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Preface

Students of science and engineering are required to study mathematics during their
first years at a university. Traditionally, they concentrate on calculus, linear algebra
and differential equations, but in computer science and engineering, logic, combina-
torics and discrete mathematics are more appropriate. Logic is particularly important
because it is the mathematical basis of software: it is used to formalize the seman-
tics of programming languages and the specification of programs, and to verify the
correctness of programs.

Mathematical Logic for Computer Science is a mathematics textbook, just as a first-
year calculus text is a mathematics textbook. A scientist or engineer needs more than
just a facility for manipulating formulas and a firm foundation in mathematics is an
excellent defense against technological obsolescence. Tempering this requirement for
mathematical competence is the realization that applications use only a fraction of the
theoretical results. Just as the theory of calculus can be taught to students of engineer-
ing without the full generality of measure theory, students of computer science need
not be taught the full generality of uncountable structures. Fortunately (as shown by
Raymond M. Smullyan), tableaux provide an elegant way to teach mathematical logic
that is both theoretically sound and yet sufficiently elementary for the undergraduate.

Audience

The book is intended for undergraduate computer science students. No specific mathe-
matical knowledge is assumed aside from informal set theory which is summarized in
an appendix, but elementary knowledge of concepts from computer science (graphs,
languages, programs) are used. Prolog implementations of many of the algorithms are
given; for a computer science student, the study of a concrete program can reinforce
the study of an abstract algorithm. An ideal course in logic would supplement the
theory in this book with practical study of logic programming.

My approach can be characterized as broad, elementary and rigorous: 1 want to cover
many topics rigorously, but I have chosen elementary material, generally the minimal
subset of a logic that can be profitably studied. Examples are: the predicate calculus
without equality, a futire fragment of temporal logic and partial rather than total cor-

.- rectness. The student who has learned the results and techniques in these elementary

cases will be well-prepared to study the more general systems in advanced courses.
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Organization

Chapter 1 is introductory and surveys the topics in the book. Appendix A summarizes
the elementary set theory that the reader should know, and Appendix B contains a
guide to the literature. The rest of the book covers five main topics:

e Propositional calculus (Chapters 2, 3, 4).
e Predicate calculus (Chapters 5, 6).
e Resolution and logic programming (Chapters 7, 8).

¢ Program specification and verification (Chapters 9, 10).

Temporal logic (Chapters 11, 12).

The first two topics form the core of classical mathematical logic, though I have aug-

~mented them with algorithms and programs, and material of interest to computer sci-
entists. The other three topics are chosen for their specific relevance in modern com-
puter science.

The general progression in each main topic is: syntax and semantics of formulas,
semantic tableaux, deductive systems and algorithms. While many modern textbooks
are heavily weighted in favor of algorithmic semantic methods, I have tried to give
equal time to syntactic deduction. Deduction is still the language of mathematical
reasoning and is the only fall-back when semantic methods fail.

The propositional and predicate calculi are the central topics in logic and should be
taught in any course. The other three topics are independent of each other and the
instructor can select or rearrange the topics as desired. Sections marked * contain ad-
vanced material that may be skipped in lower-level undergraduate classes, as well as
interesting results presented without proof that are beyond the scope of this book. Sec-
tions marked ¥ contain the Prolog programs. The printed programs are only fragments;
the full source code of the programs (including routines for input-output and testing)
is available online (http://www.springer.co.uk/com_pubs/ct_mlcs.htm). The web
site will also include answers to exercises. The programs have been run on the free im-
plementation SWI Prolog (http://www.swi.psy.uva.nl/projects/SWI-Prolog/), but
should run on any implementation of the Prolog standard.

Second edition

The second edition has been totally rewritten. Major additions are sections on binary
decision diagrams, constraint logic programming and the completeness of Hoare logic.
One curiosity: I had used Fermat’s Last Theorem as an example of a formula whose
truth is not known. Since then, Andrew Wiles has proved the theorem (Singh 1997)!

T hava rhncan tna ranlaca it hu Caldhach’e ranisctura

Preface ix

Notation

‘If and only if” is abbreviated iff. Definitions by convention use iff to emphasize that
the definition is restrictive. Consider the definition: a natural number is even iff it can
be expressed as 2k for some natural number k. In this context, iff means that numbers
expressible as 2k are even and these are the only even numbers.

Definitions, theorems and examples are consecutively numbered within each chapter
to make them easy to locate. The end of a proof is denoted by I and the end of an
example or definition is denoted by 0.
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Introduction

1 The origins of mathematical logic

e study of logic was begun by the ancient Greeks whose educational system stressed
mpetence in philosophy and rhetoric. Logic was used to formalize deduction: the
ivation of true statements, called conclusions, from statements that are assumed to
V_true called premises. Rhetoric, the art of public speaking, included the study of
ogic so that all sides in a debate would use the same rules of deduction.

Rules of logic were classified and named. A famous rule is the syllogism:

Premise All men are mortal.
-Premise X is a man.
. Conclusion Therefore, X is mortal.

assume the truth of the premises, the syllogism rule claims that the conclusion is
true, whatever the identity of X. In particular, if X is a specific man such as Socrates,
can deduce that Socrates is mortal.

tural language is not precise, so the careless use of logic can lead to claims that false
Stqtcments are true, or to claims that a statement is true, even though its truth does not
‘{éséarily follow from the premises. A clever example is the following ‘syllogism’
given by Smullyan:

Premise Some cars rattle.
. Premise My car is some car.
~_Conclusion Therefore, my car rattles.

é;s'till use many Greek words in logic such as axiom and theorem, but until the
nineteenth century, logic remained a philosophical, rather than a mathematical and
entific, tool, perhaps because it lacked a sufficiently developed symbolic notation.
Fanﬁliarity with logic is unfortunately no longer required in our educational system.

Mathematlclans revived the study of logic in order to study the foundations of math-

A Al e e e L e mwrmem vvvmra rrranday crte matheraficriane Aatliactianad




2 1 Introduction

the legitimacy of the entire deductive process used to prove theorems in mathematics.
Mathematical deduction can be justified by formalizing a system of logic in which the
set of provable statements is the same as the set of true statements. In other words, (i)
every statement that can be proved is true, and (ii) if a statement is in fact true, there
is a proof somewhere out there just waiting for a bright mathematician to discover it.

The research spurred by this plan, called Hilbert’s program, resulted in the develop-
ment, not just of systems of logic, but also of theories of the nature of logic itself.
Ironically, Hilbert’s hopes were dashed when Gédel showed that there are true state-
ments of arithmetic that are not provable.

While mathematical logic remains an important branch of pure mathematics, it is be-
ing extensively applied in computer science. In turn, the application of logic to com-
puter science has spurred the development of new systems of logic. The situation is
similar to the cross-fertilization between continuous mathematics (calculus and dif-
ferential equations) and applications in the physical sciences. The remainder of this
chapter gives an overview of the theoretical topics and the applications that will be
presented in this book. Examples of logical formulas will be given, though you are
not expected to understand them at this stage.

1.2 Propositional calculus

In general, mathematical logic studies two-valued expressions; conventionally, the two
values are called true and false from their origin in the study of philosophy, but this is
arbitrary and we could call the values 0 and 1 or even & and &. Given any sentence,
we assign it a value true or false. The study of logic commences with the study of the
propositional calculus whose sentences are built from atomic propositions, which are
sentences that have no internal structure.

Propositions can be combined using Boolean operators. Again, these operators have
conventjonal names derived from natural language such as and, or and implies, but
they are given a formal meaning. The Boolean operator and is defined as the operator
that gives the value frue if and only if applied to two expressions whose values are
true. This mimics usage in natural language: since ‘One plus one equals two’ and
“The earth revolves around the sun’ are true statements, ‘One plus one equals two and
the earth revolves around the sun’ is also a true statement. Since ‘The sun revolves
around the earth’ is a false statement, so is ‘One plus one equals two and the sun
revolves around the earth’.

Formulas of the propositional calculus are defined by syntactical rules, and meaning
(semantics) is associated with each formula by defining interpretations which assign a
value true or false to every formula. Syntax is also used to define the concept of proof,
the symbolic manipulation of formulas in order to deduce a theorem. The central
theoretical result that we prove is that the set of provable formulas is the same as the
set of formulas which are always true.

1:3'Predicate calculus 3

The propositional calculus can be applied to computers because digital computers
work with two voltage levels that are arbitrarily assigned the symbols 0 and 1. Circuits
are described by idealized elements called logic gates. An and-gate produces a certain
'oltage level called 1 at its output terminal if and only if all its input terminals are

at the same voltage level 1. This is an idealized description because various
'onﬁﬁﬁélis phenomena (such as rise times and stray capacitance) cannot be ignored,
it as:a first approximation, logic gates are an extremely useful abstraction. Since
"atesr correspond to Boolean operators, logic design—building circuits from gates—
an be studied using the propositional calculus.

lxan‘iple 1.1 Here is a half-adder constructed from and, or- and not-gates.

Bitl

Carry

Thé.,fol_lowing expressions give the relationship between the input and output values:

Bit2

Sum < ~ (Bitl A Bit2) A (Bitl V Bit2) Carry < Bitl A Bit2.

_Predicate calculus

The propositional calculus is not sufficiently expressive for mathematical theories such
thinetlc An arithmetic expression such as x > y is neither true nor false. Its truth
epends on the values of x and y; more formally, the operator > is a function from
f integers (or real numbers) to the set of Boolean values {true,false}. The
ystem' of logic that includes functions from domains such as numbers to Boolean
alues is called the predicate calculus or first-order logic. The predicate calculus is
'Tfﬁcuent for most applications of logic to mathematics, such as formalizing arithmetic
and algebra. Similarly, most applications of logic to computer science use ejther the
dicate-calculus or a system of logic that can be formulated within the predicate
alculus.. -

An e){ti’emely important use of the predicate calculus is to formalize the semantics
_ ;of programmmg languages and to specify and verify programs. First let us note that
the syntax of-a programming language is specified by a grammar, a set of rules for
“constructing syntactically legal programs. The properties of grammars are studied in
' "thq subject called formal languages.
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Example 1.2 An if-statement in Pascal is described by the grammar rule:
if-statement ::= if expression then statement [else statement]}

which says that an if-statement consists of the keyword if, followed by an expression
(such as x>=0), followed by the keyword then and another statement and finally an

optional else-clause. 0

Since programs perform computation on domains such as numbers or strings, the pred-
icate calculus is used to formalize the semantics of a program.

Example 1.3 Given the statement

abs(x),

if x >= 0 then y := sqrt(x) else y :

we can give a formula of the f)redicate calculus that relates x’ and ' (the values of x
and y after the execution of the statement) to x and y (the values of x and y before the
execution of the statement):

VaVp(X =x A @x>=0->yY=vV)A(@x>=0) =y =|x]).

The formula ¥’ = x specifies that the value of x does not change during the execution
of the statement. ad

Mathematical logic is also used to write a formal specification of the execution of a
program and then to verify programs, that is, to prove the correctness of a program
relative to the specification.

Example 1.4 Here is a Pascal program P which computes the greatest common de-
nominator of two non-negative integers.

while a <> b do
if a > b then a :

a-belsea:=b-a;
The specification of the program is given by the formula

{a>20 A b>0}P {a=gcd(a b)},
read

If the initial values of a and b are such that @ > 0 and b > 0, and if the
program terminates, then the final value of a is gcd(a, b).

We will show how to verify the correctness of the program by proving this formula -

using the formal semantics of Pascal, a deduction system for proving programs an([i] 3

the theory of arithmetic.

computer loose and return a week later to find proofs of all the known theorems, as
ell as statements and proofs of new interesting ones? With luck, the computer might

discover a proof of Goldbach’s Conjecture, which states that every even number
fer'-than two is the sum of two prime numbers:

100=3+97, 102=51+51, 104=3+101, ....

242, 6=3+3, ...,

ot know if Goldbach’s Conjecture is true or not, though no even number has
een found which is not the sum of two prime numbers.

utomated theorem provers have been developed; they have even discovered new the-
18, though usually with the interactive assistance of a mathematician. Research
to automated theorem proving led to a new and efficient method of proving formu-
fi-the predicate calculus called resolution, which is relatively easy to implement
computer. More importantly, certain variants of resolution have proved to be so
c1ent they are the basis of a new type of programming language.

se that a theorem prover is capable of proving the following formula:

LetAbe an array of integers. Then there exists an array A’ such that the
lements of A’ are a permutation of those of A, and such that A’ is ordered,
that is, A'(J) < A’(J) for I < J.

ose further that given any specific array A, the theorem prover happens to actually
nstruct the array A’. Then the formula is, in effect, a program for sorting.

usé of theorem provers for computation is called logic programming. Rather
1 ogram the computational steps needed to solve a problem, you ‘simply’ write
a ;loglca.l formula that describes the relation between the input and the output, and
thenklet the theorem prover search for the answer. Logic programming is descriptive
'nan-procedural as opposed to programming with languages like Pascal which are
eratronal or procedural.

The most: widespread logic programming language is called Prolog. It is expressive
enough to execute non-procedural programs such as the sort program given above,
d‘yet also contains enough compromises with the real world to allow it to execute
many ‘programs efficiently. Non-procedural programming improves the reliability of
software by narrowing the gap between the specification of the program and its imple-
mentation.




e t—

6 1 Introduction

1.5 Systems of logic

First-order predicate logic is the language of most of mathematics. Nevertheless, other
systems of logic have been studied, some for philosophical reasons, and others be-
cause of their importance in applications, including computer science. This section
surveys some of these systems.

As computer scientists, we know that everything can be encoded in bits and this jus-
tifies the restriction to Boolean (two-valued) logic. Occasionally it is convenient to
be able to directly refer to three or more discrete values. For example, a logic gate
may be in an undetermined state before it settles into a stable voltage level. This can
be formalized in a three-valued logic with a value X in addition to frue and false.
The definition of the operators has to be extended for the new values, for example,
Xandtrue = X.

The philosophy behind.intuitionistic logic is appealing to a computer scientist. For
an intuitionist, a mathematical object (such as the solution of an equation) does not
exist unless a finite construction (algorithm) can be given for that object. In terms of
propositional logic, this means rejecting commonly used methods of reasoning such
as the law of the excluded middle: Any proposition is either true or false.

Example 1.5 Let G be the statement of Goldbach’s Conjecture. An intuitionist would
not accept the truth of the following statement: The proposition G is either true or
false. We can construct neither a proof of G nor a counterexample of an even number
which cannot be expressed as the sum of two primes. a

Much of standard mathematics can be done within the framework of intuitionistic
logic, but the task is very difficult, so almost all mathematicians use methods of the
ordinary predicate calculus.

Sometimes, the predicate calculus is adequate but clumsy to use.

Example 1.6 Consider the two statements, ‘1 < 2’ and ‘Tt is raining’. The first state-
ment is always true, whereas the second one is sometimes true. These can be expressed
in the predicate calculus as: ‘For all times ¢, the value of “1 < 2” at time ¢ is true’, and
‘For some times ¢, the value of “It is raining” at time ¢ is true’. o

Rather than endlessly repeat the dependence of a statement on the time variable, tem-
poral logic implicitly introduces time by defining concepts such as always (denoted

U) and eventually (denoted <) as primitive concepts in the logic. Temporal logic and :

its close cousin modal logic are used in computer science to describe the dynamic
behavior of a circuit element or program. In particular, it is extensively used to for-
mulate properties of reactive programs like operating systems and real-time systems,

which do not compute an ‘answer’, but instead are intended to run indefinitely while

exhibiting correct dynamic behavior in response to external stimuli.

rifted.

6 Exercise

What is wrong with Smullyan’s ‘syllogism’?

ample 1.7 An operating system is a reactive system. Some temporal properties
we would like to prove are; - deadlock, the system will never (= always nor)
dl_ock, and request — Oprint, if you request the printing of a file, eventually it will

0




Propositional Calculus:
Formulas, Models, Tableaux

‘Boolean operators

t};f;e consists of a set of values and a set of predefined operators on those val-
For example, in integer arithmetic the values are {....—2,-1,0,1,2,...} and
operators are {+, —, , /}. The selection of these operators is arbitrary in the sense
ier operators such as mod and abs could be added to the set. The definition of
r5'is not arbitrary because these four are interesting, and suffice for defin-
oving theorems in arithmetic and for manipulating arithmetic expressions in
practice: It would be possible to reduce the number of operators by defining multipli-
on and division as repeated addition and subtraction, respectively, but convention
niremence dictate this choice of operators.

1€ propositional calculus is concerned with expressions over the Boolean type which
alues denoted T and F. Since the set of Boolean values is finite, the num-
ible n-place operators is finite for each n. There are 22" n-place Boolean
! P\'(xl' + .-, Xn), because for each of the n arguments we can choose either of

[x [ o1 [o2 [ o3[ o4 |
T|T|T|F]|F

F|T|F|T\|F

I oné-place operators, three are trivial: oy and o4 are the constant operators,
the: identity operator which simply maps the operand to itself. The only
wal'one-place operator is o3 which is called negarion and is denoted by -, read
fNegatlbn appears in all applications of logic: in electronics, not-gates are used
0, transform a signal between two discrete voltage levels, and in programming, the
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not operator is used explicitly in the operator not-equal (denoted !=, <>, or /=), and
implicitly in if-statements where the else part is executed if the condition is not true.

There are 22’ = 16 two-place operators:

%6 I°7 [08 |

|x1|x2101102103|04|05

T|T\|\T T | T|T|T | T|T|T
T|\F|\T| T | T | T|F|F|F|F
FiT|\T|T|F | F|T|T)|F|F
F|FWT|F|T|F | T|F |T|F
‘x1|x2 ||°9 1°10‘°11|°12i°13|°14l°15|°16|
T|\TYF|F|F|F\|F|F|F|F
T\ F|rt|r|T|T|F|F F
F|\T\|\T | T|F{F | T|T|F|F
F|F\T|F|T|F | T\|F | T|F

Several of the operators are trivial: o; and oy are constant; o4 and og are projection
operators, that is, their value is determined only by the value of one operand; oy; and
o013 are the negations of the projection operators.

The interesting operators and their negations are shown in the following table:

| op | name symbol || op 1 name ! symbolJ
o, | disjunction \Y% 015 | nor 4
og | conjunction A o9 | nand 1
os | implication - 012
o3 | reverse implication «— 014
o7 | equivalence TR o9 | exclusive or @

010, the negation of equivalence, is called non-equivalence in logic, but in computer
science it is called exclusive or. For reference, we extract the definitions of the most ‘

common Boolean operators:

NN N <

| | NN
N | N
TR TR TR T
NN N
SR Rl
TR )
NN N
|| | e

The familiar readings of the names of the operators can cause confusion. Disjunction *

is ‘inclusive or’ as distinct from ‘exclusive or’. We say sentences like

At eight o’clock I will go to the movies or I will go to the theater.

golean‘operators 1

“intended meaning is ‘movies @ theater’, because I can’t be in both places
e‘time. This contrasts with the disjunctive operator v which evaluates to
hen ‘either or both sentences are true. In both versions, it is sufficient for one
‘be true for the compound sentence to be true. Thus, the following strange
e because the truth of the first clause by itself is sufficient to ensure the
the ‘sentence.

he earth revolves around the sunor 1+ 1 = 3.

'of p— q is called material implication, p is called the antecedent and q is
sequent. Material implication does not contain an element of causation;
tates that if the antecedent is true, so is the consequent. Thus it can be
nly if the antecedent is true and the consequent false.

arth revolves around the sun implies that 1 + 1 = 3.
XI;égted, but
¢ sun‘fevolves around the earth implies that 1 + 1 = 3.

,us’é the falsity of the antecedent by itself is sufficient to ensure the truth
ce. Confusion can be avoided by referring back to the definition of these
ther than translating to natural language.

atér-that this set of operators is highly redundant and that the first five
ators-can all be defined in terms of any one of them plus negation, and
or:nor:by itself is sufficient to define all other operators. The choice of
ing:set of ‘operators depends on the application. Mathematics is generally

etweern the-data and the code. If CodedMessage is Data © Code, then
trieved by performing an exclusive-or operation on CodedMessage and

CddedMessage ® Code = (Data & Code) ® Code = Data.
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Notation

Unfortunately, it is rare to find two books on mathematical logic that use the same
notation. To increase confusion, programming languages use a different notation from

In Section 2.4, we introduce = to denote the metalogical concept of logical equiva

mathematics textbooks. Here are some alternate notations that you are likely to find: P~ q e fml
P = q < fml— finl

Operator | Alternates | C language | P g fiml > fnl
- ~ ! pogep-ofml
A & & p—qep—fml
\% ! p = gep—g
- 2, =>
<~ =, <
® # -
1 |

lence which must not be confused with the Boolean operator «>. Be careful, as some
books make the opposite choice of symbols for these two concepts.

7ith subscripts.

2.2 Propositional formulas

In computer science, the term expression is used to denote the construction of a com-

Initial non-terminal
Rule 6
Rule 5
Rule 1
Rule 1
Rule 5

Rule 2
Rule 1

Rule 2
Rule 1

Figure 2.1 Derivationof p—» g« -p - =g

uence of symbols is called a syntactically correct or well-formed word in the
guage defined by the grammar,

e propositional calculus the terminals are the Boolean operators and an unbounded
trary symbols P called propositional letters or atomic propositions (short-
ned to atoms). Atoms will be denoted by lower case letters in the set {p, q.r,...},

] 21 A formula in the propositional calculus is a2 word that can be derived
the following grammar, starting from the initial non-terminal finl.

plex value from elementary values. In the propositional calculus, the term propo: ; Jm 5 f p ; foranyp & P
sitional formula (shortened to formula if the context is clear) is used instead. The - 3' fm . - _'f;n ;
syntactically correct formulas are described by giving a context-free grammar similar - o Jmlon= fml V- fm
. . 4. fml u= fml N fml
to the BNF grammars used to describe programming languages. 5. fl o fil
. = -
Grammar rules of the form 6. fml u= fml o fml
7. fml = fiml ® fmi
bol = mbol, - - - symbol,
m SYHDOR T SymBOty 8. fml u= fml 1t ful
mean that symbol may be replaced by that sequence of N symbols. Rules of the form 9. fml u= fml | fml
symbol = symbol, | --- | symboly fognulas that can be derived from this grammar is denoted F. 3]

mean that symbol may be replaced by one of the symbols on the right-hand side o
the rule. Symbols that occur on the left-hand side of a rule are called non-terminals
and represent grammatical classes; symbols that never occur on the left-hand side are
called terminals and represent the symbols of the language.

A word in a language is obtained from a derivation that starts with an initial non

terminal. Repeatedly, choose a non-terminal and a rule with that non-terminal on its.
left-hand side, and replace it with the right-hand side of the rule as described above
The construction terminates when the sequence of symbols consists only of terminals.

é\tign of a formula from a grammar can be represented by a derivation tree
& Ullman 1979, Section 4.3) that displays the application of the grammar

The derivation of the formula P —q <~ p—-gqis given in Figure 2.1;
vation tree is displayed in Figure 2.2. 0

he bzef:‘riv_‘a_t_ion tree we obtain a formation tree (Figure 2.3) for the derived for-
placing an fin! non-terminal by the child that is an operator or an atom. We
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o A
A NN Y
p - ﬁlnl - ﬁrl /‘i
p -1
p q [
. - q
Figure 2.2 Derivation tree forp » g & ~p - g
- Figure 2.4 Another formation tree
ear répresentations of the two formulas are
- - i : .
VANEEVAN : ©-=pg—-pog
p g ']‘ ’I‘ e firsttrée-and
—pegopog
p q

nd tree, and there is no longer any ambiguity. The formulas are said to be
tation, named after the group of Polish logicians led by J. Lukasiewicz.
n is difficult for most of us to read because the operators can be very far
perands; furthermore, infix notation is easier for us to mentally parse. Polish
tion is used in the internal representation of an expression in a computer and in the
ratio pféome calculators. The advantage of Polish notation is that the expression
x@cuté&br calculated in the linear order the symbols appear. If we rewrite the
a from backwards:

Figure 2.3 Formation tree forp —» g<>-p— ¢

leave it as an exercise to show that a unique formation tree is associated with each
derivation tree.

The formula—the word in the language generated by the grammar—can be read left
to right off the leaves of the derivation tree, or by an inorder traversal of the formation
tree: visit the left subtree, visit the root, visit the right subtree. (For a node labeled by
negation, the left subtree is considered to be empty.) The formula represented by this
tree is:

qopT—gp =,

ecﬂy compiled to the following sequence of instructions of an abstract

anguage
p=2>geTp—oTg.
Unfortunately, this linear sequence of symbols is also obtained from the formation Load q
g . . . Negate
tree shown in Figure 2.4 which represents an entirely different formula. Load |
p
In other words, the linear representation of formulas is ambiguous, even though the Negate
formation trees are not. Since we prefer to deal with linear sequences of symbols, Imply
we need some way to resolve ambiguities if we are to use a linear representation of a Load q
formula independent of its derivation. There are three ways of doing this. Load p
There will be no ambiguity if the linear sequence of symbols is created by a preorder Imply

traversal of the formation tree: visit the root, visit the left subtree, visit the right sub- Equiv
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The second way of resolving ambiguity is to use parentheses. The grammar would be
changed to:
1. fml == p foranyp e P
2. fml (= fml)
3. fml = (fml Vv fml)

g property(Ar) and property(Az), then property(A, op A;) hold, for
-operators op.

The two formulas are represented by different strings and there is no ambiguity:

that-the base case and two inductive steps have been proved and let
ary formula. We show property(A) by (arithmetical) induction on », the
rmation tree for A. If A is a leaf (n = 0), then A is an atom p and
ds by the base case. Otherwise, the principal operator of A is either
bihary;operators op. The subtrees of the tree for A are of height n — 1,
metical) induction property holds for the formulas labeling them. By the
DS, property(A) holds. 1
s_hoW"that all the binary operators can be defined in terms of any one
‘ gation, so that a structural inductive proof of a property of a formula
base case and two inductive steps.

(= (- —=0Cm).
P—=2@eoCE-=Cn)H).

The problem with parentheses is that they make formulas hard to read.

The third way of resolving ambiguous formulas is to define precedence and associati
ity conventions among thq.operators' as is done in arithmetic, so that we immediate
recognize axb*c+dxe as (((a*b)*c)+(d*e)). In propositional formulas the order df
precedence from high to low is as follows: negation, conjunction, nand, disjunction;
nor, implication, equivalence. Operators are assumed to associate to the right, that
aVv bV cmeans (aV (bV c)). Parentheses are used only if needed to indicate an ordér
different from that imposed by the precedence, as in arithmetic where a * (b + c) needs
parentheses to denote that the addition is done before the multiplication, while a*b+¢
does not need them to denote the multiplication before addition. With minimal use of
parentheses, the propositional formulas above can be written: :
ithmetic expressions. Given an expression E such as a*b+2, we can

’gnd b and then evaluate the expression. For example, if @ = 2 and
v’ajl_uatgs to 8. In the propositional calculus, truth values are assigned to
formula in order to evaluate the truth value of the formula.

p—=qgeng—p,
p—(ge=(p——q).

Whatever syntax is used for the linear representation of a formula, it should be unde;

stood as a shorthand for the unambiguous formation tree. ‘assignment is a function v : P +» (T, F}, that is, v assigns one of

or F to every atom.
can be extended to a function v : F > {T, F}, mapping formulas to
ilrxductivc definitions in Figure 2.5. v is called an interpretation. I

Theorem 2.3 Let A € F be a formula. Then A is either an atom or it is of the form
1Ay or Ay op A; for some formulas Ay, A2 and operator op.

Proof: Immediate from Definition 2.1. (P—g)«>(~g-p), and let v the assignment such that v(p) =

andv_(p‘,-) = T for all other p; € P. Extend v to an interpretation. The
Definition 2.4 If A is not an atom, the operator at the root of the formation tree for’ an be calculated inductively using Figure 2.5:

is called the principal operator of the formula.

vp->q)=T
, . o vog) =F
Structural induction is used to prove that a property holds for all formulas: first show; Wap)=T

that it holds for atoms and then show that the property is preserved when formu'la‘sE
are constructed from simpler formulas using the operators. These two steps are cal‘l_edi
the base case and the induction step in analogy with mathematical induction used t
prove that a property holds for all natural numbers (Appendix A.6). :

v(—:q-—)-p):T
W(p—=q) e (hg—-p)=T.
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A v [ vy | vA) | [ A [v@d) ][ v | v ]

—A; T F At A T I T F ‘

~ Ay F T A; 1t Ay otherwise T A1, Az € F. IFv(A;) = v(Ay) for all interpretations v, then A, is '
A VA, F F F Al A F | _ F T nt to}A;, denoted A; = A4,. 0
A V::z ;ther[wis; ; :11 iizz > (th;e;w:?;) I; §pﬁi¢ient to check the (finite number of) interpretations that assign
21 j\\Az otherwise F Alod | VAD £v(A) | F ms that appear in either formula.
:, S iz Tth | iSI; I; 2 ! ziz :&; 7: :&3 }T? rmula pV ¢ logically equivalent to ¢vp? There are four distinct

1 > A otherw.

: sign to the atoms p and g¢:

lelaveve [vavp) |

Figure 2.5 Evaluation of truth values of formulas

: T|T T T
Since each formula A is represented by a unique formation tree, v is well-deﬁ.n.ed, tha T F = T
is, given A and v, v(A) has exactly one value according to the inductive definition. T T -
A . . F|F F F
Example 2.8 v(p—(g—p)) = T but v((p—¢q)—p) = F under the above interpretati ‘
emphasizing that the linear string p — g — p is ambiguous. 'p agree on all the interpretations, pPVg=qvp. 0

The use of v to denote both an assignment and its extension to an interpretation

€ generalized to show that the disjunction of any two formulas, not
justified by the following theorem whose proof we leave as an exercise.

of the atoms p and g, is commutative.

Theorem 2.9 An assignment can be extended to exactly one interpretation. Al and A; be any formulas. Then A VA; = A VA,

' 4 ot assien to all possible atoms in . .a;b'trary inter'pretation for A v 1'42, that i§, v assign.s truth valyes
Furthermore, an assignment nee &n P ts of atoms in A; and 4,. Obviously, v is also an interpretation
ore, since the set of atoms in Ay is a subset of those in A; V Ao,
or A; and similarly for A4,. V(A| V Ay) = T iff either v(A)) =T
AiVA) =T by definition (Figure 2.5). Since v was arbitrary,
: I
will be used frequently. In order to prove that something is true
interpretations;: we: let v be an arbitrary interpretation and then write a proof
any property that distinguishes one interpretation from another.

Theorem 2.10 Let P' = {p;,,....p; } C P be the atoms appearing in A € F. Let
and vy be assignments that agree on P', that is, vi(py) = v2(p;,) for all p;,, € P'. Th
the interpretations agree on A, that is, vi(A) = v2(A).

Proof: Exercise.

Definition 2.11 Let S = {A;,...,A,} be a set of formulas and let v be an assignmen
that assigns truth values to all atoms that appear in any A;. Any interpretation obtair

he answer is no. It is simply a notation for the phrase ‘is
by extending v to all atoms in P is called an interpretation for S.

' Whereas <> is a Boolean operator in the propositional calculus.
confusion when studying logic because we are using a similar
the‘object language under discussion, in this case propositional
for the semi-formal metamathematical language (or metalanguage) used
ut the object language. Similarly, we must distinguish between a propo-
€' p V q in the object language and a formula like A; V A; in the

Example 2.12 Let S = {(p » g, p, pVs < sAg}, and let v be the assignment gi
byv(p) =T, v(g) =F, v(r) =T, v(s) = T. v is an interpretation for S and assign
truth values
vip—q)=F,
vip) =T,
pysesng=F. , er that = and < are not the same, the two concepts are closely
1 by the following theorem:
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Theorem 2.16 A, = A, if and only if A| <> A; is true in every interpretation.

Proof: Suppose that Ay = A; and let v be an arbitrary interpretation. Then v{Ay)
v(A;) by definition of logical equivalence, and v(A, <> Az) = T by the induc
definition in Figure 2.5. Since v was arbitrary, v(A; <> A;) = T in all interpretations

ince v <= true ANAtrue = A
The proof of the converse is similar. i

A A Afalse = false
Logical equivalence justifies substitution of one formula for another. ‘true rue—A = A
. ‘ i -A false = A = true
Definition 2.17 A is a subformula of B if the formation tree for A occurs as a subtr A ADtrue = ~A
of the formaltion tree for B. A is a proper subformula of B if A is a subformula of B “=A Adfase = A
but A is not identical to B. '
Example 2.18 The formula (p — g) <> (- p — —¢q) contains the following pro_v A=AVA
subformulas: p = g, = p >74:7p,7q.p and q. AN-A = false
Definition 2.19 If A is a subformula of B and A’ is any formula, then B', the sub: Ze _
tution of A’ for A in B, denoted B{A « A'}, is the formula obtained by replacing - ¢ 4 e)[i = Jalse
occurrences of the subtree for A in B by the tree for A’. TA=Ala
Example 2.20 LetB=(p > g) < (-p—>-q), A=p—->qgandA’'=-pVgq. VA AnB=BnA
BeA A®B=BoA
B = B{A <A} TA AlB=B|A
B{A < -pVg) TB-n4
= (hpVvg)e(=g—p). :
p q P ‘ (AVvB)vC ANBAC)=AABAC
C)=(AeB)«C AsBoeC)y=(AdB) e C
AarBtc AlBlO=@AlBlC

Theorem 2.21 Let A be a subformula of B and let A’ be a formula such that A
Then B= B{A « A'}. (AVB)A(AVC) AABVCO=AABVAAOD

) =A AVAAB) =A

Proof: Let v be an arbitrary interpretation. We know that v(A) = v(A’) and we'm
show that v(B) = v(B'). The proof will be by induction on the depth d of the roo
the subtree of the highest occurrence of A in the formation tree of B. If d = 0,-ih’
is only one occurrence of A, namely B itself, and A’ = B'. Obviously, v(B) = V(A
WA = v(B'). If d # 0, then B must be - By, or By op B; for some formulas By
and operator op. In By, the depth of A is less than d. By the inductive hypothe!
v(B1) = v(B)) = B1{A « A’}), and similarly for B,. By the inductive deﬁniti‘on‘
on the Boolean operators, v(B) = v(B').

i=>BYA(B— A) A9B=-=(A->B)V-(B—A)
VB A—>B=-(AA-B)
\ A= B) AAB=-(-AV-B)
> B AANB=-(A--B)

& (AAB) A->B=B<(AVE)
©B) e (AVB) AoB=(AVB)— (AAB)

Logically equivalent formulas " Figure 2.6 Logical equivalences

Figure 2.6 contains a list of logical equivalences. Their proofs are elementary from
the definitions and are left as exercises.
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We have extended the syntax of Boolean formulas to include the two constant atomi N e formulas for defining disjunction and co njunction from implica

propositions true and false. d-formulas for defining disjunction from conjunction and nega-

formula = true | false These formulas are called De Morgan’s laws:

interpreted as v(true) = T and v(false) = F for any v. Alternatively, it is possibl T(AV-B) AVB=-(=AA-B).

regard true and false as abbreviations for the formulas pv-pand pA-p, respectivel
Do not confuse these symbols in the object language of the propositional calculus wi
the truth values T and F used to define interpretations.

sion, it is clear that all unary and binary Boolean opérators can
: "on and one of disjunction, conjunction or implication. It may
it it is possible to define all Boolean operators from either nand
one. The formula~A = A t A is used to define negation from nand and the
nce of equivalences shows how conjunction can be defined:

Simplification is one of the most important applications of substitution of logi
equivalences. Given a formula A, substitute for subformulas until a simpler formul
obtained:

pA(CCpVY) = 2B)T (AT B) = definition of 1
@A-pVpAg = x TBYAATB) = idempotence
false v (p A q) = (A1B) = definition of t
DPAg. AnB) = double negation

Many of the equivalences describe familiar mathematical properties of Boolean Oper: :B.
ators. Except for —, they are all associative and commutative, so we can freely om
parentheses and rearrange sequences of these operators. V and A are idempotent;

is, they collapse identical operands:

o negqtion and conjunction, all other operators can be defined.
possible using nor.

roved that only nand and nor have this property.
AVA=A ANA=A,

 binary operator that can define negation and all other bi-

so we can freely insert or remove additional copies of a subformula. 1 and |- als s‘either nand or nor

collapse copies of identical operands but introduce a negation:

At A N an uthn of @e proof and leave the details as an exercise,
: I other operators. In particular, negation must be defined

Finally, equivalence operators erase identical operands: ++ 0 A, for some number of applications of o, and for any

Ao A=true A ® A = false. Al.opA2=Blo- oB
= --0B,,

‘or A,. (If o is not associative, add parentheses as necessary.)
uirements impose restrictions on o so that it must be nand

Definition 2.22 A binary operator o is defined from a set of operators {oy, . .., o,
there is a logical equivalence A; o A; = A, where A is a formula constructe front
occurrences of A; and A; using the operators {oy, ..., 0,]}. Similarly, the (only:
trivial) unary operator - is defined by a formula ~A; = A, where A is cdn§&ﬁ that assigns T to A. Then
from occurrences of A; and the operators in the set. o
F=v(=A)=v(Ao...04).
Equivalence can be defined from implication and conjunction: -
the number of occurrences of o that in the definition of o,
A1)= T and v(4,) = T. Similarly, et v assign F to A, so that
that v(A; o A;) = T when V(A1) = F and v(A,) = F.

AeB=(A->BYA(B—A),

and implication can be defined from negation and either conjunction or disjunctio
om we have in defining o is in the case where the two operands are

A->B=-AVRB A->B=-(AA-B). alues:
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(@ & [Aoh

T|T F
T|F 17
F?
F | T T?
F?
F|F T

If o is defined to give the same truth value, either T or F, for these two lines, then
nand or nor, respectively. Suppose o is defined to give different truth values for these
two lines. Prove by induction that only projection and negated projection are definal

in the sense that .
Blo...anE—‘...—,Bi

for some i and zero or more negations.

2.5 Satisfiability, validity and consequence

Definition 2.24 A propositional formula A is satisfiable iff v(A) = T for som
pretation v. A satisfying interpretation is called a model for A. A is valid, d: T
[ A, iff v(A) = T for all interpretations v. A valid propositional formula is also cal

a tautology.

A propositional formula A is unsatisfiable or contradictory, iff it is not satisfiable
is, if v(A) = F for all interpretations v. A is not-valid or falsifiable, denoted &

is not valid, that is, if v(A) = F for some interpretation v.

The relationship among these concepts is shown in the following diagram.

True in some interpretations;

false in others. False in

all interpretations.

True in '
all interpretations.
4

I B I B
I

Valid Satisfiable Falsifiable Unsatisfiable

Theorem 2.25 A is valid if and only if - A is unsatisfiable. A is satisfiable if dn_d

if 2 A is falsifiable.

rbitrary interpretation. v(A) = T if and only if v(=A) = F
nterpretation for negation. Since v is arbitrary, A is true in all
only if - A is false in all interpretations, that is, iff = A is unsatis-
atisfiability, if v is some interpretation such that v(A) = T, then
srpretation; conversely, if v(~A) = F then v(A) = T. 1

tlsﬁap""ty are duals: to prove a theorem ‘A is valid’, it is sufficient
A is unsatisfiable’.

be a set of formulas. An algorithm is a decision procedure for
“formula A € F, it terminates and returns the answer ‘yes’ if
er:‘no’ ifA ¢ V. i

decision procedure for satisfiability can be used as a decision
lidity. To decide if A is valid, apply the decision procedure for sat-
reports that ~ A is satisfiable, then A is not valid; if it reports
able, then A is valid. Such an decision procedure is called a refu-
ecause we prove the validity of a formula by refuting its negation.
are usually more efficient, because instead of checking that the
we need only search for a falsifying counterexample.

sion procedure for satisfiability in the propositional calculus is
ula:contains a finite number of atoms, there are a finite number
itions (Theorem 2.10) and we can check them all. This algorithm
method of truth tables because the computation can be arranged in tabular
ssignment to the atoms of the formula. There is a column for
“with the truth value of the formula. It is convenient to have
subformulas to assist in the computation.

g|q=>-p| @9 > (g->-p)]
T T
F T
T T
T T

ormula p A g is satisfiable but not valid because its truth table
at evaluates to T as well as lines that evaluate to F.
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\p|allpve]-p][-q] @V r-pr-q]
T|T] T |F|F F
T|F| 7 |F| T F
FlT|[ T | T|F F
FIF| F | T |T F

The method of truth tables is a very inefficient algorithm because we evaluate
formula for each of the 2" possible interpretations, where » is the number of
atoms in the formula. In the following chapters we will discuss more efficient
rithms for satisfiability, though it is extremely unlikely that there is an algorithm:
is always efficient (see Section 4.4).

Definition 2.30 A set of formulas U = {Ay,...,A,} is (simultaneously) satisfiab
iff there exists an interpretation v such that v(A;) = - -+ = v(A4,) = T. The satis
interpretation is called a model of U. U is unsatisfiable iff for every interpretatio
there exists an i such that v(4;) = F.

Example 2.31 The set U; = (p, ~pV q, g A r} is simultaneously satisﬁable‘By
interpretation which assigns T to each atom, while the set U, = {p, =pVv g,
unsatisfiable. Note that each formula in U is satisfiable by itself, but the s

simultaneously satisfiable.

The proofs of the following elementary theorems are left as exercises. In all the ‘t’h
rems, let U = {A1,...,A,}.

Theorem 2.32 [f U is satisfiable, then so is U — {A;} forany1 <i<n.

Theorem 2.33 If U is satisfiable and B is valid, then U U {B} is satisfiable..

y:and consequence 27

satisfiable, then for any formula B, U U {B) is unsatisfiable.
unsatisfiable and for some 1 < i < n, A; is valid, then U — {A;}
set of formulas and A a formula. If A is true in every
ical consequence of U. Notation: U = A. : 0
ery possible interpretation, only in those interpretations which

Tpretations which satisfy every formula in U. If U is empty,
dme as validity.

Vr)A(=gV=r). Then A is a logical consequence of {p.~q},
since A is true in all interpretations such that v(p) = T and
ot valid, since it is not true in the interpretation v(p) = F,
' 0

'and = also applies to — and [=. — is an operator in the
symbol for a concept in the metalanguage. As before, the
ected:

ndonly if EALA---ANA, — A.
as well as the following two are left as exercises.
s then U U {B} |= A for any formula B.

‘A'and Biis valid then U — (B} |= A.

the central concept in the foundations of mathematics. Valid
V p are of minor mathematical interest since they are self-
teresting to assume that a set of formulas is true and then
énces of these assumptions. For example, Buclid assumed
cometry and deduced an extensive set of logical consequences.
mathematical theory is as follows.

of fermulas 7 is a theory iff it is closed under logical conse-
der:logical consequence iff for all formulas A, if 7 |= A then
are.called theorems.

; = {A | U |= A} is the called the theory of U. The
axioms and the theory 7(U) is axiomatizable. d
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We leave it as an exercise to show that 7 (U) is in fact a theory, that is, that it is clo V.
under logical consequence. , . t8(B, V, TVB), opr(eqv, TVA, TVB, TV).

Implementation® : ' tt(B, V, TVB), opr(xor, TVA, TVB, TV).

Though the method of truth tables is easy to implement by hand, we give a P / 5. %t(B, V, TVB), opr(imp, TVA, TVB, TV).
program for the method as a first example of the implementation of an algorithm :

The Boolean operators -, V, A, —, +», & will be represented in the Prolog programs tt(B, V, TVB), opr(or, TVA, TVB, TV).

new operators neg, or, and, imp, eqv and xor. For reference, we give the declarati

of the operators in Prolog, though they will be of interest only to Prolog expert: v 4tt (B, V, TVB), opr(and, TVA, TVB, TV).

tt(A, V, TVA), negate(TVA, TV).
:= member ((A,TV), V).

:- op(650, xfy, xor).
:— op(650, xfy, eqv).
:— op(640, xfy, imp).
;- op(630, xfy,?br).

:— op(620, xfy, and).
:- op(610, fy, neg).

».t,f£,8). opr(or, £,t,t). opr(or, £,f,f).
(and,t,f,f). opr(and,f,t,f). opr(and,f,f,f).
{xor,t,f,t). opr(xor,f,t,t). opr(xor,f,f,f).
For brevity, we will not use the operators nand and nor in the programs in the tex ! qv,t,£,£). opr(eqv,f,t,f). opr(eqv,f,f,t).
you can easily add them if you wish. (imp,t,£,£). opr(imp,f,t,t). opr(imp,f,f,t).
Formulas written with this notation are not easy to read or write. The source arch
contains programs to translate this notation to and from a notation that corres \
more closely to mathematical notation. We have not used it directly in the prog
because there are clashes with important predefined operators in Prolog.

Example 2.42 The internal and external representations of the formula

Pogye (-9 V-(g—p)

are: e(Fml, V, TV),

(p xor q@) eqv (neg (p imp q) or neg (q imp p) )
returns a sorted list of the atoms occurring in Fml, and
nerates assignments for this set of atoms. (The program-
dures requires advanced Prolog techniques; see the source
fient is generated, tt (Fml, V, TV) is called, the value of
the predicate fail causes backtracking into generate. Even-
able will be printed.

and

p+<>(~"(p->qv~@->p ),

respectively.

The predicate tt(Fml, V, TV) returns the truth value TV of formula Fml unds
assignment V. The assignment is a list of pairs (4, TV), where A is an atom and ‘ .
is t or £, for example, [(p,£),(q,t)]. tt recurses on the structure of the form ; tableaux
For atoms, it returns the truth value by lookup in the list; for negations, neg is cal
to negate the value; for formulas with a binary operator, opr is called to comp
truth value from the truth values of the subformulas. :

aux is arelatively efficient algorithm for deciding satisfi-
alidity) in the propositional calculus. Furthermore, the method
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is important because it will be the main tool for proving general theorems abo v(=g)=T,or
calculus. The principle is very simple: search systematicaily for a model. If" :
found, the formula is satisfiable; otherwise, it is unsatisfiable. We begin with th
inition of some terms, and then analyze the satisfiability of two formulas to mot

.= p,q) and { g, p, 7 q} contain complementary pairs,
the construction of semantic tableaux.

ible, and we conclude that it is impossible to find a model
atisfiable. o

Definition 2.43 A literal is an atom or a negation of an atom. An atom is a posi 3 :

literal and the negation of an atom is a negative literal. For any atom p, {p, =p

complementary pair of literals. For any formula A, {A,-A} is a complementary;

of formulas. A is the complement of = A and = A is the complement of A.

sy to.conduct if a data structure is used to keep track of the
ide to subformulas. In semantic tableaux, trees are used:
ot of the tree, and the sets of formulas created by the
the tree. The leaves will be labeled by sets of literals that
ntaining a complementary set of literals will be marked x ,
¢ marked . Here are semantic tableaux for the formulas

Example 2.44 Let us analyze the satisfiability of the formula A = pA (= gV -ip)
arbitrary interpretation v, using the inductive rules for the evaluation of the truth vald
of a formula.

* v(4) =T if and only if both v(p) = T and v(~q v ~p) = T. ®va) "i”p" ")
® Hence, v(4) = T if and only if either: PVgpA-g
\:
1. =Tandv(-~g) =T,
v(p) and v(~g) or PVq,-p g
2. v(p) =T and v(—=p) = T. 7 \
o . . . - . I p.mp.2q . g-p g
Thus, A is satisfiable if and only if there is an Interpretation such that (1) holds;or « %
interpretation such that (2) holds.

,c:)izunique; here is another tableau for @VPHA(=pA-g).
g to-search for a satisfying assignment for p v g before
7g. Clearly, the first tableau is more efficient because it

We have reduced the question of the satisfiability of A to questions about the §
bility of sets of literals. It is easy to see that a set of literals is satisfiable if andonlyifit
does not contain a complementary pair of literals. Since any formula contains;a finite
number of atoms, there are at most a finite number of sets of literals built from thi

atoms. It is trivial to decide if the condition holds for any one set. In the exa'mi)‘ VY A(pA-g)

second set of literals {p, - p} is complementary and hence unsatisfiable, but th ; {
set {p, = q} contains no complementary pair of literals, hence the set is satisfiable PVg - pA-gq
we can conclude that A is also satisfiable. Furthermore, we can trivially construc NV \
model of A by assigning T to positive literals and F to negative literals: SpA-g q.-pA-gq
{ l
v(p) =T, v(g) = F. ) pig dmpimg
x X

We leave it to the reader to check that for this interpretation, v(4) = 7.

Example 2.45 Now consider the formula B = @EV@A(—pA-g).

es for creating a semantic tableau can be given if for-
ding to their principal operator. If the formula is a negation,

unt both the negation and the principal operator. There
ulas are conjunctive and are satisfiable only if both sub-
;and f-formulas are disjunctive and are satisfied even
ulasip; or f, is satisfiable.

° v(B)=Tifandonlyifv(qu)=Tandv(-|p/\—'q)=T.

e Hence, v(B)=T if and only if v(p V g) = v(=p) = v(~q) = T.

¢ Hence, v(B) = T if and only if either
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whose construction has terminated is called a completed

| a | = * | | B l b | tableau is closed if all leaves are marked closed. Otherwise
—=4 Ay arked open), it is open. 0
Al ANA; Ay As - {By ABy) - By -~ B
(A1 VAy) | -4 —A; Bi VB, B, truction of a semantic tableau terminates.
A= A) | A -4 By — B, - By e
SA; 1A 4 A, B, 1B, - B, -B au for formula A at any stage of its construction and let us
AL 1A oA S A, =B, 1B B : 1d @ do not occur in the formula A. For any leaf € T, let
AL oAy | Ai—Ay | Avod, ~(Bi<B,) | ~(Bi=By) | = (B, g ary operators in formulas in U(J) and let n(l) be the number
(A A7) | A=A | Ax—A By ® B, = (B1—By) | (B2

CW() = 3b() + n(d).
‘We now give the construction of a semantic tableau. :
the.construction creates a new node I or nodes 7, I such that
Algorithm 2.46 (Construction of a semantic tableau) *). For example, if we apply the a rule to - (4, V A3) to
Input: A formula A of the propositional calculus. -

Output: A semantic tableau 7 for A all of whose leaves are marked.
+3:-14+1 > k+3-0+2=wW(),

A semantic tableau 7 for A is a tree each node of which will be labeled with a set’
formulas. Initially, 7 consists of a single node, the root, labeled with the sing
{A}. The tableau is built inductively by choosing an unmarked leaf [ labeled w
of formulas U(/), and applying one of the following rules. The construction termin
when all leaves are marked x or ©.

mber of operators in A; and A,. Obviously, W(l) > 0,
xtended indefinitely. We leave it to the reader to check the
for the other rules and to modify the definition of W(J) in the

‘ , o

€ construction’of semantic tableaux can be made more efficient:

e If U(l) is a set of literals, check if there is a complementary pair of litera :
U(D). If so, mark the leaf closed x; if not, mark the leaf as open ©. af 10 be -non-atomically closed if it contains a complementary pair

fine it to be atomically closed if it contains a complementary

ge the algorithm to mark a leaf closed if it is non-atomically
‘oWnJ» (exercise) that the method of semantic tableaux remains

mplete under this (more efficient) definition.

o If U(!) is not a set of literals, choose a formula in U(Z) which is not a literal

— If the formula is an e-formula, create a new node /' as a child of / and I
! with

Uilh)= WU - {a}) U {ay, ar}. opy unmodified formulas from one node to the next.

me and memory can be achieved if the label of a node

(In the case that a is -~ Ay, there is no ay.)
‘the formulas themselves.

— If the formula is a f-formula, create two new nodes !’ and I” as ¢!

[. Label I with be used to shorten the tableau. For example, always use

€516 avoid duplication of formulas.

ui)y=Wm-{pHu (A}
and label " with

U@y = U - {BHY (). and completeness

and completeness) Let T be a completed tableau for a
o e . . ifand only if T is closed.

The algorithm is not deterministic since there is a choice of leaf at each step an A

choice of which formula to expand within the label of the chosen leaf. er to-present some consequences of this theorem.
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_previous corollary, A is valid if and only if the completed tableau is closed.
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Corollary 2.50 A is satisfiable if and only if T is open. {BiV By} UUjp
Proof: A is satisfiable iff (by definition) A is not unsatisfiable iff (by Theorem:2
T is not closed iff (by definition) 7 is open.

Corollary 2.51 A is valid if and only if the tableau for -~ A closes. {Bi}uly n": (Bl u Uy

Proof: A is valid iff — A is unsatisfiable iff the tableau for - A closes. : Un) = {A1 AAz} U Up and U(') = {A1, A2} U Uy

of formulas Uy. But the height of #’ is & — 1, so by
') is unsatisfiable since the subtree rooted at 7’ closes.
rpretation. Since U(r') is unsatisfiable, v(4') = F for some
30. There are three possibilities:

Corollary 2.52 The method of semantic tableaux is a decision procedure foi.*»v_val
in the propositional calculus.

Proof: Let A be a formula of the propositional calculus. By Theorem 2.48,.th

struction of the semantic tableau for = A terminates in a completed tableau: Uo. v(Ag) = F. But Ag € Uy C U(n).

nition of v on A, V(A1 A Az) = F, and A, NA; € Un).
The forward direction of Corollary 2.51 is called completeness, which means th s
A is valid, we can discover this fact by constructing a closed tableau for
converse direction is called soundness, which means that any formula A that'th
leau construction claims valid (because the tableau for = A closes) actually:is
Invariably in logic, soundness is easier to show than completeness. The reason:
while we only include in a formal system rules that are ‘obviously’ sound, it is har
be sure that we haven’t forgotten some rule that may be needed for completenes:
example, the following algorithm is vacuously sound, but far from complete!

X’,fv(Al AAZ) = F, andA1 /\A2 € U(n)

'€ U(n); since v was arbitrary, U(n) is unsatisfiable.
used..U(n) = {B1V B;} UUy, U(r') = {B1} U Up, and U(n") =
ve hypothesis, both U(#') and U(n") are unsatisfiable. Let v
. There are two possibilities:

unsatisfiable because v(By) = F for some By € Uy. But

Algorithm 2.53 (Incomplete algorithm for validity)
Input: A formula A of the propositional calculus.

T for all By € Up. Since both U(n') and U(n") are un-
Output: A is not valid. ’

¥(B,) = F. By definition of v on Vv, v(B; V B,) = F, and

Example 2.54 If the rule for - (A; V A3) is omitted, the construction is sti
but it is not complete, because it is impossible to construct a closed tableau - U(n); since v was arbitrary, U(n) is unsatisfiable. 1
obviously valid formula = p Vv p. ' o
Proof of soundness: To make the proof easier to follow, we will use A

representatives of the classes of a- and f-formulas, respectively. S if A is unsatisfiable then every tableau for A closes.

difficult to prove than soundness. There we had a single
bleau and we proved unsatisfiability by a simple induction
Here we have to prove that no matter how the tableau for
lose. Rather than prove that every tableau must close, we
‘orollary 2.50) and show that if some tableau is open, that
branch, then the formula is satisfiable. We have a single
ch in a tableau and we can use induction on the length of |
sisatisfiable.

The theorem to be proved is: if the tableau 7 for a formula A closes, then’,
satisfiable. We will prove a more general theorem: if a subtree rooted at n
T closes, then the set of formulas U(n) labeling # is unsatisfiable. Soundné
special case for the root. The proof is by induction on the height & of the node

If h = 0, nis aleaf. Since 7 closes, U(n) contains a complementary set of hte
Hence U(n) is unsatisfiable.

If 2 > 0, then some a- or f-rule was used in creating the child(ren) of n:
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Example 2.55 LetA = p A (—gV - p). We have already constructed the tableau
which is reproduced here.

n of the set of formulas labeling the open branch of Ex-
~q)}. We claim that U is a Hintikka set. Condition (1)
nly one literal in U. Condition (2) is vacuous and con-

PA(~gV-p) V(gA-q) e U,soeitherpe UorgA-g e Umustbe

! ng the demonstration that U is a Hintikka set. ]
p.(mqVv-p)

/ N equirements (2) and (3) ensure that U is downward saturated,

p.q p,-p ficient” subformulas so that the decomposition of a for-

® % ke us out of U. When the decomposition terminates, the

mentary pair of literals (by (1)), so the formula must be
The interpretation v(p) = T, v(g) = F defined by assigning T to the literals lal

the leaf of the open branch is clearly a model for A.
pen leaf in a completed tableau T. Let U = U; UGy,

Example 2.56 Now let A = p V (g A - g). Here is a tableau for A. f ﬂodes on the branch from the root to I. Then U is a

p)/ (gn _‘\q.) ‘ .f the semantic tableau, there are no rules for decomposing

’ dhma ears for the first time in U(n) for some n, then m € U k)

o j anch from » to [, in particular, m € U(l). This means that
g D). Since the branch is open, no complementary pair of
,x holds for U.

€au'is completed, at some node 7 an a-rule was used on a.
U(n') € U so (2) holds.

th bIeau:\1s,completed, at some node n a f-rule was used on .
n')-and f, € U(n”). But the branch from the root to I is
ither n’ or n” as part of the branch. Thus either U(n') C U
or f> € U, proving (3). 1

From the open branch of the tableau, we can conclude that any model for
define v(p) = T. However, an interpretation for A must also define an assignmq
g. It is obvious in this case that any interpretation which assigns T to p is a-mod:
A, regardless of what is assigned to g. ‘

Completeness will be proved if we can show that the assignment of T to the ]
labeling the leaf of an open branch can be extended to a model of the formulalat
the root. There are four steps in the proof: (1) define a property of sets of form
(2) show that the union of the formulas labeling nodes in an open branch:has thi
property, (3) prove that any set having this property is satisfiable, (4) note:that the
formula labeling the root is in the set.

_;ntikka set defined by an open branch in the tableau and
gnment it defines can be extended to a model.

emma) Let U be a Hintikka set. Then U is satisfiable.

) be the set of atoms appearing in all formulas in U.
as follows:

fpeU

if-pelU

Yp g Uand-p ¢ U.

set; by (1) v is well-defined, that is, every atom in P is given

ple 2.56 demonstrates the third case: the variable g appears
er the literal g nor its complement - g appear in U.

ctur mgiuction that forany A € U, v(A) =

Definition 2.57 Let U be a set of formulas. U is a Hintikka set iff:

1. For all atoms p appearing in a formula of U, eitherp € Uor-p g U

2. If @ € U is an a-formula, then a; € U and a; € U.

3. Ifpe Uisapf-formula, then §y e Uor fp € U.




A € U, so the interpretation is a model of A.
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If A is an atom p, then v(A) = v(p) =T since p € U. bleau performs one step of the tableau construction. First,

e IfA is a negated atom =, v(p) = F since ~p € U, 50 v(A) = v(~p) = '. éomtadictory formulas in Fuls, and then it checks if Fmls
dnly then does it perform an alpha or a beta rule, with alpha

e ifAisa, by (2) ¢; € U and a; € U. By the inductive hypothesis, -

v(az) = T, so v(a) = T by definition of the conjunctive operators. .

(t(Fmls, closed, empty)) :-

i(Fmls), !.

t(Fmls, open, empty)) :-

iterals(Fmls), !.

IfAis §,by (3) p1 € U or §, € U. By the inductive hypothesis, either v(
or v(f2) = T, so v(f#) = T by definition of the disjunctive operators.

Since A was an arbitrary formula in I/, we have shown that all formulas in U ]

in this interpretation. Fmls, Left, empty)) :-
, is, Fmlsi), !,

Proof of completeness: Let 7" be a completed open tableau for A. Then U, th union: Paist )

of the labels of the nodes on an open branch, is a Hintikka set by Theorem 2.5 : P =

model can be found for U:by Theorem 2.60. Since A4 is the formula labeling thi H(Left).

1s, Left, Right)) :-

2.8 Implementation” Folst, _, _>),
: 1(Left),
A tableau will be represented by a predicate t(Fmls, Left, Right), whe; au( :ghi)

is a list of the formulas labeling the root of the tableau, and Left and Righ
subtrees of the root which recursively contain terms on the same predicate. igh

ignored for an a-rule. Here is the Prolog term for the tableau for P A(~qV=p)give
on page 31.

t(lp and (neg q or neg p)],
t([p, neg q or neg pl,
t([p,neg ql,open,empty),
% ({p,neg pl,closed, enpty) ' heck if all elements of the label are literals.
empty
). erals([Fml |} Tail]) :-
We never explicitly construct the term for a tableau; instead, we write a Prolc L

gram to construct the tableau and another program to print it out in a readablé fo literals(Tail).

The tableau for a formula Fml is created by starting with t ([Fm1],_,_) an

tom(Fml) .
extending the tableau by instantiating the logical variables for the subtrees. > 0131( nl)

atom(Fml) .

create_tableau(Fml, Tab) :-
Tab = t([Fml1l, _, ),
extend_tableau(Tab).

fe; we nondeterministically select a formula, pattern-match it
Iés, delete the formula from the node and add the subformu-
negation is implemented separately.
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< ey G

alpha_rule(Fmls, [Al, A2 | Fmls1]) :-
member (A, Fmls),
alpha(A, A1, A2), !,
delete(Fmls, A, Fmlsl).

