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Preface

The present book is a new revised and updated version of “Number Theory
I. Introduction to Number Theory” by Yu.l.Manin and A.A.Panchishkin, ap-
peared in 1989 in Moscow (VINITI Publishers) [Ma-PaM], and in English
translation [Ma-Pa] of 1995 (Springer Verlag).

The original book had been conceived as a part of a vast project, “En-
cyclopaedia of Mathematical Sciences”. Accordingly, our task was to provide
a series of introductory essays to various chapters of number theory, lead-
ing the reader from illuminating examples of number theoretic objects and
problems, through general notions and theories, developed gradually by many
researchers, to some of the highlights of modern mathematics and great, some-
times nebulous designs for future generations.

In preparing this new edition, we tried to keep this initial vision intact. We
present many precise definitions, but practically no complete proofs. We try
to show the logic of number-theoretic thought and the wide context in which
various constructions are made, but for detailed study of the relevant materials
the reader will have to turn to original papers or to other monographs. Because
of lack of competence and/or space, we had to - reluctantly - omit many
fascinating developments.

The new sections written for this edition, include a sketch of Wiles’ proof
of Fermat’s Last Theorem, and relevant techniques coming from a synthesis
of various theories of Part II; the whole Part III dedicated to arithmetical
cohomology and noncommutative geometry; a report on point counts on va-
rieties with many rational points; the recent polynomial time algorithm for
primality testing, and some others subjects.

For more detailed description of the content and suggestions for further
reading, see Introduction.



VI Preface

We are very pleased to express our deep gratitude to Prof. M.Marcolli
for her essential help in preparing the last part of the new edition. We are
very grateful to Prof. H.Cohen for his assistance in updating the book, es-
pecially Chapter 2. Many thanks to Prof. Yu.Tschinkel for very useful sug-
gestions, remarks, and updates; he kindly rewrote §5.2 for this edition. We
thank Dr.R.Hill and Dr.A.Gewirtz for editing some new sections of this edi-
tion, and St.Kiihnlein (Universitidt des Saarlandes) for sending us a detailed
list of remarks to the first edition.

Bonn, July 2004 Yu.l.Manin
A_.A Panchishkin
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Introduction

Among the various branches of mathematics, number theory is characterized
to a lesser degree by its primary subject (“integers”) than by a psychologi-
cal attitude. Actually, number theory also deals with rational, algebraic, and
transcendental numbers, with some very specific analytic functions (such as
Dirichlet series and modular forms), and with some geometric objects (such
as lattices and schemes over Z). The question whether a given article belongs
to number theory is answered by its author’s system of values. If arithmetic
is not there, the paper will hardly be considered as number—theoretical, even
if it deals exclusively with integers and congruences. On the other hand, any
mathematical tool, say, homotopy theory or dynamical systems may become
an important source of number—theoretical inspiration. For this reason, com-
binatorics and the theory of recursive functions are not usually associated
with number theory, whereas modular functions are.

In this book we interpret number theory broadly. There are compelling
reasons to adopt this viewpoint.

First of all, the integers constitute (together with geometric images) one of
the primary subjects of mathematics in general. Because of this, the history
of elementary number theory is as long as the history of all mathematics, and
the history of modern mathematic began when “numbers” and “figures” were
united by the concept of coordinates (which in the opinion of I.R.Shafarevich
also forms the basic idea of algebra, see [Sha87]).

Moreover, integers constitute the basic universe of discrete symbols and
therefore a universe of all logical constructions conceived as symbolic games.
Of course, as an act of individual creativity, mathematics does not reduce
to logic. Nevertheless, in the collective consciousness of our epoch there does
exist an image of mathematics as a potentially complete, immense and pre-
cise logical construction. While the unrealistic rigidity of this image is well
understood, there is still a strong tendency to keep it alive. The last but not
the least reason for this is the computer reality of our time, with its very
strict demands on the logical structure of a particular kind of mathematical
production: software.



2 Introduction

It was a discovery of our century, due to Hilbert and G&del above all,
that the properties of integers are general properties of discrete systems and
therefore properties of the world of mathematical reasoning. We understand
now that this idea can be stated as a theorem that provability in an arbitrary
finitistic formal system is equivalent to a statement about decidability of a
system of Diophantine equations (cf. below). This paradoxical fact shows that
number theory, being a small part of mathematical knowledge, potentially
embraces all this knowledge. If Gauss’ famous motto on arithmetic *) needs
justification, this theorem can be considered as such.

We had no intention of presenting in this report the whole of number theo-
ry. That would be impossible anyway. Therefore, we had to consider the usual
choice and organization problems. Following some fairly traditional classifica-
tion principles, we could have divided the bulk of this book into the following
parts:

1. Elementary number theory.

. Arithmetic of algebraic numbers.

3. Number-theoretical structure of the continuum (approximation theory,
transcendental numbers, geometry of numbers Minkowski style, metric
number theory etc.).

4. Analytic number theory (circle method, exponential sums, Dirichlet series
and explicit formulae, modular forms).

5. Algebraic-geometric methods in the theory of Diophantine equations.

6. Miscellany (“wastebasket”).

[N

We preferred, however, a different system, and decided to organize our subject
into three large subheadings which shall be described below. Because of our
incompetence and/or lack of space we then had to omit many important
themes that were initially included into our plan. We shall nevertheless briefly
explain its concepts in order to present in a due perspective both this book
and subsequent number-theoretical issues of this series.

Part I. Problems and Tricks

The choice of the material for this part was guided by the following principles.

In number theory, like in no other branch of mathematics, a bright young
person with a minimal mathematical education can sometimes work wonders
using inventive tricks. There are a lot of unsolved elementary problems waiting

“... Mathematik ist die Konigin von Wissenschaften und Arithmetik die Koni-
gin von Mathematik. ...in allen Relationen sie wird zum ersten Rank erlaubt.”
-Gauss. ..., cf. e.g. http://www.geocities.com/RainForest/Vines/2977
/gauss/deutsch/quotes.html (“Mathematics is the queen of sciences and arith-
metic the queen of mathematics. She often condescends to render service to as-
tronomy and other natural sciences, but in all relations she is entitled to the first
rank.” -Gauss. Sartorius von Walterhausen: Gauss zum Gedéchtniss. (Leipzig,
1856), p.79.)
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for fresh approaches. Of course, good taste is still necessary, and this comes
with long training. Also, nobody can tell a priori that, say, the ancient problem
on the pairs of “friendly numbers” is a bad one, while the Fermat conjecture is
a beauty but it cannot be approached without seriously developed technique.
Elementary number theory consists of many problems, posed, solved and
developed into theorems in the classical literature (Chapter 1), and also of
many tricks which subsequently grew into large theories. The list of such
tricks is still growing, as Apéry’s proof of the irrationality of {(3) shows. Any
professional mathematician can gain by knowing some of these stratagems.
In order not to restrict ourselves to very well known results we emphasize
algorithmic problems and such modern applications of number theory as pub-
lic key cryptography (Chapter 2). In general, the number-theoretical methods
of information processing, oriented towards computer science (e.g. the fast
Fourier transform) have revitalized the classical elementary number theory.

Part II. Ideas and Theories

In this part we intended to explain the next stage of the number-theoreti-
cal conceptions, in which special methods for solving special problems are
systematized and axiomatized, and become the subject-matter of monographs
and advanced courses.

From this vantage point, the elementary number theory becomes an imag-
inary collection of all theorems which can be deduced from the Peano axioms,
of which the strongest tool is the induction axiom. It appears in such a role in
meta-mathematical investigations and has for several decades been developed
as a part of mathematical logic, namely the theory of recursive functions.
Finally, since the remarkable proof of Matiyasevich’s theorem, a further ac-
complished number-theoretical fragment has detached itself from this theory
— the theory of Diophantine sets.

A Diophantine set is any subset of natural numbers that can be defined
as a projection of the solution set of a system of polynomial equations with
integral coefficients. The Matiyasevich theorem says that any set generated
by an algorithm (technically speaking, enumerable or listable) is actually Dio-
phantine. In particular, to this class belongs the set of all numbers of provable
statements of an arbitrary finitely generated formal system, say, of axioma-
tized set—theoretical mathematics (Chapter 3).

The next large chapter of modern arithmetic (Chapter 4) is connected with
the extension of the domain of integers to the domain of algebraic integers.
The latter is not finitely generated as a ring, and only its finitely generated
subrings consisting of all integers of a finite extension of QQ preserve essential
similarity to classical arithmetic. Historically such extensions were motivated
by problems stated for Z, (e.g. the Fermat conjecture, which leads to the
divisibility properties of cyclotomic integers). Gradually however an essen-
tially new object began to dominate the picture — the fundamental symmetry
group of number theory Gal(Q/Q). It was probably Gauss who first under-
stood this clearly. His earliest work on the construction of regular polygons by
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ruler-and-compass methods already shows that this problem is governed not
by the visible symmetry of the figure but by the well-hidden Galois symmetry.
His subsequent concentration on the quadratic reciprocity law (for which he
suggested seven or eight proofs!) is striking evidence that he foresaw its place
in modern class—field theory. Unfortunately, in most modern texts devoted to
elementary number theory one cannot find any hint of explanation as to why
quadratic reciprocity is anything more than just a curiosity. The point is that
primes, the traditional subject matter of arithmetic, have another avatar as
Frobenius elements in the Galois group. Acting as such upon algebraic num-
bers, they encode in this disguise of symmetries much more number-theoretical
information than in their more standard appearance as elements of Z.

The next two chapters of this part of our report are devoted to algebraic-
geometric methods, zeta—functions of schemes over Z, and modular forms.
These subjects are closely interconnected and furnish the most important
technical tools for the investigation of Diophantine equations.

For a geometer, an algebraic variety is the set of all solutions of a system of
polynomial equations defined, say, over the complex numbers. Such a variety
has a series of invariants. One starts with topological invariants like dimension
and (co)homology groups; one then takes into account the analytic invariants
such as the cohomology of the powers of the canonical sheaf, moduli etc. The
fundamental idea is that these invariants should define the qualitative features
of the initial Diophantine problem, for example the possible existence of an
infinity of solutions, the behaviour of the quantity of solutions of bounded size
etc. (see Chapter 5). This is only a guiding principle, but its concrete realiza-
tions belong to the most important achievements of twentieth century number
theory, namely A.Weil’s programme and its realization by A.Grothendieck and
P.Deligne, as well as G.Faltings’ proof of the Mordell conjecture.

Zeta—functions (see Chapter 6) furnish an analytical technique for refining
qualitative statements to quantitative ones. The central place here belongs to
the so called “explicit formulae”. These can be traced back to Riemann who in
his famous memoir discovered the third avatar of primes — zeroes of Riemann’s
zeta function. Generally, arithmetical functions and zeroes of various zetas are
related by a subtle duality. Proved or conjectured properties of the zeroes are
translated back to arithmetic by means of the explicit formulae. This duality
lies in the heart of modern number theory.

Modular forms have been known since the times of Euler and Jacobi. They
have been used to obtain many beautiful and mysterious number-theoretical
results. Simply by comparing the Fourier coeflicients of a theta-series with its
decomposition as a linear combination of Eisenstein series and cusp forms,
one obtains a number of remarkable identities. The last decades made us
aware that modular forms, via Mellin’s transform, also provide key informa-
tion about the analytic properties of various zeta—functions.

The material that deserved to be included into this central part of our re-
port is immense and we have had to pass in silence over many important devel-
opments. We have also omitted some classical tools like the Hardy—Littlewood
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circle method and the Vinogradov method of exponential sums. These were
described elsewhere (see [Vau81-97], [Kar75], ...). We have said only a few
words on Diophantine approximation and transcendental numbers, in partic-
ular, the Gelfond—Baker and the Gelfond—Schneider methods (see [FelNes98|,
[Bak86], [BDGP9I6], [Wald2000], [Ch-L01], [Bo90]...).

The Langlands program strives to understand the structure of the Galois
group of all algebraic numbers and relates in a series of deep conjectures the
representation theory of this group to zeta—functions and modular forms.

Finally, at the end of Part II we try to present a comprehensive exposi-
tion of Wiles’ marvelous proof of Fermat’s Last Theorem and the Shimura—
Taniyama—Weil conjecture using a synthese of several highly developed the-
ories such as algebraic number theory, ring theory, algebraic geometry, the
theory of elliptic curves, representation theory, Iwasawa theory, and defor-
mation theory of Galois representations. Wiles used various sophisticated
techniques and ideas due to himself and a number of other mathemati-
cians (K.Ribet, G.Frey, Y.Hellegouarch, J.—M.Fontaine, B.Mazur, H.Hida, J.—
P.Serre, J. Tunnell, ...). This genuinely historic event concludes a whole epoque
in number theory, and opens at the same time a new period which could be
closely involved with implementing the general Langlands program. Indeed,
the Taniyama—Weil conjecture may be regarded as a special case of Langlands’
conjectural correspondence between arithmetical algebraic varieties (motives),
Galois representations and automorphic forms.

Part II1. Analogies and Visions

This part was conceived as an illustration of some basic intuitive ideas that
underlie modern number—theoretical thinking. One subject could have been
called Analogies between numbers and functions. We have included under this
heading an introduction to Non—commutative geometry, Arakelov geometry,
Deninger program, Connes’ ideas on Trace formula in noncommutative Geom-
etry and the zeros of the Riemann zeta function ...Note also the excellent
book [Huls94] which intends to give an overview of conjectures that dominate
arithmetic algebraic geometry. These conjectures include the Beilinson conjec-
tures, the Birch-Swinnerton-Dyer conjecture, the Shimura-Taniyama-Weil and
the Tate conjectures, . ... Note also works [Ta84], [Yos03], [Man02],[Man02a]
on promising developments on Stark’s conjectures.

In Arakelov theory a completion of an arithmetic surface is achieved by
enlarging the group of divisors by formal linear combinations of the “closed
fibers at infinity”. The dual graph of any such closed fiber can be described
in terms of an infinite tangle of bounded geodesics in a hyperbolic handle-
body endowed with a Schottky uniformization. In the last Chapter 8, largerly
based on a recent work of Caterina Consani and Matilde Marcolli, we consider
arithmetic surfaces over the ring of integers in a number field, with fibers of
genus g > 2. One can use Connes’ theory to relate the hyperbolic geometry to
Deninger’s Archimedean cohomology and the cohomology of the cone of the
local monodromy N at arithmetic infinity.
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We use the standard system of cross—referencing in this book.

Suggestions for further reading

A number of interesting talks on Number Theory can be found in the pro-
ceedings of the International Congresses of Mathematicians in Beijing, 2002,
in Berlin, 1998 and in Ziirich, 1994 (see [[CMO02], [ICM98], [ICM94]).

A quite complete impression on development of number-theoretic sub-
jects can be obtained from Bourbaki talks : [Des90], [Bert92], [Fon92], [Oe92],
[Clo93], [Se94], [Bo95], [Se9d5], [0e95], [Goo96], [Kon96| [Loed6], [Wald96],
[AbbI7], [Falog], [Mich98], [Colm2000], [Breu99], [Ma99], [Edx2000], [Ku2000],
[Car02], [HenO1|, [Pey02], [Pey04], [Coa01], [Colm01], [Colm03], [Bi02].

For a more detailed exposition of the theory of algebraic numbers, of Dio-
phantine geometry and of the theory of Transcendental numbers we refer the
reader to the volumes Number Theory II, III, and IV of Encyclopaedia of
Mathematical Sciences see [Koch97], [La9dl|, [FelNes98], the excellent mono-
graph by J.Neukirch [Neuk99] (completed by [NSW2000]). We recommend
also Lecture Notes [CR0O1| on Arithmetic algebraic geometry from Graduate
Summer School of the IAS/Park City Mathematics Institute.
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Problems and Tricks
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Number Theory

1.1 Problems About Primes. Divisibility and Primality

1.1.1 Arithmetical Notation

The usual decimal notation of natural numbers is a special case of notation
to the base m. An integer n is written to the base m if it is represented in the
form

n=dg_1m* !t +dj_omF 2+ 4 dy

where 0 < d; < m — 1. The coefficients d; are called m—ary digits (or simply
digits). Actually, this name is often applied not to the numbers d; but to the
special signs chosen to denote these numbers. If we do not want to specify
these signs we can write the m—ary expansion as above in the form n =
(dk—1dg—2 . ..d1do)m. The number of digits in such a notation is

k = [log,, n] +1 = [logn/logm] + 1

where [ | denotes the integral part. Computers use the binary system; a binary
digit (0 or 1) is called a bit. The high school prescription for the addition of
a k-bit number and an [-bit number requires max(k,) bit—operations (one
bit—operation here is a Boolean addition and a carry). Similarly, multipli-
cation requires < 2kl bit-operations (cf. [Knu81], [Kob94]). The number of
bit—operations needed to perform an arithmetical operation furnishes an es-
timate of the computer working time (if it uses an implementation of the
corresponding algorithm). For this reason, fast multiplication schemes were
invented, requiring only O(klog kloglog k) bit—operations for the multiplica-
tion of two < k-bit numbers, instead of O(k?), cf. [Knu81|. One can also
obtain a lower bound: there exists no algorithm which needs less than sous
certaines restrictions naturelles on peut démontrer qu’il n’existe pas d’algo-
rithme de multiplication des nombres & k chiffres avec le temps d’exécution
inférieur & (klogk/(loglog k)?) bit—operations for the multiplication of two
general < k—bit numbers.
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Notice that in order to translate the binary expansion of a number n into
the m—ary expansion one needs O(k?) bit-operations where k = logyn. In
fact, this takes O(k) divisions with remainder, each of which, in turn, requires
O(kl) bit-operations where [ = log, m.

We have briefly discussed some classical examples of algorithms. These
are explicitly and completely described procedures for symbolic manipulation
(cf. [Marb4], [GI79], [Man80], [Ma99]). In our examples, we started with the
binary expansions of two integers and obtained the binary expansion of their
sum or product, or their m—ary expansions. In general, an algorithm is called
polynomial if the number of bit—operations it performs on data of binary length
L is bounded above by a polynomial in L. The algorithms just mentioned are
all polynomial (cf. [Kob94], [Knu81], [Ma99], [Ries85]).

1.1.2 Primes and composite numbers

The following two assertions are basic facts of number theory: a) every natural
number 7 > 1 has a unique factorization n = p{*p5?...p% where p; <
P2 -+ < pr are primes, a; > 0; b) the set of primes is infinite.

Any algorithm finding such a factorization also answers a simpler ques-
tion: is a given integer prime or composite? Such primality tests are important
in themselves. The well known FEratosthenes sieve is an ancient (3rd century
B.C.) algorithm listing all primes < n. As a by—product, it furnishes the small-
est prime dividing n and is therefore a primality test. As such, however, it is
quite inefficient since it takes > n divisions, and this depends exponentially
on the binary length of n. Euclid’s proof that the set of primes cannot be
finite uses an ad absurdum argument: otherwise the product of all the primes
augmented by one would have no prime factorization. A more modern proof
was given by Euler: the product taken over all primes

H<1_;>_1:H<1+;+pl2+-~-) (1.1.1)

p p

would be finite if their set were finite. However, the r.h.s. of (1.1.1) reduces to
the divergent harmonic series > -, n~! due to the uniqueness of factorization.
Fibonacci suggested a faster primality test (1202) by noting that the small-
est non—trivial divisor of n is < [\/n] so that it suffices to try only such numbers
(cf. [Wag86], [APRS3]).
The next breakthrough in primality testing was connected with Fermat’s
little theorem (discovered in the seventeenth century).

Theorem 1.1 (Fermat’s Little Theorem). If n is prime then for any in-
teger a relatively prime to n

a" ' = 1(mod n), (1.1.2)
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(It means that n divides a”~! — 1). The condition (1.1.2) (with a fixed a) is
necessary but generally not sufficient for n to be prime. If it fails for n, we
can be sure that n is composite, without even knowing a single divisor of it.
We call n pseudoprime w.r.t. a if ged(a,n) = 1 and (1.1.2) holds. Certain
composite numbers n = 561 =3-11-17, 1106 =5-13-17, 1729 =7-13-19
are pseudoprime w.r.t. all a (relatively prime to n). Such numbers are called
Carmichael numbers (cf. [Kob94], [LeH.80]). Their set is infinite (it was proved
in [AGP94]). For example, a square-free n is a Carmichael number iff for any
prime p dividing n, p — 1 divides n — 1.

A remarkable property of (1.1.2) is that it admits a fast testing algorithm.
The point is that large powers ™ mod n can be readily computed by repeated
squaring. More precisely, consider the binary representation of n — 1:

m=n—1=dp_12"" "+ dp_o+---+do

with dp,_1 = 1. Put r; = a mod n and

Z-2H10d n if dk—l—i =1

~_J)r?mod n ifdp_1-,=0
Ti+1 =
ar

Then ¢" ! = r;, mod n because
a1l = (... ((a2+d"‘—2)2ad’“—3)2 o )ado.

This algorithm is polynomial since it requires only < 3[log, n] multiplica-
tions mod n to find ri. It is an important ingredient of modern fast primal-
ity tests using the Fermat theorem, its generalizations and (partial) converse
statements.

This idea was used in a recent work of M. Agrawal, N. Kayal and N.
Saxena: a polynomial version of (1.1.2) led to a fast deterministic algorithm
for primality testing (of polynomial time O(logn)!2*¢), cf. §2.2.4.

Fermat himself discovered his theorem in connection with his studies of
the numbers F,, = 22" —1. He believed them to be prime although he was able
to check this only for n < 4. Later Euler discovered the prime factorization
F5 = 4294967297 = 641 - 6700417. No new prime Fermat numbers have been
found, and some mathematicians now conjecture that there are none.

The history of the search for large primes is also connected with the Mer-
senne primes M,, = 2P —1 where p is again a prime. To test their primality one
can use the following Lucas criterion: My (k > 2) is prime iff it divides Ly_1
where L,, are defined by recurrence: Ly = 4, L, 41 = LEL—2. This requires much
less time than testing the primality of a random number of the same order
of magnitude by a general method. Mersenne’s numbers also arise in various
other problems. Euclid discovered that if 2P — 1 is prime then 2P71(2P — 1) is
perfect i.e. is equal to the sum of its proper divisors (e.g. 6 =1+2+3, 28 =
14+2+4+7+14, 496 =1+4+2+4+54 16+ 31 + 62 + 124 + 248), and
Euler proved that all even perfect numbers are of this type. It is not known
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whether there are any odd perfect numbers, and this is one baffling example of
a seemingly reasonable question that has not lead to any number-theoretical
insights, ideas or tricks worth mentioning here.

Euler also knew the first eight prime Mersenne numbers (corresponding to
p=2 3,5 7, 13, 19, 31. Recently computer-assisted primality tests have
furnished many new Mersenne primes, e.g. the 42nd known Mersenne prime,
discovered by Dr. Martin Nowak on February 26 (2005), is 22%:964.951 —1_ Tt has
7,816,230 decimal digits. It is therefore not only the largest known Mersenne
prime, but also the largest known prime of any kind.*)

In Chapter 4 we consider some other modern methods of primality testing,
in particular using elliptic curves (ECPP by Atkin—Morain).

1.1.3 The Factorization Theorem and the Euclidean Algorithm

For integers a,b we write a|b if a divides b i.e., b = ad for some integer d. If
p is a prime and p® is the highest power of p dividing n we write p*||n and
a = ordyn. The factorization theorem can be easily deduced from its special
case: if a prime p divides ab then either pla or p|b. Below we shall prove this
property using the Euclidean algorithm. Knowing the prime factorizations of
a and b one readily sees the existence and the explicit form of the greatest
common divisor ged(a,b) and the least common multiple lem(a, b). Namely,
put m, = min(ord,(a),ord, (b)), g, = max(ordy(a),ord,(b)). Then

ged(a, b) I_Ipmfﬂ7 lem(a, b) Hpgp

Again, the Euclidean algorithm allows us to prove the existence and to find
efficiently ged(a,b) without even knowing the prime factorizations. Assume
that a > b > 1. The algorithm consists of calculating a sequence g, x1, Z2, ...
where g = a, 1 = b and x;41 is the residue of z;_1 modulo z;. One stops
when xp = 0; then zp_1 = ged(a,b). The number of required divisions is
bounded by 5log,;,max(a,b) (Lamé’s theorem) (cf. [Knu81], [Wun85]). The
slowest instances for the Euclidean algorithm are the neighbouring Fibonacci
numbers a = ug, b = ug_; where up = u; = 1 and w41 = u; + u;—1. The
Euclidean algorithm also furnishes a representation

ged(a,b) = Aa + Bb (1.1.3)

where A, B are integers. In order to find these, we shall consecutively define
pairs (4;, B;) such that ©; = A;x9 + Bjz1. Put Ag=B; =1, Ay =By =0
and for 7 > 1

* See http://www.mersenne.org and http://mathworld.wolfram.com/news/ for
updates and for the history, e.g. two previous values are 20996011 and 24036583.
Another recent record is the factorization of Moss (Bahr F., Franke J. and Klein-
jung T. (2002) (footnotes by Yu.Tschinkel and H.Cohen).
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Aiy1=Ai1 —tA;, Biy1 =B 1 —tB;

where t is given by z;41 = x;—1 —tz;. Since ged(a,b) = xp_1 we can take A =
Ajg_1, B = Bi_1. Finally, if p|ab for a prime p and p does not divide a then
ged(a, p)=1 so that Aa+ Bp = 1 for some integers A, B. Hence Aab+ Bpb =b
and p divides b.

1.1.4 Calculations with Residue Classes

From the algebraic viewpoint, the set of integers Z is an associative commu-
tative ring with identity. The general divisibility theory in such rings uses the
fundamental notion of an ideal. An ideal I in a ring R is a subset which is an
additive subgroup with the property RIR C I.

An ideal of the form I = aR, a € A is called a principal ideal and is
denoted (a). The divisibility relation a|b is equivalent to the inclusion relation

(b) C(a) or be(a).

Any ideal I of Z must be principal since its elements are all divisible by the
smallest positive element of 1. The maximal ideals (ordered by inclusion) are
precisely those which are generated by primes. The numbers having the same
remainder after division by a fixed N, form N classes with pairwise empty
intersections

a=a+NZ, 0<a<N-—-1,

the set of which also has a natural commutative associative ring structure
with identity
Z/NZ =17/(N)={0,1,...,N —1}.

We traditionally write @ = b (mod N) in place of @ = b. Often one succeeds in
reducing some calculations in Z to calculations in an appropriate residue Ting
Z/NZ. Besides finiteness, one useful property of this ring is the abundance of
invertible elements (while in Z there are only +1). Actually, a is invertible iff
ged(a, N) = 1 since the equation ax + Ny = 1 or, equivalently, a.Z = 1 can be
solved exactly in this case with integers x, y. The group of all invertible residue
classes is denoted (Z/N7Z)*. Its order ¢(N) is called Euler’s function. Euler
introduced it in connection with his generalization of the Fermat theorem:

a*™) = 1(mod N) (1.1.4)

for any a relatively prime to N, i.e. a?N) = 1 for any invertible element
@ in Z/NZ. Euler’s conceptual proof shows in fact that in a finite Abelian
group of order f the order of an arbitrary element a divides f. In fact, the
multiplication by a is a permutation of the set of all elements. The product
of all elements is multiplied by af under this map. Hence o/ = 1.

If N = NyNy...N and N; are pairwise coprime we have a canonical
isomorphism
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ZINZ=Z/N\Z & --- ® ZL/N}Z. (1.1.5)

The main part of this statement is called the Chinese Remainder Theorem : for
any a; mod N;, ¢=1,...,k there exists an a such that a = a; mod N; for
all 7. Again, such an a can be efficiently found using the Euclidean algorithm.
Put M; = N/N;. By assumption, M; and N; are relatively prime. Find X,
with X;M; =1 mod N, and put

k
i=1

This is what we sought. From (1.1.5) we deduce the corresponding factoriza-
tion of the multiplicative group

(Z/NZ)* = (Z/N\Z)* & --- & (Z/NyZ)*™, (1.1.7)

which shows in particular that ¢(N) = p(Ny)...o(Ng). Since for a prime
p we have ¢(p?) = p®~1(p — 1) this allows us to find ¢(IN) given the prime
factorization of .

In the special case when N = ¢ is prime the ring Z/NZ is a field: all its
non-zero elements are invertible. For a prime p, the notation [F,, is used for
the field Z/pZ. The group (Z/NZ)* is cyclic: it coincides with the set of all
powers of an element ¢ = ¢, (it is not unique). No efficient (e.g. polynomial)
algorithm for finding such a primitive root is known.

Recall Artin’s conjecture (on primitive roots): If @ € Z is not —1 or a perfect
square, then the number N (z, a) of primes p < x such that a is a primitive root
modulo p is asymptotic to C(a)w(z), where C(a) is a constant that depends
only on a. In particular, there are infinitely many primes p such that a is a
primitive root modulo p. (Note that another famous Artin’s conjecture (on
the holomorphy of L series) will be discussed in §6.4.5). Nobody has proved
this conjecture (on primitive roots) for even a single choice of a. There are
partial results, e.g., that there are infinitely many p such that the order of a
is divisible by the largest prime factor of p—1. (See, e.g., [Mor93] and [HBS86],
[BrGo02]). Neither can one efficiently compute the “discrete logarithm”, (or
index) x = ind;(a) defined for an invertible a mod ¢ by

a=t"mod ¢, 0<x<qg-—1. (1.1.8)

It is an important unanswered question whether such algorithms exist at all.
However, there are fast ways for calculating ind; if all prime divisors of ¢ — 1
are small (cf. [Kob94]). First of all, one computes for all p dividing ¢ — 1 the
residue classes

rpy =tV =01 p—1

lying in (Z/qZ)*. This can be efficiently done by the iterated squaring method
(cf. 1.1.2). Let o, = ord, (¢ — 1). It suffices to compute all the residues = mod
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p®? and then to apply the Chinese Remainder Theorem (1.1.5). We fix p,
o = oy > 0 and try to to find x mod p® in the form

T=zo+T1p+ -+ Tao1p® '(mod p*),  0<z; <p-1.

Since a?~! = 1 mod ¢ the residue al9=D/? is a p' root of unity. From a =
t* mod g it follows that

ala= /P = =a=D/p — ywola=1)/p — . (mod g).

Therefore we can find the first digit 29 by computing a(?~1/? and comparing
it with the precomputed list of 7, ;. In order to find the next digit x; we first
replace a by a; = a/t*°. Then we have

ind;(a;) = inds(a) — o = z1p + - - - + 2,p™ *(mod p*).

As a; is a p'™ power we obtain from here agqfl)/p = 1mod ¢ and

agq—l)/i’z = te=m0) (= D/P* = y@tprat )@ D/p = ymile-D/p =

Therefore, one can discover 1 by finding agq_l)/ P among the precomputed
list of r}, ;. One computes the other digits z; in the same way. The same list
can be used for various a’s, ¢ and ¢ being fixed. This is the Silver—Pollig—
Hellman algorithm, cf. [Kob94]. It becomes impractical if ¢ — 1 is divisible by
a large prime because then the table of r, ; becomes too long. The difficulty
of computing ind (and the general factorization problem) is utilized in cryp-
tography (cf. Chapter 2, §2.1.6, [DH76|, [Hel79], [ARST78] , [Od184] , [OdI87],
[Go02]).

1.1.5 The Quadratic Reciprocity Law and Its Use

Let p and ¢ be odd primes. The main part of the quadratic reciprocity law first
proved by Gauss, states that if p = ¢ = 3 mod 4 then the solvability of one
of the congruences 22 = pmod ¢ and 22 = ¢ mod p implies the insolvability
of the other; in all other cases they are simultaneously solvable or unsolvable.
Gauss used this in order to compile large tables of primes.

To this end, he refined the primality test based on Fermat’s congruence

(1.1.2). Namely, define the Legendre symbol (%) for a prime n by
0 if a =0 mod n,

(ﬁ): 1 if a = b% mod n,
—1 otherwise.

Then from the cyclicity of (Z/nZ)* it follows that
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an/2 = (g) (mod n). (1.1.9)
n

If n is not prime we define the Jacobi symbol by multiplicativity: for an odd
positive n = p1ps ... pr where p; are primes, not necessarily distinct, put

-G)G)

Now formula (1.1.9), which holds for the Jacobi symbol when n is prime,
can be used as a primality test. Actually, the Jacobi symbol can be extended
to all values of the “numerator” and “denominator” and computed without
knowing the prime factorization of n. This is done with the help of the extended
quadratic reciprocity law

(g) (g) (1) Res (1.1.11)

(for odd positive P @) and two complements to this law:

<;> _ (—1)Pns <;}) — (—1)P-V/2 (1.1.12)

together with the multiplicativity property with respect to both “numera-
tor” and “denominator”. The computation follows the same pattern as the
Euclidean algorithm and requires < log max(P, Q) divisions with remainder.
A natural number n is called an Eulerian pseudoprime w.r.t. a if ged(a,n) =1
and (1.1.9) holds. Using the chinese remainder theorem, one can prove that
if n is pseudoprime w.r.t. all a € (Z/nZ)* then n is prime. Thus, there are
no Eulerian analogues of the Carmichael numbers. Moreover, it was argued in
[Wag86] that if n is composite then there is an a < 2lognloglogn such that
n is not an Eulerian pseudoprime w.r.t. a.

The congruence (1.1.9) is used in the modern fast primality tests which
will be considered in Chapter 2 (cf. [ARS78], [Mil76], [LeH.80], [Vas88§]).

The primality tests work much faster than all known methods for factor-
izing “random” large integers, see §2.3.

To conclude this subsection we say a few words about a subject which
has traditionally caught the attention of many unselfish amateurs of number
theory: that of finding “a formula” for primes. Euler noticed that the polyno-
mial 22 4+ z + 41 takes many prime values. However, it was long known that
the values of an arbitrary polynomial f(xy,...,z,) € Z[x1,...,x,] at integer
points cannot all be prime, e.g. because if p, ¢ are two large primes, then
the congruence f(z1,...,2,) = 0mod pq is always solvable. Nevertheless,
using methods from the theory of recursive functions, one can construct a
polynomial (in fact, many) whose set of positive values taken at lattice points
coincides with the set of all primes. The following specimen was suggested in
[JSWW76]. Tt depends on 26 variables that can be conveniently denoted by
the letters of the English alphabet:
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F(a,b,c,d,e, f,g9,h,i,5,k, l,m,n,0,p,q,7,8,t,u,v,w,x,y,2) =
(k+2){1—[wz+h+j—q*>—[(gh+29+k+1)(h+j)+h— 2>
2n4+p+qgt+z—e?—[16(k+1)*Kk+2)(n+1)*+1— f2*—
[®(e+2)(a+1)* +1 -0 —[(a® = 1)y* + 1 —2?)°~

[16r2y*(a® — 1) + 1 — u?]?—

[((a+u?(u® = a))* = 1)(n +4dy)® + 1 — (z + cu)?*—
n+l+v—y)?2—[(a®>=DP+1-m?P? —(ai+k+1—-1—i)*
[p+1(a—n—1)+b(2an +2a —n? —2n —2) —m]*—
lg+y(a—p—1)+s(2ap+2a — p* — 2p — 2) — a]*—

[z + pl(a — p) + t(2ap — p* — 1) — pm]*}.

We also mention an inductive description of the sequence of all primes that
can be derived by combinatorial reasoning (cf. [GanT71]):

Pn+1 = [1 — log, an] (1113)

where

- =4
m=> D> a7

r=11<i; <<, <n

1.1.6 The Distribution of Primes

A first glance at a table of primes leaves an impression of chaos. For several
centuries, mathematicians compiled large tables of primes in an attempt to
see some order in them. Pell’s table (1668) lists all primes not exceeding 10°.
Lehmer D.H. in [Leh56] published his well known tables containing all primes
up to 107. In [PSWS0| one can find all Fermat pseudoprimes n < 25 - 10°
verifying the congruence 2"~! =1 mod n.

Already the first tables allowed the experimental study of the statistical
distribution of primes, which seemed to be more accessible at least asymptot-
ically. Put

7(z) = Card{p | p prime < x}.

The graph of this step function even up to z = 100 looks pretty regular. For
x < 50000 where the jumps are hidden by the scale, the regularity is striking
(cf. Fig. 1.1 and 1.2).

Computing x/m(x) we see that for large x it becomes close to logz. One
sees also from Table 1.1 that that when we multiply = by 10, then

10x o
7(10z) ~ 7(x)

+log 10, and log(10z) = log(z) + log 10 ~ log(z) + 2, 3.
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Table 1.1. For large x the ratio z/m(z) becomes close to log z:

10 4 2,5

100 25 4,0

1 000 168 6,0

10 000 1229 8,1

100 000 9 592 10,4

1 000 000 78 498 12,7

10 000 000 664 579 15,0

100 000 000 5 761 455 17,4

1 000 000 000 50 847 534 19,7
10 000 000 000 455 052 512 22,0

Actually, the asymptotic law of the distribution of primes (or prime number
theorem),

T

7(x)

~ 1.1.14
log x ( )

(meaning that the quotient of the two sides tends to 1 as x tends to infinity)
was conjectured by the fifteen year old Gauss on the basis of his studies of the
available tables of primes, and proved by analytical methods only in 1896 by
Hadamard and de la Vallée-Poussin [Pra57|, [Kar75]). Before that, in 1850,
P.L.Chebyshev (cf. [Cheby55]) found a very ingenious elementary proof of the
inequality
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0,80—— < m(x) <1,11——.
log = log =
For this he used only the divisibility properties of the binomial coefficients.
The asymptotic law itself was finally proved in an elementary way in 1949 by
Selberg and Erdos (cf. [Sel51]).

Gauss also suggested a much better approximation to m(z). Computing
his tables of primes he noticed that if one counts primes in sufficiently large
intervals around a large = their density tends to be close to 1/logx. For this
reason he decided that a better approximation to m(x) would be the integral
logarithm N

Li(z) = ﬂ
5 logt
This observation was refined by Riemann, cf. [Rie1858]. Investigating the zeta-
function he came to an heuristic conclusion that Li(x) should be a very good
approximation to the function counting all powers of primes < z with the
weight equal to the power, that is

1 1. :
(x) + iw(\/;f) + gw(%) + -+ =~ Li(z). (1.1.15)
If one wants to express 7(z) via Li(z) from here one should use the Mdbius

function

1 ifn=1,
win) =<0 n is divisible by a square of a prime, (1.1.16)
(—=1)*  otherwise,

where k is the number of primes dividing n. Let us consider the function

F(x) = 3 %W(xl/"). (1.1.17)
Then -
m(z) = i %F(ml/"), (1.1.18)
and -

m(z) ~ i 0D 1/, (1.1.19)

The special case (1.1.18) of a general inversion formula easily follows from the
main property of the Mobius function:

1 ifn=1
> u(d) =3 1.1.20
(d) {O, ifn>1. ( )

d|n
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In fact, if n =[[;_, p, a; >0 then for s > 1 we have
> s
-1)° =(1-1°=0.
Sutr) =31 (;)-a-u

The right hand side of (1.1.19) is denoted R(z). Table 1.2 (cf. [Ries85], [RG70],
[Zag77]) shows how well it approximates ().

Table 1.2.

T R(z) m(x)
100000000 5761455 5761552
200000000 11078937 11079090
300000000 16252325 16252355
400000000 21336326 21336185
500000000 26355867 26355517
600000000 31324703 31324622
700000000 36252931 36252719
800000000 41146179 41146248
900000000 46009215 46009949
1000000000 50847534 50847455

It is useful to slightly renormalize Li(z) taking instead the complex integral

wtiv u+iv ez
li(e" ™) = ;dz (v #0). (1.1.21)
—oo+1iv

For 2 > 2, li(x) differs from Li(x) by the constant 1i(2) & 1,045. The Riemann

function
oo

is an entire function of logx. It can be expanded into a rapidly convergent
power series

1/n

oo tm
R =1 _ 1.1.22
@ =1+ Y Ty (1.122)
where z = e?, and
s)=>» n= ] -p)~" (1.1.23)
n=1 p prime

Of course, this Riemann zeta function is the main hero of the story. Its proper-
ties, established or conjectural, govern the behaviour of 7(z). Riemann showed
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how to extend ((s) meromorphically to the whole complex plane (notice that
(1.1.23) converges only for Re(s) > 1) and he deduced the astonishing explicit
formula for 7(x). This looks as follows:

Fy(x) = li(x) — Zli(xp) + /OOO (uz_?% —log2, (1.1.24)

where the sum is taken over all zeros p of {(s), and

F F(x —

The formula ( 1.1.24) was published by Riemann in 1859 and proved by Man-
goldt in 1895. The series in (1.1.24) is only conditionally convergent. If one
excludes the “trivial zeroes” p = —2, —4, —6, ... whose contribution is insignif-
icant the remaining summation should be made in the order of increasing |p|.
The set of non—trivial zeros is symmetric with respect to complex conjugation
and lies in the critical strip 0 < Re(s) < 1. The first five roots with positive
imaginary part, up to eight decimal digits, are (cf. [Zag77], [Ries85], [RGT70] )

p1= % + 14, 1347354,
p2 = % + 21, 0220404,
p3 = % + 25, 0108564,
ps = % + 30, 4248784,
ps = % + 32,935057i.

Let us consider the number 6 = sup Re(p). From (1.1.24) it follows that
7(z) —li(z) = O(2% log z). (1.1.25)

This estimate would be non—trivial if we knew that 8 < 1. Unfortunately, it is
only known that there are no roots on Re(s) = 1 and in a small neighbourhood
of this line whose width tends to zero as |s| grows (cf. [Pra57]). The famous
Riemann hypothesis, that all non—trivial roots lie on the line Re(s) = %7 is
still unproved. A corollary of this would be

m(z) = li(x) + O(z*?log x).

These questions, however, lie far outside elementary number theory.
We shall return to the Riemann—-Mangoldt type explicit formulae below,
cf. Part II, Chapter 6, §6.2.



1.2 Diophantine Equations of Degree One and Two

1.2.1 The Equation ax + by = ¢

In this section, all coefficients and indeterminates in various equations are
assumed to be integers unless otherwise stated. Consider first a linear equation
with two indeterminates. The set

I(a,b) ={c | ax+by=c issolvable}

coincides with the ideal generated by a and b that is, with dZ where d =
ged(a, b). Tt follows that the equation

ar +by =c (1.2.1)

is solvable iff d divides c¢. A special solution can be found with the help of
the Euclidean algorithm: first compute X, Y with aX +bY = d and then put
xo = eX,yo = €Y where e = ¢/d. One easily sees that the general solution is
given by the formula

v =ao+ (b/d)t, y=yo— (a/d}t,

where ¢ is an arbitrary integer.
Equation (1.2.1) is the simplest example of the general Diophantine prob-
lem of investigating systems of polynomial equations

Fi(xy,...,2,) =0, -+, Fp(z1,...,2,)=0 (1.2.2)

with integral coefficients. We see that all the main questions can be effectively
answered for (1.2.1): the existence of solutions, computation a single solution,
description of the set of all solutions, counting solutions in a box etc. We shall
consider more complicated instances of (1.2.2) and attempt to extend these
results.

1.2.2 Linear Diophantine Systems

The Euclidean algorithm allows us to investigate in the same way a general
linear Diophantine system

Ax =0, (1.2.3)
where

air a2 --- Gin 71 by

)

x b
Aml Am2 **° Amn n m
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This can be done with the help of the elementary divisor theorem. Recall
that an elementary operation on the rows of a matrix over Z adds to one row
an integral multiple of another. One defines an elementary column operation
similarly. An elementary operation is equivalent to multiplication of the initial
matrix on the left (resp. on the right) by a matrix of the form E;; = E + Xe;;
belonging to SL,,(Z) (resp. SL,(Z)). By repeated application of elementary
operations we replace A by UAV where U and V are unimodular matrices
with integral entries. On the other hand, the system

UAVy =Ub (1.2.4)

is equivalent to (1.2.3) since their solutions are in one-to-one correspondence:
x = Vy. We can use this if we manage to replace A by a simpler matrix A’ =
UAV. In fact, using the Euclidean algorithm and a version of the Gaussian
elimination procedure avoiding divisions, one can find a matrix A’ of the form

d 0 0 ...0
0 do 0 ... 0
D=1.... .0 | =UAV (1.2.5)

Hence we either see that our system has no solutions even in Q, or we obtain
the set of all rational solutions from the very simple system d;y; = ¢;, ¢=Ub
for i < r, y; = 0 for the other . The set of integral solutions is non-empty
iff d; divides ¢; for i < r, and can then be parametrized in an obvious way.
The product dy - - - - - d; coincides with geds of all minors of A of order ¢ and
d;|d;i+1. They are called the elementary divisors of A. It follows that (1.2.3)
is solvable iff the elementary divisors of A of orders < m coincide with those
of the extended matrix (with the column b added). In turn, this is equivalent
to the simultaneous solvability of the congruences

Az = b(mod N)

where N is an arbitrary integer. Such a condition can be readily extended to
a completely general system of Diophantine equations. Clearly, it is necessary
for the existence of a solution. The above argument shows that for (1.2.3) it
is also sufficient. When this is true for a class of equations one says that the
Minkowski—Hasse principle is valid for this class. The question of the validity
of the Minkowski—Hasse principle is a central problem in this theory. We shall
discuss it below in §1.2.4 and in Part II, §4.5, §5.3.

More difficult problems arise if one wants to find “the smallest solution”
to (1.2.3) with respect to some norm. These questions are considered in the
geometry of numbers. Siegel (cf. [Sie29], [Fel82]) has shown that the system
of linear equations

a;1r1+ -+ aippnxy, =0 (i:l,...,m)
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with 7 > m in which the integers a;; are bounded by B has a non-
trivial integral solution with coordinates bounded by 1 + (nB)™/(»=™) If
the rows of A = (a;;) are linearly independent and d denotes the ged of
the minors of order m of A, one can obtain the more precise upper bound
(d='\/det(ATA))/("=m) This estimate and its generalization to algebraic
number fields was proved by Bombieri and Vaaler (cf. [BV83]) using fairly
subtle results from geometric number theory (Minkowski’s theory of the suc-
cessive minima of quadratic forms [Cas59a]).

For applications, it is essential to develop efficient methods for finding
solutions of a linear Diophantine system with non—negative coordinates. This
is the central problem of integral linear programming. It belongs to the class of
intractable problems i.e. those for which polynomial algorithms are not known.
The intractability of the knapsack problem has been used in cryptography (see
Ch.2). It consists of finding a solution of the equation a;z1 + -+ + apz, = b
with x; € {0,1} where a;, b are given integers (see [Kob94|, [LeH.84]).

1.2.3 Equations of Degree Two

Consider the following Diophantine equation with integral coefficients
n n
f(a:1,x2,...,xn) = Zaijl‘ﬂ?]‘ —|—Zbil‘i+cz 0. (126)
i,j i=1

Here we shall begin by finding the set of all rational solutions, which is easier
than finding the integral solutions but far from trivial.

A classical example is furnished by the rational parametrization of the
circle x> +y?> =1:

2t 1—1¢2
xTr = =
1+2 Y 1+

(x =cosp, y=sinyp, t =tan (%)) (1.2.7)

This parametrization allows us in turn to describe all primitive Pythagorean
triples (X, Y, Z), that is, natural solutions of X?+Y?2 = Z2? with ged( X, Y, Z)
= 1. The answer is: X = 2uv, Y = u? —v?, Z = u? 402, where u > v > 0 are
relatively prime integers. To prove this it suffices to put ¢ = /v in (1.2.7).

Similarly, finding rational solutions to (1.2.6) is equivalent to finding inte-
gral solutions to the homogeneous equation

F(Xo, X1, Xn) = Y, [y XiX;
i,j=0

=) fiXiX;+2 ) fuXiXo+ foo X3 (1.2.8)
i,j=1 i,j=1

where fi; = fji = a;;/2 for 1 < i < j < n and fo; = fio = b;j/2 for i =
1,2,...,n, foo = c. The non—-homogeneous coordinates x1,...,x, are related
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to the homogeneous coordinates Xq, ..., X, by X; =x;Xo (i =1,2,...,n).
The quadratic form F(X) can be conveniently written as

F(X)=X'"ApX, X'=(Xo,X1,...,Xn),

where Ap = (fi;) is the matrix of coefficients. If there exists a non-trivial
integral solution to F(X) = 0 we say that F represents zero over Z. This
equation defines a quadric Qp. Its points are all complex solutions (except
the trivial one) considered as points in the complex projective space CP™:

Qr={(z0:21: - :2,) €CP" | F(20,21,-..,2n) =0}

Any non—trivial rational solution of F/(X) = 0 gives a point on this quadric.
If we know one solution X, then we can find all the others by considering
intersections of Q@ with the (projective) lines defined over Q and containing
Xo. Algebraically, a line passing through X° and Y° consists of all points
uX® 4+ vY?. The equation F(uX® 4+ vY?) = 0 reduces to

“~ OF
uvz 8—XZ_(XO)YZ»O +0?F(Y?) = 0.
i=1

In general, not all the partial derivatives % vanish at X©. If this is the case,

then for any Y? we can find an intersection point of @ with our line:

n
vV=—U E
=1

(If by chance F(Y?) = 0 then Y is already on Q). Again, this point will in
general be unique. Limiting cases can be well understood in geometric terms:
if all partial derivatives vanish at X° then our quadric is a cone with vertex
X0 and the problem is reduced to that of finding rational points on the base
of the cone, this base being a quadric of lower dimension; if a line happens
to lie entirely on @ then all its rational points should be taken into account
etc.

This stereographic projection method, applied to z2? +y? = 1 and the point
(0,-1) gives precisely (1.2.7) if one denotes by t a coefficient of the equation
of the line passing through (0,-1) and (z,y): y+1=tz.

Considering the equation

8822 (XYL /F(Y?). (1.2.9)

F(Xo,X1,...,X,) =0 (1.2.10)

(with F' as in (1.2.8)) over the rationals, we could alternatively begin by
diagonalizing F' by a non—degenerate linear substitution X = CY where C €
M,,+1(Q). The matrix C' can be found effectively by Lagrange’s method of
successively completing the squares. The previous geometric analysis then
becomes quite transparent.
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Fig. 1.3.

For homogeneous equations such as (1.2.10) the problems of finding solu-
tions in Q and in Z are essentially equivalent. Since we can find all solutions
starting from one of them, the key question is that of deciding whether there
is one. An answer is given by the following result.

1.2.4 The Minkowski—Hasse Principle for Quadratic Forms

Theorem 1.2. A quadratic form F(x1,2a,...,2,) of rank n with integral
coefficients represents zero over the rationals iff for any N, the congruence
F(z1,...,2,) =0 (mod N) has a primitive solution and in addition F rep-
resents zero over the reals, i.e. it is indefinite.

For a general proof see [BS85], [Cas78]. Of course, the necessity of this
condition is obvious.

We reproduce here the beautiful proof of sufficiency in the case n = 3 due
to Legendre ( [BS85], [Ire82]). Let

F = a123 + agx3 + a3z} (araza3 # 0).

Since F' is indefinite we may assume that the first two coefficients are
positive while the third one is negative. Furthermore, we can and will assume
that they are square-free and relatively prime: this may be achieved by obvious
changes of variables and by dividing the form by the ged of its coefficients.
Denote the form with such properties by

azx® + by* — c2?. (1.2.11)

Consider a prime p dividing ¢. Since F' = 0(mod p) has a primitive solution,
we can find a non-trivial solution (zg,yo) to the congruence ax? + by? =
0(mod p). Therefore
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ax? + by? = ayy 2 (xyo + yxo) (Yo — yzo) (mod p).
For p = 2 we clearly have
az? +by? — cz® = (ax + by — c2)? (mod 2).

Hence for all p|2abc we can find linear forms L®) | M®) of 2.y, z with integral
coefficients such that F = L® M@ (mod p). Using the Chinese Remainder
Theorem, we find L (resp. M) with integral coefficients congruent to those of
L®) (resp. M®)) (mod p) for all p|labc. We then have

az? + by* + c2® = L(x,y, 2) M (z,vy, z) (mod abc). (1.2.12)
Consider now the integral points in the box
0<z<vVbe, 0<y<yac, 0<z<Vab. (1.2.13)

If we exclude the trivial case a = b = ¢ = 1, not all square roots are integers
so that the total number of points will exceed the volume of this box which
is abc. Hence there are two different points where L takes the same value
mod abc. Taking their difference, we find

L(z0,y0,20) =0 (mod abc) (1.2.14)

for some |zo| < Vbe, |yo| < Vac, |z| < Vab. Hence

azt 4+ byd — cz2 =0 (mod abc) (1.2.15)
and

—abe < axd + bys — czi < 2abe.

It follows that either
azd +bys —czp =0 (1.2.16)
or
ax? 4 by? — cz2 = abe. (1.2.17)

In the first case the theorem is proved. In the second case we obtain the
following non—trivial solution

a(xozo + byo)2 + b(yozo — ax0)2 — c(zg + ab)2 =0.

Legendre’s original statement is that az? + by? — cz? = 0 is solvable iff all the
residue classes be (mod a), ac (mod b), —ab (mod ¢) are squares.

One can prove that an indefinite quadratic form of rank > 5 always repre-
sents zero over the rationals. For smaller rank, the Minkowski-Hasse principle
can be combined with an a priori minimization of the moduli to be tested
to give an effective way of establishing the existence of a solution. Below we
shall reformulate this approach using the more convenient language of p-adic
numbers (cf. Part II Chap. 4 §4.2.5, 4.3.1, Chap. 5 §5.3.6).
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1.2.5 Pell’s Equation

For non—homogeneous problems, the difference between rational and integral
solutions becomes essential. For example, consider Pell’s equation

22 —dy* =1, (1.2.18)

where d is a positive integer (and not a square). Since we know one trivial
rational solution (1,0) the others can be easily found by the method described
above. However, to obtain only integral solutions we must act in a totally
different way.

First of all, assume that the set of non—trivial integral solutions is non—
empty (in fact, this can be proved by various methods). It is sufficient to
consider only solutions with positive coordinates. We shall call such a solution
(z1,y1) minimal if the linear form = + V/dy takes its minimal value on it. This
solution is unique since v/d is irrational. The central result of the theory of
Pell’s equation states that all solutions are of the form (+z,,+y,) where
T +Vdy, = (z1 + Vdy1)", n being an arbitrary non-negative integer.

The most natural proof, which admits a far-reaching generalization, is
based on studying the quadratic field K = Q(v/d) = {a+bVd | a,b € Q}. The
set A =Z+7Z+/d is a subring in K. The norm of o = a + b\/d is by definition

N(a) = Ng o) = a® — db*.
Clearly,
N(aB) = N(a)N(p) (1.2.19)

for all a, 8 € K. Solutions of Pell’s equation are numbers in « with norm 1.
From (1.2.19) it follows that they form a group (with multiplication as the
group law), in which the positive elements form the cyclic subgroup generated
by T+ \/E

In classical papers several methods were suggested for finding the minimal
solution, or at least some solution. One of these algorithms is based on approx-
imation theory (cf. §4 below). Dirichlet in 1837 published explicit formulae
giving some solutions of Pell’s equation expressed through trigonometric func-
tions. For example, for d = 13 his general formulae show that z1 +y;v/13 = 7>

where

sin 2Z sin 5Z gin S

n=—2 i €Q(V13)
sin 75 sin 93 sin 7%

(cf. [Dir68], [BS85], [Maz83] ). In 1863 Kronecker published an expression for
x1+y1V/d via special values of elliptic functions (cf. [Kr1863], [Sie65], [Wei76]).

Finally, it is worth mentioning that a general quadratic Diophantine equa-
tion in two variables over the integers may be reduced by linear substitutions
to a Pell-like equation if one solution is known.

A solution of Pell’s equation using continued fractions is described in

§1.4.5.
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1.2.6 Representation of Integers and Quadratic Forms by
Quadratic Forms

Consider two quadratic forms with integral coefficients

f(@) = f(21,....2) = Z ajjrivy = Az = x' Az,

ij=1

9(W) =91, ym) = Y bizyiy; = Bly) = y' By,
i,j=1

where A and B are symmetric matrices. We shall say that f represents g over
Z if for some C € M, ,,(Z) we have

f(Cy) =g(y), or, equivalently A[C]= B. (1.2.20)

In particular, for m = 1 and g(y) = by?, f represents g iff f(ci,...,c,) = b
for some integers cy, ..., cp.

Pell’s equation considered above is a special case of the much more difficult
general problem of representing integers and quadratic forms by quadratic
forms. We shall sketch below some results and approaches to this vast domain.

Lagrange proved that every positive integer is a sum of four squares. A
more difficult result due to Gauss states that b > 0 is a sum of three integer
squares iff it is not of the form 4¥(8] — 1), k,l € Z. Lagrange’s theorem can
be easily deduced from this fact (cf. [Se70], [Cas78]).

Put

re(n) = Card{(ny,...,nx) € Z* | n? +--- +ni =n}. (1.2.21)

For example, r3(5) = 8, as one may convince oneself by listing all solutions.
There exist many formulae for this arithmetical function (cf. a vast bibliog-
raphy in [Kog71]). Most of them are descendants of the classical formula of
Jacobi ([Mum83], [Se70], [And76]):

8> d, if n is odd,
d|n
ra(n) = 4 24 Z d, if n iseven. (1.2.22)
d|n
d=1(2)

The proof is based on a study of the generating function for the sequence
ri(n), that is, the series

oo
Dork(ma" = 3T gk = ()t
n=0 (n1,...,nE)EZ*

where
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0(r) = Z 7, q=e’m, (1.2.23)
nez

This theta—function is a holomorphic function on the complex upper half-
plane H = {7 € C | Im(7) > 0}. It has many remarkable analytic properties.
They can be summarized by saying that 04(7) is a modular form of weight 2
with respect to the group I'p(4) where

Io(N) = {(‘C‘ Z) € SL(2,7)

N|c} : (1.2.24)

This means that the holomorphic differential §4(7)dr is invariant with respect

to the substitutions 7 +— (a1 + b)(c7 + d)~! for every matrix in I'p(4).

a b)
cd
Modular functions will be considered more systematically in Part II, Ch. 6,
§6.3. The space of all such differentials is two-dimensional, and one can con-
struct a basis of this space with the help of Eisenstein series whose Fourier
coefficients are more or less by construction certain divisor sums. Examin-
ing the first two coefficients of the series one finds an expression for §4(7) as
a linear combination of the Eisenstein series. On comparing coefficients one
obtains (1.2.22). This method is very general. When the number of squares
grows one has to take into account not only the Eisenstein series but also cusp
forms whose Fourier coefficients have a more complicated arithmetical nature
but in many cases allow a non—trivial direct interpretation. If one manages to
construct an explicit basis of the relevant modular forms, one can then express
the theta-series of a quadratic form f(z1,...,x;) = Alx] with respect to this
basis

O(r: f) = e(f(x)r) =) _r(fin)d" (1.2.25)

TE€Z* n=0

where

e(7) = exp(2mit) = q,
r(f;n) = Card{x € Z" | f(z) =n}.

This theta—series is a modular form of the weight k/2 with respect to a con-
gruence subgroup of the modular group.

For a recent progress by G.Shimura on the representation of integers as
sums of squares, we refer to [Shi02], [Shi04].

We quote as an example a formula proved by A.N.Andrianov ([An65],
[Fom77]). Let f = 2% + y? + 9(2% + 2). The thetaseries of this form is a
modular form of weight 2 w.r.t. I'1(36). For any prime p # 2,3 we have

p—1 23
r(f;p):;l(p+1)—§z< +1> (1.2.26)

p

=0
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where the sum in the right hand side contains the Legendre symbols, cf. §1.1.4.
Generating functions are traditionally used in combinatorics and the the-

ory of partitions. The simple partitions of n into sums of non—increasing nat-
ural summands are counted by the partition function p(n):

p(l)=1 =1

p(2) =2 2=2, 1+1;

p(3)=3 : 3=3, 241, 1+1+1;
p(4) =5 p()=

Its generating function satisfies the Fuler identity (cf. [Cha70], [And76]): for
lg] < 1 one has

1+§:p(n ﬁ (I—¢™)™". (1.2.27)

n=1 m=1

To prove this, it suffices to represent the r.h.s. as the product of the power
series and to notice that p(n) is the number of solutions of a linear Diophantine
equation with an infinite set of non—negative indeterminates

a1 + 2as +3az3+ - =n.

Remarkably, the theta-series of certain quadratic forms are also connected
with certain infinite products similar to (1.2.27). For example, if |¢| < 1, z # 0
we have (cf. [And76])

oo

Z g = H (1= @™ (1 + 2¢>™ (1 + 27 1™ (Jacobi),

n=-—00 m=0

oo oo
Z g D/2 H (1—¢>™)(1 =™ H! (Gauss).
n=0 m=1

These identities follow from a more general result of Cauchy, valid for |g| <
1, [t| <1, aeC:

o0

H (1 —atg™ (1.2.28)

l—tq

1+Z 1—qa) (l—aqnlt”
1—q (I1—-¢2)...(1—q")

m=0

Recently this list of such identities has been greatly enlarged, thanks to the
discovery that they are connected with the representation theory of the simple
Lie algebras, root systems and finite simple groups (cf. [Mac80]).
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An impressive example of the use of generating functions is given by
Borcherds [Borch92] in his proof of the Conway and Norton conjectures con-
cerning connections between the monster simple group, M (and also other fi-
nite sporadic simple groups), and modular functions. This group is the largest
sporadic finite simple group, its order is

8080, 17424, 79451, 28758, 86459, 90496, 17107, 57005, 75436, 30000, 00000 =
246,320 .59 .76.112.13%.17-19-23-29-31-41-47-59 - 71.

The degree of the smallest nontrivial irreducible complex representation
of M is 196883, which is 1 less than the first nontrivial ¢ coefficient of the
famous j(g) or elliptic modular function. In fact

7(q) = ¢~ 4 196884q + 21493760¢> + . ..

and the other coefficients of j turn out to be simple combinations of the
degrees (traces on the identity) of representations of M.

Conway and Norton conjectured in [CoNoT79] that the functions j,(gq) ob-
tained by replacing the traces on the identity by the traces on other elements g
of M are “genus zero” modular functions. In other words if G is the subgroup
of SLa(R) which fixes j4(¢), then the quotient of the upper half of the complex
plane by G, is a sphere with a finite number of points removed corresponding
to the cusps of G, cf. §6.3.

The proof is just as remarkable as the original moonshine conjectures and
involves the theory of vertex operator algebras and generalized Kac-Moody
algebras, cf. [Kon96].

It turns out, that some questions of the quantum field theory are related
with modularity properties of such g—expansions, cf. [DGM90]. For example,
this property is an open question for the g—expansions:

Z q%XtAX+BX+c
o @ar (@),
x; >0

where X = (21, -+ ,2,) € Z",n > 1, (()m = (1 — ¢)(1 — ¢*)-...-(1 — ¢™),
A eM,(Q), BeQ", ceQ (private communication by H.Cohen).

