induction
that each »; is a a linear combination of ¢ and b. Clearly, ry is a linear
combination of ¢ and b, since v, = a — bgy, S0 does ro. In general, r;is a
linear combination of ri—; and r,_». By the inductive hypothesis we may
suppose that these latter two numbers are linear combinations of a and b,
and it follows that r; is also a linear combination of a and b. O

Remark 1.2.5. Euclid’s algorithm is found in Book VII, Proposition 1 and
2 of his Elements, but it probably wasn’t his own invention. Scholars believe
that the method was known up to 200 years earlier. However, it first appeared
in Euclid’s Elements, and more importantly, it 1s the first nontrivial algorithm
that has survived to this day.

Remark 1.2.6. It is evident that the algorithm cannot recur indefinitely,
since the second argument strictly decreases in each recursive call. Therefore.
the algorithm always terminates with the correct answer. More importantly, it
can be performed in polynomial time. That is, if Euclid’s algorithm is applied
to two positive integers a and b with a > b, then the number of divisions
required to find ged{a,b) is O(logh). a polynomial-time complexity (the big-
O notation is used to denote the upper bound of a complexity function. le.,
f(n) = O(g(n)) if there exists some constant ¢ > 0 such that fn) < e gln):
see Subsection 2.1.3 in Chapter 2 for more information).

Example 1.2.10. Use Euclid’s algorithin to find the ged of 1281 and 243.
Since

I

‘f&

=3
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1281
— 1215 | 5 243
66 | 3| — 198
—45 1 45
2002 — 42
—21 |7
0
we have ged(1281,243) = 3.
Exercise 1.2.2. Calculate ged(1403, 549) using Euclid’s algorithm.
Theorem 1.2.18. If ¢ and b are any two integers, then
Ora—Peb= (-1 "'ry, k=1,2,---,n (1.64)
where
FB=1P=q, =g 1P+ F»
(1.65)
Qo=0, =1 Qr=q 1011 +Qr»
for k = 2,3, ---

Proof. When k = 1, (1.64) is clearly true, since Qya — Pib = (—1)1 "1y
implies a — gob = r1. When k = 2,75 = —(aqi — b(1+q1q;)). But 1+ g1y =
P+ P, ¢t =q-1+0=q@Q + Q. therefore, Qra — Pob = (=1)2"1r,,
Pr=qP + P, (= qQ+ Qo Assume (1.64) and (1.65) hold for all
positive integers < k, then

(~D*r = D*(reer — qrrs)

(-
= (Qr-1a = Ppb) + qu(Qra — Pib)
(qeQr + Qr—1)a — (qry1 Pr + Pryr )b,

Thus, Qpora—Peia = (—D*rp, where P=k +1 = g Pe+Pp oy, Qi1 —
Gi+1 @k + Qr_1. By induction, the reult is true for all positive integers. 0

The ged{a. b) will be equal to unity for more than 60 percent of the time

for random inputs; this is a consequence of the following well-known result
of number theory (Knuth [123)):

Theorem 1.2.19. If g an(l b are integers chosen at random, the probability
that ged{a,b) = 1 is 6/7% = 0.60793. That is,

Problged(a, b) = 1] = 0.6. (1.66)
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This result was first proved by the Italian mathematician Ernesto Cesaro
(1859--1906) in 1881 The idea of the proof is as follows. Let p be the proba-
bility

p = Problged{a, b) = 1].

Then, for any positive integer d. consider the probability
p = Problged(a, b) = d].

This happens when a is a multiple of d, b is a multiple of d. and
ged{a/d, bjd) = 1. The probability that d | a is 1/d.

1.2.5 Continued Fractions

Euclid’s algorithm for computing the greatest common divisor of two integers
is intimately connected with continued fractions.

Definition 1.2.10. Let a and b be integers and let Euclid’s algorithm run

as
a = bgy + 71,
b = T1d - 2
Ty = Toge + 3,
T2 = 1303 + T4,
Tp—2 = Fp-1qn-1 + "n,
Tr—1 = Tafn + 0.
That is,
i
—bgo | qo b
ry q1 — 41
- T2z g2 T2
3 s 343
Tn—t | Gn—1 — Tn—1Qn-1
— Tnfn dn n
o4l — 0
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a . .
Then the fraction 5 can be expressed as a simple continued fraction:
h
a 1 .
- =gp+ {1.67)
b 1
4 + 1
2+
42 ) 1
e ln-1 + —
qu
where go.q1. -+ . gn—1,¢n are taken directly from Euclid’s algorithm ex-

pressed in {1.61), and are called the partral quotients of the continued fraction.

For simplicity, the continned fraction expansion (1.67} of 7 i usually written
as

1 1 11
T [ R (1.68)
b G+ gat n—1+ Qn
or even more briefly as
a ;
}; = {Qquh g2, 4n—1, Q'-n!- (169)

If cach ¢ is an integer, the continued fraction is called simple; a simple
continued fraction can either be finite or infinite. A continued fraction formed
from [go. q1, g2, - - Gn—1, @] by neglecting all of the terms after a given term
ig called a convergent of the original continued fraction. If we denote the k-th

convergent by 'y = ~Pi, then
Qk
( C@ == "-Pé = q—U:
Qv 1
(1) @1 0

Py gy P+ Pioo
Cp=—— =" for k> 2.
"TOr T aQi Qi -
U P = quQu—s + Qi o and Qp = g1 Py + Pp», then ged(P, Q) = 1.

(3) PoQr 1 — P 1Qp = (-1)F 1, for k> 1.

The following example shows how to use Euclid’s algorithm to express a
rational number as a finite simple continued fraction.

1281
Example 1.2.11. Expand the rational number as a simple continued

fraction. First let @ = 1281 and b = 243, and then et Euclid’s algorithm run
as follows:
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1281
- 1215 | 5 243
- 66 | 3| — 198
—45 11 74j
Qi 2 - 42
-21 |7 M g
0
So —1-22—4%1 =15,3.1,2,7]. Thus
243 34 - ——l_
1
2+ =

Of course, as a by-product, we also find that ged(1281,243) = 3.

2 51
Exercise 1.2.3. Expand the rational numbers T and 539 as simple con-
) 4

tinued fractions.

The above discussion tells us that any rational number % with b # 0 can

be expressed as a simple finite continued fraction.

Theorem 1.2.20. Any finite simple continued fraction represents a rational
number. Conversely, any rational number can be expressed as a finite simple
contimied fraction, in exactly two ways, one with an odd mumber of terms
and one with an even number of terms.

Proof. The first assertion is proved by induction. When 7 = 1, we have

1 gogqr + 1
lgo, @] =g+ — = ———
4 q1
which is rational. Now we assume for n = k the simple continued fraction
[qo.q1, -, qr] is rational whenever go, g1, -+ . g are integers with ¢i.- -, gk
positive. Let gg, g1, -+ , Grs1 are integers with g1, . gqre1 positive. Note that
1

o, q1, s ks Gkl =qay + ————.
lg0. ¢ i ] o aman]
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B}: the in@uction hypothesis, [¢1.¢2. - . g, gry1] is rational. That is, there
exist two integers » and s with s # 0 such that

Thus,

EQI:QQ:"

I(I()-,Q’IV t 1@’}::‘11\@"1} = Qo + — =
r/s

which is rational.

Now we use Euclid’s algorithm to show that every rational number can
be written as a finite simple continued fraction. Let a and b be a rational
number with & > 0. Euclid’s algorithm tells us that

C Gk

r
Q] = —.

&

1 agr + s
”

a=bgy + 711, 0<ry <b,
b=riq +ra, 0 <rey <y,
1 = Ta2g2 + T2, 0 <ry < ry,
Te =7T3q3 + 7q, 0<ry <rg,
Th—2 = Fp—1Gn—1 + Iy, 0<ry <rpoy,
Tn—1 = Tngn + 0.
In these equations, qi,q2,- - , ¢, are positive integers. Rewriting these equa-
tions, we obtain
a _n
b 0T
b T
- = g1+
7y Ty
1 T3
S — 5 4
L) & T2
Tpn—1 _
Tn QI'I’I

By successive substitution, we have
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a + 1
b - do L
(A
1
= g+t 1
@+ 7y
(5}
1
ot q0+ 1
¢+ 1
42 + 1
..'(]nfl +

it

This shows that every rational number can be written as a finite simple
continued fraction.

Further. it can be shown that any rational number can be expressed as a
finite simple continued fraction in exactly two ways, one with an odd number
of terms and one with an even number of terms; we leave this as an exercise.

i

In what follows, we shall show that any irretionel number can be expressed
as an infinite simple continued fraction.

Definition 1.2.11. Let ¢o,qi.q2, - be a sequence of integers, all posi-
tive except possibly go. Then the expression [go,q1, 2. -1 is called an -
finite simple continued fraction and is defined to be equal to the number
lim [QO=(]]=Q2: T :%zflafh}-

=X

Theorem 1.2.21. Any irrational number can be written uniquely as an wnfi-
nite simple continued fraction. Conversely, if a is an infinite simple continued
fraction, then ¢ is irrational.

Proof. Let a be an irrational number. We write

~ ol + {a} = o] +

{o}

where [o] is the integral part and {a} the fractional part of a. respectively.
Because « is irrational, 1/{a} is irrational and greater than 1. Let

ol and 1
o = ¢), and o1 = T -
{o}
We now write 1
ay =[]+ {on} = o]+ ——

{1}
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where 1/{a;} is irrational and greater than 1. Let

g1 =[m}. and . =

{on}

We continue inductively

1
g = foa], and az=—>1 (a3 irrational)
{az}
1 .
g3 = Jlaz], and ai= —— >1 (o irrational)

{as}

! > 1
{(17;71}

gn = lan), and «, = (o irrational)

Since each a,, i = 2,3, is greater than 1, then q,, 1 > 1, n = 2,3,---. If
we substitute successively, we obtain

a = {007 0]
= i%:fhaﬂ:z]
(70,1, 42, 03]

= [qo,q1. 92, s Gn, Onti]

Next we shall show that @ = [gs, 1, 2, ---]. Note that C,,, the nth conver-
gent to [go,q1,¢2.-- -] is also the nth convergent to [go, 1,62+ Gn, Qg1 ).
If we denote the (n + 1)st convergent to this finite continued fraction by
; 7 3

Py /@, = a, then
x — Cn P”+L ) (—1)”+1

Q,,_L] - O Q;I_HQn‘

Since @, and @7, | become infinite as n — oc, then

( 1) n+1
hm (a - ()= lim =0
n—a0 Q”JHQ,I

an
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v = lim C, = [g0.q1, ")

N—r G
The uniqueness of the representation, as well as the second assertion are left
as an exercise. 0

Definition 1.2.12. A real irrational number which is the root of a quadratic
equation ar’+bx+c = 0 with integer coefficients is called quedratic irrational.

For example, V3, V5, VT are quadratic irrationals. For convenience, we
shall denote VN, with N not a perfect square, as a quadratic irrational.
Quadratic irrationals are the simplest possible irrationals.

Definition 1.2.13. An infinite simple continued fraction is said to be pe-
riodic if there exists integers & and m such that ¢ = @ for all
i > k. The periodic simple continued fraction is usually denoted by
[Go- Q1+ @, Thr s Ghi2, 2 Gkem)- 1f it is of the form [, G, w1l
then it is called purely periodic. The smallest positive integer m satisfving
the above relationship is called the period of the expansion.

Theorem 1.2.22. Any periodic simple continued fraction is a quadratic ir-
rational. Conversely, any gquadratic irrational has a periodic expansion as a
simple continued fraction.

Proof. The proof is rather lengthy and left as an exercise; a complete proof
can be found on pages 224-226 in [197). m|

We are now in a position to present an algorithm for finding the simple
continued fraction expansion of a real number.

Theorem 1.2.23 (Continued fraction algorithm). Let z = xp be a real
number. Then a can be expressed as a simple continued fraction

[(]0;(11:(12:"' a(ITzequJrlv"‘]

by the following process:

Lzo] : N
Go = {To!. Ty =
Iy — qo
1
gy = (T1]. Ea =
L J T — 1
, (1.70)
n = LI'L}‘ Tntl = ;:-TJ;
| 1
o=l . Lptn =
Gn+1 Elfl%i 2 Tp+1 — Yn4i
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Proof. Follows from Theorem 1.2.21. 0

Note that just as the numbers ¢o,q;.--- are called the partial quo-
tients of the continued fraction, the numbers rg, xy,--- are called the com-

plete quotients of the continued fraction. For quadratic irrational numbers.
of course. we do not need to calculate the infinitely many ¢;’s, since ac-
cording to Theorem 1.2.22, any quadratic irrational nurrulber is periodic
and can be written as an infinite simple continued fraction of the form
[90.q1. G20 Qh Grats - > Gtm)-

Now we can use the algorithm given in Theorem 1.2.23 to represent any
real number as a simple continued fraction.

Example 1.2.12. Expand v/3 as a periodic simple continued fraction. Let
2o = v/3. Then we have:

g = lzo] = [V3] =1

oL o1 V34l
o —qo \/g—l_ 2

fh:LIIJ:Lﬁ2+1j:[1+\/§;1J:1

R 1 1 2B+

T2 T — q1 \/3‘+I_—1v\/§_1(\/§__1)(\/§+1):\/§+1
2

g2 = o] = [V3+1] =2 ’

s = T _ 1 1 W31

Y mme VB+l-2 VB3-1 2 ¢

(13:|_,1‘3_l=L\/ggkljzquL\/§2_1J21=q,1

R \/gjtlmzﬁﬁ_lk(ﬁvl)(ﬁJrl):\/Ml:x‘z
2

f[4:LLE3j2L\/§+1J::2=q2 2

Ir= = 1 ]' 1 \6+1

N = rz = I

1‘4—Q4_\/§+1—2:\/§—1£ 2
G = 73] = 23] = 1=¢3 = ¢

So, for n = 1,2,3,1--, we have ga,_1 = 1 and ga, = 2. Thus, the period of
the continued fraction expansion of /3 is 2. Therefore, we finally get
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V3=1+ i =01,1,2).

Exercise 1.2.4. Find the continued fraction expansions of V5 and /7.

1.3 Diophantine Equations

I consider that I understand an equation when I can predict the properties
of its solutions, without actually solving it.

Paul A. M. DiraC (1902-1984)

In this section, we shall introduce some basic concepts of Diophantine equa-
tions and study some solutions of certain types of Diophantine equations.

1.3.1 Basic Concepts of Diophantine Equations

The word “Diophantine” is derived from the name of Diophantus'* of Alexan-
dria who was one of the first to make a study of equations in integers. The
simplest form of problem involved is the determination of whether or not a
polynomial equation f(x,y,z,---) = 0 in variables w,y,z,---, with integral
coefficients, has integral solutions, or in some cases rational solutions.

Y Diophantus (about 200-284), the father of algebra, lived in the great city of
Alexandria about 1700 years ago. He is perhaps best known as the writer of the
book Arithmetica, of which only six of the original thirteen volumes of the book
have been preserved; the photograph in Figure 1.5 shows the title page of the
Latin translation of the book. About 130 problems in Arithmetic and Algebra
are considered in the book. some of which are surprisingly hard. The work of
Diophantus was forgotten until a copy of the haok was discovered in 1570. Italian
mathematicians in the 16th century introduced his works into Furope where they
were read with great interest and where they stimulated the study of Algebra,
more specifically, Diophantine Analysis. Very little knowiedge about his personal
life has survived except his epitaph which contains clues to his age: One sixth of
his life was spent as a child; after one twelfth more he grew a beard; when one
seventh more had passed, he married. Five years later a son was born; the son
lived to half his father’s age; four years after the son’s death, he also died.

1.3 Diophantine Equations

DIOPHANTI

ALEXANDRINI
ARITHMETICORVM

L IBRI SEX,
ET DE NVMERIS MVLTANGVLIS

LIBER VNVS,

VM COM&-"WEJ\(T/?K],[S C.G. BACHETI V. C.
¢ obferuationibusD . P. de FERM AT Senatoris Tolofani.

Acceflit Doctring Analynce inuentum nowum,colle@um
ex varps cnfdem D de FERMAT Epiftolis,

et " -

oy - - - 2 = o e "3
Ercude TOLOSE, -
udebn BERNARD VS BOSC, ¢Regione Collegij Sociesaris Tefu.

M DC LXX

Figure 1.5. The title page of Diophantus’ book Arithmetica

A Diophautine equation may have no solution, a finite number of solutions
or an infinite number of solutions. and in the infinite case. the solutions mav
be given in terms of one or more integral parameters.

Fr.om a geometrical point of view, the integral solutions of a Diophantine
equation f(x.y) = 0 represents the points with integral coordinates on the
curve fla.y) = 0. For example, in the case of equation 72 — 2% = 0. the onlvr
uﬁ.egral solutif)n is .g;rw y) = (0.0), which shows that the point kU, 0)is thc;, 0111;'
2 s e oo o et whilt the equation
geometrical interpretations in higher di ensions. v e comesponding
Jex pretations in higher dimensions.
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1.3.2 Linear Diophantine Equations
Definition 1.3.1. The algebraic equation with two variables
ar +by=c {1.71)

is called a linear Diophantine equation, for which we wish to find integer
solutions in x and y.

A linear Diophantine equation is a type of algebraic equation with two
linear variables. For this reason, it is sometimes also called a bilinear Dio-
phantine equation. In this type of equation axr + by = c¢. we are only interested
in the integer solutions in x and y.

Theorem 1.3.1. Let a. b, ¢ be integers with not both @ and b equal to 0, and
let d = ged(a,b). If d 4 e, then the linear Diophantine equation

ar+by =c

has no integer solution. The equation has an integer solution in z and y if
and only if d | ¢. Moreover, if (g, y0) is a solution of the equation, then the
general solution of the equation is

b ‘
($1y)ﬂ (.’L’O—Fa't, qug‘t> teZ. (1.72)

Proof. Assume that z and y are integers such that ar + by = c. Since d | a
and d | b, d | c. Hence, if d{ ¢, there Is no integer solutions of the equation.

Now suppose d | ¢. There is an integer k such that ¢ = kd. Since d is a
sum of multiples of a and b, we may write

am + b = d.
Multiplying this equation by k. we get
a(mk) +b(nk) =dk = ¢

so that x = mk and y = nk is a solution.
For the “only if” part, suppose ry and yo is a solution of the equation.
Then
axy + byo = ¢

Since d | a and d | b, then d | c. O
Observe that the proof of Theorem 1.3.1, together with Euclid’s algorithm,
provides us with a practical method to obtain one solution of the equation.

In what follows. however, we shall show how to find z and y by using the

continued fraction method.
Suppose that @ and b are two integers whose ged is d and we wish to solve
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ar — by = d. (1.73)
We expand /b as a finite continued fraction with convergents
PO PI Pnfl PH a —~
—_—. —. {1.74)

—(—J—O—’Ql’ .‘Q-rlwif('*): :b

Since d = ged(a, &) we must have a = da’. b = db and ged(a’,¥') = 1. Then
P,/Q, = a'/t’ and both fractions are in their lowest terms, giving P, = o,
)., = V. So equation (1.73) gives '

PpQnoy = QP = a'Quoy = WPy = (=1)" (1.75)
Hence
aQp1 =Py = da' Q. —db' P,y = (-1)""'d (1.76)
or
()" Q= (1) P,  =d (1.77)

A solution to the equation ax — by = d is therefore given by

(=" Q- }

(_1)17,—1}-;”71. (178)

f

T
¥

To conclude the above analysis, we have the following theorem for solving
the linear Diophantine equation ax — by = d: ’

Theorem 1.3.2. Let the convergents of the finite continued fraction of a/b
be as follows:

Py P Py B, @ -
A A T e (1{9)
QO QJ Q)”,; Qn b
Then the integer solution in x and y of the equation ax — by = d is
= (=11 Q1,
y = (__1)77.71])71_1. (180)

Remark 1.3.1. We have already known a way of solving equations like 1.73
by applying Euclid’s algorithm to a and 6 and v\-'orking.ha('kwards through
the resulting equations (the so-called extended Euclid’s <a1g0rithm). Our n:\v
method here turns out to be equivalent to this since the continued fraction
for a/bis derived from Euclid’s algorithm. However, it is quicker to generate
the convergents P, /(Q); using the recurrence relations than to work baitkwards
through the equations in Euclid’s algorithm.

}_Examp.le 1.3.1‘. Use the continued fraction method to solve the following
linear Diophantine equation:

364 — 227y = 1.
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Since 364/227 can be expanded as a finite continued fraction with convergents

{1, 2,

= (—1)""gu = (—1)77138 = 58,
y=(—1"""p, | = (17193 =93

| L
Gl oo

85 93 364
537 58" 227

[SUNR

we have

That is,
36458 —227-93 = 1.

Example 1.3.2. Use the continued fraction method to solve the following
linear Diophantine equation:

20719z + 13871y = 1.
Note first that
20710x + 13871y = 1 < 207192 — (—13871y) = L.

Now since 20719/13871 can be expanded as a finite simple continued fraction
with convergents

3 118 829 047 1776 2723 4499 20719
L3 %9 355 6310 11890’ 1823° 3012 13871)°

we have

(1) 'g,o1 = (=1)7713012 = 3012,
(=1)" ' pay = (—1)%714499 = —4499.

I}

x
y
That 1s,

20719 - (-3012) — 13871 - (—4499) = 1.

The linear Diophantine equation ax + by = d can also be interpreted
geometrically. If we allow (z.y) to be any real values, then the graph of this
equation is a straight line L in the zy-plane. The points (z.y) in the plane
with integer coordinates (. y) are the integer lattice-points. Pairs of integers
(i, y) satisfving the equation correspond to integer lattice-points (z.y) on L.
Thus. Theorem 1.3.1 tells us that L passes through such a lattice-point if and
only if ged{a, b) | d, in which case it passes through infinitely many of them.

Remark 1.3.2. In some areas of number theory (see e.g., Yan [261]). it may
be necessary to solve the following more general form of linear Diophantine
equation: _

axy + b + cy = d. (1.81)
Note first that this type of cquation can be reduced to a factorization: mul-
tiplying (1.81) by a, adding be to both sides and factoring results in
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(az + c}{ay + ) = ad + be. (1.82)

If mn is a factorization of ad + be and a divides n — ¢ and m — b, an integer
solution of (1.81} is
n-—co

a
m—b

(1.83)

a

1.3.3 Pell’s Equations

In this subsection, we shall study the elementary theory of Pell’s equations,
a tvpe of quadratic Diophantine equation.

Definition 1.3.2. A Pell’s equation is a quadratic Diophantine equation in
any one of the following three forms:

2~ Ny? =1, (1.84)
? = Ny = —1, (1.85)
2? —~ Ny* =n, (1.86)

where N is a positive integer other than a perfect square, and n a positive
integer greater than 1.

Remark 1.3.3. Pell’s equations are named after the 17th century British
mathematician John Pell (1611-1685). It is often said that Euler mistakenly
attributed these types of equations to Pell. They probably should be called
Fermat’s equations since Fermat initiated the comparatively recent study of
the topic. But because Euler is so famous, everybody adopts Euler’s conven-
tion.

The solutions to Pell's equations or its more general forms can be easily
obtained in terms of the continued fraction of V/N. In this subsection, we
shall use the continued fraction method to solve Pell’s equations.

Theorem 1.3.3. Let « be an irrational number. If a/b is a rational number
in lowest terms, where a and b are integers b > 0, such that

a 1 .
(.Y“E!<2?. (18()

then a/b is a convergent of the simple continued fraction expansion of .

Theorem 1.3.4. Let « be an irrational number greater than 1. The (k +

Lyth convergent to 1/e is the reciprocal of the kth convergent to a, for k =
1,2, .
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Theorem 1.3.5. Let N be a positive integer other than a perfect square,
and let n be an integer with |n] < +/N. If g and yo is a positive integer
solution of

22— Ny’ =n, (1.88)

then g /yg is one of the convergents of V.V,

Proof. Suppose n > 0. Since xy and yp is a positive integer solution of
22 — Ny? = n, then

(w0 — 4oV N) (w0 + yoVN) = n,

which implies that

rg > y(}\/i_\’j.

Therefore,

X

0 < =2-VN
Yo

T

Yolzo + YoV N)
n

vo(yo + Yo VN)
N
2V N
It follows from Theorem 1.3.3 that x5 /yo is a convergent to V'N. Similarly,

if n < 0, we find that yo/x0 is a convergent to 1/v/ N. Using Theorem 1.3.4,
we conclude that xp/yg is a convergent to N O

<

Corollary 1.3.1. Let (2, y0) be a positive integer solution of
¥ — Ny* = +1, (1.89)

then
g =P, o =Qn. (1~90)

where P, /@, is a convergent to v.V.
Proof. By Theorem 1.3.5 we know that zq/ye = P, /@y Since the fractions

are reduced to lowest terms, then xg = P, yo = - o

Theorem 1.3.6. Let N be a positive integer other than a perfect square,
and m the period of the expansion of VN as a simple continued fraction.
Then we have:
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(1) m is even
(i) The positive integer solutions of 2% — Ny® = 1 are

T = Pkn —1-
! (1.91)
Y= Qrm-1.
for k=1,2.3.---, with
xr=F,_,
o (1.92)
Y= mels
as the smallest positive integer solution.
(ii) The equation z° — Ny? = —1 has no integer solution.

(2) m is odd
(i) The positive integer solutions of z° — Ny? = 1 are

T = Pk -1
(1.93)
Yy = Qrm—1,
for k = 2,4,6,---. with
= Py,
S (1.94)
Yy = QQm—l:
as the smallest positive integer solution.
(ii) The positive integer solutions of 2° — Ny? = —1 are
2= Pryy—
m—1, (195)
¥ = Qrm—i.

for £ =1,3.5.---, with

T = Py, (1 96)
y:melz .

as the smallest positive integer solution.
Proof. Left as an exercise. 0

Example 1.3.3. Find the integer solutions of #® — 73y = =+1. Note first
that

V73 =[8.1,1,5,5,1,1, 10).

So the period m = 7 and of course m is odd. Thus, both equations are soluble
and their solutions are as follows:
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(1) The smallest positive integral solution of r? —~T3y? =11is

&= Pkm—‘k = -P‘Z-T—l - P13 = 22812—19 (1 9")
97
y=Qum_1 = Q-1 = (13 = 267000

That is, 22812497 — 73 - 267000 = 1.

(2) The smallest positive integer solution of »* — 73y” = —1is
= Pim_y = Py.7_1 = P; = 1068,
fem—1 17-1 = by . (1.98)
Y= Qrm-1 = Q171 = Qs = 125.

That is, 10682 — 73 - 125% = —1.

Example 1.3.4. Find the integer solutions of 2 -9
that

Ty® = +1. Note first

V97 =191 5T1.1,1,1,1,1.51,18.
So the period m = 11 and of course m is odd. Thus, both equations are
soluble and their solutions are as follows:

(1) The smallest positive integral solution of £ —97y* = 11is
= Pym_1 = Pa1—1 = Poy = 62809633,
z 2m—1 2-11-1 21 . ; (1.99)
Y= Qam—1 = Q2111 = Q@ = 6377352,
That is, 62809633 — 97 - 6377352% = 1.
(2) The smallest positive integer solution of 2?2 - 9Ty? = —1is
z=Py_y = Pry1-1 = P = 5604, }

1.100
y=Qm-1 = Qr.11-1 = Q1o = 569. ( )

That is, 56042 — 97 - 5697 = 1.
Remark 1.3.4. Incidentally. the continued fraction for VN, with N not a
perfect square, always has the form

N = [(IO:QE:(]Z-Q:}N o »(I:LQZ:QI:QQUL

as can be seen in Table 1.5.

Table 1.6 and Table 1.7 show the smallest positive integer solutions (z. y)
to Pell’s equations #2 — Ny® = 1 and 22 — Ny? = —1for 1 < N < 100 (except
the perfect squares}, respectively.

The following is actually a corollary of Theorem 1.3.6.

Corollary 1.3.2. Let N he a positive integer other than a perfect square, m

. . . T - - - .
the period of the expansion of VN as a simple continued fraction, and —Q—,
T

= 1,2,--- the convergents to VN . Then the complete set of all solutions,

including positive and negative (if any} of Pell’s equation are:
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Table 1.5. Continued fractions for v N with N < 50 and not perfect square
VI=TLY Vi=[L.T7]
Vi=[2.] Ve =229
Vi=[2 1114 V8 =12 T1
ﬁfo": [3.6] V11 =[3.3,6]
V12 = [3,2,6) V13 =[3.1,1,1.1.6)
\/?:[3-}21-,6] V15 =[3,16]
17=014.7§] VIS =448
V19 =1{4.21,3.1.2.§| V20 =04,2,8
V21 =[4.1T1,2,1.1.§ V2 =4, 1,21 2.1, 8]
\/ﬁ:[il.l_.&lfﬂ V24 =[4,1, 8
\/%:5?71 ] 27 = [5,5, 10]
V28 = [5,3.2,3,10] V20 = [5,2,1,1,2,10]
\/3_9: [?,27 i V31 =1[5.1,1,3,5.3,1,1,10]
V32 = [?,1. I,1,10) V33 =[5,1,2,1,10]
V34 =[5, 14T 10] V35 = [5,1,10]
\/_372 6,17 V38 = [6,5,12
V39 = [6.4,19) V40 = {6,3,12)
VAL = [6,2.2,12] VA2 = [6,3,12)
ﬂ::?: 6.1.1.3,1,5. 1.3, 1.T,12) | vid =[6,1,1,1.2,1,1, 1,19
\/fi: {g 1,2,2,2731.,12} V46 =16,1,3,1.1,2,6,2,1.1,3, 1, 12]
7=[615711 VI8 = [6,1712 '
V50 = [7. T3] oL
{1) i even
)2 —Ny*=1: Fori=0,1,2,3,--,
T+ yVN = £(Py £ yVNQ 1) (1.101)
(ii) 2* — Ny? = —1: No solutions.
(2) m odd
(i) a* = Ny =1: Fori=1,3.5,---,
;r'i'y\/f:i(ljxrzwi il/\/f\ijfz)i4 (1-102)
(i) 27 = Ny? = ~1: Fori=0,2.4,---,
r+yVN = £(Py_; £ yVNQ,,_ (). (1.103)
Proof. Left as an exercise. O

‘ ﬁlf N is not a perfect square, Pell’s equation 72 — Ny = 1 alwavs has
r o .3 AMFOLT @ 3 : ; . .,
infinitely many integer solutions. For the more general form of Pell’s equation

2 A7 2
a® — N Yy = n,

we have the following result:
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Table 1.6. The smallest solution to 22— Ny’ =1 for N <100

N T Yy N x iy
2 3 2 3 2 1
5 9 4 6 5 2

7 8 3 8 3 1

10 19 6 11 10 3

12 7 2 13 649 180
14 15 4 15 4 1

17 33 8 18 17 4

19 170 39 20 9 2
21 55 12 22 197 42
23 24 3 24 3 1

26 51 10 27 26 3

28 127 24 29 9801 1820
30 11 2 31 1520 273
32 17 3 33 23 4
34 35 6 35 6 1

37 73 12 38 37 6
39 25 4 40 19 3

41 2049 320 42 13 2

43 3482 331 44 199 30
45 161 24 46 24335 3588
47 48 7 48 7 1

30 99 14 51 50 7

52 649 90 33 66249 9100
54 485 66 55 89 12
56 15 2 57 151 20
58 19603 2574 59 530 69
60 31 4 61 1766319049 | 226153980
62 63 8 63 8 1
65 129 16 66 65 8

67 48842 5967 68 33 4
69 775 936 70 251 30
71 3480 413 72 17 2

73 2281249 1 267000 || T4 3699 430
73 26 3 76 57799 6630
77 351 40 78 53 6

79 80 9 80 9 1
82 163 18 83 82 9

84 55 6 85 283769 30996
86 10405 1122 87 28 3
88 197 21 89 300001 53000
90 19 2 a1 1574 163
92 1151 120 93 12151 1260
94 2143295 | 221064 || 95 39 4

96 49 3 97 62809633 6377352
98 99 10 99 10 1
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Table 1.7. The smallest solution to 27 — Ny* = —1 for N < 100

N T Y N x Y N x y
2 1 1 3 2 1 10 3 1
13 18 5 17 4 1 26 5 1
29 70 13 37 6 1 41 32 5
50 7 I 53 182 25 58 99 13
61 29718 | 3805 || 65 8 1 73 1068 | 125
T4 43 5 82 9 i 85 378 | 41
89 500 53 97 5604 | 569

Theorem 1.3.7. If NV is not a perfect square and n an integer, then the
equation

- Ny'=n {1.104)
has a finite set 7" of solutions such that for any solution (z.y), we have
(x £ yVN) = (2o + yoVN)(u + vV N) (1.103)

for some (zg,y0) € T and some (u,v) with u?> — Nv? = 1,

Proof. Left as an exercise. |

1.4 Arithmetic Functions

It is true that o mathematicton who is not also somewhat of a poet will
never be a perfect mathematician.
KARL WEIERSTRASS (1815-1897)

Arithmetic (or number-theoretic) functions are the most fundamental func-
tions in mathematics and computer science; for example, the computable
functions studied in mathematical logic and computer science are actually
arithmetic functions. In this section, we shall study some hasic arithmetic
functions that are useful in number theory.

1.4.1 Maultiplicative Functions

Definition 1.4.1. A function f is called an arithmetic function or a number-
theoretic function if it assigns to each positive integer n a unique real or com-
plex number f(n). Typically, an arithmetic function is a real-valued function
whose domain is the set of positive integers.
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Example 1.4.1. The equation
fny=+vn, nel (1.106)

defines an arithmetic function f which assigns the real number /i to each
positive integer n.
Definition 1.4.2. A real function f defined on the positive integers is said
to be multiplicative if

Fm)fin) = flmn), Vm.n € N, with ged(m,n) = 1. {1.107)
If

flm)fin) = flmm), VYm.néN, (1.108)

then [ is completely multiplicative. Every completely multiplicative function

is multiplicative.

Theorem 1.4.1. If f is completely multiplicative and not the zero function,
then f{1) =1.

Proof. If f is not zero function, then there exists a positive integer k& such
that f(k) # 0. Hence, f(k) = f(k-1) = f(k)f(1). Dividing both sides by
flk), we get f(1)=1. O

Theorem 1.4.2. Let .
7= Hp?‘
i=1

be the prime factorization of n and let f be a multiplicative function, then

Proof. Clearly, if & = 1. we have the identity, f(p]") = f(p{’). Assume
that the representation is valid whenever n has r or fewer distinct prime
eS| T
factors, and consider n = [] f(p?"). Since ged (H fEr p:i) =1and [ is
i=1 i=1

multiplicative, we have
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r+1
fln) = f(Hp?’)

=1
i=1

= TTuwmn s
i=1

= H Fwi).
im=1

Theorem 1.4.3. If f is multiplicative and if

g(n) =>" fld) (1.109)
d|n

where the sum is over all divisors d of n, then g is also multiplicative.
Proof. Since f is multiplicative, if ged(rn, n) = 1, then

glmn) = Z Z fldd’)

dim d'in

= Y DY f(d)

dlim d'|n
= g{m)g(n).

Theorem 1.4.4. If f and g are multiplicative, then so is
Fin) = By (2.
(n) gﬂr)g (5)

Proof. If ged(m,n) = 1, then d {mn if and only if d = d,d,. where d, I m
and dy | n, ged(dy, ds) = 1 and gsed{m/di.n/dy) = 1. Thus,
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F(imn) = Zf(d)g (n:_;z)

dlmn

= T sino ()

dy|m dajn

= 3N fid)f(da)g (“’”) (??;)

dyim daln

[z )] |

dijm

= F(m)F(n).

1.4.2 Functions 7(n), o(n) and s(n)

Definition 1.4.3. Let n be a positive integer. Then the arithmetic functions
7(n) and o(n) are defined as follows:

T(n) = Z 1, oln) = Zd. (1.110)

djn d|n

That is. 7(n) designates the number of all positive divisors of n, and a(n)
designates the sum of all positive divisors of n.

It is sometimes also convenient to use the function s(n) rather than a(n}.
The function s(n) is defined as follows:

Definition 1.4.4. Let n be a positive integer. Then
s(n) =o(n) —n. (1.111)

Example 1.4.2. By Definitions 1.4.3 and 1.4.4, we have:

nol1l23l4]5]6 7] 8] 9]10]100]101]220 | 284
) 1 2213 (2[4 2|4 3|49 2 |12]6
on) | 1134|7612 8 15[ 13| 18] 217 | 102 504 | 504
stn) 10111 ]3]t]6 1] 7| 4|8|107] 1 [284]220

Lemma 1.4.1. If n be a positive integer greater than 1 and

L.
(£
n = I !pi ,

=1
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then the positive divisors of n are precisely those integers d of the form

!"
3
a=11v.
i=1
where 0 < 3; < a;.