AABVC)=(AAB)VAAC),
AVB=-(~AA-B),
AAB=-(-AV-B),
A->B=-AVB,

alpha_rule(Fmls, [A1l | Fmls1]) :- A—B=-(AAB)

member (A, Fmls),
A = neg mneg A1,
delete(Fmls, A, Fmlsl).

and (p o q) o q) =p.

at nand and nor can each define all unary and binary
beta_rule(Fmls, [B1 | Fmlsi], [B2 | Fmlsi]) :- corem 2.23).
member (B, Fmls),
beta(B, B1, B2),

delete(Fmls, B, Fmls1).

cannot define negation.
sfiable then U U {B} is not necessarily satisfiable.

35 on the satisfiability of sets of f las.
The database of rules is copied directly from the tables on page 32. e o formitas

2.40 on logical consequence.
alpha(Al and A2, A1, A2).

alpha(neg (Al imp A2), A1, neg A2).
alpha(neg (Al or A2), neg Al, neg 42).
alpha(Al eqv A2, Al imp A2, A2 imp Al).

xioms U, 7 (U) is closed under logical consequence (see

es.on «> at the bottom of Figﬁre 2.6: (a) prove the equiv-
od of truth tables; (b) prove them by building semantic
beta(Bl or B2, Bi, B2). gations; (c) prove graphically using Venn diagrams.
beta(Bi imp B2, neg Bl, B2).

beta(neg (Bl and B2), neg Bl, neg B2).

beta(neg (Bl eqv B2), neg (Bi imp B2), neg (B2 imp B

;thg construction of a semantic tableau terminates (The-

of semantic tableaux remains sound and complete if a
n-atomically.

2.9 Exercises - . :
tation of semantic tableaux to include @, tand |.

1. Draw formation trees and construct truth tables for fficient implementation of the check that a node is closed.

P=@-m->@-=>9->0@->1)

-9 —-p
(p—=q) —=p)—p.

2. Prove that there is a unique formation tree for every derivation tree.-
3. Prove that an assignment can be extended to exactly one interpretati

rem 2.9) and that assignments that agree on the atoms in a formula extend|
same interpretation (Theorem 2.10).




Propositional Calculus:
Deductive Systems

1' Deductive proofs

he theorems of a theory 7'(U) are the logical consequences of the set of axioms U.
1ppose we have a formula A and we want to know if it belongs to the theory 7 (U).
By Theorem 2.38, U [= A if and onlyif = AjA---AA, > A, where U = {Ay,...,A,]}
the set of axioms. Thus A € 7(U) iff a decision procedure for validity answers ‘yes’
the formula. However, there are several problems with this approach:

The set of axioms may be infinite, for example, in an axiomatization of arith-
metic, we may specify that a/l formulas of the form (x = y) » (x+ 1=y + 1)
are axioms.

Very few logics have decision procedures like the propositional calculus.

A decision procedure may not give insight into the relationship between the
- -axioms and the theorem. For example, in proofs of theorems about prime num-
bers, we would want to know exactly where primality is used (Velleman 1994,
Section 3.7). This understanding can also help us propose other formulas that
might be theorems.

A decision procedure just produces a ‘yes/no’ answer, so it is difficult to rec-
6gnize intermediate results, lemmas. Obviously, the millions of mathematical
theorems in existence could not have been inferred directly from axioms.

ere is another approach to logic called deductive proofs. Instead of working with
semantic concepts like interpretation and consequence, we choose a set of axioms and
set of syntactical rules for deducing new formulas from the axioms.

Definition 3.1 A deductive system is a set of axioms and a set of rules of inference. A
r00f i in a deductive system is a sequence of sets of formulas such that each element
cither an axiom or it can be inferred from previous elements of the sequence using
) rule of inference. If {A} is the last element of the sequence, A is a theorem, the
quence is a proof of A, and A is provable, denoted |- A. 0
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The concept of deducing theorems from a set of axioms and rules is very old and is
familiar to every high-school student who has studied Euclidean geometry. Modern
mathematics, with its millions of theorems, is expressed in a style of reasoning that is
not far removed from the reasoning used by Greek mathematicians. This style can be
characterized as ‘formalized informal reasoning’, meaning that while the proofs are
expressed in natural language rather than in a formal system, there are conventions
among mathematicians as to the forms of reasoning that are allowed. The deductive
systems studied in this chapter are formalizations of the reasoning used in mathemat-
ics, and were developed in an attempt to justify mathematical reasoning.

Deduction is purely syntactical. This approach solves the problems described above:

There may be an infinite number of axioms, but only a finite number will appear
in any proof.

® Any particular proof consists of a finite sequence of sets of formulas, and the
legality of each individual deduction can be easily and efficiently determined
from the syntax of the formulas.

o The proof of a formula clearly shows which axioms, theorems and rules are used
and for what purposes. Such a pattern can then be transferred to other similar
proofs, or modified to prove different results.

e Once a theorem has been proved, it can be used in proofs just like an axiom.

Deduction introduces new problems. Though deduction is defined purely in terms of
syntactical formula manipulation, it is not amenable to systematic search procedures.
The semantic tableau rules only create subformulas of the formula to be proved (or

 their negations). In most deductive systems, any axiom can be used, regardless of

whether it is a subformula of the formula to be proved. This makes deduction more:
difficult because it requires ingenuity rather than brute-force search, though programs
called automatic theorem provers use heuristics to guide the search for a proof.

In the next sections we define the notion of proof in the propositional calculus and then'
prove soundness and completeness: a formula is valid if and only if it can be proved
(deduced) in the axiom system. We will do this twice, first for a Gentzen deductive:
system which has only one form of axiom but many rules. The completeness will turn"
out to be trivial because Gentzen systems are just semantic tableaux turned upside-}
down. Then we will present a Hilbert deductive system which has several forms of

axioms but only one rule. The completeness of the Hilbert system will be shown by

giving an algorithm to translate any Gentzen proof into a Hilbert proof.

The Gentzen system G 45

.2 The Gentzen system ¢

eﬁmtxon 3.2 The Gentzen system G is a deductive system. The axioms are the sets
f formulas containing a complementary pair of literals. The rules of inference are:

F UL U {ag, @2}
FU U {a}

FU U {1} FU U ()
|‘U1UU2U{ﬂ} -7

here the classification into a- and f-formulas is the dual of the classification for

o a | 2 | | B | /| B ]
A -
(A1 AAg) “A; —~Ay BiAB, B B,
Ay Az “(BivB)) | =B ~B;
1= Az A Ay = (By = By) Bi =B,
| Ay - A -~ (B 1 By) By By
A Az B | B, - B - B,

Are4)) | ~(A15A7) | 7 (A2>A) By<B; |By—B;|B;—B;

A1 B4 |~ (A1-A) | ~(A—AD (B, ®By) | Bi—»B, | B,—B;

The ‘set or sets of formulas above the line are called premises and the set of formulas
below: the line is called the conclusion. i

of formulas in G is an implicit disjunction, so an axiom containing a complemen-
pair of literals is obviously valid. For an a-rule, the inference from U, U {4;, A3}
U-{A; V Az} (or any other of the disjunctive operators) is simply a formalization
tuitive meaning of a set as a disjunction. For a f-rule, if we have proved both
V:By and \/ U, V B;, then \/ Uy vV \/ U, V (By A By) is inferred using the distri-
of disjunction over conjunction. (The notation \/ U means the disjunction over
¢ formulas in U.)

oof is written as a sequence of sets of formulas which are numbered for convenient
reference.  On the right of each line is its justification: either the set of formulas is
an“axiom, or it is the conclusion of a rule of inference applied to a set or sets of
for! "ulas earlier in the sequence. A rule of inference is identified as an a- or f-rule
j'prmmpal operator of the conclusion and the number or numbers of the lines
containing the premises. In the system G we will write - {4,,...,A,} without the
cesasF Ay, ..., An.
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Example 3.3 I (p v g) — (g V p). The proof is:

1. k=pgqp Axiom
2. F-qqp Axiom
3. F=(vy.qp v, 1,2
4. F-@Vvg.(gVvp) av,3
5. Feve-@vp a—,4
1]
Example34 - (pV(gAr)—> (Vg A(pVr). The proof is:
1. +-=p,pg Axiom
2. F-p.(pVvy av, 1
3. F-ppr Axiom
4. F=p,(pvr) aVv,3
5. Fop, v AV, A2, 4
6. F-g,-rpg . Axiom
7. F=g,-r.(pVvy aVv,6
8. F-g-rpr Axiom
9. F-g,-r,(pvr) aVv, 8
10. F=g,~r,(pvA(vVvr BAT,9
1. F=(gArN.@eveAp@Vvr) a A, 10
12. F-(v@Aam.eve AV Bv, 5,11
13. Fov@an)->@eveoa@pvr) a—, 12 .

It might seem that we have been rather clever to arrange all the inferences in these
proofs so that everything comes out exactly right in the end. In fact, no cleverness was
required. Let us rearrange the Gentzen proof into a tree format rather than a linear
sequence of sets of formulas. Let the axioms be the leaves of the tree, and let the
inference rules define the interior nodes. The root at the bottom will be labeled with
the formula that is proved.

Example 3.5 The proof of the theorem in Example 3.3 is displayed in tree form on
the left below.

Slevg) = (gvp)l
=p.q.p -q.9.p 1
N 7/ pVg(gVvp)
~@Vg.qp y)
l pvVg, g, -p
“(pVag.(@Vvp) / N
il p.mq."p 4.74q,"p
evg—-(qVp) X x

If this looks familiar, it should. What we have done is to turn the semantic tableau
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upside down and reversed the signs of the formulas in the labels on the nodes, as
shown to the right of the Gentzen derivation in the figure. 0

If the label of a leaf in a semantic tableau containing an a-formula is extended with a
node whose label contains {a;, @y}, then from F {a;, @3} we can deduce F « in G (re-
~member that the formulas in G are duals of those in the semantic tableau). Similarly, if
: the label of a leaf containing a f-formula is extended with nodes whose labels contain
“Br and f,, then from + f, and F- #,, we can deduce - F in G. The reader should check
- these claims by comparing the proof tree with the semantic tableau in Example 3.5.

iThe relationship between semantic tableaux and Gentzen systems is formalized in the
following theorem.

;':Theorem 3.6 Let U be a set of formulas and U be the set of complements of formulas
‘inU. Then & U in G if and only if there is a closed semantic tableau for U.

Proof: Let 7" be a closed semantic tableau for /. We prove - U by induction on A,
‘the height of T. If 2 = 0, then T consists of a single node labeled by U, a set of literals
containing a complementary pair {p, - p}, that is, I = U U {p,-p}. Obviously,
U=Upu {~p,p} is an axiom in C, hence I U.

If h > 0, then some tableau a- or p-rule was used at the root 7 of T on a formula A € {7 g
thatis, U = T U {A}. (In the following, be sure to distinguish between applications
of the tableau rules and applications of the Gentzen rules of the same name.)

:Case 1: A tableau a-rule was used on (a formula such as) A = - (4, V Az) to produce
ihe node n’ labeled U" = Uy U (-4, “Az}. The subtree rooted at #' is a closed
tableau for U7, so by the inductive hypothesis, - Uy U {A1,Az}. Using the a-rule in G,
U U {A; V Ay}, thatis, - U.
Case 2: A tableau f-rule was used on (a formula such as) A = - (4; A Ay) to produce
the nodes »’ and n” labeled U’ = UoU (~A1} and 0" = Ty U {~A,}, respectively.
By the inductive hypothesis, - Uy U {A;}, and F Uy U {A,}. Using f-rule in G,
E Us U {A) AA3), thatis, F U.

The other direction is left as an exercise. 1
orollary 3.7 \ A in G if and only if there is a closed semantic tableau for-A.
Theorem 3.8 (Soundness and completeness of G) & A ifand only if - Ain G.

Proof: A is valid iff - A is unsatisfiable iff there is a closed semantic tableau for - A
iff there is a proof of A in G. 1

“The proof is very simple because we did all the hard work in the proof of the com-
,pieteness of the tableau method. The Gentzen system G described in this section is not
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very useful; other versions (surveyed in Section 3.6) are more convenient for prov-
ing theorems and are closer to Gentzen’s original formulation. We introduced G as a
theoretical stepping stone to Hilbert systems which we now describe.

3.3 The Hilbert system H

Hilbert systems are deductive systems for single formulas, unlike Gentzen systems
which are deductive systems for sets of formulas. In Gentzen systems there is one
axiom and many rules, while in a Hilbert system there are several axioms but only
one rule. This textbook (like most others) contains only one theorem (Theorem 3. 10)
that is proved directly; practical use of the system depends on the use of derived rules,
especially the deduction rule.

Definition 3.9 H is a deductive system with three axiom schemes and one rule of
inference. For any formulas A, B, C, the following formulas are axioms:

Axiom 1 F (4 — (B — 4)).

Axiom2 F (A—> (B> C))— ((A—> B) > (A > O)).
Axiom3 F (-B—> ~A) = (A — B).

The rule of inference is called modus ponens (MP for short). For any formulas A, B:
FA FA-B

FB
0

Here is a proof in H that for any formula A, - A — A. When an axiom is given as the
Justification, make sure that you can identify which formulas are substituted for the
formula letters in the axiom.

Theorem 3.10 A — A.

Pl1‘(.)0f.l--A = (A=A) > A)»(A=> (A= A) —» (A>A) Axiom 2
2. FA->((A-=A)-4A) Axiom 1
3. F@A-~A—>A) - (A A) MP 1,2
4. FA-(A—A) Axiom 1
5. FA->A MP3,4

The proof is rather complicated for such a trivial formula. In order to formalize the
powerful methods of inference used in mathematics, we introduce new rules of infer-
ence called derived rules. For each derived rule we prove that the rule is sound: the
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se of the derived rule does not augment the set of provable theorems in H. We show
-how to mechanically transform a proof using the derived rule into another (usually
longer) proof using just the original axioms and MP. Of course, once a derived rule is
proved to be sound, it can be used in the justification of other derived rules.

The most important derived rule is the deduction rule: assume the premise of the
‘implication you want to prove and then prove the consequence.

"Example 3.11 Suppose that you want to prove that the sum of two odd numbers is
even, expressed formally as: odd(x) A 0dd(y) — even(x + y), for every x and y. Let
us assume the formula odd(x) A odd(y) as an additional ‘axiom’. Now we have avail-
able all the theorems we have already deduced about odd numbers, in particular, the
theorem that any odd number can be expressed as 2k + 1. Then

x+y=2k1+1+2k+1=2k +k+1),

an even number. The implication odd(x) A 0dd(y) — even(x + y) follows from the
deduction rule which ‘discharges’ the assumption. 0

Definition 3.12 Let U be a set of formulas and A a formula. The notation U F A
means that the formulas in U are assumptions in the proof of A. IfA; € U, a proof of
U F A may include an element of the form U - A 0

Rule 3.13 (Deduction rule)

UU{A} FB
UFA—B "

Theorem 3.14 (Deduction theorem) The deduction rule is a sound derived rule,

roof: We show by induction on the length n of the proof Uy {A} F B, how to obtain
aproof of U - A — B that does not use the deduction rule.

orn =1, Bis proved in one step, so B must be either an element of UU {A) or
axiom of H. If Bis A, then - A — B by Theorem 3.10, so certainly U + A — B.

therwise, the following is a proof of U + A — B which does not use the deduction
le:

UFB Assumption or Axiom
UFB—>(A-B) Axiom 1
UFA-B MP1,2

Ifn> 1, the last step in the proof of U U {A} F B is either a one-step inference of B or
an‘inference of B using MP. In the first case, the result holds by the proof forn = 1. If
MP was used, then there is a formula C such that formula i in the proofis UU{A} - C
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and formulajis UU {A}  C— B, for i,j < n. By the inductive hypothesis, U F A~ C
and U+ A — (C— B). Aproofof U - A — B is given by:

. UFA-C Inductive hypothesis
J. UFA-(C-B) Inductive hypothesis
J+1l UF@A-(C->B)-(A-C)— (4> B) Axiom 2
J+2. UFA—-C)—=(A~B) MPJ.j+1
J+3 UFA-SB MP?,j +2

Theorems and derived rules in 1

We will now prove a series of important theorems that are also used as justifications

for derived rules. Any theorem of the form U - A —» B justifies a derived rule of the
UFA

~ UFB
The contrapositive rule is justified by Axiom 3.

form simply by using.MP on A and A — B.

Rule 3.15 (Contrapositive rule)

Ur-B—--A
UFASB

0

The contrapositive is used extensively in mathematics. For example, we showed the
completeness of the method of semantic tableaux by proving:

If a tableau is open, the formula is satisfiable,
which is the contrapositive of the theorem:

If a formula is unsatisfiable (not satisfiable), the tableau is closed (not open)
that we had intended to prove.

Theorem3.16 F(A—>B) -~ [(B-> C) » A-0)1

Proof:
1. {A-BB—>CA}+A Assumption
2. {(A-BB—>CA}+-A>B Assumption
3. {(A-BB-CA}+B MP1,2
4. {A-BB-CA}FB->C Assumption
5. {A-BB-CA}}+C MP3, 4
6. {[A-BB-ClFA-SC Deduction 5
7. {A=>B}H[(B-C)-»@A->0) Deduction 6
8. FA-=B)>[(B-C)—(4A—0)] Deduction 7
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ule 3.17 (Transitivity rule)

UFA—B UrB-C
UFA-C '

0

This justifies the step-by-step development of a mathematical theorem - A — C
thfough a series of lemmas. The antecedent A of the theorem is used to prove a lemma
A ~ By, whose consequence is used to prove the next lemma + B; — B, and so
n-until the consequence of the theorem appears as - B, — C. Repeated use of the
' sitivity rule enables us to deduce - A — C.

eorem 3.18 + [A > (B — C)] - [B— (A - O)].

(A= (B—C).BA FA Assumption
{fA-B-0),BA}FA->(B-C0) Assumption
{A->(B->0),BA}FB>C MP1,2
{A-(B—-C),B,A}FB Assumption
{A>(B—C),B A} FC MP3,4
fA-(B->0C),B}FA>C Deduc_tion 5
[A-B->0O}FB->@A->C0) Deduction 6
FIA-(B->C)]->[B—A-0C) Deduction 7

1

Rule 3.19 (Exchange of antecedent rule)
UFA->(B-0)
UFB=>(A->C)
i}
heorem 3.20 + ~A — (A — B).
Proof: _

v {mA}F-A S (nB--4) Axiom 1
2. {-A}F-A Assumption
{~A}lF-B—>-A MP1,2
{(~A} F (=B -A) - (A > B) Axiom 3
. {~AJFA-B " MP 3, 4
. F-"A—=> (A= B) Deduction 5

' 1

If'you can prove some formula and its negation, then you can prove anything! We will
tudy the implications of this result in Section 3.6.
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Theorem 3.21 - A — (- A - B).

Proof:

L
2.

F-A-A->B)
FA— (-=A—-B)

Theorem 3.22 |- -4 — A,

Proof:

1.

NoawmhkwN

{=—A} FonA = (m-=2-0455-4)
{(--A}F--A

{--A}kF--2-A -4
{"=A}F-A—5-a=4
{(m-A}F"=A—A4

{-=A}FA

F--A-A

Rule 3.23 (Double negation rule)

Uk--A
UFA

Theorem 3.24 + (A - B) » (-B — - A).

Proof:
1.

e A G ol

bt paeed e ek
W =O

{A—=B,-B,--A}lF--A
{A-=B, =B, -A}FA
{A—-B-B,~~A}l+A>B
{A=>B,~B,--~A}}B
{A->B,~B,--A}}F-B
{A-B,-B,-~=A}F-B—>(B—--B)
{A-»B,-B,~-2A}+-B—->--B
{A—>B,-B,~-A}F-~B
{A->B,-B}F--2A—->--B
{A->B-~B}+--B—>-A
f{A— B -B}F-B
{A-B,-B}F-A
{A-B}F-B—=A
F(A—=B)—> ("B--A)

Theorem 3.20
Exchange 1

Axiom 1
Assumption
MP1,2
Contrapositive 3
Contrapositive 4
MP2,5
Deduction 6

Assumption
Double neg. 1
Assumption
MP2,3
Assumption
Theorem 3.20
MPS5, 6
MP4,7
Deduction 8
Contrapositive 9
Assumption
MP 10, 11
Deduction 12
Deduction 13

1e“contrapositive rule can be formulated in the opposite direction. Similarly, the
ther direction of the double negation rule is Justified by the following theorem.

. FomnAs-A
. FA---4

Theorem 3.22
Contrapositive 1

t true be an abbreviation for p — p and Jfalse be an abbreviation for = (p — p). We
ve - true by Theorem 3.10 and - false by double negation.

Theorem 3.26 | (A — false) — - A,

{A > false) - A - false Assumption
1 {A - false) F —false - - A Contrapositive
{A = false} V- ~faise Theorem 3.10, Double neg.
{A - false} F-A MP2,3
F (A - false) » - A Deduction
|
0
ule 3.27 (Reductio ad absurdum)
Uk -A - false
UFA
0

his is a very useful (but controversial) rule of mathematical inference: assume the
ation of what you wish to prove and show that it leads to a contradiction.

16orem 3.28 F (A — ~A) - - A.

{A--A--A} oA Assumption

{A>-A4,~-A} LA Double neg. 1

o {A=-AmHAFAS -4 Assumption

. {A--A--A)F-A MP2,3

{A--A,--A} FA > (A > false) Theorem 3.21

{A—=-A,~-A) F-A - false MP2,5

{A—>-A --A} + false MP4,6

! {A—>-A}F--A > false Deduction 7
{A->-A} -4 Reductio ad absurdum 8

FA->-A)--A Deduction 9
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Theorem 3.29 F (=4 — A) - A.

Proof: Exercise. |

These two theorems may seem strange, but they can be understood on the semantic
level. For the implication of Theorem 3.29 to be false, the antecedent = A — A must
be true and the consequent A false. But if A is false, then so is @A — A, so the formula
is true.

Theorems for other operators

So far we have worked with implication as the only binary operator. In Section 3.6 we
discuss alternaie axiomatizations of Hilbert systems using other operators, but here
we just define AANB, AV B and A < B as abbreviations for - (A->-B),"A->B
and (A — B) A (B — A), respectively. The theorems can also be used implicitly as
justifications for appropriate derived rules.

Theorem 3.30 - A — (B — (A AB)).

Proof:
1. {ABJ(A—--B)—=(A—>~B) Theorem 3.10
2. {AB}FA—>((A>=B)—>-B) Exchange 1
3. {AB}}IA Assumption
4. {AB}JF(A->-B)—-B MP2,3
5. {AB}F--"B—>-(A—>-B) Contrapositive 4
6. {AB}FB Assumption
7. {A,B}F--B Double neg. 6
8. {AB}F-(A—=-B) MPS5,7
9. {AlJFB—>-(A—>"-B) Deduction 8
10, FA->B->-(A—=-B) Deduction 9
1. FA-(B->(AAB) Def. of A
’ i
Theorem 3.31 (Weakening)
FA—>AVB.
FB—>AVBA.
FA—-B)—> ({(CVA)Y— (CVB).
Proof: Exercise. I
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rem 3.32 (Commutafivity) FAvV B BVA.

j.{ﬂA —B,-B}F-A—-B

Assumption
"A—-B-B}F=-B—>-=-A Contrapositive 1
{~A—>B,-B}F-B Assumption

[~A>B, B} F--A MP 2,3
‘{rA->B,-B} A Double neg. 4
(FA->B}F-B-—>A Deduction 5
F(«A—> B)—> (-B—A) Deduction 6
+FAVB—BVA Def. of v
other direction is similar.

eorem 3.33 (Associativity) AV (BV C) < (AVB) v C.

{A->(B-0),~(—nA->B)}F-(-A—>B) Assumption
" {"A->(-B-0C),"(—~A—>B)}FB—>(—A—B)

' ] Axiom 1
"{(~A>(B—>C),~(-A>B)} F-(-A—>B)—>-B

Contrapositive 2

;. ["A->(~B->C),"("A—-B)}F-B MP1,3

{-A> ("B—-0C),~(~rA->B)}+A—>(~A—>B)

g Theorem 3.21
{(FA>(B-0),"(~A—-B)} -~ ("A->B)>-A

Contrapositive 5

- {~A>(=B>C),~(-A—>B)} F -4 MP 1,7
{~"A->(-B->C),~(nA->B)}F-A-("B->C) Assumption
{~A>(-B->C),-("rA->B)}F-B->C MP7,8
(A= (B-C),~(~A=B)}FC MP 4,9

(FA=("Bo O} F-(~A=B)=C Deduction 10
FCA-(B-0)->(~(CA->B) -0 Deduction 11
FAVBVC)-(AVB)VC Def. of v
other direction is similar.

nutativity and associativity theorems can also be proved for A and ©.
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3.4 Soundness and completeness of H Example 3.37 Let U’ = {4,C} C {4,B,C) = U and suppose we have a proof of

FVU =AvC. This can be transformed into a proof of - \/ U = AV (BV C) as

Theorem 3.34 The Hilbert system H is sound, that is, if - A then |= A. follows:

FAVC i
Proof: The proof is by structural induction. We show that the axioms are valid and FAVCO) VB AssunTpnon
that if the premises of MP are valid, so is the conclusion. Here are closed semantic FAV(CVB) Wea.kefufxg, !
tableaux for the negations of Axioms 1 and 3; a tableau for Axiom 2 is left as an : Assoclativity, 2
tableau F(CVB)— (BVC) Commutativity
. FAV(CVB i

—[A = (B~ A)] a[(-B—~-A)— (A—B)] ( ) AVEVO Woakening. 4
| . FAV(@BvVC) MP3,5

A~ (B—A) ~B—>-=A-~(A->B) 0

A Do B oA A-B Proof‘ of com'plete.ness: T'he proo.f is by induction on the structure of the proof in G.

y p < U is an axiom, it contains a pair of complementary literals and - =p V p can be
; BA-B A A~E ?roved m H. By Lemma 3.36, this may be transformed into a proof of \/ U.

! » Otherwise, the last step in the proof of U in G is the application of an a- or f-rule.
B,A -B gsé 1: An a-rule was used in G to infer Uy U {A; V A3} from Uy U {A1,A2}. By the
% nductive hypothesis, - (\/ U; VA;) VA; in H from which we infer - V Ui v(A; VA7)

Suppose that MP were not sound. Then there would be a set of formulas {A,A— B, B}
such that A and A — B are valid, but ‘B is not valid. If B is not valid, there is an
interpretation v such that v(B) = F. Since A and A — B are valid, for any interpretation,
in particular for v, v(A) = v(A —» B) = T. From this we deduce that v(B) = T
contradicting the choice of v. 1

by associativity.

Cdse 2: A p-rule was used in G to infer U; U U, U {A1NA3} from Uy U {A;} and U, U
2}. By the inductive hypothesis, - \/ U; VA; and - \/ U, Vv A, in M. We leave it to
e reader to justify each step of the following deduction of - \/ U; v/ U,V (A1 A4,).
1. + V Uy vA,

k= v U1 -')AI

. FA > (A — Ay AA3))

o FaV U > (A2 = (A1 A AR))

o FA2 = (VUL = (A1 AAY))

) - V Uy VA,

R v Us - Ay

F -'VUZ - (-'VUI - (Al /\Az))

|‘VU1 VVU2V(A1 ANA3)

Theorem 3.35 The Hilbert system H is complete, that is, if |= A then F A.

Any valid formula can be proved in G (Theorem 3.8). We will show how a proof in §
can be mechanically transformed into a proof in H.

The exact correspondence is that if the ser of formulas U is provable in G then the
single formula \/ U is provable in H. The only real difficulty arises from the clash of
the data structures used: U is a set while \/ U is a formation tree. To see why this is a
problem, consider the base case of the induction. The set {-p, p} is an axiomin G and
we immediately have that - = p V p in H since this is simply Theorem 3.10. But if the
axiomin G is {g, = p, 7, p. s}, we can’t immediately conclude that - gV-pVrvpVs.

Lemma 3.36 IfU' C Uandt \/ U (in H) then +- \/ U (in H).

deductive system that could prove both a formula and its negation is of li
Proof: The proof is by induction using Theorems 3.31 through 3.33. We give the i ' Eetion s of it use.

outline here and leave it as an exercise to fill in the details. Deﬁnition 3.38 A set of formulas U is inconsistent iff for some formula A, U - A

Suppose we have a proof of \/ U’. By repeated application of Theorem 3.31, we and U b ~A. U is consistent iff it is not inconsistent. 0
can transform this into a proof of \/ U”, where U” is a permutation of the elements
of U. Now by repeated applications of the commutativity and the associativity of

disjunction, we can move the elements of U” to their proper places. |
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Theorem 3.39 U is inconsistent iff for all A, U |- A.

Proof: Let A be an arbitrary formula. Since U is inconsistent, for some formula B,
UF Band U + - B. By Theorem 3.21, B - (= B — A). Using MP twice, U I A.
The converse is trivial. 1

Corollary 3.40 U is consistent if and only if for some A, U I A.

If a deductive system is sound, then +- A implies |= A, and conversely, | A implies
#A. So if there is a falsifiable formula in a sound system, it must be consistent! Since
V= false (where false is an abbreviation for - (p — p)), by the soundness of H, V faise.
By the corollary, the axioms of H are consistent.

Theorem 3.41 U+ A ifand.only if U U {~ A} is inconsistent.

Proof: If U - A, obviously UU (= A} F A, since the extra assumption will not be used
in the proof. U U {~ A} I = A because ~ A is an assumption. By definition, U U {- A}
is inconsistent.

Conversely, if UU {~ A} is inconsistent; then U U {-~A} I A by Theorem 3.39. By the
deduction theorem, U - <A — A, and U F A follows by MP fromF (-A = A) - A
(Theorem 3.29). |

Strong completeness and compactness*

The construction of a semantic tableau can be generalized for an infinite set of formu-
las § = {A;,A;,...}. The label of the root is {A;}. Whenever a rule is applied to a
leaf of depth n, A,y will be added to the label(s) of its child(ren) in addition to the
a; or f;. If the tableau closes, then there is only a finite subset Sp C S of formulas on
each closed branch, and Sy is unsatisfiable, as is S = Sy U (S — Sp) by Theorem 2.34,

Conversely, if the tableau is open, it can be shown that there must be an infinite branch -
containing all formulas in S, and the union of formulas in the labels of nodes on the -

branch forms a Hintikka set, from which a satisfying interpretation can be found. For
details, see Smullyan (1995, Chapter II).

Theorem 3.42 (Strong completeness) Ler U be a finite or countably infinite set of

Sformulas and A a formula. If U |= A then U + A.
The same construction proves the following important theorem.

Theorem 3.43 (Compactness) Lez S be a countably infinite set of formulas, and sup-
pose that every finite subset of S is satisfiable. Then S is satisfiable.

A proof checker” 59

Proof: Suppose that S were unsatisfiable. Then a semantic tableau for S must close.
here are only a finite number of formulas labeling nodes on each closed branch. Each
ich set of formulas is a finite unsatisfiable subset of S, contracting the assumption that
I finite subsets are satisfiable. I

5 A proof checker”

St as we wrote a program to generate a semantic tableau from a formula, it would be
ce if we could write a program to generate a proof of a formula in 7. However, this
far from straightforward as quite a lot of ingenuity goes into producing a concise
proof. About the best we could do is to generate a proof using the construction of the
"mpleteness proof, but such proofs would be long and unintuitive. In this section we
esent a proof checker for H: a program which receives a list of formulas and their
:sumptions as its input, and checks if the list is a correct proof. It checks that each
ement of the list is either an axiom or assumption, or follows from previous elements
y“MP or deduction. The program writes out the justification of each element in the
- ;

The axioms are facts with the axiom number as an additional argument.

" axiom(A imp (_ imp 4), 1).
axiom((A imp (B imp €)) imp ( (A imp B) imp (A imp Q)), 2).
_axiom(((neg B) imp (neg A)) imp (A imp B), 3).

The data structure used is a list whose elements are of the form deduce (A,F), where
is a list of formulas that is the current set of assumptions, and F is the formula that
s been proved. The predicate proof has two additional arguments, a line number
ed on output and a list of the formulas proved so far.

proof (List) :- proof(List, 0, [1).

ﬁecking an axiom or an assumption is trivial and involves just checking the database
axioms or the list of assumptions.

proof ([1, —, ).
_proof ([Fml | Tail], Line, SoFar) :-
Linel is Line + 1,
Fml = deduce(_, A),
axiom(A, N),
write_proof_line(Linel, Fml, [’Axiom ’, N]),
proof (Tail, Linel, [Fml | SoFarl).
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proof ([Fml | Tail], Line, SoFar) :-
Linel is Line + 1,
Fml = deduce(Assump, A),
member (A, Assump),
write_proof.line(Linel, Fml, [’Assumption’]),
proof(Tail, Linel, [Fml | SoFar]).

om3’ F(=B—-A) > ((-B—>A)—> B
efine a new Hilbert system ' for the propositional calculus.
eorem 3.44 7 and H' are equivalent.

of: i f Axiom 3’ in H:
To check if A can be justified by MP, the predicate nthi nondeterministically searches roof: Here is a proof of Axiom 3 in

SoFar for a formula of the form B imp A and then for the formula B. {"B—>-A-B—>A-B}+-B Assumption
{-B—-A,-B—>A-B}+F--B-A Assumption

proof ([Fml | Tail], Line, SoFar) :- {"B—--A,~B->A-B}FA MP 1,2
Linel is Line + 1, {~B—>-A"B—>A-B}F-B--A Assumption
Fml = deduce(_, A), - {(-B—>-A,-B—>A-B}FA->B Contrapositive 4
nthi(Ll, SoFar, deduce(_, B imp A)), {~-B—>-A,-B—>A-B}+B MP 3,5
nthi(L2, SoFar, deduce(_, B)), {-B—>=A,-B—>A}+~B->B Deduction 7
MP1 is Linel - L1, {-B—-A,-B—>A}+(~B->B)—>B Theorem 3.29
MP2 is Linel - L2, 9. {-B—>-A-B-A}FB MP 8,9
write_proof_line(Linei, Fml, [’MP ’, MP1, ’,?, MP2]), 10 . {~"B—>-A}F(-B—>A)>B Deduction 9
proof (Tail, Linel, [Fml | SoFar]). 1. F(=B—-A)> ((~B—A)—B) Deduction 10

Weleave it as an exercise to prove Axiom 3 in H'. Note that you may use the deduction
eorem without further proof, since its proof in H does not use Axiom 3, so the
entical proof holds in 7. : 1

A formula can be justified by the deduction rule if it is an implication A imp B. Non-
deterministically choose a formula from SoFar that has B as its formula, and check

that A is in its list of assumptions. The formula 4 is deleted from Assump, the list of

assumptions of A imp B. Either conjunction or disjunction may replace implication as the primitive binary op-

or in the formulation of a Hilbert system. Implication is defined by - (A A -~ B) or

proof ([Fml | Taill, Line, SoFar) :- V:B, respectively, and MP is still the only inference rule. For disjunction, a set of

Linel is Line + 1,

Fml = deduce(Assump, A imp B),

nthi(L, SoFar, deduce(Previous, B)),

member (A, Previous),

delete(Previous, A, Assump),

D is Linel - L,

write _proof_line(Linei, Fml, [’Deduction ’, D]),
proof(Tail, Linel, [Fml | SoFar]).

“Axiom1l FAVA - A.

~Axiom2 FA—>AVB.

. Axiom3 FAVB - BVA,

Axiom4 F (B> C)> (AVB—-AVC().

steps needed to show the equivalence of this system with # are given in Exer-

3.6 Variant forms of the deductive systems* se 1.54 of Mendelson (1997).

Finally, the following axiom together with MP as the rule of inference is a complete
In this section, we survey some variants of G and H. axiom system for the propositional calculus.

Hilbert systems Mé‘rédith’s axiom ({[(A—B)— (~C—-D)]>C}—>E)~ [(E—A)— (D - A)].

’Advénﬂuous readers are invited to prove the axioms of H from Meredith’s axiom

Hilbert systems almost invariably have MP as the only rule. They differ in the choice
' alone following the 37-step plan given in Exercise 8.50 of Monk (1976).

of primitive operators and axioms. For example, Axiom 3 can be replaced by:
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Gentzen systems atural deduction

he advantage of working with sequents is that the deduction theorem is built into the
lles of inference (introduction into the consequence of —). Sequent-based Gentzen -
stems are often called systems of narural deduction.

G was constructed in order to simplify the theoretical treatment by using a notation
that is identical to that of semantic tableaux. Gentzen's original system is based on
sequents; we present a similar system described in Smullyan (1995, Chapter X1).

he convenience of Gentzen systems is apparent when proofs are presented in a format
at emphasizes the role of assumptions. Look at the proof of Theorem 3.28, for
ample. The assumptions are ‘dragged along’ throughout the entire deduction, even
gh each is used only twice, once as an assumption and once in the deduction rule.
way we reason in mathematics is to set out the assumptions once when they are
eeded and then to discharge them by using the deduction rule. Here is a natural
ction proof of Theorem 3.28:

Definition 3.45 If U and V are (possibly empty) sets of formulas, then U = V is
called a sequent. i

Intuitively, a sequent represents ‘provable from’ as does - in Hilbert systems. The
difference is that = is part of the object language of a logical system being formal-
ized, while |- is a metalanguage notation used to reason about the deductive systems.
Intuitively, the formulas in U are assumptions for the set of formulas V that are to be

proved. 1. A--A Assumption
Definition 3.46 Axioms in the Gentzen sequent system S are sequents of the form: .
UU {A} = VU {A). The rules of inference are: 2. --A Assumption
3. A , Double neg. 2
4. -A MP1,3
op Introduction into consequent Introduction into antecedent 5. A= (~A - false) Theorem 3.21
6. —A-false MP3,5
7. false : MP4,6
A | U= VU4) U= Vu (B} UviABl >V 8. ~-A— false Deduction 2, 7
U=Vu{AnB) UU{AArB} >V 9. -A Reductio ad absurdum 8
v U= VU({A B} UufAl=>vV UUu({B} =V 10. A--A4)—>-4 Deduction 1, 9
U=>VU{AVB) UU{AVB} 3V
oxes indicate. the scope of assumptions. Just as in programming where local
Uu (A} = VU (B) U= VU {4} Uu{B} =V iables in procedures can only be used within the procedure and disappear when the
- U= VU(A— B UU{ASB] =V ure is left, here an assumption can be used only within the scope of the box,
and once it is discharged by using it in a deduction, it is no longer available.
Uu{A}l >V U= Vu{A) presentation of logic based on natural deduction, see Huth & Ryan (2000).
U= Vu (-4} Uu{-Al=>V i

formula property

. . ition 3.48 A deductive system has the subformula property if any formula ap-
The semantics of the sequent system S are defined as follows: 1g in a proof of A is either a subformula of A or the negation of a subformula of
Definition 3.47 Let S = U = Vbea sequent where U = (U;,...,U,} and V =
{Vi,..., Vin}, and let v be an interpretation for the atomic formulas in S. v(S) = T if

syst d S have the subf 1 hile 7{ obviously d t si
and only i WUL) = - - = w(U,) = T implies that for some i, v(V)) = T 0 ystems G an ave the subformula property while H obviously does not since

P ‘erases’ formulas. For example, in the proof of the theorem of double negation
= A, the formula == -4 - -4 appeared in the proof even though it is
bviously not a subformula of the theorem.

There is a simple relationship between S and H: a sequent S is true if and only if
(Win---AU) > (Vi V-V V,) is true.
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Gentzen invented his system in order to obtain a formulation of predicate calculus
with the subformula property. In addition to the system S, he defined the system S’
with the cur rule:

11. Prove the formulas of Exercise 1 in H.

12. * Prove Axiom 3 of H in /.

UA=>V UV.A ‘ 13. * Show that the Gentzen sequent system S is sound and complete.

U=V ’

-"14. * Prove that a set of formulas U is inconsistent if and only if there is a finite set

and then showed that proofs in S’ can be mechanically transformed into proofs in S. of formulas {Ay, ..., A,} C Usuchthatk—A; V- v =4,

15. A setof formulas U is maximally consistent ift every proper superset of U is not

Theorem 3.49 (Gentzen’s Hauptsatz) Any proof in S’ can be transformed into a consistent. Let S be a countable, consistent set of formulas. Prove:

proof in S not using the cut rule.

(a) Every finite subset of S is satisfiable.
Proof: See Smullyan (1995, Chapter XII). 1

This can be immediately proved indirectly by showing that the cut rule is sound and
then invoking the completeness theorem for the cut-free system G. A direct proof

by induction on the number of cuis and structural induction on the formula is more
complex.

(b) For every formula A, at least one of S U {A}, SU {~ A} is consistent.

(c) Scan be extended to a maximally consistent set,

. ¥ Implement a proof checker for G.

3.7 Exercises

1. Provein G:
FA->B)—>(-B--A),
FA—>B)-> ((nA->B)—B),
F((A— B)—> A)—A.

2. Prove thatif - U in G then there is a closed semantic tableau for I (the forward
direction of Theorem 3.6).
3. Prove the derived rule called modus tollens:

B FA-B
F-A ‘

. Give proofs in G for each of the three axioms of .
. Prove (A — A) —» A (Theorem 3.29).

. Prove - A > A V B and the other parts of Theorem 3.31.

NN i b

. Prove- (AVB) v C — AV (BV C) (the converse direction of Theorem 3.33).
8. Formulate and prove derived rules based on Theorems 3.30-3.33.
9. Construct a semantic tableau that shows that Axiom 2 of H is valid.

10. Complete the proof that if U’ C U and - \/ U’ then - \/ U (Lemma 3.36).
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4.1 Resolution

One desirable property of a deductive system is that it should be easy to mechanize
;ah:,efﬁcient proof search. It is very difficult to search for a proof in a Hilbert sys-
tem because there is no obvious connection between the formula and its proof. Proof
search in the propositional calculus is easy and efficient with semantic tableaux and the
equivalent (cut-free) Gentzen systems. However, as we shall see in the next chapter,
the method of semantic tableaux in the predicate calculus becomes arbitrary and inef-
ficient. The method of resolution, invented by J. A. Robinson in 1965, is frequently
an' efficient method for searching for a proof. In this section, we introduce resolution

for the propositional calculus, though its advantages will not be apparent until it is
extended to the predicate calculus.

CNF and clausal form

Definition 4.1 A formula is in conjunctive normal SJorm (CNF) iff it is a conjunction
of disjunctions of literals. i

-Example 4.2 The formula (-p v gVvr) A (mgVr) A (=7 is in CNF while
apVgvr) A (PA-@)Vr) A (~r)isnotin CNF, because of the conjunction within
the second disjunction. The formula (GpVgVr) A = (=gvr) A (= r) is not in CNF
‘ecause the second disjunction is negated. |

Théorem 4.3 Every formula in the propositional calculus can be transformed into an
quivalent formula in CNF.

Proof: To convert to an equivalent formula in CNF perform the following steps, each
of which preserves logical equivalence:

1 Eliminate all operators except for negation, conjunction and disjunction, using
the equivalences in Figure 2.6.
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2. Push all negations inward using De Morgan’s laws:

~(AAB) = (~AV-B)
~(AVB) (~AA-B).

e-sometimes use an abbreviated notation, removing the set delimiters { and } from
clause and denoting negation by a bar over the propositional letter p. The formula
bove is written {7pg, pbq} in the abbreviated notation.

e following symbols will be used: § for a set of clauses (that is, a formula in clausal

imi 1 tions using the equivalence ~ A = A. ‘
> Eliminate double negations & 1 ), C for a clause and [ for a literal. The symbols will be subscripted and primed

4. The formula now consists of disjunctions and conjunctions of literals. Use the cessary. If I is a literal, [° is its complement. This means that ifl=pthenl’ =p
distributive laws: d‘if I=pthen* = p. The concept of an assignment is generalizaed so that it can be
ned on literals in the obvious way: v(l) = T means v(p) = T if [ = pandv(p) =F
AV(BAC) = (AVBIA(AVO) I=p.
(AAB)VC = (AVOABVO)
to eliminate conjunctions within disjunctions. i Prop erties of dausal‘form

Definition 4.8 Let S, ' be sets of clauses, S & S denotes that S is satisfiable if and

Example 4.4 The following sequence of formulas shows the four steps applied to the .gif‘ ' is satisfiable. 0

formula (-p = —g) = (p = q):

the:following sequence of lemmas, we show various ways a formula can be trans-

"CmpVo VPV ed without changing its satisfiability.

=E (~oopAnng)V(spVg)
CCpAQV(~pVvyg)
(pVpPVQA(GV-pVg).

Cp=>-q-(pP-9)

mma 4.9 Suppose that a literal | appears in (some clause of) S, bur I° does not ap-

in(any clause of) S. Let S' be obtained from S by deleting every clause containing
Then S~ S

f: If S is satisfiable, there is a model v for §' such that WC") = T for every
§. (Recall that a set of clauses is an implicit conjunction so that all clauses must
e for vto be a madel.) Extend v by defining v(l) = T. Then v(C) = T for every
S~ 8. (Recall that a clause is an implicit disjunction so that it is sufficient if
teral is true for a clause to evaluate to true.) Conversely, if S is satisfiable, S is

usly satisfiable since §' C . |

Definition 4.5 A clause is a set of literals which is considered to be an implicit dis-
junction. A unit clause is a clause consisting of exactly one literal. A formula in
clausal form is a set of clauses which is considered to be an implicit conjunction. [

Corollary 4.6 Every formula in the propositional calculus can be transformed into
an equivalent formula in clausal form. | o _ . .
ple 4.10 Let S = {pgF, pg, Pq} and §' = {pg, pq}, where §' is obtained from S
éle’ting the clause pgF containing 7 since 7 = r does not appear in S. §' is satisfied
y the interpretation v(p) = F, v(g) = F, which can be extended to an interpretation
1d‘eﬁning V(F) = T so that v(pgF) = T. Note that S is not logically equivalent to
ce under the interpretation v(p) = F, v(g) = F, v(r) = T, S evaluates to 7 and
nates to F. o

Proof: In the transformation from a formula to a set of sets of literals, identical literals:
in a clause and identical clauses in the set will be removed. By idempotence, A = AAA-
and A = A V A, logical equivalence is preserved.

Example 4.7 The CNF formula

mma<'4.11 Let C = (I} € S be a unit clause and let §' be obtained from S by
letin ‘every clause containing | and by deleting I° from every (remaining) clause.
Then Sw'S'.

(hgVv-pv@A(PV-pVgVpV-p)

is equivalent to the clausal form {{-~¢,~p,q}, {p.~p.q}}.




_ Definition 4.14 If C; C G5, C; subsumes C; and C; is subsumed by C,. 1]
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Proof: Let v be a model for S. We will prove that v is also a model for §' (ignoring
the assignment to /), by showing that for every C;suchthat C} = C;— (I}, W(C) = T.
v(C) = v(l) = T since v is a model for S, so v(I°) = F. Since v is a model for S,
v(C;) = T and there must be some other literal J; € C; such that v(I;) = T. Therefore,
W(C}) = T. The proof of the converse is similar to the proof of the previous lemma
and is left as an exercise. |

there are no literals in O, under any interpretation there are no literals which will be
true, so O is unsatisfiable.

Alternatively, we can use the previous lemmas to give a proof. Consider the set of
lauses {{p}}. By Lemma 4.9, {{p}} ~ #. Since {{p}} is satisfiable, so is @, say by
orme interpretation v. But by Theorem 2.10, v'(f) = w(#) = T for every interpretation
so # is valid. -

{p}. {~p}} is the clausal form of the unsatisfiable formula p A —p. If we apply
mma 4.11, the first clause {p} is deleted from the formula and the literal p¢ = —p
eleted from the second clause. Then {{}} ~ {{p}. {-p}},sotheset {{}} = (O}
nsatisfiable; since O is the only clause in the set, it must be unsatisfiable. 1

Example 4.12 Let S = {r, pg7,pg, gp} and §' = {pq.pg.gp}, where {r} is the unit
clause deleted. v(r) = T in any model for S, so if v(pgr) = T then either v(p) = T or
v(g) = T. Therefore, v(pq) = T in §'. 0

Lemma 4.13 Suppose that bothl € C and I € Cforsome C € S, and let S’ = S—{C}.

Then S~ §. tion 4.19 Let S be a set of clauses and U a set of propositional letters. Ry(S),

’fenaming of $ by U, is obtained from § by replacing each literal / whose proposi-
Proof: Any interpretation satisfies C. al letter is in U by I°. o

We will assume that all such valid clauses are deleted from a formula in clausal form. 24.20 S~ Ry(S).

roof: Let v be a model for S. Define an interpretation v’ for Ry(S) by:

V(p)
V(p)

v(), ifpelU
v(p), fpgU.

C € Sand C' = Ry({C}). Since v is a model for S VC)=Tandv() =T
for'some ! € C. If the letter poflisnotin Uthen! € C so v(l) = v(l) = T and
=T.IfpeUtheni e C so V() =v(l) = T and v'(C') = T. The converse is
milar, |

Lemma 4.15 Let C1,Cy € S be clauses such that C subsumes C,, and let §' =
S—{Cy}. Then S~ &', that is, the larger clause can be deleted,

Proof: Since a clause is an implicit disjunction, any interpretation that satisfies C;
must also satisfy C,. |

The concept of subsumption may initially seem non-intuitive. The set of interpreta
tions that satisfy the small clause is contained in the set that satisfies the larger clause, .
so that once we have found an interpretation satisfying the smaller clause it automati- :

Eiarnple 4.21 The set of clauses S = {pgr, pq, 57, r} is satisfied by the interpretation
cally satisfies the larger one.

F,Wg) =F, v(r)=T. The renaming R, ,1(S) = {pgr, pg, g7, r) is satisfied

v T, v(@=T, v(r)=T. 1]
Example 4.16 Let S = {pgq, pq7, pg,pq} and §' = {pq.pg. pq), where pgr is sub:

sumed b . If & is satisfiable then v =T, so obviously v(pg#) = T. o .
Yy pa ©q) Y vipar) The resolution rule
Definition 4.17 The empty clause is denoted by O. The empty set of clauses is de

lution is a refutation procedure which is used to show that a formula in clausal
noted by @.

nsatisfiable. The resolution procedure consists of a sequence of applications
ution rule to a set of clauses. The rule maintains satisfiability: if a set of
atisfiable, so is the set of clauses produced by an application of the rule.
f the unsatisfiable empty clause is ever obtained, the original set of clauses
been unsatisfiable.

Lemma 4.18 @ is valid. O is unsatisfiable.

Proof: The proof uses reasoning about vacuous sets and may be a bit hard to follow.
A set of clauses is valid iff every clause in the set is true under every interpretation
But there are no clauses in @ that need be true, so @ is valid. A clause is satisfiable iff

e ule 4.22 (Resolution rule) Let C;, C; be cl hthatl € C\,F € C;. Th
there is some interpretation under which at least one literal in the clause is true. Since - uton ) 1, -2 be clatises such tha ! § ©

lauses Cy, C, are said to be clashing clauses and to clash on the complementary
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literals J, I°. C, the resolvent of C; and C,, is the clause:
Res(Cy, G3) = (Cy ~ {IPHU (G~ {ID).

C: and C; are the parent clauses of C. 0

Example 4.23 The pair of clauses C, = ab¢ and Cy = bce clash on the pair c, ¢ and
the resolvent is C = (abt — (¢}) U (bce — {c}) = ab U be = abe. a

Recall that a clause is a set and duplicate literals are removed in the union.

Theorem 4.24 The resolvent C is satisfiable if and only if the parent clauses C, and
C, are (mutually) satisfiable.

Proof: Let C; and C, both be satisfiable under interpretation v. Since /, I° are com-
plementary, either v(l) = T or v({*) = T. If v(l) = T, then v(I°) = F so C, is satisfied
only if v(I') = T for some literal ' € C,, I’ # I°. By construction in the resolution rule,
I’ € C, sovis also amodel for C. A symmetric argument holds if v(I°) = T.

Conversely, if v is an interpretation which satisfies C, v(!') = T for at least one literal
! € C. By the resolution rule, ¥ € Cyor ' € C, (or both). Suppose ' € Cy, then
v(C1) = T. Since neither [ € Cnor I° € C, v is not defined on [ and we can extend v to
an interpretation V' by defining v'(I°) = T. Then V(C;) = T and vV'(C)) = v(C)) =T
because v’ is an extension of v. A symmetric argument holds if 7 € C,. |

Algorithm 4.25 (Resolution procedure)
Input: A set of clauses S.
Output: § is satisfiable or unsatisfiable.

Let S be a set of clauses and define Sp = §. Assume that S; has been constructed.
Choose a pair of clashing clauses Cy, C; € §; that has not been chosen before. Let
C be the clause Res(C, C;) defined by the resolution rule and let S;; = S; U {C}.
If C = DO, terminate the procedure—S is unsatisfiable. If S;y; = S; for all possible
choices of clashing clauses, terminate the procedure—S is satisfiable. i

Example 4.26 Let § be the set of clauses {(1)p, (2)pg, (3)7, (4)pgr} where the
clauses have been numbered for reference. Here is a resolution derivation of O from
§, where the justification for each line is the pair of the numbers of the parent clauses
that have been resolved to give the resolvent clause in the line.

5. bg 3,4
6. p 52
7. O 6,1
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Figure 4.1 Resolution tree

It is easier to read a resolution derivation if it is presented as a tree (Figure 4.1), where
the original clauses label leaves, and resolvents label interior nodes whose children
are the clauses used in the resolution.

In the example, we have derived the unsatisfiable clause O so we can conclude that the
set of clauses S is unsatisfiable. We leave it to the reader to check that S is the clausal
form of = A where A is an instance of Axiom 2 of H: (p—(g—1))~((p—q)—=(p—7)).
Hence, A is unsatisfiable, that is A is valid and we have used resolution to prove that
this instance of Axiom 2 is valid.

Definition 4.27 A derivation of O from S is called a refuration of S. 0

Soundness and completeness of resolution

Theorem 4.28 Ifthe set of clauses labeling the leaves of a resolution tree is satisfiable
then the clause at the root is satisfiable.

Proof: The proof is by induction using Theorem 4.24 and is left as an exercise. I

Note that the converse to Theorem 4.28 is not necessarily true because we have no
way of ensuring that the extensions made to v on all branches are consistent. In the
tree in Figure 4.2, the set of clauses on the leaves {r, pgF, 7, pgr} is not satisfiable even
though the clause on the root p is satisfiable. In this case, we have made a poor choice
of clauses to resolve since we could obtain O immediately by resolving r and 7.

Since resolution is a refutation procedure, the soundness and completeness are ex-
pressed in terms of unsatisfiability, rather than validity.

}‘  :Corollary 4.29 (Soundness) If the empty clause O is derived from a set of clauses by
the resolution procedure, then the set of clauses is unsatisfiable.
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p

pq pq

pgr r par r

Figure 4.3 Semantic tree

Figure 4.2 Incomplete resolution tree
Example 4.32 The semantic tree for § = {p. Pq. 7, pgr} is shown in Figure 4.3 where

e numbers o‘n the nodes are explained later. The second branch from the left defines
& 1'nterpret'at101.1 v'(p) =wgqg) =T, v(r) = F, and v(S) = F since the fourth clause
/ 1s false in this interpretation. We leave it to the reader to check that every branch
this tree is closed. 0

Proof: Immediate from Theorem 4.28 and Lemma 4.18.

Theorem 4.30 (Comp]eteﬁess) If a set of clauses is unsatisfiable then the empty
clause O will be derived by the resolution procedure.

Lemma 4.33 Let S be a set of clauses and let T g Semantic tree for S. Every inter-
tation v for S corresponds to vy for some b € T, and conversely, every vy, is an

We have to prove that given an unsatisfiable set of clauses, the resolution procedure
erpretation for S,

will eventually terminate producing O, rather than continuing indefinitely or terminat-
ing but failing to produce 0. We defined the resolution procedure to be systematic
in that a pair of clauses is never chosen more than once. Since there are only a fi-
nite number of distinct clauses on the finite set of propositional letters appearing in
the set of clauses, the procedure terminates. Thus, we need only prove that when the

procedure terminates, the empty clause is produced.

of: By construction. ’ I

eo?'gm 4.34 The semantic tree T Jor a set of clauses S is closed if and only if the
is unsatisfiable.

To prove this, we define a construct called a semantic tree (which must not be confused :

with a semantic tableau). A semantic tree is a data structure for assignments to the
atomic propositions of a formula. If the formula is unsatisfiable, all assignments must
falsify the formula. We will associate clauses that are created during a resolution |
refutation with nodes of the tree called failure nodes, which represent assignments.

that falsify clauses. Eventually the empty clause 0 must be created and is associated
with the root node that is the failure note representing all assignments.

: Suppose that 7 is closed and let v be an arbitrary interpretation for S. v is Vb
somg branch by Lemma 4.33. Since T is closed, v,(S) = F. Butv = Vp is arbitrary
s:'ur.;satlsﬁable. Conversely, let S be an unsatisfiable set of clauses and let 7" be
antic Ze;sfor S. Let b be an arbitrary branch. Then vp is an interpretation for §
mma 4.33, and v;(S) = F si i i i i i
dosedz : 5(S) since § is unsatisfiable. Since b was arbitrary, 7° 1:

er§§ng a branch of the semantic tree top-down, at each node there is a (partial)
etation defined by the edges already traversed. It is possible that this interpreta-

ufficiently defined to evaluate some of the clauses. In particular, some clause
gyaluate to F. Since a set of clauses is an implicit conjunction, if one clause
; ’tes to F, the partial interpretation is sufficient to conclude that the entire set of
lause’s"is false. In a closed semantic tree, there must be such a node on every branch:

:node:may be a leaf or it may be an interior node. .

Algorithm 4.31 (Construction of a semantic tree)

Input: A set of clauses S.
Output: A semantic tree 7 for S which is either open or closed.

Let {p1,....ps} be the propositional letters appearing in S. Form the complete binary:.
tree 7 of depth » and label the left-branching edges from a node of depth i — 1 by p; -
and the right-branching edges by p;. Each branch b in 7 defines an interpretation vj "
by vp(p;) = T if p; labels the i’th edge in b, otherwise, p; labels the i’th edge in b, and':
vp(p;) = F. A branch b is closed if v;(S) = F, otherwise b is open. T is closed if al

branches are closed, otherwise 7 is open. o

?on-4.35 Let 7 be a closed semantic tree for a set of clauses S and let b be a
hin'7. The node in b closest to the root which falsifies S is a failure node. ]
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Example 4.36 In Figure 4.3, the node numbered 2 defines a partial interpretation
v(p) = T, v(q) = F, which falsifies the clause pq and thus the entire set of clauses
S. Neither the parent node (which defines the partial interpretation v(p) = T) nor the
root itself falsify any of the clauses in the set, so node 2 is the node closest to the root
on its branches which falsifies S. Hence, node 2 is a failure node. 0

Lemma 4.37 Let T be a closed tree for S. Then each failure node in T falsifies at
least one clause in S.

Proof: Immediate. 1

Definition 4.38 A clause falsified by a failure node is called a clause associated with
the node. a

' Example 4.39 In the semantic tree in Figure 4.3, each failure node is circled and
labeled with the number of the clause associated with it. It is possible that more than
one clause is associated with a failure node; for example, if g is added to the set of
clauses, then g is another clause associated with failure node numbered 2. 0

‘ We can be explicit on the relationship between failure nodes and clauses in S.

Lemma 4.40 A clause C associated with a failure node n is a subset of the comple-
ments of the literals appearing on the branch b to n.

Proof: Intuitively, for C to be falsified at a failure node n, all the literals in C must
be assigned to in the partial interpretation and furthermore they must all be assigned
F because C is a disjunction. Since the partial interpretation is defined by assigning T
to the edge labels, the lemma follows.

Formally, let C = I ---I; and let {ey,...,e,} be the set of literals labeling edges
in the branch. Since C is the clause associated with the failure node n, for each i,
v(l;) = F where v is defined by v(e;) = T on the corresponding edges. Therefore,
L=eelef,. . e and C= U5 (h) C (€5,....€5). 1

Definition 4.41 Let n;, ny be failure nodes which are children of node n. n is called
an inference node:

ni ny
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Example 4.42 In Figure 4.3, 7 is a clause associated with the failure node numbered

3. {7} is a (proper) subset of {p, g, 7}, the set of complements of the literals assigned
to on the branch. 1

Lemma 4.43 In g closed semantic tree T for a set of clauses S, there is at least one
inference node.

Proof: Suppose that #; is a failure node and that its sibling #; is not. Then no ancestor
: of ny is a failure node, because its ancestors are also ancestors of n; which is, by
assumptlon the node closest to the root on its branch which falsifies the set of clauses.

But every branch through 7, defines an interpretation and they must all falsify S by the
assumption that 7 is closed. So the assignments defined at the leaves of the subtree
: rooted at np falsify S; at least one node n’ which is a descendant of ny (a leaf or an
~ancestor of a leaf) must be a failure node.

