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7 Introduction 7

This volume presents a multifaceted view of statistics 
and probability. Through the eyes of the discoverers 

we find the thrilling aspects of mathematical applications 
that changed the lives of the innovators themselves, as 
well as the world at large. The technology that speeds us 
through our modern age of discovery has depended upon 
statistical knowledge and probability theory for guidance. 
Within these pages readers will find the history of these 
important disciplines of mathematics: the geniuses of 
invention and theory, many practical applications of the 
math, as well as explanations of the major topics. Statistics 
and probability may seem forbidding terrain to some, but 
this collective branch of study has proven its practical use-
fulness everywhere from how to play a hand at a card table 
to evaluating SAT scores to ensuring the safety of rockets 
in outer space. 

First, to space. 
In 1960 an invitation was extended to select incom-

ing engineering freshmen at a Midwestern university. 
These students could apply to participate in a scientific 
study that would provide necessary information for space 
travel. At the time, no one really knew how people locked 
in a space capsule would behave. Would crew members 
who were isolated and sequestered for a number of days 
at a stretch sleep well? Would they argue and get on each 
other’s nerves? Would their dietary patterns be affected? 
Would they suffer anxiety attacks? 

NASA was developing a program to send people into 
outer space. As there was no data on what happened to 
human beings once they left the confines of the planet, 
statistical data under simulated conditions was crucial. If 
several people were sequestered in a capsule under pres-
sures of risk, the denial of home comforts, and with the 
added factor of personality differences, might they tend 
to push the wrong buttons on the control panel?
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Not only was statistical data necessary, probability 
theory was crucial. These days, the common high school 
student who has watched the World Series of Poker tourna-
ments on television knows that knowledge of the odds can 
and often does determine a player’s stake. But poker, ruth-
less as it might be at times, is merely a game. Sending 
people off in a rocket for the first time ever is not.

Scientists and mathematicians, of course, were fairly 
sure of certain forces and events, such as gravitational pull, 
centrifugal force, friction, mathematical relationships 
governing ellipses and parabolas and such, to name a few. 
But add people—a rocket full of NASA crew members 
blasting off from the face of the earth—and could those 
scientists tell the pilots for sure—for certain—exactly what 
would happen? The answer was no. Everyone knew that 
risks existed. Mathematicians were called in to determine 
to the best of their abilities what those risks might be, and 
how confident one might be that the anticipated scientific 
responses and behaviours would indeed occur.

For example, during the all-important re-entry phase 
of the space journey, if the curvature of the flight path of a 
speeding spacecraft from one destination in space to a 
moving, spinning earth thousands of miles away was 
undertaken, what were the chances of a meteorite inter-
fering? What were the odds of engine failure or abnormal 
frictional forces? What were the probabilities of the 
spacecraft and its occupants hitting the ocean instead of 
the Himalayas?

One must stand in awe of the mathematics that these 
theoreticians were asked to deliver. The results certainly 
eclipsed whether or not a straight flush would appear 
to assure a winning poker hand. To their best knowl-
edge, these mathematicians were assessing the chances 
of life or death. Unlike the college classroom, partial 
credit on this exam would not be acceptable. And yet the 
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mathematicians were not dealing with an exact science. 
They were hoping for probabilities that covered all related 
factors as far as they knew. What would probably happen? 
(And if the theorists had trouble sleeping at night, imag-
ine the training space crew.)

Mathematical tension was rampant. In fact, news foot-
age of NASA scientists in front of computers monitoring 
space flights showed them chain smoking, frequently rub-
bing their faces with their open palms, shifting with the 
jitters, and finally, ecstatic as football fans when a satisfac-
tory mission ended and the words came: “Houston, we 
have recovery.”

While probability and statistics look innocent, appar-
ently composed of peaceful numbers and placid formulas 
about what might happen over the course of a certain 
event, we understand the inner turmoil beneath a calm 
exterior. And one isn’t required to be a NASA math-
ematician to suffer from these statistical tensions. Take 
the average high school student trying to enter college, 
whose selection and application process might very well 
involve at least one fall Saturday morning spent taking 
the SAT test. One can feel one’s blood pressure rising at 
the thought. It seems to the students that the culprits in 
student discomfort are the test questions. But the hidden 
instigators are actually statistical measures, standard devi-
ations. After all, a student might miss many questions on 
the test and reach an acceptable score. The real concern 
is how far from the average student is the test taker? That 
is the measure college admissions officers would like to 
know. And the statistical standard deviation, converted to 
a score that is more understandable and easier to read and 
compare, is the cause of all that student agony. In any given 
SAT test, students are competing with the other students 
who are taking that same test. If every test taker were sta-
tistically average, no measurable standard deviation would 
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exist, and nobody would score higher than anyone else. 
The college admissions people would have to find another 
way to make their decisions. 

Making use of terms such as agony to discuss a mathe-
matical tool seems melodramatic. Yet that term and 
others, including downright pejoratives, have been used 
to describe the applications of statistics. Recall author 
Darrell Huff ’s bestselling book, How to Lie with Statistics. 
If statistics can convince one to follow a certain path—a 
wrong path—then perhaps statistics alone are not enough 
for making a wise decision. Morality must be applied, as 
well. To use the term sinister when considering possible 
statistic applications might be reasonable, as will be 
explained shortly. 

The math discipline often fondly referred to as “stats” 
by its students comes with an ingenious side, and also 
caveats. One wonders if Carl Friedrich Gauss (1777–1855) 
foresaw such developments when his probability distribu-
tion equations led to the still-popular bell curve, at the 
foundation of statistical measures.

The plotted curve demonstrates visually the distribu-
tion of a population, mean (or average), and standard 
deviation. The area under the curve can be made to illus-
trate the percents of the total population falling in certain 
standard deviation intervals. As the previous sentence 
shows, just the verbiage in describing this mathematical 
graph and its statistical measuring requires enormous 
amounts of detail held in the brain. By contrast, the rather 
beautiful curve itself gently relates its properties pictori-
ally, aesthetically, and perhaps more effectively, especially 
for the novice.

The bell curve is also called the normal curve, or the 
curve showing normal distribution of the population 
members under study. This choice of expression, “nor-
mal,” returns us to the caution required when entering the 
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world of statistics. To study a population with the normal 
curve, one must be careful about assuming what is normal 
and what is not. The statistics being reached might just 
bleed off unintended inference: the bias, bigotry, political 
leanings, and even those sinister intentions mentioned 
earlier. On the positive side, statistics have helped pave 
the way for space travel, inoculations to wipe out polio, 
and even supplied sports information that helped the 
Boston Red Sox win a World Series title. This last advance 
(an advance depending on whom you root for, that is) 
came thanks to Red Sox statistician Bill James and his 
innovative view on what is important in baseball as 
opposed to what people had thought was important in 
baseball. On the negative side of statistics, consider a little 
Nazi statistical undertaking that involved a key Polish 
mathematician victim during the early 1940s. 

Stefan Banach (1892–1945) founded functional analysis 
and helped develop the theory of topology, vector space, 
and normed linear spaces (which are now known as Banach 
spaces). These ingenious discoveries were all good things 
intended to help mankind and further human knowledge, 
our understanding of ourselves, and make life easier for 
succeeding generations. The 1920s and ’30s were good 
years for Banach, but his life was destined to change quite 
abruptly. From 1941 to 1944, under the Nazi occupation, 
Banach was compelled to take work as a lice feeder, 
thereby becoming infested. For three years he was forced 
to become a virtual lice farm as the Nazis studied him, 
gathering statistics on infectious diseases. This brilliant 
mathematician died of lung cancer in 1945, the last years 
of his life spent not as a statistical analyst but rather as  
a subject. As previously mentioned, statistics can have a 
seamy side or a wonderfully illuminating side. How the 
stats are arrived at and how they are presented may make 
all the difference. Inferences are often crucial.

7 Introduction 7
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While the Nazis were taking statistics to a barbaric 
level, during another time in history in one of those com-
plete twists of human nature that demonstrates caring and 
fair play, earlier statistical work from a brilliant German 
physicist helped unite previous rivals. The brilliancies in 
both discovery and collegiality are found in the work of 
Ludwig Eduard Boltzmann (1844–1906). Boltzmann’s sta-
tistical mechanics helped explain and make available 
predictions of how the properties of atoms (their mass, 
charge, and structure) determine the properties of matter 
that become observable to scientists (for instance, viscos-
ity, thermal conductivity, and diffusion). Boltzmann 
applied the theory of probability of the motions of atoms 
to the second law of thermodynamics. The second law was 
shown to be statistical. Its investigations led to the theo-
rem of equipartition of energy (the Maxwell-Boltzmann 
distribution law). And perhaps the dual names in sponsor-
ship of that equipartition law suggest traits of Boltzmann’s 
character and ingenuity as well as the importance and ben-
efits of a cooperative approach toward discovery. First a 
brief step back in time is required.

In the 1680s Isaac Newton (England) and Gottfried 
Wilhelm Leibniz (Germany) had simultaneously and 
independently discovered calculus. While both discov-
eries were accomplished in different ways, both were 
legitimate and provided a long-sought-after mathematical 
tool for future math discovery and scientific achievement. 
Unfortunately, a rivalry developed between the followers 
of Newton and Leibniz. The reticent Newton was content 
to achieve with rigor and with silence. Leibniz was a mas-
ter of getting the word out about his work. Instant fame 
went to Leibniz. Leadership in mathematics discovery 
therefore shifted from England across the Channel to the 
Leibniz camp and the continent, remaining on the conti-
nent for quite some time. 
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Enter the aforementioned Ludwig Boltzmann in the 
late 1800s. He was one of the first continental scientists 
to recognize the importance of the electromagnetic the-
ory proposed by James Clerk Maxwell of England. 
Maxwell’s work had long been under attack. The support 
and recognition of Ludwig Boltzmann gave substance to 
belief in Maxwell’s work. Discoveries in atomic physics 
now proved Maxwell correct. His Brownian motion 
investigations could be explained only by the statistical 
mechanics furthered by Boltzmann. (Brownian motion is 
the random movement of microscopic particles sus-
pended in a fluid and is named for Scottish botanist 
Robert Brown, the first to study such fluctuations.) In 
reaching across the Channel, as Boltzmann did with 
Maxwell, we observe the growth of knowledge, discovery, 
innovation, and the achievements of modernity. One is 
left to wonder how much greater the discoveries might 
have been had Leibniz been able to reach out to Newton, 
if indeed that was even possible at the time, or if the Nazi 
regime had nurtured a Polish mathematician and encour-
aged discovery rather than generate statistics based upon 
the bite marks on his trunk and scalp. It seems we humans 
do best when we observe the achievements of past 
geniuses and grow from that. But we must be cautious in 
the process, such as statistically omitting from college 
ranks what a single test might point out as below normal, 
and from applying too strictly the numbers that arise 
from numbers.

We must admit that statistics can tell lies. We must 
make sure that they do not.

7 Introduction 7
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CHAPTER 1
HIstoRY oF stAtIstICs 

AnD PRoBABILItY

    Statistics and probability are the branches of mathe-
matics concerned with the laws governing random 

events, including the collection, analysis, interpretation, 
and display of numerical data. Probability has its origin in 
the study of gambling and insurance in the 17th century, 
and it is now an indispensable tool of both social and natu-
ral sciences. Statistics may be said to have its origin in 
census counts taken thousands of years ago. As a distinct 
scientifi c discipline, however, it was developed in the early 
19th century as the study of populations, economies, and 
moral actions and later in that century as the mathemati-
cal tool for analyzing such numbers.   

 eaRly pRobabiliTy 

 It is astounding that for a subject that has altered how 
humanity views nature and society, probability had its 
beginnings in frivolous gambling. How much should you 
bet on the turn of a card? An entirely new branch of math-
ematics developed from such questions.   

 Games of Chance 

 The modern mathematics of chance is usually dated to a 
correspondence between the French mathematicians 
Pierre de Fermat and Blaise Pascal in 1654. Their inspira-
tion came from a problem about games of chance, 
proposed by a remarkably philosophical gambler, the che-
valier de Méré. De Méré inquired about the proper 
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Blaise Pascal invented the syringe and created the hydraulic press, an instru-
ment based upon the principle that became known as Pascal’s law. Boyer/
Roger Viollet/Getty Images
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division of the stakes when a game of chance is inter-
rupted. Suppose two players, A and B, are playing a 
three-point game, each having wagered 32 pistoles, and are 
interrupted after A has two points and B has one. How 
much should each receive?

Fermat and Pascal proposed somewhat different solu-
tions, but they agreed about the numerical answer. Each 
undertook to define a set of equal or symmetrical cases, 
then to answer the problem by comparing the number for 
A with that for B. Fermat, however, gave his answer in 
terms of the chances, or probabilities. He reasoned that 
two more games would suffice in any case to determine a 
victory. There are four possible outcomes, each equally 
likely in a fair game of chance. A might win twice, AA; or 
first A then B might win; or B then A; or BB. Of these four 
sequences, only the last would result in a victory for B. 
Thus, the odds for A are 3:1, implying a distribution of 48 
pistoles for A and 16 pistoles for B.

Pascal thought Fermat’s solution unwieldy, and he pro-
posed to solve the problem not in terms of chances but in 
terms of the quantity now called “expectation.” Suppose B 
had already won the next round. In that case, the positions 
of A and B would be equal, each having won two games, 
and each would be entitled to 32 pistoles. A should receive 
his portion in any case. B’s 32, by contrast, depend on the 
assumption that he had won the first round. This first 
round can now be treated as a fair game for this stake of 32 
pistoles, so that each player has an expectation of 16. 
Hence A’s lot is 32 + 16, or 48, and B’s is just 16.

Games of chance such as this one provided model 
problems for the theory of chances during its early period, 
and indeed they remain staples of the textbooks. A post-
humous work of 1665 by Pascal on the “arithmetic triangle” 
now linked to his name showed how to calculate numbers 



24

7 The Britannica Guide to Statistics and Probability 7

of combinations and how to group them to solve elemen-
tary gambling problems. Fermat and Pascal were not the 
first to give mathematical solutions to problems such as 
these. More than a century earlier, the Italian mathemati-
cian, physician, and gambler Girolamo Cardano calculated 
odds for games of luck by counting up equally probable 
cases. His little book, however, was not published until 
1663, by which time the elements of the theory of chances 
were already well known to mathematicians in Europe. It 
will never be known what would have happened had 
Cardano published in the 1520s. It cannot be assumed that 
probability theory would have taken off in the 16th cen-
tury. When it began to flourish, it did so in the context of 
the “new science” of the 17th-century scientific revolu-
tion, when the use of calculation to solve tricky problems 
had gained a new credibility. Cardano, moreover, had no 
great faith in his own calculations of gambling odds, since 
he believed also in luck, particularly in his own. In the 
Renaissance world of monstrosities, marvels, and simili-
tudes, chance—allied to fate—was not readily naturalized, 
and sober calculation had its limits.

Risks, Expectations, and Fair Contracts

In the 17th century, Pascal’s strategy for solving problems 
of chance became the standard. It was, for example, used 
by the Dutch mathematician Christiaan Huygens in his 
short treatise on games of chance, published in 1657. 
Huygens refused to define equality of chances as a funda-
mental presumption of a fair game but derived it instead 
from what he saw as a more basic notion of an equal 
exchange. Most questions of probability in the 17th cen-
tury were solved, as Pascal solved his, by redefining the 
problem in terms of a series of games in which all players 
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have equal expectations. The new theory of chances was 
not, in fact, simply about gambling but also about the legal 
notion of a fair contract. A fair contract implied equality 
of expectations, which served as the fundamental notion 
in these calculations. Measures of chance or probability 
were derived secondarily from these expectations.

Probability was tied up with questions of law and 
exchange in one other crucial respect. Chance and risk, in 
aleatory contracts, provided a justification for lending at 
interest, and hence a way of avoiding Christian prohibi-
tions against usury. Lenders, the argument went, were like 
investors; having shared the risk, they deserved also to 
share in the gain. For this reason, ideas of chance had 
already been incorporated in a loose, largely nonmathe-
matical way into theories of banking and marine insurance. 
From about 1670, initially in the Netherlands, probability 
began to be used to determine the proper rates at which to 
sell annuities. Jan de Wit, leader of the Netherlands from 
1653 to 1672, corresponded in the 1660s with Huygens, and 
eventually he published a small treatise on the subject of 
annuities in 1671.

Annuities in early modern Europe were often issued 
by states to raise money, especially in times of war. They 
were generally sold according to a simple formula such as 
“seven years purchase,” meaning that the annual payment 
to the annuitant, promised until the time of his or her 
death, would be one-seventh of the principal. This for-
mula took no account of age at the time the annuity was 
purchased. Wit lacked data on mortality rates at different 
ages, but he understood that the proper charge for an 
annuity depended on the number of years that the pur-
chaser could be expected to live and on the presumed rate 
of interest. Despite his efforts and those of other mathe-
maticians, it remained rare even in the 18th century for 
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rulers to pay much heed to such quantitative consider-
ations. Life insurance, too, was connected only loosely to 
probability calculations and mortality records, though 
statistical data on death became increasingly available in 
the course of the 18th century. The first insurance society 
to price its policies on the basis of probability calculations 
was the Equitable, founded in London in 1762.

Probability as the Logic of Uncertainty

The English clergyman Joseph Butler, in his very influen-
tial Analogy of Religion (1736), called probability “the very 
guide of life.” The phrase did not refer to mathemati-
cal calculation, however, but merely to the judgments 
made where rational demonstration is impossible. The 
word probability was used in relation to the mathemat-
ics of chance in 1662 in the Logic of Port-Royal, written 
by Pascal’s fellow Jansenists, Antoine Arnauld and Pierre 
Nicole. But from medieval times to the 18th century 
and even into the 19th, a probable belief was most often 
merely one that seemed plausible, came on good author-
ity, or was worthy of approval. Probability, in this sense, 
was emphasized in England and France from the late 17th 
century as an answer to skepticism. Man may not be able 
to attain perfect knowledge but can know enough to make 
decisions about the problems of daily life. The new exper-
imental natural philosophy of the later 17th century was 
associated with this more modest ambition, one that did 
not insist on logical proof.

Almost from the beginning, however, the new mathe-
matics of chance was invoked to suggest that decisions 
could after all be made more rigorous. Pascal invoked it in 
the most famous chapter of his Pensées, “Of the Necessity 
of the Wager,” in relation to the most important decision 
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of all, whether to accept the Christian faith. One cannot 
know of God’s existence with absolute certainty; there is 
no alternative but to bet (“il faut parier”). Perhaps, he sup-
posed, the unbeliever can be persuaded by consideration 
of self-interest. If there is a God (Pascal assumed he must 
be the Christian God), to believe in him offers the pros-
pect of an infinite reward for infinite time. However small 
the probability, provided only that it be finite, the mathe-
matical expectation of this wager is infinite. For so great a 
benefit, one sacrifices rather little, perhaps a few paltry 
pleasures during one’s brief life on Earth. It seemed plain 
which was the more reasonable choice.

The link between the doctrine of chance and religion 
remained an important one through much of the 18th cen-
tury, especially in Britain. Another argument for belief in 
God relied on a probabilistic natural theology. The classic 
instance is a paper read by John Arbuthnot to the Royal 
Society of London in 1710 and published in its Philosophical 
Transactions in 1712. Arbuthnot presented there a table of 
christenings in London from 1629 to 1710. He observed 
that in every year there was a slight excess of male over 
female births. The proportion, approximately 14 boys for 
every 13 girls, was perfectly calculated, given the greater 
dangers to which young men are exposed in their search 
for food, to bring the sexes to an equality of numbers at 
the age of marriage. Could this excellent result have been 
produced by chance alone? Arbuthnot thought not, and 
he deployed a probability calculation to demonstrate the 
point. The probability that male births would by accident 
exceed female ones in 82 consecutive years is (0.5)82. 
Considering further that this excess is found all over the 
world, he said, and within fixed limits of variation, the 
chance becomes almost infinitely small. This argument 
for the overwhelming probability of Divine Providence 
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was repeated by many—and refined by a few. The Dutch 
natural philosopher Willem’s Gravesande incorporated 
the limits of variation of these birth ratios into his math-
ematics and so attained a still more decisive vindication of 
Providence over chance. Nicolas Bernoulli, from the 
famous Swiss mathematical family, gave a more skeptical 
view. If the underlying probability of a male birth was 
assumed to be 0.5169 rather than 0.5, the data were quite 
in accord with probability theory. That is, no Providential 
direction was required.

Apart from natural theology, probability came to be 
seen during the 18th-century Enlightenment as a math-
ematical version of sound reasoning. In 1677 the German 
mathematician Gottfried Wilhelm Leibniz imagined a 
utopian world in which disagreements would be met by 
this challenge: “Let us calculate, sir.” The French math-
ematician Pierre-Simon de Laplace, in the early 19th 
century, called probability “good sense reduced to cal-
culation.” This ambition, bold enough, was not quite so 
scientific as it may first appear. For there were some cases 
where a straightforward application of probability math-
ematics led to results that seemed to defy rationality. One 
example, proposed by Nicolas Bernoulli and made famous 
as the St. Petersburg paradox, involved a bet with an expo-
nentially increasing payoff. A fair coin is to be tossed until 
the first time it comes up heads. If it comes up heads on 
the first toss, the payment is 2 ducats; if the first time it 
comes up heads is on the second toss, 4 ducats; and if on 
the nth toss, 2n ducats. The mathematical expectation of 
this game is infinite, but no sensible person would pay a 
very large sum for the privilege of receiving the payoff 
from it. The disaccord between calculation and reason-
ableness created a problem, addressed by generations of 
mathematicians. Prominent among them was Nicolas’s 
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Pierre Simon de Laplace demonstrated the usefulness of probability for inter-
preting scientific data. Hulton Archive/Getty Images
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cousin Daniel Bernoulli, whose solution depended on the 
idea that a ducat added to the wealth of a rich man bene-
fits him much less than it does a poor man (a concept now 
known as decreasing marginal utility).

Probability arguments figured also in more practi-
cal discussions, such as debates during the 1750s and ’60s 
about the rationality of smallpox inoculation. Smallpox 
was at this time widespread and deadly, infecting most and 
carrying off perhaps one in seven Europeans. Inoculation 
in these days involved the actual transmission of small-
pox, not the cowpox vaccines developed in the 1790s 
by the English surgeon Edward Jenner, and was itself 
moderately risky. Was it rational to accept a small prob-
ability of an almost immediate death to greatly reduce a 
large probability of death by smallpox in the indefinite 
future? Calculations of mathematical expectation, as 
by Daniel Bernoulli, unambiguously led to a favourable 
answer. But some disagreed, most famously the eminent 
mathematician and perpetual thorn in the flesh of prob-
ability theorists, the French mathematician Jean Le Rond 
d’Alembert. One might, he argued, reasonably prefer a 
greater assurance of surviving in the near term to improved 
prospects late in life.

The Probability of Causes

Many 18th-century ambitions for probability theory, 
including Arbuthnot’s, involved reasoning from effects to 
causes. Jakob Bernoulli, uncle of Nicolas and Daniel, for-
mulated and proved a law of large numbers to give formal 
structure to such reasoning. This was published in 1713 
from a manuscript, the Ars conjectandi, left behind at his 
death in 1705. There he showed that the observed propor-
tion of, say, tosses of heads or of male births will converge 
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as the number of trials increases to the true probability p, 
supposing that it is uniform. His theorem was designed 
to give assurance that when p is not known in advance, 
it can properly be inferred by someone with sufficient 
experience. He thought of disease and the weather as in 
some way like drawings from an urn. At bottom they are 
deterministic, but because one cannot know the causes in 
sufficient detail, one must be content to investigate the 
probabilities of events under specified conditions.

The English physician and philosopher David Hartley 
announced in his Observations on Man (1749) that a cer-
tain “ingenious Friend” had shown him a solution of the 
“inverse problem” of reasoning from the occurrence of an 
event p times and its failure q times to the “original Ratio” 
of causes. But Hartley named no names, and the first 
publication of the formula he promised occurred in 1763 
in a posthumous paper of Thomas Bayes, communicated 
to the Royal Society by the British philosopher Richard 
Price. This has come to be known as Bayes’s theorem. But 
it was the French, especially Laplace, who put the theo-
rem to work as a calculus of induction, and it appears that 
Laplace’s publication of the same mathematical result in 
1774 was entirely independent. The result was perhaps 
more consequential in theory than in practice. An exem-
plary application was Laplace’s probability that the sun 
will come up tomorrow, based on 6,000 years or so of 
experience in which it has come up every day.

Laplace and his more politically engaged fellow math-
ematicians, most notably Marie-Jean-Antoine-Nicolas de 
Caritat, marquis de Condorcet, hoped to make probabil-
ity into the foundation of the moral sciences. This took 
the form principally of judicial and electoral probabili-
ties, addressing thereby some of the central concerns of 
the Enlightenment philosophers and critics. Justice and 
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elections were, for the French mathematicians, formally 
similar. In each, a crucial question was how to raise the 
probability that a jury or an electorate would decide cor-
rectly. One element involved testimonies, a classic topic of 
probability theory. In 1699 the British mathematician John 
Craig used probability to vindicate the truth of scripture 
and, more idiosyncratically, to forecast the end of time, 
when, because of the gradual attrition of truth through 
successive testimonies, the Christian religion would 
become no longer probable. The Scottish philosopher 
David Hume, more skeptically, argued in probabilistic but 
nonmathematical language beginning in 1748 that the tes-
timonies supporting miracles were automatically suspect, 
deriving as they generally did from uneducated persons, 
lovers of the marvelous. Miracles, moreover, being viola-
tions of laws of nature, had such a low a priori probability 
that even excellent testimony could not make them prob-
able. Condorcet also wrote on the probability of miracles, 
or at least faits extraordinaires, to the end of subduing the 
irrational. But he took a more sustained interest in testi-
monies at trials, proposing to weigh the credibility of the 
statements of any particular witness by considering the 
proportion of times that he had told the truth in the past, 
and then use inverse probabilities to combine the testimo-
nies of several witnesses.

Laplace and Condorcet applied probability also to 
judgments. In contrast to English juries, French juries 
voted whether to convict or acquit without formal delib-
erations. The probabilists began by supposing that the 
jurors were independent and that each had a probability 
p greater than 1/2 of reaching a true verdict. There would 
be no injustice, Condorcet argued, in exposing innocent 
defendants to a risk of conviction equal to risks they vol-
untarily assume without fear, such as crossing the English 
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Channel from Dover to Calais. Using this number and 
considering also the interest of the state in minimizing the 
number of guilty who go free, it was possible to calculate 
an optimal jury size and the majority required to con-
vict. This tradition of judicial probabilities lasted into the 
1830s, when Laplace’s student Siméon-Denis Poisson used 
the new statistics of criminal justice to measure some of 
the parameters. But by this time the whole enterprise had 
come to seem gravely doubtful, in France and elsewhere. 
In 1843 the English philosopher John Stuart Mill called it 
“the opprobrium of mathematics,” arguing that one should 
seek more reliable knowledge rather than waste time on 
calculations that merely rearrange ignorance.

The Rise of Statistics

During the 19th century, statistics grew up as the empiri-
cal science of the state and gained preeminence as a form 
of social knowledge. Population and economic numbers 
had been collected, but often not in a systematic way, since 
ancient times and in many countries.

Political Arithmetic

In Europe, the late 17th century was an important time also 
for quantitative studies of disease, population, and wealth. 
In 1662 the English statistician John Graunt published a 
celebrated collection of numbers and observations per-
taining to mortality in London, using records that had been 
collected to chart the advance and decline of the plague. In 
the 1680s the English political economist and statistician 
William Petty published a series of essays on a new sci-
ence of “political arithmetic,” which combined statistical 
records with bold—some thought fanciful—calculations, 
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such as, for example, of the monetary value of all those 
living in Ireland. These studies accelerated in the 18th cen-
tury and were increasingly supported by state activity, but 
ancien régime governments often kept the numbers secret. 
Administrators and savants used the numbers to assess 
and enhance state power but also as part of an emerging 
“science of man.” The most assiduous, and perhaps the 
most renowned, of these political arithmeticians was the 
Prussian pastor Johann Peter Süssmilch, whose study of 
the divine order in human births and deaths was first pub-
lished in 1741 and grew to three fat volumes by 1765. The 
decisive proof of Divine Providence in these demographic 
affairs was their regularity and order, perfectly arranged 
to promote man’s fulfillment of what he called God’s 
first commandment, to be fruitful and multiply. Still, 
he did not leave such matters to nature and to God, but 
rather he offered abundant advice about how kings and 
princes could promote the growth of their populations. 
He envisioned a rather spartan order of small farmers, 
paying modest rents and taxes, living without luxury, and 
practicing the Protestant faith. Roman Catholicism was 
unacceptable on account of priestly celibacy.

Social Numbers

Lacking, as they did, complete counts of population, 18th-
century practitioners of political arithmetic had to rely 
largely on conjectures and calculations. In France espe-
cially, mathematicians such as Laplace used probability 
to surmise the accuracy of population figures determined 
from samples. In the 19th century such methods of esti-
mation fell into disuse, mainly because they were replaced 
by regular, systematic censuses. The census of the United 
States, required by the U.S. Constitution and conducted 
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every 10 years beginning in 1790, was among the earliest. 
Sweden had begun earlier, and most leading nations of 
Europe followed by the mid-19th century. They were also 
eager to survey the populations of their colonial posses-
sions, which indeed were among the first places counted. 
A variety of motives can be identified, ranging from the 
requirements of representative government to the need 
to raise armies. Some counting can scarcely be attrib-
uted to any purpose, and indeed the contemporary rage 
for numbers was by no means limited to counts of human 
populations. From the mid-18th century and especially 
after the conclusion of the Napoleonic Wars in 1815, the 
collection and publication of numbers proliferated in 
many domains, including experimental physics, land sur-
veys, agriculture, and studies of the weather, tides, and 
terrestrial magnetism. Still, the management of human 
populations played a decisive role in the statistical enthu-
siasm of the early 19th century. Political instabilities 
associated with the French Revolution of 1789 and the 
economic changes of early industrialization made social 
science a great desideratum. A new field of moral statistics 
grew up to record and comprehend the problems of dirt, 
disease, crime, ignorance, and poverty.

Some investigations were conducted by public bureaus, 
but much was the work of civic-minded professionals, 
industrialists, and, especially after midcentury, women 
such as Florence Nightingale. One of the first serious sta-
tistical organizations arose in 1832 as section F of the new 
British Association for the Advancement of Science. The 
intellectual ties to natural science were uncertain at first, 
but there were some influential champions of statistics as a 
mathematical science. The most effective was the Belgian 
mathematician Adolphe Quetelet, who argued untiringly 
that mathematical probability was essential for social 
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statistics. Quetelet hoped to create from these materials 
a new science, which he called at first social mechanics 
and later social physics. He often wrote about the analo-
gies linking this science to the most mathematical of the 
natural sciences, celestial mechanics. In practice, though, 
his methods were more like those of geodesy or meteorol-
ogy, involving massive collections of data and the effort to 
detect patterns that might be identified as laws. These, in 
fact, seemed to abound. He found them in almost every 
collection of social numbers, beginning with some publica-
tions of French criminal statistics from the mid-1820s. The 
numbers, he announced, were essentially constant from 
year to year, so steady that one could speak here of statisti-
cal laws. If there was something paradoxical in these “laws” 
of crime, it was nonetheless comforting to find regularities 
underlying the manifest disorder of social life.

Formed in 1832, section F of the British Association for the Advancement 
of Science was one of the first serious statistical organizations. SSPL via 
Getty Images
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A New Kind of Regularity

Even Quetelet was initially startled by the discovery of 
these statistical laws. Regularities of births and deaths 
belonged to the natural order and so were unsurprising, 
but here was constancy of moral and immoral acts, acts 
that would normally be attributed to human free will. Was 
there some mysterious fatalism that drove individuals, even 
against their will, to fulfill a budget of crimes? Were such 
actions beyond the reach of human intervention? Quetelet 
determined that they were not. Nevertheless, he continued 
to emphasize that the frequencies of such deeds should be 
understood in terms of causes acting at the level of society, 
not of choices made by individuals. His view was challenged 
by moralists, who insisted on complete individual respon-
sibility for thefts, murders, and suicides. Quetelet was not 
so radical as to deny the legitimacy of punishment, because 
the system of justice was thought to help regulate crime 
rates. Yet he spoke of the murderer on the scaffold as him-
self a victim, part of the sacrifice that society requires for 
its own conservation. Individually, to be sure, it was perhaps 
within the power of the criminal to resist the inducements 
that drove him to his vile act. Collectively, however, crime 
is but trivially affected by these individual decisions. Not 
criminals but crime rates form the proper object of social 
investigation. Reducing them is to be achieved not at the 
level of the individual but at the level of the legislator, who 
can improve society by providing moral education or by 
improving systems of justice. Statisticians have a vital role 
as well. To them falls the task of studying the effects on 
society of legislative changes and of recommending mea-
sures that could bring about desired improvements.

Quetelet’s arguments inspired a modest debate about 
the consistency of statistics with human free will. This 
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intensified after 1857, when the English historian Henry 
Thomas Buckle recited his favourite examples of statisti-
cal law to support an uncompromising determinism in his 
immensely successful History of Civilization in England. 
Interestingly, probability had been linked to deterministic 
arguments from early in its history, at least since the time 
of Jakob Bernoulli. Laplace argued in his Philosophical Essay 
on Probabilities (1825) that man’s dependence on probabil-
ity was simply a consequence of imperfect knowledge. A 
being who could follow every particle in the universe, and 
who had unbounded powers of calculation, would be able 
to know the past and to predict the future with perfect 
certainty. The statistical determinism inaugurated by 
Quetelet had a quite different character. Now it was 
unnecessary to know things in infinite detail. At the micro-
level, indeed, knowledge often fails, for who can penetrate 
the human soul so fully as to comprehend why a troubled 
individual has chosen to take his or her own life? Yet such 
uncertainty about individuals somehow dissolves in light 
of a whole society, whose regularities are often more per-
fect than those of physical systems such as the weather. 
Not real persons but l’homme moyen, the average man, 
formed the basis of social physics. This contrast between 
individual and collective phenomena was, in fact, hard to 
reconcile with an absolute determinism like Buckle’s. 
Several critics of his book pointed this out, urging that the 
distinctive feature of statistical knowledge was precisely 
its neglect of individuals in favour of mass observations.

Statistical Physics

The same issues were discussed also in physics. Statistical 
understandings first gained an influential role in physics at 
just this time, in consequence of papers by the German 
mathematical physicist Rudolf Clausius from the late 1850s 
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and, especially, of one by the Scottish physicist James Clerk 
Maxwell published in 1860. Maxwell, at least, was familiar 
with the social statistical tradition, and he had been suffi-
ciently impressed by Buckle’s History and by the English 
astronomer John Herschel’s influential essay on Quetelet’s 
work in the Edinburgh Review (1850) to discuss them in let-
ters. During the 1870s, Maxwell often introduced his gas 
theory using analogies from social statistics. The first and 
crucial point was that statistical regularities of vast numbers 
of molecules were quite sufficient to derive thermodynamic 
laws relating the pressure, volume, and temperature in gases. 
Some physicists, including, for a time, the German Max 
Planck, were troubled by the contrast between a molecular 
chaos at the microlevel and the very precise laws indicated 
by physical instruments. They wondered if it made sense 
to seek a molecular, mechanical grounding for thermody-
namic laws. Maxwell invoked the regularities of crime and 
suicide as analogies to the statistical laws of thermodynam-
ics and as evidence that local uncertainty can give way to 
large-scale predictability. At the same time, he insisted that 
statistical physics implied a certain imperfection of knowl-
edge. In physics, as in social science, determinism was very 
much an issue in the 1850s and ’60s. Maxwell argued that 
physical determinism could only be speculative, because 
human knowledge of events at the molecular level is neces-
sarily imperfect. Many of the laws of physics, he said, are 
like those regularities detected by census officers: They 
are quite sufficient as a guide to practical life, but they lack 
the certainty characteristic of abstract dynamics.

The Spread of  
Statistical Mathematics

Statisticians, wrote the English statistician Maurice 
Kendall in 1942, “have already overrun every branch of 
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science with a rapidity of conquest rivaled only by Attila, 
Mohammed, and the Colorado beetle.” The spread of sta-
tistical mathematics through the sciences began, in fact, 
at least a century before there were any professional stat-
isticians. Even regardless of the use of probability to 
estimate populations and make insurance calculations, 
this history dates back at least to 1809. In that year, the 
German mathematician Carl Friedrich Gauss published a 
derivation of the new method of least squares incorporat-
ing a mathematical function that soon became known as 
the astronomer’s curve of error, and later as the Gaussian 
or normal distribution.

The problem of combining many astronomical obser-
vations to give the best possible estimate of one or several 
parameters was discussed in the 18th century. The first 
publication of the method of least squares as a solution to 
this problem was inspired by a more practical problem, 
the analysis of French geodetic measures undertaken to 
fix the standard length of the metre. This was the basic 
measure of length in the new metric system, decreed by 
the French Revolution and defined as 1/40,000,000 of the 
longitudinal circumference of the Earth. In 1805 the 
French mathematician Adrien-Marie Legendre proposed 
to solve this problem by choosing values that minimize 
the sums of the squares of deviations of the observations 
from a point, line, or curve drawn through them. In the 
simplest case, where all observations were measures of a 
single point, this method was equivalent to taking an 
arithmetic mean.

Gauss soon announced that he had already been using 
least squares since 1795, a somewhat doubtful claim. After 
Legendre’s publication, Gauss became interested in the 
mathematics of least squares, and he showed in 1809 that 
the method gave the best possible estimate of a parameter 
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if the errors of the measurements were assumed to follow 
the normal distribution. This distribution, whose impor-
tance for mathematical probability and statistics was 
decisive, was first shown by the French mathematician 
Abraham de Moivre in the 1730s to be the limit (as the 
number of events increases) for the binomial distribution. 
In particular, this meant that a continuous function (the 
normal distribution) and the power of calculus could be 
substituted for a discrete function (the binomial distribu-
tion) and laborious numerical methods. Laplace used the 
normal distribution extensively as part of his strategy for 
applying probability to very large numbers of events. The 
most important problem of this kind in the 18th century 
involved estimating populations from smaller samples. 
Laplace also had an important role in reformulating the 
method of least squares as a problem of probabilities. For 
much of the 19th century, least squares was overwhelm-
ingly the most important instance of statistics in its guise 
as a tool of estimation and the measurement of uncer-
tainty. It had an important role in astronomy, geodesy, and 
related measurement disciplines, including even quantita-
tive psychology. Later, about 1900, it provided a 
mathematical basis for a broader field of statistics that 
came to be used by a wide range of fields.

Statistical Theories  
in the Sciences

The role of probability and statistics in the sciences was 
not limited to estimation and measurement. Equally sig-
nificant, and no less important for the formation of the 
mathematical field, were statistical theories of collective 
phenomena that bypassed the study of individuals. The 
social science bearing the name statistics was the prototype 
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of this approach. Quetelet advanced its mathematical 
level by incorporating the normal distribution into it. He 
argued that human traits of every sort, from chest circum-
ference and height to the distribution of propensities to 
marry or commit crimes, conformed to the astronomer’s 
error law. The kinetic theory of gases of Clausius, Maxwell, 
and the Austrian physicist Ludwig Boltzmann was also a 
statistical one. Here it was not the imprecision or uncer-
tainty of scientific measurements but the motions of the 
molecules themselves to which statistical understandings 
and probabilistic mathematics were applied. Once again, 
the error law played a crucial role. The Maxwell-Boltzmann 
distribution law of molecular velocities, as it has come to 
be known, is a three-dimensional version of this same 
function. In importing it into physics, Maxwell drew both 
on astronomical error theory and on Quetelet’s social 
physics.

Biometry

The English biometric school developed from the work of 
the polymath Francis Galton, cousin of Charles Darwin. 
Galton admired Quetelet, but he was critical of the statis-
tician’s obsession with mean values rather than variation. 
The normal law, as he began to call it, was for him a way to 
measure and analyze variability. This was especially impor-
tant for studies of biological evolution, because Darwin’s 
theory was about natural selection acting on natural diver-
sity. A figure from Galton’s 1877 paper on breeding sweet 
peas shows a physical model, now known as the Galton 
board, that he employed to explain the normal distribu-
tion of inherited characteristics. In particular, he used his 
model to explain the tendency of progeny to have the 
same variance as their parents, a process he called 



43

7 History of Statistics and Probability 7

Sir Francis Galton’s Galton board helped explain the normal distribution of 
inherited characteristics. SSPL via Getty Images

reversion, subsequently known as regression to the mean. 
Galton was also founder of the eugenics movement, which 
called for guiding the evolution of human populations the 
same way that breeders improve chickens or cows. He 
developed measures of the transmission of parental char-
acteristics to their offspring: The children of exceptional 
parents were generally somewhat exceptional themselves, 
but there was always, on average, some reversion or regres-
sion toward the population mean. He developed the 
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elementary mathematics of regression and correlation as a 
theory of hereditary transmission and thus as statistical 
biological theory rather than as a mathematical tool. 
Galton came to recognize that these methods could be 
applied to data in many fields, however, and by 1889, when 
he published his Natural Inheritance, he stressed the flexi-
bility and adaptability of his statistical tools.

Still, evolution and eugenics remained central to the 
development of statistical mathematics. The most influ-
ential site for the development of statistics was the 
biometric laboratory set up at University College London 
by Galton’s admirer, the applied mathematician Karl 
Pearson. From about 1892 he collaborated with the 
English biologist Walter F.R. Weldon on quantitative 
studies of evolution, and he soon began to attract an 
assortment of students from many countries and disci-
plines who hoped to learn the new statistical methods. 
Their journal, Biometrika, was for many years the most 
important venue for publishing new statistical tools and 
for displaying their uses.

Biometry was not the only source of new develop-
ments in statistics at the turn of the 19th century. German 
social statisticians such as Wilhelm Lexis had turned to 
more mathematical approaches some decades earlier. In 
England, the economist Francis Edgeworth became inter-
ested in statistical mathematics in the early 1880s. One of 
Pearson’s earliest students, George Udny Yule, turned 
away from biometry and especially from eugenics in favour 
of the statistical investigation of social data. Nevertheless, 
biometry provided an important model, and many statis-
tical techniques, for other disciplines. The 20th-century 
fields of psychometrics, concerned especially with mental 
testing, and econometrics, which focused on economic 
time-series, reveal this relationship in their very names.
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Samples and Experiments

Near the beginning of the 20th century, sampling regained 
its respectability in social statistics, for reasons that ini-
tially had little to do with mathematics. Early advocates, 
such as the first director of the Norwegian Central Bureau 
of Statistics, A.N. Kiaer, thought of their task primarily in 
terms of attaining representativeness in relation to the 
most important variables—for example, geographic 
region, urban and rural, rich and poor. The London statis-
tician Arthur Bowley was among the first to urge that 
sampling should involve an element of randomness. Jerzy 
Neyman, a statistician from Poland who had worked for a 
time in Pearson’s laboratory, wrote a particularly decisive 
mathematical paper on the topic in 1934. His method of 
stratified sampling incorporated a concern for representa-
tiveness across the most important variables, but it also 
required that the individuals sampled should be chosen 
randomly. This was designed to avoid selection biases but 
also to create populations to which probability theory 
could be applied to calculate expected errors. George 
Gallup achieved fame in 1936 when his polls, employing 
stratified sampling, successfully predicted the reelection 
of Franklin Delano Roosevelt, in defiance of the Literary 
Digest’s much larger but uncontrolled survey, which fore-
cast a landslide for the Republican Alfred Landon.

The alliance of statistical tools and experimental 
design was also largely an achievement of the 20th cen-
tury. Here, too, randomization came to be seen as central. 
The emerging protocol called for the establishment of 
experimental and control populations and for the use of 
chance where possible to decide which individuals would 
receive the experimental treatment. These experimental 
repertoires emerged gradually in educational psychology 
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during the 1900s and ’10s. They were codified and given a 
full mathematical basis in the next two decades by Ronald 
A. Fisher, the most influential of all the 20th-century stat-
isticians. Through randomized, controlled experiments 
and statistical analysis, he argued, scientists could move 
beyond mere correlation to causal knowledge even in 
fields whose phenomena are highly complex and variable. 
His ideas of experimental design and analysis helped to 
reshape many disciplines, including psychology, ecology, 
and therapeutic research in medicine, especially during 
the triumphant era of quantification after 1945.

The Modern Role of Statistics

In some ways, statistics has finally achieved the 
Enlightenment aspiration to create a logic of uncertainty. 
Statistical tools are at work in almost every area of life, 
including agriculture, business, engineering, medicine, 
law, regulation, and social policy, as well as in the physical, 
biological, and social sciences and even in parts of the aca-
demic humanities. The replacement of human “computers” 
with mechanical and then electronic ones in the 20th cen-
tury greatly lightened the immense burdens of calculation 
that statistical analysis once required. Statistical tests are 
used to assess whether observed results, such as increased 
harvests where fertilizer is applied, or improved earnings 
where early childhood education is provided, give reason-
able assurance of causation, rather than merely random 
fluctuations. Following World War II, these significance 
levels virtually came to define an acceptable result in some 
of the sciences and also in policy applications.

From about 1930 there grew up in Britain and 
America—and a bit later in other countries—a profession 
of statisticians, experts in inference, who defined standards  
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of experimentation as well as methods of analysis in 
many fields. To be sure, statistics in the various disci-
plines retained a fair degree of specificity. There were also 
divergent schools of statisticians, who disagreed, often 
vehemently, on some issues of fundamental importance. 
Fisher was highly critical of Pearson. Neyman and Egon 
Pearson, while unsympathetic to father Karl’s meth-
ods, disagreed also with Fisher’s. Under the banner of 
Bayesianism appeared yet another school, which, against 
its predecessors, emphasized the need for subjective 
assessments of prior probabilities. The most immoder-
ate ambitions for statistics as the royal road to scientific 
inference depended on unacknowledged compromises 
that ignored or dismissed these disputes. Despite them, 
statistics has thrived as a somewhat heterogeneous but 
powerful set of tools, methods, and forms of expertise 
that continues to regulate the acquisition and interpreta-
tion of quantitative data.
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PRoBABILItY tHeoRY

CHAPTER 2

 Probability theory is the branch of mathematics con-
cerned with the analysis of random phenomena. The 

outcome of a random event cannot be determined before 
it occurs, but it may be any one of several possible out-
comes. The actual outcome is considered to be determined 
by chance. 

 The word  probability  has several meanings in ordinary 
conversation, two of which are particularly important for 
the development and applications of the mathematical 
theory of probability. One is the interpretation of proba-
bilities as relative frequencies, for which simple games 
involving coins, cards, dice, and roulette wheels provide 
examples. The distinctive feature of games of chance is 
that the outcome of a given trial cannot be predicted with 
certainty, but the collective results of a large number of tri-
als display some regularity. For example, the statement that 
the probability of “heads” in tossing a coin equals one-half, 
according to the relative frequency interpretation, implies 
that in a large number of tosses the relative frequency with 
which “heads” actually occurs will be approximately one-
half, but it contains no implication concerning the outcome 
of any given toss. There are many similar examples involv-
ing groups of people, molecules of a gas, genes, and so on. 
Actuarial statements about the life expectancy for persons 
of a certain age describe the collective experience of a large 
number of individuals but do not purport to say what will 
happen to any particular person. Similarly, predictions 
about the chance of a genetic disease occurring in a child of 
parents having a known genetic makeup are statements 



49

7 Probability Theory 7

Probability theory is exemplified by roulette: players bet on within which red 
or black numbered compartment of a revolving wheel a small ball will come 
to rest. Jeff T. Green/Getty Images
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about relative frequencies of occurrence in a large number 
of cases but are not predictions about a given individual.

Experiments, sample space, 
events, and equally likely 
probabilities

Applications of probability theory inevitably involve 
simplifying assumptions that focus on some features of a 
problem at the expense of others. Thus, it is advantageous 
to begin by thinking about simple experiments, such as 
tossing a coin or rolling dice, and to see how these appar-
ently frivolous investigations relate to important scientific 
questions.

Applications of Simple  
Probability Experiments

The fundamental ingredient of probability theory is an 
experiment that can be repeated, at least hypothetically, 
under essentially identical conditions and that may lead to 
different outcomes on different trials. The set of all pos-
sible outcomes of an experiment is called a sample space. 
The experiment of tossing a coin once results in a sample 
space with two possible outcomes: heads and tails. Tossing 
two dice has a sample space with 36 possible outcomes, 
each of which can be identified with an ordered pair (i, j), 
where i and j assume one of the values 1, 2, 3, 4, 5, 6 and 
denote the faces showing on the individual dice. It is 
important to think of the dice as identifiable (say by a dif-
ference in colour), so that the outcome (1, 2) is different 
from (2, 1). An event is a well-defined subset of the sample 
space. For example, the event “the sum of the faces show-
ing on the two dice equals six” consists of the five outcomes 
(1, 5), (2, 4), (3, 3), (4, 2), and (5, 1).
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A third example is to draw n balls from an urn contain-
ing balls of various colours. A generic outcome to this 
experiment is an n-tuple, where the ith entry specifies the 
colour of the ball obtained on the ith draw (i = 1, 2,…, n). In 
spite of the simplicity of this experiment, a thorough 
understanding gives the theoretical basis for opinion polls 
and sample surveys. For example, individuals in a popula-
tion favouring a particular candidate in an election may be 
identified with balls of a particular colour, those favouring 
a different candidate may be identified with a different 
colour, and so on. Probability theory provides the basis for 
learning about the contents of the urn from the sample of 
balls drawn from the urn. An application is to learn about 
the electoral preferences of a population on the basis of a 
sample drawn from that population.

Another application of simple urn models is to use 
clinical trials designed to determine whether a new treat-
ment for a disease, a new drug, or a new surgical procedure 
is better than a standard treatment. In the simple case 
in which treatment can be regarded as either success or 
failure, the goal of the clinical trial is to discover whether 
the new treatment more frequently leads to success than 
does the standard treatment. Patients with the disease 
can be identified with balls in an urn. The red balls are 
those patients who are cured by the new treatment, and 
the black balls are those not cured. Usually there is a con-
trol group, who receive the standard treatment. They are 
represented by a second urn with a possibly different frac-
tion of red balls. The goal of the experiment of drawing 
some number of balls from each urn is to discover on the 
basis of the sample which urn has the larger fraction of 
red balls. A variation of this idea can be used to test the 
efficacy of a new vaccine. Perhaps the largest and most 
famous example was the test of the Salk vaccine for polio-
myelitis conducted in 1954. It was organized by the U.S. 
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Public Health Service and involved almost two million 
children. Its success has led to the almost complete elimi-
nation of polio as a health problem in the industrialized 
parts of the world. Strictly speaking, these applications 
are problems of statistics, for which the foundations are 
provided by probability theory.