Proof. If d|n, then n = d¢. By the Fundamental theorem of arithmetic.,
the prime factorization of n is unique, so the prime numbers in the prime
factorization of d must occur in p;, (j = 1,2,---, k). Furthermore, the power
A3y of p;j occurring in the prime factorization of d cannot be greater than «;,
that is, 3; < ay. Conversely, when 8; < aj, d clearly divides n. O

Theorem 1.4.5. Let n be a positive integer. Then

(1) 7(n) is multiplicative, i.e.,
T(mn) = r(m)r(n). (1.112)

(2) if n is a prime, say p. then 7(p) = 2. More generally, if n is a prime
power p~, then
TpY) =a+ 1. (1.113)

(3) if n is a composite and has the standard prime factorization form, then

7(n) = (oq+ V(e + 1) (ap + 1)
L
= [t +1). (1.114)

Proof.

(1) Since the constant function f(n) =1 is multiplicative and 7(n) = 3. 1,
d[n
the result follows immediately from Theorem 1.4.3.

(2) Clearly. if » is a prime, there are only two divisors, namely. 1 and n itself.
If n = p°, then by Lemma 1.4.1, the positive divisors of n are precisely
those integers d = p”, with 0 < ’3 < a. Since there are «v + 1 choices for
the exponent 3, there are  + 1 possible positive divisors of n.

(3) By Lemma 1.4.1 and Part (2) of this theorem, there are a; +1 choices for
the exponent 5;. ay+1 choices for the exponent 35, - - -, i +1 choices for
the exponent J;. From the multiplication principle it follows that there
are {a1+1)(az+1) - - (ay+1) different choices for the 3. 8o, -+, B, thus
that many divisors of n. Therefore, 7(n) = (@, + s + 1)+ (ag + 1),
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Theorem 1.4.6. The product of all divisors of a number n is

Hd: A (1.115)

din
Proof. Let d denote an arbitrary positive divisor of n, so that
n = dd

for some d'. As d ranges over all T{n) positive divisors of n, there are 7(n)
such equations. Multiplying these together, we get

n = H dH d.

din d'in

. o )
But as d runs through the divisors of n, so does d'. hence

Hd = Hd’.

din d’'|n
So, ,
nt = H(l d
din
or equivalently
pTM/? = H d-d.
din

Example 1.4.3. Let n = 1371, then
7(1371) = 4.

Therefore ‘
Hd = 137142 = 1879641.

It is of course true, since
d(1371) = {1,3,457. 1371}

implies that
Hd —1.3-457- 1371 = 1879641

The result in Theorem 1.4.6 can be expressed i a different manner. Let
{y, w0, -+ oy} be aset of k positive integers. The geometric mean of these
k numbers is defined by

G = (;zz‘lzrg---,f:k)”k. (1.116)

When this applies to the product of 7(n) divisors of n, we have:
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Theorem 1.4.7. The geometric mean of the divisors of n s
G(n) = Vn. (1.117}
Example 1.4.4. Let again n = 1371, then
G(1371) = (1-3-457 - 1371)Y/* = 37.02701716.
It is of course true since
V1371 = 37.02701716.
Theorem 1.4.8. Let n be a positive integer. Then

(1) o(n} is multiplicative, i.e.,

g(mn) = a(m)o{n). (1.118)
(2) if n is a prime, say p, then o(p) = p + 1. More generally, if n is a prime
power p“, then
prtt—1
p—1
(3) if n is a composite and has the standard prime factorization form, then

o(p®) = (1.119)

I)ix:+1 -1 . 1)32+1 —-1 o pifk+1 1
p—1 p2—1 pr—1
k a;+1
pi -1
i1 :

an) =

Proof.

(1) The result follows immediately from Theorem 1.4.3 since the identity
function f(n) = n and o(n) can be represented in the form o(n) = > d.
d|n

(2} Left as an exercise; we prove the most general case in Part {3).
(3} The sum of the divisors of the positive integer

(S5 3N« 5]

¥ [,
n=pripsteoprt

can be expressed by the product
(Itp +p+-+p0) (L po+p3 + - +p52)
(Lt pr )
Using the finite geometric series

2t —
xr—1,

1+Zr—i~:172+._,+1/_r1.:
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we simplify each of the k sums in the above product to find that the sum
of the divisors can be expressed as

) a-b A1
SR St S I SO S
p—1 pa—1 pr—1

k e ‘*‘“1

H p; ) (1.121)

el U

Just as the geometric mean G(n) of the divisors of a number n, we can
define the arithmetic mean as follows:
a(n N
Aln) = (n) (1.122)

T or(n)’

Similarly, we can also define the harmonic mean H{n) of the divisors of a
number n in terms of the arithmetic mean as follows:

1 Aln)

_ _ (1.123)
Hn) 7
Note that the harmonic mean H{n) of a set of numbers {z),z2,--- . xn} is
defined by )
1_1 ia,ui_%...m) (1.124)
H n 1 T2 En

The following theorem gives the relationships between the number n and
the harmonic and arithmetic means of the divisors of n.

Theorem 1.4.9. Let A(n), G(n) and H(n) be arithmetic, geometric and
harmonic means, respectively. Then

(1) The product of the harmonic and arithmetic means of the divisors of n
is equal to n

n = A(n)- H(n), (1.125)
(2)
Hn) < G(n) = vn < A(n). (1.126)
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1.4.3 Perfect, Amicable and Sociable Numbers

“Perfect numbers” certainly never did any good. but then they never did
any particular harm.
J. E. LIiTTLEWOoOD (1885-1977)

Perfect and amicable numbers have been studied since ancient times; how-
ever, many problems concerning them still remain unsolved. This subsection
introduces some basic concepts and results on perfect and amicable numbers
based on the arithmetic functions studied previously.

Definition 1.4.5. Let (mj.ma.--- .my) be k positive integers all greater
than 1, satisfying:
olmi) = my +me
a(ma) = ma + mgy
(1.127)

o{my) = my +my
then the k positive integers form a sociable group with order % {or an aliquot
k-cycle). If k=1, that is
almy) = my +my = 2my, (1.128)
then my is called a perfect number. If k = 2, that is

o(my) = my 4+ ms = o(ma), (1.129)

then (my,m2) is called an amicable pair. The k integers my, ms,--- ,my are
called an amicable k-tuple if

olmy) =c(my) = =almg) =my +ms+ -+ my. (1.130)
(In case k = 3, we call them amicable triples.)

Example 1.4.5. The following are some examples of perfect, amicable and
sociable numbers:

(1) 6, 28 496 and 8128 are the first four perfect numbers, whereas
21093996(24058936 . 1) s the largest known perfect number at present.
Since once we found a Mersenne prime of the form 2? — 1. we found an
{even) perfect number of the form 27! (27 — 1}. As there are 39 known

Mersenne primes at present (see Table 1.2), there are 39 known perfect
numbers,
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(2) (220.284), (1184,1210). (2620,2024) and (5020.5564') are tl'l(?
first four amicable pairs. The following is a large amicable pair:
(29 p¥ - m g 29 p% - ) with

p = 37669773212168992472511541,

¢ = 609610904872320606430695102719.
= 569 - 5023 - 22866511 - 287905188653,
ao={p+q p” -1

g2 = (p—m) p¥ — 1,

Both numbers in the pair have 3383 digits; it was found by M. Garcia

in 1997. But it is still not the largest known amicable pair; the largest
known amicable pair at present has 5577 digits in both its numbers. To
date. there are in total 2494343 amicable pairs are known. Table 1.8 gives
the f’i‘equell(‘y of these known amicable pairs distributed overlghe number
of digits in the smaller number (the list exhaustive up to 104=).

(3) (1980.2016, 2556), (9180, 9504, 11556) and (21668, 22200, 27312) are the
first three amicable triples with my # ms # mas; the last two triples
were found by Te Riele in 1994 whereas the first one was knom? a long
time ago. (amh(ung,armg,am,;,am5) is an amicable 5-tuple, w1th_ a =
219 .95.5.73.13-31-41, m; = 11-359, ms = 23179, my = 47- 89,
my = 5379, my = 59-71; it was found by C. Krishnamurthy in 1980.

(4) (1236402232, 1369801928, 1603118392, 1412336648) is an a.liqu_()t 4-cycle.
The longest aliquot known cycle is the aliquot 28-cycle with m; =
14316 = 2% -3 .1193; it was found by P. Poulet in 1918. About 119
aliquot k-cycles for 4 < k < 28 have been found to date (with k£ = 28 the

longest, generated by 14316):

k 4 |5;6]8 928
Number of k—cyeles | 112 1122 (1] 1

For perfect numbers, we have the very convenient necessary and sufficient
condition for an even number to he perfect:

Theorem 1.4.10 (The Euclid—Euler Theorem). n 1s an even I)F?I'fe(’.f
number if and only if n = 2¢71(27 — 1), where 2° — 1 is a Mersenne prime.

Proof. We first prove that this is a necessary condition for n to be perfect.

Let n = 2771{27 — 1). Then
o(n) = a2 Na(2? - 1)

= (2F — 1)2? (since 2P — 1 is prime )
= 220712 - 1)
= 21n.
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Table 1.8. Number of Known Amicable Pairs (By courtesy of Mr. Jan Munch
Pedersen)

Digits 0 1 2 3 4 5 6 7 8 9
0-9 0 0 1 4 8 29 66 128 | 350
10-19 | 841 | 1913 | 4302 | 9867 (15367130604 | 5881 | 1991 | 1851 | 1976
20-29 | 1750 | 1916 | 1936 | 2225 [ 2405 | 2817 | 2914 | 3306 | 3977 | 4699
30-39 | 5240 | 5565 | 6276 | 6503 | 6899 | 7433 ['8020 | 8661 | 8804 | 9145
40-49 12013 |12876|13078|12972112343[12383 15085117050 17022 16933
a0-59 1184091184771205655(18142]15734]16068]1657616564 | 13673 12697
60-69 111470]11302]11220]12045 1096112099 | 45779148368 40170134601
70-79 |31817[27639|75099(57453 4840141159 |46813]44160 50001130017
80-89 41982146845 51611147552 55896 [49069]49221 4151039044 41246
90-99 4664939511 (36427132406 |33921131181(28169(25124125086 28029
100-109|27840{23753 20766 | 18801 [ 18288 | 1826716257 [14274 | 12668 | 11713
110-119/11189 /1864216929 |15070[13570]12468 [11744|10517 | 9557 | 8897
120-129| 8358 | 7684 | 6792 | 8733 16396 | 15748 14108113417 11265511986
130-139111348110522 10271 | 9498 [ 9103 | 8434 | 7704 | 7141 | 6468 | 6177
140-1491 5546 | 5217 | 4449 | 4042 | 3620 | 3207 | 2099 | 2651 | 2281 | 2240
150-1591 2352 | 2065 | 1746 | 1484 | 1344 | 1184 | 1101 | 979 | 833 | 773
160-169| 757 | 814 | 754 | 672 | 882 | 1445 | 1158 | 1158 | 1154 | 1100
170-1791 1001 | 968 | 939 | 852 | 7564 | 773 | 718 | 674 | 666 | 646
180-189| 667 | 606 | 566 | 533 | 517 | 517 | 453 | 412 | 439 | 387
190-199] 358 | 379 | 362 | 341 | 325 | 289 | 190 | 288 | 257 | 251
200-209| 229 | 232 | 185 | 152 | 161 | 174 | 131 | 150 96 119
210-219| 123 | 122 | 112 95 87 66 112 | 68 74 72
220-229) 60 70 70 7l 55 69 66 48 56 a7
230-2391 55 66 52 50 53 41 49 42 32 46
240-249| 52 55 b4 h2 40 33 41 98 84 90
250-259] 79 66 70 74 85 80 67 64 63 57
260-269 51 51 50 99 78 75 62 63 60 45
270-279] B3 26 53 49 34 49 35 53 39 35
280-289; 35 36 37 41 29 33 27 24 28 26
290-2991 21 21 20 18 19 15 14 12 17 13
613 pairs with 300-5577 digits
There are 2574378 pairs in total

Therefore. by Definition (1.4.5). n is a perfect number. Next, we prove that
even perfect numbers must be of the given form. Let n be an cven perfect
number and write it as

n=2""1q with ¢ odd.
Since ged(2P71, ¢) = 1, then
o(n) =a(2"" Ho(g) = (2F — Do(g). (1.131)
By Definition 1.4.5, we must have

o(n) = 2n = 2Fq. {1.132)
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Combining {1.131) and (1.132}, we get
20g = (29 — 1)o(q)
= (2" = 1)(s(g) + q) (since s(g) = o(q) — q)

Therefore, :

herefore, ¢ = s(q)(2 = 1), (1.133)
Clearly, (1.133) implies that d = s(g) is a proper divisor of g. On the other
hand, s(g) is the sum of all proper divisors of ¢. including d. so that there
cannot be any other proper divisors besides d. But a number g with a single
proper divisor d must be a prime and d = 1. So from (1.133), we can conclude
that

g=2V-1
is a Mersenne prime. Thus each even perfect number is of the form
2r—l(2P 1)
where 27 — 1 is a Mersenne prime. O

The sufficient condition of the above theorem was established in Euclid’s
Elements (Book IX, Proposition 36) 2000 years ago, but the fact that it is also
necessary was established by Euler in work published posthumously. Thus we
have an example of a theorem in Number Theory that took about 2000 years
to prove. However, we still do not know if there are infinitely many perfect
numbers and we also do not know if there exists an odd perfect number; we
know that there are no odd perfect numbers up to 10 (Brent, Cohen and
Te Riele, [39]) and if there is an odd perfect number it should be divisible
by at least eight distinct prime numbers. Compared with perfect numbers,
unfortunately, we not only do not know whether or not there exist finitely
many amicable pairs. but also do not have necessary and sufficient conditions
for amicable numbers (i.e., we do not have a general rule for generating all
amicable pairs).

The first (algebraic) rule for amicable numbers was invented by the Arab
mathematician Abu-l-Hasan Thabit ibn Qurra'® and appeared in his book
in the ninth century:

5 Thabit ibn Qurra (824-901), a famous Arab mathematician of the 9th century.
lived in Baghdad as a money changer. but he was highly esteemed for his writings
on medicine, philosophy, mathematics, astronomy and astrology. He wrote a
Book on the Determination of Amicable Numbers (Figure 1.6 shows the front
cover of the book). in which he propesed his famous rule for amicable numbers:
Hp=3.2""" ¢g=3-2"-landr = §.22"~ 1! — 1 are primes, then M = 2" -p-q
and N = 2" .y are amicable numbers™. In his remarkable treatise entitled “On
the Verification of the Problems of Algebra by Geometrical Proofs™, he showed
that the three tvpes of quadratic equations: 22— ar+e=0 2" —ar-—c=0
and 2 + ar — ¢ = 0 can be solved by means of Propositions 5 and 6 in Book 11
of Fuclid’s Elements. Thabit was also a most competent trauslator from Greek
and Svriac to Arabic; he translated works of Euclid, Archimedes, Apollonios,
Antolvkos. Prolemaios, Nikomachos, Proklos and others.
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Figure 1.6. The cover of Thabit’s book on amicable numbers (by courtesy of Guedj

[95])

Theorem 1.4.11 (Thabit’s rule for amicable pairs). If
p=3-2"1-1
g=3-2"-1 (1.134)
r=9-22n"1 1

are all primes, then

(M, \y=2"-p-q, 2"-1) {1.135)
is an amicable pair.
Proof. First. we have
(M) = 0(2" - p- )

a(2")a(plolq)

o(2)0(3- 2771 — 1)o(3-27 — 1)

= {27 )3 -2 13- 27
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= 0. 2‘21}*1 (21?+l _ 1)
a(N) = o(2" - 1)
— 0(212)0(9 . 22:‘1—1 _ 1)
=9. 227171(2714‘1 _ 1)
M+N=2"%p-g+7)
—2m[(3- 271~ 1)(3-27 — 1) + (92271 = 1)]
— 211(9 . 22n~1 —3.9"n_3. 21171 +9. 237L7])
—_ 2)1(9 . 22r1 —_—0. 21171)
— 2)1[(9 . 27171(2n+1 o lﬂ
= 0. 2‘21‘1_} (2:1—}-1 . 1)
So (M, N)=(2"-p-q, 2" -r} is an amicable pair. |

For n = 2 Thabit’s rule gives the first and also the smallest amicable pair
(M, N)=(22-5.11, 22-71) = (220, 284)

attributed to the legendary Pythagoras!®. Two further pairs obtained by
Thabit’s rule are for n = 4 and n = 7 (see Borho and Hoffmann [32]); in the
early 14th century Ibn al-Banna in Marakesh and also Kamaladdin Farisi in
Baghdad discovered the pair for n = 4:

(M, Ny=(2%-23-47, 2" -1151) = (17296, 18416)

and in the 17th century Muhammad Bagir Yazdi in [ran discovered the pair
form=7

(M, N) = (27-191-383, 27 - 73727) = (9363584, 9437036).

However, after n = 7, Thabit’s method seems to dry up and has not produced
any other amicable pairs.

Pythagoras {died about 500 B.C.) was born on the Greek island of
Samos. He founded his famous school at the Greek port of Crotona
(now in southern Italy) and discovered the Pythagoras Theorem,
namely that «®+b% = ¢? where a,b and ¢ are the lengths of the two
legs and of the hypotenuse of a right-angled triangle, respectively.
The Pythagoreans believed that Everything is Number. Because
of their fascination with natural numbers, the Pythagoreans made
many discoveries in number theory, and in particular, they stud-
ied perfect numbers and amicable pairs for the mystical properties they felt these
numbers possessed.
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Euler'™ was the first to study amicable numbers systematically. Based on
Thabit’s work, he developed several new methods for generating amicable
numbers and found 59 new amicable pairs. Since Euler's time, many more
amicable pairs have heen found, most of then with the help of variations of
Euler’s methods. The following rule developed by Euler is directly based on
Thabit’s rule:

Theorem 1.4.12 (Euler’s rule for amicable pairs). Let n be a positive
number, and choose 0 < & < n such that g = 277% + 1. If
p=2".g-1
g=2"-g-1 (1.136)
§=2nE g2
are all primes, then
(M, N\y=012"p-q, 2" 5) (1.137)
is an amicable pair.
It is clear that Euler’s rule is a generalization of Thabit’s rule. That is,
when n — . = 1. it reduces to Thabit’s rule. There are many rules (although

none of them are general) for generating amicable pairs; interested readers
may wish to verify that if

f=2F+1

g =2k g2
ro=fo2mh o
ry=f o2 -1 (1.138)
p=g(2mH -1)+1

G=p"lg- (2" -1)+2] -1

g2 =2"-p"-gl(2" = 1)g+2] - 1

Leonhard Euler (17071783}, a key figure in 18th century math-
ematics, was the son of a minister from the vicinity of Basel,
Switzerland, who, besides theology, also stndied mathematics. He
spent most of his life in the Imperial Academy in St. Petersburg,
Russia (1727-1741 and 1766-1783). “Prolific” is the word most of-
ten applied to Euler, from whom gushed forth a steady flow of work
from the age of 19 on, even though he was blind for the last 17 vears
of his life. (He also had 13 children.) Mainly known for his work in
ysis, Euler wrote a calculus textbook and introduced the present-day symbols
for €, o and 7. Among Euler's discoveries in number theory is the law of quadratic
re)(tiprocity, which connects the solvability of the congruences 2 = p (mod q) and
Yy~ =g (mod p), where p and ¢ are distinct primes, although it remained for Gauss
to provide the first proof. Euler also gave a marvellous proof of the existence of
infinitely many primes based on the divergence of the harmonic series 3.1~ 7.
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are all primes (where k.m,n € N and m > k) , then
(M, Ny=(2™-p"-ri-r2-qu. 27 D" - qa) {1.139)

is an amicable pair.

Tt is interesting to note that although we do not know whether or not
there exist infinitely many amicable pairs, we do have some methods which
can be used to generate new amicable pairs from old ones; the following is
one of the very successful methods invented by Te Riele'® [203] in 1983:

Theorem 1.4.13. Let (M', N') = (a-u, a-p) be a given amicable pair
(called a breeder pair) with ged{a,u) = ged(a,p) = 1, where p is a prime. If
a pair of primes (r.s), with p < 7 < s and ged(a, r-s) = 1, exists, satisfving
the following bilinear Diophantine equation

r=ns—p) = 22 oy’ (1.140)

and if a third prime ¢ exists, with ged{a - u, ¢} = 1 and

g=r+s+u (1.141)
then (M, N)=(a-u-gq, a-r-s)is also an amicable pair.
Proof. See pages 170-172 in [261]. |

Very surprisingly we are in trouble as soon as k = 3, for no one has
yet come up with an example, and this in spite of the fact that an algorithm
(Borho [31]) exists which purports to produce them! This algorithm generates
the following four numbers:

p=2"-1

S @ - D 2e e )

br= » (1.142)
pe=2"(pr +1) 1

Py = er(21‘+1 — 1) —+ 2“_6_1 -1

where v, € N, u > v and 2u + 1 = 0 (mod v). If p, p1,p2. ps are all primes,
then

'8 Herman J. J. te Riele, a leading computational number theorist, is a senior scien-
tist at the Centre for Mathematics and Computer Science (CWI} in Amsterdam,
the Netherlands. Te Riele works in several central areas of computational number
theory and has made significant contributions to the field; he jointly with A, M.
Odlyzko at AT& T, showed in 1985 that Mertens’s conjecture was false. (Mertens
conjectured that [M({z)| < /& for all x > 1, where M(z) =3 ., (n).) This
question, which was in the minds of many classical number theorists, including
Sticltjes and Hadamard, was very important to settle. Together with the German
mathematician W. Borho, he has discovered more amicable pairs and rules that
generate amicable pairs than anyone else.
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(m1, ma, ma) = (2" -p-p1, 2" py, 2 p3) (1.143)
is an aliquot 3-cycle. Unfortunately, these four numbers don’t seem to want
to play! Nevertheless it is conjectured that aliquot 3-cycles exist. Readers
who are 1‘nterested in perfect, amicable and sociable numbers are invited to
consult Yan {261] for more information.

1.4.4 Functions ¢(n), A(n) and p(n)

Let us first introduce Fuler’s (totient) ¢-function, attributed to Fuler.

Deﬁn‘ition 1.4.6. Let n be a positive integer. Euler’s (totient) d-function,
@(n), is defined to be the number of positive integers k less than n which are
relatively prime to n:

en)= Y L (1.144)

1<k<n
gedik. ni=1

Example 1.4.6. By Definition 1.4.6, we have:

n [ 112]3|4]5]6][7|8|9]10]100]101|102] 103
om) [ 1[tf2]2]4a72]6[4[6] 4|10 [100] 32 | 102

Lemma 1.4.2. For any positive integer n,

> " 8(d) =n. (1.145)

d|n

Proof. Let ny denote the number of elements in the set {1,2,--- ,n} having
a greatest common divisor of d and n. Then

n=Y ni=3 0 (%) =3 o).

din din d\n
O
Theorem 1.4.14. Let n be a positive integer. Then
(1) Euler’s ¢-function is multiplicative. that is, if ged(m.n) = 1, then
d(mn) = o(m)o(n). (1.146)
(2) If n is a prime, say p, then
olp)=p—1. (1.147)

(Conversely, if p is a positive integer with ¢(p) = p ~ 1. then ¥ is prime.)
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(3) If n is a prime power p* with a > 1, then
@(po.) — pcx fpufl' (1148)

(4) if n is a composite and has the standard prime factorization form, then

1 . 1 ( 1 )
oy o azf1 - )...p) 1 - —
n (1 ” ) P ( 112) P Pr
(1 _ E) _ (1.149)
»

Il

o(n)

= 7
nin
Proof.
(1) Since g(n) = n is multiplicative and n = 3_ ¢(n). it follows from Theo-
dln
rem 1.4.3 that the ¢-function is multiplicative.
(2) If » is prime, then 1,2,--- ,n — 1 are relatively prime to n, so it follows

from the definition of Euler’s ¢-function that ¢(n) = n — 1. Conversely,
if 7 is not prime, n has a divisor d such that ged(d,n) # 1. Thust there
is at least one positive integer less than n that is not relatively prime to
n. and hence ¢(n) <n— 2.

(3) Note that ged(n,p®) = 1 if and only if p { 7. There are exactly pet
integers between 1 and p® divisible by p, namely,
p. 2p. 3p.-- . (0% )p.
Thus, the set {1,2,---.p®} contains exactly p® — p*~ ! integers that

are relatively prime to p®, and so by the definition of the ¢-function,
O(p(}) e po( _pufl_ |

(4) We use mathematical induction on k. the number of distinct prime
factors. By Part (3) of this theorem, the result is true for & = 1. Suppose
that the result is true for k = {. Since

—1, s

ged (pfips®-pd, pit) = L
the definition of multiplicative function gives
o ((py w5 ) i)
= o(pt'ps o pl) e (BT
)

O )

= (- ) s - T T )
1

: 1 oo _ LY. @it (1“ )
= l)(l‘l (]_ — ])1> Ps (1 }J-g) p:%] Pii
1
A YA AU A Y
= ni{l1 )
”m P2 Piyt

P
= o{py 'pst-p

S0

o

bl
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Remark 1.4.1. Suppose that n is known to be the product of two distinct
primes p and g. Then knowledge of p and ¢ is equivalent to knowledge of é(n),
since ¢(n) = (p — 1){g — 1). However, there is no known efficient method to
compute ¢(n) if the prime factorization of n is not known. More precisely,
one can compute ¢(n) from p and ¢ in O(logn) bit operations, and one can
compute p and ¢ from n and ¢(n) in O(logn)® bit operations (see Koblitz
[128]). This interesting fact is useful in the RSA public-kev cryptography.
which will be studied in detail in Chapter 3.

The following function, first proposed by the American mathematician
Carmichael'”, is a very useful number theoretic function.

Definition 1.4.7. Carmichael’s A-function, A(n). is defined as follows:

Apy=op) =p-1 for prime p,
A(p®) = é(p*) forp=2and a <2,
and for p > 3
1 (1.150)

A(27) = §¢(20) for e > 3

k
A(n) = lem (ABONPS?) - AGE)) it =[] o

i=1

Example 1.4.7. By Definition 1.4.7, we have:

n |1]2)3]4]5]6]7]8]9]|10]100]101]102] 103
M) 1)1 2[2]4(2]6[2]|6| 4|20 100] 16 | 102

Example 1.4.8. Let n = 65520 = 21 -3?.5.7.13, and ¢ = 11. Then
2cd (65520, 11) = 1 and we have

G(65520) = 8-6-4-6-12 = 13824,
A(65520) = lem{4,6,4,6,12) = 12.

Euler’s ¢-function and Carmichael’s A-function are two very useful arith-
metic functions particularly in public-key cryptography which we shall dis-
cuss in Chapter 3 of this book: some important properties about Fuler’s
o-function and Carmichael’s A-function will be discussed in Subsection 1.6.2.

the result holds for all positive integer k. O

" Robert D. Carmichael (1879-1967) was born in Goodwater, Alabama. He re-
ceived his BA from Lineville College in 1898 and his PhD in 1911 from Prince-
ton University. His thesis, written under G. D. Birkhoff, was considered the
first significant American contribution to differential equations. Perhaps best
known in number theorv for his Carmichael numbers, Carmicheel’s function,
and Carmichael’s theorem, Carmichael worked in a wide range of areas, includ-
ing real analysis, differential equations, mathematical physics, group theory and
number theory. It is also worthwhile mentioning that Carmichael published two
very readable little books about number theory: Theory of Numbers in 1914 and
Diophantine Analysis in 1915, both published by John Wiley & Sons, New York.
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Now we move on to another important arithmetic function, the Mébius fune-
tion. named after A. F. Mdbius.

Definition 1.4.8. Let n be a positive integer. Then the Mébius p-function,
w(n), is defined as follows:

1, iftn=1,
ln) = if n contains a squared factor,
(=1)*, if n = pyps - -py Is the product of
k distinct primes.
Example 1.4.9. By Definition 1.151, we have:
n]1l2tSlélSi6i718[9}}0510(}|101!102
,,L(n)E1|~1]A1|e!71]1|—1[0101 1ol 1)

Theorem 1.4.15. Let u(n} be the Mdbius function. Then

(1) p(n) is multiplicative, i.e., for ged(m,n) =1,

plmn) = plmjp(n). (1.152)

(2) Let
vin) = puld), (1.153)

dn
Then
v(n) :{ L in=1 (1.154)
0, ifn>1.
Proof.

(1) If either p* | m or p* | n, pis a prime, then p* | mn. Hence, p(mn) =0 =
plmip(n). If both m and n are square-free integers, say, m = pip2 - Ps
and n = g¢2- - g, then

20

Augustus Ferdinand Mabius (1790-1868) was born in Schilpforta
in Prussia. Mobius studied mathematics at Leipzig, Halle and fi-
nally at Gottingen with Gauss. He became a lecturer at Leipzig
in 1815 and Professor in 1844; he held the post there until his
death. Mabius is perhaps best known for his work in topology. es-
pecially for his conception of the Mobius strip, a two dimensional
surface with only one side. He is also well-known for proposing
the colouring of maps in 1840, which led to the famous four-
colouring problem.
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plmn) = ppips - pequgs - gr)
=
= (=D*(-1)
= plmip(n)
(2) fn = 1. then (1) = > v(d) = p(l) = 1. If n > 1, since v(n) is
d|n

multiplicative, we need only evaluate  on prime to powers. In addition,
if p is prime,
vip®) = Y
dipe
= p{1) + p(p) + plp®) + -+ p(p™)
= 14+(-1)+0+-- 40
0.

Thus, v(n) = 0 for any positive integer n greater than 1. m|

The importance of the M&bius function lies in the fact that it plays an
important role in the inversion formula given in the following theorem. The
formula involves a general arithmetic function f which is not necessarily
multiplicative,

Theorem 1.4.16 (The Mébius inversion formula). If [ is any arith-
metic function and if

gln) = Z Fld), (1.155)
din

then
fn) = ? (%) 9t = dzi;u(d)g (%) (1.156)

Proof. If f is an arithmetic function and g(n) = Y f(d). Then

d|n
S g(5) = Yud Y f
din d|n al{n/d)

= 2 ) wdf

din altn/d)

= 2. 2. flaud)

din aiin/d)

= > fla) Y uld)

dln af{n/d)
~ fm)1
= fn).
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The converse of Theorem 1.4.16 is also true and can be stated as follows:

Theorem 1.4.17 (The converse of the Mébius inversion formula).

It
) => p (’(—;) gld). (1.157)
din
then
gin) =>_f(d). (1.158)
d|n

Note that the functions 7 and o

7(n) = Zl and o(n) = Zd

d|n din

may be inverted to give
1= Z (ﬁ) T(d) and n= z I (E) o(d)
- d| g d | h din d
n T,

for all n > 1. The relationship between Euler’s phi-function and Maébius’
p-function is given by the following theorem.

Theorem 1.4.18. For any positive integer n,

oM =nY “(j)‘ (1.159)
din '

Preof. By applying Mibius inversion formula to

gln)=n= Z & (d)

dln

we get

dln) = Z/l(d){l(%)

din

de p{d) n
d )
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1.5 Distribution of Prime Numbers

It will be another milion years, of least, before we undersiand the primes.

Pavr ErpOs (1913-1996)

As mentioned earlier, prime numbers are building blocks of positive integers.
In fact, the theory of numbers is essentially the theory of prime numbers. In
this section, we shall introduce some important results about the distribution
of prime numbers. More specifically. we shall study some functions of a real
or a complex variable that are related to the distribution of prime numbers.

1.5.1 Prime Distribution Function n(x)

Let us first investigate the occurrence of the prime numbers among the posi-
tive integers. The following are some counting results of the number of primes
in each hundred positive integers:

(1) Each 100 from 1 to 1000 contains respectively the following number of
primes:
25, 21, 16, 16, 17, 14, 16, 14, 15, 14,

(2) For each 100 from 10° to 105 + 1000. the corresponding sequences are:

6, 10, 8, 8, 7, 7, 10, 5, 6, 8.

(3) For each 100 from 107 to 107 + 1000, the corresponding sequences are:
2,6,6.6.5, 4 7,10, 9, 6.

{4) For each 100 from 102 to 10!2 + 1000, the corresponding sequences are:
4,6,2,4,2. 4, 3.5 1. 6.

Except 2 and 3. any two consecutive primes must have a distance that is at
least equal to 2. Pairs of primes with this shortest distance are called twin
primes. Of the positive integers < 100, there are eight twin primes, namely,

(3,5). (5,7), (11,13). (17.19). (29.31). (41.43), (39.61). (71,73).

In spite of the seemingly frequent occurrence of twin primes, there are however
arbitrarily long distances between two consceutive primes, that is, there are
arbitrarily long sequences of consecutive composite numbers. To prove this.
one needs only to observe that for an arbitrary positive integer n > 1, the
following n — 1 numbers
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al+2, 0l +3, 4, -, nl4n

are all composite numbers. The above investigations show that the occurrence
of primes among positive integers is very irregular. However, when the large-
scale distribution of primes is considered. it appears in many ways quite
regular and obeys simple laws. In the study of these laws. a central question
is: “How many primes are there less than or equal to "7 The answer to this
question leads to a famous expression. w(:r), which is defined as follows.

Definition 1.5.1. Let « be a positive real number > 1. Then x (), is defined

as follows:
wlz)= > 1L (1.160)

p<e

p prime

That is, 7(z) is the number of primes less than or equal to @ it is also called
the prime counting function (or the prime distribution function).

Example 1.5.1. The prime numbers up to 100 are:
2.3,5,7,11,13,17,19,23,29,31,37, 41,43,
47,53,59,61,67,71.73.79,83,89,97.
Thus we have

M) =0, w2)=1  «(3)=2, «(10)=4  7(20)=8
#(30) = 10, =(40) =12, =(50) =15, =(75) =21, =(100)=25.

A longer table of values of () can be found in Table 1.9.

The numerical values of the ratio of (x)/x in Table 1.9 suggest (in fact
it is not difficult to prove) that

him ) =0. (1.161)

BT £
That is, almost all the positive integers are composite numbers. It must be,
however, pointed out that even though almost all positive integers are com-
posites. there are infinitely many prime numbers. as proved by Euclid 2000
vears ago. So, in terms of 7(x), Euclid’s theorem on the infinitude of prime
numbers can then be re-formulated as follows:

lim #(x) = oo. (1.162)

I

The asvinptotic behaviour of # () has been studied extensively by many

of the world’s greatest mathematicians beginning with Legendre in 1798 and
culminating in 1899 when de la Valleé-Poussin proved that for some constant
o> 0.

Int

wlr) = /) A + O (.’1: exp {4(\/1—1:}) . (1.163)
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Table 1.9, Table of values of w{x)

T (1) m(x)/x

10 1 0.4
10° 25 0.25
10° 168 0.168
107 1229 0.1229
10° 9592 0.09592
10° 78408 0.078498
107 664579 0.0664579
107 5761455 0.05761455
107 50847534 0.050847534
1™ 455052511 0.04550525110
10'! 4118054813 0.04118054813
1052 37607912018 0.037607912018
1053 346065536839 0.0346065536839
107 3204941750802 0.03204941750802
10" 29844570422669 0.029844570422669
10'° 279238311033925 0.0279238341033925
1077 2625557157654233 0.02625557157654233
167 24739954287740860 0.02473995428774086
1617 234057667276344607 0.0234057667276344607
16°° 1 2220819602560918840 0.0222081960256091884
1077 | 21127269486018731928 | 0.021127269486018731928
10°7 | 201467286689315906290 | 0.0201467286689315906290

Note that the big-O notation used above was first introduced by German
mathematician Edmund Landau. Intuitively, f is O(g) if there is a real pos-
itive comstant &k such that f{x) < k- g(x) for all sufficiently large x. The
big-O notation is very useful in computational complexity, and we shall use
it throughout the book.

In the next few subsections, we shall study the asvinptotic behaviour of
(). More specifically. we shall study the approximations of #(z) by the
functions ﬁ-; Li(x) and R(x).