: By induction, either there is an inference node (a pair of sibling failure nodes), or we
l; obtain an infinite sequence of failure nodes ny, 7/, n”, . . . of increasing depth which is
“impossible in a finite tree. |

Ekample 4.44 In Figure 4.3, the parent of nodes 3 and 4 is an inference node. o

'Lemma 4.45 In a closed semantic tree, let b be the branch from the root terminating
at inference node n. The children ny and n, of n are failure nodes, so let C, and C; be
-any clauses associated with them, respectzvely Then Cy, C; clash, and vy, the partial
nterpretation associated with n, falsifies C their resolvent clause.

“Proof: Let by and b, be the branches that terminate at failure nodes n; and n,, re-
,spectlvely Since b; and b, are identical except for the edges from » to n; and
2, by Lemma 4.40 the nodes are associated with clauses C1, C; which clash on
the literals [, I° of the atom p. The partial interpretation v, is the same as v, and
b,» €Xcept that it does not assign to p. But vp,(C1) = vp,(Cy) =
; are failure nodes, so certainly, vp, (C1 = {1}) =
V5(C) = vp((C) -

F since n; and
F and vy, (C; — {I°)). Clearly,
{Hu(C-{rHh)=F. i

Example 4.46 In Figure 4.3, 7 and pgr are clauses associated with failure nodes 3
and 4, respectively. The resolvent pg is falsified by v(p) = T, v(g) = T, the partial
‘Interpretation associated with the parent of 3 and 4. Note that if we add the resolvent
: bg 10 S to obtain S, the parent node is a failure node for Si. 0

:There is one more technicality that must be overcome in the general case. The same
semantic tree (Figure 4.3) is also a semantic tree for the set of clauses {p. bq. 7, pr},

\where 3 is a failure node associated with 7 and 4 is a failure node associated with 5 pr.
However, their parent is nor a failure node, since the resolvent 5 P is already falsified by
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a node higher up in the tree, while a failure node was defined to be the node closest to
the root which falsifies the set of clauses.

Lemma 4.47 Let n be an inference node, let Cy, C; € S be clauses associated with
the failure nodes that are the children of n, and let C be their resolvent. Then SU {C}
has a failure node that is either n or an ancestor of n and C is a clause associated
with the failure node.

Proof: By Lemma 4.45, v(C) = F, where v is the partial interpretation associated
with the inference node. By Lemma 4.40, C C (L, ..., [}, the complements of the
literals labeling b, the path to the inference node. Let j be the smallest index such
cn [Z;H, ..., } isempty. Then C C {IS, ..., lf} and v;(C) = F where v; is the partial
interpretation defined at node j. j is a failure node and C is a clause associated with
it. I
Proof of the completeness of resolution: If S is an unsatisfiable set of clauses, there
is a closed semantic tree 7" for S. Clauses of S can be associated with failure nodes
in 7. By Lemma 4.43, there is at least one inference node in 7. An application of
the resolution rule at that node adds the resolvent to the set, creating a failure node
by Lemma 4.47 and deleting two failure nodes, thus decreasing the number of failure
nodes. When the number of failure nodes has decreased to one, it must be the root
which is associated with the derivation of the empty clause by the resolution rule. |

Implementation”

We start with a program to convert a formula into CNF and then give a program to
perform resolution. The program for conversion to CNF performs three steps one after
another: elimination of operators other than negation, disjunction and conjunction,
reducing the scope of negations using De Morgan’s laws and double negation, and
finally distribution of disjunction over conjunction.

cnf (A, A3) :-
eliminate(A, A1),
demorgan(Al, A2),
distribute (A2, A3).

Elimination of operators is done by a recursive traversal of the formation tree. The
first three clauses eliminate imp, eqv and neqv.

eliminate(A eqv B, (Al and B1) or ((neg A1) and (neg B1))) :-

eliminate(A, A1), eliminate(B, B1).

eliminate(A xor B, (Al and (neg B1)) or ((neg A1) and Bi)) :-

eliminate(A, A1), eliminate(B, B1).
eliminate(A imp B, (neg A1) or Bi) :-
eliminate(A, A1), eliminate(B, B1).
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The next four clauses simply traverse the tree for the other operators.

eliminate(A or B, Al or Bl) :-
eliminate(A, A1), eliminate(B, Bi).

eliminate(A and B, Al and B1) :-
eliminate(A, A1), eliminate(B, B1).

eliminate(neg A, neg A1) :-
eliminate(A, Al).

eliminate(A, A4).

e-application of De Morgan’s laws is similar. Two clauses apply the laws for nega-
ns of conjunction and disjunction.

demorgan(neg (A and B), Al or B1) :-
demorgan(neg A, A1), demorgan(neg B, B1).

demorgan(neg (A or B), Al and Bi) ;-
demorgan(neg A, A1), demorgan(neg B, B1).

The next two clauses traverse the formula for non-negated formulas.

demorgan(A and B, Al and B1) ;-
demorgan(A, Al), demorgan(B, Bi1).

demorgan(A or B, Al or B1) :-
demorgan(A, A1), demorgan(B, B1).

The final two clauses eliminate double negation and terminate the recursion at a literal.

demorgan((neg (neg A)), A1) :-
demorgan(4, A1),
demorgan(4, A).

Jistribution of disjunction over conjunction is more tricky, because one step of the

tribution may produce additional structures that must be handled. For example,
ne step of distribution applied to p v ((g A7) A7) gives (pV(gA)A(pVr) and the
istribution rule must be applied again.

distribute(A or (B and C), ABC) :- I,
distribute(A or B, AB),
distribute(A or C, AC),
distribute(AB and AC, ABC).

distribute((A and B) or C, ABC) :- |
distribute(A or C, AC),
distribute(B or C, BC),
distribute(AC and BC, ABC).
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distribute(A or B, Al or B1) :-
distribute(4A, A1),
distribute(B, B1).

distribute(A and B, Al and B1) :-
distribute(A, Al),
distribute(B, B1).

distribute(A, A).

To perform resolution we first convert a CNF formula to clausal form—a set of sets
of literals—using a simple program not given here. The program also discards valid
clauses like {p, r, p}. The goal clause resolution(S) succeeds if the set of clauses S
can be refuted, that is, if the empty clause can be produced by resolution. We start with
two rules, one that fails if the set of clauses is empty which means that the formula is
valid, and one that succeeds if the empty clause is contained in the set.

" resolution([]) :- !, fail.
resolution(S) :- member([], S), !.

The other rule nondeterministically selects two clauses in the set, creates their re-
‘solvent, and recursively calls the predicate with the resolvent added to the set. The
predicate will fail and backtrack in three cases:

» The two clauses cannot be resolved because they do not have clashing literals.
o The resolvent is a useless valid clause (a clause that clashes with itself).

e The resolvent already exists in the set.

resolution(8) :-
member(C1, S),
member(C2, 8),
clashing(Cl, L1, C2, L2),
delete(C1, L1, CiP),
delete(C2, L2, C2P),
union(C1P, C2P, C),
\+ clashing(C, _, C,
\+ member(C, S),
resolution([C | S]1).

-,

Using nondeterminism, it is trivial to check for clashing literals.

clashing(Ci, L, C2, neg L) :-

member (L, C1), member(neg L, C2), !.
clashing(Ci, neg L, C2, L) :-

member (neg L, C1), member(L, C2), !.
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‘4.2 Binary decision diagrams (BDDs)

uppose that you want to decide if two formulas A, and A, are logically equivalent.
“:You could construct truth tables for both formulas and check if they are identical.
- Alternatively, you can check if A; © A; is valid by constructing a semantic tableau
or its negation, or by trying to refute the clausal form of its negation using resolution.
/All these methods can be inefficient if there are many atoms or if the formula is large.

this section we describe the binary decision diagram (BDD), which is a data struc-
re for propositional formulas. These data structures have the property that (under
certain condition) there is a unique structure for equivalent formulas. Algorithms
or BDDs have been found to be surprisingly efficient in many cases. BDDs are ex-
nsively used in applications such as circuit design and program verification, where
ou want to prove that one formula—which describes the operation of a circuit or
“program—is equivalent to another formula—which specifies the behavior of the cir-

this section we present a few rather long-winded examples intended to help you un-
erstand the intuition behind the algorithms. The formal description of the algorithms
and Prolog implementations are given in the next section.

Efficient truth tables

Consider the truth table for p V (g A 7):

lpla]rpvgnn]
T|T|T T
T|T|F T
T|F|T T
T|F|F T
F|T|T T
F|T|F F
F|F|T F
F|F|F F

From the first two rows, we can see that when p and q are assigned T, the formula
evaluates to T regardless of the value of r. Similarly, for the second two rows. Thus
the first four rows can be condensed into two rows:

lplalr]povgan]
T|T| % T
T|F | % T
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where * indicates that the value assigned to r is immaterial. In fact, we now see that
the value assigned to g is immaterial, so these two rows collapse into one:

|p| r pV(qAr)|
IT|** T ]

X~

After collapsing the last two rows, the entire truth table can be expressed in four rows:

lp]a]

| pvigan ]

NN xR
LR I E R R
NN

TN

Let us try another example, this time for the formula p @ g & r. It is easy to compute
the truth table for a formula whose only operator is &, since a row evaluates to true if
and only if an odd number of atoms are assigned true.

|Lq[r[p®q$r
T|T|T T
T|T|F F
T\F|T F
T|F\|F T
FiT|T F
F|\T\|F T
F{F\T T
F|F|F F

Here, adjacent rows cannot be collapsed, but careful examination reveals that rows 5
and 6 show the same dependence on r as do rows 3 and 4. Rows 7 and 8 are similarly
related to rows 1 and 2. Instead of explicitly writing the truth table entries for these
rows, we can simply refer to the previous entries:

lplalr]

pdger
T
F
F
T
(See rows 3 and 4.)
(Seerows 1 and 2.)

PN NN NS
I TR T e T
* % [N~

We turn now to an alternate representation of the semantics of a propositional formula
that is much more efficient than truth tables.
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eduction of BDDs

binary decision diagram, like a truth table, is a representation of the value of a
rmula under all possible assignments to atomic propositions in the formula. We -
art with a graph that is simply a notational variant of a semantic tree: each node
e tree is labeled with an atom, and the solid and dotted edges leaving the node
sent the assignment of true or false, respectively, to this atom. Along each branch,
ere is an edge for every atom in the formula, so there is a one-to-one correspondence

etween branches and assignments. The leaf of a branch is labeled with the value of
formula under its assignment.

ere is a BDD for p v (g A r); check that the value of the formula for each assignment
le same as that given in the truth table above.

oy ©
@\ \@ o \__.@\

can modify the structure of this tree to obtain a more concise representation with-
t losmg the ability to evaluate the formula under any assignment. The modifications

are called reductions; when no more reductions can be made, the diagram is called a
ed BDD.

e first reduction is to coalesce all the leaves into just two, one for T and one for

The tree is now a dag (directed acyclic graph), where the direction of an edge is’
hc1tly from a node to its child.

Th second reduction is to remove nodes that are not needed to evaluate the formula.
Once on the left-hand side of the diagram and twice on the right-hand side, the node
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for r has both outgoing edges leading to the same node. This means that the partial
assignment to p and g is sufficient to determine the value of the formula. In each of the
three cases, the r node and its outgoing edges can be deleted and the incoming edge 4
to the r node connected directly to the joint target node. : fru

second type of reduction (removing nodes with both outgoing edges pointing to
ngle node) is not applicable, but examination of the BDD reveals that the two
st nodes for r have the same structure as do the two innermost nodes, because
e and false edges point to the same subgraphs, in this case the leaves. So the
(solid) edge from the right-hand node for g can be made to point to the leftmost
de for 7, and the false (dotted) edge from that node can be made to point to the
Cor L r'node from the left. Deleting the two r nodes on the right and their outgoing
edges gives the following reduced BDD.

Now, the right-hand node for'zq becomes redundant and can be eliminated using ther
same type of reduction.

@

vite you to check that these BDDs represent the same evaluations of the formulas
the truth tables. '

N

.'.®

P ‘eﬁnition of BDDs
[E]

No more reductions can be made on this diagram which is now reduced.Evaluation of
the formula for a given truth assignment can be efficiently computed because man
nodes have been deleted. For example, when evaluating p V (g A 7), if the assignmen
begins by assigning T to p, we immediately reach the T leaf. :

Definition 4.48 A Binary Decision Diagram (BDD) for a formula A is a rooted di-
rected binary acyclic graph. Each nonterminal is labeled with an atom and each leaf
beled with a truth value. No atom appears more than once in a path from the root
tedge. One outgoing edge is the false edge and is denoted by a dotted line; the
'outgoing edge is the true edge and is denoted by a solid line.

ach path from the root to a leaf is associated an assignment to the atoms of A.
F to the atom if the false edge is taken from the node labeled by the atom, and
T if the true edge is taken. The leaf gives the value of A under this assignment.
path need not include all atoms in A, but it must include assignments to enough
s to enable the value of A to be computed. 0

Let us now consider the formula p @ g & r. Here is the dag after the leaves of the tree -
have been coalesced by the first type of reduction.

: g(aihple 4.49 There are four paths in the reduced BDD for pV (g Ar)on page 84.
Wﬁttén as literals to denote the assignments, they are (from left to ri ght):

Gp.mq). (op.g.—n), (=p.q.n), ).

first two paths represent all the assignments that give the value F to the formula,
the second two represent assignments that give T. d
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The apply operation

It hardly seems worthwhile to create a BDD if we start from the full binary tree whose

size is about the same as the size of the truth table. The power of BDDs comes from ‘

the ability to perform propositional operations directly on the two reduced BDDs.

That is, there is an algorithm Apply that constructs the BDD for A op A, directly

and efficiently from the reduced BDDs for A; and A;. The algorithm is also used to

construct an initial BDD for an arbitrary formula by building it up from the BDDs for

atoms. The BDD for the atom p is simply:

.'.®

‘We now construct the BDD for (p @ q) ® (p ® r) from the BDDs for p®gandper,

by applying the operator @ to the pair of BDDs. In the following diagram, we have -

drawn the two BDDs with the operator ® between them.

BDDforpegqg

@ @

AN

©

BDDforpa@r

.‘.®

AN

= g @ r, the result of the construction should be the BDD for

Since(p@g)d@ar)
qger.

The algorithm uses structural induction on the pair of BDDs. Given a BDD, the nodes
joined to the root are themselves BDDs of formulas obtained by substituting T and
F into the formula. The two BDDs above can be considered to have the following
structure:

BDDforp®gq

."@ ¢

N

©)

BDDforp@r

.'..@

AN

@ & ®

BDD for F® g BDDforT &g BDDforFe@r BDDforTer
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is assigned F in both p@q and p &, it will be assigned F in (p@q) ® (per). Soto
compute (p@q)®(p@r) for this assignment, we need to compute (F&q)®(Fer), which
mplifies to g @ r. Similarly, if p is assigned T, we need to compute (T ® ¢) & (T @ r),
hich simplifies to ~g ® - r. Graphically, this can be represented by recursing on
BDDs. The following diagram shows the pair of BDDs obtained by taking the
sht-hand edges that assign T to p.

BDD for —~¢

@ ®

/

BDD for-~T

BDD for - r

®.

BDD for = F

BDD for-F

BDD for~T

The recursion can be continued by assigning T and then F to g. Since the right-
and formula —r does not depend on the assignment to g, it does not split into two
recursive subcases as does the left-hand formula - g. Instead, the algorithm must be
applied recursively for each sub-BDD of ~ g together with the entire BDD for - 7. The
lowing diagram shows the computation that must be done if the right-hand (false)
branch of the BDD for - g is taken.

BDD for-F BDD for =~
® @,
BDD for-T BDD for - F

e left-hand BDD has reached the base case of the recursion. Recursing now on the
3DD for - r also gives base cases, one for the left-hand (true) branch:

BDD for - F BDD for =T BDD for~F@®-T
® =
nd one for the right-hand (false) branch:
' BDD for = F BDD for ~ F BDD for~F @ ~F
® =
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ﬁnition 4.51 An Ordered Binary Decision Diagram (OBDD) is a BDD such that
1e:set. of orderings of the atoms of all paths is compatible. il

On these base cases, the computation of the resultant BDD is immediate, as shown.

Returning up the recursive evaluation sequence, these two results can be combined to
give the result for the non-leaf BDD.

BDD for-F BDD for - r BDDfor-Fe&-r
® ®. G}

xample 4.52 The orderings of atoms along the four paths in the reduced BDD for -
“(g A r) on page 84 are (p, q), (p.q.7), (p.q.r), (p), so the BDD is an OBDD. 1[I

hé‘algorithm Reduce
:
\lgorithm 4.53 (Reduce)
Input: An ordered binary decision diagram bdd.

The BDD produced by continuing the algorithm to completion is: .
Dutput: An ordered binary decision diagram in reduced form.

f'bdd has more than two distinct leaves (one labeled T" and one labeled F), remove
cate leaves and direct all edges that point to leaves to the single remaining leaf
or each truth value. Then perform the following steps as long as possible:

1. If both the false and the true edges of a node labeled v; point to the same node
labeled v;, delete this node for v; and direct v;’s incoming edges to v;.

g ® o e

2. If two nodes labeled v; are the roots of identical sub-BDDs, delete one sub-BDD
and direct its incoming edges to the other node. i

and when it is reduced the expected answer is obtained:

BDDforge&r

.“'@

AN

o o

When the algorithm terminates (as it must, why?), the BDD is said to be reduced.

Tﬁeorem 4,54 (Bryant) The algorithm Reduce is correct. It returns a reduced OBDD
hat is equivalent to the OBDD in the input, in the sense that they give the same value
0 each assignment.

Ij‘or a given ordering of atoms, the reduced OBDDs for logically equivalent formulas
are:structurally identical.

Many optimizations can be 'made to improve the efficiency of the algorithm as de-

scribed in the section on implementation. The proofs of the theorems in this section can be found in Bryant (1986).

algorithm Reduce and Theorem 4.54 immediately provide a set of trivial algo-
s for properties of propositional formulas:

4.3 Algorithms on BDDs

The algorithm Reduce constructs an canonical BDD if the atoms on each path have * A formula is satisfiable lﬁ appears in its reduced OBDD.

compatible orderings. o A formula is valid iff its OBDD is simply [T |.

Definition 4.50 The ordered sequence of atoms labeling the nodes on a path is called
an ordering of the atoms. A set of orderings {0, ..., 0,} is compatible iff there are
no atoms p, p’ such that p comes before p’ in O; and p’ comes before pin O, i #j. 10

o A formula is unsatisfiable iff its OBDD is simply | F |.

e A = B if their OBDD’s are identical.
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The usefulness of OBDDs depends of course on the efficiency of the algorithm Re-
duce (and others that we will describe), which in turn depends on the size of reduced
OBDDs. It turns out that in many useful cases the size is quite small. However, the
size of the reduced OBDD for a formula depends on the ordering.

e Otherwise, we have a symmetrical case to the previous one. The BDD returned
has its root labeled by p, and its left (right) sub-BDD obtained by recursively
performing this algorithm on the left (right) sub-BDD of bdd; and bdds.

Theorem 4.55 (Bryant) The OBDD for the formula (p1 Ap2) V ...V (Pan-1 A D2s).
has 2n + 2 nodes under the ordering py, ..., pan, and 2**! nodes under the ordering

Restriction and quantification*
P1: Pn+1, 02, Pnt2, - - - DPn.P2n.

Definition 4.58 The restriction operation takes a formula A, an atom p and a value
=T orv = F, and returns the formula obtained by substituting v for p and partially
valuating A. Notation: A|p=,. 3]

Fortunately, you can generaily use heuristics to choose an efficient ordering. Unfortu-
nately, not all formulas have orderings that lead to small OBDDs.

Theorem 4.56 (Bryant) There is a fqrmula A with n atoms such that the reduced
OBDD for any ordering of the atoms has at least 2°" nodes for some ¢ > 0.

. Al=r =pV({@AT)=pvgq
The theorem is constructive in that Bryant gave a specific formula and bound ¢. The- Al =pV@AF)=pVF=p.

orem 4.56 is not surprising for reasons to be discussed in Section 4.4.

0

The algorzthm Apply he algorithm Reduce is justified by appealing to the following theorem which ex-

. ) resses the application of an operator in terms of its application to restrictions.
The following algorithm returns an OBDD for A; op A; constructed from the OBDDs
for the formulas A; and A;. Theorem 4.60 (Shannon expansion)
Algorithm 4.57 (Apply) . AropAr =(p N (Ailp=r 0p A2lp=1)) V (=p A (Atlp=r 0p Azlp=r)).
Input: A Boolean operator op, an OBDD bdd; for formula A;, and an OBDD bdd, 7
for formula Aj, such that the union of the set of orderings of atoms in the two OBDDs ‘Proof: Exercise. I

is compatible.

estriction is very easy to implement on OBDDs.
Output: An OBDD for the formula A; op A,. :

“Algorithm 4.61 (Restrict)

Input: An ordered binary decision diagram bdd for a formula A, an atom p occurring
A and a value v.

utput: An ordered binary decision diagram for Al,-,.

o If bdd; and bdd, are both leaves labeled v; and v,, respectively, return the leaf
labeled by v; op v;.

e If the roots of bdd, and bdd, are both labeled by the same atom p, then return
the BDD whose root is labeled by p and whose left (right) sub-BDD is obtained
by recursively performing this algorithm on the left (right) sub-BDDs of bdd,
and bdd,.

€ restriction is obtained by a recursive traverse of the OBDD.

“1. If the root of bdd is a leaf, return the leaf.

2. If the root of bdd is labeled with p, then return the false or true sub-BDD,

e If the root of bdd, is labeled by an atom p,, and the root of bdd, is labeled by ;
according to the value of v.

some other atom p, such that p; < p, in the ordering, then return the BDD
whose root is labeled by p; and whose left (right) sub-BDD is obtained by
recursively performing this algorithm with bdd, and the left (right) sub-BDD
of bdd,. This construction is also performed if bdd, is a leaf, but bdd, is not.

‘3. Otherwise (the root is labeled with g # p), apply the algorithm to the left and
right sub-BDDs, and return the tree whose root is g and whose left and right
sub-BDDs are those returned by the recursive calls.
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Example 4.62 The OBDD of A = p V (g A r) is shown in (a) below. (b) is A|,=r and
(c) is Al=r. Note that the restriction may not be reduced; the reduction of the OBDD
in (c) is shown in (d).

@ @ Ko ®

The algorithm Reduce does a recursive traversal of the BDD: calling Reduce (B, BR)
with a BDD B returns the reduced BDD in BR. A cache of reduced BDDs is maintained
as a dynamic database, so that it is easy to check if a BDD already exists as required

oy the second type of reduction in the algorithm. retraceall should be called before
xecuting reduce in order to initialize the database.

The first clause checks if the current BDD is in the cache; if so, unification is used to
eturn the existing BDD.

reduce(B, B) :- B, !.

2

,'éxt we check if the BDD is a leaf; if so, it is placed into the cache and returned.

(a) (®) : © (b)

: ] reduce(B, B) :- B = bdd(leaf, — ), !, assert(B).
Compare the OBDDs in (b) and (d) with the formulas in Example 4.59. g
The third clause recurses on the sub-BDDs, but before returning it calls remove to

Is A = p v (g A r) true for some value of r or for all values of ? Of course we could erform the first type of reduction.

reduce(bdd(N, False, True), NewNode) :-
reduce(False, NewFalse),
reduce(True, NewTrue),
remove(bdd(N, NewFalse, NewTrue), NewNode).

Definition 4.63 Let A be a formula and p an atom. The existential quantification of
A is the formula denoted 3 pA that is true iff for some assignment to p, A is true.
The universal quantification of A is the formula denoted V pA that is true iff for all
assignments to p, A is true. C

‘the two edges from this node N point to the same subBDD, N must be removed and
Theorem 4.64 3 pA = Alp=r V Alp=r and V¥ pA = Alp=r A Alp=r- :

Proof: Exercise. i remove(bdd(_, SubBDD, SubBDD), SubBDD) :- !.

antification is easily computed using OBDDs: o
Quanti y p g Otherwise, the new BDD formed by N and the subBDDs returned by the recursion is

ApA = apply(restricA, p, F), or, restrict(A, p, T)), turned unchanged, but stored in the cache for future use,
= 1} trict(A, p, F), and, restrict(A, p, T)).
vpA apply(restrict(A. p, F) @.p.1) remove(B, B) :- assert(B).
Example 4.65 ,
e algorithm Apply requires a simultaneous recursive traversal of two BDDs. The
Arev@Ar)=pv(Vvye)=pvg ase case is if both BDDs are leaves. In this case, simply apply the operator to the
Vr(pV(@AD)=pA(PVyg)=p. lues in the leaves.
We leave it as an exercise to perform these computations using OBDDs. Q. apply (bdd (1 ea:f , Vall, _), Opr, bdd(leaf, Val2, _),
bdd(leaf, ValResult, x)) :- !,
Implementation” opr(Qpr, Vall, Val2, ValResult).

If vthe same atom is at the root of both BDDs, a simultaneous recursion is done and the
tesultant BDD constructed from the BDDs that are returned.

Atoms are represented by integers: think of N as standing for the atom py. BDDs are
represented by the predicate bdd (N,False,True), where N is the atom labeling the
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apply(bdd(N, Falsel, Truel), Opr, bdd(N, False2, True2),
bdd (N, FalseResult, TrueResult)) :- !,
apply(Falsel, Opr, False2, FalseResult),
apply(Truel, Opr, True2, TrueResult).

The difficult part of the implementation is when one of the BDDs has a atom at the
root and the other is a leaf, or when the roots are labeled with different atoms. The first
clause is taken if the right-hand sub-BDD is a leaf or has a higher-numbered atom; in
this case, the sub-BDDs of the left-hand node are applied to the entire right-hand node
Node2. The two cases can be treated together, using the ; operator in Prolog which
succeeds if either of its operand does.

apply(bdd(N1, Falsel, Truel), Opr, Node2,
bdd(N1, FalseResult, TrueResult)) :-
Node2 = bdd(N2,:_, _),
(N2 = leaf ; (N1 \= leaf, N1 < N2)), !,
apply(Falsel, Opr, Node2, FalseResult),
apply(Truel, Opr, Node2, TrueResult).

(The check that N1 is not a leaf is not needed by the algorithm; it just ensures that
we don’t try to evaluate leaf<N2 which is illegal in Prolog.) The second clause is

symmetrical if the left-hand node is a leaf or has a higher-numbered atom.

apply (Nodel, Opr, bdd(N2, False2, True2),
bdd (N2, FalseResult, TrueResult)) :-
apply(Nodel, Opr, False2, FalseResult),
apply(Nodel, Opr, True2, TrueResult).

The source archive extends the implementation to include optimizations that are es
sential for practical use of the algorithm:

e Create a cache bdd_pair(B1, B2, B) of pairs of BDDs and the result of -
applying the operator to the pair. As in the algorithm for reduce, first check if -

the result is in the database before performing the traversal.
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In the presence of a controlling value, the other sub-BDD can be ignored, and
the BDD for the controlling value returned immediately.

~ e Integrate reduce with apply instead of first creating an unreduced BDD.

4.4 Complexity*

Let us review some of the definitions in algorithmic complexity.

n algorithm is deterministic if its computation (and hence its result) is fully deter-
ined by its input. A deterministic algorithm is correct iff the (single) result is correct.

Example 4.66 The method of truth tables is a deterministic algorithm for deciding
both satisfiability and validity in the propositional calculus: the algorithm constructs
the truth table for a formula and checks if T appears in some or all of the rows of the
able. 0

1 algorithm is nondeterministic if it is not deterministic, that is, if there may be more
an one computation for a given input. A nondeterministic algorithm is correct iff the
esult of some computation is correct.

Example 4.67 The construction of a semantic tableau is a nondeterministic algorithm
€cause at any stage of the construction, we can choose a leaf to expand, and further,
hoose a formula in the label of the leaf to which a rule will be applied. If fact,
very computation (construction) produces a correct answer, so the algorithm is not
aracteristic of a nondeterministic algorithm. 0

xample 4.68 Here is a nondeterministic algorithm for deciding the satisfiability of
ormula A,

Choose an interpretation v for A. If v(A) = T, then A is satisfiable.

f A is satisfiable, for some computation (choice of v), the result is correct. Of course,
ther choices may not give the correct answer, but that does not affect the correctness
fthe nondeterministic algorithm. 0

o If one of the BDDs is a leaf, check if its value is a controlling operand for the =
operator. A value is controlling if the result of the operation does not depend
on the other operand. T is controlling for Vv (as shown in the diagram), F is
controlling for A, and F is controlling for the left operand of —.

algorithm is said to run in polynomial time if its runnin g time can be bounded from
bove by a polynomialin , where r is the size of the input. An algorithm is said to
N in exponential time if its running time can be bounded from below by 2" for some
BDD for T ositive c.

BDD for T BDD for formula A

v 0,

/!

The truth-table method is not an efficient algorithm for satisfiability or validity in
ie propositional calculus because we construct 2" rows, where 7 is the number of
ariables. For a formula whose size is polynomial in the number of variables, the
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complexity of the method will be exponential. The method of semantic tableaux and
the resolution procedure are usually more efficient than truth tables; nevertheless, there
are families of formulas for which these methods have exponential complexity.

The nondeterministic algorithm in Example 4.68 is a polynomial algorithm for satis-
fiability: evaluation of the truth value of a propositional formula under any particular
interpretation is very efficient. Searching for a satisfying interpretation has been re-
placed by nondeterministic choice of the correct answer.

This shows that the problem of satisfiability in the propositional calculus is in the
class NP of problems solvable by a Nondeterministic algorithm in Polynomial time.
It is not known if satisfiability is in the class P of problems solvable in Polynomial
time by a deterministic algorithm. Though the clairvoyance of the nondeterministic
algorithm seems to be a powerful tool for defining efficient algorithms, no one has
been able to prove that there exists a problem in NP which is not in P. This is called
the P=NP ?-problem. !

The evidence is overwhelming that PANP. In 1971, S. A. Cook proved that satisfiabil-
ity is an NP-complete problem, that is, if satisfiability is in P, then every problem in NP
is in P. Since then, hundreds of problems have been shown to be NP-complete. The

* discovery of a deterministic polynomial-time algorithm for any of these problems, in-

cluding satisfiability, implies the existence of such an algorithm for all of them! Many
of these problems are famous and have been studied for years by researchers seek-
ing efficient algorithms; thus it is highly unlikely that P=NP and hence it is highly
unlikely that there is a polynomial algorithm for satisfiability.

Consider now the complementary problem, unsatisfiability or validity. Unsatisfiability
is ostensibly a much more difficult problem than satisfiability, because to prove unsat-
isfiability, we have to show that there is no satisfying interpretation. Unsatisfiability
is in the class co-NP of problems whose complement (here satisfiability) is in NP. It
can be shown that co-NP=NP if and only if unsatisfiability is in NP. It is not known
if there is a nondeterministic polynomial decision procedure for unsatisfiability, and
hence it is also not known if co-NP=NP or not.

Hard examples for resolution

The complexity of specific algorithms has been extensively studied. It can be shown

~ that methods of truth tables, semantic tableaux and resolution are all of exponential

complexity by exhibiting families of formulas on which the algorithms are inefficient.
Here we give an example of this area of research by defining a family of sets of clauses
for which resolution is exponential.

Let G be an undirected graph. Label the nodes with 0 or 1 and the edges with distinct
atoms. The following graph will be used as an example throughout this section.
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q r s
0 t 0

‘Definition 4.69 The parity of a number is 0 if it is even and 1 if it is odd. II(C), the
: arity of a clause C, is the parity of the number of complemented literals in C. II(v),
the parity of an interpretation v, is the parity of the number of atoms assigned 7 in v.
0

With each graph we associate a set of clauses.

‘Definition 4.70 Let n be a node of G, let b, be the label (0 or 1) of n and let P(n) =
b1, ..., Dr} be the set of atoms labeling edges incident with n. C(#n), the set of clauses
"associated with n, is the set of clauses C whose literals are all the atoms in P(n), some
- of which are negated so that II(C) # by. v, is an interpretation associated with n if v,
‘assigns truth values to exactly the literals in C(n). 0

'_Example 4.71 The sets of clauses associated with the four nodes of the graph are
(clockwise from the upper-left corner):

{pg. P},  fprs, pFs, prs, pis), (5t st} (gr, g7t qri, G7E ).

Checking some of the clauses against the definition:

NErs) =0 # 1=b,
@G =1 # 0=b,

Lemma 4.72 v, satisfies all clauses in C(n) if and only if II(v,) = bp.

Proof: Suppose I1(v,) # b,. Consider the clause C defined by:

L=piifvip)=F and L=p;iifv(p)=T.
Then
II(C) = (by definition)
parity of negated atoms of C =  (by construction)
parity of literals assigned T = (by definition)
TI(v,) #  (by assumption)

bn,
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so C € C(n). But v,(C) = F since v, assigns F to each literal /; € C, therefore v, does
not satisfy all clauses in C(rz).

We leave the proof of the converse as an exercise. |

Example 4.73 Consider an assignment to the atoms adjacent to the upper right node
n defined by v(p) = v(r) = v(s) = T. For this interpretation, I[I(v) = 1 = b, and it is
easy to see that v(C) = T for all clauses in C(n). Conversely, v(p) = v(r) = v(s) = F
is an interpretation such that II(v) = 0 # b, and v(prs) = F so v does not satisfy all
clauses in C(n). 0

Lemma 4.74 If 3 . b, = 1 where Y, is modulo two sum, then C(G) = UpegC (n) is
unsatisfiable.

Proof: By the previous lemma, if v is an arbitrary model for C(G), then II(v,) = b,
where v, is v restricted to the literals incident with 7, so donec IVn) = Y, ba- Sup-
pose that an atom labels an edge whose endpoints are ' and n”. Then each assignment
to a atom appears twice in the sum, once for v(n') and once for v(r”). Thus the num-
ber of literals assigned T in Y, _-TI(v,) is even and 0 = Dne Avn) = Dineg bn-
Therefore, if ZmeG b, = 1 there cannot be a model for C(G) so the set of clauses is
unsatisfiable. ’ 1

Example 4.75 Let n’ be the upper left corner and n” the upper right comer and v be
such that v(p) = T. Then v(p) = T is counted twice and its contribution to the total
parity is 0. 0

There are unsatisfiable sets of clauses associated with arbitrarily large graphs. If the
graphs have just a few edges incident with each node—such as a grid with at most
four edges per node—the size of the set of clauses will be small. With N nodes and
four edges per node, there will be at most 8N clauses of four literals each. An appro-

 priate set of clauses was defined in 1968 by G. S. Tseitin, but not until 1987 was the

following theorem finally proved:

Theorem 4.76 (Haken and Urquhart) For arbitrarily large N, there is a graph and
a set of associated clauses of size about N, such that the number of distinct clauses
created in any resolution refutation is greater than 2°Y for some fixed ¢ > 0.

The proof is extremely difficult and beyond the scope of this textbook. The difficulty
stems from the choice in the resolution procedure—at every step, any two clashing
clauses can be chosen. A combinatorical argument is used to show that no sequence
of choices gives a non-exponential refutation.

Ironically, the formulas obtained by Tseitin’s clauses are problematic only when rep-'v
resented in clausal form. They can be expressed as sets of equivalences, and there is
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a simple and efficient algorithm for checking the validity of such formulas. There-
fore, the theorem shows only that resolution is an exponential algorithm. It does not
preclude the (unlikely) existence of a polynomial algorithm for satisfiability.

4.5 Exercises

1. A formula is in disjunctive normal Jform (DNF) iff it is a disjunction of conjunc-
tions of literals. Show that every formula is equivalent to one in DNFE.

2. AformulaA isin complete DNF iff it is in DNF and each propositional letter in
A appears in a literal in each conjunction. For example, (p A @V (PAg)isin
complete DNF. Show that every formula is equivalent to one in complete DNFE.

3. P Write a program to transform a formula into an equivalent formula in complete
DNE

4. Simplify the following sets of literals, that is, for each set S find a simpler set
S, such that S ~ §'.

{pa. q7, rs, p5},

{pgr. g. prs, gs, ps),
{pars. grs, prs, gs, s},
{Pq. grs, pars, 7, q}.

3. Given the set of clauses {Bgr, pr. qr, 7} construct two refutations: one by
resolving the literals in the order { .4, r} and the other in the order {r, q.p}.

6. Transform the set of formulas
P P> (qVNIA=(gAD), P> ((VOA(sAD), s ~rot, 15 }
into clausal form and refute using resolution.
7. * The half-adder of Example 1.1 implements the pair of formulas:
S (b1AB2)A (b1 Vb2) c < bl AD2.

Transform the formulas to a set of clauses. Show that the addition of the
unit clauses {b1, b2, 5, ¢} gives an unsatisfiable set while the addition of
{b1, b2, 3, c} gives a satisfiable set. Explain what this means in terms of the
behavior of the circuit.

8. Prove that adding a unit clause on a new atom to a set of clauses and adding its
complement to clauses in the set preserves satisfiability (the converse direction
of Lemma 4.11).
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9. Prove that if the set of clauses labeling the leaves of a resolution tree is satisfi-
able then the clause at the root is satisfiable (Theorem 4.28).

10. Prove the Shannon Expansion (Theorem 4.60) and the formula for propositional
quantification (Theorem 4.64).

5 Predicate Calculus:

11. Show that 3r(pV(gATr)) = pVgand Vr(pV (g A 7)) = p using BDDs F ormulas, Models, Tableaux

(Example 4.65).

12. ? Implement the optimizations of the BDD algorithms discussed as the end of
Section 4.3.

13. * Construct a resolution refutation for the set of clauses associated with the
graph on page 97.

. . 3.1 Relations and predicates
14. * Construct the set of Tseitin clauses corresponding to a labeled complete graph

on five vertices and give a resolution refutation of the set. The axioms and theorems of mathematics are defined on arbitrary sets such as the

set of integers Z. We need to be able to write and manipulate logical formulas that
‘contain relations on values from arbitrary sets. The predicate calculus extends the
propositional calculus with predicate letters that are interpreted as relations on a do-
‘main. (You may wish to review Appendix A on set theory at this time.)

15. * Show that if II(v,) = b,, then v, satisfies all clauses in C(n) (the converse
direction of Lemma 4.72).

16. * Let {q1,...,g,} be literals on distinct atoms. Show that ¢; & .-« & g, is

. . - . _ ot J ‘ . . '
satisfiable iff {pe>qy,..., peq,} is satisfiable, where p is a new atom. Constru et R be an n-ary relation on a domain D, that is, R is a subset of o
an efficient decision procedure for sets of formulas whose only operators are -, ,

© and ®.

Example 5.1

Pr(x) C W is the set of prime numbers: {2,3.5,7,11,.. }.

Sq(x,y) € N2 is the set of pairs (x, y) such that y = x2:
{(0,0),(1,1),(2,4),(3,9),...}. 0

Definition 5.2 A relation can be represented by a Boolean-valued function R : D"
{T., F}, by mapping an n-tuple to T if and only if it is included in the relation:

V iample 5.3 Sq and Pr are represented by the functions Pr and Sgq, respectively:

| PrO)=F [ Pr)=F | Pr)=F ||

59(0,0) =T [ Sq(0.1) = F | 5¢(0,2) = F
Sq(LO)=F [ Sq(1, 1) =T | Sq(1,2) = F
5q(2,0)=F [ Sq2 1)=F | 5q(2,2) = F
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This correspondence is trivial but it provides the link necessary for a logical formal-
ization of mathematics. All the logical machinery—formulas, interpretations, proofs,
etc.—that we developed for the propositional calculus can be applied to predicates.
The presence of 2 domain upon which predicates are interpreted considerably compli-
cates the technical details but not the basic concepts.

An overview of the development is as follows:

¢ Syntax: Predicate letters are used to represent relations (functions from a do-
main to truth values). Quantifiers allow a purely syntactical expression of the
statement that the relation represented by a predicate is true for some or all
elements of the domain.

e Semantics: An interpretation consists of a domain and an assignment of rela-
tions to the predicate letters. The semantics of the Boolean operators remains
unchanged, but the evaluation of the truth value of the formula must take the
quantifiers into account.

® Semantic tableaux: The systematic search for a model is potentially infinite
because domains like the integers are infinite. The construction of a tableau may
not terminate, so there is no decision procedure for satisfiability in the predicate
calculus. However, if a tableau happens to close, the formula is unsatisfiable;
conversely, a systematic tableau for an unsatisfiable formula will close.

 There are Gentzen and Hilbert deductive systems which are sound and com-
plete. A valid formula is provable and we can construct a proof of the formula
using tableaux, but given an arbitrary formula we cannot decide if it is valid
and hence provable.

¢ The syntax of the predicate calculus is extended with function letters that are
interpreted as functions on the domain. With functions we can reason about
mathematical operations, for example, (x > 0Ay > 0)-(x-y > 0). The predicate
calculus with function letters is used in the resolution procedure discussed in
Chapter 8.

o There are canonical interpretations called Herbrand interpretations. If a formula
has a model, it has a model which is an Herbrand interpretation, so to check
satisfiability, it is sufficient to check if there is a Herbrand model for a formula,

5.2 Predicate formulas

Let P, A and P be countable sets of symbols called predicate letters, constants and
variables, respectively. By convention, the following lower-case letters, possibly with
subscripts, will denote these sets: P = (p,q,7}, A = {a, b, ¢,V ={xy1z}.
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Definition 5.4 The following grammar defines atomic formulas and formulas in the
predicate calculus:

argument u=ox foranyx eV
argument = a foranya e A
argument_list 1= argument

argument _list = argument, argument_list .
atomic_formula = p|p(argument_list) foranyp € P
Jormula = atomic_formula

formula =  ~formula

formula = formula vV formula similarly for A, - - -
formula =V xformula foranyx e vV
Sformula u= 3 xformula foranyx € V

A predicate letter p € P can have no arguments or any finite number of arguments.
We regard two predicate letters with different arities as distinct. 0

The definition of derivation and formation trees, and the concept of induction on the
structure of a formula are taken over unchanged from the propositional calculus. The
quantifiers are considered to have higher precedence than the Boolean operators.

Example 5.5 Here are some examples of formulas in the predicate calculus. We will
discuss their meaning in the next section after we have defined interpretations.

L. VxVy(@(x,y) - p(, x)).

2. Vx3yp(x, y).

3. 3xIyEE) A =p()).

4. Vxp(a, x).

5. Vx(p(x) A g(x)) > (Vxp(x) AV xg(x)).
6. Ix(p(x) v g(x)) & Qxp(x) v 3 xg(x)).
1. Vx(p(x) = g(x)) = (Vap(x) = Vxq(x)).

8. (Yap(x) = Vxq(x)) > Vx(p(x) — g(x)).

Definition 5.6 V is the universal quantifier and is read ‘for all’. 3 is the existential
quantifier and is read ‘there exists’. In a quantified formula V xA, x is the quantified
variable and A is the scope of the quantified variable. It is not required that x actually
appear in the scope of its quantification. 0
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program Main;

var X: Integer;
procedure p;
var X: Integer;

begin
X :=1; writeln(X)
end;
procedure q;
begin
writeln(X)
end;
begin
X:=5 p q
end '

Figure 5.1 Global and local variables

The concept of scope in formulas of the predicate calculus is similar to the concept of
scope of variables in a block-structured programming language like Pascal. Consider
the program in Figure 5.1. The variable X is declared twice, once globally and once
locally in procedure p. The scope of the global declaration includes p, but the local
declaration hides the global one. The writeln(X) statement in p will print 1. In
procedure g, the global variable X is in scope and is not hidden; the procedure will
print 5. As in programming, hiding a quantified variable within its scope is confusing
and should be avoided by giving different names to each quantified variable.

Definition 5.7 Let A be a formula. An occurrence of a variable x in A is a free variable
of A iff x is not within the scope of a quantified variable x. Notation: A(x;, ..., Xn)
indicates that the set of free variables of the formula A is a subset of {x;, ..., Xn}. A
variable which is not free is bound.

If a formula has no free variables, it is closed. If {xi,..., x,} are all the free vari-
ables of A, the universal closure of A is Vxy ---Vx,A and the existential closure is

x;---dAx,A. o

Example 5.8 p(x,y) has two free variables x and y, 3yp(x, y) has one free variable
x and Vx3 yp(x,y) is closed. The universal closure of p(x, y) is VxV yp(x, y) and the
existential closure is 3 x 3 yp(x, y). i

Example 5.9 In Vxp(x)Ag(x), the occurrence of x in p(x) is bound and the occurrence
in g(x) is free. The universal closure is Vx(¥V xp(x) A g(x)). Obviously, it would have
been better to write the formula as V xp(x) Ag(y) where y is the free variable; its closure

is Vy(¥xp(x) A gO)). d
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5.3 Interpretations

Definition 5.10 Let U be a set of formulas such that {p,, ..., p,} are all the predicate
letters and {ay, ..., a;} are all the constant symbols appearing in U. An interpretation
1 is a triple

D, {Ry,.... R.), {4i...., dr}),

where D is a non-empty domain, R; is an assignment of an n;-ary relation on D to the
n;-ary predicate letter p; and d; € D is an assignment of an element of D to the constant
a;. 0

Example 5.11 Here are three numerical interpretations for the formula V xp(a, x):

Li=W.{<1{0}), IL=W. (<){1), IL=(Z (<} {O}).

The formula can also be interpreted over strings Zy = (S, {substr}, {"}), where S is
the set of strings on some alphabet, substr is the binary relation substring and ” is the
null string. 3]

Definition 5.12 Let I be an interpretation. An assignment 67 : ¥ — D is a function
which maps every variable to an element of the domain of I. ozix; « d;] is an
assignment that is the same as o7 except that x; is mapped to d;. 0

Definition 5.13 Let A be a formula, T an interpretation and o7 an assignment. v, (A),
the value of A under o1, is defined by induction on the structure of A:

o Let A = pg(cy, ..., c,) be an atomic formula where each c; is either a variable
X; or a constant a;. v,,(A) = T iff {dy,...,d,} € R, where R, is the relation
assigned by I to py, and d; is the domain element assigned to c;, either by I if
c; is a constant or by o7 if ¢; is a variable.

® v, (A1) =Tiff vs, (A1) = F.

® V5, (A1 VA) =T iff vy, (A1) = T or vy, (A2) =T,
and similarly for the other Boolean operators.

® Vo, (VXA)) = T iff voyreq)(Ay) = T for all d € D.

® v,,(3xA,) =T iff vo;xeqi(A1) = T for some d € D.
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Theorem 5.14 Let A be a closed formula. Then v,,(A) does not depend on o1.

Proof: Call a formula independent of o7 if its value does not depend on o7. Let
A’ = VxA;(x) (respectively 3 x4, (x)) be a (not necessarily proper) subformula of A,
where A’ is not contained in the scope of any other quantifier. Then v, (A') = T iff
Vorired)(A1) for all (respectively some) d € D. But x is the only free variable in A,,
so A; is independent of oz[x < d]. The theorem can now be proved by induction on
the depth of the quantifiers and by structural induction, using the fact that a formula
constructed using Boolean operators on independent formulas is also independent. |

By the theorem, we can talk about the value of a closed formula, denoted vz(A),
without mentioning a specific assignment. In fact, there is rarely any need to consider
non-closed formulas by tke following theorem whose proof is left as an exercise.

Theorem 5.15 Let A’ = A(xy, ..., ) be a non-closed formula and let I be an inter-
pretation. Then:

® v, (A’") = T for some assignment oz iff ve(3x; ---3 x,A) =T.
e v, (A = T for all assignments oz iff vi(¥Vx1-- Vx,A)=T.
Now we can give the central semantic definitions for the predicate calculus.

Definition 5.16 A closed formula A is true in I or I is a model for A, if vi(A) = T.
Notation: 7 = A. 0

Example 5.17 For the formula A = Vxp(a, x) and the interpretations defined above:

e I; EAsinceforallne N,0< n.
e I, = A since it is not true that foralln € N, 1 <n.Ifn=0then 1 £0.
e I3 }£ A, because there is no smallest integer.

e 1, = A. By the usual definition, the null string ” is a substring of every string.

Definition 5.18 A closed formula A is satisfiable if for some interpretation Z, T |= A.
A is valid if for all interpretations Z, I |= A. Notation: |= A. A is unsatisfiable if it is
not satisfiable, and falsifiable if it is not valid. 0

Example 5.19 Vxp(x) — p(a) is valid. If it is not, there must be an interpretation
I = (D, {R}, {d}) such that vz(Vxp(x)) = T and vz(p(a)) = F. By Theorem 5.15,
Ve, (p(x)) = T for all assignments o7, in particular for the assignment o7 that assigns
d to x. But p(a) is closed, s0 vy, (p(a)) = vz(p(a)) = F, a contradiction. 0
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 Example 5.20 Here is a semantic analysis of the formulas from Example 5.5:

¢ VxVy(p(x,y) = p(y.x))
The formula is satisfiable in an interpretation where p is assigned a symmetric
relation like =.

o VxIyp(x,y)
The formula is satisfiable in an interpretation where p is assigried a relation that

is a total function, such as (x,y) e Riffy=x+ 1forx,y € Z.

e 3x3y(p(x) A-pO))

This formula is satisfiable only in a domain with at least two elements.

e Vxp(a,x)
This expresses the existence of a special element. For example, if p is inter-
preted by the relation < on the domain N, then the formula is true for a = 0. If
we change the domain to Z the formula is false for the same assignment of < to
p. Thus a change of domain alone can falsify a formula.

¢ Vx(p(x) A g(x)) + (Vxp(x) AV xq(x))

The formula is valid. We prove the forward direction and leave the converse
as an exercise. Let T = (D, {R1, Rz}, {}) be an arbitrary interpretation. By
Theorem 5.15, v, (p(x) A g(x)) = T for all all assignments oz, and by the
inductive definition of an interpretation, v,,(p(x)) = T and v,,(g(x)) = T for all
assignments o7. Again by Theorem 5.15, vi(Vxp(x)) = T and vi(Vxg(x)) = T,
and by the definition of interpretation vz(Vxp(x) A Vxg(x)) = T.

Show that V does not distribute over disjunction by constructing a falsifying
interpretation for Vx(p(x) V g(x)) « (Vxp(x) V V xg(x)).

* Vx(p(x) = q(x)) —= (Vxp(x) = Vxq(x))
This is a valid formula, but its converse is not.

5.4 Logical equivalence and substitution

Definition 5.21 Given two closed formulas A, A,, if vz(4;) = vz(A4,) for all inter-
pretations Z, then A, is logically equivalent to A;. Notation: A; = Aj.

" Let A be a closed formula and U a set of closed formulas. If for all interpretations Z,

vz(A) = T whenever vz(A;) = T for all A; € U, then A is a logical consequence of U.

- Notation: U [ A. 0
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VXA(x) & 3FxAx) IxA(x) & ~Vx-A(x)

VxVyA(x,y) < VyVxA(x,y)
AxVyAQx,y) > Vy3IxA(x, y)

IxIyA(x,y) = IyIxA(x, y)

(3xA(x) VB) « Ax(A(x) VB) (VxA(x) VB) & Vx(A(x) vV B)
(BV3xA(x)) « Ax(BV A(x)) (BVVXA(x)) < Vx(BV A(x))
(3xA(x) A B) & 3x(A(x) AB) (VxA(x) A B) &V x(A(x) A B)
(BAIxA(x)) < Ax(B AA(x)) (BAVXA(x)) & Vx(B AA(x))

Vx(A - B(x)) < (A v xB{x)) Vx(A(x) = B) & (3xA(x) - B)
Ax(A(x) V B(x)) <> (AxAX) VIxB(x)) Vx(A(x) A B(x)) < (VxA(x) AV xB(x))
VXA(x) VVxB(x)) = Vx(A(x) V B(x)) Jx(Ax) AB(x)) - (3 xA(x) A 3AxB(x))
Vx(A(x) © B(x)) - (VxA(x) & VxB(x.)) Vx(A(x) < B(x)) = (AxA(x) « I xB(x))
Fx(A(x) - B(x)) « (VxA(x) = IxB(x)) (IxA(x) = VxB(x)) = Vx(A(x) > B(x))
Vx(A(x) V B(x)) = (VxA(x) V3xB(x))  Vx(A(x) - B(x)) » (VxA(x) > VxB(x))

Vx(A(x) = B(x)) » (AxA(x) - IxB(x)) Vx(A(x) — B(x)) — (VxA(x) = IxB(x))
Figure 5.2 Valid formulas in the predicate calculus

Theorem 5.22

A=B if EA<B.
UEA iff E(@ A---AA,)—A.

Proof: Exercise. |

Figure 5.2 contains a list of valid formulas in the predicate calculus. The rest of this -

section motivates and explains some important formulas from this list.

The two quantifiers are duals and one can be defined in terms of the other:

VxA(x) < -=Jx-A) IxXA(X) & 2 Vx-AR).
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Universal quantifiers distribute over conjunction, and existential quantifiers distribute
over disjunction, but only one direction holds for universal quantifiers over disjunction
and existential quantifiers over conjunction:

(YXA(x) V VXB(x)) = V x(A(x) v B(x))
Fx(Ax) AB(x)) - (IxA(x) A T xB(x)).
If a subformula does not contain a free variable then quantifiers on that variable may

be freely passed through the subformula, for example, IxA(x) v B < I x(A (x) v B).

Passing quantifiers through implications is not simple. The formulas in the table can
be derived from formulas for disjunction and conjunction by replacing the implication

by the equivalent disjunction and observing the alternation of quantifiers as negation
is passed through them. Here is an example:

Ax(A(x) - B(x)) = 13 x(~A(x) V B(x))

= dx-A@®) vV IxB(x)
2 3x-A(x) - JxB(x)
= VxA(x) - JxB(x).

Example 5.23 Let us prove the validity of

Vx(A(x) V B(x)) = (VxA(x) v IxB(x)).

ﬁ Replace the second disjunction by implication and then - VxA(x) by 3x - A(x) using
: duality. Exchange of antecedents gives:

Fx-A@x) > (Vx(A) V B(x)) —» IxB(x)) ).

. For the formula to be valid, it must be true under all interpretations. Clearly, if
vr(Ix-A(x)) = F or v(Vx(A(x) V B(x))) = F, the formula is true, so we need only
s show vz(IxB(x)) = T for interpretations v7 under which these subformulas are true.

By Theorem 5.15, for some assignment o7, Ve, (7 A(x)) = T and thus Ve, (A(x)) = F.
Using Theorem 5.15 again, Vor (A(x) V B(x)) = F under all assignments, in particular
nder 6. By definition of an interpretation for disjunction, Ve, (B(x)) = T, and using

Theorem 5.15 yet again, v;(3 xB(x))=T. i}

.5 Semantic tableaux

Before presenting the formal construction of semantic tableaux for the predicate cal-
~culus, we will informally construct several tableaux to study the difficulties that must

¢ dealt with. Remember that a tableau is a systematic search for a counterexample.
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Informal construction

The first example is the negation of the valid formula:

Vx(p(x) = g(x)) = (Yap(x) =V xq(x)).

Applying two a-rules to formulas of the form - (A — B), we obtain the following set
of formulas to which no further propositional tableau rules can be applied:

Vx(p(x) = g(x)), Vxp(x), =V xq(x).

The formula =V xg(x) is equivalent to 3 x— g(x), so if we are to create a counterex-
ample, we must instantiate the formula with some domain element substituted for x.
Rather than choose some specific domain such as integers or strings, we will use the
set of constant symbols of the predicate calculus itself as a domain. Let a2 € A and
extend the tableau with a new node whose label replaces the quantified formula with
—q(ay:
Vx(p(x) = q(x)), Vxp(x), ~q(a).

The first two formulas are universally quantified so they impose requirements on ev-
ery element of the proposed domain. Therefore, we instantiate each of them for the
domain element a we have introduced. In two steps this gives:

Vx(p(x) = g(x)), Vxp(x), ~g{a)
3
Vx(p(x) = q(x)), p(a), ~q(a)
l
pla) = q(a), p(a), ~q(a).

Applying the f-rule to the implication immediately gives a closed tableau.

Next let us try constructing a tableau (Figure 5.3) for the negation of the formula:

Vx(p(x) v g(x)) = (Vxpx) V V xg(x)),

which is satisfiable but not valid, so its negation should also be satisfiable. We obtain
a closed tableau for a satisfiable formula. What went wrong? The answer is that a
should not have been chosen as the domain element for the instantiation of -V xp(x)
(which is an existential formula since it is equivalent to 3 x = p(x)), once it had already
‘been chosen for - ¥ xg(x). In fact the formula is true in all interpretations over domains
of a single element. When creating domain elements for existential formulas, we must
choose a new element each time. If we do so, the fifth line of the tableau is:

Vx(p(x) vV g(x)), =pd), ~q(a).

Instantiating the universal quantifier with a gives:

pa) Vv g(a), -~ p(b), ~q(a).
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~(Vx(p(x) V g(x)) = (Vap(x) v Vxg(x)))
$
Yx(p(x) v g(x), = (Vap(x) V Vxq(x))
J
Yx(p(x) V q(x)), ~Vap(x), ~Vxq(x)
l
Vx(p() Vv q(x)), ~Vxp(x), ~g(a)
4
Vx(p(x) Vv q(x)), = p(a), ~g(a)
1
p(@)V q(a), ~p(a), = q(a)
v N
pla), =p(a), -~ q(a) q(@), = p(a), -~ g(a)
X X

Figure 5.3 Semantic tableau for a satisfiable formula

We should now instantiate the universal formula Vx(p(x) V g(x)) again with b since it
must be true for a/l domain elements, but, unfortunately, the formula has been ‘used
up’ by the tableau construction. To prevent this, universal formulas will never be
deleted from the label of a node. They remain in the label of all descendant nodes so

. @s to constrain the possible interpretations of every new constant that is introduced
The label of the sixth node should be: '

Vx(p() vV q(x)), p(a) Vv g(a), ~p(b), - q(a),

- and the universal formula can be instantiated again with b giving:

Valp() v g(x)), p(b) V q(b), p(@) V g(a), - p(b), = q(a).

We leave it to the reader to extend the tableau using f-rules and to show that exactly
one branch of the tableaux is open, defining the model ({a, b}, (P, 0}, { 1), where

€P,a¢dQ, begP b € Q. Thus there is a counterexample to the negation of the
ormula, so the formula is falsifiable, that is, not valid.

ext, let us search for a model for the formula A = A1 AA; A A; where:

Ar = Vx3ypxy),
Ay = Vx-pxx),
A3 = VxVyVz(p(xy) Ap(y,2) - p(x, z)).

“ Obviously, the first two steps can be a-rules to decompose the conjunction to obtain
‘the set of formulas A;, A

2, As. Now there is a minor problem since we must in-

Stantiate the universally quantified formulas but no constants have been introduced by
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existential formulas. Recall that the definition of an interpretation required that the
domain be non-empty, so we can arbitrarily choose an element g; to be in the domain.
The tableau construction continues by instantiating A; to obtain 3 yp(a;, y) and then
instantiating the existential formula with a new constant:

Vx3ypx,y), Az, A3
{
Vx3yp(x,y), Ayp(ar,y). Az, Az
{
Vx3yp(x y). plar, @), Az, A3

Note that since A; is universal, it is retained in the label of the descendant nodes. The
new constant a; must eventually be used to instantiate the universal formula A;; this
results in an existential formula which will be instantiated with a new constant a;.

“Vx3yp(x,y), plar, @), Ay, As
1
Vx3yp(x,y), Ayp(az.y), plai, az), A, A3
J' '
Vx3yp(x,y), plas, a3), pla;, az), Az, As

The construction will not terminate; if you continue the tableau construction, applying
rules also to A; and Aj, an infinite branch is obtained. The set of atomic formulas on
the branch will be p(a;, a;), where aj, a,, ... is an infinite sequence and i < j. The
tableau neither closes nor terminates; instead it defines an countably infinite model,
that is, a model with a countable domain. In fact, (N, {<}) is a model for A.

Theorem 5.24 The formula A = A A Ay A Az has no finite model.

Proof: Suppose that A had a finite model. The domain of an interpretation is non-
empty so it has at least one element. By A;, there is a sequence of elements ay, ...

such that v, [xeq,)yeq1(@(*,¥)) = T for all i and j = i + 1. By A3, this holds for' all
J # i. Since the model is finite, for some k, @, = a;, contradicting A, which requires

The construction of semantic tableaux is nor a decision procedure for validity in the
predicate calculus. We can never know if a branch that does not close defines an
infinite model or if it will eventually close, say, after one million further applications

that Vg, [xeq(P(x, X)) = F.

of the tableau rules.
A final complication in the construction of semantic tableau is given by:

Ay AAz NA3 AV X(g(x) A - g(x)).
After applying the a-rules, the node label is:
Ay, Az, A3, YV x(g(x) A~ g(x))
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In the propositional calculus, formulas always simplify so every formula in the label

of a node eventually has a rule applied to it. However, once we require that universalily

quantified formulas not be deleted, we could endlessly apply rules to A; and never get

around to using the fourth subformula which immediately closes the tableau. Thusa
| Systematic construction is needed to make sure that rules are eventually applied to all
formulas labeling a node of the tableau.