Symmetry properties of generating functions were used in Wiles’ proof
of Fermat’s Last Theorem and of the Shimura—Taniyama—Weil Conjecture
(see [Wi], [Ta-Wi], [DDT97] and Chapter 7). In this truly marvelous proof,
a traditional argument of reductio ad absurdum is presented in the following
form: if a? 4+ bP = P, abc # 0, for a prime p > 5 (a primitive solution (a, b, ¢)),
then one can associate to (a,b,c) a certain generating function f = fgp. :
H — C on the Poincaré upper half-plane H, defined by a Fourier series with
the first coefficient equal to 1, as explained in §7.1. It turns out that this
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function has too many symmetries, expressing the fact that it is a modular
cusp form of weight 2 and level 2, and forcing f = 0 by §6.3, a contradiction
with the construction of f.

1.2.7 Analytic Methods

Generating functions are also used to obtain various asymptotic formulae for

functions like r(f;n) and p(n) as n — oo. In particular, many results have

been derived using the Hardy-Littlewood circle method , its variants and gen-

eralizations (cf. [Vin52|, [Vin71], [VK], [Mal62|, [HW81], [Vau81-97], [Des90]).
The application of this method to a generating function

F(r)= Z a(n)q” (¢ = e(1) = exp(2miT))

n=0
starts with Cauchy’s formula:

1
= F(r)g " dq. 1.2.29
an) =5 P00 g (1:2.29)

The following discussion can be efficiently applied to many situations when
the unit circle is the natural boundary for the function F(7) and roots of
unity on this boundary behave as “the worst essential singularities” (to get
some feeling for this, look at the r.h.s. of (1.2.27)). The idea is to break the
integration domain into two parts: I; (the contribution of roots of unity of
comparatively small degree) and I5 (everything else) and to attempt to prove
that I is much smaller than I;. To understand the asymptotic behaviour of I
and to majorize Iy one often uses exact or approximate functional equations
for F(7), Poisson summation etc.

For example, to estimate p(n), Hardy, Littlewood and Ramanujan put
r = e~ 27/ In terms of 7, they integrated over the segment L, = {7 =
x+iy |0 < x <1, y = 1/n?}, which they divided up as follows: I is the union
of the pairwise disjoint segments (3, , = {z | |z —p/q| < 1/2¢n’® (§ > 1)} where
p/q runs through the rational numbers between 0 and 1 with denominator < n;
I is the complement of I;.

For (1.2.27) this furnishes the Hardy-Ramanujan asymptotic formula

oK
p(n) = m +O0(e" /D),
where
A =+/n—1/24, K=m/2/3
(cf. [Cha70]).

Later this method was perfected by K.Rademacher who gave an exact
formula for p(n) as an infinite sum whose summands correspond to (all) roots
of unity.
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In one of the applications of the circle method to the theory of quadratic
forms, A.V.Malyshev proved in [Mal62] the following general result. Let k > 4,
f(x1,...,x) a positive quadratic form with integral coefficients and determi-
nant d. Then as n — oo we have

k/2

kg . (k+12)/8, (k—1)/4+€
d1/2[’(%)n2 H(f»n)+0(d n )

r(fin) =

Here the constant in O depends only on & and € > 0 and H(f;n) is the so
called singular series. This series is obtained in the process of computing of
the contribution of I; as an infinite product over all primes including the
“infinite prime”:

H(f;n) = ro(f;m) Hrp (f5m)

where
rp(fin) = lim p~™*VCard{z € (Z/p™2Z)" | f(x) =0 mod p™}

and 7 (f;n) is a certain “real density” of the solutions of f(x) = n.

It follows that if n is sufficiently large and is representable by f modulo
all prime powers, then it is representable by f. This method however does
not work for 2 or 3 variables, where more subtle approaches are needed (cf.
[Lin79], [GF77], [Fom77], [LomT78]).

The circle method was considerably modified and perfected by 1.M.Vi-
nogradov (cf. [Vin52|, [Vin71], [VK]), who suggested replacing generating
functions by exponential sums, which are essentially their partial sums re-
stricted to the unit circle, e.g.

On(rif)= > elf(x)7) (1.2.30)
(z1,...,xp,)ELF
|z, <N
As a function of the real variable 7 this sum oscillates vigorously and has
local maxima (of its modulus, real, and imaginary parts) at rational numbers
with small denominators. This behaviour reflects the singular behaviour of the
generating function in the vicinity of its natural boundary but is much less
wild and more easily controllable. This is one of the reasons for the success of
Vinogradov’s method.
Figures 1.4 and 1.5 show the (scaled) graphs of the two simplest exponen-
tial sums featuring this behaviour. Instead of Cauchy’s formula (1.2.29), one
uses in Vinogradov’s method the integral formula

1
/0 On(7; fle(—n7)dr = Card{z € Z* | f(z) = n, |z;| < N} (1.2.31)

which follows directly from the orthogonality of the basic exponential func-
tions.
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Fig. 1.4. y(r) = Zézo COS(QW%T)

Vinogradov’s version of the circle method enabled him to prove that every
large odd integer is a sum of three primes (Goldbach conjectured in 1742
that every even integer is a sum of two primes) and to considerably diminish
the number of summands in Waring’s problem (1770) on the representation
of large integers as sums of k-th powers. An improvement on Vinogradov’s
bound due to Karacuba, [Kar85] is k(2logk + 2loglogk + 12). Interesting
results for G(k) asymptotic to klogk has been obtained by R.C.Vaughan and
T.D.Wooley (cf. [VaWo91], [VaWoIV]). Further details of analytic methods
are outside the scope of this report and we refer the interested readers to the
monographs [Vin71], [VK], [Pos71]|, [AKCh87], [HW81], [Cha70], [Vau81-97]
and others. We should mention only the wide applicability of formulae of the
type (1.2.31) counting various numbers of solutions and the important role of
exponential sums like (1.2.30) in arithmetical problems (Gauss sums, Jacobi
sums, Kloostermann sums etc., cf. Ch.2, §2.2).

More generally, harmonic analysis is now used in number theory in its non—
commutative and multi-dimensional versions. For example, the construction
of the Hecke basis in the space of modular forms which is orthonormal with
respect to the Petersson inner product (scalar product) can be considered as a
two—dimensional analogue of the orthogonality relations for the exponentials
mentioned above (Part II, Ch. 6, §6.3).

1.2.8 Equivalence of Binary Quadratic Forms

Two quadratic forms over the integers f, g are called equivalent (over Z) if
they represent each other (cf. §1.2.6). We shall denote a binary quadratic form
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Fig. 1.5. y(7) = Zizo COS(2W§T)

f(x,y) = Ax?+ Bay+C2? also (A, B, C). Such a form is called primitive if A,
B and C have no common factor. Its discriminant is denoted A = B2 —4AC.
Two forms f and g are called properly equivalent if we have

f(z,y) = g(mz + ny, kx + ly)

for an appropriate matrix

<“k”‘ 7) € SLy(Z).

Gauss founded the equivalence theory of binary quadratic forms. He proved
that if A is not a square, then the set Cl(A) of proper equivalence classes of
forms with discriminant A can be made into a finite Abelian group with re-
spect to a natural composition law. (Actually, this was one of the first abstract
Abelian groups discovered in number theory). Very recently M.Bhargava (a
PhD student of A.Wiles, cf. [Bha04]) found higher composition laws, giving a
new view on Gauss composition.

In order to define this composition law in modern terms, consider the
quadratic number field K = Q(vA) = Q(Vd) = {z +yVd | =,y € Q} where
d is a square-free integer. We have A = Dc? where D is the discriminant of
the quadratic field K, D = d if d = 1 mod 4 and D = 4d otherwise. An
element o = = + yvd € K is called an integer if its trace 2z and its norm
2% — dy? are integers. The set of all integers in K forms a ring

0= (1,w)={m+nw|m,neZ}
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where w = Vd if d = 2,3mod 4 and w = (1 +Vd)/2 if d = 1 mod 4.
For any integer ¢ we can define a subring O, = Z + cO =< l,cw >. A
fractional ideal M in O, is a free additive subgroup with two generators which
is stable with respect to multiplication by elements of O.. The product of two
fractional ideals is, by definition, the subgroup generated by the products
of elements from one ideal with elements of the other. The fractional ideals
form an Abelian group with identity O.. To each such ideal M corresponds
a quadratic form with discriminant D = dc? which can be constructed as
follows. Define the norm of M by N(M) = Card(O./M). Choose a basis
{a, B} for M in such a way that v = —3/a = = + y/d satisfies the condition
y > 0. Then the quadratic form in question is

N(azx + By)

— 2 2 _
f(z,y) = Az® + Bzy + Cy* = N

One can check that this is a primitive integral form.

Two fractional ideals M and M, are called equivalent in the narrow sense
if M = vM; for some v € K with positive norm. The equivalence classes
of fractional ideals correspond bijectively to the proper equivalence classes of
primitive binary forms of discriminant Dc?. Multiplication of the fractional
ideals induces a group structure on this set. The identity of this group is
represented by the quadratic form (1,0, —A/4) (resp. (1,1,(1 — A)/4) if A is
even (resp. odd). In computations it is convenient to work with the reduced
forms (A, B,C) for which A >0, —A < B < A, ged(A,B,C) =1.If A <
0 then the group CI(A) is trivial exactly for the following values: —A =
4,8,3,7,11,19,43,67,163 (c = 1); 16,12,28 (¢ = 2); 27 (¢ = 3) (cf. Part II,
Ch. 5, §5.4.1).
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1.3.1 The Problem of the Existence of a Solution

For cubic forms F(X,Y,Z) in three variables with integral coefficients, no-
body has succeeded in devising a general algorithm which provably decides
whether the equation F' = 0 has a non-trivial integral solution. Large classes
of such equations have been studied both theoretically and numerically; see for
example the early influential papers by E.S.Selmer (cf. [Selm51] and [Selm54])
devoted to the equations

aX®+bY3+c¢Z%=0.

Even some of the simplest equations like 3X3 4 4Y3 + 5273 = 0 fail to satisfy
the Minkowski—-Hasse principle: they have no non—trivial integral solutions
although they do have both real solutions and primitive integral solutions
modulo any N > 1. The degree of such failure can be measured quantitatively
by the Shafarevich—Tate group: cf. §5.3.

D.R.Heath-Brown has shown (cf. [HB84]|) that any non-singular cubic
form in ten variables represents zero non-trivially, and C.Hooley in [H8§]
has established the Minkowski—Hasse principle for non—singular nonary cubic
forms (a form is called non-singular if it and all its first partial derivatives
have no common non—trivial complex zeroes). Previously Davenport and Birch
had shown that there exist non—singular cubic forms in nine variables which
do not represent zero modulo a power of every prime.

Birch in [Bir61] established that forms of any odd degree d represent zero
if the number of variables is sufficiently large (with the bound depending
only on d). These results have since been generalized, extended and made
more precise by several authors. They are proved by the circle method, cf.
[Vau81-97], [Des90].

1.3.2 Addition of Points on a Cubic Curve

Any ternary cubic form F(X,Y,Z) defines a cubic curve C in the complex
projective plane P?:

C={(X:Y:2)| F(X,Y,Z) = 0}. (1.3.1)

If C (that is, F') is non-singular, and if ' = 0 has at least one rational
solution, then one can find a non—degenerate change of projective coordinates
with rational coefficients which reduces F' to a Weierstrass normal form

Y?Z - X3 —aXZ? - bZ3 (a,b € Q). (1.3.2)

One may also assume that the initial solution becomes the obvious solution
(0:1:0) of (1.3.2). The non-singularity condition for (1.3.2) is equivalent to
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the non-vanishing of the discriminant 4a® + 27b2. Non-singular cubic curves
are also called elliptic. Passing to non—homogeneous coordinates x = X/Z,y =
Y/Z we reduce F' = 0 to the form

y? =23 +ax +D, (1.3.3)

where the cubic polynomial in the r.h.s. has no multiple roots. In this affine
form, our initial solution becomes the infinite point O. There is a beautiful
geometric description of a composition law on the set of rational points of C
making it an Abelian group with O as identity (or zero). This is called the
secant—tangent method (cf. [Sha88], [Cas66], [Kob84]). Namely, for a given pair
of points P,Q € C(Q), we first draw a line containing them both. This line
also intersects C at a well-defined third rational point P’. Now we again draw
a line through P’ and O. Its third intersection point with C is, by definition,
the sum P+ Q. If P = @, the first line to be drawn should of course touch C
at P.

Fig. 1.6.
Fig. 1.7.

Calculating in non-homogeneous coordinates P = (z1,¥1), @ = (z2,y2)
one finds P 4+ @ = (x3,y3) where

2
$3=—$1—$2+(y1y2) )

1 — T2
Y — Y2
—(

— — Y1 1.34
G T3) — Y1 (1.3.4)

Y3z =

In the limit case P = (Q we have instead

322 +a 2 322 4 a
1 > , 3 = 1 (1’1 — 1’3) — Y- (135)

Tr3 = 721’1 + (
2y, 2y
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If 1 = x5 and y; = —y- then P + @ = O, the infinite point which is zero for
the group law.

This method allows us to construct new rational points starting with some
known ones. They will be the elements of the group generated by the initial
points, e.g. mP, m € Z, if just one point P (except O) was found initially.

For singular cubic curves this construction fails. For example, consider the
curve

C: y* =2+, (1.3.6)

which is drawn in Fig. 1.8. Any line passing through (0,0) has only one more
common point with C: on y = tx it is defined by the equation 2?(t?—x—1) = 0.
Besides the trivial solution z = 0, we obtain z = t*—1 and y = ¢(t>—1) so that
we have found all points on C with the help of a rational parameterization.
In the non-singular case no such parameterization exists. On the other hand,
in our example we could have still defined the group law on the set of non—
singular points as above. However, this becomes simply multiplication (for a
suitably chosen rational parameterization).

Fig. 1.8.

A curve admitting a rational parameterization is called rational. How one
can establish that such a parameterization exists or otherwise, and how its
existence influences the problem of describing all rational points, is answered
by algebraic-geometric methods.

1.3.3 The Structure of the Group of Rational Points of a
Non—Singular Cubic Curve

The most remarkable qualitative feature of the secant—tangent method is that
it allows one to construct all rational solutions of a non—singular cubic equa-
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tion (1.3.3) starting with only a finite number of them. In group-theoretical
language, the following result is true.

Theorem 1.3 (Mordell’s Theorem). The Abelian group C(Q) is finitely
generated.

(cf. ([Mor22], [Cas66], [Mor69], [La83], [Se97] and Appendix by Yu.Manin to
[Mum?74]). From the structure theorem for finitely generated Abelian groups,
it follows that

CQ=AXZ

where A is a finite subgroup consisting of all torsion points, and Z" is a
product of r copies of an infinite cyclic group. The number r is called the rank
of C over Q.

The group A can be found effectively. For example, Nagell and Lutz (cf.
[Lu37]) proved that torsion points on a curve y*> = 23 + ax + b for which a
and b are integers, have integral coordinates. Furthermore, the y—coordinate
of a torsion point either vanishes or divides D = —4a> — 2702.

B.Mazur proved in 1976 that the torsion subgroup A over Q can only be
isomorphic to one of the following fifteen groups:

Z/mZ (m < 10,m = 12), Z/27Z x Z/2nZ (n < 4), (1.3.7)

and all these groups occur, cf. [Maz77].

It is still an open question whether r can be arbitrarily large. Mestre (cf.
[Me82]) constructed examples of curves whose ranks are at least 14. *)

A comparatively simple example of a curve of rank > 9 is also given there:
y? + 9767y = 23 + 357622 4 4252 — 2412. One can conjecture that rank is
unbounded. B. Mazur (cf. [Maz86]) connects this conjecture with Silverman’s
congecture (cf. [Silv86]) that for any natural k there exists a cube-free integer
which can be expressed as a sum of two cubes in more than k ways.

Ezamples. 1) Let C be given by the equation
v Hy=2"—2

whose integer solutions list all cases when a product of two consecutive integers
equals a product of three consecutive integers. Here A is trivial while the free
part of C(Q) is cyclic, with a generator P = (0,0). Points mP (labeled by m)
are shown in Figure 9.

The following Table 1.3, reproduced here from [Maz86] with Mazur’s kind
permission, shows the absolute values of the X—coordinates of points mP, for
even m between 8 and 58.

* Martin—-Mcmillen (2000) found an elliptic curve of rank > 24:

y? oy +y = 2 — 1200398220369922453035346191911667963 74
+504224992484910670010801799168082726759443756222911415116

(see http://www.math.hr/~duje/tors/rankhist.html for more examples).
(footnote by Yu.Tschinkel).
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Table 1.3.
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116
3741
8385
239785
SO00TRO6G
18490337896

270896443865

314892068 1285740316

S421 15TH6927607T927420

280251129922563201422645

BOA28TH18035141565236193151

TA3043134257049053529252T83151

S230336802300544740120153150480400

HWI2H245801434436942401 26 1367600

TATOGAGT 1 23982668303 1943583152550351

HSO6920565A0TTHRRAGOTRIATRES047 TORR220836340351

2RRHBHRHR632982063 1608077553938 139264431352010155

S6 186051018434 TH352T702275238228029 1 8R204880058285T380

23R9TH05191 1091401 863009003 766063543526099564527 70356625916
GBLOODSTEROTESTHHAS527560075071130649379390959 207504205469 12218291

3338 15035886806GT139213612634565T2T40TE8403806501 76 7431591377541 7535

¢ GTRAIIRDARKRO3 1 2588030104441 4443 1 3405755534 3662544 164328809240 10065
SNA0TGOASA6GH6A2658048056TH1 730743 2448272023468 T 1 1451 23 18 T2 T TTA2R558 766 T 1489

One sees that the last figures lie approximately on a parabola. This is
not an accident, but a reflection of the quadratic nature of heights on elliptic
curves (cf. below).

2) Table 1.4 was kindly calculated for this edition by H.Cohen, using PARI
computing system, [BBBCO]. This table lists ranks r and generators for curves
X3 4+ Y3 = AZ? with natural cube-free A < 500; it corrects and completes
the Tables of Selmer (cf. [Selmb1|, [Selmb54]) which were reproduced in the
first edition [Ma-Pa|. Note the 3 missing values A = 346, 382,445 for which
H.Cohen proved that r» = 1, but the method of Heegner points for computing
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generators (see §6.4.4) takes too much time. However, this computation was

completed by Ch. Delaunay, see Table 1.5.

Table 1.4. Number of generators r and basic solutions of X2 + Y3 = AZ? with A

cube—free, A < 500.

Alr|(X,Y, 2) A |r|(X,Y,2)

6|1[(37, 17, 21) 94 1| (15642626656646177,
711((2, -1, 1) -15616184186396177,
9(1[(2, 1, 1) 590736058375050)
12|1((89, 19, 39) 971/ (14, -5, 3)

13]1((7, 2, 3) 981 (5, -3, 1)

151((683, 397, 294) 103[1[(592, -349, 117)
17|1((18, -1, 7) 105|1[(4033, 3527, 1014)
19(2((36, -17, 13),(109, -90, 31) 106 1| (165889, -140131, 25767)
20(1{(19, 1, 7) 107|1{(90, 17, 19)
22|1((25469, 17299, 9954) 110(2( (181, -71, 37),(629, 251,
26(1((3, -1, 1) 134)

28|1((3, 1, 1) 114[1[(9109, -901, 1878)
30(2|(163, 107, 57),(289, -19, 1151( (5266097, -2741617,

93) 1029364)
31[1|(137, -65, 42) 117|1((5, -2, 1)
33|1[(1853, 523, 582) 1231( (184223499139,
34[1((631, -359, 182) 10183412861,

35(1(3, 2, 1) 37045412880)

37(2|(4, -3, 1),(10, -1, 3) 124/2|(5, -1, 1),(479, -443, 57)
42(1|(449, -71, 129) 126/2|(5, 1, 1),(71, -23, 14)
43[1(7, 1, 2) 127/2|(7, -6, 1),(121, -120, 7)
49[1|(11, -2, 3) 130(1((52954777, 33728183,
501((23417, -11267, 6111) 11285694)

51|1|(730511, 62641, 197028) 132(2( (2089, -901, 399),(39007,
53(1((1872, -1819, 217) -29503, 6342)
58(1((28747, -14653, 7083) 1331((5, 2, 1)

61[1|(5, -4, 1) 134|1((9, 7, 2)

62[1|(11, 7, 3) 139(1|(16, -7, 3)

63[1|(4, -1, 1) 140(1( (27397, 6623, 5301)
65(2|(4, 1, 1),(191, -146, 39) 141|1| (53579249, -52310249,
67|1((5353, 1208, 1323) 4230030)

68[1/(2538163, -472663, 142[1[(2454839, 1858411, 530595)

620505) 143|1((73, 15, 14)
69[1|(15409, -10441, 3318) 151|1((338, -95, 63)

70(1((53, 17, 13) 153[2(70, -19, 13),(107, -56,
71|1|(197, -126, 43) 19

75(1| (17351, -11951, 3606) 156|1((2627, -1223, 471)
78/1|(5563, 53, 1302) 1571((19964887, -19767319,
79(1((13, -4, 3) 1142148)

84(1/(433, 323, 111) 159(1((103750849, 2269079,
85(1[(2570129, -2404889, 19151118)

330498) 161|1{(39, -16, 7)

86(2(13, 5, 3),(10067, -10049, 1632|(11, -3, 2),(17, -8, 3)

399) 164 1| (311155001, -236283589,
87(1[(1176498611, -907929611, 46913867)

216266610) 1661[(1374582733040071,
89(1|(53, 36, 13) -1295038816428439,
90[1|(1241, -431, 273) 136834628063958)
91(2|(4, 3, 1),(6, -5, 1) 169[1((8, -7, 1)
92|1((25903, -3547, 5733) 170|1[(26353, 14957, 5031)
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Table

1.4. (continued)

A |r|(X,Y,2) A |r|(X,Y, 2)

1711](37, 20, 7) 2311 (818567, -369503,

172|1((139, -103, 21) 129186)

1771( (2419913540753, 233[1(124253, -124020, 3589)
1587207867247, 2361|(248957, 209827, 47106)
468227201520) 238(1((53927, 3907, 8703)

1781((110623913, 8065063, 241(1/(292, -283, 21)

19668222) 244[1/(99, -67, 14)

1791( (2184480, -1305053, 246(2|(571049, -511271, 59787),
357833) (2043883, -1767133,

180{1((901, 719, 183) 230685)

182(2((11, 5, 2),(17, 1, 3) 247(1|(20, -11, 3)

1832((14, 13, 3),(295579, 2491 |(275657307291045075203-
190171, 46956) 684958997,

1861((56182393, 15590357, -275522784-

9911895) 068298556737485593813,
187|1( (336491, -149491, 57070) 4974480998065387679-
193|1( (135477799, -116157598, 603368524)

16825599) 251(1|(4284, -4033, 373)
195|1| (68561, -54521, 9366) 254(2|(238013, -206263, 26465),
197|1((2339, -2142, 247) (238393, -222137, 21676)
198|1((1801, -19, 309) 2581(2195839, -2047231,
201(2|(16, 11, 3),(3251, 124, 555) 198156)
2021|(2884067, 257437, 491652) 259(1|(13, -5, 2)
203|2((229, 32, 39),(2426, 265|1((36326686731109813,

-2165, 273) 9746422253537867,
205(1(8191, -6551, 1094) 5691757727610864)
206(1|(5211, -4961, 455) 267(1|(861409, -342361, 130914)
209(2|(52, -41, 7),(125, -26, 21) 2691 (800059950, -786434293,
210|2((1387, 503, 237),(3961, 45728263)

-2071, 633) 271(2|(10, -9, 1),(487, -216, 73)
211[1|(74167, 66458, 14925) 273(2/(19, 8, 3),(190, -163, 21)
212(1|(337705939853, 274(1|(111035496427236122887,

315091652237, -43257922194314055637,

32429956428) 16751541717010945845)
213[1/(64313150142602539- 2751 (424560439, -309086839,

525717, 55494828)

46732739212871- 277(1/(209, -145, 28)

851099283, 278(1(13, 3, 2)

12000095230- 279(1(7, -4, 1)

802028099750) 282(2(117217, -96913, 13542),
214[1(307277703127, (2814607, 1571057, 452772)

244344663377, 283(1|(20824888493, -8780429621,

40697090945) 3090590958)
215[1|(6, -1, 1) 2841 |(7722630462000896449-
217(2|(6, 1, 1),(9, -8, 1) 941136589,
218(2|(7, -5, 1),(279469, -12938136226219393-

61469, 46270) 03367981,

219(2[(17, 10, 3),(168704, 1174877194362780234-
-36053, 27897) 594343698)

2221|(5884597, 858653, 972855) 285(1(18989, 1531, 2886)

223(1/(509, 67, 84) 2861|(323, -37, 49)

228|1|(46323521, -27319949, 287(1|(248, 121, 39)

7024059) 289[1(199, 90, 31)
2291|(745, -673, 78) 294(1|(124559, -103391, 14118)

295(1|(34901, -16021, 5068)
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Table 1.4. (continued)
A |r|(X,Y, 2) A |r|(X,Y,2)
301|1|(382, 5, 57) 358|1[(7951661, 2922589,
303|1{(2659949, 67051, 396030) 1138095)
305|1((86, -81, 7) 359|1|(77517180, 50972869,
306|1((6697, -3943, 921) 11855651)
308|1((199, 109, 31) 363[1((1909159356457,
309(2((20, 7, 3),(272540932, -1746345039913,
-142217089, 38305371) 165073101648)
310|1{(5011613, -190493, 366|1|(2087027, -1675277,
740484) 228885)
313|1[(22, -13, 3) 367|1[(42349, 526, 5915)
314[1|(241, -223, 21) 370(2|(7, 3, 1),(70523, 19387,
316(1|(7, -3, 1) 9891)
319|1((6462443919765751305- 372|1[(2717893, 630107, 379470)
499, 373(1|(1604, -1595, 57)
-6182025219694143- 377|1((469, -237, 62)
438499, 379(2|(15, -7, 2),(917, -908, 39)
472407353310304561- 380|1{(1009, -629, 127)
590) 3821
321|1|(13755277819, 385|1|(20521, -17441, 2054)
8670272669, 386(1/(9, -7, 1)
2164318002) 387(1|(8, -5, 1)
322(1((1873, 703, 278) 388|1( (4659, -3287, 553)
323|1((252, 71, 37) 390|2((3043, 467, 417),(4373,
325(1|(128, 97, 21) -863, 597)
330|1[(1621, 1349, 273) 391|1{(590456252061289,
331[1|(11, -10, 1) -171359229789289,
333|1((397, -286, 49) 80084103077160)
335|2((7, -2, 1),(390997, 260243, 393|1|(4045451855513988711-
61362) 059,
337|1[(53750671, -53706454, 2369372172284459-
1043511) 347309,
339|1((1392097139, -345604139, 587046969413536968336)
198626610) 394|1(1439245403, -573627403,
341(1[(6, 5, 1) 192088390)
342(2|(7, -1, 1),(1253, -1205, 86) 395(1((7891, -7851, 266)
345(2( (16543, 8297, 2454), 3961| (46789273, -37009657,
(389699, -190979, 5074314)
53292) 397(2|(12, -11, 1),(360, 37, 49)
346(1 399(2((22, 5, 3),(401, 328, 63)
348|2((40283, -15227, 5622), 402|1|(585699417548405371,
(2706139, 425861, 102798361240815491,
385230) 79502362839530631)
349|1((23, -14, 3) 403(1|(53, -22, 7)
355(1/(2903959, 2617001, 407(2((7, 4, 1),(33733, -33634,
492516) 939)
356|1|(15026630492061476- 409|1((22015523, 21425758, 3687411)
041947013, 411]1|(186871897, 49864103,
-4709632110011335- 25292280)
573393177, 413|1|(2575, -2103, 266)
2098221141580681- 414|1|(68073157, 32528843,
446554589) 9454410)
357|1[(19207, 6497, 2742) 418|1|(76267, 25307, 10323)

45
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1.4. (continued)

A |r|(X,Y,2) A |r|(X,Y, 2)
420[2((2213, 1567, 327),(10459, -204264638826527324-

-6679, 1263) 892641927694862943879,
421(1((19690, 4699, 2639) 97368775947767167139-
422[1(15, 1, 2) 892682703702288385)
425(1((2393, 1007, 326) 457|1|(41, 31, 6)

427(1((25, -16, 3) 458|1[(953039, -761375, 97482)
428(1[(1294057, -1190053, 460/1[(248768189, -234795689,

104013) 17466345)

429(1((16739, 14149, 2598) 462|2|(3779, 379, 489),(11969,
430(1((5989967, 3449393, 7811, 1389)

841204) 463|1((403, -394, 21)
431|1|(701, -270, 91) 465(1(1212356942047,
433|2((37, 35, 6),(252, 181, 37) -1197072217207,
435|2| (32779, -1459, 4326), 52307828958)

(3784049, 2981071, 466/1|(464540708319337302841,

570276) 88798763256715446551,
436(2((19, 17, 3), 60057801943830995598)

(1667465, 307927, 220362) 467|1|(1170, -703, 139)
438|1|(12636764083, 468(2|(7, 5, 1),(859, -763, 74)

11127850973, 469|2((13, -12, 1),(26, -17, 3)

1979215602) 474|1|(568871, -453689, 57627)
439(1((571, -563, 26) 477|2|(89, 70, 13),
441(1|(13, 11, 2) (12040, -11881, 523)
4441| (4174254535499, 481|1|(43, 29, 6)

726500109131, 483|1((2401741,

546201297768) 1945259,

445[1 352830)
446|2((23, -5, 3), (4286417, 484|1((236521, -176021, 25235)

-4285265, 52212) 485(1](8, -3, 1)
447|1(4405301, -382301, 490(1[(193229, -74159, 24039)

576030) 4931 (8432715268961,
449(1((323, 126, 43) 1057596310369,
450(1|(21079, 11321, 2886) 1066758076384)
452|1|(851498679025552429, 494(1|(59, -33, 7)

224535817897760071, 495(1((342361, -57241, 43212)

111626729681785675) 497(2|(55, 16, 7),
453|2((23, 4, 3),(50167097, (7411, -6772, 579)

39331207, 7447188) 498|2|(611137, -490123, 60543),
4541 (753389202595029867- (15811001, -15250751, 933765)

852290245746241110629, 499|1((80968219, 17501213, 10242414)

Table 1.5. Basic solutions of X3 + Y3 = AZ® with A = 346, 382, 445.

3

(X,Y,2)

346

382

445

—

[

—

(47189035813499932580169103856786964321592777067,
42979005685698193708286233727941595382526544683,
8108695117451325702581978056293186703694064735)
(58477534119926126376218390196344577607972745895728749,
16753262295125845463811427438340702778576158801481539,
8122054393485793893167719500929060093151854013194574)
(362650186970550612016862044970863425187,
-58928948142525345898087903372951745227,
47432800292536072666333861784516450106)
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These computations have now been extended up to A < 70000 (Stephens).
Don Zagier noticed that in this range there are about 38.3% of curves with
r = 0; 48.9% with r = 1; 11.7% with even r > 2 and 1.1% with odd r > 3, and
these values vary only slightly within large intervals of the tables. We refer to
[Si01] for a survey of open questions in arithmetic algebraic geometry.

3) Let C be given by the equation

v +y=2>—Tzr+6.

Then C(Q) = Z3, and the points (1,0), (6,0), (0, 2) form a basis of this group.
4) For y(y+1) = x(z—1)(z+2) we have r = 2; for y(y+1) = z(x—1)(x+4),
r = 2 (compare this with example 1).
5) Consider the curve y? = 23 + px, p = 877. A generator modulo torsion
of the group of rational points of this curve has x—coordinate

~375494528127162193105504069942092792346201
~ 6215987776871505425463220780697238044100

This shows that naive methods of seeking points quickly become inefficient
(cf. [Cas66], [CWTT7], [Coa84] for an educated approach).

1.3.4 Cubic Congruences Modulo a Prime

Let p be a prime and F(Xy, X1, X3) a cubic form with integral coefficients.
Reducing F' modulo p, we obtain a cubic form over the prime finite field Fp,.
This reduction is called non—singular if it has no common zeroes with its
first partial derivatives in any extension of IF,,. We can also apply elementary
algebraic-geometric ideas to a field K of finite characteristic. The normal
forms are then slightly more complicated. By making a change of projective
coordinates and passing to the non-homogeneous equation, we can always
reduce the equation F' = 0 to the form

y? + arzy + azy = 2° 4 asx® + asx + ag,
where a1, as,as,a4,a6 € K and
A = —b2bg — 8b3 — 27b2 + babsbs # 0,

where
by :a%+4a27 by = 2a4 + ayas, bg :CL§+4CL6.
3
The notation j = Z4 is used, where

cy = b3 — 24by, cg = —b3 + 36byby — 216bg.

Then this equation can be further simplified using the transformation z —
u?z’ +r, y — udy’ + su?z’r + t in order to obtain the following (cf. [Ta73],
[Kob87] :
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1) For p # 2,3:
y? = 23 + ayx + ag with A = —16(4a3 + 2742 # 0). (1.3.8)

2) For p = 2 we have that the condition j = 0 is equivalent to a; = 0, and
the equation transforms as follows: if a; # 0 (i.e. j # 0), then choosing
suitably r,s,t we can achieve a; = 1, ag = 0, a4 = 0, and the equation
takes the form

y? + 2y = 23 + agz® + ag, (1.3.9)

with the condition of smoothness given by A # 0. Suppose next that
a1 =0 (i.e. j = 0), then the equation transforms to

y? + asy = 2° + asx + ag, (1.3.10)

and the condition of smoothness in this case is as # 0.
3) For p = 3:

y? = 23 4 asx® + asx + ag, (1.3.11)
(here multiple roots are again disallowed).

The projective curve defined by the respective homogeneous equation al-
ways has a rational point O = (0:1:0).

How many points over F,,, that is, solutions of the congruence F' = 0 mod
p, should we expect? Clearly, the total number (counting O) cannot exceed
2p + 1, since every finite x gives no more than two values of y. On the other
hand, of all the non—zero residue classes, only half of them are squares (for

odd p). Hence we might expect that 23 + az + b is a square only for about a
half of the z’s.

More precisely, let x(z) = (m) be the Legendre symbol (cf. §1.1.5). Then,
p
by definition, the number of solutions of y* = u in F,, is 1 + x(u). Therefore,

Card C(F,) =1+ Z (14 x(z® + ax + b))

z€F,

=p+1+ Zx(x3+ax+b).
z€F,

N.Koblitz in [Kob94| compares the last sum with the result of a random walk
on a line. After p steps one might expect to be at distance roughly /p from
zero. Actually, one can prove the following remarkable theorem (cf. [Ha37]):

Theorem 1.4 (Hasse’s Theorem). Let N, = Card C(F,,). Then

INp = (p+1)| < 2¢p.
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An elementary proof of this theorem was given in 1956 (cf. [Man56]).
Since then, both the algebraic-geometric and the elementary proofs have
been greatly extended. For a review of the elementary methods, cf. [Step74],
[Step84], [Step94].

We refer to [LaTr76| for the problem of the distribution of Frobenius au-
tomorphisms for varying p, and of the difference N, — (p+1), which is related
to the Sato—Tate Conjecture (cf. Chapter I in [Se68a] and §6.5.1).

The Abelian group structure on the group of points E(F,) on an elliptic
curve is used in many arithmetical questions. In particular, the case when this
group is cyclic of large size leads to ECDLP (“Elliptic curve discrete logarithm
problem”) which is very important for applications in public-key cryptography,
see [Kob87].



1.4 The Structure of the Continuum. Approximations
and Continued Fractions

1.4.1 Best Approximations to Irrational Numbers

Since /2 is irrational, the quadratic form z? — 2y? cannot vanish at integral
points (z,y) # (0,0). The smallest values taken by this form at such points
are

x? —2y% = +1. (1.4.1)

This is an instance of Pell’s equation, which we discussed in §1.2.5; we are now
interested in it because its successive solutions give the best approximations
to V2 by rational numbers.

More precisely, a/b is said to be a best approximation to « if

lbae — a] < |da —
for all 0 < d < b, a # c. Every solution to (4.1) can be obtained by setting

a+V2b=(1+V2)".

Table 1.6.
T Yy z/y
1 1 1,0
3 2 15
7 5 1,4

17 12 1,416. ..
41 29 1,4137. ..

99 70 1,41428. ..
239 | 169 | 1,414201...
577 | 408 | 1,414215...
1393| 985 | 1,4142132...
3363| 2376| 1,4142136...

1.4.2 Farey Series

One way of finding good approximations is connected with a specific procedure
for enumerating all rational numbers between 0 and 1. Denote by F,, the Farey
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Table 1.7.

4 4 3 5 2 5 3 45
5 3 2 3 1 2 1 1 1

s
1 1

213 23
5 2 5 3 4

11
5 4 3

series of order n, which consists of all such numbers in increasing order whose
denominators are < n:

Frn={a/b]0<a<b<n, (ab) =1} (1.4.2)

Theorem 1.5 ( [HaWr]). For every real number « € [0,1] there exists a/b €
Fn such that

a 1

‘O‘ b’ St 1) (14:3)

The proof is based on the fact that if a/b, ¢/d are neighbours in F,, then
ad — bc = £1. This in turn can be seen by noting that one can go from F,
to Fn41 by inserting between a/b and ¢/d all mediants (a + ¢)/(b + d) with
c+d=n+1.

In this theorem « need not be irrational, so we obtain some information
about rational approximations to rational numbers with large denominators.

If « is irrational, this theorem shows that the inequality

1
‘a - %‘ < (1.4.4)

has infinitely many solutions a/b. If a/b is a best approximation, then (1.4.4)
follows from (1.4.3) with n = b. An efficient way of finding best approximations
is furnished by continued fractions. This tool also allows us to show that for
irrational 3 the following stronger inequality has infinitely many solutions

1
Vb2

a

83| <

(1.4.5)

1.4.3 Continued Fractions

(cf. [Khi78], [Dav52]|, [HaWr]). For an arbitrary real number «, we define a
sequence of integers a; and real numbers «; by the following rules: ag = [¢]
(the integral part), g = o, ;41 = 1/(; — a;), ajr1 = [aiy1] (1 > 0). We
obtain a continued fraction
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o = ap+ 1 5
a1 + 1
as + T
as+ ...

Am +

Am+1

which can be written in a more compact notation as
a=[ap;a1,a2, .., Qmy Cmt1]- (1.4.6)
Deleting ;41 in (1.4.6), we get the finite continued fraction
Cm = lag;ar, ..., am]

called the m'™ convergent of a. The numerators and denominators of the
successive convergents C,, = A,,/B,, can be calculated recursively starting
from A_o=B_1 =0, A_; = B_5 = 1 with the help of the following relations:

Ap1 =ap+1 A4k + Ag—1,
Byy1 = ap41Bx+DBg—1 (kz —170,1,...). (1.4.7)
If « is irrational, then «,, # 0 for all natural m. Convergents of even order

increase; those of odd order decrease, and both sequences converge to o. The
limit is denoted as the (infinite) continued fraction

a=[ap;ai,ag,...,an,...]|.
This all follows easily from (1.4.7): first we see that

ByAj—1— ApBi_1 = (-1)F, k> 1,
BrAy_o — ApBp_o = (—1)k_1ak, k>0, (148)

and then

A1 Ap _ (ZDF
Bk_1 Bk BkBk—l,
Ap_o Ay (—1)k*1ak

- — =t 1.4.9
Br2 By BBy 2 ( )

From (1.4.9) one also deduces that every best approximation to « is equal to
a convergent A,,/B,,, because

1
Bm(Bm + Bm—i—l)

<la—Z0 e ——— (1.4.10)
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1.4.4 SLy;—Equivalence

The numbers a,, defined by (4.6) are related to « via fractional linear trans-
formations

Am—lam + Am—2
Bmflam + Bm72 .

o =

(1.4.11)

Moreover, the determinants of these transformations are (—1)™ (see (1.4.8)).
In general, two numbers related by a fractional linear transformation of deter-
minant 1 are called SLy(Z)—equivalent. Hence v and (—1)" v, are equivalent
in this sense. Conversely, o and 3 are equivalent iff a,,, = 3, for appropriate
m and n (cf. e.g. [Khi78]). In particular, all rational numbers are equivalent
to one another.

1.4.5 Periodic Continued Fractions and Pell’s Equation

Consider an infinite continued fraction which becomes periodic after a certain
place kg, with a period of length k:

o =[ao;a1, .-, Qky—1,Ckgy -~ -3 Okgth—1)- (1.4.12)
Then from (1.4.11) it follows that « is a quadratic irrational number.
Ezample. We have
V3=1[1;1,2,1,2,1,2,...],
since, denoting by x the r.h.s. continued fraction, we have
1

1
1+m

r=1+
that is,

2+ 22 =34 22

and, finally, z = /3.
The following algorithm efficiently calculates v, for a quadratic irrational-
ity a. Let N be square-free,

a=(Py+VN)/Qo,
N — P2 being divisible by Qo. Find successively
Pip1=0a,Qi — B

Qiy1=(N—P%,)/Qi, i=0,1,2,...
Then the P; and Q; are all integers; @; divides N — Pf_H, and
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a z+1 + \/

i+1 =

’ Qz+1

In general, P; and @); do not grow as rapidly as the numerators and denomina-

tors of the successive convergents. For example, if |Py| < vVN,0 < Qo < V'N,
we have for all 7 > 1:

0< P <VN,0<Q; <2VN,
A} = NB} = (-1)"™"'Qin
(cf. [Ries85], [Knu81]). At the i*" stage, the calculations consist of four steps.

1) Piy1 = [VN] = R; (Ro = 0),

2) Qiy1= (N —P2,)/Qi (Q-1 = (N —F§)/Qo),
3) ait1 = [(Piy1 + [VN])/Qit1],

4) R;+1 = the residue of P41 + [\/JV} modulo Q1.

This algorithm can be used to calculate efficiently the smallest solution to
Pell’s equation. In fact, if a2 — Nb? = 1, then we have a> > 1+ N, b2 > 1, so
that

a ‘ _ 1
b C202VN
Hence a/b is one of the convergents of v/N.

Ezample. The smallest solution to 22 —43y? = 1 is x = 3482, y = 531. Its
calculation by the method described above is protocolled in table 1.8.

Table 1.8.
i 20-110(1 123|456 7 8 9
a; 6 1] 1] 3| 1| 5| 1 3 1 1
P 061|545 |5 ]| 4 5 1
Qi 1716131912 ]9]| 3 6 7
R; O|5 (1|2 (|1]1]2 1 5 0
A, 01 |6]|7|13/46|59(341|400(1541(1941|3482
B; 1 11127 ]9|52|61|235]|269]| 531
AZ — 4382 716 [3[9]2[9]3]6 |7 1




1.5 Diophantine Approximation and the Irrationality of
¢(3)
1.5.1 Ideas in the Proof that ¢(3) is Irrational

One of the amazing mathematical inventions of recent time showing the vast
undiscovered power of elementary methods in number theory, was the proof
of the irrationality of ¢(3) = >, n™3 found by the French mathematician
Apéry. This proof was first presented in June 1978 in the conference Journée
Arithmétique de Marseille-Luminy.

We follow here an informal exposition of the proof due to van der Poorten
(cf. [vdP79]), who notes the original mistrust of the proof among other math-
ematicians, which was at first taken as a collection of mysterious statements.

1) For all integers a1, as, ...

Zl xfiz ?;iak):é (15.1)
2)
x (_ n—1,3
((3) = gz (1()2,1) (1.5.2)

3) Consider the recurrence relation: for n > 2
n3up — (34n% — 51n% + 270 — 5)up_1 + (n — D3up_o =0,  (1.5.3)

and let b,, be a sequence defined by the initial conditions by = 1,b; =5
and the relation (1.5.3). Let a,, be the sequence defined by (1.5.3) and

the initial conditions ag = 0, a; = 6. Then the denominators of the
rational numbers a,, divide 2[1,2,...,n]3 where [1,2,--- ,n] denotes the
least common multiple of the numbers 1,2,..., n.

4) The sequence a,,/b,, converges to ((3) rapidly enough for one to establish
irrationality of {(3). Moreover, for £ > 0 and for all integers p, g > 0 with
q sufficiently large the inequality holds

¢(3 f\ HE 0 =13.41782... (1.5.4)

One has the following continued fraction expansion:

C(3) = 6 T (1.5.5)

26
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i.e.

(=5 | 1| 64 | 729 | 4096
T 5— 117— 535— 1436— 3105—
| n’

34n3 +51n2 +2Tn +5

1.5.2 The Measure of Irrationality of a Number

In §4 of Chapter 1 we noted a link between the property of a number (3 being
irrational and the existence of infinitely many good rational approximations
p/q to B, i.e. such that the equality holds

1
q q
Analogously one could state the following criterium for the irrationality of a
number: if there exists 6 > 0 and a sequence {p,/q,} of rational numbers

{pn/QH} 7é ﬂ such that

p-2
dn

1

<
q1+6

(n=1,2,....), (1.5.6)

then f is an irrational number. The use of this criterium gives an interesting
measure of irrationality: if |5 — %\ < ﬁ and g, steadily increase in such a
n

K

way that ¢, < q,lltl for sufficiently large n and £ > 0 then for any fixed € > 0
and for all sufficiently large p,q > 0 the following equality holds:

>

‘ D (1.5.7)

q(1+5)/(571€)+8 '

In the interesting case when ¢, increases geometrically, i.e. ¢,,C, o > 0 one
could take for x an arbitrarily small positive integer, and the exponent in
(1.5.7) becomes 1+ (1/d) which is called the irrationality degree of 3.

Surprisingly, the method of Apéry turned out also to be applicable to the
number

(2)=>Y n?=n%/6
n=1

whose transcendence is well known. However Apéry’s proof implies the in-
equality

6 = 11.85078..., (1.5.8)

for all € > 0 and ¢ sufficiently large. One also knows that the irrationality
degrees of 72 and ((3) are not greater than § and 6’ respectively.
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1.5.3 The Thue—Siegel-Roth Theorem, Transcendental Numbers,
and Diophantine Equations

(cf. [Roth55], [Dav58], [Spr82], [Fel82], [Shid&7], [Maz86]). This famous the-
orem states that if 3 is an algebraic number, i.e. a root of a polynomial
f(X) =apn X" +a, 1 X" 1+ -+ ag (a; €7Z), then for an arbitrary fixed
€ > 0 and all sufficiently large ¢ the following inequality holds:

p 1
‘5 _ q‘ > (1.5.9)

In other words, if we take arbitrary positive constants C' and &, then there
exist only a finite number of approximations z/y of § satisfying the inequality

1

< (1.5.10)

X
-

In particular, if the inequality (1.5.6) holds for a sequence (p,,/¢y) with a fixed
0 > 1, then the number 8 must be transcendental (i.e. not algebraic). However
it turns out that this condition defines only a subset of the transcendental
numbers of measure zero.

Note that the theorem of Thue—Siegel-Roth has very important applica-
tions in the theory of Diophantine equations, which can be explained by the
example of the equation

X3 -5Y3=m (m#0) (1.5.11)

for a fixed integer m. This equation resembles Pell’s equation, but its degree
is greater then 2. If (z,y) a solution of (1.5.11) then the following equality
holds:

|§ — 5| < wE (= §/m). (1.5.12)

However if we take € > 0 such that 2+¢ < 3 then Roth’s theorem implies that
there are only finitely many solutions for the inequality (1.5.12) and hence for
the equation (1.5.11).

Using algebraic geometric methods, but resting on essentially the same
idea, Siegel established the following result:

Theorem 1.6 (Siegel C.—L. (1929)). Let f(X,Y) be an irreducible poly-
nomial with integer coefficients. Then the equation

f(X,;Y)=0 (1.5.13)
has only finitely many integral solutions excluding the two special cases:

a) The curve f(X,Y) =0 admits a rational parameterization: substituting to
(1.5.18) non—zero rational fractions X = p(t)/q(t), Y = r(t)/s(t) € Q(t)
this equation becomes an identity of rational functions of t.
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b) The projective envelope of the curve (1.5.13) has not more than two points
at infinity.

In particular, the Thue equation f(x,y) = m where f(z,y) € Z[z,y] is
an irreducible form of the degree n > 3, has only a finite number of integral
solutions. A. O. Gelfond (cf. [Ge83] ) has shown that an effective bound for
solutions of the Thue equation can be obtained if one has a good lower bound
for the module of linear forms of logarithms of algebraic numbers ag, ..., a,
(with integer coefficients). Such estimates were obtained by [Ba71l], making
it possible to solve a number of important arithmetic problems. These prob-
lems include besides bounds for solutions of Diophantine equations ([Spr82|,
[Step84], [Schm79|, [Bak86|, [La60], [La62]), also effective bounds for the class
numbers of algebraic number fields and the numbers of equivalence classes of
quadratic forms ([Ba71], [St67], [St69]). An effective upper bound (see [Bak86]
[Spr82], [ShT86] )

y¥ < 2% < expexpexpexp 10°

was obtained by Baker’s method for solutions of the Catalan equation
.'L'U _ yu — 1

which provide an example of an exponential Diophantine equation systemati-
cally studied in [ShT86]. Catalan asked in 1843 whether 8 and 9 are the only
consecutive perfect powers. A recent solution of this problem by P. Mihailescu
(who answered the question affirmatively) has become one of the main arith-
metical highlights of the past few years, cf. [Mih03], [Bi02].

1.5.4 Proofs of the Identities (1.5.1) and (1.5.2)

First of all the equality

K

aiag - ap—1 1 ajag a1
=, 1.5.14
;(x—kal)...(a:—&—ak) r (z+a) - (z+ag) ( )

is easy to check. We may write the right hand side in the form
a1az - - ag—1
(x+a1) - (x+ag)

and note that each term in the left hand side is equal to Ar_1 — Ag. The
identity (1.5.1) follows immediately from (1.5.14).

Ao — Ak, Ar=

Now substituting z = n? and a = —k2 and taking k < K <n —1 we
obtain
i k 1(/€ 1)!2 B i B (_1)n—1(n _ 1)!2
Pt —12 (2—k2)_n2 n2(n2 —12)...(n2 — (n —1)2)’
B 2(_1)n—1

()
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1 kl(n —Ek)!
2k3(n+ k)’

Writing e, ), = we have

(—1)F1(k — )12
(n2 _ 12><n2 _k2)

(*1)kn(5n,k - 5n—1,k) =

from which follows the identity

=

LN (D)
ZZ 5””“*8"‘1”:2$*2ZW:
1 k=1

N N gkl
(—1)*(enk — €ri) Z e N+k)(k) +Z(k31()2k) (1.5.15)

Mz i

x>
Il
—
=
Il
—
>

The equality (1.5.2) is implied by (1.5.15) on noting that the sum
N )k
ﬁ“ (U

tends to zero as N — oo.

1.5.5 The Recurrent Sequences a,, and b,,

Write the recurrence relation (4.3) satisfied by a,, and by:
n3ay — P(n — 1)an_1 + (n —1)3a,_5 =0,
n3b, — P(n — D)bp_1 + (n — 1)%bp,_2 =0,

where P(n — 1) = p(n) = 34n3® — 51n? + 27n — 5. If we multiply the first
equality by b,_1 and the second by a,_1, and then subtract second from the
first, we get

nB(anbn—l - an—lbn) = (’fl - l)g(an—lbn—Z - an—2bn—1)-

Recall that by the initial conditions we have a1bg — agby =6-1—0-5 = 6,
which implies

6
anbn_l — an_lbn = ﬁ (1516)
This easily leads to the relation
a > 6
3)— 2| = — =0(b;?). 1.5.17
OB 3 s =0 (15.17)

This is proved by the induction starting from the equality ((3)— “g = ((3).
The absolute values of the numbers b, can be easily estimated using the
relation
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by — (34 —51n ' 422 —5n )b, 1 + (1 =3n"  +3n"2 —n" )b, o =0.

Using the fact that the “linearized characteristic polynomial” of this recurrence
relation is 22 — 34z + 1 and has roots 17 + 2v/2 = (1+ \/5)4, we obtain the
estimate

by =0(a"), a=(1+V2)%

Assume for a moment that the statement in 3) on integrality of the num-
bers b, and on the denominators of a, dividing 2[1,2,---,n]® is already
proved. Then it is easy to complete the proof as follows. Let

Pn = 2[1327 to an]gana qn = 2[172a T 7“]3bn7

where py,, ¢, € Z. The value of [1,2,--- ,n] can be estimated using for example

a rough form of the prime number theorem: Zp<x 1~ x/logz. Then

[1’27... ’n] — Hp[logn/logp] < H n e~ nn/logn —en

p<n p<n
Hence ¢, = O(a"e3") and
@)~ 22| = 05%) = Ot~ = 0(4;0+9)

with the constant 6 = (loga — 3)/(log & + 3) = 0.080529... > 0. According to
the irrationality criterium in §1.5.2, we obtain the statement (1.5.6) in which
the irrationality degree is not greater than 1+ (1/§) = 6.

The statement on the denominators of the numbers a,, and b, is one of
the most difficult points of the proof. Apéry proved this fact by explicitly
constructing the sequences a,, and b,:

n 2 2 n 2 2
n n+k n n+k
=2 (1) () e () () e

where

e = zn: 1 Ek: =y (1.5.18)
n,k — m3 — 2m3 n ntm . .0,
m m

It follows from these formulae that the numbers a,, are integral. The bound
on the denominators of b,, is given by the fact that all of the numbers

, k
21,2, nPen <”Z )

are integers. The proof of this uses an estimate for the maximal power with
which a prime p can arise in the denominator of each term in the sum (1.5.18)
defining c¢;, .
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Further irrationality properies of zeta values at odd positive integers were
studied recently in [Riv01], [Zu95], [BaRiOl], see also [Zu]. In particular,
W.Zudilin proved that at least one of {(5),¢(7),¢(9),¢(11) is irrational.

There are interesting attempts to prove the irrationality of Euler’s con-
stant and to understand its arithmetic nature, cf. [Son04]. In [BelBr03| Euler’s
constant - is interpreted as an exponential period. The ring P of periods
is generated by the numbers of the form fww where X is a smooth alge-
braic variety of dimension d defined over Q, D C X is a divisor with nor-
mal crossings, w € 29(X) is an algebraic differential form of degree d on
X,y € Hy(X(C),D(C);Q), cf. Chapter 5. This ring was introduced by M.
Kontsevich and D. B. Zagier in [KoZa01] (see also [Del79]).

1.5.6 Transcendental Numbers and the Seventh Hilbert Problem

It is useful to compare the given elementary proof with the highly developed
theory of transcendental numbers, i.e. the numbers, which are not roots of
polynomials with rational coefficients. The existence of such numbers was
first established by Liouville in 1844; then Hermite proved the transcendence
of e (in 1873), and Lindeman in 1883 proved the transcendence of = (|Ba75],
[Bak86], [Shid87]). In the framework of a general theory A. O. Gelfond (see
in [Ge73]) and Th. Schneider (cf. [Sch57]) obtained a solution to the seventh
Hilbert problem (Hilbert D. (cf. [Hil1900] ), [Fel82]): to prove that “the power
a” of an algebraic base  to an irrational algebraic exponent 3 (e.g. 2V2 or
e™ = i~ 2" is always transcendental, or at least irrational”; “. .. we found it very
probable that such a function as ™, which evidently takes algebraic values
for all rational values of the argument z, will take, on the other hand, for
algebraic irrational values of z, only transcendental values”.

1.5.7 Work of Yu.V. Nesterenko on e™, [Nes99]

One of the most impressive achievments of the last decade in the theory of
transcendental numbers was the work of Yu.V. Nesterenko on the algebraic
independence of m and €™, see [Nes99| and [Nes02]. This result is based on the
study of the transcendence degree of a field generated by numbers connected
with the modular function j(7). In [Nes99] the algebraic independence of 7, €™
and I’ (i) is also established by this powerful method. For proving this result,
the problem is reduced to estimating the measure of algebraic independence
for the numbers 7 and I'(1).
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Some Applications of Elementary Number
Theory

2.1 Factorization and Public Key Cryptosystems

2.1.1 Factorization is Time-Consuming

In order to multiply two primes p < ¢ given their binary expansions, it suffices
to perform C(logq)? bit-operations (see section 1.1.1). Suppose now that we
are given n = pq and are asked to find p and ¢. If p ~ ¢ ~ \/n then the naive
repeated trial of all d < y/n would require more than

1
Cvn=Cexp <2 logn>

divisions with remainder. This exponential growth of the running time makes
the factorization of even rather small numbers unfeasible, at least unless one
invents more efficient algorithms. For example, consider the factorization

(107" — 1)/9 = 241573142393627673576957439049 x (2.1.1)
45994811347886846310221728895223034301839.

With some patience, one can multiply the two numbers on the right hand side
in an hour or two on a sheet of paper. However, the factorization of the result
by the trial-and-error method would take about 10'° years of running time (if
one division requires 1072 sec: cf. [Sim79], [Pet85], [Wun85|, [Ya02]).

In real life, the factorization (2.1.1) was first found in 1984 with the assis-
tance of a CRAY supercomputer and fairly advanced factorization methods,
which made this task feasible if not inexpensive.

2.1.2 One—Way Functions and Public Key Encryption

We may consider the binary expansion of n = pg as a message which can
be encoded in many other ways, e.g., by giving expansions of p and g. The
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rules explaining how to pass from one form to another from the information-
theoretical viewpoint can be called enciphering, encryption and deciphering.
Experimentally, one knows that some functions are easy to compute but dif-
ficult to invert (one—way, or trap—door functions). It is then natural to try
to use these functions in cryptography. We recall that cryptography studies
problems of information handling concerned with keeping and breaking se-
crecy of messages. One-way functions are used in the so called public key
encryption schemes, which were suggested in the seventies and revolutionized
this domain.

Before explaining the design of one such scheme, we must stress however
that there are no theoretical lower bounds on computational complexity justi-
fying our experimental observation that complexity of factorization far exceeds
that of multiplication. In principle, we cannot exclude the possibility that a
very efficient algorithm for factorization (or for inverting any given trap—door
function) might eventually be found. This is one of the basic problems of
computational complexity theory (cf. e.g. [GJ79], [DH76] [CoLe84|, [ARSTS|,
[Ya02]). If, however, we assume this experimental fact, we can use it in order
to generate new encryption schemes with remarkable properties.

We shall now describe the first “public key cryptosystem” suggested by
L.Adleman, R.Rivest, and A.Shamir in 1978, cf. [ARS78].

2.1.3 A Public Key Cryptosystem

Imagine a system of users Uy, Us, Us, ... From time to time any pair of users
may need to exchange messages that should remain secret to other users or
outsiders.

In a classical cryptosystem, they should first share keys and keep them
secret. A public key system avoids this last restriction: secret pairwise com-
munication becomes possible using only information open to everybody. Such
a system can be devised as follows.

a) Every user U; choses two large primes p; and ¢;, and two residue classes
e;,d; mod n;, where n; = p;q;, such that e;d; = 1 mod ¢(n;) where
o(n;) = (pi — 1)(¢; — 1) denotes the Euler function (cf. 1.1.4).

b) The numbers (e;, n;) are made public for all users.

We argue that it is unfeasible to calculate d; knowing only (e;, n;), so that
d; can be considered as a secret known to U; alone. In fact, we shall show
that an eflicient algorithm for calculating d; would also find efficiently the
prime factorization of n;, which we assumed to be difficult. Suppose that
we know d;. We then know that ¢(n;) divides e;d; — 1. If we knew ¢(n;)
itself then we could easily find p; and ¢;, since p; + ¢; = n; + 1 — p(n;)
and p; — ¢; = \/(pi + ¢:)? — 4n;. One can show that even knowing only a
multiple of ¢(n;) suffices (cf. [Mil76], [Wag806]) to find p; and ¢;.
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c) Suppose that a user U; wishes to transmit to U; a coded message which is
a sequence of bits. He first breaks this sequence up into blocks of length
[log, 1], then considers each block as a residue class m mod n; and finally
encodes it as the residue class m® mod n;. Thus, (n;,e;) serves as the
encryption key of the ;' user (recall that it is common knowledge).

d) Having received the encoded message, U; decodes any block b mod n;
by computing b% mod n; (recall that he knows the deciphering key d;).
This is easily checked with the help of Fermat’s little theorem (1.1.4).

Clearly, the details of such a scheme can be varied ad infinitum. For ex-
ample, one can devise an authentification procedure (“electronic signature”)
which uses a form of a secret message from U; to U; allowing U; to convince
a third party (a “judge”) that the author of the message is U;, so that it is not
faked by U; himself. This can be crucial for certain financial transactions.

Denote by E; the encoding map for messages addressed to U; and by D;
his deciphering map. Then FE; is public domain while D, is U;’s property. For
an arbitrary plain message M we have D;(F;(M)) = M and E;(D;(M)) = M.
The user U; sending his message M to U; uses as his signature S = D;(M)
and transmits to U; its encoded version E;(.S). In his turn, U; first computes
S = D;(FE;(S) and then M = E;(S) using the public key E;. The addressee
can convince a judge that M comes from U; because only by applying F; can
one transform S into a given sensible message M. On the other hand, the
addressee cannot fake S since he does not know D;.

We shall concentrate now on the number—theoretical rather than the in-
formation—theoretical aspects of public key cryptosystems. We shall describe
how some classical number—theoretical results can be applied to two particular
problems in this domain.

Problem 1. How does one produce large primes?

We want to stress that we really need an efficient method for mass produc-
tion of “sufficiently random” large primes, in order to allow a user to compute
(with the assistance of a large computer) his customized pair (p;, ¢;), and to
be sure that a different user will get a different pair.

Problem 2. How does one factorize large integers?

This problem is crucial for a third party wanting to break the cryptosystem
and, of course, for the designers wanting to secure its infallibility (cf. [DH76],
[ARST78], [KahT1]).

According to A.Wiles [Wi2000], one change in number theory over the last
twenty years is that it has become an applied subject (Pehaps one should
say it has gone back to being an applied subject as it was more than two
thousand years ago). Public key cryptography has changed the way we look
at secrecy and codes. The RSA system depends on the practical difficulty
of factoring a number. The seventeenth century problems of generating large
primes, primality testing and factoring now pose new and precise problems.
How fast can algorithms for answering these questions be? The question of
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primality testing is solved (cf. §2.2.4, §2.2.6). The other two are not theoreti-
cally solved, although the first of the problems seems much easier in practice
than the third.

2.1.4 Statistics and Mass Production of Primes

The asymptotic law of the distribution of primes (or prime number theorem)

is () ~ li (cf. 1.1.6). We can start then with a naive assumption that if
ogx

N is not too small with respect to x then between x and x+ N there should be
about N/logx primes. For example, if the least prime following = is bounded
by x + (logx)™, then one can just check successively z,z + 1,2 +2,.... The
complexity of the prime production would then be of the same order as the
complexity of the primality testing algorithm used. If one can take M = 1,
then to produce a prime of order about 2!°° one should first produce a random
number z of that order, and then test about (log 101%9)/2 ~ 115 odd integers.
If there is a primality test for y, which is polynomial in logy, then this is a
feasible task.