In contrast to the experiments previously described, 
many experiments have infinitely many possible out-
comes. For example, one can toss a coin until heads 
appears for the first time. The number of possible tosses 
is n = 1, 2, . . . Another example is to twirl a spinner. For an 
idealized spinner made from a straight line segment hav-
ing no width and pivoted at its centre, the set of possible 
outcomes is the set of all angles that the final position of 
the spinner makes with some fixed direction, equivalently 
all real numbers in [0, 2π). Many measurements in the 
natural and social sciences, such as volume, voltage, tem-
perature, reaction time, marginal income, and so on, are 
made on continuous scales and at least in theory involve 
infinitely many possible values. If the repeated measure-
ments on different subjects or at different times on the 
same subject can lead to different outcomes, probability 
theory is a possible tool to study this variability.

Because of their comparative simplicity, experiments 
with finite sample spaces are discussed first. In the early 
development of probability theory, mathematicians con-
sidered only those experiments for which it seemed 
reasonable, based on considerations of symmetry, to sup-
pose that all outcomes of the experiment were “equally 
likely.” Then in a large number of trials, all outcomes 
should occur with approximately the same frequency. The 
probability of an event is defined to be the ratio of the 
number of cases favourable to the event (i.e., the number 
of outcomes in the subset of the sample space defining the 
event) to the total number of cases. Thus, the 36 possible 
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outcomes in the throw of two dice are assumed equally 
likely, and the probability of obtaining “six” is the number 
of favourable cases, 5, divided by 36, or 5/36.

Now suppose that a coin is tossed n times, and con-
sider the probability of the event “heads does not occur” 
in the n tosses. An outcome of the experiment is an n-tuple, 
the kth entry of which identifies the result of the kth toss. 
Because there are two possible outcomes for each toss, 
the number of elements in the sample space is 2n. Of these, 
only one outcome corresponds to having no heads, so the 
required probability is 1/2n.

It is only slightly more difficult to determine the prob-
ability of “at most one head.” In addition to the single 
case in which no head occurs, there are n cases in which 
exactly one head occurs, because it can occur on the first, 
second, . . . , or nth toss. Hence, there are n + 1 cases favour-
able to obtaining at most one head, and the desired 
probability is (n + 1)/2n.

The Principle of Additivity

This last example illustrates the fundamental principle 
that if the event whose probability is sought can be repre-
sented as the union of several other events that have no 
outcomes in common (“at most one head” is the union of 
“no heads” and “exactly one head”), then the probability of 
the union is the sum of the probabilities of the individual 
events making up the union. To describe this situation 
symbolically, let S denote the sample space. For two events 
A and B, the intersection of A and B is the set of all experi-
mental outcomes belonging to both A and B and is denoted 
A ∩ B; the union of A and B is the set of all experimental 
outcomes belonging to A or B (or both) and is denoted 
A ∪ B. The impossible event (i.e., the event containing no 
outcomes) is denoted by Ø. The probability of an event A 
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is written  P ( A ). The principle of addition of probabilities 
is that, if  A  1 ,  A  2 , . . . ,  A   n   are events with  A   i   ∩  A   j   = Ø for all 
pairs  i  ≠  j , then 
 

  Equation (1) is consistent with the relative frequency 
interpretation of probabilities. For, if  A   i   ∩  A   j   = Ø for all 
 i  ≠  j , the relative frequency with which at least one of the 
 A   i   occurs equals the sum of the relative frequencies with 
which the individual  A   i   occur.  

 Equation (1) is fundamental for everything that fol-
lows. Indeed, in the modern axiomatic theory of 
probability, which eschews a defi nition of probability in 
terms of “equally likely outcomes” as being hopelessly cir-
cular, an extended form of equation (1) plays a basic role. 

 An elementary, useful consequence of equation (1) is 
the following. With each event  A  is associated the com-
plementary event  A   c   consisting of those experimental 
outcomes that do not belong to  A . Because  A  ∩  A   c   = Ø, 
A  ∪  A   c   =  S , and  P ( S ) = 1 (where  S  denotes the sample 
space), it follows from equation (1) that  P ( A   c  ) = 1 −  P ( A ). 
For example, the probability of “at least one head” in  n
tosses of a coin is one minus the probability of “no head,” 
or 1 − 1/2  n  .   

 Multinomial Probability 

 A basic problem fi rst solved by Jakob Bernoulli is to fi nd 
the probability of obtaining exactly  i  red balls in the 
experiment of drawing  n  times at random with replace-
ment from an urn containing  b  black and  r  red balls. To 
draw at random means that, on a single draw, each of 
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the  r  +  b  balls is equally likely to be drawn and, because 
each ball is replaced before the next draw, there are 
( r  +  b ) ×⋯× ( r  +  b ) = ( r  +  b )  n   possible outcomes to the experi-
ment. Of these possible outcomes, the number that is 
favourable to obtaining  i  red balls and  n  −  i  black balls in 
any one particular order is 

 The number of possible orders in which  i  red balls and 
n  −  i  black balls can be drawn from the urn is the binomial 
coeffi cient 

  where  k ! =  k  × ( k  − 1) ×⋯× 2 × 1 for positive integers  k , and 
0! = 1. Hence, the probability in question, which equals the 
number of favourable outcomes divided by the number of 
possible outcomes, is given by the binomial distribution 

 where  p  =  r /( r  +  b ) and  q  =  b /( r  +  b ) = 1 −  p . 
  For example, suppose  r  = 2 b  and  n  = 4. According to 

equation (3), the probability of “exactly two red balls” is 
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In this case the

 
possible outcomes are easily enumerated: (rrbb), (rbrb), 
(brrb), (rbbr), (brbr), (bbrr). (For a derivation of equation 
(2), observe that to draw exactly i red balls in n draws one 
must either draw i red balls in the first n − 1 draws and a 
black ball on the nth draw or draw i  −  1 red balls in the 
first n  −  1 draws followed by the ith red ball on the nth 
draw. Hence,

from which equation (2) can be verified by induction on n.)
Two related examples are (i) drawing without replace-

ment from an urn containing r red and b black balls and (ii) 
drawing with or without replacement from an urn con-
taining balls of s different colours. If n balls are drawn 
without replacement from an urn containing r red and b 
black balls, the number of possible outcomes is

of which the number favourable to drawing i red and n − i 
black balls is
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   Hence, the probability of drawing exactly  i  red balls in 
n  draws is the ratio 

 If an urn contains balls of  s  different colours in the ratios 
p  1 : p  2 : . . . : p   s  , where  p  1  +⋯+  p   s   = 1 and if  n  balls are drawn with 
replacement, then the probability of obtaining  i  1  balls of 
the fi rst colour,  i  2  balls of the second colour, and so on is 
the multinomial probability 

 The evaluation of equation (3) with pencil and paper 
grows increasingly diffi cult with increasing  n . It is even more 
diffi cult to evaluate related cumulative probabilities—for 
example the probability of obtaining “at most  j  red balls” 
in the  n  draws, which can be expressed as the sum of equa-
tion (3) for  i  = 0, 1, . . . ,  j . The problem of approximate 
computation of probabilities that are known in principle 
is a recurrent theme throughout the history of probability 
theory and will be discussed in more detail in the follow-
ing text.    

 The Birthday Problem 

 An entertaining example is to determine the probability 
that in a randomly selected group of  n  people at least two 
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have the same birthday. If one assumes for simplicity that a 
year contains 365 days and that each day is equally likely to 
be the birthday of a randomly selected person, then in a 
group of  n  people there are 365  n   possible combinations of 
birthdays. The simplest solution is to determine the prob-
ability of no matching birthdays and then subtract this 
probability from 1. Thus, for no matches, the fi rst person 
may have any of the 365 days for his birthday, the second 
any of the remaining 364 days for his birthday, the third any 
of the remaining 363 days, . . . , and the  n th any of the remain-
ing 365 −  n  + 1. The number of ways that all  n  people can have 
different birthdays is then 365 × 364 ×⋯× (365 −  n  + 1), so that 
the probability that at least two have the same birthday is 
 

 Numerical evaluation shows, rather surprisingly, that 
for  n  = 23 the probability that at least two people have the 
same birthday is about 0.5 (half the time). For  n  = 42 the 
probability is about 0.9 (90 percent of the time).  

 This example illustrates that applications of proba-
bility theory to the physical world are facilitated by 
assumptions that are not strictly true, but they should be 
approximately true. Thus, the assumptions that a year 
has 365 days and that all days are equally likely to be the 
birthday of a random individual are false, because one 
year in four has 366 days and because birth dates are irreg-
ularly distributed throughout the year. Moreover, if one 
attempts to apply this result to an actual group of indi-
viduals, it is necessary to ask what it means for these to be 
“randomly selected.” Naturally, it would be unreasonable 
to apply it to a group known to contain twins. In spite of 
the obvious failure of the assumptions to be literally true, 
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as a classroom example, it rarely disappoints instructors 
of classes having more than 40 students.   

 condiTional pRobabiliTy 

 Suppose two balls are drawn sequentially without replace-
ment from an urn containing  r  red and  b  black balls. The 
probability of getting a red ball on the fi rst draw is  r /( r  +  b ). 
If, however, one is told that a red ball was obtained on the 
fi rst draw, then the conditional probability of getting a red 
ball on the second draw is ( r  − 1)/( r  +  b  − 1), because for the 
second draw there are  r  +  b  − 1 balls in the urn, of which  r  − 1 
are red. Similarly, if one is told that the fi rst ball drawn is 
black, then the conditional probability of getting red on 
the second draw is  r /( r  +  b  − 1). 

 In a number of  trials the relative frequency with which 
B  occurs among those trials in which  A  occurs is just the 
frequency of occurrence of  A  ∩  B  divided by the fre-
quency of occurrence of  A . This suggests that the 
conditional probability of  B  given  A  (denoted  P ( B | A )) 
should be defi ned by 

  If  A  denotes a red ball on the fi rst draw and  B  a red ball 
on the second draw in the experiment of the preceding 
paragraph,  P ( A ) =  r /( r  +  b ) and  
 

  which is consistent with the “obvious” answer derived above. 



7 The Britannica Guide to Statistics and Probability 7

60

  Rewriting equation (4) as  P ( A  ∩  B ) =  P ( A ) P ( B | A ) and 
adding to this expression the same expression with  A
replaced by  A   c   (“not  A ”) leads via equation (1) to the 
equality 
 

   More generally, if  A  1 ,  A  2 , . . . ,  A   n   are mutually exclusive 
events and their union is the entire sample space, so that 
exactly one of the  A   k   must occur, essentially the same 
argument gives a fundamental relation, which is frequently 
called the law of total probability: 
 
 

   

 Applications of Conditional Probability 

 An application of the law of total probability to a prob-
lem originally posed by Christiaan Huygens is to fi nd 
the probability of “gambler’s ruin.” Suppose two play-
ers, often called Peter and Paul, initially have  x  and  m  −  x
dollars, respectively. A ball, which is red with probabil-
ity  p  and black with probability  q  = 1 −  p , is drawn from 
an urn. If a red ball is drawn, then Paul must pay Peter 
one dollar, while Peter must pay Paul one dollar if the 
ball drawn is black. The ball is replaced, and the game 
continues until one player is ruined. It is quite diffi cult 
to determine the probability of Peter’s ruin by a direct 
analysis of all possible cases. But let  Q ( x ) denote that 
probability as a function of Peter’s initial fortune  x  and 
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observe that after one draw the structure of the rest of 
the game is exactly as it was before the fi rst draw, except 
that Peter’s fortune is now either  x  + 1 or  x  − 1 according 
to the results of the fi rst draw. The law of total probabil-
ity with  A  = {red ball on fi rst draw} and  A   c   = {black ball on 
fi rst draw} shows that 

 This equation holds for  x  = 2, 3, . . . ,  m  − 2. It also holds 
for  x  = 1 and  m  − 1 if one adds the boundary conditions 
 Q (0) = 1 and  Q ( m ) = 0, which say that if Peter initially has 
0 dollars, his probability of ruin is 1, whereas if he has all  m
dollars, he is certain to win.  

 It can be verifi ed by direct substitution that equation 
(5) together with the indicated boundary conditions are 
satisfi ed by 

 Additional analysis shows that these give the only solu-
tions and hence must be the desired probabilities.  

 Suppose  m  = 10 x , so that Paul initially has nine times as 
much money as Peter. If  p  = 1/2, the probability of Peter’s 
ruin is 0.9 regardless of the values of  x  and  m . If  p  = 0.51, so 
that each trial slightly favours Peter, then the situation is 
quite different. For  x  = 1 and  m  = 10, the probability of 
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Peter’s ruin is 0.88, only slightly less than before. However, 
for x = 100 and m = 1,000, Peter’s slight advantage on each 
trial becomes so important that the probability of his ulti-
mate ruin is now less than 0.02.

Generalizations of the problem of gambler’s ruin play 
an important role in statistical sequential analysis, devel-
oped by the Hungarian-born American statistician 
Abraham Wald in response to the demand for more effi-
cient methods of industrial quality control during World 
War II. They also enter into insurance risk theory.

The following example shows that, even when it is 
given that A occurs, it is important in evaluating P(B|A) to 
recognize that Ac might have occurred, and hence in prin-
ciple it must be possible also to evaluate P(B|Ac). By lot, 
two out of three prisoners—Sam, Jean, and Chris—are 
chosen to be executed. There are

possible pairs of prisoners to be selected for execution, of 
which two contain Sam, so the probability that Sam is 
slated for execution is 2/3. Sam asks the guard which of the 
others is to be executed. Because at least one must be, it 
appears that the guard would give Sam no information by 
answering. After hearing that Jean is to be executed, Sam 
reasons that, because either he or Chris must be the other 
one, the conditional probability that he will be executed is 
1/2. Thus, it appears that the guard has given Sam some 
information about his own fate. However, the experiment 
is incompletely defined, because it is not specified how 
the guard chooses whether to answer “Jean” or “Chris” in 
case both are to be executed. If the guard answers “Jean” 
with probability p, then the conditional probability of the 
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event “Sam will be executed” given “the guard says Jean 
will be executed” is 

 Only in the case  p  = 1 is Sam’s reasoning correct. If  p  = 1/2, 
then the guard in fact gives no information about Sam’s fate.    

 Independence 

 One of the most important concepts in probability the-
ory is that of “independence.” The events  A  and  B  are 
said to be (stochastically) independent if  P ( B | A ) =  P ( B ), 
or equivalently if 

 The intuitive meaning of the defi nition in terms of condi-
tional probabilities is that the probability of  B  is not 
changed by knowing that  A  has occurred. Equation (7) 
shows that the defi nition is symmetric in  A  and  B .  

 It is intuitively clear that, in drawing two balls with 
replacement from an urn containing  r  red and  b  black 
balls, the event “red ball on the fi rst draw” and the event 
“red ball on the second draw” are independent. (This 
statement presupposes that the balls are thoroughly mixed 
before each draw.) An analysis of the ( r  +  b ) 2  equally likely 
outcomes of the experiment shows that the formal defi ni-
tion is indeed satisfi ed. 

 In terms of the concept of independence, the experi-
ment leading to the binomial distribution can be described 
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as follows. On a single trial, a particular event has proba-
bility  p . An experiment consists of  n  independent 
repetitions of this trial. The probability that the particular 
event occurs exactly  i  times is given by equation (3). 
Independence plays a central role in the law of large num-
bers, the central limit theorem, the Poisson distribution, 
and Brownian motion.   

 Bayes’s Theorem 

 Consider now the defi ning relation for the conditional 
probability  P ( A   n  | B ), where the  A   i   are mutually exclusive 
and their union is the entire sample space. Substitution of 
P ( A   n  ) P ( B | A   n  ) in the numerator of equation (4) 

 and substitution of the right-hand side of the law of total 
probability in the denominator yields a result known as 
Bayes’s theorem (after the 18th-century English clergy-
man Thomas Bayes) or the law of inverse probability: 

 As an example, suppose that two balls are drawn with-
out replacement from an urn containing  r  red and  b  black 
balls. Let  A  be the event “red on the fi rst draw” and  B  the 
event “red on the second draw.” From the obvious rela-
tions  P ( A ) =  r /( r  +  b ) = 1 −  P ( A   c  ),  P ( B | A ) = (r − 1)/( r  +  b  − 1), 
P ( B | A   c  ) =  r /( r  +  b  − 1), and Bayes’s theorem, it follows that 
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the probability of a red ball on the first draw given that the 
second one is known to be red equals (r − 1)/(r + b − 1). A 
more interesting and important use of Bayes’s theorem 
appears in the following text in the discussion of subjec-
tive probabilities.

Random variables,  
distributions, expectation, 
and variance

Random Variables

Usually, it is more convenient to associate numerical 
values with the outcomes of an experiment than to work 
directly with a nonnumerical description such as “red 
ball on the first draw.” For example, an outcome of the 
experiment of drawing n balls with replacement from an 
urn containing black and red balls is an n-tuple that tells 
us whether a red or a black ball was drawn on each of the 
draws. This n-tuple is conveniently represented by an 
n-tuple of ones and zeros, where the appearance of a 
one in the kth position indicates that a red ball was 
drawn on the kth draw. A quantity of particular interest 
is the number of red balls drawn, which is just the sum 
of the entries in this numerical description of the exper-
imental outcome. Mathematically a rule that associates 
with every element of a given set a unique real number 
is called a “(real-valued) function.” In the history of sta-
tistics and probability, real-valued functions defined on 
a sample space have traditionally been called “random 
variables.” Thus, if a sample space S has the generic ele-
ment e, the outcome of an experiment, then a random 
variable is a real-valued function X = X(e). Customarily 
one omits the argument e in the notation for a random 
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variable. For the experiment of drawing balls from an 
urn containing black and red balls,  R , the number of red 
balls drawn, is a random variable. A particularly useful 
random variable is 1[ A ], the indicator variable of the 
event  A , which equals 1 if  A  occurs and 0 otherwise. 
A “constant” is a trivial random variable that always 
takes the same value regardless of the outcome of the 
experiment.   

 Probability Distribution 

 Suppose  X  is a random variable that can assume one of 
the values  x  1 ,  x  2 , . . . ,  x   m  , according to the outcome of 
a random experiment, and consider the event { X  =  x   i  }, 
which is a shorthand notation for the set of all experi-
mental outcomes  e  such that  X ( e ) =  x   i  . The probability 
of this event,  P { X  =  x   i  }, is itself a function of  x   i  , called the 
probability distribution function of  X . Thus, the distri-
bution of the random variable  R  defi ned in the preceding 
section is the function of  i  = 0, 1, . . . ,  n  given in the bino-
mial equation. Introducing the notation  f ( x   i  ) =  P { X  =  x   i  }, 
one sees from the basic properties of probabilities that 
 

  
  and  
  

 
 
 for any real numbers  a  and  b . If  Y  is a second random vari-
able defi ned on the same sample space as  X  and taking the 
values  y  1 ,  y  2 , . . . ,  y   n  , then the function of two variables 
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h ( x   i  ,  y   j  ) =  P { X  =  x   i  ,  Y  =  y   j  } is called the joint distribution of  X
and  Y . Because { X  =  x   i  } = ∪  j  { X  =  x   i  ,  Y  =  y   j  }, and this union 
consists of disjoint events in the sample space, 

 Often  f  is called the marginal distribution of  X  to 
emphasize its relation to the joint distribution of  X  and  Y . 
Similarly,  g ( y   j  ) = ∑  i   h ( x   i  ,  y   j  ) is the (marginal) distribution of 
Y . The random variables  X  and  Y  are defi ned to be inde-
pendent if the events { X  =  x   i  } and { Y  =  y   j  } are independent 
for all  i  and  j , such as if  h ( x   i  ,  y   j  ) =  f ( x   i  ) g ( y   j  ) for all  i  and  j . The 
joint distribution of an arbitrary number of random vari-
ables is similarly defi ned. 

 Suppose two dice are thrown. Let  X  denote the sum 
of the numbers appearing on the two dice, and let  Y
denote the number of even numbers appearing. The pos-
sible values of  X  are 2, 3, . . . , 12, while the possible values 
of  Y  are 0, 1, 2. Because there are 36 possible outcomes 
for the two dice, the accompanying table giving the joint 

JOINT DISTRIBUTION OF X AND Y

i row 
sum 
= g(j)

j

2 3 4 5 6 7 8 9 10 11 12

0 1/36 0 1/18 0 1/12 0 1/18 0 1/36 0 0 1/4

1 0 1/18 0 1/9 0 1/6 0 1/9 0 1/18 0 1/2

2 0 0 1/36 0 1/18 0 1/12 0 1/18 0 1/36 1/4

column 
sum = 

f(i)
1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36
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distribution  h ( i ,  j ) ( i  = 2, 3, . . . , 12;  j  = 0, 1, 2) and the mar-
ginal distributions  f ( i ) and  g ( j ) is easily computed by 
direct enumeration. 

 For more complex experiments, determination of a 
complete probability distribution usually requires a combi-
nation of theoretical analysis and empirical experimentation 
and is often diffi cult. Consequently, it is desirable to 
describe a distribution insofar as possible by a small num-
ber of parameters that are comparatively easy to evaluate 
and interpret. The most important are the mean and the 
variance. These are both defi ned in terms of the “expected 
value” of a random variable.   

 Expected Value 

 Given a random variable  X  with distribution  f , the expected 
value of  X , denoted  E ( X ), is defi ned by  E ( X ) = ∑  i   x   i   f ( x   i  ). 
In words, the expected value of  X  is the sum of each of 
the possible values of  X  multiplied by the probability of 
obtaining that value. The expected value of  X  is also called 
the mean of the distribution  f . The basic property of  E  is 
that of linearity: If  X  and  Y  are random variables and if  a  
and  b  are both constants, then  E ( a  X  +  b  Y ) =  a  E ( X ) +  b  E ( Y ). 
To see why this is true, note that  a  X  +  b  Y  is itself a random 
variable, which assumes the values  a  x   i   +  b  y   j   with the prob-
abilities  h ( x   i  ,  y   j  ). Hence, 
 

  If the fi rst sum on the right-hand side is summed over 
j  while holding  i  fi xed, by equation (8) 
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the result is

which by definition is E(X). Similarly, the second sum 
equals E(Y).

If 1[A] denotes the “indicator variable” of A (i.e., a ran-
dom variable equal to 1 if A occurs and equal to 0 
otherwise), then E{1[A]} = 1 × P(A) + 0 × P(Ac) = P(A). This 
shows that the concept of expectation includes that of 
probability as a special case.

As an illustration, consider the number R of red balls 
in n draws with replacement from an urn containing a pro-
portion p of red balls. From the definition and the binomial 
distribution of R,

which can be evaluated by algebraic manipulation and 
found to equal np. It is easier to use the representation 
R = 1[A1] +⋯+ 1[An], where Ak denotes the event “the kth 
draw results in a red ball.” Since E{1[Ak]} = p for all k, by 
linearity E(R) = E{1[A1]} +⋯+ E{1[An]} = np. This argument 
illustrates the principle that one can often compute the 
expected value of a random variable without first comput-
ing its distribution. For another example, suppose n balls 
are dropped at random into n boxes. The number of empty 
boxes, Y, has the representation Y = 1[B1] +⋯+ 1[Bn], where 
Bk is the event that “the kth box is empty.” Because the kth 
box is empty if and only if each of the n balls went into one 
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of the other n  −  1 boxes, P(Bk) =  [(n  −  1)/n]n for all k, and 
consequently E(Y) = n(1 − 1/n)n. The exact distribution of Y 
is very complicated, especially if n is large.

Many probability distributions have small values of 
f(xi) associated with extreme (large or small) values of xi 
and larger values of f(xi) for intermediate xi. For example, 
both marginal distributions in the table are symmetrical 
about a midpoint that has relatively high probability, and 
the probability of other values decreases as one moves 
away from the midpoint. Insofar as a distribution f(xi) fol-
lows this kind of pattern, one can interpret the mean of 
f as a rough measure of location of the bulk of the prob-
ability distribution, because in the defining sum the values 
xi associated with large values of f(xi) more or less define 
the centre of the distribution. In the extreme case, the 
expected value of a constant random variable is just that 
constant.

Variance

It is also of interest to know how closely packed about its 
mean value a distribution is. The most important measure 
of concentration is the variance, denoted by Var(X) and 
defined by Var(X) = E{[X − E(X)]2}. By linearity of expecta-
tions, one has equivalently Var(X)  =  E(X2)  −  {E(X)}2. The 
standard deviation of X is the square root of its variance. It 
has a more direct interpretation than the variance because 
it is in the same units as X. The variance of a constant ran-
dom variable is 0. Also, if c is a constant, Var(cX) = c2Var(X).

There is no general formula for the expectation of a 
product of random variables. If the random variables X 
and Y are independent, then E(XY) = E(X)E(Y). This can 
be used to show that if X1, . . . , Xn are independent random 
variables, the variance of the sum X1 +⋯+ Xn is just the sum 
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of the individual variances, Var( X  1 ) +⋯+ Var( X   n  ). If the  X s 
have the same distribution and are independent, then the 
variance of the average ( X  1  +⋯+  X   n  )/ n  is Var( X  1 )/ n . 
Equivalently, the standard deviation of ( X  1  +⋯+  X   n  )/ n  is 
the standard deviation of  X  1  divided by   √-n  . This quantifi es 
the intuitive notion that the average of repeated observa-
tions is less variable than the individual observations. 
More precisely, it says that the variability of the average is 
inversely proportional to the square root of the number of 
observations. This result is tremendously important in 
problems of statistical inference. 

 Consider again the binomial distribution given by 
equation (3). As in the calculation of the mean value, one 
can use the defi nition combined with some algebraic 
manipulation to show that if  R  has the binomial distribu-
tion, then Var( R ) =  n  p  q . From the representation  R  = 
1[ A  1 ] +⋯+ 1[ A   n  ] defi ned earlier, and the observation that 
the events  A   k   are independent and have the same proba-
bility, it follows that 
 

  
 

 Moreover, 

 
 

   
 so Var( R ) =  n  p  q .  

 The conditional distribution of  Y  given  X  =  x   i   is 
defi ned by: 
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  (compare equation [4]), and the conditional expectation 
of  Y  given  X  =  x   i   is 

 One can regard  E ( Y | X ) as a function of  X.  Because  X  is a 
random variable, this function of  X  must itself be a random 
variable. The conditional expectation  E ( Y | X ) considered as 
a random variable has its own (unconditional) expectation 
 E { E ( Y | X )}, which is calculated by multiplying equation (9) by 
 f ( x   i  ) and summing over  i  to obtain the important formula 
 

 Properly interpreted, equation (10) is a generalization 
of the law of total probability.  

 For a simple example of the use of equation (10), recall 
the problem of the gambler’s ruin and let  e ( x ) denote the 
expected duration of the game if Peter’s fortune is initially 
equal to  x . The reasoning leading to equation (5) in con-
junction with equation (10) shows that  e ( x ) satisfi es the 
equations  e ( x ) = 1 +  p  e ( x  + 1) +  q  e ( x  − 1) for  x  = 1, 2, . . . ,  m  − 1 
with the boundary conditions  e (0) =  e ( m ) = 0. The solution 
for  p  ≠ 1/2 is rather complicated; for  p  = 1/2,  e ( x ) =  x ( m  −  x ).   

 an alTeRnaTive 
inTeRpReTaTion of pRobabiliTy 

 In ordinary conversation the word probability is applied 
not only to variable phenomena but also to propositions of 
uncertain veracity. The truth of any proposition concern-
ing the outcome of an experiment is uncertain before the 
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experiment is performed. Many other uncertain proposi-
tions cannot be defined in terms of repeatable experiments. 
An individual can be uncertain about the truth of a scien-
tific theory, a religious doctrine, or even about the 
occurrence of a specific historical event when inadequate 
or conflicting eyewitness accounts are involved. Using 
probability as a measure of uncertainty enlarges its domain 
of application to phenomena that do not meet the require-
ment of repeatability. The concomitant disadvantage is 
that probability as a measure of uncertainty is subjective 
and varies from one person to another.

According to one interpretation, to say that someone 
has subjective probability p that a proposition is true 
means that for any integers r and b with r/(r + b) < p, if that 
individual is offered an opportunity to bet the same 
amount on the truth of the proposition or on “red in a 
single draw” from an urn containing r red and b black balls, 
then he or she prefers the first bet, whereas if r/(r + b) > p, 
then the second bet is preferred.

An important stimulus to modern thought about sub-
jective probability has been an attempt to understand 
decision making in the face of incomplete knowledge. It is 
assumed that an individual, when faced with the necessity 
of making a decision that may have different consequences 
depending on situations about which he or she has incom-
plete knowledge, can express personal preferences and 
uncertainties in a way consistent with certain axioms of 
rational behaviour. It can then be deduced that the individ-
ual has a utility function, which measures the value to him 
or her of each course of action when each of the uncertain 
possibilities is the true one, and a “subjective probability 
distribution,” which quantitatively expresses the individu-
al’s beliefs about the uncertain situations. The individual’s 
optimal decision is the one that maximizes his or her 
expected utility with respect to subjective probability. The 
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concept of utility goes back at least to Daniel Bernoulli 
(Jakob Bernoulli’s nephew) and was developed in the 20th 
century by John von Neumann and Oskar Morgenstern, 
Frank P. Ramsey, and Leonard J. Savage, among others. 
Ramsey and Savage stressed the importance of subjective 
probability as a concomitant ingredient of decision mak-
ing in the face of uncertainty. An alternative approach to 
subjective probability without the use of utility theory was 
developed by Bruno de Finetti. 

 The mathematical theory of probability is the same 
regardless of one’s interpretation of the concept, but the 
importance attached to various results can heavily depend 
on the interpretation. In particular, in the theory and 
applications of subjective probability, Bayes’s theorem 
plays an important role. 

 For example, suppose that an urn contains  N  balls,  r  of 
which are red and  b  =  N  −  r  of which are black, but  r  (hence  b ) 
is unknown. One is permitted to learn about the value of  r
by performing the experiment of drawing with replacement 
n  balls from the urn. Suppose also that one has a subjective 
probability distribution giving the probability  f ( r ) that the 
number of red balls is in fact  r  where  f (0) +⋯+  f ( N ) = 1. This 
distribution is called an a priori distribution because it is 
specifi ed prior to the experiment of drawing balls from the 
urn. The binomial distribution is now a conditional proba-
bility, given the value of  r . Finally, one can use Bayes’s 
theorem to fi nd the conditional probability that the 
unknown number of red balls in the urn is  r , given that the 
number of red balls drawn from the urn is  i . The result is 
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This distribution, derived by using Bayes’s theorem to 
combine the a priori distribution with the conditional dis-
tribution for the outcome of the experiment, is called the 
a posteriori distribution.

The virtue of this calculation is that it makes possible 
a probability statement about the composition of the 
urn, which is not directly observable, in terms of observ-
able data, from the composition of the sample taken 
from the urn. The weakness, as previously indicated, is 
that different people may choose different subjective 
probabilities for the composition of the urn a priori and 
hence reach different conclusions about its composition 
a posteriori.

To see how this idea might apply in practice, consider 
a simple urn model of opinion polling to predict which of 
two candidates will win an election. The red balls in the 
urn are identified with voters who will vote for candidate 
A and the black balls with those voting for candidate B. 
Choosing a sample from the electorate and asking their 
preferences is a well-defined random experiment, which 
in theory and in practice is repeatable. The composition 
of the urn is uncertain and is not the result of a well-
defined random experiment. Nevertheless, to the extent 
that a vote for a candidate is a vote for a political party, 
other elections provide information about the content of 
the urn, which, if used judiciously, should be helpful in 
supplementing the results of the actual sample to make a 
prediction. Exactly how to use this information is a diffi-
cult problem in which individual judgment plays an 
important part. One possibility is to incorporate the prior 
information into an a priori distribution about the elec-
torate, which is then combined via Bayes’s theorem with 
the outcome of the sample and summarized by an a poste-
riori distribution.
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 The law of laRge nuMbeRs, 
The cenTRal liMiT TheoReM, 
and The poisson appRoxiMaTion   

 The Law of Large Numbers 

 The relative frequency interpretation of probability is 
that if an experiment is repeated a large number of times 
under identical conditions and independently, then the 
relative frequency with which an event  A  actually occurs 
and the probability of  A  should be approximately the 
same. A mathematical expression of this interpretation is 
the law of large numbers. This theorem says that if  X  1 ,  X  2 , 
. . . ,  X   n   are independent random variables having a com-
mon distribution with mean μ, then for any number ε > 0, 
no matter how small, as  n  → ∞, 
 

  
 The law of large numbers was fi rst proved by Jakob 

Bernoulli in the special case where  X   k   is 1 or 0 according as 
the  k th draw (with replacement) from an urn containing  r  
red and  b  black balls is red or black. Then  E ( X   k  ) =  r /( r  +  b ), 
and the last equation says that the probability that “the 
difference between the empirical proportion of red balls 
in  n  draws and the probability of red on a single draw is less 
than ε''  converges to 1 as  n  becomes infi nitely large. 

 Insofar as an event that has probability close to 1 
is practically certain to happen, this result justifi es the 
relative frequency interpretation of probability. Strictly 
speaking, however, the justifi cation is circular because the 
probability in the preceding equation, which is very close 
to but not equal to 1, requires its own relative frequency 
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interpretation. Perhaps it is better to say that the weak 
law of large numbers is consistent with the relative fre-
quency interpretation of probability. 

 The following simple proof of the law of large num-
bers is based on Chebyshev’s inequality, which illustrates 
the sense in which the variance of a distribution mea-
sures how the distribution is dispersed about its mean. If 
X  is a random variable with distribution  f  and mean μ, 
then by defi nition Var( X ) = ∑  i  ( x   i    − μ) 2  f ( x   i  ). Because all 
terms in this sum are positive, the sum can only decrease 
if some terms are omitted. Suppose one omits all terms 
with | x   i    − μ| <  b , where  b  is an arbitrary given number. 
Each term remaining in the sum has a factor of the form 
( x   i    − μ) 2 , which is greater than or equal to  b  2 . Hence, 
Var( X ) ≥  b  2  ∑′  f ( x   i  ), where the prime on the summation 
sign indicates that only terms with | x   i    − μ| ≥  b  are included 
in the sum. Chebyshev’s inequality is this expression 
rewritten as 
 

 This inequality can be applied to the complementary 
event of that appearing in equation (11), with  b  = ε. The 
X s are independent and have the same distribution, 
E [ n  −1 ( X  1  +⋯+  X   n  )] = μ and Var[( X  1  +⋯+  X   n  )/ n ] = Var( X  1 )/ n , 
so that 
 
 

 
 

 This not only proves equation (11), but it also says 
quantitatively how large  n  should be so that the empirical 
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average, n−1(X1  +⋯+  Xn), approximate its expectation to 
any required degree of precision.

Suppose, for example, that the proportion p of red 
balls in an urn is unknown and is to be estimated by the 
empirical proportion of red balls in a sample of size n 
drawn from the urn with replacement. Chebyshev’s 
inequality with Xk = 1{red ball on the kth draw} implies 
that for the observed proportion to be within ε of 
the true proportion p with probability at least 0.95, 
it suffices that n be at least 20  ×  Var(X1)/ε2. Because 
Var(X1) = p(1 − p) ≤ 1/4 for all p, for ε = 0.03 it suffices that n 
be at least 5,555. The following text shows that this value 
of n is much larger than necessary, because Chebyshev’s 
inequality is insufficiently precise to be useful in numer-
ical calculations.

Although Jakob Bernoulli did not know Chebyshev’s 
inequality, the inequality he derived was also imprecise. 
Perhaps because of his disappointment in not having a 
quantitatively useful approximation, he did not publish 
the result during his lifetime. It appeared in 1713, eight 
years after his death.

The Central Limit Theorem

The desired useful approximation is given by the central 
limit theorem, which in the special case of the binomial 
distribution was first discovered by Abraham de Moivre 
about 1730. Let X1, . . . , Xn be independent random vari-
ables having a common distribution with expectation μ 
and variance σ2. The law of large numbers implies that the 
distribution of the random variable X¯n = n−1(X1 +⋯+ Xn) is 
essentially just the degenerate distribution of the constant 
μ, because E(X¯n) = μ and Var(X¯n) = σ2/n → 0 as n → ∞. The 
standardized random variable (X¯n − μ)/(σ/√-n) has mean 0 
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and variance 1. The central limit theorem gives the remark-
able result that, for any real numbers  a  and  b , as  n  → ∞, 

 where 

 Thus, if  n  is large, then the standardized average has a 
distribution that is approximately the same, regardless of 
the original distribution of the  X s. The equation also illus-
trates clearly the square root law: The accuracy of X¯  n   as 
an estimator of μ is inversely proportional to the square 
root of the sample size  n .  

 Use of equation (12) to evaluate approximately the 
probability on the left-hand side of equation (11), by setting 
b  = − a  = ε  √-n  /σ, yields the approximation  G (ε  √-n  /σ) −  G (−ε  √-

n  /σ). Because  G (2) −  G (−2) is approximately 0.95,  n  must be 
about 4σ 2 /ε 2  in order that the difference |X¯  n   − μ| will be less 
than ε with probability 0.95. For the special case of the 
binomial distribution, one can again use the inequality 
σ 2  =  p (1 −  p ) ≤ 1/4 and now conclude that about 1,100 balls 
must be drawn from the urn in order that the empirical 
proportion of red balls drawn will be within 0.03 of the 
true proportion of red balls with probability about 0.95. 
The frequently appearing statement in U.S. newspapers 
that a given opinion poll involving a sample of about 1,100 
persons has a sampling error of no more than 3 percent is 
based on this kind of calculation. The qualifi cation that 
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this 3 percent sampling error may be exceeded in about 5 
percent of the cases is often omitted.

The actual situation in opinion polls or sample sur-
veys generally is more complicated. The sample is drawn 
without replacement, so, strictly speaking, the binomial 
distribution is not applicable. However, the “urn” (i.e., 
the population from which the sample is drawn) is 
extremely large, in many cases infinitely large for practi-
cal purposes. Hence, the composition of the urn is 
effectively the same throughout the sampling process, 
and the binomial distribution applies as an approxima-
tion. Also, the population is usually stratified into 
relatively homogeneous groups, and the survey is designed 
to take advantage of this stratification. To pursue the 
analogy with urn models, imagine the balls to be in several 
urns in varying proportions, and decide how to allocate 
the n draws from the various urns so as to estimate effi-
ciently the overall proportion of red balls.

Considerable effort has been put into generalizing 
both the law of large numbers and the central limit theo-
rem. Thus, it is unnecessary for the variables to be either 
independent or identically distributed.

The law of large numbers previously discussed is often 
called the “weak law of large numbers,” to distinguish it 
from the “strong law,” a conceptually different result dis-
cussed in the following text in the section on infinite 
probability spaces.

The Poisson Approximation

The weak law of large numbers and the central limit 
theorem give information about the distribution of the 
proportion of successes in a large number of indepen-
dent trials when the probability of success on each trial 
is p. In the mathematical formulation of these results, it 
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is assumed that  p  is an arbitrary, but fi xed, number in the 
interval (0, 1) and  n  → ∞, so that the expected number of 
successes in the  n  trials,  n  p , also increases toward +∞ with 
 n . A rather different kind of approximation is of interest 
when  n  is large and the probability  p  of success on a single 
trial is inversely proportional to  n , so that  n  p  = μ is a fi xed 
number even though  n  → ∞. An example is the following 
simple model of radioactive decay of a source consisting 
of a large number of atoms, which independently of one 
another decay by spontaneously emitting a particle. The 
time scale is divided into a large number of small intervals 
of equal lengths. In each interval, independently of what 
happens in the other intervals, the source emits one or no 
particle with probability  p  or  q  = 1 −  p,  respectively. It is 
assumed that the intervals are so small that the probability 
of two or more particles being emitted in a single interval 
is negligible. One now imagines that the size of the inter-
vals shrinks to 0, so that the number of trials up to any 
fi xed time  t  becomes infi nite. It is reasonable to assume 
that the probability of emission during a short time inter-
val is proportional to the length of the interval. The result 
is a different kind of approximation to the binomial dis-
tribution, called the Poisson distribution (after the French 
mathematician Siméon-Denis Poisson) or the law of small 
numbers. 

 Assume, then, that a biased coin having probability 
 p  = μδ of heads is tossed once in each time interval of length 
δ, so that by time  t  the total number of tosses is an integer 
 n  approximately equal to  t /δ. Introducing these values into 
the binomial equation and passing to the limit as δ → 0 
gives as the distribution for  N ( t ) the number of radioactive 
particles emitted in time  t : 
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The right-hand side of this equation is the Poisson dis-
tribution. Its mean and variance are both equal to μt. 
Although the Poisson approximation is not comparable to 
the central limit theorem in importance, it nevertheless 
provides one of the basic building blocks in the theory of 
stochastic processes.

Infinite sample spaces and  
axiomatic probability

Infinite Sample Spaces

The experiments described in the preceding discussion 
involve finite sample spaces for the most part, although 
the central limit theorem and the Poisson approximation 
involve limiting operations and hence lead to integrals and 
infinite series. In a finite sample space, calculation of the 
probability of an event A is conceptually straightforward 
because the principle of additivity tells one to calculate 
the probability of a complicated event as the sum of the 
probabilities of the individual experimental outcomes 
whose union defines the event.

Experiments having a continuum of possible out-
comes (e.g., that of selecting a number at random from 
the interval [r,  s]) involve subtle mathematical difficul-
ties that were not satisfactorily resolved until the 20th 
century. If one chooses a number at random from [r, s], 
then the probability that the number falls in any interval 
[x,  y] must be proportional to the length of that inter-
val. Because the probability of the entire sample space 
[r,  s] equals 1, the constant of proportionality equals 1/
(s  − r). Hence, the probability of obtaining a number in 
the interval [x, y] equals (y − x)/(s − r). From this and the 
principle of additivity one can determine the probability 
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of any event that can be expressed as a finite union of 
intervals. There are, however, rather complicated sets 
having no simple relation to the intervals (e.g., the ratio-
nal numbers), and it is not immediately clear what the 
probabilities of these sets should be. Also, the probabil-
ity of selecting exactly the number x must be 0, because 
the set consisting of x alone is contained in the interval 
[x, x + 1/n] for all n and hence must have no larger probabil-
ity than 1/[n(s − r)], no matter how large n is. Consequently, 
it makes no sense to attempt computing the probability 
of an event by “adding” the probabilities of the individual 
outcomes making up the event, because each individual 
outcome has probability 0.

A closely related experiment, although at first there 
appears to be no connection, arises as follows. Suppose 
that a coin is tossed n times, and let Xk = 1 or 0 according 
as the outcome of the kth toss is heads or tails. The weak 
law of large numbers given above says that a certain 
sequence of numbers—namely the sequence of probabili-
ties given in equation (11) and defined in terms of these 
n Xs—converges to 1 as n → ∞. To formulate this result, it is 
only necessary to imagine that one can toss the coin n 
times and that this finite number of tosses can be arbi-
trarily large. In other words, there is a sequence of 
experiments, but each one involves a finite sample space. 
It is also natural to ask whether the sequence of random 
variables (X1 +⋯+ Xn)/n converges as n → ∞. However, this 
question cannot even be formulated mathematically 
unless infinitely many Xs can be defined on the same sam-
ple space, which in turn requires that the underlying 
experiment involve an actual infinity of coin tosses.

For the conceptual experiment of tossing a fair coin 
infinitely many times, the sequence of zeros and ones, (X1, 
X2, . . . ), can be identified with that real number that has 
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the Xs as the coefficients of its expansion in the base 2, 
namely X1/2

1 + X2/2
2 + X3/2

3 +⋯. For example, the outcome 
of getting heads on the first two tosses and tails thereafter 
corresponds to the real number 1/2 + 1/4 + 0/8 +⋯ = 3/4. 
(There are some technical mathematical difficulties that 
arise from the fact that some numbers have two repre-
sentations. Obviously 1/2 = 1/2 + 0/4 +⋯, and the formula 
for the sum of an infinite geometric series shows that it 
also equals 0/2 + 1/4 + 1/8 +⋯. It can be shown that these 
difficulties do not pose a serious problem, and they 
are ignored in the subsequent discussion.) For any par-
ticular specification i1, i2, . . . , in of zeros and ones, the 
event {X1  =  i1, X2  =  i2, . . . , Xn  =  in} must have probabil-
ity 1/2n to be consistent with the experiment of tossing 
the coin only n times. Moreover, this event corresponds 
to the interval of real numbers [i1/2

1  +  i2/2
2  +⋯+  in/2

n, 
i1/2

1 + i2/2
2 +⋯+ in/2

n + 1/2n] of length 1/2n, because any con-
tinuation Xn + 1, Xn + 2, . . . corresponds to a number that is 
at least 0 and at most 1/2n + 1 + 1/2n + 2 +⋯ = 1/2n by the for-
mula for an infinite geometric series. It follows that the 
mathematical model for choosing a number at random 
from [0, 1] and that of tossing a fair coin infinitely many 
times assign the same probabilities to all intervals of the 
form [k/2n, 1/2n].

The Strong Law of Large Numbers

The mathematical relation between these two experi-
ments was recognized in 1909 by the French mathematician 
Émile Borel, who used the then new ideas of measure the-
ory to give a precise mathematical model and to formulate 
what is now called the strong law of large numbers for fair 
coin tossing. His results can be described as follows. Let e 
denote a number chosen at random from [0,  1], and let 
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X   k  ( e ) be the  k th coordinate in the expansion of  e  to the 
base 2. Then  X  1 ,  X  2 , . . . are an infi nite sequence of inde-
pendent random variables taking the values 0 or 1 with 
probability 1/2 each. Moreover, the subset of [0, 1] consist-
ing of those  e  for which the sequence  n  −1 [ X  1 ( e ) +⋯+  X   n  ( e )] 
tends to 1/2 as  n  → ∞ has probability 1. Symbolically: 

 The weak law of large numbers given in equation (11) 
says that for any ε > 0, for each suffi ciently large value of  n , 
there is only a small probability of observing a deviation of 
X   n   =  n  −1 ( X  1  +⋯+  X   n  ) from 1/2 which is larger than ε; never-
theless, it leaves open the possibility that sooner or later 
this rare event will occur if one continues to toss the coin 
and observe the sequence for a suffi ciently long time. The 
strong law, however, asserts that the occurrence of even 
one value of  X RU  k   for  k  ≥  n  that differs from 1/2 by more 
than ε is an event of arbitrarily small probability provided 
n  is large enough. The proof of equation (14) and various 
subsequent generalizations is much more diffi cult than 
that of the weak law of large numbers. The adjectives 
“strong” and “weak” refer to the fact that the truth of a 
result such as equation (14) implies the truth of the corre-
sponding version of equation (11), but not conversely.   

 Measure Theory 

 During the two decades following 1909, measure theory 
was used in many concrete problems of probability theory, 
notably in the American mathematician Norbert Wiener’s 
treatment (1923) of the mathematical theory of Brownian 
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motion, but the notion that all problems of probability 
theory could be formulated in terms of measure is cus-
tomarily attributed to the Soviet mathematician Andrey 
Nikolayevich Kolmogorov in 1933.

The fundamental quantities of the measure theoretic 
foundation of probability theory are the sample space S, 
which as before is just the set of all possible outcomes of 
an experiment, and a distinguished class M of subsets of S, 
called events. Unlike the case of finite S, in general not 
every subset of S is an event. The class M must have cer-
tain properties described in the following text. Each event 
is assigned a probability, which means mathematically 
that a probability is a function P mapping M into the real 
numbers that satisfies certain conditions derived from 
one’s physical ideas about probability.

The properties of M are as follows: (i) S ∊ M; (ii) if A ∊ M, 
then Ac ∊ M; (iii) if A1, A2, . . . ∊ M, then A1 ∪ A2 ∪ ⋯ ∊ M. 
Recalling that M is the domain of definition of the prob-
ability P, one can interpret (i) as saying that P(S) is defined, 
(ii) as saying that, if the probability of A is defined, then 
the probability of “not A” is also defined, and (iii) as say-
ing that, if one can speak of the probability of each of a 
sequence of events An individually, then one can speak of 
the probability that at least one of the An occurs. A class 
of subsets of any set that has properties (i)–(iii) is called a 
σ-field. From these properties one can prove others. For 
example, it follows at once from (i) and (ii) that Ø (the 
empty set) belongs to the class M. Because the intersection 
of any class of sets can be expressed as the complement of 
the union of the complements of those sets (DeMorgan’s 
law), it follows from (ii) and (iii) that, if A1, A2, . . . ∊ M, 
then A1 ∩ A2 ∩ ⋯ ∊ M.

Given a set S and a σ-field M of subsets of S, a probabil-
ity measure is a function P that assigns to each set A ∊ M a 
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nonnegative real number and that has the following prop-
erties: (a) P(S) = 1 and (b) if A1, A2, . . . ∊ M and Ai ∩ Aj = Ø 
for all i ≠  j, then P(A1 ∪  A2 ∪ ⋯)  =  P(A1)  +  P(A2)  +⋯. 
Property (b) is called the axiom of countable additivity. It 
is clearly motivated by equation (1), which suffices for 
finite sample spaces because there are only finitely many 
events. In infinite sample spaces it implies, but is not 
implied by, equation (1). There is, however, nothing in 
one’s intuitive notion of probability that requires the 
acceptance of this property. Indeed, a few mathematicians 
have developed probability theory with only the weaker 
axiom of finite additivity, but the absence of interesting 
models that fail to satisfy the axiom of countable additiv-
ity has led to its virtually universal acceptance.