- Formal construction

The formal presentation of the construction of semantic tableaux for the predicate cal-
< culus is given in two stages. First rules are presented for the universal and existential

quantifiers and soundness is proved. Then a Systematic construction of tableaux is
. described and used to prove completeness of the procedure. As in the propositional
* case, we generalize the rules into two cases, y-rules for universal formulas and §-rules
~for existential formulas:

[y

l J’(aﬂ L 0 l 5(aﬂ

| VxA@) | AGe) 3xA(®) | A ]
[ ~3xA(®) | =A@ SVIA®) [ -A@) |

‘Definition 5.25 A literal is a closed atomic formula plai, ..., a), that is, an atomic
~formula all of whose arguments are constants, or the negation of such a formula. [

dgorithm 5.26 (Construction of a semantic tableau)

nput: A formula A of the predicate calculus.

‘Output: A semantic tableau 7 for A: all branches are either infinite, or finite with
leaves marked closed or open.

A semantic tableau for A is a tree 7 each node of which will be labeled with a set of
formulas. Initially, 7" consists of a single node, the root, labeled with the singleton set
}. The tableau is built inductively by choosing an unmarked leaf 1 labeled with a
t of formulas U(l), and applying one of the following rules.

e If U(D) is a set of literals, check if there is a complementary pair of literals
{play, ..., a), mplay,....a)} in UQ). If 80, mark the leaf closed x; if not,
mark the leaf as open ©.

e IfU (2) is not a set of literals, choose a formula A in U(J) which is not a literal.
— If A is an a-formula, create a new node ! as a child of [ and label I with
Ul = (U - {A}) U (a1, a2}

(In the case that A is = A4, there is no a.)
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- If A is a f-formula, create two new nodes ' and [” as children of I. Label
! and I” with

Uy =W - {Ahu (A}
Uy =W - {Ahu {5}

— If A is a y-formula (such as V xA;(x)), create a new node I’ as a child of
and label 7 with

vy =u®u {r(@}

where a is some constant that appears in U(). If U(l) consists only of
literals and y-formulas and U() = U(l) for all choices of @, then mark the
leaf as open ©.

— If A is a §-formula (such as 3 xA1(x)), create a new node ¥ as a child of /
and label I' with =
Uly= U0~ {A}) U {6(a)}

where a is some constant that does not appear in U(l).
o

The y-rule for universal quantifiers is the only rule that does not replace a formula
by one or more simpler formulas. Instead it adds a simpler formula while leaving
the quantified formula as part of the label of the node. This is used to ensure that the
universal quantifier will be applied to new constants that have not yet been introduced.
If the only rule that applies is a y-rule and the rule produces no new subformulas, then
the branch is open. For example, {Vxp(a, x)} gives v{p(a, a),Vxp(a,x)} and there is
no point in continuing, as ({a}, {R}, {a}) with (a, @) € R is clearly a model.

Definition 5.27 A branch in a tableau is closed iff it terminates in a leaf marked

closed. Otherwise (it is infinite or it terminates in a leaf marked open), the branch
is open. a

Soundness

Theorem 5.28 (Soundness) Let A be a formula in the predicate calculus and let T
be a tableau for A. If T closes, then A is unsatisfiable.

Proof: The theorem is a special case of the following more general statement that will

be proved: if a subtree rooted at a node n of 7 closes, the set of formulas U(n) is

unsatisfiable. The proof is by induction on the height % of n. The proof of the base
case for 4 = 0 and the inductive cases 1 and 2 for a- and f-rules is the same as the
proof in the propositional calculus (see Section 2.6).
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Case 3: The y-rule was used. Then

Un) = Up U {VxA(x)} and Un) = Uy U {VxA(), A(a)}.

Assume that U(n) is satisfiable and let Z be a model for U(n), so that vz(4;) = T
for all A; € Uy(n) and also vz(VxA(x)) = T. By Theorem 5.15, vi(VxA(x)) = T iff
* Vo (A(x)) = T for all assignments o7, in particular for any assignment that assigns the
same domain element to x that T does to a. (By the tableau construction, q appears in
some formula of U(n), so Z in fact assigns it a domain element.) But vi(A(@)) =T
contradicts the inductive hypothesis that U(#n') is unsatisfiable,

Case 4: The 6-rule was used. Then

Um) = Up U (TxA(x)} and

Ur) = Up U {Aa))},

- for some constant a which does not occur in a formula of U(n). Assume that U/ (n)is
- satisfiable and let

I=D,{k

- be a satisfying interpretation. Then vz (3 xA(x)) = T, so for the relation R; assigned to
A and for some d € D, (d) R;. (This assumes that A is unary; the modification for
+ n-ary predicates is immediate.) Extend Z to the interpretation

I'=D,{Ry,....R,). {d1,....dyd})

-by assigning d to the constant a. T’ is well-defined: since a does not occur in U (n), it
-is not among the constants {a;, ..., ar} already assigned to by Z. Then vi(A(a)) = T,
and since vz.(Up) = vy(Up) = T, we can conclude that v¢.(U(n')) = T, contradicting
the inductive hypothesis that U/ (') is unsatisfiable. I

Systematic construction and completeness

oundness shows that if 7" closes, then A is unsatisfiable regardless of the order in
hich the rules were applied. However, as the examples above show, the construction
f the tableau is not complete unless it is built systematically. The aim of the system-
tic construction is to ensure that rules are eventually applied to all formulas in the

bel of a node and, in the case of universally quantified formulas, that an instance is
reated for all constants that appear.

“Algorithm 5.29 (Systeinatic construction of a semantic tableau)
put: A formula A of the predicate calculus.

utput: A semantic tableau 7 for A: all branches are either infinite, or finite with
leaves marked closed or open.

Afsemantic tableau for A is a tree 7 each node of which is labeled by a pair W(n) =
(Un), C(n)), where U(n) = {Ay, ... , A} is a set of formulas and Cn) = {ay,..., am}
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is a set of constants. C(n) contains the list of constants that appear in the formulas in
U(n). Initially, 7" consists of a singe node, the root, labeled with ({A}. {ay, ..., a D),
where {aj,...,ar} is the set of constants that appear in A. If A has no constants,
choose an arbitrary constant g and label the node with ({A}, {a}).

The tableau is built inductively by repeatedly choosing an unmarked leaf I labeled
with W() = (U(D), C(})), and applying one of the following rules in the order given.

e If U() is a set of literals, check it contains a complementary pair of literals :

{plai,....ax).~play, ..., a;)}. If so, mark the leaf closed x; if not, mark the
leaf as open ©.

o If () is not a set of literals, choose a formula A in U(l) which is an a-, B-or
é-formula.

— If A is an a-formula, creéte anew node /' as a child of / and label I with
wi) =

wE, ey = WO-{ADV (a1, a2}, COY).

(In the case that A is ~ - A, there is no a».)

— If A is a p-formula, create two new nodes 7 and /” as children of .. Label

! and I" with
W)y = (UMd.Cy) = ((UO-{ADY (B}, COy),
w({") wan, camy (WO - {ADu {B}. CW).

— If A is a 5-formula, create a new node 7' as a child of / and label /' with

W) = (U@).Ccl) = (UD-{AD U {&a)}).CA U {a}),

where a is some constant that does not appear in U(J).

o Let{y),....7m} € U(}) beall the y-formulas in U(l) and let C(}) = {ay, ..., ax}.
Create a new node !’ as a child of / and label I with

W) = WM U U= @}, coy).

. cey = i=1=1

If U(J) consists only of literals and y-formulas and U(') = U(J), then mark the
leaf as open ©.

0

In the systematic construction, a-, f- and é-formulas are ‘used up’ when a rule is
applied to them. Eventually a leaf must be labeled with formulas that are either literals
or y-formulas. To ensure that all universal formulas are eventually instantiated with
every new constant, the y-rule makes all these instantiations at once.
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Lemma 5.30 Let b be an open branch of a systematic tableau, n a node on b, and A
a formula in U(n). Then for some node m which is a descendant of n on b, a rule is
applied to A. Furthermore, if A is a y-formula and a € C(n), then y(a) € U(m').

Proof: Exercise. i

t is important to note that the algorithm is not a search procedure for a satisfying
- interpretation, because it may choose to infinitely expand one branch. Semantic tab-
- leaux in the predicate calculus can only be used to prove the validity of a formula by
- showing that a tableau for its negation closes. Since all branches close in a closed tab-
eau, the order that the rules are applied doesn’t matter. The systematic construction
s needed for the proof of completeness.

definition 5.31 Let U be a set of formulas in the predicate calculus. U is a Hintikka
et iff the following conditions hold for all formulas A € U:

1. If A is a closed atomic formula, either A € Uor~A € U.

2. If Ais an a-formula, @¢; € Uand a; € U.
3. fAisap-formula, fy e Uor f, € U.
4. If A is a y-formula, y(a) € U for all constants a appearing in formulas in U.

5. If A is a 6-formula, 6(a) € U for some constant a.

Theorem 5.32 (Hintikka’s Lemma) Let b be an open branch of a systematic tableau
nd U = U,ep U(n). The U is a Hintikka set.

Proof: Let A € U. Since b is open, if A is a closed atomic formula, ~A € U, so
ondition 1 holds. If A is not atomic and not a y-formula, by Lemma 5.30 eventually
rule is applied to A, and Conditions 2, 3 and 5 hold. Let A € U(n) be a y-formula
d let a be an arbitrary constant appearing in a formula of U. Then a € C(m) for
ome node m in b. By construction, the set of y-formulas and the set of constants are
6n-decreasing along the path, so A € U(k) and a € C(k) for k = max(n, m). By
mma 5.30, y(a) € U(K') C U, for some k' > k. 1

emma 5.33 Let U be a Hintikka set. Then there is a model for U.

“Proof: Let A = {a;,...} be the set of constants appearing in formulas of U. Define
an interpretation Z as follows. The domain is the same as the set of symbols {a, ...}
sed as constants in U; the domain element g; is assigned to the constant g;. For each
'V'n-ary predicate letter p; in U, define an n-ary relation R; by:
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(@,....an)€R; if plai,....a,) €U, delta_rule(Fmls, [A2 | Fmlsi], C) :-
g (ai,....,an) €R; if -play,...,a,) €U, member (A, Fmls),
o (ai,...,ay) €R; otherwise. delta(A, X, A1), !,
. . s . gensym(a, C),
The relations are well-defined by Condition 1 of the definition of Hintikka sets. We instance(Al, A2, X, C)
leave as an exercise to show that T = A for all A € U by induction on the structure of T T e
. s . . delete(Fmls, A, Fmlsi).
A using the conditions defining a Hintikka set. |
: delt i I -
2 Theorem 5.34 (Completeness) Let A be a valid formula. Then the systematic se- e1ta recognizes the two forms of a 6-formula and refuns the subformula.
D mantic tableau for - A closes. delta(ex(X, A1), X, A1).

Proof: Let A be a valid formula and suppose that the systematic tableau for = A does delta(neg all(X, A1), X, neg A1).

not close. By Lemma 5.32, there is an open branch b such that U = UnepU(n) is a
Hintikka set. By Lemma 5.33, there is a model Z for U. But -4 € U so T E -A
contradicting the assumption that A is valid. |

The application of a y-rule is rather complicated. First we recognize that A is a y-
formula, but throw away the dummy instance created. Next, gamma_all is called to
create in AList a list of all the instances formed with A and the current constant list
C. Then A is moved to the end of the list of formulas so other y-formulas will be
systematically processed, and the new instances are placed at the front of the list so
that non-y-rules will be used if possible. 1ist_to_set is called to remove duplicates.

5.6 Implementation”

In this section, we extend the program to construct a tableau for the propositional

calculus to the predicate calculus. gamma_rule(Fuls, Folsd, C) :-

member (A, Fmls),

gamma (4, _, dummy), |,
gamma_all(C, A, AList),
delete(Fmls, A, Fmlsl),
append(Fmlsl, [A], Fmls2),
append(AList, Fmls2, Fmls3),
list_to_set(Fmls3, Fmls4).

check_closed has to be modified to prevent unification of atomic formulas; instead,
syntactical identity has to be checked using the Prolog operator ==.

check_closed(Fmls) :-
member(F1, Fmls), member(neg F2, Fmls), F1 == F2,

To implement the systematic search, the rules are ordered so that a-, §- and §-rules ar
performed before attempting a y-rule. The tableau predicate has an extra argument to

hold the list of constants C. This is updated whenever a §-rule is used. _gamma recognizes the y-formulas and returns instances.

extend_tableau(t(Fmls, Left, empty, C)) :-
delta_rule(Fmls, Fmlsl, Const), !,
Left = t(Fmlsl, _, _, [Comst|C]),
extend_tableau(Left).

gamma (all(X, A1), A2, C) :- instance(Al, A2, X, C).
gamma (neg ex(X, A1), neg A2, C) :- instance(Al, A2, X, C).

gamma_all(C, A, AList) applies the y-rule to A with all of the constants in the
constant list C and returns the list of formulas in AList.
extend tableau(t(Fmls, Left, empty, C)) :- :
gamma_rule(Fmls, Fmlsli, C), !,
Left = t(Fmisl, _, _, C),
extend._tableau(Left).

gamma_all({C | Rest], A, [A1l | AList]) :-
gamma (4, A1, C),
gamma_ all(Rest, A, AList).
! gamma_all([1, _, [J).
In the procedure for delta_rule, the Prolog procedure gensym is used to generate g
new constant symbol. instance(A1,A2,X,C) (see source code below) returns in 4 2
the instance of A1 that can be obtained by replacing the variable X by the constant

To'create an instance, the formula is recursively traversed until an atomic formula is
reached; then the substitution is performed.
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Proof: During the construction of a tableau for U, once the 6-rules have been applied
 to the existential quantifiers, no more existential quantifiers remain. Thus the set of
- constants will be finite and the tableau will terminate once all substitutions using these

instance(all(X, A), all(X, A1), Y, C) :-
instance(A, A1, VY, C)i

instance(ex(X, A), ex(X, A1), Y, C) :-
instance(A, A1, Y, C).

instance(A v B, A1 v B1, X, C) :-
instance(A, Al, X, C), instance(B, Bi, X, O).
% Similarly for the other Boolean operators.

Theorem 5.38 (Lowenheim) Ifaformulais satisfiable then it is satisfiable in a count-
ble domain. '

"Piroof: The domain D constructed in the proof of completeness is a countable set. 1

instance(4, A1, X, C) :- This can be generalized by noting that a tableau can be constructed for a countably in-

A=.. [F | Vars], nite set of formulas U = {Ag, A, A3, .. .}. Commence the construction of a semantic
subst_constant (X, C, Vars, Varsl), bleau from the root labeled ({Ao}, Cp), where Cy is the set of constants in Ay or {a}
A1 =.. [F | Varsi]. there are none. Let n be a node to which a rule is applied during the construction of

e semantic tableau to create a node »’ (and similarly for n” in a f-rule). Label n’ by
U(n') v {A,}, C(x)), that is, when creating the n’th node on a branch, throw in the
th formula from the sequence. If the tableau does not close, eventually, every A; will
ppear on the branch, and the labels will form a Hintikka set. Hintikka’s Lemma and
ompleteness can be proved as before giving:

To implement substitution, the operator == must be used to prevent substitution to a
variable that might just be unifiable with the variable we want to substitute for.

subst_constant(X1, C, [X2 | Taill, [C | Tailll) :-

X1 ==1Xx2, !,
subst_constant (X1, C, Tail, Taill). ) .
subst_constant(X, C, [Y | Taill, [Y | Taill]) :- !, eorem 5.39 (Lowenheim—Skolem) If a countable set of formulas is satisfiable

subst_constant (X, C, Tail, Taill). en it is satisfiable in a countable domain.

bst_ tant(—, —, 03, [D. : =
subsh-cons ncountable sets such as the real numbers can be described by countably many axioms

(’)rtnulas). Thus formulas that describe real numbers also have a countable model in
Idition to the standard uncountable model! Such models are called non-standard

5.7 Finite and infinite models* models and are important in the theory of mathematical logic.

in thy itional calculus (Th 3.43), tness holds.
(Read this section and the next one only after studying Section 7.1.) . ¢ propositional calculus (Theorem )» compactness holds
1eorem 5.40 (Compactness) Ler U be a countable set of formulas. If all finite

iti icate calculus is pure if it contains no function ¢
Definition 5.35 A formula of the predicate p bicts of U are sasifiable thow s i3 U,

symbols (including constants which are 0-ary function symbols). i

From the proof of the completeness theorem, we can extract more information on the
structure of models. Here we survey some of these results that form the basis of an
advanced topic in mathematical logic called model theory.

8 - Decidability*

nzo Church, building on the work of Alan Turing, proved in 1936 that there is
 decision procedure for validity in the predicate calculus, In this section, we will
prove a version of Church’s Theorem. Then we will survey theorems that show that
certain classes of formulas, which are defined by restricting the syntactical structure
aformula, do have decision procedures.

Definition 5.36 A set of formulas U has the finite model property iff: U is satisfiabl
iff it is satisfiable in an interpretation whose domain is a finite set.

Theorem 5.37 Let U be a set of pure formulas of the form
Jxy-- A Vy - VYAQRL . X Y1 - YD

where A does not contain any quantifiers. Then U has the finite model property.

onstants have been made for universal quantifiers. I
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Undecidability of the predicate calculus i is defined by cases of the instruction L;:

To show that a class C of problems is undecidable you can either show it directly, or— L Si

what is usually easier—you can reduce a known class C’ of undecidable problems to x =x+1 VxVy@i(x,y) = pir1(s(x), y))

C. A reduction is an algorithm that produces for every problem P’ € ', a problem y:=y+1 VxVy(pi(x, y) = pir1(x. s()))

P e C such that an answer to P given by a decision procedure is also an answer to P'. ifx=0

Since ' is assumed undecidable, this proves that C is also undecidable. * then goto Lj Vx(pi(a, x) = pi(a. x)) A

It is undecidable whether a Turing machine will halt if started on a blank tape (Minsky else x := x - 1| VxVy@pi(sx).y) = pir1(x.3)))
1967, Section 8.3.3), so we prove Church’s Theorem by giving an algorithm which ify=0

produces a formula Sy in the predicate calculus for every Turing machine M, such then goto Lj Va(pi(x, a) = pj(x, a)) A

that Sy is valid iff M halts on a blank tape. To simplify the proof, we work with else y :=y - 1| VxVy@ix sO) = pir1(x, 1))

two-register machines rather than directly with Turing machines.
uppose that the computation sy, .. ., Sm of M halts and let I be an arbitrary inter-

retation for Sy. If vz(S;) = F (for 1 < i < n) or vi(py(a, a)) = F, then trivially
1(Su) = T, so we need only consider interpretations that satisfy the antecedent of
M. We show by induction on k that vz(3z; Azopi(z1,22)) = T, where p; is the
redicate associated with the label L in state s;. If & = 0, the result follows from
o(a.a) = Jz; Azape(z1,z2). If k > 0, the result follows by induction by cases
ccording to the instruction at s_;. Let us work through the details for x:=x+1:
1(¥V 2V y(pr-1(x,¥) = pr(s(x). ¥)))) = T by assumption, and by the inductive hypoth-
sis, vz(3z1 Azapr-1(21. 22)) = T, from which vz(3z; Azape(s(z1), z2))) = T follows
reasoning in the predicate calculus. From 3 xA(f| (x)) — IX'A(X'), we can conclude
7(37, 3 22pi(Z), 22)) = T. By induction this holds for all k. Since M halts, in the final
tate s,u, L, = L, the halt instruction, 5o vz(32} 325pa(z}, 22)) = T and vz(Sy) = T.
ince I was arbitrary, Sy, is valid.

Definition 5.41 A two-register machine M consists of two registers x and y which can
hold natural numbers, and a program P = {Ly, ..., L,} which is a list of instructions.
L, is the instruction halt, and for 0 < i < n, L; is one of:

er :=xr+ 1, forre {xy}

e if r = 0 then goto Lj else r :=r -1, forre{xy},0<j<n

An execution sequence of M is a sequence of states s; = (L;, x, y), where L; is the
current instruction, and x, y are the contents of x and y. s, is obtained from s; by :
executing L;. The initial state is so = (Lo, m, 0) for some m. If for some k, s
(Ln, x, y), the computation of M has halted and M has computed y = f(m). 0
Theorem 5.42 Given a Turing machine M that computes a function f, a two-register - onversely, suppose that Sy is valid, and consider the interpretation
machine can be constructed to compute the same function f.
I=(N,(Po,...,P.)}, {succ), {0}),
Proof: Minsky (1967, Section 14.1), Hopcroft & Ullman (1979, Section 7.8).

‘Two-register machines are even more impractical than Turing machines: the registers
can contain extremely large natural numbers because the computation encodes the .
contents of the unbounded tape of a Turing machine in a single number. It may come:
as a surprise that such a simple model can (according to the Church-Turing thesis) -
compute all computable functions.

here succ is the successor function on N, and (x,y) € P; iff (L;, x,y) is reached
the register machine when started in (Lo, 0,0). We show that the antecedent of
# is true in Z. The initial state is (Lo, 0,0), so (a,a) € Py and v¢(pg(a.a)) = T.
ume as an inductive hypothesis that if the computation has reached L;, it has done
'80-in a computation of length k — 1 in state s,—1 = (L, x;, i), 50 (x;, ;) € P;. The
roof is by cases on the instruction L;; for example, for x: =x+1: the computation can
ach the state sp = (Liy1, succ(x;), y:), so vz(S;) = T. Since Sy is assumed valid,
(3z1 Azopn(z1. 22)) = T and vz(p,(my, my) = T for some natural numbers m;, m;.
"Thus M halts and computes m, = f(0). I

Proof: For every two-register machine M, we construct a formula Sj; such that Sy, is
: ‘Church’s Theorem holds even if the structure of the formulas is restricted:

valid iff M terminates when started in the state (Lo, 0, 0):

¢ The formulas contain only binary predicate symbols, one constant and one

Su = S; A po(a, -3z 3 21, 22)-
. </\ tA P a)) 4 dzapa(a1, ) unary function symbol. This follows from the structure of Sy, in the proof.

=0
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* The formulas are written as Prolog programs. Sy is of the form of a logic 3.9 Exercises
program (set of clauses) and a query. With a bit more work, it can be proved
(Nerode & Shore 1997, Chapter III, Section 8) that Prolog programs are unde-

cidable, even with no limitation on the underlying implementation.

1. Find an interpretation which falsifies 3 xp(x) — p(a).

2. Prove that (some of) the formulas in Figure 5.2 are valid, especially
e The formulas are pure. See Mendelson (1997, Chapter 3, Section 6). S HAC) > B > (VEA) > 33B()), |
(3xA(x) — VxB(x)) - Vx(A(x) - B(x)),
Vx(A(x) V B(x)) = (VxA(x) vV AxB(x)),
Vx(A(x) = B(x)) = (AxA(x) = AxB(x)).

Solvable cases of the decision problem

Theorem 5.44 There is a decision procedure Jor validity of the class of pure formulas

n PCNF whose prefixes are of one of the Jollowing forms (where m, n 2 0): 3. For each formula in Figure 5.2 that is an implication, prove that the converse is
Vg« -V, 3y;--- Ay, not valid by giving a falsifying interpretation.
Vxi---Vx, 3y Vz;---Vaz,

4. For each of the following formulas, either prove that it is valid or give a falsify-
Vxl.‘.'- VX, A1y Vi - -V 7,

ing interpretation.
Proof: Dreben & Goldfarb (1979). |
These classes are conveniently abbreviated V* 3*, v*3AV*, v* 33 V*. Since a decision
procedure for satisfiability is the dual of a decision procedure for validity, one also

sees the theorem expressed as: satisfiable is decidable for the classes 3* LANE N A=
3*VV 3*. The theorem cannot be improved upon.

IxVy({p(x, y) A = p(y, %)) = (p(x, x) < p(, 7)),
VxVyVz(p(x,x) A (p(x,2) = (. y) V p(y, 2)))) = 3yY zp(3, 2).

5. Prove Theorem 5.15 on the relationship between a non-closed formula and its
closure.
. lete th antic tableau construction for the negation of
Theorem 5.45 The classes of formulas in pure PCNF defined by the prefixes 333V, 6. Complete the sem: 8
3V 3 have no decision procedures for validity, even if the matrices are restricted to

V() V g(x)) > (Vxp(x) V V xg(x)).
binary predicate letters.

7. Prove that the formula (Vxp(x) - Vxgq(x)) - Vx(p(x) — g(x)) is not valid by

Proof: Lews (1979). ' ! constructing a semantic tableau for its negation.

Theorem 5.46 There is a decision procedure Jor satisfiability of PCNF formulas A if 8. Complete the proof that every Hintikka set has a model (Lemma 5.33).
the matrix of A is of one of the forms:
9. ? The implementation of the construction of semantic tableaux is difficult be-
cause of the need to ensure that variables in the formula are not accidently
unified. Write an alternate implementation that represents variables as Prolog

atoms v(n).

1. All conjunctions are unit conjunctions of single literals.

2. All conjunctions are either positive unit conjunctions (i.e. atomic formulas) or
conjunctions consisting entirely of negative literals.
10. * Prove the Lowenheim-Skolem Theorem (5.39) using the construction of se-

3. All atomic formulas are monadic, that is, all predicate letters are unary. mantic tableaux for infinite sets of formulas.

 Proof: Dreben & Goldfarb (1979). I 11. * A closed pure formula A is n-condensable iff every unsatisfiable conjunction

of instances of the matrix of A contains an unsatisfiable subconjunction made
up of n or fewer instances.

e Let A be a PCNF formula whose matrix is a conjunction of literals. Prove
that A is 2-condensable.
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e Let A be a PCNF formula whose matrix is a conjunction of positive literals
and disjunctions of negative literals. Prove that A is n 4+ 1-condensable,
where r is the maximum number of literals in a conjunct.

12. * Prove Church’s Theorem by reducing Post’s Correspondence Problem to va-
lidity in the predicate calculus.

Predicate Calculus:
Deductive Systems

6.1 The Gentzen system G

with the propositional calculus, the Gentzen system will be presented as semantic
tableaux turned upside-down so that completeness is immediate; then we will use the
Gentzen system to prove completeness of a Hilbert system.

Here is a closed semantic tableau for the negation of the valid formula
(Vxp(x) V Vxq(x)) - Vx(p(x) V q(x)),

ere we have underlined the formulas to which rules are applied and the sets of
istants C(n) in the labels are implicit.

= ((Vp(%) V ¥ xq(x)) = Vx(p(x) V q(x)))

Vxp(x}, =V x(p(x) Vv q(x))
Vap(x), ~(p(a) vV q(a))
Vap(x), -~ p(a), ~q(a)

Vap(x), p(a), -~ p(a), ~q(a)

i
Vxp(x) VVxq(x), =V x(p(x) v g(x))

qu(x),\ﬂ V() v g(x))

Vxq(x), f(p(a) v q(a))

Vxg(x), jp(a), ~q(a)

Vxq(x), qga), ~p(a), ~q(a)
x

If ‘we turn the tree upside down and for every node » replace U(n), the label of #,
5y U(n), the set of complements of the formulas in U(x), we obtain a Gentzen proof
he formula. Again, the formulas that are underlined are those to which a rule is
plied at each step.
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~Vyp(a,y), ~pla. b), = p(a,a), Axp(x,b), p(a, b)

T Vap(x), ~p(a). p(a), g(a) = Vxq(x), ~q(a), p(a). g(a)

!
! T
V), p(a), q@)  -Vxg(), p(a), 4(a) L, T ? D, Pt
s i
Vap@), p@ V@) Vg0, pa) v g(a) TR, 29D, pe. )
D —
" Vaxp), Vx(p(x) V g(x)) =Vxq(x), Vx(p(x) V g(x)) ~Vyp(a, y)l, Ixp(x, b)
~ o = Vyp(a,y), Vy3 xp(x.y)
~ (V1p(x) V Y 2g()), Vx(p(3) V g(x)) AR
D
(V3p(%) V Y xg(x)) — Vx(p() V () 2, TR

Definition 6.1 The Gentzen system G is a deductive system: an axiom is any set of.
formulas U containing a complementary pair of literals; the rules of inference are the:
rules given for a- and f-formulas in Section 3.2, and the rules for y- and é-formulas

IxVyp(x,y) > Vy3xp(x,y)

Figure 6.1 Gentzen proof that orders applications of y- and é-rules

Uu {y.y(a)} Uy {6(a)}
Uu {y} Uu (8}

The Hilbert system H

provided that @ does not occur in any formula of U in an application of the §-rule. Th

classification of formulas is given in the following tables. e Hilbert system H for the propositional calculus is extended to the predicate calcu-

y adding two axioms and a rule of inference. The proof system is for the predicate
calculus with the universal quantifier only; the existential quantifier is introduced by
defining 3 xA(x) as -~ Vx-A(x).

[ r [r@ ] L6 [é@ ]
IxAx) | A(a) VxA(x) | A(a)
2 VxA(x) | ~Aa) — I xA(x) | ~Aa)

Definition 6.4 The axioms of the Hilbert system H for the predicate calculus are the
e axioms of the propositional calculus together with:
The y-rule can be read: if an existential formula and some instantiation of it are true, -

then the instantiation is redundant. The &-rules formalizes the following frequently
used method of mathematical reasoning:

. Axiom 4 F VxA(x) > A(a).
Axiom 5 F Vx(A —» B(x)) = (A - VxB(x)),
provided that x is not free in A.

A(a)
FVxA(x)

Let a be an arbitrary constant, and prove A(a). Since a was arbitrary, we
have proved V xA(x).

It is essential that a not appear in some other formula in the set which would impose
restrictions on the possible interpretations of a.

The rules inference are MP and Generalization:

ioms 1-3 include instances where the formulas are in the predicate calculus. Thus
Example 6.2 The non-trivial proof of 3xVyp(x,y) - Vy3xp(x,y) in Figure 6.1 is 7xp(x) ~ (Ay3 290, 2, @) = Vxp(x)) is justified by Axiom 1.
carefully structured to apply three y-rules which are not restricted before applying
two é-rules. By then, there exist only single occurrences of the constants @ and b 0

that the proviso is satisfied.

te the difference between Axiom 4 and Generalization. Axiom 4 means that any
: rrence of VxA(x) can be replaced by A(a) for any a. Generalization means that
ccurs in a formula, we may bind all occurrences of a with the quantifier. The
cation is that since the choice of a is arbitrary, that is the same as saying that

Theorem 6.3 (Soundness and completeness) Let U be g set of formulas. There i A(x) is true for all assignments to x in an interpretation.

Gentzen proof for U if and only if there is a closed semantic tableau for U.

There is a technical problem with Generalization in the presence of assumptions. Sup-

Proof: Exercise. ose that we apply Generalization to A(a) F A(a) to obtain A(a) F VxA(x). In the




. additional axioms is trivial. Suppose now that U U ‘{A} F VxB(x) at line j we)
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interpretation (Z, {even(x)}, (2}), A(a) is true but VxA(x) is not, which means that-
Generalization is not sound as it transforms the logical consequence A(a) & A(a) in
A(a) ¥ VxA(x). The Generalization rule must be modified as follows.

Rule 6.5 (Generalization)

Theorem 6.9 Any use of the 5-rule can be simulated in H.

oof: We show that U v V xA(x) can be deduced from U V A(a).

FUvVA(a)  Assumption
F-U=A(a) PC1
FVx(~U - A®)) Gen. 2
FVX(2U = A®) = (AU - VxA(®x)) Axiom 5
F-U->VxA®) PC34
FUVVYxA(x) PC5

Ut A(a)
Uk VxA(x)'
provided that a does not appear in U.

With this modification, the deduction rule can be defined and the theorem proved.
Rule 6.6 (Deduction rule - . ,

(Deduc ) ntzen proofs of the Hilbert axioms are left as an exercise. Generalization is a special
e of the 5-rule, where the proviso on the -rule in the Gentzen system appears as
restncﬂon on Generalization applied to U | A.

UU{A}F+B
UFA-SB’

e previous discussion justifies the following theorem.
Theorem 6.7 (Deduction Théorem) The deduction theorem is a sound derived rul
Theéorem 6.10 (Soundness and completeness) The Hilbert system H is sound and
Proof: The proof for the propositional calculus (Theorem 3.14) must be modifie nplete.
to take into account the new axioms and Generalization. The modification for th :

om 4 and MP justify the following derived rule.

deduced from U U {A} - B(a) at line i by Generalization. le 6.11 (Axiom 4)

i\ UWFA- B(a) Inductive hypothesis, i Uk VxA®x)
+1. UFVx(A-B) Generalization, #/ W.
'+2. UFRVx(A-B)— (A-VYxB) Axiom 5
{+3. UrA->VxB MP, i +1,7+2 L

By Rule 6.5, a did not appear in U U {A}, justifying the use of Generalization in 1

_ 10" 9pPe fgow give a series of theorems and proofs in the system. The first two are elemen-
i’ + 1 and Axiom 5 in line i + 2. g

_ ‘theorems using existential quantifiers.
The equivalence of H and G is easily shown. We now prove that any application o

the y- and §-rules in G can be simulated by a proof in . Note that the proviso for the
d-rule justifies the use of Axiom 5.

eorem 6.12 F A(a) —» 3 xA(x).

of:

2 FVx-AX) - - Aa) Axiom 4
FA(@@) - -~Vx-Ak) PC1
FA(@) - 3xA®x) Definition 3

(From now on, the notation PC is used to indicate that the inference may be justifie
by the axioms and rules of the propositional calculus. The reader is assumed to b
sufficiently experienced in these techniques by now to fill in the details.)

Theorem 6.8 Any use of the y-rule can be simulated in H.

Proof: We show that U V -V xA(x) can be deduced from U v - VxA(x) vV - A(a). :
heorem 6.13 F VxA(x) = 3 xA(x).

1. FVXA®X) - A(a) Axiom 4
2. FVxAX) VA(a) PC1
3. FUV-VYXA(x) VA(a) PC2 VxA(x) + VxA(x) Assumption
4. FUV-VXA(X)V-A(a) Assumption " VXA(x) F A(a) Axiom 4
5. FUVAVXAR) PC34 VxA(x) F A(a) - AxA(x) Theorem 6.12

L VXA() F 3xA(x) PC2,3
S FVXA®R) - FxA®) Deduction
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Theorem 6.14 F Vx(A(x) = B(x)) = (VxA(x) — V xB(x)). :Corollary 6.18 F 3 xX(A—=Bx)e(A-13 xB(x)).
Proof: . he name of a bound variable is not important and can be changed as. convenient:
1. Vx(A(x) - B(x)), VxA(x) F VxA(x) Assumption )
2. Vx(A(x) — B(x)), VxA(x) - A(a) Axiom 4 eorem 6.19 | VxA(x) © V yA(y).
3. Vx(A(x) - B(x)), VxA(x) F Vx(A(x) = B(x)) Assumption ot
FA B Axiom 4 oof: . A
4. VXA = BG). VxAG) F A@) > Bla) . FVXA®) > A(a) Axiom 4
5. Vx(A(x) = B(x)), VXA(X) F B(a) PC24
Gen. 5 FVYW(YXA(x) > AB)) Gen. 1
6. Vx(A(x) = B(x)), VXA(x) - VxB(x) en. YA o Vo) e 1
7. Vx(A(x) = B(x) - VxA(x) - VxB(x)) Deduction Y YA0) Y i’A o 3 ::S:Ill
VxB Deduction y
8. FVx(A(x) = B(x)) - (VxA(x) = VxB(x)) F VAR © V() oy
|
Lo e following theorem shows a non-obvious relation between the quantifiers.
Rule 6.15 (Generalization)
FA(x) = B(x) ’ eorem 6.20 + Vx(A(x) - B) < (3xA(x) - B).
FVxA(x) - VxB(x)’ '
Vx(A(x) - B) - Vx(A(x) - B) Assumption
‘ ; o VX(A(x) = B) FVx(~ B — - A(x)) Exercise
The next theorem was previously proved in the Gentzen systerfl. I\'Iote that the provis V(A — B) =B > Vx~A() Axiom 5
of Axiom 5 (x is not free in = Vy 3 xA(x, y)) parallels the proviso in the é-rule. VXAR) = B) - ~Vx-A(x) > B PC3
Vx(A(x) » B) F 3xA(x) - B A Definition of “3”
Theorem 6.16  IxVyA(x,y) —» Vy I xA(x, y). FVAG) - B) > (@2AG) - B) o
Proof: ) _
1. FA(a, b) - IxA(x, b) Theorem 6.12 3xA(x) - BF 3xA(x) > B Assumption
2. FVyA(ay) > VyIxA(x,y) Gen 1 IxA(x) > BF ~Vx-A(x) » B Definition of “3”
3. BF-Vy3xA@x,y) - VyA@a,y) PC2 AxA(x) »BF 2B Vx-A®) PC§
4. FVx(-Vy3AxA(x,y) = ~VyA(x, y) Gen. 3 dxA(x) » BF Vx(~B - - A(x)) Theorem 6.17
5. F-Vy3xA(x,y) = Vx-VyA(x,y) ‘ Axiom 5 3xA(x) » BF Vx(A(x) > B)) Exercise
6. F-Vx-VyA(x,y) > VyIxA(x,y) PC5 ;
7. F3AxVyA(x.y) » VyIAxA(x,y) Definition of 3 :FVx(A(x) > B) & (3xA(x) - B) PC6,11
1
Theorem 6.17 | Vx(A — B(x)) «& (A = VxB(x)).
C-Rule
Proof: Assumption
1. A= ViB()FA = VxBx) Axism 4 -rule is a derived rule that is useful in proofs of existentially quantified formulas.
2. A- VB VB ~ Ble) PC 12 ile is the formalization of the argument: if there exists an object satisfying a
3. A-VaBF A - Bla) ' property, let ¢ be some instance of that object.
4, A-—->VxB(x)FVx(A—- B(x)) Gen.. 3
5. k(A - VxB(x)) > Vx(A - B(x)) -Ded?ctlon efinition 6.21 (C-Rule) Let U be a set of formulas and a a constant which does not
6. FVx(A - B(x) - (A—VxB(x)) Axiom 5 earin any formula of U or in 3 xA(x).
7. FVx(A-> B(x))+ (A - VxB(x)) PC5,6 2

Uk 3xA(%)

TrTt Az *
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Theorem 6.22 If U - A using the C-Rule, then U &+ A without using the C-Rule,
provided that Generalization is not used on a free variable in a formula A xA(x) to
which the C-rule has already been applied.

Proof: See Proposition 2.10 of Mendelson (1997).

We use the C-Rule to give a more intuitive proof of Theorem 6.16.
Theorem 6.23 + I xVyA(x,y) — VyI xA(x, y)

Proof:

1. FxVyAQ,y) F IxVyAR, y) Assumption
2. JxVyA(x,y) - VyA(a,y) C.—Rule
3. 3FxVyA(x,y)+ A(a, b) Axiom 4
4. 3xVyA(xy) F 3xA(a, x) Theorem 6.12
5. IxVyA(x,y) FVy3xA(y,x) Geg. 4
6.. F3xVyA(x,y) = Vy3IxA(x,y) Deduction

6.3 Implementation”

Let us extend the proof checker for the Hilbert system to the predice?te calcu%us. Firs
we need to add the two axioms. Axiom 5 requires that the quantified variable no
occur as a free variable in the antecedent.

axiom(all(X, A1) imp A2, 4) :- instance(Al, A2, X, _).
axiom(all(X, A imp B) imp (A imp all(X, B)), 5) :-
\+ free_in(4a, X).

The procedure instance (A,A1,X,C) is similar to the one shown in the implemen

tion of semantic tableaux (Section 5.6); the differences are explained in the comment

in the source archive.

To check if a vén'able is free in a formula, simply traverse the formula and for every

quantifier, check that the variable is different from the quantified variable.

:= \+ X==Y, free_in(A, Y).

free_in(ex(X, A), Y) :- \+ X==Y, free_in(A, Y.).

free_in(A v B, X) :- free_in(A, X); free_in(B, X).
% Similarly for the other Boolean operators

X) :- A=,

free_in(all(X, A), Y)

free_in(A,

{_ | Vars], member (X, Vars).
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additional argument is added to the predicate proof to store a list of constants
‘Gens to which Generalization has been applied. When the deduction rule is used, two
ings must be checked: that the new set of assumptions is the same as the previous
ne without the formula A and the proviso that no constant of A appears in Gens.

proof ([Fml | Tail], Line, SoFar, Gens) :—
Linel is Line + 1,
Fml = deduce(Assump, A imp B),
nthi(L, SoFar, deduce (Previous, B)),
member (A, Previous),
proviso(Gens, A), 1!,
delete(Previous, A, Assump) ,
D is Linel - L,
write_proof_line(Linel, Fml, [’Deduction ’
proof(Tail, Linel, [Fml | SoFar],

» DI,

Gens).

e list Gens is built when the Generalization rule is used. The fourth argument of

e predicate instance (A, A1, X, C)isthe constant used in the instantiation and
-1s-put on the list Gens for the recursive call,

proof ([Fml | Tail]l, Line,
Linel is Line + 1,
Fml = deduce(_, all(X, A)),
nthi(L, SoFar, deduce(_, A1)),
instance(4, A1, X, O, !
G is Linei - L,
write_proof_line(Linel, Fml, [’Gen °, @]),
proof(Tail, Linei, [Fml | SoFarl, [C | Gens]) .

SoFar, Gens) :-

s

heck the proviso, the list of constants is traversed and a check is made that each
e does not appear (free) in A.

- proviso([], _).

(proviso([ClRest], 4) :- \+ free_in(4,C), proviso(Rest,A).

Complete and decidable theorjes*

finition 6.24 Let T (U) be a theory. T(U) is complete if and only if for every
losed formula A, U + A or UF=A, 0

mportant not to confuse a complete theory with the completeness of a deductive
stem. The latter relates the Syntactic concept of proof to the semantic concept of

alidity: a closed formula can be proved if and only if it is valid, Completeness
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of a theory looks at what can happen if the formula is not valid. Given a closed
formula A, A;U; — A is either valid (true in all interpretations), unsatisfiable (false in
all interpretations) or satisfiable/falsifiable (true in some interpretations and false in
others). If it is valid then U F A, if it is unsatisfiable then U F - A, but unless the
theory is complete, it may be neither.

In one of the most important and surprising theorems of mathematical logic, Kurt
Godel proved that even a theory as basic as number theory is incomplete. Number
theory is a predicate calculus with one constant symbol 0, one binary predicate symbol
=, one unary function symbol s representing the successor function (that is s(x) =
x + 1) and two binary function symbols + and *. A set of axioms for number theory
N'T consists of eight axioms plus one axiom scheme for induction:

Fxxs(y)=x*y+x
For any formula A(x) on the symbols of the theory,
FAQ) = (Vx(ARx) = A(s(x))) = VXAX)).

L. Fx=y->@x=z-y=2)
2. Fx=y—=s(x)=s0)

3. FO#s®)

4. Fs(x)=s@)—=x=Yy

5. Fx+0=x

6. Fx+s@y)=sx+y)

7. Fxx0=0

8.

9.

From these axioms it is possible to prove the usual theorems of number theory, such
as the distributive law: for any terms 7, 5,1, rx (S+ 1) = r&s+r*t. See Mendelson
(1997) for details and proofs.

Theorem 6.25 (Godel’s Incompleteness Theorem) Let N'T be the set of axioms for
number theory. If T(N'T) is consistent then T(N'T) is incomplete.

If T(N'T) were inconsistent, that is, a theorem and its negation were both provable, »

it would be even less interesting than an incomplete theory.

The detailed proof of Godel’s theorem is tedious but not too difficult. An informal
justification can be found in Smullyan (1978). Here we give a skeich of the formal

proof (for details see Mendelson (1997)). The idea is to create a constructive corre- -
spondence, called a Gddel numbering, between natural numbers and logical objects -

such as formulas and proofs, and then prove the following result.

Theorem 6.26 There exists a formula A(x, y) whose interpretation in number theory

is: for any numbers i, j, A(i.J) is true if and only if i is the Godel number associated:

with some formula B(x) with one free variable x, and j is the Godel number associated

with the proof of B(i). Furthermore, if A(i, ) is true then a proof can be constructed

for these specific integers = A(i, j).
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Co;lm'der r.1.ow the formula C(x) = Vy-A(x, ¥) which has one free variable x, and let
m be its F}odel number. By the theorem, the formula C(m) = Yy - A(m, y) means that
for no y is y the Gédel number of a proof of C(x).

Theorem 6.27 (Godel) If N'T is consistent then t C(m) and if ~ C(m).

;’roof: Suppose F C(m). Let n be the Godel number of this proof. By Theorem 6.26
frf)rrnn t;l—) g(tn)le, ar‘;d fu;t?ermore F A(m,n). By Axiom 4 of the predicate calculus
m) = Vy=A(m,y), we get - = A(m,n). But - A - ,
contradict consistency. ) o mnd E mAm)
gonverSf:ly, suppo.se that - ~C(m) = = Vy~A(m,y) =3 YA(m, y). Then for some n
(m, n) is true which means that . is the Godel number of a proof of C(m). But we:
assumed that = C(m) is provable, contradicting consistency. I

.Smce there is no proof of C(m), it is true that there is no proof of C(m), that is, C(m)
is an example of a closed formula which is true but not provable. ’

Definition .6.28 Let 7 be a theory. 7 is decidable if and only if there is an algorithm
that determines for any closed formula A, whether A € T or A 7. i]
Number theory is not decidable.

We close this section with a sequence of theorems (without proofs) that establish

relations between completeness and decidability.

Thheorem ?.29 (Lindenbaum’s Lemma) Let T be q consistent theory. Then there is
atheory T', such that T C T" and T is consistent and complete.

Theorem 6.30 Let T be a consistent, decidable theory. Then there is a theory T'
; suchthat T C T and T" is consistent, decidable and complete. ’

Definition 6.31 A theory 7 is effectively axiomatizable if there is a set of axioms U

for 7 and an algorithm such that gi
given a closed fi 1 ; .
fA € U ornot. : ormula A, the algorithm determme;

Theorem 6.32 Let T be a theory. If T is complete and undecidable then it is not

" effectively axiomatizable.

. Theorem 6.33 Let T be a theory. If T is effectively axiomatizable and undecidable

hen it is incomplete.

This extends Godel's theorem. Since number theory is undecidable, any useful axiom
ystem for the theory is necessarily incomplete.
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6.5 Exercises

1. Prove in G: Y x(p(x) = q() = @xp(x) > T xg(x)),

F 3 x(p(x) = g(x)) + (Vxp(x) = Fxg(x))-
2. Prove the soundness and completeness of G (Theorem 6.3).
3. Prove that Axioms 4 and 5 are valid.
4. Prove the axioms of H in .
5. Prove in H: F Vx(p(x) = q) < Vx(=g = = p(x)).
6. Prove the theorems of Exercise 1 in H.

7. Show that unrestricted use of the C-Rule could be used to prove the non-valid
formula V.x A yp(x, y) F Iy Vxp(x,y).

8. Let A be a formula built from the quantifiers and the Boolean operatoTS =, V, A
only. A’, the dual of A is obtained by exchanging ¥ and 3 and exchanging V and

A. Prove that - A iff - A'.
9. P Implement a proof checker for G.

10. * Prove that a formula is satisfiable iff it is satisfiable in an infinite model.

11. * Prove Lindenbaum’s Lemma (Theorem 6.29).

Predicate Calculus:
7 | Resolution

7.1 Functions and terms

The development of the predicate calculus up to this point has been simplified in
that unstructured terms—variables and constants—have been used in formulas, and
interpretations are over unstructured domains. The real power of the predicate calculus
comes from its ability to express logical relationships in structured domains such as
numerical domains (integers and real numbers) or data structures (lists and trees).

Example 7.1 The formula (x > ¥)=((x+1) > (y+1)) can be written in prefix notation
s> (x,y)= > (+(x, 1), +(y, 1)). Itisan interpreted instance of the following formula
in the predicate calculus: p(x,y) = p(f(x, a), f(. @), where > is assigned to p, + is
assigned to f and 1 to a. The same formula can be interpreted over the domain of
strings: substr(x,y) — substr(x-'a’, y-'a’), where the substring relation is assigned

© to p, the function - which concatenates a string and a character is assigned to f, and

the constant character‘a’ to a. 1]

We have already described the interpretation of predicate letters by relations and the
interpretation of constant symbols by domain elements. What remains to do is to
introduce function symbols like f into the predicate calculus, and to describe their
interpretation by domain functions like +.

Definition 7.2 Let 7 be a countable set of function symbols. The following grain-

mar rules define terms, a generalization of constants and variables. The rule for

dtomic_formula is modified to take a term_list as its argument.

term n= X foranyx eV
term = a foranyae A
term = f(term_list) foranyf e F
term_list = term

term_list = term, term._list

atomic_formula = p(term_list)  foranyp € P.
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As with predicate symbols, function symbols have a fixed arity or number of argu-
ments in any formula or set of formulas. By convention, functions are denoted by
{f. 8 h} with subscripts as necessary.

Example 7.3 Examples of terms are

a, x, fla.x), f(glx).y). g(f(a gb))),

and examples of atomic formulas are

pla,b), p(x.f(a.x), q(f(a, a),f(gx).g(x))).

where function symbol f is of arity two and g is of arity one. 0

As with formulas, terms have formation trees and theorems about terms can be proved
by induction on the structure of the term.

Definition 7.4 A term or atom is ground iff it contains no variables. A formula is
ground iff it contains no quantifiers and no variables. A formula A is a ground instance

" of a quantifier-free formula A iff it can be obtained from A by substituting ground terms

for the (free) variables in A. a

Definition 7.5 Let U be a set of formulas such that {py, ..., px} are all the predicate
symbols, {fi,...,f;} are all the function symbols and {ay, ..., a,} are all the constant
symbols appearing in U. An interpretation T is a 4-tuple

(D, {Ry,....R}, {F1,....F1}, {d1,....du}),

consisting of a non-empty domain D, an assignment of n;-ary relations R; on D to the
n;-ary predicate symbols p;, an assignment of n;-ary functions F; on D to the n;-ary
function symbols f;, and an assignment of elements d; € D to the constant symbols a;.

0

Definition 7.6 Given a ground term t, v1(t), the value of the term in the interpretation
Z, is defined by induction:

vi(a)) = d;
vi(fi(te, . ... ) Fi(vz(t1), ..., v(ta)).

vz(A), the value of a formula, is also defined by induction. For atomic formulas:

vi@i(tr, ... ) =T iff (vz(01).....vz(tn)) € Ry

and for structured formulas as before. g

+The construction of semantic tableaux and the proof of the completeness theorem
:,-for the predicate calculus (Section 5.5} is the same as before, except that it uses the
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Examp'le 7.7 We show that the formula V x Y&, )= p(f(x, a),f(y, a))) is satisfied
by the interpretation (Z, {<}. {+}, (1)). For arbitrary m,n € Z assigned to x ¥
Y5, @) = +(0), ¥(@) = +0m, 1) and W73, @) = +(0), W@)) = +(r, 1), o
m+1 and n + 1 in infix notation. Butm<n impliesm+1 < n+ 1; sin , an

! : ce m and n
were arbitrary, the formula is true in this interpretation.

The formula is not valid since it is falsified by the interpretation (Z, {>}, {#}, {-1})
because (for example) 5 > 4 does not imply 5 % (=1) > 4 % (—1). 0

The development of the predicate calculus with function symbols is almost the same
as that of the predicate calculus with constant symbols only. In the construction of
the semantic tableaux, the §-rule requires that instantiation be with a new constant a.
This assumes that there is an enumeration of all constant symbols. Here, we need
an enumeration of all ground terms, but this is easily done since there is a countable
number of function symbols of each arity (the superscript indicating the arity).

a, az, az, ...
OO O, .
VA OO OB < G5 W

These can be placed into a single list by diagonalization:

ai,
a. f1 (),
as, £y (), £, ),

as, f31('):fzz(” 9, f13("" ).

Now we can create an enumeration of all terms (Figure 7.1) by listing (without dupli-

numeration of terms instead of the enumeration of constant symbols.
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Example 7.10 The following formula is in clausal form:
n=1 a VIV PFON vV =pe@) v q@)] A [g@) v =pE@)V g»)]).
n=2 a It may be written in abbreviated notation in one of the following forms:
n=3 fia), fia), £ F @), £} @) HpFON. ~p(2(2). 9(2)}, (~4(2), ~p((). q0)} },
1 (PfO) ~pe(2) gz, ~ gz ~ pg(z) qy).
n=4 a, fl(as). f; (@), i (F (@), 0

1,p1 1ol rel .
b 11 (fy (fy (@), fi (fy (fy (@2))) Theorem 7.11 (Skolem) Let A be a closed Jformula. Then there exists a formula A’ in
clausal form such that A ~ A’

n=5 fi@). fj(a). f @),
Note carefully what Skolem’s theorem says. It is not true that A = A" A is logically
- equivalent to A, meaning that for all models Z, 7 is a model for A if and only if it is a
-model for A'. It is only true that A ~ A’: A is satisfiable if and only if A’ is satisfiable,
- meaning that there exists a model for A if and only if there exists a model for A’. As
Wwe are interested in validity and satisfiability, the difference is not important.

fHara), fiana). fiaras), ...

Figure 7.1 List of all terms

It is straightforward to transform A into an logically equivalent PCNF formula. It is
the removal of the existential qQuantifiers that causes the new formula to no longer
be equivalent to the old one. The removal is accomplished by defining new function
ymbols. In A = Vx3 yp(x,y), the quantifiers can be read: for all X, produce a value
ssociated with that x such that the predicate p is true. But our intuitive concept of
function is the same; y = f(x) means that given x, f produces a value y associated

7.2 Clausal form

Recall that a formula is in CNF iff it is a conjunction of disjunctions of literals.

Definition 7.8 A formula is in prenex conjunctive normal form (PCNF) iff it is of the

form: ith x. Thus A’ = V xp(x, S(x)) expresses almost the same idea as does A.
X1 annM :
Qix1 . Example 7.12 Consider the interpretation T; = (2, {>}) for A = v 3 yp(x, 7). Ob-
where the Q; are quantifiers and M is a quantifier-free forr.nula in CNE. The sequencEl ously, Z; |= A. What about the formula A’ — Vxp(x, f(x))? A’ is not equivalent to
Qix1 - - - Quxy is called the prefix and M is called the matrix. because there is an interpretation L =Z (> (F&x) =x+ 1}) such that 7} |= A

gnoring the function), but I; ¢ A'. However, there is a model for A’, for example,
Definition 7.9 A closed formula is in clausal form iff it i.s in PCNF and its preﬁgju & (>}, (F&) = x—1)). .
consists only of universal quantifiers. A clause is a diS_]lll’lCthl’l. of.htf:rals. bA cl;ltl:; <

is a ground clause iff it is a ground instance of a clause C, that is, iff it can be o

The introduction of function symbols narrows the choice of models. The relations that
. . 0
by substituting ground terms for the variables in C.

Interpret predicate symbols are many-many, that is, each x may be related to several
while functions are many-one, that is, each x is related (mapped) to a single y. For
ample, if R = {(1,1), (1, 2),(1,3),(2, 1), (2,2), 2, 3)}, then when trying to satisfy
e whole relation R can be used, but for the clausal form A’, only a functional
ubset of R such as {(1,2), (2, 3)} can be used to satisfy A'".

We now give an algorithm to transform a formula A into a formula A’ in clausal form
and then prove that A ~ A’. The description of the transformation will be accompanied
Y & running example using the formula:

As in the propositional calculus we use a more. concise nc.)tation. Smc't;l a fo;‘:)mtlﬁzi
in clausal form is closed, all variables are quantified b).' unlYersal quanti e:;s,l :
quantifiers need not be explicitly written. The matrix is wntt‘en' as f1 set od clz'msteesv
each of which may also written as a set. It is obvious that the ehrmnauox? of uIt)h ;ctawei
through the use of set notation is of no importance. A fu.rther abbrev1at1c;?1 et e
will sometimes use is to omit the parentheses and commas in the' argument 1.s e
predicates assuming that their arities are known. Instead of using set notation, ea /\

Vx(p(x) - g(x)) = (Vap(x) » Y xq(x)).
clause is written as a concatenation of its literals.
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Algorithm 7.13 (Skolemization)
Input: A closed formula A of the predicate calculus.
Output: A formula A’ in clausal form such that A ~ A’

A dliierent Ordel Of extl'actlon glveS.

Vz3xIy((@) V-po) V() A g™ v-pO) v q@)),

e Rename bound variables so that no variable appears in two quantifiers.
and its clausal form is:

Vx(p(x) = q(x)) = (Vyp() = V 29(2))- ] ,
Vz( (P(f(Z)) \% ‘lp(g(Z)) vVg(z) A (- q(f(z)) v "p(g(z)) Vg(2)),

e Eliminate all binary Boolean operators other than V and A.

V(- p(x) Vv g(x)) V- Vyp(y) vV Vz2q9(2)). ' 1z precedes the existential quantifiers,

e Push negation operators inward, collapsing double negation, until they apply to xample 7.14 Let us follow the entire transformation on another f
atomic formulas only. Use the equivalences: et formula.

Origi
SVxA(x) = Jx-A®E) and ~3xA(x) = Vx-AX). R;%la::el lﬁ?)znngla iabl e YY3()
na variables IxVyp(x,y) > YwIzp(z
he exampl formula i ransformed o Eliminate Boolean operators “3IxVypx,y) vvw3 ZD((;WM)))
Push negation inwards v , ’
x3y=plx,y) v
Ax(p(x) A~ q(x) v 3y -pm) V ¥ 2(2)). Extract quantifiers Vﬁi Vi(ﬂ Z}?ﬂ wa?‘zfp(z' "
Distribute matrix (no change) D PEw)
e Extract quantifiers from the matrix. Repeatedly, choose a quantifier in the ma- Replace existential .
quantifiers VxVw(-p(x, f @) v
_ , P(g(x, w), w)).

trix which is not in the scope of another quantifier still in the matrix and extract
it using the following equivalences which are always applicable since no vari-
able appears in two quantifiers:

S unary bfecause 3y is preceded by one universal quantifier Vx, while g is bin
ause 3z is preceded by two universal quantifiers V.x and V w. a?],

Aop OxB(x) = Ox(AopB(x)) and QxA(x)opB = Qx(A(x)op B), Proof of Skolem’s Theorem:

The ﬂr(s:t ﬁvc?duansformaﬁons of the algorithm can easily be shown to preserve equiva-
Oseotr;l& ;r now the replacement of an existential quantifier by a Skolem function
p' atl = Vy ---Vy, 3P, ..., Yn, x). We show that there exists an inter-.

on I’ such that I’ |= Vy -V
YO Y O .., . !
ng the n-ary function F defined by: /o O Bxend Lo I'by

where Q is a quantifier and op is either V or A. In the example:

Ix3yVz((px) Agx) vV ~pB) V 4(2)).

"o Use the distributive laws to transform the matrix into CNF.
3xIyVz(PE) V-p() V@) A (mgx)V-p()V4(2)).
..... ¢} S D, let F(cy, ..., c,) = cpyq for some Cns1 € D such

e Let 3x be an existential quantifier in A, let yy, ..., y» be the universally quan-. - o o T Cn En+1) € Ry, where R, is assigned topinZ.

tified variables preceding 3 x and let f be a new n-ary function symbol. Delete: ell-defined usin iti
i : the definit ; .
3 x and replace every occurrence of x by f(¥1. . .., Ya). If there are no universal - formula A, Als f, Fis now ;;c:ze";:g;gl;ant}ﬁ;r; and the fact thtat Z is a model
quantifiers preceding 3 x, replace x by a new constant (0-ary function) symbol nction definitions in T, no oes not clash with any existing
a. These new function symbols are called Skolem functions. For the example: : How that 77
formula we have: 2L VYO, Y f O 30), Tet (e, ) be atbi.
-Gomain elements. By construction, f(cy, ..., c,) = Cn+1 for some ¢y, € D and

Yz((p(a) vV ~p®d) vV q(2)) A (mg(a)V—=pb)Vq(2))). (Ci, ..., cn ca1)) = T. Since ¢y, . .., ¢r Were arbitrary,

where a and b are the Skolem functions (constants) corresponding to the exi V(YY1 -V yup(, ... Y f O YN =T
» 16 T ) =T.

tentiallv guantified variables x and y, respectively.
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This completes one direction of the proof of Skolem’s Theorem. The proof of the
converse (A is satisfiable if A’ is satisfiable) is simple and is left as an exercise. 1

In practice, it is better to use a slightly different transformation of a formula to clausal
form. First push all quantifiers inward, then replace existential quantifiers by Skolem
functions and then extract all the remaining (universal) quantifiers. This ensures that
the number of universal quantifiers preceding an existential quantifier is minimal, and
thus the arity of the Skolem functions is minimal.