We shall discuss in the following subsection efficient probabilistic primality
tests.

We should remark however that such absence of large gaps between primes
is not proved and probably is not even true. All known results on the gaps
give upper bounds which are powers of x (see [HB88]|, [Hild88|, [Zag77]). We
quote some of them:

7/12 4
m(z 4+ z71?) — 7(2) z (1 +0 (k)gl()gx) > , (2.1.2)

- log log x

m(z +2%) — n(z) > C(H) oz 7

for 6 > 11/20 where C(6) is a positive function. For almost all x, a stronger

result is known:
20

m(z +2%) — n(x) > 0.15

logz’
if 0 > 1/12.

For an interesting discussion of large gaps between primes, see [Ries85],
p.84 and [Hild88], [Zag77]).

2.1.5 Probabilistic Primality Tests

Some modern efficient primality tests actually check a weaker property con-
nected with the notion of Eulerian pseudoprimes (cf. §1.1.5). We recall that
n is called an Eulerian pseudoprime modulo b if n and b are relatively prime,
and
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(n-1y/2 — (b

b = | — ) mod n. (2.1.3)
n

Primes are pseudoprimes modulo every b: this follows from the fact that
(Z/nZ)* is cyclic (cf. section 1.1.5). One readily sees that for composite n,
(2.1.3) fails for at least half of the residue classes in (Z/nZ)*. A probabilistic
primality test based upon this observation consists of checking (2.1.3) for, say,
several hundred randomly chosen b. If an n passes such a test it is sometimes
called “a commercial prime”. Commercial primes are used in public key cryp-
tosystems although, strictly speaking, their primality is not established by the
test.

It turns out that such a proof could be given if one assumes the generalized
Riemann conjecture on the zeroes of the Dirichlet L—functions. Namely, one
can deduce from this conjecture that the validity of (2.1.3) for all b < 2(log n)?
implies that n is prime (cf. [Mil76], [Wag86]). To check this property, it suffices
to perform O((logn)**€) divisions with remainder, for any € > 0.

This Solovay-Strassen primality test admits some interesting variations,
e.g., the Miller—Rabin test (see [SolSt77]), [Mil76|, [Ra80], [Ries85], [Schr84],
[Kob94]). It is based on the following notion of strict pseudoprimality. Suppose
that n is pseudoprime modulo b, so that "' = 1 mod n. We shall now
calculate all consecutive square roots of the left hand side, that is, b(?—1)/2'
fori=1,...,s where t = (n—1)/2% is odd. If n is prime then the first residue
class in this sequence distinct from 1 should be —1. We shall call n strict
pseudoprime if either b* = 1 mod n or for some 0 < r < s we have

b¥''=—1mod n. (2.1.4)

The Miller-Rabin test consists of checking this property for a set of randomly
chosen b.

It was noticed by F.Morain [Mor03a| that in practice the algorithm of
Miller is quite long, because it needs to compute numerous modular exponents,
and a faster ECPP method is discussed in Section 2.2.6.

In Section 2.2.4 we describe an important recent theoretic discovery that
primes are recognizable in polynomial time: the work of M. Agrawal, N. Kayal
and N. Saxena [AKS] who found that a polynomial version of Fermat’s Little
Theorem (1.1.2) leeds to a fast deterministic algorithm for primality testing:
the time of this algorithm is given by O(log'? N), where the notation O(¢(N))
for O(t(n) - poly(logt(N))) is used for a function ¢(N) of N.

2.1.6 The Discrete Logarithm Problem and The Diffie-Hellman
Key Exchange Protocol

The Diffie-Hellman key exchange is the first public-key cryptosystem ever
published [DH76].
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In order to communicate an important information to Bob, Alice wish
to use this algorithm as follows: Alice and Bob agree on a prime number p
and an integer g that has order p — 1 modulo p. (So g?~! = 1 (modp), but
g™ # 1 (modp) for any positive n < p — 1.) Alice chooses a random number
n < p, and Bob chooses a random number m < p. Alice sends g"modp to
Bob, and Bob sends ¢"*'modp to Alice. Alice can now compute the secret key:

mn

s=g"" = (¢g™)" (modp).
Likewise, Bob computes the secret key:
s=g"" = (¢"™)™ (modp).

Now Alice uses the secret key s to send Bob an encrypted version of her
message. Bob, who also knows s, is able to decode the message.

Non-authorized persons can see both ¢” (modp) and g™ (modp), but they
aren’t able to use this information to deduce either m, n, or ¢™" (modp)
quickly enough.

2.1.7 Computing of the Discrete Logarithm on Elliptic Curves
over Finite Fields (ECDLP)

The Abelian group structure on the group of points E(F,) on an elliptic
curves is used in many arithmetical questions. In particular, the case when
this group is cyclic of large size leads to ECDLP (“Elliptic curve discrete
logarithm problem”) which is extremely important for applications in public-
key cryptography, see [Kob87], [Kob98|, [Kob01], [Fr01], [Men93], [Kob02].
This idea was independently proposed by Neal Koblitz and Victor Miller in
1985, and since then there has been an enormous amount of research on the
topic. The computational problem on which the security depends is the elliptic
curve discrete logarithm problem: Given an elliptic curve E over a finite field
F, and two points P,Q € E(F,), find an integer A\ (if it exists) such that
Q = [M\P. If the field size ¢ is sufficiently large, and if the elliptic curve FE
avoids various special cases, then this seems to be a difficult computational
problem.

Numerous applications of arithmetical algebraic geometry to cryptographic
constructions were discussed in [Fr01], [Men93|, and in other good sources:
[Kob2000], where the problem of computing the orders of elliptic curve groups
is discussed in some detail as well. For example, we can learn about the cryp-
tographic significance of old number-theoretic questions such as the existence
of infinitely many Sophie Germain primes and Mersenne primes.
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Probablilstic polynomial-time primality tests have been known for many years.
There is a well-known almost-polynomial-time ((logn)'°81°81°87) determinis-
tic algorithm due to Adleman, Pomerance and Rumely (1983) cf. [APR&3],
[LeH.80], [CoLe84|, and also a randomized algorithms due to Goldwasser—
Kilian, cf. [GK86], [GK99], Atkin—Morain [AtMo93b], and Adleman-Huang
[AdHu92| which give certificates for both primality and compositeness in ex-
pected polynomial time on all inputs. This method of primality proving using
elliptic curves, the ECPP was further developed by F.Morain, [Mor98a].

In August 2002, a deterministic polnomial-time algorithm was found by
M. Agrawal, N. Kayal and N. Saxena from the IIT Kanpur. Among other
things, we give an exposition of this result in this section.

We describe some deterministic primality tests

a) Adleman, Pomerance and Rumely (1983): they have subexponential run-
ning time, and the proofs that they work are unconditional (i.e. they do
not use any unproved conjectures).

b) A resent discovery that primes are recognizable in polynomial time by M.
Agrawal, N. Kayal and N. Saxena who found that a polynomial version
of Fermat’s Little Theorem (1.1.2) led to a fast deterministic algorithm
for primality testing: The time of this algorithme is given by (5(10g12 n),
where the notation O(¢(n)) for O(t(n)-poly(logt(n))) is used for a function
t(n) of n.

¢) Elliptic curves and primality proving, the ECPP (Elliptic Curve Primality
Proving by F.Morain, see [AtMo93b]|, [Mor98a], [Mor03].

2.2.1 Adleman—Pomerance—Rumely Primality Test: Basic Ideas

There are two main variants of this algorithm cf. [APR83]|, [LeH.80], [CoLe84]:
a simpler, probabilistic version, and a deterministic one. Its running time is
bounded by
IOg n¢ log log log n,

where c is an effective constant. The power in this expression grows so slowly
that this bound can be considered “almost polynomial”. All previously known
deterministic primality tests had exponential running time (e.g., Pollard’s test,
described in [Pol74], [Ries85], requires about

1
nEte = exp ((8 + E) logn)
operations).

The algorithm consists of the following steps.
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a) One checks a series of conditions generalizing the congruence (2.1.3) for
the Jacobi symbol. If n fails to satisfy any of these conditions, then it is
composite.

b) If n passes the first stage, the test furnishes a small set of integers con-
taining all divisors r of n not exceeding /n. It remains to check whether
n is divisible by at least one element of this set.

¢) The set of potential divisors r is determined by specifying their residue
classes modulo an integer s > y/n, which in turn is a product of several
distinct primes g. In view of the Chinese Remainder Theorem (cf. (1.1.5)),
it suffices to specify r mod ¢ for all ¢ dividing s.

d) Every ¢ dividing s satisfies the following condition: ¢ — 1 is a product of
several distinct primes taken from a fixed set {po,...,pr}. These primes
are called the initial primes, and the ¢ are called the Fuclidean primes,
because they are constructed by the method used in Euclid’s proof that
the set of primes is infinite:

q=1+pg°pi*...po%, a; =0or 1.

To estimate the running-time, one has to use a hard theorem from analytic
number theory (cf. [Pra57]) which guarantees that even for a small set of
initial primes, the product of all Euclidean primes generated by them can
be large. More precisely, given n, one can determine a set of initial primes
{po, - .., pr} whose product t is bounded by

k
t= Hpi < log(nezlogloglosny () > g€ (2.2.1)
=0

whereas the product of the corresponding Fuclidean primes is bounded
from below by

s= [ a>vn, (2.2.2)

(g=1)[t

where co is a computable positive constant. Notice that in this situation
the number of Euclidean primes is bounded by 7(t + 1) < ¢ + 1. For any
n < 10359 one can take t =2-3-5-7-11-13-17-19.

e) To determine r mod ¢, one actually calculates the discrete logarithms
ind(r, g, q) of all possible r with respect to a fixed generator g of (Z/qZ)*.
These logarithms are in turn determined by their residue classes ind(r, g, q)
mod p; where p; runs over all initial primes. Again, this follow from the
Chinese Remainder Theorem.

We shall now describe the algorithm in more detail.
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2.2.2 Gauss Sums and Their Use in Primality Testing

For an odd ¢, the Euler criterion (%) = ¢ 1/2 mod n can be rewritten in

the form

(Z) =(-1)" "7 ¢"7 mod n, (2.2.3)
which gives a formula for calculating the quadratic residue symbol of n modulo
q. In the algorithm we discuss here, one uses generalizations of this formula
to arbitrary p*™ power residue symbols for initial primes p. In order to explain
these generalizations, we must introduce Gauss sums, which were initially
used in one of Gauss’ proof of the quadratic reciprocity law (cf. below).

One calculates the number of solutions of a congruence a2? = a in (Z/qZ)*
with the help of the Dirichlet characters of order p modulo ¢, that is, the
homomorphisms x : (Z/qZ)* — C*. Every such character is defined by the
image exp(k - 2mi/p) of a generator g of (Z/qZ)*. The number of such char-
acters is p if p divides ¢ — 1, and 1 otherwise. If ¢ is prime, we have

Card{z € (Z/qZ)*|a" =a} = Y x(a). (2.2.4)

x|xP=1

In particular, for p = 2 this is 1 + (a)' The sum in the right hand side of
q

(2.2.4) vanishes iff x(a) # 1 for some x. This happens only if p|(¢ — 1) and a
is not a p'™ power modulo ¢. If p does not divide g — 1, both sides are equal
to 1. Finally, if p|(g — 1) and a is a p*® power, both sides are equal to p.

One way to understand Gauss sums is to view them as discrete analogues
of the gamma function I'(s), which for Re(s) > 0 is given by the integral

I'(s)= /000 e_yysd—;/. (2.2.5)

Here the integrand is the product of an additive quasicharacter of R (the
homomorphism y — e~¥) and a multiplicative quasicharacter y — y° of R}.
One integrates this over the positive reals with respect to the multiplicative

invariant measure % .

In order to get a Gauss sum, one should replace here R by Z/NZ for some
N > 1; e7¥ by an additive character Z/NZ — C* : y — (%,(n = exp (%),
and y* by a multiplicative character y : (Z/NZ)* — C*. A Dirichlet character
X : Z — C corresponding to x and denoted also x is defined by x(a) =
Xx(a mod N) for (a, N) =1 and by x(a) = 0 for (a, N) > 1. The Gauss sum

G(x) is, by definition,

N—-1

Gx) = x(x)¢. (2.2.6)

r=1

]
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For a € 7Z, the following notation is often used:

—1

N
Ga(x) = > x(@)Ga".

x=1

Since the formulae (2.2.5) and (2.2.6) are obviously similar, they define func-
tions with many similar properties.

To state them, we need the important notion of a primitive Dirichlet char-
acter. A character y is primitive modulo N if it is not induced by a character
modulo M for any proper divisor M of N. Equivalently, the restriction of x to
any subgroup Hys = ((1 4+ MZ)/(1 + NZ))* is non—trivial. If x is primitive,
we have

Ga(x) =X(a)G(x) (a€Z), (2.2.7)
G(x) =x(-1)G(X), (2.2.8)
|G(x)]* = N. (2.2.9)

Property (2.2.7) corresponds to the integral formula
> —Qa S dy —S8
e~ Wy*—= =a"°I'(s) (Re(s) > 0),
0 Y

and (2.2.9), rewritten in the form G(x)G(x~!) = x(—1)N, corresponds to the

functional equation

M) I(1—s)=———

ssinms’

From (2.2.7)—(2.2.9) one readily deduces the quadratic reciprocity law. Let
us prove, for example, the main formula

<;) <(l]> = (-1 "7, (2.2.10)

where [ and ¢ are odd primes. Notice first that the quadratic residue symbol
x(a) = (%) is a primitive Dirichlet character modulo q. The corresponding

quadratic Gauss sum G(x) is an element of the cyclotomic ring of algebraic
integers R = Z[(,]. In any commutative ring the congruence (a + b)! = a! +
b mod IR holds because the binomial coefficients C} are divisible by . Since
x!(a) = x(a) = £1, we have

G()' = Gi(x") mod IR, Gi(x") = x(1)G(X),

so that
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l
Gt = () mod [R. (2.2.11)
q
On the other hand, x =%, and from (2.2.9) it follows that

G(x)?=x(-1)g=(-1)"= q. (2.2.12)

Representing the left hand side of (2.2.11) as G()OT%1 we obtain
az1i-1 -1 l
(-1)7=2q¢= =(-) mod IR. (2.2.13)
q

Finally, (2.2.13) and Euler’s criterion

q% = <l> mod [
q
give (2.2.10).

For Z/NZ, there is also an analogue of the beta-function
1
B(s,t) = / 211 —2)lde =
0
Yy dy
—_— (Re(s),Re(t) > 0).
R

(T+y)etty

It is called the Jacobi sum depending on two Dirichlet characters x, 1 mod .
By definition,

Joov)= > x@wl-2= Y x@h¥)1+y). (2214)

z mod N ymod N

(The equality of these two expressions can be established by the change of
variables y(1 — z) — z,z(1 + y) — y). If x, ¢, and x% are primitive modulo
N, we have

J069) = GG (W) /G (xy) = J (¢, x), (2.2.15)

which corresponds to the classical identity B(s,t) = ['(s)['(¢t)/I'(s +t). In
fact, let us calculate the product

GOIGW) = Y x@)EGWw) = Y xy@)p@)Ge). (2.2.16)

z mod N z mod N

Applying (2.2.7), we get

P@)GW) =G () = Y (W)

y mod N
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so that (2.2.16) becomes

S )@ = Y )Gy () =

z,y mod N y mod N
> W) 1+ y)Gxe) = T, )G (x¥).
ymod N

We now establish some congruences useful in primality testing. Let p and
g be primes, p|(¢ — 1), x a Dirichlet character of degree p modulo ¢. Choose a
generator t = t, of (Z/qZ)* and put 1, = x(t,). This is a primitive p** root
of unity, and G(x) € R = Z[(p, (] = Z[(pq)- Now let [ be a prime distinct
from p and ¢. From (2.2.7) one deduces that

G = x()7'G(x}) mod IR. (2.2.17)
Iterating this p — 1 times, we obtain
GO =X G ) mod IR,
so that
G)" "' =x() " mod IR, (2.2.18)
because [P~! =1 mod p. Now (2.2.18) can be rewritten in the form
(GO)M) ™ P = X0 mod IR

which generalizes the formula (2.2.13).

It is important that G(x)P belongs to the smaller ring Z[(,] (for p = 2,
this is just Z). Moreover, it can be expressed via Jacobi sums: for p > 2 we
have

p—2
G()” = x(—1)q H JO6xY). (2.2.19)

To prove this identity, it suffices to multiply termwise the formulae

GG
GO
taking into account (2.2.8) in the form G(x*~')G(x) = G(X)G(x) = x(—1)q.
One uses (2.2.19) in conjunction with a congruence due to Iwasawa ([Iwa75],
Theorem 1):

=Jx,x) (i=1,2,....,p—2)

J(x%x%) = —1mod ()\)?,
where (A) = (1 — () is a prime ideal of Z[(p]. Therefore,
G(x)? = —x(=1)gmod (), (2.2.20)

which becomes an exact equality for p = 2.



2.2 Deterministic Primality Tests 75

2.2.3 Detailed Description of the Primality Test

a) In the preliminary stage (cf. section 2.2.1 d), one calculates the number

t = H?:o p; which is the product of the initial primes satisfying (2.2.1)
and (2.2.2):

t < lognczlogloglogn = o — H q>n.
q,q—1]t

As we have already mentioned, for n < 10%%° we can take t = 2-3-5 -
7-11-13-17-19. In general, to find ¢ one uses a trial-and—error method,
and the primality of the Euclidean primes is tested by the primitive case—
by—case check. Since each ¢ is bounded by ¢ + 1, and the number of ¢’s
is bounded by 7(t + 1) < t + 1, this preliminary stage requires no more
than log nclogloglogn operations, with an effective positive constant cs.
At this stage, one should also check that (n,s) = (n,t) = 1 (otherwise n
is composite, and the algorithm stops).

b) The necessary conditions of primality, essentially of the type (2.2.18), are

then checked for every pair p,q with p|(¢ — 1), ¢|s, and every Dirichlet
character x mod ¢ of degree p. It is convenient to fix p and vary ¢. For
each ¢, one calculates a generator t, of (Z/qZ)*. The Dirichlet charac-
ters correspond to primitive roots of unity 7,. The primality condition
corresponding to (p, ¢, x) is

GOO™ Tt =n(x) mod nR, (2.2.21)

where 7() is a p'" root of unity (for prime n, n(x) = x(n), in view of
(2.2.18)). To check (2.2.21), one expands the left hand side with respect
to the Z—basis of R = Z[(p, ;] and compares it with the right hand side
coordinate—wise.

If all the congruences (2.2.21) hold true, one calculates a set containing
virtual prime divisors r of n not exceeding /n. We shall first explain how
this is done in the simplest case when n?~! — 1 is not divisible by p? for
any p. Then we have simply

r =n'(mod s) for some i € {0,1,...,t}.
In fact, if r|n, put
Ly(r)= P~ = 1)/(nP~' —1) mod p,l,(r) € Z/pZ. (2.2.22)
Then
Lp(rr') = 1(r) + 1,(r"), 1p(n) = 1. (2.2.23)

If r is prime, it follows from (2.2.18) that
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G(X)TV1 = x(r)"! mod rR.

Let us write (r?~! —1)/(n?~! — 1) in the form a/b where b = 1(mod p),
so that [,(r) = a(mod p). From (2.2.21) and (2.2.22) it follows that

X(r) = x(r)? = GO 7Y = G Y = (x)® mod 7R,
and finally

() =00 (r>2). (2.2.24)

The additivity property (2.2.23) then shows that (2.2.24) holds for all
divisors of n, not only the prime ones. In particular, for r = n, we find

n(x) = x(n), because l,(n) = 1.
Summarizing, we established, that if n?~! — 1 is not divisible by p?, then for
any triple (p, ¢, x) we have

so that r =n’ mod ¢ where i = [,(r) mod p for all p.

d) In general, we have n?~! — 1 = phu, h > 1, p does not divide u. The
calculations become longer, but the running time is still bounded by
log nelogloglogn for 5 possibly larger constant c. Again, for every triple
(p, ¢, x) we have the congruence (2.2.21):

h

G(x)" " =n(x) mod nR, h=h(p,q,x) > 1.

Let us define w(y) as the smallest ¢ € {1,2,...,h} such that G(X)pi“
is congruent to a power of (, modulo nR. If w(x) > 2, the number

GO v = (G(x)P)P" ™ belongs to the ring Z[¢,] with the Z—basis
{1, -+ Cg_2}. At this stage, one must check the following auxiliary con-
dition:
for every j €{0,1,...,p— 1}, at least one (2.2.25)
of the coef ficients of

!

with respect to this basis is relatively prime to n.

If this assertion is wrong, n is composite, because it has a non—trivial
common divisor with one of the coefficients. Otherwise, one can prove,
as above, that r?~1 = 1(mod p*(X)) for all 7|n, and that for all triples
(p,q,x) with a given ¢ one has

x(r) = x(v?) for a certain i € {0,1,...,t}, (2.2.26)

where ¥ mod ¢ is the uniquely defined residue class for which
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x() =1"(x), 7" (x) = G(x)

One can also determine the root of unity x(v) € Z[(,] using Jacobi sums
(cf. [LeH.80]). Choose a,b € Z such that

OO

mod nR. (2.2.27)

p? does not divide ab(a + b), p* does not divide ((a + b)? — aP? — bP)

(e.g., a =b=1for p < 3.10° p # 1093, 3511). Using (2.19), one can
prove then that
v(x) = J(x*,x") mod nZ[Gy).

e) We must now synthesize all the calculations to obtain a residue class v
modulo s such that every potential divisor r|n,r < \/n, satisfies a congru-
ence r = v* mod s for some 0 < ¢ < t. In view of the Chinese Remain-
der Theorem, it suffices to determine for every ¢|s a power k such that
v = t’; mod ¢. To this end, we choose for every p|(¢ — 1) a character x
with x(tq) = ¢p- From (2.2.27) it follows that x(t5) = ¢¥ = #/(x), which
defines k£ mod p and finally v mod s.

f) It remains to check whether one of the numbers r; defined by

ri=vimod s, 0<r;<s, 0<i<t,

actually divides n.

A number n which passes all these checks is prime. In practice, this algo-
rithm is quite fast (cf. [CoLe84], [Vas88]).

Primality testing can often be speeded up by the following elementary
observation. If s is a square-free divisor of n — 1, and if for every ¢;|s there
exists such an a; € (Z/nZ)* that

gcd(al(-nfl)/q" —1,n)=1, a» ' =1mod n, (2.2.28)

K2

then each prime divisor p of n is congruent to 1 modulo s. In fact, from (2.2.28)
it follows that the order of a(®~1)/4 in (Z/pZ)* is equal to ¢;. Since ¢;|(p—1),
we have s|(p — 1). In particular, if s > /n, then n is prime. Of course, to
apply this observation, one must know a sufficiently large divisor s of n — 1.

A variant of this idea is used in some related primality tests in [LeH.80],
[GKS86], and in the ECPP, see section 2.2.6. This trick was also used in a proof
that Ryg31 is prime [WD86|, where R, = (10" — 1)/9. It is known that for
lesser values of n, only Rs, Ri9, Ro3, and R317 are prime. A very nontrivial
prime decomposition of R;; was given in the equality (2.1.1).

Since the work of Goldwasser and Kilian, a general primality test was de-
velopped by Atkin-Morain which has probably polynomial time (see [AtMo93b],
and the end of this section for a discussion of the ECPP (Elliptic Curve Primal-
ity Proving). Adleman and Huang in [AdHu92] modified Goldwasser—Kilian
algorothm to obtain a randomized polynomial-time algorithm that always
produced a certificate for primality.
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2.2.4 Primes is in P

manindra@cse.iitk.ac.in, kayaln@iitk.ac.in,
nitinsa@cse.iitk.ac.in

Let us describe now a resent discovery that primes are recognizable in
polynomial time. This is the work of M. Agrawal, N. Kayal and N. Saxena
who found that a polynomial version of Fermat’s Little Theorem (1.1.2) led to
a fast deterministic algorithm for primality testing: the time of this algorithme
is given by O(log'?n), where the notation O(t(n)) for O(t(n) - poly(logt(n)))
is used for a function t(n) of n.

The algorithm is based on the following polynomial version of Fermat’s
Little Theorem (1.1.2):

Theorem 2.1. Let p be an integer, and a an integer such that ged(a,p) = 1.
Then p is a prime iff (v — a)? = 2P — a(modpZ[z]).

Let n be the given number whose primality or compositeness is to be
determined. If n is prime then obviously the test

Test(a,r): (z —a)" Lan a(mod(z" — 1,n) (2.2.29)

will succeed (give the answer “true”) for all integers a and r. The result of
Agrawal-Kayal-Saxena says that conversely, if Test(a, r) is true for all integers
a and r in the range 0 < r < log®n, 0 < a < log4 n, and n has no prime
factors <« log4 n, then n is prime or a power of prime. Here and from now on
all constants implied in the sign < are absolute).

Since performing Test(a,r) takes time ar most O(r?log®n), or even
O(rite log®™® n), if FFT is used for multiplication of polynomils and of num-
bers modulo n, this gives a deterministic polnomial-time algorithm as desired,
since obviously checking that n is non-trivial power can be done in polynomial
time. Recall that the Fast Fourier Transform (FFT)is a fast algorithm which
reduces the number of multiplications of coefficients needed for of the multi-
plication of polynomials of degree 7 from O(r?) to O(rlogr), and the FFT
reduces the time of multiplication of two integers modulo n from O(logn?)
to O(lognloglogn). In fact, the result actually proved by them is somewhat
stronger: one can find in a deterministic way a single number r < log®n for
which the validity of Test(a,r) for all a < log*n suffices to imply the pri-
mality of n. This improves the maximal running time of the algorithm from
O(log"®" n) to O(log'**®n). The actual running time on a well known hy-
pothesis on the density of Sophie Germain primes is in fact only O(log®"< n)
(Sophie Germain primes are odd primes ¢ such that r = 2¢+1 is also a prime):

Conjecture 2.2 (On the density of the Sophie Germain primes).

#{q¢<z|qgand 2¢g+1 are primes} ~C - x

log,
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Noice that there is an obvious analogy with the asymptotic law of the distri-
bution of primes (1.1.14) (the density of all primes less or equal to z):

X

#{ ¢<z|qisprime} ~ K -
logyx

More presisely, the results of Agrawal-Kayal-Saxena, which imply the
above statements, are as follows. Here P(m) denotes the largest prime di-
visor of an integer m ond o,.(m) the order of m(modr), where r is any prime
not dividing m.

Proposition 2.3. For anyn, there is a prime r < log® n such that P(o,(n)) >
2y/rlogn

Proposition 2.4. Let n be an integer and r { n a prime satisfying

(a) P(or(n)) =1,
(b) Test(a,r) is true fora=1,2,...,1,
(c) n has no prime factors <1,

where | = 2+/rlogn. Then n is a power of a prime number.

The proof uses a result of Fouvry [Fou85], and Baker-Harman [BaHa96],
which says that P(r — 1) > r2/3 for a positive proportion of all primes r.
This result, proved with sieve theory, is difficult but not surprising since it
is easy to see that P(m) > m?/3 (or even P(m) > m¢ for any fixed ¢ < 1)
for a positive proportion of all integers m. (The number of m < z having a
prime factor ¢ > ¢ for ¢ > 1 is Z [x/q], which is asymptotically equal

z¢<g<z
gprime

to log(1/c)x for x large.) We will show that, for C sufficiently large absolute
constant, there exists for every n a prime number r satisfying

(2logn)® <r < (Clogn)®, o.(n) > /3, P(r — 1) > r2/3. (2.2.30)

Indeed, by the result just quoted, the number of primes r < z = (C'logn)®
6 6

with P(r — 1) > r2/3 is at least cm(x) ~ cﬁclolg(z%%, where ¢ is an absolute

(log n)°

loglogn’

constant. The number of primes < (2logn)® is < and the number of

. e C*logn® | .
r <z with o,.(n) <r /3 is « ——=" since all these r divide the number
loglogn
1/3 .
N :=][j=, (n’ — 1), and
1/3
T il 2/3 1 04 1 5
number of prime factors of N is <« Z J .ogn T~ oen _ A
= log(jlogn) loglogn loglogn
log n®

It follows that for C sufficiently large there are > ———— primes satisfying
loglogn

(2.2.30). Let r be such a prime and ¢ = P(r — 1). Then ¢ is a prime dividing



80 2 Some Applications of Elementary Number Theory

r — 1 but not (r —1)/o,(n) (since (r — 1)/o.(n) < r?/3 < q ), so ¢ divides
o,(n) and P(o.(n)) > q>r?/3>2\/rlogn 0O

The idea of the proof of Proposition 2.4 is to consider the integers n‘p’
and n*p', and to show that there exist two different couples (i,j) and (k1)
such that n’p’ = n*p!( mod ).

Set ¢ = P(o-(n)). Since ¢ is a prime, ¢ must divide o,(n) for some prime
divisor p of n. The field extension K = F,[(], where  is a non-trivial r*® root
of unity, has degree d = 0,.(p) > ¢. Let G be the subgroup of K* generated
by (—1,(—2,...,(—1. Then we have

d+1-1
G| > ( + z ) (2.2.31)
because the elements (¢ —1)% (¢ —2)% ... ((—1)% (d; > 0, Y. d; < d) of G are
distinct. (The linear functions x — 1, ..., x — [ are distinct irreducible polyno-

mials modulo p because of assumption (c), and ¢ cannot satisfy a polynomial
equation of degree < d.) On the other hand, we claim that

|G| < n?V7" (2.2.32)

if » is not a power of p, and this proves the proposition since (2.2.31) and
d > q > 1 imply

al > <d+§—1> Z(2zg-1>>el_nm.

To prove (2.2.32), we denote by o, (s € Z) the automorphism of K induced
by ¢ — ¢*. We have 0,(g9) = ¢? for any g € K* and o,(g) = ¢" for any
g € G by virtue of assumption (b), so o4(g) = ¢* for any s in the form np’.
Let S = {np’ | 0 <i,j <+/r}. If n is not a power of p, then these elements
are all distrinct, |S| > r and we can find s # s’ € S with s = s'(modr). But
then ¢° = 04(g9) = 05 = g* . Taking for ¢ a generator of the cyclic group G
we deduce from this that |G| < |s — §'| < n?V7, as desired. 0O

The algorithm to check primality is therefore as follows. First check that no
root n'/#(2 < k < log, n) is integral. Then check succesive primes r > 4log® n
until one is found for which r — 1 has a prime factor ¢ > 2,/7logn with
nlr=1/a £ 1(modr). By Proposition 2.3 the smallest such r is < log® n. Now
check (b) and (c) of Proposition 2.4; n is prime if and only if both hold.

Remark 2.5. It seems that the smallest r satisfying the condition of Propo-
sition 2.3 is not only < log®n, but is very close to the minimum possible
value rg = [4 logz]. For instance, a two-line PARI program checks that for
n = 10390 4 1, already 1908707, the second prime > ry, works and that for
n = 109 + 1(j < 300) one never needs to try more than 10 primes, or to go
further than rg + 186, before achieving success. (Total computation time is
about 2 seconds on a SUN work station).

The given version is due to Dan Bernstein, who slightly improved the

original version of August 6, 2002; his contribution is the use of the inequality
(d+§71) > n2V7, cf. [Mor03], [Ber03], and [Mor03al.
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2.2.5 The algorithm of M. Agrawal, N. Kayal and N. Saxena

(see [AKS], p.4), and [Mor03al, p. 4.)
Input: integer n >1

1. if (n is of the form a ab, b>1) output COMPOSITE;
2. r:=2;

3. while (r<n) {

4. if (r is prime)

5. if r divides n output COMPOSITE;

6. find the largest prime factor ¢q of r —1;
7. if (¢ > 4y/rlogyn) and n'T #Z1 mod r ;
8. break;

9. r:=r-+1;

10. }

11. for a=1 to 2\/rlogyn

12. if ((z—a)™ = (2"—a) mod (z"—1,n).) output COMPOSITE;

13. output PRIME;

Theorem 2.6. The algorithm produce PRIME if and only if n is prime.

Remark 2.7. Practically, one can certainly find r of the size O((logn)?) in
order to satisfy the conditions in the algorithm. This leads to the estimate of
the complexity O((logn)%) in the best case.

2.2.6 Practical and Theoretical Primality Proving. The ECPP
(Elliptic Curve Primality Proving by F.Morain, see [AtMo093b])

The questions of practical primality proving of numbers with thousands of
digits and the questions of the mass production of large primes are discussed
in [Mor03a].

It is noticed by F.Morain that even the algorithm of Miller is already
long, because it needs to compute numerous modular exponents. The quantity
(logn)% in AKS gives an idea of the order of the degree of polynomials with
which one needs to work. In practice, it is almost certain that one can find
an 7 = c(logyn)® with ¢ > 64. For example, if n = 2512, then in the most
optimistic case r = 64(logy 1) = 224 > 16 - 10°, leading to manipulate with
dense polynomials containing more than 1 Gbytes, which is already rather
difficult.

Suppose that we wish to prove the primality of the number n = 10° + 7
(which is a prime). Using an implementation of AKS by E.Thomé with GMP
4.1 on a PC with 700 MHz, one takes r = 57287 which leads to s = 14340 (see
[Mor03a]). Each intermediate computation takes 44 seconds, giving a total
time of more than 7days. If one uses directly the condition (2.2.29), one can
take (r,q,s) = (3623,1811,1785), and this takes 1.67 x 1785 seconds or about
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49 minutes. The best triplet is (r,q,s) = (359,179, 4326), leading to a total
time of 6 minutes and 9 seconds.

One could compare these algotithms with the algorithm using Jacobi sums
(cf. [Coh96] for a presentation of this algorithm which is close to one presented
in Section 2.2.1), and with another efficient algorithm, the ECPP (Elliptic
Curve Primality Proving) by F.Morain.

The ECCP produces really rapidly a certificate (in O((logn)*)) using ellip-
tic curves E over Z/nZ, and using an elementary observation on congruences
(2.2.28) adopted to the groups like E(Z/nZ). Such a certificate is the program
which produces a long list of numbers that constitute the proof of primality for
that number. In brief, a decreasing sequence of primes is built, the primality
of the successor in the list implying that of the predecessor.

The ECCP can even prove the primality of numbers in 512 bits in 1 sec-
onde, and that of 1024 bits in 1 minute, and that for 10000 bits in a rea-
sonable time (of about one month). According to [Mor0O3al, it seems that
even if one succeed to lower the number r in the algorithm AKS, it will not
produce an algorithm, which is practically more efficient than the ECPP, cf.
http://www.lix. polytechnique.fr/Labo/Francois.Morain/Prgms/
ecpp.english.html.

2.2.7 Primes in Arithmetic Progression

An important recent discovery in [GrTa] by B.J. Green and T.Tao says
that the primes contain arbitrary long arithmetic progressions (cf. [Szm75],
[Gow01], but also http://primes.utm.edu/top20/ for interesting numerical
examples of long arithmetic progressions of consecutive primes).

It was a well-known classical folklore conjecture that there are arbitrarily
long arithmetic progressions of prime numbers. In Dickson’s History of the
Theory of Numbers [Dic52] it is stated that around 1770 Lagrange and Waring
investigated how large the common difference of an arithmetic progression of
L primes must be.

It was proved in [GrTa] that there are arbitrarily long arithmetic progres-
sions of primes. There are three major ingredients. The first is Szemerédi’s
theorem, which asserts that any subset of the integers of positive density con-
tains progressions of arbitrary length. The second is a certain transference
principle. This allows one to deduce from Szemerédi’s theorem that any sub-
set of a sufficiently pseudorandom set of positive relative density contains
progressions of arbitrary length. The third ingredient is a recent result of
Goldston and Yildirim, cf. [GoYi03|. Using this, one may place the primes
inside a pseudorandom set of “almost primes” with positive relative density.

It was found in 1993 by Moran, Pritchard and Thyssen (cf. [MPTh]) that
11410337850553+4609098694200% is prime for k = 0, 1, ..., 21. In 2003, Markus
Frind found the rather larger example 376859931192959 + 18549279769020k
of the same length. Main theorem of [GrTa| resolves the above conjecture.
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Theorem 2.8 (Theorem 1.1 of [GrTa]). The prime numbers contain arith-
metic progressions of length k for all k.

A little stronger result was established:

Theorem 2.9 (Theorem 1.2 of [GrTa]). Let A be any subset of the prime
numbers of positive relative upper density, thus

limsup7(N)~'AN[L,N]| >0,

N—oo

where w(N) denotes the number of primes less than or equal to N. Then A
contains arithmetic progressions of length k for all k.



2.3 Factorization of Large Integers

2.3.1 Comparative Difficulty of Primality Testing and
Factorization

Let n > 1 be an integer. The problem of finding integers a,b > 1 with n =
ab can be divided into two steps: first, to establish their existence (this is
solved by any primality test), second, to find them explicitly (factorization).
In practice, the primality test described in §2.2.1 does not give a concrete
divisor of n. In fact, when n fails such a test, it usually fails already one of
the necessary conditions in §2.2.3 b), so that the algorithm stops before we
come to the stage of calculating potential divisors. Therefore, this algorithm
factorizes only primes and those n which admit small divisors, namely, divisors
of the numbers s and ¢, defined in §2.2.1.

As we mentioned in §2.1, an efficient factorization algorithm could be used
for breaking a standard public key cryptosystem. For this reason, factorization
has become an applied problem, attracting considerable effort and support
([Pet85], [Sim79], [Kob94]). However, the running times of the best known
factorization algorithms do not allow one to factorize a product n of two 150—
digit (decimal) primes. The theoretical bound (cf. [Coh2000]) for this running

time is of order
5/ 64
exp 9 logn - (loglogn)? |, (2.3.1)

and for a 300-digit n they may require billions years. This made Odlyzko ask
whether we now see the actual level of difficulty of the factorization problem
or whether we are just overlooking something essential, cf. [Pet85].

Anyway, the progress in factorization of some concrete large integers
([Wun85], [Wag86]) relied more on the new hardware or parallel computa-
tion schemes, than on the discovery of conceptually new algorithms, cf. more
recent developments in [Ma99).

2.3.2 Factorization and Quadratic Forms

If n = 22 —92, then £ —y is in most cases a non—trivial divisor of n. This simple
remark leads to the “Fermat factorization algorithm” which generally requires
O(n'/?) operations but is more efficient if n is a product of two numbers ¢, s
with a small difference. Then n = 22 — y? where x = (t +5)/2, y = (t — 5)/2.
The algorithm consists of calculating 22 —n for = starting with [\/n]+1 until a
perfect square is found. Similar considerations can be useful in other problems
([Bril81]). One can also generalize this trick and use other quadratic forms in
factorization algorithms ([Kob94|, [Ries85]).

Consider an imaginary quadratic field Q(v/—n). Let n be square-free. De-
note by Cl(A) the ideal class group of this field (cf. §1.2.8, §4.2.2). The ele-
ments of this group may be identified with the classes under Z—equivalence of
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the primitive, positive definite quadratic forms f(x,y) = az?+ bxy + cy? with
negative discriminant A = b? —4ac, where A = —n if n = 3 mod 4, A = —4n
if n =1mod 4. (Here we assume n to be odd). Denote by a = (a,b, ¢) such
a form. We shall call « ambiguous if it belongs to one of the types (a,0,c),
(a,a,c) or (a,b,a) (|Gau], [Shan71]). The discriminant of an ambiguous form
has the explicit factorization: —A = 4ac (resp. a(4c — a), (2a — b)(2a + b))
for a = (a,0,¢) (resp. (a,a,c),(a,b,a)). One easily sees that a converse state-
ment is also true (cf. [BS85]): a factorization of A of this type determines an
ambiguous form. On the other hand, there are independent methods for con-
structing ambiguous forms which are based on the following property: they
represent elements of order two in the class group Cl(A). In 1971 D.Shanks
devised a rather fast algorithm allowing one to factorize n in O(n'/*) opera-
tions and to determine the structure of the group CI(A). This method uses
the analytic formula due to Dirichlet:

wh(A)

(h(4) = [CL(A)]).

Here xa(m) = (£), and L(1,x4) is the value at s = 1 of the Dirichlet
L—function

L(s.x) = Y x(tmym™* = [T(1 = x(p)p~*) 7.

m=1 p

The approximate formula

VA p
h(A) ~ . p]lp_(ﬁ)

is valid with a relative error < 0.1% for P > 132000. The elements of the class

group are constructed with the help of small primes p such that (%) =1.

They are represented by the forms F,, = (p, B, C}p) whose coefficients satisfy
the discriminant relation A = B2 — 4pC, and are found from the condition
A = B2 mod p. Knowing the class number h(A) = |CI(A)|, we can construct
the second order elements starting with x = F},, calculating its maximal odd
power dividing h(A), and then consecutively squaring until we get 1.

2.3.3 The Probabilistic Algorithm CLASNO

(cf. (|[Pom87], [Sey87]). The idea of using CI(A) in factorization algorithms
can be considerably improved. In this algorithm, one bypasses the calculation
of h(A), and the running time is estimated by L = exp(y/logn - loglogn),
which grows slower than any positive power of n. Assume first that the prime
divisors of h(A) are small, or, rather, that h(A) divides k! for a small k.
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Take a random element © € CI(A), say, x = F, for some p with (%) =1

and calculate B), = godd power of kI Then an element of order 2 should be
contained in the sequence of consecutive squares of By. We need not know
the exact value of k; we just hope that some small k& will do. If we succeed,
we factorize A in O(k) operations. If we fail, we can try the same trick for the
field Q(v/—an) where a is a small square-free number.

In order to justify this procedure in general, one assumes that for variable
a, the class number h(A,) of Q(/—an) behaves like a random number varying
in a neighbourhood of n'/2 (this estimate follows from the Dirichlet formula).
One can then estimate the probability that h(A,) will be composed of only
small primes. To this end, denote by ¥(z,y) the number of natural numbers
< z not divisible by any prime > y (they can be called “y—smooth”). Put
k = L* o« > 0. The probability that a random number of order n'/? is
L*-smooth is ¥(n'/2 L*)/n'/?. We must now understand the behavior of
W (x,y)/y. Dickman (cf. in [Hild86]) has shown that this depends essentially on
the value of log z/log y. Namely, for every « > 0 the limit lim,_,., ¥(y*, y)/y
exists. This limit is called the Dickman function p(u) and is uniquely defined
by the following properties:

for 0 <u <1, p(u) =1,

plu—1)

for u > 1,p'(u) = —
u

At u = 1, p(u) is continuous. As u — oo, p(u) = u(~1+°()% De Bruijn (de
Bruijn N.G. (1951)) proved that

vio.0) = ot (140, (ELELY ).

where y > 2, 1 < u < (logy)3/5~¢ with a positive e.
In our case, however, L® grows slower than any positive power of n so that
Dickman’s theorem is not applicable. The necessary estimate has recently been

obtained:
W(n1/2,La) _ n1/2/L(1/4a)+o(1)'

For more details, see [Hild86].

Returning to the factorization algorithm under discussion, one sees that
its running time for a given k& = [L®] is bounded by L* and the probability of
success is about L™/, Hence the total number of attempts should be about
L'/**and the total running time will be bounded by L*+(1/40)+€ ¢ > (. This
estimate is minimized by choosing o = 1/2 (i.e. k = L'/?), and the result is
then L'T¢. Of course, theoretically we may get stuck on an especially bad n,
but this is quite improbable.

Let us illustrate the estimate ~ u~ " when u is much smaller than

x
¥(z,y)
y (for a simple proof of this see [Kob87|, p. 137). For example, take y ~ 10°
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(so that 7(y) ~ 7.10* and logy ~ 14) and = ~ 108, Then the fraction of
natural numbers < z which are products of primes < y is about 1/2%%.

2.3.4 The Continued Fractions Method (CFRAC) and Real
Quadratic Fields

(cf. [Kob94|, [Wun85], [Ries85|, [Wil84]) . Improving the Fermat factorization
method, let us try to seek solutions z, v of the congruence 22 = y? mod n such
that z is not congruent to +y mod n. Then ged(x + y,n) or ged(z — y,n)
is a non—trivial divisor of n because n divides (z + y)(x — y) but neither
x + y nor x — y. Let us look for x among products of such numbers x; that
the residue 27 mod n with the smallest absolute value is a product of small
primes. Then y will also be a product of these primes. More precisely, consider
aset B = {p1,p2,...,pn} all of whose elements are primes, except possibly p;
which can be —1. Let us call such a set a factorization basis for n. We shall
refer to any integer b such that the residue of > mod n with the smallest
absolute value is a product of (powers of) elements of B as a B—number. Let

h «

x; be a family of B-numbers, a; =[] j=1Dj 7 the respective minimal residues

of 22 mod n. Put
h _
€ = (€1, €2, ..., €6nr) € Fy, where €;; = o;; mod 2.

Suppose that the sum of vectors ¢; vanishes mod 2. Put

h
_ _ Vi
:z:sz,;rnod n, nypj,
i j=1

where 1
VT Z Qi -
K3
Then 22 = 42 mod n.

Ezample 2.10. ([Kob87], p. 133). Let n = 4633, B = {—1,2,3}. Then z; =
67,22 = 68, x3 = 69 are B—numbers, because

672 = —144 mod 4633, 682 = —9mod 4633, 59% = 128 mod 4633.

Moreover, ¢ = (1,0,0),e2 = (1,0,0),e3 = (0,1,0), so that we can put x =
129 = 67.68 = —77 mod 4633, ¢ = 27237 = 2332 = 36. Besides, —77 is not
congruent to £36 mod 4633. Summarizing, we obtain a non—trivial divisor
41 = ged(—77 + 36,4633) of n = 4633.

Of course, if we are unlucky, it may happen that x = £y mod n. Then
one should choose a new x; or even a new B. An efficient method for seeking
B-numbers utilizes continued fractions of real quadratic irrationalities. Let
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x > 1 be a real number, x = [ag,a1,...] its continued fraction expansion.
Put A;/B; = [ag,a1,.-..,a;]. These convergents can be calculated from the
relations A_2 = B_1 = 1,A_1 = B_2 = 0 and Az = aiAi_l + Ai_g, Bl =
a;B;_1 + B;_>. From the relation

ﬁ _ Ai = (-1 iH#
B;  Bin B;Bii1
it follows that
|A? — 22 B?| < 2u, (2.3.2)
because
A

A2~ a2B?| = B?

; A; 1 1
=] |= < B? 2 :
B; x’ ’Bier‘ ' B1B, (erBlBQ)
In particular, we can find the continued fraction expansion of z = /n with
the help of the algorithm described in §1.4, and a; form a periodic sequence.
Since A? = A? — nB2? mod n, (2.3.2) shows that the absolute value of the
smallest residue of A mod n is bounded by 2/n which can help in looking

for B—numbers. However, A; quickly become large even with respect to n, and
to facilitate the calculation of A? mod n one can use the congruence

A? | = (-1)'Q; mod n, (2.3.3)
where Q; is the denominator of z; = (y/n + P;)/Q;, of A7 mod n, that is,
Vn = lag,a1,az, ..., a;, ;.
In fact, applying formally the recurrence relations to v/n we get

A1z +Aia A+ PA_ 1+ QiAis

n=ux= = .
v Bi_1xzi+Bi—a Bi_iy/n+ PBi_1+ Q;B;_»

Comparing the coefficients at 1 and +/n, we obtain
QiAo+ P;A;_1 =nB;_1,
QiBi—2+ PiBi—1=A;_1.
Solving this for @;, we see that
(AzFZBifl - AileifQ)Qi = 713124 - A?,y

But the coefficient at @; equals to (—1)*~!. This proves (2.3.3). Recall also
that P;, Q; can be calculated using a very efficient algorithm which we restate

in a slightly changed form. Let 2g = (Py++/n)/Qo be a quadratic irrationality,
with Qo dividing n — P§. Put z; = (P; + v/n)/Q;. Then
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PH—I = azQz - 7,7 a; = [Pz + \/H/QZL (234)

Qi+1 = Qi1+ (P, — Pit1)a;. (2.3.5)
This follows directly from x;1; = 1/(2; — a;), or

P, +\/n a4 Qit1
Qi " Pt yn
If this method does not provide us with the required amount of B-—
numbers, we can repeat the calculations with an instead of n where a is a
small square-free number. The number of operations required is estimated by

/375 /3
LV3/2 = exp ( 2lognloglogn>

(compare with section 2.3.3), and the practical efficiency of this algorithm
was demonstrated by its application to the Fermat number Fy = 2128 — 1 (cf.
[MB75], [Wil84]).

Let us describe also an elegant algorithm SQUFOF due to Shanks which is
also based upon the arithmetic of real quadratic fields (cf. [Ries85], [Wil84]).
It consists of two stages.

1) Put zy = /n, that is, Py = 0,Qo = 1 in the formulae (2.3.4), (2.3.5).
Calculate z,,, until we find an odd integer m such that @Q,,_, = ¢ for some
natural t. From (2.3.3) it follows that A2, _, =2 mod n. Presumably, one
can then find a divisor of n with the help of the Euclidean algorithm as
ged(Ay—2 £ t,n). In practice, however, A,,_o is usually too large to be
calculated directly, so that one changes tactics.

2) Put Py= P, Qo =t,ig= (Po + +/n)/Qo and calculate the tails of the
continued fraction expansion of Zo, ¥; = (P; + /n)/Q;. We perform this
until we find such #, that P, = P,,,. From (2.3.4) and (2.3.5) it follows,
that

a,Qq = 2P, Q, divides n — 13,12.

Hence either Qq, or Qq/2 divides n. If this divisor is trivial, one should
again replace n by an for a small a and repeat the calculations. Using a
calculator for factorizing a number < 107, it is convenient to write the
intermediate results in a table. Table 2.1 illustrates the course of calcula-
tions for n = 11111 = 41-271. In general, ¢ is about m/2 (in our example,
m = 7,q = 4. The algorithm is based on the fact, that the fractional ideal
(1, %) is of order two in Cl(4n), and on the second stage we calculate the
corresponding ambiguous form in disguise. The number of operations is
estimated by n'/%.



90 2 Some Applications of Elementary Number Theory
Table 2.1.
0 1| 2| 3| 4] 5 6 7
1050 2 | 2 | 4|5 | 2 7
105| 67 | 87 | 97 | 88 94 81
1 |86 | 77|46 |37 |91 [25=5
3713|1113
81 [104| 73 | 25 | 82 | 82
59 | 98 | 107 | 41 | 107
Since

82+ v11111 V11111
W=—g "X

the ideal (1,Z4) corresponds to the ambiguous form (41,0,-11111/41), or
(41,0,-271), with the discriminant 4n.

2.3.5 The Use of Elliptic Curves

The general idea of utilizing the calculations in a finite group (such as class
group) in order to factorize n found unexpected implementations using groups
of different types.

a) Pollard’s (p—1)—method. Suppose that n has such a prime factor p that the

order of (Z/pZ)* is “smooth”, that is, p—1 divides k! for a not too large k,
say, k < 100000. Then we can proceed as follows: calculate consecutively
a; = 2"—1 mod n using the recursive relation a’*! = (a;+1)"*'—1 mod n
and find ged(ag,n); it will be divisible by p in view of Fermat’s little
theorem. This will fail if there are no p|n with smooth p — 1 ([Pol74]).
For a change, one can try to use the multiplicative groups of fields IF,- of
order p” — 1. For r = 2, we obtain the Williams p + 1-algorithm ([Wil82]).

b) Much wider perspectives of varying the finite group in the factorization

algorithms are opened by elliptic curves over finite fields. Their use leads
to one of the fastest known factorization algorithms requiring O(L**€)
operations [LeH.87].

Choose a random elliptic curve I" and a point P on it. To this end, choose
random integers a, zo, yo and put b = y2 — 423 — axo, P = (70, yo). Then
P = (x0,y0) is a point on the curve defined by the equation

I: =423 +ar =0

(cf. §1.3.3). It is an elliptic curve over Q, if the right hand side cubic
polynomial has no multiple roots. We may also assume that the discrimi-
nant of this polynomial is relatively prime to n; otherwise we either get a
non—trivial divisor of n, or must change the curve.
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In the projective plane, I" is determined by the homogeneous equation
Y27 =4X3=aXZ?+ 7% (X =22,Y =yZ).

Reducing it modulo a prime p, we obtain an elliptic curve over F, = Z/pZ.
Its identity is Or = (0 : 1 : 0), and the order of I'(F,) equals p+ 1 — a, where
lap| < 2,/p (Hasse’s theorem, see §1.3.3).

Assuming now that (p+1—a,) | k! for some p|n and small k, we calculate
consecutively P; = i!P mod n in the projective plane over Z. The prime p
must divide the Z—coordinate of Py, and the ged(n, Zi). If we are lucky, O(k)
operations will provide us with a non—trivial divisor of n. Otherwise one should
renew the curve, without wasting too much time on an unsuccessful choice
(“the strategy of early interruption”). In order to optimize the choice of k for
each test curve and the number of tests, let us take p = n/. The probability of
success with k = [L®] is approximately ¥ (n?, L) /nf ~ L=P/2a+o() (see 3.3).
Hence we shall have to try about L?/2% random elliptic curves with a marked
point, whereas for each of them the number of operations will be estimated
by L*. The general number of operations L*t#/2 is minimal for o = /3 /2.
In the worst case, a = 3 = 1/2 we get L'T¢, ¢ > 0.

Notice that our estimates are based upon the following heuristic conjec-
ture: the orders of the groups I'(F,) behave with respect to the smoothness
property as the random numbers taken from (p —2,/p+1,p+2,/p+1). The
belief in this conjecture is strengthened by the study of the set of isomorphism
classes of elliptic curves modulo a prime [LeH.87].

We must also notice that some cryptosystems using elliptic curves also
were suggested [Kob87].

There exists a probabilistic algorithm with rigorously estimated running

time
O(LV?/?)

due to [Dix84], and several probabilistic algorithms using linear or quadratic
sieves, with the expected running time

O(LV?) and O(L)

respectively [Pom8&2], [Wag86].

Many more interesting algorithms and computer programs can be found
in Riesel’s book |Ries85]. One can also find there some heuristic arguments
in favour of the existence of the algorithms which would be much faster then
everything we know now.

More recent information on factoring large integers and new records can
be found in [Coh2000] and at the Web page of F.Morain.



Part II

Ideas and Theories



3

Induction and Recursion

3.1 Elementary Number Theory From the Point of View
of Logic

3.1.1 Elementary Number Theory

Almost all of part I of this book belongs to elementary number theory (ENT).
This notion can be rigorously defined using tools of mathematical logic, but in
order to do this one must first introduce a formal language of arithmetic and
fix an adopted system of axioms (one or other version of Peano’s axioms). In
order to avoid such irrelevant details, we restrict ourselves to some intuitive
remarks. In ENT there are some initial statements and some axioms, which
formalize our intuitive ideas of natural numbers (or integers), as well as certain
methods for constructing new statements and methods of proofs. The basic
tool for construction is recursion. In the simplest case assume that we want
to define some property P(n) of a natural number n. Using the method of
recursion we explain how one can decide whether P(n + 1) is true if it is
already known whether P(1), ..., P(n) are true or not. Say, the property “n
is a prime” can be defined as follows: “1 is not a prime; 2 is a prime; n+1 > 3
is a prime iff none of the primes among 1, 2, ..., n divide n+ 1”. Analogously
the main tool in the proofs of ENT is induction. In order to prove by induction
a statement of type “¥n, P(n) is true” we first prove say P(1) and then the
implication “Vn the property P(n) implies P(n 4 1)”.

Even in the earliest research into the axiomatics of number theory (Peano,
Frene) it was established that all the notions empirically thought of as be-
longing to ENT (such as divisibility, primality etc.), functions (the number
of divisors, the Euler function ¢(n), 7(z)) and theorems (Fermat’s little the-
orem, the quadratic reciprocity law etc.) can be respectively constructed by
recursion and proved by induction, cf. [Rog67], [Man80].

It happens sometimes that a result admits an elementary formulation, but
its elementary proof is not known. For example, the prime number theorem
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m(x) ~

] can be stated in an elementary way assuming that x runs only
ogx
x

through natural numbers, and replacing log z by the sum Z —; an elementary
e~ §

=1
proof of this theorem was found only in the late 40s by Selberg, cf. [Sel51]
while the analytic proof had been known for half a century.

3.1.2 Logic

The study of ENT from the point of view of logic has lead to new concrete
number theoretical results which we shall discuss below. However the most
important consequence of this study has been that the place of ENT inside
mathematics in general has become much clearer. We wish to stress the fol-
lowing three aspects.

a) ENT as a mathematical discipline in principle can not be “self-sufficient”.

For every choice of axioms there will always be statements which can be
formulated in an elementary way, and which are decidable, but which can
not be deduced using only elementary methods (cf. the theorem of Godel
[G9], discussed in [Man80]).
Thus the historical tradition of proving number theoretic facts using analy-
sis (Euler, Jacobi, Dirichlet, Riemann, Hardy, Littlewood, Vinogradov,
...), geometry (Minkowski, Hermit, ...) and generally all possible tools,
has deep reasons.

b) ENT can be used by means of formal logic to model any axiomatized
mathematical discipline inside elementary number theory (Godel). In such
a modeling we forget the contentive sense of the definitions and theorems
of our theory and leave only information concerning their formal structure,
and syntactic rules for deducing one statement from others. Enumerating
by Go6del’s method all syntactically correct statements by natural num-
bers, we can then write a program or algorithm to list all provable results
of our theory (its theorems). Thus a theory is modeled by a function
f:ZT — Z* (the first ZT is a number generating the theorem, the sec-
ond is the encoded statement in the theory). Instead of asking whether
the theorem with number n is provable we can ask whether the equation
f(x) = n is solvable.

Although the equation f(x) = n is defined in terms of ENT, it is far from
being a Diophantine equation since the function f is not a polynomial. As
was shown by Yu.V.Matiyasevich, it is possible to reduce this problem to
a Diophantine one (Hilbert’s tenth problem), see [Mat04].

He showed that one can find a polynomial Ps(z1,...,zm,;n) with integral
coefficients such that the solvability of f(x1) = n is equivalent to the
solvability of Py(x;n) = 0 with z € (ZT)™. The calculation of Py from f is
completely effective (as is the construction of f given the system of axioms
defining the initial theory). In this sense the problem of provability of any
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mathematical result is equivalent to a standard kind of number theoretical
problem. (The reader who is used to thinking not in terms of “provability”
but of “truthfulness” must at this point take consciously some intellectual
precautions. Considering for example the theorem of Gédel - Cohen that
the continuum - hypothesis is independent of the standard axioms of set
theory, it is clear that “truthfulness”, as opposed to “provability”, is a rather
philosophical notion. It would therefore be unreasonable to expect it to
have a precise mathematical definition.)

¢) ENT provides a framework for the precise formulation and study of the
notions of algorithm and (semi-)computable function. These notions, im-
plemented in the theory of recursive functions, turn out to be much more
universal than one could expect a priory (the Church thesis, cf. [Man80],
[Rog67], [KMP74]). The theory of recursive functions has both a fun-
damental general mathematical meaning, and an applied meaning. Its
methods are used in proving the Matiyasevich theorem mentioned above.

In the next section we formulate some basic facts from the theory of recur-
sive functions, which have independent number theoretical interest. We then
give some precise definitions and hints of proofs.



3.2 Diophantine Sets

3.2.1 Enumerability and Diophantine Sets

Definition 3.1. A subset E C (ZT)™, m > 1 is called Diophantine if there
exists a polynomial with integral (or, equivalently, with natural) coefficients

P(tl,...,tm,xl,...,wn),
such tha
(t1,...,tm) € E <= 3(z1,...,2,) €Z", P(t,x) =0.

Every Diophantine set is enumerable in the following informal sense of the
word: there is a deterministic algorithm, which produces one-by—one all ele-
ments of F (a formal definition will be given in the next section). Indeed, let
us check one-by—one all the elements of Z™™: substitute them into P and,
if we get zero, write down the first m coordinates. We thus obtain a growing
list of elements of F, which exhausts E when we pass to the limit.

3.2.2 Diophantineness of enumerable sets

Theorem 3.2. Conversely, every enumerable set is Diophantine. Its defining
polynomial can be effectively constructed from the algorithm generating E.

It seems a priori that there are many more enumerable sets than Diophan-
tine sets; it is therefore clear that in proving theorem 3.2, one needs to prove
the Diophantineness of some unexpected sets. J. Robinson discovered that
this problem can be simplified if one takes for granted the Diophantineness
of the set {(a,b,c) | a = b°}, and Yu. V. Matiyasevich (cf. [Mat72], [Mat04])
established this last step. Below we give some examples and constructions
used in the proof, which are purely number—theoretical. We first formulate
the following very general property.

3.2.3 First properties of Diophantine sets

Proposition 3.3. The class of Diophantine sets contains the level sets of
polynomials with integral coefficients, and it is closed with respect to the op-
erations of finite direct sum, finite intersection, and projection.

This follows immediately from the definition. It suffices to note that if
E,F C Z™ correspond to polynomials P, Q respectively, then F N F' corre-
sponds to P2 4+ Q%; E U F corresponds to PQ, and E x F corresponds to
P2 4+ Q2 where Q is obtained from @ by renumbering the first m variables.

Now we give the key arithmetical lemma — the proof of the Diophantineness
of a set related to solutions of Pell’s equation (it is important that for this set
one coordinate grows approximately as the exponent of the other).
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Consider Pell’s equation 22 —dy? =1 (d € Z* is a square free integer). Its
solutions (z,y) € Z? form a cyclic group with respect to the following law of
composition: if (x1,y1) is a solution with the first coordinate minimal, then
any other solution is of the type (zn,yn), where n € Z* and

The number n is called the solution number (cf. Part I, §1.2.5).

The coordinates x,,, ¥, grow exponentially with n, but the set of solutions,
and its projections on the z— and y— axes are Diophantine. However this is
still not what we need: the main difficulty is to include the solution number
into a set of coordinates of a Diophantine set; only then will we be able to use
further arguments. This is done below.

It is convenient to use for d the number d = a® — 1, a € Z*, since in this
case (w1,y1) = (a,1). The equation 22 — (a? — 1)y? = 1 will be called the
a—equation. Define two sequences x,,(a), ¥, (a) to be the coordinates of its n'"

solution:

Formal definitions of x,(a) and y, (a) as polynomials in a can easily be given
by induction over n. Then z,(a) and y,(a) will have sense for all n € Z and
a € C. In particular, ,(1) = 1, y,(1) = n; in this extended range all of the
formulae given below will be valid.

3.2.4 Diophantineness and Pell’s Equation
Proposition 3.4. The set E : y = yp(a), a > 1 is Diophantine in the
(y,n,a)—space.

The idea in the Diophantine reconstruction of n from (y,a) is based on
the remark, that the congruence

yn =nmod (a—1)

determines n uniquely for n < a — 1. In order to treat the general case, an
auxiliary A-equation is introduced, with big A. Its n*® solution so that n be
used only in Diophantine context.