1.5.2 Approximations of w(z) by =/ Inx

Although the distribution of primes among the integers 1s very irregular,
the prime distribution function «(x) is surprisingly well behaved. Let us first

study the approximation 14 to w{zx). Table 1.10 gives the values of 7(x), 2=
() nl.r, “lnr
and Znr for & = 10,102, 10%, .- | 10?°, Tt can be casily seen from Table

1.10 that the approximation x/Inz gives reasonably accurate estimates of
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Table 1.10. Approximations to w(z} by a/Inx

i 'i?(.’l‘)

x w(x) Inr x/Inzx
107 4 13- 0.93. -
10° 25 21.7--- 1.152---
10° 168 144.8 - - 1.16---
107 1229 1085.7 - - 1.13--.
107 9592 8685.8 - - - 1.131 -
10° 78498 T2382.5 - 1.081 -
107 664579 620420.5 - - - 1.071---
10 5761455 5428680.9 - - - 1.061---
107 50847534 482549425 - - - 1.053- -
1050 455052511 434294481.9 - - - 1.047 - -
1077 4118054813 3948131653.7 - - 1.043 ...
107 37607912018 36191206825.3 - - 1.039- -
10" 346065536839 334072678387.1 - - 1.035 - --
10™ 3204941750802 3102103442166.0 - - - 1.033 - -
107 209841570422669 28052065460216.8 - - - 1.030 - -
10'° 279233341033925 271434051189532.4 - - - 1.028 -
1017 2625557157654233 2554673422960304.8 - - - 1.027 - -
10" 24739954287 740860 24127471216847323.8 - - 1.023---
107 234057667276344607 228576043106074646.1 - - - 1.023---
1077 2220819602560918840 2171472409516259138.2 - - - 1.022 -
107" 51127269486018731928 | 20680689614440563221.4--- | 1.021.--
1072 201467286689315006200 | 197406582683296285295.9 --- 1 1.020---

4-10%% | 783964159852157952242 | 768592742555118350978.9--- | 1.019. .-

#{x). In fact, the study of this approximation leads to the following Jfamous
theorem of number theory, and indeed of all mathematics.

Theorem 1.5.1 (Prime Number Theorem). 7{x} is asymptotic to
hvsz . That is,

lim e = 1. (1.164)
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The Prime Number Theorem (PNT) was postulated by Gauss®! in 1792 on
numerical evidence. It is known that Gauss constructed by hand a table of all
primes up to three million. and investigated the number of primes occurring
in each group of 1000. Note that it was also conjectured by Legendre®” before
Gauss. in a different form, but of course both Legendre and Gauss were unable
to prove the PNT.

The first serious attempt (after Gauss) to study the function w(x) was
due to Legendre, who used the sieve of Eratosthenes and proved in 1808 that

m(n) = 7 (Vi) = 1+ 3 u(d) {EJ (1.165)

where the sum is over all divisors d of the product of all primes p < n, and
p{d) is the Mobius function. Legendre also conjectured in 1798 and again in
1808 that

x

mw) = Inz — A(x)’

(1.166)

Carl Friedrich Gauss (1777-1855), the greatest mathematician of
all time (Prince of Mathematicians), was the son of a German
bricklayer. It was quickly apparent that he was a child prodigy.
In fact, at the age of three he corrected an error in his father’s
payroll, and at the age of seven, he can quickly calculate 1 + 2 +
34+ - -+ 100 = 5050 because 50(1 + 100} = 5050. Gauss made
fundamental contributions to astronomy including calculating the

- orbit of the asteroid Ceres. On the basis of this calculation, Gauss
was appointed Director of the Gottingen Observatory. He laid the foundations of
modern number theory with his book Disquisitiones Arithmeticae in 1801, Gauss
conceived most of his discoveries before the age of 20, but spent the rest of his life
polishing and refining them.

22

Adrien-Marie Legendre (1752-1833), a French mathematician
who, with Lagrange and Laplace, formed a trio associated with
the period of the French Revolution. Legendre was educated at
College Mazarin in Paris and was Professor of Mathematics at
Ecole Militaire Mazarin in Paris for five vears. He resigned to de-
vote more time to his research. In 1782, he won a prize offered
by the Berlin Academy with a paper in ballistics. Legendre gave
the first proof that every prime has a primitive root. He was also
the first to det(*rmme the number of representations of an integer as a sum of two
squares and proved that every odd positive integer which is not of the form 8k 47 is
a sum of three squares. Legendre conjectured tho Prime Number Theorem and the
Law of Quadratic Reciprocity but of course unable to prove them. In his later vears,
Legendre’s investigations focussed on elliptic integrals. At the age of 75, Legendre
proved the Fermat Last Theorem for n = 5. It was unfortunate that Legendre lived
in the era of Lagrange and Gauss and received less recognition than he deserved.
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where lim A{x) = 1.08366---. It was shown 40 vears later by Chebyshev®?
F—rDC B . .

that if lim A(r) exists, it must be equal to 1 (see Ribenboim [200]). It is
X ’ . .

also interesting to note that around 1850 (about 50 years before the Prime

Number Theorem was proved), Chebyshev showed that

0.02129 " < 7(x) < 1.1056 (1.167)
Inx Inx

for large x. Chebyshev's result was further refined by Sylvester in 1892 to

0.95695 " < m(r) < 1.04423 (1.168)
Inx Inx
for every sufficiently large x. Chebyshev also worked with the function 8(x),
defined by
f(x) = > Inp (1.169)

pse

now called Chebyshev's function, which is closely related to 7(x). That is.

Theorem 1.5.2. o)
hm =2 = 1. (1.170)

& X X

Note that the summatory function of A(n) defined in (1.177), denoted by
Y (x), is easily expressible in terms of Chebyshev’s #-function

W) = 6(x) + 02 ) + 8 Py + - (1.171)
The Prime Number Theorem may then be rephrased as follows:

Theorem 1.5.3. :
TGN (1.172)
B0 i

It can be seen that Chebyshev came rather close to the Prime Number
Theorem; however, the complete proof of the PNT had to wait for about 50

23

Pafnuty Lvovich Chebyshev (1821-1894), was a Russian mathe-
matician and founder of a notable school of mathematicians in
St Petersburg. He made St Petersburg for the second time, after
Euler. a world centre of mathematics. He contributed to several
branches of mathematics and his name is remembered in results in
algebra, analysis and mathematical probability. Tn number theory.
he proved, ameng many other things, Bertrand’s postulate that.
if n € N, then there is at least one prime p such that n < p < 2n.
Chebyshev was appointed in 1847 to the University of St Peter:slmrg. be(‘:;ugel a
foroign agsociate of the Institut de France in 1874 and also a foreign Fellow of the
Royal Society, London.
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vears more. During this time, Riemann®® had the idea of defining the zeta
function for complex numbers s having real part greater than 1, namely,
1
s)=9" — (1.173)
n=1 "’
{we shall return to the zeta function soon), and attempted to give a proof
of the prime number Theorem using the zeta function. Although Riemann’s
proof was not adequate but contained the ideas essential for a complete proof.
The theorem was established in 1896 independently by two eminent mathe-
matical analysts: Jacques Hadamard®® and the Belgian mathematician De la
Vallée-Poussin®® independently proved the theorem. Since Euclid discovered
2000 years ago that “there are infinitely many prime numbers”, thousands of

Georg Friedrich Bernhard Riemann (1826-1866), the son of a min-
ister, was born in Breselenz, Germany. Riemann was a major fig-
ure in 19th century mathematics, somewhat the father of mod-
ern analvtic number theory, and the last of the famous trilogy
at Gottingen (the other two were Gauss and Dirichlet). In many
ways, Riemann was the intellectual successor of Gauss (Riemann
did his PhD at Géttingen under Gauss). In geometry, he started
the development of those tools which Einstein would eventually use
to describe the universe and which in the 20th century would be turned into the the-
ory of manifolds. He also made fundamental contributions to analysis. in which his
name is preserved in the Riemann integral, the Riemann sum, the Canchy-Riemann
equations and Riemann surfaces. Riemann only wrote one paper on number theory,
but this paper had tremendous impact on the developmenti of the Prime Num-
ber Theorem; it was in this paper that Riemann provided a foundation of modern
analytic number theory. Riemann died of tuberculosis at the early age of 40.

25

Jacqgues Hadamard (1865-1963) was born in Versailles, France. He
was good at all subjects at school except mathematics; he wrote
in 1936 that “in arithmetic, until the seventh grade, I was last or
nearly last”. A good mathematics teacher happened to turn him
towards mathematics and changed his life. Hadamard made im-
portant contributions to complex analwvsis, functional analysis and
partial differential equations of mathematical physics. His proof
of the Prime Number Theorem was based on his work in complex
analysis. Hadamard was also a famous teacher; he taught at a Paris secondary
school and wrote mumerous articles on elementary mathematics for schools.

26

Charles-Jean de la Vallée-Poussin {1866-1962) was born in Lou-
vain, Belgium. He proved the Prime Numhber Theorem indepen-
dently of Hadamard in 1896. He also extended this work and es-
tablished results about the distribution of arithmetic progressions
of prime numbers, and refined the Prime Number Theorem to
include error estimates. Notice that both Hadamard and De la
Vallée-Poussin lived well into their 90°s (Hadamard 98, and De la
Vallée-Poussin 96); it is a common belief among mathematicians
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theorems about prime numbers have been discovered: many are significant,
some are beautiful, but only this serious theorem is called the Primne Number
Theorem (PNT).

The mathematicians of the 19th century were somewhat disturbed by the
use of complex analysis to prove the PNT; for example, in their proofs of
the PNT, both Hadamard and De la Vallée-Poussin used very complicated
analytical methods. Mathematicians attempted for a long time to give an
elementary proof of the PNT. This was first achieved by Atle Selberg”” in
1949. whose proof used only elementary estimates of arithmetic functions
such as

Z:(lnp)2 + Z Inplng = 2xlne + Olr), (1.1743

psr py<a

where p and ¢ are primes (the above estimate was given by Selberg in 1949).
Soon after, using also a variant of Selberg’s estimate

Gl | 1o ple/m A, g (“}“) ) (1.175)

T lnz x/n n Inx
n<a /

where A(n) is the von Mangoldt function defined by

Inp if n = pt is prime power _
Aln) = ) (1.176)
0 otherwise,

'} is the summatory function of A(n)

w{x) = ﬂ, (1.177)
Inn

n<y

that anvone who produces a proof of the Prime Number Theorem is guaranteed
longevity!

b
~f

Atle Selberg (1917— ), is a Norwegian mathematician a1.1d the
1950 Fields Medal recipient. Selberg’s interest in mathematics be-
gan when he was a schoolboy, By reading about Ramanujan gnd
Ramanujan's collected papers. Selberg was not only greatly im-
pressed by the mathematics he read but also intrigned by Ramanu-
jan's personality. Inspired by Ramanujan’s work, Selbe‘rg .b‘egau
to make his own mathematical explorations and made significant
M- contributions to the theory of numbers, particularly the Rjem‘flnn
zeta function. Selberg is perhaps best known for his elementary proof of the prime
number theorem. He has been a permanent member of the Institute for Advanced
Study at Princeton since 1949 and is currently Professor Emeritus in the Institute.
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Paul Erdds®™ gave, with a different elementary method, his proof of the prime
number theorem. (It was planned to write a joint paper between Selberg and
Erdds, but for some reason this did not happen.) These elementary proofs
of the PN'I" were considered so important that Selberg got a Fields medal in
1950 and Erdés received the American Mathematical Society’s Cole Prize in
1951 and the Wolf prize in 1984.

The PNT is not only an important theoretical result about prime num-
bers, but also a very applicable result in mathematics and computing science.
For example, we can use the PNT to:

(1) Estimate the probability that a randemly chosen integer n will turn out
to be prime as 1/Inn. Thus we would need to examine approximately
Inn integers chosen randomly near n in order to find a prime that is
of the same size as n; for example, to find a 1000-digit prime might
require testing approximately In 1010 ~ 2303 randomly chosen 1000-
digit numbers for primality. Of course, this figure can be cut in half if
only the odd numbers are chosen.

(2} Estimate the number of computation steps required for primality testing
by trial divisions. The maximum number of divisions in the trial division

NG

test for primality of n is w(3/n); for large n we have =(\/n) = =

In/n
2./n

o A computer which takes (Inn)/10° seconds to perform one such
nn

2y/n Inn 2y

Inp 106 108
that n was prime, provided that all the primes up to /n were known.
Using this direct method it would take more than 63 vears to verify that
a 30-digit number was prime. Later on, we shall introduce more efficient
methods for primality testing.

division would take approximately seconds to check

28

The legendary Paul Erdds was born in Budapest., Hungary, on
26 March 1913 and died on 20 September 1996 while attending
a minisemester at the Banach Mathematical Centre in Warsaw,
Poland. A mathematician with no home, no wife, no job, and
no permanent address, Erdos was the most versatile and prolific
mathematician of our time, and indeed probably of all times. He
traveled a lot around the world to meet mathematicians, to deliver

: lectures, and to discuss mathematical problems. He wrote about
1500 papers, about five times as many as other prolific mathematicians, co-authored
with over 230 people. These people are said to have Erdés number 1. People who
do not have Erdds number 1, but who have written a paper with someone who
does, are said to have Erdés number 2, and so on inductively. Erdds’s papers cover
a broad range of topics, but the majority are in number theorv. combinatorics
and probability theory. (Photo by courtesy of the Mathematical Institute of the
Hungarian Academny of Sciences. )
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1.5.3 Approximations of 7w (z) by Li(x)

Although the expression z/Inz is a fairly simple approximation to 7(r), it
is not ferribly close (1.e.. it is good, but not very good). and mathematicians
have been interested in improving it. Of course. one does this at the price of
complicating the approximation. For example. one can use the following much
better approximation Li{x) to w{x). Li(x) is called the logarithmic integral
of x: the formal definition of the logarithmic integral Li{x) is as follows.

Definition 1.5.2. Let x be a positive real number greater than 1. Then

Li(x) = /0[ At (1.178)

Ini

the integral is usually interpreted as

, 1—y 1t )
/ dt = lim (/ / ) Ry (1.179)
Jo nt 50 14y/ Int

As illustrated in Table 1.11 (compared also with Table 1.10), the logarith-
mic integral Li{x) is indeed a much better approximation to 7(x), aithough
for large values of x the two approximations behave asymptotically alike. Rie-
mann and Gauss believed that Li(z) > =(z) for every x > 3. It is of course
true in the present range of Table 1.11. However, Littlewood showed in 1914
that the difference Li{x) — w{x) changes sign infinitely often, whilst Te Riele
showed in 1986 that between 6.62-10°7° and 6.69- 10°™ there are more than
10180 successive integers @ for which Li(z) < n{x).

The study of the approximation of #(x) by Li(x) leads naturally to an
equivalent form of the Prime Number Theorem, since

Li(a) . (Li(a)) ) 1/ Inx

fgnx x/Inx Pt (x/Inx) e e -1/ In?

Theorem 1.5.4. 7(x) is asymptotic to Li(z). That is,

ol
1 = 1. 1.180)
M T (1150
Remark 1.5.1. At the age of 15, in 1792, Gauss conjecrured that
w{x) ~ Li(x). (1.181)
but Gauss used the following definition for Lifx}
Tt .
i) = - 1.182)
Li(x) ./) e ( )

which differs by a constant Li(2) from (1.178).
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Table 1.11. Approximations to m{x) by Li(x)

x w{x) Li{z) gl((i))
10° 168 178 0.943820224719 - - -
107 1229 1246 0.986356340288 - - -
10° 9592 9630 0.996053997923 - - -
10°% 78408 78628 0.998346644961 - - -
10° 664579 664918 0.999490162696 - - -
107 5761455 5762209 0.999869147405 - - -
10° 50847534 50849235 0.999966548169 - -
1077 455052511 455055615 0.099993178855 - - -
10" 4118054813 4118066401 0.999997186038 - - -
10 37607912018 37607950281 0.999998982582 - - -
1077 346065536839 346065645810 0.990999685114 - - -
10M 3204941750802 3204942065692 0.999999901748 - - -
0 20844570422669 29844571475288 0.999999964729 - - -
101" 279238341033925 279238344248557 (.999999988487 - - -
107 | 2625557157654233 2625557165610822 | 0.999999996969 - - -
107" | 24739954287740860 | 24739954300690415 | 0.999999999112 - ..
1077 | 234057667276344607 | 234057667376222382 | 0.999999999573 - - -

1.5.4 The Riemann ¢(-Function ((s)

In 1859, Bernhard Riemann astounded the mathematical world by writing
an eight-page memoir on w{x) entitled Uber die Anzahl der Primzahlen unter
einer gegehenen Grisse (On the Number of Primes Less Than a Given Mog-
nitude) which is now regarded as one of the greatest classics of mathematics.
In this remarkable paper, which was incidentally the only paper he ever wrote
on Number Theory, Riemann related the study of prime numbers to the prop-
erties of various functions of a compler number. In particular, he studied the
(-function (now widely known as the Riemann (-function) as a function of
a complex variable, and made various conjectures about its behaviour. We
shall first give the definition of the Riemann (-function as follows.

Definition 1.5.3. Let s be a complex variable (we write s = ¢ + if with o
and ¢ real; here o = Re(s)} is the real part of 5. whereas ¢ = Imn(s) is the
imaginary part of s). Then the Riemann {-function, {(s). is defined to be the
sum of the following series

sy =5" =, (1.183)

In particular,



96 1. Elementary Number Theory

=1 72

(2 = > = (1.184)
n=1

. at

(4 = 90" (1.185)

and more generally,
2‘212-IB” )
((2n) = "“"(2_”)7_” (1.186)

where B,, is the Bernoulli number, named after Jacob Bernoulli (1654 1705).
Bernoulli numbers are defined as follows:
1 1

1 1
by =1, 31:*57 32:6: By = (), Brli~§6» By =10, Bﬁ:E

B being recursively defined by the relation

k+1 k+1 c+ 1
( ~1%~ )Bkjt( 3— )Bkl+---+(k}: )Bi%anO‘ (1.187)

It is clear that the series ((s) converges absolutely for o > 1, and indeed
that it converges uniformly for ¢ > 1+ ¢ for any 6 > 0. Euler actually
studied the zeta function earlier, but only considered it for real values of s.
The famous Euler's product formula expresses the unique factorization of
integers as product of primes:

Theorem 1.5.5 (Euler’s product). If 7 > 1, then

Cls) = H (#) \ (1.188)

2
where the product runs over all prime numbers.

In particular, this implies that ((s) # 0 for ¢ > 1. Euler’s product formula
is very important in the theory of prime numbers: it is, in fact, this formula
that allows one to use analvtic methods in the study of prime numbers. (Note
that Euler’s product formula may also be regarded as an analytic version of
the Fundamental Theorem of Arithmetic.) Riemann’s great insight was to
study the (-function for compler values of s and to use the powerful methods
of complex analysis. This enabled him to discover a remarkable connection
between the zeros of the (-function and prime numbers; he showed that ({s)
is analytic for ¢ > 1 and can be coutinued across the line ¢ =1 (see Figure
1.7). More precisely. the difference

cls) = &= 1

can be continned analyvtically to the half-plane o > 0 and in fact to all of €.
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Figure 1.7. The complex plane of the Riemann {-function

The most interesting thing about the Riemann (-function is the distribu-
tton of the zeros of the (-function, since it is intimately connected with the
distribution of the prime numbers. Now let us invostigém the distribution of
the zeros of the Riemann (-function (see Figure 1.7). Tt is known that

(1) The ¢-function has no zeros in the half-plane Re(s) > 1. (Since by Euler’s
product, if Re(s} > 1, then ({s) # 0.} '

(2} The (-function has no zeros on the line Re(s) = 1. (Since for any real
value of £, ({1 + it} #£ 0.) ’

Therefore, there are only three possible types of zeros of ((s):
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(1) Zeros lying outside the critical strip 0 < Re(s) < 1: These are the zevos
at the points
-2, -4, —~6, -8, =10, --- .

These zeros are the only zeros of (1) outside the critical strip and are
called trivial zeros of C(s). They are also called real zeros of {(s). since
the zeros —2, —4,- -+ are certainly real, and no other zeros are real.

(2) Zeros lying in the critical strip 0 < Re(s) < 1: These zeros are called
nontrivial zeros of ((s); there are infinitely many such nontrivial zeros.
Note that the nontrivial zeros are not real, and hence they are sometimes
called complex zeros. Note also that these zeros are symmetric about the
real axis (so that if so is a zero, so is 5o, where the bar denotes the

complex conjugate) and the critical line Re(s) = ) s0 that if 1 4+ it were

[
a zero, then 1 + it would also be a zero).
‘ . . 1 1
(3) Zeros lying on the critical line Re(s) = 5: These are the zeros at ) +it.
-
These zeros are, of course, nontrivial (complex} zeros (because they all
lie in the critical strip). There are infinitely many such nontrivial zeros
lying on the critical line.

Riemann made the somewhat startling conjecture about the distribution
of the nontrivial zeros of {{s) in his famous memoir, namely that

Conjecture 1.5.1 (Riemann Hypothesis (RH)). All the nontrivial
(complex) zeros p of ((s) lying in the critical strip 0 < Re(s} < 1 must lie on

1 ) ..
the critical line Re{s) = 5 that is, p = 3 -+ it, where p denotes a nontrivial

zero of ((s).

Remark 1.5.2. The Riemann Hypothesis may be true; if it is true, then
it can be diagrammatically shown as in the left picture of Figure 1.8. The
Riemann Hypothesis may also be false: if it is false, then it can be diagram-
matically shown as in the right picture of Figure 1.8. At present, no one
knows whether or not the Riemann Hypothesis is true.

Remark 1.5.3. The Riemann Hypothesis has never been proved or dis-
proved: in fact. finding a proof or a counter-example is generally regarded
as one of most difficult and important unsolved problems in all of mathemat-
ics. There is, however. a lot of numerical evidence to support the conjecture;
as we move away from the real axis, the first thirty nontrivial zeros py, (where
pn denotes the nth nontrivial zero) of ((s) are given in Table 1.12 (all fig-
ures here are given to six decimal digits). In fact. as we move further and
farther away from the real axis, the first 1500000001 nontrivial zeros of C( 5)
in the eritical strip have been calenlated; all these zeros lie on the critical line

1 . - .
Re(s) = 5 and Lave imaginary part with 0 < ¢ < 545439823.215. That is.

sl
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Figure 1.8. The diagrammatical representation of the Riemann Hypothesis

1 .
Pn = 3 +it, with n = 1,2, --, 1500000001 and 0 < t,, < 545439823.215. In

spite of this, there are several distinguished number theorists who believe the
Riemann Hypothesis to be false, and that the presence of the first 1500000001

. .. . 1
nontrivial zeros of ({s} on the critical line Re(s) = 3 does not indicate the
b(}lifl\'lOLll' of ¢{s) for every large {. The current status of knowledge of this
conjecture is:
(1) The {-function has infinitely many zeros lying on the critical line

Re(s) = %
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Table 1.12. The first thirty noutrivial zeros of ({s)
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Re(sy=1

Re(sy=1

n te n ty n t,

1 14134725 | 2 21.022040 | 3 25.010857%
4 30.424876 | 5 32.935062 | 6 37.586178
7 40.918719 | 8 43.327073 | 9 48.005151
10 | 49.773832 | 11 | 52.970321 | 12 | 56.446248
13 1 539347044 | 14 | 60.831779 | 15 | 65.112544

16 | 67.079811 | 17 | 69.546402 | 18 | 72.067158
19 | 75.704691 | 20 | 77.144840 | 21 | 79.337375
22 | 82910381 | 23 | 84.735479 | 24 | 87.425275
25 | 88.809111 | 26 | 92.491899 | 27 | 94.651344
28 | 95.874634 | 29 | 98.831194 | 30 | 101.317851

[2) A positive proportion of the zeroes of ((s¢) in the critical strip

1
0 < Re(s) < 1 lie on the critical line Re(s) = 3 (thanks to Selberg).

{3) It is not known whether there are any nontrivial zeros which are not
simple; certainly, none has ever been found.

Remark 1.5.4. The Riemann Hypothesis (RH) is fundamental to the Prime
Number Theorem (PNT). For example, if this conjecture is true, then there
is a refinement of the Prime Number Theorem

Tode
) = Y| ™€ ina .
w(x) /2 e +C (16’ ) (1.189)

t0 the effect that

AR
7(x) = / A + O (Valnr). (1.190)
Jo Int

Remark 1.5.5. The knowledge of a large zero-free region for ((s) is impor-
tant in the proof of the PNT and bettor estimates of the various functions
connected with the distribution of prime numbers; the larger the region, the
better the estimates of differences |a(x) — Li(a}| and |w(x) — x|. appearing
in the PNT. If we assume RH, we then immediatelvy have a good zero-free
region and hence the proof of PNT becomes considerably easier (sec picture
on the right in Figure 1.9). De la Vallée-Poussin constructed in 1896 a zero-
free region in the critical strip (see the picture on the left in Figure 1.9). This
zero-free region is not as good as that given by the RH, but it turns out to
be good enough for the purpose of proving the PNT.

zero-free

| region

i - ! |
o ozero-ree |

region |

Re(sy =112
Re(sy=1/2

Figure 1.9. Zero-free regions for ((s})

In a celebrated memoir published in 1837, when studying the arithmetic
progression kn + h. Dirichlet®™ introduced new arithmetic functions y(n).

29

Johann Peter Gustav Lejeune Dirichlet (1805-1859) was born
into a French family in the vicinity of Cologne, Germany. He
studied at the University of Paris, and held positions at the Uni-
versities of Breslau and Berlin and, in 1835, he was chosen to
succeed Gauss at the University of Géttingen. Dirichlet is said
to be the first person to master Gauss's Disquisitiones Arith-
meticae. He is sald to have kept a copy of this baok at his side
even when he traveled. His own book on number theory Vor-
lesungen {iber Zahlentheorie, helped make Gauss's discoveries
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now called Dirichlet characters modulo k. These are multiplicative functions
that have period k and vanish ouly on numbers not relatively prime to k.
Clearly, there are ¢(k) Dirichlet characters modulo k. In terms of Dirichlet
characters, Dirichlet also introduced functions analogous to the Riemann ¢-
function ¢(s). These functions, now called Dirichlet L-functions, are defined
by infinite series of the form:

L(s,x):iw, (1.191)

n?
n=1
where x(n) is a Dirichlet character modulo % and s is a real number greater
than 1 (or a complex number with real part greater than 1). Dirichlet’s work

on L-functions led naturally to the description of a more general class of
functions defined by infinite series of the form:

— f(n)
F(s)=>_ = (1.192)
n=1
where f(n) is a given arithmetic function. This is called a Dirichlet series
with coefficients f(n), and the function F(s) is called a generating function
of f(n). For example, the simplest possible Dirichlet series is the Riemann

¢-function ((s), which generates the constant function f(n) =1 for all n,

x

C(S) = ;; (1-193)
n=1

The square of the (-function generates the divisor function 7(n},

o) = i 7(n) (1.194)

71?

n=1

and the reciprocal of the (-function generates the Mébius function u(n).

syt = o ) (1.195)

The study of L-functions is an active area of contemporary mathematical
research, but it is not our purpose to explain here the theory and applica-
tions of Dirichlet L-functions in detail; we shall only use the basic concepts
of Dirichlet L-functions to formulate the following Generalized Riemann Hy-
pothesis.

accessible to other mathematicians. Dirichlet made many important contributions
to several branches of mathematics. He proved that in any arithmetic progression
a.atd, at+2d,--, where ged(u, d) = 1, there are infinitely many primes. His famousg
Pigeonhole Principle is used extensively in combinatorics and in number theory.
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Conjecture 1.5.2 (Generalized Riemann Hypothesis (GRH)).
All the nontrivial zeros of the Dirichlet L-functions in the critical strip

0 < Re(s) < 1 must lie on the critical line Re(s) = %

Clearly, the Generalized Riemann Hypothesis generalizes the (plain) Rie-
mann hypothesis to Dirichlet L-functions. There are again many conse-
quences of the generalized Riemann hypothesis. For example, if this con-
jecture is true, then the primality testing problem is in P. (79 stands for
a class of problems solvable in polynomial time on a deterministic Turing
machine; see Section 2.1.3 of Chapter 2 for more information.)

Having introduced the Riemann (-function and Dirichlet L-functions. let
us introduce one more function named also after Riemann (but this time we
Just call it the “plain” Riemann function) and its relationship to 7 (x).

I?eﬁnition 1.5.4. Let 2 be a positive real number. Then the Riemann func-
tion, R(x). is defined as follows

R(r) = Z”%‘)Li(m””). (1.196)
=1

Rgmark 1.5.6. The Riemann function R(z) is computable by the following
quickly converging power series

L > 1 {Inx)"
R(z) = 1+Zm—nc(n“)- .

n=1

= (1.197)

In terms of the Riemann function R(«), Riemann gave the following exact
formula for = (x)

() = R{x) =Y R(z") (1.198)

where the sum is extended over all the zeros p of the Riemann (-function,
each counted with its own multiplicity (Ribenboim [200]). ’.

The Riemann function R(x) provides a very good approximarion to w{x).
Table 1.13 shows what a remarkably good approximation R(z) is to w{x).

Table 1.14 shows the differences between #(r) and le Li{r) and R{x).
nr
Theorem 1.5.6. w(x) is asymptotic to R(z). That is,

lim ()

AR T (1.199)
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Table 1.13. Approximations to = (x) by R(x)

T w{x) R(x} w(x)/R{zx)
10° 5761455 5761552 0.999983164258
107 50847534 50847455 1.000001553666
10t 455052511 455050683 1.000004017134
107 4118054813 4118052495 1.000000562887
101% 37607912018 37607910542 1.000000039247
1013 346065536839 346065531066 1.000000016681
107 3204941750802 3204941731602 1.000000005990
107 29844570422669 29844570495887 0.999999997546
10™ 279238341033925 279238341360977 0.999999998328
1077 2625557157654233 2625557157055978 1.000000000227
10" 247309954287740860 | 24739954284239494 | 1.000000000141
107 | 234057667276344607 | 234057667300228940 | 0.999999999897

Table 1.14. Differences between x{x) and z/Inz. Li(x) and R(x)

.’I: xfIna — w(x) Li(x) — w{x) | B{z) —=nlz)
10 332774 754 97
10° -2592592 1701 -79
1010 -20758030 3104 -1828
1077 -169923160 11588 -2318
107 -1416705193 38263 -1476
10" -11992858452 108971 -5773
10 -102838308636 314890 -19200
0% -891604962453 1052619 73218
101° -7804289844393 3214632 327052
107" -70883734693929 7956589 -508255
107 [ -612483070893537 219495355 -3501366
1077 | -5481624169369961 99877775 23884333

1.5.5 The nth Prime

We have seen several equivalent forms of the prime number theorem, for

example

In this subsection, we shall study one more eguivalent form of the prime
number theorem. More specifically, we shall show that the following two forms

w(n)

Hm

n—oc n/lnn

=1 «= lim

w{r)

1= Z

of the prime number theorem are also equivalent.

7w(n)

n/lnn -

Dn

nlnn

= 1.
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Let p,, be the nth prime. Then we have:

mo=2, P2 =3, p3 =5,
P =T ps = 11, pe = 13,
pr =17, ps = 19, po = 23,
Proo = 541, pior = 547, o2 = 357,
Proz = 563, Pios = 569, Pros = 371,
Pros = 277, Pror = 587, Prog = 593,
Pirog — 599 Plio = 601. P11 = 607
Now we wish to show that
wln) .
n—oo n/ In n N (1200)
is equivalent to
. Dn
lim = 1. (1.201)

n—oc 0 101
By taking logarithms of both side sides of equation {1.200) and then removing
a factor Inn, we get,

, lnw{n) Inlun
lim [Inn + -1])=0. (1.202;
00 Inn Inn
Since
. Inlnn
lim =0, (1.203)
n—nc Inn
we have

i BTy (1.204)

n—oe Inn

Multiplying (1.204) by (1.200), we get

iy TR InT) (1.205)

n—soc 7]
Now replace n by the nth prime p,,. Then 7(pyn) = 1. and (1.203) becomes

. nlnn
lim =1, (1.206)

n—x Py

which implies (1.201). Equation (1.200) can also be deduced from (1.201):
we leave it as an exercise. So the two forms are equivalent. It is worthwhile
pointing out that each of the statements (involving the Mébius function):
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1 T2 . i
fm - N = 1.207
'nliialc - Aél plk) =0 { 7)
and " k)
. ik o
: - 1.208
dm ) =0 208

k=1

is also equivalent to the prime number theorem.

It is known in fact that p,, > nlnn for all n. The error p, — nlnn can be
very large, but if n is large, the error is much smaller than ninn. Tn other
words, for large n. the nth prime is about the size of nlnn. Felgner showed
in 1990 a weaker estimate that

091nlnn < p, < 1L.7nlnn. (1.209)

Example 1.5.2. Table 1.15 gives some comparisons of p, with n Inw,
0.91nlnn, 1.7nlnn, and P, — nlnn. For example, let n = 661999. Then

we have
10006721 ~ 8916001.238 =— p, ~nlun
10006721 > 8113561.127 = p, > 0.91nln
10006721 < 15157202.10 =— p, < L7nln

These agree well with (1.209).

Table 1.15. Some comparisons about p,
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primes p such that p < r and p+ 2 is also a prime. Then we have 72(10) = 2
and 72 (100) = 12. A larger table of values of m2(2), together with some other
information (La(x) is defined in (1.215) in the same way as Li(x)). can bhe
found in Table 1.16. Note that in Brent’s paper [34], some interesting tables
and graphs are given: they show. in particular, the difference between the
behaviour of wy(x) (which has slow oscillations) and #(z) (which has much

faster oscillations).

Table 1.16. Some results for twin primes up to 1(

)1-4

2(2)

3
b

x ma(r) Lale) e () — La(x)
10 2 5 0.4 -3
10? 8 14 0.5714285 —6
107 35 46 0.7608695 —11
107 205 214 0.9579439 -9
10° 1224 1249 0.9799839 ~25
10° 8169 8248 0.9904219 —79
107 58980 58754 1.0038465 226
167 440312 410368 0.9998728 —56
10° 3424506 3425308 0.9997658 —802
10'° 27412679 27411417 1.0000460 1262
10" 224376048 224368865 1.0000320 7183
1612 1870585220 1870559867 | 1.0000135 25353
10" | 15834664872 15834598305 | 1.0000042 66567
107 1 135780321665 | 135780264894 | 1.0000004 56771

n 7. nlnn 0.9nlnn 1.7nlnn n]}); -

10 29 23.02585083 | 20.95352435 | 39.14394658 | 259453998
100 541 460.5170186 | 419.0704869 | 782.8789316 | 174766574
1000 7919 6907.755279 | 6286.057304 | 11743.18397 | 146392667

10000 104729 92103.40372 | 83814.09739 | 1565375.7863 | .137080670
664900 | 10006721 | 8916001.238 | 8113561.127 | 1515720210 | 122332841

1.5.6 Distribution of Twin Primes

Compared with the distribution of prime nmunbers. little is known about the
distribution of the twin primes; for example. it was known 2000 years ago that
there are infinitely many prime nuwmbers, but it is not known whether or not
there are infinitely many twin primes. In spite of this, remarkable progress
has boen made on the distribution of twin primes. Let m2(x) be the number of

There is also keen competition to find the largest pair of twin primes:
we list in Table 1.17 twenty-nine large pairs of twin primes. (Note that the
multifactorial notation n!!!! in the 27th pair of the twin primes denoctes the
quadruple factorial function, ie., M = n(n ~4)(n = 8)(n—-12)(n —16) ---.)

Clemant in 1949 gave a necessary and sufficient condition for twin primes.
although it has no practical value in the determination of twin primes.

Theorem 1.5.7. Let n > 2. The pair of integers (n.n + 2} form a pair of
twin primes if and only if

Hin -+ 1) +n =0 (mod n(n+2)). {1.210)

V. Brun anmounced in 1919 and proved in 1920 that there exists an effec-
tively computable integer xg such that if x > zg then

100z

—.
In~

(1.211)



108 1. Elementary Number Theory

Table 1.17. Twenty-nine large twin primes

Twin Primes Digits | Year Discoverer(s) ]
318032361 - 2107001 £ 1 32220 | 2001 | Underbakke et al.
1807318575 - 208305 £ 1 20603 | 2001 | Underbakke et al.
665551035 - 280025 £ 1 24009 | 2000 | Underbakke et al.
781134345 - 266445 £ 1 20011 | 2001 | Underbakke et al.
1693965 - 266443 £ 1 20008 | 2000 | LaBarbera et al.
83475759 - 264955 + 1 19562 | 2000 | Underbakke et al.
291889803 - 260090 £ 1 18008 | 2001 | Boivin & Gallot
4648619711505 - 260000 £ 1 | 18075 | 2000 | Indlekofer et al.
2409110779845 - 260000 £1 | 18075 | 2000 | Indlekofer et al.
9930907354445 - 248000 £ 1 | 14462 | 1999 | Indlekofer et al.
871892617365 - 2790 £+ 1 14462 | 1999 | Indlekofer et al.
361700055 - 2°99%0 £ 1 11755 | 1999 | Lifchitz
835335 - 297914 41 11751 | 1999 | Ballinger & Gallot
242906083 - 27550 41 11713 | 1995 | Indlekofer & Jarai
570918348 - 107120 £ 1 5129 | 1995 | Dubner
697053813 - 219952 4 1 4932 | 1994 | Indlekofer & Jaral
6797727 - 295928 4+ 1 4622 1995 | Forbes
1692923232 - 197970 +1 4030 1993 | Dubner
4655478828 - 10°1%° £ 1 3439 | 1993 | Dubner
1706595 - 2112%% £1 3380 | 1989 | Parady et al.