Example 7.15 For the formula 3xVyp(x,y) = Vy3xp(x,y) of Example 7.14, we
would obtain V x = p(x, f(x))VV wp(g(w), w) and then V x V w(~= p(x, f(x))Vp(g(w). w)),
replacing the binary function g by a unary function. 0

Implementation?”

To Skolemize a formula, we first transform it into CNF and then call the predicate
skolem(A,ListA,ListE,Al1). Al is the Skolemized version of A and ListA is the
list of universally quantified variables that have appeared so far. ListE is a list of
pairs: an existentially quantified variable, and another pair that contains the Skolem
function and a list of its arguments that are to be substituted for the existential variable.
gensym is used to create new Skolem function symbols.

skolem(A, A2) :- cnf(A, A1), skolem(Ail, [1, [1, A2).

skolem(all(X, A), ListA, ListE, all(X, B)) :-
skolem(A, [X | ListA], ListE, B).

skolem(ex(X, A), ListA, ListE, B) :-
gensym(f, Func),
skolem(A, ListA, [(X, (Func, ListA)) | ListE], B).

skolem(Al imp A2, _, ListE, Bl imp B2) :-
skolem(Al, _, ListE, Bl ),
skolem(A2, _, ListE, B2).

% Similar clauses for the other Boolean operators.

When an atomic proposition is encountered in the recursive traversal of the formula,

the Prolog operator =. . (read univ) is used to decompose the formula into a predicate
symbol and a list of variables. Then, subst_var is called to replace existentially
quantified variables by the Skolem functions, and =. . is called again to recompose
the formula.
skolem(A, _, ListE, B) :-

A=.. [F| Vars],

subst_var(Vars, Varsi, ListE),

B=.. [F | varsi].
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The implementation of subst_var is by a simple traversal of the list of variables.

subst_var([], (1, ).

subst_var([V | Taill, [V1 | Tailll, List) :-
member_var((V, Vi), List), !,
subst_var(Tail, Taill, List).

subst_var([V | Taill, [V | Taill], List) :-
subst_var(Tail, Taill, List).

In principle, member could be used on the list of pairs to obtain the substitution for
the variable, but the standard procedure would unify variables. That is, if we were

- searching for Y and the the list was [(X, (f, 2)), (Y, (g, U, W1, Y would

unify with X instead of failing and recursing on the tail of the list. The procedure
member_var uses the identity operator == to make sure that unification is not done.

member_var((A,Y), [(B,Y) | _]) :- A ==B, 1!,
member_var(4, [— 1 cn) i~ member_var(A, C).

The cnf predicate has to be modified to rename variables so that no two quantified
~variables are the same and to extract quantifiers.

cnf (A, A5) :-
rename (A, A1),
eliminate (A1, A2),
demorgan(A2, A3),
extract (A3, A4),
distribute (A4, A5).

. The modifications to eliminate, demorgan and distribute, and the procedure

sxtract are in the source archive.

ename works by traversing the formula, keeping a list of variable substitutions. The
all is rename (4,List,List1,A1), where A1 is A after the variables have been re-
amed, and List and List1 are lists of pairs of variables.

rename(A, B) :- rename(A, [], _, B).

ne the way down the recursive traverse, List stores all the variables that have been
ncountered and the new variable names. At the bottom, List is unified with the
ariable List1 and the substitutions are made on the way up the recursive traverse.
When a quantified variable is the same as one previously encountered, copy_term is
sed to create a new variable. This is a Prolog procedure that makes a copy of its first

.argument with fresh variable and places it in the second argument.
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renanme(all(X, A), List, Listl, all(Y, Al1)) :-
member_var((X, _), List), !,
copy_term(X, Y),
rename(A, [(X, Y) | List], Listi, Al).

tI‘he Herbrand universe is just the set of ground terms that can be formed from symbols
in§. Obviously, if § contains a function symbol, the Herbrand universe is infinite since

f(f(C..(a)..)) € Hs.

When a quantified variable is encountered for the first time, an identity substitution is Example 7.18 Here are some examples of Herbrand universes:

created.
S1 = {pa-pbgz, =qz-pbgz}

rename (all (X, A), List, Listi, all(X, Al)) :-

rename(A, [(X, X) | List], Listl, A1). Hs, = {a b}

The clauses for ex are similar and the clauses for traversing the Boolean operators are
omitted here. The clause terminating the recursion performs the subsitution on the
atomic formulas.

S2 = {~pxf(©), pwgw)}

Hs, = {a f(a). g(a),
f(f@@), g(f(@)). f(g(@). g(g(@)), ...}

- rename (A, List, Liét, B) :-

A=.. [F | Vars] S =

? = {-paf(x.y), pbf(x,
subst_var(Vars, Varsi, List), ’ (pafx.y). pbf 7))
B =.. [F | varsi].

Hs, = {a b, f(aa), f(ab), f(b,a), f(b,b),

Example 7.16 If rename is called on the formula all(X,p(X)) or all(X,q(X)), faf@a). ff@ a.a) ...]

the call for all(X,p(X)) will create [(X,X)] and return it in List1; then the call
for a11(X,q(X)) will create [(X,X1), (X,X)] and retum it in List1. The renamed

formula is a11 (X,p(X)) or all(X1,q(X1)). a Definition 7.19 Let Hs be the Herbrand universe for a set of clauses S. Bs, the Her-

brand base, is the set of ground atoms that can be formed from predicate symbols in
S and terms in H. 1|

7.3 Herbrand models

Definition 7.20 An Herbrand interpretation for a set of clauses S is an interpreta-

tion whose domain is the Herbrand universe for S and whose constant and function
symbols are assigned ‘themselves’:

When function symbols are used to form terms, the set of possible interpretations is
extremely complex. In this section, we show that for sets of clauses there are canonical
interpretations: if a set of clauses has a model then it has a model of this form. The
section starts with a long sequence of definitions which may initially seem confusing,
because in the canonical interpretations the domain elements are the syntactical terms
we are trying to interpret.

v(a)
v(f(tl, cees tn))

a

FO@). .. ..v(@))

There are no restrictions on the assignments of relations over the Herbrand universe
o predicates. An Herbrand model for a set of clauses S is an Herbrand interpretation
vyhich satisfies S. It can be identified with the subset of the Herbrand base for which
vt ... 1) =T. il

Definition 7.17 Let S be a set of clauses, A the set of constant symbols in S and F the

a; € Hg fora; € A
(t1,....t,) EHg forf; € F,1 € Hs. 2
fitn " ‘ ! Example 7.21 The Herbrand base for the set of formulas S; from Example 7.18 is:
As a special case, if there are no constant symbols in S, initialize the inductive defini-
tion of Hg with an arbitrary constant symbol a. 0

= {paf(a,a). paf(a,b), paf(b,a), paf(b,b), ..., paf(f(a),a)). ...,
pbf(a, a), pbf(a, b), pbf(b,a), pbf(b,b), ...}.
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An Herbrand model for S5 can be defined by:

v(paf(a,a))y =F v(paf(a,b))=F v(paf(b,a))=F v(paf(h,b))=F
v(pbf(a,a)) =T v(pbf(a,b)) =T v(pbf(b,a)) =T v(pbf(b,b)) =T

or more simply by a subset of the Herbrand base:

{pbf(a,a). pbf(a,b), pbf(b.a), pbf(b.b), .. .}.
0

Theorem 7.22 Let S be a set of clauses. S has a model iff it has an Herbrand model.

Proof: Let I be an arbitrary model for S. Define the Herbrand interpretation #z by
the following subset of the Herbrand base:

{pits. ..., ) L (), ... v(t)) € Ry)

where R; is the relation assigned to p; in Z. That is, a ground atom is in the subset of
the Herbrand base if its value vz (p;(#1, ..., t,)) is true when interpreted in the model
I. It remains to show that Hy is a model.

Recall that a set of clauses is a closed formula that is a conjunction of disjunctions
of literals. It suffices to show that for each assignment of elements of the Herbrand
universe to the variables, one literal of each disjunction is in the subset. Since I is a
model for the set of clauses S, vz(S) = T so for all assignments by I to the variables
and for all clauses C; € S, vz(C;) = T. Thus for all clauses C; € S, there is some literal
Dj; in the clause such that vz(D;;) = T. But, by definition of the Hz, v, (Dy) = T iff
vi(Dy) = T, from which follows vy, (C;) = T for all clauses C; € §, and v4,(S) =T.
Thus Hz is an Herbrand model for S.

The converse is trivial. |
It is important to note that the theorem is not true if S is an arbitrary formula which
is not a set of clauses. Let S = p(a) A Ax-p(x). Then ({0, 1}, {{0}}, {}, {O})isa
model for S since v(p(0)) = T, v(p(1)) = F, but S has no Herbrand models since the
only Herbrand interpretations are {{a}, {{a}}. {}, {a}) and ({a}. {{}}. {}. {a}),
and neither is a model for A.

7.4 Herbrand’s Theorem®

Consider a semantic tableau for an unsatisfiable set of clauses. A set of clauses is a
universally quantified formula A = Vx; - -V, M(x, ..., X,) whose matrix is a con-
junction of disjunctions of literals. The only rules that can be used are the propo-

sitional a- and f-rules and the y-rule for the universal quantifiers. Since the closed
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tableau is finite, there will be a finite number of applications of the y-rule. Suppose
that we construct the tableau by initially applying the y-rule repeatedly for some se-

quence of ground terms, and then apply the a-rule repeatedly in order to ‘break up’
each instantiation of the matrix M.

We obtain a node # labeled with a finite set of clauses. Repeated use of the p-rule on
each clause (disjunction) will cause the tableau to eventually close because each leaf
contains clashing literals. This sketch motivates the following theorem.

Theorem 7.23 (Herbrand’s Theorem, semantic form) A set of clauses S is unsat-
isfiable if and only if a finite set of ground instances of clauses of S is unsatisfiable.

’Since a formula is satisfiable if and only if its clausal form is satisfiable, the theorem
can also be expressed as follows.

Theorem 7.24 (Herbrand’s Theorem, semantic form) A formula A is unsatisfiable

and only if a formula built from a finite set of ground instances of subformulas of A
is unsatisfiable.

The theorem transforms the problem of satisfiability within the predicate calculus into

-a problem of finding an appropriate set of ground terms and then checking satisfiability
‘within the propositional calculus.

‘Since a tableau can be turned upside-down to obtain a Gentzen proof of a formula,
‘there is a syntactic form of Herbrand’s theorem.

Theorem 7.25 (Herbrand’s Theorem, syntactic form) A formula A of the predicate
calculus is provable if and only if a formula build from a finite set of ground instances

of subformulas of A is provable using only the axioms and inference rules of the propo-
tional calculus.

mullyan (1995) calls this theorem the Fundamental Theorem of Quantification The-
1y. An alternate way to develop mathematical logic is to prove some version of
Herbrand’s theorem and then use it to prove completeness and compactness.

xample 7.26 The clausal form of the formula
~Vx(p(x) = g(x)) = (Vxp(x) > Vxg(x))]

is {(~p() vV q(x), p(y), = g(z)}. The set of ground instances of clauses obtained by
bstituting a for each variable is {~ p(a) V q(a), p(a), ~g(a)}, and an application of
the f-rule gives the pair of unsatisfiable sets of formulas {-p(a), p(a), = ¢(a)} and
{g(a), p(a), - q(a)}. Thus the original formula is unsatisfiable. 0

Herbrand’s theorem gives us the handle needed to define an efficient semi-decision
procedure for validity of formulas in the predicate calculus:
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o Negate the formula.
e Transform into clausal form.
e Generate a finite set of ground clauses.

o Check if the set of ground clauses is unsatisfiable.

The first two steps are trivial and the last is not difficult because any convenient de-
cision procedure for the propositional calculus can be used by treating each distinct
ground atomic formula as a distinct propositional letter.

Example 7.27 p(a,f(a)) and - p(a,f(a)) clash in any interpretation and p(a, f(a))
and p(b, f(a)) can always be given different truth values in an Herbrand interpretation.

If a propositional decision procedure discovers a model for (g Vv r) A (=g Vv r), then

there exists a model for:

w(a.f(@) Vpb.f@) A (~pla.f@)Vpb.fa)).

by including in the Herbrand base ground atoms that correspond to propositional let-
ters given the value T in the propositional model. That is, from the propositional -

model v(g) = F, v(r) = T, it follows that the subset of the Herbrand base {p(b,f(a))}
is a model for the set of ground clauses. i

Unfortunately, we still have no efficient way of generating a set of ground clauses that -

is likely to be unsatisfiable.

7.5 Ground resolution

‘We now extend the resolution procedure to the predicate calculus. This will be done in
two stages: first, we define a simple, but inefficient, version called ground resolution,

and then define substitution and unification, which are used in the general resolution ,

procedure.

Rule 7.28 (Gi'ound resolution rule) Let C;, C; be ground clauses such that € C;

and [I° € C,. Cy, C; are said to be clashing clauses and to clash on the complementary

literals [, I°. C, the resolvent of C; and C,, is the clause:

Res(Cy, C) = (C1 = {ID V(G — {ID).

C; and C; are the parent clauses of C. ]
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Theorem 7.29 The resolvent C is satisfiable if and only if the parent clauses Cy and
C, are (mutually) satisfiable.

Proof: Let C; and C, be satisfiable clanses which clash on the literals 7, I°, By Theo-

rem 7.22, they are satisfiable in an Herbrand interpretation H. Let B be the subset of
the Herbrand base that defines #, that is,

B={p,..., &) | va(pler, ..., ce)) = T)

for ground terms c;. Obviously, two complementary ground literals cannot both be
elements of B. Therefore, if I € B, for (> to be satisfied in A there must be some
other literal ' € C, such that I € B, By construction of the resolvent C using the

resolution rule, ' € C, so v#(C) = T, that is, M is a model for C. A symmetric
argument holds if I € B.

Conversely, if C is satisfiable, it is satisfiable in an Herbrand interpretation H defined
by a subset B of the Herbrand base. So for some literal / e C, ! € B. By construction,
'€ Cyorl € G, (or both),and /¢ Cand I° ¢ C. Suppose, I € C;. We can extend the
H to H' by defining B’ = BU {{}. In this interpretation, vz (F)=T,50 v (Cy) = T.
Since ' € B C B, C is also satisfiable in H', so Cy and C, are mutually satisfiable in
H'. A symmetric argument holds if € C,. _ ]

The ground resolution procedure is defined like the resolution procedure for the propo-
itional calculus. Given a set of ground clauses, the resolution step is performed re-
: peatedly. The set of ground clauses is unsatisfiable iff some sequence of resolution
teps produces the empty clause. We leave it as an exercise to show that ground reso-
ution is a sound and complete refutation procedure for the predicate calculus.

f course, ground resolution is hardly a useful refutation procedure for the predicate
alculus since the number of ground terms is both unbounded and unstructured. Since
is unbounded, we have no assurance that a refutation will be found within a given
umber of steps; since it is unstructured, we have no guidance on how to choose
lauses to resolve. We cannot solve the first problem since there is no decision proce-
ure for validity in the predicate calculus. However, in 1965, Robinson showed that
esolution is often a practical procedure when it is done on clauses that are not ground.

7.6 Substitution

efinition 7.30 A substitution of terms for variables is a set
{x1 I, ..., Xp <—t,,},

Wwhere each x; is a distinct variable and each I; is a term which is not identical to the
‘corresponding variable x;. The empty substitution is defined by the empty set. 0
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Lower-case Greek letters {4, u, o, 8} will be used to denote substitutions. The empty
substitution is denoted €.

Definition 7.31 An expression is a term, a literal, a clause or a set of clauses. Let E
be an expression and 8 = {x; « #1, ..., X, < 1,} a substitution. An instance E0 of E
is obtained by simultaneously replacing each occurrence of x; in E by . a

Example 7.32 Here is an expression E, a substitution 6 and the instance E6.

E=px)VqfO) b={x<yy<fl@} Ef =p(y) Vv q(f(f ().

The word ‘simultaneously’ means that one does not substitute y for x in E to obtain

pO) V q(f(f(a))) and then f(a) for y to obtain p(f(a)) V ¢(f(f(a)))- g

Definition 7.33 Let 0 = {xp.« t1, ..., X, <t} and 6 = {y1 < 51, ..., Ve < St}
be two substitutions. Let X and Y be the sets of variables substituted for in 6 and o,
respectively. 6o, the composition of 6 and o, is the substitution

b6 = (mi—to|xeX xi#nol U yyeslyeY ygX)

In words: apply the substitution o to the terms # of 8 (provided that the resulting
substitutions do not collapse to x; « x;) and then append the substitutions from ¢
whose variables do not already appear in 6. 0

Example 7.34 Let

Il

(x «fO). y«fl@, z < u}
{y < g@), uez vef(f@)}

o
and let E = p(u, v, x,y,2). Then

o
E(6c)

{x < f(g(@). y < f@), u < z. v« f(f(a))}
P f(f(a).f(g@).f(a). 7).

where we have deleted {z < u}o = {z « z} which is a vacuous substitution, and
{y « g(a)} since the ‘original’ occurrences of y in E have been replaced by f(a), and
‘new’ occurrences of y introduced by 4 will already have been replaced by g(a) from
o. Note that

E0
(EO)c

pQu,v.f(¥).f(a). u)
P f(f(@).f(g(a@)).f(@). 2),

I

so that E(0¢) = (Ef)o. 0

This equality is true in general.
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Lemma 7.35 Let E be an expression and let 6, ¢ be substitutions.
Then E(8c) = (Ef)o.

Proof: Let E be a variable z. If z is not substituted for in 8 or o, the result is trivial.
If z = x; for some {x; « £} in 8, then (z8)6 = tic = z(80) by the definition of
composition. If z = y; for some {y; < s;} in o and z # x; for all , then (z20)0 = z0 =
5j = z(60). The result follows by induction on the structure of E. I

The composition of substitutions is associative.
Lemma 7.36 0(c A) = (80) A

Proof: Exercise. i

7.7 Unification

The two (non-ground) clauses p(f(x), g(»)) and = p(f(f(a)), g(z)) cannot be resolved
because they do not clash. However, under the substitution

{x < f@), y « f(g(a). z+ f(g@))},

we obtain the two clashing clauses:

p(f(f(a)), g(f(g(a))) “p(f(f(@). g(f(g(@)).

Obviously, this is not the only substitution that transforms these clauses into clashing

- ground clauses. Another, simpler, substitution is {x < f(a), y « a, z « a} giving

p(f(f(a)). ga) ~p(f(f(@)), g(a)).

Itis not difficult to see that once the substitution {x < f(a), z « y} is made giving

p((f (@), g0 =p(f(f@). g0

~-any further substitution of a ground term for y will produce clashing ground literals.

However, these non-ground literals already have the form of clashing literals, and

“we can directly resolve the clauses without reducing them to ground clauses. The
following definition formalizes these concepts.

. Definition 7.37 Given a set of atoms, a unifier is a substitution that makes the atoms
of the set identical. A most general unifier (mgu) is a unifier 4 such that any other
- unifier 8 can be obtained from u by a further substitution A such that 8 = y 1. 0
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Not all atoms are unifiable. It is clearly impossible to unify atoms whose predicate
symbols are different (such as p(x) and g(x)) and terms whose outer function symbols
are different (such as p(f(x)) and p(g(y))). A more tricky case is shown by the atoms
p(x) and p(f(x)). Since x occurs within the larger term f(x), any substitution—which
must substitute simultaneously in both atoms—cannot unify them. It turns out that as
long as these conditions do not hold the atoms will be unifiable. We now describe and
prove the correctness of an algorithm for unifying atoms.

Trivially, two atoms are unifiable only if they have the same predicate letter of the
same arity. Thus the unifiability of atoms is more conveniently described in terms of
the unifiability of the arguments, that is, the unifiability of a set of terms. The set of
terms to be unified will be written as a set of term equations.

Example 7.38 The unifiability of the atoms p(f(x), g(»)) and p(f(f(a)). g(2)), is ex-
pressed by the set of term equations:

f&x) f(fa)
gy = g@-

Definition 7.39 A set of term equations is in solved form if

o All equations are of the form x; = ¢; where x; is a variable.

e Each variable x; that appears on the left-hand side of an equation does not appear -

elsewhere in the set.
A set of equations in solved form defines a substitution {x; « #;, ..., X, « t.}. {

The following algorithm transforms a set of unifiable term equations into a set of equa-

tions in solved form, or reports if they are not unifiable. We show that the substitution -
defined by the set in solved form is a most general unifier of the original set of term -

equations, and hence of the atoms from which the terms were taken.

Algorithm 7.40 (Unification algorithm)
Input: A set of term equations.
Output: A set of term equations in solved form or ‘not unifiable’.

Perform the following transformations on the set of equations as long as any one of

them is applicable:
1. Transform ¢ = x, where ¢ is not a variable, tox = t.

2. Erase the equation x = x.
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3. Let? = ¢" be an equation where 7, " are not variables. If the outermost function
symbols of ¢ and ¢ are not identical, terminate the algorithm with failure: the
set of terms is not unifiable. Otherwise, re i :

’ , . , replace the equation f(7,,....7)) =
fa. .., %) by the k equations £ =1,....5=1. l & '

4. I.,et x = t be an equation such that x has another occurrence in the set of equa-
tions. If x occurs in ¢, terminate the algorithm with failure: the set of terms is

not unifiable. Otherwise, transform the set by replacing all occurrences of x in
other equations by z.

Example 7.41 Consider the following set of two equations:

g0) = x
fOhx).y) = f(g().w.2).
Apply rule 1 to the first equation and rule 3 to the second equation:
r = g0
x = g@
hx) = w
y = z

8@ = g
x = g@©@
hg@) = w
y = z
Apply rule 3 to the first equation:
Z =Yy
x = 2@
h(g@) = w
y = z

Ap ly.rule 4 on the last equation to replace y by z in the first equation and then erase
the result z = z using rule 2:

x = g@
rMg) = w
y = z
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Finally, transform the second equation by rule 1:

x = g@@
w = h(g(2)
y = z

This successfully terminates the algorithm. We claim that

{x — 8@, weh(g),y <z}

is a most general unifier of the original set of equations. We leave it to the reader to
check that the substitution does in fact unify the original set of term equations and
further to check that the unifier:

x < g(f(@).y < f(@), w < h(g(f(@))). z « f(a)}

can be obtained by applying the mgu followed by the substitution {z < f(a)}. 0

Theorem 7.42 The unification algorithm terminates. If the algorithm terminates with
Jailure, there is no unifier for the set of term equations. If it terminates successfully,
the resulting set of equations is in solved form and defines an mgu

H={x1 <1, ..., x5 1)

of the set of equations.

Proof: Obviously, rules 1-3 can be used only finitely many times without using rule 4,
Let m be the number of distinct variables in the set of equations. Rule 4 can be used at
most m times since it removes all occurrences, except one, of a variable and can never
be used twice on the same variable. Thus the algorithm terminates.

The algorithm terminates with failure in rule 2 if the function symbols are distinct,

and in rule 4 if a variable occurs within a term in the same equation. In both cases
there can be no unifier.

We now show that if the algorithm terminates successfully, the equations define an
mgu. Upon successful termination, the set of equations is in solved form since if any
equation is not of the form x = ¢, rule 1 or rule 2 or rule 3 could be applied. If x
occurred in some other equation then rule 4 could be applied.

Define a transformation as an equivalence transformation if it preserves sets of unifiers
of the equations. Obviously, rules 1 and 2 are equivalence transformations. Consider
now an application of rule 3 for # = f(7,, .. ., ryand?’ =f(t],...,4). if o = t's, by
the inductive definition of a term this can only be true if £jo = t{o for all i. Conversely,
if some unifier o makes 7, = t/ for all i, then o is a unifier for # = ¢’. Thus rule 3 is an
equivalence transformation.
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Let #; = 1, be transformed into u; = u, by rule 4 on x = . After applying the rule,
x = t remains in the set. So any unifier o for the set must make xo = 5. Then

uio = (ti{x « 1})o = ;({x « t}o) = 1,0

y the associativity of substitution and by the definition of composition of substitution
‘using the fact that xo = t6. So if ¢ is a unifier of ; = 1, then u;0 = t,6 = £,6 = o
and o is a unifier of u; = u,. _

Finally, the substitution defined by the set is an mgu. We have just proved that the
. riginal set and the solved set of equations have the same set of unifiers. But the
‘solved set itself defines a substitution (replacements of terms for variables) which is a
unifier. Since the transformations were equivalence transformations, no equation can
be removed from the set without destroying the property that it is a unifier. Thus any
-unifier for the set can only substitute more complicated terms for the same variables
or substitute for other variables. That is, if u is

H={x «t, ..., x, « t},

any other unifier o can be written

c={x<t, .., X1} U {y1 <51, ..., Y < Sn)

which is ¢ = p A by definition of composition for some substitution 4. But a unifier u
is an mgu exactly if every unifier o can be written as a composition of 4 followed by
another substitution. : |

The algorithm is nondeterministic becanse we may choose to apply a rule to any equa-
tion to which it is applicable. A deterministic algorithm can be obtained by specifying
the order in which to apply the rules. One such deterministic algorithm is obtained by
considering the set of equations as a queue. A rule is applied to the first element of
ihe queue and then goes to the end of the queue. If new equations are created by rule
3, they are added to the beginning of the queue.

Example 7.43 Here is the unification for Example 7.41 using this data structure:

( e =x Fox h(x), y) = f(g(2), w,2) )
( x=g0), FO h(x), y) = f(g(2), w, 2) )
( fGg), gD, y) =f(gd).w,2), x=g(®y) )
( g0 =g@, hEO®)=w y=z x=g(y) )
( y=z re®) =w, y=z x=g(®) )
( hg@)=w z=2 x=g(2), y=z )
( z=2z x = g(2), y=z w=h(g@) )
( x=g(2. y=z w = h(g(2)) )

This algorithm is equivalent to the original algorithm given by Robinson. Since Robin-
son’s algorithm appears in most other works on resolution, we will describe it here.
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Robinson’s unification algorithm*

Definition 7.44 Let A and A’ be two atoms with the same predicate symbols. Con-
sidering them as sequences of symbols, let k be the left-most position at which the
sequences are different. The pair of terms (z, '} beginning at position £ in A and A’ is
called the disagreement set of the two atoms. a

Algorithm 7.45 (Rebinson’s unification algorithm)

Input: Two atoms A and A’ with the same predicate symbol.

Output: A most general unifier for A and A’ or ‘not unifiable’.

Initialize the algorithm by letting Ay = A and A = A’. For all i, assume that A; and A4}
have already been constructed. Perform the following step.

e Let {z,7} be the disagreement set of A, A’. If one term is a variable x;; and the
other is a term #;1; suckithat x;;; does not occur in #;41, let 6141 = {Xi1 < tis1}
and Aiy1 = AiGit1, Al = AlOis1.

If it is impossible to perform the step (because both elements of the disagreement set
are compound terms or because the occur check fails), the atoms are not unifiable. If
after some step A, = A}, A, A’ are unifiabie and the mguis 4 = o; -+ - 6. a

See Lioyd (1987, Section 1.4) for the proof of the correctness of the algorithm.

Example 7.46 Let A = p(g(y), f(x, h(x),y)) and A’ = p(x, f(g(z), w,2)). The initial
disagreement set is {x, g(y)}. One term is a variable which does not occur in the other
so o) = {x « g(y)}, and

AO’1
A’O'[

p(e®). g, h(g)). y))
p(g), f(g(2), w, 2)).

z}sooy = {y « z},and

p(g(2), f(g(2), h(g(2)), 2))
p(g(2), f(g(@),w,2)).

The third disagreement set is {w, h(g(z))} so o3 = {w « h(g(z))}, and

p(g(2), f(g(2). h(g(2)).2))
p(g(2), f(g(2), h(g()). 2)).

The next disagreement set is {y,

Acy102

A’0'1 (o)

AO’10'20'3

A’O’ 10203
Since Acy0,03 = A’0102073, the atoms are unifiable and the most general unifier is

U =010203 = {x + g(2), y « 2z, w « h(g(2))}.
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The occur check

Algorithms for unification can be extremely inefficient because the occur check—the
check that a term to be substituted for a variable does not contain the variable—can
be exponential in the size of the terms being unified.

Example 7.47 To unify:

x1 = f(xo, Xo)
x2 = f(x, x1)

x3 = f(x2,x2)

we successively create the equations:

F(f(xo, x0),.f (x0, x0))
FE(f (x0, x0). £ (x0, X0)), F(f (x0, X0). £ (x0, X0)))

X2

X3

-and so on. The check that x; does not occur in the term in the right-hand side must
look at 2/ variables. 0

“,In the application of unification to logic programming, the occur check is simply ig-
qored and the risk of an illegal substitution is taken.

Implementation®

-To implement the algorithm for solving a set of term equations, we maintain a list of
€ equations, and traverse the list, attempting to apply each of the rules to the current
equation. The predicate solve is called with a list of equations and returns a list of
bstitutions written as equations x = ¢, where x is a variable and 7 is a term. It is
convenient to maintain the list in two parts, one to the left of the current equation and
one that includes the current equation as its head and the rest of the equations as its
tail. The solve predicate will have four parameters: two for the equation list, a third
for status information and the fourth will return the solved set. The initial call is:

solve(Eq, Subst) :-
solve([], Eq, notmodified, Subst).

The status is passed down the recursive calls to solve and is used to terminate the
recursion as necessary, for example, if either rule 3 or rule 4 fails. The equation that
ccaused the failure is returned together with the failure indication for printing.

solve(_, [Current|_], failure3, [failure3, Current]) :- !.
solve([Current], _, failure4, [failure4, Current]) :- !.
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Each rule is applied in turn; if successful, it sets the status to modified as an indica-
tion to the list traversal clauses described below.

solve(Head, [Current | Tail], _, Result) :-
rulel(Current, Currentl), !,
solve(Head, [Currentl | Taill, modified, Result).
solve(Head, [Current | Taill, _, Result) :-
rule2(Current), !,
solve(Head, Tail, modified, Result).

The set of equations returned by rule 3 replaces the current equation and is appended
in front of the remaining equations.

solve(Head, [Current | Taill, _, Result) :-
rule3(Current, NewList, Status), !,
append(NewList,-Tail, NewTail),
solve(Head, NewTail, Status, Result).

When a substitution is performed in rule 4, it must be performed on all the equations,
including those that have already been checked.

solve(Head, [Current | Taill, _, Result) :-
append(Head, Tail, List),
rule4(Current, List, NewList, Status), !,
solve([Current], NewList, Status, Result).

The next three clauses traverse the list. If no equation applies, it goes on to the next
one. When the end of the list is reached, another traversal is initiated if the previous
one made any modifications to the list.

solve(Head, [Current | Rest], Mod, Result) :- !,
append(Head, [Current], NewHead),
solve(NewHead, Rest, Mod, Result).

solve(List, [J, modified, Result) :- !,
solve([], List, notmodified, Result).

solve(Result, [], _, Result).

To prevent confusion between the equality operator of the term equation and the Pro-

log equality operator, the former is explicitly defined using the operator eq. Rules 1 -

and 2 are straightforward.

rulel(T eq X, X eq T) :- nonvar(T), var(X).

rule2(X eq Y) :- X ==
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Rule 3 compares the outermost functors and if they are the same, calls new_equations
(source omitted here) to pair the subterms.

rule3(T1 eq T2, List, modified) :-
TL =.. [F | Subtermsi], T2 = [(F | Subterms?2],
nev_equations(Subterms1, Subterms2, List).
rule3(T1 eq T2, [T1 eq T2], failure3) :- .
Ti=.. [F1 ] 3, T2=.. [F2 ] _1, F1 \= F2.

Rule 4 reports failure if the occurs-check fails. Otherwise, it calls subst_list
(source omitted here) to perform the substitutions. If nothing is changed, the pred-
icate fails, initiating traversal to the next equation in the list.

rule4(X eq T, List, List, failured) :-
var(X), occur(X, T), !.

rule4(X eq T, List, NewList, modified) :-
var(X),
subst_list(X, T, List, NewList),
List \== NewList.

occur(X,T) traverses the list and succeeds as soon as it finds an occurrence of the
variable X in the term T. occur_list is used to check the list of subterms.

occur(X, T) :(~ X ==T, |,

occur{X, T) :- T = [_ | Subterms], !
occur_list(X, Subterms).

occur(_, _) :- fail.

occur_list(X, [Head | _1) :- occur(X, Head), !.
occur_list(_, [1) = 1, fail.

occur_1ist(X, [_ | Taill) :- occur_list(X, Tail).

vTo unify a pair of atomic proposition, simply check that the predicate symbols are

identical, create a set of equations from the arguments and call solve.

unify (A1, A2, Subst) :-
Al =.. [Pred | Argsi],
A2 =.. [Pred | Args2],
new_equations(Argsi, Args2, Eq),
solve(Eq, Subst).
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7.8 General resolution

The resolution rule can be applied directly to non-ground clauses by performing uni-
fication as an integral part of the rule.

Definition 7.48 Let L = {/;, ..., 1,} be a set of literals. Then L = {If,..., £}. a

Rule 7.49 (General resolution rule) Let C;, C; be clauses with no variables in com-
mon. LetLy = {I}1,..., i} €Cirand Ly = {1, ..., oy, } € C; be subsets of literals
such that L; and L] can be unified by an mgu o. C; and C; are said to be clashing
clauses and to clash on the sets of literals L; and L,. C, the resolvent of C; and C,, is

the clause:
Res(Cy, C3) = (Cio — Lio) U (Cao - Lyo).

0
Example 7.50 Given the two clauses
p(f(x). gV q(x.y) " p(f(fa). g(2)) vV q(f(a), g(2)),
an mgu for L, = {p(f(x), g(»))} and L; = {p(f(f(@)). g(2)} is
{x = fla),y <z},
and the clauses resolve to give g(f(a), 2) V q(f(a), 8(2)). 0

The general resolution rule requires that the clauses have no variables in common.
This is done by standardizing apart, which is to rename all the variables in one of the
clauses before it is used in the resolution rule. Recall that variables in a clause are
implicitly universally quantified so renaming does not change satisfiability.

Example 7.51 To resolve the two clauses p(f(x)) and - p(x), first rename variables of
the second clause - p(x'). An mgu is {x' « f(x)}, and p(f(x)) and - p(f(x)) resolve to
0. The clauses represent the formulas V xp(f(x)) and Vx = p(x), and it is obvious that
their conjunction V xp(f(x)) A Vx — p(x) is unsatisfiable. 1]

The resolution fule is defined on clauses as sets of literals, and the mgu ¢ may unify
sets of clashing literals. Collapsing of identical literals in a clause is called factoring.

Example 7.52 Let C; = {p(x),p(y)} and C; = [~ p(x),~p(y)}. First standardize
apart so that C, = {~p(¥),~p(y)}. LetLy = Ci = {p(x).p()} and L = C¥ =
{p(*), p(¥)}; these sets have an mgu ¢ = {y « x, X < X,y < x}.

Res(C1, C2) = ({p@®)} — {p@H VU ({(=p()} = {~px)}) = O.
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In this example, the empty clause cannot be obtained without factoring, but in gen-
eral, we will talk about clashing literals rather than clashing sets of literals when no
confusion is possible.

Algorithm 7.53 (General Resolution Procedure)
Input: A set of clauses S.

Output: The clauses are satisfiable or unsatisfiable. However, the algorithm may not
terminate.

Define Sp = S. Assume that S; has been constructed. Choose clashing clauses C;, C, €
S; and let C = Res(Cy, C;). If C = O, terminate the procedure: S is unsatisfiable.
Otherwise, construct S;;; = S; U {C}. If Sy = ; for all possible pairs of clashing
clauses, terminate the procedure: S is satisfiable. 0

While an unsatisfiable set of clauses will eventually produce O under a suitable sys-
tematic execution of the procedure, the existence of infinite models means that the
execution of the resolution procedure on a satisfiable set of clauses may never termi-
nate. Since we can never know if the procedure will ever terminate, general resolution
is not a decision procedure.

Exmple 7.54 Lines 1-7 contain an unsatisfiable set of clauses. This is shown in
lines 8-15 which are a refutation by the resolution procedure. Each line contains the

resolvent, the mgu and the numbers of the parent clauses.

L =p(x) Vg Vrxf(x)

2. 2p@)Vgx) Vs(f(x)

3. ta)

4. pla)

5. mr(ay)viy)

6. —t(x)V-gx)

7. ~tx)V-six)

8. ~q(a) x<a 3,6
9. q@Vs(f(a)) Xea 2,4
10.  s(f(a)) 8,9
1. g(a) v r(a,f(a)) Xx+<a 1,4
12. r(a,f(a) 8,11
13. «(f(a)) ye<fl@ 512
14. ~s(f(a)) xe—f@ 713
I5. 0 10,14
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Example 7.55 Here is another example of a resolution refutation showing variable
renaming and mgu’s which do not produce ground clauses. The first four clauses form
the set of clauses to be refuted.

under the substitution {x=fl@),y«aq Zea
clauses

Ci =p(f@) v g(f(a)) G, = =p(f(@)) v r(a),

~p(x.y) VpQy,x) which resolve giving C’

1

2. =plxy)V-p(.2)Vp2)
3. pxf(x)

4 ~plx, x)

= q(f(@) v r(a). The lifting lemma claims that there i
1(f( isa

.clause C = q(f(w)) v r(u) which is the resolvent of Cy and C;, such that ¢’ is a ground

Instance of C. This can be seen by using the unification algorithm to obtain an mgu

xef@, yeu zeuw « fw)}

3. p. () Rename 3

5. p(f(x).x) o1 = {y «f(x), ¥ < x} 1,3 of Cy and C,, which then resolve giving C

3. p(, F(x")) Rename 3 ' [

6. -p(f(x),2)Vp(x,2) 02 = {y « f(x), ¥ < x} 2,3 Theorem 7.57 (Lifting Lemma) Ler Cy, G, be ground instances of C,, C, respec A
57 p(F(Y, X7) Rename 5 tively. Let C' be a ground resolvent of C and C,. Then there is a resol’vent’ CofC :
7. plxnx) 03 = {7+ x,x" «x} 6, 5" “and Cy such that C' is q ground instance of C. 1 ‘;
4. apx™, 2y 5 Rename 4 . %
s O os = {¥" < x) 7.4 - The relationships among the clauses are displayed in the following diagram.

Resolution

If we concatenate the substitutions, we get:
Cl: CZ - C

0=01020361 = {y <« f(x), 2 = x, X «x,x" « x,x" « x,x" < x}.

Restricted to the variables of the original clauses, 6 = {y « f(x),z « x}. This will - Instance

be of importance in the next chapter when we discuss logic programming. 0-

Instance

GG — o

%
Soundness and completeness Ground resolution

The next step is to prove soundness and completeness of the general resolution pro-
cedure. There is a technical difficulty in the completeness proof. Using Herbrand’s -
theorem and semantic trees, we can prove that there is a ground resolution refutation. -
of an unsatisfiable set of clauses. However, this does not generalize into a proof for
general resolution because the concept of semantic tree does not generalize—the v.
ables give rise to a potentially infinite number of elements of the Herbrand base. The
difficulty is overcome by taking a ground resolution refutation and ‘lifting’ it into a
more abstract general refutation. This is only a theoretical issue and does not mean
that resolution refutations should be constructed in this manner,

Px‘Oof: To aid in understandin

g the proof, the computations for E
shown in Figure 7.2. ’ o emple 736 are

standardize apart so that the variables in C; are different from those in C,. Let
C’1 I’ € C, be the clashing literals in the ground resolution. Since C’ is an inszt.ance
Cy @d le q, there must be a set of literals L; C C; such that ) islan instance of
h literal in L. Similarly, there is a set L, C G, for I°. Let Ay and A, mgu’s for
and Ly, respectively, and let 4 = A U 4,. 4 is a substitution since Ly and L, have

variables in comon. CiAand Cy A are clashing clauses on the sets of literals
4. L, 4; let o be their mgu so that their resolvent is: »

The problem is that several literals in C; or C, might collapse into one literal under
the substitutions that produce the ground instances C; and C,, to be resolved.

a
|

(€L Ao ~ (L Do} U (G, Mo - (L, Ao})

= (Gi(Ao) ~ (Li(Ao)}) U(Ca(A0) - {L2(A0))),
Example 7.56 The clauses : .o .
the associativity of substitution. C is a resolvent of C; and C, provided that

an mgu of Z; and L;. But Ais already reduced to equations of the form x « ¢

i o o is constructed to be an mgu, so Ao is a reduced set of
€qua i ; .
quations, all of which are necessary to unify L; and LS. Hence A o is an mgu.

C
(&)

pxX) VpFON) V() Vv g(x)
“p(f(@)) v -pw) Vv r(u)
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L
4
Li 4

Ly

Ly 4,
LA
Ci A

Ly A
C A

Q

‘Clﬂ,d

Cz/lO'

{p(x), pFOM). P(F(2), q(x)}
{(~p(fW)), =pw), r(w)}

{(x<fla),y<a z+a}
{u—a w+fa}

C16, = (p(f(@)), q(f(@®)}
G0 = {-p(f(a)). r(a)}
Res(Cy, C2) = {q(f(a)), r(a)}

{p(x), pFON), P(f(2))}
{x «f0), z<y}
{p(FON}

{(~p(fw). ~p(w)}
(wefw}
{=p(fF()}

/11 Uj.z = {x <—f(}’),Z ‘—y,W (_f(u)}
{pGFON}

{pCFON. aFON}

{=p(f)}

{~p(f(w)), r@)}

{u <y} _
Res(Cy 4, C2 A) = {q(f()). ()}, using o

(x<fO) 2y wefO) u <yl
PO, 9GFON}

{=p(FOM. T} ‘
Res(C1, Cp) = {q(f(). r()}, using Ao

{y « a}
€161 = {p(f(@), q(f(@)} = C1 Ao,
{y « a}
G262 = {-p(f(a), @)} = C; Acb,

v < a)
Res(C}. Cy) = {q(f(@)), r(a)}

Figure 7.2 Example for the lifting lemma

ki3
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Since C| and C, are ground instances of Cy and C,:

C} = Ci61 = Cy Ao¥, C, = by = C, Aot

for some substitutions 61,0:,6,,0,. Let¢ = 6,U8,. Then C’' = C#' and C’ is a ground
instance of C. 1

We now show the soundness and completeness of resolution. The reader should re-

view the proofs in Section 2.10 for the

Theorem 7.58 (Soundness of resolution) [frhe unsatisfiable clause 01 is derived dur-
ing the general resolution procedure then the set of clauses is unsatisfiable.

- Proof: The critical step in the proof is to show that if the parent clauses are satisfiable
then so is the resolvent using the mgu o. If the

parent clauses are satisfiable, there
$ an interpretation 7 such that vi(Cy)

= T. The clause is implicitly (universally)
uantified, so by definition of vz there are ground instances C; = C; 4; such that

.' 7(C}) = T. Since o is an mgu, there are substitutions 0; such that 4, = 066;. Then

q = Ci A = Cich;) = (Ci6)0;, which shows that Cio is satisfiable in the same
“interpretation.

‘Now we can continue as in the proof in the propositional calculus, Exactly one of
: L0 can be satisfiable in Z. Suppose that vz(lj6) = T. Since we have proved that
Cyo is satisfiable, there must be a literal / € C, such that # L and vi(l'o) = T. But

Y the construction of the resolvent, I € C so vi(C) =T, 1

eorem 7.59 (Completeness of resolution) If a set of clauses is unsatisfiable then
e empty clause O can be derived by the resolution procedure.

roof: The proof is by induction on the closed semantic tree for the set of clauses S.
e definition of semantic tree is modified as follows:

. A node is a failure node if the (partial) interpretation defined by a branch
falsifies some ground instance of a clause in .

The critical step in the proof is showing that an inference node n can be associated

Wlﬁh the resolvent of the clauses on the two failure nodes ny,

C1, C, are associated with the failure nodes. Then there mu

> Which are falsified at the nodes. By construction of the semantic tree, C| and C,

are clashing clauses. Hence they can be resolved to give a clause C’ which is falsified
y the interpretation at #. By the Lifting Lemma, there is a cla

use C such that C is the
olvent of C} and C,andCisa ground instance of C. Hence C is falsified at n and

(or an ancestor of ) is a failure node, 1

n below it. Suppose
st be ground instances
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Implementation®

To use the resolution procedure to search for a refutation of a formula, first transform
the formula into clausal form using the predicate skoler given in Section 7.2 and
then convert it from a universally quantified formula to a set of sets as was done in
Section 4.1 for the propositional calculus. The following predicate then searches for a

resolution refutation.

resolution([]) :- !, fail.
resolution(S) :- member([], 8), !.
resolution(8) :-

member(C1l, S), member(C2, S), Ci1 \==
copy_term(C2, C2_R),

clashing(C1, L1, C2_R, L2, Subst),
delete_1it(C1, LI, Subst, CiP),
delete_lit(C2_R, L2, Subst, C2P),
clause_union(C1P, C2P, Resolvent),

\+ clashing(Resolvent, _, Resolvent, _, _)},
\+ member (Resolvent, S),
resolution([Resolvent | S]).

copy_term is used to rename the variables of C2. If the clauses clash, the follow-
ing predicate returns the clashing literals and the substitution which causes the clash.

Similarly,

clashing(Ci, L1, C2, neg L2, Subst) :-
member (L1, C1), member(neg L2, C2),
unify(L1, L2, Subst), !.

clashing(Cl, neg Li, €2, L2, Subst) :-
member (neg L1, C1), member(L2, C2),
unify (L1, L2, Subst), !.

delete_lit(Clause, Literal, Subst, Result) deletes from Clause all the

literals that are equal to Literal under the substitution Subst and returns the Result.

clause_union takes the union of the literals in the two clauses to form the resolvent.

. As in previous implementations of algorithms for the predicate calculus, library pred-

~ icates cannot be used as unintended unification of variables must be avoided. The
details can be studied in the source archive.

This naive implementation is quite likely to start searching infinite paths. Practical
resolution theorem provers are based on variants of the procedure which serve to guide

the search.
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7.9 Exercises

—

. Transform each of the following formulas to clausal form:

Vx(p(x) = yq(y)),
VxVy(3zp(z) A Ju(gx, u) - Avg(y, V)))
Ax(=3yp(y) = Az(g(z) = r(x))).

For the formulas of the previous exercise, describe the Herbrand universe and
the Herbrand base.

Prove the converse direction of Skolem’s Theorem (Theorem 7.11).

. Let A(xy, ..., x,) be a formula with no quantifiers and no function symbols.

Prove that Vx; - - - Vx,A(xy, ... ., X,) is satisfiable if and only if it is satisfiable in
an interpretation whose domam has only one element.

- Prove that ground resolution is sound and complete,

. Let

= (x<fgON. y «u z<fOy),
ey ye—f@ x < gm),
px.f(). g(w), 2).

c
E

]

Show that E(85) = (Ef)c.

- Prove that the composition of substitutions is associative (Lemma 7.36).

- Unify the following pairs of atomic formulas, if possible.

Pla,x,f(g»)) pPO.f(@).f(2)),
p(x, g(f(@). f(x)) r(f(@,y.y),

p(x, g(f(@)). f(x)) PO, z.y),

pla.x f(g(»))) Pz h(z, w), f(w)).

. A substitution 8 = {x; « , ..., Xy < Ly} is called idempotent iff 6 = 6.

Let V be the set of variables occurring in the terms {#,...,2,}. Prove that 6
is idempotent iff V N {x;, .. -» X} = @. Show that the mgu’s produced by the
unification algorithm is 1dempotent

. Prove the validity of (some of) the equivalences in Figure 5.2 by resolution

refutation of their negations.

P . .
. Modify the program to Skolemize a formula so that operator elimination and

application of the De Morgan and distributive laws are done in one pass.
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. . P —
12. P Write a program to implement Robinson’s unification algori

13. * A set of clauses S is called renamable-Horn iff there is a set of. ;?ropositlona;
' letters U such that Ry (S) is a set of Horn clauses. (Recall Definition 4.19 an
Lemma 4.20). Prove the following theorem:

Theorem 7.60 (Lewis) LetS = {C,, ..., Cy,} be a set of clauses where
Ci=0L V-V, andlet

m

S* = U U EV L.

i=1 1<j<kgn;

Then S is renamable-Horn if and only if S* is satisfiable.

- where B and B; are atoms. In the d

8 Logic Programming

8.1 Formulas as programs

- Most axioms are expressed in the form:

If premise-1 and premise-2 and . . . then conclusion.

Formally, this is:

A=Vx1-~-ka(BlA---AB,,,—)B),

egenerate case where there are no antecedents,

A = Vx;---VxB. In clausal form, an axiom is “ByV---V=B,VB. To prove that
- aformula G = G; A

"=+ A Gy is a logical consequence of a set of axioms, we append

.7 G to the set of axioms and try to construct a refutation by resolution. -~ G is called

the goal clause.

The set of axioms is presumably chosen to be satisfiable, so we won’t progress towards
refutation by resolving among the axioms; instead, we resolve the goal clause with

an axiom. Looking at the form of the axioms, since =G is a disjunction of negative

iterals, one of the negative literals ~ G; can only resolve with B, the single positive

iteral of the axiom. The result is a clause all of whose literals are negative:

- B V-'-V"'BmV"GIV"'V“'G'_l V"G,'V"‘V"G].

Thus all resolvents in the refutation will contain only negative literals. Eventually,
esolving with axioms having no antecedents, that is, axioms whose clausal forms

onsists of a single positive literal, will produce progressively shorter resolvents and
finally the empty clause.

xample 8.1 Consider a fragment of the theory of strings, where there is a single
inary function symbol for concatenation denoted by the infix operator -, and three
f)redicates substr, prefix and suffix. The axioms are:

L - .
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1. Vxsubstr(x,x)

2. VxVyVz{((substr(x,y) A suffix(y, 2)) — substr(x, z))
3. VxVysuffix(x,y-x)

4. VxVyVz{((substr(x,y) A prefix(y,z)) = substr(x, z))
5. VxVy prefix(x,x-y),

or in clausal form:
1. substr(x, x)
2. = substr(x,y) V - suffix(y, z) V substr(x, z)

3. suffix(x,y - x)
4. - substr(x,y) vV - prefix(y, z) V substr(x, z)

5. prefix(x,x - y).
Here is a refutation of ~substr(a -b -¢, a-a- b - ¢ - ¢), where the parent clauses of
each resolvent are given in the rjght—hand column.

6. ~substr(a-b-c,a-a-b-c-c)

7. =substr(a-b-c, y1)V-suffix(yl, a-a-b-c-c) 6,2
8. ~substr(a-b-c,a-b-c-c) 7,3
9. ~=substr(a-b-c, y2)V prefix(y2, a-b-c-c) 8,4
10. - substr(a-b-c, a-b-c) 9,5
11. O 10,1
a
Let us write the axioms using the Boolean operator « for reverse implication:
A=Vx - -Vxp(B<B1 A+ ABp).
We can interpret the logical formula as a procedure: to compute B, compute By, - - -, By,.
Example 8.2 The string axioms can be written:
1. Vxsubstr(x, x)
2. VxVyVz(substr(x,z) « (suffix(y, z) A substr(x, y)))
3. VxVysuffix(x,y-x)
4. VxVyVz(substr(x,z) « (prefix(y, z) A substr(x,y)))
5. VxVyprefix(x, x-y)
and interpreted as:
1. xis a substring of x.
2. To check if x is a substring of z,
find a suffix y of z and check if x is a substring of y.
3. xisasuffixofy-x.
4. To check if x is a substring of z,
find a prefix y of z and check if x is a substring of y.
S. xisaprefix of x-y.
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This is not too exciting since the computation simply checks if substr(a-b-c, a-a-b-c-c)
is true or not. Suppose, however, that instead of using resolution to determine if this
ground goal clause is a logical consequence of the axioms, we try to determine if the
formula 3w substr(w, a-a-b-c-c) is a logical consequence of the axioms. In terms
of resolution we try to refute the negation

- (/\ {Axioms(S)} = Iw substr(w, a-a-b-c-c)),
which transforms to
/\{Axioms(S)} AV w= substr(w, a-a-b-c-c),

so we still have a set of clauses.

If the resolution refutation is carried out, the final step is to resolve - substr(w, a-b-c)
with the string axiom substr(x, x). The resolution succeeds with the substitution {w e
a-b - c} and produces the empty clause, completing the refutation. Not only have we
proved that 3w substr(w, a-a-b - c - c) is a logical consequence of the axioms, but
we have also computed a value a - b - ¢ for w such that substr(w, a-a-b-c-c) is true.
The axioms for strings form a program that computes answers to questions.

This program is highly nondeterministic:

e Given a goal clause such as - substr(w, YD V=suffix(yl, a-a-b-c-c), we
can choose to resolve either of the literals in the clause with an axiom clause.

e Once we have chosen a literal such as - substr(w, y1), we can choose to resolve
it with any of the axioms whose positive literal clashes with the chosen literal.

The nondeterministic formalism becomes a practical logic programming language by
specifying rules for making these choices.

| Definition 8.3 A computation rule is a rule for choosing a literal in a goal clause to
1 resolve with. A search rule is a rule for choosing a clause to resolve with the chosen

literal in a goal clause. 0

| The difference between logic programming and (ordinary) algorithmic programming
is that in algorithmic programming the control of the computation is explicitly con-

structed by the programmer as part of the program. This can be instantly recognized

| by the central place occupied by the control structures in a language like Pascal:

if X > 0 then ... else
while A[I] <> Key do
for I :=1 to 10 do ...
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In logic programming, the programmer writes declarative logic formulas that describe
the relationship between the input and output, and then the compiler, that is, the res-
olution inference engine together with the search and computation rules, supplies a
‘uniform control structure.

Obviously, no matter how efficient a logic programming compiler is, its uniform con-
trol structure can never match a control structure hand-crafted for a specific com-
putation. Research in logic programming has explored the trade-offs between pure
declarative logic versus impure procedural constructs that allow programmers to write
programs whose efficiency is reasonable when compared with procedural languages.
In the following section, we will study the theoretical basis of logic programming and
then discuss practical logic programming languages.

8.2 SLD-resolution

Definition 8.4 A Horn clause is a clause A < By, ..., B, with at most one positive
literal, where the positive literal A is called the head and the negative literals B; are
called the body. A unit positive Horn clause A« is called a fact, and a Horn clause
with no positive literals < By, ..., By iscalled a goal clause. A Hom clause with one
positive literal and one or more negative literals is called a program clause. 0

Definition 8.5 A set of non-goal Horn clauses whose heads have the same predicate
letter is called a procedure. A set of procedures is called a (logic) program. A proce-
dure composed of ground facts only is also called a database. 1l

Example 8.6 The following program has two procedures, one of which is a database.

1. qxy) < p(x.y)

2. qx.y) « p(x2.9z)

3. p(b,a) 7. p(.0)
4. p(c,a) 8. phg
5. p(d.b) o piR)
6. p(E, b) 10. p(i. h)

g

Definition 8.7 Let P be a program and G a goal clause. A substitution 0 for variables
in G is called a correct answer substitution if P | V(- G9) where V denotes the
universal closure of the variables that are free in - G6. 0

Example 8.8 Let P be the set of axioms of arithmetic, G the formula ~ (6 +y = 13)

and 6 the substitution {y < 7}. Then ~Gis 6 +y = 13 and ~ GO is 6+7=13,5086
is a correct answer substitution P = (6 +7 = 13). o
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A correct answer Substltutlon Ileed not be a IOUlld ubs 1tutio that 15, a SubStltthlOIl
> 1

correct answer substitution since Do s

Pl=Vx(x=x—13+13).

Note that the substitution 6 is required since the closure of -

oo G is not a logical conse-

PEVVyx=y+13).

In general, suppose we want i
s to find out if B = 3(B; A i i
" 1t A...AB,) is a logical ¢ -
go sf::;f a p;cl)lgram (set c?f clauses) P, where 3 denotes the exi:tential clisure :fn tsl;3
junction. Then P |= B if and only if there is some ground substitution & such thate

PE@BiA...AB)s.

Suppose i iti
ppose that ¢ can be written as a composition of substitutions ¢ = 8 A such that

Pl (BiA...AB)OA

f r any ground Sl.letltl.lth . 3 m 1t 1 ay X1S at worst W[t]l
O] n A I]l 1act Such a Co pOS 10n always € tS,

PEY((BiA...ABYG).

:Tl.lus. ‘B is a logical consequence of P’
stitution for the goal clause defined by
universally quantified,

is equivalent to @ being a correct answer sub-
G==(B/A...A B,). Since G is implicitly

VG=V=(BiA...AB,)=~3(BiA...AB,) = ~B.

Thus P E B if and only if = P ~ B which is ¥
~ P A G. Since resolution is sound, if P A G leads t

he substitutions produced by unification define a
Herbrand domain.

“(P—>B)or ¢ PA-B, that is
0 a refutation, then ¥ PAG, and
correct answer substitution in the

fl}fample 8.9 Let us work through a refutation
\ylth the program in Example 8.6. At each ste
lause and a clause whose head clashes with the literal

of the goal clause «q(y,b), qb,7)

' 1. Choose g(, b) and resolve with clause 1 giving «p(y b), q(b, 2)

- 2. Ch.oose p'(y, b) and resolve with clause 5 giving «g(b, z)
This requires the substitution {y < dj. o

3. Therei i
ere is only one literal to choose and we resolve it with clause 1 giving «p(b, z)
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4. There is only one literal to choose and we resolve it with clause 3 giving O.
This requires the substitution {z < a}.

Since the goal clause is ~ g(y, b))V g(b, z), it follows that a correct answer substitutio.n
is {y « d,z « a} and P }= q(d, b) A q(b, a). From elementary predicate calculus 1;
follows that P = 3y 3 z(q(y, b) A g(b, 2)).

Definition 8.10 (SLD-resolution) Let P be a set of program clauses, R a computation
rule and G a goal clause. A derivation by SLD-resolution is defined as a sequence of
resolution steps between goal clauses and the program clauses. Tpe ﬁrs't goal clause
Gy is G. Assume that G; has been derived. G4 is defined by selecting a literal A; € G;
according to the computation rule R, choosing a clause C; € P such that the head o
C; unifies with A; by mgu 6; and resolving:

G = (—Al,...,Ai_l, A,-, Ai+1,...,A,,
Ci = A<—Bl,...,Bk
Al = A6,
Gi+1 = <—(A1,...,Ai_1, Bl,...,Bk, Ai+1,...,A,1)9,'.

An SLD-refutation is an SLD-derivation of 3. 0

Soundness and completeness

Theorem 8.11 (Soundness of SLD-resolution) Let P be a set of program clautces, R
a computation rule and G a goal clause. Suppose that there is ar't SLD-refutation of
G. Let 0 = 0y - - - 0, be the sequence of unifiers used in the refutation and .let o be the
restriction of 6 to the variables of G. Then ¢ is a correct answer substitution for G.

Proof: By definition of o, G = Go, so PU {Go} = P U {G8} which is unsatisﬁ:able
by the soundness of resolution. If P U {Go} is unsatisfiable, then P = -~ Go. Since

this is true for any substitution into the free variables of Go, P | V(- Go). 1

SLD-refutation is not complete for sets of clauses in general. The set of clauses:
{pvg ~pvg pv-g ~pV-gq}

is unsatisfiable, but has no SLD-resolution since even if a unit ‘goal’ clause such as p

is derived, O can never be obtained by resolving with a ‘program’ clause. For Horn -

clauses, however, SLD-resolution is complete.

Theorem 8.12 (Completeness of SLD-resolution) Let P be a set of program clau.ses, :
R a computation rule and G a goal clause. Let o be a correct answer substitution. '
Then there is an SLD-refutation of G from P such that o is the restriction of the se- .

quence of unifiers @ = 0, - - - 8, to the variables in G.
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Proof: Lloyd (1987, Section 2.8). 1

We will just sketch the inductive completeness proof. Consider the program P:

p(a)
pf(x)) <« p).

Obviously there is a refutation of the goal clause «p(a), and just as obviously p(a)
is a logical consequence of P. Given a goal clause G; = «p(f(f(---(a)---)), we
can resolve it with the second clause to obtain Gio1 = «p(f(---(a)- ), reducing the
depth of the term. By induction, G;_; can be refuted and p(f(--- (a) - - -) is a logical
consequence of P. From G;_; and the second clause, it follows that p(f FC--@--)

| is a logical consequence of P, This bottom-up inductive construction—starting from
) facts in the program and resolving with program clauses—defines an Herbrand inter-
| pretation. Given a ground goal clause whose atoms are in the Herbrand base of the
| interpretation, we can prove by induction that it has a refutation and that its negation
| s a logical consequence of P. To prove that a non-ground clause has a refutation,

technical lemmas are needed which keep track of the unifiers. The final step is a proof

| that there exists a refutation regardless of the choice of computation rule.

1Other behaviors of the SLD-derivation exist because of the non-determinism in the
{ choice of literals and clauses.