Besides the main variables y,n, a, one introduces six auxiliary variables:
x, 2',y'; A; x1, y1. Furthermore define the following sets:

Fi:y>n, a>1;
Ey:ax? — (a® = 1)y* = 1;
FEs:y =0mod 2z%y?;

Ey: 2% —(a® — Dy = 1;
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Fs: A=a+2?? - a);
Fe:x? — (A2 — 1)y = 1;
E7:y1 —y=0mod z'%
FEs:y; =nmod 2y.

The sets E; are all Diophantine, and prE’ = E, where E' = ﬂ?zlEi. In order
to check this fact we use the following properties:

yr(a) =k mod (a—1). (3.2.1)
If a = bmod ¢ then y,(a) = y,(b) mod c. (3.2.2)

If yi(a) = y;(b) mod z,(a), @ >1theni=jmod 2n or i = —j mod 2n.
(3.2.3)
If y;(a)?|y;(a) then y;(a)|j. (3.2.4)
Properties (3.2.1) — (3.2.4) are easily deduced from the equalities
xn:l:m(a) = xn(a)mm(a) + (a2 - 1)yn(a)ym(a‘)7
Yntm = ixn(a)ym(a) + T (a)yn(a’)
3.2.5 The Graph of the Exponent is Diophantine

We now prove that the set F : y = a™ in the (y,a,n)-space is Diophantine.
It suffices to check Diophantineness of Ey = EN{a | a > 1}. For a > 1 one
easily obtains by induction on n that

(20— 1) < ynsa(a) < (20)"
in the notation of §3.2.4. From this it follows that
a" = [yn+1(Na)/ynt1(N)]

for sufficiently large N. To be more precise, Ey is the projection of the set Ey:

a>1; 0 <y 1(N)y — ynr1(y); N >dn(y +1);
and Diophantineness of E; is then obtained by introducing trivial auxiliary
relations ¥’ = yp+1(N) and 3" = yp4+1(Na).
3.2.6 Diophantineness and Binomial coefficients

Proposition 3.5. The set E : v = (Z), n >k in the (r,k,n)—space is Dio-
phantine.



3.2 Diophantine Sets 101

3.2.7 Binomial coefficients as remainders

Lemma 3.6. If u > n* then (Z) is equal to the remainder of the division
[(u+1)" /u*] by u.

The proof follows from the binomial formula

(u+ 1) Jub = i_z; (?) w4 <Z> +§ (’Z) Nl

The first sum is divisible by « and the second is less than 1 for u > ng.
The proof of Proposition 3.5 has the same scheme, using the auxiliary
variables u and v and the relation

Ey:u>nf; BEy:v=[u+1)"/u");
Es:r=vmod u; Ey:r<wv; Es:n>k.

From the lemma it follows immediately that E = prU?_, E;. The Diophantine-
ness of E; follows from that of the exponent; the Diophantineness of E3, Fy
and F5 is obvious. The Diophantineness of E5 becomes clear if we represent
F5 in the form

(u+1)" <uhv < (u+1)" +uf

and use again the Diophantineness of the exponent.

3.2.8 Diophantineness of the Factorial
Proposition 3.7. a) The set E : m = k! is Diophantine.
b) The set
E: T <p/q>’ p > qk,
Y k
is Diophantine in the space (z,y,p, q,k).

The proof is a modification of the arguments in §3.2.6, §3.2.7, using the
following lemma.

3.2.9 Factorial and Euclidean Division

Lemma 3.8. a) If k > 0 and n > (2k)**! then

b) Let a > 0 be an integer such that a = 0(mod (¢*k!)) and a > 2P~ 1pk+1,
Then
<pl{:Q> _ a—l[a2k+1(1 + a}—2)p/q] _ a[a2k—1(1 _~_a—2)p/q].
The proof of this lemma follows from some elementary computations and
Proposition 3.7 is proved using the same methods as above.
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3.2.10 Supplementary Results

The Diophantine representations stated above are used in the proof of the
general theorem of Matiyasevich. On the other hand they can also be used to
find exponential — Diophantine representations for some interesting concrete
sets. As an example consider the set of prime numbers. By Wilson’s theorem
p is a prime <= (p — 1)! + 1 is divisible by p. The set of prime numbers
is therefore a projection of the set of solutions to the following system of
equations

p=f+1
q=f!
q—ap=1.

which is Diophantine in view of the Diophantineness of ¢ = f.

Any Diophantine subset E C Z* coincides with the set of all natural
values of a polynomial with integral coefficients (on Z%). Indeed if E is the
projection of P(t;x1 ...2,) = 0 then Q(¢; 21 ...2,) = t(1 — P?) is the appro-
priate polynomial. Thus the set of all primes can be represented as the set
of all natural values of a polynomial Q. (It should be noted that @ will take
infinitely many other integral values < 0 which is unavoidable).

The Fibonacci numbers form the sequence 112358 ..., Upyo = Upt1+Uy.
J. Jones found that this sequence can be represented as the set of positive
values of a very simple polynomial in two variables (this is not the case for
the set of all primes):

2a*b + a®b® — 24%d> — @® — ab* + 2a.

Although as we have noticed above the question on the provability of any
theorem can in principle be reduced to a Diophantine equation some concrete
problems admit natural reductions without the use of a formal language. We
refer the reader to the very interesting and informative article [DMR74]. In
particular this article contains Diophantine forms of the Riemann Hypothesis
and the four—colour problem.
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3.3.1 Partial Functions and Computable Functions

In this Section we give a precise definition of a class of partial functions from
Z™ to Z™. This definition can be considered as an adequate formalization of
the class of (semi-)computable functions. Using the definition one is able to
define the class of enumerable sets. We shall denote by D(f) the domain of
definition of a partial function f, [Rog67], [Man80].

3.3.2 The Simple Functions

suc: ZT — ZT, suc(z) = x + 1;
1™ .z - 77, 1(")(x1,...,xn) =1 n>0;

prl' : Z" — 7T, pr(zy,...,x) =3, n>1.

3.3.3 Elementary Operations on Partial functions

(a) Composition (or substitution). This operation takes a pair of partial
functions f : Z™ — Z"™ and g : Z" — ZP and gives a partial function
h=go f:7Z™ — ZP, defined as follows

D(go f)=f'(D(9)) N D(f) = {x € Z™ | x € D(f), f(x) € D(9)},
(9o f)(x) = g(f(x)) for x € D(go f).

(b) Junction. This operation takes partial functions f; from Z™ to Z™, i =
1,...,k to the function (fi,..., fx) from Z™ to Z™ x --- x Z™ defined
as follows

D((f1,---, fx)) = D(f1) N -+~ N D(fr),
(f1>~-~7fk)($1,"- yZm) = (fi(z1,- - 7xm)="' i@y, - ,iﬂm))'

(c) Recursion. This operation takes a pair of functions f from Z" to Z* and
g from Z"*2 to Z*, to the function h from Z"*! to Z* defined as follows

h(z1,...,2n,1) = f(x1,...,2,) (the initial condition);
h(z1,...;zn, k+ 1) =g(x1,..., 20,k h(x1, ..., 20, k)) for k> 1
(the recursive step).

The domain of definition D(h) is also described recursively:
(x1,...,2pn,1) € D(h) <> (21,...,2,) € D(f);

(1,...,Tn,k+1) € D(h) <= (21,...,2,) € D(f) and
(x1,...,Zn, Kk, h(x1, ..., 20, k) € D(g) for k> 1.
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(d) The p—Operation. This operation takes a partial function f from Z"*+!
to ZT to the partial function h from Z" to Z* which is defined as follows:

D(h) ={(z1,...,2n) € (ZT)"|Bxps1 > 1 f(21,. .., Tp, Tpy1) =1
and (21,...,2n,k) € D(f) for all k < x,,41},

h(z1,...,zn) =min{zp41 | f(@1,...,Tn,Tpy1) = 1}

Generally speaking, the role of y is to introduce “implicitly defined” func-
tions. The use of pu makes it possible to introduce a one-by—one check of
objects in order to find a desired object in an infinite family. The following
three features of p should be stressed immediately. The choice of the min-
imal y with f(z1,...,z,,y) = 1 is made, of course, in order to ensure that
the function h is well defined. Also, the domain of definition of h seems
at first sight to be artificially diminished: if, say, f(x1,...,2,,2) = 1 and
flz1,...,2,,1) is not defined, we consider h(zy,...,z,) to be undefined,
rather than being equal to 2. The reason for this is the wish to preserve
the property that h is intuitively computable. Finally we remark that
all previously defined operations produce everywhere defined functions if
applied to everywhere defined functions. This is obviously not the case
for the operation p. Hence this is the only operation responsible for the
appearance of partially defined functions.

3.3.4 Partially Recursive Description of a Function

Definition 3.9. (a) The sequence of functions f1,--- fn is called a partially
recursive (resp. primitively recursive) description of a function f = fn if f1
is one of the simple functions; f; is for all i > 2 either a simple function
or is obtained by applying the elementary operations to some of the functions
fise+y fic1 (resp. one of the elementary operations apart from ).

(b) The function f is called partially recursive (resp. primitively recursive),
if it admits a partially recursive (resp. primitively recursive) description.

Polynomials with positive values. We first establish the recursivity of sums
and products.

a)
sumg : 2% — Z7*, (z1,22) — 1 + 2.

Use recursion over xs starting from the initial condition x1 + 1 = suc(z1),
with the recursive step z1 + k + 1 = suc(d_,(z1, k)).
b)

n
sum,, : Z" — Z+, (ml,...,xn)Hin, n > 3.
i=1

Assuming that sum,,_ is recursive we obtain sum, using junctions and
composition
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sum,, = sums o (sum,_1 o (pry, - ,pro_y),Ty).

Another version is the recursion over z,, starting from the initial condition
suc o sum,,_1 and the recursive step

n—1
Z z; + k+ 1 =suc(sumy,(x1,...,2,-1,k)).
i=1
One finds that the number of recursive descriptions of a function increases
step—by—step, even if one only counts the “natural” descriptions.
c)
prod, : 72 - 77, (x1,22) — x122.
Use recursion over xo starting from the initial condition x;, with the
recursive step x1(k + 1) = 21k + 1 = suma(x1k, T1).
d)
prod, : Z" — Z7, (z1,...,0p) > 21T, N> 3

prod,, = prod, o (prod,,_;(pry, - ,pre_1),Tn).
e) “Substraction of one”s Zt — 77T

. z—1, ifx>2;
T—z—1= .
1, ifx=1.

We apply recursion to the simple functions
fiZt—=7%, f=1,
g =pr3Z° — L : (21,32, 3) > 3,

and as a result obtain the function h(zy, ) = x2—1. Hence z—1 = ho
(x, ), where z = pri(z).
f) “Truncated difference”
72 - 77"

xr1 — IT9, if 7 > To;

) (3.3.1)

(1, 22) = 2122 { , if 2y < s.
This “truncated difference” is constructed by applying recursion to the
functions
flxy) =x1—-1, g(z1,22,23) = x3—1.

Let F : Z™ — Z% where F is any polynomial in x1,...,x, with integral
coefficients taking only values in Z™'. If all of the coefficients of f are non—
negative then F is a sum of products of functions pr}" : (z1,...,2,) — ;.
Otherwise F' = F'T — F~, where F* and F'~ have non-negative coefficients,
and the values of the untruncated difference coincide with the values of the
truncated one F*—F~ by the assumption on F. In what follows we use the
recursivity of the functions (z1 — 22)? +1 and h = (f — g)?> + 1 where f and
g are recursive: this trick makes it possible to identify the “coincidence set”
f = g with the “level set” h = 1 which is easier to tackle.
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3.3.5 Other Recursive Functions
“The Step”.

b
S (%) =

a, forx<uz
{’ = abz ezt

b for x > xgp;
For zy = 1 this is obtained using recursion with the initial condition a and

the following value b. In the general case

si (@) = 57" (@ + 1)

rem(z,y) = the remainder in {1,...,x} after dividing y by x (we do not have
zero!). We have
rem(x,1) =1:
1 if =x:
rem(z,y+1)=<"’ l rem(z,y) =z
suc orem(z,y), if rem(z,y) # x.

We use the following artificial trick. Consider the step s(xz) = 2 for = > 2,
s(1) =1 and set
p(z,y) = s((rem(z,y) — 2)* + 1).
It is obvious that
rem(z,y) # x <= ¢(x,y) =1,
rem(z,y) =z <= ¢(z,y) = 2,
hence '
rem(x,y + 1) = 2suc(rem(z, y))—p(x, y)suc(rem(z, y)).
This gives us a recursive definition of rem. A generalization of this trick is
“conditional recursion”:
h(z,...,zn,1) = f(x1,...,20);
hzy,...,zn, k+ 1) =gi(x1,..., 20,k h(x1,..., 20, k),
if the condition C;(x1,...,xn, k;h) (i =1,...,m)

is satisfied. (3.3.2)
We reduce the mutually exclusive conditions C;(z1, ..., 2y, k; h) to the form
C; is satisfied <= @;(21,...,zn, k3 h(21,. .., 2, k) =1 (3.3.3)

(an everywhere defined recursive function taking only values 1 and 2.)
Then the recursive step can be described as follows:

hzy,...,xn,k+1) :2Zgi(x1,...,xn,k,h(a§1,...,:rn,k))

1=

1
> (gipi) (@1, ., By b2, w0, K)).(3.3.4)

i=1
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This trick makes it possible to establish the primitive recursivity of the
following functions which will be used below.

The incomplete quotient:

integral part of y/z, if y/xz > 1,
at(z,y) = { / /

1, if y/z < 1.
We have
qt(z, y), if rem(z,y+1) =z, y+1#
gt(z,y +1) =< qt(z,y) + 1, ifrem(z,y+1)#z, y+1+#x;
1, y+1==x.

One reduces these conditions to the standard form (3.3.3) with the help of
the functions
§((rem(:c,y + 1) - {E)2 + 1)7

s((rem(e,y + 1) — @) +1) - 3((z — y — 1)* + 1),
s((@—y—1)?+1),

where
s(Hy=1, s(>2)=2; (1) =2,5(<2)=1.

The function rad(zx) — the integral part of \/x. One has
rad(1l) =1

ad(z 4+ 1) = rad(z) if qt(rad(z) + 1,z + 1) < rad(z) + 1,
rad(z =
rad(z) +1 if qt(rad(z) + 1,2+ 1) =rad(z) + 1.

These conditions can be reduced to the standard form (3.3.3) in a similar way.

The function min(z,y):
min(z,1) = 1;

min(z, y), ifx <y,

min(z,y + 1) = {

min(z,y) +1, ifz>y.

The function max(z,y) (similarly).
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3.3.6 Further Properties of Recursive Functions

If f(z1,...,2,) is recursive then

Tn Tn
Sf=Y fla,....vn_1,k), Pf=]]fl@....201,k)
k=1 k=1
are recursive. We can also obtain recursive functions from f in the following
ways:

a) by any substitution of the arguments;
b) by introducing any number of extra arguments;
¢) by identifying the members of any group of arguments (e.g. f(z,z) instead

of f(x,y) etc.)

The map f : Z"™ — Z" is recursive if and only if all of its components pr} o f
are recursive.

Definition 3.10. The set E C Z" is called enumerable, if there exists a par-
tially recursive function f such that E = D(f) (the domain of definition).

The discussion of §3.1 and §3.2 shows that enumerability has the following
intuitive meaning: there exists a program which recognizes the elements x
belonging to F, but which not necessarily recognizes elements which do not
belong to E. Below, a different description of the enumerable sets will be
given, which will explain the ethimology of the name: they are the sets with
the property that all their elements may be obtained (possibly with repetitions
and in an unknown order) by a “generating program”.

The following simple fact is easily deduced from the properties of partially
recursive functions.

3.3.7 Link with Level Sets

Proposition 3.11. The following three classes coincide: a) the enumerable
sets;

b) the level sets of partially recursive functions;

¢) the 1-level sets of partially recursive functions.

A much more difficult statement is the following result and its corollaries.

3.3.8 Link with Projections of Level Sets

Theorem 3.12. The following two classes coincide:
a) the enumerable sets;
b) the projections of level sets of primitively recursive functions.

Among the primitively recursive functions are the polynomials with coef-
ficients in Z*. Recall that Diophantine sets are projections of the level sets of
such polynomials. The Matiyasevich theorem can now be stated precisely as
follows:
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3.3.9 Matiyasevich’s Theorem

Theorem 3.13. The enumerable sets are Diophantine; hence the two classes
coincide.

We sketch the proof of Theorem 3.12 in this section, and of Theorem 3.13
in the next section.

Let us temporarily call the projections of level-sets of primitively recursive
functions the primitively enumerable sets. In the first part of the proof of
Theorem 3.12 it is established that the primitively enumerable sets are all
enumerable; in the second part the opposite inclusion is proved.

We therefore let f(x1,...,Zn, Tnt1,- .-, Tntm) be a primitively recursive
function, and E the projection of its 1-level to the first n coordinates. We
shall explicitly construct a partially recursive function g such that £ = D(g).
This will show that any primitively enumerable set must be enumerable

We divide the proof into three cases depending on the codimension of the
projection: m = 0,1 or m > 2.

Case a): m = 0. Then the set E is the 1-level of f and is enumerable by
Proposition 3.11.
Case b): m = 1. Set

gz, ..., zn) =min{x,41 | f(z1,...,Zn, Tne1) = 1}

It is clear that g is partially recursive and D(g) = E.

Case c): m > 2. We shall reduce this to the previous case using the following
lemma, which is interesting in itself (the lack of a notion of “dimension” in
“recursive geometry”) and plays an important role in various other ques-
tions.

3.3.10 The existence of certain bijections

Lemma 3.14. For all m > 1 there exists a one—to—one map t™ : Z+ — 7™
such that:

a) the functions tgm) = prgm)ot(m) are primitively recursive for all 1 < i < m;
b) the inverse function (M) 7m 5 7F s primitively recursive

Application of the lemma.
We apply Lemma 3.14 in the case 3.3.9 c) and set for m > 2

g(z1,...,Tn,y) = f(xl,...7xn,t§m)(y),...,tS,TZ”)(y)).

It is clear that g, being a composition of primitively recursive functions is itself
primitively recursive. It is easy to check that F coincides with the projection of
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the 1-level set of the function g to the first n coordinates. Since this projection
is of codimension 1, we have reduced Case ¢ to Case b.

Proof of the lemma. The case m = 1 is trivial. We shall prove the lemma
by induction on m, starting from m = 2.

Construction of t(2). We first construct 7(?) : Z2 — Z* by setting
(2) 1 2
TN (@1, 22) = 5(@1 + x2)° — 1 — 3x2 + 2).

It is easy to check that if we index the pairs (z1,z2) € Z2 in the “Kantor order”,
and inside each group with given x; + x5 in increasing order, then 7(2) (z1,x2)
will be exactly the number of the pair (1, x2) in this list. Thus 72 (21, z5) is
bijective and primitively recursive (use (3.3.4) and the recursivity of gt from
(3.3.5) in order to take into account the 1/2.

The reconstruction of a pair (z1,z2) from its image y is an elementary
task and this leads to the following formula for the inverse function ¢(?):

o=y |- 55| (V- -3] +1)
ﬁNwzlw@—Z—;]—ﬁnw+z

Here [z] denotes the integral part of z. Using the results and methods of §3.3.5
— §3.3.6, one can verify that these functions are primitively recursive.

Construction of t(™ . Assume that ¢~ 70m=1) are already constructed,
and their properties are proved. Set first of all

7 = 7@ (D (L m1), Tm).
It is clear that 7(") is primitively recursive and bijective. Solving the equation
Ty ), ) =y
in two steps, we get the following formulae for the inverse function ¢(™):

1 () =t (y), () ="V P (), 1<i<m -1,

1
By induction, tgm) is primitively recursive.
This finishes the proof of the lemma and the first part of the proof of
theorem 3.12.

The second part of the proof. We now prove that every primitively enumer-
able set is enumerable. We begin with the following easily verified property of
the class of primitively enumerable sets.
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3.3.11 Operations on primitively enumerable sets

Lemma 3.15. The class of primitively enumerable sets is closed under the
operations of finite direct sum, finite intersection, finite union and projection.

Now let F be an enumerable set. Using proposition in 3.3.7 we realize
it as the 1-level of a partially recursive function f : Z® — Z%*. Note that
in order to prove that F is primitively enumerable it suffices to check that
the graph I'y C Z" x Z* is primitively enumerable. Indeed it is clear that
E coincides with the 1-level of the projection onto the first n coordinates of
the set I'y N (Z™ x {1}). Also the set {1} C Z* is primitively enumerable in
view of the properties listed in §3.3.4, so if we prove that I’y is primitively
enumerable, then the same would follow for E by lemma 3.15. We have thus
reduced our problem to that of proving that the graphs of partially recursive
functions f are primitively enumerable.

With this purpose we check that: a) the graphs of simple functions are
primitively enumerable; b) if we are given functions whose graphs are prim-
itively enumerable, then any function obtained from them using one of the
elementary operations also has a primitively enumerable graph.

Stability under recursion and the p operation are the most delicate points.
In order to prove these, the following nice lemma is used.

3.3.12 Godel’s function

Lemma 3.16. There exists a primitively recursive function Gd(k,t) (Gddel’s
function) with the following property: for each N € Z* and for any finite
sequence ai,...,an € Z7T of the lenth N there exists t € ZT such that
Gd(k,t) = ag for all 1 < k < N (In other words, Gd(k,t) may be regarded
as a sequence of functions of the argument k indexed by the parameter t such
that any function of k on an arbitrarily large interval 1,..., N can be imitated
by an appropriate term of this sequence).

In order to prove this it is convenient to put first
gd(u, k,t) = rem(1 + kt, u)

and to show that gd has the same property as Gd if we allow ourselves to
choose (u,t) € Z2. After this we could put

Gd(k,y) = gd(t7 (), k. £ (1)),

where () : Zt — 72 is the isomorphism of Lemma 3.14. Getting rid of the
auxiliary parameter v in Gd(k,t) (in comparison with gd(u, k,t)) causes no
essential problems.
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3.3.13 Discussion of the Properties of Enumerable Sets

Theorem 3.12 of §3.3.8 shows that if E is enumerable, then there exists a
program “generating” E (cf. §3.3.6). Indeed, let E be the projection onto
the first n coordinates of the 1-level of a primitively recursive function
f(x1,...,xn,y). The program “generating” F should check one-by—one the
vectors (21,...,Zn,y), say, in Kantor’s order; it should compute f and output
(z1,...,2p) if and only if f(z1,...,2,,y) = 1. Since f is primitively recur-
sive, the generating program will sooner or later write down each element of
E, and no other element. It cannot stop forever on elements not belonging to
E. However, if F were empty we could never find this out just by waiting.

The set E C Z" is called solvable, if it and its complement are enumer-
able. Intuitively this means that that there is a program which decides for any
element of Z™ whether it belongs to E or not. These sets can be character-
ized as being the level sets of general recursive (everywhere defined recursive)
functions, or as the sets whose characteristic function is recursive. In order to
establish these properties, the following result is used.

Proposition 3.17. A partial function g from Z"™ to Z% is partially recursive
iff its graph is enumerable.



3.4 Diophantineness of a Set and algorithmic
Undecidability

3.4.1 Algorithmic undecidability and unsolvability

Before explaining how to prove that the classes of Diophantine and of ennu-
merable sets are the same, we first give some interesting applications of this
theorem. It is known from logic that there are sets which are ennumerable
but not solvable. Combining this fact with Matiyasevich’s theorem (see Theo-
rem 3.13) and the Church thesis, we deduce that Hilbert’s tenth problem (see
section 3.1.2) is undecidable, see [Mat04].

First of all, every natural number is a sum of four squares (Lagrange’s the-
orem, see Part I, section 1.2.6). The solvability of the equation f(z1,...,z,) =
0 in Z™ is therefore equivalent to the solvability of the equation

4 4
f<1+zy§17...,1+2yfn> =0
=1 i=1

in Z**. It is thus sufficient to establish the algorithmic undecidability of the
class of questions whether equations have solutions in Z". Let E C Z* be
ennumerable but not solvable. We represent it as the 0-level set of a poly-
nomial f; = f(t;z1, - ,2n) =0, f € Z[t;x1,- -+ ,xy]. The equation f;, = 0;
to € ZT is solvable iff ¢y € E. According to a general principle (the Church
thesis), intuitive computability is equivalent to partial recursivity of a func-
tion. This implies that the corresponding class of problems for the family {f;}
is algorithmically decidable, iff the characteristic function of F is computable.
However this is not the case by the choice of E: although FE is ennumerable,
its complement is not.

Thus the question of solvability in integers is undecidable even for an ap-
propriate one parameter family of equations. The number of variables, or
more generally the codimension of the projection can be reduced to 9 (Yu. L.
Matiyasevich). The precise minimum is still unknown, although this is a very
intriguing problem.

3.4.2 Sketch Proof of the Matiyasevich Theorem

One introduces temporarily a class of sets, intermediate between the ennu-
merable and Diophantine sets. In order to define this class, consider the map
which takes a subset ' C Z" to a new subset F' C Z" defined by the following
law:

(X1,...,2n) € F <= Vk € [1, 2]

(a:l,...,xn_l,k) e FE.

We shall say in this case that F' is obtained from E by use of the restricted
generality quantor on the n** coordinate. The restricted generality quantor is
defined analogously on any other coordinate.
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Definition—Lemma. Consider the following three classes of subsets of Z™
for any n:

1. Projections of the level sets of primitively recursive functions.

II. The smallest class of sets containing the level sets of polynomials with
integral coefficients, which is closed under the operations of finite direct
sum, finite union, finite intersection, projection and the restricted gener-
ality quantor.

1II. Projections of the level sets of polynomials with integral coefficients.

Then

a) Class I coincides with the class of ennumerable sets, and Class III with
the class of Diophantine sets. The sets of the class II will be called D—sets.
b) The following inclusions hold: I D IT D III.

The final steps in the proof of the Matiyasevich theorem consist of reduc-
tions similar to those described above. The crucial part is the proof that the
class of Diophantine sets is closed under the use of the restricted generality
quantor. Here one makes use of the Diophantine representations of concrete
sets from §3.2, in order to check that application of Gédel’s function does not
damage the Diophantineness.

Note that B. Poonen studied in [Po03] Hilbert’s tenth problem for large
subrings of Q in connection with Mazur’s conjecture on varieties over Q whose
real topological closure of rational points has infinitely many components (no
such varieties are known to this point). For the field of rational numbers
Hilbert’s tenth problem is a major open question. In trying to answer it two
general methods have been used: one is to study the similar question in other
global fields (such as fields of rational functions F,(t) over finite fields) and
try to transfer the methods to Q; the other is to try to prove it for ever
larger subrings of Q. Relations of this problem with arithmetic and algebraic
geometry were studied in [DLPvG], see also [Shl03].



4

Arithmetic of algebraic numbers

4.1 Algebraic Numbers: Their Realizations and
Geometry

4.1.1 Adjoining Roots of Polynomials

The idea to extend the field of rational numbers owes a lot to various attempts
to solve some concrete Diophantine equations. The use of irrational numbers
which are roots of polynomials with rational coeflicients often makes it possible
to reduce such equations to more convenient forms. An intriguing example of

this is the study of the Fermat equation (cf. [BS85], [Pos78], [EdwT77], [Rib79]):
"yt =2" (n>2). (4.1.1)

The unsolvability of (4.1.1) in non—zero integers for n > 2 is now established in
the work of Wiles [Wi] and Wiles-Taylor [Ta-Wi| on the Shimura-Taniyama-
WEeil conjecture and Fermat’s Last Theorem, see chapter 7. Wiles used vari-
ous sophisticated techniques and ideas due to himself and a number of other
mathematicians (K.Ribet, G.Frey, Y.Hellegouarch, J—M.Fontaine, B.Mazur,
H.Hida, J.-P.Serre, J.Tunnell, ...). This genuinely historic event concludes a
whole epoque in number theory.

Notice that before the work of Wiles, it was known from results due to
Faltings (see chapter 5, §5.5) that the number of primitive solutions (i.e. such
that GCD(x,y, z) = 1) is finite for each n > 2. If n is an odd integer then the
left hand side transforms into the following product:

n—1

[ @+ ¢Fy) =2, (4.1.2)

k=0

where ¢ = exp(2mi/n) is a primitive n'" root of unity. If we suppose that

the ring R = Z[¢] has unique factorization of elements, then by studying the
divisibility properties of the left hand side of (4.1.1) one can prove that (4.1.1)
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has no solutions in integers not dividing n (this is the first case of the Fermat
conjecture: n t zyz) (Kummer). However, this unique factorization property is
far from being always satisfied: J.M.Masley and H.L. Montgomery (cf. [MMT76])
have found all n with this property; it turns out that there are altogether 29
such numbers, and the primes among them are n = 3,5,7,11,13,17,19. Notice
that before the work of Wiles, the validity of the first case of Fermat’s Last
theorem has been established for infinitely many primes ([AdHBS85], [Fou85],
[GM]).

Let a be a complex root of an irreducible polynomial f(z) = z™ +
an_12" L+ .. a1w + ag € Q[x] with rational coefficients a; € Q. If k = Q(«)
is the smallest field containing « then each of its elements § has the form:
8 =r(a), where r(z) € Q] is a polynomial of degree degr(z) < n, and the
arithmetical operations in Q(«) are the same as those with residues mod f
in the ring of polynomials Q[z].

In other words, there is an isomorphism between k£ and the quotient
ring Q[z]/(f), and k is an n—dimensional vector space over Q (with basis
1,a,...,a" 1), A choice of basis gives another realization of elements of k as
n X n square matrices: to an element 3 one attaches the matrix of the linear
transformation g : © — Gx (with respect to the chosen basis). For the basis
{1,a,...,a" '} the endomorphism ¢, is described by the matrix (sometimes
called the adjoint matriz):

0 0 ... 0 —ap

1 0...0 —-a
Ao=|0 1 ... 0 —a |,

0 0 ... 1 —Aan—-1

and the smallest subring of the matrix algebra M,,(Q) containing A, can be
identified with k. Each element § € k is a root of the characteristic polynomial
of the endomorphism g, and its determinant and trace are denoted N3 and
Tr(B. These are called the norm and the t¢race of 3. The bilinear form B :
k x k — Q defined by B(u,v) = Tr(uv) is non-degenerate. An element 3 is
called integral if all of the coefficients b; of its characteristic polynomial

det(X -1, —@g) = X" + b, 1 X" 1 +--- + by € Q[X]

are integers. This condition is equivalent to saying that the ring Z[g] is a
finitely generated Abelian group. The set of all integers of k£ will be denoted
by O = Ok. This is a free Z-module (a free Abelian group) with a basis
w1, ,wWn. The determinant of the bilinear form B(u,v) with respect to such
a basis is called the discriminant of k, and is denoted by D = Dj. This is
independent of the choice of basis of Oy.

The idea of symbolically manipulating the roots of polynomials has lead to
the theory of algebraic extensions of arbitrary fields, for which one may repeat
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the above constructions. If k¥ C K are two fields and the dimension [K : k]
is finite, then for any 3 € K one defines analogously N (3) and Trg/(5).
The claim that the form B(u,v) = Trg/i(uv) is non-degenerate is one of the
definitions of a separable extension. If this is the case one can always find an
element v € K such that K = k(v) (this statement is known as the primitive
element theorem) (cf. [La65], [Sha87]).

Adjoining the roots of all the irreducible polynomials in k[X] to the ground
field k leads to the construction of an algebraic closure k of k. This is a
field, uniquely defined by k& upto isomorphism, which consists of elements
algebraic over k, and which is also algebraically closed. This means that every
polynomial f(X) € k[K] with deg f > 0 has a root a € k. When we write Q
we often mean the complex realization of this field as the set of all complex
numbers o € C which are roots of polynomials with rational coefficients.

4.1.2 Galois Extensions and Frobenius Elements

(cf. [La65], [LN83]). In general let K/k be a finite separable extension, k C
K C k. Then K/k is called a Galois extension if for every embedding \ :
K — k over k (i.e. A(z) = = for x € k) one has A(K) = K. In this case the
automorphisms A : K — K over k form a group G(K/k) = Aut(K/k) of order
n which is called the Galois group. In what follows the action of o € G(K/k)
on z € K will be denoted either by x7, or by o(z) so that the composition
law is (70)(z) = T(o(x)), 2™ = (x7)7 (a left action of G(K/k) on K).

Theorem 4.1 (Main Theorem of Galois Theory). There is a one—to—

one correspondence between subgroups H C G(K/k) and intermediate fields
L with k C L C K. This correspondence is defined by the following law:

H— K?={zc K |x° =z foral o € H},
L— Hy={0ce€eGK/k)|x° ==z for all z € L}.

The normal subgroups H < G(K/k) correspond ezactly to the Galois subex-
tensions L/k, and for such subgroups or extensions we have G(L/k) =
G(K/k)/HL.

Ezxample 4.2 (Finite Fields.). Let K = F, be a finite field with ¢ elements.
Then g = p/ and IF, is a vector space of dimension f over the prime subfield
F, = Z/pZ (cf. [LN83]). For any integer > 0 the algebraic closure F, contains
exactly one extension of F, of degree r:

Fpr = {x eF, | 29 =z},

so that 27 —! = 1 for all elements of the multiplicative group IE‘(IX The exten-
sion F,r/F, is therefore a Galois extension, and its Galois group is cyclic of
order 7:

G(Fyr /Fy) = {1,Frg, Fr2 - [ Fri '}

where Fr,(z) = 27 is the Frobenius automorphism.
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Ezample 4.3 (Cyclotomic Fields.). Let (, be a primitive root of unity of
degree m. Then the field K,, = Q({,,) contains all roots of the polynomial
X7 -1 =175 (X —¢¢,) and is therefore a Galois extension. If 0 € G(K,,/Q)
then the element o(,, must also be a primitive m*™ root of unity, so that
0Cm = (2, for some a with (a,m) = 1. If ¢¥, is another m'" root of unity then
o(¢F) = ¢ . Hence the correspondence o — a(mod m) produces a canonical
map G(K,,/Q) — (Z/mZ)* which is in fact an isomorphism. In order to
prove this it suffices to show that the cyclotomic polynomial

m—1

Sn(X)= [ (X-¢)

i=1
(i,m)=1

is irreducible over Q. First we see that X™ —1 = [[;,, ®a(X), and hence
b, (X) = Hd‘m(X’”/d — 1)#M4) ¢ 7Z[X] (where u(d) is the Mébius function
of d). The irreducibility is established by reducing the polynomials modulo
p: Z[X] — F,[X]: f(X) — f(X) € F,[X]. One applies the properties of the
Frobenius endomorphism f(X) — f(X)? = f(X?) € F,[X] in the ring F,[X].
Suppose that @,,(X) is not irreducible and let

be the decomposition of &, as a product of irreducible polynomials in Z[X].
We show that for all @ mod m with (a,m) =1, f1((n) = 0implies f;(¢%) =0
We use the existence of a prime p such that p = a mod m. The polynomial
X™ — 1 is coprime to its derivative mX ™! in F,[X] since p J/m. Hence the
polynomials f(X),..., f,(X) are pairwise coprime.

If f1(¢%) # 0 then we have f;(¢%) = 0 for some j # 1, which implies
£i(¢2) = 0. Hence fi(X) has a common factor with f;(X?). In fact since f is
irreducible, it must divide f;(X?). Therefore f,(X) divides f;(X?) = f;(X)P.
This contradicts the fact that f,(X) and ?j (X) are coprime.

Note that we do not need to assume the existence of a p such that p =
a mod m. We could instead consider the decomposition a = pi* ----- p&e and
study all the reductions mod p;, i« = 1,...,s (cf. [BS85|, [La65], [Chev40|,
[La78b]|, [Wash&2]).

Recall that a Dirichlet character x modulo m is a homomorphism y :
(Z/mZ)* — C*. These are often regarded as a functions on Z such that
x(z) = x(x mod m) if (x,m) = 1, and x(z) = 0 if (x,m) > 1 (see Part I,
§2.2.2). According to what we have proved, there is a canonical isomorphism
G(Km/Q) = (Z/mZ)*. Hence a Dirichlet character defines a homomorphism
py : G(Q/Q) — C* by means of the projection G(Q/Q) — G(K,,/Q).

Theorem 4.4 (Theorem of Kronecker—Weber). For any homomorphism
p: G(Q/Q) — C* of finite order there exists a Dirichlet character x such that

P = Px
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(cf. [Shab1], [AT51], [Chev40]) .

The theorem of Kronecker—Weber can be restated as saying that any Galois
extension K /Q whose Galois group G(K/Q) is commutative (i.e. any Abelian
extension) is contained in a cyclotomic extension.

A remarkable fact is that the elements of the Galois group G(K,,/Q)
correspond to prime numbers (more precisely p mod m for pt m). The deep-
est results of algebraic number theory are related to generalizations of the
Kronecker-Weber theorem. For example, Deligne and Serre have shown that
there exists a correspondence between two—dimensional irreducible complex
representations p : G(Q/Q) — GL2(C) such that detp = p,, for an odd charac-
ter x, and primitive cusp forms of weight one (cf. Chap. 6, §6.4, the theorem of
Deligne-Serre). Tt is conjectured that this correspondence is one-to—one, and
therefore gives a two—dimensional analogue of the Kronecker—Weber theorem.

4.1.3 Tensor Products of Fields and Geometric Realizations of
Algebraic Numbers

In order to obtain a convenient geometric realization of an algebraic num-
ber field k, we use the tensor product k ® R. Constructions involving tensor
products of fields are frequently used in algebraic number theory, and for this
reason we begin with a general result on these products.

Theorem 4.5 (Theorem on Tensor Products of Fields). Let K/k be a
finite separable extension, K = k(v), and let L/k be another extension, and
suppose that

K 2 k[X]/(f(X)), f,(X) =]]aX)
=1

is the decomposition as a product of irreducible polynomials in the ring L[X].
Then there is a ring isomorphism

K®p L= ﬁLi,
i=1

where L; = L[X]/(g:(X)) are finite extensions of L containing K under the
embeddings \; : K — L; defined by
Ai(r(7)) = r(X) mod  g;(X).

(cf. [CF67], [Chev40]).

The proof of this theorem is similar to that of the Chinese remainder
theorem. The elements r(v) ® [ with | € L, r(X) € k[X] generate the whole
ring K ®; L, and the isomorphism is given by

r(7) @l (Ir(X) mod g(X),-- ,Ir(X) mod gm(X)).
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Corollary 4.6. Let 8 € K. If f3(X) € k[X] is its characteristic polynomial
in the extension K/k and fs;(X) € L[X] are its characteristic polynomials
in the extensions L;/L, then

Fo(X) =] f5.:
=1

In particular, we have

m

Ng/k(B) = HNLi/L(Ai(ﬂ))? (4.1.3)
Trr/(B) = ZﬂLi/L(Ai(ﬁ))- (4.1.4)

If we take k for L, then m = n and A1, ..., \, are all possible embeddings
Nt K — kK,

Hence for any g € K we have

n n

Ni/w(8) = [TN(8),  Trasn(8) =D X(B). (4.1.5)

i=1 i=1

By putting L = R, K = Q(v) and & = Q, we obtain a geometric realization
of the algebraic numbers. Let f,(X) = (X —~1)----- (X —9) (X?+ a1 X +
i DRRERE (X2%+ a,, X + fr,) be the decomposition of the minimal polynomial
f(X) € Q[X] of 7 into irreducible polynomials over R. Then

Koy R=Q()®@R=R™ x C" (4.1.6)

(this is an R-algebra isomorphism), or Q(v) ® R = R™ as a real vector space,
so that n =ry 4+ 2ra. Let Ay, , Ary, -+, Ap 4+, e the embeddings of 4.1.2.
Then the tuple

A= (Ala"' a)"l“l,"' )AT‘1+T’2)

defines an embedding of K into R™, and any embedding of K into C is one of
the following

)\17 T 7>\T’17>\T1+15 A7"1+17 e 7)\r1+r27>\7"1+r2-

A lattice M in a vector space R™ is by definition a discrete subgroup
M C R™ such that the quotient group R™/M is compact (in the natural
topology). Every lattice is a free Abelian group generated by a basis e, ..., e,
of R"™.
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If O is the ring of integers in K, then one verifies that its image M =
A(O) C R™ is a lattice, and

Di = (—4)"2vol(R™/A(0)), (4.1.7)

where Dk is the discriminant of K, and vol(R"/A(O)) is the volume of
the fundamental parallelogram {} . | x;e; | 0 < z; <1} of the lattice O =
(e1,...,en) with respect to the usual Lebesgue measure on R".

For example, let K = Q(a) be a quadratic field, where a? = d for some
square free integer d. Then a calculation of the characteristic polynomial of a
typical element 0 = a 4+ ba (where a and b are rational numbers) shows that
O = Ok = Z|w] where

1+«

w and Dk =d for d=1(mod 4),

w=a and Dk =4d for d =2,3(mod 4).

If d is positive then the geometric realization of the number 8 = a + ba will
be the point A\(8) = (a+bVd, a—bv/d). In the case of an imaginary quadratic
field (d < 0) the geometric realization of the number § = a 4 ba will be
the point (a + iby/]d]) in the complex plane. Since Z[w] = (1,w) we have for
positive d

Vd ifd=1mod 4,

Volz(RQ/)\(Z[wD) = {2\/(? ifd=23mod 4

and for negative d

d .
V012((C/Z[w]) — @ if |d| = 3 mod 47
VId| if|d] =1,2 mod 4.

Figures 4.1 and 4.2 illustrate the lattices of integers in the quadratic fields

Q(v=T) and Q(v2).

4.1.4 Units, the Logarithmic Map, and the Regulator

In the ring Z there are only two invertible elements (units): 1 and —1. The
group of units, i.e. invertible elements of the ring of integers Ok of a number
field K has a less trivial structure. However, this group can be completely
described. One uses the notation Ex = Oj.

Some interesting arithmetical problems can be reduced to finding elements
of Ek. For example, consider Pell’s equation (see Part I, section 1.2.5)

2 —dy? =1 (4.1.8)

(where d is a square free positive integer).
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A |
d=-1 d=7
AL 4 2[VT)eR?
D=-4,v08=1 D0=8,v0l=2V7

Fig. 4.1.
Fig. 4.2.

Note that if 3 € O} then N3 and Ng~! = N(3~!) are rational integers,
hence N3 = £1. Conversely, any solution to (4.1.8) in integers x,y produces
a unit 3 = x + ya in the real quadratic field k = Q(a), a® = d since Nf =
(z + yVd)(z — yVd) = 22 — dy?. On the other hand for all 3 € Ok with
N = £1 we have that 5 € O. It follows from a general theorem of Dirichlet
on the structure of Ex for an algebraic number field K (the Dirichlet unit
theorem), that for K = Q(v/d) one has Ex = {£e" | n € Z}. Here ¢ is
a fundamental unit (which can be uniquely defined by the condition that
A1(€) = a + bV/d is minimal with A;(g) > 1). The set of solutions to (4.1.8)
can be identified with a subgroup of Ef of the form {+e} | n € Z}, where
€0 = o + Yo/« corresponds to the minimal solution A(eg) =z + yovd > 1.

In order to describe the structure of Ex in the general case, one uses the
embedding A : K — K @ R 2 R™ x C™ and the following logarithmic map
[: (R™ x C2)* — R™*"™2 where for i < r; by definition ;(z) = log|z],
l; : R* = R, and for i > ry [;(x) = log|z|?, l; : C* — R. Under the map
1 o A, multiplication in K becomes addition in R™*"2. If z € K then in view
of (4.1.3) we know that

Nz = )\1(«17) e Arl (Z‘)A7-1+1($))\7-1+1(x) Tt A7“1-1-7“2 (x)ATlJFTZ ($)

Hence
r1+72

> i) = log Nl

In particular, the image IN(Oj ) of O lies in the hyperplane

r1+ra

Z xl()} VR, r=ri+r—1.

The kernel of the map [ : (K ® R)* — R™*"2 is the following compact set

V= {(:L'la--~axr1+r2 € R
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{1} x S™ C R™ x C™ = R",

where S = {2z € C | |z| = 1} is the unit circle. We see that the logarithmic
map provides an effective way of drawing the units: the kernel of [\ : Ex —
R™17+72 consists of only a finite number of elements (the roots of unity in K).
Dirichlet’s theorem says that the image IA(Fk ) is a complete lattice in V' = R"
(where r = 71 + 173 —1). In other words, one can find elements ¢1,...,¢, € Ek
such that any unit € € Fx can be uniquely represented in the form

5:775?1 .....5;77'
where n; € Z and 7 is a root of unity in K. In particular, ¢4, ...,e, € Ex are
multiplicatively independent:

M),y IA(er)

form a basis of the hyperplane V. Consider now the volume vol(V/IN(Ek))
of a fundamental parallelogram for the lattice of units (with respect to the
measure on V induced by Lebesgue measure on R™). The number Ry =
vol(V/IN(Ek))/+/T + 11is called the regulator of K and is equal to the absolute
value of the determinant

Z1A1(€1) l2/\2(€1) e lT1+T2)‘T1+T2 (61)

ll)\1(5r) l2)\2(5r) lm—&-rz)‘m-&-rz(er) -
(ri+mr) t(ri+mre)™ o (r )7

4.1.5 Lattice Points in a Convex Body

We now describe a general geometric idea, on which the proof of the Dirichlet’s
theorem, and some other interesting facts (such as bounds for discriminants
and class numbers) is based.

Theorem 4.7 (Minkowski’s Lemma on a Convex Body). Let M be a
lattice in R™, A = vol(R"/M), and let X C R™ be a centrally-symmetric
convex body of finite volume v = vol(X). If v > 2" A, then there exists 0 #
aeMnNX.

Proof. In order to prove the lemma, it is convenient to consider the lattice
2M C R™ whose fundamental parallelotope has volume vol(R"/2M) = 2" A.
Then under the natural projection of X C R™ onto a fundamental parallelop-
iped R™/2M there will be overlaps in the image of X, because the volume
of X is bigger than the volume of a fundamental parallelepiped. Hence there
exist two different points z1, 20 € X, 21 # 2o such that z; = z, mod 2M, i.e.
(21 — 22)/2 € M. The proof follows: the point (21 — 22)/2 # 0 belongs to X in
view of its convexity and central symmetry, since (21 —22)/2 = (21 + (—22))/2
(if z € X then —z € X).
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Here are some examples of convex bodies to which we can apply Minkowski’s
lemma. Let 2% = (29, ... 7559-1+r2) € K®R, |N(2%)| = H:;l |29 H:;’Zl |a:791+j|2
# 0. Put
W) ={ze KQR | |z;| <|2}|, i=1,...,r1 +72}.
For a positive integer a we put

T1 T2
Dozl +2) fariil <a

i=1 j=1

Ul =<z K®R

A calculation of these volumes shows that

T n
VOI(W(;};O» = 2""17.(.7"2|l\I<xO)|7 VOI(U(G)) —9n (g) 2 q
Applying Minkowski’s lemma to the lattice M = A(Og) and these bodies

(where A =27"2/|Dg| by (4.1.7)), we see that

= (4.1.9)

a) for arbitrary constants ¢; > 0 (i = 1,...,71 + 72) satisfying the condition
T1 T2 Ty
2
Hci cflﬂ > <) v/ |Dk| there exists a non zero element o € Ok
i=1  j=1 T
such that

Ni(a)| <¢ (i=1,...,m1 +712); (4.1.10)
it suffices to take 2° € K ® R with 29| = ¢; (i = 1,...,71 + r2) and
a € W(zY);
, 1/n
b) for a > (n! ()™ \/|DK\) there exists 3 € Ok, 3 # 0 from U(a), such
that

STNB 42 [Ansi(B)] < a,
i=1 j=1

hence in view of the inequality between the arithmetic and geometric
means we have the estimate

MO < () SVB (NG =D, @

From (4.1.11) follows the estimate for the discriminant:
2n

T\2"2 n m\2r2 1 2n—0/6n
Dkl > () o (3) g (08 <)

showing that |Dg| grows with n.

Some other remarkable consequences of Minkowski’s lemma, are:
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Theorem 4.8 (Hermite’s Theorem, (1863)). There are only finitely many
algebraic number fields with a given discriminant.

Theorem 4.9 (Minkowski’s Theorem, (1890)). If K # Q then |Dg| > 1.

For the proofs of these theorems cf. [Wei74a].

From the above estimate for the discriminant it follows also that for large
n one has |Dg|/" > (7.3)"1/7(5.9)"2/". However nowadays much stronger
estimates for discriminants are known: |Dg|'/™ > (188)7/7(41)"2/™ (for large
n), cf. [Od175] , [Kuz84|. The latter are deduced from analytic properties of
the Dedekind zeta—function via explicit formulae (cf. §6.2.3 and §6.2.5).

4.1.6 Deduction of Dirichlet’s Theorem From Minkowski’s Lemma

Consider the hypersurface T, = {z € K @ R | [Nz| = ¢} for a fixed ¢ > 0.
Under the logarithmic map this becomes the affine hyperplane

T1+72
Viogc = {y € R71+72 ‘ Z Yi = IOgC}.
i=1

The group of units Ex acts on T, by multiplication with A(¢), ¢ € Ex. Under
the logarithmic map the action of € becomes a translation by the vector IA(e),
which maps Vieg ¢ into itself. The number of orbits of this action on T.NA(Ok)
is finite for any fixed c. Indeed it suffices to show that if N(o) = N(3) =c€ Z
and a = f(mod c) in the ring Ok then a/f € Ek. In order to see this, notice
that a divides its norm Na = c¢. Hence the number g =1+ B?Ta belongs to
Ok Similarly, § € Ok, hence § € Ex = Ox.

We now use the results of §4.1.5, and choose some ¢ > (%)TQ VI|Dkl-
Then for any element z € T, one can find an element a € Ok such that
Ma) € W(z). We use this fact to show that the quotient group V/IA(Ek)
is compact. It suffices to show that V' = V| can be covered by translations
of a bounded set by vectors [A(¢), ¢ € Ei. In turn, this is implied by the
analogous statement for any hyperplane parallel to V', for example of the type
Wiog c instead of Vj. For any a € Ok, a # 0, consider the set Y,(a) C Vigge
consisting of all y = I(x) € Vigg . such that A(a) € W(x). Then Y,(a) are all
bounded, Y;(ae) = Y.(a) +1A(¢) for € € Ex, and Minkowski’s lemma implies
that any y € Vigg . is contained in some Y,(a). On the other hand, we know
that there are only finitely many classes of @ € Ok with [N(a)| < ¢ modulo
the action of Ef. If {a;} is a finite system of representatives of these classes,
then the desired compact set can be defined to be the union UY.(c;). This
proves the compactness statement; discreteness is implied by the analogous
fact for the lattice A(Ok), and the fact that the logarithmic map restricted
to any hypersurface T is a surjective open map onto Vigc.



4.2 Decomposition of Prime Ideals, Dedekind Domains,
and Valuations

4.2.1 Prime Ideals and the Unique Factorization Property

The original purpose of Dedekind’s theory of ideals was to extend the results
of Kummer on Fermat’s theorem to a larger class of exponents. Let R be a
commutative ring with unity. An ideal o of R is by definition an additive
subgroup « C R such that Ra C a. An ideal o # R is called prime iff ab € «
implies a € a or b € « (i.e. the factor ring R/« has no zero-divisors). An ideal
of the type a@ = (a) = Ra for a € R is called a principal ideal. The notation
(a;)icr denotes the smallest ideal containing all a; € R, (i € I). An element
m € R is called prime iff 7 = ab implies that either a or b is invertible (i.e. a
unit) in R. The reason for the lack of uniqueness of factorization into prime
elements in R, is related to the fact that the ideal (7) generated by a prime
element 7 is not always prime.

Ezample 4.10. Let R = Z[/—5] then there are two essentially different fac-
torizations into prime elements:

21=3-7=(1+2v-5)- (1 —2v-5).

A simple check shows that none of the divisors of two different factors in this
identity belong to R. However, the uniqueness of factorization can be restored
if we pass from prime elements to prime ideals. Indeed, the following ideals

are prime:
p1:(3,¢j5—1), p2:(37\/j_2),
p3:(7a\/j_3)? p4:(77\/j5_4)

This is implied by the decompositions:
X2 +5=(X-1)(X —2)(mod 3), X*+5=(X—3)(X —4)(mod 7),
for example,
R/py = Z[X]/(3, X = 1,X* +5) 2 Fy[X]/(X — 1) = s,

in view of the identity (X —1,X? +5) = X — 1 in F3[X]. Analogously one
proves the decompositions

(3)=p1-p2, (7)=ps-ps, (1+2V=5)=p1-p3, (1—2V—=5)=ps-pa,

and the factorization (21) = p1papsps is the unique decomposition as a prod-
uct of four ideals. The ideals (3), (7), (1+2v/=5), (1 — 24/=5) are not prime.
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A Dedekind domain is by definition a commutative associative ring with
identity, in which the factorization of non-zero ideals into prime ideals is
unique. This is equivalent to R being a Noetherian (every ideal being finitely
generated), integrally closed (containing every element of its field of fractions
which is integral over R) ring, all of whose non—zero prime ideals are maximal
(i.e. R/p is a field).

One can prove that the ring Z[v/—5] of our example is a Dedekind do-
main. From the given characterization it follows that for a given number field
K, [K : Q] < oo, the ring of integers O is a Dedekind domain. It also fol-
lows that no proper subring of O with the same field of fractions can be
a Dedekind ring, since it cannot be integrally closed. For example, the ring
7Z[+/5] is not a Dedekind ring: the ideal (1 —+/5) cannot be decomposed into a

product of prime ideals. However the bigger ring Z[%] = Ok, K = Q(v/5)
is a Dedekind ring. Thus one can build a good divisibility theory in this class
of rings by replacing elements « by the corresponding ideals and using prime
ideals rather than prime elements. However, the class of Dedekind rings is
quite narrow, and a good divisibility theory can be built in a much larger class
of rings. For example, in the polynomial ring k[z1, z2,...,z,] over a field k
one has unique factorization of elements, and the prime elements here are the
irreducible polynomials. On the other hand, the existence and uniqueness of
factorization of ideals into prime ideals does not hold in this ring. For instance,
the ideal (22,y) C k[, y] does not have such a decomposition. This last exam-
ple explains particularly Kronecker’s mistrust of the prime ideals of Dedekind.
Kronecker himself began developing a different theory of divisibility, based on
valuations. This is described below (§4.2.5 and §4.3). The history of the con-
troversy between Kronecker and Dedekind is nicely presented by H.Weyl (cf.
[Wey40]).

Fractional ideals. Let Ok be the ring of all integers in a number field K,
[K : Q] < co. A fractional ideal is by definition a non-zero Og-submodule
a C K such that aa € Ok for some o € K*. The properties of Dedekind
domains imply that together with a fractional ideal «, the Og—submodule
a ' ={r € K| za C Ok} will also be a fractional ideal. If & and 3 are
fractional ideals, then o3 is also a fractional ideal. Thus the fractional ideals
form a multiplicative group Ix whose identity element is Og. Since Oy is
a Dedekind domain, it follows that Ik is a free Abelian group in which the
prime ideals p C Ok form a basis: every « € Ik can be uniquely written in
the form:

The norm Na of an integral ideal o C Op is defined to be the number
of elements of the corresponding factor ring: Nao = Card(Ok /), and the
norm of an arbitrary fractional ideal o € Ik is defined by multiplicativity. If
a = («) is a principal ideal, then N((a)) = [Na| = |[Ng/ga|: multiplication
by « defines an endomorphism of the lattice Ok, and one easily verifies that
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the absolute value of its determinant coincides with the index of its image:

(Ok : (@) = N((«)).

4.2.2 Finiteness of the Class Number

To each element o € K* one can associate (o) € Ik, so that we have a

homomorphism K* diyy k- The image of this homomorphism is called the group
of principal ideals, and is denoted by Pg. The quotient group Clyx = I /Pk
is called the ideal class group. The following result is another corollary of
Minkowski’s lemma.

Theorem 4.11. The group Clg is finite.

The order |Clg| = hx is called the class number of K.

In order to prove the theorem we note that each ideal class can be
represented by an integral ideal (replacing if necessary a by Ma with an
appropriate integer M, and so getting rid of denominators). According to
Minkowski’s lemma (see §4.1.5) there exists a non—zero element a € a such
that |[Naf < (%)T2 V|Dk|Na. We have aOx C a because a is an ideal, i.e.
Ok C a 'a. We see now that the index (a~ta : Og) = (Ok : aa™!) is
bounded by the constant (%)72 v/ |Dxk|, because

(Ok :aa™t) = IN(a)|Na™t < <72r> 2 vV |Dkl-

If o’ is an arbitrary fractional ideal containing Ok and (¢’ : Og) = r then
r 1Ok D d O Ok. But it is obvious that the number of intermediate ideals
a’ between r~ 1O and O is finite. The theorem follows, in view of the fact
that r can take only a finite number of values.

As we shall see below, this theorem and Dirichlet’s unit theorem not only
have similar proofs, but can be incorporated as parts of a more general result
on the structure of the idele class group (cf. [Chev40], [Wei74a]).

The class number plays an exceptionally important role in number theory.
For example the statement hx = 1 is equivalent to saying that Ok is a unique
factorization domain. Another example is that the theorem of Kummer from
§4.1.1 on the first case of Fermat’s Last Theorem can be extended to all
prime exponents n with the property that hx is not divisible by n, where
K = Q(exp(27i/n)) is the corresponding cyclotomic field.

There have been a number of experimental and empirical observations
of class groups of number fields made over the years. H. Cohen and H. W.
Lenstra, Jr. in [CoLe83] introduced a heuristic principle that succeeded in pre-
dicting the statistical distribution of ideal class groups of imaginary quadratic
number fields and totally real abelian number fields. Many numerically veri-
fied observations are a precise consequence of the Cohen-Lenstra conjecture,
cf. e.g. [Lee02], where a relation with Leopoldt’s Spiegelungssatz (cf. [Leo58])
is discussed.
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4.2.3 Decomposition of Prime Ideals in Extensions

If K is a number field with ring of integers Ok, and p is a prime number,
then (p) = pOk can be decomposed into a product of prime ideals of Ok:

(p) — p]flpl;? e plgs (4.2.1)

The form of the decomposition (4.2.1) for primes p is one of the most im-
portant characteristics of K; if say K/Q is a Galois extensions, then K is
uniquely determined by the set of primes p satisfying (p) = pip2 - - Pn,
where n = [K : Q] (the product of n distinct primes). If this is the case for
p, we say that p splits completely in K. For a general number field it is diffi-
cult to determine the precise form of the decomposition (4.2.1) for all p. This
problem is related to the deepest questions of algebraic number theory (“non—
commutative class field theory”, see §6.4). However, for Abelian extensions K,
i.e. Galois extensions K/Q whose Galois group G(K/Q) is commutative, this
decomposition is known. We shall give the precise form of the decomposition
for quadratic fields K = Q(v/d) and cyclotomic fields K = Q(™/1). This is
done by a general method, applicable to any extension R C S of commuta-
tive rings, where it is supposed that S is a finitely generated R—module. In
this case each element o € S is a root of a normalized (monic) polynomial
f(X) € R[X]. For example, one could take f(X) = X" +a, 1 X" 1+ +aq,
a; € R (the characteristic polynomial). Let p be a maximal ideal in R. Denote
by @ the image of « in the quotient ring S/pS.

Theorem 4.12 (Theorem on the Decomposition of a Maximal Ideal).
Suppose that for an element a € S one has S/pS = (R/p)[@] and n =
deg fo(X) = dimp/, S/pS. Choose normalized polynomials g1(X), ..., g-(X) €
R[X] such that

fa(X)= (X)) -+ g (X)* (mod pR[X]) (4.2.2)

where g;(X)(mod pR[X]) are distinct and irreducible in (R/p)[X]. Then the
ideals P, = (p, gi(«)) are mazimal, and the following decomposition holds:

pS =P P (4.2.3)
The maximality of 3; follows from the isomorphism:

S/Bi = R[X]/(9:(X),p) = (R/p)[X]/(9:(X))

and from the irreducibility of g;(X)(mod pR[X]); the decomposition (4.2.3)
is deduced from an analogue of the theorem on tensor products of fields, see
4.1.2 (or from the Chinese Remainder theorem):

T

S/pS =S @ (R/p) = [[(R/p)[X]/(9:(X)%).

i=1
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Ezample 4.13. a) Quadratic Fields (see [BS85], Chapter 2). For a quadratic
extension K = Q(v/d) (d € Z being square free), O = O = Z[w] where

1++Vd
w =

5 fo(X)=X? - X +(d—1)/4 and Dg = d for d = 1(mod 4),

w=+Vd and Dy = 4d for d = 2,3(mod 4).

The result on the decomposition of primes can be conveniently stated in terms

of the quadratic character xx of K. By definition x g is the unique primitive
Dirichlet character of order 2 modulo |Dg| such that x(—1) = sgn Dg. It can
be written explicitly as follows

(fﬂ) , if d = 1(mod 4)
Yr(z) = { (—1)@=D/2 l%‘) , if d = 3(mod 4)
2 . ’_ - . _
(= 1)@ =D)/S -1 ~1)/a (\d’l) , ifd=2d,d =1(mod 2).

Then p decomposes in O as follows:

pp', p# P, and Np=Np' =p  for xk(p) =1,
pOk = < p, Np = p? (i.e. p remains prime) for yx(p) = —1,

p?, Np=p for xx (p) = 0.

In order to prove these decompositions one applies the above theorem with
R =12, 5 = Ok, a = w, using the decomposition of the corresponding
quadratic polynomial f,,(X) mod p, which either has two distinct roots over
F,, or is irreducible, or has a double root over F,, in the cases when x i (p) = 1,
Xk (p) = —1 or xk(p) = 0 respectively. This result can be elegantly rewritten
as an identity for the Euler factors of the Dedekind zeta—function (cf. §6.2.3
below):

[Ja-Np=*) =1 =p )1 = xx(p)p™*) (s€C). (4.2.4)
pl(p)

Ezample 4.14. b) Cyclotomic fields. K = K, = Q({y). We use the fact O =
Z|¢m). Consider the extension Z[(,,] D Z, and take for f,(X) the cyclotomic
polynomial @,,(X) (see 4.1.2). The proof that Ok coincides with Z[(,,] is
rather fine but elementary; it is based on a calculation of the discriminant of
R = Z|(,»] which turns out to be equal to

)

(=1)9m)/2e(m) Hp@(m)/(pfl)

plm

see [BS85].
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4.2.4 Decomposition of primes in cyslotomic fields

Theorem 4.15. a) Let p { m, then

pR=pi--p,, Np;=p/,

where p; C R are distinct prime ideals, and the number f is equal to the order
of pmod m in (Z/mZ)*, f-r=p(m).
b) If m = p{* - - p% then

piR=(p) - _p;,/)w(zif)v Np/ :pf'7

where p(p*) = 2 (p; — 1), f' is equal to the order of the element p; mod
mp; “in Z/(mp; “)Z, and f' 1" = p(mp; ).