456 - 2% 11 2571 | 1993 | Dubner
1171452282 - 107 £ 1 2500 | 1991 | Dubner

571305 - 277 £1 2324 1989 | Paradi et al.
75188117004 - 107%%% + 1 2309 | 1989 | Dubner

663777 -279%0 11 2309 1989 | Paradi et al.
107570463 - 107°° £1 2259 | 1983 | Dubner

2846410 + 1 2151 | 1992 | Dubner
43690485351513 - 10"%°* -1 | 2009 | 1985 | Dubner
260497545 - 2°%%% £ 1 2003 | 1984 | Atkin & Rickert

Brun proved that the sum of for all primes p such that p+ 2 is also a
P .
prime converges. The sum is now called Brun’s constant, B, and it has now

in fact been calculated:
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1 1
B = —
Z(p p+?>
1 1) (1 1) 1 1
= Azt +lztz)+ -+ —=])+
(3 5 5 7 (p—*—p—i—Q)jL
= 1.902160577783278- . {1.212)

It also has been proved by Bombieri and Davenport [97] in 1966 that

AR 1 £ Inln
ma(2) < 8 (1 - w_m_) _ e |
[:)I;[.Z (p — 1)2 ln”) T (I -+ (l) ( oz . (1213)

The constant 8 has been improved to 6.26 + ¢, however it was conjectured by
Hardy and Littlewood that the constant should be 2 rather than 8. ‘
The tamous Twin Prime Conjecture states that

Conjecture 1.5.3. Let 72(z) be the number of primes p such that p < z
and p + 2 is also a prime. Then -

(1) (A weak form) There are infinitely many twin primes. That is,

lim 7a(z) = oc. (1.214)

B £ v

(2) (A strong form) Let

2 T1 plp—2) (7 dt
e (p-1)*J: In“t

s it
~  1.320323632 / ‘ 5
L W (1.215)
then
. om()
IEEIF}C o) =1 (1.216)

Using very complicated arguments based on sieve methods, the Chinese
I?laf}ieillati(fiall J. R. Chen showed that there are infinitely ﬁmny pairs of
integers (p, p+ 2}, with p prime and p+ 2 a product of at most t@o Primes.

If we write d,, = pp,.1 — p, so that d; = 1 and all other d,, are even.
'll'hffn an equivalent form of the Twin Prime Conjecture is that d,, = 2 occurs
infinitely often. How large can d,, be? Rankin has shown that o

cmnlnlnnlnlnlnlnn

d, > o
{Inlnlnn)? (r.217)

for 1nhn.itely many n. Erdos offered $5000 for a proof or a disproof that the
constant ¢ can be taken arbitrarily large. '
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1.5.7 The Arithmetic Progression of Primes

In this subsection we shall move on to the study of the arithmetic progression
of primes.
An arithmetic progression of primes is defined to be the sequence of primes

p.p+d. p+2d, -, p+{n—1)d (1.218)

where p is the first term, d the common difference. and p + (n — 1)d the last
term of the progression, respectively. For example,

5,11, 17, 23,29

is an arithmetic progression of primes with p =5, d =6 and n = 5. Table
1.18 contains fifteen long arithmetic progressions of primes. discovered by
James Fry, Andrew Moran, Paul Pritchard, S. C. Root, S. Weintraub and
Jeff Young; see Table 1 of Guy [94] and Table 32 of Ribenboim [200] for
more information (note that there are some printing errors in Table 32 of

Ribenboim [200], which have been corrected here in Table 1.18).

Table 1.18. Fifteen long arithmetic progressions of primes

n P d p+(n—1)d Year
25 T 11410337850553 | 4600098694200 | 108201410428753 | PMT, 1993
21 | 5749146449311 26004868890 6269243827111 P, 1992
21 | 142072321123 1419763024680 | 28537332814723 MP, 1990
20 | 24845147147111 | 19855265430 25222397190281 MP, 1990
20 | 1845449006227 1140004565700 | 23505535754527 MP, 1990
20 | 214861583621 18846497670 572945039351 YF, 1987
20 | 1140997291211 7643355720 1286221049891 F. 1987
20 | 803467381001 2007835830 841616261771 F, 1987
19 | 244290205469 13608665070 489246176729 F, 1987
19 | 8297644387 4180566390 83547839407 P, 1984
18 | 107928278317 9922782870 276615587107 P, 1982
18 | 4808316343 717777060 17010526363 P, 1983
17 1 3430751869 87297210 4827507229 W, 1977
16 | 2236133941 223092870 5582526991 R. 1969
16 | 53297929 9699690 198793279 R. 1969

Tt is conjectured that n can be as large as you like (but it has not been

proven yet):

Conjecture 1.5.4. There arc arbitrarily long arithmetic progressions of

primes.
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Erdés conjectured that if {a;} 1s any infinite sequence of integers for which

1. .
3 o 1 divergent, then the sequence contains arbitrarily long arithmetic
?

progressions; he offered $3000 for a proof or disproof of this conjecture {before
his death, Erdos signed some blank cheques and left them in the care of
Ronald L. Graham to present to future problem solvers). A related but even
more difficult problem is the following:

Conjecture 1.5.5. There are arbitrarily long arithmetic progressions of
consecutive primes.

1.6 Theory of Congruences

As with everything else, so with @ mathematical theory: beauty can be per-
cetved, but not erplained.

ARTHUR CAYLEY {1821-1895)

1.6.1 Basic Concepts and Properties of Congruences

The notion of congruences was first introduced by Gauss, who gave their
definition in his celebrated Disquisitiones Arithmeticae in 1801, though the
ancient Greeks and Chinese had already had the idea.

Definition 1.6.1. Let ¢ be an integer and n a positive integer greater than
1. We define “a mod n” to be the remainder r when a is divided by n, that
is

r=amodn=a-— a/n|n. (1.219)

We may also say that “r is equal to a reduced modulo n”.
Remark 1.6.1. It follows from the above definition that a mod » is the in-
teger r such that a = |a/n|n +r and 0 < r < n, which was known to the
ancient Greeks and Chinese some 2000 vears ago.
Example 1.6.1. The following are some examples of a mod n:

35 mod 12 = 11,

—~129mod 7 =4,

3210 mod 101 = 79,

141233115 1mod 12349 = 1275.

Given the well-defined notion of the remainder of one integer when divided

by another, it is convenient to provide a special notion to indicate equality
of remainders. :
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Definition 1.6.2. Let a and b be integers and n a positive integer. We say
that “a is eongruent to b modulo n”, denoted by

a=b (mod n) (1.220)
if n is a divisor of a — b, or equivalently, if n | (¢ — b). Similarly, we write
aZ b (mod n} (1.221)

if @ is not congruent (or incongruent} to b modulo n, or equivalently, if n {
(@ — b). Clearly, for ¢ = b (mod n) (resp. a £ b (mod n)), we can write
a = kn — b (resp. a # kn — b) for some integer k. The integer n is called the
modulus.

Clearly,

a=b(mod n) < nlla—10)
e g =kn+b, k€L

and

aZzb(modn) < nila—0b)
&= afkn+b kel

So, the above definition of congruences, introduced by Gauss in his Dis-
quisitiones Arithmeticae, does not offer any new idea than the divisibility
relation, since “a = b (mod n)” and “n | (a — b)" (resp. “a # b (mod n)”
and “n { (@ ~ b)) have the same meaning, although each of them has its
own advantages. However, Gauss did present a new way (i.e., congruences)
of looking at the old things (i.e.. divisibility); this is exactly what we are
interested in. It is interesting to note that the ancient Chinese mathemati-
cian Ch'in Chiu-Shao®® already had the idea and theory of congruences in
his famous book Mathematical Treatise in Nine Chapters appeared in 1247,

Definition 1.6.3. If a = b (mod n), then b is called a residue of ¢ modulo
n. 0 <b<m—1,bis called the least nonnegative residue of a modulo n.

Remark 1.6.2. It is common. particularly in computer programs. to denote
the least nonnegative residue of a modulo n by @ mod n. Thus, a = & (mod
n) if and only if @ mod n = bmod n, and, of course, a Z b (mod n) if and
only if « mod n # b mod n.

3 Chin Chiu-Shao (1202-1261) was born in the southwest Chinese province of
Sichnan, but studied astronomy in Hangzhou, the capital of the Song dynasty,
now the capital of the Chinese southeast province Zhejiang, Ch'in was a genius in
mathematics and was also accomplished in poetry. fencing, archery, riding, mu-
sic and architecture. He wrate Mathematical Treatise in Nine Chapters which
appeared in 1247. It contains simultaneons integer congruences, the Chinese Re-
mainder Theorem, and considers algebraic equations, arcas of geometrical figures
and linear simultancous equations. This work on congruences was rediscovered
by Gauss, Lebesgue and Stieltjes,
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Example 1.6.2. The following are some examples of congruences or incon-
STUences.

35 = 11 (mod 12) since 12135 -11)
Z 12 (mod 11} since 114(35~12)
=2 (mod 11} since 111(35-2)

The congruence relation has many properties in common with the equality
relation. For example, we know from high-school mathematics that equality
is

(1) reflexive: a = a, Va € Z;
(2) symmetric: if a = b, then b = a. Ya, b € Z;
(3) transitive: if a = band b = ¢, then a = ¢, Va, b, ¢ € 7.

We shall see that congruence modulo n has the same properties:

Theorem 1.6.1. Let n be a positive integer. Then the congruence modulo
n is

(1) reflexive: a = a {mod n), Ya € Z;

(2) symmetric: if « = b (mmod n), then b = a (mod n), Va,b € Z;

(3) transitive: if « = b (mod n} and b = ¢ (mod n), then a = ¢ (mod n),
Va,b,c € 7.

Proof.

(1) For any integer a, we have @ = 0-n + a, hence a = a (mod n).

(2) For any integers a and b, if a = b (mod n), then a = kn + b for some
integer k. Hence b = ¢ — kn = (—k)n + o, which implies b = a (mod n),
since —k is an integer.

(3)fa=#b (mod n) and b = ¢ (mod n), then a = kyn+band b = kyn + c.
Thus, we can get

a=kn+kn+e=(k +thkn+tc=kn+c
which implies a = ¢ (mmod n), since k' is an integer. O

Theorem 1.6.1 shows that the congruence modulo n is an equivalence
relation on the set of integers Z. But note that the divisibility relation a | b
is reflexive. and transitive but not symmetric; in fact if @ | b and b { a then
a = b. s0 it is not an equivalence relation. The congruence relation modulo n
partitions Z into n equivalence classes. In number theory, we call these classes
congruence classes, or residue classes. More formally, we have:

Definition 1.6.4. If & = a (mod n), then a is called a residue of x modulo
n. The residue class of @ modulo n., denoted by [a], {or just [a] if no confusion

will be caused), is the set of all those integers that are congruent to a modulo
n. That is,
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[a], = {r:2€%Z and &=a(modn)}
= {a+kn: kel (1.222)
Note that writing a € [b],, is the same as writing a = b (mod nj.

Example 1.6.3. Let n = 5. Then there are five residue classes, modulo 3,
namely the sets:

(-, =15.-10,-5,0,5,10,15,20,--- },
s={ -, —14, =9,-4,1,6,11,16.21,--},
[o,-13, —8-3,2,7.12.17.22.---},
(0,12, —7,-2,3,8,13.18,23.-- -},
s={-,—11, —6,-1,49,14,19.24,.--}.

The first set contains all those integers congruent to 0 modulo 5, the second
set contains all those congruent to 1 modulo 5, ---, and the fifth (i.e.. the
last) set contains all those congruent to 4 modulo 5. So, for example, the
residue class [2]s can be represented by any one of the elements in the set

{' T _131 - 8-, "—3721 77 127 ]77 221 o }
Clearly, there are infinitely many elements in the set [2];.

Example 1.6.4. In residue classes modulo 2, [0]2 is the set of all even inte-
gers, and [1]; is the set of all odd integers:

EO}; {"'7“6;’4:_27052:476:8:“'}5
(1s={.-5-3-1,1357.9, )

Example 1.6.5. In congruence modulo 5, we have
9 = {9+5k: keZ}=19,9+£59+10,9%15,- -}
= {--,-11,-6.—-1,4,9,14,19,24,-- - }.
We also have
M = {4+5k: keZ)y=1{4,4+£54+10.4+15.---}
= {o.-11,-6,-1.4,9,14,19.24, - - }.
So, clearly. [4]5 = [9]s.

Definition 1.6.5. f z = a (mod n) and 0 <a <n —1,thenalis called the
least (nonnegative) residue of z modulo n.

Example 1.6.6. Let n = 7. There are seven residue classes, modulo 7. In
each of these seven residue classes, there is exactly one least residue of @ mod-
ulo 7. So, the complete set of all least residues x modulo 7 is {0,1,2,3,4,5,6}.
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Definition 1.6.6. The set of all residue classes modulo n, often denoted by
ZinZ or Ly, is
ZinZ={lal,: 0<a<n-—1} (1.223)

Remark 1.6.3. One often sees the definition
Z/nZ={0,1.2,- .n— 1}, (1.224)

which should be read as equivalent to (1.223) with the understanding that
0 represents [0],. 1 represents [1],, 2 represents [2],, and so on; each class
is represented by its least nonnegative residue, but the underlying residue
classes must be kept in mind. For example, a reference to —a as a member of
Z [nZ is a reference to [n — a],, provided n > a, since —a = n — a (mod n).

The following theorem gives some elementary properties of residue classes:

Theorem 1.6.2. Let n be a positive integer. Then we have:

(1) [a]n = [b]n if and only if @ = b (mod n).

(2) Two residue classes modulo n are either disjoint or identical.

(3) There are exactly n distinct residue classes modulo n, namely,
[01n, 5. 1215 [3)n, - - . [n — 1], and they contain all of the integers.

Proof.

(1) If @ = b (mod n), it follows from the transitive property of congruence
that an integer is congruent. to a modulo n if and only if it is congruent to
b modulo n. Thus, [a], = [b].. To prove the converse, suppose [a,, = [bl..
Because a € [a], and a € [b],,, Thus, a = b (mod n).

(2) Suppose that [a], and [b], have a common element ¢. Then ¢ = a
(mod n) and ¢ = b (mod n). From the symmetric and transitive prop-
erties of congruence, it follows that a = b (mod n). From part (1) of
this theorem, it follows that [a], and {b],. Thus, either [a], and [b], are

disjoint or identical.

(3) If & is an integer, we can divide a by n to get
a=kg+r, 0<r <k

Thus, @ = r (mod n) and so [¢], = [r],. This implies that a is one
of the residue classes [0],.[1],.[2]n, -+ .[n — 1], Because the integers
0.1,2,--- ,n — 1 are incongruent modulo n, it follows that there are ex-
actly n residue classes modulo n.

O

Definition 1.6.7. Let n be a positive integer. A set of integers a;,as, -+ , @,
is called a complete system of residues modulo n, if the set contains exactly
one element from each residue class modulo n.
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Example 1.6.7. Let n = 4. Then {-=12.9. -6, -1} is a complete system of
residues modulo 4, since ~12 € [0], 9 € [1], =6 € [2] and —1 € [3]. Of course,
it can be easily verified that {12, —7,18 -9} is another complete system of
residues modulo 4. It is clear that the simplest complete system of residues
modulo 4 is {0.1,2,3}, the set of all nonnegative least residues modulo 4.

Example 1.6.8. Let n = 7. Then {&, » +3, z + 3%, 2+ 3% z+3" =+
3%, r + 3%} is a complete system of residues modulo 7, for any z € Z. To see
this let us first evaluate the powers of 3 modulo T:

3 32 =2 (mod 7) 3* =6 (mod 7)

3* =4 (mod 7) 3* =5 (mod 7) 3% =1 (mod 7)

i

hence, the result follows from = = 0. Now the general result follows immedi-
ately, since {z +3') — (z +3) =3 - 3.

Theorem 1.6.3. Let n be a positive integer and S a set of integers. S is a
complete system of residues modulo n if and only if

(1) S contains n elements, and

{2) no two elements of S are congruent, modulo n.
Proof. If S is a complete system of residues, then the two conditions are
satisfied. To prove the converse, we note that if no two elements of 5 are
congruent, the elements of S are in different residue classes modulo n. Since

S has n elements, all the residue classes must be represented among the
elements of S. Thus, S is a complete system of residues modulo n 1

We now introduce one more type of systems of residues, the reduced sys-
tems of residues modulo n.

Definition 1.6.8. Let [a], be a residue class modulo n. We say that {a], is
relatively prime to n if each element in [a],, is relatively prime to n.

Example 1.6.9. Let n = 10. Then the ten residue classes, modulo 10, are
as follows:

oo, =30, 20, -10,0,10,20,30,-- -}

{
M) ={-,-29.-19, —9,1.11,21,31.---}
9]0 ={-- . —28,—18, -8.212,22,32,---}
(8lip={-.=27. 17, —7.3.13.23,33,---}
[0 =1{ - .-26,-16. —6.4,14.24,34 -}
(3]0 = {---.—25,~15. —5,5,15,25,35,---}
[6]io = { - .—24,—14. —4.6.16.26,36.---}
The = {--. =23, —13. —3,7,17,27.37,---}
8o ={-,—22,-12, —2,818,2838,---}
9] { |2

s 21,11, —1,9,19,29,39, ---
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Clearly. [1]19- Blio. [7]16. and [9]1p ave residue classes that are relatively prime
to 10.

Proposition 1.6.1. If a residue class modulo n has one element which is
relatively prime to n. then every element in that residue class is relatively
prime to n.

Proposition 1.6.2. If n is prime, then every residue class modulo n {except
[01,,) 1s relatively prime to n.

Definition 1.6.9. Let n be a positive integer, then ¢(n) is the number of
residue classes modulo n, which is relatively prime to n. A set of integers
{ay, a2, ,apny} is called a reduced system of residues, if the set contains
exactly one element from each residue class modulo n which is relatively
prime to n.

Example 1.6.10. In Example 1.6.9, we know that [1]10, [3]10, [T]10 and [9]10
are residue classes that are relatively prime to 10, so by choosing —29 from
[1]10, =17 from [3]1p. 17 from [7]1p and 39 from [9];0, we get a reduced
system of residues modulo 10: {=29, —17,17,39}. Similarly, {31,3, -23, -1}
is another reduced system of residues modulo 10.

One method to obtain a reduced system of residues is to start with a
complete svstem of residues and delete those elements that are not relatively
prime to the modulus m. Thus, the simplest reduced system of residues { mod
m) is just the collections of all integers in the set {0,1,2,--- 72— 1} that are
relatively prime to m.

Theorem 1.6.4. Let m be a positive integer, and S a set of integers. Then
S is a reduced system of residues (modn) if and only if

(1) 5 contains exactly ¢(n) elements,
(2) no two elements of S are congruent (modn),
(3) each element of S is relatively prime to n.

Proof. It is obvious that a reduced system of residues satisfies the three
conditions. To prove the converse, we suppose that S is a set of integers
having the three properties. Because no two elements of S are congruent,
the elements are in different residues modulo n. Since the elements of S are
relatively prime n, there are in residue classes that are relatively prime n.
Thus. the ¢(n) elements of S are distributed among the é(n) residue classes
that are relatively prime n, one in each residue class. Therefore, S is a reduced

svstem of residues rodulo m. ]
Corollary 1.6.1. Let {ai. a2, - . ag,;) be a reduced system of residues
modulo m. and suppose that ged(k,m) = 1. Then {kay, kas, -  kayim} is

also a reduced system of residues modulo m.

Proof. Left as exercise. 0



118 1. Elementary Number Theory

1.6.2 Modular Arithmetic

The finite set Z/nZ is closely related to the infinite set Z. So, it is natural
to ask if it is possible to define addition and multiplication in Z/nZ and do
some reasonable kind of arithmetic there. Surprisingly, addition. subtraction
and multiplication in Z/nZ will be much the same as that in Z. Let us first
investigate some elementary arithmetic properties of congruences.

Theorem 1.6.5. For all a,b,¢,d € Z and n € Z~1, if ¢ = b (mod n) and
¢ =d (mod n). then

(Wexb=cxd (modn),
(2)a-b=c-d (mod n),
3y a™ =" (mod n), VYmeN

Proof.

(1) Write « = kn +b and ¢ = In + d for some k,! € Z. Then a + ¢ =
(k+Dn+b+d. Therefore, a+¢ = b+d+tn, t = k+1 ¢ Z. Consequently,
a+¢= b4+ d (modn), which is what we wished to show. The case of
subtraction is left as an exercise.

(2} Similarly,

ac = bd + bin + knd + kin*
= bd + n(bl + kE(d + In))
= bd + n(bl + ko)
=bd + sn
where s — bl + ke € Z. Thus, a-b = ¢ - d (mod n).

{3) We prove Part (3) by induction. We have a = b (mod n) (base step)
and a™ = b (mod n) (inductive hypothesis). Then by Part (2) we have
a™ = g™ = bb™ = b7 (mod n). O

Theorem 1.6.5 is equivalent to the following theorem, since

a=b (modn) <= amodn=>bmodn,
amodn <= l|al.
bmodn <= [b,.

Theorem 1.6.6. For all a,b.c.d € Z.if [a], = [b]a. [¢] = [d]. then

(1) [a £ b}, = [cEd,.

(2> [(I : b}n - [( : d}n-
(3) [amln = Ibm]-m Ym € N

The fact that the congruence relation modulo 7 is stable for addition
(subtraction) and multiplication means that we can define binary operations.
again called addition (subtraction) and multiplication on the set of Z /nZ of
equivalence classes modulo n as follows (in case only one n is being discussed,
we can simply write [¢] for the class [x],):
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[”] n + [b] r = la+b (1.225)
laln — bl = le— bl (1.226)
{(Lln " {b] n —= [a . b]n (1227)

Example 1.6.11. Let n = 12, then

The +12 B2 =17 |
(T2 —12 Bl =17~ } = [z = [1112,
{Tha 12 [8li2 = [T~ 81z = [56)12 = (812
In many cases, we may still prefer to write the above operations as follows:
7T+8=15=3 (mod 12),
7T—8=—-1=11 (mod 12),
7-8=56=8 (mod 12)

&

We summarise the properties of addition and multiplication modulo n in
the following two theorems.

Theorem 1.6.7. The set Z /nZ of integers modulo n has the following prop-
erties with respect to addition:

(1) Closure: [z} + [y] € Z/nZ, for all [z],[y] € Z/nZ.

(2) Associative: ([x] + [y]) + [2] = [z] + (ly] + []), for all [z],[y]. [2] € Z/nZ.
(3) Commutative: [z] + [y] = [yl + [z], for all [x].[y] € Z/nZ.

(4) Tdentity, namely, [0].

(3) Additive inverse: —[z] = [z, for all [x] € Z/nZ.

Proof. These properties follow directly from the stability and the definition
of the operation in Z /nZ. 0

Theorem 1.6.8. The set Z /nZ of integers modulo 1 has the following prop-
erties with respect to multiplication:

(1) Closure: [z} - [y] € Z/nZ. for all [z].[y] € Z/nZ.

(2) Associative: ([x] - [y]) - [z] = [&] - {{w}- [z]), for all [a]. {y]. [z} € Z/nZ.

{3) Commutative: [&] - [y] = [y] - [#]. for all [2], [y] € Z/nZ

(4) Identity, namely, [1].

(5) Distributivity of multiplication over addition: [x] - {[y]) + [z]) = ([2] -

D) + Gl - D). for all ). Tyl |2} € 2 /.

Proof. These properties follow directly from the stability of the operation
in Z /nZ and and the corresponding properties of Z. O

The division a/b {we assume a/b is in lowest terms and b £ 0 (mod n))
in Z /nZ, however, will be more of a problem: sometimes vou can divide,
sometimes vou cannot. For example, let n = 12 again, then
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3/7=9 (mod 12) (no problem),
3/4 =1 (mod 12) (impossible).

Why is division sometimes possible {e.g., 3/7 = 9 (mod 12)) and sometimes
impossible (e.g., 3/4 = L (mod 12})7 The problem is with the modulus n; if
n is a prime number, then the division a/b (mod n) is always possible and
unique, whilst if n is a composite then the division a/b (mod n) may be uot
possible or the result may be not unique. Let us observe two more examples,
one with n = 13 and the other with n = 14. First note that a/b = a- 1/b
{mod n) if and only if 1/b (mod n) is possible, since multiplication modulo n
is always possible. We call 1/6 {(mod n) the multiplicative inverse (or modular
inwverse) of b modulo n. More generally, we have:

Definition 1.6.10. Two integers x and y are said to be multiplicative in-
verses if
(1.228)

xy =1 (mod n)
where n is a positive integer greater than 1.
It is now clear that given (z,n), y does not always exist. Let n = 13 be a

prime, then the following table gives all the possible values of the multiplica-
tive inverses y = 1/x {mod 13) for x =1,2,.-- |12

x[1 2 3 4 5 6 7 8 9 10 11 12
y[1 7 9 10 8 11 2 5 3 4 6 12

This means that divisions in Z /13Z are always possible and unique (i.c., the
multiplicative inverses y of x in Z/13Z do always exist and are unique). On
the other hand, if n = 14 (n now is a composite), then for r = 1,2,---,13,
some values for y = 1/x (mod 14) exist, whereas others do not:

1 2 3 4 5 6 7 8 9 10 11 12 13
y |1 L 5 L 3 1L L L 11 L1 9 1 13

This means that only the numbers 1,3,5,9,11 and 13 have multiplicative
inverses modulo 14, or equivalently only those divisions by 1,3.5.9.11 and
13 modulo 14 are possible. This observation leads to the following important
results:

Theorem 1.6.9. The multiplicative inverse 1/h modulo n exists if and only
if ged(b,n) = 1.

But how many b's are there that satisfy ged(b.n) = 17 The following
result answers this question.

Corollary 1.6.2. There are ¢(n) numbers b for which 1/b (mod n) exists.

Example 1.6.12. Let n = 21. Since ¢(21) = 12, there are twelve b for which
1/b (mod 21) exists. In fact, the multiplicative inverse modulo 21 only exists
for each of the following b:
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b /1 2 4 5 8 10 11 13 16 17 19 20
/b mod21) [1 11 16 17 & 19 2 13 4 5 10 20

Corollary 1.6.3. The division a/b modulo n (assume that a/b is in low-
est terms) is possible if and only if 1/6 (mod n) exists, i.e., if and only if
ged(b,n) = 1.

Example 1.6.13. Compute 6/b (mod 21) whenever it is possible. By the
multiplicative inverses of 1/b (mod 21) in the previous table, we just need to
calculate 6 - 1/b {mod 21):

b |1 2 4 5 8 10 11 13 16 17 19 20
6/b (1110(121)‘6 3 12 18 6 9 12 15 3 9 18 19

Asg it can be seen, addition {subtraction) and multiplication are always
possible in Z /nZ, with n > 1, since Z /nZis a ring. Note also that Z /nZ with
n prime is an Abelian group with respect to addition, and all the non-zero
elements in Z /nZ form an Abelian group with respect to multiplication (i.e.,
a division is always possible for any two non-zero elements in Z /nZ if n is
prime); hence Z /nZ with n prime is a field. That is,

Theorem 1.6.10. Z/nZ is a field if and only if » is prime.

The above results only tell us when the multiplicative inverse 1/a modulo
n is possible, without mentioning how to find the inverse. To actually find
the multiplicative inverse, we let

1/a {mod n) =z, (1.229)
which 1s equivalent to
az = 1 (mod n). (1.230)
Since
ar =1 (mod n) & ar — ny = 1. {1.231)

So the finding of the multiplicative inverse becomes to find the solution of
the linear Diophantine equation ax — ny = 1, which, as we know in Section
1.3, can be solved by using the continued fraction expansion of a/n, and can,
of course, be solved by using Euclid’s algorithm.

Example 1.6.14. Find
(1) 1/154 {mod 801},
(2) 4/154 (mod 801).
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Selution:

{1) Since
1/a (mod n) = < ax = 1 {mod n) <= ar —ny =1, (1.232)
we only need to find x and y in
154 — 801y = 1.

To do so, we first use the Euclid's algorithm to find ged(154,801) as
follows.

801 = 154-5+31
154 = 31-4+30
31 = 30-1+1
30 = 10-3+0.

Since ged(154.801) = 1, by Theorem 1.6.9, the equation 154x — 801y = 1
is soluble. We now rewrite the above resulting equations

31 = 801-154-5
30 = 154-31-4
1 = 31-30-1

and work backwards on the above new equations

1 = 31-30-1
= 31— (154-31-4)-1
31— 154 +4-31

.31 - 154

- (801 — 154-5) — 154
= 5-801-26-154

= 801-5—154-26

|
(&1}

I
e

So, ¥ = —26 = 775 (mod 801). That is, 1/154 mod 801 = 775.
(2) Since 4/154 = 4 - 1/154 (mod 801), then 4/154 = 4 - 775 = 697 (mod
801).

The above procedure used to find the x and y in ar + by = 1 can be
generalized to find the x and y in ax + by = ¢; this procedure usually called
the extended Euclid’s algorithm. We shall discuss the solution of the general
equation ar -+ by = ¢ in the next subsection.

1.6 Theory of Congruences 123

1.6.3 Linear Congruences

Congruences have much in common with equations. In fact, the linear con-
gruence ax = b (mod n) is equivalent to the linear Diophantine equation
ar —ny = b. That is,

ax = b (mod n) <= azr —ny = bh. (1.233)

Thus. linear congruences can be solved by using a continued fraction method
just as for linear Diophantine equations. In this section, however, we shall
use some theoretical properties of congruences to solve linear congruences
(the continued fraction approach to linear congruences is left as an exercise
for readers). The basic theory of linear congruences is described in the next
three theorems.

Theorem 1.6.11. Let ged(a,n) = d. If d b, then the linear congruence
ar = b (mod n) (1.234)
has no solutions.

Proof. We will prove the contrapositive of the assertion: if axz = b (mod n)
has a solution, then ged(a.n) | b. Suppose that s is a solution. Then as =
b (mod n), and from the definition of the congruence, n | (as —b). or from the
definition of divisibility, as — b = kn for some integer k. Since ged(a,m) | a
and ged(a.m) | kn, it follows that ged(a,m) | b. ol

il

Theorem 1.6.12. Let ged(a.n) = d. Then the linear congruence az
b (mod n) has solutions if and only if d | b.

Proof. Follows from Theorem 1.6.11. O

Theorem 1.6.13. Let ged(a,n) = 1. Then the linear congruence ar =
b (mod n) has exactly one solution.

Proof. If ged{a,n) = 1. then there exist z and y such that az + ny = 1.
Multiplying by b gives

a{xb) + n{yb) = b.
As a(xb) — b is a multiple of n. or a{zb) = b (mod n). The least residue of b

modulo n is then a solution of the linear congruence. The uniqueness of the
solution is left as an exercise. O

Theorem 1.6.14. Let ged(a,n) = d and suppose that d | b. Then the linear
congruence
ax =b (mod n). (1.235)

has exactly d solutions modulo 7. These are given by



124 1. Elementary Number Theory
7 2n d—1)n
f,t+w,t+—.'--.t+(——)— (1.236)
d d d
where # is the solution, unique modulo n/d. of the linear congruence
a b n
—-r = - |mod —) . 1.237
"~ d ( d (1.237)

Proof. By Theorem 1.6.12, the linear congruence has solutions since d | b.
Now let ¢ be be such a solution, then ¢t + k(n/d) for k =1,2,--- ,d — 1 are
also solutions, since a{t + k(n/d)) = at + kn(t/d) = at = b (mod n). i

Together with the above theorems and the extended Euclid’s algorithm
discussed in the previous subsection (or the continued fraction method dis-

cussed in Subsection 1.3), we can find the solutions of ez = b (mod n).
provided they exist.

Example 1.6.15. Find 154z = 22 (mod 803). Notice first that
154z = 22 (mod 803) <= 1542 — 803y = 22.

Now we use the Euclid’s algorithm to find ged(154, 803) as follows.

803 = 154-5-+ 33
154 = 33-4+22
33 = 22-1+11
22 11-2.

Since ged(154,803) = 11 and 11 | 22, by Theorem 1.6.12, the equation 154z —
801y = 22 is soluble. Now we rewrite the above resulting equations

33 = 803-154-5

22 = 154-33-4

11 = 33-22-1
and work backwards on the above new equations

11 = 33-22-1
= 33-(154-334)-1
= 33-154+4-33

= 5-33- 154
= 5-(803—154-5) — 154
= 5-803—26-154

= R03-5- 154 26.

So, r = —26 = 777 {mod 803). By Theorem 1.6.13, there are. in total, 11
solutions of 1342 — 801y = 22; we list all of them as follows (we also write
the verifications of the results on right):
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e 154-777 =11 (mod 803)
TTT +803/11 = 47, 154-47 =11 (mod 803)

TTT+2-803/11=120,  154-120=11 (mod 803)
TTT+3-803/11=193.  151-193 =11 (mod 803)
TTT+4-803/11= 266,  154-266 = 11 (mod 803)
TTT+5-803/11=339,  154-339 =11 (mod 803)
TTT+6-803/11= 412, 154-412=11 (mod 803)
TTT+7-803/11= 485 151-485 =11 (mod 803)
TIT+8-803/11=558,  154-558 =11 (mod 803)
TTT+9-803/11=631,  154-631=11 (mod 803)
TTT+10-803/11 =704,  154-704=11 (mod R03).

Remark 1.6.4. To find the solution for the linear Diophantine equation
ar = b (mod n) (1.238)

15 equivalent to find the quotient of the modular division

b

a

z=— (mod n) (1.239)

which is, again. equivalent to find the multiplicative inverse

1
- {mod n) (1.240)

Tr =

because, it 7 modulo n exists, the multiplication b - % is always possible.

In what follows, we shall introduce some important results on linear con-
gruences. Our first result will be Fermat’s little theorem (or just Fermat's
theorem, for short), due to Fermat.

Theorem 1.6.15 (Fermat’s little theorem). Let a be a positive integer,
and p prime. If ged{a.p) = 1, then

a? ! = 1 (mod p). {1.241)
Proof. First notice that the residues modulo p of @, 2a. -~ .(p — 1)a are
1.2,---,(p— 1) in some order, because no two of them can be equal. So, if

we multiply them together, we get

a-20---(p—1}a = [(amodp) (2amodp)---(p— )a mod p)] (mod p)
= (p-—1! (mod p).

This means that
(p— D! = (p~—1)! (mod p).
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Now we can cancel the (p — 1)! since pt (p — 1)}, and the result thus follows.
0|

There is a more convenient and more general form of Fermat’s little the-

orem:
a’ = a {mod p). (1.242)

for o € M. The proof is easy: if ged(a, p) = 1. we simply multiply (1.241) by
a. If not. then p | a. So a? = 0 = a (mod p).

Fermat’s theorem has several important consequences which are very use-
ful in compositeness: one of the these consequences is as follows:

Corollary 1.6.4 (Converse of Fermat’s little theorem, 1640). Let =
he an odd positive integer. If ged{a, n) = 1 and

a"7!' # 1 (mod n), (1.243)

then n is composite.

Remark 1.6.5. As mentioned in Subsection 1.2.3, Fermat, in 1640, made a
false conjecture that all the numbers of the form £, = 22" 4+ 1 were prime.
Fermat really should not have made such a “stupid” conjecture, since F5 =
232 1 1 can be relatively easily verified to be composite. by just using his own
recently discovered theorem — Fermat’s little theorem:

32 = 81 (mod 2%* + 1)
327 = 6561 (mod 2% + 1)
320 = 43046721 (mod 2% + 1)
37 = 3793201458  {mod 2% + 1)
32 = 3029026160  (mod 272 4+ 1)
1 1N0OC 232 -+ 1).

£ (mod 232 + 1)

Thus. by Fermat’s little theorem, F; = 2°% 4 1 is not prime!

Rased on Fermat’s little theorem, Euler established a more general result
in 1760:

Theorem 1.6.16 (Euler’s theorem). Let a and n be positive integers
with ged(a,n) = 1. Then

a™™ = 1 {mod n). (1.244)
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Proof. Let ri,ra.--- 74y be a reduced residue system modulo n. Then
ari.ara, - LGPy is also a residue system modulo n. Thus we have

(ari)(ars) - (aroi) = rire - rg( (mod n),

since ary.arz, -+, Grg,). being a reduced residue system, must be congruent
in some order to ri,re. - 70, Hence,
a®ary - Toln) =TIT2Terny (mod n),

which implies that «®™) =1 (mod n). |

It can be difficult to find the order® of an element a modulo n but
sometimes it is possible to improve (1.244) by proving that every integer
a modulo n must have an order smaller than the number ¢(n} — this order is
actually the number A(n}.

Theorem 1.6.17 (Carmichael’s theorem). Let u and n be positive inte-
gers with ged{a,n) = 1. Then

a™™ =1 (mod n), (1.245)

where A(n) is Carmichael’s function.