Example 8.13 Returning to Example 8.6:

e Suppose that we had chosen in step 2 to resolve with clause 6 ple.b). The
resolvent would be «<g(b, z) and the refutation would still succeed but a different

answer substitution {y « e, z < a} would be obtained. There may be more than
one correct answer substitution for a given goal clause.

* Suppose now that the computation rule is to always choose the las literal in a
goal clause. Resolving always with clause 2 we obtajn:

q(. 5),q(b, 2)

q0.b),p(b,2), q(Z, 2)

90, 0).p(b.2), p(Z. 2"), 9(z". 7)

90, 5).p(b.2).p(Z.2"). p(Z". 2"), q(z", 2)

TrT 1t

and so on. Even though an answer substitution exists for the goal clause, this
specific attempt at constructing a refutation does not terminate,

“ o Consider the computation rule that always chooses the first literal in the goal
clause. In the first step, q(y. b) is chosen and resolved with clause 2 giv-
ing «p(y,7),q(z,b), q(b,z). Choose the first literal and and resolve it with
clause 6 p(e, b) and then with clause 1 to obtain «g(b, b), q(b, z) and then
«p(b,b), q(b,z). There remain no program clauses whose head unifies with
p(b, b). Even though an answer substitution exists, the refutation has failed.
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q(y. b)

p(y.b) p(y.2).9(z.b)
®/ [N ® " T~
O [} [} q(a, b) . q(h,b)

| (1)/ \(2) (1)/ \(2)
pla.b) pa.2).qZ.b)y phj) p(h. 2", q(@". )

X : X

Figure 8.1 SLD-tree for selection of leftmost literal

Definition 8.14 Let P be a set of program clauses, R a computation rule and G a goal :

clause. All possible SLD-derivations can be displayed on an SLD-tree. The root is
labeled with the goal clause G. Given a node n labeled with a goal clal.lse G, c‘reate
a child n; for each new goal clause G, that can be obtained by resolving the literal

chosen by R with the head of a clause in P. 1

Example 8.15 An SLD-tree for the clauses in Example 8.6 is shown in Figure 8.1

The computation rule is always to choose the leftmost literal of the goal clause. This -
is indicated by underlining the chosen literal. The number on an edge refers to the
number of the program clause resolved with. 0

Definition 8.16 In an SLD-tree, a branch leading to a refutation is called a success

branch. A branch leading to a goal clause whose selected literal does not unify with
any clause in the program is called a failure branch. A branch corresponding to a
non-terminating derivation is called an infinite branch. 0

Theorem 8.17 Let P be a program and G be a goal clause. Then every SLD-tree for
P and G has infinitely many success branches, or they all have the same finite number

of success branches.
Proof: Lioyd (1987, Section 2.10).

Definition 8.18 A search rule is a procedure for searching an SLD-tree for a refuta-

tion. An SLD-refutation procedure is the SLD-resolution algorithm together with the -
specification of a computation rule and a search rule. 0.

Note carefully what Theorem 8.12 says about the choice of the computation and searchv .v

rules. SLD-resolution is complete regardless of choice of the computation rule, bq
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the theorem only says that some refutation exists. The choice of the search rule will
determine if the refutation is found or not. The trade-off is between completeness and
efficiency. A breadth-first search of an SLD-tree, where the nodes at each depth are
checked before searching deeper in the tree, is guaranteed to find a success branch if
one exists. On the other hand a depth-first search can choose to head down a non-
‘terminating branch. Thus the breadth-first search rule is complete in that if there is a
correct answer substitution it will be found. However, the size of the tree that must

|be stored in a data structure grows exponentially with the depth of the search so pure
{breadth-first search is not a practical rule.

3 Prolog

{Prolog was the first logic programming language and extensive implementation efforts

ave transformed Prolog into a practical tool for software development. This section
ill give an overview of the Prolog language based on the presentation of logic pro-
tamnﬁng in the previous section.
he computation rule in Prolog is to choose the lefimost literal in the goal clause.
e search rule is to choose clauses from top to bottom in the list of the clauses of
procedure. The notation of Prolog is different from the mathematical notation that
¢ have been using: (a) variables begin with upper-case letters, (b) predicates and
nstants begin with lower-case letters, and (c) the symbol : - is used for «.

xample 8.19 Let us rewrite program of Example 8.6 using the notation of Prolog.

e have also replaced the arbitrary symbols by symbols that indicate the intended
urpose of the program.

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

parent(bob, allen).
parent(catherine, allen).
parent(dave, bob).

. parent (ellen, bob).

parent(fred, dave).
parent (harry, george).
parent(ida, george).
parent (joe, harry).

database contains facts that we are assuming to be true, such as catherine is
arent of allen. The procedure for ancestor gives a declarative meaning to this
ncept in terms of the parent relation, namely:

X is an ancestor of Y if X is a parent of Y.

"X is an ancestor of Y if for some Z, X is a parent of Z and Z is an ancestor
~of Y.




182 8 Logic Programming

Using the Prolog computation and search rules, the goal clause
:— ancestor(Y, bob), ancestor(bob, Z).

will succeed and return the correct answer substitution Y=dave, Z=allen, meanm%
that dave is an ancestor of bob who in turn is an ancestor of allen.

The search in the proof tree is depth-first, which can lead to non-termination of the
computation even if a terminating computation exists. A P.rolog programmf.:r must
carefully order clauses within a procedure and literals within clauses to av01d. non-
termination. This choice of a search rule, however, is the reason that Prolog is ejx-
tremely efficient. At run-time, essentially the only data structures .that must be rrllam-
tained are: (a) the current goal clause and a pointer to the current llteral,'(b) a pointer
to the current clause within the procedure whose head unifies with the literal, (c) the
current set of substitutions.

Since failure may occur at any step, a list of backtrack points must also be reched.
These backtrack points represent previous nodes in the SLD-tree wh‘ere addmc.)nal
branches exist. Due to the Prolog search rule, the branches are necessarily to the right
of the current branch.

Example 8.20 Consider the program consisting of only four facts and a goal clause:
pa). p(b). p(e). q(c).

- p(x),qx).

Here is the SLD-tree for this program:

1= p(x),q(x).
/ ' \
- q(a) - q®) = q(e)
x x 1

0

The depth-first search attempts to resolve the first literal p (.x) from the goal clause '
with p(a). While this succeeds, the goal clause q(a) which results cannot be re-+
solved. The search must return to its parent node in the SLD-tree .and try the r}e).(t-
clause in the procedure for p, namely, p(b). Here too, the cc.>mp'utat10n fails and it is
only after an additional backtrack that a successful computation is completed. 0~

In this example, data structures must record that p(x) is a literal for which' there are-
alternate clauses in the procedure that can resolve with it. Adding a recursive clause"_

such as
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p(x) :- r1x,y),p(y),r2(y,2),p(z).

will create a potentially infinite number of backtrack points as each use of the clause
will introduce two occurrences of literals with p. Since the search is depth-first, the
backtrack points can be efficiently maintained on a stack.

An important concept in Prolog programming is forcing failure. This is implemented
by the predicate fail for which no program clauses are defined. Consider the query:

:— ancestor(Y, bob), ancestor(bob , 2), fail.
Once the answer Y=dave, Z=allen is obtained, backtracking will be forced to pro-

duce a second answer Y=ellen, Z=allen. Since Prolog lacks iteration (£ or-loop),

recursion and forced failure are important programming tools and a programmer used
to iteration must invest some effort to learn to use them correctly.

Non-logical predicates

Non-logical predicates are predicates whose main or only purpose is the side-effects
they generate. Obvious examples are the I/O predicates get and put that have no

character on the display or get a character from the keyboard. Using this concept of

{non-logical predicates, Prolog systems have been augmented with interfaces to I/O
peripherals and other systems services. Since use of these predicates can usually be

confined to well-defined areas of the program and since their logical behavior is quite

jinnocent, these extensions do not seriously interfere with the declarative logical struc-

ire of a Prolog program.

rolog departs from theoretical logic programming in its treatment of numeric data
pes. This is a significant issue since almost all programs contain numeric calcula-
ions. As we showed in Section 6.4, it is possible to formalize arithmetic in predicate
( gic. However, there are two problems with this formulation. The first is that it would
e unfamiliar, to say the least, to execute a query on the number of employees in a de-
artment and to receive as an answer the term FEF(F(F(a))))) in the Herbrand domain
ven if the notation were improved to 14+1+1+1+ 1). The second problem is the in-

efficiency of resolution as a method for numeric computation. All computers contain
efficient machine instructions for integer operations such as addition and subtraction,

hile even something as trivial as adding a constant 10 to a number would require at
ast ten unifications and resolutions. Computation with an axiomatic formalization
floating-point numbers would be completely impractical.

rolog supplies a feature to allow standard arithmetic computation. The syntax is that
fa predicate with an infix operator: Result is Expression. The following clause
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retrieves the list price and discount percentage from a database and then computes the
value of Price according to an arithmetic expression.

selling_price(ltem, Price) :-
list_price(Item, List),
discount_percent (Item, Discount),
Price is List - List * Discount / 100.

Arithmetic predicates differ from ordinary predicates. An arithmetic predicate is one-
way, unlike unification. If 10 is X+Y were a logical predicate, X and Y could be
unified with say, O and 10, and upon backtracking with 1 and 9, and so on. However,
this is illegal. In Result is Expression, Expression must evaluate to a ‘ground’
numeric value while Result must be an uninstantiated variable.

Note that arithmetic predicates are not assignment statements as defined in algorithmic
languages. The following program is illegal because once Price is unified with the

result of the computation A+1, it cannot be modified, anymore than a variable x ina

logical formula can be modified once a substitution such as {x < a} has been applied.

selling price(Item, Price) :-
list_price(Item, List),
discount_percent (Item, Discount),
Price is List - List * Discount / 100,
tax._percent (Item, Tax),
Price is Price * (1 + Tax / 100).

Cuts

The most controversial modification of logic programming introduced into Prolog is ‘

the interference in the SLD-refutation procedure called the cut. Consider the following
program for computing the factorial of a number N:

factorial(0,1).

factorial (N,F) :-
N1 is N-1,
factorial(Ni, F1),
F is N * F1.

This is just a translation into Prolog of the standard recursive formula for computing

factorials:

fO) =1 fw)y=n-f(n—-1).

Now assume that factorial is called in another procedure, perhaps for checking a .

property of numbers that are factorials:
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check(N) :- factorial(N, F), property(F).

If check is called with N=0, it will call factorial (0, F) which will compute F=1
and call property(1). Suppose that this call fails. Then the SLD-resolution pro- -
cedure will backtrack, undo the substitution F=1, and try the second clause in the
procedure for factorial. The recursive call factorial (-1,F1) will initiate a non-
terminating computation. A call to factorial with argument 0 has only one possible
answer; if we backtrack through it, the goal clause should fail.

This can be avoided by introducing a cut, denoted by an exclamation point, into the
| first clause:

factorial(0,1) :- !.

The cut prevents backtracking in this procedure. In terms of SLD-resolution, once

1acut is ‘executed’, it cuts away a portion of the SLD-tree and prevents unwanted
4 backtracking. In.the following diagram, the rightmost branch is cut away, so that if
{property (1) fails, the backtrack point in its parent node is ignored.

:= check(0).
i
:~ factorial(0,F), property(F).
Ve N
1= property(1) i~ factorial(-1,F1), property(F1).
x

iIn the case of the factorial procedure, there is a better solution, namely, to add a

predicate to the body of the procedure to explicitly prevent the unwanted behavior:

factorial(0,1).
factorial(N,F) :-
N >0,
Ni is N-1,
factorial(N1, F1),
Fis N % F1.

ven in cases such as these, programmers often re-introduce the cut for efficiency.

Since the whole point of logic programming is to allow the user to write declarative

rograms and to leave the control element to the built-in logical inference machine

" uts should be avoided since they can only be understood from the procedural point

f-view. Nevertheless, Prolog programmers must be familiar with the cur and its uses

both to avoid infinite branches and to improve efficiency.
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8.4 Concurrent logic programming*

Computations which take too long on a single CPU can be speeded up by dividing
the computation into tasks which are processed in parallel on multiple CPUs. Paral-
lel computation is also used whenever a computation intrinsically involves multiple
tasks, for example, in multiprogramming operating systems and real-time systems.
In this context, the term concurrent computation is widely used because the multiple
tasks can be executed by sharing a single CPU rather than being executed in true paral-
lelism on multiple CPUs. The problem with paratlel and concurrent computation is the
difficulty of constructing and verifying algorithms that can benefit from parallelism,
and of expressing these algorithms conveniently in a programming language.

Logic programs have a natural interpretation as concurrent computations. The reason
is that logic programs do not express algorithms procedurally—step-by-step descrip-
tions of how to proceed—but instead express them declaratively where the formulas
have no inherent ordering. Concurrent logic programming languages specify concur-
rent procedural interpretations for Horn clause programs, just as Prolog specifies a
sequential procedural interpretation for the clauses.

In this section we describe how a logic program can be given a parallel interpretation,;
then we show how modifications of unification can be used to synchronize processes
and to communicate data between two processes. Finally, we present the concurrent
logic programming language GHC.

And- and or-parallelism

Consider the logic program consisting of the clauses

p <« r,5s.
p < L
q <« ugq
q <« v

together with facts for r, s, ¢, u, v. The potential computations starting from the goal
clause «<p, g are displayed in the and-or tree in Figure 8.2. An or-node (dashed frame)
is labeled with a one-literal goal clause. The dashed edges lead from an or-node to

and-nodes (solid frames), which are labeled with the clauses that can unify with literal -
labeling the or-node. For each such clause, resolution with the literal in the or-node

will cause the literals in the body to form a new goal clause. These literals become the
labels of new or-nodes and solid edges lead from the and-node to the or-nodes. The
success of the refutation at any one of the subtrees of an or-node implies the success of
the goal clause labeling the or-node; for an and-node to succeed, all the goals labeling
its children must be refuted.
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Figure 8.2 And-or tree

Example 8.21 In Figure 8.2, the root of the tree is an unlabeled and-node whose
children are the two literals of the goal clause, both of which must be refuted. The
or-node labeled «p has two children, one for each of the program clauses p « r, s and

| p « t. Itis sufficient that either one of these clauses lead to a refutation; in fact, both

of them do so. The or-node labeled «q has two children. The right-hand one leads to
a successful refutation while the left-hand contains an infinite branch. a

The computation of a Prolog program can be considered as a depth-first traversal of
-~ the tree:

o Refute all the (single-literal) goal clauses labeling or-nodes, ordered from left
to right.

e Each refutation is attempted using the program clauses labeling the and-node
nodes, ordered from left to right.

e If any refutation succeeds, refutations with the program clauses in the siblings

of the and-node need no longer be attempted, and the goal clause labeling the
or-node succeeds.

¢ The location of this and-node is remembered for possible backtracking.

[ Example 8.22 The Prolog search of the and-or tree in Figure 8.2 would find the refu-
“tation of «p from p « r, s. However, a search for a refutation of «g would follow
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the infinite branch starting with g « u, g, and the program would not terminate. A
different method of searching could discover the successful refutation from g < v. 0

The same and-or tree can be interpreted as a specification of a parallel computation.
The goal clauses labeling or-nodes (the children of an and-node) form a set of pro-
cesses that execute in parallel; this is called and-parallelism because all the processes
must successfully terminate in order for the computation to succeed. Additional sets
of processes are activated at each and-node (the children of an or-node) to attempt a
refutation for each program clause; this is called or-parallelism because if any process
associated with a program clause succeeds the other processes are cancelled.

Example 8.23 Let us trace a parallel computation of the and-or tree in Figure 8.2.
Initially, there are two processes P, and P, in the attempt to refute p and q. P, cre-
ates two new processes, Prs and P;. P, also creates two new processes, P,4 and P,.
P4 continues, creating two new processes, P, and P., where the prime is used to
distinguish this process from the previous P,. Then P, creates P, , and P,,. The set of
processes is now:

{Pp, Pg, Pprs, &, Pug. Py, ﬂ» [_yq’ P’u.q* ﬁ}

The underlined processes can now be executed (they are in the ready queue in the
terminology of operating systems), whereas the overlined processes are waiting for
the termination of the processes they have created.

P, creates two new processes, P, and P;. Suppose that these processes are now
scheduled for execution one after another; they resolve successfully and terminate, as
does P, ;. Since P, is the child of an or-node, its sibling P; can be cancelled and P,
terminates. The process set is now: '

{E» Fu—.;’ Py, Pu, Fq- P;.q' ﬂ}'

If P, is selected for execution, it will terminate together with the entire set of processes.
Alternatively, if P, , is selected, an infinite set of processes may be created. If the
scheduler is fair, that is, if it eventually schedules every ready process to run, one of
P,, P, P;,... will eventually be selected and the computation will terminate. 0

Logic variables for communications

Synchronization and communication between the processes of a logic program are
based on the properties of logic variables appearing in the processes. Using Prolog
syntax, the goal clause 7-p(X) ,q(X) can be considered as a pair of concurrent pro-
cesses that share a global variable X. Obviously, if a ground term is assigned to X in p
(say by unification with the fact p(a)), it will simultaneously be available to q. How-

ever, a logic variable can be assigned to only once, while we normally require that one -,
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process pass a stream (sequence of values) to another. To pass a stream from process
p(X) to process q(X), p assigns to X a compound term that contains another logic

variable. This additional logic variable is shared by both processes and maintains the
communications channel open.

Example 8.24 Suppose that ?-p(X),q(X) is executed for the program:
p([Sym|Taill) :- gensym(a,Sym), p(Tail). |

q([Head|Taill) :- process(Head), q(Tail).
process(X) :- ...

where gensym(a,Sym) unifies Sym with the stream a1, a2, ... in successive calls.
Resolving p(X) causes X to be unified with [a1]Tail] giving the goal clause:

?7- p(Tail), q([al|Taill).
and after a resolution with the clauses for q([a]Taill) and process(a) we get

?- p(Tail), q(Tail).

,: which puts us right back where we started from. Thus P generates a stream that is
-processed within q.

il

This example was rather artificial. Let us now examine a useful program.

{Example 8.25 Here is a procedure that merges two ordered lists:

merge([Head1|Taill]l, [Head2|Tail2], [Headl|List3]) :-
Headl <= Head?2,

merge(Taill, [Head2|Tail2], List3).

merge ([Head1|Tailll, [Head2|Tail?], [Head2|List3]) :-
Headl > Head?2,
merge([HeadlITaill], Tail2, List3).

merge([], List, List).

merge(List, [], List).

nd a procedure that writes a list:

write_list([Head|Tail] :-
write(Head),
write_list(Tail).
Cwrite_list([1).

ith a sequential Prolog implementation, executing the goal clause
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?- merge([1,3,5,71,[2,4,6,8],List), write_list(List).

will cause [1,2,3,4,5,6,7,8] to be assigned to List which is then displayed by
write_list. With an and-parallel implementation, we can consider merge to be
a producer process which creates values for the consumer process write_list to
receive and print. As merge produces list elements, they can be consumed (printed)
concurrently with the production of the rest of the list without waiting for the entire
result list to be produced.

Initially, the first program clause can be activated and unified with the first literal of the
goal clause, creating the substitution List=[1|List3]. This substitution is applied
to write_list and the process write_list([1|List3]) can now be activated,
unifying {1|List3] with [Head|Taill in the first clause. write (Head) can now
be activated to display the element 1 without waiting for the entire list to be created.

An example of a state in the computation is:

merge([5,71, [6,8], [1,2,3,4 | ListN]),
write_list([4 | ListN]), write(2), write(3)

Four elements of the result list have been produced and passed to write_list, which
has already created new processes to print three out of the four elements. The first
process has been executed, printing 1 and terminating. The other two processes are
waiting to be activated. 0

Synchronization

The example shows how communication can be achieved within the framework of
unification without introducing additional constructs into the programming language.
‘There remains one problem, however. We need to devise a mechanism to synchronize
the concurrent processes so that, for example, write_list does not attempt to write
a list that has not yet been instantiated with actual values. The solution is to change
the semantics of unification, so that a substitution is not allowed to substitute for a
variable in a process associated with a literal of a goal clause. Instead, the process will
block until the variable is instantiated with a non-variable term.

Example 8.26 In the goal clause
?- merge([1,3,5,71,[2,4,6,8],List), write_list(List).

the process write_list is initially blocked because unification with a program clause
would substitute [HeadlTail] or [] for the variable List in the literal of the goal
clause. However, once the substitution List=[1]List3] is created by the execution
of the merge process, the process write_list is unblocked and 1 can be assigned to
Head. This also unblocks the literal write (Head) and the first value can be printed.

8.4 Concurrent logic programming* 191

In the recursive call write_list(List3), unification is again trying to assign to a
variable and the process is blocked. i

Committed or-parallelism
Consider a refutation of the goal clause ?-p(X) with the program:

pX) - q(X,2), r(X).
p(X) :- q(X,b), rX).
q(Y,y).

r(b).

Or-parallelism can be used with the two clauses in the procedure for p. If the refu-
tation beginning with the first clause proceeds faster than the refutation beginning
with the second clause, the substitution X=a can be made by resolving q(X,a) with
q(Y,Y), before the substitution X=b is created in the second or-parallel refutation at-
tempt. Since a variable can only be instantiated once, and since the substitution X=a
will eventually cause failure, all threads of execution must maintain a history of their
substitutions so that they can be rolled back. In a real program with many parallel
threads, the inherent complexity and inefficiency of this requirement can outweigh
any advantage of parallel computation.

A solution is to limit or-parallelism to pattern matching of the initial clause head and
to resolution of literals in the clause body which do not bind variables in literals of the
goal clause. Once we have committed to an alternative, such bindings may be done.

Example 8.27 Consider the goal clause p(1,x) and program:

p(0,X) :- q(X,a).
p(N,X) :- N<O, q(X,b).
p(N,X) :- N<0, q(X,c).
q(X,X). :

The three clauses for p may be tried in parallel. The first clause is rejected because its
head p(0,X) cannot be unified with the literal p(1,X). The second and third clauses
contain literals N>0 and N<O which Jjust test the value of its argument without binding
any variable. Once we commit to the second clause, the parallel attempts to resolve
with the first and third clauses can be terminated, and the call q(X,b) can bind b to X
with no danger that the substitution may have to be undone. {1

Most practical logic programming are flat, meaning that literals resolved before com-
mitment are built-in predicates. The and-or tree collapses to a single level, because no
new processes need to be created for or-parallelism.
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The GHC language

As an example of a concurrent logic language we will briefly describe the GHC
(Guarded Horn Clauses) language. A GHC program consists of a set of guarded
clauses. A guarded clause is like an ordinary clause except that the literals in the body
may be preceded by a sequence of literals called guards. They are separated from the
body literals by a vertical bar rather than by a comma:

A :-G1,...,Gk | B1,...,Bn.

The rules for the head of the clause and the guard are the same: if an attempt is made
to substitute for a variable in a literal of a goal clause, the computation is blocked
until the variable is instantiated with a non-variable term. Substitutions to variables
are allowed only in the body of the clause.

Example 8.28 Hereisa Proloé program that unifies the third argument with the max-
imum of values in the first two arguments:

max(X,¥,X) :~ X >= Y.
max(X,Y,Y) (- X < Y.

If called with the goal clause ?-max (4, 5;A) it will return the substitution A=5.

However, this program is not very useful as a GHC program. If called with the goal
clause 7-max (4,5, 4) it will simply block until 4 is unified with a non-variable term,
because the variable cannot be assigned to from within the head of a program clause.
A GHC version of the program is as follows:

max(X,Y,Z) :-X>=Y | Z = X.
max(X,Y,Z) (- X <Y | Z =Y.

The substitution for Z is explicitly created in the bodies of the program clauses. The
tests X>=Y and X<Y do not create such bindings so they can be placed in the guards and
executed in or-parallelism. The goal clause ?-max(4,5,A) will cause commitment to
the second program clause and the assignment of 5 to Z and thus to A.

If the goal clause were 7-max(B,5,A), the attempt to substitute X for B causes the
computation to be blocked. Such a literal would only appear in a context such as
?-generate(B) ,max(B,5,A) where another process will eventually generate a bind-
ing for B. 0

Formally, the matching of the head and the evaluation of a guard define a status for
each clause in the procedure:

o The clause is a candidate clause if the matching succeeds and the guard resolves
successfully.

=]

.

g o

9 w»
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o The clause is a non-candidate clause if the matching fails or the resolution of
the guard fails (or both).

» The clause is a suspended clause if either the matching or the resolution of the
guard would require a variable in a literal of the goal clause to be instantiated.

I’l)ncc the status of the clause definitions in the procedure is determined, the computa-

on proceeds as follows:

e If there is at least one candidate clause, the resolution succeeds. The compu-
tation commits to one of the candidate clauses, its body replaces the literal and
the substitutions from the body to goal variables are done.

e If there are no candidate clauses but there are suspended clauses, the resolution
is suspended.

o If all clauses are non-candidate clauses, the resolution fails.

Example 8.29 The merge program is written in GHC as follows:

merge ([Head1|Taill], [Head2|Tail2], Result) :-
Headl <= Head?2 |
Result = [Headl|List3],
merge(Taill, [Head2|Tail2], List3).
merge ([Head1|Tailil], [Head2|Tail2], Result) :-
Headl > Head?2 |
Result = [Head2|List3],
merge ([Head1|Tailll, Tail2, List3).
merge([], List, Result) :- true | Result
merge(List, [], Result) :- true | Result

List.
List.

he tests are put in the guard and together with the matching of the heads can be
erformed in parallel. Once one is successful, the clause commits and the assignment

0 Result can take place.

xecuting the goal clause

?7- merge([1,3,5,7],[2,4,6,8], List),write_list(List).

-will cause the computation to commit to the first program clause; then the substi-

ition List=[1]List3] from the body can be made and the process write_list
nblocked. o

tream and-parallelism is a powerful technique because it makes interactive programs
ossible within the framework of logic programming. Consider the goal clause:
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?- get(L1), process(L1, L2), put(L2).

where get is a process that waits for input from a keyboard, process is a program that
takes a list of input values and produces a list of output values and put displays a list of
values to a Screen. Whenever the user inputs a value v, the variable L1 is instantiated
with a list containing a logic variable [v]LL]. process is now unblocked, computes
the appropriate output value w from v and instantiates L2 with [w|LLL]. put is now
unblocked and displays w.

8.5 Constraint logic programming*

Constraint logic programming (CLP) combines the flexibility and ease of declarative
programming in logic programming with the power of search techniques that were
developed during research on artificial intelligence. CLP is best understood by con-
sideﬁng two problems with logic programming in Prolog:

e Logic programming is limited to uninterpreted domains. As we saw in Sec-
tion 8.3, even arithmetic cannot be done within the framework of Prolog and
the nonlogical predicate is must be used for even the simplest computation.

e SLD-resolution (Section 8.2) searches the entire tree in a fixed order and does
not use knowledge gained during the computation in order to control the search.

Let us demonstrate these difficulties and how they are avoided in CLP. The discussion
is based on the classical eight-queens problem as presented in Van Hentenryck (1989).
The problem is to place eight queens on a chess board such that no queen attacks
another. For readers not familiar with the game: chess is played on an 8 x 8 matrix of
cells; one queen attacks another if it is placed on the same row, column or diagonal.
Figure 8.4 shows a solution.

The problem can be simplified by noting that since at most one queen can appear in
any row or column of the matrix, it is sufficient to consider permutations of the set
{1,2,3,4,5,6,7,8). The i’th element of the permutation indicates the row in the i’th
column in which a queen will be placed. The solution shown in Figure 8.4 corresponds
to the permutation {1,5,8,6,3,7,2,4}.

~ Search problems of this sort can be solved in Prolog using generate-and-test. Simply
generate every possible permutation of the set and zest if it satisfies the requirements
of the problem. If the test fails, backiracking will cause a new permutation to be
generated.

queens ([X1,X2,X3,X4,X5,X6,X7,X8]) :-
permutation([X1,X2,X3,X4,X5,X6,X7,x8], [1,2,3,4,5,6,7,8]),
safe([X1,X2,X3,X4,%X5,X6,X7,X8]1).
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Figure 8.3 Solution of the eight-queens problem

For reference, here is a procedure to generate permutations. It selects an element of
the list of numbers which will be the first element of the permutation; then it calls
itself recursively to generate the rest of the permutation on the remaining numbers.

permutation([], [1).

permutation([Head|Tail), Numbers) :-
select (Numbers, Head, NewNumbers) ,
permutation(Tail, NewNumbers).

safe checks if the permutation is a solution. It calls noattack successively on each

element of the permutation to ensure that this placement of a queen does not attack
the rest of the queens.

safe([1).

safe([Queen|Others]) :-
noattack(Queen, Others),
safe(Others).

noattack(Queen, Others) :-
noattack(Queen, Others, 1).

noattack(_, [], ).
noattack(Queen, [Next|Others], N) :-
Queen =\= Next - N,
Queen =\= Next + N,
Nl is N + 1,
noattack(Queen, Others, N1i).
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What is wrong with this solution? First, it is extremely inefficient. The first permu-
tation tested is {1,2,3,4,5,6,7, 8} which is clearly not safe because all the queens
are on the main diagonal. Since the test fails, backtracking commences and the sec-
ond permutation tested is {1,2,3,4,5,6, 8,7}, which is not much better than the first
one. A human trying to solve the problem would quickly note that any permutation
beginning with {1, 2, ...} is not a solution, but the generate-and-test algorithm blindly
generates all the permutations in order. In fact, this program generates 2843 permuta-
tions before finding the first solution shown in Figure 8.3!

Generate-and-test can be improved by integrating the testing with the generation.

Rather than create an entire permutation and only then testing it, the permutation

(placement of queens) can be build incrementally and tested after each queen has been

placed. For example, if the placement {1, 5, 8, 6} has been determined to be safe, any

attempt to place the next queen on {2, 7} is unsafe so there is no need to generate and
- test every permutation whose fifth element is one of those numbers.

In the following program, queens (List,Placed, Numbers) implements this strat-
egy by incrementally building in Placed a (reversed) list of queens already placed.
Numbers is a list of the unused elements of the permutation. List is used to return
the result. The predicate works by selecting an unused element Queen from the list
Numbers. If noattack succeeds, meaning that the row Queen is consistent with those
Placed so far, a recursive call is made to attempt to place the next queen.

queens(X) :-
queens(X, [1, [i1,2,3,4,5,6,7,8]).

queens([], _, [1).

queens ( [Queen|Others], Placed, Numbers) :-
select (Numbers, Queen, NewNumbers),
noattack(Queen, Placed),
queens (Others, [Queen|Placed], NewNumbers).

This program is an order of magnitude more efficient than the previous one: it makes
only 336 selections before finding the solution. Still it is somewhat upsetting that we
had to be clever and change the simplest declarative program that solves the problem.

The second proBlem with the Prolog solutions is that the programs waste a lot of
. information. For example, once a queen is placed in row 1, the entire main diagonal
is taken, but this knowledge is thrown away and recreated again and again.

CLP is based on constrain-and-generate, which reverses the strategy of generate and
test. The programmer writes constraints on the domains of the predicates, which are
maintained as data structures within the compiler or interpreter. In the case of the
eight-queens problem, there are two constraints: First, we know that the values of the
generated configurations must be within the range of 1 to 8. Second, once a queen is
placed, the inequations:
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Queen =\= Next, Queen =\= Next - N, Queen =\= Next + N
constrain future placements.
When the eight-queens program is initially run, a domain declaration

domain queens(1..8). -

constrains the values of the variables in the predicate to be integers in the stated range.
Given a goal clause queens ([X1,X2,X3,X4,X5,X6, X7,X8]), a data structure is
constructed to maintain the possible values of the variables:

X1 € {1,2,3,4,56,7,8)
X2 € (1,23,4,56,7,8)
X3 € (1,2,3,4,56,7,8)
X4 € (1,2,3,4,56,7,8)
X5 € {1,2,3.4,56,7,8)
X6 € (1,2,3,4,56,7,8)
X7 € {1,2,3,4,56,7,8)
X8 € (1,2,3,4,56,7,8)

Now that the values have been constrained, the next step is to generate a configuration,
say, by placing a queen in row 1. Once the configuration is generated, the program
returns to check the constraints. Placing even one queen significantly reduces the
possible values of the remaining variables, as no other queen can be placed in the
same row, column or diagonal.

Xl e (1)

X2 € {3,456,7,8)
X3 € (2,4,56,7,8)
X4 € (2,3,56,7,8)
X5 € (2.3,467,8)
X6 € {(2.3,4,578)
X7 € {23,4,5,6,8)
X8 € (2,3,4,56,7)

After constraining and generating more configurations, placing queens on rows 3, 5
and 7, the domain is reduced to:

X1 e {1}

X2 e ({3)

X3 e {5)

X4 e {7}

X5 e (2,4}
X6 € ({4}

X7 e (2,6}
X8 € {2,4,6)
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Figure 8.4 Sqﬁares that do not satisfy the constraints

as shown in Figure 8.4, where the bullets indicate locations that are in ‘check’. By
examining the table or the figure, we can clearly see that it is impossible to choose a
configuration that contains a queen in row 8, so no solution is possible and we must
backtrack. If constrain-and-generate is pursued, the choices 2, 4 and 6 for X5, X6 and
X7 leave no choices for X8. The choice 4 for X5 immediately leaves no choice for X6.

By maintaining constraints on domain values, rather than throwing them away as the
Prolog program did, the search for a solution is an order of magnitude shorter. Fur-
thermore, the CLP program is even simpler than the Prolog program.

domain queens(1..8).

queens([]).

queens( [Queen|Others]) :-
indomain(Queen),
noattack(Queen, Others),
queens (Others) .

The predicate indomain generates values for the variable that are within the declared
domain. noattack is syntactically the same as before with the addition of the inequa-
tion Queen =\= Next. These inequations do not simply check that domain values
satisfy them; instead, they are used to constrain the domain values of all the variables
" as shown in the example.

The maintenance and propagation of constraints as described in the ei ght-queens prob-
lems is the basis of the CHIP programming language which is used to solve problems
in operations research such as scheduling.
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An alternate view of CLP is to regard constraints as extensions of unification. Re-
call that we presented unification as solving a set of equations over the uninterpreted
Herbrand domain. If the terms to be ‘unified’ are interpreted over an actual domain,
algorithms for this domain can be included within the language interpreter. The most
extensively developed example is the language CLP(R) for writing logic programs
over the domain of real numbers (Jaffar & Maher 1994). In CLP(R), a constraint
such as Ohm’s Law V = I« R may be written. If the constraint is executed with any
two of the three variables ground, an algorithm is used to compute the third. If only
one of the variables is ground, it is used to update the constraint for subsequent exe-
cutions. For exampie, if R = 1000.0, then the constraint V =TI % 1000.0 is satisfiable
for V = 500.0,7 = 0.5, but not for V = 500.0,7 =1.0.

CLP(R), which combines the declarative logic programming style with algorithms
for computation on real numbers, has been used in applications areas such as circuit

simulation and stock option analysis that were not traditional areas for logic program-
ming.

8.6 Exercises

1. Let P be the program p(a) « and G be the goal clause « p(x). Is the identity
substitution a correct answer substitution? Explain.

2. Draw in detail and to greater depth the SLD-tree in Figure 8.1.

3. Draw an SLD-tree similar to that of Figure 8.1 except that the computation rule
is to select the rightmost literal in a clause.

4. Given the logic program

pla,b)

ple,b)

Py <« px,2).pzy)
pxy) <« p@.x),

and the goal clause «p(q, c), show that if any clause is omitted from the pro-
gram then there is no refutation. From this prove that if a depth-first search rule

is used with any fixed order of the clauses, there is no refutation no matter what
computation rule is used.

5. Given the logic program
p=q(xx)
q(x. f(x)),
and the goal clause «p, prove that there is a refutation if and only if the oc-

cur check is omitted. Conclude that omitting the occur check invalidates the
soundness of SLD-resolution.
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10.

11.

. Given the logic program

p « qxx)
gxf(x) <« qxx),

and the goal clause «p, what happens if a refutation is attempted without using
the occur check?

. Write a logic program for the Slowsort algorithm by directly implementing the

following specification of sorting: sort(L1, L2) is true if L2 is a permutation of
L1 and L2 is ordered.

. * Suppose that the tests in the GHC program for merge are replaced by true

fony

and that the input lists are not required to be ordered. Describe the possible
computations.

. *Let Tree be a binary t}ee whose nodes are labeled with integers. Write a GHC

program to sum the labels of the nodes that works by concurrent flattening the
tree into a list of nodes and summing the elements of the list:

sum_tree(Tree, Sum) :-
flatten(Tree, List), sum_list(List, Sum).

£ Write a Prolog program to solve the puzzle SEND+MORE=MONEY that works o.n
the same principle as the program queens: generate a permutation .and test if
it is a solution. A solution is a substitution of distinct digits for distinct letters
such that the addition is correct. Instrument the program to count the number of
permutations generated. (Warning: Be patient....)

* Simulate a constraint logic program to solve the SEND+MORE=MONEY Puzzle.
The domain of the list of variables [S,E,N,D,M,0,R,Y,_] is constrained to
0. .9 and the four carry variables are constrained to 0. .1. How many configu-
rations are generated?

Programs:
9 Semantics and Verification

9.1 Introduction

A program is not very different from a logical formula. It is a sequence of symbols
constructed according to formal syntactical rules and it has a meaning which is as-
signed by an interpretation of the elements of the language. In programming, the
symbols are called szatements or commands and the intended interpretation is an exe-
cution on a machine, rather than evaluation of a truth value. The syntax of program-
ming languages is specified using formal systems such as BNF, but the semantics is
usually informally specified. :

Example 9.1 The formal BNF syntax of an if-statement was given in Example 1.2.
Its semantics is described informally as follows:

The Boolean expression is evaluated. If true, the statement following
then is executed, otherwise the statement following else is executed.

0

If the semantics is informally defined there is no formal way of determining the valid-

ity or correctness of a program, and we are reduced to testing and debugging which
are unreliable and expensive.

In this chapter, we present a formal system for specifying the semantics of a program-
ming language and we precisely define the concept of a correct program. Then we give
an axiom system that can be used to prove that a program is correct with respect to its
formal specification. The next chapter presents the Z notation, which is a convenient
and very expressive notation for specifying properties of a program.

There is an essential difference between program logics and the predicate calculus. In
the predicate calculus, we concentrated on arbitrary interpretations and thus on valid
formulas. In particular, the central result is the completeness theorem, which shows
that the set of valid formulas equals the set of provable formulas. Most programming,
however, deals with numbers or other predefined domains, such as strings or trees.
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In order to concentrate on reasoning about programs, we take. the theorems of th;se
domains as axioms. For example, (x >y) = (x+ 1 >y + 1) is a theorem of num 211;
theory and will be used as an axiom without further_proof. Thus th.e ﬁmpletglis;ive
an axiom system for verification of programs is relative to the domain : €eory. 1 e;eness
completeness is not a problem in practice, for the sarnfe reason that the incomple s
of arithmetic is not a problem in practice. If you write a prograrr.x to ‘do a;.m;lmenc;_
computation, you already have the proofs to justify the c?mputanon itself; t 'e prc;n
lem is to show that the program is a correct implementation of .the computatlo.n. h

automated theorem prover or software for symbolic mathematics can help with the

arithmetic calculations, if needed.

9.2 Semantics of programming languages

A statement in a programming language can be considered to be a function that H@s—
forms the state of a computation. If the variables (x,y) have the values 58 7 11.1 ﬁ
state s, then the result of executing the statement x := 2%y+1 is the state s’ in whic

(x, y) = (15,7).

Definition 9.2 If a program uses # variables (x1, ...,xn), a state s con.sists of 'an n-
tuple of values (x1, . . ., x,), where x; is the value of the variable xi. Notation: .vanables
of the program will be indicated in typewriter font x, while the corresponding value

. .. 0
of the variable will be indicated in italic font x.

We want to be able to reason within the predicate calculus about the states of a com-
putation, so predicates are used instead of sets of states.

Definition 9.3 Let U be the set of all n-tuples of values over some domain(s), and
let U € U. Py(xi,...,x,), the characteristic predicate of U’, is defined so that

U=1{(x,....xp) €U | Py(xr,....xn)}. .

Example 9.4 Let U be the set of 2-tuples over Z and let I C U be the 2-tuples
described in the following table:

-2,-3) (=2,-2) (=2,-1) (=2,0) (=2,1) (=2,2) (-2.3)
§_1,_3§ (-1,-2) (=1,-1) (-1,0) (-1,1) (~1,2) (~1,3)
0,-3) (0.-2) ©-1) (@©0 (@O ©2 ©3
1,-3) (1L-2 @-) (Lo (L (L2 (L3)
2-3) @-2 @-) @0 @) @2 @3

The characteristic predicate of U’ is (x; = x1) A (x2 < 3) or simply x; < 3.
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A simple program with integer variables x1 and x2 can be executed starting in any
one of about 2*2 - 232 states on a 32-bit machine. Without characteristic predicates like
X < 3 it would be extremely difficult to reason about the states of a program.

Example 9.5 Let S be the program statement x := 2+y+1. It transforms states in
{(x, ) | true} into states in {(x, y) | x =2y +1}. Suppose we specify instead that the
set of initial states is {(x,y) | y < 3}. Since ¢ £3) > (2y+1< 7), the final state
after executing S is in {(x,y) | (x < T)A(y < 3)}. We say that S transforms y £ 3into
x<NHA@<3I). i

The semantics of a programming language is given by specifying how each statement
in the language transforms an initial state into a final state. The same concept is also

used to define the semantics of a program, which is composed of statements in the
language.

Definition 9.6 An assertion is a triple {p} S {q}, where S is a program, and p and
g are formulas in the predicate calculus called the precondition and postcondition,
respectively.

An assertion is true, denoted = {p} 8 {q}, iff: if S is started in a state satisfying p
and if this computation of S terminates, then the computation terminates in a state
satisfying q. A

If = {p} S (g}, then S is said to be partially correct with respect to pandgq. a
Assertions are also called Hoare triples.

Example 9.7 = {y<3}x := 2xy+1l {(x <A (¥ < 3)). A

Example 9.8 = {false} S {q} for any S and g; since there are no states satisfying
Jalse, the condition is vacuous, Similarly, = {p} S {true} for any p and S. al

Weakest preconditions

The formalization of the semantics of a language in terms of predicates is done by giv-

| ing for each statement and postcondition, the minimal precondition that wiil guarantee

the truth of the postcondition upon termination of the statement.

Example 9.9 k= {y < 3) x:=24y+1 {(x <) A (y < 3)}, but y < 3 is not the only
-\ precondition that will make the postcondition true. Another one is y=1lvy=3. 1

.| This precondition y=1Vy = 3is ‘less interesting’ than y < 3 because it does
~'|not characterize all states from which the computation can reach a state satisfying the
“|postcondition. We wish to choose the least restrictive precondition so that as many
- |states as possible can be initial states in the computation.
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Definition 9.10 A formula A is weaker than formula B if B — A. Given a set of
formulas {A, Az, ...}, A; is the weakest formula in the set if A; — A; for all j. g

Example 9.11 y <3isweakerthany = 1Vy=3because y = 1vy=3)—> (y < 3).
Similarly, y = 1 Vy = 3 is weaker than y = 1, and (by transitivity) y < 3 is also
weaker than y = 1. This is demonstrated by the following Venn diagram:

You can always strengthen a premise and weaken a consequence, for example, if p— g,
then (p A r) = g and p — (g V r). The terminology is somewhat difficult to get used
to because we are used to thinking about states rather than predicates. Just remember
that the weaker the predicate, the more states satisfy it.

Definition 9.12 For program S and formula g, wp(S, g), the weakest precondition! of
8 and q, is the weakest formula p such that = {p} S {g}. 0

The proof of the following lemma is immediate from the definition of weakest.
Lemma 9.13 = {p} 8 {q} ifand only if = p —» wp(S, g).

Example 9.14 wp(x:=2%y+1, (x < ) A(y £ 3)) = y < 3. Recall that y < 3 is
the characteristic predicate of the set of states U = {(x,y) | y < 3}. Check that for
any (x,y) € U, ¥ < 7 holds of the values (x', ') after executing the statement, and
conversely. a

The weakest precondition p depends upon both the program 8 and the postcondition
g. If the postcondition in the example is changed to x < 9 then the weakest precon-
dition becomes y < 4. Similarly, if S is changed to x := y+2 without changing the
postcondition, the weakest precondition becomes y < 5.

wp is a predicate transformer because for any given program fragment, it defines a
transformation of a postcondition predicate into a precondition predicate. Initially, we

IThe literature on semantics calls this definition the weakest liberal precondition wip, and reserves wp
for preconditions that ensure total correctness. Since total correctness is only surveyed in this text, we omit
the distinction for conciseness.
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set out to formalize a program as a transform from a given set of initial states to a ser
of final states. Instead we formalized a program as a transform from a postcondition
predicate to a precondition predicate. This backwards formulation in terms of precon-
ditions from postconditions is preferred since it is goal-oriented, that is, we start from
the specification of the result of the entire program and work backwards to synthesize
or verify the individual program statements that achieve the result.

Semantics of a fragment of Pascal

The following definitions formalize the semantics of the fragment of Pascal consisting
of compositions of assignment, if- and while-statements.

Definition 9.15  wp(x:=t, p(x)) = p(x) {x « t}. 1]
At first glance, the semantics of an assignment statement may seem to be backwards,
but it must be understood in terms of a predicate transformer. If substituting ¢ for x

makes p(x) true now, then go ahead and perform the assignment, after which p(x) will
be true because x has the value 1.

Example 9.16  wp(y:=y-1, y > 0) = (y — 1 > 0), which simplifies to y > 1. 0

Composition of statements takes the result of transforming the final postcondition by
the second statement as the postcondition for the first statement.

Definition 9.17 wp(S1;52, q) = wp(S1, wp(S2, g)). 0

The following figure illustrates the definition.

wp(S1, wp(S2, g))

The precondition wp(S2, q) characterizes the set of states such that executing S2 leads
to a state in which g is true. If executing S1 leads to one of these state, then S1;82
will lead to a state whose postcondition is g.
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Example 9.18
wp(x:=x+l; y:=y+2, x<y) = wp(x:=x+1, wp(y:=y+2, x<Yy))
= wp(x:=xtl, x<y+2)
= x+l<y+2
= x<y+1.

Example 9.19 A more complicated example is:
wp(x:=x+a; y:=y-1, x=((b-y)-a)

= wp(x:=x+a, wp(y:=y-1, x=(b—-y)-a))

= wp(x:=xta, x=Mb-y+1)-a)

= xta={b-y+1)-a

= x=0b-y)a
Give the precondition x = (b — y) - a, the statement (predicate transformer) x : =x+a ;
y:=y-1 does nothing! However, while the precondition is the same as the postcondi-

tion, the statements x:=x+1;y:=y-1 have changed the relative values of x and y and
this has meaning in terms of the execution of the program. a

Definition 9.20 A predicate [ is an invariant of Siff wp(8, I) =1. - ]

Definition 9.21 Here are two equivalent definitions for if-statements:

wp(if B then S1 else 82, 9) = (B—-wp(S1, q) A (=B - wp(S2, g))

wp(if B then S1 else 82, q) (BAwp(S1, q)) Vv ("BAwp(S2, g)).

o
The definition is straightforward because the predicate B partitions the set of states into

two disjoint subsets, and the preconditions are then determined by the actions of each
Si on its subset. The equivalent definition follows from the propositional equivalence
@=DACp->n=@AQV(pAr.

Example 9.22
wp(if y=0 then x:=0 else x:=y+1, x=y)
= (0=0-wp(x:=0,x=y)) A (y #0->wp(x:=y+1, x =y))
= (0=0-20=0) A (G#£0)>0+1=y)
true A ((y # 0) - false)
~#0)
y=0.

{1
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Definition 9.23 Here are two equivalent definitions for while-statements: .

wp(vhile B do S,q) = (=B—g) A (B— wp(S; while B do S, gq))

wp(while B do 8§, gq) (=~BAg) V (BAwp(S; while B do S, g)).

The execution of a while-statement can proceed in one of two ways:

o The statement can terminate immediately because the Boolean expression eval-
uates to false, in which case the state does not change so the precondition is the
same as the postcondition.

® The expression can evaluate to true and cause the body of the loop to be ex-
ecuted. Upon termination of the body, the while-statement again attempts to
establish the postcondition.

Example 9.24 Because of the recursive definition of the weakest precondition for a
while-statement, we cannot constructively compute it; nevertheless, an attempt to do
so is informative. Let W be an abbreviation for wvhile x>0 do x:=x-1.

wp(W, x =0)

CE>OAE=0) V (x>0 Awp(x:=x-1; W, x=0))
x=0) vV ((x>0)Awp(x:=x-1, wp(W, x =0)))

xE=0 VvV (x>0AwpW, x=0){x «x—1}).

We have to perform the substitution {x < x — 1} on wp(¥W, x = 0). But we have
just computed a value for wp(W, x = 0). Performing the substitution and simplifying
gives:
wp(while x>0 do x:=x-1, x=0)
= =0V =1V ((x>DAwpW x=0{xx—1}{x «x-1}).

Continuing the computation, we arrive at the following formula:

wp(W, x = 0)
=0 V=)V x=2)v ..
= x20.

The theory of fixpoints can be used to formally justify the infinite substitution, but
we will not do it here. Note that if the postcondition were changed to x = 1, the
computation of the weakest precondition would give false v false v - - -, showing that
for no initial states can this while-statement terminate in a state with x = 1. D
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There are several theorems about wp that we will need.
Theorem 9.25 (Distribution) E wp(S, p) Awp(S, q) <« wp(S, pAg).

Proof: Let s be an arbitrary state in which wp(S, p) A wp(S, g) is true. Then both
wp(S, p) and wp(S, q) are true in 5. Executing S leads to a state s’ such that p and g
are both true in 5’. By propositional calculus, p A g is true in §'. Since s was arbitrary,
we have proved that

{siEwpS, p)AwpS, @} C {s|EwpS, pAg}

that is, = wp(S, p) Awp(S, q) — wp(S, p A q). The converse is left as an exercise. |

Corollary 9.26 (Excluded miracle) = wp(S, p) A wp(S, = p) <> wp(8, faise).

According to the definition of assertion, any precondition is true in states for which
the computation does not terminate. The following diagram shows how wp(8, false) is
the intersection (conjunction) of the weakest preconditions wp(S, p) and wp(S, = p).
From any state, the computation is either non-terminating, or it terminates in a state
where p is true, or in a state where - p is true.

wp(S, ~p)

A

wp(S, p)

It also furnishes an informal proof of the following theorem.

Theorem 9.27 (Duality) k= ~wp(S, - p) = wp(S, p).
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Theorem 9.28 (Monotonicity) If | p — g then = wp(S, p) — wp(S, q).

Proof:
I. EwpB. p)Awp(S, ~q)—>wp(S, pA-gq) Theorem 9.25
2. Ep—og Assumption
3. E-@A-g 2,PC
4. Ewp(S, p) Awp(S, ~q) = wp(S, false) » 1,3
5. Ewp(s, false) » wp(S, q) Theorem 9.26
6. Ewp(S. p) Awp(S, ~q) - wp(S, q) 4,5,PC
7. Ewp(S, p) = ~wp(S, ~q) Vwp(s, q) 6,PC
8. Ewp(S, p)—wp(S, q) 7, Theorem 9.27

A weaker formula satisfies more states:

Example 9.29 In Example 9.19 we showed that
wp(x:=x+1; y:=y+2, x<y)=x<y+1.

Change the postcondition to x < y — 2, where (x < y —2) — (x < ¥). A calculation
similar to the one in the example gives

wp(xi=x+1l; yi=y+2, x<y—-2)=x<y-—1,

and clearly (x <y —1) » (x<y+1). 1]

9.3 The deductive system HL

A deductive system whose formulas are assertions can be used to prove properties of
programs. The deductive system HL (Hoare Logic) is sound and relatively complete

 for proving partial correctness. If a program is partially correct, the assertion for the
‘correctness of the program can be proved from the axioms and rules of inference.

However, the completeness is relative to the completeness of the domain theories,

* because we assume that a// true formulas in the domain(s) are axioms. In particular,
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if the program operates on the domain of integers, then HL cannot be absolutely
complete because the theory of integers is not complete.

Definition 9.30 (Deductive system H L)

Domain axioms '
Every true formula over the domain(s) of the program variables.

Assignment axiom
Fip{x <11} x = t {p(x)}.

Composition rule

F {p} 81 {q} - {g} 52 {r}
F {p} s1;s2 {r} ’
Alternative rule

F {pABj}s1{q} F{pA-B}S2{q}
I {p} if B then S1 else S2 {q}

Loop rule
F{pAB}S {p}
F {p} while B do S {pA-B}’

Consequence rule

Fpi—p F{pr} s {q} Fq—>q1.
F{p1} s {q}

Since - A — A is a domain axiom for any A, the consequence rule can be used with
justtwo premises either to strengthen the precondition or to weaken the postcondition.

The assignment axiom can be understood in terms of the definition of the semantics of
the assignment statement in terms of weakest preconditions. The verification is done
backwards: if you want to prove the assertion

Fi{po}x := t [p(0)},
you are allowed to assume
Fp(){x <t}}x := £ {p()}.

If po = p(x){x « t}, a formula in the domain, is true, it is a domain axiom, and a use
of the consequence rule proves the assertion.
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The formula p in the loop rule is called an invariant: it describes the behavior of a
single execution of the statement S in the while-statement body. To prove

+ {po} while B do S {g},

find an invariant p. You then need to show that Po — p is true so that the precondi-
tion of the loop rule holds. If you can also show that (@ A = B) — g is true, then no
matter how many times the loop is executed, the postcondition of the rule implies the
postcondition q.

The difficulty in proving programs is to find appropriate invariants. The formula true
(the weakest formula) is an invariant of any loop because it is true in any state reached
after the computation of S. However, it is of no use in proving a program, since we
will never write a loop whose whole purpose is to establish the truth of the formula
true! On the other hand, if the formula is too strong, it will not be an invariant.

Example 9.31 x = 5 is too strong to be an invariant of the while-statement

while x > 0 do x =x - 1,
because x = 5 Ax > 0 does not imply that x = 5 after executing x := x - 1.
However, x > 0 is an invariant because x > 0 Ax > 0 does imply x > 0 after executing
the loop body. The loop rule enables us to conclude that if the loop terminates, then

x 2 0A= (x > 0) holds upon termination. This can be simplified to x = 0 by reasoning
within the domain and using the consequence rule. 0

9.4 Program verification

Let us use 1L to proving the partial correctness of the following program P.

 {true}
X = 0;
{x=0}
y := b;
{x=0Ay=0b}
while y <> 0 do
{x=(®-y)-a}
begin x :=x + a; y =y - 1 end;
{x=a-b)}

‘We have annotated P with formulas between statements. Given

{1} 81 {p2} 82 -+ {p,} Sn {pns1},
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we prove {p;} Si {pi+1} for all i, and then conclude {p1} S1;---; 8Sn {pp+1} by
repeated application of the composition rule. See Apt & Olderog (1991, Section 3.4)
for a formal proof that £ with annotations is equivalent to HL without them.

Theorem 9.32 |- {frue} P {x =a - b}.

Proof: From the assignment axiom we have {0 = 0} x:=0 {x = 0}, and from the
consequence rule with premise true — (0 = 0), we have {true} x:=0 {x = 0}. The
proof of {x =0} y:=b ((x = 0) A (y = b)} is similar.

Let p be the formula x = (b — y) - a. We showed that {p} x:=x+a; y:=y-1 {p}
(Example 9.19), that is, p is an invariant of the loop body. By the consequence rule,
the precondition can be strengthened to

{p Ay # 0} x:=x+a; y:=y-1 {p}.

But this is the premise needed for the loop rule, and the conclusion is:

{p}
while y<>0 do

begin x:=x+a; y:=y-1 end

{pA-0O#0)}

The postcondition of the loop can be written p A (y = 0); using domain axioms and
the consequence rule, we can deduce x = a - b, the postcondition of P. |

In practice, the domain axioms and the consequence rule are used implicitly, as we are
interested in the program-specific aspects of the proofs. Furthermore, the application
of all the structural rules is purely mechanical; the only aspects of the proof requiring
intelligence are the choice of the loop invariants and deduction within the domain.

Total correctness*

We have proved only partial correctness. If the initial value of b is negative, the
program will not terminate. However, if the precondition is strengthened to b > 0, the
program is in fact totally correct. We will not give the extension needed to make HL
a deductive system for total correctness (Apt & Olderog 1991, Section 3.3); instead,
we demonstrate the method on the program P.

Strengthening the precondition will obviously not invalidate the proof of partial cor-
rectness, since a stronger precondition simply selects a subset of the set of states for
which the computation is correct. Thus all that is needed is to prove that the pro-
gram terminates, and the only statement that can possibly not terminate is the while-
statement. To show termination, we search for a numeric function whose value de-
creases with every execution of the loop, and whose value has an invariant lower
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bound. The loop must eventually terminate because there cannot be an infinite de-
creasing sequence greater than the lower bound.

In P, y itself is a numeric function which decreases with each execution of the loop,
and y > 0 can be added as a lower bound to the invariant. By the precondition b > 0
it follows that y > O after the two initial assignments, and it is easy to see that the
addition of y > 0O to the invariant does not change the invariance of the formula:

{x=@®-y)-ahy>0Ay#0}
x:=x+a; y:=y-1
{(x=®-y)-any=>0}

Since y is decreasing and yet bounded from below by y > 0, the loop must terminate
and the program is totally correct.

This method is applicable to any program for which we can find a well-founded set:
an ordered, decreasing set with a lower bound.

Example 9.33 Let Str be a variable of type string and consider a program of the
form:

Str := { Some initial value };
while Str <> ?’ do
Str := Func(Str)

The set of strings under lexicographic order is well-founded because it has the empty
string as a lower bound. If Func returns a string whose lexicographic value is less
that that of Str (say it returns "Hello work" when called with "Hello world"),
eventually the loop must terminate. If the program can be proved partially correct, it
will also be totally correct. D

9.5 Program synthesis

Assertions may also be used in the synthesis of programs: the construction of a pro-
gram directly from a formal specification. The emphasis is on finding invariants of
loops, because the other aspects of program proving are purely mechanical. Starting
from the assertion with the pre- and postconditions of the entire program, invariants
are hypothesized as modifications of the postcondition and the program is constructed
to maintain the truth of the invariant. We demonstrate the method by developing two
different programs for finding the integer square root of a non-negative integer:

(0<a)s{0<<a<(x+1)?}.
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Solution 1

A loop is used to calculate values of x until the postcondition holds. Suppose we let
the first part of the postcondition be the invariant and try to establish the second part
upon termination of the loop. This gives the following program outline, where ? and
B(x,a) represent expressions that must be determined.

{0 <4}

x 1= 7;

while B(x,a) do
{0<x*<a}
X 1= 7?;

02 <a<(x+1)?).

Let p denote the loop invariant 0 < x> < a. Given the precondition 0 < a, p can be
established if the first statement is x : =0. The postcondition of the while-statement is
p A~ B(x, a), so B(x,a) should be chosen to imply the postcondition of the program.
This is easy to do if = B(x, @) is a < (x + 1)?, that is, if B(x,a) is (x+1)* (x+1)<=a.
Since the loop is to terminate when x is large enough, a loop body consisting of a
simple increment of x should suffice. Here is the resulting program:

{0<a)
x = 0;
while (x+1)*(x+1) <= a do
{0<x?<a)
X :=x + 1;
(02 <a< (x+1)?).

We must check the loop invariant {p A B} S {p}, in this case,
{0<x<an(@x+1)?<a)x:i=x+1 {0<x* <a).
By the semantics of the assignment statement,
{0< x4+ 1) <a} x:=x+1 {0 < x* < a},

but
O<P<anx+1)’<a)»0<x+172<a),

so the invariant follows by the consequence rule.

Solution 2

Suppose that instead of deleting part of the postcondition to obtain an invariant, we
introduce a new variable y to bound x from above:

OSXZSa<y2.
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The loop can be terminated when y=x+1. For the invariant to be true, y must always
be greater than x. Furthermore, there is no point in having y greater than a+1 so we
initialize y :=a+1 and add x < y < a + 1 to the invariant, giving

{0 <a<y?) A (x<y<a+1))

as the candidate for an invariant. The program outline is:

IA

{0<4a}
X = 0; y := atl;
while y <> x+1 do
(0¥ <a<y?) A (x<y<a+1))
7. .

{(0<x®<a<(x+1)7?}.

1]

Before continuing with the synthesis, let us try an example.

Example 9.34 Suppose that a = 14. Initially, x = 0 and y = 15. The loop must
terminate whenx =3 andy = x+1 =4,500 < 9 < 14 < 16. We can either increase x
or decrease y while maintaining the invariant 0 < x?> < a < y2. Rather than increment
or decrement the variables by 1, let us take the midpoint (x+y)/2 = (0 +15)/2 =7
(using integer division with truncation) and assign it to either x or ¥, as appropriate,
to narrow the range. In this case,a = 14 <49 =77, so assigning 7 to y (but not to
x) will maintain the invariant. On the next iteration, (x + »/2=0+7)/2=3and
3-3 =9 < 14 = g, so assigning 3 to x will maintain the invariant. After two more
iterations, x = 3,y =4 = x + [ and the loop terminates. 0

Here is an outline for the loop body annotated with the following assertions: the in-
variant {p A B} S1 {p} that must be proved and additional assertions that follow from
the assignment axioms.