To get a better feeling for this distinction, consider the 
experiment of tossing a biased coin having probability p of 
heads and q = 1 − p of tails until heads first appears. To be 
consistent with the idea that the tosses are independent, 
the probability that exactly n tosses are required equals 
qn − 1p, because the first n − 1 tosses must be tails, and they 
must be followed by a head. One can imagine that this 
experiment never terminates (i.e., that the coin continues 
to turn up tails forever). By the axiom of countable addi-
tivity, however, the probability that heads occurs at some 
finite value of n equals p + qp + q2p + ⋯ = p/(1 − q) = 1, by the 
formula for the sum of an infinite geometric series. Hence, 
the probability that the experiment goes on forever equals 
0. Similarly, one can compute the probability that the 
number of tosses is odd, as p + q2p + q4p + ⋯ = p/(1 − q2) = 1/
(1 + q). Conversely, if only finite additivity were required, 
then it would be possible to define the following admit-
tedly bizarre probability. The sample space S is the set of 
all natural numbers, and the σ-field M is the class of all 
subsets of S. If an event A contains finitely many elements, 
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then P(A) = 0, and if the complement of A contains finitely 
many elements, then P(A)  =  1. As a consequence of the 
deceptively innocuous axiom of choice (which says that, 
given any collection C of nonempty sets, there exists a rule 
for selecting a unique point from each set in C), one can 
show that many finitely additive probabilities consistent 
with these requirements exist. However, one cannot be 
certain what the probability of getting an odd number is, 
because that set is neither finite nor its complement finite, 
nor can it be expressed as a finite disjoint union of sets 
whose probability is already defined.

It is a basic problem, and by no means a simple one, to 
show that the intuitive notion of choosing a number at 
random from [0, 1], as described above, is consistent with 
the preceding definitions. Because the probability of an 
interval is to be its length, the class of events M must con-
tain all intervals. To be a σ-field it must contain other sets, 
however, many of which are difficult to describe simply. 
One example is the event in equation (14), which must 
belong to M in order that one can talk about its probabil-
ity. Also, although it seems clear that the length of a finite 
disjoint union of intervals is just the sum of their lengths, 
a rather subtle argument is required to show that length 
has the property of countable additivity. A basic theorem 
says that there is a suitable σ-field containing all the inter-
vals and a unique probability defined on this σ-field for 
which the probability of an interval is its length. The 
σ-field is called the class of Lebesgue-measurable sets, and 
the probability is called the Lebesgue measure, after the 
French mathematician and principal architect of measure 
theory, Henri-Léon Lebesgue.

In general, a σ-field need not be all subsets of the sample 
space S. The question of whether all subsets of [0, 1] are 
Lebesgue-measurable turns out to be a difficult problem 
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that is intimately connected with the foundations of 
mathematics and in particular with the axiom of choice.   

 Probability Density Functions 

 For random variables having a continuum of possible val-
ues, the function that plays the same role as the probability 
distribution of a discrete random variable is called a 
probability density function. If the random variable is 
denoted by  X , then its probability density function  f  has 
the property that 

 for every interval ( a ,  b ]. For example, the probability that 
 X  falls in ( a ,  b ] is the area under the graph of  f  between  a
and  b . For example, if  X  denotes the outcome of selecting 
a number at random from the interval [ r ,  s ], then the prob-
ability density function of  X  is given by  f ( x ) = 1/( s  −  r ) for 
r  <  x  <  s  and  f ( x ) = 0 for  x  <  r  or  x  >  s . The function  F ( x ) 
defi ned by  F ( x ) =  P { X  ≤  x } is called the distribution func-
tion, or cumulative distribution function, of  X . If  X  has a 
probability density function  f ( x ), then the relation between 
f  and  F  is  F ′( x ) =  f ( x ) or equivalently 

 The distribution function  F  of a discrete random vari-
able should not be confused with its probability distribution 
f . In this case the relation between  F  and  f  is 
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 If a random variable  X  has a probability density func-
tion  f ( x ), then its “expectation” can be defi ned by 

   provided that this integral is convergent. It turns out to be 
simpler, however, not only to use Lebesgue’s theory of mea-
sure to defi ne probabilities but also to use his theory of 
integration to defi ne expectation. Accordingly, for any ran-
dom variable  X ,  E ( X ) is defi ned to be the Lebesgue integral 
of  X  with respect to the probability measure  P , provided 
that the integral exists. In this way it is possible to provide 
a unifi ed theory in which all random variables, both dis-
crete and continuous, can be treated simultaneously. To 
follow this path, it is necessary to restrict the class of those 
functions  X  defi ned on  S  that are to be called random vari-
ables, just as it was necessary to restrict the class of subsets 
of  S  that are called events. The appropriate restriction is 
that a random variable must be a measurable function. The 
defi nition is taken over directly from the Lebesgue theory 
of integration and will not be discussed here. It can be 
shown that, whenever  X  has a probability density function, 
its expectation (provided it exists) is given by equation (15), 
  

 
 
 which remains a useful formula for calculating  E ( X ). 
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  Some important probability density functions are the 
following: 

   The cumulative distribution function of the normal 
distribution with mean 0 and variance 1 has already 
appeared as the function  G  defi ned following equation 
(12). The law of large numbers and the central limit theo-
rem continue to hold for random variables on infi nite 
sample spaces. A useful interpretation of the central limit 
theorem stated formally in equation (12) is as follows: The 
probability that the average (or sum) of a large number of 
independent, identically distributed random variables 
with fi nite variance falls in an interval ( c  1 ,  c  2 ] approximately 
equals the area between  c  1  and  c  2  underneath the graph of a 
normal density function chosen to have the same expecta-
tion and variance as the given average (or sum).  

 The exponential distribution arises naturally in the 
study of the Poisson distribution introduced in equation 
(13). If  T   k   denotes the time interval between the emission 
of the  k  − 1st and  k th particle, then  T  1 ,  T  2 , . . . are indepen-
dent random variables having an exponential distribution 
with parameter μ. This is obvious for  T  1  from the 
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observation that {T1 > t} = {N(t) = 0}. Hence, P{T1 ≤ t} = 1 − P
{N(t) = 0} = 1 − exp(−μt), and by differentiation one obtains 
the exponential density function.

The Cauchy distribution does not have a mean value 
or a variance, because the integral (15) does not converge. 
As a result, it has a number of unusual properties. For 
example, if X1, X2, . . . , Xn are independent random vari-
ables having a Cauchy distribution, then the average 
(X1 +⋯+ Xn)/n also has a Cauchy distribution. The variabil-
ity of the average is exactly the same as that of a single 
observation. Another random variable that does not have 
an expectation is the waiting time until the number of 
heads first equals the number of tails in tossing a fair coin.

Conditional expectation  
and least squares prediction

An important problem of probability theory is to predict 
the value of a future observation Y given knowledge of a 
related observation X (or, more generally, given several 
related observations X1, X2, . . .). Examples are to predict 
the future course of the national economy or the path of a 
rocket, given its present state.

Prediction is often just one aspect of a “control” prob-
lem. For example, in guiding a rocket, measurements of 
the rocket’s location, velocity, and so on are made almost 
continuously. At each reading, the rocket’s future course is 
predicted, and a control is then used to correct its future 
course. The same ideas are used to steer automatically 
large tankers transporting crude oil, for which even slight 
gains in efficiency result in large financial savings.

Given X, a predictor of Y is just a function H(X). The 
problem of “least squares prediction” of Y given the obser-
vation X is to find that function H(X) that is closest to Y 
in the sense that the mean square error of prediction, 
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E{[Y  −  H(X)]2}, is minimized. The solution is the condi-
tional expectation H(X) = E(Y|X).

In applications a probability model is rarely known 
exactly and must be constructed from a combination of 
theoretical analysis and experimental data. It may be quite 
difficult to determine the optimal predictor, E(Y|X), par-
ticularly if instead of a single X a large number of predictor 
variables X1, X2, . . . are involved. An alternative is to restrict 
the class of functions H over which one searches to mini-
mize the mean square error of prediction, in the hope of 
finding an approximately optimal predictor that is much 
easier to evaluate. The simplest possibility is to restrict 
consideration to linear functions H(X) = a + bX. The coef-
ficients a and b that minimize the restricted mean square 
prediction error E{(Y − a − bX)2} give the best linear least 
squares predictor. Treating this restricted mean square 
prediction error as a function of the two coefficients (a, b) 
and minimizing it by methods of the calculus yield the 
optimal coefficients: b̂  =  E{[X  −  E(X)][Y  −  E(Y)]}/Var(X) 
and â  =  E(Y)  −  b̂E(X). The numerator of the expression 
for b̂ is called the covariance of X and Y and is denoted 
Cov(X, Y). Let Ŷ = â + b̂X denote the optimal linear pre-
dictor. The mean square error of prediction is E{(Y − Ŷ)2} = 
Var(Y) − [Cov(X, Y)]2/Var(X).

If X and Y are independent, Cov(X, Y) = 0, the optimal 
predictor is just E(Y), and the mean square error of predic-
tion is Var(Y). Hence, |Cov(X, Y)| is a measure of the value 
X has in predicting Y. In the extreme case that 
[Cov(X,  Y)]2  = Var(X)Var(Y), Y is a linear function of X, 
and the optimal linear predictor gives error-free 
prediction.

In one important case the optimal mean square pre-
dictor actually is the same as the optimal linear predictor. 
If X and Y are jointly normally distributed, then the con-
ditional expectation of Y given X is just a linear function 
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of X, and hence the optimal predictor and the optimal lin-
ear predictor are the same. The form of the bivariate 
normal distribution as well as expressions for the coeffi-
cients â and b̂ and for the minimum mean square error of 
prediction were discovered by the English eugenicist Sir 
Francis Galton in his studies of the transmission of inher-
itable characteristics from one generation to the next. 
They form the foundation of the statistical technique of 
linear regression.

The Poisson process and the 
Brownian motion process

The theory of stochastic processes attempts to build 
probability models for phenomena that evolve over time. 
A primitive example is the problem of gambler’s ruin.

The Poisson Process

An important stochastic process described implicitly in 
the discussion of the Poisson approximation to the bino-
mial distribution is the Poisson process. Modeling the 
emission of radioactive particles by an infinitely large num-
ber of tosses of a coin having infinitesimally small 
probability for heads on each toss led to the conclusion 
that the number of particles N(t) emitted in the time inter-
val [0, t] has the Poisson distribution given in equation (13) 
with expectation μt. The primary concern of the theory of 
stochastic processes is not this marginal distribution of 
N(t) at a particular time but rather the evolution of N(t) 
over time. Two properties of the Poisson process that make 
it attractive to deal with theoretically are as follows: (i) The 
times between emission of particles are independent and 
exponentially distributed with expected value 1/μ; (ii) given 
that N(t) = n, the times at which the n particles are emitted 
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have the same joint distribution as n points distributed 
independently and uniformly on the interval [0, t].

As a consequence of property (i), a picture of the func-
tion N(t) is easily constructed. Originally N(0) = 0. At an 
exponentially distributed time T1, the function N(t) jumps 
from 0 to 1. It remains at 1 another exponentially distrib-
uted random time, T2, which is independent of T1, and at 
time T1 + T2 it jumps from 1 to 2, and so on.

Examples of other phenomena for which the Poisson 
process often serves as a mathematical model are the 
number of customers arriving at a counter and requesting 
service, the number of claims against an insurance com-
pany, or the number of malfunctions in a computer system. 
The importance of the Poisson process consists in (a) its 
simplicity as a test case for which the mathematical the-
ory, and hence the implications, are more easily understood 
than for more realistic models and (b) its use as a building 
block in models of complex systems.

Brownian Motion Process

The most important stochastic process is the Brownian 
motion or Wiener process. It was first discussed by Louis 
Bachelier (1900), who was interested in modeling fluc-
tuations in prices in financial markets, and by Albert 
Einstein (1905), who gave a mathematical model for the 
irregular motion of colloidal particles first observed by the 
Scottish botanist Robert Brown in 1827. The first math-
ematically rigorous treatment of this model was given by 
Wiener (1923). Einstein’s results led to an early, dramatic 
confirmation of the molecular theory of matter in the 
French physicist Jean Perrin’s experiments to determine 
Avogadro’s number, for which Perrin was awarded a Nobel 
Prize in 1926. Today somewhat different models for physi-
cal Brownian motion are deemed more appropriate than 
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Scottish botanist Robert Brown is best known for his description of the natu-
ral continuous motion of minute particles in solution, known as Brownian 
movement. Hulton Archive/Getty Images
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Einstein’s, but the original mathematical model continues 
to play a central role in the theory and application of sto-
chastic processes. 

 Let  B ( t ) denote the displacement (in one dimension 
for simplicity) of a colloidally suspended particle, which is 
buffeted by the numerous much smaller molecules of the 
medium in which it is suspended. This displacement will 
be obtained as a limit of a random walk occurring in dis-
crete time as the number of steps becomes infi nitely large 
and the size of each individual step infi nitesimally small. 
Assume that at times  k δ,  k  = 1, 2, . . . , the colloidal particle 
is displaced a distance  h  X   k  , where  X  1 ,  X  2 , . . . are +1 or −1 
according as the outcomes of tossing a fair coin are heads 
or tails. By time  t  the particle has taken  m  steps, where  m
is the largest integer ≤  t /δ, and its displacement from its 
original position is  B   m  ( t ) =  h ( X  1  +⋯+  X   m  ). The expected 
value of  B   m  ( t ) is 0, and its variance is  h  2  m , or approximately 
 h  2  t /δ. Now suppose that δ → 0, and at the same time  h  → 0 in 
such a way that the variance of  B   m  (1) converges to some 
positive constant, σ 2 . This means that  m  becomes infi nitely 
large, and  h  is approximately σ( t / m ) 1/2 . It follows from the 
central limit theorem (equation [12]) 

 

 
 
 that lim  P { B   m  ( t ) ≤  x } =  G ( x /σ t  1/2 ), where  G ( x ) is the standard 
normal cumulative distribution function defi ned just 
below equation (12). The Brownian motion process  B ( t ) 
can be defi ned to be the limit in a certain technical sense 
of the  B   m  ( t ) as δ → 0 and  h  → 0 with  h  2 /δ → σ 2 .  

 The process  B ( t ) has many other properties, which in 
principle are all inherited from the approximating random 
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walk Bm(t). For example, if (s1, t1) and (s2, t2) are disjoint 
intervals, then the increments B(t1) − B(s1) and B(t2) − B(s2) 
are independent random variables that are normally dis-
tributed with expectation 0 and variances equal to σ2(t1  − s1) 
and σ2(t2 − s2), respectively.

Einstein took a different approach and derived various 
properties of the process B(t) by showing that its probabil-
ity density function, g(x, t), satisfies the diffusion equation 
∂g/∂t  =  D∂2g/∂x2, where D  =  σ2/2. The important implica-
tion of Einstein’s theory for subsequent experimental 
research was that he identified the diffusion constant D in 
terms of certain measurable properties of the particle (its 
radius) and of the medium (its viscosity and temperature), 
which allowed one to make predictions and hence to con-
firm or reject the hypothesized existence of the unseen 
molecules that were assumed to be the cause of the irregu-
lar Brownian motion. Because of the beautiful blend of 
mathematical and physical reasoning involved, a brief 
summary of the successor to Einstein’s model is given in 
the following text.

Unlike the Poisson process, it is impossible to “draw” a 
picture of the path of a particle undergoing mathematical 
Brownian motion. Wiener (1923) showed that the func-
tions B(t) are continuous, as one expects, but nowhere 
differentiable. Thus, a particle undergoing mathematical 
Brownian motion does not have a well-defined velocity, 
and the curve y = B(t) does not have a well-defined tangent 
at any value of t. To see why this might be so, recall that 
the derivative of B(t), if it exists, is the limit as h → 0 of the 
ratio [B(t + h)  − B(t)]/h. Because B(t + h)  − B(t) is normally 
distributed with mean 0 and standard deviation h1/2σ, in 
rough terms B(t + h) − B(t) can be expected to equal some 
multiple (positive or negative) of h1/2. But the limit as h → 0 
of h1/2/h  =  1/h1/2 is infinite. A related fact that illustrates 
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the extreme irregularity of B(t) is that in every interval of 
time, no matter how small, a particle undergoing math-
ematical Brownian motion travels an infinite distance. 
Although these properties contradict the common sense 
idea of a function—and indeed it is quite difficult to write 
down explicitly a single example of a continuous, nowhere-
differentiable function—they turn out to be typical of a 
large class of stochastic processes, called diffusion processes, 
of which Brownian motion is the most prominent member. 
Especially notable contributions to the mathematical the-
ory of Brownian motion and diffusion processes were made 
by Paul Lévy and William Feller during the years 1930–60.

A more sophisticated description of physical Brownian 
motion can be built on a simple application of Newton’s 
second law: F = ma. Let V(t) denote the velocity of a col-
loidal particle of mass m. It is assumed that

 

The quantity f retarding the movement of the particle 
is caused by friction resulting from the surrounding 
medium. The term dA(t) is the contribution of the fre-
quent collisions of the particle with unseen molecules of 
the medium. It is assumed that f can be determined by 
classical fluid mechanics, in which the molecules making 
up the surrounding medium are so many and so small that 
the medium can be considered smooth and homogeneous. 
Then by Stokes’s law, for a spherical particle in a gas, 
f = 6πaη, where a is the radius of the particle and η the coef-
ficient of viscosity of the medium. Hypotheses concerning 
A(t) are less specific, because the molecules making up the 
surrounding medium cannot be observed directly. For 
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example, it is assumed that for t ≠ s, the infinitesimal ran-
dom increments dA(t) = A(t + dt) − A(t) and A(s + ds) − A(s) 
caused by collisions of the particle with molecules of the 
surrounding medium are independent random variables 
having distributions with mean 0 and unknown variances 
σ2dt and σ2ds and that dA(t) is independent of dV(s) for s < t.

The differential equation (16)

has the solution

 
where β = f/m. From this equation and the assumed prop-
erties of A(t), it follows that E[V2(t)]  →  σ2/(2mf) as t  →  ∞. 
Now assume that, in accordance with the principle of 
equipartition of energy, the steady-state average kinetic 
energy of the particle, m limt → ∞E[V2(t)]/2, equals the aver-
age kinetic energy of the molecules of the medium. 
According to the kinetic theory of an ideal gas, this is 
RT/2N, where R is the ideal gas constant, T is the tem-
perature of the gas in kelvins, and N is Avogadro’s number, 
the number of molecules in one gram molecular weight of 
the gas. It follows that the unknown value of σ2 can be 
determined: σ2 = 2RTf/N.

If one also assumes that the functions V(t) are con-
tinuous, which is certainly reasonable from physical 
considerations, it follows by mathematical analysis that 
A(t) is a Brownian motion process as previously defined. 
This conclusion poses questions about the meaning of the 
initial equation (16), because for mathematical Brownian 
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motion the term  d  A ( t ) does not exist in the usual sense 
of a derivative. Some additional mathematical analysis 
shows that the stochastic differential equation (16) and its 
solution equation (17) have a precise mathematical interpre-
tation. The process  V ( t ) is called the Ornstein-Uhlenbeck 
process, after the physicists Leonard Salomon Ornstein 
and George Eugene Uhlenbeck. The logical outgrowth of 
these attempts to differentiate and integrate with respect 
to a Brownian motion process is the Ito (named for the 
Japanese mathematician Itō Kiyosi) stochastic calculus, 
which plays an important role in the modern theory of 
stochastic processes. 

 The displacement at time  t  of the particle whose veloc-
ity is given by equation (17) is 

 For  t  large compared with β, the fi rst and third terms 
in this expression are small compared with the second. 
Hence,  X ( t ) −  X (0) is approximately equal to  A ( t )/ f , and 
the mean square displacement,  E {[ X ( t ) −  X (0)] 2 }, is 
approximately σ 2 / f  2  =  R  T /(3π a η N ). These fi nal conclusions 
are consistent with Einstein’s model, but here they arise 
as an approximation to the model obtained from equa-
tion (17). Because it is primarily the conclusions that 
have observational consequences, there are essentially 
no new experimental implications. However, the analysis 
arising directly out of Newton’s second law, which yields 
a process having a well-defi ned velocity at each point, 
seems more satisfactory theoretically than Einstein’s 
original model.   
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 sTochasTic pRocesses 

 A stochastic process is a family of random variables  X ( t ) 
indexed by a parameter  t , which usually takes values in the 
discrete set Τ = {0, 1, 2, . . .} or the continuous set Τ = [0, +∞). 
In many cases  t  represents time, and  X ( t ) is a random vari-
able observed at time  t . Examples are the Poisson process, 
the Brownian motion process, and the Ornstein-
Uhlenbeck process described in the preceding section. 
Considered as a totality, the family of random variables 
{ X ( t ),  t  ∊ Τ} constitutes a “random function.”   

 Stationary Processes 

 The mathematical theory of stochastic processes attempts 
to defi ne classes of processes for which a unifi ed theory can 
be developed. The most important classes are stationary 
processes and Markov processes. A stochastic process is 
called stationary if, for all  n ,  t  1  <  t  2  <⋯<  t   n  , and  h  > 0, then the 
joint distribution of  X ( t  1  +  h ), . . . ,  X ( t   n   +  h ) does not depend 
on  h . This means that in effect there is no origin on the time 
axis. The stochastic behaviour of a stationary process is the 
same no matter when the process is observed. A sequence of 
independent identically distributed random variables is an 
example of a stationary process. A rather different example 
is defi ned as follows:  U (0) is uniformly distributed on [0, 1]; 
for each  t  = 1, 2, . . . ,  U ( t ) = 2 U ( t  − 1) if  U ( t  − 1) ≤ 1/2, and 
 U ( t ) = 2 U ( t  − 1) − 1 if  U ( t  − 1) > 1/2. The marginal distributions of 
 U ( t ),  t  = 0, 1, . . . are uniformly distributed on [0, 1], but, in 
contrast to the case of independent identically distributed 
random variables, the entire sequence can be predicted from 
knowledge of  U (0). A third example of a stationary process is 
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where the Ys and Zs are independent normally distrib-
uted random variables with mean 0 and unit variance, 
and the cs and θs are constants. Processes of this kind 
can help model seasonal or approximately periodic 
phenomena.

A remarkable generalization of the strong law of large 
numbers is the ergodic theorem: If X(t), t = 0, 1, . . . for the 
discrete case or 0 ≤ t < ∞ for the continuous case, is a sta-
tionary process such that E[X(0)] is finite, then with 
probability 1 the average

 

if t is continuous, converges to a limit as s → ∞. In the spe-
cial case that t is discrete and the Xs are independent and 
identically distributed, the strong law of large numbers is 
also applicable and shows that the limit must equal E{X(0)}. 
However, the example that X(0) is an arbitrary random 
variable and X(t) =¯ X(0) for all t > 0 shows that this cannot 
be true in general. The limit does equal E{X(0)} under an 
additional rather technical assumption to the effect that 
there is no subset of the state space, having probability 
strictly between 0 and 1, in which the process can get 
stuck and never escape. This assumption is not fulfilled by 
the example X(t) =̄ X(0) for all t, which immediately gets 
stuck at its initial value. It is satisfied by the sequence U(t) 
previously defined, so by the ergodic theorem the average 
of these variables converges to 1/2 with probability 1. The 
ergodic theorem was first conjectured by the American 
chemist J. Willard Gibbs in the early 1900s in the context 
of statistical mechanics and was proved in a corrected, 
abstract formulation by the American mathematician 
George David Birkhoff in 1931.
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Markovian Processes

A stochastic process is called Markovian (after the Russian 
mathematician Andrey Andreyevich Markov) if at any 
time t the conditional probability of an arbitrary future 
event given the entire past of the process, i.e., given X(s) 
for all s ≤ t, equals the conditional probability of that future 
event given only X(t). Thus, to make a probabilistic state-
ment about the future behaviour of a Markov process, it is 
no more helpful to know the entire history of the process 
than it is to know only its current state. The conditional 
distribution of X(t + h) given X(t) is called the transition 
probability of the process. If this conditional distribution 
does not depend on t, then the process is said to have “sta-
tionary” transition probabilities. A Markov process with 
stationary transition probabilities may or may not be a 
stationary process in the sense of the preceding paragraph. 
If Y1, Y2, . . . are independent random variables and 
X(t)  =  Y1  +⋯+  Yt, then the stochastic process X(t) is a 
Markov process. Given X(t) = x, the conditional probabil-
ity that X(t  +  h) belongs to an interval (a,  b) is just the 
probability that Yt  +  1  +⋯+ Yt  + h belongs to the translated 
interval (a − x, b − x). Because of independence this condi-
tional probability would be the same if the values of X(1), . 
. . , X(t − 1) were also given. If the Ys are identically distrib-
uted as well as independent, this transition probability 
does not depend on t, and then X(t) is a Markov process 
with stationary transition probabilities. Sometimes X(t) is 
called a random walk, but this terminology is not com-
pletely standard. Because both the Poisson process and 
Brownian motion are created from random walks by sim-
ple limiting processes, they, too, are Markov processes 
with stationary transition probabilities. The Ornstein-
Uhlenbeck process defined as the solution (19) to the 
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stochastic differential equation (18) is also a Markov pro-
cess with stationary transition probabilities.

The Ornstein-Uhlenbeck process and many other 
Markov processes with stationary transition probabili-
ties behave like stationary processes as t → ∞. Generally, the 
conditional distribution of X(t) given X(0) = x converges 
as t  →  ∞ to a distribution, called the stationary distribu-
tion, that does not depend on the starting value X(0) = x. 
Moreover, with probability 1, the proportion of time the 
process spends in any subset of its state space converges  
to the stationary probability of that set. If X(0) is given 
the stationary distribution to begin with, then the process 
becomes a stationary process. The Ornstein-Uhlenbeck 
process defined in equation (19) is stationary if V(0) has 
a normal distribution with mean 0 and variance σ2/(2mf).

At another extreme are absorbing processes. An 
example is the Markov process describing Peter’s fortune 
during the game of gambler’s ruin. The process is absorbed 
whenever either Peter or Paul is ruined. Questions of 
interest involve the probability of being absorbed in one 
state rather than another and the distribution of the time 
until absorption occurs. Some additional examples of sto-
chastic processes follow.

The Ehrenfest Model of Diffusion

The Ehrenfest model of diffusion (named after the 
Austrian Dutch physicist Paul Ehrenfest) was proposed in 
the early 1900s to illuminate the statistical interpretation 
of the second law of thermodynamics, that the entropy of 
a closed system can only increase. Suppose N molecules of 
a gas are in a rectangular container divided into two equal 
parts by a permeable membrane. The state of the system 
at time t is X(t), the number of molecules on the left-hand 
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side of the membrane. At each time  t  = 1, 2, . . . a molecule 
is chosen at random (i.e., each molecule has probability 
1/ N  to be chosen) and is moved from its present location 
to the other side of the membrane. Hence, the system 
evolves according to the transition probability  p ( i ,  j ) = 
 P { X ( t  + 1) =  j | X ( t ) =  i }, where 
 

 
 The long-run behaviour of the Ehrenfest process can 

be inferred from general theorems about Markov pro-
cesses in discrete time with discrete state space and 
stationary transition probabilities. Let  T ( j ) denote the 
fi rst time  t  ≥ 1 such that  X ( t ) =  j  and set  T ( j ) = ∞ if  X ( t ) ≠  j  
for all  t . Assume that for all states  i  and  j  it is possible for 
the process to go from  i  to  j  in some number of steps, i.e.,  
 P { T ( j ) < ∞|  X (0) =  i  } > 0. If the equations 
 

 
  have a solution  Q (  j ) that is a probability distribution, 
i.e.,  Q (  j ) ≥ 0, and ∑ Q (  j ) = 1, then that solution is unique 
and is the stationary distribution of the process. 
Moreover,   Q (  j )  = 1/ E { T ( j )| X (0) =  j }. For any initial state  j , 
the proportion of time  t  that  X ( t ) =  i  converges with 
probability 1 to  Q ( i ).  

 For the special case of the Ehrenfest process, assume 
that  N  is large and  X (0) = 0. According to the deterministic 
prediction of the second law of thermodynamics, the 
entropy of this system can only increase, which means that 
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X(t) will steadily increase until half the molecules are on 
each side of the membrane. Indeed, according to the sto-
chastic model described earlier, there is overwhelming 
probability that X(t) does increase initially. However, 
because of random fluctuations, the system occasionally 
moves from configurations having large entropy to those of 
smaller entropy and eventually even returns to its starting 
state, in defiance of the second law of thermodynamics.

The accepted resolution of this contradiction is that 
the length of time such a system must operate so an 
observable decrease of entropy may occur is so enor-
mously long that a decrease could never be verified 
experimentally. To consider only the most extreme case, 
let T denote the first time t ≥ 1 at which X(t) = 0 (i.e., the 
time of first return to the starting configuration having all 
molecules on the right-hand side of the membrane). It can 
be verified by substitution in equation (18) that the sta-
tionary distribution of the Ehrenfest model is the binomial 
distribution

 
and hence E(T) = 2N. For example, if N is only 100 and tran-
sitions occur at the rate of 106 per second, then E(T) is of 
the order of 1015 years. Hence, on the macroscopic scale, 
on which experimental measurements can be made, the 
second law of thermodynamics holds.

The Symmetric Random Walk

A Markov process that behaves in quite different and 
surprising ways is the symmetric random walk. A particle 
occupies a point with integer coordinates in d-dimensional 
Euclidean space. At each time t = 1, 2, . . . it moves from its 
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present location to one of its 2d nearest neighbours with 
equal probabilities 1/(2d), independently of its past moves. 
For d  =  1 this corresponds to moving a step to the right 
or left according to the outcome of tossing a fair coin. It 
may be shown that for d = 1 or 2 the particle returns with 
probability 1 to its initial position and hence to every pos-
sible position infinitely many times, if the random walk 
continues indefinitely. In three or more dimensions, at any 
time t the number of possible steps that increase the dis-
tance of the particle from the origin is much larger than 
the number decreasing the distance, with the result that the 
particle eventually moves away from the origin and never 
returns. Even in one or two dimensions, although the par-
ticle eventually returns to its initial position, the expected 
waiting time until it returns is infinite, there is no station-
ary distribution, and the proportion of time the particle 
spends in any state converges to 0!

Queuing Models

The simplest service system is a single-server queue, 
where customers arrive, wait their turn, are served by a 
single server, and depart. Related stochastic processes are 
the waiting time of the nth customer and the number of 
customers in the queue at time t. For example, suppose 
that customers arrive at times 0 = T0 < T1 < T2 < ⋯ and 
wait in a queue until their turn. Let Vn denote the service 
time required by the nth customer, n  = 0,  1, 2,…, and set 
Un = Tn  − Tn − 1. The waiting time, Wn, of the nth customer 
satisfies the relation W0  =  0 and, for n ≥  1, Wn  =  max(0, 
Wn  −  1  +  Vn  −  1  −  Un). To see this, observe that the nth cus-
tomer must wait for the same length of time as the (n − 1)
th customer plus the service time of the (n − 1)th customer 
minus the time between the arrival of the (n − 1)th and nth 
customer, during which the (n  −  1)th customer is already 
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waiting but the nth customer is not. An exception occurs 
if this quantity is negative, and then the waiting time of 
the nth customer is 0. Various assumptions can be made 
about the input and service mechanisms. One possibility 
is that customers arrive according to a Poisson process 
and their service times are independent, identically dis-
tributed random variables that are also independent 
of the arrival process. Then, in terms of Yn  =  Vn  −  1  −  Un, 
which are independent, identically distributed random 
variables, the recursive relation defining Wn becomes 
Wn = max(0, Wn − 1 + Yn). This process is a Markov process. 
It is often called a random walk with reflecting barrier at 
0, because it behaves like a random walk whenever it is 
positive and is pushed up to be equal to 0 whenever it tries 
to become negative. Quantities of interest are the mean 
and variance of the waiting time of the nth customer and, 
because these are difficult to determine exactly, the mean 
and variance of the stationary distribution. More realis-
tic queuing models try to accommodate systems with 

In the single-server queue, as depicted by patients waiting for a vaccine, 
customers arrive, wait their turn, are served by a single server, and depart. 
Andrew Caballero-Reynolds/Getty Images
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several servers and different classes of customers, who are 
served according to certain priorities. In most cases, it is 
impossible to give a mathematical analysis of the system, 
which must be simulated on a computer in order to obtain 
numerical results. The insights gained from theoretical 
analysis of simple cases can be helpful in performing these 
simulations. Queuing theory had its origins in attempts 
to understand traffic in telephone systems. Present-day 
research is stimulated, among other things, by problems 
associated with multiple-user computer systems.

Reflecting barriers arise in other problems as well. 
For example, if B(t) denotes Brownian motion, then 
X(t) = B(t) + ct is called Brownian motion with drift c. This 
model is appropriate for Brownian motion of a particle 
under the influence of a constant force field such as grav-
ity. One can add a reflecting barrier at 0 to account for 
reflections of the Brownian particle off the bottom of its 
container. The result is a model for sedimentation, which 
for c < 0 in the steady state as t → ∞ gives a statistical deri-
vation of the law of pressure as a function of depth in an 
isothermal atmosphere. Just as ordinary Brownian motion 
can be obtained as the limit of a rescaled random walk as 
the number of steps becomes large and the size of individ-
ual steps small, Brownian motion with a reflecting barrier 
at 0 can be obtained as the limit of a rescaled random walk 
with reflection at 0. In this way, Brownian motion with 
a reflecting barrier plays a role in the analysis of queuing  
systems. In fact, in modern probability theory one of the 
most important uses of Brownian motion and other diffu-
sion processes is as approximations to more complicated 
stochastic processes. The exact mathematical description 
of these approximations gives remarkable generalizations of  
the central limit theorem from sequences of random vari-
ables to sequences of random functions.
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Insurance Risk Theory

The ruin problem of insurance risk theory is closely 
related to the problem of gambler’s ruin described earlier 
and, rather surprisingly, to the single-server queue as well. 
Suppose the amount of capital at time t in one portfolio of 
an insurance company is denoted by X(t). Initially 
X(0)  =  x  >  0. During each unit of time, the portfolio 
receives an amount c > 0 in premiums. At random times 
claims are made against the insurance company, which 
must pay the amount Vn > 0 to settle the nth claim. If N(t) 
denotes the number of claims made in time t, then

provided that this quantity has been positive at all earlier 
times s < t. At the first time X(t) becomes negative, however, 
the portfolio is ruined. A principal problem of insurance 
risk theory is to find the probability of ultimate ruin. If one 
imagines that the problem of gambler’s ruin is modified so 
that Peter’s opponent has an infinite amount of capital and 
can never be ruined, then the probability that Peter is ulti-
mately ruined is similar to the ruin probability of insurance 
risk theory. In fact, with the artificial assumptions that (i) 
c = 1, (ii) time proceeds by discrete units, say t = 1, 2,…, (iii) Vn 
is identically equal to 2 for all n, and (iv) at each time t a 
claim occurs with probability p or does not occur with prob-
ability q independently of what occurs at other times, then 
the process X(t) is the same stochastic process as Peter’s 
fortune, which is absorbed if it ever reaches the state 0. The 
probability of Peter’s ultimate ruin against an infinitely rich 
adversary is easily obtained by taking the limit of equation 
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(6) as m → ∞. The answer is (q/p)x if p > q (i.e., the game is 
favourable to Peter) and 1 if p ≤ q. More interesting assump-
tions for the insurance risk problem are that the number 
of claims N(t) is a Poisson process and the sizes of the 
claims V1, V2,… are independent, identically distributed 
positive random variables. Rather surprisingly, under 
these assumptions the probability of ultimate ruin as a 
function of the initial fortune x is exactly the same as the 
stationary probability that the waiting time in the single-
server queue with Poisson input exceeds x. Unfortunately, 
neither problem is easy to solve exactly, however, there is 
an excellent approximate solution originally derived by 
the Swedish mathematician Harald Cramér.

Martingale Theory

As a final example, it seems appropriate to mention one 
of the dominant ideas of modern probability theory, 
which at the same time springs directly from the rela-
tion of probability to games of chance. Suppose that X1, 
X2,… is any stochastic process and, for each n  =  0,  1,…, 
fn  =  fn(X1,…, Xn) is a (Borel-measurable) function of the 
indicated observations. The new stochastic process fn is 
called a martingale if E(fn|X1,…, Xn − 1) = fn − 1 for every value 
of n  >  0 and all values of X1,…, Xn  −  1. If the sequence of 
Xs are outcomes in successive trials of a game of chance 
and fn is the fortune of a gambler after the nth trial, then 
the martingale condition says that the game is absolutely 
fair in the sense that, no matter what the past history of 
the game, the gambler’s conditional expected fortune 
after one more trial is exactly equal to his present for-
tune. For example, let X0  =  x, and for n ≥  1 let Xn equal 
1 or −1 according as a coin having probability p of heads 
and q = 1 − p of tails turns up heads or tails on the nth toss. 
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Let  S   n   =  X  0  +⋯+  X   n  . Then  f   n   =  S   n   −  n ( p  −  q ) and  f   n   = ( q / p )  S  n   are 
martingales. One basic result of martingale theory is that, 
if the gambler is free to quit the game at any time using 
any strategy whatsoever, provided only that this strategy 
does not foresee the future, then the game remains fair. 
This means that, if  N  denotes the stopping time at which 
the gambler’s strategy tells him to quit the game, so that 
his fi nal fortune is  f   N  , then 
 

 
 Strictly speaking, this result is not true without some 

additional conditions that must be verifi ed for any partic-
ular application. To see how effi ciently it works, consider 
once again the problem of gambler’s ruin and let  N  be the 
fi rst value of  n  such that  S   n   = 0 or  m.  For example,  N  denotes 
the random time at which ruin fi rst occurs and the game 
ends. In the case  p  = 1/2, application of 
 

 
 
 to the martingale  f   n   =  S   n  , together with the observation 
that  f   N   = either 0 or  m , yields the equalities  x  =  f  0  =  E ( f   N   |  f  0  =  
x ) =  m [1 −  Q ( x )], which can be immediately solved to give 
the answer in equation (6) 
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  For  p  ≠ 1/2, one uses the martingale  f   n   = ( q / p )  S  n   and simi-
lar reasoning to obtain 
 
    

 
 from which the fi rst equation in (6) 

 
 

  
 easily follows. The expected duration of the game is 
obtained by a similar argument.  

 A particularly beautiful and important result is the 
martingale convergence theorem, which implies that a 
nonnegative martingale converges with probability 1 as 
 n  → ∞. This means that if a gambler’s successive fortunes 
form a (nonnegative) martingale, then they cannot con-
tinue to fl uctuate indefi nitely but must approach some 
limiting value. 

 Basic martingale theory and many of its applications 
were developed by the American mathematician Joseph 
Leo Doob during the 1940s and ’50s following some ear-
lier results due to Paul Lévy. Subsequently, it has become 
one of the most powerful tools available to study stochas-
tic processes.       
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CHAPTER 3

 Statistics is the science of collecting, analyzing, present-
ing, and interpreting data. Governmental needs for 

census data as well as information about a variety of eco-
nomic activities provided much of the early impetus for 
the fi eld of statistics. Currently, the need to turn the large 
amounts of data available in many applied fi elds into use-
ful information has stimulated both theoretical and 
practical developments in statistics. 

 Data are the facts and fi gures that are collected, 
analyzed, and summarized for presentation and interpre-
tation. Data may be classifi ed as either quantitative or 
qualitative. Quantitative data measure either how much 
or how many of something, and qualitative data provide 
labels, or names, for categories of like items. For example, 
suppose that a particular study is interested in characteris-
tics such as age, gender, marital status, and annual income 
for a sample of 100 individuals. These characteristics 
would be called the variables of the study, and data values 
for each of the variables would be associated with each 
individual. Thus, the data values of 28, male, single, and 
$30,000 would be recorded for a 28-year-old single male 
with an annual income of $30,000. With 100 individu-
als and 4 variables, the data set would have 100 × 4 = 400 
items. In this example, age and annual income are quan-
titative variables; the corresponding data values indicate 
how many years and how much money for each individual. 
Gender and marital status are qualitative variables. The 
labels male and female provide the qualitative data for 
gender, and the labels single, married, divorced, and wid-
owed indicate marital status. 
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Sample survey methods are used to collect data from 
observational studies, and experimental design methods 
are used to collect data from experimental studies. The 
area of descriptive statistics is concerned primarily with 
methods of presenting and interpreting data using graphs, 
tables, and numerical summaries. Whenever statisticians 
use data from a sample (i.e., a subset of the population) to 
make statements about a population, they are performing 
statistical inference. Estimation and hypothesis testing 
are procedures used to make statistical inferences. Fields 
such as health care, biology, chemistry, physics, education, 
engineering, business, and economics make extensive use 
of statistical inference.

Methods of probability were developed initially for the 
analysis of gambling games. Probability plays a key role in 
statistical inference. It is used to provide measures of the 
quality and precision of the inferences. Many methods of 
statistical inference are described in this chapter. Some 
are used primarily for single-variable studies, whereas oth-
ers, such as regression and correlation analysis, are used to 
make inferences about relationships among two or more 
variables.

Descriptive statistics

Descriptive statistics are tabular, graphical, and numerical 
summaries of data. The purpose of descriptive statistics is 
to facilitate the presentation and interpretation of data. 
Most statistical presentations appearing in newspapers 
and magazines are descriptive in nature. Univariate meth-
ods of descriptive statistics use data to enhance the 
understanding of a single variable. Multivariate methods 
focus on using statistics to understand the relationships 
among two or more variables. To illustrate methods of 
descriptive statistics, the previous example in which data 
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were collected on the age, gender, marital status, and 
annual income of 100 individuals will be examined.

Tabular Methods

The most commonly used tabular summary of data for a 
single variable is a frequency distribution. A frequency dis-
tribution shows the number of data values in each of 
several nonoverlapping classes. Another tabular summary, 
called a relative frequency distribution, shows the frac-
tion, or percentage, of data values in each class. The most 
common tabular summary of data for two variables is a 
cross tabulation, a two-variable analogue of a frequency 
distribution.

For a qualitative variable, a frequency distribution 
shows the number of data values in each qualitative cate-
gory. For instance, the variable gender has two categories: 
male and female. Thus, a frequency distribution for gen-
der would have two nonoverlapping classes to show the 
number of males and females. A relative frequency distri-
bution for this variable would show the fraction of 
individuals that are male and the fraction of individuals 
that are female.

Constructing a frequency distribution for a quantita-
tive variable requires more care in defining the classes and 
the division points between adjacent classes. For instance, 
if the age data of the example above ranged from 22 to 78 
years, then the following six nonoverlapping classes could 
be used: 20–29, 30–39, 40–49, 50–59, 60–69, and 70–79. A 
frequency distribution would show the number of data 
values in each of these classes, and a relative frequency dis-
tribution would show the fraction of data values in each.

A cross tabulation is a two-way table with the rows of 
the table representing the classes of one variable and the 
columns of the table representing the classes of another 
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variable. To construct a cross tabulation using the vari-
ables gender and age, gender could be shown with two 
rows, male and female, and age could be shown with six 
columns corresponding to the age classes 20–29, 30–39, 
40–49, 50–59, 60–69, and 70–79. The entry in each cell of 
the table would specify the number of data values with the 
gender given by the row heading and the age given by the 
column heading. Such a cross tabulation could help under-
stand the relationship between gender and age.

Graphical Methods

Many graphical methods are available for describing data. 
A bar graph is a graphical device for depicting qualitative 
data that have been summarized in a frequency distribu-
tion. Labels for the categories of the qualitative variable 
are shown on the horizontal axis of the graph. A bar 

If an independent variable is not expressly temporal, a bar graph may be 
used to show discrete numerical quantities in relation to each other. Brand 
New Images/Stone/Getty Images
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above each label is constructed such that the height of 
each bar is proportional to the number of data values in 
the category. A pie chart is another graphical device for 
summarizing qualitative data. The size of each slice of  
the pie is proportional to the number of data values in the 
corresponding class.

A histogram is the most common graphical presenta-
tion of quantitative data that have been summarized in a 
frequency distribution. The values of the quantitative 
variable are shown on the horizontal axis. A rectangle is 
drawn above each class such that the base of the rectangle 
is equal to the width of the class interval and its height is 
proportional to the number of data values in the class.

Numerical Measures

A variety of numerical measures are used to summarize 
data. The proportion, or percentage, of data values in each 
category is the primary numerical measure for qualitative 
data. The mean, median, mode, percentiles, range, vari-
ance, and standard deviation are the most commonly used 
numerical measures for quantitative data. The mean, 
often called the average, is computed by adding all the 
data values for a variable and dividing the sum by the num-
ber of data values. The mean is a measure of the central 
location for the data. The median is another measure of 
central location that, unlike the mean, is not affected by 
extremely large or extremely small data values. When 
determining the median, the data values are first ranked in 
order from the smallest value to the largest value. If there 
is an odd number of data values, then the median is the 
middle value. If there is an even number of data values, 
then the median is the average of the two middle values. 
The third measure of central tendency is the mode, the 
data value that occurs with greatest frequency.
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 Percentiles provide an indication of how the data val-
ues are spread over the interval from the smallest value to 
the largest value. Approximately  p  percent of the data val-
ues fall below the  p th percentile, and roughly 100 −  p
percent of the data values are above the  p th percentile. 
Percentiles are reported, for example, on most standard-
ized tests. Quartiles divide the data values into four parts; 
the fi rst quartile is the 25th percentile, the second quartile 
is the 50th percentile (also the median), and the third 
quartile is the 75th percentile. 

 The range, the difference between the largest value and 
the smallest value, is the simplest measure of variability in 
the data. The range is determined by only the two extreme 
data values. The variance ( s  2 ) and the standard deviation ( s ), 
however, are measures of variability that are based on all 
the data and are more commonly used. Equation 1 shows the 
formula for computing the variance of a sample consisting 
of  n  items. In applying equation 1, the deviation (difference) 
of each data value from the sample mean is computed 
and squared. The squared deviations are then summed and 
divided by  n  − 1 to provide the sample variance. 
 

  The standard deviation is the square root of the vari-
ance. Because the unit of measure for the standard 
deviation is the same as the unit of measure for the data, 
many individuals prefer to use the standard deviation as 
the descriptive measure of variability.    

 Outliers 

 Sometimes data for a variable will include one or more 
values that appear unusually large or small and out of 
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place when compared with the other data values. These 
values are known as outliers and often have been errone-
ously included in the data set. Experienced statisticians 
take steps to identify outliers and then review each one 
carefully for accuracy and the appropriateness of its 
inclusion in the data set. If an error has been made, then 
corrective action, such as rejecting the data value in 
question, can be taken. The mean and standard devia-
tion are used to identify outliers. A z-score can be 
computed for each data value. With x representing the 
data value, x¯ the sample mean, and s the sample stan-
dard deviation, the z-score is given by z = (x − x¯)/s. The 
z-score represents the relative position of the data value 
by indicating the number of standard deviations it is 
from the mean. A rule of thumb is that any value with a 
z-score less than −3 or greater than +3 should be consid-
ered an outlier.

Exploratory Data Analysis

Exploratory data analysis provides a variety of tools for 
quickly summarizing and gaining insight about a set of 
data. Two such methods are the five-number summary 
and the box plot. A five-number summary simply consists 
of the smallest data value, the first quartile, the median, 
the third quartile, and the largest data value. A box plot 
is a graphical device based on a five-number summary. A 
rectangle (i.e., the box) is drawn with the ends of the rect-
angle located at the first and third quartiles. The rectangle 
represents the middle 50 percent of the data. A verti-
cal line is drawn in the rectangle to locate the median. 
Finally lines, called whiskers, extend from one end of the 
rectangle to the smallest data value and from the other 
end of the rectangle to the largest data value. If outliers 
are present, then the whiskers generally extend only to 
the smallest and largest data values that are not outliers. 
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Dots, or asterisks, are then placed outside the whiskers to 
denote the presence of outliers.

Probability

Probability is a subject that deals with uncertainty. In 
everyday terminology, probability can be thought of as a 
numerical measure of the likelihood that a particular 
event will occur. Probability values are assigned on a scale 
from 0 to 1, with values near 0 indicating that an event is 
unlikely to occur and those near 1 indicating that an event 
is likely to take place. A probability of 0.50 means that an 
event is equally likely to occur as not to occur.

Based on a five-number summary, a box plot quickly summarizes and pro-
vides insight about a set of data. NIST/SEMATECH e-Handbook of 
Statistical Methods (http://www.itl.nist.gov/div898/handbook/eda/
section3/boxplot.htm). Rendered by Rosen Educational Services
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Events and Their Probabilities

Oftentimes probabilities need to be computed for related 
events. For instance, advertisements are developed for 
the purpose of increasing sales of a product. If seeing the 
advertisement increases the probability of a person buy-
ing the product, then the events “seeing the advertisement” 
and “buying the product” are said to be dependent. If two 
events are independent, then the occurrence of one event 
does not affect the probability of the other event taking 
place. When two or more events are independent, the 
probability of their joint occurrence is the product of 
their individual probabilities. Two events are said to be 
mutually exclusive if the occurrence of one event means 
that the other event cannot occur. In this case, when one 
event takes place, the probability of the other event occur-
ring is zero.

Random Variables and  
Probability Distributions

A random variable is a numerical description of the out-
come of a statistical experiment. A random variable that 
may assume only a finite number or an infinite sequence of 
values is said to be discrete. One that may assume any 
value in some interval on the real number line is said to be 
continuous. For instance, a random variable representing 
the number of automobiles sold at a particular dealership 
on one day would be discrete, while a random variable rep-
resenting the weight of a person in kilograms (or pounds) 
would be continuous.

The probability distribution for a random variable 
describes how the probabilities are distributed over the 
values of the random variable. For a discrete random 
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variable, x, the probability distribution is defined by a 
probability mass function, denoted by f(x). This function 
provides the probability for each value of the random vari-
able. In the development of the probability function for a 
discrete random variable, two conditions must be satis-
fied: (1) f(x) must be nonnegative for each value of the 
random variable, and (2) the sum of the probabilities for 
each value of the random variable must equal one.

A continuous random variable may assume any value 
in an interval on the real number line or in a collection of 
intervals. Because there is an infinite number of values in 
any interval, it is not meaningful to talk about the proba-
bility that the random variable will take on a specific value. 
Instead, the probability that a continuous random vari-
able will lie within a given interval is considered.