Proof. Note first that for prime ideals p C Ok the number f = log, Np
coincides with the degree of the corresponding extension of residue fields:
f =1(Ok/p) : Fp], and thus f is the order of the Frobenius automorphism
x — P, generating the cyclic Galois group G((Ok/p)/F,). Applying the
theorem on the decomposition of maximal ideals we see that it suffices to find
the form of the decomposition of the cyclotomic polynomial &,,(X) mod p
in F,[X] into irreducible polynomials.

It follows also that the form of the decomposition depends in this case only
on p mod m. In particular, p splits completely in K <= p = 1 mod m. A
useful observation is that the decomposition of (p) in Ok, is fully determined
by the action of the Frobenius endomorphism Fr,, on the finite ring O /(p),
so that in the case pf m this endomorphism may be regarded as the element
of the Galois group G(K,,/Q):

(Frp : G — (¢E) <= pmod m € (Z/mZ)* = G(K,,/Q).

It is useful for further applications to reformulate theorem 4.15 using the
Dirichlet characters x : (Z/mZ)* — C*. The conductor of x is by definition
the least positive integer m(x) such that x can be defined modulo m(x), i.e.
to which x factors through the natural projection

(Z)mZ)* 25 (Z)m(x)Z)* XHCx.

The corresponding character xo mod m(x) is called the primitive Dirichlet
character associated with y. Theorem 4.15 is equivalent to the following iden-
tity (cf. §6.2.3 below):

[Ta-N)= I @-xopp) (s€C). (4.2.5)

pl(p) x mod m

Indeed, the theorem implies that the left hand side has the form (1 — p=7%)"
for p /m, and (1—p~F%)" for p|m, where f is equal to the order of p mod m
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in (Z/mZ)*, f-r=¢(m), f' is equal to the order of the element p; mod m/
(with m’ = mp; %) in Z/m/Z, and f"- 1" = p(m’). It remains to verify the
equation

-1y = ] a-xe7) (4.2.6)

x mod m

Let 415 be the group of roots of unity of degree f, then 1 —T = HW (1-<¢T).
Equations (4.2.5) and (4.2.6) follow from the fact that for any ¢ € ps there
are exactly r characters y(mod m) such that x(p) = ¢ (cf. [BS85], [La70],
[Se70]).

4.2.5 Prime Ideals, Valuations and Absolute Values

An alternative approach to the theory of divisibility has arisen from the notion

of the m-order ord,a of an element a # 0, a € R for a prime element 7

of a unique factorization domain R: here ord,a is defined to be the largest

exponent of 7 dividing a in R, so that there is a decomposition: a = €7Tk1 .
7k in which k; = ord,,a, ¢ € R* is a unit.

The function ord,; can be uniquely extended to the field of fractions K of

R as a homomorphism ord, : K* — Z with the following properties:

1) Ya,b € K* ord;(ab) = ordra + ord,b,

2) Va,b € K* ord;(a + b) > min(ord,a, ord,b),

3) a divides b in R <= Vr ord,a < ord,b,

4) 1R ={a € R | ordra > 0} is a prime ideal of R,

5) R={x € K* |Vn ord,x > 0} U{0}.

Generalizing, for an arbitrary field K the notion of a valuation v is introduced
as a function v : K* — Z satisfying the conditions

1) Ya,b € K* v(ab) = v(a) + v(b),

2) Ya,b € K* v(a+b) > min(v(a),v(b)).
More often one uses instead of v a multiplicative absolute value: for a fixed p,
0<p<1put |z, =p*, 0], =0.

Definition 4.16. An absolute value | -| of a field K is a real-valued function
x +— |x| with non—negative values, such that

1) Va,b € K* |a-b| = |a] - [b],
2)Va,b e K* |a+b| < |a| + 0],
3) |z =0<=2=0.

An absolute value is called non—Archimedean iff instead of 2) the following
stronger inequality is satisfied
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2')Va,b e K* |a+b| <max(|al,|d]).

Thus the function | - |,, is a non-Archimedean absolute value. An absolute
value of the type |- |, is called a discrete absolute value. An example of such
an absolute value is given by the p-adic absolute value |a/b|, = p°rdrb—ordpa
(a,b € Z) of the field Q. The usual absolute value |z| of x € Q C R is an
Archimedean absolute value of Q.

If | - | is a non-Archimedean absolute value of K, then the subset O =
{z € K| |z| <1} is aring with a unique maximal ideal p = {z € K | |z| < 1}.
Such rings are called valuation rings. For the discrete absolute value |-| = ||,

corresponding to a valuation v, the notation R,y = O, p(,) = p is used, and
P(v) is a principal ideal generated by any 7 € K such that v(7) = 1.

Now one can define a divisibility theory on an integral domain R with field
of fractions K with the help of a family of valuations X' = {v} such that the
following properties are satisfied:

1) a divides b in R <= Vv € X, v(a) < v(b);

2) for all a € K* one has v(a) = 0 for all but a finite number of v € X;
3) the set R,y = {z € K | v(z) > 0} U {0} uniquely determines v;

4) R = mueER(U)-

If such a family X' exists then the group of divisors D = Dy is defined to
be the free Abelian group with basis Y. Its elements are written additively
as finite formal sums Y_, k;v; or multiplicatively [], pki, where only finitely
many of the k; are non zero. The following homomorphism is defined

div: K* — D, div(z) = H 7@,
vel

This homomorphism is called a divisor map on R.

The class of rings with o divisibility theory is larger than the class of
Dedekind rings, and it admits a purely algebraic characterization as the class
of Krull rings. Notice that in order to construct valuations, not all of the
prime ideals of the ring are used. If we try to define for a prime ideal p C R
a valuation v by putting for a € R, v(a) = min{n >0 | a € p"}, then we
succeed only when the localization R, of R with respect to p is a Noetherian,
integrally closed ring with a unique maximal ideal, where

Ry, ={x=ua/b|abe R,b¢p}.

The idea of using valuations rather than prime ideals, which arose from
the study of algebraic numbers, has turned out to be very fruitful in algebraic
geometry. In turn, developments in algebraic geometry have lead to a number
of inventions in number theory (cf. Chapters 5 and 6).

To conclude this section we remark that all absolute values of QQ either have
the form |2|* (0 < a < 1, |z| being the usual absolute value of z € Q C R), or
have the form [z[ (a > 0, where |z], is the p-adic absolute value of z € Q).
This result is due to Ostrowski, cf. [BS85], [Chev40].
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4.3.1 p—adic Numbers

The idea of extending the field Q appears in algebraic number theory in var-
ious different guises. For example, the embedding Q C R often gives useful
necessary conditions for the existence of solutions to Diophantine equations
over Q or Z. The important feature of R is its completeness: every Cauchy
sequence {a,},-; in R has a limit o (a sequence is called Cauchy if for any
€ > 0 we have |a,, — a;m| < € whenever n and m are greater than some large
N = N(g)). Also, every element of R is the limit of some Cauchy sequence
{an},2 | with a,, € Q.

An analogous construction exists using the p-adic absolute value | - |, of

Q (see §2):
[lp:Q—=Rso={z€R |z >0}

|a/b| _ pord,,b—ordpa7 ‘Ol =0,
p p

where ordy,a is the highest power of p dividing the integer a. This general
construction of “adjoining the limits of Cauchy sequences” to a field k£ with an
absolute value | - | leads to a completion of k. This completion, often denoted
lAc, is complete, and contains k as a dense subfield with respect to the extended
absolute value | - |, [BS85], [Kob80|.

As was noted at the end of §2, all absolute values of Q are equivalent either
to the usual Archimedean absolute value, or to the p—adic absolute value.
Thus any completion of Q is either R, or Q,, the field of p-adic numbers, i.e.
the completion of the field of rational numbers Q with respect to the p-adic
absolute value. Using the embeddings Q — R and Q — Q, (for all primes
p) many arithmetical problems can be simplified. An important example is
given by the following Minkowski—Hasse theorem [BS85], [Cas78], [Chev40]:

the equation
Q(mlaw27~-~7xn) :07 (431)

given by a quadratic form Q(z1,za,...,z,) = Z” a5, ai; € Q has a
non—trivial solution in rational numbers, iff it is non—trivially solvable over
R and over all Q,. There are very effective tools for finding solutions in Q,.
These tools are somewhat analogous to those for R such as the “Newton -
Raphson algorithm”, which in the p-adic case becomes Hensel’s lemma.

The simplest way to define the p—adic numbers is to consider expressions
of the type

m+1_~_.

o= amp™ + mt1D . (4.3.2)

where a; € {0,1,....p—1} are digits to the base p, and m € Z. It is convenient
to write down « as a sequence of digits, infinite to the left:
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m—1 zeros

—— .
a=<{ """ ant10,000...00, ifm>0,
©1a100-G-1 " G (p), if m < 0.

These expressions form a field, in which algebraic operations are executed
in the same way as for natural numbers n = a9 + a1p + ...a,p", written
as sequences of digits to the base p. Consequently, this field contains all the
natural numbers and hence all rational numbers. For example,

“l="—=p-D+@-Dp+@-1)p"+- = (p—1)p—1)p;

—ag
p—1
For n € N the expression for —n = n - (—1) of type (4.3.2) is obtained if we
multiply the above expressions for n and for —1. Generally, for a € Q write
a=c— ¢, wherea,c € Z,be N,0 < a<b,ie. a/b is a proper fraction.
Then by an elementary theorem of Euler, p#(® — 1 = bu, u € N. Hence

=ag + app+ agp® + -+ = *+ 1 agaodo(p)-

a_ au
b T — 1

and au < bu = p" — 1, r = p(b). Now let au be written to the base p as
ar_1---ao(p), then the expression of type (4.3.2) for a is obtained as the sum
of the expression for ¢ € N and

r digits r digits
a
b =0 00Ar—1" " a0Ar_1 """ Ao(p)-
For example, if p = 5,
9 5 5 - 2232
7 7= T ’ ’
so that
2232 = 324125y =3 -5* +2-5° +4- 5 + 1.5+ 2,
thus 9
"
- - .. -324120324120324122(5).

It is easy to verify that the completion of Q with respect to the p—adic
metric | - |, can be identified with the described field of p-adic expansions
(4.3.2), where |a, = p™ for a as in (3.2) with a,,, # 0 (see Koblitz N. (1980)).

It is curious to compare the expansions (4.3.2) infinite to the left with the
ordinary expansions of real numbers a € R, infinite to the right:

Q= A1 Q0-A—1 - = Am10™ + app_110™" "1 4+ ag+a_1107 + -+ |
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where a; € {0,1,---,9} are digits, a,, # 0. These expansions to any natural
base lead to the same field R. Also, a given « can possess various expressions of
this type, e.g. 2.000--- = 1.999 - - - . However, in the p—adic case the expressions

(4.3.2) are uniquely determined by «. This fact provides additional comfort
when calculating with p—adic numbers.

The field Q,, is a complete metric space with the topology generated by
the “open discs™

Ua(r) ={z | [t —al <r} (2, a € Qp, r>0)

(or “closed discs” Dy(r) = {z | |x — a|] < r}). From the topological point of
view, the sets U, (r) and D, (r) are both open and closed in Q,,.

An important topological property of Q, is its local compactness: all discs
of finite radius are compact. The easiest way to show this is to consider any
sequence {a,}, -, of elements «,, € D,(r) and to construct a limit point.
Such a point may be found step—by—step using the p—adic digits (4.3.2). One
knows that the number of digits “after the point” is bounded on any finite
disc. In particular, the disc

Zp = Do(1) ={z | |$|p§1}={$=ao+a1p+a2p2+~-~}

is a compact topological ring, whose elements are called p-adic integers. Z, is
the closure of Z in Q,. The ring Z,, is local, i.e. it has only one maximal ideal
pZ, = Up(1) with residue field Z,/pZ, = Fp,. The set of invertible elements
(units) of Z, is

Ly =Ly\pLy = {z | 2], =1} = {z = ao + ap + azp® + -+ | ap # 0}.

For each x € Z, its Teichmiiller representative

w(z) = lim zP"

n—oo

is defined. This limit always exists and satisfies the relations: w(z)? = w(z),
w(x) =2 mod p. For example, if p = 5, we have

(1) =1
w2)=24+1-54+2-52+1-53+3.5%...;
wB)=3+3-54+2-5243-5%41.5% +
W) =4+4-54+4-524+4.53 4+ 4.5 4 ... = —1;

(5) =0.

The ring Z,, can also be described as the projective limit

lim Z/p" Z

n

of rings A,, = Z/p"7Z with respect to the homomorphisms ¢,, : A,, — A,,—1 of
reduction modulo p"~!. The sequence
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A A, T B4, 224 (4.3.3)

forms a projective system indexed by positive integers n > 1. The projective
limit of the system is defined as a ring

lim A,

n

with the following universal property: there are uniquely defined projections

Tt im A, — A,
such that for an arbitrary ring B and a system of homomorphisms ¢,, : B —
A,, compatible with each other under the condition: ¥,,_1 = @, 0, for n > 2,
there exists a unique homomorphism ¢ : B — A such that ¢, = 7, (cf.
[Kob80], [Se70]). Note that the uniqueness of A is implied from its existence
by abstract nonsense. Hence for the ring 7, it suffices to define the projections
Ty : Ly — Z[/p"Z, and to check the universal property using digits as in
(4.3.2).
Analogously,
X _ 13 X
Z, =lim(Z/p"Z)*,
and one can describe the structure of the multiplicative group Q..
Put v =1 for p > 2 and v = 3 for p = 2, and define

U=U,={z€Zyr=1 mod p”}.

Then there is an isomorphism U = Z,, from the multiplicative group U, to the
additive group Z,, which is given by combining the natural homomorphism

U S limU/U?"

with the special isomorphisms
apn  UJUP" 5 2)p" 7,
given by
apn ((1+p")%) =a mod p" (a € Z). (4.3.4)

One easily verifies that (4.3.4) is well defined and gives the desired isomor-
phism. Therefore, the group U is a topological cyclic group, and 1+ p” can be
taken as its generator. Another proof of this fact is obtained using the power

series
o0

log(1 = _pyr
oB(1+0) = (-1
which defines an isomorphism from U onto pZ,
One has the following decompositions

Q) =p" xZ), LS =(L/p"Z)* x U. (4.3.5)
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4.3.2 Applications of p—adic Numbers to Solving Congruences

The first appearances of p—adic numbers, in papers by Hensel, were related to
the problem of finding solutions to congruences modulo p™. An application of
this method by his student H.Hasse to the theory of quadratic forms has lead
to an elegant reformulation of this theory, without the use of considerations
over the residue rings Z/p"7Z. These considerations are tiring because of the
zero—divisors in Z/p™Z. From the above presentation of Z, as the projective
limit

im Z/p"Z
it follows that for f(z1,...,2,) € Zp[z1,..., 2], the congruences

f(z1,...,2,) = 0(mod p")

are solvable for all n > 1 iff the equation

f(a:l,...,xn) = 0

is solvable in p-adic integers. Solutions in Z, can be obtained using the fol-
lowing p—adic version of the “Newton - Raphson algorithm”.

Theorem 4.17 (Hensel’s Lemma). Let f(xz) € Z,[x] be a polynomial in
one variable x, f'(x) € Z,[x] its formal derivative, and suppose that for some
og € Zyp the initial condition

\f(ao)/fl(ao)2\p <1 (4.3.6)

1s satisfied.
Then there exists a unique o € Zy, such that

fla)=0, |ao—ag| <1
We prove this by induction using the sequence of “successive approxima-

tions™

flan—1)
fl(anfl) .
Taking into account the formal Taylor expansion of f(z) at x = «;,,_1 one
shows that this sequence is Cauchy, and its limit « has all the desired prop-
erties (cf. [CF67]|, [BS85], [Se70]).

For example, if f(x) = 2P~! — 1, then any ag € {1,2,...,p — 1} satisfies
the condition | f ()|, < 1 At the same time f'(ag) = (p—1)ah > # 0 mod p,
hence the initial condition (3.6) is satisfied. The root « coincides then with
the uniquely defined Teichmiiller representative of ag: o = w(ay).

The method described is applicable to polynomials in many variables,

although for more than one variable the p-adic solution is not unique (cf.
[BS85], [Kobg0], [SeT0]).

Ap = Qp—1 —
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Another interesting application of Hensel’s Lemma is related to describing
the squares of the field Q,: for an arbitrary

a=p"-v e Q (mMeZ, vel)),

the property that « is a square is equivalent to saying that

a) for p > 2, m € 2Z, and v = vmod p € (Z/pZ)*? (i.e. (%) = 1, where

(%) is the Legendre symbol (see §1.1.5));
b) for p =2, m € 2Z and v = 1 mod 8.

The solvability of 2> = « in Q, under conditions a) and b) is implied by
Hensel’s Lemma, and the necessity of these conditions is deduced more triv-
ially from considerations modulo p and modulo 8.

As a corollary we give the following description of the quotient group

Q;/Q;”

a) for p > 2 it is isomorphic to Z/27Z x Z/27Z with the system of coset
representatives {1, p, v, pv}, (%) =—1;

b) for p = 2 it is isomorphic to Z/27 x 7./27 x 7./ 27 with the system of coset
representatives {£1, +5,+2, +10}.

4.3.3 The Hilbert Symbol

In this subsection we allow p = oo, in which case we write Q. for the field of
real numbers R. The Hilbert symbol (or norm residue symbol)

o0=(3)=(5) e

is defined for a,b € Q, by

(a,b) {1, if the form az? + by? — 2 has a non-trivial zero in Q,;
a,b) =

—1, otherwise.

It is clear that (a,b) depends only on a and b modulo squares. There is a
asymmetric form of the definition, namely (a,b) = 1 iff

a = z* —by? for some y, z € Q,. (4.3.7)

Indeed, from (4.3.7) it follows that (1,y,z) is a non-trivial zero of the
quadratic form ax? + by? — z2. Conversely, if (z0, Yo, 20) is a non—trivial zero,
then one can obtain all other zeros using a geometric trick in which one draws
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secants from the point (g, yo, 20) in all directions given by vectors with co-
ordinates in Q, (see §1.2.3). Using this method we may reduce to the case
xo # 0. Then (yo/xo, 20/xo) satisfies (4.3.7).

Local properties of the Hilbert symbol:

a) (a,b) = (b,a); (4.3.8)
b) (araz,b) = (a1,b)(az,b), (a,bib2) = (a,b1)(a,bz); (4.3.9)
c) if (a,b) = 1 for all b, then a € Q) (4.3.10)
d) (a,—a) =1 for all a; (4.3.11)
e) if p# 2,00 and |al, = |b], =1, then (a,b) =1.  (4.3.12)

In particular for a fixed b, the a for which (a,b) = 1 form a multiplicative

group. Equation (4.3.7) expresses the fact that a is a norm from the quadratic
extension Q,(v/b)/Q, (cf. [BS85], [Cas78], [Chev40], [Se70]).

A calculation of the Hilbert symbol makes it possible to solve completely
the “global” question on the existence of non—trivial rational zeros of quadratic
forms (in view of the Minkowski—-Hasse theorem). If, say

Q(z,y,2) = ax® + by* + ¢z (a,b,c € Q, ¢ #0), (4.3.13)

then (4.3.13) has a non-trivial zero over Q iff (—a/c,—b/c), = 1 for all p
including p = oo. This criterion is very effective because for almost all p we
have |a|, = |b|, = 1, whence (a,b), = 1 for p # 2,00 in view of (3.8¢). We
give a table of the values of (a,),:

Table 4.1. The Hilbert symbol for p > 2. Here v denotes an element v € Z such
that <%) =—1,and e = 1 iff =1 € Q)? (i.e. iff p=1mod 4). Otherwise e = —1

al 1 v p| pv

+1]|+1|+1 +1
+1]|+1] -1 -1
+1|—-1| ¢ —€
pv |+1|—-1]|—¢ €

"B~

A global property of the Hilbert symbol (the product formula). Let a,b €
Q*. Then (a,b), =1 for almost all p and

I @b,=1 (4.3.14)
p including oo

Formula (4.3.14) is equivalent to the quadratic reciprocity law (see part I,
§1.1.5). Indeed, by (4.3.12) one has |a|, = |b], = 1 for all but a finite number
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of p, hence (a,b), = 1 for p # 2,00 in view of (4.3.12). Denote the left hand
side of (4.3.14) by f(a,b), then by (4.3.9) one has

f(a/la27b> = f(a’17b)f(a’27b)a
f(a,b1b2) = f(a,b1)f(a,bz2),

and one verifies that f(a,b) = 1 when a and b run through the set of generators
of the group Q*: —1, 2, —q an odd prime.

Table 4.2. The Hilbert symbol for p = 2.

al 1| 5 -1 -5 2 10| -2 —10
b
1 +1|4+1| +1 +1 | +1| +1 | +1 +1
5 +1]+1| +1 +1 | -1 -1 | -1 -1
-1 +1]+1| -1 -1 |+1|+1 | —1 -1
-5 +1 (41| -1 -1 |(-1| -1 | +1 +1
2 +1 (-1 +1 -1 (+1| -1 | +1 -1
10 +1|(-1| +1 -1 |-1|+1| —1 +1
-2 +1(-1| -1 | 41 |+1| -1 | -1 +1
-10 | +1|-1| -1 +1 | —-1| +1 | +1 -1

In what follows we shall need an analogous product formula for the nor-
malized absolute values | - |,.

The product formula for absolute values. Let a € Q*. Then |a|, = 1 for all
but a finite number of p, and

I  lel=1 (4.3.15)

p including oo

Indeed, if a € Q*, then
a =+ H p"’p(a)’

pF 00

where vp(a) € Z and vp(a) for all but a finite number of p. The product
formula now follows from the identities:

jal, = p~7@ (for p # o0),

e = TT .

pF#co

In §4.3.6 we discuss the global properties of absolute values in more detail.
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4.3.4 Algebraic Extensions of Q,, and the Tate Field

If K is a finite algebraic extension of @, then K is generated over QQ, by some
primitive element o € K. The element « is a root of an irreducible polynomial
of degree d = [K : Qp],

fx) = ¢ +tag_ 12 . +ap € Qplz].

The absolute value | - |, has a unique extension to K defined by

181y = (N, (B)]p) "4, (4.3.16)

where Ny /g, () € Qp is the algebraic norm of the element § € K. Formula
(4.3.16) defines a unique extension of | - |, to the algebraic closure Q, of
Qp- The uniqueness of this extension can easily be deduced from the local
compactness of K as a finite-dimensional QQ,~vector space: all of its norms
over Q, are equivalent (the same thing happens for R™). It then follows from
the multiplicativity of absolute values that any two must coincide.

The function ord, can then also be extended to @, by setting ord,a =
log,, |a|,. Formula (4.3.16) implies that ord, K> is an additive subgroup of
éZ. Hence ord, K* = éZ for some positive integer e dividing d. We shall call
e the ramification index of the extension K/Q,,.

Put

Ok ={z € K||z|, <1}, px = {x € K] |z|, < 1}. (4.3.17)

Then pg is the maximal ideal in Ok and the residue field Ok /px is a finite
extension of degree f of ,. One has the relation d = e - f, in which f is
called the inertial degree of the extension. For each x € Ok its Teichmiiller
representative is defined by

fn

w(z)= lim 2 | w(z) =2 (mod pg), (4.3.18)

and satisfies the equation
w(a:)pf = w(x).

The map w provides a homomorphism from the group of invertible elements
Ok = Ok \px = {z € K||z], =1}

of Ok onto the group of roots of unity of degree p/ — 1 in K, denoted by
Hps—1. One also has an isomorphism

(Ok/pr)* = ppro1 C O (4.3.19)

The structure of the multiplicative group K> can be described analogously
to (4.3.5): if [K : Q,] = d, then
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K* =75 x 05, 0F = (0k/pk)* x Uk, (4.3.20)

where 7 is a generator of the principal ideal px = 7Ok (i.e. any element
m € K* with ord,7m = 1/e),

Uk ={z € Og|lz— 1|, <1} = D1(17; K).

The structure of the group Uk is then described as a direct product of d copies
of the additive group Z, and a finite group consisting of all p-power roots of
unity contained in K.

Example 4.18. If e = 1 then the extension K is called unramified. In this case
f = d and the Teichmiiller representatives generate K over Q. Therefore

K=Q,1YYN), N=p?-1.

On the other hand, if e = d then the extension K is called totally ramified. For
example, if ¢ is a primitive root of unity of degree p™, then Q,(¢) is totally
ramified of degree d = p™ — p”~ !, and we have that

1
The Tate Field. For purposes of analysis it is convenient to embed Q, into

a bigger field, which is complete both in the topological and in the algebraic
sense. This field is constructed as the completion C, @p of an algebraic

closure Q of @p with respect to the unique absolute value satisfying the
condition |p\p . The proof that C, is algebraically closed is not difficult.
We shall use the notation

Op ={z € Cpllz], <1}, p={z € Cpyl|z|, <1}.

Note that the O, and p are no longer compact, so the field C, is not locally
compact. We also have that O,/p =T, is an algebraic closure of F,,.

4.3.5 Normalized Absolute Values

If F is a locally compact field, then its topology can by given by an absolute
value. This fact is deduced from the existence of a Haar measure p on a
locally compact group G, i.e. a measure invariant under group shifts x — gz
(x,9 € G):

/f ) dyu(z /f ) da(ger) = /fgwdu)

for all integrable functions f : G — R. This measure is defined uniquely up to
a multiplicative constant. However, we do not need a general construction of
dp (cf. [Weid0]), and we point out only some concrete examples.
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If G = R (the additive group) then du(z) = dz (Lebesgue measure), and
d(z +a) = dz, a € R. If G = R* (the multiplicative group), then dy = 4.

If G=C, z=a+1y € C, then du = dz dy.

If K/Q, is an extension of degree d, and ¢ = p’ is the number of elements
of the residue field Ok /pk, then the measure dp on the additive group K
is uniquely determined by the number fOK dp = w(Ok) = ¢ > 0; one has
w(a + pr) = cg~ ', because the measures of all of the sets a + px are equal
and Ok = U  (a+pxk). More generally, for all n € Z and a € K one has

amod px
wla+pk) =cqg™". (4.3.22)

Any measure dp on the additive group of a locally compact field F' defines
an absolute value || - || : F — Rxq: for a € F* the number ||a| is defined as
the multiple, by which the two Haar measures du(x) and du(azx) on F differ:

u(all) = lallu(0), (4.3.23)

where U is an open subset of positive measure, u(U) = fU dp(x). The multi-
plicativity property

lell = lledl - 18Il (e, 8 € F) (4.3.24)

follows immediately from definition (4.3.23). If the topology of F is non—
discrete, i.e. not all subsets are open, then one verifies, that discs of finite
radius Dy (r) = {z € F | ||z — a|| < r} are compact, and the function || - | is
continuous. Hence this function is bounded on such discs. In particular,

[1+al <C for |af| <1 (4.3.25)
for a positive constant C' > 1. From (4.3.25) it follows that
Va, e F |+ gl < Cmax(|[e, 15]) (4.3.26)

which is weaker than that in the definition of an absolute value from §4.2.
These functions are called generalized absolute values. If for example F' = C,
and U = {z = x+iy € C| |2| = 1}, then p(wU) = |w|*u(U), where |w|? = ww,
and (4.3.26) is satisfied with C' = 4. However, if for all n € N one has ||n|| < 1,
then C' =1, so that || - || is a non—Archimedean absolute value.

In particular, for an extension K/Q, with [K : Q,] = d put

U=0k, a=71"v (meZ,veOf),

where 7 is a uniformizing element, px = (7). We have ||a| = ¢=™ = p=/™.

Since p = 7¢u for some u € O}, we obtain
Ipll = 1(pOK)/u(OK) = |OK /PO |t = p~°.

This proves the formula d = e - f.
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4.3.6 Places of Number Fields and the Product Formula

We shall call two (generalized) absolute values || - ||; and || - ||2 of a field F
equivalent if ||z||; = ||z||§ for all x € F and for a constant ¢ > 0. A class of
equivalent absolute values is called a place of F', and it will be denoted by v.
The symbol F, denotes the corresponding completion (with respect to one of
the equivalent absolute values in v).

The theorem of Ostrowski (see §4.2) says that every place of Q is either
v = p (p a prime), or v = oo. If the place v is non—Archimedean, then we
let the same symbol v denote the valuation of F' normalized by the condition
v(F*) =Z.

We list places of finite extensions F' of Q. To do this we construct all
possible extensions to F' of absolute values on Q, since the restriction to Q of
any absolute value on F' is an absolute value of Q. More generally, let F/k
be a finite separable extension of k with an absolute value | - |, (for example,
k=Qand v=porv=00); f(x) € klz] the irreducible polynomial of degree
n = [F : k] of a primitive element « for F' over k, and let

m

f@)=]]ai@) (g;(2) € Llz]) (4.3.27)

Jj=1

be the decomposition of f(x) into polynomials irreducible over L, where L =
k., is the completion of k with respect to v.

In view of the theorem on tensor products of fields (see §4.1.3), there is a
ring isomorphism

FeL=]]L; (4.3.28)
j=1

where L; = L[z]/(gj(x)) is the finite extension of L containing F' via \; :
F—F@,L— L.

In §4.3.4 we saw that there exists a unique absolute value on L; extending
| - | from L = k,, where it is canonically defined as on the completion. Let
us denote this extended absolute value on L; by the same symbol | - |, and
define an absolute value |- |, ; on F' using the embedding A; by putting

1Blo.5 = 125 (8) - (4.3.29)

It is not difficult to verify that all the |-|, ; are different, and that they are the
only extensions of ||, from k to F, such that (4.3.28) becomes an isomorphism
of topological rings. Thus there are no more than n = [F' : k| extensions of
an absolute value | - |, of k to F. These extensions are described explicitly
by (4.3.29), assuming one knows the decomposition (4.3.27). Formula (4.3.16)

shows that
A (D)o = %/ INL; 7L (A5(8))lo,



146 4 Arithmetic of algebraic numbers

where n; = [L; : L] = deg g;(x) is the local degree.
To obtain the normalized absolute value || - ||, ; we put for § € F'*

Hﬁ”vd = |NL_7‘/L()‘j(ﬁ))|v'
Then for all § € F* one has:

JJRE
j=1

This follows from Np(8) = [1j2; N, /(A;(B)) in view of §4.1.3. Product

vj = INp/i(B)lo- (4.3.30)

Formula for Normalized Absolute Values. Let k/Q be a finite extension, o €
k>, and let |-|, run through the normalized absolute values of k. Then |a|, = 1
for all but a finite number of v, and the following product formula holds

ITlals =1. (4.3.31)

This is easily deduced from formula (4.3.30), in which we put k/Q instead
of F//k and notice that Ny g(a) € Q. It then suffices to apply the already
proven product formula for Q, see (4.3.15).

Global Fields. We use the term “global field” to refer to either a finite ex-
tension of Q (an algebraic number fields) or a finite, separable extension of
F,(t), where F; is the field with ¢ elements and ¢ is a (transcendental) vari-
able (a function field with positive characteristic) [AW45], [AT51] , [Wei74a],
[CF67], [BoCaT9].

In every global field there is a product formula and a similar classification
of the normalized absolute values. Many problems concerning integers have
natural analogies in function fields. These analogies can sometimes be more
successfully treated using methods of algebraic geometry, and they provide
a rich source of intuition for the number field case (see §4.5, §5.2, §6.5, and
Introductory survey to Part III).

4.3.7 Adeles and Ideles
The Ring of Adeles.

In arithmetical questions the ring Z is often considered as a lattice in R,
i.e. a discrete subgroup of the additive group of the locally compact field R
with compact quotient group R/Z, the quotient being isomorphic to a circle. It
turns out, that for a global field k£ one can canonically construct the “smallest”
locally compact ring Ay, containing k as a lattice. This means that k is a
discrete subring in Ay with compact additive quotient group Ay /k. The ring
Ay, which is called the ring of adeles is constructed using all the embeddings
k — k,, where v runs through the set X' = X, of all places of k. One defines
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Ay, to be the subring of the product [[, ., k. consisting of all infinite vectors
a = (ay)ves, @y € ky such that a, € O, for all but a finite number of v. In
view of §4.3.6 the number of Archimedean places does not exceed n = [k : Q.
Hence all but a finite number of places are non—Archimedean, and the compact
subring O,, C k, is defined to be the valuation ring of v):

Ay = (4.3.32)

{a:(av) € H ky

veX

o, € O, for all but a finite number of v}.

One gives Ay the topology generated by the open subsets of the type

Ws = [[Wo x [] O (4.3.33)
vES vgS

where S runs through all finite subsets S C X, and W, are open subsets in k.
The set W is compact (has compact closure) if all the W, are bounded. Hence
Ay is a locally compact topological ring in which & is embedded diagonally

ksaH("'vaaaa"')UGEGAkC Hkv
veX

(note that in view of §4.3.6 ||, = 1 for all but a finite number of v € X). Tt is
interesting to note that the product [], ., &y is too big to be locally compact:
by definition of the product topology, the projection of any open subset U C
Hve 5.k, onto k, coincides with k, for almost all v, thus U would never be
compact having non—compact image under a continuous map (projection).
The above construction of Ay, is called the restricted topological product of the
topological spaces k, with respect to the compact subspaces O, defined for
all but a finite number of indices v. The convergence of a sequence {a}$2 ,,
an = (0yn)v € A to 8 = (By) € Ap, means that for any € > 0 and any finite
set S C X there exist N € N such that

1)Vn>NYo &S ay, — By €Oy,
2)Vn> N Yo €S |an,, — Bulo <e.

Every principal adele «;, i.e.
a=(,aa, ), €EkCA (4.3.34)

can be separated from the rest of k by a neighborhood of type (4.3.33) with
S={veX|adgO,}. Hence k is discrete in Aj. The compactness of the
quotient group Ay /k has an explanation via the Pontryagin duality theory of
locally compact commutative topological groups: Ay /k is isomorphic to the
group k of all characters of k. Recall that for a locally compact group G its
group of continuous characters
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G = Homeontin (G, SY) (4.3.35)

(where S' = {z € C* | |2|] = 1}) is again a locally compact group in the
natural topology of the character group; one always has G = G, and for

any exact sequence
1-G;—-G—-Gy—1

with continuous homomorphisms, the dual sequence for characters is exact:
1—>ég—>é—>él—>1.

By the association G +— Gﬂ finite groups remain finite; discrete groups become
compact groups (and conversely), and for a connected group G its dual G is
torsion free. If H C G is a closed subgroup, then its annihilator

H = {X e G| x(H) = 1} (4.3.36)

is isomorphic to (G/HY).

In the simplest example Z C R one has Z" = S, S = Z and the
group R is self-dual: R® 2 R (the number ¢ € R corresponds to the character
(2 e2™%) 5o that Z1 = 7Z.

One can verify that the additive group Ay is self dual, and a € Ay, corre-
sponds to the character (8 — x(af)) € Ay, where X is a non—trivial additive
character of Ay, satisfying x(k) = 1, so that k = k+ = (A /k)".

Counsider in detail the case k = Q, and the ring A = Ag. For a = (ay), € A
the fractional parts {«,} are defined (for v = p one uses the p-adic expansion
(4.3.2) to define {a,} = a_1p~t + -+ + amp™ for m < 0). Then for all but a
finite number of v we have that {a,} =0, and {a} =}, {a.} is a rational
number. The character y can be defined by the formula

B exp(—2mi{B}) - || exp(@mi{B,}). (4.3.37)
vF# 00

and for each 8 € Q* one has x(6) = 1.
For each component v the character x, : QX — S is defined by

Xo(B) = exp(2mi{3})

(6 € Qy), which provides the self-duality of the locally compact field Q,
(v =p,00) in a similar way: an element ¢ € Q, corresponds to the character
2 — Xy (tz). This also gives us a description of the quotient group

A/Q=R/Z x [[ 2,, (4.3.38)

which is easily seen by subtracting from an adele « its fractional part
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{a} =) {aw}e@ (4.3.39)

VF#00

The quotient group A/Q is compact by the theorem of A.N.Tychonov on
products of compact spaces. For a number field k it is useful to consider the
isomorphism of topological rings

Ar 2 k® Ag, (4.3.40)

which implies an isomorphism of additive groups A,(:) =~ (A((@H)”, where
n = [k : Q], and also statements on the discreteness of k in Ay and on the
compactness of the quotient group Ay /k. One verifies easily that an analogous
isomorphism takes place for an arbitrary extension of global fields F/k:

Apr 2 F Qp Ag. (4341)

The Idele Group

(cf. [Chev40], [WeiT4al). The set of all invertible elements of a ring R forms a
multiplicative group R*. If R is topological, the topology on R* is defined by
means of the embedding z +— (z,271) (R — R x R) so that the inversion map
x +— x~ ! is continuous. The idele group J; of a global field k is the topological
group A} of invertible elements of the ring Aj. The group J, coincides with
the restricted topological product of the locally compact groups k,° with respect
to the compact subgroups O,¢ defined for non-Archimedean places v € X.

4.3.8 The Geometry of Adeles and Ideles

The embedding of k into its ring of adeles Ay is reminiscent of the geometric
interpretation of the ring of integers O = O, of k as a lattice in the R-algebra

koo =k @R [ ko ZR™ xC2, X:0 < k. (4.3.42)
v|oo

This analogy goes much further. Consider a Haar measure p on the locally
compact additive group Ay; this measure can be defined on the open subsets
Wy of type (4.3.33) by

p(Ws) = T (W), (4.3.43)
veS

where 11, (0,) = 1 for v J oo (i.e. for non—Archimedean v); for Archimedean
places one normalizes the measure as follows:

_Jdx  (Lebesgue measure) if k, = R,
Ho = 2dx dy = |dz A dZ]| ifz=a+iyeck,=C.



150 4 Arithmetic of algebraic numbers

If 8 = (8y) € Ji is an idele, then its module is defined to be the mul-
tiplicative constant |3|, by which the Haar measures p(z) and p(8x) on Ay
differ:

w(Bx) = |6 - p(x). (4.3.44)

It follows from the description (4.3.43) of u that |3| =[], |Bv|v, where |- |,
is the normalized absolute value from the class of a place v € X, which for
Archimedean places is given by the following:
2] |z| (the usual absolute value) if k, 2R,
o= |22 = 2z ifz=a+iyek,=C.

On the compact quotient group Ay/k we define a measure p by means
of a general notion of fundamental domain: if I" is a discrete subgroup of a
locally compact group G, then a fundamental domain X for G modulo I is
a complete set of coset representatives for (left) cosets G/I", which has some
additional measurability properties. By restricting the Haar measure o of G
onto the subset X, one obtains a uniquely defined measure on G/I", which is
denoted by the same letter, and o(G/I") = a(X).

In order to construct a fundamental domain X for Ay /k we choose a Z—
basis wy, -+ ,w, of the free Abelian group O C k of algebraic integers in k.

This is also a basis of the vector space ks = k ® R over R, and it defines an
isomorphism 6 : R™ = k., by the formula

O((ury ... un)) = Zuzwl

Denote by I the interval 0 < ¢ < 1 in R. Then 6(I™) is a fundamental paral-
lelogram for the lattice O in ko (see 1.3). Now take X to be the set

X =0(I") x [] 0, (4.3.45)

v foo

(a fundamental domain for k in Ay ). To prove that X is a fundamental do-
main, we note that ks, + k is dense in Aj. This statement is known as the
approrimation theorem and it is a version of the Chinese remainder theorem
(cf. §1.1.5). Moreover, ko x [[, O, is an open subgroup in Ay, hence for any
x € Ay there exists n € k such that

x—nekooxH(’)v.

The condition that another element 7" € k has the same property is equivalent
to saying that n —n’ € O, for all non—Archimedean places v, i.e. that n—n' €
Oj;. Thus by an appropriate choice of 7 we may assume that the y,,—coordinate
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of y = x—n belongs to O(I™); therefore yoo = 0(u), u € I™, where u is uniquely
determined. This establishes the statement.

The first application of the measure constructed on Ay /k is a simple proof
of the product formula (4.3.31): if 8 € k* C Ji is a principal idele, then
Ok* = k> in Ji, and multiplication by § defines a homeomorphism of Ay /k
with itself, hence the Haar measures p(z) and p(Bx) on Ag/k must coincide,
i.e. by (4.3.44) we see that

=TT 161 = m _

Let us calculate the measure p(Ay/k). The form of the fundamental do-
main X constructed reduces this calculation to the problem of determining
the volume of the fundamental parallelogram 6(I™) in ky. This volume was
already found in §4.1.3, (4.1.7). We obtain

(Ar/k) = |Di["/?, (4.3.46)

where Dy, = det(Tr(w;w;)) is the discriminant of k. Here we have taken into
account that the measure Hv‘oo by on koo differs by a multiple of 2 from the
Lebesgue measure on those components v such that k, = C, when

d py(2) = 2dxdy = |dz AN dz| for z=x+ iy € k, = C.

Consider the constant

o= (i) N (4.3.47)

This number is important for finding non—zero points 3 in the lattice &k C Ag
belonging to a parallelotope, i.e. to a set of the form

V(C) = {‘T = (zv)v € Ay ‘ Vv € Xy, |5Z71;|U < CU}, (4348)

such that ¢ = (¢,) is an infinite tuple of positive constants defined for the
places v of k, all but a finite number of which are 1.

Lemma 4.19 (Blichfeldt). Assume that for the numbers ¢, we have that
2\
[[eo>cC= <7r> V| Dxl.

Then there exist € k* NV (c) C Ay.

Proof. Consider the auxiliary parallelotope V(c'), ¢/ = (c)),, v € X, where

¢l = ¢y, if vis non-Archimedean
¢y =c,/2, iftk, 2R
¢, =cy/4, ifz=x+iyek,=C.



152 4 Arithmetic of algebraic numbers

Then one can calculate the measure of V(¢'):
T\ "2
uv(e) = (3) Tle.> VDl
v

In other words, the measure of V(c') is bigger than that of the fundamental
domain for Ay /k, hence there exist two distinct points y and ' € V(¢’) whose
images modulo k coincide, i.e. y—1' € k*. We obtain for the number 8 = y—1/
the following estimates:

max(|yu v, |Ylo) < ¢y if v is non-Archimedean,
1Blo < { 2max(|ys o, [y, o) < e if ky 2R,
dmax([yolv, [Yo]v) ifz=a+iy €k, =C,

proving the lemma.

We now turn our attention to the structure of the idele group. Consider the
homomorphism |- |, : Jp — R, which takes y = (yy)v € Ji to |y| = [, [¥olo-
Denote by J,i its kernel, then J,% is a closed subgroup, and in view of the
product formula (3.27) we have that k* C J!. The following theorem is one
of the most important facts in algebraic number theory.

Theorem 4.20. The quotient group J]i/lc>< 18 compact.

The proof relies on Blichfeldt’s lemma, and is very similar to the proof of
Dirichlet’s unit theorem, and the deduction of the latter from Minkowski’s
lemma. One can show that this theorem is equivalent to the conjunction of
Dirichlet’s unit theorem and the finiteness of the ideal class group (see §4.1.6
and §4.2.2). These two statements can be easily deduced from the above the-
orem as follows:

The Divisor Map. Let I, be the group of fractional ideals (divisors), i.e.
the free Abelian group generated by the set of non—Archimedean places of k.
Define

div: J, — I, div((zy)) = Z v(xy) - v, (4.3.49)

v foo

where v denotes as agreed above the valuation of k normalized by the condition
v(k*) = Z. Note that div(Jy) = Ix, and that changing only the Archimedean
component To, = (y)y|0c Of an idele 2 does not change div(z). Note also
that div(k*) = Py is the subgroup of principal ideals in the discrete group
I;.. Hence we have a continuous epimorphism div : J}/k* — I;/P, = Cly
of a compact group onto a discrete group. The image is both compact and
discrete, and is therefore finite.

The Logarithmic Map and S—Units. Let S C X be a finite set of places
containing the set X, of all Archimedean places. The set of elements n € k*
satisfying |n|, = 1 for all v € S forms a multiplicative group, which is denoted
by Eg and is called the group of S—units.
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Theorem 4.21 (Theorem on S—Units). The group Eg is the direct sum of
a finite cyclic group and a free Abelian group of rank s — 1, where s = Card S
is the number of places in S

(cf. [La70]). The proof of this theorem is similar to that of Dirichlet’s unit
theorem (see §4.1.4). One considers the logarithmic map

. Rp.--.-&oR
l.Jk—> 2] 2]

(4.3.50)
s times

(where R is the additive group of real numbers), defined by

I(z0)o) = (-, log [Ty lv, -+ )ves-

This map is continuous, and its image contains a basis of the vector space R®
(if S = Y then [ is an epimorphism).

With the help of (4.3.49) and (4.3.50) it is not difficult to describe fun-
damental domains for k* in Jj, and J} (cf. [Wei74a|, pp.137-139]). One can
calculate the volume ¥(J} /k*) with respect to the Haar measure 5 on J} /k*.
We normalize the measure 4 by using the decomposition:

d
T kX 2 TR xR, v = (a X |;|) , (4.3.51)

in which
v=1I»
v
is the Haar measure on .Ji, normalized as follows:

Y (OF) =1 if v is non-Archimedean,
dv, (z) = |z|~tdx if k, 2 R,
dy,(2) = |22|7Ydz AN dz| = 2dedy  if 2 =2 +iy € k, = C.

Then the following formula holds:

2r1

~( 7l X\ __ _

V(Jk/k‘. ) - (27T)T2 th,U), = Kk, (4352)
where h = |Cl| is the class number of k; Ry is the regulator, and w = wy, is
the number of roots of unity in k, see 4.1.3. This formula means that for any
positive number m > 1 in R the subset C(m) of Ji/k* defined by C(m) =
{z € Ji/k* | 1 <|z| < m} has measure

Y(C(m)) = ki logm. (4.3.53)

The quantities R = Ry, h = hy and D = Dy turn out to be the most
important constants characterizing a number field k£. These quantities occur
together in formulae (4.3.52) and (4.3.53) for the volumes of fundamental
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domains, and are not independent. According to a deep result of Brauer and
Siegel (cf. [La70], [La83]), one knows that for a sequence of number fields
kpm of degrees m,, = [kn, : Q] satistying the condition n,/log|Ds, | — 0 as
m — 00, the following asymptotic relation holds

log(h,, - Ri,,) ~ log(|Dy, )72 (4.3.54)

The idele class group
Cr = Ji/E*

plays a key role in classifying the Abelian extensions of k (class field theory),
cf. §4.4.
If k£ = Q then there are isomorphisms

Jo/Q =R x [z}, (4.3.55)
p

J5/Q* = ]z, (4.3.56)
p

which are easily established by dividing an idele o € Jg by its (multiplicative)
divisor div(a) =[], p¥»(@)which in this situation turns out to be a positive
rational number. As a result one obtains the element « - sign(ay) - div(a) ™1,
which belongs to the right hand side of (4.3.55).



4.4 Class Field Theory

4.4.1 Abelian Extensions of the Field of Rational Numbers

(cf. [AT51], [Chev40], [Wei74a]). One of the central objects of algebraic number
theory is the full Galois group G = G(Q/Q) of Q over Q, together with its
subgroups H C G of finite index, which correspond to finite extensions k of
Q: B

H=G,=G(Q/k) Cq.

From the topological point of view G is a compact, totally disconnected group,
with the topology of a profinite group (the projective limit of its finite quotient
groups):
G =1limG/Gy =1lim G(k/Q),
k k

where G are normal subgroups which are both closed and open, as they
correspond to finite Galois extensions k/Q.

Class field theory provides a purely arithmetical description of the maximal
Abelian (Hausdorff) quotient group G2* = Gy /G%, where G is the closure
of the commutator subgroup of Gi. Moreover, one has this description both
for algebraic number fields and for function fields (global fields of positive
characteristic). One form of this description of sz is given by a calculation
of all characters (one-dimensional complex representations) of the full Galois
group Gy.

The topological structure of infinite Galois groups is similar to that of lo-
cally compact analytic Lie groups over p-adic fields such as SL,,(Q,), Sp,,(Q,)
etc. The use of analytic methods such as the representation theory of Lie
groups and Lie algebras, has developed drastically in recent decades. These
techniques are related to non—commutative generalizations of class field theory
(see §6.5). We first describe the group G(ab starting from the Kronecker—Weber
theorem, which says that every Abelian extension k of Q (i.e. an extension
whose Galois group G(k/Q) is Abelian) is contained in a cyclotomic field
K,, = Q((n), where (,, is a primitive root of unity of degree m (see §4.1.2).
There is an isomorphism

Y (L)L) — G = G(Km/Q), (4.4.1)

which associates to a residue class a (mod m) € (Z/mZ)*, (a,m) = 1 an
automorphism o = o, = ¥ (a) € Gy, given by the condition (7, = (%.
The arithmetical isomorphism (4.4.1) makes it possible to regard Dirichlet
characters x : (Z/mZ)* — C* as one—dimensional representations

Pyt GGy 2 (2 /mZ) < 250X (4.4.2)

where GZ@,,, is the natural homomorphism restricting the action of the
Galois automorphisms to the subfield K,,; py = x © ¥y, o mp,. Hence each
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character p : G — C* has the form p = p,, for some x. For example a quadratic
extension k = Q(v/d) is contained in the cyclotomic extension Q(¢p}), where
D is the discriminant of k. This is easily shown using Gauss sums: for the
quadratic character xy = xi of k& we have G(x)? = D. Hence G(x) = £VD €
K|p|. Recall that x is a primitive quadratic character modulo |D| which is
uniquely determined by the condition x(—1) = sign D. The field k corresponds
by Galois theory to the subgroup Kerp C G(K|p|/Q) of index 2, p = py, .

By the Kronecker-Weber theorem, the maximal Abelian extension Q?"
can be described as the union of all K,,, and its Galois group coincides with
the projective limit of the groups G,, = (Z/mZ)*, that is

G** = lim(Z/mZ)*,

m

where the limit is taken over the system of natural projection homomorphisms
(Z/maZ)™ — (Z[maZ)*

for my dividing m;. Hence the group G coincides with the group Hp Zy of

invertible elements of the ring Z = [1, Z, (the profinite completion of the ring
of integers).

A more invariant formulation of this isomorphism is based on the intro-
duction of the ring of adeles A and its multiplicative group J = A*, the ideles
of Q (see §4.3.7 and §4.3.8). The group J consists of all infinite vectors

a=(o;2,Q3,...,0p,...) € R® XHQ;,
P

such that o, € Z, for all but a finite number of p. The quotient A /Uy is
discrete. According to (4.3.55) we have

J/Q* =R x [[ 2z,
p

where R is the multiplicative group of all positive real numbers.
The group G?" is therefore isomorphic to the quotient of J/Q* by the
connected component of 1:

¢ =[] z; = J/RIQ". (4.4.3)
p

The important feature of this isomorphism is that the elements of G,,, and
hence of G®P| have an arithmetical nature; they correspond to prime numbers.
Namely, a prime p not dividing m corresponds to its Frobenius element o =
Op : Gm — (P,. The set of all primes corresponding to a fixed element o € G, is
infinite by Dirichlet’s theorem on primes in arithmetical progressions. This set
coincides with the set of primes of type p = a+km (k € Z), where o = ¢,,(a).



4.4 Class Field Theory 157

The automorphism o is called the Frobenius automorphism (and denoted Fr,,
or Frob,) for the following reason: if we consider the ring O,, = Z[(,,] of all
integers in K, then in the reduction O,,/pO,, we have Fr,(z) = a7, i.e. Fr,
acts as the Frobenius automorphism. The way that p splits into prime ideals in
O, depends only on the image of p in the Galois group G,, = (Z/mZ)* (see
§4.1.2). The idea of associating a Galois automorphism to a prime number (or
prime ideal) leads to the isomorphism (4.4.3), in which to Fr, one associates
the class of the idele

mp=(1;1,---,1,p,1,---) in J/(Ry x Q%).

The field K, corresponds to the open subgroup

Un =RY x [J(1+mZ,)* x [] 2 c 7,

plm pfm

so that G,,, & J/U,,Q*, [La73/87]. This formulation of the result is very easy
to extend to the general case of the group G for arbitrary global fields k.
Note that the set of all primitive Dirichlet characters can be identified with
the discrete group of all characters of finite order of the idele class group Cy
(k = Q) using the projection

J/Q* =Ry x [[2) — G
p

Such characters are all trivial on the connected component of the identity.
Abelian extensions of Q correspond bijectively to open subgroups of J/RZQ*,
and any such group is the intersection of the kernels of a finite number of
Dirichlet characters.

4.4.2 Frobenius Automorphisms of Number Fields and Artin’s
Reciprocity Map

Let K be an algebraic number field, [K : Q] = n, X% the set of all finite
places of K (normalized discrete valuations which correspond to prime ideals
py # 0 in the ring of integers Ok of K);

po ={2x € Ok | |z], < 1}.

The residue field k(v) = Ok /p, is finite, having Nv = pd°8? elements, where
py = Char k(v) is the characteristic and degv = f, is the degree of the
extension (or inertial degree) of k(v) over F, . The absolute value is normalized
by the condition

v(@) = ~logy, |zly  (|zl, = No™®). (4.4.4)

The ramification indez e, of v is the number v(p,). With this notation one
has the following decomposition pOg = Hv,v(p)>0 pev.
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Let L/K be a finite Galois extension with Galois group G(L/K), and let
w be a place of L, which extends a fixed place v of K. Define the action of
the group G(L/K) on the places w € X', by w — ow,

-1
Zlow =127 |w-

If v and w are non—Archimedean, p, and 3,, being the corresponding prime
ideals, then ocw corresponds to the ideal P, = PB7,. A Galois automorphism
0 € G(L/K) induces an isomorphism of the completions o : L, — Ly, as
normed vector spaces over K.

The decomposition group G, is introduced as the subgroup

Gy ={0€GL/K) | ow=w}CG(L/K). (4.4.5)
By definition we have that
Gro ={0 € G(L/K) | orw = Tw} = 7GW7 .

On the other hand, it is immediate from the explicit construction of the ex-
tensions of places, that G(L/K) acts transitively on the set of places of L
lying over a fixed place v of K. Hence all the corresponding subgroups G,, are
conjugate [Wei74a).

The inertia group I, C G, is by definition the kernel of the natural
homomorphism G,, = G(L,,/K,) — G(l(w)/k(v)) where {(w) denotes the
residue field of the place w. The quotient group G, /L, = G(l(w)/k(v)) is
generated by the Frobenius automorphism: G(I(w)/k(v)) = (Fry), Fry(z) =
2N?. The place w is called unramified iff I,, = {1}; in this case one has
Gy = (Fry). It follows from the definitions that Fr,,, = 77 1Fr,7, so that the
conjugacy class of Fr,, in G(L/K), if defined, can depend only on v. It turns
out that all but a finite number of places are unramified; for such places we
put

Fr i (v) = (the conjugacy class of Fr,, for wlv). (4.4.6)

If G(L/K) is commutative, then the right hand side of (4.4.6) consists of one
element.

The Artin reciprocity law tells us where the Frobenius elements Fy i are
situated in a commutative Galois group G(L/K). Let S be a finite set of
places of K, including all Archimedean places and those places ramified in
the extension L/K. Denote by I° the free Abelian (multiplicative) group
generated by the elements p,, for v ¢ S. Then the association v — Fp,/k(v) €
G(L/K) extends to a homomorphism

Frr: I° — G(L/K), (4.4.7)

which is called Artin’s reciprocity map,
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Fr x H po | = H Fryr(v)™. (4.4.8)
vgS vEgS

Class field theory gives an explicit description of the kernel of the Artin
reciprocity map (4.4.7) (see section §4.4.5 below). The statement that (4.4.7)
is surjective was established first, and it could be deduced from the general
Chebotarev density theorem, which is a far-reaching generalization of Dirich-
let’s theorem on primes in arithmetical progressions (cf. [Chebo25], [Se70],
[Se68a], [Chev5l]).

Let P be a subset of the set 9 of all non—Archimedean places of K. For
any integer > 1 denote by a,(P) the number of places v € P such that
Nv < z. We say that P has density a > 0 if the limit exists

a;(P)
R0y

=a. (4.4.9)

Not every set of places has a density. For example, if K = Q and P is the set
of primes whose first digit is equal to 1, then P does not have a density.

By the prime number theorem one has a,(X%) ~ x/log z, hence the con-
dition (4.4.9) is equivalent to the following asymptotic expression

az(P) a +0<

B alogx

logx) . (4.4.10)

4.4.3 The Chebotarev Density Theorem

Theorem 4.22. Let L/K be a finite extension of a number field K, and X
a subset of G(L/K), invariant under conjugation. Denote by Px the set of
places v € XY unramified in L such that the classes of Frobenius elements
of these places belong to X: Fr i (Px) C X. Then the set Px has a density,
which is equal to Card X/Card G(L/K).

The proof is based on analytic methods; the notion of the analytic density
of P is introduced as the limit

lim 72”613 NU?S.
st 10g(s£1)

Proving the existence of and calculating this limit for P = Py can be done
with the help of the Artin L—functions (see §6.2.2); the density statement in
the above sense (4.4.9) can then be deduced (cf. [Chev40], [La70]).

(4.4.11)

4.4.4 The Decomposition Law and
the Artin Reciprocity Map

If L/K is an Abelian extension, then the decomposition of p, in Oy, is com-
pletely determined by the order f of the element Fy, i (v) € G(L/K): in this
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case p, = qgun T mws’ where s = (G(L/K) : <U>) and f = f(wi/v) =
degw;/degv = [l(w;) : k(v)] is the relative residue field degree. This fact is
deduced from the transitivity of the action of the Galois group G(L/K) on
the set of places w dividing v. In particular, the place v splits completely (i.e.
f =1 and v is unramified) iff Fy,x(v) =1 € G(L/K).

Theorem 4.22 shows that a finite Galois extension G(L/K) is uniquely
determined (in a fixed algebraic closure K) by the set Spl; sk of places which
split completely in L/K. The Artin reciprocity law gives us amongst other
things a description of this set when L/K is Abelian. For non—Abelian exten-
sions there are only some special cases when Spl;, /x 1s known. However these
examples provide a basis for quite general conjectures (the Langlands program,
see §6.5. These conjectures determine nowadays one of the main directions in
modern algebraic number theory.

4.4.5 The Kernel of the Reciprocity Map

In order to formulate the main result on the kernel of the reciprocity map
(4.4.7) we recall that the relative norm Ny /i (w) of a non—Archimedean place

w is defined as pf /) (or, in additive terms, as f(w/v) - v), where

f(w/v) =degw/degv = [I(w) : k(v)] = logy, Nw

is the relative degree of residue fields. Also, consider the divisor map (see
(4.3.49))

divg : K* — I, divs(a) = [] p® € 17,
vgS
where S is the set of all Archimedean places and places ramified in L/K.

Let L/K be an Abelian extension of K, f = [], pi” an ideal in Ok,
divisible by sufficiently high powers r(v) of the prime ideals ramified in L. For
each Archimedean place v € X3 we fix an embedding

a— a® eC, K— K, CC,
which induces v, and let
Yk ={ve X | K. =R, L, = C for wlv}.
Define the subgroups P,/ (f), Mz, x (f) C I° by

Ppx(f) = {divs(a) lae KX, a=1mod f, Vo€ £ o > 0},
(4.4.12)

Nk (F) = (Np/x (W) wes, (4.4.13)

the latter being the subgroup generated by the relative norms of prime divisors
of those places v (or ideals p,) which are unramified in L/K.
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Theorem 4.23 (The Artin Reciprocity Law). Let L/K be an Abelian
extension. Then

KerFr,/x = Pr/i(f) - Mo/ (f). (4.4.14)

Corollary 4.24 (Description of the Galois group). For an Abelian ex-
tension L/ K the reciprocity map (4.4.7) induces an isomorphism

G(L/K) = 1°/(Pr x (HMek (F)-

4.4.6 The Artin Symbol
Consider the group Jg of ideles, and define a surjective homomorphism
(wL/K):Jx - G(L/K), s~ (s,L/K) (4.4.15)

with the help of the reciprocity map (4.4.7). For an arbitrary s € Jg let us
choose a principal idele & € K* such that |as, — 1|, < € for v € S and
sufficiently small € > 0. Define the S—divisor (cf. (4.3.49)) by

div(as) = [ pule) e 17,

v

Then the Artin symbol (s, L/K) = 11,k (s) is defined by the formula

(5, L/K) = 1,/ (5) 2 Fp s (div(as)). (4.4.16)

We stress that (4.4.16) is defined in terms of ideles, and in order to show
that (4.4.16) is well defined it is essential that the reciprocity law in terms of
ideals (4.4.14) is satisfied. Indeed, the condition on « in (4.4.16) is satisfied
if div(a) € Pp/k(f) with an appropriate choice of f. Now the reciprocity
law transforms into the statement that Kerty g, coincides with K*Np /g Jr,
where Ny /i Jp is the subgroup of relative norms of ideles from Jz:

N/ ((Buw)w) = | [[New/x, (Bw) | (4.4.17)

wlv
v

Hence the Artin symbol ¥y, /i in (4.4.16) is defined for idele classes s € Cx =
Jr /K. Furthermore Fy i (v) = (s(v)), where s(v) is the idele class of
(-+++,1,my,1,--+) for a local uniformizer 7, € K, i.e. an element with the

condition v(7,) = 1. The homomorphism ¢, /i : Cx — G(L/K) is continuous
and its kernel is both open and closed, again in view of (4.4.14).
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4.4.7 Global Properties of the Artin Symbol

Let H be a subgroup of a finite group G. Then the transfer homomorphism
(or Verlagerung)

Ver: G/|G,G| — H/[H, H], (4.4.18)

is defined by Ver(g[G,G]) = [],crh(g,r) where 7 runs through a system
of representatives R of left cosets G/H and h(g,r) € H is defined by the
condition gr = grh(g,r) (gr € R being the representative of gr in R).

1) There is a one—to—one correspondence between open subgroups U C Ck
and finite Abelian extensions L/K, such that the symbol (4.4.16) induces
an isomorphism

Cx/U = G(L/K),

and U coincides with the norm subgroup U = Ny, /5 (CL) (see (4.4.17)).
2) Let K'/K be an arbitrary finite extension. Then for o € Ck the following
equation holds

(Ngr 5 (@), L/K) = (o, LK'JK). (4.4.19)

3) Let L'/K be a finite Galois extension, L/K the maximal Abelian subex-
tension of L' /K, and K’ a subextension of L'/ K over which L’ is Abelian.
Then

(a, L'/K") = Ver(a, L/ K), (4.4.20)

where Ver is the transfer (4.4.18).
4) Let L'/K be a finite Galois subextension of L/K. Then for all « € Ck
the following equation holds

(o, L'/K) = (o, L] E). (4.4.21)

5) Let o be an isomorphism of K onto 0K, ¢ € Aut K. Then for all o € Ok
the equation holds

(ca,0L/oK) =o(a, L/K)o . (4.4.22)

The bar in the above formulae denotes the restriction to a subfield (cf.
[Chev40], [Koch70], [AT51], [Wei74a]).