{pAGy#x+ D)
z = (x+y) div 2;

{PAG#x+DA(lz=x+y)/2]))
if Cond(x,y,z) then

{p{x «z}})

X =2z
else

{ply « z}}

y (=2
{r}

where z is a new variable and Cond(x,y,z) is a Boolean expression, chosen so that

PAOFx+D A (2= [(x+y)/2]) A Cond(x,y,2)] = p{x « z},
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and
p A O#x+D A @=[(x+/2]) A ~Cond(xy. )] = ply < z}.
The conclusions can be written as
plx—zl=(0<Z<a<y) Az<y<a+l)

and

pyezl=0<P<a<?)A(x<z<a+l).
The first conjunct of the premise is p and its first conjunct is 0 < x* < a < y*. Clearly,
the first conjuncts of p{x « z} and p{y « z} will be true if Cond (x,y,z) is chosen
tobe zxz <= a.

What about the second conjuncts of p{x « z} and p(y « z}? Fromx <y <a+1,

the second conjunct of p, and z = |(x +y)/2},z <y < a + 1 follows. Similarly, from -

x<y<a+landz= |(x+y)/2],x <z < a+ 1 follows, provided thaty # x + 1.
But that formula is also a premise.

Here is the final program:

{0<a)
x :=0; y := atl;
while y <> x+1 do
[0<x?<a<y> Ax<y<a+1)
z = (x+y) div 2;
if z*z <= a then x := z else y := z
0<2 <a<@x+1)?).

While it may seem strange to develop the proof of a program concurrently with the
program itself, this method is recommended because it ensures that bugs are not built
into the program. Instead provably correct program fragments are combined and ex-
panded until the complete program has been constructed.

9.6 Soundness and completeness of HL

We start with definitions and lemmas which will be used in the proofs. The fragment of

Pascal is extended with two statements skip and abort, whose semantics are defined -

as follows.
Definition 9.35 wp(skip, p) = p and wp(abort, p) = false. 0

Definition 9.36
W=while B do S
W =if B then abort else skip

Wl = if B then S;W else skip. |
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Lemma 9.37 wp(W°, p) = =BA (=B - Dp).

~ Proof:

wp(Ww°, p)

wp(if B then abort else skip, p)

(B — wp(abort, p)) A (- B - wp(skip, p))
(B — false) A(~B - p)

(= BV false) A (=B —p)

“BA(-B-p).

: Lemma 9.38 \/2, wp(W¥, p) = wp(¥, p).

Proof: We show by induction that for each k, wp(W*, p) — wp(W, p).

- Fork=0:

1. wp(W° p)=>-BA(=B-p)

2. wp(wo. p)—=>-"BAp

3. wp(W° p)—= (=BAp) V (BAwp(S;¥, p))
4. wp(W°, p) - wp(W, p)

" Fork > 0:

1. wp(W!, p) = wp(if B then S;W* else skip, p)

wp(W*1, p) = (B - wp(S; W, p)) A (= B - wp(skip, p))
wp(WHL, p) = (B — wp(S, wp(W*, p))) A (- B > wp(skip, p))
wp(W*L, p) = (B —> wp(S, wp(W*, p))) A (=B - p)

wp(WL, py — (B — wp(S, wp(W, p))) A (=B - p)

wp(W*1, p) — (B = wp(S;W, p)) A (=B - p)

wp(W*1, p) > wp(W, p)

Nk we

. As k increases, more and more states are included in Vf:o wp(W, p):

W is just an abbreviation for the statement while B do S. The inductive definition
- will be used to prove that an execution of W is equivalent to W* for some k.

Lemma 9.37
1,PC

2, PC

3, Def. 9.23

Def. 9.36 .
Def. 9.21
Def. 9.17
Def. 9.35
Ind. hyp.
Def. 9.17
Def. 9.23

-

0 1 2 o0
V wpWt, p) |V wp(wk,a vV wp(WB e \ wp(W, p)
k=0 k=0 k=0 k=0

N

AN

&
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Theorem 9.39 (Soundness of HL) Iftm {p} S {g} then = (p} S {q}.

Proof: The proof is by induction on the length of the HL proof. By assumption, the
domain axioms are true, and the use of the consequence rule can be justified by the
soundness of MP in the predicate calculus.

By Lemma 9.13, k= {p} S {q} iff E p — wp(8, g), so it is sufficient to prove
p — wp(S, g). The soundness of the Assignment Axioms is immediate by Defini-
tion 9.15. Suppose that the composition rule is used. By the inductive hypothesis, we
can assume that = p — wp(S1, ¢) and |E g — wp(S2, r). From the second assumption
and monotonicity (Theorem 9.28),

E wp(S1, g¢) - wp(S1, wp(82, r)).

~ By the rule of consequence and the first assumption, E p — wp(S1, wp(82, r)). By
the definition of wp for a compound statement this is |= p = wp(81;82, r).

We leave the proof of the soundness of the alternative rule as an exercise. For the
loop rule, by (structural) induction we assume that = (p A B) — wp(S, p) and show
k= p—~wp(W, pA— B). We will prove by numerical induction that = p—wp(Wk, pA=B),
“ for all k. For k = 0, the proof of = wp(W°, p A = B) = wp(W, p A = B) is the same as
the proof of the base case in Lemma 9.38. The inductive step is proved as follows:

1. Ep—>(-B->(pA-B)) PC

2. kEp-(=B—wp(skip, pA—B)) Def. 9.35

3. E@AB)->wp(S, p) Structural ind. hyp.

4, Ep->wpW pA-B) Numerical ind. hyp.

5. E (pAB) - wp(S, wp(W*, pA-B)) 3, 4, Monotonicity

6. E@AB)->wp(S;W, pA-B) 5, Composition

7. Ep- (B->wpS;W, pA-B)) 6, PC

8. |Ep— wp(if B then S;W* else skip, pA—B) 2,7, Def. 9.21

9. p-wp@Wt, pA-B) Def. 9.36
By (infinite) disjunction, = p = \/jeqwp(W*, p A ~B), and |= p - wp(W, p A ~B)
follows by Lemma 9.38. 1

Theorem 9.40 (Completeness of HL) If = {p} S {gq}, thentg {p} S {q}.

Proof: We have to show that if = p — wp(S, ¢), then kg, {p} S {g}. The proof is by
structural induction on S. Note that p — wp(S, gq) is just a formula of the domain, so
F p — wp(S, g) follows by the domain axioms.

Case 1: Assignment statement, x: =t.

F {g{x « t}}x:=t {g} is an axiom, so F {wp(x:=t, g)} x:=t {g} by Definition 9.15.
By assumption, - p — wp(x:=t, g), so by the consequence rule, F {p} x:=t {g}.
Case 2: Composition, S1;S2.

By assumption, = p—wp(S1;82, g) which is equivalent to = p—wp(81, wp(52, q))
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by Definition 9.17, so by the inductive hypothesis, - {p} S1 {wp(52, g)}. Obviously,
E wp(82, ¢) = wp(S2, g), so again by the inductive hypothesis (with wp(82, g) as p),
F {wp(S2, )} 82 {g}. An application of the composition rule gives I {p} S1;52 {g}.

Case 3: if-statement. Exercise.

Case 4: while-statement, ¥ = while B do S.

1. EwpMW, g) AB->wp(S;V, q) Def. 9.23
2. Ewp(, @) AB— wp(S, wp(W, q)) Def. 9.17
3. + {wp(, g) AB} S {wp(W, q)} Inductive hypothesis
4. + {wp(4, @)} W {wp(W, g) A~ B} Loop rule
5. F(wpMW, @) A"B)—=gq Def. 9.23, Domain axiom
6. F {wp(W, )} W {q} 4, 5, Consequence rule
7. Fp->wp(i, q) Assumption, Domain axiom
8. F{p}lV¥W{q} Consequence rule

9.7 Exercises

1. What is wp(S, true) for any statement S?
2. Let S1 be x:=x+y and S2 be y:=x*y. What is wp(S1;82, x < y)?

3. Prove = wp(S, p A g) = wp(S, p) Awp(8S, q), (the converse direction of Theo-
rem 9.25).

4, Prove that

wp(if B then begin S51;S3 end else begin S2;S3 end, gq) =
wp(if B then S1 else S2; S3, g).

5. * Suppose that wp(S, ¢g) is defined as the weakest formula p that ensures fotal
correctness of S, that is, if S is started in a state in which p is true, then it
will terminate in a state in which g is true. Show that under this definition

E-wp(S, ~q) = wp(S, g) and = wp(S, p) Vwp(S, q) = wp(8, pVq).

6. Complete the proofs of the soundness and completeness of HL for the alterna-
tive rule (Theorems 9.39 and 9.40).
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7. Prove the partial correctness of the following program.

{a20}
x :=0; y:=1;
while y <= a do
begin
x :=x + 1;
yi=y + 2%x + 1
end

0t <a< (x+1)?)
8. Prove the partial correctness of the following program.

{a>0Ab>0}
X = a; y::=b;
while x <> y do

ifx>y
then x := x-y
else y := y-x

{x = ged(a, b)}
9. Prove the partial correctness of the following program.

{a>0Ab>0}
X :=a; y := b;
while x <> y do
begin
while x > y then x :
while y > x then y :
end

{x = ged(a, b}

Xy
¥y X

10. Prove the partial correctness of the following program.

{a20Ab2>20}
X :=a; y:=b; 2 :=1;
while y <> 0 do
if odd(y)
then begin y :
else begin x :
{z=d)

(=)

y - 1; z := x*z end
X*¥X; y := y div 2 end

Programs:
10 Formal specification with Z

Suppose that you are asked to develop a program. The first thing that you must do
is to write a specification of the program: what the program must do. Formally, a
specification is a precondition and a postcondition, and the correctness of the program
is defined relative to a specific precondition and postcondition. In practice, predicate
calculus and number theory as we have presented them are inconvenient for writing
specifications, and other notations have been devised.

Z is a set of notations for structuring specifications: a individual component of the
specification is written as a schema that contains declarations of variables and formu-
las that constrain the values of the variables during the execution of the program. Set
theory is used in the high-level specification to avoid premature choice of an imple-
mentation. The schemata are combined using a schema calculus to produce the full
specification of the program. A set of schemata can be refined to supply implemen-
tation details; the refinement must then be proved to be equivalent to the high-level
schemata.

We begin this chaptér with a simple example. Then we present an overview of the Z
notation and concepts, followed by a more extensive example.

10.1 Case study: a traffic signal

- A traffic signal is defined by the status of each light: off or on. We begin the spec-

ification by defining a data type. In Z, as in Pascal, you can define a data type by
enumerating the possible values:

STATUS ::= off | on.

A traffic signal is composed of three colored lights, each of which has a status. We
define the schema Signal which declares three variables of type STATUS and an in-
variant. Declarations appear above the short dividing line and predicates appear below
it. The invariant specifies that the red right is on if and only if the green light is off.
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Signal
[7 red, yellow, green : STATUS

red = on & green = off

Once a state has been described, schemata may be constructed to describe operations
on states. (Note that different countries use different conventions for the traffic lights,
so the following specification may not hold where you live.) The first such schema
WarnGo specifies an operation that can happen only if the red light is on: the yellow
light is (also) turned on to signal that the green will shortly appear. The declarative
part of the schema contains two occurrences of the schema Signal, one to describe
the state before the operation is carried out, and a second, decorated by a prime, to
describe the state after the operation.

WarnGo
r Signal
Signal

red = on A yellow = off A green = off

red’ = on A yellow' = on A green’ = off

There are two predicates: the first one is the precondition and specifies what must be
true in order to carry out the operation, and the second one, the postcondition which
contains the decorated variables, specifies what must be true after the operation.

Since an undecorated schema and its primed version occur so often, there is an abbre-
viation for it: ASignal. It is formally defined as:

AS
S
Sl

Using the abbreviation, WarnGo becomes:

WarnGo
F ASignal

red = on A yellow = off A green = off

red’ = on A yellow = on A green' = off

We can now write the schemata for the other operations of the traffic signal.
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Go
FASignal
red = on A yellow = on A green = off

red’ = off A yellow' = off A green’ = on

— WarnStop
ASignal

red = off A yellow = off A green = on

red’ = off A yellow’ = on A green' = on

__Stop
ASignal

red = off A yellow = on A green = on

red’ = on A yellow' = off A green’ = off

The schema for a complete traffic signal is obtained by combining the above schemata
in a formula of the schema calculus. A traffic signal consists of a Signal, together with
any of the (mutually exclusive) operations defined above.

TrafficSignal = Signal A (WarnGo vV Go V WarnStop v Stop).
Finally, a schema specifying an initial condition must be conjoined to TrafficSignal.

—InitRed
Signal

red = on
yellow = off
green = off

The specification of Signal contains the invariant red = on < green = off, and it
must be proved that the invariant holds at any state of the program. The proof is
by induction. The invariant is trivially true in InitRed and each schema comprising
TrafficSignal must be checked for the induction step. In fact this is trivial because
each postcondition explicitly specifies different values for red and green.

More complex specifications can be built from this elementary one. A road intersec-
tion has independent traffic signals for each direction.
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__IntersectionSignals
EastWest, NorthSouth : TrafficSignal

EastWest.green # NorthSouth.green

The invariant of this schema specifies a safety property of the intersection, namely,
that the green lights of intersecting roads not be on simultaneously. Obviously, to
prove this invariant, an appropriate initial condition must be given.

InitIntersection
IntersectionSignals

EastWest.red = on
EastWest.yellow = off
EastWest.green = off
NorthSouth.red = off
NorthSouth.yellow = off
NorthSouth.green = on

Unfortunately, this is not sufficient to ensure that the invariant is maintained, because
transitions of EastWest and NorthSouth can be taken independently. We leave it to the
reader to extend the specification so that the invariant is maintained.

For such a simple system, a finite automaton would be more concise and easier to
grasp. The true value of Z is when the state transitions involve complex manipulation
of values of the variables in the states.

10.2 The Z notation

The Z notation consists of three components:

Z language An extension of the language of the predicate calculus.

Mathematical tool-kit Notations for expressing operations on sets, relations, func- -

tions, numbers, sequences and bags.

Schema calculus Rules for combining individual schemata into a full specification.

In this section we survey each of these components.

The Z language

The Z language is basically the language of the predicate calculus with typed variables.
Instead of the untyped notation Vxp(x), you write Vx : N e p(x) to indicate that the
values of x range only over some type, in this case the natural numbers.
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There is a predefined type in Z, the integers, denoted Z; the natural numbers, denoted
N, and the positive numbers, denoted Ny, are of type Z with their values appropriately
constrained. The simplest way to define your own type is with a basic type definition,
which is just a set of identifiers in brackets:

[NAMES, IDNUMBERS].

Basic type declarations simply state that there are types denoted by the identifiers
without further specifying the structure of the type. If the set of values of the type
is important, you can explicitly denote them using a free type definition such as the
definition of STATUS given above. In the next section, we will show how free type
definitions can be used to define recursive types such as lists and trees. Complex types
can be defined whose values are sets, sequences, etc. of existing types.

A schema consists of declarations of typed variables and formulas called predicates.

' There is an implicit conjunction between the rows of predicates. Z uses the symbols =

and <> where we used — and <>, respectively. The notation for predicates is richer than
that used in logic, in particular, a quantified formula consists of a schema followed by
a formula. The predicates of the schema serve to constrain the quantified values.

Example 10.1 The following Z predicate

Vn:N,c: COLOR|nmod3=0ec=red

s read: “for all » of type natural and ¢ of type COLOR, if n is a multiple of 3, then ¢
s red’. In the predicate calculus, this would be written

VnV c((Integer(n) A Color(c) A (n mod 3 = 0)) = (c = red))

.under the appropriate interpretations of Integer and Color. If existential quantifiers
;are used:

3n:N,c:COLOR}nmod3 =0ec = red,

e predicate is read: ‘there exists n of type natural and c of type COLOR such that n
.a multiple of 3 and c is red’, which is

dn3 c(Integer(n) A Color(c) A (nmod 3 = 0) A (c = red))

the predicate calculus. 0

"he mathematical tool-kit

The mathematical tool-kit of Z provides dozens of symbols; refer to a Z textbook for
a complete list. The integer type Z is predefined in Z, as are the arithmetical operators

on the integers. Other Z types are defined as described above, or constructed from

efined types.
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Sets The set {2,3,4,5,6,7,8, 9} is denoted in Z by the range 2 .. 9. Now the relation

2..9 & LETTER can be defined by:
The most important construct is the sez. Given the type
PHONEKEYS ==

2 a2 b2, 3 d3me3mf,

4= g4 h 40 S iS5 kS5m 1

6> m6m 06 0, 7'_’P'7Hq,7Hr,7i—>s,'

8§18 1,8y, I w95 %9597

COLORS ::= red | yellow | green,
sets can be constructed by listing their elements:
{green, red), {yellow}, {yellow, red, green},

or by set comprehension: { ¢ : COLORS e ¢ # yellow }. Set comprehension must be
used when the set is infinite:

The Z notation contains symbols for many useful operations on relations:

even=={n:Ze(Am:Zen=2%m)}.
The symbol == denotes that éven is defined as a name for this set. dom Domain ran Range
Here are some of the set operators: < Doma}n res?n'ction > Range restriction
< Domain anti-restriction B Range anti-restriction
{.

® Overriding -} Relational image

€ Element ¢ Not an element

€ Subset C  Proper subset

P Powerset F  Finite powerset We demonstrate the meaning of these symbols on the relation of Example 10.2.
U Union N Intersection .

\  Difference # Cardinality Example 10.3 Let PK be an abbreviation for PHONEKEYS.

The finite powerset is the set of all finite subsets of a set. F S is different from P S if S ran PK = LETTERS

is an infinite set like N. #S returns a natural number which is the cardinality of S. PK( (3,5} ) = Wdefikl

Z also has symbols for specifying bags (also know as multisets), which are sets that (2,3} <« PK = {242 ,_, b2 ¢35 d 3 e 3 f}
allow repetitions of elements. PK>{Lmn} = (5016 m7m0n } ‘

3..8€49PK = [2I—>a,2b->b,2i—)c,9|—)w’9|_.)x’9,_)y'9|_>z}
PKb> {def.g.hijklmn, 0.p.q.r,5,t,u,v}

Relations
= {2!—->a,2|—>b,2»->c,9;_>w,9,._>x,9,_,y’9,_,z}.

Z specifications make extensive use of relations on sets. For example, an abstract
specification of a database is a relation between elements of type KEY and elements
of type RECORD, denoted KEY < RECORD. Recall that a relation is just a set of o
ordered pairs, so it is possible that several records have the same key, or that a record
has more than one key. The individual elements of a relation can be denoted using th
‘maplet’ symbol . :

Overriding is used to repla;e elements of the relation. The following operation:

PK@{9I—>a,9b—>e,9»—>i,9»—>a,9r—>u}

would cause 9 to be an alternate key for vowels, though {w.x,y,2} would no longer be
in the range of PK. i

Example 10.2 On my cellular phone, each of the keys 2 through 9 can be used to v" Functions
input one of a set of numbers. Let us define the type . :

Z contains symbols for functions with various properties as shown in the following

LETTER :=a|b|:--|y]|z table. (Review Appendix A .4 for the definitions of the properties.)
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+  Partial —  Total

+»  Partial injection — Total injection
-»  Partial surjection — Total surjection
—  Bijection

Sequences

A sequence is an ordered set whose length may change during the computation. We
describe the use of sequences through an example.

Example 10.4 My cellular phone has a cache of the last eight phone numbers dialled.
The specification starts with a basic type definition for phone numbers:

[PHONENUMBER]
an axiomatic definition for the constant cachesize that specifies its invariant:
cachesize : N
cachesize = 8
and a schema which specifies that the cache is a sequence of length at most cachesize:

__Cache
Numbers : seq PHONENUMBER

#Numbers < cachesize

Initially, the cache is empty.

__InitCache
Cache

Numbers = {)

There are two operations that add a phone number to the cache: Add if thc.cache is
not full and Replace if the cache is full, in which case, the oldest number is .dJscarded.
Each operation takes a phone number Num?, where the decoration ? indicates that
Num is a variable whose value is input to the program. front returns the sequence
obtained by deleting the last element and ™ concatenates two sequences.

__Add
ACache
Num? : PHONENUMBER

#Numbers < cachesize

Numbers' = (Num) — Numbers
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Replace
rACache
Num? : PHONENUMBER

#Numbers = cachesize

Numbers' = (Num) ™ (front Numbers)

To dial one of the numbers, the up-button must be pressed at least one and at most
cachesize times. Note that the sequence Numbers is actually a function from the pos-
itive integers to the elements of the sequence, so function application can be used.
ECache specifies that the values of the variables in Cache are nor modified by this
operation, and the decoration ! specifies that DialCommand) is a variable whose value
is output by the operation.

r_Dial
ECache
Up? 'N 1
DialCommand! . PHONENUMBER

Up? < cachesize
DialCommand! = Numbers(Up?7)

The specification for the cache is:

PhoneCache = InitCache A (Add v Replace) A Dial.

1!

Let us now prove that the invariant of the example is maintained, using laws of the Z
notation for sequences taken from Spivey (1989, Section 4.5).

Theorem 10.5 #Numbers < cachesize is invariant.

Proof: () is an abbreviation for the empty set, so #() = 0 and the invariant holds for
InitCache. For Add, Numbers' = {Num) ™ Numbers, so #Numbers' = 1 + #Numbers
by the law #(s ™ ) = #s + #. But the precondition is #Numbers < cachesize, so
#Numbers' < cachesize. For Replace, we have #front s = #s—1, because the definition
of front sis (1. .#s—1) <s. Thus, #Numbers' = 1 +#Numbers— 1 = #Numbers, which

equals cachesize by the precondition. Finally, since Dial does not modify Cache, it
obviously maintains the invariant. I

The schema calculus

Any of the logical operators can be applied to schemata. We have already used the
schema calculus to create a specification from the conjunction and disjunction of sev-
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eral schema. The meaning of a logical expression on a pair of schemata is: create a
new schema whose declarations are the union of the two schemata and whose predi-
cates are formed by applying the operator to the predicates (which are implicitly con-
joined) of the two schemata. For details of these and other operations of the schema
calculus, see any of the Z textbooks in the references.

10.3 Case study: semantic tableaux

In this section we give a Z specification of the algorithm for the construction of a
semantic tableau in the propositional calculus.

A formula is defined by a free type definition. Atomic propositions are of the form
p(0),pQ1), ..., and formulas are defined recursively, using identifiers for the Boolean
operators so as not to confuse the notation for a formula with the Z notation.

FORMUILA ::= p{N))
| negd FORMULAY)
| and{{FORMULA x FORMULA))
| or{{ FORMULA x FORMULA)Y)
| imp{FORMULA x FORMULA))
| eqv{FORMULA x FORMULA)).

The a-f identification of formulas is given as a pair of functions; the result of the
function application is the pair of subformulas. The function is partial, because not
every formula can be decomposed as an a-formula (for example, a f-formula is not
an a-formula), and similarly for g-formulas.

alpha : FORMULA + FORMULA x FORMULA

alpha == (F +» (F1,F2) |

(F = neg(neg(A)) S>F1l=AAF2=A)

(F = and(Al,A2) =>Fl=A1AF2=A2)

(F = neg(or(F1,F2)) = F1 =neg(Al) A F2 = neg(A2))

(F = neg(imp(F1,F2)) = F1=Al A F2 = neg(A2))

(F=eqv(F1,F2) = F1 = imp(Al,A2) A F2 = imp(A2, Al))
}

> > > >
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beta : FORMULA + FORMULA x FORMULA
beta == (F - (F1,F2) |

(F =o0r(Al,A2) > Fl1=A1AF2=A2) A
(F =neg(and(F1,F2)) = Fl= neg(Al) A F2 = neg(A2)) A
(F =imp(F1,F2) = Fl=rneg(Al) AF2=A2) A
(F = neg(eqv(F1,F2)) = Fl= neg(imp(Al, A2)) A

F2 = neg(imp(A2, A 15)))]

Example 10.6 The negation of the first axiom of the propositional calculus is given

by the forml?la neg(imp(p(0), imp(p(1), p(®))). Applying the function alpha gives
(p(0), neg(imp(p(1), 2(®))). The formula is not in the domain of beta. f

A tableau is a finite set of NODEs, each of which is either nil

le: nite or is an ordered 4-tuple
containing a finite list of formulas, two children and a mark. ’

MARK ::= unmarked | nonleaf | closed
NODE ::=nil | n{IF FORMULA x NODE x NODE x MARK))

Tableau
ET : FNODE

The following schema specifies the application of an o

-rule. We gi
followed by a line-by-line explanation, give the schema

AlphaRule
AT : Tableau
AN : NODE

NeT

N.Mark = unmarked

AF : FORMULA | F € N.Label »

F € domalpha A

IN1:NODE »
N1 = n((N.Label \ F)u {F1, F2}, nil, nil, unmarked) A
N'.Left = N1 A N' Mark = nonleaf A
T'=Tu (N1}

)

® The operation performed on (and modifies) a tableau 7" and a node N,

¢ N is an unmarked element in the tablean.

231



22 10 Programs: Formal Specification with Z
232

o There exists a formula F in the label of the N which is in the domain of the
function alpha.

o There exists (must be created) a node N1, which is unmarkf:d, has no chﬂc;ir;n
and whose label is the same as the label of N except that F is removed and the

two subformulas are added.

e N is marked as not a leaf and N1 becomes its left child. N1 is added to T.

The f-rule is similar.

__BetaRule
AT : Tableau
AN : NODE

NeT
N.Mark = unmarked
JF: FORMULA | F € N.Label o
F € dombeta A
3N1,N2:NODE e
N1 = n((N.Label \ F)u {F1},nil, nil, unmarked) N\
N2 = n((N.Label \ F)U {F2}, nil, nil, unmarked) A
N'.Left = N1 A N'.Right = N2 A N'.Mark = nonleaf A
T =TuU{N1,N2}

)

To specify the termination of a path, we first define an abbreviation clashing for sets

of clashing formulas:
clashing : F FORMULA

{ Fset : F FORMULA o
3F1,F2: FORMULA | F1,F2 € Fset
F1 =neg(F2) vV F2 = neg(F1)

Now we can specify a closed node as one with a clashing pair of formulas.

ClosedNode
AT : Tableau
AN : NODE

NeT
N.Mark = unmarked
N.Label € clashing

N' Mark = closed
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The type REPORT is used to report the outcome of the tableau construction:
REPORT ::= satisfiable | unsatisfiable.

A tableau for a formula is open (and satisfiable) iff it has a node whose label isa
non-clashing set of literals. A literal is a formula to which neither alpha nor beta
apply.

— OpenTableau
ET : Tableau
R!: Report

AN:NODE|N€Te
N.Mark = unmarked A N .Label ¢ clashing A
VF :FORMULA | F € N.Label «
dom alpha(F) = §§ A dom beta(F) = @

R! = satisfiable

A tableau for a formula is closed (and unsatisfiable) iff all leaves are closed.

ClosedTableau
ET : Tableau
R! : Report

VN :NODE|N €T o N.Mark = nonleaf v N.Mark = closed

R! := unsatisfiable

The initial tableau is created from an input formula.

InitTableau
[_T : Tableau
F?: FORMULA

T = (n({F}, nil, nil, unmarked) )

The complete specification is:

TableauAlgorithm = InitTableau A
(AlphaRule v BetaRule v
OpenTableau v ClosedNode v ClosedTableau).

The Z notation has been used to specify large hardware and software systems. It is
sufficiently fiexible that it can be used on different types of systems, yet it is a formal
system that can be used for deduction of properties of a specification.
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104 Exercises

1. Prove Leaves = dom Label for the a- and f-rules.

2. A sequence can also be described as a function from 1..» to the Sfit of clalemcrtxts%
. If s is a sequence then si is the function application returning the i’th el 1emer'x o
the sequence. Show that the sequence operations can be defined as follows:

heads = s1,

lasts = s(#s),
tails={(n:Z{nedisen—1w sn},
sTt=sU{n:Z|ne€2.dte(n+i#s)—~m},

fronts = (L.#s —1) <s.

Temporal Logic:
1 1 Formulas, Models, Tableaux

11.1 Introduction

The predicate calculus is adequate both for theoretical mathematics and for practical
applications. Nevertheless, it is often useful to define systems of logic that are more
convenient for specific tasks. This chapter studies a system for reasoning about time
called temporal logic. Temporal logic is applicable in computer science, because the
behavior of both hardware and software components is a function of time, unlike
mathematical expressions such as 1 + 1 = 2 whose behavior (truth value) is static.

Example 11.1 Here are some examples of specifications of hardware and software
components, where words denoting temporal concepts have been italicized,

Flip-flop After the reset-line is asserted, the zero-line is asserted. The output lines
maintain their values, until the set-line is asserted; then they are complemented.

File server Ifa request is made to print a file, eventually the file will be printed.

Operating system The system will always run, The system will never crash.
0

These properties can easily be expressed in predicate logic, for example, the file server
property can be specified as:

Vfvn( RequestPrint(f, 1) — 3 B(tz2n) A PrintedAr(f, 1,) ) ).

In temporal logic, new Operators are introduced that enable the time variables and their
relationships such as I 2 11 to be implicitly indicated.

Definition 11.2 There are two unary prefix temporal operators: always, denoted D,
eventually, denoted <. a
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Informally, O is the universal operator ‘for any time ¢ in the future’, while < is the
existential operator ‘for some time ¢ in the future’. The operators compose, in the
sense that O0Op, means V#; A5((#2 > #) A p), and not just Vi, Inp. In temporal
logic, the above specification becomes:

Vf O( RequestPrint(f) — $OPrintedAKf) ),

which is much more concise. Reasoning with a temporal formula is much easier than
with its translation into the predicate calculus, because the relationships among the
times are implicit.

In the predicate calculus, all theories use the same five logical axioms and two rules
of inference, which have proved to be sound and complete for the interpretations used
in mathematics. Alternative axiomatizations that change the set of deducible formulas
are not important (with the exception of intuitionistic logic), but in temporal logic,
different choices of operators and axioms lead to different models of time, several
of which are useful. In these chapters, we limit our discussion to propositional tem-
poral logics with a specific selection of operators, and the tableau construction and
axiomatization apply only to one specific model of time. In Section 12.3 we survey
* alternatives to this logic that have been developed and applied.

There are closely related systems of logics called modal logics that, along with tem-
poral logics, date back to Greek philosophy. Modal logics express the distinction
between what is necessarily true and what is possibly true. For example, ‘7 is a prime
number’ is necessarily true because, under the definitions of the concepts in the state-
ment, the statement is true always and everywhere. In contrast, the statement “This
country is ruled by a king’ is only possibly true, because its truth changes from place
to place and from time to time. These vague concepts proved difficult to formalize and
an acceptable formal semantics for modal logic was first given by S. Kripke in 1965.
The connection between modal logic and temporal logic is immediate by defining
‘always’ to be ‘necessarily’ and ‘eventuaily’ to be ‘possibly’.

11.2 Syntax and semantics

Propositional temporal logic (PTL) extends the propositional calculus with two unary
temporal operators O and <. (In the next section, we will add a third operator.) Their
precedence is the same as the other unary operator, negation. The following are syn-
tactically correct formulas in PTL:

pAg, Op, GpAg) —»Op, OOpe—Op, Clp«0UOp, ~OpADg.

The semantics of PTL gives an interpretation, not only for the propositional letters,
but also for the underlying representation of time. This is done by defining a set of
states, each of which contains an interpretation for the propositional letters appearing
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§3
Figure 11.1 PTL interpretation

;n the formula. Passage of time is modeled as a transition from one state to another.
or now we allow arbitrary transitions between states, '

A PI‘ . . . .
WhereLthmtel.'pretanon can be displayed as a stare transition diagram (Figure 11 1)
e circles denote the states, the arrows denote possible transitions betweeI;

§ta$s and ea;:h state is labeled with a set of literals, such that p and - p do not appear
in the same label. Each state is a propositi i i

the positional interpretati ich i
assigmng true to the literals labeling the state, ? o WIS defined »

Example 11.3 We give an informal demons

tration how the truth va}
formulad =Op v Ogq is determined for eac e o e empora

h state 5 in Figure 11.1,

® A is true in 59. The states accessible from s,

. . o are 51 and s5,. g is true i
states, so Og is true in sy, as is Op v Ogq. q9 e in both

o Ajsfalsein s;. sy is accessible from s

: 1 and neither p nor ¢ is true j
fore, neither Op nor Og can be true in ! "o There

$1, 80 Op v Ogq is false in 5.

o Ai . .
A is true in 55, The only state accessible from $7 18 51,

/ I ! and both
In sy. It is immediate that Op v Og is also true, panda e e

® Ais false in s3. 55 is accessible from itself, but neither p nor gistruein s
3.

1]

Definition 11.4 An interpretation T for a formula A in PTL s a pair (S, ), wh
S={s1....,5:} isaset of states each of which is s to e

‘ i} isa; an assignment of tru
atomic propositions in 4, and p is a binary relatio frvelues o te

. N on states.
N.otatlon: 5i(p) = T means that the atom
will usually be written 52 € p(s1).

vz,s(A), the value of A in §, is defined by induction.

P is assigned true by the state s;. 1.5) €p
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IfAisp € Pands = s;, then vz, (4) = 5;(p).

o IfAis A’ then vz 4(A) = T iff vz, (") = F.

IfAis A’ v A” then v (A) = T iff vy (A) =T orvy;(A") =T,
and similarly for the other Boolean operators.

e IfAis DA’ then vz (A) = T iff viy(A") = T for all states s’ € p(s).

o If A is OA’ then vz, (A) = T iff v¢(A") = T for some state 5' € p(s).

Notation: We denote vz ;(A) by vs(A) when 7 is clear from the context. a
The definition of semantic properties is more complex than in the predicate calculus,
because we have both interpretations and states in the interpretation.

Definition 11.5 A formula A in PTL is satisfiable iff there is an interpretation 7 =
(S, p) for A and a state s € S such that v;(A) = T (notation: I,s F A,ors FAIfT
is understood). If Z, s k= A for some s € S, then T is called a model for A (notation:
I = A). A formula A in PTL is valid (notation: }= A) iff for all interpretations I for A
and for all states s € S, I, 5 = A. ]

Example 11.6 The analysis we did for the formulaA = OpVOgq and the interpretation
T in Figure 11.1 can be repeated using the formal definition of interpretation. p(so) =
{51, 52}, and since 5s; |= ¢ and s, }= g, we conclude that Z, 5o = Og. Then Z,50 F
Op vV DOg by the interpretation of disjunction. 7 is a model for A4, I |= A, but A is not

valid because T, s, }~ A. 0

Note that any valid formula of the propositional calculus is a valid formula of PTL.
Furthermore, the formula Op — (Og — D3p) is also valid. While not a formula of the
propositional caleulus, it is a substitution instance of a propositional formula obtained
by substituting PTL formulas uniformly for propositional letters.

Theorem 11.7 Every substitution instance of a valid propositional formula is valid.

Proof: Exercise. 1
There are other formulas of PTL that are valid because of properties of temporal logic
and not just as instances of propositional validities. We will prove the validity of two
formulas directly from the semantic definition. The first establishes a duality between
O and <; the second is the distribution of O over —, similar to the distribution of ¥

over —.
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Theorem 11.8 (Duality) = OpenOap,

Proof:. LetZ = (S, p) be an arbitrary interpretation for the formula and let s € Sbe
an arbitrary state. Assume that s [ Op, and suppose that s }= O = p. Then there exist

a sta}te s’ € p(s) such that §' E -p. Since s = Up, for all states 1 € p(s), ¢ E 's
particular, s’ = p, contradicting 5’ = = p, 505 = = O p. Since T and ¢ wer’e arbit’;’ o
we have proved that |= Op - = O —p. We leave the converse as an exercise. ar};

Theorem 11.9 = O(p -~ g) » (Op — Og).

Prf)of: Suppose that the formula could be falsified. Then there would be an int

tation T = (S, p) and a state s € S such that skEO@—-g) and s k= Op, but s Qirfge'
By Theorem 11.8, the last assumption is equivalent to s E<Cog, so the;e exists a st tq
s’ € p(s) such that &' £ -~ ¢. But by the first two assumptions s” Ep-gands Lo
so by the semantics of —, 5/ = g which is a contradiction. , ! - pi

11.3 Models of time

l?lfferent te'mporal logics can be obtained by placing different restrictions on the tr.

smon'relatlon p- For each restriction, we will give a formula that characterizes i tan !
pretgﬂs)ns with that restriction. The correspondences between the formulas . Ic;ltzr .
resmctl.ons are intuitively simple; we defer the precise formulation of th th::m .
and their proofs to a separate subsection which can be skipped " Teorems

Consider 'the formula Orunning. Obviously, if a program is running now, then there is
a;laccesmbl'e state (namely, now) in which the program is running. Thus it is reason-
able to require that for all 5, s € p(s), that is, that the relation be reflexive.

Theorem 11.10 Az inter, ] i )
pretation with a reflexive relation is ch 3
mula OA — A (or by the Jormula A — GA) Aracterzed by the for

When the relation is intended to denote the passage of time or the execution of a
computer program, it is natural to require that p be fransitive:

52 € p(s1) As3 € p(s2) — 53 € p(sy).

If the relation were not transitive, s3 would not be in the ‘future’ of 5,

Example 11.1.1 In Figure 11.1, p is not transitive since 51 € p(s;) and $3 € p(s1) but
53 & p(s2). This leads to the anomalous situation where s, = Opbuts, j« DoOp 0

Theorem 11.12 An inter, ] ] jti
. pretation with a transitive relation is characteri
Jormula DA - ODA (or by the formula GOA — QCA). racterized & the
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If the relation is also reflexive, then = OA < O0A and = CA « OQA.

Definition 11.13 If p is defined so that every state has exactly one immediate succes-
sor state (other than itself), the logic is called linear-time temporal logic, otherwise, it

is called branching-time temporal logic. 0

It might appear that it is necessary to use branching-time temporal logic to reason
about programs since many statements will have several possible successors; further-
more, in a concurrent system, any statement is a possible successor of a statement
in another process. However, linear-time temporal logic is also used because we are
interested in properties that hold in every possible computation, where each possible
computation is a linear sequence of states.

The execution-of a program is usually considered as a sequence of discrete steps,
where each step consists of the éxecution of an instruction of the CPU, or a sequence of
transitions of a circuit upon clock pulses. Thus it makes sense to express the concept of
the ‘next’ instant in time. The definition of an interpretation must be changed in order
to distinguish between a ‘next’ state after a single step and a ‘future’ state attained
after one or more steps.

Definition 11.14 The unary prefix temporal operator next is denoted O.

An interpretation for A is a pair (S, 7), where S is a set of states each of which is
an assignment of truth values to the atomic propositions in A, and = a binary relation
on states. Let p be z*, the reflexive transitive closure of = (see Section A.4). The
definition of vz is as in Definition 11.4, extended for OA’ as follows:

o IfAis QA then vz s(A) = T iff vz o(4’) = T for some s" € v(s). If 7 linear, then
there is only one such state and we can write s’ = 7(s).

The following theorem follows directly from the definitions.
Theorem 11.15. = Op — QOp and E Op = Op.
In linear time, the next operator is its own dual.

Theorem 11.16 A interpretation with a linear relation is characterized by the formula
QA=A

The next operator will be used in the inductive construction of a semantic tableau.

Theorem 11.17 Let T be a linear, reflexive, transitive interpretation.
ThenI EOpopAQUpandI = OpepVvOOpP.
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:.:;;f: Let Z be an arbitrary linear, reflexive, transitive interpretation, let s be an
th 1iiry state in S a’nd assume that s = Op. Since T is reflexive, s | p. If 5 j£ Oop
! en for s’ = ‘L/'(S), s' [ Op. There exists s € p(s') such that s |4 p. But ¢’ e (s)’
ollows from §' = z(s), so by transitivity, s € p(s), contradicting s = Op !

Conversely, assume that s EpAQDp

. and let s’ € p(s) be arbi i i
reflexive transitive closure of 7, there s 1. e pis the

exists a sequence of states
§ =350, 51 =7(50), 2 =7(sy), ..., 5 = Sg = T(Sp_1).

We prove by induction on & that s’
the result follows from the assu,
So = OOp implies st = Op
Y =5 Ep.

Ik OppvOop follows by duality.

!: P> 80 s |= Op since & was arbitrary. Fork = 0
mption s |= p. By the semantics of the next operator,
and 51 = p A OOp, so by the inductive hypothesis

]
We limi . . . . .
mit our discussion to Interpretations with transition relations that are discrete

fexi o . N
Ietiexive, transitive and linear, To simplify the display of these relations, we will just

draw the i i i
mmediate successor 7 of a state, and infer the reflexive transitive closure p

In the fOHOWing diagram {S \) } C p(S cven ﬂl()llgh no CXI)IIC[I arrows are (llanl
> 0,925 & 0/s ici
for these transitions. ( )

S0 51 V 52
The . - . L
following definition will be convenient in the construction of semantic tableaux

Definition 11.18 A formula of the form QA or - OA

is called
formula of the form A or - D4 is called a future formu 7 et formuta. A

la. ]

Proofs of the correspondences*

The following definition enables us to talk about t

. he structure (stat i
o ' : . €s and relations) of
e class of interpretations by abstracting away the propositional interpretatigns

Definiti . i i

e r((:lutill 19 A frame T’ Is a pair (W, p), where W is a set of states and pisa
: ary . allon on states. An interpretation 7 = (S, p) is based on a fr F

iff there is a one-to-one mapping from S onto W wer=one
A PTL formula A characterizes a class of fram

every I basedon 7}, I |= A, and conversely,
the class. ,

! es iff for every 7; in the class and for
if T |= A, then T is based on some 7; in

0
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A frame is obtained from an interpretation by ignoring the truth assignments in the
states, or conversely, a interpretation is obtained from a frame by associating an as-
signment with each state.

Theorems 11.10, 11.12 and 11.16 are more precisely stated as follows: the formulas
0OA — A, DA - DOA and QA « ~ O A characterize the sets of reflexive, transitive,
and linear frames, respectively. In one direction, the proofs are easy: if the restriction
holds, the formula is true. In the other direction, we show that if the restriction does
not hold, then it is possible to construct a specific interpretation in which the formula
is not true.

Proof of 11.10: Let F; be a reflexive frame, let T be an arbitrary interpretation based
on F;, and suppose that Z }~# OA — A. Then there is a state s € S such that s = DA
and s f& A. For any state & € p(s), § | A. By reflexivity, s € p(s),s0s5 = A, a
contradiction.

Conversely, suppose that F; i$ not reflexive, and let s € S be a state such that s € p(s).

Let T be an interpretation based on F; such that v(p) = F and vy(p) = T for all
s' € p(s). These assignments are well-defined since s € p(s). Thens £ Op —» p. If
p(s) is empty, assign F to vs(p) and Op is vacuously true in s, so again s }& Op - p. |
" Proof of 11.12: Let F; be a transitive frame, let T be an arbitrary interpretation based
on F;, and suppose that T = OA — OOA. There is an s € S such that s | DA and
s ¥ O0A. Let & € p(s) be such that s = OA, and let s” € p(s") be such that s” & A.
But s |= DA, and by transitivity, s” € p(s), so s” | A, a contradiction.

Conversely, suppose that F; is not transitive, and let 5, s', s” € S be states such that
s € p(s),s” € p(s'), buts” & p(s). Let I be an interpretation based on F; which assigns
T to p in all states in p(s) and F to p in s”, which is well-defined since 5" & p(s). Then
s | Op, but s = OOp. If there are only two states, s” need not be distinct from s. A
one state frame is necessarily transitive, possibly vacuously if the relation is empty. 1

‘We leave the proof of Theorem 11.16 as an exercise.

11.4 Semantic tableaux

The method of semantic tableaux can be used to obtain a decision procedure for satis-

fiability in PTL. We add the following rules to the a- and f-rules for the propositional

calculus.
a Ja| o | | 8 |/l B
DA | A OBDA CA | A OCA QA | A
SCA | mA [ -OCA -0A |-A|-QOD0A QA | A

The X-rule is obvious from the definition of the interpretation of O. The a- and ﬂ-ml:es'

are based on Theorem 11.17:
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e If OA is true in a state s, then A is true in s and A must continue to be true in all
states accessible from the next state .

e If OA is true in a state s, then either A is true in s or 4 will eventually become -

true in some state accessible from the next state s'.

While the a- and f-rules are just the rules of the propositional calculus applied to
temporal formulas, the X-rule has a different status. Consider the tableau obtained for
the formula A = (p v g) A O(- p A = g) after applying the a- and f-rules:

@V AO(-pA-q)
d
pVvg O(pA-gq)
v

|p. O(-pA=9)] (2. O(-pA-9)]

In the initial state so in any model for A, 5o |= p or 5o |= g. The box around this tableau
node indicates that the node defines a state by listing the literals that must be assigned
T. But to satisfy the formula A in PTL, something must also be true about the next
state s;. It is the X-rule which causes new states to be created in the tableau. On both
branches, the new node has the formula - p A - g; an application of the propositional
a-rule gives {=p, = g} as the label of the next node and hence the new state s,.

“pAg
!

Note that the literals in 5o are not carried over in the application of the X-rule. From the

tableau construction, we see that any model for A must contain one of the following
structures:

So 5
So St

in the propositional calculus, these are not interpretations, because we have not
cified the value of the second literal in either of the possible states 5. However,

¢ structures are Hintikka structures which can be extended to interpretations by
ecxfymg the values of all atoms in each state.
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Consider now the formula A = -~ (O(p A g) — Op) which is the negation of a valid
formula. Here is a semantic tableau, where we have implicitly changed = O to < - for
clarity.

= (O@Aq) —Op)
D(p/\ql). O-p
PAg, OD(zt/\q), C-p
p. q OD(pl/\ 9, O-p
e N

P, ¢. OO(pAg). OC-p|

p. . OO@Aqg), ~p
X

The left-hand branch closes, and the right-hand leaf defines a state s in which p and
q must be true. When X-rules are applied to this node, a node is created labeled by
the set of formulas O(p A g), O = p. But this is the same set of formulas that labels
the second node in the tableau. It is clear that the continuation of the construction will
create an infinite structure: :

So $ 52

@mm

Something is wrong since A is unsatisfiable and its tableau should close! This structure
is a Hintikka structure in propositional terms (it does not contain clashing literals
and for every a-, f- and X-formula the Hintikka conditions hold), but it cannot be
extended to model for A since the future subformula < - p is not Julfilled, that is, the
structure promises to eventually produce a state in which - p is true but defers forever
the creation of such a state. We will have to find a condition that ensures that future
formulas can be fulfilled.

Finite presentation of an interpretation

Computations can be non-terminating; in particular computations of reactive systems
like operating systems and control systems are supposed to be non-terminating. PTL
can express properties of non-terminating computations: while formulas like O O p
can only be satisfied in infinite models, there are only a finite number of distinct states
in a PTL interpretation. To see this, note that all formulas appearing in a semantic
tableau are either subformulas of the formula at the root, or =A, QA,or " QA, for A
a subformula.
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An interpretation for a PTL formula can be finitely presented in a directed graph by
reusing existing states instead of creating new ones. For example, the infinite structure
above can be finitely presented as follows:

However, as the example shows, not every finitely presented structure obtained from
the tableau construction is a model.

Construction of semantic tableaux in PTL

We now formally describe the construction of semantic tableaux, the creation of struc-
tures from the tableaux and an algorithm to check if the structure contains a model.

Algorithm 11.20 (Construction of a semantic tableau)
Input: A PTL formula A.
Output: A semantic tableau 7 for A.

Each node of 7 is labeled with a set of formulas. Initially, 7" consists of a single node,
the root, labeled with the singleton set {A}. The tableau is built inductively as follows.
Choose an unmarked leaf ! on 7. [ is labeled with a set of formulas U o).

o If U(l) is a set of literals, check if there is a complementary pair of literals
{p.—p} € U(). If so, mark the leaf closed x. If not, mark the leaf open @®.

o If U()) is not a set of literals, choose A € U(l) which is not a next formula,

— If the formula is an a-formula, create a new node ! as a child of / and label
I with
Uy = (U@~ (ADH U (a1, a3).
(In the case that A is = - Ay, there is no a;.)

— If the formula is a f-formula, create two new nodes 7 and /” as children of
1. Label I with

uiy=W®-{Ahu {1},
and label I” with
U@")y = (U - (A U {B2).

o If U(J) consists only of literals and next formulas, let

[OAI' -~~'OAmx_'oAm+l:--~:_'OAn}
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be the set of next formulas in U(J). Create a new node /' as a child of [ and label
! with
U= {A1, ..., An, " Anst, ..., Anl.

If U(l') = U") for I" an ancestor of /, do not create ['; instead connect [ to [”.
The construction terminates when every leaf is marked x or ©. 1]

Definition 11.21 A tableau whose construction has terminated is called a completed
tableau. A completed tableau is closed if all leaves are marked closed. Otherwise, it
i a
is open.

Example 11.22 Here is a completed open semantic tableau with no leaves.

l] . Dop
1
b :Op, QOOp
7 N
I :p, OOCp Iy ;] OCp, OOCP
l 1
To Is: Op, OOp
1
To lz
o
Theorem 11.23 The construction of a semantic tableau terminates.
Proof: Exercise. 1

The next step is to construct a structure from a completed tableau and to prove that the
conditions for a Hintikka structure hold.

Definition 11.24 A structure is a triple H = (S, V", t) where S = {s,..., sp}is a
set of states, V" = (U}, ..., U,} is a set of sets of formulas, one set associated with
each state, and 7 is a binary relation on states. p = t* is the reflexive transitive closure
of 7. Notation: H = (S, V", p) may be used to emphasize the role of p. a

To construct a structure from a completed tableau, take the X-nodes as states, and
define s’ € 7(s) if there is a path in the tableau from s to s’ that does not pass through
another state. The set of formulas associated with s’ is the union of the labels of the
nodes on such a path.

Definition 11.25 A state path is apath (I, b, .. ., lk—1, ) in the tableau, such that [,
is the root or an X-node, I is an X-node, and none of {l, ..., _;} is an X-node. It is
possible that [; = . 0
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Definition 11.26 Let 7 be an open semantic tableau. The structure H constructed
from 7 is:

® S is the set of X-nodes.

o Lets; =Lk beastate and let ] = {1, 4, ..., Iy = 5;} be a state path terminating
in . Thc;n Uf = UL) V- U UW). If I is the root, add U(l,) to the union.
U= U[Ui.

s ser()iff {s=1,b,..., -1, Iy = 5’} is a state path.

0

It is possible to obtain several disconnected structures when creating a structure for
the tableau for a formula such as Op v Og, but this is no problem as the formula can
be satisfiable if and only if at least one of the structures leads to a model.

Example 11.27 Here is the structure constructed from the semantic tableau in Exam-

ple 11.22, where sg is I3 and s, is /5. In the diagram, we have explicitly labeled each
state 5; only with the literals in U

s ¢ s

0

Example 11.28 Let A = O(O(p A PDAS(=pAg) AP A-g)). The construction
of the tableau for A is left as an exercise. The structure obtained from the tableau is
shown in Figure 11.2. d

Definition 11.29 Let X = (S, 1/, 7) be a structure and A be a formula. H is a Hin-
tikka structure iff for all U;:

1. For all propositional symbols p, either pgUor-péU,.
2. f A € U; is an a-formula, then ; € Uiand oy € U;.
3. If A € U; is an f-formula, then ; € U or P e U

4. If A = OA’ € U; is an X-formula, then for all s; € 7(s1), A’ € U}, and similarly
for - OA'.
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Figure 11.2 Structure for {(O@ A Q) AO(-p A AP A q))

H is a Hintikka structure for A iff H is a Hintikka structure, A € sq and the only
propositional symbols appearing in V" are those in A. |

Theorem 11.30 The structure created in Definition 11.26 is a Hintikka structure.

Proof: The structure is created from an open tableau, so condition (1) holds. «- and
f-rules are applied before the X-rule, so the state path from one state (or the root) to
another contains all the formulas required by conditions (2) and (3). When the X-rule
is applied, for any QA, A will appear in the label of the next node (and similarly for
—~ (OA), and hence in every state at the end of a state path from the node. 1

Definition 11.31 Let H be a Hintikka structure. H is a linear Hintikka structure iff =
is a function, that is, if for each s; there is at most one 5; € 7(s). il

Lemma 11.32 Any unbounded path through a Hintikka structure is a linear Hintikka
Structure.

Proof: Clearly, the path is linear and conditions (1-3) hold because they already-

held in the (non-linear) Hintikka structure. Suppose that QA occurs in some U,. By
construction, A occurs in all successor states, in particular, in the one chosen in the
construction of the unbounded path. |

Definition 11.33 Let H be a Hintikka structure. # is a fulfilling Hintikka structure
iff for all 5; and for all future formulas A = OA’: if A € U, then for some sj € p(si),
A’ € Uj;. The state s; is said to fulfil A. 0

A similar requirement must imposed on future formulas of the form A = ~ 0OA’, which
must be fulfilled by states containing - A’. In this section, we will discuss only CA’ to
simplify the presentation.
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Theorem 11.34 (Hintikka’s Lemma for PTL) Ler H be a linear Sulfilling Hintikka
structure for A. Then A is satisfiable.

Proof: Extend # to an interpretation by defining for all propositional letters pinA:

vilp)=T ifpeUor ~pglU;
vip)=F if -pe U,

For propositional formulas the induction is the same as that used to prove Hintikka’s
Lemma for the propositional calculus. By condition 4 of the Hintikka structure, it
follows that next formulas are satisfied, and for future formulas, the result follows by
the requirement that  be fulfilling.

Let A = OA' € U; and let s; € p(s;) be arbitrary. We must show that si = AL
There is a sequence of states (s; = §q,...,8, = s5;} such that forall 1 < &k < n,
Sk+1 € 7(s). We will show by induction that for all k, v;(A’) = T and the theorem
follows when k = n. The induction will actually show that for all k£, DA’ € Up,
from which v¢(A’) = T follows by condition 2 of the definition of Hintikka structures.
DA’ € U by assumption, proving the base case. By condition 2, if OA’ € Uy then
QODOA’ € Uy, so by condition 4, DA’ € Uy, proving the induction. 1

Here is a linear fulfilling Hintikka structure constructed from the structure in Fig-
ure 11.2,

So ( 5 D
There is one link missing in order to obtain a decision procedure for satisfiability in

PTL, namely, an algorithm that takes an arbitrary Hintikka structure, and decides if it
contains a path that is a linear fulfilling Hintikka structure.

Fulfillment of future formulas*

We begin with some definitions from graph theory. The concepts should be familiar,
though it is worthwhile giving formal definitions.

Definition 11.35 A graph G = (V, E) consists of a set of vertices V = {vi,.... v}
andasetof edgesE = {ey, ..., em}, which are pairs of vertices e, = {(viv;} CV.Ina
directed graph, each edge is an ordered pair, e, = (v;, vj). A path from v to V', denoted
v~ V, is a sequence of edges such that

et ==v,v), ..., eg= (v, vi, = V).
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Go 5o

S 54 S5

ofo o

Figure 11.3 Component graph

A subgraph G’ = (V', E') of a directed graph G = (V,E) isa graph such that V' C V
and E' C E. Note that from the definition of a graph, e = (v;,v;) € E' implies
{viv;} € V. o

Definition 11.36 A strongly connected component (SCC) G’ = (V',E’) in a directed
graph G is a subgraph such that v; ~» v; for all vi,v; € V'. A maximal strongly
connected component (MSCC) is a SCC not properly contained in another. A rransiens
SCC is a MSCC consisting of a single vertex. A terminal SCC is a MSCC with no
outgoing edges. a

Definition 11.37 A directed graph G can be represented as a component graph G'
which is a directed graph whose vertices are the MSCCs of G and whose edges are
edges of G pointing from a vertex of one MSCC to a vertex of another MSCC. a

See Even (1979, Section 3.4) for an algorithm that constructs the component graph of
a directed graph and a proof of the following theorem.

Theorem 11.38 The component graph is acyclic.

Example 11.39 Figure 11.3 shows a directed graph (circles and thin arrows) and its
component graph (ovals and thick arrows). Gy is transient and G is terminal. i

Suppose that we have a Hintikka structure and a future formula in a ferminal MSCC
(such as G in the figure). Then if the formula is going to be fulfilled at all, it will
be fulfilled within the terminal MSCC because there are no other accessible nodes to
which the fulfillment can be deferred. If a future formula is in a non-terminal MSCC
(such as G,), it can either be fulfilled within its own MSCC, or the fulfillment can
be deferred to an accessible MSCC (in this case G;). This suggests an algorithm for
checking fulfillment: start at terminal MSCCs and work backwards,
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Definition 11.40 Let H = (S, U, ) be a Hintikka structure. H can be considered a
graph G = (V, E), where V is S and (s;, 5;) € E iff 5; € 7(s;). We simplify the notation
and write A € vfor A € U; whenv = s;.

Let G = (V,E) be a SCC of H. G is self-fulfilling iff for all v € V and for all future
formulas CA € v, A €V forsome V' € V. 1]

Lemma 1141 Let G = (V,E) C = (V',E") be SCCs of a Hintikka structure.
If G is self-fulfilling, then so is G'. Hence, any self-fulfilling SCC is a subset of a
self-fulfilling MSCC.

Proof: Let CA € Vv € V' — V. By definition of a Hintikka structure, either A € v’ or
QOCA € V. IfA € V, then A is fulfilled in G'; otherwise, CA € V"' for every v’ € (V).
By induction on the number of vertices in V' — V, either A is fulfilled in V' — V or
CA € v for some v in V. But G is self-fulfilling, so OA is fulfilled in some state
vy € VC V. Since G is an SCC, v/ ~» v4 and A is fulfilled in G'. 1

Lemma 11.42 Let G = (V,E) be an MSCC of H and let OCA € v € V be a future
formula. If G is not self-fulfilling, OA can only be fulfilled by some V' in an MSCC G,
such that G ~» G' in the component graph. Hence, if G terminal, then OA cannot be

fulfilled.

Proof: By construction. : 1

Algorithm 11.43 (Construction of a fulfilling Hintikka structure)

Input: A Hintikka structure 7.

Output: A fulfilling Hintikka structure within H, or a report that no such structure
exists.

Construct the component graph H of H. Since H is acyclic (Theorem 11.38), there
must be a terminal MSCC G. Check if G is self-fulfilling. If not, delete G and all its
incoming edges from H. Repeat until the component graph is empty in which case no
fulfilling structure exists, or until every terminal MSCC is self-fulfilling. g

Theorem 11.44 The algorithm terminates with a non-empty graph iff there is a linear
Sulfilling Hintikka structure in H.

Proof: Let G; ~+ - - ~+ G, be a maximal path in the non-empty component graph,
and let v; ~ vy, for v; € G;, vy € Giyy be the edges in the underlying graph
corresponding to the edges in the component graph.

Construct a path in H by following the edges in the component graph and replacing
every component G; by a path segment as follows, where v‘; S SR "i.- is a path
through all the vertices in G;.

o Replace a transient component by the single vertex v'i.
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¢ Replace a terminal component by the closure

vim,)...a\,)(vil’\,)...,\,,vii)*'

e Replace a non-transient, non-terminal component by

R R SR R TR (P
1

We leave it as an exercise to prove that the path is a linear fulfilling Hintikka structure.
Conversely, let H' = (s1,...,... ) be a linear fulfilling Hintikka structure in . Since
H is finite, some suffix of H’ must be composed of states which repeat infinitely often.
These states must be contained within a self-fulfilling SCC G. By Lemma 11.41, G is
contained in a self-fulfilling MSCC. I

Example 11.45 There are two maximal paths in the component graph in Figure 11.3:
Go ~ Gy and Gy ~» G ~ Gy. The paths constructed in the underlying graphs are:
5o~ (83~ 53~ 51)* and

So’\"54’\”55'\”s7"”56’\’)54"’)35’\"57'\”5'6'\”5‘4'\”(SIMSZ'\”SS)*'

- respectively. 1]

Theorem 11.46 The method of semantic tableaux is a decision procedure for satisfi-
ability in PTL.

Proof: Construct a semantic tableau for a formula A. If it closes, A is unsatisfiable. If
not, construct the Hintikka structure from the tableau. Apply Algorithm 11.43 to con-
struct a fulfilling Hintikka structure. If the resulting graph is empty, A is unsatisfiable.
Otherwise, apply the construction in Theorem 11.44 to construct a linear, fulfilling
Hintikka structure; by Theorem 11.34, a model can be constructed for A. |

Corollary 11.47 (Finite model property) A formula in PTL is satisfiable iff it is sat-
isfiable in a finitely-presented model.