In the continuous case, the counterpart of the proba-
bility mass function is the probability density function, 
also denoted by f(x). For a continuous random variable, 
the probability density function provides the height or 
value of the function at any particular value of x. It does 
not directly give the probability of the random variable 
taking on a specific value. However, the area under the 
graph of f(x) corresponding to some interval, obtained by 
computing the integral of f(x) over that interval, provides 
the probability that the variable will take on a value within 
that interval. A probability density function must satisfy 
two requirements: (1) f(x) must be nonnegative for each 
value of the random variable, and (2) the integral over all 
values of the random variable must equal one.

The expected value, or mean, of a random variable—
denoted by E(x) or μ—is a weighted average of the 
values the random variable may assume. In the discrete 
case the weights are given by the probability mass func-
tion, and in the continuous case the weights are given by the 
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probability density function. The formulas for computing 
the expected values of discrete and continuous random 
variables are given by equations (2) and (3), respectively. 

E(x) = Σxf(x)� (2) 

E(x) = ∫xf(x)dx� (3)

The variance of a random variable, denoted by Var(x) 
or σ2, is a weighted average of the squared deviations 
from the mean. In the discrete case the weights are given 
by the probability mass function, and in the continu-
ous case the weights are given by the probability density 
function. The formulas for computing the variances of 
discrete and continuous random variables are given by 
equations (4) and (5), respectively. The standard devia-
tion, denoted σ, is the positive square root of the variance. 
Because the standard deviation is measured in the same 
units as the random variable and the variance is measured 
in squared units, the standard deviation is often the pre-
ferred measure. 

Var(x) = σ2 = Σ(x − μ)2f(x)� (4) 

Var(x) = σ2 = ∫(x − μ)2f(x)dx� (5)

Special Probability Distributions

The Binomial Distribution

Two of the most widely used discrete probability distribu-
tions are the binomial and Poisson. The binomial probability 
mass function in equation (6) provides the probability that 
x successes will occur in n trials of a binomial experiment.
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 A binomial experiment has four properties: (1) It con-
sists of a sequence of  n  identical trials; (2) two outcomes, 
success or failure, are possible on each trial; (3) the proba-
bility of success on any trial, denoted  p , does not change 
from trial to trial; and (4) the trials are independent. For 
example, suppose that it is known that 10 percent of the 
owners of two-year old automobiles have had problems 
with their automobile’s electrical system. To compute the 
probability of fi nding exactly 2 owners who have had elec-
trical system problems out of a group of 10 owners, the 
binomial probability mass function can be used by setting 
n  = 10,  x  = 2, and  p  = 0.1 in equation (6). For this case the 
probability is 0.1937.   

 The Poisson Distribution 

 The Poisson probability distribution is often used as a 
model of the number of arrivals at a facility within a given 
period of time. For instance, a random variable might be 
defi ned as the number of telephone calls coming into an 
airline reservation system during a period of 15 minutes. If 
the mean number of arrivals during a 15-minute interval is 
known, then the Poisson probability mass function can be 
used to compute the probability of  x  arrivals. 

  For example, suppose that the mean number of calls 
arriving in a 15-minute period is 10. To compute the prob-
ability that 5 calls come in within the next 15 minutes, μ = 
10 and  x  = 5 are substituted in equation (7), giving a proba-
bility of 0.0378.    
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The Normal Distribution

The most widely used continuous probability distribution 
in statistics is the normal probability distribution. Like all 
normal distribution graphs, it is a bell-shaped curve. 
Probabilities for the normal probability distribution can 
be computed using statistical tables for the standard nor-
mal probability distribution, which is a normal probability 
distribution with a mean of zero and a standard deviation 
of one. A simple mathematical formula is used to convert 
any value from a normal probability distribution with 
mean μ and a standard deviation σ into a corresponding 
value for a standard normal distribution. The tables for 
the standard normal distribution are then used to com-
pute the appropriate probabilities.

There are many other discrete and continuous probabil-
ity distributions. Other widely used discrete distributions 
include the geometric, the hypergeometric, and the  
negative binomial. Other commonly used continuous dis-
tributions include the uniform, exponential, gamma, 
chi-square, beta, t, and F.

Estimation

It is often of interest to learn about the characteristics of 
a large group of elements such as individuals, households, 
buildings, products, parts, customers, and so on. All the ele-
ments of interest in a particular study form the population. 
Because of time, cost, and other considerations, data often 
cannot be collected from every element of the population. 
In such cases, a subset of the population, called a sample, is 
used to provide the data. Data from the sample are then 
used to develop estimates of the characteristics of the larger 
population. The process of using a sample to make infer-
ences about a population is called statistical inference.
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Characteristics such as the population mean, the pop-
ulation variance, and the population proportion are called 
parameters of the population. Characteristics of the 
sample such as the sample mean, the sample variance, and 
the sample proportion are called sample statistics. There 
are two types of estimates: point and interval. A point esti-
mate is a value of a sample statistic that is used as a single 
estimate of a population parameter. No statements are 
made about the quality or precision of a point estimate. 
Statisticians prefer interval estimates because interval 
estimates are accompanied by a statement concerning the 
degree of confidence that the interval contains the popu-
lation parameter being estimated. Interval estimates of 
population parameters are called confidence intervals.

Sampling and Sampling Distributions

It should be noted here that the methods of statistical 
inference, and estimation in particular, are based on the 
notion that a probability sample has been taken. The key 
characteristic of a probability sample is that each element 
in the population has a known probability of being 
included in the sample. The most fundamental type is a 
simple random sample.

For a population of size N, a simple random sample is 
a sample selected such that each possible sample of size n 
has the same probability of being selected. Choosing the 
elements from the population one at a time so that each 
element has the same probability of being selected will 
provide a simple random sample. Tables of random num-
bers, or computer-generated random numbers, can be 
used to guarantee that each element has the same proba-
bility of being selected.

A sampling distribution is a probability distribution for 
a sample statistic. Knowledge of the sampling distribution 
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is necessary for the construction of an interval estimate 
for a population parameter, which is why a probability 
sample is needed. Without a probability sample, the sam-
pling distribution cannot be determined and an interval 
estimate of a parameter cannot be constructed.

Estimation of a Population Mean

The most fundamental point and interval estimation pro-
cess involves the estimation of a population mean. Suppose 
it is of interest to estimate the population mean, μ, for a 
quantitative variable. Data collected from a simple ran-
dom sample can be used to compute the sample mean, x¯, 
where the value of x¯ provides a point estimate of μ.

When the sample mean is used as a point estimate of 
the population mean, some error can be expected owing 
to the fact that a sample, or subset of the population, is 
used to compute the point estimate. The absolute value of 
the difference between the sample mean, x¯, and the pop-
ulation mean, μ, written |x¯ − μ |, is called the sampling error. 
Interval estimation incorporates a probability statement 
about the magnitude of the sampling error. The sampling 
distribution of x¯ provides the basis for such a statement.

Statisticians have shown that the mean of the sam-
pling distribution of x¯ is equal to the population mean, μ, 
and that the standard deviation is given by σ/√-n, where σ is 
the population standard deviation. The standard devia-
tion of a sampling distribution is called the standard error. 
For large sample sizes, the central limit theorem indicates 
that the sampling distribution of x¯ can be approximated 
by a normal probability distribution. As a matter of prac-
tice, statisticians usually consider samples of size 30 or 
more to be large.

In the large-sample case, a 95% confidence interval 
estimate for the population mean is given by x¯ ± 1.96σ/√-n. 
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When the population standard deviation, σ, is unknown, 
the sample standard deviation is used to estimate σ in the 
confidence interval formula. The quantity 1.96σ/√-n is often 
called the margin of error for the estimate. The quantity 
σ/√-n is the standard error, and 1.96 is the number of stan-
dard errors from the mean necessary to include 95% of the 
values in a normal distribution. The interpretation of a 
95% confidence interval is that 95% of the intervals con-
structed in this manner will contain the population mean. 
Thus, any interval computed in this manner has a 95% 
confidence of containing the population mean. By chang-
ing the constant from 1.96 to 1.645, a 90% confidence 
interval can be obtained. It should be noted from the for-
mula for an interval estimate that a 90% confidence 
interval is narrower than a 95% confidence interval and as 
such has a slightly smaller confidence of including the 
population mean. Lower levels of confidence lead to even 
more narrow intervals. In practice, a 95% confidence 
interval is the most widely used.

Owing to the presence of the n1/2 term in the formula 
for an interval estimate, the sample size affects the margin 
of error. Larger sample sizes lead to smaller margins of 
error. This observation forms the basis for procedures 
used to select the sample size. Sample sizes can be chosen 
such that the confidence interval satisfies any desired 
requirements about the size of the margin of error.

The procedure just described for developing interval 
estimates of a population mean is based on the use of a 
large sample. In the small-sample case (i.e., where the 
sample size n is less than 30) the t distribution is used when 
specifying the margin of error and constructing a confi-
dence interval estimate. For example, at a 95% level of 
confidence, a value from the t distribution, determined by 
the value of n, would replace the 1.96 value obtained from 
the normal distribution. The t values will always be larger, 
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leading to wider confidence intervals, but, as the sample 
size becomes larger, the t values get closer to the corre-
sponding values from a normal distribution. With a sample 
size of 25, the t value used would be 2.064, as compared 
with the normal probability distribution value of 1.96 in 
the large-sample case.

Estimation of Other Parameters

For qualitative variables, the population proportion is a 
parameter of interest. A point estimate of the population 
proportion is given by the sample proportion. With 
knowledge of the sampling distribution of the sample pro-
portion, an interval estimate of a population proportion is 
obtained in much the same fashion as for a population 
mean. Point and interval estimation procedures such as 
these can be applied to other population parameters as 
well. For instance, interval estimation of a population 
variance, standard deviation, and total can be required in 
other applications.

Estimation Procedures for Two Populations

The estimation procedures can be extended to two popu-
lations for comparative studies. For example, suppose a 
study is being conducted to determine differences between 
the salaries paid to a population of men and a population 
of women. Two independent simple random samples, one 
from the population of men and one from the population 
of women, would provide two sample means, x¯1 and x¯2. 
The difference between the two sample means, x¯1 − x¯2, 
would be used as a point estimate of the difference 
between the two population means. The sampling distri-
bution of x¯1 − x¯2 would provide the basis for a confidence 
interval estimate of the difference between the two 
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population means. For qualitative variables, point and 
interval estimates of the difference between population 
proportions can be constructed by considering the differ-
ence between sample proportions.

Hypothesis testing

Hypothesis testing is a form of statistical inference that 
uses data from a sample to draw conclusions about a popu-
lation parameter or a population probability distribution. 
First, a tentative assumption is made about the parameter 
or distribution. This assumption is called the null hypoth-
esis and is denoted by H0. An alternative hypothesis 
(denoted Ha), which is the opposite of what is stated in the 
null hypothesis, is then defined. The hypothesis-testing 
procedure involves using sample data to determine whether 
or not H0 can be rejected. If H0 is rejected, then the statisti-
cal conclusion is that the alternative hypothesis Ha is true.

For example, assume that a radio station selects the 
music it plays based on the assumption that the average 
age of its listening audience is 30 years. To determine 
whether this assumption is valid, a hypothesis test could 
be conducted with the null hypothesis given as H0: μ = 30 
and the alternative hypothesis given as Ha: μ ≠ 30. Based on 
a sample of individuals from the listening audience, the 
sample mean age, x¯, can be computed and used to deter-
mine whether there is sufficient statistical evidence to 
reject H0. Conceptually, a value of the sample mean that is 
“close” to 30 is consistent with the null hypothesis, while a 
value of the sample mean that is “not close” to 30 provides 
support for the alternative hypothesis. What is consid-
ered “close” and “not close” is determined by using the 
sampling distribution of x¯.

Ideally, the hypothesis-testing procedure leads to the 
acceptance of H0 when H0 is true and the rejection of H0 
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when H0 is false. Unfortunately, because hypothesis tests 
are based on sample information, the possibility of errors 
must be considered. A type I error corresponds to reject-
ing H0 when H0 is actually true, and a type II error 
corresponds to accepting H0 when H0 is false. The proba-
bility of making a type I error is denoted by α, and the 
probability of making a type II error is denoted by β.

In using the hypothesis-testing procedure to deter-
mine if the null hypothesis should be rejected, the person 

Operating-characateristic curves, like these from a U.S. federal govern-
ment report, can be constructed to show how changes in sample size can affect 
the probability of a type II error. U.S. Dept. of Transportation Federal 
Highway Administration Technical Advisory (http://www.fhwa.dot.gov/
Construction/t61203.cfm). Rendered by Rosen Educational Services



7 The Britannica Guide to Statistics and Probability 7

134

conducting the hypothesis test specifies the maximum 
allowable probability of making a type I error, called the 
level of significance for the test. Common choices for 
the level of significance are α = 0.05 and α = 0.01. Although 
most applications of hypothesis testing control the prob-
ability of making a type I error, they do not always control 
the probability of making a type II error. A graph known 
as an operating-characteristic curve can be constructed to 
show how changes in the sample size affect the probabil-
ity of making a type II error. 

A concept known as the p-value provides a conve-
nient basis for drawing conclusions in hypothesis-testing 
applications. The p-value is a measure of how likely the 
sample results are, assuming the null hypothesis is true; 
the smaller the p-value, the less likely the sample results. 
If the p-value is less than α, then the null hypothesis can 
be rejected. Otherwise, the null hypothesis cannot be 
rejected. The p-value is often called the observed level of 
significance for the test.

A hypothesis test can be performed on parameters  
of one or more populations as well as in a variety of  
other situations. In each instance, the process begins  
with the formulation of null and alternative hypotheses 
about the population. In addition to the population mean, 
hypothesis-testing procedures are available for popula-
tion parameters such as proportions, variances, standard 
deviations, and medians.

Hypothesis tests are also conducted in regression and 
correlation analysis to determine if the regression rela-
tionship and the correlation coefficient are statistically 
significant. A goodness-of-fit test refers to a hypothesis 
test in which the null hypothesis is that the population has 
a specific probability distribution, such as a normal prob-
ability distribution. Nonparametric statistical methods 
also involve a variety of hypothesis-testing procedures.
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Bayesian methods

The methods of statistical inference previously described 
are often referred to as classical methods. Bayesian meth-
ods (named after the English mathematician Thomas 
Bayes) provide alternatives that allow one to combine prior 
information about a population parameter with informa-
tion contained in a sample to guide the statistical inference 
process. A prior probability distribution for a parameter of 
interest is specified first. Sample information is then 
obtained and combined through an application of Bayes’s 
theorem to provide a posterior probability distribution for 
the parameter. The posterior distribution provides the 
basis for statistical inferences concerning the parameter.

A key, and somewhat controversial, feature of Bayesian 
methods is the notion of a probability distribution for a 
population parameter. According to classical statistics, 
parameters are constants and cannot be represented as 
random variables. Bayesian proponents argue that if a 
parameter value is unknown, then it makes sense to spec-
ify a probability distribution that describes the possible 
values for the parameter as well as their likelihood. The 
Bayesian approach permits the use of objective data or 
subjective opinion in specifying a prior distribution. With 
the Bayesian approach, different individuals might specify 
different prior distributions. Classical statisticians argue 
that for this reason Bayesian methods suffer from a lack 
of objectivity. Bayesian proponents argue that the classical 
methods of statistical inference have built-in subjectiv-
ity (through the choice of a sampling plan) and that the 
advantage of the Bayesian approach is that the subjectiv-
ity is made explicit.

Bayesian methods have been used extensively in statis-
tical decision theory. In this context, Bayes’s theorem 
provides a mechanism for combining a prior probability 
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distribution for the states of nature with sample informa-
tion to provide a revised (posterior) probability distribution 
about the states of nature. These posterior probabilities 
are then used to make better decisions.

Experimental design

Data for statistical studies are obtained by conducting 
either experiments or surveys. Experimental design is the 
branch of statistics that deals with the design and analysis 
of experiments. The methods of experimental design are 
widely used in the fields of agriculture, medicine, biology, 
marketing research, and industrial production.

Variables of interest are identified in an experimental 
study. One or more of these variables, referred to as the 
factors of the study, are controlled so that data may be 
obtained about how the factors influence another variable 
referred to as the response variable, or simply the response. 
As a case in point, consider an experiment designed to 
determine the effect of three different exercise programs 
on the cholesterol level of patients with elevated choles-
terol. Each patient is referred to as an experimental unit, 
the response variable is the cholesterol level of the patient 
at the completion of the program, and the exercise pro-
gram is the factor whose effect on cholesterol level is being 
investigated. Each of the three exercise programs is 
referred to as a treatment.

Three of the more widely used experimental designs 
are the completely randomized design, the randomized 
block design, and the factorial design. In a completely ran-
domized experimental design, the treatments are 
randomly assigned to the experimental units. For instance, 
applying this design method to the cholesterol level study, 
the three types of exercise program (treatment) would be 
randomly assigned to the experimental units (patients).
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The use of a completely randomized design yields less 
precise results when factors not accounted for by the 
experimenter affect the response variable. Consider, for 
example, an experiment designed to study the effect of 
two different gasoline additives on the fuel efficiency, 
measured in miles per gallon (mpg), of full-size automo-
biles produced by three manufacturers. Suppose that 30 
automobiles, 10 from each manufacturer, were available 
for the experiment. In a completely randomized design, 
the two gasoline additives (treatments) would be ran-
domly assigned to the 30 automobiles, with each additive 
being assigned to 15 different cars. Suppose that manufac-
turer 1 has developed an engine that gives its full-size cars 
a higher fuel efficiency than those produced by manufac-
turers 2 and 3. A completely randomized design could, by 
chance, assign gasoline additive 1 to a larger proportion of 
cars from manufacturer 1. In such a case, gasoline additive 
1 might be judged as more fuel efficient when in fact the 
difference observed is actually a result of the better engine 
design of automobiles produced by manufacturer 1. To 
prevent this from occurring, a statistician could design an 
experiment in which both gasoline additives are tested 
using five cars produced by each manufacturer. In this way, 
any effects caused by the manufacturer would not affect 
the test for significant differences resulting from the gaso-
line additive. In this revised experiment, each manufacturer 
is referred to as a block, and the experiment is called a ran-
domized block design. In general, blocking is used to 
enable comparisons among the treatments to be made 
within blocks of homogeneous experimental units.

Factorial experiments are designed to draw conclu-
sions about more than one factor, or variable. The term 
factorial is used to indicate that all possible combinations 
of the factors are considered. For instance, if there are two 
factors with a levels for factor 1 and b levels for factor 2, 
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then the experiment will involve collecting data on ab 
treatment combinations. The factorial design can be 
extended to experiments involving more than two factors 
and experiments involving partial factorial designs.

Analysis of Variance and  
Significance Testing

A computational procedure frequently used to analyze the 
data from an experimental study employs a statistical pro-
cedure known as the analysis of variance. For a single-factor 
experiment, this procedure uses a hypothesis test concern-
ing equality of treatment means to determine if the factor 
has a statistically significant effect on the response vari-
able. For experimental designs involving multiple factors, a 
test for the significance of each individual factor as well as 
interaction effects caused by one or more factors acting 
jointly can be made. Further discussion of the analysis of 
variance procedure is contained in the subsequent section.

Regression and Correlation Analysis

Regression analysis involves identifying the relationship 
between a dependent variable and one or more indepen-
dent variables. A model of the relationship is hypothesized, 
and estimates of the parameter values are used to develop 
an estimated regression equation. Various tests are then 
employed to determine if the model is satisfactory. If the 
model is deemed satisfactory, then the estimated regression 
equation can be used to predict the value of the dependent 
variable given values for the independent variables.

Regression Model

In simple linear regression, the model used to describe the 
relationship between a single dependent variable y and a 
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single independent variable x is y = β0 + β1x + ε. β0 and β1 are 
referred to as the model parameters, and ε is a probabilis-
tic error term that accounts for the variability in y that 
cannot be explained by the linear relationship with x. If 
the error term were not present, then the model would be 
deterministic. In that case, knowledge of the value of x 
would be sufficient to determine the value of y.

In multiple regression analysis, the model for simple 
linear regression is extended to account for the relation-
ship between the dependent variable y and p independent 
variables x1, x2, . . . , xp. The general form of the multiple 
regression model is y = β0 + β1x1 + β2x2 + . . . + βpxp + ε. The 
parameters of the model are the β0, β1, . . . , βp, and ε is the 
error term.

Least Squares Method

Either a simple or multiple regression model is initially 
posed as a hypothesis concerning the relationship among 
the dependent and independent variables. The least 
squares method is the most widely used procedure for 
developing estimates of the model parameters. For simple 
linear regression, the least squares estimates of the model 
parameters β0 and β1 are denoted b0 and b1. Using these esti-
mates, an estimated regression equation is constructed:  
ŷ = b0 + b1x . The graph of the estimated regression equation 
for simple linear regression is a straight line approxima-
tion to the relationship between y and x.

As an illustration of regression analysis and the least 
squares method, suppose a university medical centre is 
investigating the relationship between stress and blood 
pressure. Assume that both a stress test score and a  
blood pressure reading have been recorded for a sample of 
20 patients. The data can be shown graphically in a scatter 
diagram. Values of the independent variable, stress test 
score, are given on the horizontal axis, and values of the 
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dependent variable, blood pressure, are shown on the ver-
tical axis. The line passing through the data points is the 
graph of the estimated regression equation: ŷ = 42.3 + 
0.49x. The parameter estimates, b0 = 42.3 and b1 = 0.49, 
were obtained using the least squares method.  

A primary use of the estimated regression equation is 
to predict the value of the dependent variable when values 
for the independent variables are given. For instance, 
given a patient with a stress test score of 60, the predicted 
blood pressure is 42.3 + 0.49(60) = 71.7. The values pre-
dicted by the estimated regression equation are the points 
on the line, and the actual blood pressure readings are rep-
resented by the points scattered about the line. The 
difference between the observed value of y and the value 
of y predicted by the estimated regression equation is 
called a residual. The least squares method chooses the 

In this scatter diagram, stress test scores are the independent variable 
(x axis), and blood pressure values are the dependent variable (y axis). 
Copyright Encyclopædia Britannica; rendering for this edition by 
Rosen Educational Services
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parameter estimates such that the sum of the squared 
residuals is minimized.

Analysis of Variance and Goodness of Fit

A commonly used measure of the goodness of fit provided 
by the estimated regression equation is the coefficient of 
determination. Computation of this coefficient is based 
on the analysis of variance procedure that partitions the 
total variation in the dependent variable, denoted SST, 
into two parts: the part explained by the estimated regres-
sion equation, denoted SSR, and the part that remains 
unexplained, denoted SSE.

The measure of total variation, SST, is the sum of the 
squared deviations of the dependent variable about its 
mean: Σ(y − ȳ)2. This quantity is known as the total sum of 
squares. The measure of unexplained variation, SSE, is 
referred to as the residual sum of squares. SSE is the sum of 
the squared distances from each point in the scatter dia-
gram to the estimated regression line: Σ(y − ŷ)2. SSE is also 
commonly referred to as the error sum of squares. A key 
result in the analysis of variance is that SSR + SSE = SST.

The ratio r2 = SSR/SST is called the coefficient of 
determination. If the data points are clustered closely 
about the estimated regression line, then the value of SSE 
will be small and SSR/SST will be close to 1. Using r2, whose 
values lie between 0 and 1, provides a measure of goodness 
of fit. Values closer to 1 imply a better fit. A value of r2 = 0 
implies that there is no linear relationship between the 
dependent and independent variables.

When expressed as a percentage, the coefficient of 
determination can be interpreted as the percentage of the 
total sum of squares that can be explained using the esti-
mated regression equation. For the stress-level research 
study, the value of r2 is 0.583. Thus, 58.3% of the total sum 
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of squares can be explained by the estimated regression 
equation ŷ = 42.3 + 0.49x. For typical data found in the 
social sciences, values of r2 as low as 0.25 are often consid-
ered useful. For data in the physical sciences, r2 values of 
0.60 or greater are frequently found.

Significance Testing

In a regression study, hypothesis tests are usually conducted 
to assess the statistical significance of the overall relation-
ship represented by the regression model and to test for 
the statistical significance of the individual parameters. 
The statistical tests used are based on the following four 
assumptions concerning the error term: (1) ε is a random 
variable with an expected value of 0, (2) the variance of ε is 
the same for all values of x, (3) the values of ε are indepen-
dent, and (4) ε is a normally distributed random variable.

The mean square caused by regression, denoted MSR, 
is computed by dividing SSR by a number referred to as its 
degrees of freedom. Similarly, the mean square caused by 
error, MSE, is computed by dividing SSE by its degrees of 
freedom. An F-test based on the ratio MSR/MSE can be 
used to test the statistical significance of the overall rela-
tionship between the dependent variable and the set of 
independent variables. In general, large values of F = MSR/
MSE support the conclusion that the overall relationship 
is statistically significant. If the overall model is deemed 
statistically significant, statisticians usually conduct 
hypothesis tests on the individual parameters to deter-
mine if each independent variable makes a significant 
contribution to the model.

Residual Analysis

The analysis of residuals plays an important role in validat-
ing the regression model. If the error term in the regression 
model satisfies the four assumptions noted earlier, then 
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the model is considered valid. Because the statistical tests 
for significance are also based on these assumptions, the 
conclusions resulting from these significance tests are 
called into question if the assumptions regarding ε are not 
satisfied.

The ith residual is the difference between the observed 
value of the dependent variable, yi, and the value predicted 
by the estimated regression equation, ŷi. These residuals, 
computed from the available data, are treated as estimates 
of the model error, ε. As such, they are used by statisticians 
to validate the assumptions concerning ε. Good judgment 
and experience play key roles in residual analysis.

Graphical plots and statistical tests concerning the 
residuals are examined carefully by statisticians, and judg-
ments are made based on these examinations. The most 
common residual plot shows ŷ on the horizontal axis and 
the residuals on the vertical axis. If the assumptions 
regarding the error term, ε, are satisfied, then the residual 
plot will consist of a horizontal band of points. If the 
residual analysis does not indicate that the model assump-
tions are satisfied, then it often suggests ways in which the 
model can be modified to obtain better results.

Model Building

In regression analysis, model building is the process of 
developing a probabilistic model that best describes the 
relationship between the dependent and independent vari-
ables. The major issues are finding the proper form (linear 
or curvilinear) of the relationship and selecting which inde-
pendent variables to include. In building models it is often 
desirable to use qualitative as well as quantitative variables.

As previously noted, quantitative variables measure 
how much or how many, whereas qualitative variables rep-
resent types or categories. For example, suppose it is of 
interest to predict sales of an iced tea that is available in 
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either bottles or cans. Clearly, the independent variable 
“container type” could influence the dependent variable 
“sales.” Container type is a qualitative variable, however, 
and must be assigned numerical values if it is to be used in 
a regression study. So-called dummy variables are used to 
represent qualitative variables in regression analysis. For 
example, the dummy variable x could be used to represent 
container type by setting x = 0 if the iced tea is packaged 
in a bottle and x = 1 if the iced tea is in a can. If the bever-
age could be placed in glass bottles, plastic bottles, or cans, 
then it would require two dummy variables to properly 
represent the qualitative variable container type. In gen-
eral, k − 1 dummy variables are needed to model the effect 
of a qualitative variable that may assume k values.

The general linear model y = β0 + β1x1 + β2x2 + . . . + βpxp + 
ε can be used to model a wide variety of curvilinear rela-
tionships between dependent and independent variables. 
For instance, each of the independent variables could be a 
nonlinear function of other variables. Also, statisticians 
sometimes find it necessary to transform the dependent 
variable in order to build a satisfactory model. A logarith-
mic transformation is one of the more common types.

Correlation

Correlation and regression analysis are related in the sense 
that both deal with relationships among variables. The 
correlation coefficient is a measure of linear association 
between two variables. Values of the correlation coeffi-
cient are always between −1 and +1. A correlation coefficient 
of +1 indicates that two variables are perfectly related in a 
positive linear sense, a correlation coefficient of −1 indi-
cates that two variables are perfectly related in a negative 
linear sense, and a correlation coefficient of 0 indicates 
that there is no linear relationship between the two vari-
ables. For simple linear regression, the sample correlation 
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coefficient is the square root of the coefficient of determi-
nation, with the sign of the correlation coefficient being 
the same as the sign of b1, the coefficient of x1 in the esti-
mated regression equation.

Neither regression nor correlation analyses can be 
interpreted as establishing cause-and-effect relationships. 
They can indicate only how or to what extent variables are 
associated with each other. The correlation coefficient 
measures only the degree of linear association between two 
variables. Any conclusions about a cause-and-effect rela-
tionship must be based on the judgment of the analyst.

Time series and forecasting

A time series is a set of data collected at successive points 
in time or over successive periods of time. A sequence  
of monthly data on new housing starts and a sequence of 
weekly data on product sales are examples of time series. 
Usually, the data in a time series are collected at equally 
spaced periods of time, such as hour, day, week, month, 
or year.

A primary concern of time series analysis is the devel-
opment of forecasts for future values of the series. For 
instance, the federal government develops forecasts of 
many economic time series such as the gross domestic 
product, exports, and so on. Most companies develop 
forecasts of product sales.

Although in practice both qualitative and quantitative 
forecasting methods are used, statistical approaches to 
forecasting employ quantitative methods. The two most 
widely used methods of forecasting are the Box-Jenkins 
autoregressive integrated moving average (ARIMA) and 
econometric models.

ARIMA methods are based on the assumption that a 
probability model generates the time series data. Future 
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values of the time series are assumed to be related to past 
values as well as to past errors. A time series must be sta-
tionary (i.e., one that has a constant mean, variance, and 
autocorrelation function) for an ARIMA model to be appli-
cable. For nonstationary series, sometimes differences 
between successive values can be taken and used as a sta-
tionary series to which the ARIMA model can be applied.

Econometric models develop forecasts of a time series 
using one or more related time series and possibly past val-
ues of the time series. This approach involves developing a 
regression model in which the time series is forecast as the 
dependent variable. The related time series as well as the 
past values of the time series are the independent or pre-
dictor variables.

Nonparametric methods

The statistical methods discussed earlier generally focus 
on the parameters of populations or probability distribu-
tions and are referred to as parametric methods. 
Nonparametric methods are statistical methods that 
require fewer assumptions about a population or proba-
bility distribution and are applicable in a wider range of 
situations. For a statistical method to be classified as a 
nonparametric method, it must satisfy one of the follow-
ing conditions: (1) the method is used with qualitative 
data, or (2) the method is used with quantitative data when 
no assumption can be made about the population proba-
bility distribution. In cases where both parametric and 
nonparametric methods are applicable, statisticians usu-
ally recommend using parametric methods because they 
tend to provide better precision. Nonparametric methods 
are useful, however, in situations where the assumptions 
required by parametric methods appear questionable. A 
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few of the more commonly used nonparametric methods 
are described below.

Assume that individuals in a sample are asked to state 
a preference for one of two similar and competing prod-
ucts. A plus (+) sign can be recorded if an individual prefers 
one product and a minus (−) sign if the individual prefers 
the other product. With qualitative data in this form, the 
nonparametric sign test can be used to statistically deter-
mine whether a difference in preference for the two 
products exists for the population. The sign test also can 
be used to test hypotheses about the value of a popula-
tion median.

The Wilcoxon signed-rank test can be used to test 
hypotheses about two populations. In collecting data for 
this test, each element or experimental unit in the sample 
must generate two paired or matched data values, one 
from population 1 and one from population 2. Differences 
between the paired or matched data values are used to 
test for a difference between the two populations. The 
Wilcoxon signed-rank test is applicable when no assump-
tion can be made about the form of the probability 
distributions for the populations. Another nonparametric 
test for detecting differences between two populations is 
the Mann-Whitney-Wilcoxon test. This method is based 
on data from two independent random samples, one from 
population 1 and another from population 2. There is no 
matching or pairing as required for the Wilcoxon signed-
rank test.

Nonparametric methods for correlation analysis are 
also available. The Spearman rank correlation coefficient 
is a measure of the relationship between two variables 
when data in the form of rank orders are available. For 
instance, the Spearman rank correlation coefficient could 
be used to determine the degree of agreement between 
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men and women concerning their preference ranking of 
10 different television shows. A Spearman rank correla-
tion coefficient of 1 would indicate complete agreement, a 
coefficient of −1 would indicate complete disagreement, 
and a coefficient of 0 would indicate that the rankings 
were unrelated.

Statistical quality control

Statistical quality control refers to the use of statistical 
methods in the monitoring and maintaining of the quality 
of products and services. One method, referred to as 
acceptance sampling, can be used when a decision must be 
made to accept or reject a group of parts or items based on 
the quality found in a sample. A second method, referred 
to as statistical process control, uses graphical displays 
known as control charts to determine whether a process 
should be continued or should be adjusted to achieve the 
desired quality.

Acceptance Sampling

Assume that a consumer receives a shipment of parts, 
or lot, from a producer. A sample of parts will be taken 
and the number of defective items counted. If the num-
ber of defective items is low, then the entire lot will be 
accepted. If the number of defective items is high, then 
the entire lot will be rejected. Correct decisions cor-
respond to accepting a good-quality lot and rejecting 
a poor-quality lot. Because sampling is being used, the 
probabilities of erroneous decisions need to be consid-
ered. The error of rejecting a good-quality lot creates 
a problem for the producer, but the probability of this 
error is called the producer’s risk. Conversely, the error 
of accepting a poor-quality lot creates a problem for the 
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purchaser or consumer, and the probability of this error 
is called the consumer’s risk.

The design of an acceptance sampling plan consists of 
determining a sample size n and an acceptance criterion c, 
where c is the maximum number of defective items that 
can be found in the sample and the lot still be accepted. 
The key to understanding both the producer’s risk and the 
consumer’s risk is to assume that a lot has some known 
percentage of defective items and compute the probabil-
ity of accepting the lot for a given sampling plan. By 
varying the assumed percentage of defective items in a lot, 
several different sampling plans can be evaluated and a 
sampling plan selected such that both the producer’s and 
consumer’s risks are reasonably low.

Statistical Process Control

Statistical process control uses sampling and statistical 
methods to monitor the quality of an ongoing process 
such as a production operation. A graphical display 
referred to as a control chart provides a basis for deciding 
whether the variation in the output of a process is the 
result of common causes (randomly occurring variations) 
or to out-of-the-ordinary assignable causes. Whenever 
assignable causes are identified, a decision can be made to 
adjust the process to bring the output back to acceptable 
quality levels.

Control charts can be classified by the type of data 
they contain. For instance, an x¯-chart is employed in situ-
ations where a sample mean is used to measure the quality 
of the output. Quantitative data such as length, weight, 
and temperature can be monitored with an x¯-chart. 
Process variability can be monitored using a range or 
R-chart. In cases in which the quality of output is mea-
sured in terms of the number of defectives or the 
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proportion of defectives in the sample, an np-chart or a 
p-chart can be used.

All control charts are constructed in a similar fashion. 
For example, the centre line of an x¯-chart corresponds 
to the mean of the process when the process is in control 
and producing output of acceptable quality. The vertical 
axis of the control chart identifies the scale of measure-
ment for the variable of interest. The upper horizontal 
line of the control chart, referred to as the upper control 
limit, and the lower horizontal line, referred to as the 
lower control limit, are chosen so that when the process 
is in control there will be a high probability that the value 
of a sample mean will fall between the two control lim-
its. Standard practice is to set the control limits at three 
standard deviations above and below the process mean. 
The process can be sampled periodically. As each sample 
is selected, the value of the sample mean is plotted on  
the control chart. If the value of a sample mean is within the  
control limits, the process can be continued under  
the assumption that the quality standards are being main-
tained. If the value of the sample mean is outside the 
control limits, an out-of-control conclusion points to  
the need for corrective action in order to return the pro-
cess to acceptable quality levels.

Sample survey methods

Statistical inference is the process of using data from a 
sample to make estimates or test hypotheses about a popula-
tion. The field of sample survey methods is concerned with 
effective ways of obtaining sample data. The three most 
common types of sample surveys are mail surveys, telephone 
surveys, and personal interview surveys. All involve the use 
of a questionnaire, for which a large body of knowledge 
exists concerning the phrasing, sequencing, and grouping of 
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questions. There are other types of sample surveys that do 
not involve a questionnaire. For example, the sampling of 
accounting records for audits and the use of a computer to 
sample a large database are sample surveys that use direct 
observation of the sampled units to collect the data.

A goal in the design of sample surveys is to obtain a 
sample that is representative of the population so that 
precise inferences can be made. Sampling error is the 
difference between a population parameter and a sample 
statistic used to estimate it. For example, the difference 
between a population mean and a sample mean is sam-
pling error. Sampling error occurs because a portion, 
and not the entire population, is surveyed. Probability 
sampling methods, where the probability of each unit 
appearing in the sample is known, enable statisticians to 
make probability statements about the size of the sam-
pling error. Nonprobability sampling methods, which are 
based on convenience or judgment rather than on prob-
ability, are frequently used for cost and time advantages. 
However, one should be extremely careful in making 
inferences from a nonprobability sample. Whether or 
not the sample is representative is dependent on the 
judgment of the individuals designing and conduct-
ing the survey and not on sound statistical principles. 
In addition, there is no objective basis for establishing 
bounds on the sampling error when a nonprobability 
sample has been used.

Most governmental and professional polling surveys 
employ probability sampling. It can generally be assumed 
that any survey that reports a plus or minus margin of 
error has been conducted using probability sampling. 
Statisticians prefer probability sampling methods and rec-
ommend that they be used whenever possible. A variety of 
probability sampling methods are available. A few of the 
more common ones are reviewed here.
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Simple random sampling provides the basis for many 
probability sampling methods. With simple random sam-
pling, every possible sample of size n has the same 
probability of being selected.

Stratified simple random sampling is a variation of 
simple random sampling in which the population is parti-
tioned into relatively homogeneous groups called strata 
and a simple random sample is selected from each stra-
tum. The results from the strata are then aggregated to 
make inferences about the population. A side benefit of 
this method is that inferences about the subpopulation 
represented by each stratum can also be made.

Cluster sampling involves partitioning the population 
into separate groups called clusters. Unlike in the case 
of stratified simple random sampling, it is desirable for 
the clusters to be composed of heterogeneous units. In 
single-stage cluster sampling, a simple random sample of 
clusters is selected, and data are collected from every unit 
in the sampled clusters. In two-stage cluster sampling, a  
simple random sample of clusters is selected and then  
a simple random sample is selected from the units in each 
sampled cluster. One of the primary applications of clus-
ter sampling is called area sampling, where the clusters 
are counties, townships, city blocks, or other well-defined 
geographic sections of the population.

Decision analysis

Decision analysis, also called statistical decision theory, 
involves procedures for choosing optimal decisions in the 
face of uncertainty. In the simplest situation, a decision 
maker must choose the best decision from a finite set of 
alternatives when there are two or more possible future 
events, called states of nature, that might occur. The list of 
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possible states of nature includes everything that can hap-
pen, and the states of nature are defined so that only one 
of the states will occur. The outcome resulting from the 
combination of a decision alternative and a particular 
state of nature is referred to as the payoff.

When probabilities for the states of nature are avail-
able, probabilistic criteria may be used to choose the best 
decision alternative. The most common approach is to use 
the probabilities to compute the expected value of each 
decision alternative. The expected value of a decision 
alternative is the sum of weighted payoffs for the decision. 
The weight for a payoff is the probability of the associated 
state of nature and therefore the probability that the pay-
off occurs. For a maximization problem, the decision 
alternative with the largest expected value will be chosen. 
For a minimization problem, the decision alternative with 
the smallest expected value will be chosen.

Decision analysis can be extremely helpful in sequen-
tial decision-making situations—that is, situations in 
which a decision is made, an event occurs, another deci-
sion is made, another event occurs, and so on. For instance, 
a company trying to decide whether or not to market a 
new product might first decide to test the acceptance of 
the product using a consumer panel. Based on the results 
of the consumer panel, the company then decides whether 
or not to proceed with further test marketing. After ana-
lyzing the results of the test marketing, company 
executives decide whether or not to produce the new 
product. A decision tree is a graphical device that helps in 
structuring and analyzing such problems. With the aid of 
decision trees, an optimal decision strategy can be devel-
oped. A decision strategy is a contingency plan that 
recommends the best decision alternative depending on 
what has happened earlier in the sequential process.
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 Game theory is the branch of applied mathematics 
that provides tools for analyzing situations in which 

parties, called players, make decisions that are interde-
pendent. This interdependence causes each player to 
consider the other player’s possible decisions, or strate-
gies, in formulating his own strategy. A solution to a game 
describes the optimal decisions of the players, who may 
have similar, opposed, or mixed interests, and the out-
comes that may result from these decisions. 

 Although game theory can be and has been used to 
analyze parlour games, its applications are much broader. 
In fact, game theory was originally developed by the 
Hungarian-born American mathematician John von 
Neumann and his Princeton University colleague Oskar 
Morgenstern, a German-born American economist, to 
solve problems in economics. In their book  The Theory of 
Games and Economic Behavior  (1944), von Neumann and 
Morgenstern asserted that the mathematics developed 
for the physical sciences, which describes the workings of 
a disinterested nature, was a poor model for economics. 
They observed that economics is much like a game, 
wherein players anticipate each other’s moves, and there-
fore requires a new kind of mathematics, which they called 
game theory. (The name may be somewhat of a misnomer, 
because game theory generally does not share the fun or 
frivolity associated with games.) 

 Game theory has been applied to a wide variety of sit-
uations in which the choices of players interact to affect 
the outcome. In stressing the strategic aspects of decision 
making, or aspects controlled by the players rather than 

CHAPTER 4
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Oskar Morgenstern coauthored Theory of Games and Economic Behavior, 
applying Neumann’s theory of games of strategy to competitive business. Ralph 
Morse/Time & Life Pictures/Getty Images
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by pure chance, the theory both supplements and goes 
beyond the classical theory of probability. It has been 
used, for example, to determine what political coalitions 
or business conglomerates are likely to form, the optimal 
price at which to sell products or services in the face of 
competition, the power of a voter or a bloc of voters, 
whom to select for a jury, the best site for a manufacturing 
plant, and the behaviour of certain animals and plants in 
their struggle for survival. It has even been used to chal-
lenge the legality of certain voting systems.

It would be surprising if any one theory could address 
such an enormous range of “games,” and in fact there is no 
single game theory. Many theories have been proposed, 
each applicable to different situations and each with its 
own concepts of what constitutes a solution. This chapter 
describes some simple games, discusses different theories, 
and outlines principles underlying game theory.

Classification of games

Games can be classified according to certain significant 
features, the most obvious of which is the number of play-
ers. Thus, a game can be designated as being a one-person, 
two-person, or n-person (with n greater than two) game, 
with games in each category having their own distinctive 
features. In addition, a player need not be an individual. It 
may be a nation, corporation, or team comprising many 
people with shared interests.

In games of perfect information, such as chess, each 
player knows everything about the game at all times. Poker 
is an example of a game of imperfect information, however, 
because players do not know all of their opponents’ cards.

The extent to which the goals of the players coin-
cide or conflict is another basis for classifying games. 
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Constant-sum games are games of total conflict, which are 
also called games of pure competition. For example, poker 
is a constant-sum game because the combined wealth of 
the players remains constant, but its distribution shifts in 
the course of play.

Players in constant-sum games have completely 
opposed interests, whereas in variable-sum games they 
may all be winners or losers. In a labour-management dis-
pute, for example, the two parties certainly have some 
conflicting interests, but both benefit if a strike is averted.

Variable-sum games can be further distinguished as 
being either cooperative or noncooperative. In coopera-
tive games players can communicate and, most important, 
make binding agreements. In noncooperative games play-
ers may communicate, but they cannot make binding 
agreements, such as an enforceable contract. An automo-
bile salesperson and a potential customer will be engaged 
in a cooperative game if they agree on a price and sign a 
contract. However, the dickering that they do to reach 
this point will be noncooperative. Similarly, when people 
bid independently at an auction they are playing a non-
cooperative game, even though the high bidder agrees to 
complete the purchase.

Finally, a game is said to be finite when each player 
has a finite number of options, the number of players is 
finite, and the game cannot go on indefinitely. Chess, 
checkers, poker, and most parlour games are finite. Infinite 
games are more subtle and will only be touched upon in 
this section.

A game can be described as in extensive, normal, or 
characteristic-function form. (Sometimes these forms are 
combined.) Most parlour games, which progress step by 
step, one move at a time, can be modeled as games in 
extensive form. Extensive-form games can be described by 
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a “game tree,” in which each turn is a vertex of the tree, 
with each branch indicating the players’ successive choices.

The normal (strategic) form is primarily used to 
describe two-person games. In this form a game is repre-
sented by a payoff matrix, wherein each row describes the 
strategy of one player and each column describes the 
strategy of the other player. The matrix entry at the inter-
section of each row and column gives the outcome of each 
player choosing the corresponding strategy. The payoffs 
to each player associated with this outcome are the basis 
for determining whether the strategies are “in equilib-
rium,” or stable.

The characteristic-function form is generally used to 
analyze games with more than two players. It indicates the 
minimum value that each coalition of players—including 
single-player coalitions—can guarantee for itself when 
playing against a coalition made up of all the other 
players.

One-person games

One-person games are also known as games against nature. 
With no opponents, the player only needs to list available 
options and then choose the optimal outcome. When 
chance is involved the game might seem to be more com-
plicated, but in principle the decision is still relatively 
simple. For example, a person deciding whether to carry 
an umbrella weighs the costs and benefits of carrying or 
not carrying it. Although this person may make the wrong 
decision, there does not exist a conscious opponent. That 
is, nature is presumed to be completely indifferent to the 
player’s decision, and the person can base his decision on 
simple probabilities. One-person games hold little inter-
est for game theorists.
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Two-person  
constant-sum games

Games of Perfect Information

The simplest game of any real theoretical interest is a 
two-person constant-sum game of perfect information. 
Examples of such games include chess, checkers, and the 
Japanese game of go. In 1912 the German mathemati-
cian Ernst Zermelo proved that such games are strictly 
determined. By making use of all available information, 
the players can deduce optimal strategies, which makes the  
outcome preordained (strictly determined). In chess, for 
example, exactly one of three outcomes must occur if the 
players make optimal choices: (1) White wins (has a strat-
egy that wins against any strategy of Black), (2) Black wins, 
or (3) White and Black draw. In principle, a sufficiently 

By using all available information, players of the Japanese game of go can 
deduce optimal strategies, making the outcome preordained (strictly deter-
mined). Shutterstock.com
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powerful supercomputer could determine which of the 
three outcomes will occur. However, considering that 
there are some 1043 distinct 40-move games of chess pos-
sible, there seems no possibility that such a computer will 
be developed now or in the foreseeable future. Therefore, 
although chess is of only minor interest in game theory, it 
is likely to remain a game of enduring intellectual interest.

Games of Imperfect Information

A “saddlepoint” in a two-person constant-sum game is the 
outcome that rational players would choose. (Its name 
derives from its being the minimum of a row that is also 
the maximum of a column in a payoff matrix—to be illus-
trated shortly—which corresponds to the shape of a 
saddle.) A saddlepoint always exists in games of perfect 
information but may or may not exist in games of imper-
fect information. By choosing a strategy associated with 
this outcome, each player obtains an amount at least equal 
to his payoff at that outcome, no matter what the other 
player does. This payoff is called the value of the game. As 
in perfect-information games, it is preordained by the 
players’ choices of strategies associated with the saddle-
point, making such games strictly determined.

The normal-form game is used to illustrate the calcula-
tion of a saddlepoint. Two political parties, A and B, must 
each decide how to handle a controversial issue in a cer-
tain election. Each party can either support the issue, 
oppose it, or evade it by being ambiguous. The decisions 
by A and B on this issue determine the percentage of the 
vote that each party receives. The entries in the payoff 
matrix represent party A’s percentage of the vote (the 
remaining percentage goes to B). When, for example, A 
supports the issue and B evades it, A gets 80 percent and B 
20 percent of the vote.
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Assume that each party wants to maximize its vote. 
A’s decision seems difficult at first because it depends on 
B’s choice of strategy. A does best to support if B evades, 
oppose if B supports, and evade if B opposes. A must 
therefore consider B’s decision before making its own. 
Note that no matter what A does, B obtains the largest 
percentage of the vote (smallest percentage for A) by 
opposing the issue rather than supporting or evading it. 
Once A recognizes this, its strategy obviously should be to 
evade, settling for 30 percent of the vote. Thus, a 30 to 70 

Table 1: The normal-form table illustrates the concept of a saddlepoint, or entry, 
in a payoff matrix at which the expected gain of each participant (row or 
column) has the highest guaranteed payoff. Encyclopædia Britannica, Inc.



7 The Britannica Guide to Statistics and Probability 7

162

percent division of the vote, to A and B respectively, is the 
game’s saddlepoint.

A more systematic way of finding a saddlepoint is to 
determine the so-called maximin and minimax values. A 
first determines the minimum percentage of votes it can 
obtain for each of its strategies. It then finds the maximum 
of these three minimum values, giving the maximin. The 
minimum percentages A will get if it supports, opposes, 
or evades are, respectively, 20, 25, and 30. The largest of 
these, 30, is the maximin value. Similarly, for each strat-
egy B chooses, it determines the maximum percentage of 
votes A will win (and thus the minimum that it can win). 
In this case, if B supports, opposes, or evades, the maxi-
mum A will get is 80, 30, and 80, respectively. B will obtain 
its largest percentage by minimizing A’s maximum per-
cent of the vote, giving the minimax. The smallest of A’s 
maximum values is 30, so 30 is B’s minimax value. Because 
both the minimax and the maximin values coincide, 30 is a 
saddlepoint. The two parties might as well announce their 
strategies in advance, because the other party cannot gain 
from this knowledge.

Mixed Strategies and the Minimax Theorem

When saddlepoints exist, the optimal strategies and out-
comes can be easily determined, as was just illustrated. 
However, when there is no saddlepoint the calculation is 
more elaborate.

A guard is hired to protect two safes in separate loca-
tions: S1 contains $10,000 and S2 contains $100,000. The 
guard can protect only one safe at a time from a safe-
cracker. The safecracker and the guard must decide in 
advance, without knowing what the other party will do, 
which safe to try to rob and which safe to protect. When 
they go to the same safe, the safecracker gets nothing. 
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Table 2:When a saddlepoint does not exist for a payoff matrix, a probabi-
listic strategy is optimal. Based on the possible rewards, the participants 
assign probabilities to each choice so as to maximize their expected (aver-
age) rewards. For example, in this example the guard should protect the 
$100,000 deposit 10 out of 11 times and the $10,000 deposit 1 out of 11 times. 
Some type of random number generator (such as, here, an 11-sided die) is 
used to determine the appropriate strategy in order to avoid predictability. 
Encyclopædia Britannica, Inc.