These properties make it possible to extend the definition of the Artin
symbol to infinite Abelian extensions L/K. Consider the correspondence

s+ (s,L/K) =lim(s, L, /K), (4.4.23)

where L, /K runs through all finite subextensions of L/K. It follows from 4)
that this is well defined and one has a map from Ck to G(L/K) with dense
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image. Taking into account the one—to—one correspondence between subgroups
of finite index of Cx and G(K?*"/K), we see that G(K?"/K) is isomorphic
to the profinite completion of Ck, which is in fact with the quotient of Ck
by its connected component. The thus constructed reciprocity homomorphism
satisfies the properties 2), 4) and 5).

Note that a new approach to the class field theory was developped by
J.Neukirch in Chapters 4-6 of [Neuk99].

From a profinite group GG endowed with a surjective continuous homomor-
phism d : G — Z and a G-module A endowed with a “Henselian valuation
with respect to d”’, one constructs in an elementary way the reciprocity homo-
morphisms; if A satisfies the so-called class field axiom (a statement involving
zeroth and (—1)st cohomology of A), then the reciprocity homomorphisms are
isomorphisms. From this abstract class field theory, both local and global class
field theory are deduced, and the classical formulation of global class field the-
ory, using ray class groups instead of the idéle class group, is presented as well.
Neukirch’s approach minimizes the cohomological tools needed to construct
class field theory.

4.4.8 A Link Between the Artin Symbol and Local Symbols

Suppose that we already know the existence of the Artin symbol on ideles
(4.4.16). For a finite Abelian extension L/K, a non—Archimedean place v of
K and an extension w of v to L, consider the completions K, and L,,, and
the decomposition group

G, C G(L/K), Gy = G(Lw/Kv)a

which in the Abelian case does not depend on the choice of w. Consider
the embedding i, : K — Jg, and the projection onto the v—component
Jy 1+ Jg — K, where i, maps x € K onto the element of Jg, whose
v—component is equal to x, and whose other components are all 1. Put

Py = ¢L/K 0y = (4, Luy/Ky)o- (4.4.24)

Then one verifies that the image of v, belongs to the decomposition group G,,.
The homomorphism 1, : K — G, is called the local Artin homomorphism
(or the norm residue homomorphism). If © = (z,) € Jk, then the following
decomposition holds

wL/K(x) = H ty (xv)a (4425)

where

x = lién (H i,,(xi,)>

veS
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(the limit is taken over an increasing family of places of K). The product
(4.4.25) is actually finite: if a component x, is a v—unit and v is unramified,
then x, is a norm in the extension L., /K,: for some y,, € L,, one has x, =
Ny, /K, %w- The existence of y,, is established by Hensel’s lemma (see 4.3.2).

Thus the knowledge of all local Artin maps v, is equivalent to the knowl-
edge of the global Artin map k. In classical work on class field theory
the local reciprocity maps were studied using the global theory; in particu-
lar, it was shown that these local maps depend only on the local extensions
L, /K,, and are independent on a global extension L/K from which they are
obtained. In this sense, modern expositions of class field theory (for example,
in [Chev40] , [Wei74b]) differ from classical texts: first one gives a purely local
and independent construction of maps

0, : K* — Gy = G(L"/K,), (4.4.26)

where L is a finite extension of K. Then one proves that the product [[, 6,
has the properties which uniquely characterize the homomorphism 1y, /rc. The
most important part of the proof consists of verifying the product formula

0,(a) =1 for all a € K*. (4.4.27)

In the case of a quadratic extension L = K(v/b) the image 6,(a) belongs to
{£1} = G(L/K), and coincides with the Hilbert symbol, defined in §4.3.3.
The product formula is equivalent to the quadratic reciprocity law of Gauss,
which thus becomes a special case of the general reciprocity law (4.4.14).

The construction of the map (4.4.26) for an arbitrary Abelian extension
LY /K, is usually carried out using methods of Galois cohomology theory (see
§4.5, and [Se63], [Se64], [Chev40], [Koch70] [Koch97]). A more direct construc-
tion of 6, was suggested by [Haz78] , [Iw86], based on an explicit analysis of
cohomological constructions in low dimensions, compare with the approach of
J.Neukirch cf. [Neuk99]).

4.4.9 Properties of the Local Symbol
The properties of the local symbol
Oy =ty = ('7Lw/Kv) : qu — G,

are completely analogous to the corresponding properties 1) to 5) from §4.4.7,
replacing Cx = Jx /K> by K, G(L/K) by G, and ¢, by 0,. Also, the
homomorphism 6, maps the group of units U, = O.° of K, onto the inertia
group I C G,. If L,,/K, is unramified, then for all « € K* one has

0, (cr) = Fry(®)

where Fr, € G, is the Frobenius element of the extension, and the valuation
v of K, is normalized by the condition v(K)) = Z. In the same way as for
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Y Kk the local symbol can be generalized for infinite Abelian extensions, and
thus one obtains a reciprocity map 6, : KX — G(K?®"/K,), where K2 is the
maximal Abelian extension of K. The Galois group can then be described as
follows:

G(KP/K,) = (KX)" =2 x O (4.4.28)

where " denotes the profinite completion. Under the isomorphism (4.4.28) the
Galois group G(K»/K,) = G(F,/F,) of the maximal unramified extension
K)* of K, becomes Z, and the inertia group I, = IV maps isomorphically
onto the whole group of units O} :

0,: 00X 5 1Y (4.4.29)
(the field K" can be defined as the maximal extension of K, for which the
extension of the valuation v satisfies the property v(K*) = Z).
Below we give a remarkable explicit construction of the maximal Abelian
extension K2 of a local non-Archimedean field K, generalizing the contruc-
tion of Q;b by adjoining roots of unity to Q.

4.4.10 An Explicit Construction of Abelian Extensions of a Local
Field, and a Calculation of the Local Symbol

(cf. [LT65], [Se63], [Chev40], [Ha50], [Sha50], [CWT77], [Koly79]). Consider
first the field Q, as a model example. Any Abelian extension of this field
is contained in a cyclotomic extension, i.e. (@;b = Q,(Wy), where W, =
Uns1Wa, W,, = {C € @p | ¢" =1}, W is the set of all roots of unity from
@p. Let Wpeo = Up>oWpm be the subset of all roots of unity of p—power order,
and Ve = Uy p, W), the subset of roots of unity of order not divisible by p.
Then

Weo = Voo X Wym, Qp(Woo) = Qp (Vo) - Qp(Wpee ),

and the following decomposition takes place:

G(ng/@p) = G(@p(voo)/(@p) X G(QP(WPOO)/QP)‘ (4'430)

Here Q,(V) is the maximal unramified extension (see the example from
4.3.4), for which v,(Q,(Ve)*) = Z and

G(Qp(Veo)/Qp) = G(Fp/]Fp) ~7 = <Frp>/\- (4.4.31)

The field generated by Wpee = Up>oW)pm is the union of all the totally rami-
fied extensions of Q. The Galois group G(Q,(Wpe)/Q,) can be described by
means of its action on the set Wy of all roots of unity of p—power order. In
order to do this we note the isomorphisms

End Wpee =2 Zp,, Aut Wye = Z;,
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in which a p-adic number « = ag + a1p + agp? + - - - € Z,, in its digital form
(4.3.2) corresponds to the endomorphism [a] : { — (* for { € Wpe:

¢o e cootarptap®totanap™ i e W C W
From the action of the Galois group on Wy one obtains a homomorphism
517 : G(Qp(me)/(@p) = Aut Wpoo = Z;, (4432)

which is a one-dimensional p—adic Galois representation (the cyclotomic rep-
resentation), and (4.4.32) is an isomorphism.

It turns out that the local symbol 6,(a) = (a,Q3"/Q,) € G(Q3"/Q,) for
an element o = p™u (m € Z, u € Z,) can be described using isomorphisms
(4.4.31), (4.4.32):

0,(a) = Fry'  on the subfield Q,(Va),
PP 1 wT!] on the subfield Q,(Wpe ).

We now reformulate this in a manner more suitable for generalization.
Consider the sets Epec = Up>0Epm, where

Em={w=(-1|(€ Wy}
These sets are groups with respect to the group law
wy 0 W 1= w1 +wa +wiwe (w1, w2 € Epes),

and for all w € Ep~ one has |w|, < 1. The set E, consists of all roots of the
polynomial

fp(X)(X+1)p1pX+<g>X2+...+Xp,

which becomes irreducible after division by X according to Eisenstein’s irre-
ducibility criterion. Its roots therefore generate a field Q,(E,) of degree p—1

over Q.
Now consider the iterations of the polynomial f,(X):

f;DQ(X) = fp(fp(X)) = ((X + 1)p - 1P -1,

fpm (X) = fpmfl(fp(X))-

The group E,~ coincides with the set of all roots of the polynomial f,m(X),
and this is isomorphic to p~™Z,/Z,. Under this isomorphism the obvi-
ous inclusions Epm C E,m+1 become the natural embeddings p~"Z,/Z, C
p " 1Z,/Z,, and we see that E,~ = Q,/Z,. From this it follows that
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End Eo, = Z,. We have Q,(Es) = Q,(Wp=), and the isomorphism (4.4.32)
takes the form

8y G(Qp(Ep=)/Qy) = Aut By = 7. (4.4.33)

Now let K, be an arbitrary finite expension of Q, with valuation ring O,,
maximal ideal p, = (7) and ¢ = |0, /p,|. Here 7 is a uniformizing element,
i.e. v(m) = 1. There is an analogous construction of the maximal Abelian
extension of K,. Consider the polynomial

[=(X) =7X + X1 (4.4.34)

It follows as before by Eisenstein’s criterium that f(X)/X is irreducible.
Define recursively the iterations

fam (X) = frma(fr(X)), m=1.
Then the sets of roots
Wim ={z € K, | frm(z) =0} (4.4.35)
of the polynomials f;m(X) form an increasing sequence:
Wem CWimtt,

and there is a natural group structure on (4.4.35) such that Wy, is isomor-
phic to p,; /O, (= O,/p7"). The inclusions Wy, C Wy pmy1 become the
natural embeddings p, /O, C p,; ™ !/O,. Thus we obtain a group, which is
analogous to the group of all roots of unity of p—power order:

Wioo = U Wy m is isomorphic to K, /O,. (4.4.36)

m>1

There is a natural action of elements a € O, = End(K,/O,) on Wy, for
which the equation [7];(z) = fx(z) holds. This action will be denoted by
[a]f : x — [a] . The action of the Galois group on the roots of the polynomials
frm (X) provides us with a representation analogous to (4.4.32):

G(K,/K,) — Aut Wy o 2O, (4.4.37)

Denote by K the field which corresponds to the kernel of the homomorphism
(4.4.37). Then K is an Abelian extension of K, in view of the isomorphism

8, : G(K./K,) = OF, (4.4.38)

and we obtain the following explicit description of the Abelian extensions of
K,:
K2 =K K,
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where K" = K, (V) is the maximal unramified extension of K, (V. is the
group of all roots of unity of degree not divisible by p),

G(K™/K,) = G(F,/F,) = Z = (Fr,)". (4.4.39)

The field K, = Li1Kv(Wf’m) is the union of all totally ramified Abelian

extensions of K,,.
The norm residue symbols can then be described as follows:

1) for u € O the element 6, (u) = (u, K /K,), acts on Wy o via [u™!]y;

2) the norm residue symbol of (7w, K /K,), is equal to 1.

3) the symbol 0,(a) for @ = 7™ (m € Z, u € OF) acts on K} as Fr;" €
G(K"/Ky).

A remarkable feature of the construction of the group law on the set Wy
is that the field K is independent of the choice of uniformizer 7 and of the
polynomial f(X) € O,[X], which need only satisfy the following requirements:

f(X) =7X (modulo degree 2 polynomials), (4.4.40)

f(X) = X% mod ). (4.4.41)

Moreover, instead of a polynomial f(X) one may use any element of the set
Fr of power series f(X) € O,[[X]] satisfying the above conditions (4.4.40),
(4.4.41).

The above group law is constructed in the theory of Lubin—Tate formal
groups.

4.4.11 Abelian Extensions of Number Fields

For the field of rational numbers Q the theorem of Kronecker—-Weber (see
§4.1.2) gives an explicit description of all Abelian extensions with the help
of the action of the Galois group on roots of unity, which may be regarded
as certain special values of the exponential function: ¢,, = exp(2wi/m). An
analogous theory exists also over an imaginary quadratic field K = Q(v/d),
whose Abelian extensions are constructed with the help of the action of the
Galois group G(K/K) on the points of finite order of an elliptic curve with
complex multiplication (more precisely, on the coordinates of these points,
see §5.4 of Chapter 5). This description is essentially the content of the theory
of complex multiplication. In more classical terms, Abelian extensions of an
imaginary quadratic field are described by means of the special values of
elliptic functions and the j—invariants corresponding to lattices with complex
multiplication. The Galois action on these values is explicitly described in
terms of the arithmetic of the imaginary quadratic ground field (this was
Kronecker’s “Jugendtraum” (“dream of youth”), cf. a nice book by S.Vladut,
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[V1a91]) The content of Hilbert’s famous twelfth problem is to give an explicit
description of all Abelian extensions of an arbitrary number field K, [K : Q] <
oo using special values of certain special functions (such as the exponential
function or elliptic functions), and by means of the Galois actions on these
values.

Some progress has been made in solving this problem for the so—called
CM-fields K. These are totally imaginary quadratic extensions K = F(y/—a)
of totally real fields F': F' is a number field generated by a root of a polyomial
which splits as a product of linear factors over R, and a € F' is totally posi-
tive (positive in each real embedding of F'). This multi-dimensional complex
multiplication theory is based on the study of Abelian varieties with complex
multiplication by elements of K. For a real quadratic field K a description of
certain Abelian extensions of K is given by Shimura’s theory of “real multi-
plication”. However, in these cases the situation is less satisfactory than for Q
or for an imaginary quadratic field K, since these constructions do not give
all Abelian extensions of the ground field K. A completely different situation
takes place in the function field case, when K is a finite, separable extension
of Fy(T'). Here there is a complete description of all Abelian extensions of K
in terms of the elliptic modules of V.G.Drinfel’d (and in terms of elliptic func-
tions in positive characteristic attached to these modules, [Dr|). This result
gives an illustrative example of analogy between numbers and functions.

The idea of describing extensions of K via the action the Galois group
G(K/K) on certain groups and other algebraic objects has turned out to
be very fruitful. Many examples of constructions of Abelian and non—Abelian
extensions of a ground field K are based on this idea. A complete classification
of all these extensions in terms of Galois representations and in terms of certain
objects of analysis and algebraic geometry (automorphic forms and motives)
is an important aim in Langlands far-reaching program, see §6.5.

In a new book [Yos03] the main object are special values given by the
exponential of the derivative at s = 0 of the partial zeta function of a certain
ideal-class ¢ attached to a number field F'. Such a special value is an important
invariant which conjecturally gives a unit of an abelian extension of a number
field and should give an answer to Hilbert’s 12-th problem.

Let F' be a totally real field, i.e. FF ® R =2 R" as an R-algebra. According
to Shintani, the special values at non—positive integers of the partial zeta

function
Crlaf,s)= Y N(I)~*

I€a
IcOp

are rational numbers which can be expressed in terms of certain generating
functions which generalize the generating function of Bernoulli numbers, see
[Shin76].
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These generating functions are associated to “cone decompositions” in F'®
R which are defined non—canonicaly (see also [Hi93], Chapter I).

Conjectural absolute periods are described in [Yos03] in terms of a function
constructed geometrically from cone decomposions, whose principial term is
given by periodes of abelian varieties of CM-type for an arbitrary CM-field,
explicifying a conjecture of Colmez, [Colm93].

Our knowledge of the nature of CM-periods is quite limited, the only
essential fact in the case F' = Q is the classical Chowla — Selberg formula,

a-1
o wx(a)/2h L'(0,x)
2, a\"x —d. ’
K (id,id) alzlll (d) d - exp 100 )

where K is an imaginary quadratic field of discriminant —d, w is the number
of roots of unity in K, h the class number of K, and x the Dirichlet character
corresponding to K [ChSe68]. Also, using the jacobian of the Fermat curve,
G.W.Anderson found that the CM-periods in the case of a cyclotomic field
are linked with the logarithmic derivative of Dirichlet’s L-functions at s = 0:

prc(id,o) ~ 7 @2 T exp n(g) L'(0,n) )
ne@ <[K : Q] L(O’U) >

where 7 is a Dirichlet character, u(c) = £1 or 0 (see [Ande82]).

The conjectures of Harold Stark were made in the 1970’s and 80’s (see in
[St71-80]) concerning the values at s = 1 and s = 0 of complex Artin L series
attached to Galois extensions of number fields K/F. A systematic approach
to the Stark conjectures was presented in the book by Tate, cf. [Ta84]. In
the most general terms these conjectures concern the special values of Artin
L-functions of number fields and their analogies, relating them to certain
“regulators of S-units” and analogous objects.

More precisely the Conjecture S (on units) discussed in Chapter II of
[Yos03], is formulated in terms of the partial zeta function

Cr(s,0) = > N(A)™

ACOr, (45 )=0

attached to an element o of the Galois group Gal(K/F) of an abelian extension
K of a totally real ground field F' ramified over only one infinite place of F'

(here (KT/F) denotes the Artin symbol). Conjecture S says that there exists
a unit € in K such that

(r(0,0) =€
for every o € Gal(K/F). A method is given, which derives Conjecture S on
units from the following Conjecture on Galois action:

(13(();))) - ;f(’;?).
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Here y € G denotes a (non-Abelian) irreducible character of a Galois extension
K of F with the finite Galois group G = Gal(K/F), ¢(x) the leading term of
the Taylor expansion of its Artin L-function at s = 0:

L(s,x, K/F) = ¢(x)s"™ + O(s"0*), 0 <r(x) € Z

and R(x) denotes a generalized regulator which is the determinant of a matrix
of size r(x) whose entries are linear combinations of the absolute values of
units of K with algebraic coefficients.

In recent years there was an important developpement in the study of “class
invariants” of ray classes in a totally real field F, and in their arithmeti-
cal interpretations (which include generalizations of Stickelbergers’s theorem,
generalization of Dedekind sums as certain cocycles etc.) A recent interpre-
tation of Stark’s conjectures using notions of Noncommutative geometry was
given in [Man02], [Man02a].



4.5 Galois Group in Arithetical Problems

4.5.1 Dividing a circle into n equal parts

The problem of dividing a circle into n equal parts (cf. [Gau], [Gin85]) has a
geometric form. However its solution, given by Gauss, was based essentially
on arithmetical and algebraic considerations. The construction of the regular
17—gon was the first mathematical invention of Gauss, written in his diary on
March 30th 1796, one month before his 19th birthday. Previously one could
only construct triangles, squares, pentagons, 15—gons, and all those n—gons
which are obtained from these by doubling the number of sides. From the
algebraic point of view, the construction of a regular n—gon is equivalent to
constructing the roots of unity of degree m on the complex plane, i.e. the
solutions to the equation

X"—1=0, (4.5.1)

which have the form

2mik
n

Ek:cosm+isinm_exp< ), k=0,1,...,n—1. (4.5.2)
n n

Assuming that the segment of length one is given, we can construct using
ruler-and-compass methods all new segments whose length is obtained from
the lengths of given segments using the operations of addition, subtraction,
multiplication, division and extraction of the square root. Through a sequence
of these operations one may construct any number belonging to any field L,
which is a union of a tower of quadratic extensions

L=L,D>Ly 1D L1 DLy= @, (453)

where L; 11 = L;(v/d;), d; € L;. Tt is not difficult to prove that no other points
of the complex plane can be constructed starting from the point z = 1 and
using only ruler-and-compass methods. In order to construct z = a (if this is
possible) one constructs the corresponding tower of type (4.5.3) for the field
L, generated by all the roots of the minimal polynomial f(X) € Q[X] of «
(the decomposition field of f(X)). By Galois theory, to a quadratic extension
L, /Q corresponds a subgroup G1 = G(L/L1) of index two in the Galois group
Go = G(L/Q) (the group of Galois symmetries of the polynomial f(X)). The
action of the subgroup G; partitions the set of all roots of f(X) into two parts,
such that the sum of all elements of each part belongs to L; and generates
this field, being invariant under under automorphisms in G. In the next step
each of these two parts is divided into two further parts using the action on
the roots by elements of Gy = G(L/Lz), which is of index 2 in G; etc.. This
process continues until we obtain the subset of roots consisting of only one
element z = .
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For example, for the root of unity o = ¢; from (4.5.2) the corresponding
irreducible polynomial f(X) is the cyclotomic polynomial &,,(X), whose roots
ex ((k,m) = 1) are primitive roots of unity; the Galois symmetries have the
form

Oq €k EY = Ekamod n (a € (Z/nZ)™).

For n = 5 one has Gy = {01,02,03,04} and the subgroup G; = {o1,04}
partitions the set of primitive roots into the parts {e1,£4} and {e2,e3}. One
has @5(z) = 2* + 2% + 22 + 2 + 1. Hence

eld+er+1+ert+e72=0.
By putting v = &1 + Efl = €1 + €4 we obtain the equation

~14+5 -1-+5

2
-1=0 = =
u’ +u , €1+¢és 9 , €E2+t¢€s3 5 )

which gives the desired construction of the regular pentagon.

Fig. 4.3.

In the case n = 17 Gauss’ intuition led him to the correct partition of
the roots of @i7(z) = x'6 4+ 2!5 + ... + 2 + 1 given by Galois symmetries
(Galois theory had not yet been discovered!). The group of symmetries G =
(Z/17Z)* is a cyclic group of order 16 with a generator 3mod 17 (a primitive
root), and Gauss’s idea was to use a more convenient indexing system for
the roots (see Fig. 13). Let us assign to the root e the new number [ (the
notation 5[1]) defined by the condition k£ = 3! mod 17,1=0,1,...,15, and let
T; denote the automorphism o. Then
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Tiem) = €m+y (M, I mod 16). (4.5.4)
The corresponding subgroups have the form
Go ={To,T1, -+, T1s}, G1={To, Tz, - T4},

Go = {To, T4, - ,Ti2}, Gz ={Tp, Tz}

We now show how the idea described above works in this case. First of all
note that

e1teat--tewg=cptent--t+eps =-—1 (4.5.5)

(the sum of a geometric progression). Denote by o4, , the sum of ep; with [,
congruent to r modulo m. We thus obtain

02,0 = €[o] + €] +- €14 = Z Ti(o)
TeGy

09,1 = €np + e + ens) = ) Tieny-
T,eGy

Identity (4.5.5) implies
02,0+ 021 = —1,

and by termwise multiplication we find that
02,0021 = 4(6[0] + €[] + .. .5[15]) = —4.

Now using Viéte’s formulae, we may express 02, and 02,1 as the roots of the
quadratic equation z? +z —4 = 0:

VIT -1 /17 -1
020 = T’ 021 = #a

which generate the field L1 = Q(v/17). We distinguish the two roots by the
condition that 29 > 02 1; in each of these fields the roots arise together with
their conjugates. In the first case we have to add and to multiply the real parts
of the numbers 1, €2, €4, €g and in the second case we do the same for e3,
€5, €6, €7- In a similar way we have that o490 + 04,2 = 02,0, 04,1 + 04,3 = 02,1,
and the multiplication using (4.5.4) shows that 04, - 042 = 02,0 + 021 = —1.
Hence 04,9 and 04,2 are roots of the equation x2 +09,0+1 = 0 which generates

the field Lo:
1 /
0'470:4<V17—1+ 34—2\/17),

1
04,2:4<\/ﬁ—1— 34—2@).

In the same way we see that
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1
011 =g <_\/17 —14/34+ 2\/17> ,
1 /
0'4,2_4<—\/17—1— 34+2v17>.

An analogous argument shows that

08,0 = €[o] T £[s]
2T

=2 —_—
CcOSs 17

= (1/2) - \/(04,0)* — 404,1)

= (1/8) - (V17 — 14 /34 — 2V/17)
+(1/4) - \/17+3W— \/ 170 + 38V/17,

which completes the construction.
In the general case of an n—gon with n = 2"p*-...-pl=, where p; are odd
primes, we have that

G(Q(n)/Q) = (Z/nZ)*.

By considering the tower (4.5.3) of quadratic extensions, we see that the pos-
sibility of constructing the regular n—gon is equivalent to the condition that
the number

(Z/nZ)| = p(n) =27 (p1 = D)p* " - (ps — Dpp ™!

is a power of 2. This holds precisely when n =2"p; - --- - ps, where the p; are
primes such that p; = 2" + 1. It follows from Lagrange’s theorem applied to
the cyclic group (Z/p;Z)*, that m; divides p; — 1. Hence m; is also a power
of 2. The construction is therefore only possible for n = 2"py - - - - - ps where
p; are Fermat primes p; = 22" 4 1, which were discussed in Part I, §1.1.2.
The proof of the latter statement was not published by Gauss: “Although the
framework of our treatise does not allow us to proceed with this proof, we
think that it is necessary to point out this fact, in order to prevent somebody
else from wasting his time, by attempting to find some other cases, which are
not given by our theory.”

4.5.2 Kummer Extensions and the Power Residue Symbol

(see [CF67], [Chev40], [Koch70]). Let K be a field containing a primitive root
of unity ¢ of degree m, where m is a fixed positive integer not divisible by
the characteristic of K. One may show that cyclic extensions L/K of degree
dividing m coincide with the so—called Kummer extensions of type K ( %/a)/K
(a € K). In applications K will be either a number field or a completion of
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one. Any extension L/K containing a root o of X = a, also contains all the
other roots Ca, ..., (™ 'a of this polynomial. Let ¢ be an element of the
Galois group G(K( %/a)/K). If we fix a root « then the automorphism o is
completely determined by the image of a under the action of o: o = (ba. In
particular, if «v is an element of order m in the multiplicative group K> /K*™
then X™ — qa is irreducible and a” is an m* power iff m|r. In this case the
assignement o +— bmod m provides an isomorphism of the Galois group
G(K(®/a)/K) with the cyclic group Z/mZ.

Now let L be an arbitrary cyclic extension of degree m of K. We shall
construct explicitly an element a € K such that L = K( {/a)/K. Let o be a
generator of the cyclic group G(L/K) and let L = K(v) for some primitive
element v € L. Then the elements v, 77, ..., 'y"mfl form a basis of L over
K. Consider the sum

m—1

B=> ¢ (4.5.6)
s=0

Then 3% = (73, and 8 # 0 since the elements v, 7, 'y“"ﬁl are linearly
independent over K. Thus 0™ € K and 8" ¢ K for 0 < r < m, i.e. a = g™
is an element of order m in the quotient group K*/K*™ and the above
argument shows that the field K () is a cyclic extension of degree m contained
in L and is therefore equal to L = K( %/a). In a similar way we can check
that two extensions K ( §/a)/K and K( %/b)/K coincide iff a = b"¢™ for some
¢ € K and r € Z such that (r,m) = 1. These statements can be unified into
one statement by saying that for a given field K D p,, and its Galois group
Gk = G(K/K) there is the isomorphism

K*/K*™ = Hom(Gx, i), (4.5.7)
where f,, = {¢ € K | (™ =1} and Char K Jm. In order to construct (4.5.7)

for a given a € K* choose v € K™ with the condition 4™ = a, and for 0 € G
the formula ¢, (o) = 7 /v defines then a homomorphism ¢, : Gxg — fi,. The
fact that this map defines a homomorphism (4.5.7) is deduced from Hilbert’s
Theorem 90 on the cohomology of the multiplicative group: H' (G, K*) =
{1} (see §4.5.3).

Now let K be a number field, u,, C K, p = p, a prime divisor attached
to a non—Archimedean place v of K. The decomposition of p in the extension
K(%/a)/K is reduced to study of the extension K,( %/a)/K, of the local field
K, (by the construction of extensions of absolute values, see §4.3.6). One can
assume that a belongs to the ring Ok of integers of K, and that p } ma.
Then the decomposition of the mazimal ideal p C Ok is determined by the
decomposition of the polynomial X —a(mod p) over the field Ok /p (by the
lemma in §4.2.3). This decomposition is a product of pairwise coprime irre-
ducible factors of degree f, where f is the degree of the residue field extension:
the least positive integer f such that the congruence a/ = 2™ (mod p) is solv-
able in Ok /p. Under our assumptions the ideal p is unramifiedin L = K( /a)
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and p = Py, .. - Pw, (f-r = m). In particular, p splits completely iff
f =1, i.e. iff the congruence 2™ = a mod p is solvable.

We now define the power residue symbol. In order to do this denote by S
the set of places of K which either divide m or are Archimedean. For elements
ai,...,a; € K* denote by S(ay,...,a;) the union of S and the set of places
v for which |a;|, # 1 for some i. For a € K* and a place v € S(a) define the
power residue symbol (2) € pi,, by

/gl @) (2) %/a, (4.5.8)

v

where L = K(%/a) and F,x(v) € G(L/K) is the global Artin symbol, cf.
§4.4.6. The number (%) € pm does not depend on a choice of %/a, and one

verifies that
(“;‘) - (Z) (C;) (v ¢ S(a,d')). (4.5.9)

According to the definition of Fy,/x(v) as a Frobenius element, the identity

(4.5.8) is equivalent to the congruence v Tl = (%) (mod p,,), which im-
plies that m|(Nv — 1) and

No—1)/m _ (&
a = (U) (mod p.), (4.5.10)

(the generalized Euler criterium) since the group (O,/p,)* is cyclic of order
Nv — 1. For an arbitrary divisor 8 = vas(a) plj“’) e 15(@ put

(5)- 11 ()"

Then we have that

e ® _ (Z) </a, (4.5.11)

where L = K(%/a), F/x(8) € G(L/K) is the global Artin symbol, and the
following equation holds:

(ﬂ%’) B (Z) (;) (8,8 € 151). (4.5.12)

For any prime divisor v ¢ S(a) the following statements are equivalent:

1) (5) =1
2) the congruence ™ = a(mod p,) is solvable for some z € O,;
3) the equation ™ = q is solvable for some z € K,
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A solution in 2) can be lifted to a solution in 3) by Hensel’s lemma, see
§4.3.2. For an integral ideal S C Ok the value of (%) depends only on ¢ mod
0 as long as a € Ok. Thus the following character of order m is defined

xs: (O /B)" = pm,  xp(a) = (Z,) . (4.5.13)

The cubic reciprocity law. Let K = Q((3) = Q(v/—3), m = 3. Then Ok =
Z[¢3] is a principal ideal domain and if p = p, = (m) for a prime element

7, then we shall use the notation (%) instead of (%) Call a prime element

primary if m# = 2 mod 3, i.e. either # = ¢ is a rational prime number, ¢ =
2(mod 3), or Nm = p = 1(mod 3), # = 2mod 3. One easily verifies that
among the generators of an ideal p, p J 3 there is exactly one primary element.
Let p; = (m1) and p2 = (m2), where m; and 79 are coprime primary elements
such that Np; # Npo # 3. Then the following “reciprocity law” holds:

(2) - (:) , (4.5.14)

The biquadratic reciprocity law. Let m = 4, K = Q(i) and Ok = Z[i], the
ring of Gaussian integers. We shall call & € Ok primary if o = 1(mod (1 +
i)3). Then one verifies that in any prime ideal p, p J2 one can choose a unique
primary generator. If p; = (m1) and ps = (m3), where 71 and 7o are coprime
primary elements, then the following reciprocity law holds:

(m) _ <7T2> (= 1)((Nm=1)/4)-(Nma=1)/4) (4.5.15)

T2 1

4.5.3 Galois Cohomology

The group cohomology theory provides a standard method of obtaining arith-
metical information from Galois groups, acting on various objects: algebraic
numbers, idele classes, points of algebraic varieties and algebraic groups etc.
(cf. [Seb8], [Se63], [Se64], [Chev40], [Ire82], [Koch70], [Koly88] [Wei74a]). Let
G be a finite (or profinite) group acting on a G-module A (endowed with
the discrete topology). The cohomology groups of G with coefficients in A
are defined with the help of the complex of cochains. Consider the following
Abelian groups:
C%G, A) = A,

and for n > 1

C"(G,A)={f:Gx---xG— A| f is continuous}
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(the addition of functions is pointwise and the continuity of f € C™(G, A)
means that the function f(g1,...,gn) depends only on a coset of g; modulo
some open subgroup of G).

The formula

(dnf)(91,- s 9nr1) =91 f(g2, > Gns1)
+ Z(*l)if(gl, s 9iGid 1y Gnt1)
=1

+ (=)™ (91,5 n), (4.5.16)

defines a homomorphism d,, : C"(G, A) — C"*1(G, A), such that d,, od, 11 =
0.

The group Z"(G, A) = Kerd,, is called the group of n—cocycles, and the
group B™(G, A) = Imd,,_1 is called the group of n—coboundaries. The property
dy, 0dp,+1 = 0 implies that B"(G, A) C Z™"(G, A). The cohomology groups are
then defined by

K 1 _1 f >1;
HY(G, A) = BY(G, A)/27(G, A) = { Kerdn/Tmdn—yforn 215 o0
Kerdy for n = 0.
If n = 0 then
H°(G,A) = A ={ac A|ga=aforall gc G} (4.5.18)

For n =1 we call a continuous map f : G — A a scew—homomorphism iff for
all g1, g2 € G one has

f(g192) = f(g1) + g1f(g2)- (4.5.19)

One says that a scew—homomorphism splits, iff for a fixed a € A it can be
written in the form f(g) = a — ga. The group H'(G, A) can be identified
with the quotient group of the group of all scew—homomorphisms modulo
the subgroup formed by all split scew—homomorphisms. If the action of G
on A is trivial then H'(G, A) coincides with the group of all (continuous)
homomorphisms from G into A.

For n = 2 the elements of H?(G, A) correspond bijectively to equivalence
classes of extensions of G by A. Consider an extension

0-A—-G—G—1. (4.5.20)

For all g € G choose a lift g in G (i.e. choose a section g — g of the projection
G — G). Define f: G x G — A, f(g1,92) € A by

g1+ g2 = f(91,92)9192-

Then the function f is a 2-cocycle of G' with values in A. If we change our
choice of representatives g (i.e. the choice of section G — G), then f is altered
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by a coboundary. Hence the class of f depends only on the extension (4.5.20).
The group H?(G,C*) is called also the Schur multiplier of G. Let L/K be a
Galois extension with Galois group G = G(L/K). Then L* is a G-module
and H%(G,L*) can be interpreted as the Brauer group, see §4.5.5.

For the action of the Galois group G = G(L/K) on L* one has the fol-
lowing fundamental theorem.

Theorem 4.25 (Hilbert’s Theorem 90).
HY(G(L/K),L*) = {1}.

The idea of the proof of this theorem is the same as in the description of
all cyclic extensions of K in §4.5.2. Let f : G — L* be an arbitrary scew—
homomorphism, f € Z'(G(L/K),L*). In multiplicative notation this means
that for all g, h € G we have f(h)? = f(gh)/f(g9) € L*. We shall find an
element b € L* such that for all g € G one has f(g) = b/b?. In order to do
this choose a primitive element v in the extension L/K, so that the elements
79 (g € G) form a normal basis of L over K. Then the element

b=> f(h" €L (4.5.21)
heG

is not equal to zero. We apply to both sides of (4.5.21) an element g € G.
Then

b= f(h) (")

hedG

=Y f(n)y"

heG

= (97" > flgh)y*"

heG
= f(g)"'b

(by the formula of the (left) action of G on L*: (y*)9 = ~9" for g,h € G).
This method of taking the average is also known as the construction of the
Lagrange resolution in the theory of solvable extensions of fields.

Properties of cohomology groups.

1) For an arbitrary exact sequence of G—modules
0—A—B—C—0
the following long exact sequence of cohomology groups is defined:
0 — H°G, A) — H°(G, B) — H°(G,C)2%HY(G, A)
— HY(G,B) — HY(G,C)25H2(G, A) —> - H"(G, A) —

— H™(G, B) — H™(G,C)25H" (G, A) — - - (4.5.22)
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Ezample 4.26. Kummer theory. Let K be a field containing the group i,
of all roots of unity of degree m in K. Assume further that Char K does
not divide m. For an arbitrary Galois extension L/K with Galois group
G = G(L/K) the map = — 2™ defines a homomorphism of G-modules:
v:L* — L*. For L = K, and G = Gk, one has the following exact
sequence
1 — pm — K LK —1.

Passing to cohomology groups (4.5.22) we obtain the following long exact
sequence

HY Gk, pim) — HY (G, K )-5HY (G, K ™) —
HY Gk, pim) — H (G, K )-5HY (G, K*) — -+ . (4.5.23)

Since the group G acts trivially on gy, it follows that H'(G g, ttm)
coincides with the group Hom (G, ptr,). The group HO(GK,FX) is the
subgroup of all fixed points of the Galois action, i.e. HO(GK,fX) =
K*Gr(K/K) — % Also, H(Gg, ftm) = pan, and H (G, K ) = {1}
by Hilbert’s theorem 90. We thus have the following exact sequence

1 — piy, — KX K> — Hom(Gg, pin) — 1,
which is equivalent to the isomorphism of Kummer:
K*/K*™ 2 Hom(G kg, pim)-

2) Let H be an open normal subgroup in G and A a G-module. Then one
has the following “inflation - restriction” exact sequence:

0 — HY(G/H, AT L 7Y (G, A) XS HY (H, A), (4.5.24)
in which Inf denotes the inflation homomorphism, which is defined by
“inflating” a cocycle f on G/H with values in A C A to a cocycle f on
G; and Res is the restriction homomorphism given by restricting cocycles
on G to the subgroup H.

3) U-products. Let A, B, C' be three G-modules, for which some G—invariant
pairing o : A x B — C'is given (i.e. for all g € G, a € A, b € B we have
that g(aob) = gaogb). For example, if A = B = C is a ring on which the
group G acts trivially, then the multiplication in A is such a pairing. Any
pairing A x B — C induces for every n > 0 and m > 0 a bilinear map

H™(G, A) x H™(G, B) — H"™™ (G, C), (4.5.25)

which is called U-product. This is defined on cocycles by the following
rule. If f € C™(G, A), f' € C™(G, B) then the cochain
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(fo f/)(gla o Gngm) = F(g1, 0 gn) 0 (91 - -gn)f/(gn-i-lv o Gntm))
(4.5.26)

turns out to be a cocycle, as can be seen from the following equation:
dnsm(fof)=dnfof +(=1)"fodnf"
The U-product (4.5.25) is well defined by the formula
FUF =FoF € H™™G,C).
One has the equation
aUA,B=(-1)"Anim(aUp), (4.5.27)

where A,, is the “connecting homomorphism” of the long exact sequence
(4.5.22). If A= B = C is a commutative ring on which G acts trivially,
then for all « € H"(G, A), 5 € H™(G, A) one has

aUf=(-1)""0Ua. (4.5.28)

4.5.4 A Cohomological Definition of the Local Symbol

Let K be a finite extension of the field Q, of p-adic numbers. The local Artin
symbol is a homomorphism

0:K* — G =1limG(L/K) (4.5.29)

from the multiplicative group of K to the Galois group of the maximal Abelian
extension (the union of all finite Abelian extensions L/K) of K. This homo-
morphism was described in §4.4 using powerful global methods — the Artin
reciprocity law. However, the local symbol can be defined purely locally. With
this approach the global reciprocity law can then be deduced from the prop-
erties of the local symbols by proving the product formula (4.3.31).

We shall define for a given o € K* the image 0(a) = 01,k () € G(L/K)
(in a finite extension L/K) using the characters x € Hom(G(L/K),Q/Z).
Note that the element («) of the finite Abelian group G(L/K) is completely
determined by the values x(6(«)) for all characters x of G(L/K). For the
trivial G(L/K)-module Q/Z we have:

Hom(G(L/K),Q/Z) = H'(G(L/K),Q/Z),
and there is an exact sequence
0—-2—-Q—Q/Z— 0,

which gives rise to the isomorphism
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A, HY(G(L/K),Q/Z) = H*(G(L/K), 7). (4.5.30)

The latter is found by considering the long exact sequence (4.5.22), and using
the fact that all the higher cohomology groups of the divisible group Q are
trivial: H(G(L/K),Q) = {0} for i > 1.

As we have seen in §4.5.3, H'(G(L/K), L*) = {1}. Moreover, the following
fundamental facts on the cohomology groups of the multiplicative group are
known:

a) H¥(G(L/K),L*) = {1} (L is a local field)
b) There exists an embedding

invg : H*(G(L/K),L*) — Q/Z. (4.5.31)

The image of an element 3 € H?(G(L/K),L*) under this embed-
ding is called the invariant of 8. For a finite extension L/K the group
H?(G(L/K), L*) is cyclic of order [L : K].

Now consider the pairing

L*xZ—L* ((xz,m)—z™).

This induces a U-product in the cohomology groups

HY(G(L/K),L*) x H*(G(L/K),Z) — H*(G(L/K), L*).
Recall that HY(G(L/K), L*) = K*. For A;x € H?*(G(L/K),Z), we have
aUAx € H*(G(L/K),L*)

for a € K*. Define for each character x,

X(0r/k(a)) = invg (U Ary). (4.5.32)

This determines 61, () as a well defined element of G(L/K). Passing to the
projective limit in (4.5.29), we obtain an element

0(cr) =lim 01,/ (a) € GaP.

To do this we need the following compatibility property. Consider a tower of
(Abelian) Galois extensions K C L’ C Land let G = G(L/K), H=G(L/L").
Let x’ be a character of G. Then if a € K* induces an element s, = 01/ (o) €
G and the element s/, € G/H under the projection G — G/H, then we have
that x(sq) = x'(s.,). This follows from the definition x(s,) = invi (U A;x)
together with the fact that the inflation map takes x’ (respectively, A;x’) to
the character x (respectively, to Ajx), using the commutative diagram
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Inf

H2(G/H,L'%) H2(G, LX)

Q/z
(4.5.33)

The map inv g will be defined in the next subsection via the Brauer group. The
above compatibility property will also be discussed there. This compatibility
property is very important, since it makes it possible to define the symbol
(4.5.29).

If the field K contains a primitive root of unity (,, of degree m, then the
power residue symbol (a, 3) of degree m can be defined for o, 8 € K* by the
condition

O/x(B) - Va=(a,B) Ve, (4.5.34)

where L = K(%/a) is a cyclic extension and 6y, (3) is the local symbol
(4.5.32). The values of (o, 3) are roots of unity of degree m, and they satisfy
the following conditions:

1) (e, B) = (o, B)(, B);

2) (a, Bf") = (o, B) (e, B');

3) (a, B)(B, ) = 1

4) if (o, 3) =1 for all § € K* then a € K*™;

5) (a, ) = 1 iff § is a norm of an element in the extension K( /a)/K

The power residue symbol symbol can be interpreted as a U-product in
certain one-dimensional cohomology groups, cf. [Koch70]. An explicit calcu-
lation of this symbol is given in [Koly79], [Sha50].

4.5.5 The Brauer Group, the Reciprocity Law and the
Minkowski—Hasse Principle

Recall first some basic facts about the Brauer group of an arbitrary field K
(see [Man70b], [Man72b], [Se63], [Se86] [Chebo49]).

A finite dimensional algebra A over K is called a simple central algebra
over K, if there exist n > 1 such that A® K = M,,(K), where M,, denotes the
n X n—matrix algebra and K is an algebraic closure of K. The tensor product
induces a commutative semigroup structure on the set of simple central K-
algebras (modulo isomorphism). The following equivalence relation turns this
set into a group: we say that an algebra A is equivalent to an algebra B, if
there exist m,n > 1 such that A ® M,,(K) is isomorphic to B ® M,,(K).
All matrix algebras are equivalent to each other, and they form the identity
class of algebras. The class of the algebra A°, inverse to A (i.e. consisting
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of the same elements and having the same addition but the opposite order
of multiplication), is the inverse of A in the group structure induced by the
tensor product. To see this, consider the canonical map A ® A° — Endg(A)
(endomorphisms of the linear space A), which assignes to an element z ® y €
A ® A° the multiplication by x on the left, followed by the multiplication
by y on the right. The kernel of this map is trivial, since A ® A° is simple,
and the dimension of A ® A° coincides with the dimension of Endg (A), i.e.
with (dim A)2. Hence the map is an isomorphism, so A ® A° is isomorphic to
EndK(A) = MdimA(K)'

The group of classes of central simple algebras over K is called the Brauer
group of K and is denoted by Br K. We shall now describe the Brauer group
in cohomological terms.

Let L/K be an extension of K. It is called a splitting field of a K-algebra
Aiff A®kx L = M,(L). Equivalent algebras have the same splitting fields.
Let Br(K, L) be the subset of the Brauer group, consisting of those classes
of K-algebras which split over L. This is a subgroup. Now asume that L/K
is a Galois extension with Galois group G = G(L/K). One has the following
fundamental isomorphism:

Br(K,L) = H*(G,L*). (4.5.35)

This isomorphism can be constructed in various ways; we point out one of
these, the so—called construction of “scew—products”. This method consists of
explicitly constructing a central simple algebra over K from a given “factor
set”, i.e. from a cocycle {a,,} € Z?(G,L*). The algebra is construced as

follows:
A= @ Leg,
geG

with multiplication given by
egeh = ag pegn for all g, h € G,

eqa = g(a)e, for all g € G.

Its dimension over K is obviously equal to [L : K]?. We omit to verify the
various necessary properties of the construction; note only that the associa-
tivity of A is equivalent to the fact that the cochain of structural constants is
actually a cocycle.

The condition that A splits over L has important arithmetical implications.
Put N = n? and choose a basis {a1,...,an} of A over K. If we use the
isomorphism

F:A®g K 5 M, (K), (4.5.36)

then all of the elements a = Zfil x;a; € A (x; € K) become matrices F(a) €

M,,(K). Then it is not difficult to check that the maps
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7(a) = Tr(F(a)), v(a)=det(F(a))

are polynomial functions of x1, ..., xn with coefficients in the ground field K.
These maps are called respectively the reduced trace and the reduced norm of
the element a € A, cf. [Wei74a]:

7(a) =la(x1,22,...,2N) a linear form,

v(a) = P a(x1,z2,...,2N) a homogeneous polynomial of degree n.

Since F(ab) = F(a)F(b) by the isomorphism (4.5.36), v(ab) = v(a)v(b). How-
ever, in case the algebra A is a division algebra, notice that each non—zero
element of A is invertible. Thus the form @4 has no non—trivial zero over K.
On the other hand if A®x L = M, (L), then ¢4 does have a non-trivial zero
over L; under this isomorphism the solutions to the equation

@A(l‘l,. . .,wN) =0 ({El S L) (4537)

correspond exactly to degenerate matrices.
We now describe the local invariant (cf. [Chev40], [Se63])

invg : Br K — Q/Z (4.5.38)

in the case when K is a finite extension of Q,. Let A be a central division
algebra (a scew—field) over the field K, [A : K] = n?. The valuation v = vk
of K has a unique extension to a valuation vy of A, coinciding with vk on
the center of A. For example, one can first extend v over local fields K («/) for
a € A and then use the compatibility of these continued absolute values (in
view of the uniqueness property of continuations of absolute values to finite
extensions of a local field). Considering the reduction of the algebra A modulo
the valuation v4 one checks that A contains a maximal commutative subfield
L unramified over the center K, and an element 6 € Br K corresponding to
A splits over L, i.e. § € H?*(G(L/K),L*). A maximal unramified extension L
may not be unique in A, but all these extensions are conjugate in view of the
theorem of Skolem—Noether. This theorem states that each automorphism of
L in A over K is induced by an inner automorphism of A. Consequently, there
exists an element v € A such that yLy~! = L and the inner automorphism
x +— vy~ !, restricted to the subfield L, coincides with the Frobenius auto-
morphism Fry, /. Moreover, the element v is uniquely defined upto a factor
from L™. Let vy : A — %Z be an extension of vg onto A. Then one can de-
fine inv x4 as the image of v4(7) in the group (£Z)/Z C Q/Z. This definition
may be restated, taking into account the fact that the map =z — ~y"zy™" is
equal to Fr7 ;- and is thus the identity (since n = [L : K]). It therefore follows
that the element v commutes with all elements of L and v* = ¢ € L*. This
gives us

va(y) = —va(y") = —va(c) = ~vr(c). (4.5.39)
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Thus we have that
invgd =i/n (c=mtu),

where u € OF, 7, is a uniformizing element in L, i.e. v (7y) =1, vy (u) = 0.

Passing to the global case, we consider a Galois extension of number fields
L/K with Galois group G = G(L/K). Let G¥ C G denote the decomposition
group of an extension w of a place v to L. If the extension L/K is Abelian
then we know that the group GV is uniquely determined by v (cf. §4.4). The
inclusion L — L,, induces a homomorphism

@, H*(G,L*) — H*(G",LY). (4.5.40)

One verifies that for an element o € H?(G, L) the images ¢,a vanish
for almost all v (all but a finite number): if a cocycle {az s} € Z%(G,L*)
representing « satisfies the condition a4, € O and the extension L, /K, is
unramified, then H*(GY,0) = 0 for i > 1. This fact is deduced from the
exact sequence of cohomology groups obtained from the short exact sequence

1— 0 — LS —7Z—0.

This is actually a version of Hensel’s lemma , cf. §4.3.2.
Thus there exists a well defined map

H*(G,L*) — @ H*(G", L)) (4.5.41)
v
where w is a fixed continuation of a place v and the summaton runs through
all places v of K. In this situation the local invariants
invg, : H*(GY,LY) — Q/Z
induce a map

P E* (v L) — Q/z, (4.5.42)

which is defined to be the sum of all the local invariants.
The Minkowski—Hasse Local-Global Principle states that that the sequence

0— H*(G,L*) — P H*(G",L}) — Q/Z, (4.5.43)

obtained from (4.5.41) and (4.5.42), is exact.

This exact sequence (4.5.43) plays a key role in many arithmetical ques-
tions. For example, the statement that (4.5.41) is an embedding is equivalent
to saying that for the reduced norm

v(a) = Pa(x1,22,...,2N) (4.5.44)
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the Minkowski-Hasse principle holds, i.e. the form v(a) = P4 (x1,za, ..., 2,2)
has a non—trivial zero over L iff it has a non—trivial zero over each completion
of L.

The exactness in the middle term @,H?(GY,L}) describes completely
the classes of cenral simple algebras A which split over L. They correspond
bijectively to tuples of numbers i(v), 0 < i(v) < n, the sum of which is
divisible by n; for some algebra A with the class § € H?(G,L*) one has
invie, pu(6) = i(v)/n € 1Z/Z.

Finally, the statement that for 6 € H?(G, L) one always has

S invi, (90(9)) = 0 € Q/2,

v

is essentially equivalent to the product formula for local symbols (4.5.38), and
to the global reciprocity law.

Indeed, if @ = (ay), € Jx is an idele, then the global Artin symbol 0(c) €
G%> is defined as the limit 6(c) = limg [, g 0s(vy) where the product is
finite, and the local symbols are defined by the condition

X(0y () = invg, (@ U Arx) (4.5.45)

(see (4.5.32)) for all characters x € H'(G32 ,Q/Z).
If «a € K*,ie. a, = a € K* for all v, then for all characters x €
H(G3,Q/Z) one has

X <H gv(av)> = ZinVK“(a U AlX) =0,

since the element

aUAx € H*(GY,Q/7)

belongs to the global Brauer group.
In the case when the extension L/K is cyclic, one can construct using
purely cohomological methods a canonical isomorphism

H*(G(L/K),L*) = K* /Ny /i L* (4.5.46)
and the exact sequence (4.5.43) implies the following:

Theorem 4.27 (Hasse’s Theorem on Norms). If a € K* and L/K a
cyclic extension, then a € Np kL if and only if a € Ny /i, Ly for all places
v of K.

w

In particular, let G be the group of order 2, so that L = K(\/l;) Then
Ni/x (x—l—y\/E) = 22—by?. Hence a can be represented by the form z2—by? over
K iff it can be represented by it everywhere locally, i.e. over every completion
of K. This implies that a quadratic form Q(z,y, z) in three variables over K
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has a non—trivial zero over K iff it has a non—trivial zero over every completion
of K. Passing to arbitrary n we obtain the Minkowski—Hasse theorem, which
states that a quadratic form has a non—trivial zero over K iff it has a non—
trivial zero everywhere locally, cf. [Chev40], [CasT8].

It was pointed out to us by B.Moroz (MPIM-Bonn), that Hasse’s Theo-
rem on Norms may hold for some non-cyclic extensions, providing interesting
examples of the validity of the Minkowski—Hasse principle, and Theorem 6.11
of [PIRa83| at p.309 gives an interesting cohomological condition for Hasse’s
Theorem on Norms to hold.
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Arithmetic of algebraic varieties

5.1 Arithmetic Varieties and Basic Notions of Algebraic
Geometry

5.1.1 Equations and Rings

(cf. [Sha88], [Sha87], [Bou62]). The machinery of algebraic geometry uses com-
mutative rings instead of equations. Replacing a system of equations by a ring
is similar to replacing an algebraic number given as a root of a polynomial by
the corresponding field (or ring) extension. Consider a system of equations

X:F(T;)=0 (iel,jelJ).

Here I and J are index sets; the T} are independent variables; F; are polyno-
mials from the ring K[7}] and K is a commutative ring. We shall say that X is
defined over K. Now the question arises, which objects should be called solu-
tions of the system X ? There is an obvious definition: it is a family (¢;),j € J,
of elements of K such that F;(t;) = 0 for all i € I. However, this definition is
too restrictive. We could also be interested in solutions not belonging to K,
for example the complex roots of a polynomial with rational coefficients. In
general, consider a K—algebra L.

5.1.2 The set of solutions of a system

Definition 5.1. An L-valued solution of X is a family (t;),j € J of elements
of L such that F;(t;) =0 for alli € I. The set of all such solutions is denoted
X(L).

Since every ring is a Z-algebra, if X is defined over Z then we can con-
sider its solutions with values in any ring. Let f : L1 — Lo be a K—algebra
homomorphism, ie. a homomorphism of rings and of K—modules. Then for
any Li—valued solution (¢;) of X, (f(t;)) is an Lo-valued solution. Hence f
induces a map X (L;) — X(L2).
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5.1.3 Example: The Language of Congruences

Let n be an integer of the form 4m + 3. Here is the classical proof that n is
not a sum of two integral squares: if it were then there would be a solution
to the congruence T2 + T3 = 3 mod 4, whereas a short case-by—case check
shows that this is unsolvable. From our new viewpoint this argument can be
rephrased as follows. Let X denote the equation T2 +T% —n =0 (K = Z). We
want to prove that X (Z) = (). Consider Z/4Z as Z—-algebra via the reduction
homomorphism Z — Z/4Z. There is then an induced map X(Z) — X (Z/4Z).
If X(Z) were non—empty, X(Z/4Z) would also be non—empty, which is false.
In general, for any system X over Z, if X (L) is empty for some algebra L, then
X (Z) is empty. In practice one usually tests for solutions in the finite rings
Z/mZ and the real numbers R. A more satisfactory theoretical formulation
uses p—adic fields and the ring of adéles (see Chapter 4, §4.3).

5.1.4 Equivalence of Systems of Equations

Definition 5.2. Two systems of equations X and Y with one and the same
family of indeterminates over a ring K are called equivalent if X(L) =Y (L)
for each K —algebra L. Among all systems equivalent to a given one X, there
is a largest one. Its left hand sides form the ideal P generated in K[T}] by
the F;(T;). In order to see that this is equivalent to X, it suffices to take
L= K[T;]/P.

5.1.5 Solutions as K-algebra Homomorphisms

We summarize the results of our discussion. Starting with the system X as
above, we construct the algebra A = K[T;]/P. Then for any K-algebra L we
have a natural identification

X(L) = Homg (A, L).

The system X is called solvable, if X (L) is non—empty for some non-trivial
(that is, with 0 # 1) K-algebra L. One sees that X is solvable iff 1 is not
contained in P.

We have established the equivalence of two languages: systems of equations
up to equivalence and algebras with a marked family of generators. Forgetting
about the generators, we identify further those systems of equations that
are related by invertible changes of variables. Each element of A can play
the role of an indeterminate in a suitable system. The value taken by this
indeterminate at a given solution is equal to its image with respect to the
homomorphism A — L corresponding to this solution.

In classical algebraic geometry, an (affine) algebraic variety over an alge-
braically closed field K = K is defined to be the set Z C K" of common
zeroes of a system of polynomials
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Fi(TI; o ,Tn) S K[Tl, . 7Tn]
The ring of regular algebraic functions on Z is by definition,

A=K[Z]=K[T,...,T,)/Pz,

where Py is the ideal consisting of all polynomials vanishing on Z. Obviously,
A is a finitely generated K—algebra without nilpotents. Conversely any such
algebra is of the type K[Z].

The abstract notion of a scheme allows us to consider an arbitrary com-
mutative ring A as a set of functions on a space Spec(A4).

5.1.6 The Spectrum of A Ring

Definition 5.3. The set of all prime ideals of a (commutative) ring A (dis-
tinct from A) is called the spectrum of A and is denoted Spec(A). An element
x € Spec(A) is called a point of the spectrum; the corresponding ideal is de-
noted p, C A.

Recall that an ideal p C A is prime iff the quotient ring A/p has no zero
divisors. We shall denote the field of fractions of A/p, by R(x).

5.1.7 Regular Functions

Each element f of A defines a function on Spec(A) whose value at a point
x is the residue class f(z) = f mod p, considered as an element of R(z).
Two distinct elements of A may take the same values at all points of the
spectrum. This happens iff their difference belongs to the intersection of all
prime ideals of A, i.e. to the ideal of all nilpotent elements of A (cf. [Bou62],
[SZ75]). For this reason, the rings of functions of classical algebraic geometry
usually contained no nilpotents. However, this restriction is unnatural even in
many classical situations, since nilpotents arise geometrically when an alge-
braic variety depending on a parameter degenerates in a certain way (e.g. a
polynomial acquires multiple roots). For this reason nilpotents are allowed in
modern algebraic geometry, and all elements of A are thought of as pairwise
distinct regular functions on the spectrum.

We now define a canonical topology on Spec(A4). A minimal consistency
requirement of this topology with a given set of functions is that the vanishing
sets of all functions are closed.

5.1.8 A Topology on Spec(A)

For any subset £ C A, denote by V(E) C Spec(A) the set of all points

x € Spec(A) for which f(x) =0 for all f € E. The family {V(E)} consists of

all closed sets of a topology on Spec(A) called the Zariski, or spectral topology.
Each ring homomorphism ¢ : A — B induces a continuous map
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%o : Spec(B) — Spec(A).
By definition for y € Spec(B), we have

Pagiy) = (py)-

Each set V(E) is itself a prime spectrum: V(E) can be identified with
Spec(A/Pg) where Pg is the ideal generated by E. This identification is in-
duced by the canonical homomorphism

A— A/Pg.

There is also an important basis of open subsets of Spec(A) consisting of
the sets D(f) = Spec(A[1/f]) for f € A. In fact for each E C A we have
Spec(A)\V (E) = UreD(f):

The spectra Spec(A) have very non—classical topologies. As a rule, these
spaces are not separable. The closure of any point € Spec(A), can be de-
scribed as follows:

et = U ve)=v( U E) =V(p.) = {y € Spec(4) , p, > pa}.
ECpe ECps

In particular this space is isomorphic to Spec(A/p, ), so only the points cor-
responding to the maximal ideals are closed. If y € {x}, one sometimes says
that y is a specialization of x; this is equivalent to p, C py. If A has no
zero divisors then the ideal (0) € Spec(A) corresponds to the generic point of
Spec(A), whose closure coincides with the whole spectrum. One can imagine
that the points of Spec(A) have different depths which can be, loosely speak-
ing, measured by the number of specializations of the generic point necessary
to reach a given point. This idea leads to one of the definitions of dimension in
algebraic geometry. A sequence xg,x1, ..., T, of points of a topological space
X is called a chain of length n beginning at z¢ and ending at x,, if x; # x;41
and ;41 is a specialization of z; for all i. The dimension dim(X) is defined
to be the maximal length of such chains.

For example in X = Spec KI[Ti,...,T,] (where K is a field) there
is a chain (0) C (Ty) € ... C (Th,...,Ty), so dim(X) > n. Similarly,
dim Spec Z[T1,...,T,] > n+ 1 because there is a chain

(O) C (p) C (p,Tl) C (p,Tl,Tg) C...C (p,Tl,TQ,...,Tn).

Actually, in both cases the strict equality holds.

Passing to the closures instead of the points themselves, one can say that
this is a variant of the old “definition” of dimension due to Euclid: points are
boundaries of curves, curves are boundaries of surfaces, surfaces are bound-
aries of solids.

Arithmetical intuition is greatly enhanced when one considers rings of
arithmetical type (that is, quotient rings Z[Ty,...,T,]/P) and their spectra
as analogues of algebraic varieties over fields.
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This is in the spirit of the general analogy between numbers and functions.
For example, integral extensions of rings correspond to coverings of complex
varieties, in particular Riemann surfaces. More precisely, let ¢ : R C S be
an integral extension, so that S is a finitely generated R—module. Then the
corresponding contravariant map %y : Spec(S) — Spec(R) is surjective, and
its restriction to the subset Spm(S) of maximal ideals (closed points) is also
surjective (cf. [Sha88]).

For x € Spec(R), the fiber (“¢)~!(z) can be described as Spec(S/p(p,)S).
The structure of the fibers over closed points is described by a decomposition
theorem. In particular “¢ is called unramified at x € Spm(R) if S/ (p,)S has
no nilpotents, and is therefore a direct sum of fields.

Ezample 5.4. Figure 5.1 depicts Spec(Z[i]) as a covering of Spec(Z) (cf.
[Sha88]). The generic point w’ of Spec(Z]i]) projects onto the generic point w
of Spec(Z). The other points are closed. A closed point of Spec(Z) is essentially
a prime p. The fiber (“p)~1((p)) consists of the prime ideals of Z[i] dividing
p. They are principal. There are two of them if p = 1(mod 4); otherwise there
is one. Only 2 is ramified (of multiplicity two).

(2+1) (3-20)
specZ [i] —e )
(1+i) (3) (2-1) LA (3+210)
Spec Z o———o0—=0 o O o— —ew

(20 3) (6 (7 (1)  (13)

Fig. 5.1.

Notice that Spec(Z) and Spec(Z[i]) are one-dimensional (as are algebraic
curves). More precisely, Spec(Z) should be thought of as being an analogue
of the affine line, that is, the projective line minus one point. (We shall later
explain how one “compactifies” Spec(Z) by adding the arithmetical infinity).
This analogy can be illustrated by two deep theorems of algebraic number
theory. The first is Minkowski’s theorem that (Q has no proper unramified
extensions. The second theorem is Hermite’s theorem that Q (or any finite
extension of Q) has only a finite number of extensions with given ramification
points and bounded degree.
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These arithmetical facts have their geometric counterparts in the theory
of Riemann surfaces: the Riemannian sphere has no non—trivial unramified
coverings, and the number of coverings (up to isomorphism) of a given compact
Riemann surface X, which are unramified outside of a given finite set of points
and have a fixed degree, is finite. To prove these statements, one can use the
following formula due to Hurwitz. Let f : Y — X be a covering of Riemann
surfaces; gx,gy their genera and ep the ramification index of f at a point
P €Y. Then

29y —2 = deg(f)(20x —2)+ 3 (e —1). (5.1.1)
PeY

Alongside this one uses an explicit description of the fundamental group
m1(X\S) of a Riemann surface with a finite set of points S removed. This
group has only finitely many subgroups of a given index.