Proof: By construction. |

11.5 Implementation of semantic tableaux”

The implementation of the construction of semantic tableaux is quite lengthy and we
give just an overview here, in particular we omit the graph algorithms which are not
within the scope of this book. The complete source code can be found in the source
archive. Before reading this section, you should review the program for the construc-
tion of systematic tableaux in the propositional calculus.

First we declare the temporal operators:
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:- op(610, fy, @. /* next */
:- op(610, fy, #). /* always */
:- op(610, fy, <>). /* eventually */

The decision procedure for satisfiability is implemented in four stages:

e extend. tableau performs the tableau construction until it terminates.
e check_tableau decides if the tableau is opened, closed or contains cycles.
e create_states constructs the state diagram from the tableau.

e check_fulfillment constructs the component graph and checks fulfillment.

Each node of the tableau contains five fields, three fields as before: the list of formulas
and the links to the left and right children. The fourth is a node number that is gener-
ated by get_num when a new node is created. The final field is the ancestor path; it is
used to check if a new state should be created or if a node should be connected to an
ancestor. a- and f-nodes add ‘themselves’ to the ancestor path by appending the term
pt(Fmls,N) to Path, where Fmls is the label and ¥ is the node number.

extend_tableau(t(Fmls, Left, empty, N, Path)) :-
alpha_rule(Fmls, Fmlsl), !,
get_num(N1),
Left = t(Fmlsi, _, _, N1, [pt(Fmls,N)|Path]),
extend_tableau(Left).

extend tableau(t(Fmls, Left, Right, N, Path)) :-
beta_rule(Fmls, Fmlsl, Fmls2), !,
get_num(N1), get_num(N2),
Left = t(Fmlst, _, _, Ni, [pt(Fmls,N)|Path]),
Right = t(Fmls2, ., _, N2, (pt(Fmls,N)|Path]),
extend_tableau(Left),
extend _tableau(Right).

next_rule is called to get the formulas in a node created by the X-rule, but before
the node is created, search (source omitted) is called to search the Path for a node
with the same set of formulas in its label. If successful, it returns the node number N;
this branch of the tableau is terminated and marked connect (N). Otherwise, a new
node is created.

extend_tableau(t(Fmls, connect(N), empty, _, Path)) :-
next_rule(Fmls, Fmlsl),
search(Path, Fmlsl, N), !.
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extend tableau(t(Fmls, Left, empty, N, Path)) :-
next_rule(Fmls, Fmlsl), !,
get_num(N1),
Left = t(Fmlsl, _, _, N1, [pt(Fmls,N)|Path]),
extend_tableau(Left).

The following clauses are added to the procedures for alpha and beta to implement
the rules for the temporal operators.

alpha(#A, A, @ #A).
alpha(~ <>A, -4, - @ <>A).

beta(<>A, A, @ <>A).
beta(~ #A, -A, - @ #A).

For an X-node, only next formulas are used to construct the label of the child.

next_rule([], [1).

next_rule([@A | Tail]l, [A | Taili]) :- !,
next_rule(Tail, Taill).

next_rule([- @ | Taill, [-A | Taili]) :- !,
next_rule(Tail, Taill).

next_rule({_ | Taill, Taili) :-
next_rule(Tail, Taill).

After the tableau construction terminates, check_tableau is called. It traverses the
tableau down to the leaves and then returns up the tree to compute the status of the
tableau: if there is one open branch, the tableau is open and satisfiable; if all branches
are closed, the tableau is closed and unsatisfiable; otherwise, there is a cycle in the
tableau and the structure must be checked for fulfillment.

create_states takes a tableau and constructs the structure: states, state paths which
are transitions, and state labels which are the union of the labels on the state paths.
It returns a list of terms st (Fmls, N), where Fmls is the state label and N the node
number of the state, and a list of terms tau(From, To), where From and To are the
node numbers of states.

These lists are the input to component_graph, which returns a list of MSCCs (a
MSCC is a list of its states) and a list of edges of the form e (From, To), where From
and To are MSCCs. fulfili selects a MSCC, 8, with no outgoing edges and calls
self-fulfil to check if S is self-fulfilling. If successful, it returns ok(8), if not, it
deletes S from the list of MSCCs, adds notok(S,Result) to the list of results and
calls itself recursively. Result is the future formula that could not be fulfilled in 8.
self-fulfil checks each future formula <>F (or —#F) to see if F (or -F) occurs in
some state in the SCC.
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fulfili(SCCs, Edges, States, [ok(S)]) :-
member (S, SCCs),
\+ member(e(S, _), Edges),
self fulfil(S, States, Result),
Result == ok, !.

fulfili(SCCs, Edges, States, [notok(S, Result) |Resulti]) :-
member (S, SCCs), .
\+ member(e(S, _), Edges),
self fulfil(S, States, Result),
delete(SCCs, S, SCCsi),
delete(Edges, e(_,S), Edgesl),
fulfili(SCCs1, Edgesl, States, Resultil).
fulfili (., ., _, 1.

11.6 Exercises
1. Prove that every substitution instance of a valid propositional formula is valid
(Theorem 11.7).
2. Prove = = ¢ = p — Op (the converse direction of Theorem 11.8).

3. Prove that a linear interpretation is characterized by Op & ~O-p (Theo-
rem 11.16).

4. * Identify the property of a relation characterized by p — OCp. Identify the
property of a relation characterized by Op — O<p.

5. Show that in an interpretation with a reflexive transitive relation, any formula
(without Q) is equivalent to one whose only temporal operators are OJ, <, 00,
06, 00O and OOO. If the relation is also characterized by the formula ¢p —
OOp, any formula is equivalent to one with a single temporal operator.

6. Construct a semantic tableau for O(OC@AQAO(pAg) A O A~ g)) from
Example 11.28.

7. Prove that the construction of a semantic tableau terminates (Theorem 11.23).

8. Prove that the construction of the path in the proof of Theorem 11.44 gives a
linear fulfilling Hintikka structure.

9. Give a complete list of the elements of Up and U; in Figure 11.2.
10. Construct a tableau and find a model for the negation of OCp — OOp.

11. ? Extend the implementation of semantic tableaux to include the precedence
operator V" from Section 12.3.
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121 The deductive system £

We define a deductive system L for linear-time propositional temporal logic. The
primitive operators of £ are O and O, while < is defined as the dual of 0.

Definition 12.1 Let A and B be any formulas of PTL. The axioms of £ are:

0. PC Any substitution instance of
a valid propositional formula.

1. Distribution of O over >  O(A — B) - (0A — OB).
2. Distribution of O over > + O(A = B) —» (QA — OB).
3. Expansion of O FOA - (A A QA A ODA).
4. Induction F O(A — OA) — (A — OA).
5. Linearity FOAe-QOQ-A.
The rules of inference are Modus Ponens and Generalization: I-I_EI?A . 0

In a proof by induction, the inductive step is A - QA, that is, we assume that A is
true ‘today’ and prove that A is true ‘tomorrow’. If this inductive step is always true,
0O(A - QA), then A — OA by the induction axiom. Thus, if A is true ‘today’ (the base
case), then A is always true.

We now proceed to prove theorems in £. In order to concentrate on aspects of tem-
poral reasoning, several shortcuts will be taken in the proofs. We will omit detailed
Justifications of deductions in the propositional calculus and just write PC, We will
use some derived rules that are easy to justify:

FA-B FA—B FA—OA
F DA —» OB FOA— OB FAD DA

We will call uses of the first two rules Generalization, and the third Induction.

(To make the formulas easy to read, they will be stated and proved for propositional
symbols p and g, though the intention is that they hold for arbitrary PTL formulas A
and B.)
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12.1 The deductive system £

259
Theorem 12.2 (Transitivity) - O0p <> Op Theorem 12.6 (Distribution) I ( Op AOg) - O(p A g).
Proof: ] Proof: Letr =OpATOgA-O(p A q) and prove that r is invariant.
1. FOOp-0Op g:pzzzz L Fr—>@AQDp) A (@AOOg) A Expansion
2. FOp-OOp ) Inlzlucﬁon (@A V-00(@Ag) Contraction (12.5), PC
3. +FDOp-—0OCp ’ L3 PC 2. Fr—>(@AOOp) A (gAOLg) A ~OD(pAg)
4. +DO0peOp 17 3. Fr—-OOp A OOg A ~QO0(p A g)
4. I—r—»ODp/\ODqAO-nD(pAq)
5. Fr-0Or 4, Distribution (12.3)
Theorem 12.3 (Distribution) - O(p A g) < (Op A Og). 6. Fr-Dr » Induction
The proof of the theorem continues as follows:
Proof: o 7. Fr-0OpaDg Def. of r, PC
Generalization ’
O = G:E:Ialization 8. Frophg 7, Expansion
2. FOW@Arg)—Og 1.2. PC 9. FOr-0pAg) 8, Generalization
3. FOP@Ag - (OpAOg) o 10. Fr—oO@Ag) 6,9, PC
- 1. Fr--0@pAg) Def. of r, PC
4. FOW@--g9) - (Op—>0O-¢q) Generahz:tllgg 12, Fro false 10, 11, PC
5. F(Op=0"9)=>~0f~~9) < po 13. FOpADgA-O(p A g) — false Def. of
6. F=OpvO-gqv~-Op—-9q) )
. . 14 +FOpAQg—>O(pAg)
7. F-Opv-OgVvO-(p—-gq) . 6, Linearity I
8. H(OpAOg) - OP@Ag) 7.PC L
P O distributes over disjunction only in one diréction. O distributes over disjunction in
9. FO@AQ) < OpAOg) 3,8,PC both directions because it is self-dual.
' i
Theorem 12.7 (Distribution)
(@) F(OpvOg) -»0O@pvg), (®) FOP Vg < (OpVOg).
Theorem 12.4 (Distribution) + O(p A g) — (Op A Og).
Proof: Exercise. ]
Proof: As for Theorem 12.3. (We will prove the converse below.) I
The following theorem is the converse to the Expansion Axiom. Theorem 12.8 (Exchange) - 0O p — Oop.
Theorem 12.5 (Contraction) +p A OCp — Op. Proof:
. FOp->QOp Expansion
Proof: ) - . 2. FDOp->0OQ0p 1, Generalization
1. FOp>pAODOp . Expansion 3. FOp—OOp 2, Transitivity (12.2)
2. FOOp - O AQOUp) 1, Generalization 4. FOp—p Expansion
3. FpAOOp— O AOOp) 2,FC 5. FOp—>pADOp 3,4, PC
4. FpAOUp - O(p AOOp) . 3 Dnduction 6. FOOp—~O(@ATOp) 5, Generalization
5. FpAQOOp—Op 4, Distribution (12.4), PC . 7. FOOp—>OpAQOOOp 6, Distribution (12.3)
8. FOOp->OOp 7, Contraction (12.5)
Now we can prove the converse of Theorem 12.4. The structure of the proof is typical
of inductive proofs in L.



260 12 Temporal Logic: Deduction and Applications
9. FOOp->0OpAQUOpP Expansion
10. FpAOQp—-0pAQOOQOPp . 9,PC
1. FpAOQp—->0O@ADOp) 10, Distribution (12.3)
12 FpAOQp—-B@EALQOp) 11, Induction

13. FpACQOp—-0p
14. FO@EAOOpP) - 0O0p
15. FOpAQOOp—-OQ0Op
16, FOQOp—O0p

17. FOOp« OOp

From the duality between O and <, we easily get theorems with future formulas.

Theorem 12.9

12, Distribution (12.4), PC
13, Generalization

14, Distribution (12.3)

15, Contraction (12.5)

8,16,PC

(@ Fp-Op, () FOp—%p, () FOp—Op.

Proof:
1. ]—D-vp—-)—vp

2. Fampo~0O-p
3. Fp—>-0O-p

4. Fp-><p

5. FBO-p->0-p

6. +-O-p—--0-p
7. FOp—--0-p

8. FOp—=<p

9. +Op->Qp

10. FOp—-><p
11. FOp->Cp

Theorem 12.10 .
(@ FO@EVq«(Opvog)
©) FOopepvOOp
() FOp-q) = (Cp—>Cg)

Proof: Exercise.

Expansion
1,PC
2,PC

3, Definition

Expansion
5,PC

6, Linearity
7, Definition

Expansion
(®)
9,10,PC

® FO@A—=(OpAOg -
@ FOOpeOOP
) FOOpeaOp

From Theorem 12.10(e), we obtain a generalization rule for <:

FA—-B
F OA - OB’

12,1 The deductive system L
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The following theorem shows that sequences of temporal operators not containing O
collapse very quickly, for example: 0O00O0OCOTp « OOp.

Theorem 12.11 (a) F OO0Op < OOp,
Proof:

1. FOOOp—>O0p

2. FOp-0Q0p

3. FOOp—->0Q00Op

4. FOOp-—QOO0Op

5. F<oOp—-0O0oOp

6. FOOCOp«<Op

7. FOOOp & 0O0p

O and < commute in only one direction.

Theorem 12.12 - ¢Op — Op.

Proof: Exercise.

Example 12.13 Here is a state transition di

si(p) = T for i > 4.

S0 51 52 53

Both ¢Op and OCp are true.

(b) F<C0OCp & OOp.

Expansion

Expansion

2, Generalization

3, Exchange (12.10(d))
4, Induction

1,5,PC

Exercise

In the following diagram, s;(p) = T for even i and s; = F for odd i.

So 5 52 53

agram, where the ellipsis indicates that

DCp is true, since for any state 5;, 55 |= p. Obviously, ¢Op is false in all states of the
diagram, because for any s;, s; = = p if i is odd and 541 |= - pifiis even.

0

The following theorem characterizes linear-time temporal logic without using Q. We
sketch the proof (which is similar to the proof of Theorem 12.6) and leave the details

to the reader.

Theorem 12.14 - O((pv Og) A (BpVvg)) « (Opv Og).

Proof: Denote the formula (p v Og) A (Op v q) by r, so that the formula to be proved
is Or & (Op v Og), and denote Or A~ Tp A ~ Og by s. Show that s is inductive and

then show that - Or — (Op v Og). The other direction of the equivalence is easy.
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Theorem 12.15 (Soundness of L) Let A be a formula of PTL. If ;. A then A
Lemma 12.16 k= 0O(A - OA) - (4 - DA).

Proof: Suppose that the formula is not valid. Then there exists an interpretation T and
a state s such that
SEOA->QANAA-DA.

Since s |= - A, there exists a state &' € p(s) such that s' = - A. By definition of
p as " there exists a sequence of states (s = sy,...,s, = &), such that Si+1 € T(s)).
By induction we show that for all i, 5; = A, in particular, s, = & = A which is
a coniradiction. The base case, s; = s |= A holds by assumption. Suppose that
si =s F A. Buts = O(A - QA) by assumption and s; € p(s), 508 EA— QA,
si |F OA and s;11 = A, since 54, € 7(s). 1

Lemma 12.17 If = A, then = DA,

Proof: Let T be an arbitrary interpretation for A and s an arbitrary state in Z. We need
to show that s = OA. This is true if for all ¥ € p(s), s' = A. But A is valid which
means that it is true in every state including s'. |

Proof of soundness: By induction of the length of the proof in L. The valid formulas
of the propositional calculus are sound by definition, and we showed the soundness
of MP. The soundness of Axiom 1 was shown in Theorem 11.9 and that of Axiom 5
follows from Theorem 11.16. Lemma 12.16 proves the soundness of Axiom 4 and
Lemma 12.17 proves the soundness of Generalization. We leave the soundness of
Axioms 2 and 3 as an exercise. 1

Theorem 12.18 (Completeness of £) Let A be a Jormula of PTL. If |= A then b, A.

Proof: If A is valid, the construction of a semantic tableau for = A will fail, either
because it closes or because all its terminal MSCCs are non-fulfilling. We show by in-
duction that a disjunction of the negations of formulas labeling a node of the semantic
tableau is provable in L.

The base case of the leaves and the inductive steps where a- and f-rules are used
follow from propositional reasoning together with the Expansion axiom. Suppose that
the X-rule is used in the construction of the semantic tableau:

OAln..,OA,,, Bl,...,Bk

where we assume that negations are pushed inwards as Justified by the Linearity ax-
lom. The following deduction proves the formula associated with the parent node: .

L. F=Ajv-..vay, Inductive hypothesis
2. FDO(A V.-V ~A,) 1, Generalization
3. FOGA V...V —A,) 2, Expansion
4. FO-AVv---vO -4, 3, Distribution (12.7)
5. F=04, V---va(OA, 4, Linearity
6 I—-QAIv~--v—voA,,v—uBlv---v-ka 5,PC

There remains the second base case of a node that is part of a non-fulfilling MSCC.
We will demonstrate the technique of the proof with an example, proving Op — O0p.
Here is a semantic tablean for the negation of the formula:

~(Op ~ OOp)
{
Dp, O<> —1p
i

i |p. O0p, O¢ ap

l
Op, O-p
]
P, OOp, O=-p
' N
p, OOp, -p (To node )
x

The crucial part of the proof is to define the invariant of the loop,
such that - A - QA. The invariant will be the conjunction of the formulas A;, where
OA; are the next formulas in the states of the SCC, as these represent what must be
true from one state to the next. In the example, for invariant is OpACp,

that is, a formula A

1. F(@pAO-p)— (pAODp) A (~pv0O<-p) Expansion
2. I—(Dp/\<>-p)—>(p/\ODpAO<>ﬂp) 1,PC
2. l—(Dp/\Oﬂp)-—)(ODp/\OO-'p) 2,PC
;1- F(@pASC-p) > O@pAo- D) 3, Distribution (12.3)

F@pAC=p) - O@p A Op) 4, Induction

From the closed left-hand branch it is immediate that I - PV -QUpV--p. Contin-
uing the proof:
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6. F=pv-QOUOpvV--p Left-hand branch
. OAO 6, PC
;. ll: (\ZIIJ A——? ljp)p—) g 7, Contraction
. Ao 8,PC

9. F(@OpAOp)—>—Tp 81
9, Generalization

- Q- ,

10. LDO@pAO-p)— )4 i

11. F(@OpAO-p)—>U--p .
12. FEpf\ODpAOHp)—)D—!ﬂp ll,gxl;)a:;ion

13, F@EAQOpAO-p)—>-Op . > Ptg

14. F-pv-OOpv-<Onp ,
Line 14 is the disjunction of the complements of the formulas at the g-node. The prc;of
for the node’s parent and its grandparent J; follow simply from the proof schemes o;
a- and X-nodes.

This method may not yield the shortest pdssible proof of the form.ula, but it shows that
systematic proof that can be discovered by constructing a semantic tableau.

12.3 Other temporal logics*

Precedence operators

In specifying systems, there is a need to express a reguirement of tt.1e' form: ‘p haI.);Jer;Z
before g’. The formula p — ©g does not express this cc.mcept,. asitis true even if p
false in the current state. To express precedence properties, a binary temporal opera.tor
must be used. There are two possibilities: the first is waiting for, denoted pWgq, whlt;h
is true if p is true while it waits for g to become true..There is a stronger operator, the
until operator, denoted p U'g, which ensures that g will eventually become true.

Definition 12.19 -
so |E AWB iff for all i, 5; |= A or there exists some 7, such that s, = B and for all i

suchthat0 <i<n,s; EA. .
5o |= A UB iff there exists some r such that s, EBandforall0<i<n,s kA a

The relationship between the operators is given by the following equivalences:

Theorem 12.20
EAVq < (AWgq) AOq.
EAWg < AVqg) VIOA
= A « trueUA.
E DA o AWfalse.

Proof: Exercise.
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Either of these binary temporal operators can be taken as the sole primitive operator
together with O. W and V" can be defined in terms of each other and the unary op-
erators can be defined as from the binary ones. A complete axiom system is obtained
by adding the following two axioms to the axioms of Definition 12.1:

6. Expansion FAUB« (BV(AAQAUB))).

7. Eventuality FAUB— ¢B.
Axiom 6 is the f-rule for the until operator: ejther B is true ‘today’, or A is true and
AU'B will be true ‘tomorrow’. The construction of the semantic tableau and the proof
of completeness are very similar to those for the simpler version of temporal logic.

Past operators

The temporal operators that we defined cannot express requirements on what must
have happened since an event occurred. The since operator, denoted pSq, and its
weak version back-to, denoted pBg, are defined as follows:

Definition 12.21
Sk }=ASBiffforsome05isk,s,~}=B,and,fora110_<_i<j$k,sj EA.
St FABBIffif s; l=Bforsome05isk,thenfora1105i<jsk,sj EA. 0

The weak operator does not require that B actually have been true in the past.

Unary operators can be defined from the binary ones: the existential operator once is
denoted ©p and is defined by rrue Sp, and the universal operator so-far can be defined
fromitby Bp =-©-p,

The past version of the next operator is previously, denoted ©p, which is true in a state

5; if p was true in 5,_;. In 5o, Sp is false since there is no previous state. There is a
weak version of previously that is vacuously true in s.

The past operators do not introduce any difficulties in the theoretical treatment of
temporal logic. Unlike the future operators which can be non-fulfilling, at any point in

the computation there is only a finite number of previous states in which the formula
can be true.

Branching-time operators

Branching-time logic can be formalized by introducing compound operators that quan-

tify over the paths as well as over the states along the path (or paths) selected by the
quantifier:

V3  for all paths x, at all states s € 7,
A0  for some path z, at all states s € z,
V<O for all paths z, at some state s € 7,
3O for some path 7, at some state s € 7.
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The most widely used branching-time logic, CTL, uses a different notation: A and E
for V and 3, and G and F for O and <.

Example 12.22 In the structure in Figure 11.1, we have 5; | 30p and 52 E3Op
since a path exists such that p is true at every state in the path, and another path exists
such that - p is true at some state in the path. Clearly, & V Dp. 0

Branching-time temporal logic is presented in detail in Huth & Ryan (2000).

12.4 Specification and verification of programs”

Temporal logic is used in the specification and verification of computer systems with
dynamic behavior such as hardware and operating systems. In this section we give
a deductive proof of a concurrent program and in the next section we show how the
same program can be proved using tableau techniques.

Specification of concurrent programs

Definition 12.23 A concurrent program is a set of subprograms {p1,p2. ... pn) called
processes that can be executed in parallel. The variables of the program are denoted
{vi,v2, ..., Vm}. The statements of process i are labeled {lx,ln, .. .. Ii,}. A state of a
computation s consists of (vis, Vas. - - -, Vms), Where vjs is the value of the j-th variable
in the state, and (L, by, - - -, In;,.), where 1, denotes that the i-th process is at location

Js- 0

The following informal definition of a computation can be formalized as we did for
sequential programs in Chapter 9.

Definition 12:24 A transition from state s to state s + 1 is done by selecting one
of the processes i and executing the statement labeled J;,. State s + 1 the same as s
except for (Vis, .. ., Vms) Which may be changed by an assignment statement, and lise1y
which will be I;; + 1 unless changed by an if- or while-statement. A computation is
sequence of states (so, . . .), such that s;4 follows from s; by one of the transitions. 0

This computational model is called interleaving of atomic instructions because it al-
lows arbitrary interleaving of execution sequences of the concurrent processes, but
each instruction of a process is atomic, that is, it is executed indivisibly. Given the
statement X := 1 in one process and X := 2 in another, the result of the interleaved
computation is that X has either the value 1 or the value 2, not some other value such
as 3.

To formalize the temporal properties of a concurrent program, progress axioms are
defined for each statement. We will assume that the sets of symbols used for labels
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%n each proces.s are disjoint, so that we can use the label as a proposition with the
intended meaning that the program counter for that process is ar that label.

Definition 12.25
Statement Progress axioms

li: v := expression Fli— Ol
li: if B then F ({; AOB) - O,
1t: s1

else F (G AT-B) - Ol
1f: S2
1i: while B do F(; AOB) = Ol
1t: S1;
1f: 82 FGAD-B)— O

0

In the' if- and. while-statements, it is always true that ; —» O(l, v l¢), but without
more information, you cannot know which branch will be taken, (: A B) = <l does
not hold, because by the time that this transition is taken, another process could have

modified a global variable falsifying B if B i
: g B. Only if B is held true or false i i
we specify which branch will be taken. else ndefiniely can

Be c.areful to distinguish between OOp A UCg and OOp A 0<g. The first formul

specifies that p and g are both true infinizely often, but p may ‘choose’ to bemt:ua
exactly when ¢ is false and conversely as shown in Figure 12.1. The second fo le
states that eventually p will remain true, and thus will be true at every subse uer:tm ul'lua
occurrence of g (Figure 12.2). The difference between <0Op and OCp is ?mportani

in the definition of the fai
1992.1995) irness of constructs such as semaphores (Manna & Pnueli
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time

- - A r- - A

.......

time

Figure 12.2 Timing diagram for OOp A OOg
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Verification of concurrent programs

In this section we prove the correctness of Peterson’s algorithm for solving the critical
section problem. The description of the problem is:

There are two processes P1 and P2. Each process consists of a critical
section and a non-critical section. A process may stay indefinitely in
its non-critical section, or it may request to enter its critical section. A
process that has entered its critical section will eventually leave it. The
solution must satisfy two properties:

Mutual exclusion It is forbidden for the two processes to be in their crit-
ical sections simultaneously.

Liveness If a process attempts to enter its critical section, it will eventu-
ally succeed.

Figure 12.3 shows Peterson’s algorithm for solving the mutual exclusion problem,
where each process is written in Pascal syntax and the statements are labeled. (To
simplify the proof, the two assignment statements are assumed to execute atomically.)

P1 requests entry to the critical section by setting variable C1 to True. It then waits
until P2 is not in its critical section by testing variable C2. Since this part of the
algorithm is symmetric, the variable Last is used to break ties. Its value indicates
which process was the last one to attempt to enter its critical section. If both processes
attempt to enter their critical sections simultaneously, the tie is broken in favor of the
process which first attempted. To prove the correctness of Peterson’s algorithm we
must prove the following two formulas:

Mutual exclusion 0= (CSI A CS2),
Liveness: D(Serl - OCSI) A O(Set2 —» OCS2).

It is not easy to be convinced of the correctness of the algorithm just by examining the
code. Let us start the formal proof with a few elementary lemmas.

Lemma 12.26
(8) +O((Last=1)v (Last = 2)).
(b) FO(CI & (TestlvCSD)).
(©) FO(C2 & (Tes2 v CS2)).

Proof: The formulas are simple invariants which are proved by induction. We give one
partial proof and leave the complete proofs as exercises. (b) is true initially, because
C1 is false as is Test] v CS1 (since we are at NC1). Suppose that (b) is true; we have to
check that each of the ten statements preserve the truth of the formula. For example,
if the next statement to be executed is Set1, then C1 becomes true as does Test] , SO
the truth of the equivalence is preserved. 1
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program Peterson;
var C1, C2: Boolean := False;
Last: 1..2 := 1;

process Pi;

begin
while true do
begin :
NC1: Non_critical_section_1;

Setl: Ci := True; Last := 1; '
Testi: while C2 and (Last = 1) do { nothing };

Csi: Critical_section_1;
Resetl: Cl := False;
end;

end;

process P2;

begin
while true do
begin
NC2: Non_critical_section_2;

Set2: C2 := True; Last := 2; .
Test2: while C1 and (Last = 2) do { nothing };

CS2: Critical_section_2;
Reset2: C2 := False;
end;
end;

Figure 12.3 Peterson’s algorithm for mutual exclusion
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Lemma 12.27
(@ FOO-CI v Olast = 1)).
(b) FO(O-C2 v O(Last = 2)).

Proof: Let us prove (b) as the proof for (a) is symmetrical:

I. FONC2 v OSer2 Def. of non-critical section
2. FONC2 - O-(Test2v CS2) Progress
3. FO-C2vV OSer2 1,2, Lemma 12.26(c)
4. FSer2 » O(Tes2 A (Last = 2)) Progress
5. FO-C2 v S(Last = 2) 3, 4, Theorem 12.10(e,b), PC
6. FO(O-C2 v O(Last = 2)) 5, Generalization
]

We now prove Test! - OCSI from which the liveness of P1 follows by the progress
axioms and Generalization; the proof of the liveness of P2 is symmetric. To assist in
understanding the formal proof, it is followed by a line-by-line commentary.

Theorem 12.28  Test] - OCS]

Proof:
1. F OTest] » OC2 Progress
2. FOTest] - O(Last = 2) 1, Lemma 12.27(b)
3. F DTestl - OO(Last = 2) 2, Lemma 12.26(a), Progress
4.+ OTest]l - O(Last = 1) Progress
5.0 OOTest] -» OO(Last = 1) 5, Generalization
6. F OTest] » OCLast = 1) 6, Transitivity (11.12)
7.k DTest] — OO((Last = 1) A (Last =2)) 3, 6, Theorem 12.12
8. F DTest] — false 7,PC
9. FTestl - OCSI 8, Progress
Commentary
1. If P1 attempts to execute the while-loop

and remains at Test1, then C2 contained true.
2. From the Lemma and duality - 0C2 & ~0O- (2,
3. If OTestl, Set1 which sets Last to 1 can never be executed,

so if Last = 2 it remains so.
4, Asin line 1.
5-7.  Temporal logic reasoning.
8. From (Last = 1) —» =~ (Last = 2).
9, If P1 can’t stay forever at Test1, it must eventually be at CS1,

|

To prove mutual exclusion, we must prove that - (ar(CSI) A ar(CS2)) is inductive.
Unfortunately, it is not. We leave it as an exercise to prove that

[(TestI A CS2) — (C2 A Last = 1)] A [(Test2 A CSI) — (CI A Last = 2)]
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is inductive, and then to prove mutual exclusion.

Hardware specification

Temporal logic can be used to specify and verify hardware systems. Consider a
clocked J-K flip-flop:

J —Q
T—=C
K 0

State changes occur on falling;edges of the clock T, denoted by the proposition T'{.
The permissible state changes are specified by the following formulas:

TIAJ=0)AK=1) - O@=0)
TIAT=DAK=0) - O@=1)
TIANT=DAK=1) = (Q=v-0(Q=1-v))
O@=veQ0=1-v).

The first two formulas describe how the state of the flip-flop can be set by setting the
values of the J and K lines and pulsing the clock. The third formula specifies that
pulsing the clock with J = K = 1 causes the value of O to flip. Finally, the value of
0O is always the complement of the value of Q. The requirement that the fiip-flop not
change state between pulses can be expressed using the binary operator waiting-for:

(@=v-»0O@=W(T.

12.5 Model checking”

The deductive proof of the correctness of a concurrent program is quite complex and
demands a degree of ingenuity. For finite-state programs like Peterson’s algorithm,
there are only a finite number of states in which the program can be and the com-
putations (paths) can be finitely presented, so it is feasible to actually construct an
automaton describing all of the states and to check the automaton in order to prove
that a property holds. This method, called model checking, is easily automated, and is
often preferred to deductive methods when appropriate.
A state in Peterson’s algorithm consists of the instruction counters of both processes,
and the current values of C1, C2 and Last. There are at most 5.5.2-2.2 = 200 different
states that can appear in any computation. We can construct a finite automaton whose
transitions are the legal transitions that the program can take. For example, from state
(Testi,TestQ,True,True,1), the legal transitions are for process P1 to return to the
same state or for process P2 to move to state (Testl,CS2,True,True,l).
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1. (81,82,1)
2.(T1,82,1) 3.(51,12,2)
'; (R1,82,1) 5.(T1,T2,2) 6. (T1,T2,1) 7. (S81,R2,2)
8. (R1,T2,2) 9. (T1,R2,1) 10. (81,82,2)

& e & o o Ny

Figure 12.4 State automaton for Peterson’s algorithm

2112 f:;:;,d we tc;n ?ig;liﬁcantly reduce the number of states. First, the values of C1 and
not be included in the state, since b ,
2 y Theorem 12.26 (a,b), thei
be deduced from the instructi o aes can
. on counters of the processes. A second simpli i
. simplifi

:1 to remove the statements NC1, CS1, NC2 and CS2. It may seem strange E)lr:;tcl)on
) et stt;tements which are the raison d’étre of the algorithm, but they do not change o
;;e mi t\lllz;llue of a1'1y vanab'lc.a, so they cannot affect the correctness of the algorﬁhr(:

exclusion condition now becomes I - (Reset] A Reset2), and the liveness:

( S )' -
Condltlons m} Sell - olee (41} W lth these SlﬂlphﬁCatlon, thele are at most 3 M 3 -2 18

Algorithm 12.29 (Construction of a state automaton)
Input: A concurrent program.

Output: A state automaton for the program.

Stalt Wlth the lﬂltlal state. ChOOSe a state WhOSC tlallsltlons haVe not be Created. I or
each pIOCeSS, create the new state that results from th current state-
€ execution Of thc
rrent s
ment Of the pI‘OCCSS, a.nd create a transition (labeled by the prOCeSS) to the new state

. egr "oet N
I:[ the new state ahCady CXlStS, create a transition to the CXIStlng state. Iel’mmate When

:ﬂt:;xrr:lz:i 12,30 Figur:b12.4 gives the state automaton for Peteréon’s algorithm. The
names are abbreviated and left (right) arrows are implici .

: e implicitly labeled P1
Note that only ten of the eighteen possible states occur in any compztation (P2)E.I
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A quick check of the automaton shows that it contains neither (R1,R2,1) nor (R1,R2,2).
We can immediately conclude that mutual exclusion is preserved, because any state
that could possibly be reached appears in the automaton.

Implementation

The software archive contains a program that creates the state automaton for Peter-
son’s algorithm. The predicate state has six arguments: the first five are the location
counters of P1 and P2, the values of C1, C2 and Last. (Since the computer is doing
the work, we give also the values of Ct and C2.) A database of states is maintained so
that a new state can be identified with an existing identical state. For this purpose, the
sixth argument of state is the identification number of the state. For each statement
in the program, predicates next1 and next2 describe the state transition if P1 and
P2, respectively, are executed. Here is the procedure for next1; the code for next2 is
similar.

nextl(state(seti, P2, _, C2, _, D,
state(testi, P2, 1, C2, 1, M)).
nextl(state(testl, P2, C1, O, Last, N),
state(resetl, P2, Ci, O, Last, N)).

nextl(state(testi, P2, Ci, C2, 2, N),
state(resetl, P2, Ci, C2, 2, N)).
nexti(state(resetl, P2, _, C2, Last, N),
state(setl, P2, 0, C2, Last, N)).

When a new state is created it is assert’ed into the database and the program recur-
sively attempts to find a state accessible to the new state.

We leave it as a project to extend the program so that it can automatically create the
transition database from a program.

Model checking tableaux

What about liveness properties like O(Set] — OResetl)? Recall that we checked the
satisfiability of a PTL formula by constructing a semantic tableau and checking that
all future formulas are fulfilled. Here we do the same, except that we cannot consider
all possible structures, but only structures that are consistent with state automaton of
the algorithm. This is done by simultaneously building both the state automaton and
the semantic tableau.

One technical detail before we give the construction: rather than build the tableau rule
by rule, we build the tableau state by state by implicitly performing all a- and f-rules
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and explicitly constructing the states from X-rules and state paths. In the presence of
f-formulas, of course, a state in the tableau will have more than one successor.

Algorithm 12.31 (Model checking tableau)
Input: A finite-state program P and a PTL formula A.
Output: A model checking tableau for A.

Let P be a finite-state program and A a PTL formula. A node consists of a pair (s;, U;)
where s; is a state in the computation of P and U is a set of PTL formulas. The initial
node is (sp. = A). Choose a node (s;, U;) and create as its children all nodes (s;, Uj)
where s; is a legal successor of s; in P and Uj; is a successor of U; according to the
tableau rules. If (s7, U) is not consistent, do not create the node. If (s;, U;) is the same
as an existing node, connect (s;, U;) to the existing node. Terminate when no new
nodes can be produced. 0

Let us construct the tableau for Peterson’s algorithm and O(Set/ — OResetl). The
negation of the formula can be written O(Set! AO - Resetl), which we will abbreviate
by ¢(S1 A G- R1). By the f-rule, the initial state in the semantic tableau will have
two successors, one with §7 A O - R and one with Q<O (S1 A0 - R1). Because of the
a-rules, the state with §7 A O~ R] will also contain S1, O-RI, - R]I and OO - RI.
Thus the model checking tableau will have two initial states:

((s1,82,1), {SIAO-RILSI, DAﬂRI,ﬂRI,OD-RI})
((s1,82,1), {OO(SI AO=RDHY).

Figure 12.5 shows the model checking tableau constructed from the first one, where,
to avoid cluttering the diagram, the formulas that are created by the a-rules are not ex-
plicitly written. The transitions marked x are those that cannot be taken because they
lead to inconsistent nodes. For example, executing Test1 from the states (77, 52, 1)
or (T1,72,2) leads to a state with the instruction counter of P1 is at R1, which is
clearly inconsistent with O-R].

The start of the tableau for the second initial state is shown in Figure 12.6. When the
construction is continued, nodes 12 and 14 containing S A 0= R] can be connected
to nodes in the tableau in Figure 12.5, while nodes containing Q<O(SI A 0= R1) will
give rise to more nodes containing the same formula.

So, does the construction prove that O(S1 A O - RI) can be satisfied in a computation
of Peterson’s algorithm? The tableau does not close, so we have to check if the future
formula is fulfilled in a MSCC. In fact it is; the following MSCC from Figure 12.5
fulfills O(SI A O=RI):
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1.((81,82,1), {S1AO-R1})

T

2.((T1,s2, 1), {O-=R1}) 3.((51,T2,2), {O=R1})

NN

5.((T1,72,2), {O-R1}) 6.((T1,72,1), {O0-R1}) 7.((S1.R2,2), {O-R1})

x/\@@/l/

9. ((T1,R2,1), {O~R1}) 10.((81,82,2), {O0=R1})

o o o o

Figure 12.5 Model checking tableau for Peterson’s algorithm, first part

11. ((81,82, 1), {OO(S1 AG~RD)})

N T

12. ((T1,82,1), 13. ((T1,82,1), 14. ((S1,72,2), 15. ((81,T2,2),
{SIAQ-RD}) {OC(S1AQ-RD)) {SIAQ=RI) {OO(S1AO-RY))

Figure 12.6 Model checking tableau for Peterson’s algorithm, second part
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so we seem to have a counterexample to the liveness property. Something must be
wrong because we proved the liveness property deductively in a previous section.

In the deductive proof, we used progress axioms such as Set] — OTest] which ensured
the fairness of the computation. The mode! checking algorithm must be extended, not
only to check for an open tableau and fulfilling of future formulas, but for fair com-
putations. The ‘fulfilling’ path that we found is not fair because P1 is never allowed
to execute a statement; instead, it remains forever at Set1, We refer you to Manna &
Pnueli (1992,1995) for details on including fairness in the model checking algorithm.

Model checking in branching time

In a branching-time temporal logic, model checking is easier because we can work
directly from the state automaton. For example, we can show that V OR], that is, on
any path, you can go somewhere where P1 is in its critical section. This is checked
by incrementally building the set of states that satisfy V¥ ORI, starting with the set of
states that satisfy RI, {4, 8} in Figure 12.4, and then working backwards. State 5 is
included because all its successor states are in the set {8} C (4, 8}, then state 2 is
included because (4,5} C {4, 8,5}. The set of states that results from this algorithm
is shown below: »

4 ' N
(N (0 )
7 | \Q/\@\
.—I ® ——2
L 4
We can see that any fair path must eventually lead to states (4, 8}. The faimness re-
striction rejects the path 1 ~» (3 ~» 7 ~» 10)*.

Symbolic model checking*

The size of a state automaton or model checking tableau depends on the size of the
domain of the variables in the program. Peterson’s algorithm has a single two-valued
variable Last, but many algorithms and hardware devices have 32-bit variables, caus-
ing the number of states to be explosively large. In symbolic model checking, the states
are not represented individually; rather, the entire automaton or tableau is represented
by a propositional formula. By storing the formula as a BDD and using the BDD algo-
rithms to manipulate it, the tableau construction is efficient and practical for extremely
large numbers of states. In this section, we demonstrate the basic ideas involved by
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describing how a semantic tableau for a temporal formula can be implemented using
BDDs.

Consider the construction of a semantic tableau for the formulaA = OOpv OO -p. A
semantic tableau is, in effect, a search for a satisfying interpretation. Just by examining
A, we see that there are four possible interpretations, depending on the assignment of
true or false to its two subformulas; obviously, if both are assigned false, the formula
is false, otherwise, it is true. However, the subformulas are not simply propositions
that can arbitrarily be assigned a truth value. To satisfy A, the decompositions of the
two subformulas into

Ay
Az

(OCp & Op A OOCD),
(CO=p«O-pvOOL-p),

must also be taken into account because the assignments to OOp and ©O = p are not
independent. These, in turn, have their own decompositions that must be taken into
account:

As (Cp=pVvOOp),
Ay = (B-pe-spAQOO-p).

- We now have a set of subformulas that must be assigned truth values:
O0p, ©O=p, Op, O=p, p, ~p, OOOp, OOL~p, OO ~p.

An assignment must satisfy A as well as the four decompositions A}, Az, A3, A4.

The set of subformulas can be divided into two subsets: the first six are subformulas
that must be assigned truth values in the current (first) state. The other three subfor-
mulas will be assigned truth values in the next state. In fact, only five assignments
are needed in the current state, since the assignment must be consistent, so an as-
signment to p determines the assignment to - p. The tableau construction requires
us to create new states for each of these 2° = 32 assignments by partially evaluating
A" = A ANA; AAz A As A Ay, which will result in formulas to be satisfiable in the
next states (after removing the O operator). A will be satisfiable if there exists an
assignment for which the partial evaluation of A’ is satisfiable in the next state.

By representing each subformula as a separate atomic proposition, the satisfiability of
A is reduced to the satisfiability of A” = Jxno, Ixo, %, IXon-p Ixn-, A, where
the existential operators are propositional quantification over the atomic propositions
. representing the subformulas. If we simplify A” using the decomposition, we get the
formula OOCpv OO = pv OO = p from which we know that 0Opv OO ~pyO-p
must label the next state in the semantic tablean.

It seems that not much has been accomplished, trading a large set of subformulas
for a complicated propositional formula. But we know of a generally efficient rep-
resentation for propositional formulas, namely, ordered BDDs. Here is the obvious
representation of A as a BDD:
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Similarly, BDDs can be constructed for each of Ay, ..., A4 and using the apply oper-
ation, A’ can be easily computed. Recall now the definition of propositional quan-
tification (Definition 4.63), and its computation using restriction (Theorem 4.64):
ApA = Al,—r V Alp=r. The BDD for the formula A” that specifies what must be
true in the next state can be computed using repeated quantification on the BDD for
A'. The result will be the BDD for Q0Cp v OO0 =p v OO - p:

*0onop

By removing the next operators, we get a BDD for the formula that must be satisfied
by all successor states. The tableau is obtained by performing the disjunction opera-
tion accumulatively on the BDDs for each state that it is constructed. An additional
algorithm must be used to ensure that the structure is fulfilling. These algorithms are
beyond the scope of this book.

Implementation

The source archive contains a Prolog program that constructs a BDD from a temporal
formula, and constructs the BDD of the structure using BDDs for the inductive formu-
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las. A database is constructed which assigns to each atomic and temporal subformula
a global number representing an element of a sequence of propositional letters. Then
the algorithms from Section 4.3 can be applied. The propositional numbers are trans-
lated back to subformulas for output.

The only non-trivial part of the implementation is removing the next operator from
the BDD of the new state. It is not sufficient simply to remove the operator from the
formulas on the nodes of the BDD, because the ordering of the propositional letters
in the resultant BDD may not be consistent with the original ordering of the non-next
formulas. The simplest solution is to transform the BDD to a formula and then back
to a BDD; a second transformation will use the original ordering in the database.

Model checkers

Programs have been built that implement symbolic algorithms for model checking in
both branching-time (SMV) and linear-time (TLV). The programs are easy to use: a
simple programming language is used to specify the system which is compiled into
a finite automaton, and the property is entered in temporal logic. The construction
of the formulas, states and BDDs is normally hidden from the user. Symbolic model
checkers are not just research tools; they have been used to verify temporal properties
of extremely large systems.

12.6 Exercises

1. ProveF O(®Ag)— (OpAOg)and - OV q) < (Op VvV Og) (Theorem 12.7).
2. Prove the future formulas in Theorem 12.10.

3. Prove that Axioms 2, 3 and 6 are valid.

4. Prove - O0Op«0Op (Theorem 12.11) and + ©0Op — O<Cp (Theorem 12.12).
5. Prove F O(O0p — Cg) « (O0g v OO - p).

6. Fill in the details of the proof of F O((p v Og) A (OpVyg)) « (Cpv Og)
(Theorem 12.14).

7. * Prove the properties of the precedence operators in Theorem 12.20.
8. * Show that the branching time operators are not independent:

EJIOp & ~VO-p EVOp & ~30-p.

9. * Show that |z ©Op © OSpand k= (Op v Ug) < O(BpV Hyg).
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10. Prove the invariants of Peterson’s algorithm (Theorem 12.26).

11. Prove that the following formula is inductive:

[(Testl A CS2) — (C2 A Last = 1)] A [(Test2 A CSI) —» (CI A Last = 2)].

12. * Prove the correctness of Dekker’s algorithm for mutual exclusion (see Ben-
Ari (1990)). '

13. * An asynchronous J-K flip-flop is like the clocked J-K flip-flop except that it
has two additional input signals P and C (representing Preset and Clear). Write
temporal logic formulas to formalize the following informal specification of
their behavior.

o If P = C = 1, the behavior is like a clocked J-K flip-flop.
e P = C = 0is forbidden.

o P=0,C=1causes Q= 1.

e P=1,C=0causesQ=0.

14. * Construct the model checking tableau from the state

((51,82,1), (OO(S1 AO=RD)}).



A Set Theory

If mathemaﬁcal logic is the formal study of reasoning about mathematical objects, set
theory is the formal study of the basic objects themselves. Because of its importance
in the study of the foundations of mathematics, set theory is often presented in logic
textbooks, especially the more advanced ones. In this book, we use results of ele-
méntaxjy set theory, as summarized in this appendix. For an elementary, but detailed,
deivelopment_ of set theory see Velleman (1994).

A.1 Finite and infinite sets
We assume the concepts of set and element as ﬁndeﬁned.

Definition A.1 A set is composed of elements. Notation: a € S, a is an element of set
S, and a ¢ S, a is not an element of S. The set with no elements is called the empty
set, denoted . 0

S, T and U will be used to denote sets.

Spéciﬁc sets will be defined in one of two ways. Either we may explicitly write the
elements comprising the set, or we may use set comprehension, describing the set as
all possible elements which satisfy a condition.

Example A.2 The following examples show how to describe sets:

e The set of colors of a traffic light is {red, yellow, green}. Braces are used to
denote a set.

'® The set of atomic elements is {kydrogen, helium, lithium, .. .}. If a set is large
and it is clearly understood what its elements are, ellipsis *. . ." is used to indicate
the elements not explicitly listed.

. The set of integers Z = {...,-2,-1,0,1,2,...}. If the number of elements
of a set is infinite, ellipsis is necessary to indicate elements missing from the
explicit list.
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o The set of natural numbers N' = {0,1,2,...} =N = {n|ne Zandn >0},
using set comprehension. The notation is read: A is the set of all » such that n
is an integer and n > 0.

o The set of even natural numbers v = {n | n € N and n mod 2 = 0}.

e The set of prime numbers is Pr = {n | P(n)}, where P(n) is the condition:
n € N, n> 2 and no positive integers except 1 and n divide n.

0

Note that there is no meaning to order or repetition in the definition of a set, since an
element is either in a given set or it is not in the set: {3,2,1,1,2,3} = {1,2,3}.

A.2 Set operators.

Definition A.3 S is a subset of T, denoted S C T, iff every element of S is an element
of T. S is a proper subset of T, denoted SC T,iff SCTand S # T. a

Example Ad N CZ, EvCWN, ({red green} C (red,yellow, green). 1]
Theorem A.5 B C T.

The intuition behind @ C T is as follows. To prove S C T, take each element of S and
ensure that it is also an element of T. Since there are no elements in @, the statement
is vacuously true.

The relationships among several sets can be graphically shown by the use of Venr
diagrams. These are closed curves drawn in the plane and labeled with the name of
a set. A point is in the set if it is within the interior of the curve. In the following
diagram, since every point within S is within 7', S is a subset of T..

T

Theorem A.6 The subset property is transitive:
IfSCTandTC UthenSC U.
IfSCTandT C UthenS C U.
IfSCTandTCUthenSCU.
IfScTandTC UthenSC U.
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Definition A.7 The set operators are:

. ® SUT, the union of S and T, is the set consisting of those elements which are
elements of either S or T.

e SN T, the intersection of S and T, is the set consisting of those elements which
are elements of both S and T. If SNT = 0 then § and T are disjoint.

S — T, the difference of S and T, is the set consisting of those elements which
are elements of S but not of 7.

If § is understood as a universal set, T, the complement of T, is S — T.

0
The following Venn diagram illustrates these concepts.
SuT
r A e N
: S T
‘ S§-T SNnT T-S
Example A.8 Here are some examples of operations on sets;
{red, yellow} U (red, green} = ({red, yellow, green)
{red, yellow} N {red, green} = ({red}
{red, yellow} — (red, green}) = {yellow)
Prné&v = {2}
ProN = Pr
PruN = N
o
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Theorem A.9 The operators U and N are commutative, associative and distributive:

SUT = TuS

SNT = TnS
(SUT)UU = SUTuUl)
SNTYnU = SN(TnU)
SU@TNU) = (SUuT)NESUD)
SNTUU) = (SNTHUESAD).

Theorem A.10 Properties of the set operators:
S=TifSCTandT CS.
T=(T-5uEEnT).
IfSCTthenSNT =S, "SUT=T and S—T =4.
IfS and T are disjoint then S—T = 8.
Sug=S SnP=0, S-g=S=.

A.3 Ordered sets

If we impose an order on the elements of a set, we obtain an ordered set, denoted
(ai,..., a,) using parentheses rather than braces.

Definition A.11 A finite ordered set of n elements is called an n-tuple or a (finite)
sequence of length n. A 2-tuple is called a pair, a 3-tuple is called a triple and a

4-tuple is called a quadruple. A infinite ordered set is called an infinite sequence. [

Example A.12 Examples of ordered sets:

A triple: (red, yellow, green).

A different triple: (red, green, yellow).

A 1-tuple: (red), which is not the same as the element red.

A triple with repeated elements: (red, green, green).

An infinite sequence: (1,2,2,3,3,3,4,4,4,4,...).

A pair whose elements are themselves sets: (Pr, N).
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Deﬁnition A.13 Sx T, the Cartesian product of S and T, is the set of all ordered pairs
whose first element is from S and whose second element is from 7. In general, given
éets 81, ..., Sy, the Cartesian product, S x- - - x S, is the set of ordered n-tuples whose
i~th element is in S;. If all the sets S; are the same set S, the notation S" is used. 1]

Example A.14 N x N = N?Z s the set of all ordered pairs of natural numbers.
N x {red, yellow, green} is the set of all pairs whose first element is a number and
whose second is a color. This could be used to represent the color of a traffic light at
points of time. 0

A4 Relations and functions

Definition A.15 An n-ary relation R is a subset of Sy x--x8,. Rissaid to be a
r¢1ation onSyx---x8,. i

A relation over a set S is just a subset of S.
Example A.16 Here are examples of relations over N forn = 1,2, 2, 3, 4.

| o The set of prime numbers Pr = {2,3,5,7, 11, .. .}
o The set of pairs (x, y) such that y is the square of x:

Sg={(11),(2,4),(3,9),(4.16),...}.

¢ The set of pairs (x, y) such that x and ¥ are relatively prime (that is, x and y have
no common factor except 1):

Rp=1{(23).2.5.27,(2.9).....,3,2).(3,4),.. }
® The set of triples (x, y, z) such that x2 + y? = z2;
Rt={(3,4,5),(6,8,10),...}.

o The set of quadruples (x, y,z,7), n > 2 and +y' =7
F = @ by Fermat’s Last Theorem.

0

Dqﬁnition A.17 Let R be a binary relation on 2. R is reflexive iff R(x, x) for all x € §.
R is symmetric iff R(x;, x3) implies R(x,, x1). R is transitive iff R(x1,x2) and R(x, x3)
imply R(x1, x3).

R*| the reflexive transitive closure, is defined as follows:

_ | L
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o If R(x1, x2) then R*(x1, x2).
o R*(x;, x;) forallx; € S.

e R*(x1,xp) and R*(x3, x3) imply R*(x1, x3).

Example A.18 Let C be the relation on the set of ordered pairs of strings (51, s2) such
that s; = s, 51 = ¢ - 82, OF 51 = 83 - ¢, for some ¢ in the underlying character set. Then
C* is the substring relation between strings. 1]

The relation Sgq is sp‘ecial in that given the first argument x, there is at most one
element y such that Sq(x, y).

Definition A.19 Let F be a relation on Sy x --- x S,. F is a function iff for every
ordered # — 1-tuple (xy, ..., Xn—1) € 8] X - - - X S,_1, there is at most one x,, € S,, such
that F(xy, ..., x,). The notation x,, = F(xy, ..., Xp-1) is used.

The domain of F is the set of all (xy,...,x,.1) € 8y x -+ x 8,1, for which (exactly
one) x, = F(xi,..., xn—1) exists. The range of F is the set of all x, € §, such that
Xp = F(x1,...,x,-1) for at least one (xy, ..., X5-1). 0

Definition A.20 F is roral if the domain of 7 is (all of) §; X - - - X S,—1; otherwise, F

is partial. T is injective or one-to-one iff (xy, ..., x,—1) # (1, .., Yn—1) implies that
Fxy, .-, Xn-1) F FO1, ..., Yn—1). F is surjective or onto iff its range is (all of) S,. F
is bijective iff it is both injective and surjective. a

Example A.21 Sq is a total function on N2, Its domain is all of N, but its range is
only the subset of A consisting of all squares. Therefore Sgq is not surjective and thus
not bijective. The function is injective, because given an element in its range, there
is exactly one (positive) square root, symbotically, x # y — x> # y?, or equivalently,
=y x=y 1]

~ A5 Cardinality

Definition A.22 The cardinality of a set is the number of elements in the set. The
cardinality of a S is finize iff there is an integer i such that the number of elements in S is

the same that the number of elements in the set {1,2, ..., i}. Otherwise the cardinality
is infinite. The cardinality of S is countable if it is the same as the cardinality of N
Otherwise the cardinality is uncountable. a

|
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|

\

How can we show that the number of elements in a set is countable? We must find a
funcnon that maps each number in V' to an element of the set such that all elements
of the set are covered by exactly one member of the mapping. Actually, this is the

same method we use to decide how many elements there are in a finite set, namely by -

mappmg ainitial subset {1, ...,n} of M to members of the set {a1,...,a,}.

The theory of infinite sets is non-intuitive because an infinite set can have the same
cardmahty as a proper (‘smaller’) subset. For example, £v, the set of even natural
numbers is countable because it has the same number of elements as A", but &v C N
because N also contains odd numbers. Simply map each i.€ A to 2; and you will
never run out of even numbers:

00, 122,224,316, -

Tw‘heorem A.23 (Cantor) The set of real numbers is uncountable.

To prove the theorem, assume that there exists a function that maps an element of A
to each real number and obtain a contradiction by constructing a real number that is
not in the list of matched real numbers.

Heﬁnition A.24 P(S), the powerset of S, is the set of all subsets of S. ]

Example A.25 Here is the powerset of the finite set {red, yellow, green}:

P({red, yellow, green}) = {
{red, yellow, green}, (red, yellow), {red, green}, {yellow, green},
{red}, {yellow}, {green},8}.

ﬁmrem A.26 Let S be a set of cardinality N. Then the cardinality of P(S) is 2V,
|

Theorem A.27 2V # N,

These theorems are easy to check for finite sets. For infinite sets, the theorems imply
that there are infinitely many cardinalities. For most applications, however, finite and
countably infinite sets are sufficient.

A.6 Proving properties of sets

To show that two sets are equal, use Theorem A.10 and show that each set is a subset
of ithe other. To show that a set S is a subset of another set T, choose an arbitrary
element x € S and show x € T. This is also the way to prove a property R(x) of a set S
by|showing that S C T = {x | R(x)}.
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Example A.28
Theorem Let S be the set of prime numbers greater than 2. Then every element of §

is odd.
Proof: Let n be an arbitrary element of S. If n is even, then n = 2k for some k. Thus

2 is a factor of n. Since n > 2, this shows that » has a factor other than 1 and itself, so
it cannot be a prime number. Thus the assumption that n is even is fdlse. Since n was
an arbitrary element of S, all elements of S are odd. i

0

Many proofs use induction. Given a sequence S = (a1, ap, as, ...), we want to prove
some statement about every element of S. The method of induction is:

e Prove the statement for the first element a;. This is called the base case.

o Assume the statement for an arbitrary element g;, and prove the statement for
" the next element a;4;. This is called the induction step and the assumption is
called the inductive hypothesis.

‘We can now conclude that the statement is true for all elements of S.

Example A.29

Theorem Every non-zero even number in N is the sum of two odd numbers.

Proof: The base case is trivial because 2 = 1 + 1. The i-th element is 2i and by the
inductive hypothesis it is the sum of two odd numbers 2i = (2j + 1) + (2k 4+ 1). We
have to show that the i + 1-st element 2(i + 1) is the sum of two odd numbers:

2i+1) = 2i+2
@G+1D)+Qk+1)+2
+1)+@k+3)
= Q+D+Q*k+1)+1).

By the induction rule, we can now conclude that every element of the set is the sum
of two odd numbers. I

O

The induction rule can be generalized to any mathematical structure which can be
ordered—larger structures constructed out of smaller structures. The outline of the
induction is still the same. Prove the base case for the smallest, indivisible structures,
and then prove the induction step assuming an inductive hypothesis.

B Further Reading

Elementary logic

|
Students who find this book too challenging will benefit from studying Velleman

(1994) who shows how to use formal deduction rules to construct natural- -language

proofs as they are used in mathematics textbooks. The book also contains a thorough
groundmg in naive set theory. Gries & Schneider (1993) integrates mathematical logic

m‘to a introductory course on discrete mathematics. Smullyan’s puzzle books, starting

W‘lth Smullyan (1978), are not only fascinating and entertaining, but can also help you
understand advanced concepts in logic.

Mathematzcal logic

An excellent graduate text to follow this book is Nerode & Shore (1997). The book
ha‘s an extensive bibliography as well as a modern discussion of the history of logic. A
more theoretical approach to logic can be found in the classical textbook of Mendelson
( 1997) which is now in its fourth edition. Monk (1976) is an advanced graduate
textbook with parts on recursion theory and model theory.

Smullyan (1995) was the direct inspiration for this book. It is a crystal-clear presenta-

nc‘)n of mathematical logic that uses tableaux as the unifying concept. For many years

thF book was out of print, but fortunately it has recently been reprinted. A modemn

development of logic based on analytic tableaux can be found in Fitting (1996).
Huth & Ryan (2000) is a logic textbook for computer science students that emphasizes
natural deduction and modal, temporal and intuitionistic logics.

For more on ordered binary decision diagrams see Bryant (1986). His survey paper
(Bryant 1992) contains an extensive bibliography.

CT)mplexity

Hz:uel (1985) is an informal introduction to decision procedures and complexity. Urquhart
( 1995 ) is a survey of complexity issues in the propositional calculus. The presentation

of| Fseitin’s clauses is from Galil (1977). Dreben & Goldfarb (1979) and Lewis ( 1979)

:L T e .=
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are advanced monographs on the decidable and undecidable classes of predicate cal-
culus formulas. The complexity of the predicate calculus is discussed in Statman

(1978).

Resolution and logic programming

Lloyd (1987) is an excellent text on the theory of logic programming. Our presentation
of the unification algorithm is taken from Martelli & Montanari (1982). Loveland
(1978) is the classical textbook on resolution in automatic theorem proving. Wos
(1996) is a modern book on automatic theorem proving. Prolog language texts are
Clocksin & Mellish (1987) and Sterling & Shapiro (1994). Shapiro (1989) compares
concurrent logic programming languages and contains an extensive bibliography. For
constraint logic programming, see Van Hentenryck (1989) and Jaffar & Maher (1994).

Formalization of programs

Textbooks on program verification are Francez (1992) and Apt & Olderog (1991).
Potter, Sinclair & Till (1996) and Diller (1994) are textbooks on Z; the reference
manual is Spivey (1989).

Temporal logic

My textbook on concurrent programming (Ben-Ari 1990) contains elementary exam-
ples of the use of temporal logic in the verification of programs. Manna & Pnueli
(1992,1995) is an extensive treatment of temporal logic and its use in the specification
and verification of programs.

Classical modal logic is the subject of Hughes & Creswell (1981) and classical tempo-
ral logic is the subject of Rescher & Urquhart (1971). The use of semantic tableaux in
temporal logic is adapted from the presentation in Ben-Ari, Manna & Pnueli (1983).
For model checking see McMillan (1993) and Manna & Pnueli (1992,1995).
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