When they go to different safes, the safecracker gets the 
contents of the unprotected safe.

In such a game, game theory does not indicate that any 
one particular strategy is best. Instead, it prescribes that a 
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strategy be chosen in accordance with a probability distri-
bution, which in this simple example is quite easy to 
calculate. In larger and more complex games, finding this 
strategy involves solving a problem in linear programming, 
which can be considerably more difficult.

To calculate the appropriate probability distribution 
in this example, each player adopts a strategy that makes 
him indifferent to what his opponent does. Assume that 
the guard protects S1 with probability p and S2 with prob-
ability 1 − p. Thus, if the safecracker tries S1, then he will be 
successful whenever the guard protects S2. In other words, 
he will get $10,000 with probability 1  −  p and $0 with 
probability p for an average gain of $10,000(1 − p). Similarly, 
if the safecracker tries S2, then he will get $100,000 with 
probability p and $0 with probability 1 − p for an average 
gain of $100,000p.

The guard will be indifferent to which safe the safe-
cracker chooses if the average amount stolen is the same 
in both cases—that is, if $10,000(1  −  p)  =  $100,000p. 
Solving for p gives p  =  1/11. If the guard protects S1 with 
probability 1/11 and S2 with probability 10/11, then he will 
lose, on average, no more than about $9,091 whatever the 
safecracker does.

Using the same kind of argument, it can be shown that 
the safecracker will get an average of at least $9,091 if he 
tries to steal from S1 with probability 10/11 and from S2 
with probability 1/11. This solution in terms of mixed strat-
egies, which are assumed to be chosen at random with the 
indicated probabilities, is analogous to the solution of the 
game with a saddlepoint (in which a pure, or single best, 
strategy exists for each player).

The safecracker and the guard give away nothing if 
they announce the probabilities with which they will ran-
domly choose their respective strategies. If they make 
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themselves predictable by exhibiting any kind of pattern 
in their choices, however, this information can be exploited 
by the other player.

The minimax theorem, which von Neumann proved in 
1928, states that every finite, two-person constant-sum 
game has a solution in pure or mixed strategies. Specifically, 
it says that for every such game between players A and B, 
there is a value v and strategies for A and B such that, if A 
adopts its optimal (maximin) strategy, the outcome will be 
at least as favourable to A as v; if B adopts its optimal 
(minimax) strategy, the outcome will be no more favour-
able to A than v. Thus, A and B have both the incentive 
and the ability to enforce an outcome that gives an 
(expected) payoff of v.

Utility Theory

In the previous example, it was tacitly assumed that the 
players were maximizing their average profits, but in prac-
tice players may consider other factors. For example, few 
people would risk a sure gain of $1,000,000 for an even 
chance of winning either $3,000,000 or $0, even though 
the expected (average) gain from this bet is $1,500,000. In 
fact, many decisions that people make, such as buying 
insurance policies, playing lotteries, and gambling at a 
casino, indicate that they are not maximizing their aver-
age profits. Game theory does not attempt to state what a 
player’s goal should be. Instead, it shows how a player can 
best achieve his or her goal, whatever that goal is.

Von Neumann and Morgenstern understood this dis-
tinction, so to accommodate all players, whatever their 
goals, they constructed a theory of utility. They began by 
listing certain axioms that they thought all rational deci-
sion makers would follow (for example, if a person likes 



7 The Britannica Guide to Statistics and Probability 7

166

tea better than coffee, and coffee better than milk, then 
that person should like tea better than milk). They then 
proved that it was possible to define a utility function for 
such decision makers that would reflect their preferences. 
In essence, a utility function assigns a number to each 
player’s alternatives to convey their relative attractive-
ness. Maximizing someone’s expected utility automatically 
determines a player’s most preferred option. In recent 
years, however, some doubt has been raised about whether 
people actually behave in accordance with these axioms, 
and alternative axioms have been proposed.

Two-person variable-sum games

Much of the early work in game theory was on two-person 
constant-sum games because they are the easiest to treat 
mathematically. The players in such games have diametri-
cally opposed interests, and there is a consensus about 
what constitutes a solution (as given by the minimax theo-
rem). Most games that arise in practice, however, are 
variable-sum games. The players have both common and 
opposed interests. For example, a buyer and a seller are 
engaged in a variable-sum game (the buyer wants a low 
price and the seller a high one, but both want to make a 
deal), as are two hostile nations (they may disagree about 
numerous issues, but both gain if they avoid going to war).

Some “obvious” properties of two-person constant-
sum games are invalid in variable-sum games. In 
constant-sum games, for example, both players cannot 
gain (they may or may not lose, but they cannot both gain) 
if they are deprived of some of their strategies. In variable-
sum games, however, players may gain if some of their 
strategies are no longer available. This might not seem 
possible at first. One would think that if a player benefited 
from not using certain strategies, then the player would 
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simply avoid those strategies and choose more advanta-
geous ones, but this is not always the case. For example, in 
a region with high unemployment, a worker may be will-
ing to accept a lower salary to obtain or keep a job, but if a 
minimum wage law makes that option illegal, then   the 
worker may be “forced” to accept a higher salary.

The effect of communication is particularly revealing 
of the difference between constant-sum and variable-sum 
games. In constant-sum games it never helps a player to 
give an adversary information, and it never hurts a player 
to learn an opponent’s optimal strategy (pure or mixed) in 
advance. However, these properties do not necessarily 
hold in variable-sum games. Indeed, a player may want an 
opponent to be well-informed. In a labour-management 
dispute, for example, if the labour union is prepared to 
strike, then it behooves the union to inform management 
and thereby possibly achieve its goal without a strike. In 
this example, management is not harmed by the advance 
information (it, too, benefits by avoiding a costly strike). 
In other variable-sum games, knowing an opponent’s 
strategy can sometimes be disadvantageous. For example, 
a blackmailer can only benefit if he first informs his vic-
tim that he will harm him—generally by disclosing some 
sensitive and secret details of the victim’s life—if his 
terms are not met. For such a threat to be credible, the 
victim must fear the disclosure and believe that the black-
mailer is capable of executing the threat. (The credibility 
of threats is a question that game theory studies.) 
Although a blackmailer may be able to harm a victim 
without any communication taking place, a blackmailer 
cannot extort a victim unless he first adequately informs 
the victim of his intent and its consequences. Thus, the 
victim’s knowledge of the blackmailer’s strategy, includ-
ing his ability and will to carry out the threat, works to the 
blackmailer’s advantage.
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Cooperative Versus Noncooperative Games

Communication is pointless in constant-sum games 
because there is no possibility of mutual gain from coop-
erating. In variable-sum games, however, the ability to 
communicate, the degree of communication, and even the 
order in which players communicate can have a profound 
influence on the outcome.

In the variable-sum game shown, each matrix entry 
consists of two numbers. (Because the combined wealth 
of the players is not constant, it is impossible to deduce 
one player’s payoff from the payoff of the other. 
Consequently, both players’ payoffs must be given.) The 
first number in each entry is the payoff to the row player 
(player A), and the second number is the payoff to the col-
umn player (player B).

In this example it will be to player A’s advantage if the 
game is cooperative and to player B’s advantage if the game 
is noncooperative. Without communication, assume each 

Table 3: In variable-sum games, each payoff depends on both players’ 
actions. Therefore, each matrix entry lists two payoffs, one for each player. 
Encyclopædia Britannica, Inc.
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player applies the “sure-thing” principle: It maximizes its 
minimum payoff by determining the minimum it will 
receive whatever its opponent does. Thereby, A deter-
mines that it will do best to choose strategy I no matter 
what B does: If B chooses i, A will get 3 regardless of what 
A does; if B chooses ii, A will get 4 rather than 3. B simi-
larly determines that it will do best to choose i no matter 
what A does. Selecting these two strategies, A will get 3 
and B will get 4 at (3, 4).

In a cooperative game, however, A can threaten to play 
II unless B agrees to play ii. If B agrees, its payoff will be 
reduced to 3 while A’s payoff will rise to 4 at (4,  3). If B 
does not agree and A carries out its threat, A will neither 
gain nor lose at (3, 2) compared to (3, 4), but B will get a 
payoff of only 2. Clearly, A will be unaffected if B does not 
agree and thus has a credible threat. B will be affected and 
obviously will do better at (4, 3) than at (3, 2) and should 
comply with the threat.

Sometimes both players can gain from the ability to 
communicate. Two pilots trying to avoid a midair collision 
clearly will benefit if they can communicate, and the 
degree of communication allowed between them may 
even determine whether or not they will crash. Generally, 
the more two players’ interests coincide, the more impor-
tant and advantageous communication becomes.

The solution to a cooperative game in which players 
have a common goal involves effectively coordinating 
the players’ decisions. This is relatively straightforward, 
as is finding the solution to constant-sum games with a 
saddlepoint. For games in which the players have both 
common and conflicting interests—in other words, in 
most variable-sum games, whether cooperative or nonco-
operative—what constitutes a solution is much harder to 
define and make persuasive.
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The Nash Solution

Although solutions to variable-sum games have been 
defined many different ways, they sometimes seem ineq-
uitable or are not enforceable. One well-known cooperative 
solution to two-person variable-sum games was proposed 
by the American mathematician John F. Nash, who 
received the Nobel Prize for Economics in 1994 for this 
and related work he did in game theory.

Given a game with a set of possible outcomes and asso-
ciated utilities for each player, Nash showed that there is a 
unique outcome that satisfies four conditions: (1) The out-
come is independent of the choice of a utility function 
(that is, if a player prefers x to y, the solution will not 
change if one function assigns x a utility of 10 and y a util-
ity of 1 or a second function assigns the values of 20 and 2). 
(2) Both players cannot do better simultaneously (a condi-
tion known as Pareto-optimality). (3) The outcome is 
independent of irrelevant alternatives (in other words, if 
unattractive options are added to or dropped from the list 
of alternatives, the solution will not change). (4) The out-
come is symmetrical (i.e., if the players reverse their roles, 
the solution will remain the same, except that the payoffs 
will be reversed).

In some cases the Nash solution seems inequitable 
because it is based on a balance of threats (the possibility 
that no agreement will be reached, so that both players 
will suffer losses) rather than a “fair” outcome. When, for 
example, a rich person and a poor person are to receive 
$10,000 provided they can agree on how to divide the 
money (if they fail to agree, they receive nothing), most 
people assume that the fair solution would be for each 
person to get half, or even that the poor person should get 
more than half. According to the Nash solution, however, 
there is a utility for each player associated with all possible 
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outcomes. Moreover, the specific choice of utility func-
tions should not affect the solution (condition 1) as long as 
they reflect each person’s preferences. In this example, 
assume that the rich person’s utility is equal to one-half 
the money received and that the poor person’s utility is 
equal to the money received. These different functions 
reflect the fact that additional income is more precious to 
the poor person. Under the Nash solution, the threat of 
reaching no agreement induces the poor person to accept 
one-third of the $10,000, giving the rich person two-
thirds. In general, the Nash solution finds an outcome 
such that each player gains the same amount of utility.

The Prisoners’ Dilemma

To illustrate the kinds of difficulties that arise in two-
person noncooperative variable-sum games, consider the 
celebrated Prisoners’ Dilemma (PD), originally formu-
lated by the American mathematician Albert W. Tucker. 
Two prisoners, A and B, suspected of committing a rob-
bery together, are isolated and urged to confess. Each is 
concerned only with getting the shortest possible prison 
sentence for himself. Each must decide whether to confess 
without knowing his partner’s decision. Both prisoners, 
however, know the consequences of their decisions: (1) if 
both confess, both go to jail for five years; (2) if neither 
confesses, both go to jail for one year (for carrying con-
cealed weapons); and (3) if one confesses while the other 
does not, the confessor goes free (for turning state’s evi-
dence) and the silent one goes to jail for 20 years.

Superficially, the analysis of PD is simple. Although A 
cannot be sure what B will do, he knows that he does best 
to confess when B confesses (he gets five years rather than 
20) and also when B remains silent (he serves no time rather 
than a year). Analogously, B will reach the same conclusion. 
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So the solution would seem to be that each prisoner does 
best to confess and go to jail for five years. Paradoxically, 
however, the two robbers would do better if they both 
adopted the apparently irrational strategy of remaining 
silent. Each would then serve only one year in jail. The irony 
of PD is that when each of two (or more) parties acts self-
ishly and does not cooperate with the other (i.e., when he 
confesses), they do worse than when they act unselfishly 
and cooperate together (i.e., when they remain silent).

Table 4: The prisoners’ dilemma is a well-known problem in game theory. It 
demonstrates how communication between the participants can drastically 
alter their best strategy. Encyclopædia Britannica, Inc.
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PD is not just an intriguing hypothetical problem. 
Real-life situations with similar characteristics have often 
been observed. For example, two shopkeepers engaged in 
a price war may well be caught up in a PD. Each shop-
keeper knows that if he has lower prices than his rival, he 
will attract his rival’s customers and thereby increase his 
own profits. Each therefore decides to lower his prices, 
with the result that neither gains any customers and both 
earn smaller profits. Similarly, nations competing in an 
arms race and farmers increasing crop production can 
also be seen as manifestations of PD. When two nations 
keep buying more weapons in an attempt to achieve mili-
tary superiority, neither gains an advantage and both are 
poorer than when they started. A single farmer can 
increase profits by increasing production, but when all 
farmers increase their output, a market glut ensues, with 
lower profits for all.

It might seem that the paradox inherent in PD could 
be resolved if the game were played repeatedly. Players 
would learn that they do best when both act unselfishly 
and cooperate. Indeed, if one player failed to cooperate in 
one game, the other player could retaliate by not cooper-
ating in the next game, and both would lose until they 
began to “see the light” and cooperated again. When the 
game is repeated a fixed number of times, however, this 
argument fails. To see this, suppose two shopkeepers set 
up their booths at a 10-day county fair. Furthermore, sup-
pose that each maintains full prices, knowing that if he 
does not, his competitor will retaliate the next day. On the 
last day, however, each shopkeeper realizes that his com-
petitor can no longer retaliate and so there is little reason 
not to lower their prices. But if each shopkeeper knows 
that his rival will lower his prices on the last day, he has no 
incentive to maintain full prices on the ninth day. 
Continuing this reasoning, one concludes that rational 
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shopkeepers will have a price war every day. It is only when 
the game is played repeatedly, and neither player knows 
when the sequence will end, that the cooperative strategy 
can succeed.

In 1980 the American political scientist Robert 
Axelrod engaged a number of game theorists in a round-
robin tournament. In each match the strategies of two 
theorists, incorporated in computer programs, competed 
against one another in a sequence of PDs with no definite 
end. A “nice” strategy was defined as one in which a player 
always cooperates with a cooperative opponent. Also, if 
a player’s opponent did not cooperate during one turn, 
most strategies prescribed noncooperation on the next 
turn, but a player with a “forgiving” strategy reverted rap-
idly to cooperation once its opponent started cooperating 
again. In this experiment it turned out that every nice 
strategy outperformed every strategy that was not nice. 
Furthermore, of the nice strategies, the forgiving ones 
performed best.

Theory of Moves

Another approach to inducing cooperation in PD and 
other variable-sum games is the theory of moves (TOM). 
Proposed by the American political scientist Steven J. 
Brams, TOM allows players, starting at any outcome in a 
payoff matrix, to move and countermove within the 
matrix, thereby capturing the changing strategic nature of 
games as they evolve over time. In particular, TOM 
assumes that players think ahead about the consequences 
of all of the participants’ moves and countermoves when 
formulating plans. Thereby, TOM embeds extensive-form 
calculations within the normal form, deriving advantages 
of both forms: the nonmyopic thinking of the extensive 
form disciplined by the economy of the normal form.
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To illustrate the nonmyopic perspective of TOM, con-
sider what happens in PD as a function of where play starts:

1.	 When play starts noncooperatively, players are 
stuck, no matter how far ahead they look, 
because as soon as one player departs, the other 
player, enjoying his best outcome, will not 
move on. Outcome: The players stay at the 
noncooperative outcome.

2.	 When play starts cooperatively, neither player 
will defect, because if he does, the other player 
will also defect, and they both will end up worse 
off. Thinking ahead, therefore, neither player 
will defect. Outcome: The players stay at the 
cooperative outcome.

3.	 When play starts at one of the win-lose out-
comes (best for one player, worst for the other), 
the player doing best will know that if he is 
not magnanimous, and consequently does not 
move to the cooperative outcome, his oppo-
nent will move to the noncooperative outcome, 
inflicting on the best-off player his next-worst 
outcome. Therefore, it is in the best-off play-
er’s interest, as well as his opponent’s, that he 
act magnanimously, anticipating that if he does 
not, the noncooperative outcome (next-worst 
for both), rather than the cooperative outcome 
(next-best for both), will be chosen. Outcome: 
The best-off player will move to the coopera-
tive outcome, where play will remain.

Such rational moves are not beyond the pale of most 
players. Indeed, they are frequently made by those who 
look beyond the immediate consequences of their own 
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choices. Such far-sighted players can escape the dilemma 
in PD, as well as poor outcomes in other variable-sum 
games, provided play does not begin noncooperatively. 
Hence, TOM does not predict unconditional cooperation 
in PD but, instead, makes it a function of the starting 
point of play.

Biological Applications

One fascinating and unexpected application of game 
theory in general, and PD in particular, occurs in biology. 
When two males confront each other, whether compet-
ing for a mate or for some disputed territory, they can 
behave either like “hawks”—fighting until one is maimed, 
killed, or flees—or like “doves”—posturing a bit but leav-
ing before any serious harm is done. (In effect, the doves 
cooperate while the hawks do not.) Neither type of 
behaviour, it turns out, is ideal for survival: A species 
containing only hawks would have a high casualty rate, 
and a species containing only doves would be vulnerable 
to an invasion by hawks or a mutation that produces 
hawks, because the population growth rate of the com-
petitive hawks would be much higher initially than that 
of the doves.

Thus, a species with males consisting exclusively of 
either hawks or doves is vulnerable. The English biologist 
John Maynard Smith showed that a third type of male 
behaviour, which he called “bourgeois,” would be more 
stable than that of either pure hawks or pure doves. A 
bourgeois may act like either a hawk or a dove, depending 
on some external cues. For example, it may fight tena-
ciously when it meets a rival in its own territory but yield 
when it meets the same rival elsewhere. In effect, bour-
geois animals submit their conflict to external arbitration 
to avoid a prolonged and mutually destructive struggle.
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Smith constructed a payoff matrix in which various pos-
sible outcomes (e.g., death, maiming, successful mating), 
and the costs and benefits associated with them (e.g., cost 
of lost time), were weighted in terms of the expected num-
ber of genes propagated. Smith showed that a bourgeois 
invasion would be successful against a completely hawk 
population by observing that when a hawk confronts a 

Table 5: Bourgeois, or mixed attack/retreat behaviour, is the most stable strat-
egy for a population. This strategy resists invasion by either hawks (which 
always attack) or doves (which always retreat). Conversely, an all-hawk 
or all-dove population can be successfully invaded by bourgeois individuals 
because their expected payoff is higher (in terms of offspring) than either pure 
strategy. Encyclopædia Britannica, Inc.
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hawk it loses 5, whereas a bourgeois loses only 2.5. (Because 
the population is assumed to be predominantly hawk, 
the success of the invasion can be predicted by compar-
ing the average number of offspring a hawk will produce 
when it confronts another hawk with the average number 
of offspring a bourgeois will produce when confronting a 
hawk.) Patently, a bourgeois invasion against a completely 
dove population would be successful as well, gaining the 
bourgeois 6 offspring. A completely bourgeois population 
cannot be invaded by either hawks or doves, however, 
because the bourgeois gets 5 against bourgeois, which is 
more than either hawks or doves get when confronting 
bourgeois. Note in this application that the question is 
not what strategy a rational player will choose—animals 
are not assumed to make conscious choices, though their 
types may change through mutation—but what combina-
tions of types are stable and hence likely to evolve.

Smith gave several examples that showed how the 
bourgeois strategy is used in practice. For example, male 
speckled wood butterflies seek sunlit spots on the forest 
floor where females are often found. There is a shortage of 
such spots, however, and in a confrontation between a 
stranger and an inhabitant, the stranger yields after a brief 
duel in which the combatants circle one another. The 
dueling skills of the adversaries have little effect on the 
outcome. When one butterfly is forcibly placed on anoth-
er’s territory so that each considers the other the aggressor, 
the two butterflies duel with righteous indignation for a 
much longer time.

N-person games

Theoretically, n-person games in which the players are not 
allowed to communicate and make binding agreements 
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are not fundamentally different from two-person nonco-
operative games. In the two examples that follow, each 
involving three players, one looks for Nash equilibria—that 
is, stable outcomes from which no player would normally 
depart because to do so would be disadvantageous.

Sequential and Simultaneous Truels

As an example of an n-person noncooperative game, imag-
ine three players, A, B, and C, situated at the corners of an 
equilateral triangle. They engage in a truel, or three-per-
son duel, in which each player has a gun with one bullet. 
Assume that each player is a perfect shot and can kill one 
other player at any time. There is no fixed order of play, 
but any shooting that occurs is sequential: No player fires 
at the same time as any other. Consequently, if a bullet is 
fired, the results are known to all players before another 
bullet is fired.

Suppose that the players order their goals as follows: 
(1) survive alone; (2) survive with one opponent; (3) survive 
with both opponents; (4) not survive, with no opponents 
alive; (5) not survive, with one opponent alive; and (6) not 
survive, with both opponents alive. Thus, surviving alone 
is best, dying alone is worst.

If a player can either fire or not fire at another player, 
who, if anybody, will shoot whom? It is not difficult to see 
that outcome (3), in which nobody shoots, is the unique 
Nash equilibrium—any player that departs from not 
shooting does worse. Suppose, on the contrary, that A 
shoots B, hoping for A’s outcome (2), whereby he and C 
survive. Now, however, C can shoot a disarmed A, thereby 
leaving himself as the sole survivor, or outcome (1). As this 
is A’s penultimate outcome (5), in which A and one oppo-
nent (B) are killed while the other opponent (C) lives, A 
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should not fire the first shot. The same reasoning applies 
to the other two players. Consequently, nobody will shoot, 
resulting in outcome (3), in which all three players survive.

Now consider whether any of the players can do bet-
ter through collusion. Specifically, assume that A and B 
agree not to shoot each other, and if either shoots another 
player, they agree it would be C. Nevertheless, if A shoots 
C (for instance), B could now repudiate the agreement 
with impunity and shoot A, thereby becoming the sole 
survivor.

Thus, thinking ahead about the unpleasant conse-
quences of shooting first or colluding with another player 
to do so, nobody will shoot or collude. Thereby all players 
will survive if the players must act in sequence, giving out-
come (3). Because no player can do better by shooting, or 
saying they will do so to another, these strategies yield a 
Nash equilibrium.

Next, suppose that the players act simultaneously. 
Hence, they must decide in ignorance of each others’ 
intended actions. This situation is common in life. People 
often must act before they find out what others are doing. 
In a simultaneous truel there are three possibilities, 
depending on the number of rounds and whether or not 
this number is known:

1.	 One round. Now everybody will find it rational 
to shoot an opponent at the start of play. This 
is because no player can affect his own fate, 
but each does at least as well, and sometimes 
better, by shooting another player—whether 
the shooter lives or dies—because the num-
ber of surviving opponents is reduced. Hence, 
the Nash equilibrium is that everybody will 
shoot. When each player chooses his target 



181

7 Game Theory 7

at random, it is easy to see that each has a 25 
percent chance of surviving. Consider player 
A. He will die if B, C, or both shoot him (three 
cases), compared with his surviving if B and C 
shoot each other (one case). Altogether, one of 
A, B, or C will survive with probability 75 per-
cent, and nobody will survive with probability 
25 percent (when each player shoots a differ-
ent opponent). Outcome: There will always be 
shooting, leaving one or no survivors.

2.	 N rounds (n  ≥  2 and known). Assume that 
nobody has shot an opponent up to the penul-
timate, or (n  −  1)st, round. Then, on the 
penultimate round, either of at least two play-
ers will rationally shoot or none will. First, 
consider the situation in which an opponent 
shoots A. Clearly, A can never do better than 
shoot, because A is going to be killed anyway. 
Moreover, A does better to shoot at whichever 
opponent (there must be at least one) that is 
not a target of B or C. Conversely, suppose that 
nobody shoots A. If B and C shoot each other, 
A has no reason to shoot (although A cannot 
be harmed by doing so). However, if one oppo-
nent, say B, holds his fire, and C shoots B, A 
again cannot do better than hold his fire also, 
because he can eliminate C on the next round. 
(Note that C, because it has already fired his 
only bullet, does not threaten A.) Finally, sup-
pose that both B and C hold their fire. If A 
shoots an opponent, say B, his other opponent, 
C, will eliminate A on the last, or nth, round. 
But if A holds his fire, the game passes onto the 
nth round and, as previously discussed in (1), A 
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has a 25 percent chance of surviving, assuming 
random choices. Thus, if nobody else shoots on 
the (n  −  1)st round, A again cannot do better 
than hold his fire during this round. Whether 
the players refrain from shooting on the (n − 1)
st round or not—each strategy may be a best 
response to what the other players do—shoot-
ing will be rational on the nth round if there is 
more than one survivor and at least one player 
has a bullet remaining. Moreover, the anticipa-
tion of shooting on the (n  −1)st or nth round 
may cause players to fire earlier, perhaps even 
back to the first and second rounds. Outcome: 
There will always be shooting, leaving one or 
no survivors.

3.	 N rounds (n unlimited). The new wrinkle here 
is that it may be rational for no player to shoot 
on any round, leading to the survival of all three 
players. How can this happen? The preceding 
argument in (1) that “if you are shot at, you 
might as well shoot somebody” still applies. 
However, even if you are, say, A, and B shoots 
C, you cannot do better than shoot B, making 
yourself the sole survivor—outcome (1). As 
before, you do best—whether you are shot at or 
not—if you shoot somebody who is not the tar-
get of anybody else, beginning on the first 
round. Suppose, however, that B and C refrain 
from shooting in the first round, and consider 
A’s situation. Shooting an opponent is not 
rational for A on the first round because the 
surviving opponent will then shoot A on the 
next round (there will always be a next round if 
n is unlimited). If all the players hold their fire, 
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and continue to do so in subsequent rounds, 
however, all three players will remain alive. 
Although there is no “best” strategy in all situa-
tions, the possibilities of survival will increase 
if n is unlimited. Outcome: There may be zero, 
one (any of A, B, or C), or three survivors, but 
never two. To summarize, shooting is never 
rational in a sequential truel, whereas it is 
always rational in a simultaneous truel that 
goes only one round. Thus, “nobody shoots” 
and “everybody shoots” are the Nash equilibria 
in these two kinds of truels. In simultaneous 
truels that go more than one round, by com-
parison, there are multiple Nash equilibria. If 
the number of rounds is known, then there is 
one Nash equilibrium in which a player shoots, 
and one in which he does not, at the start, but 
in the end there will be only one or no survi-
vors. When the number of rounds is unlimited, 
however, a new Nash equilibrium is possible in 
which nobody shoots on any round. Thus, like 
PD with an uncertain number of rounds, an 
unlimited number of rounds in a truel can lead 
to greater cooperation.

Power in Voting: The Paradox of  
the Chair’s Position

Many applications of n-person game theory are concerned 
with voting, in which strategic calculations are often ram-
pant. Surprisingly, these calculations can result in the 
ostensibly most powerful player in a voting body being 
hurt. For example, assume the chair of a voting body, while 
not having more votes than other members, can break 
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ties. This would seem to make the chair more powerful, 
but it turns out that the possession of a tie-breaking vote 
may backfire, putting the chair at a disadvantage relative 
to the other members. In this manner the greater resources 
that a player has may not always translate into greater 
power, which here will mean the ability of a player to 
obtain a preferred outcome.

In the three-person noncooperative voting game to 
be analyzed, players are assumed to rank the possible out-
comes that can occur. The problem in finding a solution is 
not a lack of Nash equilibria, but too many. So the ques-
tion becomes: Which, if any, are likely to be selected by the 
players? Specifically, is one more appealing than the others? 
The answer is “yes,” but it requires extending the idea of a 
sure-thing strategy to its successive application in differ-
ent stages of play.

To illustrate the chair’s problem, suppose there are 
three voters (X, Y, and Z) and three voting alternatives (x, 
y, and z). Assume that voter X prefers x to y and y to z, 
indicated by xyz. Voter Y’s preference is yzx, and voter Z’s 
is zxy. These preferences give rise to what is known as a 
Condorcet voting paradox because the social ordering, 
according to majority rule, is intransitive. Although a 
majority of voters (X and Z) prefers x to y, and a majority 
(X and Y) prefers y to z, a majority (Y and Z) also prefers z 
to x. (The French Enlightenment philosopher Marie-Jean-
Antoine-Nicolas Condorcet first examined such voting 
paradoxes following the French Revolution.) So there is 
no Condorcet winner—that is, an alternative that would 
beat every other choice in separate pairwise contests.

Assume that a simple plurality determines the winning 
alternative. Furthermore, in the event of a three-way tie 
(there can never be a two-way tie if there are three votes), 
assume that the chair, X, can break the tie, giving the chair 
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what would appear to be an edge over the other two voters, 
Y and Z, who have the same one vote but no tie-breaker.

Under sincere voting, everyone votes for his or her 
first choice, without taking into account what the other 
voters might do. In this case, voter X will get his first 
choice (x) by being able to break a three-way tie in favour 
of x. However, X’s apparent advantage will disappear if 
voting is “sophisticated.”

To see why, first note that X has a sure-thing, or domi-
nant, strategy of “vote for x.” It is never worse and 
sometimes better than any other strategy, whatever the 

Table 6: First reduction table. Encyclopædia Britannica, Inc.
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other two voters do. Thus, if the other two voters vote for 
the same alternative, x will win. X cannot do better than 
vote sincerely for x, so voting sincerely is never worse. If 
the other two voters disagree, however, X’s tie-breaking 
vote (along with his regular vote) will be decisive in x’s 
selection, which is X’s best outcome.

Given the dominant-strategy choice of x on the part of 
X, then Y and Z face reduced strategy choices. (It is a 
reduction because X’s strategy of voting for x is taken as a 
given.) In this reduction, Y has one, and Z has two, domi-
nated strategies (indicated by D), which are never better 
and sometimes worse than some other strategy, whatever 
the other two voters do. For example, observe that “vote 
for x” by Y always leads to his worst outcome, x. This 
leaves Y with two undominated strategies, “vote for y” and 
“vote for z,” which are neither dominant nor dominated 
strategies: “Vote for y” is better than “vote for z” if Z 
chooses y (leading to y rather than x), whereas the reverse 
is the case if Z chooses z (leading to z rather than x). By 
contrast, Z has a dominant strategy of “vote for z,” which 
leads to outcomes at least as good as and sometimes better 
than his other two strategies.

When voters have complete information about each 
other’s preferences, they will eliminate the dominated 
strategies in the first reduction. The elimination of these 
strategies gives the second reduction matrix. Then Y, 
choosing between “vote for y” and “vote for z” in this 
matrix, would eliminate the now dominated “vote for y” 
because that choice would result in x’s winning as a result 
of the chair’s tie-breaking vote. Instead, Y would choose 
“vote for z,” ensuring z’s election, which is the next-best 
outcome for Y. In this manner z, which is not the first 
choice of a majority and could in fact be beaten by y in a 
pairwise contest, becomes the sophisticated outcome, 
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which is the outcome produced by the successive elimina-
tion of dominated strategies by the voters (beginning with 
X’s sincere choice of x).

Sophisticated voting results in a Nash equilibrium 
because none of the players can do better by departing 
from their sophisticated strategy. This is clearly true for 
X, because x is his dominant strategy; given X’s choice of 
x, z is dominant for Z; and given these choices by X and 
Z, z is dominant for Y. These “contingent” dominance 
relations, in general, make sophisticated strategies a 
Nash equilibrium.

Observe, however, that there are four other Nash 
equilibria in this game. First, the choice of each of x, y, or 
z by all three voters are all Nash equilibria, because no 
single voter’s departure can change the outcome to a 

Table 7: Second reduction table. Encyclopædia Britannica, Inc.
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different one, much less a better one, for that player. In 
addition, the choice of x by X, y by Y, and x by Z—result-
ing in x—is also a Nash equilibrium, because no voter’s 
departure would lead to his obtaining a better outcome.

In game-theoretic terms, sophisticated voting pro-
duces a different and smaller game in which some formerly 
undominated strategies in the larger game become domi-
nated in the smaller game. The removal of such 
strategies—sometimes in several successive stages—can 
enable each voter to determine what outcomes are likely. 
In particular, sophisticated voters can foreclose the pos-
sibility that their worst outcomes will be chosen by 
successively removing dominated strategies, given the 
presumption that other voters will do likewise.

How does sophisticated voting affect the chair’s pre-
sumed extra voting power? Observe that the chair’s 
tie-breaking vote is not only not helpful but positively 
harmful: It guarantees that X’s worst outcome (z) will be 
chosen if voting is sophisticated. When voters’ prefer-
ences are not so conflictual (note that the three voters 
have different first, second, and third choices when, as 
here, there is a Condorcet voting paradox), the paradox of 
the chair’s position does not occur, making this paradox 
the exception rather than the rule.

The von Neumann–Morgenstern Theory

Von Neumann and Morgenstern were the first to con-
struct a cooperative theory of n-person games. They 
assumed that various groups of players might join 
together to form coalitions, each of which has an associ-
ated value defined as the minimum amount that the 
coalition can ensure by its own efforts. (In practice, such 
groups might be blocs in a legislative body or business 
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partners in a conglomerate.) They described these n-per-
son games in characteristic-function form—that is, by 
listing the individual players (one-person coalitions), all 
possible coalitions of two or more players, and the values 
that each of these coalitions could ensure if a counter-
coalition comprising all other players acted to minimize 
the amount that the coalition can obtain. They also 
assumed that the characteristic function is superadditive: 
The value of a coalition of two formerly separate coali-
tions is at least as great as the sum of the separate values of 
the two coalitions.

The sum of payments to the players in each coalition 
must equal the value of that coalition. Moreover, each 
player in a coalition must receive no less than what he 
could obtain playing alone; otherwise, he would not join 
the coalition. Each set of payments to the players describes 
one possible outcome of an n-person cooperative game 
and is called an imputation. Within a coalition S, an impu-
tation X is said to dominate another imputation Y if each 
player in S gets more with X than with Y and if the players 
in S receive a total payment that does not exceed the coali-
tion value of S. This means that players in the coalition 
prefer the payoff X to the payoff Y and have the power to 
enforce this preference.

Von Neumann and Morgenstern defined the solution 
to an n-person game as a set of imputations satisfying two 
conditions: (1) No imputation in the solution dominates 
another imputation in the solution, and (2) any imputa-
tion not in the solution is dominated by another one in 
the solution. A von Neumann–Morgenstern solution is 
not a single outcome but, rather, a set of outcomes, any 
one of which may occur. It is stable because, for the mem-
bers of the coalition, any imputation outside the solution 
is dominated by (and is therefore less attractive than) an 
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imputation within the solution. The imputations within 
the solution are viable because they are not dominated by 
any other imputations in the solution.

In any given cooperative game there are generally 
many—sometimes infinitely many—solutions. A simple 
three-person game that illustrates this fact is one in which 
any two players, as well as all three players, receive one 
unit, which they can divide between or among themselves 
in any way that they wish. Individual players receive noth-
ing. In such a case the value of each two-person coalition, 
and the three-person coalition as well, is 1.

One solution to this game consists of three imputa-
tions, in each of which one player receives 0 and the other 
two players receive 1/2 each. There is no self-domination 
within the solution, because if one imputation is substi-
tuted for another, one player gets more, one gets less, and 
one gets the same (for domination, each of the players 
forming a coalition must gain). In addition, any imputa-
tion outside the solution is dominated by one in the 
solution, because the two players with the lowest payoffs 
must each get less than 1/2. Clearly, this imputation is 
dominated by an imputation in the solution in which these 
two players each get 1/2. According to this solution, at any 
given time one of its three imputations will occur, but von 
Neumann and Morgenstern do not predict which one.

A second solution to this game consists of all the impu-
tations in which player A receives 1/4 and players B and 
C share the remaining 3/4. Although this solution gives a 
different set of outcomes from the first solution, it, too, 
satisfies von Neumann and Morgenstern’s two conditions. 
For any imputation within the solution, player A always 
gets 1/4 and therefore cannot gain. In addition, because 
players B and C share a fixed sum, if one of them gains 
in a proposed imputation, the other must lose. Thus, no 
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imputation in the solution dominates another imputation 
in the solution.

For any imputation not in the solution, player A must 
get either more or less than 1/4. When A gets more than 
1/4, players B and C share less than 3/4 and, therefore, can 
do better with an imputation within the solution. When 
player A gets less than 1/4, say 1/8, he always does better 
with an imputation in the solution. Players B and C now 
have more to share, but no matter how they split the new 
total of 7/8, there is an imputation in the solution that one 
of them will prefer. When they share equally, each gets 
7/16, but player B, for example, can get more in the impu-
tation (1/4, 1/2, 1/4), which is in the solution. When players 
B and C do not divide the 7/8 equally, the player who gets 
the smaller amount can always do better with an imputa-
tion in the solution. Thus, any imputation outside the 
solution is dominated by one inside the solution. Similarly, 
it can be shown that all of the imputations in which player 
B gets 1/4 and players A and C share 3/4, as well as the set 
of all imputations in which player C gets 1/4 and players A 
and B share 3/4, also constitute a solution to the game.

Although there may be many solutions to a game (each 
representing a different “standard of behaviour”), it was 
not apparent at first that there would always be at least 
one in every cooperative game. Von Neumann and 
Morgenstern found no game without a solution, and they 
deemed it important that no such game exists. However, 
in 1967 a fairly complicated 10-person game was discov-
ered by the American mathematician William F. Lucas 
that did not have a solution. This and later counterexam-
ples indicated that the von Neumann–Morgenstern 
solution is not universally applicable, but it remains com-
pelling, especially because no definitive theory of n-person 
cooperative games exists.
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The Banzhaf Value in Voting Games

It was shown that power defined as control over outcomes 
is not synonymous with control over resources, such as a 
chair’s tie-breaking vote. The strategic situation facing 
voters intervenes and may cause them to reassess their 
strategies in light of the additional resources that the chair 
possesses. In doing so, they may be led to “gang up” against 
the chair. (Note that Y and Z do this without any explicit 
communication or binding agreement. The coalition they 
form against the chair X is an implicit one and the game, 
therefore, remains noncooperative.) In effect, the chair’s 
resources become a burden to bear, not power to relish.

When players’ preferences are unknown beforehand, 
though, it is useful to define power in terms of their abil-
ity to alter the outcome by changing their votes, as 
governed by a constitution, bylaws, or other rules of the 
game. Various measures of voting power have been pro-
posed for simple games, in which every coalition has a 
value of 1 (if it has enough votes to win) or 0 (if it does 
not). The sum of the powers of all the players is 1. When 
a player has 0 power, his vote has no influence on the out-
come. When a player has a power of 1, the outcome 
depends only on his vote. The key to calculating voting 
power is determining the frequency with which a player 
casts a critical vote.

American attorney John F. Banzhaf III proposed that 
all combinations in which any player is the critical voter—
that is, in which a measure passes only with this voter’s 
support—be considered equally likely. The Banzhaf value 
for each player is then the number of combinations in 
which this voter is critical divided by the total number of 
combinations in which each voter (including this one)  
is critical.
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This view is incompatible with defining the voting 
power of a player to be proportional to the number of 
votes he casts, because votes per se may have little or no 
bearing on the choice of outcomes. For example, in a 
three-member voting body in which A has 4 votes, B 2 
votes, and C 1 vote, members B and C will be powerless if a 
simple majority wins. The fact that members B and C 
together control 3/7 of the votes is irrelevant in the selec-
tion of outcomes, so these members are called dummies. 
Member A, by contrast, is a dictator by virtue of having 
enough votes alone to determine the outcome. A voting 
body can have only one dictator, whose existence renders 
all other members dummies, but there may be dummies 
and no dictator (an example is given in the following text).

A minimal winning coalition (MWC) is one in which 
the subtraction of at least one of its members renders it 
losing. To illustrate the calculation of Banzhaf values, con-
sider a voting body with two 2-vote members (distinguished 
as 2a and 2b) and one 3-vote member, in which a simple 
majority wins. There are three distinct MWCs—(3,  2a), 
(3, 2b), and (2a, 2b)—or combinations in which some voter 
is critical. The grand coalition, comprising all three mem-
bers, (3, 2a, 2b), is not an MWC because no single member’s 
defection would cause it to lose.

Because each member’s defection is critical in two 
MWCs, each member’s proportion of voting power is 
two-sixths, or one-third. Thus, the Banzhaf index, which 
gives the Banzhaf values for each member in vector form, 
is (1/3,  1/3,  1/3). Clearly, the voting power of the 3-vote 
member is the same as that of each of the two 2-vote mem-
bers, although the 3-vote member has 50 percent greater 
weight (more votes) than each of the 2-vote members.

The discrepancy between voting weight and voting 
power is more dramatic in the voting body (50,  49,  1) 
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where, again, a simple majority wins. The 50-vote member 
is critical in all three MWCs—(50,  1), (50,  49), and 
(50, 49, 1), giving him a veto because his presence is neces-
sary for a coalition to be winning—whereas the 49-vote 
member is critical in only (50, 49) and the 1-vote member 
in only (50,  1). Thus, the Banzhaf index for (50,  49,  1) is 
(3/5,  1/5,  1/5), making the 49-vote member indistinguish-
able from the 1-vote member. The 50-vote member, with 
just one more vote than the 49-vote member, has three 
times as much voting power.

In 1958 six West European countries formed the 
European Economic Community (EEC). The three large 
countries (West Germany, France, and Italy) each had 4 
votes on its Council of Ministers, the two medium-size 
countries (Belgium and The Netherlands) 2 votes each, 
and the one small country (Luxembourg) 1 vote. The deci-
sion rule of the Council was a qualified majority of 12 out 
of 17 votes, giving the large countries Banzhaf values of 
5/21 each, the medium-size countries 1/7 each, and—
amazingly—Luxembourg no voting power at all. From 
1958 to 1973—when the EEC admitted three additional 
members—Luxembourg was a dummy. Luxembourg 
might as well not have gone to Council meetings except to 
participate in the debate, because its one vote could never 
change the outcome. To see this without calculating the 
Banzhaf values of all the members, note that the votes of 
the five other countries are all even numbers. Therefore, 
an MWC with exactly 12 votes could never include 
Luxembourg’s (odd) 1 vote. Although a 13-vote MWC that 
included Luxembourg could form, Luxembourg’s defec-
tion would never render such an MWC losing. It is worth 
noting that as the Council kept expanding with the addi-
tion of new countries and the formation of the European 
Union, Luxembourg never reverted to being a dummy, 
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even though its votes became an ever smaller proportion 
of the total.

The Banzhaf and other power indices, rooted in coop-
erative game theory, have been applied to many voting 
bodies, not necessarily weighted, sometimes with surpris-
ing results. For example, the Banzhaf index has been used 
to calculate the power of the 5 permanent and 10 nonper-
manent members of the United Nations Security Council. 
(The permanent members, all with a veto, have 83 percent 
of the power.) It has also been used to compare the power 
of representatives, senators, and the president in the U.S. 
federal system.

Banzhaf himself successfully challenged the constitu-
tionality of the weighted-voting system used in Nassau 
county, New York, showing that three of the County 
Board’s six members were dummies. Likewise, the for-
mer Board of Estimate of New York City, in which three 
citywide officials (mayor, chair of the city council, and 
comptroller) had two votes each and the five borough 
presidents had one vote each, was declared uncon-
stitutional by the U.S. Supreme Court. Brooklyn had 
approximately six times the population of Staten Island 
but the same one vote on the Board, in violation of the 
equal-protection clause of the 14th Amendment of the 
U.S. Constitution that requires “one person, one vote.” 
Finally, it has been argued that the U.S. Electoral College, 
which is effectively a weighted voting body because 
almost all states cast their electoral votes as blocs, vio-
lates one person, one vote in presidential elections, 
because voters from large states have approximately 
three times as much voting power, on a per-capita basis, 
as voters from small states.

Game theory is now well established and widely used 
in a variety of disciplines. The foundations of economics, 
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for example, are increasingly grounded in game theory. 
Among game theory’s many applications in economics is 
the design of Federal Communications Commission auc-
tions of airwaves, which have netted the U.S. government 
billions of dollars. Game theory is increasingly used in 
political science to study strategy in areas as diverse as 
campaigns and elections, defense policy, and international 
relations. In biology, business, management science, com-
puter science, and law, game theory has been used to model 
a variety of strategic situations. Game theory has even 
penetrated areas of philosophy (e.g., to study the equilib-
rium properties of ethical rules), religion (e.g., to interpret 
Bible stories), and pure mathematics (e.g., to analyze how 
to divide a cake fairly among n people). All in all, game 
theory holds out great promise not only for advancing the 
understanding of strategic interaction in very different 
settings but also for offering prescriptions for the design 
of better auction, bargaining, voting, and information sys-
tems that involve strategic choice.
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CHAPTER 5
CoMBInAtoRICs

      Combinatorics is the fi eld of mathematics concerned 
with problems of selection, arrangement, and opera-

tion within a fi nite or discrete system. This section also 
includes the closely related area of combinatorial geometry. 

 One of the basic problems of combinatorics is to 
determine the number of possible confi gurations (e.g., 
graphs, designs, arrays) of a given type. Even when the 
rules specifying the confi guration are relatively simple, 
enumeration may sometimes present formidable diffi cul-
ties. The mathematician may have to be content with 
fi nding an approximate answer or at least a good lower and 
upper bound. 

 In mathematics, generally, an entity is said to “exist” if 
a mathematical example satisfi es the abstract properties 
that defi ne the entity. In this sense it may not be apparent 
that even a single confi guration with certain specifi ed 
properties exists. This situation gives rise to problems of 
existence and construction. There is again an important 
class of theorems that guarantee the existence of certain 
choices under appropriate hypotheses. Besides their 
intrinsic interest, these theorems may be used as existence 
theorems in various combinatorial problems. 

 Finally, there are problems of optimization. As an 
example, a function  f , the economic function, assigns the 
numerical value  f ( x ) to any confi guration  x  with certain 
specifi ed properties. In this case the problem is to choose 
a confi guration  x  0  that minimizes  f ( x ) or makes it ε = mini-
mal—that is, for any number ε > 0,  f ( x  0 )  f ( x ) + ε, for all 
confi gurations  x , with the specifi ed properties.   
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History

Since ancient times in cultures ranging from China 
to Persia, combinatorial problems have inspired and 
puzzled mathematicians. Even in our own day, the fiend-
ish game of Sudoku has inspired millions to dabble in 
combinatorics.

Early Developments

Certain types of combinatorial problems have attracted 
the attention of mathematicians since early times. Magic 
squares, for example, which are square arrays of numbers 
with the property that the rows, columns, and diagonals 
add up to the same number, occur in the I Ching, a Chinese 
book dating back to the 12th century BCE. The binomial 

Millions of unwitting Sudoku addicts play at combinatorics every day. 
Shutterstock.com
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coefficients, or integer coefficients in the expansion of 
(a + b)n, were known to the 12th-century Indian mathe-
matician Bhāskara, who in his Līlāvatī (“The Graceful”), 
dedicated to a beautiful woman, gave the rules for calcu-
lating them together with illustrative examples. “Pascal’s 
triangle,” a triangular array of binomial coefficients, had 
been taught by the 13th-century Persian philosopher Nas·īr 
ad-Dīn al·-T· ūsī.

In the West, combinatorics may be considered to 
begin in the 17th century with Blaise Pascal and Pierre 
de Fermat, both of France, who discovered many clas-
sical combinatorial results in connection with the 
development of the theory of probability. The term combi-
natorial was first used in the modern mathematical sense 
by the German philosopher and mathematician Gottfried 
Wilhelm Leibniz in his Dissertatio de Arte Combinatoria 
(“Dissertation Concerning the Combinational Arts”). 
He foresaw the applications of this new discipline to the 
whole range of the sciences. The Swiss mathematician 
Leonhard Euler was finally responsible for the develop-
ment of a school of authentic combinatorial mathematics 
beginning in the 18th century. He became the father of 
graph theory when he settled the Königsberg bridge 
problem, and his famous conjecture on Latin squares was 
not resolved until 1959.

In England, Arthur Cayley, near the end of the 19th 
century, made important contributions to enumerative 
graph theory, and James Joseph Sylvester discovered 
many combinatorial results. At about the same time, 
the British mathematician George Boole used combina-
torial methods in connection with the development of 
symbolic logic, and the combinatorial ideas and meth-
ods of Henri Poincaré, which developed in the early part 
of the 20th century in connection with the problem of 
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n bodies, have led to the discipline of topology, which 
occupies the centre of the stage of mathematics. Many 
combinatorial problems were posed during the 19th cen-
tury as purely recreational problems and are identified 
by such names as “the problem of eight queens” and “the 
Kirkman school girl problem.” Conversely, the study of 
triple systems begun by Thomas P. Kirkman in 1847 and 
pursued by Swiss-born German mathematician Jakob 
Steiner in the 1850s was the beginning of the theory of 
design. Among the earliest books devoted exclusively to 
combinatorics are the German mathematician Eugen 
Netto’s Lehrbuch der Combinatorik (1901; “Textbook of 
Combinatorics”) and the British mathematician Percy 
Alexander MacMahon’s Combinatory Analysis (1915–16), 
which provide a view of combinatorial theory as it 
existed before 1920.

Combinatorics During the 20th Century

Many factors have contributed to the quickening pace 
of development of combinatorial theory since 1920. 
One of these was the development of the statistical the-
ory of the design of experiments by the English 
statisticians Ronald Fisher and Frank Yates, which has 
given rise to many problems of combinatorial interest. 
The methods initially developed to solve them have 
found applications in such fields as coding theory. 
Information theory, which arose around midcentury, 
has also become a rich source of combinatorial prob-
lems of a quite new type.