A more sophisticated version of this analogy (dealing with algebraic curves
over number fields instead of finite extensions) was developed by I. R. Shafare-
vich in his Stockholm ICM talk (cf. [Sha62]). The finiteness conjectures stated
in this talk prompted a wealth of research which eventually lead to the proof
of all these conjectures as well as the Mordell conjecture on the finiteness of
the number of rational points on any curve of genus g > 1 over a number field
([Fal83], see also §5.5).

5.1.9 Schemes

The notion of a scheme is basic to algebraic geometry. An affine scheme is
essentially a pair (Spec(A), A), where A is a commutative ring. More precisely,
it is a topological space Spec(A) = X, endowed with a sheaf of local rings Ox
whose ring of sections over an open set D(f) is A[f~1]. A general scheme X is
a topological space X with a structure sheaf Ox such that (X, Ox) is locally
(in a neighbourhood of each point) isomorphic to an affine scheme (see [Ha77],
[Shag8]).

Schemes form a category. Morphisms of affine schemes are defined to corre-
spond bijectively to the homomorphisms of the commutative rings. Morphisms
of schemes are given by such homomorphisms locally.

For a commutative ring K, one can define a K—scheme as a morphism X —
Spec(K). In the category of K—schemes, morphisms should be compatible
with the structural morphisms to Spec(K). Every affine scheme defining X
has locally a canonical structure as the spectrum of a K-algebra.

A scheme is called irreducible if its topological space is irreducible, i.e. if
it is not a non—trivial union of two closed subspaces.

We shall say that X is a scheme of geometric type if it can be covered by a
finite number of spectra of rings of finite type over a field K. Similarly we say
that X is a scheme of arithmetic type if it can be covered by a finite number
of spectra of rings of finite type over Z.
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These two classes have a non—-empty intersection consisting of geometric
schemes over finite fields F,. They were and are a standard testing ground
for various conjectures in which geometric and arithmetical intuitions are
combined. We shall repeatedly turn to this class of schemes. In particular,
if X — Spec(Ok) is a scheme of arithmetic type over the ring of integers
Ok of a number field K, we can define for every prime ideal p C Ok the
reduction X mod p. This is a scheme over the finite field O /p. Considerable
arithmetical information concerning X is encoded in the set all reductions
X mod p.

For a scheme X of one of these types, dim X is defined to be the maximal
length of a chain

ZoC Zy C...C Zy, Zi?éZi-&-la

consisting of irreducible subspaces of X. If X is itself irreducible, with generic
point = having residue field R(x), then dim X coincides with the so-called
Kronecker dimension of R(z), that is, the transcendence degree of R(x) over
its prime subfield, enlarged by one if Char R(x) = 0. In particular,

dim Ay =dim Spec Z[z1,...,z,] =n+ 1.

Example 5.5. The projective space P over a ring K Consider the poly-
nomial ring S = K[Ty,...,T,] graded by total degree S = @g>054. Put
S+ = @a>054. This is a graded ideal. Define Proj(S) to be the set of all
homogeneous prime ideals of S which do not contain S,. It is a topological
space, whose closed subspaces are the sets

V(a) = {p € Proj(S) | p D a}

where a is a homogeneous ideal of S. In order to turn Proj(.S) into a scheme,
put
A, =K[Ty/T;,...,T,,/Ti], Aij = AT/ T5].

We can identify Spec(A;) with an open subset of Proj(S) in such a way that
Spec(A;) N Spec(A;) = Spec(4;;).

The structure sheaves can also be glued together in a coherent way. As a
result, Proj(A) becomes a K-scheme P} which is called the projective space
over K.

5.1.10 Ring-Valued Points of Schemes

Let X — Spec(K) be a K-scheme and L a K-algebra. We define an L—
point of X (over K) to be a morphism Spec(L) — X over K. Denote the set
Mor g (Spec(L), X) of L—points by X(L). If L is a field, we call these points
geometric.
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Ezxample 5.6. a) Let X = A}, K =Z, L =TF,. Then an L—point
ZT,...,T,| = F,

is an n—tuple
(tl, Ce ,tn) € FZ

Hence Card X (F,) = ¢".

b) Let X =P}, K =Z, L = Z/NZ. An element of X(Z/NZ) is a class of
(n + 1)-tuples (to : ... : t,) € (Z/NZ)"*! such that at least one of the
coordinates is invertible. Two tuples are equivalent iff their coordinates
differ by a common factor in (Z/NZ)*. The i*® coordinate is invertible
precisely when the point lies in Spec(A4;) (cf. §5.1.9). It is not difficult to
count the total number of Z/NZ-points:

pn-i-l -1 Nn+1
(p—1)p*  @(N)

Card P(Z/NZ) = N" |
pIN

[[a-p"). (5.12)

p|N

5.1.11 Solutions to Equations and Points of Schemes

Solving a Diophantine equation or a system of equations is the same as finding
a point in a scheme of arithmetic type. In fact, a family of polynomials over
aring K,

F(Ty,....,T,) e K[Ty,...,T,]) (i€l

generates an ideal a C K[T7,...,T,] and for any K—algebra L, the L—points of
the affine scheme Spec(K[T1, ..., T,]/a) correspond bijectively to the solutions
of F; =01in L™.

If the F; are homogeneous then we may consider the corresponding pro-

jective scheme
Proj(K[Ty,...,T,]/a)

and its points. For a general algebra L, the relation between L—points and
solutions here is somewhat complicated. For example if L is the ring of integers
in an algebraic number field, then the set of L—points of P} is related to the
ideal class group of L. However when L is a field, the L—points correspond to
non-zero L—valued solutions upto a homogeneity factor.

Projective space over a field can be obtained from the affine space by
adding the hyperplane at infinity. Intuitively the transition to projective
schemes is a kind of compactification. For this reason, projective schemes
and varieties possess many nice geometric properties which play an important
role in arithmetical investigations.



5.1 Arithmetic Varieties and Basic Notions of Algebraic Geometry 199
5.1.12 Chevalley’s Theorem

Theorem 5.7. Let X be a subscheme of P over a finite field K = F, defined
by an equation F(Ty,...,T,) = 0, where F is a form of degree d and n > d.
Then the set X(F,) (of projective solutions) is non-empty.

cf. ([BS85], [War36]).

Denote by Np the number of solutions of F' = 0 in Fj*!, i.e. the number
of F,—points of the corresponding affine scheme. We shall prove that p|Ng
where p is the prime dividing ¢. Since F(0,...,0) = 0, this shows that there
must also be a non-zero solution.

Obviously 1 — F(T)?%71 is equal to 1 € F, at the points of (the cone over)
X and 0 elsewhere. Therefore,

Np=Npmodp= > (1-F@t)""). (5.1.3)
teAT I (F,)

We now expand the right hand side of (5.1.3) into a sum of monomials. Most
of these will add up to zero. More precisely,

ottt =0 (5.1.4)

terytt

unless all the 7, are non-zero and are divisible by ¢ — 1. This can be checked
for n = 0 directly, and then for general n by expanding the sum in (5.1.4) into
the product of n + 1 factors.

If a monomial Toio ... Ti» appears in the expansion of 1 — F(T)%71,
then necessarily i; < ¢ — 1 for at least one j; otherwise we would have
(¢g—1)deg F(T) > n(q — 1) contradicting the assumption that d < n. Hence
finally Np = 0, so p|Np.

5.1.13 Some Geometric Notions

In this subsection, we shall briefly review some notions of algebraic geometry
over fields, which will be used later. For a detailed treatment we refer the
reader to the volumes of this series devoted to algebraic geometry.

i)Irreducible components. Every K—variety (a geometric scheme over a field
K without nilpotent elements in its structure sheaf) is a finite union of its
irreducible components. After a finite algebraic extension of the base field
K, an irreducible variety may become reducible (its components may form
an orbit with respect to the action of an appropriate Galois group). A va-
riety which remains irreducible after any algebraic extension of the ground
field, is called absolutely (or geometrically) irreducible. Each irreducible
variety has a well defined dimension.
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ii) Singular points. A point x € V can be singular or non-singular (regu-
lar). Amongst the many equivalent definitions of regularity, the following
is probably the shortest: x is regular iff the completion of the local ring
O, (with respect to the m,—adic topology where m, is the maximal ideal)
is isomorphic to a ring of formal power series over k(xz) = O,/m,. The
regular points form a Zariski open subset of V. If V is given by a ho-
mogeneous equation F(x1,...,x,) =0 in a projective space, one can ob-
tain additional equations for the subvariety of singular points by putting
OF (z)/0x; = 0.

Intersection points. A point of intersection of two irreducible components is
always singular.

Genus and singular points. The existence of singular points can drastically
change both the geometry and the arithmetical properties of a variety.
For example, a non—singular cubic curve in a projective plane has genus
one; its set of rational points over, say, Q is quite small (cf. §5.3 below).
When such a curve acquires a double point, the genus of its non—singular
model becomes zero, and its set of rational points becomes much larger.

iii) Embeddins and heights. A variety V given abstractly by an affine atlas and
gluing rules may or may not be embeddable in a projective space. A vari-
ety which is given as a subvariety of a projective space admits in general
many more inequivalent embeddings. A choice of such an embedding (if it
exists at all) is an extremely important additional structure. In geometry,
it allows one to use various induction techniques (fibration by hyperplane
sections etc.). In algebra, it governs most of the sheaf cohomology calcula-
tions via various finiteness and vanishing results. In arithmetic the choice
of an embedding leads to the notion of the height of a rational point, which
is used in most of the quantitative problems of the Diophantine geometry.

Divisors and Invertible sheafs. We therefore say a few words about divisors
and invertible sheaves, the universally used geometric notions which gen-
eralize the ideas of a hyperplane sections and a projective embeddings.

Cartier divisors. Let V be a variety. A (Cartier) divisor on V is given in an
affine atlas V' = UU; by a family of elements {f;}, where f; is a rational
function on U;. On the intersection U; N Uj;, we require that f; = u;; f;
for some regular, regularly invertible function w;;. Two families {f;}, {g:}
determine the same divisor if f; = u;g; for all ¢, where u; is a regular and
regularly invertible function on U;. The divisors form a group Div(V') un-
der the natural composition: {f;}{g;} = {figi}- Every hyperplane section
is a divisor. If all the {f;} are regular, the divisor is said to be effective.

Picard group. An invertible sheaf on V' is a locally free, one dimensional Oy —
module £. The set of all such sheaves upto isomorphism forms a group
Pic(V') with respect to the tensor product. Every divisor D defines an
invertible sheaf O(D): its sections over U; can be identified with elements
of f;Oy,. Vice versa, a meromorphic section of £ defines a divisor D and an
identification £ 2 O(D). In this way, we have a surjective homomorphism
Div(V) — Pic(V).
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Ample sheaves. A projective space has a canonical invertible sheaf O(1). Each
morphism ¢ : V' — P" determines the invertible sheaf £ = ¢*(O(1)). The
sheaves £ obtained from the closed embeddings ¢ are called very ample.
L is called ample if some positive power of it is very ample.

iv) Canonical sheaf. If V is non—singular, one can define the locally free Ox—
module of 1-forms 2% whose rank is d = dim(V). Its d*® exterior power
wy is called the canonical sheaf of V. Its numerical properties have a very
strong influence on the arithmetical properties of V' (cf. the next section).
For V = P" we have wy = O(—n — 1), so w;l is ample. Simultaneously
the set of rational points could not be larger. When wy becomes ample,
one conjectures that most rational points are concentrated on a proper
Zariski closed subvariety.



5.2 Geometric Notions in the Study of Diophantine
equations

5.2.1 Basic Questions

Consider a finite system of polynomial equations over Z. As was explained in
§5.1, such a system defines an arithmetic scheme X, its set of integral points
X(Z) and sets X (L) for more general rings L, for example, rings of integers
O of algebraic number fields.

Let X be a smooth projective algebraic variety over a number field K with
the maximal order O = Q. In this case the K-points of X coincide with its
O-points, so we shall speak about X (K) rather than X (0O).

In number theory, one is interested in properties of K-rational points X (K)
on X. In algebraic geometery one studies the properties of X (C) considered as
a topological space, analytic manifold, or algebraic variety (or, more generally,
one studies X (L) for various algebraically closed fields L). Geometric methods
in the theory of Diophantine equations are used in order to relate the geometry
of X(C) to the arithmetical properties of X (K).

The relevance of such methods is most evident for congruences, or, more
generally, varieties over finite fields. A.Weil in his famous note (cf. [Wei49]) for-
mulated several conjectures concerning the numbers of points of such schemes
and suggested that there should exist a cohomology theory in finite charac-
teristic such that a Lefschetz type theorem in this theory would imply (a part
of) these conjectures. A.Grothendieck and his collaborators developed such a
cohomology theory, and P.Deligne accomplished the realization of Weil’s pro-
gramme by proving the Weil-Riemann conjecture in full generality. In Chapter
6, §6.1 we briefly describe these results.

In this section we survey some known connections between geometry and
arithmetic over number fields.

A) Is X(K) non-empty?
B) Is X(K) finite or infinite? Is it dense in X?
C) If X(K) is infinite, what is the order of growth of

N(H;B) :=Card {zx € X(K)|H(z) < B}?

Here H is a (exponential) certain “height” function, e.g. in fixed coordi-
nates, for X C P,

H(l‘o,...,mn) = H ma‘Xi(|xi|’U)'
vEVal(K)

D) Can one, at least in some sense, describe the set X (K) as a finitely
generated structure?
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For any of these questions one may also be interested in algorithmic so-
lutions. Matiyasevich’s theorem is, however, a strong indication that one will
not be able to answer these questions for all varieties. Instead, one could try to
prove conditional statements of the type “if X (C) has such-and-such geomet-
ric properties (is a one-dimensional irreducible non-singular variety, projective
algebraic group, flag space ...), then X(K) has such-and-such arithmetical
properties (is finite, finitely generated; N(H; B) grows as a power of B...)".
One expects that in the stable range, allowing for a finite extension of K and
restricting to a Zariski open subset U of X, there is a relation between the
set of rational points on U and geometric invariants of X.

Below we shall briefly discuss some results of the latter type, grouping
them around questions A) — D).

5.2.2 Geometric classification

One of the main geometric invariants of a smooth projective variety X is
its canonical class Kx (see §5.1). Algebraic varieties can be classified, very
roughly, according to the ampleness of the anticanonical class —Kx, resp.
Kx. Varieties with ample —K x are called Fano, with ample Kx - varieties of
general type and intermediate type varieties, otherwise. In finer classification
theories, and in many arithmetic applications, one has to allow “mild” singu-
larieties and to introduce further invariants such as Kodaira dimension, cones
of effective and ample divisors etc.

In dimension one the above classification coincides with the topological
classification of Riemann surfaces: genus 0, > 2, resp. 1. Fano varieties in
dimension two are called Del Pezzo surfaces. Over an algebraically closed
field, these are:

P2 P! x P!, S,

where Sy is the blowup of P2 at 9 — d points, and the degree d = 1,...,8.
Surfaces of intermediate type include: abelian surfaces and their quotients, K3
surfaces and Enriques surfaces. The classification of Fano varieties in dimen-
sion three was a major achievement by Iskovskikh and Mori-Mukai, cf. [Isk77],
[Isk78], [MoMu84|, [MoMu03], completing the work of the Italian school, no-
tably G. Fano. Examples are cubics, quartics or double covers of P? ramified
in a surface of degree 6. Interesting three-dimensional varieties of intermedi-
ate type are Calabi-Yau threefolds. One knows that in every dimension, the
number of families of Fano varieties is finite.

Fano varieties are, in some sense, similar to projective spaces. As we have
seen, Del Pezzo surfaces over C are birational to P2. Generally, Fano varieties
have the following properties, quite important for arithmetic applications:
through every point in X there is a rational curve of anticanonical degree
< dim X + 1, defined over C, and any two points can be connected by a chain
of rational curves. However, it is unknown whether or not all Fano threefolds
are dominated by a projective space.
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5.2.3 Existence of Rational Points and Obstructions to the Hasse
Principle

Let X be an algebraic variety over a number field K. An obvious necessary
condition for X (K) to be non-empty is that X (K, ) # 0, for every completion
K, of K. If this condition is also sufficient we say that X satisfies the Hasse
(or Minkowski—Hasse) principle.

Using the circle method one can prove the Hasse principle for complete
intersections in projective spaces whose dimension is sufficiently large with
respect to the degree. B.J. Birch (1962) has proved the following general result.

Let X C P"~! be given by r equations. Assume that the dimension of the
subvariety of singular points of X is less than

n—1—r(r+1)(d—1)2¢"

Then X satisfies the Hasse principle. In particular, it holds for

a) quadrics of dimension > 3 (with number of variables n > 5);
b) intersections of two quadrics of dimension > 10 (n > 13);
c) cubic hypersurfaces of dimension > 15 (n > 17).

One conjectures that this is true for n > 9 in case b) and n > 10 in case c);
this last conjecture was proved, over Q, by Ch. Hooley (cf. [H88]).

The best known results for the case b) are due to J.-L. Colliot-Théléne,
J.-J. Sansuc, and P. Swinnerton-Dyer.

Of course, the case of quadrics is classical. For cubic forms in 3 and 4 vari-
ables the Hasse principle may fail. A conceptual approach to higher obstruc-
tions to the existence of rational points was proposed in [Man70a], [Man72b].
It is based on the Hasse-Minkowski principle for the Brauer group over a num-
ber field (see in §4.5 of the previous Chapter, the exact sequence (4.5.43)),
and Grothendieck’s generalization of the Brauer group for schemes. One has
the following diagram

Br(X) —— @,Br(X,)

zl J{(:E'u)v
Z inv,

0 — Br(K) — @,Br(K,) ="~ Q/Z —>0

In detail, if X is a scheme over a field K, an element a € Br(X) is represented
by a family of semi-simple algebras parametrized by X. In particular, for
any extension field L D K and an L-point « € X (L), one has a natural
specialization a(x) € Br(L), with obvious functorial properties. Assume that
X (K,) # 0 for all v and that for every (z,), € X(A), where A is the adele
ring of K, there exists an a € Br(X) such that

Z inv,(a(z,)) # 0.

v
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Then (z,), cannot belong to X (K) and one says that X has a non-trivial
Brauer—-Manin obstruction to the Hasse principle.

One of the simplest examples in which the Brauer—-Manin obstruction is
non-trivial, is furnished by the projective cubic surface X over Q:

3
z(x+ z)(x 4 22) = H(m + 00y 4922,

i=1
where 0 are the three roots of
0 +70+1)2=0

(this example is due to Swinnerton-Dyer). Its set of adélic points is non-empty.
A local analysis shows that one can construct two elements aj,as of the
Brauer group of this surface with the following properties:

i) if v # 7, the local invariants of a;(z,) vanish for every z, € X(Q,);
ii) for every x7 € X(Qz), either invs(a;(x7)) # 0, or invz(az(z7)) # 0.

Hence the Hasse principle fails for this surface.

J.-L. Colliot-Théléne, J.-J. Sansuc and D. Kanevsky have compiled a table
of diagonal cubic surfaces ax® + by> + cz® + du?® = 0 with integral coefficients
in the range [—500, 500] having rational points everywhere locally, for which
the Brauer—Manin obstruction vanishes. A computer search has shown that
all these surfaces have rational points. One might therefore conjecture that
the vanishing of this obstruction implies the existence of a rational point for
all diagonal cubic surfaces, or perhaps all non-singular cubic surfaces, or even
all non-singular rational surfaces (i.e. those admitting a birational parame-
trization by two independent parameters over C). This conjecture has been
proved for the so called generalized Chatelet surfaces given by an equation of
the form y? — az? = P(x), where a is not a square and P is a polynomial of
degree three or four.

The Brauer—-Manin obstruction has been thoroughly investigated for three
classes of varieties:

i) rational surfaces;
ii) principal homogeneous spaces of linear algebraic groups, especially alge-
braic tori;
iii) principal homogeneous spaces of elliptic curves and more generally Abelian
varieties.

Historically, iii) was the first example. However, it appeared in a different form
in the theory of the Shafarevich—Tate group, whose classical definition will be
given in the next section. The connection with the Brauer—-Manin obstruction
is explained in [Man70a].

J.-L. Colliot-Théléne and J.-J. Sansuc have developed a geometric version
of this obstruction, which is called the descent obstruction.



206 5 Arithmetic of algebraic varieties

Assume that for a variety X over K we have somehow constructed a family
of dominating morphisms f; : ¥; — X such that X (K) = J f;(Y;(K)). Then
one can establish that X (K) is empty by showing that for each Y; there exists
a completion K,y such that Y;(K,;)) = 0. On the other hand, if X(K) is
non-empty, and the Y; are in some sense simpler than X, e.g. rational, one
obtains an explicit description of the set X (K).

Colliot-Théléne and Sansuc have developed a systematic way of construct-
ing such families, based on the notion of a torsor. They have shown that
for non-singular rational varieties these descent families have the following
properties:

a) The descent obstruction vanishes iff the Brauer-Manin obstruction van-
ishes.
b) The Brauer—-Manin obstructions for the descent varieties Y; vanish.

Using the machinery of torsors, Skorobogatov cf. [Sko99] constructed an
example of a surface with trivial Brauer—-Manin obstruction and not satisfying
the Hasse principle. The surface in question has a nontrivial fundamental
group and the obstruction may be interpreted via non-abelian descent (see
also [Sko01]| and [HaSk02]).

5.2.4 Finite and Infinite Sets of Solutions

Once it is established that the set of rational points X (K) on an algebraic
variety X over a number field K is not empty one could ask whether this set
is finite or, for example, dense in X. First of all, let us describe the results in
the case of smooth projective curves:

i) Let X be a curve of genus zero. The X satisfies the Hasse principle. More
precisely, X can be given by a homogeneous quadratic equation in P%-:

aX?+bY?2+c¢22=0

and the local conditions can be checked algorithmically. If X (K) # () then
X is isomorphic to P}, so that X (K) = K U {oo} is Zariski dense in X.
ii) If X is of genus 1 then X (K) can be empty, finite or infinite. Even over Q,
one does not know a provably correct algorithm allowing to distinguish
between these cases. However, there are algorithms that work in practice.
In [Man71] an algorithm was suggested to answer the finite/infinite ques-
tion when it is known that X (K) is non-empty. If one assumes certain
general conjectures on elliptic curves (the Birch-Swinnerton-Dyer conjec-
ture and the Shimura—Taniyama—Weil conjecture, cf. the next section, and
[Man71]) then one can deduce the correctness of this algorithm. Moreover,
X (L) always becomes infinite over an appropriate finite extension of K.
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iii) If X is of genus > 1 then X (K) is always finite. This is the famous Mordell
conjecture, proved by G. Faltings. For more details see the following three
sections.

Note that this rather distinct arithmetic behaviour is well aligned with the
classification of one-dimensional algebraic varieties recalled in Section 5.2.2.
One hopes that this property persists in higher dimensions as well. Bombieri,
for surfaces, and Lang—Vojta, in general, conjectured that rational points on
varieties of general type are always contained in proper subvarieties, i.e., they
are never Zariski dense. If true, this conjecture would have remarkable conse-
quences: non-uniqueness of the Brauer—-Manin obstruction for general hyper-
surfaces [SarWa/|, uniform (in terms of K) upper bounds for the number of
rational points on curves of genus g > 2 etc., cf. [CHMO7].

One may ask for a converse to this conjecture. Note that some care is
necessary. First of all, one has to allow finite extensions of the ground field
(already conics may have no rational points at all). Thus we ask for poten-
tial density, i.e., Zariski density after a finite extension of the ground field.
Secondly, X may not be of general type while admitting an étale cover which
dominates a variety of general type. In this case, rational points on X cannot
be Zariski dense. In dimension two, rational points are potentially dense on

i) Del Pezzo surfaces;
ii) abelian, Enriques and K3 surfaces with an elliptic fibration or an infinite
automorphism group [BoTs99).

All Fano threefolds, except double covers of P? ramified in a surface of degree
6, are known to satisfy potential density [HaTsch|, [BoTs2000].

To get an idea how these results are proved, assume that there is a non-
trivial rational map f : C'— X, where C is a curve of genus 0 or 1 with C(K)
infinite. Then, of course, X (K) is also infinite. Families of such embedded
curves can often be constructed by geometric methods.

Ezxamples.

a) Every a € K* can be represented in an infinite number of ways as a sum
of three cubes in K. In fact, one representation is given by the identity

1 3
a= (320,24—34(14—36) ((a® =35 + (—a® +3%a + 35 + (3%a* + 3%a)?).
The geometric picture is as follows: For any non-singular cubic surface X
and any point x € X(K), denote by C, the intersection of X with the
tangent plane to X at z. If  does not belong to a line in X then C, is a
plane cubic curve with a double point at x. Hence it has genus zero and
a rational point (cf. Part I, §1.3). (This argument must be modified in
certain degenerate cases).
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b) Euler conjectured in 1769 that the equation
ot oyt 42t =t (5.2.1)

has no non-trivial integral solutions. This conjecture was disproved by
N.D. Elkies (1988). He found a solution

2682440* + 15365639* + 18796760* = 20615673*

and proved that there are in fact infinitely many solutions by constructing
an elliptic curve lying on (5.2.1) with infinitely many points. Potential
density of rational points on this quartic, and in fact on any smooth quartic
surface containing a line, has been proved in [HaTsch|, [BoTs99|. Let us
sketch the geometry behind this result: let X be a quartic surface with
a line ¢ and consider the one-parameter family of hyperplanes P? C P3
containing ¢. For each P2 in this family, its intersection with X is a curve
of degree 4 containing £. The residual curve to £ is a plane curve of degree
3 intersecting ¢ in three points. Thus X admits a fibration over P! with
generic fiber a curve of genus 1 and a rational trisection £. Generically, this
implies that rational points on X are Zariski dense already over the ground
field. In some degenerate situtions one has to pass to a finite extension to
insure Zariski density of rational points.

c¢) Of course, we can find even more points on X if we manage to construct
maps P — X or A — X, where A is an Abelian variety with large
A(K) etc. Many geometric methods for such constructions are known.
For example, the diagonal quartic threefold

w4—|—y4—|—z4+t4—|—u4:0

is geometrically unirational, i.e., dominated by P3. It is unknown whether
or not every smooth quartic threefold is unirational.

d) Here is another general method of proving that X (K) is infinite: if X
has an infinite automorphism group G, an orbit Gz of a point x can be
infinite. Examples of K3 surfaces with infinite automorphism groups are
hypersurfaces of degree (2,2,2) in P! x P! x PL.

5.2.5 Number of points of bounded height
Let us start with a heuristic argument. Consider a system of equations
Fi(zo,...,zy) =0, i=1,...,r (5.2.2)
where F; is a form of degree d; with integral coeflicients. Put
N(B) = Card {(x0,...,2,) € Z""' | H(z) := max(|z;]) < B}.

To guess the order of growth of N(B), we may argue as follows. First note
that there are about B"*! points in Z"*! whose heights are < B. Secondly
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F; takes roughly B% values at these points. Assuming that the probability of
taking the zero value is about B~%, and that these events are independent
for different i’s, we get

N(B) = Brti-xdi (5.2.3)

The power on the right hand side of (5.2.3) has a nice geometric interpreta-
tion: if the projective variety X defined by (5.2.2) is a non-singular complete
intersection, then its anticanonical sheaf —Kx is given by the following for-
mula:

~Kx = 0(m+1-Y d,),

where O(1) is induced on X by Opx(1). Hence we can reformulate (5.2.3) in
a more general and a more cautious way, taking into account various counter-
examples to the over-optimistic formulation (5.2.1): we expect the order of
growth of N(B) to be B* a > 0 when —Kx is ample and O(B*¢) for any
€ > 0 when Kx is ample, if one deletes from X some “point-accumulating”
subvarieties, and if one passes to a sufficiently large ground field.

These conjectures were stated in a precise form by V.V. Batyrev and Yu.l.
Manin. We shall add some comments without going into much detail.

a) To obtain a stable picture, allowing to involve geometric notions and con-
structions, we must pass to finite field extensions.

b) We should consider counting problems with respect to arbitrary invertible
sheaves, not only — K x. The latter could fail to be ample, for example, it
could be zero.

The first step in this program is the theory of heights, going back to an
old construction of A. Weil.

Let X be a projective algebraic variety over a number field K and £ an
invertible sheaf on X. Consider all completions K, of K. Denote by |-|, : K —
R the local norm which is the scaling factor of an additive Haar measure with
respect to multiplication by elements of K,. We have the classical product
formula [], |z|, = 1 for all z € K*. If A is a one-dimensional vector space
over K, || - |Jy: A — R denotes a norm such that || aX ||,= |al, || A ||, for all
a € K and A € A. The invertible sheaf £ can be considered as a family of
one-dimensional spaces parametrized by X, and one can define an admissible
metrization as a family of metrics || - ||, for all v, on each fiber of £, with
natural continuity properties (cf. Lang S. (1983)). Given such a metrized sheaf
L= (L, - |lv), the height with respect to it is a function Hy, : X(K) — R
defined by the following formula:

Hy () =[] I sta) 1" (5.2.4)

where s is a local section of £ not vanishing at z. (Its choice is irrelevant due
to the product formula).
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For a list of properties of heights, we refer the reader to Lang S. (1983).
We mention only the following ones:

i) Up to a function of the type exp(O(1)) Hy, does not depend on the choice
of metrization and is multiplicative in £. We shall therefore write H,
instead, if we are interested only in questions invariant with respect to
such choice.

ii) If £ is ample and U C X is a Zariski open subset then the number

Ny(L;B) :=Card {z € U(K) | Hz(z) < B}

is finite for every B.
iii) We have

for all n > 0 and number fields K (this is Schanuel’s theorem, Schanuel S.
(1979)).

A natural generalization of (5.2.5) is the following

Conjecture 5.8 (Linear Growth — first version). Let X be smooth, with ample
—Kx, and let r denote the rank of the Picard group of X. Then there exists a
sufficiently small Zariski open subset such that for all sufficiently large ground
fields one has

Ny(—Kx; B) = cBlog(B) (1 + o(1)). (5.2.6)

Clearly, the conjecture cannot be true for varieties without rational points
or for cubic surfaces containing rational lines, since each such line would al-
ready contribute about B? rational points to the asymptotic. These are the
obvious necessary conditions.

Thus, if X is a cubic surface such that all 27 lines on X are defined over
the ground field and U C X is the complement to these lines then

Ny(—Kx; B) = cBlog(B)°(1 + o(1)).

Lower bounds of this shape have been proved over Q in [SSw-D]. Non-trivial
upper bounds are unknown.
Now consider the variety X C P3 x P? given by the (1,3)-form

3
>y =0
=0

over a field K containing /1. The projection to the z-coordinates exhibits X
as a fibration over P3 with generic fiber a cubic surface. A Zariski dense set
of fibers corresponds to cubic surfaces with all 27 lines defined over K, each
contributing Blog(B)® to N(B). However, the rank of the Picard group of X
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is 2 and Conjecture 5.8 predicts Blog(B) points of —K x-height bounded by
B, leading to a contradiction [BaTsch98a]. A refined approach to the Linear
Growth conjecture, taking into account such fibration structures, is explained
in [BaTsch98b].

On the other hand, varieties closely related to linear algebraic groups do
satisfy Conjecture 5.8, see its refinement by Peyre [Pey95] and its generaliza-
tion to arbitrary ample line bundles in [BatMan| and [BaTsch98b]. Precise
asymptotics, compatible with the above conjectures are known for:

— smooth complete intersections of small degree (for example, [Bir61]);

— split smooth Del Pezzo surface of degree 5 over Q [d1Bre02];

— generalized flag varieties [FMTsch]

— toric varieties [BaTsch98al;

— smooth equivariant compactifications of G/U - (horospherical varieties),
where G is a semi-simple group and U C G a maximal unipotent subgroup
[StTschl;

— smooth equivariant compactifications of GI [Ch-LT02];

— smooth bi-equivariant compactifications of unipotent groups [ShT04];

— wonderful compactification of some semi-simple algebraic group of adjoint
type [ShT-BT04a], [ShT-BT04b).

Very little is known for general higher-dimensional varieties. Geometric
arguments, based on Mori’s theorem that every point on a Fano variety X
lies on a rational curve of degree at most dim X + 1, imply that

Ny (L; B) > ¢BPUA)

for any dense Zariski open subset U C X, sufficiently large K, and some

positive constants ¢ > 0, (U, L) > 0. Batyrev and Manin state conjectures

about the best possible values of 5(U, L) and relate them to Mori’s theory.
Further developments are reflected in the book [PeyTsch01].

5.2.6 Height and Arakelov Geometry

S.Yu.Arakelov (cf. [Ara74a] and §I11.2) had the brilliant idea of considering
Hermitian metrizations of various linear objects related to algebraic varieties
such as invertible sheaves, tangent bundles etc., in order to compactify arith-
metic schemes over number fields at the arithmetical infinity. In particular,
each curve has a well defined minimal model over O which is called an arith-
metical surface (since we added an arithmetical dimension to the geometric
one). Adding metrics at infinity to this, Arakelov developed the intersection
theory of arithmetical divisors. Heights in this picture become the (exponen-
tiated) intersection index, see [Ara74b|, [La88].

This theory was vastly generalized by H.Gillet and C.Soulé [GS91], [GS92],
[SABK94], following some suggestions in [Man84].

Figure 5.2 is a visualization of a minimal arithmetical surface (this notion
was defined and studied by I.R.Shafarevich (cf. [Sha65]|, [Sha66]). Its fibers
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over the closed points of Spec(O) can be non-singular (“non-degenerate”, or
with “good reduction”) or singular (having “bad reduction”). Rational points
of the generic fiber correspond to the horizontal arithmetical divisors; there
are also vertical divisors (components of closed fibers) and “vertical divisors at
infinity” added formally, together with an ad hoc definition of their intersection
indices with other divisors defined via Green’s functions, (see §I11.2).

x € X (K)
Q Gener;c fibre
‘-—--.

Spec 0 7 4
p Us Spec K
(Generic point of Spec 0)

Fig. 5.2.

Arakelov’s picture and the theory of heights played a prominent role in
Faltings’ proof and the subsequent development of his work. We postpone
a more detail discussion of Arakelov geometry and its relation with Non-
Commutative geometry to Chapter 8.



5.3 Elliptic curves, Abelian Varieties, and Linear Groups

5.3.1 Algebraic Curves and Riemann Surfaces

An algebraic curve is a one-dimensional algebraic variety over a field K. Usu-
ally we shall tacitly assume it to be irreducible. Every algebraic curve can be
obtained by deleting a finite number of points from a projective curve. For
every projective curve C, there exists a non-singular projective curve C’ and
a morphism C’ — C which is an isomorphism outside of singular points of C.
The curve C’ is called a (complete) non-singular model of its function field.
It is uniquely defined (upto isomorphism) by this function field.

The genus g of a projective non-singular curve C (and its function field)
can be defined (or calculated) in many ways. Here are some of them:

i) It is the dimension of the space I'(w) of regular differential 1-forms on C
(the differentials of the first kind).

ii) If K = C then g is the topological genus (the number of handles) of the
Riemann surface C'(C) of complex points of C.

iii) Consider a projective embedding C' C P%. In general one can take n > 3
but not n = 2: our curve may have no non-singular plane model. However,
C always has a plane projection with only simple double points. Let d be
its degree and v the (geometric) number of double points. Then

The basic theorem on algebraic curves is the Riemann-Roch theorem. To
state this theorem we require some definitions.

Let D be a divisor on C. It has a degree deg(D): a Cartier divisor on
a non-singular curve can be identified with a formal linear combination of
(geometric) points, and the degree is the sum of the coeflicients of this linear
combination.

Recall that each invertible sheaf £ is isomorphic to a sheaf of the type
O(D) (cf. §5.1.13). Although D is not uniquely defined by L, its degree is.
We may therefore define deg(L) = deg(D). In particular deg(wc) = 29 — 2,
where g is the genus of C. A divisor K = K¢ such that w =2 O(K) is called a
canonical divisor. A sheaf £ is ample iff its degree is positive.

For a divisor D, put (D) = dim I'(O(D)). The Riemann — Roch theorem
for curves can be stated as follows:

(D) — (K — D) = deg(D) — g + 1. (5.3.1)

5.3.2 Elliptic Curves

We shall call a non-singular projective curve X of genus one with a non-
empty set X (K) of K-points an elliptic curve. An elliptic curve has exactly
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one (upto constant factor) differential of the first kind. The divisor of this is
zero. In other words wx = Ox. From the Riemann-Roch theorem (5.3.1) it
follows that [(D) = deg(D) for deg(D) > 1. We can use this to show that i) X
is an algebraic group; ii) X is isomorphic to a plane cubic curve. To prove i)
choose a point 0 € X (K). For any two points z,y € X(K) let D =z 4y — o.
Since deg(D) = 1 we have I(D) = 1. It follows that there exists a unique (upto
constant factor) function f whose divisor is  + y — 0 — z. Define z * y := z.
One can check directly that * is a commutative group law on X (K) (with
identity o). Actually, one can ameliorate this construction in order to define
the algebraic addition law which is a morphism * : X x X — X, verifying the
standard axioms.

To prove ii) choose a non-constant section f € £(20). Then f has a pole of
order precisely two, since sections of £(0) are constants. Furthermore {(30) =
3, so there is a section h € £(30) with a pole of order three at o. From f and
h we can construct seven sections of £(60): 1, f, f2, 3, h, fh, fh?, whereas
1(60) = 6. Hence these seven sections are connected by a linear relation

ao +a1f+a2f2 +(13f3 +boh+b1fh+bgfh2 =0. (532)

Equation (5.3.2) defines a smooth affine cubic curve. Its projective com-
pletion is a non-singular projective plane model Y of X. The identity point
0 € X(K) corresponds to the infinite point (0:1:0) of Y, and the group law
x becomes the law described in Part I, §1.3.2 in terms of secants and tangents.

Making additional linear changes of variables we may reduce (5.3.2) to the
following (Weierstrass) normal forms over a field K:

Y2+ arzy + asy = 2° + axx® + aux + ag,
where a1, as, a3, a4,a6 € K and
A = —b2bg — 8b3 — 27b2 + Ybababs # 0,

where
by =a§+4a2, by = 2a4 + araz, bg :a§—|—4a6.

3
c
The notation j = — is used, where

A
cy = b3 — 24by, cg = —b3 + 36bgby — 216bg.

Then this equation can be further simplified using the transformation = —
u?z’ +r, y — udy + su’z’r + t in order to obtain the following (cf. [Ta73],
[Kob87] :

1) For p # 2,3:

y? = 2% + ayr + ag with A = —16(4a3 + 27a2) # 0. (5.3.3)
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2) For p = 2 we have the condition j = 0 is equivalent to a; = 0, and
the equation transforms as follows: if a; # 0 (i.e. j # 0), then choosing
suitably r, s,t we can achieve a; = 1, ag = 0, a4 = 0, and the equation
takes the form

y* 4+ zy = 2° + agr® + ag, (5.3.4)

with the condition of smoothness given by A ## 0. Suppose next that
a1 =0 (i.e. j = 0), then the equation transforms to

y* +asy = 2% + ayz + ag, (5.3.5)

and the condition of smoothness in this case is agz # 0.
3) For p = 3:

y? = 23 + agx® + agx + ag, (5.3.6)
(here multiple roots are again disallowed).

The proper Weierstrass form (in the case (5.3.3)) is
y? = 42® — gox — gs. (5.3.7)
The discriminant
A= g3 —27g3 (5.3.8)

does not vanish. The coefficients g and g3 are defined upto the substitution
go — u*gs, g3 — ug3 with u € K. The modular, or absolute invariant j of
our elliptic curve is defined to be

g3 g3
270892 5.3.9
g3 — 2793 A (5:3.9)

Two elliptic curves have the same absolute invariant iff they become isomor-
phic over an algebraic closure of the ground field K. The classical Weierstrass
form (5.3.7) emerged in the theory of complex parametrizations of the complex
elliptic curves.

The Riemann surface E(C) of an elliptic curve E defined over C, is a
complex torus, that is, a quotient C/A where A is a lattice

A={z=mn1+net|n1,ne € Z,Im(7) > 0}. (5.3.10)

The connection between this analytic description of E and an algebraic one is
based on the identification of rational functions on E with A-periodic mero-
morphic functions on C, i.e. elliptic functions.

Weierstrass considered the following basic functions:
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1 / 1 1
z)=p(z,4) = =+ —_— — 5.3.11
CRUCOR 2O <<Z_w)2 w2> (53.11)
(prime denoting w # 0);
1
O(2)=¢(z.4)=-2) or (5.3.12)
weA

These series converge absolutely outside A and define elliptic functions. The
set of all elliptic functions with periods A forms a field which is generated over
C by p(z) and ¢'(z). These two functions are related by the equation

0 (2)? = 49(2)* — ga(2) — g3, (5.3.13)
where
1] 11
g2 =160 —5 93 =140 > 5 (5.3.14)
weA weA

Now if an elliptic curve E, C P% is defined by the equation (5.3.7) with go
and g3 from (5.3.14), we can define a map

C/A > E.(C) (5.3.15)

for which z — (p(2) : ’(2) : 1) when z is not in A. The point 0 is mapped to
the infinite point (0:1:0).

The map (5.3.15) is a complex analytic isomorphism. In order to define its
inverse, consider the differential of the first kind

dx/y = dx/\/423 — g2 — g3 (5.3.16)

on the Riemann surface E,(C). We integrate this form over a path joining a
fixed initial point (say, o) with a variable point.

The integral depends on the choice of path, but its image in C/A is deter-
mined only by the endpoints.

According to a classical theorem due to Jacobi, the discriminant A = A(r)
of E, can be expressed via A = A, as

A=(2m) % [TA-g™*=@2m)'"?) r(n)q" (5.3.17)

for all 7 € C with Im(7) > 0, ¢ = exp(2mi7). The function 7(n) is called
Ramanujan’s function. Its first few values are

(1) =1, 7(2) = —24, 7(3) =252, 7(4) = —1472.

The absolute invariant of E. is by definition
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B 1728g3(7)3

J(r) A(r) =q '+ T44 + Z c(n)q™, (5.3.18)

n=1

where ¢(1) = 196884, ¢(2) = 21493760, .... One can prove that j(7) takes all
complex values, which shows that every elliptic curve over C is isomorphic to
E, for an appropriate 7.

Two curves E,, E,/ are isomorphic iff 7/ = ‘cl:jrrs for some matrix (‘Z Z) €

SL(2,Z). In fact, a complex analytic isomorphism C/A = C/A’ is necessarily
induced by multiplication by some u € C*. Therefore, A, = uA,/, so that
(u,ur") is a basis of A, and u = ¢7+d, ur’ = a7 +b. The linear transformation
is unimodular because (1,7’), (u, ur’) and (1, 7) all define the same orientation
of C. We therefore have

92(7') = utga(7),  g3(r') = ulgs(7). (5.3.19)

To sum up, isomorphism classes of elliptic curves over C correspond bijectively
to points of the quotient space H/I", where H is the upper half plane

H = {r € C|Im(r) > 0}, (5.3.20)
and the modular group

I =SL(2,7) (5.3.21)

acts on H by fractional linear transformations. The isomorphism C/A, —

Fig. 5.3.

E,(C) is also compatible with the natural group structures. In terms of elliptic
functions, this is reflected in the addition theorem for elliptic functions:

p(z1 + 22) = —p(21) — p(22) + i <m> ) (5.3.22)
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In terms of the coordinates (x,y) satisfying (5.3.7), we have

1 (y—w\’
1’3:—1'1—£C2+(12)
4 X1 — Tg

where
Py = (z1,w1), Py=(v3,w2), P3=P*P=(x3ws).

Topologically, C/A is a surface of genus one. It can be obtained from the
parallelogram {u; + ua7 | 0 < wuy,us < 1} by identifying the opposite sides
(cf. Fig. 5.3).

Points of finite order. Let E be an elliptic curve defined over a field K.
For an integer N denote by Fy the kernel of the map which multiplies each
point by N:

Ng: E(K) — E(K), Ng(t)= Nt. (5.3.23)
If E is defined over C then the isomorphism C/A = E(C) shows that
Ex 2 Z/NZ x Z/NZ.

In fact Ey corresponds to the subgroup +4/A C C/A. For example 2-torsion
points are represented by 0, 1/2, 7/2, (14 7)/2. It follows that (5.3.15) maps
1/2, 7/2, (1 +7)/2 onto (z;,0) for ¢ = 1, 2, 3, where x; are the roots of the
polynomial 423 — gox — g3. In other words,

©'(1/2) = ¢'(r/2) = /(1 +7)/2) =0,

and
4a® — gox — g3 = 4(x — e)(z — e2)(x — e3),
where
e1=¢'(1/2), ex=¢/(7/2), es=¢'(1+7)/2).

The 3-torsion points have a nice geometric interpretation: they are the
points of inflection of the projective Weierstrass model.

For any ground field K, the morphism Ng has degree N2, and if (char K, N) =
1, we still have

E(E)y 2 Z/NZ x Z/NZ. (5.3.24)

However for char(K) = p and N = p™ we have

EK)y = (Z/p"Z)", (5.3.25)
where yg = 0 or 1, (cf. [La73/87], [La88]).
Assume that (char(K),N) = 1. The field K(Ey), generated by the co-

ordinates of all points of En, is a Galois extension of K and the action of
Gal(K/K) on E(K)y 2 7Z/NZ x 7Z/NZ determines a representation
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py : Gal(K/K) — GL2(Z/NZ) (5.3.26)

whose image is isomorphic to Gal(K(Ey)/K). The field K(Ex) can be re-
garded as an analog of the cyclotomic field K ({x). However it is not in general
Abelian; only for the so called complexr multiplication curves is the analogy
really far-reaching. This is a basic example of the kind of construction made
in Abelian and non—Abelian class field theory.

It is known that the representation det(py) is the cyclotomic character of
Gk = Gal(K/K); that is, it corresponds to the action of G on the group
pxn of N*' roots of unity. Actually these roots are contained in K(Ey), and
En is endowed with a canonical non—degenerate alternating Weil pairing

compatible with the action of G i. This is defined purely algebraically, with the
help of the functions fp, P € E(K) such that div(f) = NP — No. Calculating
the pairing for an elliptic curve E over C, given by a period lattice A, we obtain

en((a+b7)/N,(c+dr)/N) = exp(2ni(ad — bc)/N). (5.3.28)

5.3.3 Tate Curve and Its Points of Finite Order

(see [Ta74], [He97], p.343). Let us write again the Weierstrass equation for
C/(2mi)A = C*/{¢") (u+— exp(u))

in the following form

Y?=4Xx%— %XJF% (X = p(2miu, (2mi)A), X = ¢ (2miu, (2m)A)), w = 2mi du,

using the Eisenstein series (see also in §6.3.2, (6.3.4)):

!/

Gulr) = X -+ ) 5320
m1,maEZ
2(2mi B i -
- (li — 1))1 _2712 + ;Uk—l(n) eXp(anr)] =

k!

2k itk B
l—— Z or-1(n) exp(27rin7-)] = _wEk,
where the prime denoting (mi, m2) # (0,0),

Ey(r)=1- 2k Z or—1(n) exp(2minT),
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op—1(n) = Zd|n d*=1 and By, is the k* Bernoulli number. In particular we
have that

12(2mi)*ga(7) = B4 = 1+ 240 Y o3(n)q" (g = exp(2mir),

n=1

—216(2mi)°g3(7) = Eg = 1 — 504 > _ o5(n)q
n=1

Let us pass to the variables x,y via the substitution
X + ! Y +2
= — =
12’ Y,
in order to obtain a new equation of this curve (with coefficients in Z[[g]]):

Tate(q) : y* + zy = z° + B(q)z + C(q),

where

> 3,n
Blg) = -5 ( 40) =5 Zag =5y 1”_qqn, (5.3.30)
n=1

(%) 7(’36‘1)
240 —504 1 < (7Tn® +5n
Cla) = 12 32 1—q)

This equation defines an elliptic curve over the ring Z((g)) with the canonical
differential weq, given by

do_dx
2+ Y
JE
g2 = 60G, = (2mi)* 1;
6 Eo

Let N > 1 be a natural number. Let us define
Tate(q™) : y* + zy = 2 + B(¢")z + C(¢").

Next we put t = exp(2miu), then the points of order N on Tate(q") corre-
spond to t = (¢’ (0 <i,j < N—1),{ny = exp(27mi/N), and their coordonates
are given by

0=% e 2 Tk
)= ———— 2y —
_ N 2 _ N
nez (1 q nt) n:ll q i
2Nnt2

t) = .
y( ) Z (1 _ ant)3 + ngl 1— ant

neE”Z
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It is important for arithmetical applications for the Tate curve that these
coordonates belong to the ring Z[Cn, N ~[[¢]]-

Proof uses the identity

Z(u+n)7k: (271—Z Z k—1 2mnu (k’>2 UGZ)

neEZ (

We have for the lattice A = 27i(Z + 7Z) the following equalities

X = p(2miu) =
1
@ri) 2 (u+ > ((ut+mr+n)2 = (mr+n)?) | = (5.3.31)
m,ne”L
(2mi)~ (ZZu—i—mT—i—n —QZZmT—‘,—n —2§(2)>:
MmEeZneZ m=1n€eZ
— wi(u+mT)n - — TEMmnT 1
3 Sty 3 S ey L
meZn=1 m=1n=1

implying the above identities.

5.3.4 The Mordell — Weil Theorem and Galois Cohomology

The fundamental arithmetical property of elliptic curves defined over an al-
gebraic number field K is the following result.

Theorem 5.9 (The Mordell-Weil Theorem). The Abelian group E(K)
1s finitely generated, that is

E(K) = E(K)tors ® 2", (5.3.32)

where E(K)iors @8 a finite (torsion) group, and rg is an integer > 0, called
the rank of E over K.

(cf. [Wei79], [La83], [Se97] and Appendix by Yu.Manin to [Mum74]).

This theorem is proved in two steps. One first shows that E(K)/nE(K)
is finite (for some, or every n > 2). Then one uses a descent argument based
on the following property of logarithmic heights h(P):

h(P) < const + n~*h(nP + Pp)

for a fixed Py, variable P and a constant independent of P.
The weak finiteness theorem for F(K)/nE(K) can be established by a
kind of Kummer theory for K(E,).
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Consider the extension K(:E(K)) of K(E,). One proves that this is a
finite Abelian extension whose order divides n. This can be deduced from
Hermite’s theorem on the finiteness of the number of extensions of a fixed
number field having prescribed degree and ramification points. In order to
apply Hermite’s result one must check that every ramified prime either divides
n or is a point of bad reduction of E.

Now consider the exact sequence

0— E, — E(K)-"SE(K) — 0. (5.3.33)
This gives rise to an exact sequence of Galois cohomology groups
B(K)SE(K) — H(Gx, E,) — H' (G, B(K)) " H' (G, E(K))
which can be rewritten as
0 — E(K)/nE(K) — H Gk, E,) — H (Gg,E(K)), — 0. (5.3.34)

Although the group H'(G, E,) is infinite, the image of F(K)/nE(K) is
contained in a finite subgroup, which we shall describe in geometric terms.
An element o € HY(Gg, E,,) corresponds to an n-fold covering of E over
K, that is to a map a : C' — FE of algebraic curves, which becomes isomorphic
ton: E® K — E® K when the ground field K is extended to K. Given
such a covering, one constructs a 1-cocycle by choosing a point P € E(K),
an inverse image @ = a~!P, and a point ; € E(K), which corresponds to

~

Q under a structure isomorphism C(K) = E(K). Then one defines « as the
class of the cocycle:

o a, =01 - Q7 €E, (0€Gk) (5.3.35)

(subtraction refers to the group law on F; we shall later on denote it by +
instead of *). Elements 3 € H'(Gg, E(K)) are interpreted as isomorphism
classes of the principal homogeneous spaces X of E over K, that is, curves X
given together with group actions ¥ x X — X which become isomorphic to
the addition morphism of E when the ground field is extended to K. Given

such an X, choose a point P € E(K), a point P, € X(K) corresponding to
P under a structure isomorphism, and define a cocycle

o fB,=P— P € BE(K) (0¢€Gkgk). (5.3.36)

A different choice of P leads to a cohomological cocycle. The cohomology class
is trivial iff X has a rational K—point. This establishes a direct connection
between Galois cohomology and Diophantine geometry.

The exact sequence (5.3.34) can be conveniently described in this setting.
A point P € E(K) determines an n—covering
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where tp is the translation by P. Now choose a point @ € E( ) such that
n@ = P. Then tpn = ntg, so that the translation tg : FQ K — F® K is
a K-isomorphism of algebraic curves, turning (5.3.37) into multiplication by
n. Therefore, our n—covering becomes trivial over K’ = K (L E(K)). Hence its
class belongs to the finite subgroup

M, = Infi(HY (G(K'/K),E,)) € H'(Gk, E,),

whose order can be bounded in terms of the degree and ramification of K’.
This finishes the proof of the weak Mordell-Weil theorem.
The descent argument proceeds as follows: choose a finite number of rep-
resentatives
Py,..., P

of E(K)/nE(K). There is a constant C' such that if h(P) > C, then

h (;(P - Pi)) < n(P),

where P; is congruent to P modulo n. Hence P can be represented as a linear
combination of
P,..., P

and points of height <C whose number is finite.

The exact sequence (5.3.34) can be used to obtain upper bounds for the
rank rg. In fact, if n = p is a prime and M is a finite subgroup of H!(Gk, E,)
containing the image of F(K)/pE(K) then (5.3.34) shows that

TE < rkz/pz(M) — rkz/pz(E(K)p). (5338)

Any improvement on this bound would require an understanding of the co-
kernel of the map
E(K)/pE(K) — M.

In order to choose a small, well-defined M, it is convenient to apply the
usual local-to—global constructions. For each place v of K, choose an exten-
sion w of v to K and denote by G, C G the corresponding decomposition
subgroup G, = G(K,/K,). Then for an arbitrary G-module A we have
restriction homomorphisms H(Gg, A) — H'(G,, A). In our setting, these fit
into the commutative diagram

0— E(K)/nE(K) — H'(Gk,E,) — HY Gk, E(K)), —0

l l s=11s1

0—>HE o) /nE(E)-[[ HY(Gy, En —>HH (G, E(Ky))u— 0

v
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in which 3, denotes the composition of the restriction morphism and the

morphism induced by the inclusion E(K) — E(K,,).
Let us consider the group

II(E,K) = | J (B, K),, TI(E,K), =Ker(3). (5.3.39)
neN

This group is called the Shafarevich—Tate group of E over K its interpre-
tation in terms of the Brauer group and connection with the Brauer—-Manin
obstruction is explained in [Man70b]. In our setting, an element of III(E, K)
corresponds to a principal homogeneous space of E over K (up to isomor-
phism) which has a K,—point in every completion of K.

The group

S(E,K), = o YIII(E, K),) (5.3.40)

(and the inductive limit of these groups over all n) is called the Selmer group of
E. An element of S(F, K),, can be interpreted as (the class of) an n—covering
C' — FE such that C has a K,,—point in each completion K, of K. By definition
we have an exact sequence

0 — E(K)/nE(K) — S(E,K), — UI(E, K),, — 0. (5.3.41)

One can say that III(E, K) is a cohomological obstruction to a calculation
of E(K). There is a conjecture that III(E, K) is finite. This was proved by
K.Rubin in [Rub77] for certain curves with complex multiplication, and by
V.Kolyvagin (cf. [Koly88]) for a class of curves uniformized by modular curves.
More recently, these results were extended to a classe of curves without com-
plex multiplication by K.Kato, cf. [Scho98].

We shall return to this question in Chapter 6 in connection with zeta—
functions and modular functions.

We now consider in more detail the properties of the height function hp :
E(K) — R corresponding to a divisor D, or, equivalently, to the invertible
sheaf O(D) of degree d on an elliptic curve E. Since the degree of the map
ng is n?, one can check that

hDonE NHZhD. (5342)

More precisely the following limit exists:
hp(z) = Jim hp(2Nz) /22N, (5.3.43)
This limit Ap is called the Néron-Tate height.

If the divisor D is ample (see 5.1.13) then hp is a quadratic form on E(K),
which is positive definite modulo torsion. Moreover its natural extension



5.3 Elliptic curves, Abelian Varieties, and Linear Groups 225
hp: E(K)®zR — R

is of the form dbg, where d = deg(D) and by is a positive definite quadratic
form independent of D. The kernel of the natural map E(K) — E(K) ®y
R is the finite torsion subgroup E(K)ios; its image is a lattice in the rgp—
dimensional Euclidean space with the scalar product

(P.Q) = 3 [bo(P+ Q) ~ bo(P) ~ bo(Q)]]

Therefore, the region hp < log(B) in this space is a ball of radius
(d ' log(B))"/2.

The number of points in this ball is asymptotically proportional to its volume,
that is const - (log(B))"/2. The constant in this expression depends on the
volume of a fundamental domain for the lattice £(K) mod torsion, that is, on
the regulator of F over K:

H = H(E,K) = det((P;, P;))"/2. (5.3.44)

B.Mazur has proved that Card(E(Q)ors) is universally bounded (cf. [Maz77]).
This result was extended to all number fields by L. Merel, cf. [Mer96]. Actually
Mazur showed that F(Q)ors is always isomorphic to one of the following fifteen
groups:
Z/mZ (m <10,m =12), Z/2Z x Z/2vZ (v < 4).

All these groups arise in this way.

It is conjectured that there are elliptic curves of arbitrarily large rank over
Q. J.-L. Mestre constructed curves of rank rg > 14 ([Me82]), by choosing
equations in such a way that their reductions modulo many primes p have as
many points modulo p as possible. A concrete example of a calculation of the
group E(Q) is given in [Maz86]. Consider the curve

E: —206y* = 2* — 2% 4+ 1/4

and three points on it

Point = y  Néron — Tate height
P -15/8 7/32 1.52009244
P, —55/8 43/32 2.05430703

P;  —55/98 47/1372 2.42706090

A descent argument shows that rg < 3, and a height computation allows

one to conclude that Py, P5, P3 are linearly independent generators of E(Q) =
Z3; The absence of torsion can be checked by p-adic calculations.
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For a given elliptic curve, the numbers |E(Q)iors|, re, H(F, K), |III(E, K)|
(conjecturally finite), and the conductor (a product of primes of bad reduction)
are the most important arithmetical invariants of E. Later we shall see that
all these invariants are combined (partly conjecturally) in the properties of its
zeta-function (see §6.4.4).

5.3.5 Abelian Varieties and Jacobians

(cf. [Mum?74], [Lab8], [Weid8]). Abelian varieties are multi-dimensional gener-
alizations of elliptic curves. By definition, an Abelian variety A over a field K
is a non—singular projective variety, together with a group structure given by
morphisms over K:

AxA—A (z,y)—2x+y), A—A (x— —x).

One can prove that any such structure is commutative, which justifies the
additive notation.

A homomorphism of Abelian varieties is a morphism A : A — B of al-
gebraic varieties which is a group homomorphism. If dim(A) = dim(B), the
surjectivity of A is equivalent to the condition that the kernel of A is finite.
If these conditions are satisfied then A is called an isogeny, and A and B are
said to be isogenous.

In particular, multiplication by an integer ma : A — A, ma(x) = maz, is
an isogeny of degree m?9, g = dim(A). If the characteristic of the ground field
does not divide m, then

Ap = A(K),, = Ker(my) = (Z/mZ)%.

In particular the action of the Galois group on A,, defines a Galois represen-
tation

pm : Gr — Aut(A,,) C GLog(Z/mZ). (5.3.45)

These representations are the best studied examples of the general Galois
actions on Grothendieck’s étale cohomology groups. As in the case of elliptic
curves, there is a non—degenerate alternating Weil pairing

em : A(K)m X A(K)m — . (5.3.46)
This is compatible with the action of the Galois group, so that
Im(p,,) C GSp,(Z/mZ) C GLag(Z/mZ),
where GSp, is the group of symplectic matrices: for an arbitrary ring R,

GSp,(R) = {M € GLyg(R)|M"J,M = pu(M)Jy, p(M) € R*},  (5.3.47)
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where J, is a standard symplectic matrix. Actually, the construction of e,
depends on the choice of a polarization on A (cf. below).

If A is an Abelian variety defined over C, the complex variety A(C) is
isomorphic to a complex torus C9/A, where A is a lattice in C9. Not every
complex torus, however, can be obtained in this way. A necessary and sufficient
condition for this is the existence of an R—valued, R-bilinear form E(z, w) with
the following properties:

E(z,w) = —E(w, z). (5.3.48)
E(z,w) € Z for all z,w € A. (5.3.49)
E(z,iw) is an R — bilinear, symmetric, positive definite form.  (5.3.50)

Such a form F is called a Riemannian form on the complex torus CY9/A.
It also defines a Hermitean Riemannian form on CY:

H(z,w) = E(iz,w) + iE(z,w). (5.3.51)

If such a form E exists at all, it is not unique. We shall say that a choice of
E defines a polarization of A.

An Abelian variety together with a polarization is called a polarized
Abelian variety.

We recall the following classification theorem for non—degenerate alternat-
ing integral forms on a lattice A = Z29: for each form, there exists a basis
{A1,..., Agg} of A such that

E(\i; \j) = E(Agyi, Agyj) =0 for 1<4,j<g,
E(X\i,Ag+j) = €05 for 1<4,5<g,

where ey, ..., ey are natural numbers,

etlea, ..., eqg—1leg.

Clearly,
det4(E) = (e1ez...¢e.)%.

A polarization with determinant 1 is called a principal polarization.

There is a totally different definition of polarization, which is purely al-
gebraic and is valid over any ground field. Namely, consider an arbitrary
projective embedding A < PY. Call two embeddings equivalent if one can
be obtained from the other by a projective transformation composed with a
translation by a point of A. An equivalence class of projective embeddings
defines a linear system of hyperplane sections D of A. Over the complex
ground field, this gives rise to an integral 2—cohomology class of A(C), which
in turn defines a Riemannian form E, in view of the known structure of the
cohomology ring of a torus. Elaborating this correspondence, one obtains the
following
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Definition 5.10. An (algebraic) polarization of an Abelian variety A is a
class of ample divisors {D} up to algebraic equivalence.

5.3.6 The Jacobian of an Algebraic Curve

([Lab8|, [Weid8]). Let X be a non-singular projective curve over a field K. One
defines in an invariant way an Abelian variety J = Jx, which parametrizes
the invertible sheaves (or divisor classes) of degree zero on X. This Abelian
variety is called the Jacobian of X. For K = C, its structure is essentially
described by Abel’s theorem. Consider a divisor

a:ZniPi, Zni =0.