(AT L] (430

Proof. Let n = p{"py* - pp*. We shall show that
o™ =1 (mod p)

for 1 < i < k, since this implies that ¢*™ = 1 (mod n). If ppt o= 2,4

or a power of an odd prime, then by Definition 1.4.7, Alay) = &{ayg), so

P = 1 (mod p27). Since A(p0) | A(n), a™™ = 1 (mod p%F). The case

P, b, ) b

that p* is a power of 2 greater than 4 is left. as an exercise. O
Note that A{n) will never exceed ¢(n) and is often much smaller than

¢(n); it is the value of the largest order it is possible to have.

Example 1.6.16. Let a = 11 and n = 24. Then o(24) = 8, A{24) = 2. So,

11939 = 11% = 1 (mod 24),

112 = 112
That is. ordsy(11) = 2.

il

1 (mod 24).

*' The order of an element ¢ modulo 7 is the smallest integer r such that o” =
1 {mod n}; we shall discuss this later in Subsection 1.6.7.
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In 1770 Edward Waring (1734-1793) published the following result, which
is attributed to John Wilson™.

Theorem 1.6.18 (Wilson’s theorem). If p is a prime, then

(p— 1)1 = —1 {mod p}. {1.246)
Proof. It suffices to assume that p is odd. Now to every integer a with 0 <
a < p there is a unique integer o’ with 0 < a’ < p such that ae’ = 1 (mod p).
Further if @ = a' then a2 = 1 (mod p) whence @ = 1 or @ = p—1. Thus the set
2.3,---,p—2 can be divided into (p — 3)/2 pairs a,a’ with aa' =1 (mod p).
Hence we have 2-3---(p—~2) =1 (inod p), and so (p—1)! = —1 (inod p), as
required. I

Theorem 1.6.19 (Converse of Wilson’s theorem). If n is an odd posi-
tive integer greater than 1 and

(n—1)'=—1 (mod n), (1.247)
then n is a prime.

Remark 1.6.6. Prime p is called a Wilson prime if

Wi{p) =0 (mod p), (1.248)
where ( N
, p— 1)+
Wip) = 2
P
is an integer, or equivalently if
(n—1)' = -1 (mod 7). (1.249)

For example, p = 5, 13,563 are Wilson primes, but 599 is not since
(599 - D1+ 1

599
It is not known whether there are infinitely many Wilson primes; to date,

the only known Wilson primes for p <5 - 10% are p = 5.13,563. A prime p is
catled a Wieferich prime, named after A. Wieferich, if

mod 599 = 382 # 0.

27~ =1 (mod p?). (1.250)

To date, the only known Wieferich primes for p < 4101 arve p = 1093 and
3511.

¥ The English mathematician John Wilson (1741 1793) is best known for Wilson's
theoremt. This result was first published by Waring. Almost certainly Wilson's
theorem was a guess and Waring didn’t know how to prove it. It was first proved
by Joseph-Louis Lagrange (1736-1813) in 1773 who showed that the converse
is trac. Wilson's theorem has a direct application in primality testing, although
the test is not very efficient.
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In what follows, we shall show how to use Euler’s theorem to calculate
the multiplicative inverse modulo n. and hence the solutions of a linear con-
gruence.

Theorem 1.6.20. Let z be the multiplicative inverse 1/a modulo n. If
ged(a.n) = 1, then
1
T = - (mod n) (1.251)
¢
is given by
= a® ! (mod n). (1.252)
Proof. By Euler’s theorem, we have «® = 1 (mod n). Hence

@{ni—1

aa =1 (mod n),

. Gny—1 x. . . . .
and ® ! is the multiplicative inverse of @ modulo n, as desired. 0

Corollary 1.6.5. Let x be the division b/a modulo n (b/a is assumed to be
in lowest terms). If ged(a,n) = 1, then

b
P = — d 25
T= - {mod n) (1.253)
is given by
x=b-a®" (mod n). {1.254)

Corellary 1.6.6. If ged(a, n) = 1, then the solution of the linear congruence
ar = b (mod n) {1.255)

is given by
2 = a7 (mod n). {1.256)

Example 1.6.17. Solve the congruence 5z = 14 (mod 24). First note that
because ged(5,24) = 1, the congruence has exactly one solution. Using (1.256)
we get

o= 14-59CY71 (mod 24) = 22

Example 1.6.18. Solve the congruence 20r = 15 (mod 133). First note
that as d = ged(20.135) = 5 and 4 | 15, the congruence has exactly five
solutions modulo 135. To find these five solutions. we divide by 5 and get a
new congruence ‘

4z’ =3 (mod 27).
To solve this new congruence, we get
o' =3-490771 = 21 (mod 27).

Therefore, the five solutions are as follows:
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, o, on ., 2n , 3n , d4n
ro. iy, To, T3, T = T A N ST Ul e I e
(o 12,23, &4) ( d d d d

(21, 21+ 27, 21 +2-27. 21 4327, 21 +4-27)
(21,48,75,102,129) (mod 135).

i

1.6.4 The Chinese Remainder Theorem

In this subsection, we introduce a method for solving systems of linear con-
gruences. The method, widely known as the Chinese Remainder Theorem (or
just CRT, for short), was discovered by the ancient Chinese mathematician
Sun Tsu*’.

Theorem 1.6.21 (The Chinese Remainder Theorem CRT). If m;.
Mo, - -+ . My, are pairwise relatively prime and greater than 1, and a4, s, - -,
a, are any integers, then there is a solution x to the following simultaneous
congruences:

il

= a; (mod my ),
T = az (mod my).
...... (1.257)

= ap (mod my).
7f » and 2’ are two solutions, then z = 2’ (mod M), where M = myms -+ my,.

Proof. Existence: Let us first solve a special case of the simultaneous con-
gruences (1.257), where i is some fixed subscript,

a;i=1, a1 =ay = = a1 =Gjp = =, =0.

53 Gun Zi (known as Sun Tsu in the West), a Chinese mathematician, lived sometinie
hetween 200 B.C. and 200 A.D. He is perhaps best known for his discovery of the
Chinese Remainder Theorem which may be found in Problem 26 in Volume 3 of
his classic three-volume mathematics book Mathematical Manual: find a number
that leaves a remainder of 2 when divided by 3, a remainder of 3 when divided
by 5, and a remainder of 2 when divided by 7; in modern algebraic language. to
find the smallest positive integer satistving the following systems of congruences:

z = 2 (mod 3),
r = 3 (mod 3},
r = 2 (mod 7).

Sun Zi gave a rule called “tai-yen” (“great generalisation”) to find the solu-
tion. Sun Zi’s rule was generalized in today’s “theorem-form” by the great Chi-
nese mathematician Chin Chiu-Shao in his book Mathematical Treatise in Nine
Chapters in 1247; Cl’in also rediscovered Euclid’s algorithm, and gave a complete
procedure for solving numerically polvnomial equations of any degree, which is
very similar to, or almost the same as, what is now called the Horner method
published by William Horner in 1819,
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Let k; = UOTUERRRS (RS LR R (R Then k; and m; are relatively prime.
so we can find integers r and s such that rk; + sm; = 1. This gives the
CONEruences:

rki; = 0 (mod k;).

rk; = 1 (mod my).

Since g, ma, - my_1, 0, -y, all divide k. it follows that a; = rk;
satisfies the simultaneous congruences:

x; = 0 (mod m,),
z; = 0 (mod m»),
z; = 0 (mod m;_y).
z; = 1 {mod m;).
x; = 0 {mod m, ).

x; = 0 {(mod my,).

For each subscript i, 1 < i < n, we find such an z;. Now, to solve the system
of the simultaneous congruences (1.257), set * = a1 + as2s + -+ + @ Zy,.
Then x = a,x; = a; (mod m;) for each i, 1 <4 < n, therefore x is a solution
of the simultaneous congruences.

Uniqueness: Let 2" be another solution to the simultaneous congruences
{1.257), but different from the solution z, so that 2’ = z (mod m;) for each
x;. Then, x — &' = 0 (mod m;) for each i. So, m; divides z — &' for each 7;
hence the least common multiple of all the m;’s divides x — . But since the
m; are pairwise relatively prime, this least common multiple is the product
M. 8o, r = 2' (mod M). m|

The above proof of the CRT is constructive, providing an efficient method
for finding all solutions of systems of simultaneous congruences (1.257}. There

are, of course, many other different proofs of the CRT; there is even a very
short proof, due to Mozzochi [171}; it makes use of the following lemma:

Lemma 1.6.1. Suppose that my.m., - .m, are pairwise relatively prime.
Then @ =y (mod m;), i = 1,2,--- ,n if and only if 2 = y (mod Al), where
M =rmims - my.

Now we are in a position to present Mozzochi’s short proof of the CRT.

Proof. Let a € Z,[z], = {v: # = y (mod a)}, and Z/aZ the set of all
residue classes modulo a. Define

o LML — Z/mqL x LimaZ % - x ZL/m,Z
by
24 ([J%J\I) = ({J’}nu ['L']mg Tt {-'E]m,} )

for each = € Z. By Lemma 1.6.1, « is a well-defined, one-to-one mapping of
ZIMZinto Zyyy, X Zopy X% -+ X Lopp,,- Since
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\ZJMZ) = M = |Z/mZ x LfmaT x -+ X LmyZ],

o is onto. But then, given integers ay. a».--- ., @y, there is an integer & such
that
x ({I}nhmg-»-mn) - ({(li}ml [Ui’}mg ce {(Ln]m,,)

and therefore, & = a; (mod my), for i = 1.2,--- ,n. By Lemma 1.6.1, any
two solutions are congruent modulo Af. |

Remark 1.6.7. ¥ the system of the linear congruences {1.257) is soluble,
then its solution can be conveniently described as follows:

x = Za,ﬂ[;ﬂf{ (mod m) (1.258)
i=1

where
o= T T - Ty,

M; = m/m,,
M = AI;[ (mod m;),

fori=1.2,---.n.
Example 1.6.19. Consider the Sun Zi problem:

x = 2 (mod 3),
x =3 (mod 5),
x =2 (mod 7).

By (1.258). we have

m=mimaomsz = 3-5-7 =105,

My =m/fm; = 105/3 = 35,

MU =M, (mod m) = 357" (mod 3) =2,
My = m/ma = 105/5 = 21,

M), = ‘Mz_] {(mod my) = 217! (mod 5) = 1,
My =m/fmg =105/7 = 15,

M; = J«L{l (mod ms) = 157! {mod 7) = 1.

Hence,
w = ay M M|+ aMa A + ag My M (mod m)
= 2.35-24+3-21-1+2.15-1 (mod 105)
= 23

Exercise 1.6.1. Solve the following simultaneous congruences:

=2 (mod 7),
r =7 (mod 9),
x =3 (mod 4).

]
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The Chinese Remainder Theorem is very applicable in several central ar-
eas of mathematics and computer science, including algebra, number theory,
computer arithmetic, fast computation, cryptography, computer security, and
hash functions. We shall discuss some of these applications later.

1.6.5 High-Order Congruences

The congruences ar = b (mod m) we have studied so far are a special type
of high-order congruence; that is, they are all linear congruences. In this
subsection, we shall study the higher degree congruences, particularly the
quadratic congruences.

Definition 1.6.11. Let m be a positive integer, and let
flo) =ap+ @z +asx® + - +a,2"

be any polynomial with integer coefficients. Then a high-order congruence or
a polynomial congruence is a congruence of the form

flxz) =0 (mod n). (1.259)
A polynomial congruence is also called a polynomial congruential equation.
Let us consider the polynomial congruence
flr) =2+ 52 —4 =0 (mod 7).
This congruence holds when z = 2, since
f(2)=2+5-2-4=0 (mod 7).

Just as for algebraic equations, we say that @ = 2 is a root or a solution of
the congruence. In fact, any value of  which satisfies the following condition

x =2 (mod 7)

is also a solution of the congruence. In general, as in linear congruence, when
a solution xg has been found, all values x for which

x = xg {mod n)

are also solutions. But. by convention. we still consider them as a single so-
hution. Thus, our problem is to find all incongruent (different) solutions of
f(x) =0 (mod n). In general, this problem is very difficult, and many tech-
niques for solution depend partially on trial-and-error methods. For example,
to find all solutions of the congruence f(z) = 0 (mod n), we could certainly
try all values 0,1,2,--- ,n—1 (or the munbers in the complete residue system
modulo 7)., and determine which of them satisfy the congruence; this would
give us the total number of incongruent solutions modulo n.
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Theorem 1.6.22. Let M = myms ---m,, where m,ma,--- ,m, are pair-
wise relatively prime. Then the integer g is a solution of

f(z) =0 (mod M) {1.260)
if and only if wg is a solution of the system of polynomial congruences:

= 0 (mod my).
flz) =0 {mod ma2),
------ (1.261)

flz) =0 (mod my).
If z and 2’ are two solutions, then x = z' (mod M), where M = myms - mp.
Proof. If f(a) = 0 (mod M), then obviously f(a) = 0 (mod m;), for 2 =
1,2,--,n. Conversely, suppose a is a solution of the system
f(r)y =0 (mod m;), fori=12--,n
Then f(a) is a solution of the system

y =0 (mod mq),
y =0 (mod ma2),

y = 0 (mod m,)

and it follows from the Chinese Remainder Theorem that f{a) = 0 (mod
myms - - -my). Thus, a is a solution of f(z) = 0 (mod M). |

We now restrict ourselves to quadratic congruences, the simplest possible
nonlinear polynomial congruences.
Definition 1.6.12. A quadratic congruence is a congruence of the form:
4

r° = a (mod n) {1.262)

where ged(a,n) = 1. To solve the congruence is to find an integral solution
for x which satisfies the congruence.

In most cases, it is sufficient to study the above congruence rather than
the following more general quadratic congruence

az® +br+c¢=0 (mod n) (1.263)

since if ged{a,n) = 1 and b is even or n is odd, then the congruence (1.263)
can be reduced to a congruence of type (1.262). The problem can even be

1.6 Theoryv of Congruences 135

further reduced to solving a congruence of the type (if n = p{'py”° - pg*,
where pi.p2.- - pp are primes, and aq, a2, - -, ay are positive integers):

2 [a} (e 3]

x” = a (mod pi"'py? - pit) (1.264)

because solving the congruence (1.264) is equivalent to solving the following
svstem of congruences:

‘‘‘‘‘‘ i (1.265)

r? = a (mod pi*).

In what follows, we shall be only interested in quadratic congruences of the
form
2

x° = a (mod p) (1.266)

where p is an odd prime and ¢ # 0 (mod p).

Definition 1.6.13. Let a be any integer and »n a natural number, and sup-
pose that ged{a.n) = 1. Then a is called a quadratic residue modulo n if the
congruence

2% = a (mod n)

is soluble. Otherwise, it is called a quadratic nonresidue modulo n.

Remark 1.6.8. Similarly, we can define the cubic residues, and fourth-power
residues. ete. For example. a is a kth power residue modulo n if the congruence

7% = a (mod n) (1.267)

is soluble. Otherwise, it is a kth power nonresidue modulo n.

Theorem 1.6.23. Let p be an odd prime and a an integer not divisible by

p. Then the congruence
2

r~ = a (mod p) (1.268)

has either no solution, or exactly two congruence solutions modulo p.
Proof. If r and y are solutions to #? = a (mod p). then 2> = 37 (mod p),
that is, p | (% = y*). Since 2% — y* = (x + y)(x — y). we must have p | (& ~y)

or p| (z+y). that is, ¥ = +y (mod p). Hence, any two distinct solutions
modulo p differ only by a factor of ~1. O

Example 1.6.20. Find the quadratic residues and quadratic nonresidues for
moduli 5,7, 11, respectively.
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(1) Modulo 5, the integers 1,4 are quadratic residues, whilst 2,3 are
quadratic nonresidues. since

12=4>=1, 2*=3>=4.

Hl

(2) Modulo 7, the integers 1.2,4 are quadratic residues, whilst 3.5.6 are
quadratic nonresidues, since

2]

22 =52 =4,

s
1l

il

i1
o

62
53 42

%
i

(3) Modulo 11, the integers 1,3,4,5.9 are quadratic residues, whilst
2.6,7.8, 10 are quadratic nonresidues, since

1P=102 =1, 22 = 9% =4,
3P =82=9, 42 =72 =5,
52 =6° = 3.

(4) Modulo 15, only the integers 1 and 4 are quadratic residues, whilst
2,3,5,6,7,8,9,10,11,12,13, 14 are all quadratic nonresidues, since
2

14>
13°

1'2
= 82

12
2.

=
=
=

1,

0

il
1
I

(5) Modulo 23, the integers 1,2,3.4,6.8,9.12,13,16.18 are quadratic
residues, whilst 5,7,10,11,14,15,17,19,20,21,22 are quadratic non-
regidues, since

1?=922%=1, 52 =187 = 2,
77 =16 = 3, 2 =212 =4,
11’ =122 =6, 107 =137 = 8§,
32 =207 =9, 9% = 147 = 12,
62 = 17" = 13, 17 =19% = 16,
8 = 157 = 18.

The above example illustrates the following two theorems:

Theorem 1.6.24. Let p be an odd prime and N(p) the number of consecu-
tive pairs of quadratic residues modulo p in the interval [1.p — 1]. Then

Nip) = % (p -4 - (;1)””*‘-”‘3) . (1.269)

Proof. (Sketch) The complete proof of this theorem can be found in [10];
here we only give the sketch of the proof. Let (RR), (RN), (NR) and (NN)
denote the number of pairs of two quadratic residues, of a quadratic residue
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followed by a quadratic nonresidue, of a quadratic nonresidue followed by a
quadratic residue, of two quadratic nonresidues, among pairs of consecutive
positive integers less than p. respectively. Then from [10], we have:
1 .
(RR) + (RN) = (p 2 (71)”"”/3)
1 .
(NR) + (NN) = = (p ~2+4 (q)w—“f-’)

(RR) + (NR) = 5 (p— 1)) -1

(RN} + (NN) = = (p— 1))

(RR) + (NN) — (RN) — (NR) = —1

(RR) + (NN) = = (p - 3)

et DD | Rt D

[

(RR) — (NN} = 7% (1 + (4)‘1’—@)/2)

Hence (RR) = 1 (p— 4 - (~1)-1/2). o

Remark 1.6.9. Similarly. Let v(p) denote the number of consecutive triples
of quadratic residues in the interval [1,p — 1], where p is odd prime. Then

1
v(p) = gPt L (1.270)

where |E,| < %ﬁ* 2.

Exampie 1.6.21. For p = 23, there are five consecutive pairs of quadratic
residues, namely, (1,2), (2,3), (3,4). (8.9} and {12, 13), modulo 23; there are
also one consecutive triple of quadratic residues, namely. (1,2, 3}, modulo 23.

Theorem 1.6.25. Let p be an odd prime. Then there are exactly {p — 1)/2
quadratic residues and exactly (p — 1)/2 quadratic nonresidues modulo p.

Proof. Consider the p — 1 congruences:
1 {mod p}

r* =2 {(mod p)

2
xr-
2

> =p—1 (mod p).

Since each of the above congruences has either no solution or exactly two
congruence solutions modulo p. there must be exactly (p — 1)/2 quadratic

residues modulo p among the integers 1,2,--- ,p — 1. The remaining p — 1 —
(p—1}/2 = (p—1}/2 positive integers less than p—1 are quadratic nonresidues
modulo p. ]



138 1. Elementary Number Theory

Example 1.6.22. Again for p = 23, there are eleven quadratic residues, and
cleven quadratic nonresidues modulo 23.

Remark 1.6.10. Note that here 15 =— 35 is a composite number. Let [
be the quadratic residues modulo n with n composite. Then for n = p-q with
p, ¢ prime, we have

Qn - Qp U Qq-

This fact suggests that the quadratic residues modulo a composite n can be
determined quickly if the prime factorization of n is known. For example. let
n = 15, we have

Qs = Q3U0Q5 = {1 U {1,4} = {1.4}.

Euler devised a simple criterion for deciding whether an integer a is a
quadratic residue modulo a prime number p.

Theorem 1.6.26 (Euler’s criterion). Let p be an odd prime and
ged(a,p) = 1. Then e is a quadratic residue modulo p if and only if

a'P~H2 = 1 (mod p).
Proof. Using Fermat’s little theorem, we find that
(a P~V 13(aP V72 1) =’ — 1 =0 (mod p)

thus o
aP 12 =1 (mod p).

If @ is a quadratic residue modulo p. then there exists an integer o such that
x3 = a (mod p). By Fermat’s little theorem, we have

a? D12 = (2) P12 = b = 1 (mod p).

To prove the converse, we assume that a»=1U/2 =1 (mod p). If g is a prim-
itive oot modulo p (g is a primitive root modulo p if order(g.p) = o(p); we
shall formally define primitive roots in Subsection 1.6.7). then there exists a
positive integer t such that g* = a (mod p). Then

=iz = a?~ 17 =1 (mod p)

which implies that
t(p~1)/2=0 (mod p — 1).

Thus. ¢ is even, and so
= ¢' = a {mod p)}

which implies that a is a quadratic residue modulo p. (]
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Euler’s criterion is not very useful as a practical test for deciding whether
or not an integer is a ¢uadratic residue. unless the modulus is small. Euler’s
studies on quadratic residues were further developed by Legendre, who in-
troduced. in his own honour, the Legendre symbol. which will be the subject
matter of our next subsection.

1.6.6 Legendre and Jacobi Symbols

Definition 1.6.14. Let p be an odd prime and a an integer. Suppose that

ged{a, p) = 1. Then the Legendre symbol, ((I) is defined by
P

a 1, if a is a quadratic residue modulo p,
» = (1.271)

= —1, if ais a quadratic non-residue modulo p.

We shall use the notation a € ¢, to denote that a is a quadratic residue
modulo p; similarly, a € ¢, will be used to denote that a is a quadratic
nonresidue modulo p.

Example 1.6.23. Let p =7 and

2 (mod 7),

1 {mod 7).

12 =1 (mod 7), 27 =4 (mod 7). 3
4

4% = 2 (mod 7), 52 (mod 7). 62 =

Then

Some elementary properties of the Legendre symbol, which can be used
to evaluate it. are given in the following theorem.

Theorem 1.6.27. Let p be an odd prime, and a and b integers that are
relatively prime to p. Then:

(1) If a = b {mod p)}, then (”) = (b)
p P
2
(2) (i> =1, and so (l) =1.
P P

(3 (“) =a'"=1/2 (mod p).
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o (5)-G)G)

(3) (“_p—l) = (—1)r-h/2,

Proof. Assume pis an odd prime and ged(p,a) = ged(p.b) = L.

(1) If @ = b (mod p), then 2* = a (mod p) has sclution if and only if

‘ b
z2 = b (mod p) has a solution. Hence (E) = (}J
b
(2) The quadratic congruence r* = a* (mod p) clearly has a solution,
a’
namely a, 50 (?> = 1.
(3) This is Euler’s criterion in terms of Legendre’s symbol.
(4) We have

(ﬁ) = (ab)" 12 (mod p) (by Euler's criterion) (1.272)
p

= P U2pr=1/2 (1mod p) (1.273)

00

(5) By Euler’s criterion, we have

I

This completes the proof. O

Corollary 1.6.7. Let p be an odd prime. Then
— 1 if p=1(mod4d
(_1> = P ( ) (1.275)
p —~1 if p=3{mod 4).
Proof. If p= 1 {mod 4), then p = 4k + 1 for some integer k. Thus,

(u1)<p-1>/2 — (*1)((4k+1)71)/2 — (1) =1,
-1 L
so that (—) = 1. The proof for p = 3 (mod 4} is similar. 0
p

Example 1.6.24. Does #° = 63 {mod 11) have a solution? We first evalu-
ate the Legendre symbol (%5%) corresponding to the quadratic congruence as

follows:
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63 8 -
(ﬁ) = (ﬁ) by (1) of Theorem 1.6.27
= 2 > by (2) of Th 1.6.27
= T 71 by (2) o eorem 1.6.
2
= (ﬁ) -1 by {2) of Theorem 1.6.27
= -1 by “trial and error”.

Therefore. the quadratic congruence x* = 63 (mod 11) has no solution.

To avoid the “trial and error” in the above and similar examples, we
introduce in the following Gauss’s lemma for evaluating the Legendre symbol.

Definition 1.6.15. Let a € Z and n € N. Then the least residue of o modulo
n is the integer ¢’ in the interval (—n /2, 1/2] such that ¢ = o' (mod n). We
denote the least residue of ¢ modulo n by LR, (a).

Example 1.6.25. The set {—5,~4,—3,-2,-1,0,1,2,3,4,5} is a complete
set. of of the least residues modulo 11. Thus, LR1;(21) = —1 since 21 = 10 =
—1 (mod 11); similarly, LRy, (99) = 0 and LR, (70) = 4.

Lemma 1.6.2 {Gauss’s lemma}. Let p be an odd prime number and sup-
pose that ged(a,b) = 1. Further, let w be the number of integers in the set

-1
{ia, 2a, 3a, ---, (p2 )a}

whose least residues modulo p are negative {or greater than p/2}, then

(“‘) = (—1)%. (1.276)

P

Proof. When we reduce the following numbers (modulo p)

o (52
Lavaao, (251,

then no two different numbers ma and na can go to the same numbers.
Further, it cannot happen that ma goes to k and na goes to —k, because
then ma + na = k + (—k) = 0 (mod p), and hence {multiplying by the
inverse of a), m +n = (0 {mod p), which is impossible. Hence, when reduced

the numbers
P—
a, 2a, 3a, --- a
’ 2

to lie in set
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we get exactly one of —1 and 1, exactly one of —2 and 2. -- -, exactly one of
—{p—1)/2 and (p — 1)/2. Hence, modulo p, we get

-1 — "
(1-2(1---(1)2 )(121-'2~~~(p2 )(—1)* (mod p).

Cancelling the numbers 1.2, .-+ (p — 1)/2, we have

AP = (21)% (mod p).

By Euler’s criterion, we have (%) = (=1} (mod p). Since (%) = £1., we

must have (%) = (—1)*. ]

Example 1.6.26, Use Gauss’s lemma to evaluate the Legendre symbol
(1%) By Gauss’s lemma, (%) = (=1)”¥, where w is the number of integers
in the set

{1-6,2-6, 3-6. 4-6, 5-6}

whose least residues modulo 11 are negative {or greater than 11/2). Clearly,
(6,12.18.24.30) mod 11 = {6,1,7,2,.8) = (5,1, —4,2, -3) (inod 11)

So, there are 3 least residues that are negative (or greater than 11/2). Thus,
w = 3. Therefore, (IQI) = (=1)* = —1. Consequently, the quadratic congru-
ence 7 = 6 (mod 11) is not solvable.
Remark 1.6.11. Gauss’s lernma is similar to Euler’s criterion in the follow-
ing ways:

(1) Gauss's lemma provides a method for direct evaluation of the Legendre

symibol;
(2} It has more significance as a theoretical tool than as a computational

tool.

Gauss’'s lemma provides, among many others, a means for deciding
whether or not 2 is a quadratic residue modulo an odd prime p.

Theorem 1.6.28. If p is an odd prime, then
: . 1. if p==1 (mod &
(‘%“) = (=) = I | (1.277)
¥z ~1, if p=4£3 (mod 8).

Proof. By Gauss’s lemma, we know that if w is the munber of least positive
residues of the integers

, ‘ p—1
R T T S )
1 T
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2
that are greater than p/2. then (—) = (-1 Letk € Zwithl <k <
P

(p —1)/2. Then 2k < p/2 if and only if k < p/4: so [p/4] of the integers
1-2,2-2,-- 221 .2 are less than p/2. So. there are w = (p — 1)/2 — [p/4]
integers greater than p/2. Therefore, by Gauss’s lemma, we have

(%) 2

For the first equality, it suffices to show that

By 1 5
p_- [‘E {(mod 2).

2 4]7])_71

If p=1 (mod &), then p = 8% + 1 for some k € Z, from which

3 — 1 8k+1)—-1 Bk +1
P _[‘BJ:( ) w[ + }:4!4‘—2%:-21;‘:()(1110(12),

2 4 2 4
and
5 2 2
p -1 (Bk+1)" -1 64k + 16k _ )
. 3 = S =8k” + 2k =0 (mod 2),
so the desired congruence holds for p = 1 (mod 8). The cases for p =

—1,43 (mod 8) are similar. This completes the proof for the first equality of
the theorem. Note that the cases above yield

p?—1 1, if p==1 {(mod 8)
8 | -1, if p=£3 (mod 8)

which implies
(1) 1, if p==£1 (mod 8§)
=1, if p==£3 (mod 8)
This completes the second equality of the theorem. rl

Example 1.6.27. Evaluate (2) and (i)

7 b

2
{1) By Theorem 1.6.28, we have (:) = 1. since 7 = 7 {mod 8). Conse-

i
quently, the quadratic congruence x? = 2 (mod 7) is solvable.

2
{2) By Theorem 1.6.28, we have (“—““3‘) = —1. since 53 = 5 {mod 8). Con-

%
sequently, the quadratic congruence z? = 2 {mod 53) is not solvable.
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Let m = |vn |. The baby-step giant-step algorithm is based on the
observation that if x = log, b, then we can uniquely write z =i + jm, where
() <. j < m. For example, if 11 = log, 15 mod 19, thena = 2, b = 15, m = 5,
so we can write 11 = 2 + 57 for 0 < §,j < m. Clearly, here i = 1 and j = 2
so we have 11 = 1 + 5. 2. Similarly, for 14 = log, 6 mod 19 we can write
14 =4 +5-2, for 17 = log, 10 mod 19 we can write 17 = 2 + 5 - 3, etc. The
following is a description of the algorithm:

Algorithm 2.4.1 (Shanks’ baby-step giant-step algorithm). This al-
gorithm computes the discrete logarithm = of y to the base a, modulo n, such
that y = ¢* {mod n);
[1] [Initialization] Computes s = | /1 |.
[2] [Computing the baby step] Compute the first sequence (list), denoted by S,
of pairs (ya".r), r=0,1,2.3.---,5—1:

S = {(y.0), (ya, 1), {ya*,2), (ya®. 3}, -, (ya®~ ', s = 1) mod n} (2.117)
and sort S by ya”, the first element of the pairs in S.

[3] [Computing the giant step] Compute the second sequence (list), denoted by
T, of pairs (a'*.¢s), t=1,2.3,---

2

T = {(a*,1),(a®*,2), (¢®.3), - . (a" , s) mod n} (2.118)

and sort 1" by a*®, the first element of the pairs in T

[4] [Seafching comparing and computing] Search both lists S and T for a match
yo© = a'* with ya” in S and ¢’ in T, then compute x = ts — 7. This 7 is
the required value of log, y (mod n).

This algorithm requires a table with Q(m) entries (m = |[/n |, where
n is the modulus). Using a sorting algorithm, we can sort both the lists S
and 1" in O{mlogm) operations. Thus this gives an algorithm for computing
discrete logarithms that uses O(y/nlogn) time and space for O(y/n) group
elements. Note that Shanks’ idea is originally for computing the order of a
group element g in the group G, but here we use his idea to compute discrete
logarithms. Note also that although this algorithm works on arbitrary groups,
if the order of a group is larger than 107, it will he infeasible.

Example 2.4.1. Suppose we wish to compute the discrete logarithm = =
log, 6 mod 19 such that 6 = 27 mod 19, According to Algorithm 2.4.1, we
perform the following computations:

My=6.a=2andn =19, 5 = [V19 | = 4

(2] Computing the baby step:

S = {{y.( ) (ya, 1), (ya®.2). (ya®.3) mod 19}
= {{6,0).(6-2, 1) (6v22 2),(6-2%,3) mod 19}
~ {6, 0) (12,1, (5.2).(10,3)}
= {(5,2),(6.0), ):3),(12,1)}4

-~

2.4 Algorithms for Discrete Logarithms 25

[3] Computing the giant step:

T = {(a%s),(a"* 25) ((135,39),(048,49) mod 19}
= {(2'.4), (2", 8). (2" 12) (2'9.16) mod 19}
= {(16.4),{9.8).(11 (5.16)}
= 1(5.16).(9,8),(11,12).(16.4)}.

[4] Matching and computing: The number 5 is the common value of the

first element in pairs of both lists S and T with r = 2 and st = 16, so
x=st—7r =16 —2 = 14. That is, log, 6 (mod 19) = 14, or equivalently,
21 fmod 19) = 6.

Example 2.4.2. Suppose now we wish to find the discrete logarithm 2 =
logs, 67 (mod 113), such that 67 = 39 (mod 113). Again by Algorithm
2.4.1, we have:

My =67, a=>59 and n = 113, s = [v113 | = 10.

[2] Computing the baby step:

S = {(y.0),(yga, 1), (ya.2), (ya®.3), -+, (ya”,9) mod 113}
{(67,0), (67 -59.1). (67 - 59%,2), (67 - 597, 3). (67 - 59", 4),
(67 - 39°,5),(67-59%,6). (67-597,7). (67 - 59%,8),
(67 -59%,9) mod 113}
= {(67,0),(111,1),(108,2). (44, 3), (110,4), (49, 5), (66,6),
(52,7),(17,8). (99. 9)}
= {(17,8),(44,3).(49,5),(52.7), (66.6). (67.0), (99,9),
(108. 2),(110;4).(11171)}

il

[3] Computing the giant-step:

T

It

{(a®,8), (0%, 55), (@**,35),--- (a'"%,105) mod 113}

{(59',10), (59%719, 2 10), (59*1" 3 10). (5919 4 - 10),
(59105 10), (59°°1°.6 - 10), (59719, 7- 10), (59717 8 - 10),
(5971°.9- 10) mod 113}

{(72.10). (99, 20). (9.30). (83,40). (100. 50), (81, 60),
(69,70), (109, 80}, (51,90}, (56. 100) }

{(9. 30}, (51,90, (56. 100), (69, 70), (72, 10). {81, 60). (83, 40),
(99.20).(me,am,(log,go)}.

Il

[4] Matching and computing: The number 99 is the common value of the
first element in pairs of both lists S and T with v = 9 and st = 20,
s0 x = st —~r = 20 -9 = 11. That is, log;, 67 (mod 113) = 11, or
equivalently, 59' (mod 113) = 67.
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Using Lemma 1.6.2, Gauss proved the following theorem, one of the great
results of mathematics:

Theorem 1.6.29 (Quadratic reciprocity law). If p and ¢ are distinet
odd primes, then

{1 (1—)) = (2) if one of p,g = 1 (mod 4).
q P

2 ()

Remark 1.6.12. This theorem may be stated equivalently in the form

(%) (%) = (-1l Dl (1.278)

Proof. We first observe that, by Gauss’s lemma, E) = 1¥, where w

p/2

pr—qy < q/2

~q/2 < pr—qy<0

- (2) if both p,g = 3 (mod 4}.
P

p/2 < gy —pr <O

gy — pr < —p/2
is the number of lattice points (z,y) (that is, pairs of integers) satisfying
0 <z <q/2and —q/2 < pr — gy < 0. These inequalities give y < {px/q) +

1/2 < (p+1)/2. Hence, since y is an integer, we see w is the number of lattice
puints in the rectangle R defined by 0 < 1 < ¢/2, 0 < y < p/2, satisfying

{/2 q/2

—q/2 < pz — qy < 0 (see Figure 1.10). Similarly, ;—i = 1%, where p is the Figure 1.10. Proof of the quadratic reciprocity law
number of lattice points in R satisfving —p/2 < gz — py < 0. Now, it suffices
to prove that (p—1)(g—1)/4 = (w—+ pu} is even. But (p—1){g—1)/4 is just the
number of lattice points in R satisfying that pz—qy < q/2 or gy—px < —p/2.
The regions in R defined by these inequalities are disjoint and they contain
the same number of lattice points, since the substitution

g (mod p) (1.279)

—

(1.280)

A

P
1
P

#) ()l (1.281)

P

a=b (mod p) = (3> = (9)) (1.282)

! I (1.283)
) (2] (2) o (3) o
( ; ) ( ) for ptb (1.285)
(5)-
(

—_

e={g+1)/2-4', y=@p+1)/2-y

SN TN TN

furnishes a one-to-one correspondence between them. The theorem follows.
O

Remark 1.6.13. The Quadratic Reciprocity Law was one of Gauss’s major
contributions. For those who consider number theory “the Queen of Mathe-
matics”, this is one of the jewels in her crown. Since Gauss’s time, over 150
proofs of it have been published: Gauss himself published not less than six
different proofs. Among the eminent mathematicians who contributed to the
proofs are Cauchy, Jacobi, Dirichlet, Eisenstein. Kronecker and Dedekind.

Combining all the above results for Legendre symbols, we get the following

P2g1)/8 (1236)
set of formulas for evaluating Legendre symbols:

g) 1=/ <M> , (1.287)
q p

bR
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33
Example 1.6.28. Evaluate the Legendre symbol (§§>

()

i
e e N
t& oo*l
no SR
S—

_—i()_) by {1.282)

(-@) by (1.284)

) by (1.285)

I

~ 3) by (1.281)
=1 by {1.286).