Another source of the revival of interest in combina-
torics is graph theory, the importance of which lies in the 
fact that graphs can serve as abstract models for many dif-
ferent kinds of schemes of relations among sets of objects. 
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Its applications extend to operations research, chemistry, 
statistical mechanics, theoretical physics, and socioeco-
nomic problems. The theory of transportation networks 
can be regarded as a chapter of the theory of directed 
graphs. One of the most challenging theoretical problems, 
the four-colour problem belongs to the domain of graph 
theory. It has also applications to such other branches of 
mathematics as group theory.

The development of computer technology in the sec-
ond half of the 20th century is a main cause of the interest 
in finite mathematics in general and combinatorial theory 
in particular. Combinatorial problems arise in numerical 
analysis as well as in the design of computer systems and 
the application of computers to such problems as those of 
information storage and retrieval.

Statistical mechanics is one of the oldest and most 
productive sources of combinatorial problems. Much 
important combinatorial work has been done by applied 
mathematicians and physicists since the mid-20th cen-
tury, such as the work on Ising models.

In pure mathematics, combinatorial methods have 
been used with advantage in such diverse fields as proba-
bility, algebra (finite groups and fields, matrix and lattice 
theory), number theory (difference sets), set theory 
(Sperner’s theorem), and mathematical logic (Ramsey’s 
theorem).

In contrast to the wide range of combinatorial prob-
lems and the multiplicity of methods that have been 
devised to deal with them stands the lack of a central 
unifying theory. Unifying principles and cross connec-
tions, however, have begun to appear in various areas 
of combinatorial theory. The search for an underlying 
pattern that may indicate in some way how the diverse 
parts of combinatorics are interwoven is a challenge 
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that faces mathematicians in the first quarter of the 
21st century.   

 pRobleMs of enuMeRaTion   

 Permutations and Combinations   

 Binomial Coefficients 

 An ordered set  a  1 ,  a  2 , . . . ,  a   r   of  r  distinct objects selected 
from a set of  n  objects is called a permutation of  n  things 
taken  r  at a time. The number of permutations is given by 
  n   P   n   =  n ( n  − 1)( n  - 2) · · · ( n  −  r  + 1). When  r  =  n , the number   n   P   r   = 
 n ( n  − 1)( n  − 2) · · · is simply the number of ways of arranging 
 n  distinct things in a row. This expression is called factorial 
 n  and is denoted by  n !. It follows that   n   P   r   =  n !/( n  −  r )!. By 
convention 0! = 1. 

 A set of  r  objects selected from a set of  n  objects with-
out regard to order is called a combination of  n  things 
taken  r  at a time. Because each combination gives rise to  r ! 
permutations, the number of combinations, which is writ-
ten (  n  /  r   ), can be expressed in terms of factorials 
 

.
 

The number (  n  /  r   ) is called a binomial coeffi cient 
because it occurs as the coeffi cient of  p   r   q   n  -  r   in the bino-
mial expansion—that is, the re-expression of ( q  +  p )  n   in a 
linear combination of products of  p  and  q 

.
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  in the binomial expansion is the probability that an event 
the chance of occurrence of which is  p  occurs exactly  r
times in  n  independent trials.  

 The answer to many different kinds of enumeration 
problems can be expressed in terms of binomial coeffi -
cients. The number of distinct solutions of the equation  x  1
+  x  2  + · · · +  x   n   =  m , for example, in which  m  is a non-negative 
integer  m  ≥  n  and in which only non-negative integral val-
ues of  x   i   are allowed is expressible this way, as was found 
by the 17th- and 18th-century French-born British mathe-
matician Abraham De Moivre 
 

.
   

 Multinomial Coefficients 

 If  S  is a set of  n  objects, and  n  1 ,  n  2 , · · · ,  n   k   are non-negative 
integers satisfying  n  1  +  n  2  + · · · +  n   k   =  n , then the number of 
ways in which the objects can be distributed into  k  boxes, 
 X  1 ,  X  2 , · · · ,  X   k  , such that the box  X   i   contains exactly  n   i   
objects is given in terms of a ratio constructed of 
factorials 
 

.

 
  This number, called a multinomial coeffi cient, is the 

coeffi cient in the multinomial expansion of the  n th power 
of the sum of the { p   i  } 
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  If all the {  p   i   } are non-negative and sum to 1 and if 
there are  k  possible outcomes in a trial in which the 
chance of the  i th outcome is  p   i  , then the  i th summand in 
the multinomial expansion is the probability that in  n
independent trials the  i th outcome will occur exactly  n   i

times, for each  i , 1 ≤ 1 ≤    k .    

 Recurrence Relations and 
Generating Functions 

 If  f   n   is a function defi ned on the positive integers, then a 
relation that expresses  f   n + k   as a linear combination of func-
tion values of integer index less than  n  +  k , in which a fi xed 
constant in the linear combination is written  a   i  , is called a 
recurrence relation 
 

.
 

 The relation together with the initial values  f  0 ,  f  1 , · · · , 
 f   k -1  determines  f   n   for all  n . The function  F ( x ) constructed of 
a sum of products of the type  f   n   x   n  , the convergence of 
which is assumed in the neighbourhood of the origin, is 
called the generating function of  f   n   
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.

 
 The set of the fi rst  n  positive integers will be written 

X   n  . It is possible to fi nd the number of subsets of  X   n   con-
taining no two consecutive integers, with the convention 
that the null set counts as one set. The required number 
will be written  f   n  . A subset of the required type is either a 
subset of  X   n -1  or is obtained by adjoining  n  to a subset of 
 X   n -2 . Therefore  f   n   is determined by the recurrence rela-
tion  f   n   =  f   n -1  +  f   n -2  with the initial values  f  0  = 1,  f  1  = 2. Thus  f  2  
= 3,  f  3  = 5,  f  4  = 8, and so on. The generating function  F ( x ) of 
 f   n   can be calculated 
 

, 
 
 and from this a formula for the desired function  f   n   can be 
obtained 

  

  
 

 That  f   n   =  f   n -1  +  f   n -2  can now be directly checked.    

 Partitions 

 A partition of a positive integer  n  is a representation of  n  
as a sum of positive integers  n  =  x  1  +  x  2  + · · · +  x   k  ,  x   i   ≥ 1,  i  = 1, 
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2, · · · ,  k . The numbers  x   i   are called the parts of the parti-
tion. The

for this is the number of ways of putting  k  − 1 separating 
marks in the  n  − 1 spaces between  n  dots in a row. The the-
ory of unordered partitions is much more diffi cult and has 
many interesting features. An unordered partition can be 
standardized by listing the parts in a decreasing order. 
Thus  n  =  x  1  +  x  2  + · · · +  x   k  ,  x  1  ≥  x  2  ≥ · · · ≥  x   k   ≥ 1. In what follows 
partition will mean an unordered partition. 

 The number of partitions of  n  into  k  parts will be 
denoted by  P   k  ( n ), and a recurrence formula for it can be 
obtained from the defi nition 

. 

 This recurrence formula, together with the initial con-
ditions  P   k  ( n ) = 0 if  n  <  k , and  P   k  ( k ) = 1 determines  P   k  ( n ). It can 
be shown that  P   k  ( n ) depends on the value of  n  (mod  k !), in 
which the notation  x  =̄  a  (mod  b ) means that  x  is any number 
that, if divided by  b , leaves the same remainder as  a  does. 
For example,  P  3 ( n ) =  n  2  +  c   n  , in which  c   n   = 0, −1/12, −1/3, +1/4, −1/3, 
or −1/12, according as  n  is congruent to 0, 1, 2, 3, 4, or 5 (mod 
6).  P ( n ), which is a sum over all values of  k  from 1 to  n  of  P   k  ( n ), 
denotes the number of partitions of  n  into  n  or fewer parts.    

 The Ferrers Diagram 

 Many results on partitions can be obtained by the use of 
Ferrers diagram. The diagram of a partition is obtained by 
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putting down a row of squares equal in number to the larg-
est part, then immediately below it a row of squares equal 
in number to the next part, and so on.

By rotating the Ferrers diagram of the partition about 
the diagonal, it is possible to obtain from the partition n = 
x1 + x2 + · · · + xk the conjugate partition n = x1* + x2* + · · · xn*, 
in which xi* is the number of parts in the original partition 
of cardinality i or more. Thus, for example, the conjugate of 
the partition of 14 is 14 = 5 + 4 + 3 + 1 + 1. Hence, the follow-
ing result is obtained:

(F1) The number of partitions of n into k parts is 
equal to the number of partitions of n with k as the 
largest part.

By using the Ferrers diagram, one can attain many results on partitions.
Copyright Encyclopaedia Britannica; rendering for this edition by 
Rosen Educational Services
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 Other results obtainable by using Ferrer diagrams are:   

 (F 2 ) The number of self-conjugate partitions of  n
equals the number of partitions of  n  with all parts 
unequal and odd. 
(F 3 ) the number of partitions of  n  into unequal 
parts is equal to the number of partitions of  n  into 
odd parts.  

 Generating functions can be used with advantage to study 
partitions. For example, it can be proved that:  

 (G 1 ) The generating function  F  1 ( x ) of  P ( n ), the 
number of partitions of the integer  n , is a product 
of reciprocals of terms of the type (1 -  x   k  ), for all 
positive integers  k , with the convention that 
 P (0)=1 :

 
 

 
 

 (G 2 ) The generating function  F  2 ( x ) of the number 
of partitions of  n  into unequal parts is a product of 
terms like (1 +  x   k  ), for all positive integers  k :

 
 
  
 

 (G 3 ) The generating function  F  3 ( x ) of the number 
of partitions of  x  consisting only of odd parts is a 
product of reciprocals of terms of the type (1 -  x   k  ), 
for all positive odd integers  k :
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 Thus to prove (F 3 ) it is necessary only to show that the 
generating functions described in (G 2 ) and (G 3 ) are equal. 
This method was used by Euler.   

 The Principle of Inclusion and Exclusion: 
Derangements 

 For a case in which there are  N  objects and  n  properties 
A  1 ,  A  2 , · · ·  A   n  , the number  N ( A  1 ,  A  2 ), for example, will be 
the number of objects that possess the properties  A  1 ,  A  2 . 
If  N ( Ā  1 ,  Ā  2 , · · · ,  Ā   n   ) is the number of objects possessing 
none of the properties  A  1 ,  A  2 , · · · ,  A   n  , then this number 
can be computed as an alternating sum of sums involving 
the numbers of objects that possess the properties 
 

 

  
 This is the principle of inclusion and exclusion 

expressed by Sylvester.  
 The permutation of  n  elements that displaces each 

object is called a derangement. The permutations them-
selves may be the objects and the property  i  may be the 
property that a permutation does not displace the  i th ele-
ment. In such a case  N  =  n ! and  N ( A  1 ,  A  2 ) = ( n  - 2)!, for 
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example. Hence the number  D   n   of derangements can be 
shown to be approximated by  n !/ e 

 This number was fi rst obtained by Euler. If  n  persons 
check their hats in a restaurant, and the waiter loses the 
checks and returns the hats at random, then the chance 
that no one receives his own hat is  D   n  / n ! =  e  -1  approximately. 
It is surprising that the approximate answer is indepen-
dent of  n . To six places of decimals  e  -1  = 0.367879. When  n  = 
6 the error of approximation is less than 0.0002. 

 If  n  is expressed as the product of powers of its prime 
factors  p  1 ,  p  2 , · · ·  p   k  , if the objects are the integers less than 
or equal to  n , and if  A   i   is the property of being divisible 
by  p   i  , then Sylvester’s formula gives, as the number of 
integers less than  n  and prime to it, a function of  n , writ-
ten ϕ( n ), composed of a product of  n  and  k  factors of the 
type (1 - 1/ p   i  ) 

 

. 
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 The function ϕ( n ) is the Euler function.    

 Polya’s Theorem 

 It is required to make a necklace of  n  beads out of an infi -
nite supply of beads of  k  different colours. The number of 
different necklaces,  c  ( n ,  k ), that can be made is given by 
the reciprocal of  n  times a sum of terms of the type ϕ( n ) 
k   n / d  , in which the summation is over all divisors  d  of  n  and ϕ 
is the Euler function  

. 
 

 Though the problem of the necklaces appears to be 
frivolous, the formula given above can be used to solve a 
diffi cult problem in the theory of Lie algebras, of some 
importance in modern physics.  

 The general problem of which the necklace problem is 
a special case was solved by the Hungarian-born American 
mathematician George Polya in a famous 1937 memoir in 
which he established connections between groups, graphs, 
and chemical bonds. It has been applied to enumeration 
problems in physics, chemistry, and mathematics.   

 The Möbius Inversion Theorem 

 In 1832 the German astronomer and mathematician 
August Ferdinand Möbius proved that if  f  and  g  are func-
tions defi ned on the set of positive integers, such that  f  
evaluated at  x  is a sum of values of  g  evaluated at divisors of 
 x , then inversely  g  at  x  can be evaluated as a sum involving 
 f  evaluated at divisors of  x 
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  In 1964 the American mathematician Gian-Carlo 
Rota obtained a powerful generalization of this theorem, 
providing a fundamental unifying principle of enumera-
tion. One consequence of Rota’s theorem is the following: 
If  f  and  g  are functions defi ned on subsets of a fi nite set  A , 
such that  f ( A ) is a sum of terms  g ( S ), in which  S  is a subset 
of  A , then  g ( A ) can be expressed in terms of  f 

 Special Problems 

 Despite the general methods of enumeration already 
described, there are many problems in which they do not 
apply and therefore require special treatment. Two such 
problems include the Ising problem and the self-avoiding 
random walk.   
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The Ising Problem

A rectangular m × n grid is made up of unit squares, each 
coloured either red or green. How many different colour 
patterns are there if the number of boundary edges 
between red squares and green squares is prescribed?

This problem, although easy to state, proved diffi-
cult to solve. A complete and rigorous solution was not 
achieved until the early 1960s. The importance of the 
problem lies in the fact that it is the simplest model that 
exhibits the macroscopic behaviour expected from cer-
tain natural assumptions made at the microscopic level. 
Historically, the problem arose from an early attempt, 
made in 1925, to formulate the statistical mechanics of 
ferromagnetism. The three-dimensional analogue of the 
Ising problem remains unsolved in spite of persistent 
attacks.

Self-Avoiding Random Walk

A random walk consists of a sequence of n steps of unit 
length on a flat rectangular grid, taken at random either in 
the x- or the y-direction, with equal probability in each of 
the four directions. What is the number Rn of random 
walks that do not touch the same vertex twice? This prob-
lem has defied solution, except for small values of n, 
though a large amount of numerical data has been amassed.

Problems of choice

Systems of Distinct Representatives

Subsets S1, S2, · · · , Sn of a finite set S are said to possess a set 
of distinct representatives if x1, x2, · · · , xn can be found, such 
that xi ∊ Si, i = 1, 2, · · · , n, xi ≠ xj for i ≠ j. It is possible that Si 
and Sj, i ≠ j, may have exactly the same elements and are 
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distinguished only by the indices i, j. In 1935 American 
mathematician, M. Hall, Jr., proved that a necessary and 
sufficient condition for S1, S2, · · · , Sn to possess a system of 
distinct representatives is that, for every kn, any k of the n 
subsets contain between them at least k distinct elements.

For example, the sets S1 = (1, 2, 2), S2 = (1, 2, 4), S3 = (1, 2, 
5), S4 = (3, 4, 5, 6), S5 = (3, 4, 5, 6) satisfy the conditions of the 
theorem, and a set of distinct representatives is x1 = 1, x2 = 
2, x3 = 5, x4 = 3, x5 = 4. Conversely, the sets T1 = (1, 2), T2 = (1, 
3), T3 = (1, 4), T4 = (2, 3), T5 = (2, 4), T6 = (1, 2, 5) do not possess 
a system of distinct representatives because T1, T2, T3, T4, 
T5 possess between them only four elements.

The following theorem resulting from König is closely 
related to Hall’s theorem and can be easily deduced from 
it. Conversely, Hall’s theorem can be deduced from 
König’s: If the elements of rectangular matrix are 0s and 
1s, then the minimum number of lines that contain all of 
the 1s is equal to the maximum number of 1s that can be 
chosen with no two on a line.

Ramsey’s Numbers

If X = {1, 2, . . . , n}, and if T, the family of all subsets of 
X containing exactly r distinct elements, is divided into 
two mutually exclusive families α and β, the following 
conclusion that was originally obtained by the British 
mathematician Frank Plumpton Ramsey follows. He 
proved that for r ≥ 1, p ≤ r, q ≤ r there exists a number Nr(p, 
q) depending solely on p, q, r such that if n > Nr(p, q), there 
is either a subset A of p elements all of the r subsets of 
which are in the family α or there is a subset B of q ele-
ments all of the r subsets of which are in the family β.

The set X can be a set of n persons. For r = 2, T is the 
family of all pairs. If two persons have met each other, 
then the pair can belong to the family α. If two persons 
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have not met, then the pair can belong to the family β. If 
these things are assumed, then, by Ramsey’s theorem, for 
any given p ≥ 2, q ≥ 2 there exists a number N2(p, q) such 
that if n > N2(p, q), then among n persons invited to a party 
there will be either a set of p persons all of whom have met 
each other or a set of q persons no two of whom have met.

Although the existence of Nr(p, q) is known, actual val-
ues are known only for a few cases. Because Nr(p, q) = Nr(q, 
p), it is possible to take p ≤ q. It is known that N2(3, 3) = 6, 
N2(3, 4) = 9, N2(3, 5) = 14, N2(3, 6) = 18, N2(4, 4) = 18. Some 
bounds are also known; for example, 35 ≤ N2(4, 6) ≤ 41.

A consequence of Ramsey’s theorem is the following 
result obtained in 1935 by the Hungarian mathematicians 
Paul Erdös and George Szekeres. For a given integer n 
there exists an integer N = N(n), such that a set of any N 
points on a plane, no three on a line, contains n points 
forming a convex n-gon.

Design theory

BIB (Balanced Incomplete Block) Designs

A design is a set of T = {1, 2, . . . , υ} objects called treatments 
and a family of subsets B1, B2, . . . , Bb of T, called blocks, 
such that the block Bi contains exactly ki treatments, all 
distinct. The number ki is called the size of the block Bi, 
and the ith treatment is said to be replicated ri times if it 
occurs in exactly ri blocks. Specific designs are subject to 
further constraints. The name design comes from statisti-
cal theory in which designs are used to estimate effects of 
treatments applied to experimental units.

A BIB design is a design with υ treatments and b blocks 
in which each block is of size k, each treatment is repli-
cated r times, and every pair of distinct treatments occurs 
together in λ blocks. The design is said to have the 
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parameters (υ,  b ,  r ,  k , λ). Some basic relations are easy to 
establish  

. 
 

 These conditions are necessary but not suffi cient for 
the existence of the design. The design is said to be proper if 
 k  < υ—that is, the blocks are incomplete. For a proper BIB 
design Fisher’s inequality  b  ≥ υ, or equivalently  r  ≥  k , holds.  

 A BIB design is said to be symmetric if υ =  b , and con-
sequently  r  =  k . Such a design is called a symmetric (υ,  k , λ) 
design, and λ(υ − 1) =  k ( k  − 1). A necessary condition for the 
existence of a symmetric (υ,  k , λ) design is given by the 
following: 

A.  If υ is even,  k  − λ is a perfect square. 
B.  If υ is odd, a certain Diophantine equation 

 

 
  has a solution in integers not all zero.   

 For example, the designs (υ,  k , λ) = (22, 7, 2) and (46, 10, 
2) are ruled out by (A) and the design (29, 8, 2) by (B). 
Because necessary and suffi cient conditions for the exis-
tence of a BIB design with given parameters are unknown, 
it is often a diffi cult problem to decide whether a design 
with given parameters (satisfying the known necessary 
conditions) really exists.  

 Methods of constructing BIB designs depend on the 
use of fi nite fi elds, fi nite geometries, and number theory. 
Some general methods were given in 1939 by the Indian 
mathematician Raj Chandra Bose, who has since emi-
grated to the United States. 
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 A fi nite fi eld is a fi nite set of marks with two opera-
tions, addition and multiplication, subject to the usual 
nine laws of addition and multiplication obeyed by ratio-
nal numbers. In particular the marks may be taken to be 
the set  X  of non-negative integers less than a prime  p . If 
this is so, then addition and multiplication are defi ned by 
modifi ed addition and multiplication laws  

 in which  a ,  b ,  r , and  p  belong to  X . For example, if  p  = 7, 
then 5 + 4 = 2, 5 · 4 = 6. There exist more general fi nite fi elds 
in which the number of elements is  p   n  ,  p  a prime. There is 
essentially one fi eld with  p   n   elements, with given  p  and  n . 
It is denoted by  G  F ( p   n  ).  

 Finite geometries can be obtained from fi nite fi elds in 
which the coordinates of points are now elements of a 
fi nite fi eld. A set of  k  + 1 non-negative integers  d  0 ,  d  1 , · · · ,  d   k  , 
is said to form a perfect difference set mod υ, if among the 
k ( k  − 1) differences  d   i   −  d   j  ,  i  ≠  j ,  i ,  j  = 0, 1, · · · ,  k , reduced mod 
υ, each nonzero positive integer less than υ occurs exactly 
the same number of times λ. For example, 1, 4, 5, 9, 3 is a 
difference set mod 11, with λ = 2. From a perfect difference 
set can be obtained the symmetric (υ,  k , λ) design using the 
integers 0, 1, 2, · · · , υ − 1. The  j th block contains the treat-
ments obtained by reducing mod υ the numbers  d  0  +  j ,  j  1  + 
 j , · · · ,  d   i   +  j ,  j  = 0, 1, · · · , υ − 1. 

 It can be shown that any two blocks of a symmetric (υ,  k , 
λ) design intersect in exactly  k  treatments. By deleting one 
block and all the treatments contained in it, it is possible to 
obtain from the symmetric design its residual, which is a 
BIB design (unsymmetric) with parameters υ* = υ −  k ,  b * = υ 
− 1,  r * =  k ,  k * =  k  − λ, λ* = λ. One may ask whether it is true that 
a BIB design with the parameters of a residual can be 
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embedded in a symmetric BIB design. The truth of this is 
rather easy to demonstrate when λ = 1. Hall and W.S. Connor 
in 1953 showed that it is also true for λ = 2. The Indian math-
ematician K.N. Bhattacharya in 1944, however, gave a 
counterexample for λ = 3 by exhibiting a BIB design with 
parameters υ = 16, b = 24, r = 9, k = 6, λ = 3 for which two par-
ticular blocks intersect in four treatments and which for 
that reason cannot be embedded in a symmetric BIB design.

A BIB design is said to be resolvable if the set of blocks 
can be partitioned into subsets, such that the blocks in 
any subset contain every treatment exactly once. For the 
case k = 3, this problem was first posed during the 19th 
century by the British mathematician T.P. Kirkman as a 
recreational problem. There are υ girls in a class. Their 
teacher wants to take the class out for a walk for a number 
of days, the girls marching abreast in triplets. It is required 
to arrange the walk so that any two girls march abreast in 
the same triplet exactly once. It is easily shown that this is 
equivalent to the construction of a resolvable BIB design 
with υ = 6t + 3, b = (2t + 1)(3t + 1), r = 3t + 1, k = 3, λ = 1. Solutions 
were known for only a large number of special values of t 
until a completely general solution was finally given by the 
Indian and American mathematicians Dwijendra K. Ray-
Chaudhuri and R.M. Wilson in 1970.

Pbib (Partially Balanced Incomplete  
Block) Designs

Given υ objects 1, 2, · · · , υ, a relation satisfying the follow-
ing conditions is said to be an m-class partially balanced 
association scheme: 

A.	 Any two objects are either 1st, or 2nd, · · · , or 
mth associates, the relation of association being 
symmetrical. 
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B.  Each object α has  n   i   i th associates, the number 
n   i   being independent of α. 

C.  If any two objects α and β are  i th associates, then 
the number of objects that are  j th associates of 
α and  k th associates of β is  p   j  k   

 i   and is indepen-
dent of the pair of  i th associates α and β. 

 The constants υ,  n   i  ,  p   j  k   
 i   are the parameters of the asso-

ciation scheme. A number of identities connecting these 
parameters were given by the Indian mathematicians Bose 
and K.R. Nair in 1939, but Bose and the American math-
ematician D.M. Mesner in 1959 discovered new identities 
when  m  > 2.  

 A PBIB design is obtained by identifying the υ treat-
ments with the υ objects of an association scheme and 
arranging them into  b  blocks satisfying the following 
conditions: 

A.  Each contains  k  treatments. 
B.  Each treatment occurs in  r  blocks.
C.   If two treatments are  i th associates, they occur 

together in λ  i   blocks. 

 Two-class association schemes and the corresponding 
designs are especially important both from the mathe-
matical point of view and because of statistical applications. 
For a two-class association scheme the constancy of υ,  n   i  , 
p  11  

1 , and  p  11  
2  ensures the constancy of the other parameters. 

Seven relations hold :

.
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 Suffi cient conditions for the existence of association 
schemes with given parameters are unknown, but for a 
two-class association scheme W.S. Connor and the 
American mathematician Willard H. Clatworthy in 1954 
obtained some necessary conditions 

 laTin squaRes and 
The packing pRobleM   

 Orthogonal Latin Squares 

 A Latin square of order  k  is defi ned as a  k  ×  k  square grid, 
the  k  2  cells of which are occupied by  k  distinct symbols of 
a set  X  = 1, 2, . . . ,  k , such that each symbol occurs once in 
each row and each column. Two Latin squares are said to 
be orthogonal if, when superposed, any symbol of the fi rst 
square occurs exactly once with each symbol of the sec-
ond square. 

 A set of mutually orthogonal Latin squares is a set of 
Latin squares any two of which are orthogonal. It is easily 
shown that there cannot exist more than  k  − 1 mutually 
orthogonal Latin squares of a given order  k . When  k  − 1 
mutually orthogonal Latin squares of order  k  exist, the set 
is complete. A complete set always exists if  k  is the power 
of a prime. An unsolved question is whether there can 
exist a complete set of mutually orthogonal Latin squares 
of order  k  if  k  is not a prime power. 
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 Many types of experimental designs are based on Latin 
squares. Hence, the construction of mutually orthogonal 
Latin squares is an important combinatorial problem. 
Letting the prime power decomposition of an integer  k  be 
given, the arithmetic function  n ( k ) is defi ned by taking the 
minimum of the factors in such a decomposition 

 
 Letting  N ( k ) denote the maximum number of mutu-

ally orthogonal Latin squares of order  k , the American 
mathematician H.F. MacNeish in 1922 showed that there 
always exist  n ( k ) mutually orthogonal Latin squares of 
order  k  and conjectured that this is the maximum num-
ber of such squares—that is,  N ( k ) =  n ( k ). There was also 
the long-standing conjecture of Euler, formulated in 
1782, that there cannot exist mutually orthogonal Latin 
squares of order 4 t  + 2, for any integer  t . MacNeish’s con-
jecture, if true, would imply the truth of Euler’s but not 
conversely. The American mathematician E.T. Parker in 
1958 disproved the conjecture of MacNeish. This left 
open the question of Euler’s conjecture. Bose and the 
Indian mathematician S.S. Shrikhande in 1959–60 
obtained the fi rst counterexample to Euler’s conjecture 
by obtaining two mutually orthogonal Latin squares of 
order 22 and then generalized their method to disprove 
Euler’s conjecture for an infi nity of values of  k  = 2(mod 
4). In 1959 Parker used the method of differences to 
show the falsity of Euler’s conjecture for all  k  = (3 q  + 1)/2, 
in which  q  is a prime power,  q  =̄ 3(mod 4). Finally, these 
three mathematicians in 1960 showed that  N ( k ) ≥ 2 
whenever  k  > 6. It is pertinent to inquire about the 
behaviour of  N ( k ) for large  k . The best result in this 

.
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direction is due to R.M. Wilson in 1971. He shows that 
N ( k ) ≥  k  1/17  − 2 for large  k .   

 Orthogonal Arrays and the Packing Problem 

 A  k  ×  N  matrix  A  with entries from a set  X  of  s  ≥ 2 symbols 
is called an orthogonal array of strength  t , size  N ,  k  con-
straints, and  s  levels if each  t  ×  N  submatrix of  A  contains 
all possible  t  × 1 column vectors with the same frequency 
λ. The array may be denoted by ( N ,  k ,  s ,  t ). The number λ 
is called the index of the array, and  N  = λ s   t  . This concept is 
due to the Indian mathematician C.R. Rao and was 
obtained in 1947. 

 Orthogonal arrays are a generalization of orthogonal 
Latin squares. Indeed, the existence of an orthogonal 
array of  k  constraints,  s  levels, strength 2, and index unity 
is combinatorially equivalent to the existence of a set of 
 k  − 2 mutually orthogonal Latin squares of order  s . For a 
given λ,  s , and  t  it is an important combinatorial problem 
to obtain an orthogonal array ( N ,  k ,  s ,  t ),  N  =  s   t  , for which 
the number of constraints  k  is maximal. 

 Orthogonal arrays play an important part in the the-
ory of factorial designs in which each treatment is a 
combination of factors at different levels. For an orthogo-
nal array (λ s   t  ,  k ,  s ,  t ),  t  ≥ 2, the number of constraints  k  
satisfi es an inequality 
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in which λst is greater than or equal to a linear expression 
in powers of (s − 1), with binomial coefficients giving the 
number of combinations of k − 1 or k things taken i at a 
time (iu).

Letting GF(q) be a finite field with q = ph elements, an 
n × r matrix with elements from the field is said to have 
the property Pt if any t rows are independent. The prob-
lem is to construct for any given r a matrix H with the 
maximum number of rows possessing the property Pt. 
The maximal number of rows is denoted by nt(r, q). This 
packing problem is of great importance in the theory of 
factorial designs and also in communication theory, 
because the existence of an n × r matrix with the property 
Pt leads to the construction of an orthogonal array (qr, n, 
q, t) of index unity.

Again n × r matrices H with the property Pt may be 
used in the construction of error-correcting codes. A row 
vector c′ is taken as a code word if and only if c′H = 0. The 
code words then are of length n and differ in at least t + 1 
places. If t = 2u, then u or fewer errors of transmission can 
be corrected if such a code is used. If t = 2u + 1, an addi-
tional error can be detected.

A general solution of the packing problem is known 
only for the case t = 2, the corresponding codes being the 
one-error-correcting codes of the American mathemati-
cian Richard W. Hamming. When t = 3 the solution is 
known for general r when q = 2 and for general q when r = 
4. Thus, n2(r, 2) = (qr − 1)/(q − 1), n3(r, 2) = 2r−1, n3(3, q) = q + 1 or 
q + 2, according as q is odd or even. If q > 2, then n3(4, q) = q2 
+ 1. The case q = 2 is especially important because in prac-
tice most codes use only two symbols, 0 or 1. Only fairly 
large values of r are useful, say, r ≥ 25. The optimum value 
of nt(r, 2) is not known. The BCH codes obtained by Bose 
and Ray-Chaudhuri and independently by the French 
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mathematician Alexis Hocquenghem in 1959 and 1960 are 
based on a construction that yields an n × r matrix H with 
the property P2u in which r mu, n = 2m - 1, q = 2. They can 
correct up to u errors.

Graph theory

Definitions

A graph G consists of a non-empty set of elements V(G) 
and a subset E(G) of the set of unordered pairs of distinct 
elements of V(G). The elements of V(G), called vertices of 
G, may be represented by points. If (x, y) ∊ E(G), then the 
edge (x, y) may be represented by an arc joining x and y. 
Then x and y are said to be adjacent, and the edge (x, y) is 
incident with x and y. If (x, y) is not an edge, then the ver-
tices x and y are said to be nonadjacent. G is a finite graph 
if V(G) is finite. A graph H is a subgraph of G if V(H) ⊂ 
V(G) and E(H) ⊂ E(G).

A chain of a graph G is an alternating sequence of ver-
tices and edges x0, e1, x1, e2, · · · en, xn, beginning and ending 
with vertices in which each edge is incident with the two 
vertices immediately preceding and following it. This 
chain joins x0 and xn and may also be denoted by x0, x1, · · · , 
xn, the edges being evident by context. The chain is closed 
if x0 = xn and open otherwise. If the chain is closed, it is 
called a cycle, provided its vertices (other than x0 and xn) 
are distinct and n ≥ 3. The length of a chain is the number 
of edges in it.

A graph G is labelled when the various υ vertices are 
distinguished by such names as x1, x2, · · · xυ. Two graphs G 
and H are said to be isomorphic (written G ≃ H) if there 
exists a one–one correspondence between their vertex 
sets that preserves adjacency. Two isomorphic graphs 
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count as the same (unlabelled) graph. A graph is said to be 
a tree if it contains no cycle.   

 Enumeration of Graphs 

 The number of labelled graphs with υ vertices is 2 υ(υ − 1)/2  
because υ(υ − 1)/2 is the number of pairs of vertices, and each 
pair is either an edge or not an edge. Cayley in 1889 showed 
that the number of labelled trees with υ vertices is υ υ − 2 . 

 The number of unlabelled graphs with υ vertices can 
be obtained by using Polya’s theorem. The fi rst few terms 
of the generating function  F ( x ), in which the coeffi cient of 
 x  υ  gives the number of (unlabelled) graphs with υ vertices, 
can be given 

  A rooted tree has one point, its root, distinguished 
from others. If  T  υ  is the number of rooted trees with υ ver-
tices, the generating function for  T  υ  can also be given 
  

.
 

 
 Polya in 1937 showed in his memoir already referred to 

that the generating function for rooted trees satisfi es a 
functional equation 
  

.
 

 

.
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 Letting  t  υ  be the number of (unlabelled) trees with υ
vertices, the generating function  t ( x ) for  t  υ  can be obtained 
in terms of  T ( x ) 
  

. 

 This result was obtained in 1948 by the American 
mathematician Richard R. Otter.  

 Many enumeration problems on graphs with speci-
fi ed properties can be solved by the application of Polya’s 
theorem and a generalization of it made by a Dutch math-
ematician, N.G. de Bruijn, in 1959.   

 Characterization Problems of Graph Theory 

 If there is a class  C  of graphs each of which possesses a 
certain set of properties  P , then the set of properties  P  is 
said to characterize the class  C , provided every graph  G
possessing the properties  P  belongs to the class  C . 
Sometimes it happens that there are some exceptional 
graphs that possess the properties  P . Many such charac-
terizations are known. Consider a typical example. 

 A complete graph  K   m   is a graph with  m  vertices, any two 
of which are adjacent. The line graph  H  of a graph  G  is a 
graph the vertices of which correspond to the edges of  G , 
any two vertices of  H  being adjacent if and only if the corre-
sponding edges of  G  are incident with the same vertex of  G . 

 A graph  G  is said to be regular of degree  n  1  if each ver-
tex is adjacent to exactly  n  1  other vertices. A regular graph 
of degree  n  1  with υ vertices is said to be strongly regular 
with parameters (υ,  n  1 ,  p  11  

1 ,  p  11  
2 ) if any two adjacent vertices 

are both adjacent to exactly  p  11  
1  other vertices and any two 

nonadjacent vertices are both adjacent to exactly  p  11  
2  other 
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vertices. A strongly regular graph and a two-class associa-
tion are isomorphic concepts. The treatments of the 
scheme correspond to the vertices of the graph, two treat-
ments being either fi rst associates or second associates 
according as the corresponding vertices are either adja-
cent or nonadjacent. 

 It is easily proved that the line graph  T  2 ( m ) of a com-
plete graph  K   m  ,  m  ≥ 4 is strongly regular with parameters 
υ =  m ( m  − 1)/2,  n  1  = 2( m  − 2),  p  11  

1  =  m  − 2,  p  11  
2  = 4.  

 It is surprising that these properties characterize  T  2 ( m ) 
except for  m  = 8, in which case there exist three other 
strongly regular graphs with the same parameters noniso-
morphic to each other and to  T  2 ( m ). 

 A partial geometry ( r ,  k ,  t ) is a system of two kinds of 
objects, points, and lines, with an incidence relation obey-
ing the following axioms:  

1.  Any two points are incident with not more 
than one line.  

2.  Each point is incident with  r  lines.  
3.  Each line is incident with  k  points. 
4.  Given a point  P  not incident with a line l, there 

are exactly  t  lines incident with  P  and also with 
some point of l. 

 A graph  G  is obtained from a partial geometry by tak-
ing the points of the geometry as vertices of  G , two vertices 
of  G  being adjacent if and only if the corresponding points 
are incident with the same line of the geometry. It is 
strongly regular with parameters 
 

 



7 The Britannica Guide to Statistics and Probability 7

228

  The question of whether a strongly regular graph with 
the previous parameters is the graph of some partial geom-
etry is of interest. It was shown by Bose in 1963 that the 
answer is in the affi rmative if a certain condition holds 

. 

 Not much is known about the case if this condition is 
not satisfi ed, except for certain values of  r  and  t . For exam-
ple,  T  2 ( m ) is isomorphic with the graph of a partial 
geometry (2,  m  − 1, 2). Hence, for  m  > 8 its characterization 
is a consequence of the above theorem. Another conse-
quence is the following:  

 Given a set of  k -1- d  mutually orthogonal Latin squares 
of order  k , the set can be extended to a complete set of  k -1 
mutually orthogonal squares if a condition holds 

.
 

 The case  d  = 2 is due to Shrikhande in 1961 and the gen-
eral result to the American mathematician Richard H. 
Bruck in 1963.    

 applicaTions of gRaph TheoRy   

 Planar Graphs 

 A graph  G  is said to be planar if it can be represented on a 
plane in such a fashion that the vertices are all distinct 
points, the edges are simple curves, and no two edges meet 
one another except at their terminals. Two graphs are said 
to be homeomorphic if both can be obtained from the 
same graph by subdivisions of edges. 
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The Km,n graph is a graph for which the vertex set can 
be divided into two subsets, one with m vertices and the 
other with n vertices. Any two vertices of the same sub-
set are nonadjacent, whereas any two vertices of different 
subsets are adjacent. The Polish mathematician Kazimierz 
Kuratowski in 1930 proved the following famous theorem:

A necessary and sufficient condition for a graph G to be pla-
nar is that it does not contain a subgraph homeomorphic to 
either K5 or K3,3.

An elementary contraction of a graph G is a transforma-
tion of G to a new graph G1, such that two adjacent vertices 
u and υ of G are replaced by a new vertex w in G1 and w is 
adjacent in G1 to all vertices to which either u or υ is adjacent 
in G. A graph G* is said to be a contraction of G if G* can be 
obtained from G by a sequence of elementary contractions.

The following is another characterization of a planar 
graph due to the German mathematician K. Wagner in 
1937. A graph is planar if and only if it is not contractible to 
K5 or K3,3.

The Four-Colour Map Problem

For more than a century the solution of the four-colour 
map problem eluded every analyst who attempted it. The 
problem may have attracted the attention of Möbius, but 
the first written reference to it seems to be a letter from 
one Francis Guthrie to his brother, a student of Augustus 
De Morgan, in 1852.

The problem concerns planar maps—that is, subdivi-
sions of the plane into nonoverlapping regions bounded 
by simple closed curves. In geographical maps it has been 
observed empirically, in as many special cases as have been 
tried, that, at most, four colours are needed to colour the 
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regions so that two regions that share a common bound-
ary are always coloured differently, and in certain cases 
that at least four colours are necessary. (Regions that meet 
only at a point, such as the states of Colorado and Arizona 
in the United States, are not considered to have a common 
boundary.) A formalization of this empirical observation 
constitutes what is called “the four-colour theorem.” The 
problem is to prove or disprove the assertion that this is 
the case for every planar map. That three colours will not 
suffice is easily demonstrated, whereas the sufficiency of 
five colours was proved in 1890 by the British mathemati-
cian P.J. Heawood.

In 1879 A.B. Kempe, an Englishman, proposed a solu-
tion of the four-colour problem. Although Heawood 
showed that Kempe’s argument was flawed, two of its con-
cepts proved fruitful in later investigation. One of these, 
called unavoidability, correctly states the impossibility of 
constructing a map in which every one of four configura-
tions is absent (these configurations consist of a region with 
two neighbours, one with three, one with four, and one with 
five). The second concept, that of reducibility, takes its name 
from Kempe’s valid proof that if there is a map that requires 
at least five colours and that contains a region with four (or 
three or two) neighbours, there must be a map requiring five 
colours for a smaller number of regions. Kempe’s attempt 
to prove the reducibility of a map containing a region with 
five neighbours was erroneous, but it was rectified in a 
proof published in 1976 by Kenneth Appel and Wolfgang 
Haken of the United States. Their proof attracted some 
criticism because it necessitated the evaluation of 1,936 
distinct cases, each involving as many as 500,000 logical 
operations. Appel, Haken, and their collaborators devised 
programs that made it possible for a large digital computer 
to handle these details. The computer required more than 
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1,000 hours to perform the task, and the resulting formal 
proof is several hundred pages long.

Eulerian Cycles and the  
Königsberg Bridge Problem

A multigraph G consists of a non-empty set V(G) of verti-
ces and a subset E(G) of the set of unordered pairs of 
distinct elements of V(G) with a frequency f ≥ 1 attached 
to each pair. If the pair (x1, x2) with frequency f belongs to 
E(G), then vertices x1 and x2 are joined by f edges.

An Eulerian cycle of a multigraph G is a closed chain in 
which each edge appears exactly once. Euler showed that 
a multigraph possesses an Eulerian cycle if and only if it is 
connected (apart from isolated points) and the number of 
vertices of odd degree is either zero or two.

This problem first arose in the following manner. The 
Pregel River, formed by the confluence of its two branches, 
runs through the town of Königsberg and flows on either 

With the Königsberg bridge problem, Euler showed it to be impossible to go for 
a walk and cross each bridge once and once only.
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side of the island of Kneiphof. There were seven bridges. 
The townspeople wondered whether it was possible to go 
for a walk and cross each bridge once and once only. This 
is equivalent to finding an Eulerian cycle for a specific 
multigraph. Euler showed it to be impossible because 
there are four vertices of odd order.

Directed Graphs

A directed graph G consists of a non-empty set of ele-
ments V(G), called vertices, and a subset E(G) of ordered 
pairs of distinct elements of V(G). Elements (x, y) of E(G) 
may be called edges, the direction of the edge being from 
x to y. Both (x, y) and (y, x) may be edges.

A closed path in a directed graph is a sequence of ver-
tices x0x1x2 · · · xn = x0, such that (xi, xi+1) is a directed edge for 
i = 0, 1, · · · , n - 1. To each edge (x, y) of a directed graph G 
there can be assigned a non-negative weight function 
f(x, y). The problem then is to find a closed path in G tra-
versing all vertices so that the sum of the weights of all 
edges in the path is a minimum. This is a typical optimiza-
tion problem. If the vertices are certain cities, the edges 
are routes joining cities, and the weights are the lengths of 
the routes, then this becomes the travelling salesman 
problem: Can the salesman visit each city without retrac-
ing his steps? This problem still remains unsolved except 
for certain special cases.

Combinatorial geometry

The name combinatorial geometry, first used by Swiss 
mathematician Hugo Hadwiger, is not quite accurately 
descriptive of the nature of the subject. Combinatorial 
geometry does touch on those aspects of geometry that 
deal with arrangements, combinations, and enumerations 
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of geometric objects, but it takes in much more. The field 
is so new that there has scarcely been time for it to acquire 
a well-defined position in the mathematical world. Rather 
it tends to overlap parts of topology (especially algebraic 
topology), number theory, analysis, and, of course, geome-
try. The subject concerns itself with relations among 
members of finite systems of geometric figures subject to 
various conditions and restrictions. More specifically, it 
includes problems of covering, packing, symmetry, extrema 
(maxima and minima), continuity, tangency, equalities, and 
inequalities, many of these with special emphasis on their 
application to the theory of convex bodies. A few of the 
fundamental problems of combinatorial geometry origi-
nated with Newton and Euler. Most significant advances in 
the field, however, have been made since the 1940s.

The unifying aspect of these disparate topics is the 
quality or style or spirit of the questions and the methods 
of attacking these questions. Among those branches of 
mathematics that interest serious working mathemati-
cians, combinatorial geometry is one of the few branches 
that can be presented on an intuitive basis, without 
recourse by the investigator to any advanced theoretical 
considerations or abstractions.

Yet the problems are far from trivial, and many remain 
unsolved. They can be handled only with the aid of the 
most careful and often delicate reasoning that displays the 
variety and vitality of geometric methods in a modern set-
ting. A few answers are natural and are intuitively suggested 
by the questions. Many others, however, require proofs of 
unusual ingenuity and depth even in the two-dimensional 
case. Sometimes a plane solution may be readily extend-
ible to higher dimensions, but sometimes just the opposite 
is true, and a three-dimensional or n-dimensional problem 
may be entirely different from its two-dimensional coun-
terpart. Each new problem must be attacked individually. 
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The continuing charm and challenge of the subject are at 
least in part a result of the relative simplicity of the state-
ments coupled with the elusive nature of their solutions.

Some Historically Important Topics of 
Combinatorial Geometry

Packing and Covering

It is easily seen that six equal circular disks may be placed 
around another disk of the same size so that the central 
one is touched by all the others but no two overlap and 
that it is not possible to place seven disks in such a way. In 
the analogous three-dimensional situation, around a given 
ball (solid sphere) it is possible to place 12 balls of equal 
size, all touching the first one but not overlapping it or 
each other. One such arrangement may be obtained by 
placing the 12 surrounding balls at the midpoints of edges 
of a suitable cube that encloses the central ball. Each of 
the 12 balls touching four other balls in addition to the 
central one. But if the 12 balls are centred at the 12 vertices 
of a suitable regular icosahedron surrounding the given 
ball, there is an appreciable amount of free space between 
each of the surrounding balls and its neighbours. (If the 
spheres have radius 1, the distances between the centres of 
the surrounding spheres are at least 2/cos 18° = 2.1029 · · · .) 
It appears, therefore, that by judicious positioning it 
might be possible to have 13 equal non-overlapping spheres 
touch another of the same size. This dilemma between 12 
and 13, one of the first nontrivial problems of combinato-
rial geometry, was the object of discussion between Isaac 
Newton and David Gregory in 1694. Newton believed 12 
to be the correct number, but this claim was not proved 
until 1953. The analogous problem in four-dimensional 
space was solved in 2003, the answer being 24.
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The problem of the 13 balls is a typical example of the 
branch of combinatorial geometry that deals with pack-
ings and coverings. In packing problems, the aim is to 
place figures of a given shape or size without overlap as 
economically as possibly, either inside another given fig-
ure or subject to some other restriction.

Problems of packing and covering have been the 
objects of much study, and some striking conclusions have 
been obtained. For each plane convex set K, for example, 
it is possible to arrange nonoverlapping translates of K so 
as to cover at least two-thirds of the plane. If K is a triangle 
(and only in that case), no arrangement of nonoverlapping 
translates covers more than two-thirds of the plane. 
Another famous problem was Kepler’s conjecture, which 
concerns the densest packing of spheres. If the spheres 
are packed in cannonball fashion—that is, in the way can-
nonballs are stacked to form a triangular pyramid, 
indefinitely extended—then they fill π/√–18, or about 0.74, 
of the space. In 1611 the German astronomer Johannes 
Kepler conjectured that this is the greatest density possi-
ble, but it was only proved in 1998 by the American 
mathematician Thomas Hales.

Covering problems deal in an analogous manner with 
economical ways of placing given figures so as to cover 
(that is, contain in their union) another given figure. One 
famous covering problem, posed by the French mathema-
tician Henri Lebesgue in 1914, is still unsolved: What is 
the size and shape of the universal cover of least area? 
Here a convex set C is called universal cover if for each set 
A in the plane such that diam A = 1 it is possible to move C 
to a suitable position in which it covers A. The diameter 
diam A of a set A is defined as the least upper bound of the 
mutual distances of points of the set A. If A is a compact 
set, then diam A is simply the greatest distance between 
any two points of A. Thus, if A is an equilateral triangle of 
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Johannes Kepler conjectured that spheres stacked to form a triangular pyra-
mid demonstrate the greatest density possible. Shutterstock.com

side 1, then diam A = 1; and if B is a cube of edge length 1, 
then diam B = √-3.

Polytopes

A (convex) polytope is the convex hull of some finite set of 
points. Each polytope of dimensions d has as faces finitely 
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many polytopes of dimensions 0 (vertices), 1 (edge), 2 
(2-faces), · · · , d-1 (facets). Two-dimensional polytopes are 
usually called polygons, three-dimensional ones polyhe-
dra. Two polytopes are said to be isomorphic, or of the 
same combinatorial type, provided there exists a one-to-
one correspondence between their faces, such that two 
faces of the first polytope meet if and only if the corre-
sponding faces of the second meet. The prism and the 
truncated pyramid are isomorphic. To classify the convex 
polygons by their combinatorial types, it is sufficient to 
determine the number of vertices υ. For each υ ≥ 3, all poly-
gons with υ vertices (υ-gons) are of the same combinatorial 
type, whereas a υ-gon and a υ′-gon are not isomorphic if υ ≠ 
υ′. Euler was the first to investigate in 1752 the analogous 
question concerning polyhedra. He found that υ − e + f = 2 
for every convex polyhedron, where υ, e, and f are the num-
bers of vertices, edges, and faces of the polyhedron. 
Though this formula became one of the starting points of 
topology, Euler was unsuccessful in his attempts to find a 
classification scheme for convex polytopes or to deter-
mine the number of different types for each υ. Despite 
efforts of many famous mathematicians since Euler 
(Steiner, Kirkman, Cayley, Hermes, and Brückner, to men-
tion only a few from the 19th century), the problem is still 
open for polyhedra with more than 19 vertices. The num-
bers of different types with four, five, six, seven, or eight 
vertices are 1, 2, 7, 34, and 257, respectively. It was estab-
lished by American mathematician P.J. Federico in 1969 
that there are 2,606 different combinatorial types of con-
vex polyhedra with nine vertices. The number of different 
types for 18 vertices is more than 107 trillion.

The theory of convex polytopes has been successful in 
developments in other directions. The regular polytopes 
have been under investigation since 1880 in dimensions 
higher than three, together with extensions of Euler’s 
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relation to the higher dimensions. (The Swiss geometer 
Ludwig Schläfli made many of these discoveries some 30 
years earlier, but his work was published only posthumously 
in 1901.) The interest in regular polyhedra and other spe-
cial polyhedra goes back to ancient Greece, as indicated 
by the names Platonic solids and Archimedean solids.