We have a = 9C where C is a I-chain. Choose a basis of the differentials of
the first kind

{wi,...,wy}

on X, where g is the genus of X. Consider the point

</Cw/cw) ecs.

Since one can replace C' by a homologous 1—chain, this point is only well
defined modulo the period lattice Hy (X, Z) of our basis. Abel’s theorem asserts
that the map sending « to the class of this point in the torus C?/H;(X,Z),
identifies this torus with the group Jx (C) of all classes of divisors of degree
zZero.

The classical Riemann periodicity relations imply that the lattice Hy (X, Z)
is self-dual with respect to a canonical Hermitean metric. Hence

Hy(X) 2 C?/Hy (X, 7)
where HEZ) denotes the Pontryagin character group of H;(X,Z). This

shows that Jx can be considered as an algebraic avatar of the 1-cohomology
of X.

Properties of Jacobians.

1) dim(Jx) = g (the genus of X).

2) Jx is an Abelian variety, and for every extension field L of K, the group
Jx (L) is canonically isomorphic to the group of divisor classes of degree
zero on X with ground field extended to L.

3) Every morphism of curves of finite degree f : X — Y determines a
functorial homomorphism f* : Jy — Jx, corresponding to the inverse
image map on divisor classes.
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4) Jx has a canonical principal polarization. This has an algebraic description
as the class of the Poincaré divisor 6. The Poincaré divisor can be defined
as follows. Start with Abel’s map

p: X — Jx, (5.3.52)

which sends a point @ € X(K) to the divisor class cl(x — P), where

P € X(K) is some fixed point. Consider the map
R (IR Ay Ny

where p is the addition map. From the Riemann—Roch theorem it follows
that 1 is surjective. Put § = ¢(X971).

Many geometric and arithmetical properties of a curve X can be read
off from the properties of its Jacobian. In particular, the classical theorem
of Torelli (cf. [WeibT7]) states that X can be uniquely reconstructed from Jx
together with its canonical principal polarization. Essentially this theorem
was used in Faltings’ theory and in earlier constructions due to A.N.Parshin
and Yu.I.Zarkhin (cf. [Zar74|, [Zar85], [Par7l]|, [Par73], [PZ88]).

If X is defined over K, the Jacobian and its principal polarization are both
defined over K. If X has a K—point P, the map (5.3.52) is also defined over
K.

One can also prove that if X is an algebraic curve over an algebraic num-
ber field K having good reduction modulo a prime p C Ok, then Jx with
its canonical projective embedding (given by the divisor #) also has good
reduction.

Every Abelian variety A over a number field (or absolutely finitely gener-
ated field) K satisfies the Mordell — Weil theorem: A(K) is a finitely generated
commutative group, that is

A(K) =2 A(K )tors ®Z™4,

where A(K )ors 1s finite and 74 is the rank of A over K (cf. [La83], [Se97] and
Appendix by Yu.Manin to [Mum?74]).

As with elliptic curves, one can define the Selmer groups S(A, K),, and
the Shafarevich — Tate groups III(A, K). A standard conjecture is that the
latter are all finite.

Every divisor D on A determines a Néron — Tate height

hp: A(K)®R — R,

and if D (that is, O(D)) is ample, then hp induces a Euclidean metric on the
r s4—dimensional vector space A(K) ® R.

A very important role in the theory of Abelian varieties is played by
the endomorphism ring End(A) of A (over K) together with the Q-algebra
End(A4) ® Q. It is known that this algebra is semi-simple.
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The Abelian variety A is called simple if End(A)®Q is simple. A decompo-
sition of End(A) ® Q as a sum of simple algebras Ry & - - - & R corresponds to
a decomposition of A into a product of simple Abelian varieties up to isogeny:
there exists an Abelian variety

B=By x---x By

isogenous to A such that End(B;) ® Q = R; ([La58]).

Let E be a Riemannian form corresponding to a polarization of an Abelian
variety A over C. Such a form determines a Rosatti involution p on
End(A) ® Q (that is, an anti-isomorphism of order 1 or 2) which verifies the
relation E(Az,y) = E(x, \Py) for every A € End(A) ® Q. Involutions of this
kind can also be defined over a ground field of finite characteristic.

Semi-simple algebras with involutions have been classified, cf. [Mum74],
[Shi71].

If K is a number field, g = 1, then either End(4) @ Q = Q or End(4) ® Q
is an imaginary quadratic field k. In the latter case A is called an elliptic curve
with complex multiplication. It can be represented as a complex torus C/A
(see (5.3.15)) with 7 € k, Im(7) > 0.

We now sketch an analytic construction of the space A, of isomorphism
classes of Abelian varieties over C with principal polarizations. The crucial
observation is that each such variety can be represented as a complex torus
C9/A,, where

A=A, = {Tll “+ noT | ni,Ng € Zg, T E Hg} (5353)
and H, is the Siegel upper half space
H, = {7 € GLy(C) | Im(7) is positive definite}.

In fact, let A be an Abelian variety with a principal polarization, given as
a torus C9/4, and a Riemannian form F on A with determinant 1. Choose
a symplectic basis {wi,wa, - ,waq} of A. Representing w; by its column of
coordinates, we can construct a (g x 2¢)-matrix

n= (w17w27"' 7w2g)

which is called a period matriz of A. Put 2 = ({21, {25) where 2; € My(C).
From (5.3.48) and (5.3.50) it follows that

Q0 — 2 0% =0, (5.3.54)

2i((22ﬁt1 - Qlﬁ;) > 0 is positive definite.

Thus 21,2, € GLy(C) and 7 = 95101 € H,. From this one deduces that
the complex variety A(C) is isomorphic to the torus C?/A., and the initial
polarization corresponds to one given by the form
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E(x1 + Ty1, w2 + Ty2) = T1Y2 — Toy1,

where z;,y; € RY.
The varieties C9/A, and C9/A, are isomorphic iff

7" = (At + B)(CT + D)_1

. . AB
for a certain matrix M = (C D) from the group

Spy(Z) = {M = <gg> € SLoy(Z) | M*J,M = Mg}. (5.3.55)
This group is called the Siegel modular group of genus g.

Summing up, we see that A, can be described as the quotient space
H,/Sp,(Z) where M acts on Hj, by matrix fractional linear transformations.

One can show that A, is a complex analytic space of dimension g(g+1)/2
with a natural structure as a normal quasi—projective variety defined over Q.
A generic Abelian variety over C is simple, and its endomorphism ring is Z.

There are important variations of this construction. One can consider fam-
ilies of pairs A, F in which End(A) and F verify some additional constraints,
and one can supply such pairs with so called level structures, for example a
choice of symplectic basis for the subgroup A,, of points of order m. In many
situations there exist universal PEL—families (Polarization, Endomorphisms,
Level), whose bases are very important algebraic varieties (Shimura Varieties)
defined over number fields. The action of the Galois group on the Algebraic
points of these varieties can be described in considerable detail.

5.3.7 Siegel’s Formula and Tamagawa Measure

Algebraic groups comprise not only of Abelian varieties but also of linear
groups. The latter are affine varieties, whereas Abelian varieties are projec-
tive. The arithmetic of linear groups is a well-developed chapter of algebraic
geometry. For an extensive report on its qualitative aspects we refer the reader
to the papers of [P182], and [PIRa83]. We shall describe here only classical re-
sults due to C.-L. Siegel, which were generalized and reinterpreted by Weil.
These results give a quantitative form to the Minkowski-Hasse principle for
quadratic forms, and lead to certain precise formulae of the kind furnished by
the circle method for the principal terms of some arithmetical functions.
Siegel’s formulae concern the equations

S[X]=T (S[X]=X'SX) (5.3.56)

where S € M,,,(Q) and T' € M,,(Q) are the symmetric matrix forms of Q-
rational quadratic forms gg and gr, the solutions X being in M,, »(Q).

Let us consider in more detail the case when S and T are the matrices of
integral positive definite quadratic forms corresponding to the lattices Ag C
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R™, Ar C R™ (in the sense that ¢s and gr express the lengths of elements of
Ag, resp. Ar). Then an integral solution X to (5.3.56) determines an isometric
embedding Ag — Ap. Denote by N(S,T) the total number of such maps,
which is also called the number of integral representations of ¢r by ¢s. The
genus of gg is by definition the set of quadratic forms, rationally equivalent
to gs. The genus consists of a finite number of classes with respect to integral
equivalence. Let I be the set of these classes. One of Siegel’s formulae gives
the value of a certain weighted average of the numbers N(S,,T’) over a set
of representatives S, for classes x € I of forms of a given genus. To be more
precise, denote by w(z) the order of the group of orthogonal transformations
of the lattice Ag, and define the mass of S by the formula

1
w(z)’

Mass(S) = Z

zel

(5.3.57)

Assume that N(S,,T) # 0 for at least one x (or, equivalently, that there is an
isometric embedding Ag ® Q — Ar ® Q) and put

- o N(S.,T)
N(S7T)_Mass(5)wzel w(z)

Siegel’s formula expresses this average as a product of local factors

N(S,T) = cm-nCp @oo(S,T) [ [ (S, T), (5.3.58)

where ¢; = 1/2, ¢, = 1 for a > 1, and the proper local factors are defined as
follows. For a prime p denote by N(S,T;p") the number of solutions of the
congruence

SX]=T (mod p") (X € My, ,(Z/p"Z)) (5.3.59)
and introduce the local density

a,(S,T) = Tll)r{.lc CmnaN(S, T;p" W™, d=mn—-n(n+1)/2 (5.3.60)
(the expression inside the limit actually stabilizes when r is sufficiently
large). One can define ay(S,T) similarly, replacing the p-adic measure by
an Archimedean measure. Consider a neighbourhood V' of a matrix S in the
space of symmetric matrices {T = (t; ;) € M,,(R) | T* = T'} with the measure
given by the volume form ap = Aj<;dt; ;. Put

U={X = (2:;) € Mpn(R) | X'SX € V1.

It is a subset of M,, ,(R) with a measure § = A, ;dz;; (i = 1,...,m;j =
1,...,n). Finally put
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: Bx
O‘oo(S7 T) = Cm—n+1 \}ILHS ‘}‘Z or

(5.3.61)

The product in (5.3.58) converges absolutely if m > 3 and m — n # 2.
In the special case T'= S we have

N(S,T) = m

and (5.3.58) becomes the Minkowski—Siegel formula ([Se86], p. 671)

Mass(S) = cmaroo(S,S) ™ [ [ ap(S,9) 7" (5.3.62)

If n=1,T = (t) then N(S,T) is the number of integral representations of
a positive integer ¢ by the quadratic form ¢g.

Note that for almost all primes p (i.e. for all but a finite number) each
solution to the congruence (5.3.59) can be lifted to a solution of the corre-
sponding congruence modulo any p” (using Hensel’s lemma). In this case we
have

aP(S’ T) = pd ’

(5.3.63)
which makes it possible to describe explicitly almost all the local factors in
(5.3.58) and to express this product in terms of special values of certain zeta—
functions (for example, values of the Riemann zeta—function at integers).

Consider for example the quadratic form gg = >/, 2 given by the iden-
tity matrix S = I,,,. If m is divisible by 4, then (5.3.62) takes the following
form ([Se86], p.673):

Mass(I,,,) = (1 — 2—k)(1 +£2'%) | BoBy - - - Boy|/4K!,

where k = m/2, e = (—1)"/? and B; is the i*" Bernoulli number. For m not
divisible by 4 there are exactly two classes in the genus of the form Iy, and
Mass(ly) = 17/2786918400.

We now say a few words on how Siegel’s formula is proved. The proof
uses the theory of integration over the locally compact group G = O,,(A) of
orthogonal matrices with respect to S with coefficients in the ring of adeles
A. The group G, = O,,(R) is compact in view of the positive definiteness of
S. Thus G contains the compact open subgroup {2 = G, X Hp G(Sp), where
G(S,) = O(Z,) is the orthogonal group of the p—adic lattice Ag, = As @ Z,,
(preserving the quadratic form gg). The subgroup I = O,,(Q) of orthogonal
matrices with rational coefficients is discrete in G and I' N 2 = Aut Ag is
the finite group of automorphisms of the lattice Ag. For every z = (z,), € G
with (v = p or v = 00) one can define a lattice Ag, such that Ag, ® Q, =
Zy(As ® Q). According to a version of the Hasse-Minkowski theorem, there
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is an isomorphism Ag, ® Q = Ag ®Q and the double cosets 221" of G modulo
2 and I can be interpreted as Z-classes of forms S, (z € I). The finite group
Yo = 2N axlz~"! of order w(w) is the group of automorphisms of the lattice
Ag, . Below a normalized Haar measure 7 on the group G will be constructed.
This measure is invariant under both right and left group shifts, and has the
property that the volume vol(G/I") of the compact set G/I" = UyerR2I/T
is uniquely defined (not only up to a multiplicative constant). This measure
is called the Tamagawa measure on G. The following formula holds

1

w(z)’

vol(G/T) =~ vol(2/yz) = vol(£2) >

xzel xzel

(5.3.64)

Let g, v be closed subgroups of G and suppose that the volume vol(g/~)
is finite. Consider a continuous function ¢ with compact support on G/g,
invariant under left shifts of the argument by elements of {2. For x € G put

Na(p) = Y o(zy).
yel'/y

This sum is finite and depends only on the double coset 2zI". Consider the
weighted average N(p) of the quantities N(¢) as « runs through I,

N(¢) (5.3.65)
Dwer 1/w(z)
Standard integration techniques then show that
S vol(g/7) /
N(p) = —=++< p(z)dz 5.3.66
®) = warmy J,, 7@ (5.3.66)

assuming that the measures on the groups G and g and the homogeneous
space G/g are compatible.

Siegel’s formula can be deduced from equation (5.3.66) by taking for g
the orthogonal adelic group with respect to the quadratic module W over Q
defined by the condition W @ (Ar ® Q) & Ag ® Q. For the group v we take
the group of rational points in g, and the homogeneous space G/g is identified
with the set of embeddings A7 ® A — Ag ® A preserving the quadratic forms.
For ¢ one takes the characteristic function of the set of those embeddings
Ar ® A — Ag ® A which take Ar ® Z,, into Ag ® Z,. The quantities ¢,_,,
and ¢, become the Tamagawa numbers 7(O,,_,) and 7(O,,) respectively.
For x = (x,), € G the function p(x) = p(gx) has the form [], v, (z,), where
Yoo = 1 on G and ¢,(x,) is the characteristic function of O,,(Z,). The
integral in (5.3.66) is therefore equal to the product

drso - / dx,,
/GOO/QQG 1;[ Gp/gp !
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where G, = 0,,(Zy), 9p = Om—n(Z,), and one easily verifies that

0a(8,T) = / dre,  ay(S,T) = / da,. (5.3.67)
Goo/Goo Gp/ap

Then the evaluation of
7(Op,) = vol(G/T)

can also be made using (5.3.66) putting n = 1 and applying some known
asymptotic results for the representation numbers N(S,T") as t — oco. The
latter are obtained for example by the circle method (the cases m = 2,3 must
be treated separately).

Now we describe the Tamagawa measure on G; formulae (5.3.67) follow
from this description (cf. [CF67], chap. X).

Let V be an algebraic variety over a number field K, which is a connected
linear algebraic group. If dim V = n then there is a non-vanishing, left invari-
ant n-form w on V defined over K. Any two of these differ by a multiplicative
constant A € K. We now construct a measure on the group V(Ag) of adelic
points of the variety V. For this purpose one must first fix a Haar measure .,
on the additive group K, where v is a normalized valuation on K. In order
to do this we set 1, (0,) = 1 if v is non-Archimedean, du, = dz for K, 2 R
(Lebesgue measure) and du, = |dz A dz| for z = x +iy € K, = C. Then
according to (4.3.46) one has p(Ax/K) = |Dg|'/?, where Dk is the discrim-
inant of K and p is the Haar measure on Ag defined as the product of local
measures [i,. Define a measure w, on V(Ag) as follows. In a neighbourhood
of a point P of V' the form w is defined by the expression

w=f(z)dxy A Ndxy,

where x1,...,xz, are local parameters at P which are certain rational func-
tions z; € K(V) and f € K(V) is a rational function regular at P. The
function f can be written as a formal power series in the x;s with coefficients
in K, because the variety of an algebraic group is always non-singular. If
the coordinates of P belong to K, then f is a power series in the variables
x; — 29 with coefficients in K,, which converges in a neighbourhood of the
origin in K. Thus there exists a neighbourhood U of P in V(K,) such that
¢:x — (t1(x),...,ty(x)) is a homeomorphism of U onto a neighbourhood
U’ of the origin in K, and the power series converges in U’. In U’ we have
the positive measure |f(z)|, dt; - ... - dt, where dt; - ... - dt, is the product
Ly X - Xy, on Ky we lift it to U using ¢ and thus obtain a positive mea-

sure w, on U. Explicitly, if g is a continuous real valued function on V' (K,)
supported on U then

/Ugwu =//g(w‘1(t))dt1w---dtm

so that w, is in fact dependent on a choice of local parameters. If the product
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[[es(v(O.) (5.3.68)

converges absolutely, then we define the Tamagawa measure by the formula

7= D [ wo- (5.3.69)

If the product (5.3.68) does not converge absolutely then one needs to intro-
duce certain correcting factors A, > 0, which ensure the convergence in such
a way that the product

I A e (vion)

v foo
will converge absolutely. The Tamagawa measure (with respect to {\,}) is
then defined by the formula

T =|Dg | I A wo (5.3.70)

v foo

In any case, it follows from the product formula that 7 is independent of the
choice of w: if we replace w by cw (¢ € K*) then (cw), = |¢[lw, and by the
product formula (4.3.31) one has [], |c[, = 1.

Let k(v) denote the residue field with respect to a non-Archimedean place
v and let V(") = V ® k(v) be the reduction of V' modulo the corresponding
prime ideal p, C O,. Then one can show, generalizing Hensel’s lemma, that
for almost all v

wo(V(0,)) = No™™ Card V¥ (k(v)), (5.3.71)

where Nv denotes the number of elements of k(v) and V(*)(k(v)) is the group
of points of V() with coefficients in k(v).

Ezamples. It V = I, (the additive group) then
wy(V(Oy)) = o (0y) = 1;
if V = I, (the multiplicative group) then

Nv—1 1
wy(V(Oy)) = No zl—m;

if V.= GL,, then

wo(V(0y)) = (1 - 1\}@) <1 _ Nim) ;

if V' = SL,, then

Vo)) = (1- 55 ) (1- ).
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The product

11 (1 - Nj—8> = (x(s)™"

vfoo

converges for Re(s) > 1 but diverges at s = 1 (here (x(s) denotes the
Dedekind zeta function of K). The product [[, w,(V (O,)) therefore converges
for V = SL,, but diverges for V= GL,,. In the latter case one could take
for the correcting factors the numbers A, = 1 — ﬁ More generally one can
show that if V' = G is a semi-simple algebraic group then the product (5.3.68)
converges absolutely and the correcting factors are not needed. The link be-
tween Tamagawa numbers and Siegel’s research in the arithmetical theory of
quadratic forms was discovered by Weil in the late 50s. He formulated during
this time a conjecture later proved by Kottwitz, saying that for a connected,
simply connected, semi-simple algebraic group over a number field K, which
contains no factors of type Eg, one has 7(V)) = 1. For a connected, reductive
group G over K it was proved by Sansuc and Kottwitz that

[Pic(G)|
" )
where III(G) is the Shafarevich-Tate group and Pic(G) is the Picard group
of the affine variety (linear algebraic group) G, cf. [Kott88].

Eskin, Rudnick, Sarnak in [ERS91] gave a new proof of Siegel’s famous
mass formula; they used harmonic analysis to obtain an asymptotic formula for
the distribution of integral points on certain affine varieties. In particular, they
gave a new proof of Siegel’s theorem for indefinite quadrics (n = 1, m > 4).
From this it was deduced that the Tamagawa number of any special orthogonal
group is 2, which yields the general Siegel result through a computation of
adelic volumes with respect to the Tamagawa measure. Note that E. Peyre
studued in [Pey95] heights and Tamagawa measures on Fano varieties.
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5.4.1 The Tate Module of an Elliptic Curve

Let E be an elliptic curve defined over a number field K. Then the Galois
group Gx = G(K/K) acts on the group E, of all points of order dividing n,
E,, = (Z/nZ)? so we obtain a Galois representation

on : Gk — GLa(Z/nZ) = Aut E,.
Now let [ be a prime number, n = {"". Set

Ty(E) = lim Eym 2 77, (5.4.1)

m

Vi(E) = Ti(E) ® Qi = Q7

where Z; is the ring of [-adic integers and the limit is taken over the set of
homomorphisms Ejm — Ejm-1 which multiply each point by [. The corre-
sponding homomorphism

p1: G — Aut Vi(E) 2 GL2(Q)) (5.4.2)

is a continuous representation of the group G over the field Q;. Its image
Im p; = G is a closed subgroup of GLs(Z;) = Aut T;(E), and the Weil pairing
(5.3.37) determines an isomorphism of detp; with the representation of G
on the one dimensional vector space

Vi(p) = Ti(p) ® Qi,  Ti(p) = lim iym

m

(the Tate module defined as the projective limit of roots of unity of I-power
degree).

It follows from recent results of Faltings that the Gx-module T;(E)
uniquely determines the curve E upto an isogeny.

Serre discovered (cf. [Se68a]) that the image Im p; is as large as it could
possibly be for almost all primes [. More precisely this image coincides with
GL2(Z;) = Aut T;(E), provided that the curve F is not special in the sense
that it admits no complex multiplication, or equivalently Aut(E) = Z. More-
over the index of the subgroup ¢, (Gk) in GL2(Z/nZ) = Aut E,, is bounded
by a constant which is independent of n, of the curve E and of the field K (cf.
[Ner76], [Silv86]). The occurrence of small images Im p; is closely related to
the existence of K-rational points of finite order (or of K-rational subgroups
of such points). For example, if there exists a basis P, @ of the group E,, over
Z/nZ such that the point P is K-rational, i.e. P € E,,(K), then P? = P for
all 0 € Gg. Elements in the image ¢, (G ) are therefore represented by ma-
trices of the form (| *) in GLa(Z/nZ). If the subgroup (Q) is also K -rational,

0 *
i.e. ()7 = (Q) then elements in the image have the form (). The result
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of Serre is therefore closely related with Mazur’s theorem on the universal
boundedness of the torsion subgroup of an elliptic curve over Q (cf. [Maz77]).

Let A be an Abelian variety of dimension g defined over K. Then the Tate
module is defined by

Ty(A) = limKer(A 5 A) = 729,

m

Vi(A) = Ti(A) ® Q = Q},

and we again have a Galois representation (see (5.3.52))
pr: G — Aut Vi(A) = GSpy, (Q). (5.4.3)

Note that certain results are known on the maximality of the image of
the Galois representation p; for higher dimensional Abelian varieties A with
End A =Z (i.e. without complex multiplication).

The study of the image of p; is based on an examination of the reduction of
the elliptic curve (or Abelian variety) modulo p,,, where v is a finite place of K.
The condition that E has good reduction EU = F mod p, is equivalent to the
existence of an Abelian scheme E, over Spec O, in the sense of Mumford (cf.
[Mum?74]) whose generic fiber coincides with E (i.e. B, ®0, K, &£ EQkK,)
and whose closed fiber is an elliptic curve (Abelian variety) E, = E, ®0, k(v)
over the residue field k(v) = O/p,. The (geometric) Frobenius endomorphism
F, of E, is defined by raising the coordinates of points on E, to their Nv =
|k(v)|*" powers.

Now let p, denote the characteristic of the residue field k(v) and let [ be
another prime number (not p,). Denote by G, (respectively I,)) the decom-
position group (respectively, the inertia group) of some extension T of v to
a fixed algebraic closure K of K (compare with (4.4.2)). If E has good re-
duction at v then U defines (in view of Hensel’s lemma) an isomorphism from
Ejm to the corresponding subgroup of the curve E,,. In particular, the inertia
group I, acts trivially on Ejm, T)(E) and Vi(E), so the action p;(F'r,) of the
arithmetical Frobenius automorphism F'r, is well-defined (F'r, € G, /I,) and
is the same as the action of the geometric Frobenius F,, = Ff ,. One therefore
has

detp;(F'ry) = det(F,) = Nv = Card k(v), (5.4.4)
and the quantity
det(le — py(Fry)) =det(l — F,) =1—Tr F, + Nv (5.4.5)
is equal to the number Card E,(k(v)) of k(v)-points of the reduction E,,.
Conversely, one has the following

Theorem 5.11 (Criterion of Neron — Ogg — Shafarevich). If the Galois
representation p; is unramified at v for somel # p, then E has good reduction
at v.

(cf. [Silv86], Ch. 4 of [Se68al).
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5.4.2 The Theory of Complex Multiplication

(see Chapter XIII of [CF67], [La73/87], [Shi71]). One of the central aims of
algebraic number theory was formulated in 1900 by Hilbert in Paris as his
twelfth problem: that of finding an explicit construction of all Abelian exten-
sions of a given number field K. For K = Q it is known (by the Kronecker—
Weber theorem (comp. with §4.1.2)) that the maximal Abelian extension Q2P
of Q is cyclotomic, and that there is an isomorphism

Qab/Q HZX

If K is an imaginary quadratic extension of QQ then the theory of complex
multiplication makes it possible to construct K2 using elliptic curves E with
complex multiplication by K, and their points of finite order. By definition,
one has for such curves End E®@ Q = K. If E(C) 2 C/I" for a lattice I' C C,
then the endomorphism ring of F has the following form

End E={2€Clz2['CI'} =0y =7Z+ fOk C Ok,

where Ok is the maximal order of K and f is an appropriate positive integer
(in view of the fact that every subring of O has the form Z + fOx for some

).

Theorem 5.12. There is a one-to-one correspondence between elliptic curves
E with a given endomorphism ring O (upto isomorphism), and elements of
the class group Cl(Oy) (i.e. the group of isomorphism classes of projective
modules of rank one over Oy).

Indeed, if a lattice I" corresponds to £ then I" is an Of-module such that
I'®Q = K, ie. a projective O¢-module of rank one. Conversely, every Oy-
module viewed as a lattice in C determines an elliptic curve C/I" with the
property that End(C/I") is the ring of multipliers of I', i.e. Oy. Therefore the
number Ay of curves (upto isomorphism) with a given endomorphism ring Oy
is finite and its order is equal to Card C1(Oy).

For each curve there is a canonically defined invariant j(E) corresponding
to F; if E is written in the Weierstrass form then this is given by

172843

—_—, E:y? =42% — gox — gs. 5.4.6
93 — 2793 (>4

J(E) =
We now consider the case f = 1 in more detail.

Theorem 5.13 (Weber — Fueter). (a) All the numbers j(FE) are algebraic
integers. (b) If a = j(E) is one of these numbers then K(a) coincides with
the mazimal unramified, Abelian extension of K and G(K(a)/K) = C1(Oy).
The action of G(K(a)/K) on the set of numbers {j(E)} is transitive.
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There are precisely nine imaginary quadratic rings O with f = 1and hy =
1, namely Z[v/—d)], where d = 1,2,3,7,11,19,43,67,163. The corresponding
elliptic curves have rational invariants, which are also algebraic integers in
view of the Weber — Fueter theorem, hence j(E) € Z. Moreover, the values of
Jj(E) are given respectively by:

j —96. 337 926 . 53, 0, 33, 53’ _215’ _9l5, 337
—218.33.53 _215.33.53. 113, —218.33.53.23%.293,(5.4.7)

In the general case f > 1 the numbers j(FE) are also algebraic integers for
all E with End(E) = Oy, and for all o € Gal(K /K) one can explicitly describe
the action of o on j(E). This description depends only on the restriction of o
to K which is represented via the Artin reciprocity law by an idele s € Jx:

olgs = Vi (s), (Vi :Jx — G(K*/K) — the reciprocity map).

Furthermore if I" is the [attice corresponding to a curve E then one can define
a lattice s71I: if s = (s,)y (5, € KX) then s~ is uniquely determined by
the condition (s71I") ® O, = s; 1 (I" ® O,) for all finite v.

Theorem 5.14. Let j(s~'I") denote the invariant of the elliptic curve E'
defined by E'(C) = C/s~'I'. Then one has the following formula for the
action of 0 € Gal(K/K):

J(E)T =j(s7'). (5.4.8)

From this it follows that j(E) € K®*. To prove these theorems, one
considers the action of o € Gal(K/K) on the coefficients of the Weier-
strass equation (5.4.6). One obtains as a result the following new curve:
E° . y? = 42® — g§x — g9; therefore j(E)° = j(E?). Clearly, one has
End(E°) = End(E) = Oy, and thus the set {j(F)|oc € Gal(K/K)} is fi-
nite and the numbers j(FE) are all algebraic. Consequently the curve E can
be defined over an algebraic number field L. If the restriction of ¢ to L is
represented by a Frobenius automorphism for some v,

O'|L:FL/K(U) :FT'U,

then the above formula (5.4.8) can be established using the reduction £ mod
P, where P is a divisor in L which divides p,. Then this formula can be
rephrased as Hasse’s theorem:

J(EYF™ =, D), (5.4.9)

where p C Ok is a prime ideal of Ok defined by the conditions (p, f) = 1,
pr= Of Np.

The invariants j(E) therefore generate an extension Ky /K satisfying the
property G(K ()/K) = CI(Oy). However the field K = Uy>1K ;) does not
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yet coincide with the whole of K", and in order to obtain K? it is necessary
to adjoin also to K(;) the coordinates of all points of finite order on some
elliptic curve E with the property End(E) = Og. More precisely, let E be an
elliptic curve with complex multiplication, i.e. End F ® Q & K, defined over
a number field L D K. Then the image of the Galois representation

Pl GL — Aut ‘/Z(E) = GLQ(@[) (5410)

is an Abelian group which is contained in (Z; ® O )*, and the index of Im p;
is finite and is bounded by a constant independent of [. By class field theory
the representation factorizes through G2P, and for each idele s = (s,), € Jr,
we can define an element p;(s) = p;(c), where o € Gal(K/K) is determined
by the condition o|L*” = 11, (s). It is not difficult to see that there is a unique
continuous homomorphism ¢ : J;, — K> with the condition e(x) = N,k ()
for all z € L* and pr(s) = &(s)Ny, /i, (s1) for all s € Jr, and all I.

The Abelian l-adic Representations (5.4.10) and the action of G on the
invariants j(E) describe explicitly the class field theory of the field K. We see
also that in the complex multiplication case the group Im p; is Abelian and
is therefore much smaller than in the general case.

An analogous theory (in a less complete form) also exists for CM-fields
(totally imaginary, quadratic extensions of totally real fields) and for Abelian
varieties of CM-type, i.e. Abelian varieties A whose endomorphism algebras
End A ® Q are totally imaginary, quadratic extensions of totally real fields of
degree g = dim A (cf. [ShiT1]).

5.4.3 Characters of l-adic Representations

As we have seen, one can associate to each elliptic curve E defined over a
number field K a system of l-adic representations p; : Gx — Aut Tj(F) &
GL2(Z;) on the Tate module T;(E). Together (5.4.4) and (5.4.5) give the

following important formula for the traces of Frobenius endomorphisms:
Tr py(Fr,) =Nv+1— N,(E),

where Nv = Card(k(v)) is the norm of v, N,(E) = Card E,(k(v)) is the
number of k(v) — rational points on the reduction E, modulo v. It turns out
that the values of the character x, = Tr p; form an interesting arithmeti-
cal function of the argument v. We shall later see that the list of examples
of this sort is quite rich and contains for example the Ramanujan function
7(p); the numbers of representations of positive integers by positive definite
quadratic forms, etc. It is known that the character of p uniquely determines
this representation provided that p is a semi-simple representation, that is, a
direct sum of irreducible representations. This semi-simplicity property was
established for the Tate modules of elliptic curves and Abelian varieties, cf.
[Fal83], [Fal85], [Fal86], [PZ88].
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A remarkable finiteness property

for the characters x, of continuous finite-dimensional [-adic representations
was discovered by G.Faltings (cf. [Fal83]) in his proof of the Mordell con-
jecture: any such character x, is uniquely determined by a finite number of
values

Xp(Fry) =Tr p(Fry), (veQ, Q afinite set),

where F'r, denotes the class of a Frobenius element under the assumption
that p is unramified for all v outside a finite set S of places of K. In this
situation the representation p factorizes through a representation of the group
Gs = G(Kg/K), where Kg is the maximal extension of K unramified outside
S. For each v ¢ S the value x,(F'r,) is therefore well-defined. We shall now
construct a finite set @ of places of K, @ NS # 0, such that p is is uniquely
determined by the values x,(F'r,) for v € Q. Let L/K denote the composite of
all Galois extensions of K unramified outside S, which are of degree less than
or equal to 12", Then by Hermite’s theorem (sce §4.1.5), the extension L/K is
finite. Now we choose an appropriate ) outside S such that the elements Fr,
fill the whole Galois group G(L/K). The existence of such elements follows
from the Chebotarev density theorem (Theorem 4.22). We claim that the set
@ constructed in this way satisfies the conditions of the theorem.

Indeed, let p; and py be two different representations whose characters
coincide on the elements F'r,,v € Q). Consider the representation

p1 X p2 - Zl[G] - Mn(@l) X Mn(@l)

of the group algebra Z;[G]. Its image M is a Z;-submodule of rank < 2n?. By
the construction of @ the elements p; X pa(Fr,), v € Q generate M/IM
as a vector space over IF;, and consequently, the whole of M over Z; (by
Nakayama’s lemma for finitely generated modules over a local ring, applied
to the ring Z;, see [Bou62|, [SZ75]). Now consider the linear form

flar,a2) = Tr(ar) — Tr(az) (a1,as € M, (Q)))
on M. By the assumption we have that
Xp1 (FTU) = sz(Frv)a vEQ,

and therefore f(a1,a2) = 0 on the whole Z;-module M, because f = 0 on its
generators (p1 X p2)(F'ry) v € Q. Therefore x,, (F'ry) = X, (Fy), establish-
ing the theorem, see [PZ88], [Del83|, [Sz(e)81].

5.4.4 Representations in Positive Characteristic

Let E be an elliptic curve over a finite field k& with ¢ = p? elements. Consider
its Tate module
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T,(E) = limKer(E N E)=17),

m

where v = 0 or v = 1. In this way we obtain a representation defined by
pp : Gal(k/k) — Aut T,(E),

in which the group Gal(k/k) is a (topologically) cyclic group.

If T,(E) # 0 then End F ® Q is an imaginary quadratic extension of K
and End £ = Oy for some f > 1, where Oy = Z + fOg is a subring of the
maximal order Ok of K.

In this situation one can show that:

1) the prime p does not divide the conductor f,
2) p splits in K.

In the case T,,(E) = 0 we have that Dy = End £ ® Q is a division algebra of
degree 4 (a quaternion algebra) over Q which at all primes [ # p decomposes
as Dp @ Q; = M2(Q;). Also, End FE is a maximal order in Dg. Curves with
this property are called supersingular curves.

In positive characteristic the endomorphism algebra becomes larger when
there is a Frobenius endomorphism Fj, of E, which is a purely inseparable
isogeny: its kernel and image have only one geometric point over k. In par-
ticular, if F, € Z C End E, then also T),(E) = 0. For further information on
points of finite order in positive characteristic, also in Abelian varieties, see
[Man61], [La73,/87|, [MumT74].

5.4.5 The Tate Module of a Number Field

(cf. [Sha69], [Coa73|, [Iwa72|, [Iw01], [MWS83]). The Tate module of the Jaco-
bian variety Jo of a curve C gives a functor from the category of curves over
a field k to the category of Z;-modules. If k is finite then the field k(C) of ra-
tional functions on C has much in common with a number field. Iwasawa has
suggested an analogue of the Tate module for a number field K. The group
Jym can be interpreted as the Galois group of the étale covering C,,, — C of
C, where C, is the inverse image of C' embedded into J, with respect to the
morphism ['}". One verifies that the field U,,k(C},) is the maximal unramified,
Abelian l-extension of k(C). Its Galois group coincides exactly with the Tate
module T;(J¢); this gives a reasonable interpretation of the Tate module for
an algebraically closed field k. However if k is not algebraically closed (for
example when k is a finite field) then & need not be algebraically closed inside
the field k(Jym ). In particular the field k(J;m) must contain roots of unity of
the degree ™ since these are values of the Weil pairing. In the case of a finite
field this is almost sufficient: that is, for a finite extension k’/k we have

k=%kn (U k‘(-ﬁm)) =¥ @m),
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where (;m denotes a primitive root of unity of degree I™ and k is the algebraic
closure of k. Indeed, the image of Gal(k/k) in T; C GLay(Z;) is a topo-
logically cyclic group, whose intersection with the [-Sylow normal subgroup
S = {g € GL2y(Z;)|g =1 mod I} is an l-subgroup of finite index. Therefore
on replacing k by a finite extension k' of degree prime to the characteristic of
k, the extension k becomes an l-extension of the finite field ¥/, i.e.

k=J¥ Gm).

We see now that for a finite field of constants the Tate module T} coincides
with the Galois group of the composite Galois extension

k(C) C k(C) c AW,

where k= Unk/ (Gm), A is the maximal unramified, Abelian I-extension of
E(C).

Taking this description as a starting point, we may extend the definition
of the Tate module to the number field case. Let K be a number field, K,, =
K(m), K = UpK,,, and A® 5 K the maximal Abelian, unramified I-
extension of K. Further let

Ti(K) = Gal(AVD /K). (5.4.11)

Then T;(K) is a projective limit of I-groups (a pro-I-group), and is in particular
a Z;-module. Iwasawa, who introduced this module (also called the Iwasawa
module), has shown that V;(K) = T)(K) ® Q is a finite — dimensional Q-
vector space. Using class field theory one can describe T;(K) explicitly. One
knows that the Galois group of the maximal Abelian, unramified extension of
a number field L is isomorphic to the class group Cly. Denoting by Clg) the
[-component of this group, one obtains the following description:

T(K) =lim C1 |

where the inverse limit is taken with respect to the norm maps of ideals.

On Tj(K) we have an obvious action of the Galois group Gal(K /K) and its
subgroup I' = G(K/K;) = Z;. On a class represented by an ideal a € Cli?m
this action is given by a — a9, (¢ € G(K/K)), and for the corresponding
h € Gal(A®)/K) the ideal a9 corresponds under class field theory to g~hg
(in view of the equality (4.4.22)).

Iwasawa regarded T;(K) as a module over the completed group ring A =
Zi[[I)] = Z[[T]] (the ring of formal power series over Z;). Just using his
classification theory for such modules, he obtained the following formula for
the orders of the groups Clggn, which is valid for m > my:

log; |Cl(1l<)n| = Am + pul™ + const. (5.4.12)
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Under some additional assumptions he described explicitly the module
T;(Q) for all I < 4001. This module turns out to be cyclic, and one can even
find a generator of its annihilator. Essentially, this generator coincides with a
product of the l-adic L-functions of Kubota and Leopoldt ([Iwa72|, [KuLe64],
[Sha69], [Kuz84]).

The validity of the corresponding statement in the general case (the “Main
conjecture” of Twasawa theory) was established in 1984 by B. C. Mazur and
A. J. Wiles [MWS83]. According to the main conjecture of Iwasawa theory a
module of ideal class groups can be described as the quotient of the Iwasawa
algebra by an explicitly given principal ideal. A later, more accessible proof
using Kolyvagin’s notion of Euler systems was found by K. Rubin, cf. his
appendix to [La90].

In the works of Ferrero and Washington ([FeWa79|, [Fer88], [Wash82])
another conjecture of Iwasawa was proved, which says that for each Abelian
extension K/Q and each prime [, the invariant p of the module T;(K) vanishes.

This result implies that T;(K) is a finitely generated Z;-module. Washing-

ton’s conjecture, according to which the orders of the groups Cl(}?,)n stabilize
in the cyclotomic Z;-extension of an arbitrary Abelian field for | # p, was
proved in ([Wash78]).

Very recently (cf. [Barsky04]) the vanishing of the Iwasawa p invariant was
proved by D.Barsky for all totally real fields. The Iwasawa u- invariant of p-
adic Hecke L- functions was studied by H.Hida in [Hi02].

The methods of Iwasawa have been considerably extended in further re-
search related to the study of A-modules of various kinds: those arising from
Selmer groups of Abelian varieties (Mazur modules) see [ManT71], [Man76],
[Man78|, [Maz79]|, [Maz83|, [Maz86], and also those arising from elliptic units
in Abelian extensions of fields of CM-type, cf. [Maz83], [Rob73], and the ones
arising from Heegner points on modular curves ([Koly88|, [Coa73], [Coa84],
[GZ86], [Rub77]).

New approaches to proving the main conjecture and its generalizations in
various situations were discovered by Kolyvagin in [Koly90], who proposed the
more general concept of an “Euler system”, which makes it possible to deal
with all known cases from a unified point of view.

For recent developments on Euler Systems we refer to [Rub98], [Kato99],
[Kato2000], [MazRub04].

Interesting Euler systems could be constructed in some cases using Beilin-
son elements in K5 of modular curves and the Rankin—Selberg method, cf.
[Scho98]. An analogue of the Selmer groups and the groups of Shafarevich-
Tate were defined in [BK90], [FP-R94] for an arbitrary motive over a number
field F, cf. also a new book by B.Mazur and K.Rubin, [MazRub04].

We only mention a GL(2) version of Iwasawa theory developed by Coates
et al., cf. [Coa0l], [CSS03]. The GL(2) main conjecture for elliptic curves
without complex multiplication was described very recently by J. Coates, T.
Fukaya, K. Kato, R. Sujata, O. Venjakob in [CFKSV].



5.5 The Theorem of Faltings and Finiteness Problems in
Diophantine Geometry

5.5.1 Reduction of the Mordell Conjecture to the finiteness
Conjecture

A major problem in diophantine geometry was the Mordell conjecture, now a

Theorem 5.15 (Faltings [Fal83]). If X is a projective algebraic curve of
genus g > 2 defined over a number field K and L/K a finite extension then
X (L) is finite.

Note that prior to the work of Faltings this was not known for any curve X.
However Siegel’s Theorem was known, the strongest finiteness result until
Faltings:

Theorem 5.16 (Siegel). If X is an affine curve of genus g > 1 defined over
the ring of integers O C K and Og C O is any subring of S-integral elements
(S finite) then X (Og) is finite.

Here Og C K denotes the subring
Ogs ={z € K | Yv € S,v non-Archimedean, |z|, < 1},

where S C Val(K) is a finite set of valuations of K.

The starting point for research leading ultimately to the (first!) proof of
Mordell’s conjecture by Faltings, was the following pair of conjectures, pro-
posed by I.R.Shafarevich [Sha62], on classification the problem for algebraic
curves of genus g > 1 over an algebraic number field K, with a fixed set S of
bad reduction points: *)

Let ITI(g, K, S) be the set of (K-isomorphism classes of) algebraic curves
X of genus g(X) > 1, defined over a number field K with bad reduction
contained in a finite set S C Val(K). When g = 1 we assume in addition that
X(K) # 0.

I) Finiteness Conjecture. Assume that g > 2 (or that g > 1 and X (K) # 0).
Then for any given g, K, S these exist only finitely many such curves (up
to isomorphism). This finite set will be denoted by (g, K, S).

For the second proof of Mordell’s conjecture by Bombieri-Vojta we refer to
[Bom90], [Voj91]. This entirely new proof is based on methods from Diophan-
tine approximation and arithmetic intersection theory. Faltings in [Fal91] simpli-
fied and extended these methods to prove two longstanding conjectures of Lang
concerning integral points on Abelian varieties and rational points on their sub-
varieties, and E. Bombieri subsequently further simplified the arguments to give
a comparatively elementary proof of Mordell’s conjecture.
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IT) Bad Reduction Conjecture. If S = () and K = Q then these exist no such
curves, i.e. (g, K, S) = 0.

These problems generalize theorems of Hermite and Minkowski in the the-
ory of algebraic number fields (cf. §4.1.5). It was shown by A.N.Parshin in
[Par72], [Par73], how to reduce Mordell’s problem to the finiteness conjecture.
His remarkable construction is given below. The Shafarevich Conjecture and
the related Tate conjecture were proved by Faltings [Fal83] (see also Deligne’s
Bourbaki talk [Del83]).

A detailed exposition of all these questions can be found in the survey
[PZ83].

The construction of A.N.Parshin consists in constructing of a map
a: X(K)— (¢, K',S") (5.5.1)

for some other data of ¢/, K’, S’ with the property that the fibers of the
map (5.5.1) are finite. The image of a point P € X(K) is a certain curve
Xp € (¢, K',S"), which is constructed in several steps.

1) Let us map the curve X into its Jacobian J using the Abel map (5.3.52):
pp: X — J, and consider the multiplication by 2 morphism 2 : J — J.
We define an auxiliary curve X as the inverse image of X under this map
(this is an example of the fiber product):

X1—>X

| ler

J — J
25
The curve X is smooth, it is defined over the same field K, and its
genus g1 can be computed using the Hurwitz formula (5.1.1). We have
291 — 2 = 229(2g — 2), because X; — X is an unramified covering of
degree 229 = Card.Jy. The inverse image of the point P is then a rational
divisor D = Dp on X; of degree 2%9.
2) One constructs a covering Xp — X3 of degree 2, which is ramified only
over the points in D. Such a covering exists, it has genus ¢ = ¢g(Xp)
which is also computed by the Hurwitz formula

29’ — 2 =2(2g1 —2) +2%9 = 22971 (29 — 2) + 2%,
that is
g =2%(g—1)+2%"1 +1.

One checks that the curve Xp is defined over an algebraic number field
K' D K, [K' : K] < oo, which depends only on the data g, K,S, but
not of the individual point P € X (K). Moreover, the curve Xp has a
good reduction over the set S’ of non-Archimedean points of K’, lying
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over S and over the prime 2. The construction of Xp is analoguous to
the construction of a 2-covering attached to a rational point on an elliptic
curve (see (5.3.37). In the same way one proves that the reduction of the
resulting curve is good over S’ (lying over S U 2). Then one deduces the
finiteness of the degree of K'/K using the Theorem of Hermite.

The proof of the fact that the fibers of the map (5.5.1) are finite, is purely
geometric, and it belongs rather to the theory of Riemann surfaces. Indeed, the
resulting map Xp — X is ramified exactly over exactly one point, namely P. If
there were infinitely many points P such that the curves Xp were isomorphic,
say to a fixed curve Y, we would have infinitely many maps Y — X of curves of
genus > 2, ramified over different points of X. Amongst these maps there are
infinitely many non—isomorphic, since the group of analytic isomorphisms of a
Riemann surface of genus > 2 is finite (its order is bounded by < 84(g—1), see
[Hur63], [Maz86]). This leads to a contradiction with the classical theorem
of de Franchis: for any closed Riemann surface Y there exists only finitely
many non-constant maps f : Y — Z into closed Riemann surfaces Z of genus
gz > 2 (upto isomorphism), see [dFr13], [Sev14]).

Note that the theorem of de Franchis is itself a special case of an analogue
of Mordell’s conjecture over function fields (namely, over C(¢)). This version
of Mordell’s problem was solved in [Man63a], [Man63b].

5.5.2 The Theorem of Shafarevich on Finiteness for Elliptic Curves

(cf. [Sha65], [Se68a]) The finiteness conjecture was proved by I.R.Shafarevich
[Sha65] for hyperelliptic curves as a corollary of the Theorem of Siegel on the
finiteness of the number of S-integral points on an affine algebraic curve of
positive genus. We shall give the proof of this result in the case of elliptic
curves. Let us write the curve X = F in the Weierstrass form:

E:y® =42 —gha — g5 (g5, 95 € K) (5.5.2)

We next note that is the curve F has a good reduction outside of S, then its
equation could be reduced to the following form

E:y*=42® — gov — g3 with A=g3—27g5 € O}

(it is assumed that the finite set S contains the primes over 2 and 3, and S
is also chosen large enough so that Og is a P.I.D.). Indeed, if v € S, then the
curve E can be led over the local ring O, to the form

E:y’ =42 — g2 v — g3, with g5 .95, € O, NK, A, €OF. (55.3)

By the uniqueness property of the Weierstrass form (5.5.2) one can choose an
element u, € K*, such that

4 1 6 1 12 A7
92,0 = UypG2, 93,0 = UyGs, Av = U, A 5
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and we may assume that u, = 1 for almost all v.
As the ring Og is a P.I.D., there is an element u € K* the equation (5.5.2)
of the curve takes the form

E:y2:4x3—ggx—g3
where
go = U4gé7 g3 = uﬁgéa A= U12A/7

and it follows that A € Og.

Now we can miltiply A by any number u € (OF)'? keeping fixed the
isomorphism class of the curve. It follows from a version of Dirichlet’s unit
theorem (on S-units, see §4.1.6) that the group (0% )/(O%)'? is finite. There
therefore exists a finite set M C OF such that any elliptic curve of the given
form can be reduced to the form (5.5.3) with g; € Og, A € M. On the other
hand, for a given A the equation

U3 —21v2=A

is an affine curve of genus 1, which has only finite number of solutions in Og
by the Theorem of Siegel (see [Sie29], [La60], [Mah34]).

The same idea is used in the proof of the semisimplicity of the Tate module
of an elliptic curve (see [Se68al).

5.5.3 Passage to Abelian varieties

In order to prove the Shafarevich conjecture for an arbitrary curve of genus g >
1 over a field K, whose bad reduction points belong to .S, one associates to X
its Jacobian variety A = Jx, endowed with a canonical principial polarization
0, defined over the same field K. It is known that A has good reduction outside
S, and X is determined by the pair (A4, 6) due to the Theorem of Torelli, see
[Wei57]. Let us prove that the number of K-isomorphism classes of curves
X having the same the couple (A,0) is also finite over the base field K.
For this one fixes a natural number m > 3, and one consideres the extension
K(A,,)/K, obtained by adjoining to K the coordinates of all points of order m
on A. The extension K (A,,)/K is then unramified outside SU{divisors of m},
and all extensions of the form K(A,,)/K have a bounded degree, they are all
contained in a finite extension K’ by the Theorem of Hermite (cf. (§4.1.5)).

Let us prove that the set K’-isomorphism classes of such curves is finite.
If o € Gal(Q/Q), and ¢ is an isomorphism of curves with the same Jacobian,
preserving the polarization, then a = % o o' induces the identity on A,,. It
is well-known that then the morphism « is identical (see, for example, [La62|):
the matrix T;(A) € AutT;(A) = GSP,(Z;) with coefficients in Q is a unitary
matrix with respect to the involution a — o determined by the polarization
(the Rosatti involution, i.e. aa® = 1. The characteristic roots w; of the matrix
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T;(«) are then algebraic integers w; whoses absolute value is equal to one for
all Archimedean valuations, i. e. w; are roots of unity. By the assumption,
a—1=mp for some § € EndA, that is, w; — 1 = mf;, where 3; are algebraic
integers, implying w; = 1.

In order to pass from K’ to K, one can use the fact that the num-
ber of K-forms of a curve X, isomorphic to X over K’', is finite. In fact,
such forms are classified up to K-isomorphism by the finite cohomology set
HYG(K'/K),Autg (X)), see [Seb4].

We have reduced the Shafarevich conjecture for curves to an analogu-
ous statement for Abelian varieties, more precisely to the finiteness of the
set IH(Al‘),(g,K ,S) of the K-isomorphism classes of pairs 6, where A is a g-
dimensional Abelian variety over K with good reduction away from S, and
0 is a polarisation of degree 1, defined over K. As we have already seen in
section 5.3.5, the C-isomorphism classes of pairs (4, 8) correspond to points
on the Siegel modular variety A, (C) = H,/Sp,(Z), which is a quasiprojective
normal variety, and could be defined over Q.

Another key idea, proposed by A.N.Parshin for solving Mordell’s problem,
was to associate to elements of HI(Al‘)/ (g, K, S) certain points of the set Ay(K),
and then to prove that all such points have bounded height in some projective
imbedding of the variety A,. Note that under this correspondence the map
HI(Al‘)/ (9, K,8) — Ay(K) is not injective, since C-isomorphic pairs (A, ) need
not be K-isomorphic. However, it is easy to check that the above map has
finite fibers: for a field K’, considered above , the corresponding map

) (g, K, 8") — Ay(K')

is already injective, and an analoguous argument shows that the fibers of the
map

YY) (g, K, 8) — WYY (g, K, 8') (5.5.4)

are also finite (the theorem of finiteness for forms of an Abelian variety).

Consideration of Abelian varieties A = Jx rather than curves X was a
very fruitful idea: to each Abelian variety A on can attach its Tate module
Ti(A) (Iis a prime), regarded as a module over Gi. If A : A — B is an isogeny
over K, then one checks that the corresponding maping

Ti(A) : Ti(A) — Ti(B)

is an isomorphism of Gi-modules, so A and B have the same sets of bad
reduction places. Therefore, the finiteness of LH(AI‘)/ (9, K, S) follows from:

I) The finiteness of the number of isomorphism classes of Gg-modules
M = leg which arise as Tate modules T;(A) with given g, K, S.

IT) The finiteness of the K-isomorphism classes of pairs (A, 8), for which
the Gx-module T;(A) is isomorphic to a given module M.
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5.5.4 Finiteness problems and Tate’s conjecture

Recall the property observed first by Faltings that the character of a (conti-
tuous) representation p : Gx — AutV;(A) is determined by its values on a
finite set of elements Fr,(v € @), Card(Q) < oo, @ NS = @, which depends
only on given g, K, S (cf. §5.4.3).

By a theorem of A.Weil for Abelian varieties over finite fields (cf. §5.4.1
which generalizes the theorem of Hasse for elliptic curves (cf. §5.1.3), the num-
ber | Tr(p;(Fr,)) | is an integer not exeeding 2gv/Nv. We conclude that for
every prime [ there are finitely many possibilities for characters of represen-
tations p;.

Thus statement I) reduces to proving the semisimplicity of the G g-module
Vi(A): for any Q;-subspace W in V;(A), which is a Gx-submodule, there exists
an endomorphism u € EndA ® Q such that u? = u and uV;(A) = W, so that
(1 —w)V;(A) is a Gi-invariant subspace of W in V;(A).

In turn the proof of the statement II) also splits into the following steps:

1) Let us consider the set I 4y (g, K, S) of K-isomorphism classes of Abelian
varieties as above (but without polarization) with given g, K, S. Then all
the fibers of the mapping

are finite.

2) Tate’s conjecture on isogenies. For an arbitrary homomorphism A : A — B
of Abelian varieties over K, consider the corresponding mapping V;(\) :
Vi(A) — V,(B). Then
— if the Gx-modules V;(A) and V;(B) are isomorphic then the varieties A

and B are isogenous over K;
— the natural mappings

EndA ® Z; — EndT;(A) and EndA® Q; — EndV;(4)  (5.5.6)

are bijective.
3) The finiteness theorem for isogenies. The set of K-isomorphism classes of
Abelian varieties B over K, for which there exists an isogeny A — B, is
finite.

Statement 1) is not difficult and it reduces to showing that the number of
polarizations of degree 1, defined over K (upto a K isomorphism of polarazed
varieties) is finite. This is deduced as follows: let us view a principial polariza-
tion 0 is an isomorphism 6 : A — AV = PicO(A). An isomorphism A : A — A,
compatible with polarizations #; and 6, of A, gives rise to a commutative
diagram
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A 2L 4V

o

A — A
A
that is,
91 = )\\/ ¢} 92 o\ (557)

Let us fix an isomorphism g : EndA = EndAY. Then the mapping A — AV
becomes the Rosatti invoution p, and all the automorphisms of the form 6, g,
will be then invariant under p : (6, 1g,)r = O 19;. Moreover, the following
equality holds 651 (\Y 0 ;0 \) = A\? 0 ;" 0 6; o \. Hence the equality (5.5.7)
takes the form

90_1 0 =MNo (00_1 o0f3) oA (5.5.8)

This equality shows that our statement is analogous to the assertion on the
finiteness of the number of classes of integral unimodular quadratic forms up
to the integral equivalence. More precisely, this fact can be stated as follows:
if F is an order in a semisimple algebra F ® Q with an involution p, then the
group E*, acting by the formula (z,h) — xPhz (x € E*) on the set of all
Hermitian elements (h” = h) of E with a fixed norm, has only a finite number
of orbits. In our case we use £ = EndA, and we use the semisimplicity of the
algebra EndA ® Q.

Properties a) and b) of 2) are then reduced to the semisimplicity property
of the module V;(A) applied to the varieties A% and A x B.

5.5.5 Reduction of the conjectures of Tate to the finiteness
properties for isogenies

A fruitful approach to the proof of the theorem on semisimplicity and of the
conjectures of Tate was developed by Yu.G. Zarhin [Zar74] in the years 1974-
77. He showed that for any ground field these properties could be deduced
from the property 3) (which is sometimes known as Conjecture T) using a
“unitary trick” for Abelian varieties discovered by himself. Using this trick
Zarhin proved the Tate conjecture over global fields of positive characteristic.
Note that over finite fields these conjectures were proved by Tate himself
[Ta66].
It suffices to show that there is an isomorphism

Endg (4) ® Q — Endg, (T)(A) @ Q;)

(induced by a natural map from the left to the right). Consider a non-
degenerate scew-symmetric pairing (see also in section 5.3.5):

e? : Ty(A) x T(A) — Zy(1) = lim pum,

m
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attached to an ample divisor D over A. We choose a maximal isotropic G k-
submodule W in T;(A) ® Q, and let W,,, be the image of T;(A) N W in the
quotient module

Ty(A)/I™Ty(A) = Apm = Ker(A 'S A).

There is a commutative diagram

A" AW = Al

-

A

It follows from Conjecture T that infinitely many of the varieties A ,,) should
be K-isomorphic. Let us denote by

VUm A(m) — A(mo)
be a fixed isomorphism. Now consider
U, = A\t 0 Uy © Ay € Endg (4) @ Q

and define
w= lim wu,, € EndK(A) ® Q.

It is easy to check that we can recover the G i-submodule W as the image of
Ti(u):

Ti(u)(T1(A) @ Q) = W.
We claim that for an arbitrary Gi-submodule in Endg, (T;(A) ® Q;) there
exists an idempotent u € Endg (A4) ® Q;, u? = u, such that

w(Ti(A) @ Qi) =W. (5.5.9)

This can be established by considering the variety A%, and by constructing
a certain maximal isotropic Gg-submodule W® € Endg, (T1(A®) @ Q)
attached to W. Then we apply to W(® the assertion already proved.

Consider the coordinate projections p; : A3 — A (i =1,2,---,8), and let
D; = p[l(D), D®) = Zle D; be the divisors on A%. We choose a, b, c,d € Q;
satisfying a? + b% + ¢ + d? = —1, and define

a—b—c—d
b a d c
I= c—d a b
d ¢ —=b a

It is easy to check that ‘I - I = 14, where 14 is the identity matrix. Consider
I as an element in Endg, (7;(A*) ® Q;) and put
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Wy ={(z,1z) |z € W*},

Wy = {(x, —Iz) |z € (W4)J‘},

where (W*)* is defined by the scew-symmetric form e, attached to the divisor
D@, Then we have that W; N Wy = {0}, Wy, W, are orthogonal with respect
to the pairing eg associated to the divisor D®) . The Gx-submodule

W® =W, + W, C Endg, (T1(A%) @ Q)

is a maximal isotropic submodule with respect to the pairing defined by eg
which satisfies all desired properties. This arguments show that there exist
elements ug, - ,ug € Endg(A) ® Q; such that

8
Zui(Tl(A) ®@ Q) =Wy + Wa.
i=1

The right ideal in Endg(A) ® Q; generated by uq,--- ,us can be gener-
ated by a single idempotent element u because this algebra is known to be
semisimple (see §5.3.5). This element exactly satisfies our requirement (5.5.9).

5.5.6 The Faltings—Arakelov Height

In the previous section we reduced the Mordell conjecture to Conjecture T
on the finiteness of the number of K-isomorphism classes of Abelian varieties,
which are K-isogenous to a given variety A. The proof of Conjecture T uses a
certain canonical height h(A) of A over K introduced by Faltings using ideas
of Arakelov [Ara74a|. Its principal properties are:

Finiteness Principle. For given g, K and a real number b the number of K-
isomorphism classes of Abelian varieties A over K with the condition h(A) < b
is finite.

Boundedness under isogenies: there exists a constant ¢ such that for all
K-isogenous Abelian varieties A and B one has |h(A) — h(B)| < c.

In order to define the height h(A) consider first a one-dimensional vector
space L over K endowed for all places v of K by a v-adic norm ||| : K — R,
satisfying the condition ||As||, = |A|||s||», where ||As||, is the normalized v-
valuation of an element A\ € K*. Suppose that for s € L\{0} the equality
|IAs]l» = 1 holds for almost all v (i.e. with possible exlusion of a finite number
of them). In view of the product formula (4.3.31) we have [] [\, = 1 for
A € K*, therefore the product [], ||As||, is independent on a choice of ||s]|,.
The degree of L is defined by the formula:

degL = —logHHsHv. (5.5.10)

v
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Let O C K is the maximal order. Defining norms || - ||, for all finite v is
equivalent to defining of an integral structure, or an Og-form Lo, of L, that
is, to defining of a projective Ox-module of rang 1 such that Lo, ®p, K = L.
In order to define Lo, we put

Log ={s € L| ||As|l, <1,v a finite place of K}.

Conversely, for a given Og-module of rank 1 Lo, C L with the property
Lo, ®o, K = L we define the norm || - ||, using the isomorphism of vector
spaces Lo, ®o, K, = K, which takes Lo, ®0, Ok to Ok (for a finite v).
If s € Lo, \{0} then Ok - s is a submodule of Ly, and

Card(Lo, /Ox -s) = [ llsll; "

v foo

Consideration of Archimedean metrics ||s||, is a convenient replacememt of
the notion of an integral structure. Defining this metric is equivalent to giving
a Hermitian form (-,-), on the one-dimensional complex vector space L, =
L ®k ., C for all embeddings o : K — C associated with Archimedean places
v. We have that

Isllo = (s,5)/2, if K, =R; (5.5.11)
||5HU = <375>0; lf KU = (C

For an Abelian variety A over K, we let w(A) = 29,[A] denote the one-
dimensional K-vector space of regular (algebraic) differential forms of maxi-
mal degree g on A where (g = dim A). For a number field K there is a natural
v-adic norm || - ||, on w(A) defined as follows.

a) For non-Archimeadean places v the norm || - ||,, is defined using the theory
of Néron which makes it possible to define a minimal model Ay, of A over
O, and a one-dimensional O,, - module w(Ap,) endowed with a canonical
isomorphism

w(4o,) ®o, K = w(A) ® K,. (5.5.12)

The norms are those corresponding to the Ox-module w(A)p,, .
b) For a Archimedean place v given by an embedding ¢ : K — C the norm
I - || is defined using the Hermitian form

1

<0‘76>0 = W A(C) ap, (5.5.13)

on w(Ad), = w ®k,, C, where a A 3 is a 2g-dimensional differential
form, which is integrated against the (topologically) 2g-dimensional vari-
ety A(C).
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In te