It follows that the quadratic congruence 33 = & (mod 83) is soluble.

997

Y _ (2 (E?L> by (1.284)
997 997 } \ 997

- - (_2_3_) by (1.286)

46
Example 1.6.29. Evaluate the Legendre symbol (_>

997
= — (%f—) by (1.287)
23
o (ﬁ) by (1.282)
23 '
2
_ (2 l) by (1.284)
2
- (.% by (1.285)
= -1 by (1.286).

It follows that the quadratic congruence 46 = ¥ (mod 997) is not soluble.
Gauss's quadratic reciprocity law enables us to evaluate the values of

very quickly, provided a is a prime or a product of

Legendre symbols

primes, and p is an odd prime. However, when a is a composite, we must
factor it into its prime decomposition form in order to use Gauss’s quadratic
reciprocity law. Unfortunately. there is no efficient algorithm so far for prime
decomposition (sce Chapter 2 for more information). One way to overcome
the difficulty of factoring a is to introduce the following Jacobi symbol {in

1.6 Theory of Congruences 147

honour of the German mathematician Jacobi*!), which is a natural general-
ization of the Legendre svmbol:

Definition 1.6.16. Let « be an integer and n > 1 an odd positive integer.
ay . .
~). is defined by

Gy, 00 (533

Ifno=pitpy” ---pp*, then the Jacobi symbol, (

n

a a\" fa\"? a\“*
D@ G e
n P P2 Pr
i

where (A) for i =1,2,--- .k is the Legendre symbol for the odd prime p;.

Pi
If n is an odd prime, the Jacobi symbol is just the Legendre symbol.

The Jacobi symbol has some similar properties to the Legendre symbol,
as shown in the following theorem.

Theorem 1.6.30. Let m and n be any positive odd composites, and
ged(a,n) = ged{h,n) = 1. Then

(1} If a = b (mod n), then ((—1) = (E)

@ () ()= (%)
(3) It ged{rn.n) = 1, then (L) (ﬂ) = (f{)

mn m T
-1 e
W ( ) = (—1)n /2,

L

(5) (%) — (_1)(712—1)/8‘

(6) If ged(m,n) = 1, then (ﬂ) (-I]—) = (—1)lm-ln-1/4
n

m

Remark 1.6.14. It should be noted that the Jacobi symbol (E) = 1 does

n
not imply that a is a quadratic residue modulo n. Indeed, a is a quadratic

34

Carl Gustav Jacobi (1804-1851) was largely self-taught, learning
his mathematics from the works of Euler and Lagrange. He entered
the University of Berlin in 1821 and obtained his PhD in 1825, with
a thesis on continued fractions. In 1826 he became a lecturer at
the University of Koénigsberg and was appointed professor there in
1831. Jacobi is mainly known for his work in the theory of elliptic
functions and was not primarily a number theorist; nevertheless,
he made important contributions to number theory.
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residue modulo n if and only if a is a quadratic residue modulo p for each

prime divisor p of n. For example, the Jacobi symbol ) = 1, but the

3399
quadratic congruence 2% = 2 (mod 3599) is actually not soluble. This is the
significant difference between the Legendre symbol and the Jacobi symbol.

a . . . .
However, (~) = —1 does imply that a is a quadratic nonresidue modulo n.

For example, the Jacobi symbol

5)-00-0F)

and so we can conclude that 6 is a quadratic nonresidue modulo 35. In short,
we have

x? {(mod p) is soluble

(a) 1 e
p) —1, a=x? (mod p) is not soluble.

(1.289)
1 a = z? {mod n) may or may not be soluble

bl

a
(n) - { ~1, a =" (mod n) is not soluble.

Combining all the abave results for Jacobi symbols, we get the following
set of formulas for evaluating Jacobi symbols:

(%) _ (1.290)

(5) - o o
v = () ()
ey (2 () (2 am
(2) - e
() — (g (2, 129

286
Example 1.6.30. Evaluate the Jacobi symbol (5—6};) .
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286 2\ (143 _
(563) N (ﬁ) (j@) by (1.293)

- (ié;’) by (1.295)
- (%2_2) by (1.296)
_ (%) by (1.202)
L (%3) by (1.201)
S by (1.294).

It follows that the quadratic congruence 286 = 2% (mod 563) is not soluble.

1
Example 1.6.31. Evaluate the Jacobi symbol ( 009).

2307
(1) _ (ry -
= (mlg(%%) by (1.292)
= (%) by (1.293)
—1 by (1.294).

1009
2307
or not the quadratic congruence 1009 = 22 (mod 2307) is soluble.

Although the Jacobi symbol ( ) = 1, we still cannot determine whether

Remark 1.6.15. Jacobi svmbols can be used to facilitate the calculation of
Legendre symbols. In fact, Legendre symbols can be eventually calculated by
Jacobi symbols [17]. That is, the Legendre symbol can be calculated as if it

were a Jacobi symbol. For example, consider the Legendre symbol ( 5995 )

where 335 = 5. 67 is not a prime (of course, 2999 is prime, otherwise, it is
not a Legendre symbol). To evaluate this Legendre svmbol, we first regard it
as a Jacobi symbol and evaluate it as if it were a Jacohi symbol (note that
onee it is regarded as a Jacobi svmbol, it does not matter whether or not 335
is prime; it even does not matter whether or not 2999 is prime, but anyway,
it is a Legendre symbol).

(23939)9) T (2393?59) T (5313) - (%) T (“éfé}}) N
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Since 2999 is prime, %%) is a Legendre symbol. and so 335 is a quadratic
residue modulo 2999,

Example 1.6.32. In Table 1.19, we list the elements in (Z /21Z)" and their
Jacobi syinbols. Incidentally, exactly half of the Legendre and Jacobi symbols

Table 1.19. Jacobi Symbols for @ € {£/21Z)"

a € (Z/212) | 1 2 4 5 8§ 10} 11| 1316 17 | 19| 20

a® mod 21 1 4 16 4 1] 16 16 1f 4| 16 4 1

(%) 1l =1 ti=1]l=1| 1] 1| 1| t]{=1 1=
(;’) AR TS O S T T R A T A T S T N G (G |
{

a .

(—) 111 1] 1l=1]=1]=1] 1] 1| 1:-1] 1
21

(%) (2) and (%) are equal to 1 and half equal to —1. Also for those Jacobi
-
symbols { =) = 1, exactly half of the as are indeed quadratic residues,
whereas the other half are not. (Note that a is a quadratic residue of 21 if
and only if it is a quadratic residue of both 3 and 7.} That is,

a 1, for a € {1,4,10,13.16,19} = ()3

(5) ) -1, fora€{2.,5811,17,20} = Q,

a 1, forae {1.2,4.8. 11,16} = ()=
(3)=1 1 forac {5.10,13.17,19.20} = -

a € {1.4. 16} = Qn

1. for a € {1,4,5,16, 17,20} { o€ 15.17.20) 0.,

~1, forae{2,810,11,13,19} C Q.

1.6.7 Orders and Primitive Roots

In this subsection, we introduce two very important and useful concepts in
elementary number theory: orders and primitive roots. First let us give the
definition of the order of an integer modulo n.
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Definition 1.6.17. Let n be a positive integer and ¢ an integer such that
ged(a.n) = 1. Then the order of ¢ modulo n, dencted by ord,{a) or by
ord{a, n), is the smallest integer r such that ¢” = 1 {mod n).

Remark 1.6.16. The terminology “the order of ¢ modulo n” is the modern
algebraic term from group theory. The older terminology “a belongs to the
exponent 77 is the classical term from number theory used by Gauss.

Example 1.6.33. In Table 1.20, values of @’ mod 11 for i =1,2,--- ,10 are
given. By Table 1.20, we get, e.g..

ord;; (1) =1

2) = ordy1 (6) = ord 1 (7) = ordy; (&) = 10
ord;; (3) = ordy1(4) = ordy(5) = ordy; (9) = 5
ord;; (10) = 2.

Ol‘di 1 (

Table 1.20. Values of &' mod 11, for 1 < i < 11

a (1,2 e * [2) (LS (1G rzT (l-(;é (l'c) ”’l()
1 1 1 1 1 1 1 1 1 1
2 4 8 5 10 9 7 3 6 1
39 5 4 1 3 9 5 4 1
4 5 9 3 1 4 5 9 3 1
5 3 4 9 1 5 3 4 9 1
6 3 7 9 10 5 8 4 2 1
7 5 2 3 1w 4 6 9 8 1
8 9 6 4 10 3 2 5 7 1
9 4 3 5 1 9 4 3 5 1
0 1 10 1 W 1 10 1 10 1

Exercise 1.6.2. What are the orders of 3.5 and 7 modulo 87

We list in the following theorem some useful properties of the order of an
integer a modulo n.

Theorem 1.6.31. Let n be a positive integer. ged{a.n) = 1, and » =
ord,(a). Then

(1) f ™ =1 (mod n}. where m is a positive integer, then v | m.

2) r ] ofln).
(3) For integers s and ¢, @® = o' (mod n) if and only if s = ¢ (mod ).

- N <) K .
(4) No two of the integers a,a*,a”,--- ,a” are congruent modulo r.
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r

god(r,m)’

i

(5) If m is a positive integer, then the order of ¢ modulo n is

(6} The order of ™ modulo » is v if and only if ged(m,r) = 1.

The following theorem shows an unexpected relationship between group
theory and number theory.

Theorem 1.6.32. If x is an element of a group G, then the order of x divides
the order of G.

Example 1.6.34. Let § = (Z/91Z)" and = = 17. Then the order of G is
|Gl = &{91) = 72, and the order of 17 modulo 91 is 6. Tt is clear that 6 | 72.

Definition 1.6.18. Let n be a positive infeger and a an integer such that
ged(a,n) = 1. If the order of an integer a modulo n is @(n), that is,
order{a,n) = ¢(n), then a is called a primitive root of n.

Example 1.6.35. Determine whether or not 7 is a primitive root of 45. First
note that ged(7,43) = 1. Now cbserve that

7' =7 (mod 45) 7?7 = 4 (mod 45)
7% = 28 (mod 45) 7t = 16 (mod 43)
7% = 22 (mnod 45) 76 = 19 (mod 43)
77 = 43 (mod 45) = 31 (mod 45)
7% = 37 (mod 45) 710 = 34 (mod 45)
71 =13 (mod 45) 7% =1 (mod 43).
Thus, ordy;(7) = 12. However, ¢(45) = 24. That is, ordys(7) # ¢(45). There-

fore, 7 is not a primitive root of 45.

Example 1.6.36. Determine whether or not 7 is a primitive root of 46. First
note that ged{7.46} = 1. Now observe that

7! =7 (mod 486) 7% =3 {mod 46)
7% = 21 (mod 46) 7 =9 (mod 46)
77 =17 (mod 46) 7% = 27 (mod 46)
77 =5 (mnod 46) 7% = 35 (mod 46)
79 = 15 {mod 46) 710 = 13 (mod 46)
7 =45 (mod 46) 712 = 39 (mod 46)
71 = 43 (mod 46) 71 =25 (mmod 46)
7% = 37 (mod 46) 7 =29 (mod 46)
717 =19 (mod 46) 718 = 41 (mod 46)
71‘) = 11 (mod 46) 720 = 31 (mod 46)
=33 (mod 46) 777 = 1 (mod 46).
Thus, ordss(7) = 22. Note also that ¢(46) = 22. That is, ordye(7) = ¢(46) =

22. Therefore 7 is a primitive root of 46.

Exercise 1.6.3. Show that 11 is a primitive root of 31.
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Exercise 1.6.4. Find, by trial. the second smallest primitive root of 106.

Theorem 1.6.33 (Primitive roots as residue system). Suppose
ged(g.n) = 1. If g is a primitive root modulo n, then the set of integers
{9.9%. 9% - .g"*} is a reduced system of residues modulo n.

Example 1.6.37. Le? n = 34. Then there are @(#(34)) = & primitive roots
of 34, namely, 3,5,7,11,23,27,29.31. Now let ¢ = 5 such that ged(g,n) =
ged(5.34) = 1. Th(\.n

{g.6% - g%}

{5 52 5} 4 53 3 57 =8 5(} =10 511 =12 51‘3 514 515,516} mod 34
{5, 25, 231331192733299112131371}
{1,3,5,7,9,11,13,15, 19,21, 23, 25,27, 29,33, 31}

which forms a reduced system of residues modulo 34. We can, of course,
choose g = 23 such that ged(g, n) = ged(23,34) = 1. Then we have

{g=g2: T 39@(’1)}
= {23,232.23% 234,235,235, 237 238 237 2310 2311 2312 2313 2314
23152316} mod 34
= {23,19,29,21,7.25.31,33,11,15,5,13,27.9,3, 1}
= 11,3,5,7.9,11,13, 15, 10, 21,23, 25,27, 29, 33, 31}

which again forms a reduced system of residues modulo 34.

Theorem 1.6.34. If p is a prime number, then there exist ¢(p — 1) (incon-
gruent) primitive roots modulo p.

Example 1.6.38. Let p = 47, then there are ¢(47 — 1} = 22 primitive roots
modulo 47, namely,

5 10 11 13 15 19 20 22 23 26 29
30 31 33 35 38 39 40 41 43 44 45

Note that no method is known for predicting what will be the smallest
primitive root of a given prime p, nor is there much known about the dis-
tribution of the ¢(p — 1) primitive roots among the least residues modulo
.

Corollary 1.6.8. If n has a primitive root, then there are ¢{é(n)) (incon-
gruent) primitive roots modulo n.

Example 1.6.39. Let n = 46, then there are ¢(¢(46)) = 10 primitive roots
modulo 46, namely,

5 7 11 15 17 19 21 33 37 43
Note that not all moduli » have primitive roots; in Table 1.21 we give the
smallest primitive root g for 2 < n < 1017 that has primitive roots.

The following theorem establishes conditions for moduli to have primitive
roots:
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Table 1.21. Primitive roots g modulo n (if any) for 1 < n <1017 Theorem 1.6.35. An integer n > 1 has a primitive root modulo n if and
only if
n g n g 7 g i ] n 9 n ] no=2.4.p% or2p", (1.297)
2 1 3 2 4 3 ) 2 5 7 3
9 2 0 | 3 i1 2 13 2 19 3 17 3 where pis an odd prime and o is a positive integer.
8 5 |19 | 9[22 | 71 3 |5 25 | 2] 26 | 7 _ . / o
57 12 1 29 97731 | 3 51 3 37 3 38 3 Corollary 1.6.9. If n = 2% with a >3, 0r n = 2°p" ---p* with a > 2 or
41 | 6 | 43 | 3 1 46 | 5 47 3 49 3 50 3 k > 2. then there are no primitive roots modulo n.
53 | 2 | 54 | 5 | 58 | 3 | 50 | 2| 6L | 2 62 | 3 i Co _ ‘
67 1T 2 71 = =3 3 1 3 79 3 31 5 Example 1.6.40. For n = 16 = 2°, since it is of the form n = 2% with
82 7] 83 2 86 3 89 3 941 5 97 ] « > 3. there are no primitive roots modulo 16.
98 3 101 2 103 | & 106 3 107 2 109 6 . . o
113 | 3 | 118 | 11 | 121 73 122 = 125 5 i97 | 3 Although we know which numbers possess primitive roots. it is not a
131 2 {134 7 | 137 | 3 139 | 2 142 70 146 | 5 simple matter to find these roots. Except for trial and error methods, very few
149 | 2 [ 151 | 6 | 157 | 6 | 158 | 3 | 162 | 5 | 163 | 2 general techniques are known. Artin in 1927 made the following conjecture
166 | 5 | 167 | 5 | 169 | 2 [ 173 [2 [ 158 | 3 | 179 | 2 (Rose [210]):
181 2 | 193 ) 5 | 194} 5 197 2 199 3 202 3
206 0 5 (211 ] 2 21405 | 218 |11 223 | 3 | 226 | 3 Conjecture 1.6.1. Let N, (2} be the number of primes less than x of which
227 1 2 | 229 | 6 | 233 3 239 ! 241 ! 242 f « s a primitive root, and suppose a is not a square and is not equal to —1,
243 1 2 1230 ] 3 | 251 6 254 3 257 3 262 17 0 or 1. Then
263 1 5 1269 | 2 | 271 6 274 3 277 3 278 3 ’ ' N 4 x 1.998
551 3 | 253 | 3 | 989 | 3 | 293 | 2 | 208 | 3 | a02 | © Nao(z) ~ A, (1.298)
307 | 5 | 311 17 | 313 | 10| 314 5 317 2 326 3
ST T3 350 5 T30 (10 3T TR T3 T3 T3 where A depends only on a.
Sir | 2 349 2 323 3 338 { 399 ’ 361 ? Hooley in 1967 showed that if the extended Riemann hypothesis is true
362 | 21 | 367 | 6 | 373 | 2 | 379 | 2 | 382 |19 | 383 | 5 hen 5o b Arkins comecture. Tt it also interesting 1o note that befose th
3565 T30 T3 a4 | 3 1 30 TR TReR T3 T a0l T3 then so is Artin's conjecture. It is also inferesting to note that before the
0 T 2T 139 2 BT 12 5 T BT [ 71 433 | 5 age of computers Jacobi in 1839 listed all solutions {a.b} of the congruences
439 {15 | 443 1 2 | 446 | 3 | 449 | 3 | 454 | 5 | 4567 | 13 g* = b {mod p) where 1 < a < p. 1 <b<p, qis the least positive primitive
458 | 7 [ 461 | 2 [463 ] 3 | 466 | 3 | 467 | 2 ] 478 | 7 root of p and p < 1000.
479 | 13 | 482 7 1486 | 5 487 3 491 2 499 7
302 | 11 | 503 3 509 | 2 514 3 521 | 3 523 2
526 | 5 (1529 ] 5 [ 038 1 3 | AdL | 2 | A2 15 | 67 | 2 1.6.8 Indices and kth Power Residues
554 1 5 a3V | 2 | 3621 3 563 2 566 3 569 3
57/l 4 |57 ] 5 [ 5781 3 586 | 3 | 587 | 2 59% 3 We shall now move on to the study of the theory of index, and the kth power
599 7601 7 L 6071 3 613 2 614 D 617 3 residues - :
619 | 2 | 622 | 17 | 625 2 626 15 | 631 3 634 3 ) i , . .
61 1 3 1643 (11 (647 | 5 | 653 12 1650 2 | 661 | 2 The concept of inder of an integer modulo n was first introduced by Gauss
G601 3 16031 5 1641151 67 917683 1 5T76% [ 3 in his Disquisitiones Arithmeticae. Given an integer n, if » has primitive root
GOl ¢ 3 | 694 ] 5 [ 698 | T | 701 21 706 | 3| 709 | 2 g, then the set
TIS | 7 [ 710 |11 [ 722 |3 | 727 | 5 | 729 | 2 | 733 | © (0. g% g g7 (1.299)
731 | 11 | 739 | 3 |73 | 5 | 746 | 5 | 751 | 3 | 1ot | 2 _ _ 7 _ _ _
TSR T 6 966 1 5 1 760 1L | 5T 77 758 1 3 torms a reduced svstem of residues modulo n: g is a generator of the cyelic
78T P2 (79475 W97 | 2 [ BO2 [ 3 1 809 | 3 | Bl | 3 group of the reduced residues modulo n. (Clearly, the group (Z/nZ)* is cyclic
818 |21 [821 | 2 [823 [ 3 | 827 | 2 | 829 | 2 | 838 | 11 if n = 2,4.p", or 2p®. for p odd prime and o positive integer.) Hence. if
839 113 [ 841 ] 2 [842 723 833 | 2 | 85T | 4 | 85U | 2 ged{a,n) = 1, then a can be expressed in the form:
862 7| 863 5 | 866 | 5 877 2 878 15 ¢ 881 3
883 | 2 | 886 5 | 887 | 5 898 3 907 2 9.11 1-1 1= gf\‘ {(mod ) (1.300)
914 | 13 | 919 7 922 3 926 3 929 3 934 B}
gé?‘ 5 g% (23 343 3 gzi g g;i 13 ggé 3 for a suitable k with 1 < & < ¢(n). This motivates our following definition.
T 5] 7 7 E )77 : T ) vich Ge o an s 10 of the ro: aae leorars e FiOT
STt toor 7 Toos T Tiooe T 5 1009 T Il 0 T3 which is an analogue of the real base logarithm: function.
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Definition 1.6.19. Let g be a primitive root of n. If ged{a.n) = 1, then the
smallest positive integer k such that a = g* (mod n) is called the inder of a
to the base g modulo n and is denoted by ind, ,,(a). or simply by indga.

Clearly, by definition, we have

— ind,a

a = g™ (mod n). (1.301)

The function ind,a is sometimes called the discrete logarithm and is denoted
by log, a so that

a = g% (mod n). (1.302)
Generally, the discrete logarithim is a computationally intractable problem;
no eofficient algorithin has been found for computing discrete logarithms and
hence it has important applications in public key cryptography. We shall dis-
cuss some modern computer algorithms for computing general discrete loga-
rithms (including elliptic curve analogues of discrete logarithms) in Chapter
2 and applications of the computational infeasibility of discrete logarithms in
cryptography in Chapter 3.

Theorem 1.6.36 (Index theorem). If g is a primitive root modulo n, then
g% = g¥ (mod n) if and only if 2 =y (mod é(n)).

Proof. Suppose first that z = y (mod ¢(n)). Then, & = y+ ko(n) for some
integer k. Therefore,

g¢ = g™ (mod n)
= g (¢*")* (mod n)
= ¢¥-1% (mod n)

= g¢¥ {mod n).

The proof of the “only if” part of the theorem is left as an exercise. O

The properties of the function ind,a are very similar to those of the con-
ventional real hase logarithm function, as the following theorems indicate:

Theorem 1.6.37. Let ¢ be a primitive root modulo the prime p, and
ged(a, p) = 1. Then g% = a (mod p) if and only if

k= indg a (mod p—1). (1.303)
Theorem 1.6.38. Let n be a positive integer with primitive root g. and
ged(a,n) = ged(b,n) = 1. Then

(1) ind,1 = 0 (mod ¢(n)).
(2) ind, (ab) = indga + ind,b (mod ¢(n)).
(3) ind a® = k- indya (mod ¢(n)), if k is a positive integer.
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Example 1.6.41. Compute the index of 15 base 6 modulo 109, that is,
67%1% mod 109 = 15. To find the index, we just successively perform the
computation 6% (mod 109) for £ = 1,2.3,--- until we find a suitable & such
that 6¢ (mod 109) = 15:

6! = 6 (mod 109) 62 = 36 (mod 109)
6% = 107 (mod 109) 6 = 97 (mod 109)
6 = 37 (mod 109) 65 = 4 (mod 109)
6§ = '24 (mod 1093 6% = 35 (mod 109)
67 = 101 (mod 109) 6% = 61 (mod 109)
6'' = 39 {mod 109) 612 = 16 (mod 109)
6% = 96 {mod 109) 614 = 31 (mod 109}
619 = 77 (mod 109) 61% = 26 (mod 109)
6!'7 = 47 (mod 109) 6% = 64 (mod 109)
6! = 57 (mod 109) 620 = 15 (mod 109).
Since k = 20 is the smallest positive integer such that 6*° = 15 (mod 109),

mdegld mod 109 = 20.

In what follows, we shall study the congruences of the form r* = a (mod
n), where n is an integer with primitive roots and ged{a.n) = 1. First of all,
we present a definition, which is the generalization of quadratic residues.

Definition 1.6.20. Let ¢, n and k be positive integers with k > 2. Suppose
ged(a,n) = 1, then a is called a kth (higher) power residue of n it there is an
x such that

% = 4 (mod n). (1.304)

The set of all kth (higher) power residues is denoted by K (k). If the congru-
ence has no solution, then a is called a kth (higher) power nonresidue of n.
The set of such a is denoted by K (k) . For example, K(9)126 would denote
the set of the 9th power residues of 126 whereas K(5),, the set of the 5th
power nonresidue of 31.

Theorem 1.6.39 (kth power theorem). Let n be a positive integer hav-
ing a primitive root, and suppose ged{a, n) = 1. Then the congruence (1.304)
has a solution if and only if

gt/ Eedthotn] = 1 (mod n). (1.305)
If (1.304) is soluble, then it has exactly ged(k, ¢(n)) incongruent solutions.

Proof. Let r be a solution of #* = « (mod n). Since ged{a,n) =
ged(z.n) = 1. Then

(lo(n);’ goedib.g{n))

(.L,]f )r_‘z(n.}/ god(k.oin))

( I,ctr(n}')};/ ged(k.din))

I

11.‘/ ged{k ., ain))

1

= 1 {mod n).
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Conversely, if q@/scdtboin) = 1 (mod n), then plindralotm)/gedikotn)) =
1 {mod n). Since ord,r = o(n)., ¢é(n) | (ind,a}e(n)/ ged(k, o{n)). and

hence d | ind,a because (ind,a)/d must be an integer. Therefore, there are

ged(k, é(n)) incongruent solutions to k{ind,2) = (ind,a) {mod ») and hence

ged(k. o(n)) incongruent solutions to x* = a (mod n). O
If n is a prime number, say, p. then we have:

Corollary 1.6.10. Suppose p is prime and ged{a,p) = 1. Then a is a kth
power residue of p if and only if

a1 gedib o=l = 1 (mod p). (1.306)

Example 1.6.42. Determine whether or not 3 is a sixth power of 31, that
is, decide whether or not the congruence

% =5 {mod 31)
has a solution. First of all, we compute
5311/ ged(6,31-1) — o5 Z 1 (mod 31)

since 31 is prime. By Corollary 1.6.10, 5 is not a sixth power of 31. That is,
3 & K(6)z;. However,

5(317])/g(‘(](7‘3341) =1 (1110(1 31)
So. 5 is a seventh power of 31. That is, 5 € K(7)a;.
Exercise 1.6.5. Determine whether or not 5 is a seventh power of 359. That
is, decide whether or not 5 € K(7)359.

Exercise 1.6.6. Find the complete set of incongruent 16th power residues
of 512. That is. find all the a’s which satisfv a € K(16)53.
- . @ :
Now let us introduce a new symbol () . the kth power residue symbol,
0/
analogous to the Legendre symbol for quadratic residues (Ko and Sun, {123]).
p— 1

Definition 1.6.21. Let p be a odd prime, k > 1, k| p—1and g = —
Then the symbol

((t) =o' modp {1.307)
]) A.

is called the k power residue symbol modulo p. where o mod p represent the
ahsolute smallest residue of @ modulo p (the complete set of the absolute
smallest residues modulo p are: {(p—1)/2.-- ,—1.0.1.--- . (p—1/2)).

Theorem 1.6.40. Let (2) be the kth power residue symbol. Then
P/
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(I)])E(L:(g) = 0.
r/,

(2} a = a; (mod p) = ((_') — ({’_L) 4
P/ P/

(3) For aj.a» € 7 —> (a;az) _ (ﬁ) <E> ‘
" p/\p/,

(4) indya =6 (mod £).0<h <k = ¢ = g {mod p).
g b
k

T

o= = () =(2), (%), (5),
) P/ AN P/

Example 1.6.43. Let p =19, k = 3 and ¢ = 6. Then

(@), (),

a
(5) a is the kth power residue of p <= (—) = 1.
k

(2),-

(2),~ (29, (), (9, (2. (8- (2),
), ()33, (3).

(3),-(5), (3).(3), =

(5), (3),-(2),(3),(3), =

(5). (2),- (3).

(5, ()= (3),3), -

All the above congruences are modular 19.

Exercise 1.6.7 (Research problem). Extend the Jacobi symbol for
quadratic residues to the kth power residues,
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1.7 Arithmetic of Elliptic Curves

As long as algebra and geometry have been separated, their progress has
been slow and their uses limited; but when these two sciences have been
united, they have lent each other mutual forces. and have marched together
towards perfection.

AvcusTtus DE Morcan (1806-1871)

Elliptic curves have been studied by number theorists for about a century;
not for applications in either mathematics or computing science but because
of their intrinsic mathematical beauty and interest. In recent vears, however,
elliptic eurves have found applications in many areas of mathematics and
computer science. For example, by using the theory of elliptic curves, Lenstra
[140] invented the powerful factoring method ECM., Atkin and Morain [12] de-
signed the practical elliptic curve primality proving algorithm ECPP. Koblitz
[126} and Miller [163] proposed the idea of elliptic public-key cryptosystems,
and more interestingly. Wiles proved the famous Fermat’s Last Theorem
[254]. In this section. we shall provide some basic concepts and results on
elliptic curves. In Chapter 2, we shall introduce some fast group operations
on elliptic curves and algorithms for primality testing and factoring based
on elliptic curves, and in Chapter 3, we shall introduce some applications of
elliptic curves in cryptography.

1.7.1 Basic Concepts of Elliptic Curves
An elliptic curve is an algebraic curve given by a cubic Diophantine equation
y? =& +ax+ b (1.308)

More general cublcs in x and ¥ can be reduced to this form, known as Weijer-
strass normal form, by rational transformations. Two examples of elliptic
curves are shown in Figure 1.11 (from left to right). The graph on the left is
the graph of a single equation, namely E; : y? = 2 — 42 + 2; even though
it breaks apart into two pieces, we refer to it as a single curve. The graph on
the right is given by the equation Es : y? = 2% — 32 + 3. Note that an elliptic
curve is not an eflipse, it is so named because it is related to the length of the
perimeter of an ellipse; a more accurate name for an elliptic curve. in terms
of algebraic geometry, is an Abelian variety of dimension one. It should be
also noted that quadratic polynomial equations are fairly well understood by
mathematicians today, but cubic equations still pose enough difficulties to
be topics of current research. In what follows, we shall provide some more
formal definitions of clliptic curves.
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Figure 1.11. Two examples of elliptic curves

Definition 1.7.1. Let K be a field. Then the characteristic of the field K is
0if '
151 [CEIIN
—_———

e summands

is never equal to 0 for any n > 1. Otherwise, the characteristic of the field X
is the least positive integer n such that

Example 1.7.1. The fields Z,Q, R and C all have characteristic 0, whereas
the field Z /pZ is of characteristic p. where p is prime.

Definition 1.7.2. Let K be a field (either the field Q. R, C, or the finite
field F, with ¢ = p elements), and =* + az + b with a.b € K be a cubic
polynomial. Then

(1) If K is a field of characteristic # 2,3, then an elliptic curve over K is
the set of points (z.y) with z,y € K that satisfy the following cubic
Diophantine equation:

E: *=2"+ar+h. (1.309)

{where the cubic on the right-hand side has no multiple roots) together
with a single element, denoted by O, called the point at infinity.

(2) If K is a field of characteristic 2, then an elliptic curve over K is the
set of points (. y) with =,y € K that satisfy one of the following cubic
Diophantine equations:
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E: 4oy =a+ar+b,
R _ ) (1.310)
E: > 4oy =2 +axr® + b,
(here we do not care whether or not the cubic on the right-hand side has
multiple roots} together with a point at infinity Op.
(3) If K is a field of characteristic 3, then an elliptic curve over K is the set of
points {x,y) with z.y € K that satisty the cubic Diophantine equation:
E: y? =0 +ax® +br+c, (1.311)
(where the cubic on the right-hand side has no multiple roots} together
with a point at infinity OF.

In this book. we shall not consider the elliptic curves over a field of char-
acteristic = 2,3, We are now moving on to the definition of the notion of an
elliptic curve over the ring Z/NZ, which are specifically useful in primality
testing, integer factorization and public-key cryptography.

Definition 1.7.3. Let N be a positive integer with ged(N,6) = 1. An elliptic
curve over 7 /N7 is given by the following cubic Diophantine equation:

E: ¢y =27 +ar+, (1.512)

where a.b € Z and ged(N, 4a® + 270%) = 1. The set of points on F is the
set of solutions in (Z /NZ)? to the equation (1.312), together with a point at
infinity Og.

Remark 1.7.1. The subject of elliptic curves is one of the jewels of 19th
century mathematics, originated by Abel, Gauss, Jacobi and Legendre. Con-
trary to popular opinion, an elliptic curve (i.e., a nonsingular cubic curve)
is not an ellipse: as Niven, Zuckerman and Montgomery [174] remarked. it
is matural to express the arc length of an ellipse as an integral involving the
square root of a quartic polynomial. By making a rational change of vari-
ables, this mayv be reduced to an integral involving the square root. of a cubic
polyvnomial. In general, an integral involving the square root of a quartic or
cubic polynomial is called an elliptic integral. So, the word elliptic actually
came from the theory of elliptic integrals of the form:

/‘R(:z',y)dw (1.313)

where R(z,y) is a rational function in = and y, and y? is a polynomial in
x of degree 3 or 4 having no repeated roots. Such integrals were intensively
studied in the 18th and 19th centuries. It is interesting to note that elliptic
integrals serve as a motivation for the theory of elliptic functions, whilst
elliptic functions parameterize elliptic curves. Tt is not our intention here to
explain fully the theory of elliptic integrals and elliptic functions: interested
readers are suggested to consult some more advanced texts, such as Cohen
[501, Lang [137], and McKean and Moll [153] for more information.
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1.7.2 Geometric Composition Laws of Elliptic Curves

The basic operation on an elliptic curve E 1 y* = 2° +ar+bis the addition of
points on the curve. The geometric interpretation of addition of points on an
elliptic curve is quite straightforward. Suppose E is an elliptic curve as shown
in Figure 1.12. A straight line (non-vertical) L connecting points P and @
intersects the elliptic curve £ at a third point R, and the point P () is the
reflection of R in the N-axis. That is, if R = (23.13). then P53 Q = (73, —y3)
is the reflection of R in the X -axis. Note that a vertical line, such as L' or L',
meets the curve at two points (not necessarily distinct), and also at the point
at infinity Op (we may think of the point at infinity as lying far off in the
direction of the Y-axis). The line at infinity meets the curve at the point O
three times. Of course, the non-vertical line meets the curve in three points
in the XY plane. Thus, every line meets the curve in three points.

OET

Y
LI
Lll
R
T/—\/\V
) |
\ X
P \
\
L P2Q
TaT=0

PEQDOR=0)

Figure 1.12. Geometric composition laws of an elliptic curve
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As can be seen from Figure 1.12, an elliptic curve can have many ratio-
nal points; any straight line connecting two of them intersects a third. The
point at infinity O is the third point of intersection of any two points (not
necessarily distinct) of a vertical line with the elliptic curve E. This makes
it possible to generate all rational points out of just a few.

The above observations lead naturally to the following geometric compo-
sition law of elliptic curves [229].

Theorem 1.7.1 (Geometric composition law). Let P,Q € E, L the line
connecting P and ¢ (tangent line to £ if P = @), and R the third point of
intersection of L with F. Let I’ be the line connecting R and Qg (the point at
infinity). Then the point P& Q is the third point on £ such that L' intersects
Eat R, Op and P& Q).

1.7.3 Algebraic Computation Laws for Elliptic Curves

The geometric composition law gives us a clear idea how two points on an
elliptic curve can be added together to find a third. However, to systematically
perform the additions of points on elliptic curves on a computer, we will need
an algebraic formula. The following result gives us a verv convenient formula
for computing points on an elliptic curve.

Theorem 1.7.2 (Algebraic computation law). Let P, = (x,5). P> =
{2, y2) be points on the elliptic curve:

E: =2 +ar+b, (1.314)

then Py = (x3,y2) = Py © Py on E may be computed by

o n |} Og, oy =m&y=—y 5
PO R = { {Z3.93), otherwise. )
where
(rz.y3) = (A% — 2y — 0. Ay —23) — 1) (1.316)
and
o2
N e (1.317)
u otherwise.
Iy — Ty

Example 1.7.2. Let E be the elliptic curve 7 = 2% + 17 over @, and let
Py= (e, ) = (~2,3) and Po = (22, 92) = (1/4, 33/8) be two points on L.
To find the third point P; on F, we perform the following computation:
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N 2w _ 1

P B ] - 5
rag = Az — &y — g = 2
ys = Alri — 23) —yy = =5,
So, Py =P &Py = (2, yz) = (2, -3).

Exer(:lse 1 7.1. Find the points P, & P, and 2P on the elliptic curve
E: y? =% — 36z, where P, = (-3, 9) and Py = (-2,8).