Since 1950 there has been considerable interest, in 
part created by practical problems related to computer 
techniques such as linear programming, in questions of 
the following type: For polytopes of a given dimension d 
and having a given number υ of vertices, how large and 
how small can the number of facets be? Such problems 
have provided great impetus to the development of the 
theory. The American mathematician Victor L. Klee 
solved the maximum problem in 1963 in most cases (that 
is, for all but a finite number of υ’s for each d), but the 
remaining cases were disposed of only in 1970 by P. 
McMullen, in the United States, who used a completely 
new method.

Incidence Problems

In 1893 the British mathematician J.J. Sylvester posed the 
question: If a finite set S of points in a plane has the prop-
erty that each line determined by two points of S meets at 
least one other point of S, must all points of S be on one 
line? Sylvester never found a satisfactory solution to the 
problem, and the first (affirmative) solutions were pub-
lished a half century later. Since then, Sylvester’s problem 
has inspired many investigations and led to many other 
questions, both in the plane and in higher dimensions.

Helly’s Theorem

In 1912 Austrian mathematician Eduard Helly proved 
the following theorem, which has since found applica-
tions in many areas of geometry and analysis and has led 



239

7 Combinatorics 7

to numerous generalizations, extensions, and analogues 
known as Helly-type theorems. If K1, K2, · · · , Kn are convex 
sets in d-dimensional Euclidean space Ed, in which n ≥ d + 1, 
and if for every choice of d + 1 of the sets Ki there exists a 
point that belongs to all the chosen sets, then there exists 
a point that belongs to all the sets K1, K2, · · · Kn. The theo-
rem stated in two dimensions is easier to visualize and yet is 
not shorn of its strength: If every three of a set of n convex 
figures in the plane have a common point (not necessarily 
the same point for all trios), then all n figures have a point 
in common. If, for example, convex sets A, B, and C have 
the point p in common, and convex sets A, B, and D have the 
point q in common, and sets A, C, and D have the point r 
in common, and sets B, C, and D have the point s in com-
mon, then some point x is a member of A, B, C, and D.

Although the connection is often far from obvious, 
many consequences may be derived from Helly’s theorem. 
Among them are the following, stated for d = 2 with some 
higher dimensional analogues indicated in square brackets:

A.	 Two finite subsets X and Y of the plane [d-space] 
may be strictly separated by a suitable straight 
line [hyperplane] if and only if, for every set Z 
consisting of at most 4 [d + 2] points taken from 
X ∪ Y, the points of X ∩ Z may be strictly 
separated from those of Y ∩ Z. (A line [hyper-
plane] L strictly separates X and Y if X is 
contained in one of the open half planes [half 
spaces] determined by L and if Y is contained 
in the other.)

B.	 Each compact convex set K in the plane 
[d-space] contains a point P with the following 
property: Each chord of K that contains P is 
divided by P into a number of segments so the 
ratio of their lengths is at most 2d.
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C.	 If G is an open subset of the plane [d-space] 
with finite area [d-dimensional content], then 
there exists a point P, such that each open half 
plane [half space] that contains P contains also 
at least 1/3 [1/(d + 1)] of the area [d-content] of 
G.D. If I1, · · · , In are segments parallel to the 
y-axis in a plane with a coordinate system (x, y), 
and if for every choice of three of the segments 
there exists a straight line intersecting each of 
the three segments, then there exists a straight 
line that intersects all the segments I1, · · · , In.

Theorem D has generalizations in which kth degree 
polynomial curves y = akxk + · · · + a1x + a0 take the place of 
the straight lines and k + 2 replaces 3 in the assumptions. 
These are important in the theory of best approximation 
of functions by polynomials.

Methods of Combinatorial Geometry

Many other branches of combinatorial geometry are as 
important and interesting as those previously mentioned, 
but rather than list them here it is more instructive to pro-
vide a few typical examples of frequently used methods of 
reasoning. Because the emphasis is on illustrating the 
methods rather than on obtaining the most general results, 
the examples will deal with problems in two and three 
dimensions.

Exhausting the Possibilities

Using the data available concerning the problem under 
investigation, it is often possible to obtain a list of all 
potential, a priori possible, solutions. The final step then 
consists in eliminating the possibilities that are not actual 
solutions or that duplicate previously found solutions. An 
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example is the proof that there are only five regular con-
vex polyhedra (the Platonic solids) and the determination 
of what these five are.

From the definition of regularity it is easy to deduce that 
all the faces of a Platonic solid must be congruent regular 
k-gons for a suitable k, and that all the vertices must belong 
to the same number j of k-gons. Because the sum of the face 
angles at a vertex of a convex polyhedron is less than 2π, and 
because each angle of the k-gon is (k − 2)π/k, it follows that 
j(k − 2)π/k < 2π, or (j − 2)(k − 2) < 4. Therefore, the only possi-
bilities for the pair (j, k) are (3, 3), (3, 4), (3, 5), (4, 3), and (5, 3). 
It may be verified that each pair actually corresponds to a 
Platonic solid, namely, to the tetrahedron, the cube, the 
dodecahedron, the octahedron, and the icosahedron, 
respectively. Very similar arguments may be used in the 
determination of Archimedean solids and in other instances.

The most serious drawback of the method is that in 
many instances the number of potential (and perhaps 
actual) solutions is so large as to render the method unfea-
sible. Therefore, sometimes the exact determination of 
these numbers by the method just discussed is out of the 
question, certainly if attempted by hand and probably 
even with the aid of a computer.

Use of Extremal Properties

In many cases the existence of a figure or an arrangement 
with certain desired properties may be established by con-
sidering a more general problem (or a completely different 
problem) and by showing that a solution of the general 
problem that is extremal in some sense provides also a 
solution to the original problem. Frequently there seems 
to be little connection between the initial question and 
the extremal problem. As an illustration the following 
theorem will be proved: If K is a two-dimensional com-
pact convex set with a centre of symmetry, there exists a 
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parallelogram P containing K, such that the midpoints of 
the sides of P belong to K. The proof proceeds as follows: 
Of all the parallelograms that contain K, the one with least 
possible area is labeled P0. The existence of such a P0 is a 
consequence of the compactness of K and may be estab-
lished by standard arguments. It is also easily seen that the 
centres of K and P0 coincide. The interesting aspect of 
the situation is that P0 may be taken as the P required for the 
theorem. In fact, if the midpoints A′ and A of a pair of 
sides of P0 do not belong to K, it is possible to strictly sep-
arate them from K by parallel lines L′ and L that, together 
with the other pair of sides of P0, determine a new paral-
lelogram containing K but with area smaller than that of 
P0. The preceding theorem and its proof generalize imme-
diately to higher dimensions and lead to results that are 
important in functional analysis.

Sometimes this type of argument is used in reverse to 
establish the existence of certain objects by disproving 
the possibility of existence of some extremal figures. As an 
example the following solution of the previously discused 
problem of Sylvester can be mentioned. By a standard 
argument of projective geometry (duality), it is evident 
that Sylvester’s problem is equivalent to the question: If 
through the point of intersection of any two of n coplanar 
lines, no two of which are parallel, there passes a third, are 
the n lines necessarily concurrent? To show that they must 
be concurrent, contradiction can be derived from the 
assumption that they are not concurrent. If L is one of the 
lines, then not all the intersection points lie on L. Among 
the intersection points not on L, there must be one near-
est to L, which can be called A. Through A pass at least 
three lines, which meet L in points B, C, D, so that C is 
between B and D. Through C passes a line L* different 
from L and from the line through A. Because L* enters the 
triangle ABD, it intersects either the segment AB or the 
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segment AD, yielding an intersection point nearer to L 
than the supposedly nearest intersection point A, thus 
providing the contradiction.

The difficulties in applying this method are caused in 
part by the absence of any systematic procedure for devis-
ing an extremal problem that leads to the solution of the 
original question.

Use of Transformations Between Different 
Spaces and Applications of Helly’s Theorem

The methods of proof in combinatorial geometry may be 
illustrated in one example: the proof of a theorem concern-
ing parallel segments. Let the segment Ii have end-points 
(xi, yi ) and (xi, ≤ y′i ), where yi y′i and i = 1, 2, · · · , n. The case 
that two segments are on one line is easily dismissed, so it 
may be assumed that x1, x2, · · · , xn are all different. With 
each straight line y = ax + b in the (x, y)-plane can be associ-
ated a point (a, b) in another plane, the (a, b)-plane. Now, 
for i = 1, 2, · · · , n, the set consisting of all those points (a, b) 
for which the corresponding line y = ax + b in the (x, y) plane 
meets the segment Ii can be denoted by Ki. This condition 
means that yiaxi + by′i so that each set Ki is convex. The exis-
tence of a line intersecting three of the segments Ii means 
that the corresponding sets Ki have a common point. Then 
Helly’s theorem for the (a, b)-plane implies the existence of 
a point (a*, b*) common to all sets Ki. This in turn means 
that the line y = a*x + b* meets all the segments Ii, I2, · · · , In, 
and the proof of theorem D is complete.

In addition to the methods illustrated earlier, many 
other techniques of proof are used in combinatorial geom-
etry, ranging from simple mathematical induction to 
sophisticated decidability theorems of formal logic. The 
variety of methods available and the likelihood that there 
are many more not yet invented continue to stimulate 
research in this rapidly developing branch of mathematics.
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CHAPTER 6

 In this chapter, we encounter the fascinating personali-
ties that have advanced our understanding of probability 

and statistics. In the 12th century, Bhāskara II named one 
of his greatest mathematical works after his daughter. In 
the 20th century, John von Neumann applied his mathe-
matical knowledge to the greatest military problem, the 
atomic bomb.   

 Jean le Rond d’aleMbeRT  
 (b. Nov. 17, 1717, Paris, France—d. Oct. 29, 1783, Paris)  

 The French mathematician, philosopher, and writer Jean 
Le Rond d’Alembert achieved fame as a mathematician 
and scientist before acquiring a considerable reputation as 
a contributor to and editor of the famous  Encyclopédie . 

 The illegitimate son of a famous hostess, Mme. de 
Tencin, and one of her lovers, the chevalier Destouches-
Canon, d’Alembert was abandoned on the steps of the 
Parisian church of Saint-Jean-le-Rond, from which he 
derived his Christian name. Through his father’s infl uence, 
he was admitted to a prestigious Jansenist school, enroll-
ing fi rst as Jean-Baptiste Daremberg and subsequently 
changing his name, perhaps for reasons of euphony, to 
d’Alembert. Although Destouches never disclosed his 
identity as father of the child, he left his son an annuity of 
1,200 livres. D’Alembert’s teachers at fi rst hoped to train 
him for theology, being perhaps encouraged by a com-
mentary he wrote on St. Paul’s Letter to the Romans, but 
they inspired in him only a lifelong aversion to the sub-
ject. After taking up medicine for a year, he fi nally devoted 
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himself to mathematics—“the only occupation,” he said 
later, “which really interested me.” Apart from some pri-
vate lessons, d’Alembert was almost entirely self-taught.

In 1739 he read his first paper to the Academy of 
Sciences, of which he became a member in 1741. In 1743, 
at the age of 26, he published his important Traité de 
dynamique, a fundamental treatise on dynamics contain-
ing the famous “d’Alembert’s principle,” which states that 
Newton’s third law of motion (for every action there is 
an equal and opposite reaction) is true for bodies that 
are free to move as well as for bodies rigidly fixed. Other 
mathematical works rapidly followed. In 1744 he applied 
his principle to the theory of equilibrium and motion of 
fluids, in his Traité de l’équilibre et du mouvement des flu-
ides. This discovery was followed by the development of 
partial differential equations, a branch of the theory of 
calculus, the first papers on which were published in his 
Réflexions sur la cause générale des vents (1747). It won him 
a prize at the Berlin Academy, to which he was elected 
the same year. In 1747 he applied his new calculus to the 
problem of vibrating strings, in his Recherches sur les cordes 
vibrantes. In 1749 he furnished a method of applying his 
principles to the motion of any body of a given shape. 
That same year he found an explanation of the preces-
sion of the equinoxes (a gradual change in the position 
of the Earth’s orbit), determined its characteristics, and 
explained the phenomenon of the nutation (nodding) of 
the Earth’s axis, in Recherches sur la précession des équinoxes 
et sur la nutation de l’axe de la terre. In the Memoirs of the 
Berlin Academy he published findings of his research on 
integral calculus, which devises relationships of variables 
by means of rates of change of their numerical value, a 
branch of mathematical science that is greatly indebted 
to him. In his Recherches sur différents points importants du 
système du monde (1754–56), he perfected the solution of the 
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problem of the perturbations (variations of orbit) of the  
planets that he had presented to the academy some years 
before. From 1761 to 1780 he published eight volumes of 
his Opuscules mathématiques.

Meanwhile, d’Alembert began an active social life and 
frequented well-known salons, where he acquired a con-
siderable reputation as a witty conversationalist and 
mimic. Like his fellow Philosophes—those thinkers, writ-
ers, and scientists who believed in the sovereignty of 
reason and nature (as opposed to authority and revelation) 
and rebelled against old dogmas and institutions—he 
turned to the improvement of society. Believing in man’s 
need to rely on his own powers, they promulgated a new 
social morality to replace Christian ethics. Science, the 
only real source of knowledge, had to be popularized for 
the benefit of the people, and it was in this tradition that 
he became associated with the Encyclopédie about 1746. 
When the original idea of a translation into French of 
Ephraim Chambers’ English Cyclopædia was replaced by 
that of a new work under the general editorship of the 
Philosophe Denis Diderot, d’Alembert was appointed 
editor of the mathematical and scientific articles. In fact, 
he not only helped with the general editorship and con-
tributed articles on other subjects but also tried to secure 
support for the enterprise in influential circles. He wrote 
the Discours préliminaire that introduced the first volume 
of the work in 1751. This was a remarkable attempt to pres-
ent a unified view of contemporary knowledge, tracing 
the development and interrelationship of its various 
branches and showing how they formed coherent parts of 
a single structure. The second section of the Discours was 
devoted to the intellectual history of Europe from the 
time of the Renaissance. In 1752 d’Alembert wrote a pref-
ace to Volume III, which was a vigorous rejoinder to the 
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This foldout frontispiece is from the first volume of the Encyclopédie, of 
which Jean Le Rond d ’Alembert was editor and contributor. SSPL via 
Getty Images
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Encyclopédie’s critics. Gradually discouraged by the grow-
ing difficulties of the enterprise, d’Alembert gave up his 
share of the editorship at the beginning of 1758, thereafter 
limiting his commitment to the production of mathemat-
ical and scientific articles.

His earlier literary and philosophical activity, however, 
led to the publication of his Mélanges de littérature, d ’histoire 
et de philosophie (1753). This work contained the impressive 
Essai sur les gens de lettres, which exhorted writers to pursue 
“liberty, truth and poverty” and also urged aristocratic 
patrons to respect the talents and independence of such 
writers. Largely as a result of the persistent campaigning 
of Mme du Deffand, a prominent hostess to writers and 
scientists, d’Alembert was elected to the French Academy 
in 1754, proving to be a zealous member, working hard to 
enhance the dignity of the institution in the eyes of the 
public and striving steadfastly for the election of members 
sympathetic to the cause of the Philosophes. His personal 
position became even more influential in 1772 when he 
was made permanent secretary. In 1776 he transferred his 
home to an apartment at the Louvre—to which he was 
entitled as secretary to the Academy—where he lived for 
the rest of his life.

Thomas Bayes
(b. 1702, London, Eng.—d. April 17, 1761, Tunbridge Wells, Kent) 

Thomas Bayes was an English Nonconformist theologian 
and mathematician who was the first to use probability 
inductively and who established a mathematical basis for 
probability inference (a means of calculating, from the 
frequency with which an event has occurred in prior trials, 
the probability that it will occur in future trials.

Bayes set down his findings on probability in “Essay 
Towards Solving a Problem in the Doctrine of Chances” 



249

7 Biographies 7

(1763), posthumously published in the Philosophical 
Transactions of the Royal Society. That work became the 
basis of a statistical technique, now called Bayesian esti-
mation, for calculating the probability of the validity of a 
proposition on the basis of a prior estimate of its probabil-
ity and new relevant evidence. Disadvantages of the 
method—pointed out by later statisticians—include the 
different ways of assigning prior distributions of parame-
ters and the possible sensitivity of conclusions to the 
choice of distributions.

The only works that Bayes is known to have published 
in his lifetime are Divine Benevolence; or, An Attempt to Prove 
That the Principal End of the Divine Providence and 
Government Is the Happiness of His Creatures (1731) and An 
Introduction to the Doctrine of Fluxions, and a Defence of the 
Mathematicians Against the Objections of the Author of The 
Analyst (1736), which was published anonymously and 
countered the attacks by Bishop George Berkeley on the 
logical foundations of Sir Isaac Newton’s calculus.

Bayes was elected a fellow of the Royal Society in 1742.

Daniel Bernoulli
(b. Feb. 8 [Jan. 29, Old Style], 1700, Groningen, Neth.—d. March 17, 
1782, Basel, Switz.) 

Daniel Bernoulli was the most distinguished of the second 
generation of the Bernoulli family of Swiss mathemati-
cians. He investigated not only mathematics but also such 
fields as medicine, biology, physiology, mechanics, physics, 
astronomy, and oceanography. Bernoulli’s theorem (q.v.), 
which he derived, is named after him.

Daniel Bernoulli was the second son of Johann 
Bernoulli, who first taught him mathematics. After study-
ing philosophy, logic, and medicine at the universities of 
Heidelberg, Strasbourg, and Basel, he received an M.D. 
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degree (1721). In 1723–24 he wrote Exercitationes quaedam 
Mathematicae on differential equations and the physics of 
flowing water, which won him a position at the influential 
Academy of Sciences in St. Petersburg, Russia. Bernoulli 
lectured there until 1732 in medicine, mechanics, and 
physics, and he researched the properties of vibrating and 
rotating bodies and contributed to probability theory. In 
that same year he returned to the University of Basel to 
accept the post in anatomy and botany. By then he was 
widely esteemed by scholars and also admired by the pub-
lic throughout Europe.

Daniel’s reputation was established in 1738 with 
Hydrodynamica, in which he considered the properties 
of basic importance in fluid flow, particularly pressure, 
density, and velocity, and set forth their fundamental 
relationship. He put forward what is called Bernoulli’s 
principle, which states that the pressure in a fluid 
decreases as its velocity increases. He also established 
the basis for the kinetic theory of gases and heat by 
demonstrating that the impact of molecules on a surface 
would explain pressure and that, assuming the constant, 
random motion of molecules, pressure and motion 
increase with temperature. About 1738 his father pub-
lished Hydraulica. An aparent attempt to obtain priority 
for himself, this was yet another instance of his antago-
nism toward his son.

Between 1725 and 1749 Daniel won 10 prizes from the 
Paris Academy of Sciences for work on astronomy, gravity, 
tides, magnetism, ocean currents, and the behaviour of 
ships at sea. He also made substantial contributions in 
probability. He shared the 1735 prize for work on plane-
tary orbits with his father, who, it is said, threw him out of 
the house for thus obtaining a prize he felt should be his 
alone. Daniel’s prizewinning papers reflected his success 
on the research frontiers of science and his ability to set 
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forth clearly before an interested public the scientific 
problems of the day. In 1732 he accepted a post in botany 
and anatomy at Basel; in 1743, one in physiology; and in 
1750, one in physics.

Jakob Bernoulli
(b. Jan. 6, 1655 [Dec. 27, 1654, Old Style], Basel, Switz.—d. Aug. 16, 
1705, Basel) 

The first of the Bernoulli family of Swiss mathematicians 
was Jakob Bernoulli. He introduced the first principles of 
the calculus of variation. Bernoulli numbers, a concept 
that he developed, were named for him.

The scion of a family of drug merchants, Jakob 
Bernoulli was compelled to study theology but became 
interested in mathematics despite his father’s opposition. 
His travels led to a wide correspondence with mathemati-
cians. Refusing a church appointment, he accepted a 
professorial chair of mathematics at the University of 
Basel in 1687. Following his mastery of the mathematical 
works of John Wallis, Isaac Barrow (both English), René 
Descartes (French), and G.W. Leibniz, who first drew his 
attention to calculus, he embarked on original contribu-
tions. In 1690 Bernoulli became the first to use the term 
“integral” in analyzing a curve of descent. His 1691 study 
of the catenary, or the curve formed by a chain suspended 
between its two extremities, was soon applied in building 
suspension bridges. In 1695 he also applied calculus to the 
design of bridges. During these years, he often engaged in 
disputes with his brother Johann Bernoulli over mathe-
matical issues.

Jakob Bernoulli’s pioneering work Ars Conjectandi 
(published posthumously, 1713; “The Art of Conjecturing”) 
contained many of his finest concepts: his theory of per-
mutations and combinations; the so-called Bernoulli 
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Among other things, Jakob (known also as Jacques) Bernoulli is renowned 
for the Bernoulli numbers and the Bernoulli law of large numbers. SSPL via 
Getty Images
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numbers, by which he derived the exponential series; his 
treatment of mathematical and moral predictability; and 
the subject of probability—containing what is now called 
the Bernoulli law of large numbers, basic to all modern 
sampling theory. His works were published as Opera Jacobi 
Bernoullii, 2 vol. (1744).

BhĀskara II
(b. 1114, Biddur, India—d. c. 1185, probably Ujjain) 

Bhāskara II was the leading mathematician of the 12th 
century and wrote the first work with full and systematic 
use of the decimal number system.

Bhāskara II was the lineal successor of the noted 
Indian mathematician Brahmagupta (598–c. 665) as head 
of an astronomical observatory at Ujjain, the leading 
mathematical centre of ancient India.

In his mathematical works, particularly Līlāvatī (“The 
Beautiful”) and Bījagan· ita (“Seed Counting”), he not only 
used the decimal system but also compiled problems from 
Brahmagupta and others. He filled many gaps in 
Brahmagupta’s work, especially in obtaining a general 
solution to the Pell equation (x2 = 1 + py2) and in giving 
many particular solutions. Bhāskara II anticipated the 
modern convention of signs (minus by minus makes plus, 
minus by plus makes minus) and evidently was the first to 
gain some understanding of the meaning of division by 
zero. He specifically stated that the value of 3/0 is an infi-
nite quantity, but his understanding seems to have been 
limited, for he also wrongly stated that a⁄0 × 0 = a. Bhāskara 
II used letters to represent unknown quantities, much as 
in modern algebra, and solved indeterminate equations of 
1st and 2nd degrees. He reduced quadratic equations to a 
single type and solved them and investigated regular 
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polygons up to those having 384 sides, thus obtaining a 
good approximate value of π = 3.141666.

In other of his works, notably Siddhāntaśiroman· i 
(“Head Jewel of Accuracy”) and Karan·akutūhala (“Calculation 
of Astronomical Wonders”), he wrote on his astronomi-
cal observations of planetary positions, conjunctions, 
eclipses, cosmography, geography, and the mathematical 
techniques and astronomical equipment used in these 
studies. Bhāskara II was also a noted astrologer, and tra-
dition has it that he named his first work, Līlāvatī, after 
his daughter to console her when his astrological med-
dling, coupled with an unfortunate twist of fate, is said  
to have deprived her of her only chance for marriage and 
happiness.

Ludwig Eduard Boltzmann
(b. Feb. 20, 1844, Vienna, Austria—d. Sept. 5, 1906, Duino, Italy) 

The physicist Ludwig Eduard Boltzmann had his greatest 
achievement in the development of statistical mechanics, 
which explains and predicts how the properties of atoms 
(such as mass, charge, and structure) determine the visible 
properties of matter (such as viscosity, thermal conductiv-
ity, and diffusion).

After receiving his doctorate from the University of 
Vienna in 1866, Boltzmann held professorships in mathe-
matics and physics at Vienna, Graz, Munich, and Leipzig.

In the 1870s Boltzmann published a series of papers in 
which he showed that the second law of thermodynam-
ics, which concerns energy exchange, could be explained 
by applying the laws of mechanics and the theory of prob-
ability to the motions of the atoms. In so doing, he made 
clear that the second law is essentially statistical and that 
a system approaches a state of thermodynamic equilib-
rium (uniform energy distribution throughout) because 
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equilibrium is overwhelmingly the most probable state of 
a material system. During these investigations Boltzmann 
worked out the general law for the distribution of energy 
among the various parts of a system at a specific tempera-
ture and derived the theorem of equipartition of energy 
(Maxwell-Boltzmann distribution law). This law states 
that the average amount of energy involved in each differ-
ent direction of motion of an atom is the same. He derived 
an equation for the change of the distribution of energy 
among atoms resulting from atomic collisions and laid the 
foundations of statistical mechanics.

Boltzmann was also one of the first continental scien-
tists to recognize the importance of the electromagnetic 
theory proposed by James Clerk Maxwell of England. 
Though his work on statistical mechanics was strongly 
attacked and long misunderstood, his conclusions were 
finally supported by the discoveries in atomic physics that 
began shortly before 1900 and by recognition that fluctu-
ation phenomena, such as Brownian motion (random 
movement of microscopic particles suspended in a fluid), 
could be explained only by statistical mechanics.

George Boole
(b. Nov. 2, 1815, Lincoln, Lincolnshire, Eng.—d. Dec. 8, 1864, 
Ballintemple, County Cork, Ire.) 

The English mathematician George Boole helped estab-
lish modern symbolic logic and whose algebra of logic, 
now called Boolean algebra, is basic to the design of digital 
computer circuits.

Boole was given his first lessons in mathematics by his 
father, a tradesman, who also taught him to make optical 
instruments. Aside from his father’s help and a few years 
at local schools, however, Boole was self-taught in mathe-
matics. When his father’s business declined, George had 
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to work to support the family. From the age of 16 he taught 
in village schools in the West Riding of Yorkshire, opening 
his own school in Lincoln when he was 20. During scant 
leisure time he read mathematics journals in the Lincoln’s 
Mechanics Institute. There he also read Isaac Newton’s 
Principia, Pierre-Simon Laplace’s Traité de mécanique céleste, 
and Joseph-Louis Lagrange’s Mécanique analytique and 
began to solve advanced algebra problems.

Boole submitted a stream of original papers to the new 
Cambridge Mathematical Journal, beginning in 1839 with his 
“Researches on the Theory of Analytical Transformations.” 
These papers were on differential equations and the alge-
braic problem of linear transformation, emphasizing the 
concept of invariance. In 1844, in an important paper in 
the Philosophical Transactions of the Royal Society for which 
he was awarded the Royal Society’s first gold medal for 
mathematics, he discussed how methods of algebra and 
calculus might be combined. Boole soon saw that his alge-
bra could also be applied in logic.

Developing novel ideas on logical method and con-
fident in the symbolic reasoning he had derived from 
his mathematical investigations, he published in 1847 a 
pamphlet, “Mathematical Analysis of Logic,” in which 
he argued persuasively that logic should be allied with 
mathematics, not philosophy. He won the admiration 
of the English logician Augustus De Morgan, who pub-
lished Formal Logic the same year. On the basis of his 
publications, Boole in 1849 was appointed professor of 
mathematics at Queen’s College, County Cork, even 
though he lacked a university degree. In 1854 he published 
An Investigation into the Laws of Thought, on Which Are 
Founded the Mathematical Theories of Logic and Probabilities, 
which he regarded as a mature statement of his ideas. The 
next year he married Mary Everest, niece of Sir George 
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Everest, for whom the mountain is named. The Booles 
had five daughters.

One of the first Englishmen to write about logic, Boole 
pointed out the analogy between algebraic symbols and 
those that can represent logical forms and syllogisms, 
showing how the symbols of quantity can be separated 
from those of operation. With Boole in 1847 and 1854 
began the algebra of logic, or what is now called Boolean 
algebra. Boole’s original and remarkable general symbolic 
method of logical inference, fully stated in Laws of Thought 
(1854), enables one, given any propositions involving any 
number of terms, to draw conclusions that are logically 
contained in the premises. He also attempted a general 
method in probabilities, which would make it possible 
from the given probabilities of any system of events to 
determine the consequent probability of any other event 
logically connected with the given events.

In 1857 Boole was elected a fellow of the Royal Society. 
The influential Treatise on Differential Equations appeared 
in 1859 and was followed the next year by its sequel, Treatise 
on the Calculus of Finite Differences. Used as textbooks for 
many years, these works embody an elaboration of Boole’s 
more important discoveries. Boole’s abstruse reasoning 
has led to applications of which he never dreamed. For 
example, telephone switching and electronic computers 
use binary digits and logical elements that rely on Boolean 
logic for their design and operation.

Girolamo Cardano
(b. Sept. 24, 1501, Pavia, duchy of Milan [Italy]—d. Sept. 21,  
1576, Rome) 

The Italian physician, mathematician, and astrologer 
Girolamo Cardano wrote a book, Ars magna (The Great 
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Art; or, The Rules of Algebra), that is one of the cornerstones 
in the history of algebra.

Educated at the universities of Pavia and Padua, 
Cardano received his medical degree in 1526. In 1534 he 
moved to Milan, where he lived in great poverty until he 
became a lecturer in mathematics. Admitted to the col-
lege of physicians in 1539, he soon became rector. Although 
his fame as a physician rapidly grew, and many of Europe’s 
crowned heads solicited his services, he valued his inde-
pendence too much to become a court physician. In 1543 
he accepted a professorship in medicine in Pavia.

Cardano was the most outstanding mathematician of 
his time. In 1539 he published two books on arithmetic 
embodying his popular lectures, the more important being 
Practica arithmetica et mensurandi singularis (“Practice of 
Mathematics and Individual Measurements”). His Ars 
magna (1545) contained the solution of the cubic equation, 
for which he was indebted to the Venetian mathematician 
Niccolò Tartaglia, and also the solution of the quartic 
equation found by Cardano’s former servant, Lodovico 
Ferrari. His Liber de ludo aleae (The Book on Games of Chance) 
presents the first systematic computations of probabili-
ties, a century before Blaise Pascal and Pierre de Fermat. 
Cardano’s popular fame was based largely on books deal-
ing with scientific and philosophical questions, especially 
De subtilitate rerum (“The Subtlety of Things”), a collection 
of physical experiments and inventions, interspersed with 
anecdotes.

Cardano’s favourite son, having married a disreputable 
girl, poisoned her and was executed in 1560. Cardano 
never recovered from the blow. From 1562 he was a profes-
sor in Bologna, but in 1570 he was suddenly arrested on the 
accusation of heresy. After several months in jail, he was 
permitted to abjure privately, but he lost his position and 
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the right to publish books. Before his death he completed 
his autobiography, De propria vita (The Book of My Life).

Arthur Cayley
(b. Aug. 16, 1821, Richmond, Surrey, Eng.—d. Jan. 26, 1895, 
Cambridge, Cambridgeshire) 

The English mathematician Arthur Cayley was the leader 
of the British school of pure mathematics that emerged in 
the 19th century.

Although Cayley was born in England, his first seven 
years were spent in St. Petersburg, Russia, where his 
parents lived in a trading community affiliated with the 
Muscovy Company. On the family’s permanent return 
to England in 1828 he was educated at a small private 
school in Blackheath, followed by the three-year course 
at King’s College, London. Cayley entered Trinity College, 
Cambridge, in 1838 and emerged as the champion student 
of 1842, the “Senior Wrangler” of his year. A fellowship 
enabled him to stay on at Cambridge, but in 1846 he left 
the university to study the law at Lincoln’s Inn in London. 
Cayley practised law in London from 1849 until 1863, while 
writing more than 300 mathematical papers in his spare 
time. In recognition of his mathematical work, he was 
elected to the Royal Society in 1852 and presented with 
its Royal Medal seven years later. In 1863 he accepted the 
Sadleirian professorship in mathematics at Cambridge—
sacrificing his legal career to devote himself full-time 
to mathematical research. In that same year he married 
Susan Moline, the daughter of a country banker.

Cayley’s manner was diffident but decisive. He was 
a capable administrator who quietly and effectively dis-
charged his academic duties. He was an early supporter 
of women’s higher education and steered Newnham 
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College, Cambridge (founded in 1871), during the 
1880s. Despite aiding the careers of a few students who 
naturally took to pure mathematics, Cayley never estab-
lished a full-fledged research school of mathematics at 
Cambridge.

In mathematics Cayley was an individualist. He  
handled calculations and symbolic manipulations with 
formidable skill, guided by a deep intuitive understanding 
of mathematical theories and their interconnections. His 
ability to keep abreast of current work while seeing the 
wider view enabled him to perceive important trends and 
to make valuable suggestions for further investigation.

Cayley made important contributions to the algebraic 
theory of curves and surfaces, group theory, linear algebra, 
graph theory, combinatorics, and elliptic functions. He 
formalized the theory of matrices. Among Cayley’s most 
important papers were his series of 10 “Memoirs on 
Quantics” (1854–78). A quantic, known today as an alge-
braic form, is a polynomial with the same total degree for 
each term. For example, every term in the following poly-
nomial has a total degree of 3:

x3 + 7x2y − 5xy2 + y3.

Alongside work produced by his friend James Joseph 
Sylvester, Cayley’s study of various properties of forms that 
are unchanged (invariant) under some transformation, such 
as rotating or translating the coordinate axes, established a 
branch of algebra known as invariant theory.

In geometry Cayley concentrated his attention on 
analytic geometry, for which he naturally employed invari-
ant theory. For example, he showed that the order of 
points formed by intersecting lines is always invariant, 
regardless of any spatial transformation. In 1859 Cayley 
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outlined a notion of distance in projective geometry (a 
projective metric), and he was one of the first to realize 
that Euclidean geometry is a special case of projective 
geometry—an insight that reversed current thinking. Ten 
years later, Cayley’s projective metric provided a key for 
understanding the relationship between the various types 
of non-Euclidean geometries.

Cayley was essentially a pure mathematician, but he 
also pursued mechanics and astronomy. He was active in 
lunar studies and produced two widely praised reports on 
dynamics (1857, 1862). Cayley had an extraordinarily pro-
lific career, producing almost a thousand mathematical 
papers. His habit was to embark on long studies punc-
tuated by rapidly written “bulletins from the front.” 
Cayley effortlessly wrote French and often published in 
Continental journals. As a young graduate at Cambridge, 
he was inspired by the work of the mathematician Karl 
Jacobi (1804–51). In 1876 Cayley published his only book, 
An Elementary Treatise on Elliptic Functions, which drew out 
this widely studied subject from Jacobi’s point of view.

Cayley was awarded numerous honours, including the 
Copley Medal in 1882 by the Royal Society. At various 
times he was president of the Cambridge Philosophical 
Society, the London Mathematical Society, the British 
Association for the Advancement of Science, and the 
Royal Astronomical Society.

Francis Ysidro Edgeworth
(b. Feb. 8, 1845, Edgeworthstown, County Longford, Ire.—d. Feb. 13, 
1926, Oxford, Oxfordshire, Eng.) 

Francis Ysidro Edgeworth was an Irish economist and 
statistician who innovatively applied mathematics to the 
fields of economics and statistics.
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Edgeworth was educated at Trinity College in Dublin 
and Balliol College, Oxford, graduating in 1869. In 1877 he 
qualified as a barrister. He lectured at King’s College in 
London from 1880, becoming professor of political econ-
omy in 1888. From 1891 to 1922 he was Drummond Professor 
of Economics at Oxford. He also played an important role 
as editor of the Economic Journal (1891–1926).

Although Edgeworth was strong in mathematics, he 
was weak at prose, and his publications failed to reach 
a popular audience. He had hoped to use mathematics 
to illuminate ethical questions, but his first work, New 
and Old Methods of Ethics (1877), depended so heavily on 
mathematical techniques—especially the calculus of 
variations—that the book may have deterred otherwise 
interested readers. His most famous work, Mathematical 
Psychics (1881), presented his new ideas on the generalized 
utility function, the indifference curve, and the contract 
curve, all of which have become standard devices of eco-
nomic theory.

Edgeworth contributed to the pure theory of interna-
tional trade and to taxation and monopoly theory. He also 
made important contributions to the theory of index 
numbers and to statistical theory, in particular to proba-
bility, advocating the use of data from past experience as 
the basis for estimating future probabilities. John Kenneth 
Galbraith once remarked that “all races have produced 
notable economists, except the Irish.” Edgeworth is a 
strong counterexample to Galbraith’s claim.

Pierre de Fermat
(b. Aug. 17, 1601, Beaumont-de-Lomagne, France—d. Jan. 12,  
1665, Castres) 

The French mathematician Pierre de Fermat is often 
called the founder of the modern theory of numbers.
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Co-founder of the theory of probability, Pierre de Fermat was the most pro-
ductive mathematician of his day. Photos.com

Together with René Descartes, Fermat was one of the 
two leading mathematicians of the first half of the 17th 
century. Through his correspondence with Blaise Pascal, 
he was a co-founder of the theory of probability.
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In 1631 Fermat received the baccalaureate in law from 
the University of Orléans. He served in the local parlia-
ment at Toulouse, becoming councillor in 1634. Sometime 
before 1638 he became known as Pierre de Fermat, but the 
authority for this designation is uncertain. In 1638 he was 
named to the Criminal Court.

Through the mathematician and theologian Marin 
Mersenne, who, as a friend of Descartes, often acted as 
an intermediary with other scholars, Fermat in 1638 main-
tained a controversy with Descartes on the validity of their 
respective methods for tangents to curves. Fermat’s views 
were fully justified some 30 years later in the calculus of Sir 
Isaac Newton. Recognition of the significance of Fermat’s 
work in analysis was tardy, in part because he adhered to 
the system of mathematical symbols devised by François 
Viète, notations that Descartes’s Géométrie had rendered 
largely obsolete. The handicap imposed by the awkward 
notations operated less severely in Fermat’s favourite 
field of study, the theory of numbers, but, unfortunately, 
he found no correspondent to share his enthusiasm. In 
1654 he had enjoyed an exchange of letters with his fellow 
mathematician Blaise Pascal on problems in probability 
concerning games of chance, the results of which were 
extended and published by Huygens in his De Ratiociniis 
in Ludo Aleae (1657).

Fermat vainly sought to persuade Pascal to join him in 
research in number theory. Inspired by an edition in 1621 
of the Arithmetic of Diophantus, the Greek mathemati-
cian of the 3rd century CE, Fermat had discovered new 
results in the so-called higher arithmetic, many of which 
concerned properties of prime numbers (those positive 
integers that have no factors other than 1 and themselves). 
One of the most elegant of these had been the theorem 
that every prime of the form 4n + 1 is uniquely expressible 
as the sum of two squares. A more important result, now 
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known as Fermat’s lesser theorem, asserts that if p is a 
prime number and if a is any positive integer, ap − a is divis-
ible by p. For occasional demonstrations of his theorems 
Fermat used a device that he called his method of “infinite 
descent,” an inverted form of reasoning by recurrence or 
mathematical induction. By far the best known of Fermat’s 
many theorems is a problem known as his “great,” or “last,” 
theorem. This appeared in the margin of his copy of 
Diophantus’ Arithmetica and states that the equation xn + 
yn = zn, where x, y, z, and n are positive integers, has no solu-
tion if n is greater than 2. This theorem remained unsolved 
until the late 20th century.

Fermat was the most productive mathematician of his 
day. But his influence was circumscribed by his reluctance 
to publish.

Sir Ronald Aylmer Fisher
(b. Feb. 17, 1890, London, Eng.—d. July 29, 1962, Adelaide, Austl.) 

The British statistician and geneticist Sir Ronald Aylmer 
Fisher pioneered the application of statistical procedures 
to the design of scientific experiments.

In 1909 Fisher was awarded a scholarship to study 
mathematics at the University of Cambridge, from which 
he graduated in 1912 with a B.A. in astronomy. He remained 
at Cambridge for another year to continue course work in 
astronomy and physics and to study the theory of errors. 
(The connection between astronomy and statistics dates 
back to Carl Friedrich Gauss, who formulated the law of 
observational error and the normal distribution based on 
his analysis of astronomical observations.)

Fisher taught high school mathematics and physics 
from 1914 until 1919 while continuing his research in sta-
tistics and genetics. Fisher had evidenced a keen interest 
in evolutionary theory during his student days—he was a 
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founder of the Cambridge University Eugenics Society—
and he combined his training in statistics with his 
avocation for genetics. In particular, he published an 
important paper in 1918 in which he used powerful statis-
tical tools to reconcile what had been apparent 
inconsistencies between Charles Darwin’s ideas of natural 
selection and the recently rediscovered experiments of 
the Austrian botanist Gregor Mendel.

In 1919 Fisher became the statistician for the 
Rothamsted Experimental Station near Harpenden, 
Hertfordshire, and did statistical work associated with 
the plant-breeding experiments conducted there. His 
Statistical Methods for Research Workers (1925) remained in 
print for more than 50 years. His breeding experiments 
led to theories about gene dominance and fitness, pub-
lished in The Genetical Theory of Natural Selection (1930). 
In 1933 Fisher became Galton Professor of Eugenics at 
University College, London. From 1943 to 1957 he was 
Balfour Professor of Genetics at Cambridge. He inves-
tigated the linkage of genes for different traits and 
developed methods of multivariate analysis to deal with 
such questions.

At Rothamsted Fisher designed plant-breeding 
experiments that provided greater information with less 
investments of time, effort, and money. One major prob-
lem he encountered was avoiding biased selection of 
experimental materials, which results in inaccurate or 
misleading experimental data. To avoid such bias, Fisher 
introduced the principle of randomization. This princi-
ple states that before an effect in an experiment can be 
ascribed to a given cause or treatment independently of 
other causes or treatments, the experiment must be 
repeated on a number of control units of the material 
and that all units of material used in the experiments must 
be randomly selected samples from the whole population 
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they are intended to represent. In this way, random 
selection is used to diminish the effects of variability in 
experimental materials.

An even more important achievement was Fisher’s 
origination of the concept of analysis of variance, or 
ANOVA. This statistical procedure enabled experiments 
to answer several questions at once. Fisher’s principal idea 
was to arrange an experiment as a set of partitioned subex-
periments that differ from each other in one or more of 
the factors or treatments applied in them. By permitting 
differences in their outcome to be attributed to the dif-
ferent factors or combinations of factors by means of 
statistical analysis, these subexperiments constituted a 
notable advance over the prevailing procedure of varying 
only one factor at a time in an experiment. It was later 
found that the problems of bias and multivariate analysis 
that Fisher had solved in his plant-breeding research are 
encountered in many other scientific fields as well.

Fisher summed up his statistical work in Statistical 
Methods and Scientific Inference (1956). He was knighted in 
1952 and spent the last years of his life conducting research 
in Australia.

John Graunt
(b. April 24, 1620, London, Eng.—d. April 18, 1674, London) 

John Graunt was an English statistician who is generally 
deemed the founder of the science of demography, the 
statistical study of human populations. His analysis of the 
vital statistics of the London populace influenced the pio-
neer demographic work of his friend Sir William Petty 
and, even more importantly, that of Edmond Halley, the 
astronomer royal.

A prosperous haberdasher until his business was 
destroyed in the London fire of 1666, Graunt held 
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municipal offices and a militia command. While still active 
as a merchant, he began to study the death records that 
had been kept by the London parishes since 1532. Noticing 
that certain phenomena of death statistics appeared regu-
larly, he was inspired to write Natural and Political 
Observations . . . Made upon the Bills of Mortality (1662). He 
produced four editions of this work. The third (1665) was 
published by the Royal Society, of which Graunt was a 
charter member.

Graunt classified death rates according to the causes 
of death, among which he included overpopulation, 
observing that the urban death rate exceeded the rural. 
He also found that although the male birth rate was higher 
than the female, it was offset by a greater mortality rate 
for males, so that the population was divided almost evenly 
between the sexes. Perhaps his most important innova-
tion was the life table, which presented mortality in terms 
of survivorship. Using only two rates of survivorship (to 
ages 6 and 76), derived from actual observations, he pre-
dicted the percentage of persons that will live to each 
successive age and their life expectancy year by year. Petty 
was able to extrapolate from mortality rates an estimate of 
community economic loss caused by deaths.

Pierre-Simon,  
marquis de Laplace
(b. March 23, 1749, Beaumount-en-Auge, Normandy, France—d. 
March 5, 1827, Paris) 

The French mathematician, astronomer, and physicist 
Pierre-Simon, marquis de Laplace is best known for his 
investigations into the stability of the solar system. He 
also demonstrated the usefulness of probability for inter-
preting scientific data.
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Laplace was the son of a peasant farmer. Little is 
known of his early life except that he quickly showed his 
mathematical ability at the military academy at Beaumont. 
In 1767 he arrived in Paris with a letter of recommenda-
tion to the mathematician Jean d’Alembert, who helped 
him secure a professorship at the École Militaire, where 
he taught from 1769 to 1776.

In 1773 he began his major lifework—applying 
Newtonian gravitation to the entire solar system—by tak-
ing up a particularly troublesome problem: why Jupiter’s 
orbit appeared to be continuously shrinking while 
Saturn’s continually expanded. The mutual gravitational 
interactions within the solar system were so complex 
that mathematical solution seemed impossible. Indeed, 
Newton had concluded that divine intervention was peri-
odically required to preserve the system in equilibrium. 
Laplace announced the invariability of planetary mean 
motions (average angular velocity). This discovery in 1773 
was the first and most important step in establishing 
the stability of the solar system and the most important 
advance in physical astronomy since Newton. He removed 
the last apparent anomaly from the theoretical descrip-
tion of the solar system in 1787 with the announcement 
that lunar acceleration depends on the eccentricity of the 
Earth’s orbit.

In 1796 Laplace published Exposition du système du 
monde (The System of the World), a semipopular treatment of 
his work in celestial mechanics and a model of French 
prose. The book included his “nebular hypothesis”—
attributing the origin of the solar system to cooling and 
contracting of a gaseous nebula—which strongly influ-
enced future thought on planetary origin. His Traité de 
mécanique céleste (Celestial Mechanics), appearing in five vol-
umes between 1798 and 1827, summarized the results 
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Pierre-Simon Laplace applied Newtonian gravitation to the entire solar sys-
tem, particularly investigating why Jupiter’s orbit appeared to be continuously 
shrinking while Saturn’s continually expanded. SSPL via Getty Images
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obtained by his mathematical development and applica-
tion of the law of gravitation. He offered a complete 
mechanical interpretation of the solar system by devising 
methods for calculating the motions of the planets and 
their satellites and their perturbations, including the reso-
lution of tidal problems. The book made him a celebrity.

In 1814 Laplace published a popular work for the gen-
eral reader, Essai philosophique sur les probabilités (A 
Philosophical Essay on Probability). This work was the intro-
duction to the second edition of his comprehensive and 
important Théorie analytique des probabilités (Analytic 
Theory of Probability), first published in 1812, in which he 
described many of the tools he invented for mathemati-
cally predicting the probabilities that particular events 
will occur in nature. He applied his theory not only to the 
ordinary problems of chance but also to the inquiry into 
the causes of phenomena, vital statistics, and future 
events, while emphasizing its importance for physics and 
astronomy. The book is notable also for including a special 
case of what became known as the central limit theorem. 
Laplace proved that the distribution of errors in large data 
samples from astronomical observations can be approxi-
mated by a Gaussian or normal distribution.

Adrien-Marie Legendre
(b. Sept. 18, 1752, Paris, France—d. Jan. 10, 1833, Paris)

The distinguished work of the French mathematician 
Adrien-Marie Legendre on elliptic integrals provided 
basic analytic tools for mathematical physics.

Little is known about Legendre’s early life except that 
his family wealth allowed him to study physics and math-
ematics, beginning in 1770, at the Collège Mazarin 
(Collège des Quatre-Nations) in Paris and that, at least 
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until the French Revolution, he did not have to work. 
Nevertheless, Legendre taught mathematics at the École 
Militaire in Paris from 1775 to 1780. In 1782 he won a prize 
offered by the Berlin Academy of Sciences for his effort 
to “determine the curve described by cannonballs and 
bombs, taking into consideration the resistance of air[, 
and] give rules for obtaining the ranges corresponding to 
different initial velocities and to different angles of pro-
jection.” The next year he presented research on celestial 
mechanics to the French Academy of Sciences, and he 
was soon rewarded with membership. In 1787 he joined 
the French team, led by Jacques-Dominique Cassini and 
Pierre Mechain, in the geodetic measurements jointly 
conducted with the Royal Greenwich Observatory in 
London. At this time he also became a member of the 
British Royal Society. In 1791 he was named along with 
Cassini and Mechain to a special committee to develop 
the metric system and, in particular, to conduct the nec-
essary measurements to determine the standard metre. 
He also worked on projects to produce logarithmic and 
trigonometric tables.

The Academy of Sciences was forced to close in 1793 
during the French Revolution, and Legendre lost his fam-
ily wealth during the upheaval. Nevertheless, he married 
at this time. The following year he published Éléments de 
géométrie (Elements of Geometry), a reorganization and sim-
plification of the propositions from Euclid’s Elements that 
was widely adopted in Europe, even though it is full of fal-
lacious attempts to defend the parallel postulate. Legendre 
also gave a simple proof that π is irrational, as well as the 
first proof that π2 is irrational, and he conjectured that π is 
not the root of any algebraic equation of finite degree with 
rational coefficients (i.e., π is a transcendental number). 
His Éléments was even more pedagogically influential in 
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the United States, undergoing numerous translations 
starting in 1819. One such translation went through some 
33 editions. The French Academy of Sciences was reopened 
in 1795 as the Institut Nationale des Sciences et des Arts, 
and Legendre was installed in the mathematics section. 
When Napoleon reorganized the institute in 1803, 
Legendre was retained in the new geometry section. In 
1824 he refused to endorse the government’s candidate for 
the Institut and lost his pension from the École Militaire, 
where he had served from 1799 to 1815 as the mathematics 
examiner for graduating artillery students.

Legendre’s Nouvelles méthodes pour la détermina-
tion des orbites des comètes (1806; “New Methods for the 
Determination of Comet Orbits”) contains the first com-
prehensive treatment of the method of least squares, but 
priority for its discovery is shared with his German rival 
Carl Friedrich Gauss.