Example 1.7.3. Let P = (3,2) be a point ou the elliptic curve E : 32 =
— 2 — 3 over Z/7Z. Compute

WP=P&P&---4P  (modT7).
—_— e ———

10 summands

According to (1.316), we have:

2P = P2 P =(3,2)(3,2) = (2.6),

3P =P52P =(3,2) % (2,6) = (4,2).
4P = P33P = (3,2) % (4,2) = (0.5),
5P = P 4P = (3,2) 5 (0,5) = (5.0),
6P = P@5P=(3,2)a (5,0) = (0.2),
TP=P36P=(32) (02 = (4.5),
8P=P&TP =32 (45 =(21),
9P = P=8P = (3,2) & (2,1) = (3.5),
0P =P®9P =(3,2) 5 (3,5) = Op

Example 1.7.4. Let E : y* = 5% + 17 be the elliptic curve over @ and
P =1(-2.3) a point on E. Then

= (8, -23)

9 522

3P = (Z 125)

AP — (752 —54239

4P = (,.—)29-, 12167 )

(174398 76943337

'JP—( 32761 3@29?41)

oD _ [ —4471631 —10554357097

6P = (= 3027600 5268034000 )

7P = (1>870:r8{u‘< 1«£601854')799:‘3887)
76345001 ¢ 669692213749

P —3705032916448 3635193007425360001

1556248765000 1911317(5()'”)6014'3)1:3)

9P — (J'J()SO]CI(JN?)(HU) —1858771552431174440537502
1146705130411225° 38830916270562191567875 )
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10P = ( 2621479238320017368 :1l‘250808'15025‘23505-1098132-572-57)

T\ 2155304686484219504001 * 1000426099138845 5414743999

11P = ( 983864801 201087873382478 ~1600581839303565170139037888610254293 )
1557708224535761 19856081 7 3076945320470535093503250805517943271

12P = ( 172770177940973356095799625021 261632579‘2‘25132155842970406236?454696’426719)
A630688542838091376020953600 ¢ 315114478121426726704392053642337633216000

Suppose now we are interested in measuring the size (or the height) of
points on an elliptic curve £. One way to do this is to look at the numerator
and denominator of the z-coordinates. If we write the coordinates of kP as

(A G
kp( DA) (1.318)

we may define the height of these points as follows
H(kP) = max(|Ag|, |Bl]). (1.319)

For example, the values for \anou% heights of points kP for k =1,2.3,--- ,38
on the elliptic curve E : 3°> = 2% — 72+ 10 for P = (1,2) are shox\ nin Tablo
1.22. It is interesting to note that for large &, the height of AP looks like
[230}:

DIH{EP)) ~ 0.1974k (1.320)
H(EP) =~ 10™979% 5 (1574)% (1.321)
where D(H(kP)) denotes the number of digits in H(kP}).

Remark 1.7.2. To provide greater flexibility, we may consider the following
more general form of elliptic curves:

E. 312 =% +az® + b +c. (1.322)
In order for E to be an elliptic curve, it is necessary and sufficient that
D = b — 4a®c — 4% + 18abe — 27¢" # 0. (1.323)

Thus,
Pyxs,ys) = P, y1) & Polas, Yol

on E may be computed by
(x35.y3) = (NF —a —ay — 22, May —x3) —y1) (1.324)
where
302 +2a+ 0 /2y, P =P
o | BE b 3 (1.325)

(y2 — 1)/ (22 — 1), otherwise.

Exercise 1.7.2. Compute 10P on the elliptic curve £ : y =z —Tr+10
with P = (1,2).
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Table 1.22. The height of points kP on y? = 2® — 7z + 10 for P = (1,2)

T8

438

4861

]831

364121

13215591

1478385680

1903671716

THER45143289

319894400448399

33LERBIGH04R2831

2331844730543067329

106X31813723001654481

1213657536204807170624]

5A3GOG22H 1892821 TI2ZE209840

190600916631 6262268 2404848521

G4983722400981 2406 TBOGRZ0TEI12D

G30933550541815376167294302385161

2E030604604718400034405148T59THR4864441

1224820627042856 1083770076531 51207742840

SRBOBOBABGTRG1 50895141 LU BABRE293303052951

216567609001 TAS03018121976 228640953857 941830034

1069741124300 7T4133163784500063082353T1R 180811558609

1G9TE24B83520835098060T37T845914423844200500068851842301

34007T183001R052T1402T3 8243362884546 7809380184661 236476008

ARF0G0TI520454] 9304924450008 5436RIGRAS02TIRTOOOTHGTTHIG18TTH31

24538527030602388

T4TEG3TO0OKB8]1 50442663 10156540 1A62RRATHOB1IEE21
24R9095913931 4601 2R50TGR004TOLIENRISTRAOSI00TAS0TRI I6R23582T58717696

453040003021 848404T33B0398 06T 1633092531207 2R 136059 T0S1TT3351080206328606081

J0091 739501 26222024920043 7828750460061 1 3832274 7T0852405081200331080626505 7413315119

433PGH850 1200855 TE4323900R4THATRIANTIZ20405082TITI000T208506542218055387548107116110

46S4807034240515405234050863T8T03 13240481 130341 00892063 7406023 702274339358634649054221 200734280

221 TOT2G306

RO 3336436253R4200

SO EGARTE TS 182901001 23RGRYOB 148 IGHNTRAIRD (2]
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1.7.4 Group Laws on Elliptic Curves

The points on an elliptic curve form an Abelian group with addition of points
as the binary operation on the group. In this subsection, we shall study some
group-theoretic properties of elliptic curves.
Theorem 1.7.3 (Group laws on elliptic curves}. The geometric com-
position laws of elliptic curves have the following group-theoretic properties:

(1) If a line I intersects E at the (not necessary distinct) points P, Q, R,

then
(Pr@)yaR=20

) PeOp=P VPeEFE

B Pold=Q=P, VPQek.

(4) Let P € E, then there is a point of E, denoted <P, such that

P 28] (P) = C)]f.
(5) Let P,Q).R € E, then
(P QY:R=Ps(QaR).

In other words, the geometric composition law makes E into an Abelian group
with identity element Op. Moreover, if £ is defined over a field K, then

= {(z,y) €K1y’ =2 + ar + b} U{Ok}.
is a subgroup of £.

Example 1.7.5. Let E{Q) be the set of rational points on E. Then E(Q)
with the addition operation defined on it forms an Abelian group.

We shall now introduce the important concept of the order of a point on
E.

Definition 1.7.4. Let P be an element of the set F{{J). Then P is said to
have order k if

kP=P&Px.--5P

k summands

with &P # Op for all 1 < k' < k (that is, & is the smallest integer such that
kP = Op). If such a k exists, then P is said to have finite order. otherwise.
it has infinite order.
Example 1.7.6. Let P = (3,2) be a point on the elliptic curve E y? =
1% — 2z — 3 over Z/TZ (see Example 1.7.3). Since 10P = Op and kP # Cg
for k < 10, P has order 10.

Example 1.7.7. Let P =(-2,3
r? + 17 over ©Q (see Example 1.7.

be a point on the elliptic curve E : y3 =

)
4). Then P apparently has infinite order.
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1.7.5 Number of Points on Elliptic Curves

As mentioned in the previous subsection, it is possible to generate all rational
points of an elliptic curve out of just a few. In this subsection, we shall be
concerned with the problen: How many points (rational or integral) are there
on an elliptic curve? Let us first look at an example:

Example 1.7.8. Let E be the elliptic carve y° = 2% + 3z over Fs. then
Og. (0,0), (1.2), (1.3), {2.2), (2,3), (3. 1), (3?4} 4, 1), (4,4)

are the 10 points on E. However, the elliptic curve y* = 32% + 22 over Fs has
only two points:
Op. (0,0).

Exercise 1.7.3. Find the number of points on the following elliptic curves
aver F} 3

(WE,: y* = + 2241, (2)Ey . y° = % + 4.
How many points are there on an elliptic curve E : y? = 2% + ax + b over
F, 7 The following theorem answers this question:
Theorem 1.7.4. There are
+ar+b
1+p+Z( >~—1+p+e (1.326)
rEF,

points on £ : y> = 2° + ar + b, including the point at infinity O, where
(Jl:'5 +oar+b
P
The quantity e in (1.326) is given in the following theoremn. due to Hasse®®
in 1933:

Theorem 1.7.5 (Hasse).

) is the Legendre symbol.

le| < 2./p. (1.327)

Example 1.7.9. Let p = 5. then |¢] < 4. Hence, we have between 2 and 10
points on an elliptic curve over F;. In fact, all the possibilities occur in the
following elliptic curves given in Table 1.23.

35

Helmut Hasse (1898-1979) was born in Kassel, Germany. He was
educated in Géttingen and Marburg, and subseqguently worked
in Kiel, Halle, Marburg, and Géttingen. In 1922 Hasse was ap-
pointed a lecturer at the University of Kiel, then three years later
he was appointed professor at Halle, and in 1930 he was appointed
a chair in Marburg. Hasse made significant contributions to the
theory of elliptic curves; for example, he proved, among others,
the dnaloguo of the Riemann Hypothesis for zeta functions of el-
hptl( curves. Note that Hasse also wrote a very influential book in number theory,
ZAHLENTHEORIE in 1963, English translation in 1980.
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Table 1.23. Number of points on elliptic curves over Fs

Elliptic curve Number of points
Yt = ¥t 2 2

=2t dr 42 3

y? = PR 4
yr=a"+3x+2 )

yl = 2+ 1 6

Y= 2241 7

Yt = a4 dx 8

y? =zt +z+1

y' ="+ 3w 10

A more general question is: how many rational points are there on an
elliptic curve E : y* = 27 +ax +bover Q7 Mordell?® solved this problem

in 1922:

Theorem 1.7.6 (Mordell’s finite basis theorem). Suppose that the cu-
bic polvnomial f(r,y) has rational coeflicients, and that the (3(111§ti011
fla.y) = 0 defines an elliptic curve E. Then the group E(Q) of rational
points on £ is a finitely generated Abelian group.

In elementary langnage. this says that on any elliptic curve that contains
a rational point, there exists a finite collection of rational points such that
all other rational points can be generated by using the chord-and-tangent
method. From a group-theoretic point of view, Mordell’s theoremn tells us
that we can produce all of the rational points on E by starting from some
finite set and using the group laws. It should be noted t.hat for some (‘Hbl.('
curves. we have tools to find this generating set, but unfortunately. there is
no general method (i.e., algorithm) guaranteed to work for all cubic curves.

36

Louis Joel Mordell (1888-1972) was born in Philadelphia, Penn-
svivania. He was educated at Cambridge and began research in
number theory. He lectured at Manchester College of Techno!og}'
from 1920 to 1922. During this time he discovered the famous finite
basis theorem, which was suggested by Poincaré in 1901. In 1922 Ilf‘
moved to the University of Manchester where he remained until
he succeeded Hardy at Cambridge in 1945. Together }\“iti} Dav-
enport, he initiated great advances of the geometry of numberﬁ.
Mordell was elected Fellow of the Royal Society and received the De _\If)rgan Medal
in 1941 and the Sylvester Medal in 1949. He was also the President of the Londou
Mashematical Society from 1943 to 1945.
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The fact that the Abelian group is finitely generated means that it consists
of a finite “torsion subgroup”™ Ey,., consisting of the rational points of finite
order. plus the subgroup generated by a finite number of points of infinite
order:

E(@) ~ Etors SHVA

The number i of generators needed for the infinite part is called the rank
of E({}); it is zero if and only if the entire group of rational points is finite.
The study of the rank » and other features of the group of points on an
elliptic curve over Q is related to many interesting problems in number theory
and arithmetic algebraic geometry, readers are suggested to consult, eg.,
Silverman and Tate’s book [228] for more information.

1.8 Bibliographic Notes and Further Reading

Elementary number theory is the oldest but it is still a lively subject in num-
ber theory; it is the basis for other branches of number theory, including
algebraic number theory, geometric number theory, analytic number theory,
logic munber theory, probabilistic number theory, combinatorial number the-
ory, algorithimic numnber theory, and applied number theory. In this chapter,
we have provided a survey of hasic concepts and results of elementary num-
ber theory. For those who desire a more detailed exposition in elementary
number theory, the following classical texts are highly recommend (in order):
Hardy and Wright {100]. Niven et al. [174], Davenport [58], Baker [17], Hua
[105]. and Dirichlet [68]. Other good references in clementary number theory
include Anderson and Bell {8]. Koblitz [128], Kumanduri and Romero {135},
AMollin [164], Nathanson [172], Rose {210, Rosen [211]. and Silverman [230].
The books by Ore [181] and Dickson [63] contain a wealthy source of the his-
torical development of the subject, whilst Ribenboim [200] contains the now
records (up to 1996) of research in number theory, particularly in the theory
of prime numbers. Khinchin's book [119] gives an excellent introduction to
continued fractions.

Oue of the important features of this chapter is that we have provided
a rather lengthy section on the distribution of prime numbers. It includes
approximations to w(.r) by ﬁ Li(r). and R{r). It also contains a discussion
of the Riemann (-function and relationships between the distribution of the
complex zeros of ((s) and the distribution of prime numbers. The study of
the real function 7(x) and its various approximations belongs to the field of
Analvtic Number Theory. This particular domain of number theory operates
with very advanced methods of caleulus and it is considered to be one of the
most. difficult fields of mathematics. Readers who are interested in Analytic
Number Theory are referred to Apostol’s book [11] or to the Open University

text [180].
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Another very important feature of this chapter is that we have provided
4 section on an infroduction to elliptic curves. The study of elliptic curves
belongs to the field of algebraic geometry, or more specifically Diophantine
geometry. because we are essentially only interested in the integral or rational
solutions of certain types of algebraic equations represented by elliptic curves.
Elliptic curve theory is a rich and well studied area. with a wide range of re-
sults, including Wiles” proof of Fermat’s Last Theorem. Remarkably enough.
the theory of elliptic curves is not only applicable to mathematics, but also
applicable to computing science, including primality testing, integer factor-
ization and cryptography. For those who desire a more detailed exposition
of elliptic curves, please refer to the following more comprehensive fexts:
Husemoeller [109), Koblitz [127], Silverman [229]. and Silverman and Tate
[228].

Number theory is intimately connected with abstract algebra, particulariy
with the theory of groups, rings and fields. In fact, number theory can be
studied from an algebraic point of view. For this reason, much of the material
in this chapter is presented in terms of algebraic language. Hence, readers
may find it helpful to consult one of the following algebra books: Childs [49],
Ellis [70]. Fraleigh [76], Herstein [103], Hungerford [108], McEliece [152]. or
Rotman [212].

2. Computational/Algorithmic Number
Theory

The problem of distinguishing primne numbers from composite, and of re-
soluing composite numbers nto thewr prime foctors, 1s one of the most
wmportant and useful wn oll arithmetic. ... The dignity of science seems
to demand thot every awd to the solution of such an elegant and celebraied
problem be zealously cultivated.

C. F. Gauss (1777-1855)

Computational and algorithmic number theory are two very closely re-
lated subjects; they are both concerned with, among many others. com-
puter algorithms, particularly efficient algorithms (including parallel and dis-
tributed algorithms, sometimes also including computer érchitectures), for
solving different sorts of problems in number theory and in other areas, in-
cluding computing and cryptography. Primality testing, integer factorization
and discrete logarithms are. amongst many others, the most interesting, dif-
ficult and useful problems in number theory, computing and (‘l‘yptogréph}z
In this chapter, we shall study both computational and algorithmic aspects
of number theory. More specifically, we shall study various algorithms for
primality testing, integer factorization and discrete logarithms that are par-
ticularly applicable and useful in computing and cryptography, as well as
methods for many other problems in number theory, such as the Goldbach
conjecture and the odd perfect number problem.

2.1 Introduction

In this section, we shall first present a brief introduction to algorithmic and
computational number theory, and then provide a theoretical foundation of
algorithms. including effective computability and computational complexity.
which are useful in both algorithmic and computational number theory. "
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2.1.1 What is Computational/Algorithmic Number Theory?

Algorithmic number theory studies of algorithms {including parallel algo-
rithins. sometimes also including computing architectures) for problems that
arise in number theory. Primality testing, integer factorization. and discrete
logarithms {including elliptic curve discrete logarithms) are, amongst many
others, the most interesting, difficult and useful problems in number theory.
Computational number theory. however, studies problems from elementary.
algebraic geometric and analytic number theory which require the help of
fast computers (particularly vector and parallel systenis) and fast algorithms
{particularly deterministic polynomial-time algorithmms). It is clear that these
two subjects are closely related each other: some people may well regard them
as one single subject which belongs to both mathematics and computer sci-
ence. whereas others mav regard algorithmic number theory as a part of
comptiter science and computational number theory a part of mathematics.
In this chapter, we shall study both algorithmic and computational aspects
of number theory.

Computational (or algorithmic) mumber theory is a relatively new branch
of science, which has become a discipline in its own right during the past two
decades. ITn computational (or algorithmic) number theory. all the problems
studied are from number theory, but the methods for solving these problems
can be either from mathematics, or camnputer science, or both. This makes
computational number theory different from other branches of number the-
ory such as algebraic number theory which uses algebraic methods to solve
number-theoretic problems. Thus, computational (or algorithmic) number
theory is an interdisciplinary subject of mumber theory and computer science.
and the people working in this area often come from either matheratics or
computer science. Its main purpose is to design efficient computer algorithims
(and sometimes high-speed computer architectures) for large-scale numerical
computations (including verifications) for number theory. Among its wide
spectrum of activities, this new branch of number theory is concerned with
problems such as the following:

(1) Primality testing: The fastest deterministic algorithm for primality test-
ing is the APRCL algorithm (see Adleman, Pomerance and Rurely [3].
and Cohen [30)). invented by Adleman. Pomerance, Rumely, Cohen and
Lenstra, which rans in Q(log N)yologleslos N and is possible to prove the
primality of infegers with 1000 digits in a not too unreasonable amount
of time. At present. the most practical primality testing/proving algo-
rithm is the elliptic curve primality proving algorithm ECPP, designed
by Atkin and Morain [12]. which can prove the primality of integers with
several thousand digits in reasonable amount of time, for example, weeks
()f WO, I\thfl()}l time.

(2) Integer factorization: The fastest general algorithm for integer factoriza-
tion is the Number Field Sieve (NFS), which under plausible assumptions
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has the expected running time

(0\1)( Hog N {/(loglog N)2 ))

Clearly, NFS is still a subexponential-time algorithm, not a polynomial-
time algorithm. The largest integer factored with NFS is the RSA-155
{August 1999), an integer with 135 digits.

(3} Discrete logarithms: over a finite field: This discrete logarithm prob-
lem (DLP) for the multiplicative group F} is similar to that of integer
factorization {although it is a little bit more difficult than integer fac-
torization). and the methods for factoring (e.g.. Number Field Sieve) are
usually applicable to discrete logarithms. Tt should be noted, however,
that there are quantum algorithms [227] that can be used to solve the
integer factorization problem and the discrete logarithm problem in poly-
nomial time on a quantum computer, although no one knows at present
whether or not a practical quantum computer can be built.

{4) Elliptic curve discrete logarithms: Let E/F, be an elliptic curve defined
over a finite field, and let P.Q € FE(F,) be two points on E. The ellip-
tic curve diserete logarithm problem (ECDLIP) asks to find an integer
k such that = &P in E{(F,). This problem is considered to be very
difficult to salve if p is large, for which reason it has formed the basis for
various cryptographic systems. Note that there are subexponential com-
plexity Index Caleuwlus algorithins such as the Number Field Sieve for
discrete logarithms over a finite field, however, no practical Index Cal-
culus method has been found for the Elliptic curve discrete logarithms,
and more serious, it looks like that ECDLP does not admit an Index
Calculus. Current. research in ECDLP aims to develop new algorithms
such as Xedni Caleulus [231] that might be used to solve the ECDLP.

(5) Counting the numbers of primes, w(a): The most recent record
is w4 - 10%") = 783964159852157952242, that is, there are exactly
783964159852157952242 prime numbers up to 4 -1

(6) Mersenne pnmes There are now 39 kuown Mersenne primes. The largest
is 213466997 15t has 4053946 digits and was discovered by Cameron,
Woltman and Kurowski, et al. in 2001. At present, we still do not know
if there are infinitely many Mersenne primes.

(7) Odd perfect numbers: Even perfect numbers are in one-to-one correspon-
dence with Mersenne primes. That is, once we find a Mersenne prime
2P — 1, we have aun even perfect number 227127 — 1), All the known
perfect numbers are even; we do not know if there exists an odd perfect
number. Numerical results show that there are no odd perfect numbers
up to 10*°% (Brent, Cohen and Te Riele, [39]).

(8) Fermat numbers: Only the first five Fermat numbers (i.e., F, = 22" +1
for n = 0,1,2,3,4) have been found prime, all the rest are either com-
posite, or their primality is unknown. The complete prime factorizations
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for F, with 5 < n < 11 have been obtained; the smallest not completely
factored Fermat number, and indeed the most wanted number, is Fio.

(9) Amicable numbers: The first amicable pair (220,281) was known to the
legendary Pythagoras 2500 years ago, but the second smallest. amicable
pair (1184,1210) was not found until 1866 by a 16-year old Ttalian school
boy, Nicolo Paganini. Prior to Euler (1707-1783). only three amicable
pairs were known. Although there are 2574378 known amicable pairs at
present, we still do not know if there are infinitely many amicable pairs
or not: we even do not have a general rule to generate all the amicable
pairs.

(10) Riemann Hypothesis: The first 1,500, 000,001 nontrivial zeros of the
Riemann ¢-function have been calculated, and they all lie on the critical
line Re(s) = 1/2, as conjectured by Riemann in 1839. However, we do
not know if all the nontrivial zeros of the (-function lie on the critical
line Re(s) = 1/2, On 24 May 2000 the Clay Mathematics Institute of
Cambridge, Massachusetts announced seven Millennium Prize Problems;
The Riemann Hyvpothesis is one of them. It designated a one-million Us
dollar prize fund for the solution to each of these seven problems. (For
an official description of the problem. see [29].)

(11) Goldbach’s conjecture: It has been numerically verified that Goldbach’s
conjecture is true for even numbers 4 <n < 4- 10™ (see Deshouillers, Te
Ricle and Saouter [62], and Richstein [201]). The experimental results are
in good agreement with the theoretical prediction made by Hardy and
Littlewood. On 20 March 2000 the British publishing company Faber and
Faber in London announced a one-million US dollar prize to any person
who can prove Goldbach’s Conjecture within the next two years (before
midnight, 15 March 2002).

(12) Calculation of 7: By using an analytic extension of a formula of Ra-
manujan, David and Gregory Chudnovsky in 1989 calculated @ to one
billion decimal digits. It is interesting to note that the string of digits
123456789 occurs shortly after the half-billionth digis.

{13) Waring’s Problem: In 1770 the English mathematician Edward Waring
conjectured that every integer can be written as the sum of g{k) positive
kth powers, where g(k) = ¢ + ok _ 2 with 3% = ¢ - 2% + r. It is currently
known that

g(2) =4, g(3) =9. g(4) = 19,9(5) =37

k
glh) = G) +28 2 for 6 <k <471600000.

{14) Primes in arithmetic progressions: An arithmetic progression of primes
is a sequence of primes where each is the same amount moye than the
one before. For example, the sequence 3, 11, 17, 23 and 29 forms an
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arithmetic progression of primes, since all the numbers in the sequence
are prime, and the common difference is 6. It is conjectured that there
should be arbitrarily long arithmetic progressions of primes, but no proof
has been given so far. The longest known arithmetic progression contains
22 terms. The first term is 11410337850533 and the common difference
is 4609098694200. This sequence of primes was discovered in March 1993
at Griffith University, Queensland, Australia.

As can be seen, the main theme in computational number theory is algo-
rithms. In the next two subsections. we shall provide a theoretical foundation
of algorithms, including effective computability and computational complex-
1ty.

2.1.2 Effective Computability

Algorithmic number theory emphasizes algorithmic aspects of number theory
and aims at the design of efficient algorithms for solving various number-
theoretic problems. But what is an algorithm? Remarkably enough, the word
algorithm itself is interesting and has a very long history; it comes from the
name of the Persian mathematician Abu Ja’far Muhammad ibn Musa al-
Khwarizmi'. An algorithm may be defined as follows.

Definition 2.1.1. An algorithm is a finite sequence of well-described instruc-
tions with the following properties:

{1) There is no ambiguity in any instraction.

(2) After performing a particular instruction there is no ambiguity about
which instruction is to be performed next.

(3) The instruction to stop is always reached after the execution of a finite
number of instructions.

An algorithm is also called an effective procedure, since all of the opera-
tions to be performed in the algorithim must be sufficiently basic that they
can in principle be done exactlv and in a finite length of time by a man us-
ing pencil and paper (Knuth [122]}. So, for us the two terms algorithm and
effective procedure are synonymous and we shall use them interchangeably.

Abu Ja'far Muhammad ibn Musa al-Khwarizmi (about 780
850) was born in an area not far from Baghdad. He wrote his
celebrated book Hisab al-jabr w’al-mugabala (from which our
modern word algebre comes) while working as a scholar at the
House of Wisdom {a center of study and research in the Islamic
world of the ninth century) in Baghdad. In addition to this
treatise, al-Khwarizmi wrote works on astronomy, on the Jewish
calendar, and on the Hindu numeration system. The English
word algorithm derives from elgorism, which is the Latin form
of al-Khwarizmi’s name.
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Definition 2.1.2. A function f is computable (or equivalently, a problem is
decidable/ solvable) if there exists an effective procedure (or algorithm), ;.
that produces the value of f corvectly for each possible input; otherwise. the
function is called noncomputable (or equivalently, the problem is undeeid-
able/ unsolvable).

Clearly, the notion here for computable functions is intuitive, but to show
that a function is computable or noncomputable, we need a formalized notion
for effective computability: otherwise, we cannot show that an effective pro-
cedure does not exist for a function under consideration. This can be achieved
by an imaginary computing machine, named the Turing machine (TM) after
its inventor Alan Turing?, which can be defined as follows:

Definition 2.1.3. A (standard k-tape) Turing machine (TM), M (sce Fig-
ure 2.1), is an algebraic system defined by

M =(Q,5,T.6,q,0.F) (2.1)

where

(1) @ is a finite set of internal stales.

Alan M. Turing (1912-1954) was born in London, England. He
was educated in Sherborne, an English boarding school and King’s
College, Cambridge. In 1935, Turing became fascinated with the
decision problem. a problem posed by the great German math-
ematician David Hilbert, which asked whether there is a gen-
eral method that can be applied to any assertion to determine
whether the assertion is frue. The paper which made him famous
: i “On Computable Numbers, with an Application to the Entschei-
dungsproblem (problem of decidability)” was published in the Proceedings of the
London Mathematics Society, Vol 42, November 1936. It was in this paper that he
proposed the very general computation model, now widely known as the Turing
machine, which can compute any computable function. The paper attracted imme-
diate attention and led to an invitation to Princeton {recommended by John von
Neumann), where he worked with Alonzo Church. He took his PhD there in 1938:
the subject of his thesis was “Systems of Logic based on Ordinals™. During World
War IT Turing also led the successful effort in Bletchley Park (then the British Gov-
ernment’s Cryptography School in Milton Kevnes) to crack the German “Enigma’
cipher. which Nazi Germany used to communicate vith the U-boats in the North
Atlantic. To commemorate Turing’s original contribution, the Association for Com-
puting Machinery in the U.S.A. created the Turing Award in 1966. The award is
presented annually to an individual selected for contributions of a technical nature
to the computing community that are judged to be of lasting and major importance

to the field of computer science. and it is in fact regarded as the Nobel Prize of

computer science. Turing committed sujcide in 1954 after a conviction related to
his homosexualitv. Were it known that he had been a war hero {(having deciphered
Enigma), the prosecution would never have taken place, and this great man might
still be alive today.
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Figure 2.1. A standard Turing machine

(2) X is a finite set of svmbols called the input alphabet. We assume that
rcr—{o}

(3) I' is a finite set of svimbols called the tape alphabet.

(4} & is the transition function, which is defined by

(1) if M is a deterministic Turing machine (DTM), then
§: QxT*" 5 QxI*x{L R, (2.2)
(i1) if M is a nondeterministic Turing machine (NDTAM), then
§:Q x Il — 9@x I {L.R}¥ (2.3)

where L and R specify the movement of the read-write head left or
right. When k = 1, it is just a standard one-tape Turing machine.
{3) O € I is a special symbol called the blunk.
{6) q0 € @ is the initial state.
{(7) F C ( is the set of final states.

A probabilistic Turing machine is a type of nondeterministic Turing ma-
chine with distinguished states called coin-tessing stotes. For each coin-
tossing state, the finite control unit specifies two possible legal next states.
The computation of a probabilistic Turing machine is deterministic except
that in coin-tossing states the machine tosses an unbiased coin to decide
between the two possible legul next states.
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The computation of a Turing machine is formalized by using the notion
of an instantaneous description: Let M be a Turing machine, then any string
Apoe@ | QLA s oy, With @; € I and ¢y € (. 1s an instantaneous descrip-

tion {ID) of M. A move

) G g Opy 1 .- Oy F Ay g1 b2 gy oy, (2.4}
is possible if
gy, o) = (g2, b, R). (2.3)
A move
L0 G Qg ot By qeap_1bag gy an (2.6)
is possibie if
Sqr.ar) = (g2,0,L). (2.7)

M is said to halt, starting from some initial configuration xygxx, if

Tigire Fyigiays (2.8)

for any ¢; and a, for which 6{g;, a) is undefined. The sequence of configura-
tions leading to a halt state 1s called a computation. If M never halts, then
we represent it by

Ty (T ﬁ o0, (2.9)

indicating that, starting from the initial configuration z;¢;%2, the machine
never halts. Thus, the Turing machine provides us with the simplest pos-
sible abstract model of computation in general. Moreover, any effectively
computable function can be computed by a Turing machine, and there is no
effective procedure that a Turing machine cannct perform. This leads to the
following famous Church-Turing thesis, named after Church® and Turing:

The Church-Turing thesis. A function is effectively compuiable
if it can be computed by a Turing machine. That is, computable is
Turing computable.

3

Alonzo Church (1903-1995) was born in Washington. D.C. Much
of his professional life was centered around Princeton University.
He received his first degree in 1924 and PhD in 1927, both from
Princeton. He was a National Research Fellow in 1927-29, spend-
ing time at Harvard. Gottingen and Amsterdam. Church was
a faculty member in Mathematics at Princeton University from
‘ 4 1929 until 1967 when he moved to the University of California at

Los Angeles. He made substantial contributions to the theory of
Compurabiht\ including 111=. solution to the decision problem, his izvention of the
lambda-calculus, and h]h statement known as the Church-Turing thesis. He also
supervised 31 doctoral students, including Alan Turing, Stephen Kleene, Martin
Davis. Michael Rabin, Dana Scott and John Kemeny.
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Remark 2.1.1. The Church-Turing thesis is a thesis, not a theorem. because
it is not a mathematical result and cannot be proved mathematically; it just
asserts that a certain intuitive notion {effective procedure) corresponds to a
certain mathematical object (Turing machine). To prove it. we would have
to compare effective procedures (an intuitive notion) and Turing machines
(a formal notion). To do this. we would have to formalize the notion of an
effective procedure. But then we would face the problem: is the introduced
formalization equivalent to the intuitive notion? The solution of this problem
would require a claim to the Chureh-Turing thesis, and so we would fall into
an endless loop. Hence, the Church-Turing thesis has to remain as a thesis,
not a theorem. Nevertheless, a tremendous amount of evidence has shown
that the Church-Turing thesis i3 true, and researchers in computer science
and also in mathematics generally believe the truth of the thesis. It is theo-
retically possible, however, that the Church-Turing thesis could be disproved
at some future date, if someone were to propose an alternative model of com-
putation that was provably capable of carrying out computations that cannot
he carried out by any Turing machine; but this is not likely to happen.

The Church-Turing thesis thus provides us with a very powerful tool to
distinguish which functions are computable and which are noncomputable:
functions that can be computed by a Turing machine are computable, whereas
functions that cannot be computed by a Turing machine are noncomputable.
We can therefore classify all computational problems into two categories:

(1) Class of problems solvable by a Turing machine.
(2) Class of problems unsolvable by a Turing machine.

There are many unsolvable problems; the best known one is surprisingly con-
cerned with the Turing machine itself: given a Turing machine M and an
input w, does M halt on w? This is the so-called halting problem for Turing
machines, and is unsolvable by a Turing machine. Of course, unsolvable prob-
lems do not only exist in the domain of Turing machines, but in virtually all
fields of mathematics. It is not our purpose to discuss the uncomputabhility
of Turing machines here: we shall restrict ourselves to Turing computability,
particularly to practical Turing computability.

2.1.3 Computational Complexity

Effective computability studies theoretical computability. which does not im-
ply any restrictions concerning the e¢fficiency of computations; efficiency is
often described in terms of complerity, which is essentially a measure of time
and memory space needed to perform a computation {in this book we shall
treat complexity primarily in terms of time). Effective computability does
not mean practical computability. In fact. many problems, although solvable
in theory, cannot be solved in any practical sense by a Turing machine due
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to excessive time requirements. For example, using the Sieve of Eratosthenes
to find the nth prime, it is practical to compute the 10'%th prime, but it
would never become practical to find the 1019 th prime. In this subsection,
we shall give a brief introduction to the theory of practically feasible com-
putation (practically feasible computation is also called practically tractable
computation; we shall use the two terms interchangeably).

The time complexity (or the running rime) of an algorithm is a function
of the length of the input. An algorithm is of time complexity ¢(n) if for all n
and all inputs of length n, the execution of the algorithm takes at most #(n)
steps. More precisely, we have:

Definition 2.1.4. Let TM be a Turing machine which halts after m steps
for an input of length n. Then the time complexity function or the running
time associated with TM, denoted byt (n), is defined by

trar(n) = max{m : TM halts after m steps for an input of length n}.
(2.10)
Let NDTM be a nondeterministic Turing machine. For an input w we denote
by s{w) the shortest halting computation starting from w. Then the time
complexity function associated with NDTM, denoted by txpra, Is defined by

txpTa(n) = max{(1,m) : wis of length n and s(w) has m steps}. (2.11)

Definition 2.1.5. A deterministic Turing machine (DTM) is called polyno-
mially bounded if there exists a polynomial function p(n) € O(n*). for some
positive integer k, such that

tora{n) < pln). (2.12)
where n is the length of the input. A problem is called polynomially solvable
if there is a polvnomially bounded Turing machine that solves it. The class
of all polvnomially solvable problems is denoted by P.
Definition 2.1.6. A deterministic Turing machine (DTM) is called ezpo-

nentially bounded if there exists an exponential function exp{n) € O(o") for
some constant a > 1 such that

toTa(n) <exp(n), forall n. (2.13)

where 7 is the length of the input. A problem is called exponentially solvable
if there is an exponentially bounded Turing machine that solves it. The class
of all exponentially solvable problems is denoted by £XP.

Definition 2.1.7. A nondeterministic Turing machine (NDTM) is called

. o . . . o N3
polynomially bounded if there exists a polvnomial function p(n) € Ofn ),
for some positive integer k. such that

txpram () < pln). (2.14)

where n is the length of the input. The class of all problems solvable by a
polynomially bounded nondeterministic Turing machine is denoted by AP.
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All different tvpes of Turing machines. such as single-tape DTM, mul-
titape DTAL and NDTM are equivalent in computation power but may be
different in efficiency. For example, let #(1i) be a function with ¢(n) > n. Then

(1) Every #(n) tiine multitape deterministic Turing machine has an equiva-
lent O(#7(n)} time single-tape deterininistic Turing machine.

(2} Every t(n) time single-tape nondeterministic Turing machine has an
equivalent 2900 time single-tape deterministic Turing machine.

In complexity theory, it is common to concentrate on decision problems,
L.e., those having a yes/no solution, since any decision problem can be treated
as a language recognition problem.

Definition 2.1.8. An alphabet ¥ is a finite set of symhols. A lengrage L
over X is any set of strings made up of symbols from ¥. We denote the
empty string by €. and the empty language by 0. The language of all strings
over X is denoted by X7, We also define the complement of Lby L = £ — L.
We say a Turing machine M accepts a string « € X* if. given input x, A
outputs M () = I, and otherwise A (z) = 0.

Within the framework of formal language theory, the complexity classes
P, AP and EXP defined above can then be re-defined as follows.

Definition 2.1.9. The class P consists of all languages L that have a poly-
nomially bounded deterministic Turing machine (DTM), such that for any
string x € 1",

rel =2 DTM()=1,
r¢L = DIM{») =40

The class EXP cousists of all languages L that have an exponentially bounded
deterministic Turing machine DTM, such that for any string « € X",

RN

€L = DTM{x) = 1.
¢ L =  DTM{x) =0

The class AP consists of all langnages L that have a polynomially bounded
nondeterministic Turing machine (NDTM), such that for any string » € L7,

rel = dyc L. NDTM(r.y) =1, where [yl is
hounded by a polvnomial in [},
rg L — dye X NDTM(z.y) =0

For probabilistic Turing machines. we have the corresponding probabilis-
tic complexity classes RP, BPP. and ZPP.

Definition 2.1.10. The class RP (Randomized Polynomial) consists of all
languages L that have a probabilistic Turing machine (PTM) running in
expected polvnomial time with cne-sided error. That is, for any input z € X,
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re€L == Prob[PTM{(z)=1] > 1/2,
gL == Prob[PTM(x)=1] =0.

Definition 2.1.11. The class ZPP (Zero-error Probabilistic Polynomial) is
defined by ZPP = RPtco-RF. That is, ZPP is the class of all languages L
that have a probabilistic Turing machine (PTM) running in expected poly-
nomial time with zero-sided error. That is, for any input « € £*,

reL = Prob[PTM{z)=1] =
réL = Prob[PTM(z) =1] =

Definition 2.1.12. The class BPP (Bounded-error Probabilistic Polyno-
mial) consists of all languages L that have a probabilistic Turing machine
(PTM) running in expected polynomial time with two-sided error. That is,
for any input x € X*,

reL =  Prob[PTM(z) = 1] > 3/4,
r¢ L = Prob[PTM(x) =1] < 1/4.

The space complexity classes P-SPACE and A"P-SPACE can be defined
analogously as P and AP. It is clear that a time class is included in the
corresponding space class since one unit is needed to the space by one square.
Although it is not known whether or not P = AP, it is known that P-SPACE
= NP-SPACE. It is generally believed that

BPP

PCEZPPCRPC ( AP

) C P-SPACE C £EXP.
Besides the proper inclusion P ¢ EXP, it is not known whether any of the

other inclusions in the above hierarchy is proper. Note that the relationship
of BPP and AP is not known, although it is believed that NP ¢ BPP.

Remark 2.1.2. Although the complexity classes are defined in terms of de-
cision problems, they can be used to classify the complexity of a hroader
class of problems, such as search or optimization problems. It should he also
noted that complexity classes are not only referred to problems, but also to
algorithms. For example, we can say that Fuclid’s algorithm is of polynomial
complexity, since it can be performed in polynomial time. that is. Euclid’s
algorithm is in P.
From a practical computability point of view, all algorithms can be classi-
fied into two categories:
(1) Efficient (good) algorithms: those algorithms that can be performed in
polynomial time.

(2) Inefficient (bad) algorithms: those algorithms that can only be performed
in exponential time.
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The reason is fairly obvious: An exponential function grows much more
quickly than a polynomial function does for large values of n. Algorithms
of polynomial complexity are considerably more efficient than those of expo-
nential complexity. More generally, there is a hierarchy of increasing orders:

logn, n, n? 0 -, 2% 3" ... ulon"

Table 2.1 compares growth rates of complexity functions for different in-
put values of n, whereas Table 2.2 compares execution times for algorithms
of various complexities [79] (we assume that each step of the algorithm takes
one microsecond of computer time to execute).

By examining these tables, one can see that exponential and factorial
complexity functions grow faster than any polynomial functions when n is
large. This gives us the idea that the running time of any practically feasible
computation must be bounded by a polynomiel in the length of the input,
and leads to the Cook-Karp thesis, a quantitative refinement of the Church-
Turing thesis. Similarly, all solvable problems can also be classified into two
categories:

(1) Computationally tractable (or feasible).
(2) Computationally intractable (or infeasible).

It is widely believed, although no proof has been given, that problems in
P are computationally tractable, whereas problems not in (beyond) P are

Table 2.1. Comparison of growth rates of complexity functions with input sizes

Input Complexity Function f

Sizen | logn | n nlogn n’ 2" n!

5 2 5 12 25 32 120

10 3 0 | 33 100 1024 3.6 x 10°
Hx10 |6 50 | 282 2500 1.1 x 10'? 3 x 10%

10% 7 100 | 664 10* 1.3 x 10* 9.3 x 1087
5% 10 19 500 | 4483 25 x 10* | 3.3 % 10" | 1.2 x 10***
10° 10 10° | 9966 10° 1.1 % 10%%7 | 4.0 x 107757
10* 13 107 132877 10* 1.9 % 10°90 | 2.8 x 107%9%°
10° 17 167 1 1.6 x 105 | 107 {(too large) | (too large)
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Table 2.2. Comparison of several polvnomial and exponential time complexity
funections f

Input Size n
f 10 20 30 10 50 60
n 0.00001 1.00002 (.00003 0.00004 0.00005 (0.00006
second sv('()nd second second second second
n’ 0.0001 0.0004 0.0009 0.0014 0.0025 (0.0036
second second second second secornd second
n’ 0.001 0.008 0.027 0.064 0.125 0.216
second second second second second second
n’ 0.1 3.2 24.3 1.7 5.2 13.0
second seconds seconds mimites minutes minutes
2" 0.01 1.0 17.9 127 35.7 366
second second minutes davs vears centuries
3" 0.59 58 6.5 3853 23x10% [ 1.3 %107
sccond minutes years centuries cenguries centuries
5" 9.8 3 3x 10 | 29 %107 | 2.8 x 107 | 2.8 x 107°
seconds vears centuries centuries centuries centuries
7! 3.6 77 x 107 | 84 x 107 | 2.6 x 107 | 9.6 x 10™ | 2.6 x 10%°
seconds VEOars centuries centuries centuries centuries

computationally intractable. This is the famous Coeok-Karp Thesis, named
after Stephen Cook? and Richard Karp®:

Stephen Cook (1939- ) was born in Buffalo, New York, received
Lis BSe degree from the University of Michigan in 1961, and his
PhD from Harvard University in 1966. From 1966 to 1970 he was
Assistant Professor at the University of California, Berkelev. He
| joined the faculty at the University of Toronto in 18970 as an Asso-
© clate Professor, and was promoted to Professor in 1975 and Uni-
versity Professor in 1985. He is the author of over 30 research
k papers, including his famous 1971 paper “The Complexity of The-
orem: Proving Procedures™ which introduced the theory of A"P-completeness. Cook
was the 1982 recipient of the Turing award, is a Fellow of the Reoval Society of
Canada, and a member of the U.S. National Academy of Sciences and the Ameri-
can Academy of Arts and Sciences. (Photo by courtesy of Prof. Cook.})

Richard M. Karp (1935~ ) earned his PhD in applied mathematics
from Harvard University in 1939. He has been a researcher at the
IBM Thomas J. Watson Research Center in New York. and Profes-
sor of Computer Science in the University of California. Berkeley
and Untversity of Washington, Seattle. He is currently professor at
UC Berkeley, returning from Washington in June 1999. Karp was
the 1985 Turing award winner for his fundamental contributions
S to complexity Thecn\ which extended the carlier work of Stephen
Cooh in A"P-completeness theorv. He has been elected to membership of the U.S.
National Academy of Sciences and National Academy of Enginecering. (Photo by
conrtesy of Prof. Karp.)
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The Cook-Karp thesis. A problem is said to be computationally
tractable (or computationally feasible) if it is in P; a problem which is
not in 7 is said to be computationally intractable (or computationally
infeasible).

Whether or not P = AP is one of the most important open problems in both
computer science and rmathematics, and in fact, it has been chosen to be one
of the seven Millennium Prize Problems by the Clay Mathematics Institute,
with one million US dollars prize for a proof or disproof of the problem (for
the official description of the problem. see [52]).

Example 2.1.1. The following two problems are computationally in-
tractable:

(1} The primality testing problem. The best deterministic algorithm to test
n for primality runs in time O ((logn)<tiosloglos “))_ which grows super-
polynomially in input length logn: we do not regard a superpolvnomial
as being a polynomial,

(2) The integer factorization problem. The best ai‘mrirhm for factoring
a general integer n yuns in time Ofexp({logn)'/?(loglog n)?/3). which
grows subexponentially (but superpolynomially) in input length log n.

How about problems in A"P? Are all the problems in AP tractable?
Clearly. 7 is included in AP, but it is a celebrated open problem as to
whether or not P = \"P. However there are many AP-complete problems,
which are significantly harder than other problems in N"P. A specific problem
is N'P-ecomplete if it is in AP and. moreover. it is A"P-hard®. Tt thus follows
that P = AP if an NP-complete problem is in P. It is generally conjec-
tured that P # A"P. Therefore, A"P-complete problems are considered to be
intractable. Several hundred problems in mathematics, operations research
and computer science have been proven to be ANP-complete. The following
are just some of them:

(1) The traveling salesman problem (TSP): Given a complete graph G =
(V. E). with edge costs, and an integer k. is there a simple cycle that
visits all vertices and has toral cost < &7

(2) The Hamiltonian Cycle Problem: Given a network of cities and roads
linking them, is there a route that starts and finishes at the same city
and visits every other city exactly once?

A problem is A"P-hard if all problems in AP are polynomial time reducible to
it, even though it may not be in AP itself. A formal definition for this reduction
is: for an arbitrary problem in AP, there exists a polvnomially bounded deter-
ministic Turing machine that translates every instance of the arbitrary problem
into an instance of the problem.
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(3) The cligue problem: A cligue, in an undirected graph G = (1, E) is a
subset V' € 17 of vertices, each pair of which is connected by an edge in
E. The size m of a clique is the number of vertices it contains. The clique
problem is then: given a finite graph & = (V, F) and positive integer
m < |¢|, does G have a clique of size m?

(1) The binary partition problem: Given 4 = {a), a2, - .a,} a set of inte-
gers written in binary notation, is there a subset A’ such that

Z a = Z a?

acd! acA-A"

(Note that if 4 is a set of integers written in unary notation, then it can
be decided in polynomial time.)

(5) The quadratic congruence problem: Given positive integers a, b and ¢, is
there a positive integer & < ¢ such that 22 = a (mod b)?

(6) The quadratic Diophantine equation problem: Given positive integers
a.b and ¢, are there positive integers x and y such that ax® + by = ¢?
(7) The subset-sum problem: Given a finite set S € N and a target ¢ € N, is

there a subset 5’ € S whose elements sum to £7

The integer factorization problem, however, is currently thought to be in AP,
not in P, but no one has vet proven that it must be in A”P. The best reference
for computational intractability is still the book by Garey and Johnson [79]
although it is a little bit out of date.

2.1.4 Complexity of Number-Theoretic Algorithms

As mentioned previously, the time complexity of an algorithm is a function
of the length of the input. If the input » is an integer, then its length is the
number of bits in n:

lengthi{n) = number of bits in n. (2.15)

In computational number theorv, the inputs are of course always integers,
and henee our input lengths (or sizes) will be the total number of bits needed
to represent the inputs of the algorithms, and our running simes for these al-
gorithms will count bit operations rather than arithmetic operations. Polyno-
mial time algorithms counted by arithmetic operations are essentially useless
in computational number theory, becanse they will be of exponential time if
we count by bit operations. When we describe the number of bit operations
needed to perform an algorithm, we are describing the computational com-
plexity of this algorithm. In describing the number of bit operations needed
to perform an algorithm, we will need some notations particularly the big-O
notation.
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Definition 2.1.13. Let f and g be positive real-valued functions. Then

(1) Big-O notation (denotes the upper bound of the complexity function f:
F{n) = O(g(n)} if there exists a real constant ¢ > 0 such that f{n) <
¢-g(n) for all sufficiently large 5.

{2) Small-o notation (denotes the upper hound of the complexity function
f, that is not asymptotically tight): f(n) = O(g(n)),¥e > 0 such that
Fn) <c-gln).

(3) Big-f2 notation {denotes the low bound of the complexity function f):
fin) = 2(g(n)) if there exists a real constant ¢ such that f(n) > Login).

(4) Big-@ notation (denotes the tight bound of the complexity function f):

fln) =On) if fin) = Ogn)) and fi(n) = 2(g(n)).
In this book, we shall mainly use the big-Q notation.

Example 2.1.2. Let f(n) = n” 4+ 8n”logn + 14n — 1, then with the big-©O
notation, we have f(n) = Q(n?).

Definition 2.1.14. Given integers p, ¢ and b with ¢ = b7, then p is said to
be the logarithm to the base b of the number ¢. We shorten this to

p=log,q. (2.16)

Symbolically,
p=log,q < ¢q=10" (2.17)

If b =2, then
p=log,q < ¢q=2% (2.18)

Note that while base 10 is common in high school algebra and base e is
typically used in caleulus; in computer science logs are always assumed to be
base 2. In this book, we shall use the notation log to mean log,. and ln to
mean log,.

Any integer n € N to the base b can be written as follows:

n

I

{da_ydz_o---dydn)y

dy b 4 ds ob 7 4
0

= > db. (2.19)

i=3-1

i

e di b+ dy

whered; (i = 3—-1.8-2,.-- 1,0} aredigits. If d3_, # 0. we call n a 3-digit
base-b number. Clearly, any number 577! < n < b is a S-digit number to
the base b. For example. 10° < 780214 < 10% is a 6-digit number to the base
10. By Definition 2.1.14, this gives the following formula for the number of
base-b digits for n:

Inn

number of digits of n = [logyn] +1 = h—{} + 1 (2.20)
nbh
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(The notation [x]|. where x is a real number, is defined to be th(‘. greatest
integer less than or equal to r and called the floor of . whereas [] is dehl}ed
to be the least integer greater than or equal to z and called the ceiling of x.
The notation [z] is also used for [#].) For examnple. let n = 999, then

the number of digits of 999 = [log,, 999 +1
| 1n999 L1
B In 10

12.999565488 | + 1

Il

= 241=3,

the number of bits of 999

Il

[log,999] + 1

_(mew|
o n2

[9.964340868 ] + 1

I

9+ 1=10

It is easy to verify that 999 has 10 bits, since 599 = 1111100111. Note that
the word bits is short for binary digits, and usually refers to Shannon bits, in
honour of the American scientist Claude Shannon’.

Exercise 2.1.1. Find the number of digits and bits for the following num-
bers:

5 127 -1 5
a67 367 511 . ]
2001, 3 L2 1, T 555

In terms of the big-O notation, (2.13) can be rewritten as

length({n) = |log, n] + 1 = O(logn). {2.21)

Clande E. Shannon (1916-2001) was a graduate of Michigan and
went to MIT to write his PhD in Boolean algebra. where he re-
ceived his PhD in 1940. He joined Bell Telephones in 1941 rema.in«
ing until 1972. He was also a Professor in Electrical En_ginvenng
at MIT from 1958 to 1980, and has been Professor Emeritus there
since 1080. Shannon is the inventor of information theory, the first
to apply Boolean algebra to the design of circuits, and the hrst to
use “bits” to represent information. His paper "C()m11111111(-21‘(;1011
Theory of Secrecy Systems”, published in 1949, is regarded as one of the very first
pap(‘r; in modern secure communications.
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Exercise 2.1.2. Estimate in terms of the big-© notation the number of bits
O :
in nl.

Now we are in a position to discuss the bit complexity of some basic
arithmetic operations.

First let us look at the addition of two 3-bit binary integers. (If one of the
two integers has fewer bits than the other, we just fill in zeros on the left.)
Consider the following example:

11101011000
+ 01000110101

1001106001101
Clearly. we must repeat the following steps 8 times:

(1) Starting on the right, look at the top and bottom bits, and also at
whether there is a carry above the top bit.
(2) If both bits are 0 and there is no carry, then put down 0 and move on.
(3) If either one of the following occurs
{i) both bits are 0 and there is a carry
(it} only one of the bits is 0 and there is no carry
then put down 1 and move on.
(4) If either one of the following occurs
(i) both bits are 1 and there is no carry
(ii) only one of the bits is 0 and there is a carry
then put down 0, put a carry on the next column. and move on.
(5) If both bits are 1 and there is a carry, then put down 1, put a carry on
the next colunn, and move on.

Doing this procedure once is called a bit operation. So adding two 3-bit num-
bers requires 3 bit operations. That is.

T(3-bits + 7-bits) = O(3) = O(logn).

Next let us observe the multiplication of two 3-bit binary integers. Con-
sider the following example:

11101011001
X 01000110101

11161011001
11101011001
11101011001
11101611001
+ 11101011601

100000011011101101101
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that is,

11101011001 + 1110101100100 = 10010010111101
10010010111101 + 111010110010000 = 100110101001001101
100110101001001101 + 1110101100100000 = 1001101001001101

11000010101101101 4+ 11101011001000000000 = 100000011011101101101.

and hence,
1110101100% - 1000110101 = 100000011011101101101.

The result can easily be verified to he correct, since

11161011001, = 1881,
1000110101, — 565,
1881 - 563 = 1062765 = 100000011011101101101..
The above example shows us that multiplying two 5-bit integers requires
at most 32 bit operations. That is,

T(5-bits x 3-bits) = O(F)

How fast can we multiply two integers? Earlier attempts at improvements
employed simple algebraic identities and resulted in a reduction to the fol-
lowing:

Theorem 2.1.1. There is an algorithm which can multiply two 3-bit inte-

gers in

T(j3-bits x 3-bits) O(3'% %)

C)(j 1.584962501 )

O(log n ) 1.584962501

i

f

bit operations.

However, Schinhage and Strassen in 1971 utilized some number-theoretic
ideas and the Fast Fourier Transform (FFT) and obtained a much better
result:

Theorem 2.1.2. There is an algorithm which can multiply two 3-bit inte-
gers in

H

O(5log 3 loglog 3)
= Olognloglognlogloglogn)

T(B-bits x 3-bits)

bit operations.
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Definition 2.1.15. An algorithm is said to be of polynomial complexity®,
measured in terms of bit operations, if its required running time is

Olog N ¥, (2.22)

for some constant k. An algorithm is said to be of exponential complexity,
measured in terms of bit operations, if its required running time is

O(N), (2.23)
where € < 1 1s a small positive real number.

Example 2.1.3. Let  be the number of bits needed to represent n. Then,
8= llognl +1.

Suppose that the complexity of an algorithm, measured hy arithmetic op-
erations on an integer (input) n, is O{n). What is the complexity for this
algorithm in terms of bit operations? Since for each arithmetic operation,
O(logn)? bit operations will be needed,

On) = O(nlogn)’)
= O(2“)‘“"”(logn)g)T

Therefore, the algorithm is of polynomial complexity in arithmetic opera-
tions, but of exponential complexity in bit operations.

Remark 2.1.3. In some computational problems such as the Traveling
Salesman Problem. and the problem of sorting a list, the complexities mea-
sured by arithmetic operations reflect the actual running times. However,
in most of the computational problems in number theory. the complexities
measured by bit operations reflect the actual running times. In this book,
all the complexities will be measured in terms of bit operations, rather than
arithmetic operations.

Let us finally observe the complexities of some other common operations
in arithmetic and number theory.

(1) The computation of ¢ = {a/b]. where a is a 23-bit integer and b a 3-bit
integer, can be performed in (3%} bit operations. However, the number
of bit operations needed for integer division can be related to the the

¥ More generally, an algorithm with an input containing integers n,nz, -, n,
of lengths logui,logns.--- logn, bits, respectively, is said to be of
polynomial complexity if there exist invegers ki, ke.---, k. such that
the number of bit operations reqguired fto perform the algorithm is
O ((log s YL Gog o)., (log n,»)"”"). Thus, by a lerge nput, we will always
mean that an input contains large infegers, rather than many iniegers as for
SOTLIE.
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mumber of bit operations needed for integer multiplication. That is. the
division of a 253-bit integer by a 3-bit integer can be done in O(M (n))
bit operations, where M (n) is the number of bit operations needed to
multiply two J-bit integers.

(2) Buelid's algorithim for calculating ged(Af. N) where M < N can be
performed in Oflog M)* bit operations. This follows from a theorem,
due to the French mathematician Gabriel Lamé (1795-1870) in 1844 (see
Cormen, Ceiserson and Rivest [54]). which states that the number of
divisions necessary to compute the ged{M, N is at most five times the
number of decimal digits of A/, So it will perform O(log A1) arithmetic
operations and O(log M)? bit operations {assuming that multiplication
and division take Q(logn)? bit operations).

. . . M .
{3) The computation of the Jacobi symbol (ﬁ) with 1 < Af < N can
be performed in Olog M)? bit operations. This is derived from the reci-
procity law for the Jacobi symbol. In fact, with a more effective method

indicated by Lehmer, which avoids divisions, it is possible to compite

M 2 s
both ged(Al, N) and (F) in O(log M)* bit operations.

Exercise 2.1.3. Using the big-O notation, estitnate the number of bit op-
erations needed for the following operations.

(1) Let 7 be a 3-bit integer written in binary. Estimate the time to convert
n to decimal.

. . ] . .
(2) Let n! be the factorial n - (n — 1)---2- 1 and ( m ) the binomial
. ! . . T
coefficient -—-I-— Estimate the time to compute ! and ( )
(n—m)lm! 7
(3) Let 4 and B be n x n matrices, with entries ai; and by; for 1 < i, j <n,
n
then AB is the n X n matrix with entries ¢; ;= 2 Gipby;. Estimate the
k=1
number of bit operations required to find AB directly from its definition.
(4} Suppose we want to test if a large odd number n is prime by trial division
by all odd numbers up to y/n. Estimate the number of bit operations this
test will rake. How about if we have a list of all primes up to y/n? How
many bit operations will be needed to test if n is prime by wial division
by all the primes up to v/n (use the Prime Number Theorem)?

2.1.5 Fast Modular Exponentiations

A frequently occurring operation in elementary number-theoretic compu-
tation is that of raising one number to a power module ancther number,

2.1 Introdu(:thEl_M“d_______

rati ~onvention: thod
r¢ mod n, also known as modular ezponentiation. The conv (.Iltl()n}d.l El(l,tlt !
. - CRLC 3 . . . . . 5 s to
iplicati ould take Qe logn)~ bit operations, which 18
F 1 multinlication would take Ofe logn) ‘ |
of repeated multiplico . s, which 19 100
., the ho epeated squaring will s
o is larg +tunately, the method of rep
slow when e is large. For . ‘ A ng Will soe
this problem efficiently using the binary representation of b. The idea
repeated squaring method is as as follows:

: x* Ath z.e.n € N
Theorem 2.1.3. Suppose we want to compute 2 mod n with

Suppose moreover that the binary form of e is as follows:
o= 325+ B 28 B2t + 502, (2.24)
3, (i =0,1.2,---k) is either 0 or 1. Then we have

where each 3;

e 3;-2“%%42*‘“‘+~-~+3121+302°
X = T

):ﬁ ' {2.25)

k
32
= HI
=10
k
oy
== H &€
i=0

Furthermore, by the exponentlation law

2 = @) (2.26)
iation c: : aine epeated

and so the final value of the exponentiation can be obtained by rep
[e s .. . ) ‘
squaring and multiplication operations.

; 100. e B rit -
Example 2.1.4. Suppose we wish to compute a'®; we Lirst write 10019
1100100, 1= cseseqeseae g, and then compute

2 24242 242 2..27)
a'% = ({((((a)* @) ) - a)) (
3 6 12 24 .25 50 100
= a o, ab a'? e, a7 e a
5 ny iplication
Note that for each e;, if e; = 1, we perform a squaring and a Trmltlfphcal )
INOQLE UIAL N = Y ' o o j " ted i
operation {except “eg = 17, for which we just write down a, as inc lfﬁtet !
the first bracket), otherwise, we perform only a squaring oper ation a

initialization

eg 1 7} ‘ o
e; 1 (a)* - a squaring and multiplication
el 0 ((a)? - a)? squaring

4 2. a)?)? squaring

s 0 (((a)* - a)?) o
:{ 1 (({a)? - o)) - a squaring and multiplication
(; 0 ((({({e)” - a)®)?)* - a)’ squaring

o O (({LHw)* - a)®)?y -a)?)? squaring

i
(1-100
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Exercise 2.1.4. Write down the similar expressions as in (2.27) for comput-
ing %% and %Y and verify vour results. (Hints: 931, = 1110100011, and
65019 = 1100101100101.)

We are now in a position to introduce a fast algorithm for modular ex-
ponentiations (note that we can simply remove the “mod n” operation if we
only wish to compute the exponentiation ¢ = z°}:

Algorithm 2.1.1 (Fast modular exponentiation z* mod n). This algo-
rithm will compute the modular exponentiation

¢ =r* modn,

where x.e.n € N with n > 1. It requires at most 2loge and 2loge divisions
(divisions are only needed for modular operations; they can be removed if only
¢ = ¢ are required to be computed).

[1] [Precomputation] Let
€3-1€4-2" " €1 (2.28)

be the binary representation of e (i.e., e has 3 bits). For example, for 562 =
1000110010, we have 5 = 10 and
1 0 0 0 1 0
L1 A A B Y N

g €y C€f € €5 €4 €3 €2 € €y
[2] [Initialization] Set ¢ « 1.
[3] [Modular Exponentiation] Compute ¢ = 2° mod n in the following way:
for ¢ from 3 — 1 down to 0 do
¢ « ¢ mod n (squaring)

if ¢; = 1 then
¢ + ¢ -2 mod n (multiplication)

[4] [Exit] Print ¢ and terminate the algorithm.

Theorem 2.1.4. Let 2. e and n be positive integers with » > 1. Then the
modular exponentiation zf mod n can be computed in Ologe) arithmetic
operations and O ((log e)(logn)?) bit operations. That is.

Time(z" mod n) = O4(loge), (2.29)
= Op((oge)(logn)?). (2.30)

. . s - . 2 2k
Proof. We first find the least positive residues of o,z Loto-- L x? modulo

n, where 28 < e < 2%%¥1 by successively squaring and reducing modulo n.
This requires a total of O ((log (-t)(l(_)gn)j) hit operations, since we perform
Ologe) squarings modulo n, each requiring O(log 1)< bit operations. Next,
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we multiply together the least positive residues of the integers 22" corre-
sponding to the binary bits of e which are equal to 1, and reduce modulo .
This also requires O ((log e)(log n)?) bit operations, since there are at most
O(log e) multiplications, each requiring O(logn)? bit operations. Therefore, a
total of O {(loge)(log n)?) bit operations are needed to find the least positive
residue of x¢ mod n. |

Example 2.1.5. Use the above algorithm to compute 797 mod 361 (here
z = 7, e = 9007 and m = 561). By writing e in the binary form ¢ =
€3 1€4_ 9+ €16y, we have

9007 = 10001100101111 = ey3e12 - - - €1 €9.

Now we just perform the following computations as described in Algorithm
2.1.1:

c+ 1
7
n + 561
for i from 3 — 1 down to 0 do
¢ — ? modn
if e; =1 thenc+ ¢ -z modn
print ¢; (now ¢ = z¢ mod n )

The values of (i,e;,¢) at each loop for 7 from 13 down to 0 are as follows:

13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 ) 0 1 1 0 0 1 0 1 1 1 1
7 49 157 526 160 241 298 166 469 49 538 337 46 226
So, at the end of the computation, the final result ¢ = 7%9°7 mod 561 =
226 will be returned. It is clear that at most 2log, 9007 multiplications and
2log, 9007 divisions will be needed for the computation. In fact, only 22
multiplications and 22 divisions will be needed for this computation task.

Exercise 2.1.5. Use the fast exponentiation method to compute
¢ = F12A96T06 1,4 4294967297

by completing the items marked with ? for F in the following table (note
that 4294967296 = 1000 - - -00 inx binary):
\—-\,_/ N

32 zeros
i 32131 30|29 28 200 - ot 21110
e; 11 0 0 0 0 0 - G100
c 3 9 81 | 6561 | 43046721 | 7 eSS T I I B

Remark 2.1.4. The above fast exponentiation algorithm is about half as
good as the best; more efficient algorithms are known. For example, Brickell,
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et. al. [41] developed a more efficient algorithm, using precomputed values
to reduce the number of multiplications needed. Their algorithm allows the
computation of ¢" for n < N in time O(log N/loglog N). They also showed
that their method can be parallelized, to compute powers in time O(loglog V)
with Q(log N/loglog N') processors.

2.1.6 Fast Group Operations on Elliptic Curves

The most fundamental computations on elliptic curves are the group opera-
tions of the type

kP=P@Pd-- 5P (2.31)
e — ——
E times

where P = (2. y) is a point on an elliptic carve £ : y? = 2 +ax +b, and k a
very large positive integer. Since the computation of kP is so fundamental in
all elliptic curve related computations and applications, it is desirable that
such computations be carried out as fast as possible. The basic idea of the
fast computation of AP is as follows:

1] Compute 2P, for i = 0,1,2,--- , 3 — 1, with 3 = [1L.442Ink + 1].

[2] Add together suitable multiples of P determined by the binary expansion

of k., to get kP.

Tor example, to compute kP where k = 232792560, we first compute:

3= |1.442Ink + 1| = 28,

then compute 2/P, for i = 0,1,2,---,27 as follows:
po2p 2P PP 2P .. 2PP 2%0p 2Yp

] | | I | I
202P)  2(22P)  222P) - 2(2Y'P)y 2(22°P) 2(2°%P)

By the binary expansion of k,
k= 232792360;() = 1101111060000010000111 11(](]001 e YA SR () 1 8 L

we add only those multiples that correspond to 1:

1 1 1 1 1 1 1 1 1 1 1
Tt 1 1 11 T
-2'27 22(5 221 223 -_'22 22'E 213 28 97 2 e

and ignore those multiples that correspond to 0:

925 920 919 9l% 917 9l6 9ld 911 9l2 Il 910 58 93 92 9l o0

Thus, we finally have:
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kP = 227P 22(;‘}7 - 23—1]) o 2‘_’31) -22213 e 2‘21 P
2P BPC PP 2P 2P
= 232792560 P.

Remarkably enough, the idea of repeated squaring for fast exponentia-
tions can be used almost directly for fast group operations (i.e., fast point
additions) on elliptic curves. The idea of fast group additions is as follows:
Let es_jes-n -+ cyeq be the binary representation of k. Then for i starting
from e;_; down to ey {e3_; is always 1 and used for initialization). check
whether or not e; = 1. If ¢; = 1. then perform a doubling and an addition
group operation; otherwise, just perform a doubling operation. For example,
to compute 89P, since 89 = 1011001, we have:

e 1 P ntialization

es O 2P doubling

ey 1 2Q2P)+ P doubling and addition
ey 1 2Q02P)+P)+ P doubling and addition
€ 0 2222P) + Py + P) doubling

er 0 22(2(22P)y+ P) + P)) doubling

ey 1 22(2(2(2(2P)+ PY+ P))) + P doubling and addition

I
89.r

The following algorithm implements this idea of repeated doubling and addi-
tion for computing kP,

Algorithm 2.1.2 (Fast group operations kP on elliptic curves).
This algorithm computes kP, where % is a large integer and P is assumed to
be a point on an elliptic curve E : 3y = 2% + ax + b. (Note that we do not
actually do the additions for the coordinates of P in this algorithm.)

[1] Write k in the binary expansion form k = e3_ e3¢ co, where each e;
is either 1 or 0. (Assume k has 7 bits.)

{2] Set ¢ « 0.
[3] Compute kP:

for i from 3 — 1 down to 0 do
¢+ 2¢ {doubling);
if ¢; = 1 then ¢ + ¢+ P; (addition)

[4] Print ¢; {now ¢ = kP)
Example 2.1.6. Use Algorithm 2.1.2 to compute 105P. Let
k=105 = 1101001 := egezeqegeaeyep.

At the initial stage of the algorithm, we set ¢ = 0. Now, we perform the
following computation steps according to Algorithm 2.1.2:
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eg=1 ce P+2c = c& P = =P

ez =1: e P+2c = ¢+ P+2P = c=3P
eg =0 0 2¢ = ¢« 2P +2P) = =6
ea=1: ¢ P+2¢ == ¢+ P4+22(P+2P)) = c=13F
eo = 0: ¢+ 2c = ¢+ 2P +22P+2P)) = ¢ =26F
er =0 ¢4 2c = ¢« 202(P +202(P+2P)) = = 32P
eo=1: ¢ P+2c = ¢+ P+20202(P+22(P+2P))}) = ¢=105F.

That is, P+ 2(2(2(P + 2(2(P + 2P))))) = 105P.

Example 2.1.7. Suppose we wish to compute k7 mod 1997, where & =
9007 = 100011001011115. The computation can be summarized in the follow-
ing table which shows the values of (i, e;,¢) for each execution of the “for”
loop in Algorithm 2.1.2 {plus an additional modular operation “mod 1997"
at the end of each loop):

i3 12 11 10 9 8 7 6 e 1 0
1 0 0 0 1 1 0 0 e 1 1 1
P 2p 4P 8P 17P 35P T70P 140P ... 234P  509P  1019P

The final result of the computation is ¢ = 1019P (mod 1997). It is clear that
the above computation will need at most log 9007 arithmetic operations.

Note that Algorithm 2.1.2 does not actually calculate the coordinates
{z,y) of kP on an elliptic curve over (@ or over Z/NZ. To make Algorithm
2.1.2 a practically useful algorithm for point additions on an elliptic curve E,
we must incorporate the actual coordinate addition Py(xs,y3) = Pz, ) +
Py(xy.y2) on E into the algorithin. To do this, we use the following formulas
to compute xy and y3 for Py:

(z3,y3) = (A — a2y — 22, My —x3) — 1),

where ,
3ri+a .
e S if Ph="F
A= 2
Y1 — 2 .
— otherwise.
€T — Lo

Algorithm 2.1.3 (Fast group operations £ on elliptic curves).
This algorithm will compute the point kP mod &, where k € Z7 and P is an
initial point (2.} on an elliptic curve £ : y* = r° + ar + b over Z/NZ; if
we require E over ), just compute kP, rather than kP mod N, Let the initial
point P = {iry.y1}, and the result point 7 = (&, y.).
[1] [Precomputation] Write k in the following binary expansion form &k =
€3 1€5_2 - -e1ep. {Suppose k has 7 bits).
[2] [initialization] Initialize the values for a, x| and y;. Let (x..y.) = (x1.41);
this is exactly the computation task for e; (e, always equals 1}.
[3] [Doublings and Additions] Computing kP mod N:
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for ¢ from 3 - 2 down to 3 do
Iy 4 SIf +amod N
my ¢ 2y, mod N
M+ my/mrmod N
a3 & M?% —2r, mod N
ys — Mz, — 212} — y- mod N
Tp — Ty
Yo U3
If e; = 1
then ¢ « 2c+ P
my ¢~y — iy mod N
ms & x. —ax; mod N
My /fmamod N
x5 M>—x —x.mod N
4y — M{ry —23) —yy mod N
T I3
Ye < U3
else ¢ + 2¢

[4] [Exit] Print (¢, 2. y.) and terminate the algorithm. (Note that this algorithm
will stop whenever in; /m» = Op (mod N), that is, it will stop whenever a
modular inverse does not exit at any step of the computation.)

Exercise 2.1.6. Let
E:y =z —0r—1

be an elliptic curve over Z /10984137 and P = (0,1) a point on E. Use
Algorithm 2.1.3 to compute the coordinates {x,y) of the points kP on E
over Z /10984137 for k = 8,31,92.261,513, 875, 7892, 10319P. Find also the
smallest integral values of k& such that kP = (467314.689129) and kP =
(965302, 895958), respectively.

Theorem 2.1.5. Suppose that an elliptic curve E is defined by any one
of the equations of (1.309). (1.310) and (1.311), over a finite field IF, with
q = p" a prime power. Given P> € E, the coordinates of kP can be computed
by Algorithm 2.1.3 in O(log k) group operations and O ({log k)(log p)*) bit
operations. That is,

Time(kP) = O4(logk). {2.32)
= Op(logh)logq)?). {2.33)

Note that both the fast modular exponentiation ¢* mod n and the elliptic
curve group operation k2 mod n are very well suited for parallel computa-
tion. For example, a naive parallel algorithm to compute kP could be as
follows:
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begin parallel
for i from iy to Ologk) do
compute 2' P
end parallel
compute ¢ = 5 2'P

(Tt is assumed that we have sequentially tried all the small values up to ig.)
With this naive algorithm kF7 can be computed in Ologlogk) group op-
erations with OQ(log k) processors. For example, at most 28 processors will
be needed to compute 232792560P and at most 5 group operations will be
needed for each of these processors. Brickell. Gordon and McCurley [41] de-
veloped a parallel algorithm for computing «" in Ologlog k) arithmetic op-
erations and O(log k/ loglog k) processors. It seems reasonable to conjecture
that &P can also be computed in O(loglog k) elliptic curve group operations
with O(log k/ loglog k) processors.

2.2 Algorithms for Primality Testing

It would be interesting to know, for evample, what the sitwotion is with
the determination if a number is a prime, and in general how mueh we
can reduce the number of steps from the method of simply trying for finite
combinatoriel problems.

Kurt GODEL (19061978}

2.2.1 Deterministic and Rigorous Primality Tests

The primality testing problem (PTP) may be described as the following simple
decision (i.e.. yes/no) problent:

Input : n €N with n> 1.

_ Yes, if n € Primes, (2.34;
Qutput : ]
No, otherwise.

In theory it is easy to determine if a given positive integer » > 11s prime:
simply verify that n is not divisible by any of the integers from 2 up ro n/2
(the largest possible factor of n). Since any divisor of n is itself a product of
primes. we need only check to see if n is divisible by the primes from 2 up to
n/2. The following test however will reduce the amount of work considerably.

Theorem 2.2.1 (Primality test by trial divisions). Let > L If n has
no prime factor less than or equal to Vv, then n is prime.
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With this test we just try to divide n by each prime number from 2 