In 1786 Legendre took up research on elliptic integrals. 
In his most important work, Traité des fonctions elliptiques 
(1825–37; “Treatise on Elliptic Functions”), he reduced 
elliptic integrals to three standard forms now known by 
his name. He also compiled tables of the values of his ellip-
tic integrals and showed how they can be used to solve 
important problems in mechanics and dynamics. Shortly 
after his work appeared, the independent discoveries of 
Niels Henrik Abel and Carl Jacobi completely revolution-
ized the subject of elliptic integrals.

Legendre published his own researches in num-
ber theory and those of his predecessors in a systematic 
form under the title Théorie des nombres, 2 vol. (1830). This 
work included his flawed proof of the law of quadratic 
reciprocity. The law was regarded by Gauss, the greatest 
mathematician of the day, as the most important general 
result in number theory since the work of Pierre de Fermat 
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in the 17th century. Gauss also gave the first rigorous proof 
of the law.

Abraham de Moivre
(b. May 26, 1667, Vitry, France—d. Nov. 27, 1754, London, Eng.) 

French mathematician Abraham de Moivre was a pioneer 
in the development of analytic trigonometry and in the 
theory of probability.

A French Huguenot, de Moivre was jailed as a 
Protestant upon the revocation of the Edict of Nantes in 
1685. When he was released shortly thereafter, he fled to 
England where, once in London, he became a close friend 
of Sir Isaac Newton and the astronomer Edmond Halley. 
De Moivre was elected to the Royal Society of London in 
1697 and later to the Berlin and Paris academies. Despite 
his distinction as a mathematician, he never succeeded in 
securing a permanent position but eked out a precarious 
living by working as a tutor and a consultant on gambling 
and insurance.

De Moivre expanded his paper “De mensura sortis” 
(written in 1711), which appeared in Philosophical 
Transactions, into The Doctrine of Chances (1718). Although 
the modern theory of probability had begun with the 
unpublished correspondence (1654) between Blaise Pascal 
and Pierre de Fermat and the treatise De Ratiociniis in Ludo 
Aleae (1657; “On Ratiocination in Dice Games”) by 
Christiaan Huygens of Holland, de Moivre’s book greatly 
advanced probability study. The definition of statistical 
independence—namely, that the probability of a com-
pound event composed of the intersection of statistically 
independent events is the product of the probabilities of 
its components—was first stated in de Moivre’s Doctrine. 
Many problems in dice and other games were included, 
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some of which appeared in the Swiss mathematician Jakob 
(Jacques) Bernoulli’s  Ars conjectandi  (1713; “The Conjectural 
Arts”), which was published before de Moivre’s  Doctrine
but after his “De mensura.” He derived the principles of 
probability from the mathematical expectation of events, 
just the reverse of present-day practice. 

 De Moivre’s second important work on probability 
was  Miscellanea Analytica  (1730; “Analytical Miscellany”). 
He was the fi rst to use the probability integral in which 
the integrand is the exponential of a negative quadratic, 

 

 He originated Stirling’s formula, incorrectly attributed 
to James Stirling (1692–1770) of England, which states that 
for a large number  n ,  n ! equals approximately (2 πn )   1 / 2   e  - n   n   n   ;
that is,  n  factorial (a product of integers with values 
descending from  n  to 1) approximates the square root of 
2 πn,  times the exponential of − n,  times  n  to the  n th power. 
In 1733 he used Stirling’s formula to derive the normal fre-
quency curve as an approximation of the binomial law.  

 De Moivre was one of the fi rst mathematicians to use 
complex numbers in trigonometry. The formula known by 
his name, (cos  x  +  i  sin  x )  n   = cos  nx  +  i  sin  nx,  was instrumen-
tal in bringing trigonometry out of the realm of geometry 
and into that of analysis.   

 John f. nash, JR. 
 (b. June 13, 1928, Bluefi eld, W.Va., U.S.) 

The American mathematician John Forbes Nash, Jr., 
was awarded the 1994 Nobel Prize for Economics for his 
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landmark work, first begun in the 1950s, on the math-
ematics of game theory. He shared the Nobel Prize with 
the Hungarian American economist John C. Harsanyi and 
German mathematician Reinhard Selten.

In 1948 Nash received bachelor’s and master’s degrees 
in mathematics from the Carnegie Institute of Tech-
nology (now Carnegie-Mellon University) in Pittsburgh, 
Pennsylvania. Two years later, at age 22, he completed his 
doctorate at Princeton University, publishing his influen-
tial thesis “Non-cooperative Games” in the journal Annals 
of Mathematics. He joined the faculty of the Massachusetts 
Institute of Technology in 1951 but resigned in the late 
1950s after bouts of mental illness. He then began an 
informal association with Princeton.

Nash established the mathematical principles of game 
theory, a branch of mathematics that examines the rival-
ries among competitors with mixed interests. Known as 
the Nash solution or the Nash equilibrium, his theory 
attempted to explain the dynamics of threat and action 
among competitors. Despite its practical limitations, the 
Nash solution was widely applied by business strategists.

A film version of Nash’s life, A Beautiful Mind (2001), 
based on Sylvia Nasar’s 1998 biography of the same name, 
won an Academy Award for best picture. It portrays Nash’s 
long struggle with schizophrenia.

Jerzy Neyman
(b. April 16, 1894, Bendery, Bessarabia, Russia [now Tighina, 
Moldova]—d. Aug. 5, 1981, Oakland, Calif., U.S.)

Jerzy Neyman was a Polish mathematician and statistician 
who, working in Russian, Polish, and then English, helped to 
establish the statistical theory of hypothesis testing. Neyman 
was a principal founder of modern theoretical statistics.
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Neyman was born into a Polish-speaking family and 
was raised in Bessarabia, the Crimea, and Ukraine under 
the Russian Empire. After serving as a lecturer at the 
Institute of Technology, Kharkov, in Ukraine, from 1917 
to 1921, Neyman was appointed statistician of the 
Institute of Agriculture at Bydgoszcz, Pol. In 1923 he 
became a lecturer at the College of Agriculture, Warsaw, 
and he joined the faculty of the University of Warsaw in 
1928. He served on the staff of University College, 
London, from 1934 to 1938, and then immigrated to the 
United States, where he joined the faculty of the 
University of California, Berkeley, becoming chairman of 
a new department of statistics in 1955 and residing as a 
U.S. citizen for the rest of his life. At Berkeley he built, 
with the help of a growing number of statisticians and 
mathematicians who studied under him, what became 
known as a leading world centre for mathematical statis-
tics. A highly successful series of symposia on probability 
and statistics were carried out under his guidance.

Neyman’s work in mathematical statistics, which 
includes theories of estimation and of testing hypotheses, 
has found wide application in genetics, medical diagnosis, 
astronomy, meteorology, and agricultural experimenta-
tion. He was noted especially for combining theory and its 
applications in his thinking. In 1969 he was awarded the 
prestigious National Medal of Science by U.S. President 
Lyndon Johnson.

Karl Pearson
(b. March 27, 1857, London, Eng.—d. April 27, 1936,  
Coldharbour, Surrey) 

British statistician Karl Pearson was a leading founder of 
the modern field of statistics, prominent proponent of 
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eugenics, and influential interpreter of the philosophy and 
social role of science.

In 1875 Pearson won a scholarship to King’s College, 
University of Cambridge, where he achieved the rank of 
third wrangler in the highly competitive Mathematical 
Tripos of 1879. In 1884 Pearson was appointed professor of 
applied mathematics and mechanics at University College, 
London. He taught graphical methods, and this work 
formed the basis for his original interest in statistics. In 
1892 he published The Grammar of Science, in which he 
argued that the scientific method is essentially descriptive 
rather than explanatory. Soon he was making the same 
argument about statistics, emphasizing especially the 
importance of quantification for biology, medicine, and 
social science. It was the problem of measuring the effects 
of natural selection, brought to him by his colleague 
Walter F.R. Weldon, that captivated Pearson and turned 
statistics into his personal scientific mission. Their work 
owed much to Francis Galton, who especially sought to 
apply statistical reasoning to the study of biological evolu-
tion and eugenics. Pearson, likewise, was intensely devoted 
to the development of a mathematical theory of evolu-
tion, and he became an acerbic advocate for eugenics.

Through his mathematical work and his institution 
building, Pearson played a leading role in the creation of 
modern statistics. The basis for his statistical mathematics 
came from a long tradition of work on the method of least 
squares approximation. Pearson drew from these studies in 
creating a new field whose task it was to manage and make 
inferences from data in almost every field. His positivistic 
philosophy of science provided a persuasive justification 
for statistical reasoning and inspired many champions of 
the quantification of the biological and social sciences 
during the early decades of the 20th century.
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As statistician, Pearson emphasized measuring corre-
lations and fitting curves to the data, and for the latter 
purpose he developed the new chi-square distribution. 
Rather than just dealing with mathematical theory, 
Pearson’s papers most often applied the tools of statistics 
to scientific problems. With the help of his first assistant, 
George Udny Yule, Pearson built up a biometric labora-
tory on the model of the engineering laboratory at 
University College. As his resources expanded, he was 
able to recruit a devoted group of female assistants. They 
measured skulls, gathered medical and educational data, 
calculated tables, and derived and applied new ideas in 
statistics. In 1901, assisted by Weldon and Galton, Pearson 
founded the journal Biometrika, the first journal of mod-
ern statistics.

Pearson’s grand claims for statistics led him into a 
series of bitter controversies. Pearson battled with doc-
tors and economists who used statistics without mastering 
the mathematics or who emphasized environmental over 
hereditary causation. And he fought with a long line of fel-
low statisticians, including many of his own students. The 
bitterest of these disputes was with Ronald Aylmer Fisher. 
In the 1920s and ’30s, as Fisher’s reputation grew, Pearson’s 
dimmed. Upon his retirement in 1933, Pearson’s position 
at University College was divided between Fisher and 
Pearson’s son Egon.

Sir William Petty
(b. May 26, 1623, Romsey, Hampshire, Eng.—d. Dec. 16, 1687, 
London) 

Sir William Petty was an English political economist and 
statistician whose main contribution to political economy, 
Treatise of Taxes and Contributions (1662), examined the role 
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of the state in the economy and touched on the labour 
theory of value.

Petty studied medicine at the Universities of Leiden, 
Paris, and Oxford. He was successively a physician; pro-
fessor of anatomy at Oxford; professor of music in London; 
inventor, surveyor, and landowner in Ireland; and a mem-
ber of Parliament. As a proponent of the empirical 
scientific doctrines of the newly established Royal Society, 
of which he was a founder, Petty was one of the originators 
of political arithmetic, which he defined as the art of rea-
soning by figures upon things relating to government. His 
Essays in Political Arithmetick and Political Survey or Anatomy 
of Ireland (1672) presented rough but ingeniously calcu-
lated estimates of population and of social income. His 
ideas on monetary theory and policy were developed in 
Verbum Sapienti (1665) and in Quantulumcunque Concerning 
Money, 1682 (1695).

Petty originated many of the concepts that are still 
used in economics today. He coined the term full employ-
ment, for example, and stated that the price of land equals 
the discounted present value of expected future rent on 
the land.

Siméon-Denis Poisson
(b. June 21, 1781, Pithiviers, France—d. April 25, 1840, Sceaux) 

The French mathematician Siméon-Denis Poisson was 
known for his work on definite integrals, electromagnetic 
theory, and probability.

Poisson’s family had intended him for a medical career, 
but he showed little interest or aptitude and in 1798 began 
studying mathematics at the École Polytechnique in Paris 
under the mathematicians Pierre-Simon Laplace and 
Joseph-Louis Lagrange, who became his lifelong friends. 
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He became a professor at the École Polytechnique in 1802. 
In 1808 he was made an astronomer at the Bureau of 
Longitudes, and, when the Faculty of Sciences was insti-
tuted in 1809, he was appointed a professor of pure 
mathematics.

Poisson’s most important work concerned the applica-
tion of mathematics to electricity and magnetism, 
mechanics, and other areas of physics. His Traité de méca-
nique (1811 and 1833; “Treatise on Mechanics”) was the 
standard work in mechanics for many years. In 1812 he 
provided an extensive treatment of electrostatics, based 
on Laplace’s methods from planetary theory, by postulat-
ing that electricity is made up of two fluids in which like 
particles are repelled and unlike particles are attracted 
with a force that is inversely proportional to the square of 
the distance between them.

Poisson contributed to celestial mechanics by extend-
ing the work of Lagrange and Laplace on the stability of 
planetary orbits and by calculating the gravitational 
attraction exerted by spheroidal and ellipsoidal bodies. 
His expression for the force of gravity in terms of the 
distribution of mass within a planet was used in the late 
20th century for deducing details of the shape of the 
Earth from accurate measurements of the paths of orbit-
ing satellites.

Poisson’s other publications include Théorie nouvelle de 
l’action capillaire (1831; “A New Theory of Capillary Action”) 
and Théorie mathématique de la chaleur (1835; “Mathematical 
Theory of Heat”). In Recherches sur la probabilité des juge-
ments en matière criminelle et en matière civile (1837; “Research 
on the Probability of Criminal and Civil Verdicts”), an 
important investigation of probability, the Poisson distri-
bution appears for the first and only time in his work. 
Poisson’s contributions to the law of large numbers (for 
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independent random variables with a common distribu-
tion, the average value for a sample tends to the mean as 
sample size increases) also appeared therein. Although 
originally derived as merely an approximation to the bino-
mial distribution (obtained by repeated, independent 
trials that have only one of two possible outcomes), the 
Poisson distribution is now fundamental in the analysis of 
problems concerning radioactivity, traffic, and the ran-
dom occurrence of events in time or space.

In pure mathematics his most important works were a 
series of papers on definite integrals and his advances in 
Fourier analysis. These papers paved the way for the 
research of the German mathematicians Peter Dirichlet 
and Bernhard Riemann.

Adolphe Quetelet
(b. Feb. 22, 1796, Ghent, Belg.—d. Feb. 17, 1874, Brussels) 

The Belgian mathematician, astronomer, statistician, and 
sociologist Lambert Adolphe Jacques Quetelet was known 
for his application of statistics and probability theory to 
social phenomena.

From 1819 Quetelet lectured at the Brussels Athenaeum, 
military college, and museum. In 1823 he went to Paris 
to study astronomy, meteorology, and the management 
of an astronomical observatory. While there he learned 
probability from Joseph Fourier and, conceivably, from 
Pierre-Simon Laplace. Quetelet founded (1828) and 
directed the Royal Observatory in Brussels, served as per-
petual secretary of the Belgian Royal Academy (1834–74), 
and organized the first International Statistical Congress 
(1853). For the Dutch and Belgian governments, he col-
lected and analyzed statistics on crime, mortality, and other 
subjects and devised improvements in census taking. He 
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also developed methods for simultaneous observations of 
astronomical, meteorological, and geodetic phenomena 
from scattered points throughout Europe.

In Sur l’homme et le développement de ses facultés, ou essai de 
physique sociale (1835; A Treatise on Man and the Development 
of His Faculties), he presented his conception of the homme 
moyen (“average man”) as the central value about which 
measurements of a human trait are grouped according to 
the normal distribution. His studies of the numerical con-
stancy of such presumably voluntary acts as crimes 
stimulated extensive studies in “moral statistics” and wide 
discussion of free will versus social determinism. In trying 
to discover through statistics the causes of antisocial acts, 
Quetelet conceived of the idea of relative propensity to 
crime of specific age groups. Like his homme moyen idea, 
this evoked great controversy among social scientists in 
the 19th century.

Jakob Steiner
(b. March 18, 1796, Utzenstorf, Switz.—d. April 1, 1863, Bern) 

The Swiss mathematician Jakob Steiner was one of the 
founders of modern synthetic and projective geometry.

As the son of a small farmer, Steiner had no early 
schooling and did not learn to write until he was 14. Against 
the wishes of his parents, at 18 he entered the Pestalozzi 
School at Yverdon, Switzerland, where his extraordinary 
geometric intuition was discovered. Later, he went to the 
University of Heidelberg and the University of Berlin to 
study, supporting himself precariously as a tutor. By 1824 
he had studied the geometric transformations that led 
him to the theory of inversive geometry, but he did not 
publish this work. In 1826 the first regular publication 
devoted to mathematics, Crelle’s Journal, was founded, 
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giving Steiner an opportunity to publish some of his other 
original geometric discoveries. In 1832 he received an hon-
orary doctorate from the University of Königsberg, and 
two years later he occupied the chair of geometry estab-
lished for him at Berlin, a post he held until his death.

During his lifetime some considered Steiner the great-
est geometer since Apollonius of Perga (c. 262–190 BCE), 
and his works on synthetic geometry were considered 
authoritative. He had an extreme dislike for the use of 
algebra and analysis, and he often expressed the opinion 
that calculation hampered thinking, whereas pure geom-
etry stimulated creative thought. By the end of the century, 
however, it was generally recognized that Karl von Staudt 
(1798–1867), who worked in relative isolation at the 
University of Erlangen, had made far deeper contributions 
to a systematic theory of pure geometry. Nevertheless, 
Steiner contributed many basic concepts and results in 
projective geometry. For example, he discovered a trans-
formation of the real projective plane (the set of lines 
through the origin in ordinary three-dimensional space) 
that maps each line of the projective plane to one point on 
the Steiner surface (also known as the Roman surface). 
His other work was primarily on the properties of alge-
braic curves and surfaces and on the solution of 
isoperimetric problems. His collected writings were pub-
lished posthumously as Gesammelte Werke, 2 vol. (1881–82; 
“Collected Works”).

James Joseph Sylvester
(b. Sept. 3, 1814, London, Eng.—d. March 15, 1897, London) 

British mathematician James Joseph Sylvester, with Arthur 
Cayley, was a cofounder of invariant theory, the study of 
properties that are unchanged (invariant) under some 
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transformation, such as rotating or translating the coordi-
nate axes. He also made significant contributions to 
number theory and elliptic functions.

In 1837 Sylvester came second in the mathematical tri-
pos at the University of Cambridge but, as a Jew, was 
prevented from taking his degree or securing an appoint-
ment there. The following year he became a professor of 
natural philosophy at University College, London (the 
only nonsectarian British university). In 1841 he accepted 
a professorship of mathematics at the University of 
Virginia, Charlottesville, U.S., but resigned after only 
three months following an altercation with a student for 
which the school’s administration did not take his side. 
He returned to England in 1843. The following year he 
went to London, where he became an actuary for an insur-
ance company, retaining his interest in mathematics only 
through tutoring (his students included Florence 
Nightingale). In 1846 he became a law student at the Inner 
Temple, and in 1850 he was admitted to the bar. While 
working as a lawyer, Sylvester began an enthusiastic and 
profitable collaboration with Cayley.

From 1855 to 1870 Sylvester was a professor of mathe-
matics at the Royal Military Academy in Woolwich. He 
went to the United States once again in 1876 to become a 
professor of mathematics at Johns Hopkins University in 
Baltimore, Maryland. While there he founded (1878) and 
became the first editor of the American Journal of 
Mathematics, introduced graduate work in mathematics 
into American universities, and greatly stimulated the 
American mathematical scene. In 1883 he returned to 
England to become the Savilian Professor of Geometry at 
the University of Oxford.

Sylvester was primarily an algebraist. He did brilliant 
work in the theory of numbers, particularly in partitions 
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(the possible ways a number can be expressed as a sum of 
positive integers) and Diophantine analysis (a means for 
finding whole-number solutions to certain algebraic equa-
tions). He worked by inspiration, and frequently it is 
difficult to detect a proof in his confident assertions. His 
work is characterized by powerful imagination and inven-
tiveness. He was proud of his mathematical vocabulary 
and coined many new terms, but few have survived. In 
1839 he was elected a fellow of the Royal Society, and he 
was the second president of the London Mathematical 
Society (1866–68). His mathematical output includes sev-
eral hundred papers and one book, Treatise on Elliptic 
Functions (1876). He also wrote poetry, although not to crit-
ical acclaim, and published Laws of Verse (1870).

John von Neumann
(b. Dec. 28, 1903, Budapest, Hung.—d. Feb. 8, 1957, Washington, 
D.C., U.S.) 

Hungarian-born American mathematician John von 
Neumann grew from a child prodigy to one of the world’s 
foremost mathematicians by his mid-twenties. He pio-
neered game theory and, along with Alan Turing and 
Claude Shannon, was one of the conceptual inventors of 
the stored-program digital computer.

Von Neumann showed signs of genius in early child-
hood: He could joke in Classical Greek and, for a family 
stunt, he could quickly memorize a page from a telephone 
book and recite its numbers and addresses. Upon comple-
tion of von Neumann’s secondary schooling in 1921, his 
father discouraged him from pursuing a career in mathe-
matics, fearing that there was not enough money in the 
field. As a compromise, von Neumann simultaneously 
studied chemistry and mathematics. He earned a degree 
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in chemical engineering (1925) from the Swiss Federal 
Institute in Zürich and a doctorate in mathematics (1926) 
from the University of Budapest.

Von Neumann commenced his intellectual career 
when the influence of David Hilbert and his program of 
establishing axiomatic foundations for mathematics was 
at a peak, working under Hilbert from 1926 to 1927 at the 
University of Göttingen. The goal of axiomatizing math-
ematics was defeated by Kurt Gödel’s incompleteness 
theorems, a barrier that Hilbert and von Neumann imme-
diately understood. The work with Hilbert culminated in 
von Neumann’s book The Mathematical Foundations of 
Quantum Mechanics (1932), in which quantum states are 
treated as vectors in a Hilbert space. This mathematical 
synthesis reconciled the seemingly contradictory quan-
tum mechanical formulations of Erwin Schrödinger and 
Werner Heisenberg.

In 1928 von Neumann published “Theory of Parlor 
Games,” a key paper in the field of game theory. The 
nominal inspiration was the game of poker. Game theory 
focuses on the element of bluffing, a feature distinct from 
the pure logic of chess or the probability theory of rou-
lette. Though von Neumann knew of the earlier work of 
the French mathematician Émile Borel, he gave the sub-
ject mathematical substance by proving the mini-max 
theorem. This asserts that for every finite, two-person 
zero-sum game, there is a rational outcome in the 
sense that two perfectly logical adversaries can arrive 
at a mutual choice of game strategies, confident that 
they could not expect to do better by choosing another 
strategy. In games like poker, the optimal strategy incor-
porates a chance element. Poker players must bluff 
occasionally—and unpredictably—to avoid exploitation 
by a savvier player.
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In 1933 von Neumann became one of the first professors 
at the Institute for Advanced Study (IAS), Princeton, N.J. 
The same year, Adolf Hitler came to power in Germany, and 
von Neumann relinquished his German academic posts.

Although Von Neumann once said he felt he had not 
lived up to all that had been expected of him, he became a 
Princeton legend. It was said that he played practical jokes 
on Einstein and could recite verbatim books that he had 
read years earlier. Von Neumann’s natural diplomacy 
helped him move easily among Princeton’s intelligentsia, 
where he often adopted a tactful modesty. Never much 
like the stereotypical mathematician, he was known as a 
wit, bon vivant, and aggressive driver—his frequent auto 
accidents led to one Princeton intersection being dubbed 
“von Neumann corner.”

In late 1943 von Neumann began work on the Manhattan 
Project, working on Seth Neddermeyer’s implosion design 
for an atomic bomb at Los Alamos, N.M. This called for a 
hollow sphere containing fissionable plutonium to be sym-
metrically imploded to drive the plutonium into a critical 
mass at the centre. The implosion had to be so symmetri-
cal that it was compared to crushing a beer can without 
splattering any beer. Adapting an idea proposed by James 
Tuck, von Neumann calculated that a “lens” of faster- and 
slower-burning chemical explosives could achieve the 
needed degree of symmetry. The Fat Man atomic bomb 
dropped on Nagasaki used this design.

Overlapping with this work was von Neumann’s mag-
num opus of applied math, Theory of Games and Economic 
Behavior (1944), cowritten with Princeton economist 
Oskar Morgenstern. Game theory had been orphaned 
since the 1928 publication of “Theory of Parlor Games,” 
with neither von Neumann nor anyone else significantly 
developing it. The collaboration with Morgernstern 
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burgeoned to 641 pages, the authors arguing for game 
theory as the “Newtonian science” underlying economic 
decisions. The book invigorated a vogue for game theory 
among economists that has partly subsided. The theory 
has also had broad influence in fields ranging from evolu-
tionary biology to defense planning.

Starting in 1944, he contributed important ideas to the 
U.S. Army’s hard-wired Electronic Numerical Integrator 
and Computer (ENIAC) computer. Most important, 
von Neumann modified the ENIAC to run as a stored-
program machine. He then lobbied to build an improved 
computer at the Institute for Advanced Studies (IAS). The 
IAS machine, which began operating in 1951, used binary 
arithmetic (the ENIAC had used decimal numbers) and 

John von Neumann pioneered game theory, contributed to the infamous 
Manhattan Project, and was one of the conceptual inventors of the stored-
program digital computer. Alfred Eisenstaedt/Time & Life Pictures/
Getty Images
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shared the same memory for code and data, a design that 
greatly facilitated the “conditional loops” at the heart of 
all subsequent coding.

Another important consultancy was at the RAND 
Corporation, a think tank charged with planning nuclear 
strategy for the U.S. Air Force. Von Neumann insisted on 
the value of game-theoretic thinking in defense policy. 
He supported development of the hydrogen bomb and 
was reported to have advocated a preventive nuclear 
strike to destroy the Soviet Union’s nascent nuclear capa-
bility circa 1950.

Von Neumann’s shift to applied mathematics after the 
midpoint of his career mystified colleagues, who felt that 
a genius of his calibre should concern himself with “pure” 
mathematics. In an essay written in 1956, von Neumann 
made an eloquent defense of applied mathematics. He 
praised the invigorating influence of “some underlying 
empirical, worldly motif ” in mathematics, warning that 
“at a great distance from its empirical source, or after 
much abstract inbreeding, a mathematical subject is in 
danger of degeneration.” With his pivotal work on game 
theory, quantum theory, the atomic bomb, and the com-
puter, von Neumann likely exerted a greater influence on 
the modern world than any other mathematician of the 
20th century.
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sPeCIAL toPICs

 Some topics discussed earlier are treated here in greater 
detail. For example, you will learn how Sir Ronald 

Fisher used Bayes’s theorem to throw suspicion on a 
famous scientist. You may also be amazed at how statistics 
was used to settle a controversy about Earth’s shape.   

 bayes’s TheoReM 

 Bayes’s theorem is a means for revising predictions in light 
of relevant evidence, also known as conditional probabil-
ity or inverse probability. The theorem was discovered 
among the papers of the English Presbyterian minister 
and mathematician Thomas Bayes and posthumously 
published in 1763. Related to the theorem is Bayesian 
inference, or Bayesianism, based on the assignment of 
some a priori distribution of a parameter under investiga-
tion. In 1854 the English logician George Boole criticized 
the subjective character of such assignments, and 
Bayesianism declined in favour of “confi dence intervals” 
and “hypothesis tests”—now basic research methods. 

 As a simple application of Bayes’s theorem, consider 
the results of a screening test for infection with the human 
immunodefi ciency virus (HIV). Suppose an intravenous 
drug user undergoes testing where experience has indi-
cated a 25 percent chance that the person has HIV. A 
quick test for HIV can be conducted, but it is not infal-
lible: Almost all individuals who have been infected long 
enough to produce an immune system response can be 
detected, but very recent infections may go undetected. 

CHAPTER 7
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In addition, “false positive” test results (i.e., a false indica-
tion of infection) occur in 0.4 percent of people who are 
not infected. Hence, positive test results do not prove that 
the person is infected. Nevertheless, infection seems more 
likely for those who test positive, and Bayes’s theorem 
provides a formula for evaluating the probability.

The logic of this formula is explained as follows: 
Suppose that there are 10,000 intravenous drug users in 
the population, of which 2,500 are infected with HIV. 
Suppose further that if all 2,500 people are tested, 95 
percent (2,375 people) will produce a positive test result.  
The other 5 percent are known as “false negatives.” In 
addition, of the remaining 7,500 people who are not 
infected, about 0.4 percent, or 30 people, will test positive 
(“false positives”). Because there are 2,405 positive tests  
in all, the probability that a person testing positive is  
actually infected can be calculated as 2,375/2,405, or about 
98.8 percent.

Applications of Bayes’s theorem used to be limited 
mostly to such straightforward problems, even though 
the original version was more complex. There are two key 
difficulties in extending these sorts of calculations, how-
ever. First, the starting probabilities are rarely so easily 
quantified. They are often highly subjective. To return to 
the HIV screening previously described, a patient might 
appear to be an intravenous drug user but might be unwill-
ing to admit it. Subjective judgment would then enter 
into the probability that the person indeed fell into this 
high-risk category. Hence, the initial probability of HIV 
infection would in turn depend on subjective judgment. 
Second, the evidence is not often so simple as a positive 
or negative test result. If the evidence takes the form of a 
numerical score, the sum used in the denominator of the 
above calculation must be replaced by an integral. More 
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complex evidence can easily lead to multiple integrals 
that, until recently, could not be readily evaluated.

Nevertheless, advanced computing power, along with 
improved integration algorithms, has overcome most cal-
culation obstacles. In addition, theoreticians have 
developed rules for delineating starting probabilities that 
correspond roughly to the beliefs of a “sensible person” 
with no background knowledge. These rules can often be 
used to reduce undesirable subjectivity. These advances 
have led to a recent surge of applications of Bayes’s theo-
rem, more than two centuries since it was first put forth. 
It is now applied to such diverse areas as the productivity 
assessment for a fish population and the study of racial 
discrimination.

Binomial distribution

The binomial distribution is a common distribution func-
tion for discrete processes in which a fixed probability 
prevails for each independently generated value. First 
studied in connection with games of pure chance, the 
binomial distribution is now widely used to analyze data in 
virtually every field of human inquiry. It applies to any 
fixed number (n) of repetitions of an independent process 
that produces a certain outcome with the same probabil-
ity (p) on each repetition. For example, it provides a 
formula for the probability of obtaining 10 sixes in 50 rolls 
of a die. Swiss mathematician Jakob Bernoulli, in a proof 
posthumously published in 1713, determined that the 
probability of k such outcomes in n repetitions is equal to 
the kth term (where k starts with 0) in the expansion of 
the binomial expression (p + q)n, where q = 1 − p. (Hence the 
name binomial distribution.) In the example of the die, the 
probability of turning up any number on each roll is 1 out 
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of 6 (the number of faces on the die). The probability of 
turning up 10 sixes in 50 rolls, then, is equal to the 10th 
term (starting with the 0th term) in the expansion of 
(5/6 + 1/6)50, or 0.115586.

In 1936 the British statistician Ronald Fisher used 
the binomial distribution to publish evidence of possible 
scientific chicanery in the famous experiments on pea 
genetics reported by the Austrian botanist Gregor Mendel 
in 1866. Fisher observed that Mendel’s laws of inheritance 
would dictate that the number of yellow peas in one of 
Mendel’s experiments would have a binomial distribution 
with n = 8,023 and p = 3⁄4, for an average of np ≅ 6,017 yel-
low peas. Fisher found remarkable agreement between 
this number and Mendel’s data, which showed 6,022 yel-
low peas out of 8,023. One would expect the number to 
be close, but a figure that close should occur only 1 in 10 
times. Fisher found, moreover, that all seven results in 

Binomial distribution provides a formula for the probability of obtaining 10 
sixes in 50 rolls of a die. Shutterstock.com



295

7 Special Topics 7

Mendel’s pea experiments were extremely close to the 
expected values—even in one instance where Mendel’s 
calculations contained a minor error. Fisher’s analysis 
sparked a lengthy controversy that remains unresolved to 
this day.

Central limit theorem

The central limit theorem establishes the normal distribu-
tion as the distribution to which the mean (average) of 
almost any set of independent and randomly generated 
variables rapidly converges. The central limit theorem 
explains why the normal distribution arises so commonly 
and why it is generally an excellent approximation for the 
mean of a collection of data (often with as few as 10 
variables).

The standard version of the central limit theorem, 
first proved by the French mathematician Pierre-Simon 
Laplace in 1810, states that the sum or average of an infi-
nite sequence of independent and identically distributed 
random variables, when suitably rescaled, tends to a nor-
mal distribution. Fourteen years later the French 
mathematician Siméon-Denis Poisson began a continuing 
process of improvement and generalization. Laplace and 
his contemporaries were interested in the theorem pri-
marily because of its importance in repeated measurements 
of the same quantity. If the individual measurements could 
be viewed as approximately independent and identically 
distributed, their mean could be approximated by a nor-
mal distribution.

The Belgian mathematician Adolphe Quetelet (1796–
1874), famous today as the originator of the concept of the 
homme moyen (“average man”), was the first to use the nor-
mal distribution for something other than analyzing error. 
For example, he collected data on soldiers’ chest girths 
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and showed that the distribution of recorded values cor-
responded approximately to the normal distribution. Such 
examples are now viewed as consequences of the central 
limit theorem.

The central limit theorem also plays an important role 
in modern industrial quality control. The first step in 
improving the quality of a product is often to identify the 
major factors that contribute to unwanted variations. 
Efforts are then made to control these factors. If these 
efforts succeed, any residual variation will typically be 
caused by a large number of factors, acting roughly inde-
pendently. In other words, the remaining small amounts 
of variation can be described by the central limit theorem, 
and the remaining variation will typically approximate a 
normal distribution. For this reason, the normal distribu-
tion is the basis for many key procedures in statistical 
quality control.

Chebyshev’s inequality

Chebyshev’s inequality (also called the Bienaymé-Chebyshev 
inequality) characterizes the dispersion of data away from 
its mean (average). Although the general theorem is attrib-
uted to the 19th-century Russian mathematician Pafnuty 
Chebyshev, credit for it should be shared with the French 
mathematician Irénée-Jules Bienaymé, whose (less gen-
eral) 1853 proof predated Chebyshev’s by 14 years.

Chebyshev’s inequality puts an upper bound on the 
probability that an observation should be far from its mean. 
It requires only two minimal conditions: (1) that the under-
lying distribution have a mean and (2) that the average size 
of the deviations away from this mean (as gauged by the 
standard deviation) not be infinite. Chebyshev’s inequality 
then states that the probability that an observation will be 
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more than k standard deviations from the mean is at most 
1/k2. Chebyshev used the inequality to prove his version of 
the law of large numbers.

Unfortunately, with virtually no restriction on the 
shape of an underlying distribution, the inequality is so 
weak as to be virtually useless to anyone looking for a pre-
cise statement on the probability of a large deviation. To 
achieve this goal, people usually try to justify a specific 
error distribution, such as the normal distribution as pro-
posed by the German mathematician Carl Friedrich 
Gauss. Gauss also developed a tighter bound, 4/9k2 (for 
k > 2/√-3), on the probability of a large deviation by impos-
ing the natural restriction that the error distribution 
decline symmetrically from a maximum at 0.

The difference between these values is substantial. 
According to Chebyshev’s inequality, the probability that 
a value will be more than two standard deviations from the 
mean (k = 2) cannot exceed 25 percent. Gauss’s bound is 11 
percent, and the value for the normal distribution is just 
less than 5 percent. Thus, it is apparent that Chebyshev’s 
inequality is useful only as a theoretical tool for proving 
generally applicable theorems, not for generating tight 
probability bounds.

Decision theory

In statistics, decision theory is a set of quantitative meth-
ods for reaching optimal decisions. A solvable decision 
problem must be capable of being tightly formulated in 
terms of initial conditions and choices or courses of action, 
with their consequences. In general, such consequences 
are not known with certainty but are expressed as a set of 
probabilistic outcomes. Each outcome is assigned a “util-
ity” value based on the preferences of the decision maker. 
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An optimal decision, following the logic of the theory, is 
one that maximizes the expected utility. Thus, the ideal of 
decision theory is to make choices rational by reducing 
them to a kind of routine calculation.

Distribution function

The mathematical expression that describes the probabil-
ity that a system will take on a specific value or set of 
values is called a distribution function. The classic exam-
ples are associated with games of chance. The binomial 
distribution gives the probabilities that heads will come 
up a times and tails n − a times (for 0 ≤ a ≤ n), when a fair 
coin is tossed n times. Many phenomena, such as the dis-
tribution of IQs, approximate the classic bell-shaped, or 
normal, curve. The highest point on the curve indicates 
the most common or modal value, which in most cases 
will be close to the average (mean) for the population. A 
well-known example from physics is the Maxwell-
Boltzmann distribution law, which specifies the 
probability that a molecule of gas will be found with veloc-
ity components u, v, and w in the x, y, and z directions. A 
distribution function may take into account as many vari-
ables as one chooses to include.

Error

In applied mathematics, the error is the difference 
between a true value and an estimate, or approximation, 
of that value. In statistics, a common example is the dif-
ference between the mean of an entire population and the 
mean of a sample drawn from that population. In numeri-
cal analysis, round-off error is exemplified by the difference 
between the true value of the irrational number π and the 
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value of rational expressions such as 22/7, 355/113, 3.14, or 
3.14159. Truncation error results from ignoring all but a 
finite number of terms of an infinite series. For example, 
the exponential function ex may be expressed as the sum of 
the infinite series

1 + x + x2/2 + x3/6 + ⋯ + xn/n! + ⋯

Stopping the calculation after any finite value of n will 
give an approximation to the value of ex that will be in 
error, but this error can be made as small as desired by 
making n large enough.

The relative error is the numerical difference divided 
by the true value, and the percentage error is this ratio 
expressed as a percent. The term random error is sometimes 
used to distinguish the effects of inherent imprecision 
from so-called systematic error, which may originate in 
faulty assumptions or procedures. The methods of math-
ematical statistics are particularly suited to the estimation 
and management of random errors.

Estimation

In statistics, any procedure used to calculate the value of 
some property of a population from observations of a 
sample drawn from the population is called an estimation. 
A point estimate, for example, is the single number most 
likely to express the value of the property. An interval esti-
mate defines a range within which the value of the property 
can be expected (with a specified degree of confidence) to 
fall. The 18th-century English theologian and mathemati-
cian Thomas Bayes was instrumental in the development 
of Bayesian estimation to facilitate revision of estimates 
on the basis of further information.
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In sequential estimation, a parameter is estimated by 
analyzing a sample just large enough to ensure a previously 
chosen degree of precision. The fundamental technique is 
to take a sequence of samples, the outcome of each sam-
pling determining the need for another sampling. The 
procedure is terminated when the desired degree of preci-
sion is achieved. On average, fewer total observations will 
be needed using this procedure than with any procedure 
using a fixed number of observations.

Indifference

Indifference is a classical principle in the mathematical 
theory of probability stated by the Swiss mathematician 
Jakob Bernoulli and formulated (and named) by the English 
economist John Maynard Keynes in A Treatise on Probability 

Estimation calculates the value of some property of a population from obser-
vations of a sample drawn from the population. Roslan Rahman/AFP/
Getty Images
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(1921): Two cases are equally likely if no reason is known 
why either case should be the preferable one. The assump-
tion of indifference was frequently used by the French 
mathematician Pierre-Simon Laplace beginning in the 
1780s to calculate “inverse,” now known as Bayesian prob-
abilities. Such assumptions became controversial in the 
19th century. Keynes and his followers worked to define 
the conditions under which they are justified.

Inference

Inference is the process of drawing conclusions about a 
parameter one is seeking to measure or estimate. Often 
scientists have many measurements of an object—say, the 
mass of an electron—and wish to choose the best mea-
sure. One principal approach of statistical inference is 
Bayesian estimation, which incorporates reasonable 
expectations or prior judgments (perhaps based on previ-
ous studies), as well as new observations or experimental 
results. Another method is the likelihood approach, in 
which “prior probabilities” are eschewed in favour of cal-
culating a value of the parameter that would be most 
“likely” to produce the observed distribution of experi-
mental outcomes.

In parametric inference, a particular mathematical form 
of the distribution function is assumed. Nonparametric 
inference avoids this assumption and is used to estimate 
parameter values of an unknown distribution having an 
unknown functional form.

Interval estimation

Interval estimation is the evaluation of a parameter (i.e., 
the mean or average) of a population by computing an 
interval, or range of values, within which the parameter is 
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most likely to be located. Intervals are commonly chosen 
such that the parameter falls within with a 95 or 99 percent 
probability, called the confidence coefficient. Hence, the 
intervals are called confidence intervals, and the end points 
of such an interval are called upper and lower confidence 
limits. The interval containing a population parameter is 
established by calculating that statistic from values mea-
sured on a random sample taken from the population and 
applying the knowledge (derived from probability theory) 
of the fidelity with which the properties of a sample rep-
resent those of the entire population. The probability tells 
what percentage of the time the assignment of the inter-
val will be correct but not what the chances are that it is 
true for any given sample. Of the intervals computed from 
many samples, a certain percentage will contain the true 
value of the parameter being sought.

Law of large numbers

In statistics, the law of large numbers is the theorem 
that, as the number of identically distributed, randomly 
generated variables increases, their sample mean (aver-
age) approaches their theoretical mean. The law of large 
numbers was first proved by the Swiss mathematician 
Jakob Bernoulli in 1713. He and his contemporaries were 
developing a formal probability theory with a view toward 
analyzing games of chance. Bernoulli envisaged an end-
less sequence of repetitions of a game of pure chance with 
only two outcomes, a win or a loss. Labeling the prob-
ability of a win p, Bernoulli considered the fraction of 
times that such a game would be won in a large number 
of repetitions. It was commonly believed that this frac-
tion should eventually be close to p. This is what Bernoulli 
proved in a precise manner by showing that as the number 
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of repetitions increases indefinitely, the probability of this 
fraction being within any prespecified distance from p 
approaches 1.

There is also a more general version of the law of large 
numbers for averages, Chebyshev’s inequality, proved 
more than a century later by the Russian mathematician 
Pafnuty Chebyshev. The law of large numbers is closely 
related to what is commonly called the law of averages. In 
coin tossing, the law of large numbers stipulates that the 
fraction of heads will eventually be close to 1⁄2. Hence, if 
the first 10 tosses produce only 3 heads, it seems that some 
mystical force must somehow increase the probability of a 
head, producing a return of the fraction of heads to its 
ultimate limit of 1⁄2. Yet the law of large numbers requires 
no such mystical force. Indeed, the fraction of heads can 
take a long time to approach 1⁄2. For example, to obtain a 95 
percent probability that the fraction of heads falls between 
0.47 and 0.53, the number of tosses must exceed 1,000. In 
other words, after 1,000 tosses, an initial shortfall of only 
3 heads out of 10 tosses is swamped by results of the 
remaining 990 tosses.

Least squares approximation

The least squares approximation is a method for estimat-
ing the true value of some quantity based on a consideration 
of errors in observations or measurements. In particular, 
the line (function) that minimizes the sum of the squared 
distances (deviations) from the line to each observation is 
used to approximate a relationship that is assumed to be 
linear. The method has also been generalized for use with 
nonlinear relationships.

One of the first applications of the method of least 
squares was to settle a controversy involving the shape of 
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the Earth. The English mathematician Isaac Newton 
asserted in the Principia (1687) that the Earth has an oblate 
(grapefruit) shape as a result of its spin, causing the equa-
torial diameter to exceed the polar diameter by about 1 
part in 230. In 1718 the director of the Paris Observatory, 
Jacques Cassini, asserted on the basis of his own measure-
ments that the Earth has a prolate (lemon) shape.

To settle the dispute, in 1736 the French Academy of 
Sciences sent surveying expeditions to Ecuador and 
Lapland. However, distances cannot be measured per-
fectly, and the measurement errors at the time were large 
enough to create substantial uncertainty. Several methods 
were proposed for fitting a line through this data—that is, 
to obtain the function (line) that best fit the data relating 
the measured arc length to the latitude. It was generally 
agreed that the method ought to minimize deviations in 
the y-direction (the arc length), but many options were 
available, including minimizing the largest such deviation 
and minimizing the sum of their absolute sizes. The mea-
surements seemed to support Newton’s theory, but the 
relatively large error estimates for the measurements left 
too much uncertainty for a definitive conclusion (but this 
was not immediately recognized). In fact, although 
Newton was essentially right, later observations showed 
that his prediction for excess equatorial diameter was 
about 30 percent too large.

In 1805 the French mathematician Adrien-Marie 
Legendre published the first known recommendation to 
use the line that minimizes the sum of the squares of these 
deviations (i.e., the modern least squares approximation). 
The German mathematician Carl Friedrich Gauss, who 
may have used the same method previously, contributed 
important computational and theoretical advances. The 
method of least squares is now widely used for fitting lines 
and curves to scatterplots (discrete sets of data).
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 MaRkov pRocess 

 A Markov process is a sequence of possibly dependent 
random variables ( x  1 ,  x  2 ,  x  3 , …)—identifi ed by increasing 
values of a parameter, commonly time—with the property 
that any prediction of the next value of the sequence ( x   n  ), 
knowing the preceding states ( x  1 ,  x  2 , …,  x   n  − 1 ), may be based 
on the last state ( x   n  − 1 ) alone. That is, the future value of 
such a variable is independent of its past history. 

 These sequences are named for the Russian mathema-
tician Andrey Andreyevich Markov (1856–1922), who was 
the fi rst to study them systematically. Sometimes the term 
Markov process is restricted to sequences in which the 
random variables can assume continuous values, and anal-
ogous sequences of discrete-valued variables are called 
Markov chains.   

 Mean 

 In mathematics, the mean is a quantity that has a value 
intermediate between those of the extreme members 
of some set. Several kinds of mean exist, and the method of 
calculating a mean depends on the relationship known or 
assumed to govern the other members. The arithmetic 
mean, denoted  x , of a set of  n  numbers  x  1 ,  x  2 , …,  x   n   is defi ned 
as the sum of the numbers divided by  n : 

 
 The arithmetic mean (usually synonymous with aver-

age) represents a point about which the numbers balance. 
For example, if unit masses are placed on a line at points 
with coordinates  x  1 ,  x  2 , …,  x   n  , then the arithmetic mean is 
the coordinate of the centre of gravity of the system. In 
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statistics, the arithmetic mean is commonly used as the 
single value typical of a set of data. For a system of parti-
cles having unequal masses, the centre of gravity is 
determined by a more general average, the weighted arith-
metic mean. If each number ( x ) is assigned a corresponding 
positive weight ( w ), the weighted arithmetic mean is 
defi ned as the sum of their products ( w  x ) divided by the 
sum of their weights. In this case, 

 The weighted arithmetic mean also is used in statisti-
cal analysis of grouped data: Each number  x   i   is the 
midpoint of an interval, and each corresponding value of 
 w   i   is the number of data points within that interval.  

 For a given set of data, many possible means can be 
defi ned, depending on which features of the data are of 
interest. For example, suppose fi ve squares are given, with 
sides 1, 1, 2, 5, and 7 cm. Their average area is (1 2  + 1 2  + 2 2  + 5 2

+ 7 2 )/5, or 16 square cm, the area of a square of side 4 cm. 
The number 4 is the quadratic mean (or root mean square) 
of the numbers 1, 1, 2, 5, and 7 and differs from their arith-
metic mean, which is 3  1 / 5 . In general, the quadratic mean 
of  n  numbers  x  1 ,  x  2 , …,  x   n   is the square root of the arithme-
tic mean of their squares, 

The arithmetic mean gives no indication of how widely 
the data are spread or dispersed about the mean. Measures 
of the dispersion are provided by the arithmetic and 
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quadratic means of the  n  differences  x  1  −  x ,  x  2  −  x , …,  x   n   −  x . 
The quadratic mean gives the “standard deviation” of  x  1 , 
 x  2 , …,  x   n  . 

 The arithmetic and quadratic means are the special 
cases  p  = 1 and  p  = 2 of the  p th-power mean,  M   p  , defi ned by 
the formula 

where  p  may be any real number except zero. The case 
p  = −1 is also called the harmonic mean. Weighted  p th-
power means are defi ned by 

 If  x  is the arithmetic mean of  x  1  and  x  2 , the three num-
bers  x  1 ,  x ,  x  2  are in arithmetic progression. If  h  is the 
harmonic mean of  x  1  and  x  2 , the numbers  x  1 ,  h ,  x  2  are in 
harmonic progression. A number  g  such that  x  1 ,  g ,  x  2  are in 
geometric progression is defi ned by the condition that 
 x  1 / g  =  g / x  2 , or  g  2  =  x  1  x  2 , hence

This  g  is called the geometric mean of  x  1  and  x  2 . The 
geometric mean of  n  numbers  x  1 ,  x  2 , …,  x   n   is defi ned to be 
the  n th root of their product: 

  
 All the means discussed are special cases of a 

more general mean. If  f  is a function having an inverse 
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f   −1  (a function that “undoes” the original function), the 
number 

is called the mean value of  x  1 ,  x  2 , …,  x   n   associated with  f . 
When  f ( x ) =  x   p  , the inverse is  f   −1 ( x ) =  x  1/ p  , and the mean value 
is the  p th-power mean,  M   p  . When  f ( x ) = ln  x  (the natural 
logarithm), the inverse is  f   −1 ( x ) =  e   x   (the exponential func-
tion), and the mean value is the geometric mean.   

 noRMal disTRibuTion 

 The normal distribution (also called the Gaussian distri-
bution) is the most common distribution function for 
independent, randomly generated variables. Its familiar 
bell-shaped curve is ubiquitous in statistical reports, from 
survey analysis and quality control to resource allocation. 

 The graph of the normal distribution is characterized 
by two parameters: the mean, or average, which is the 
maximum of the graph and about which the graph is 
always symmetric; and the standard deviation, which 
determines the amount of dispersion away from the mean. 
A small standard deviation (compared with the mean) pro-
duces a steep graph, whereas a large standard deviation 
(again compared with the mean) produces a fl at graph. 

 The normal distribution is produced by the normal 
density function,  p ( x ) =    e  −( x  − μ) 2 /2σ 2 / σ√— 2π  . In this exponential 
function,  e  is the constant 2.71828 . . ., is the mean, and σ is 
the standard deviation. The probability of a random vari-
able falling within any given range of values is equal to the 
proportion of the area enclosed under the function’s graph 
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Germany’s 10 Deutsche Mark banknote depicts a bell curve. The curve’s 
highest point indicates the most common value, which is the population’s 
average. Photos.com

between the given values and above the x-axis. Because 
the denominator (σ√—2π), known as the normalizing coeffi-
cient, causes the total area enclosed by the graph to be 
exactly equal to unity, probabilities can be obtained 
directly from the corresponding area (i.e., an area of 0.5 
corresponds to a probability of 0.5). Although these areas 
can be determined with calculus, tables were generated in 
the 19th century for the special case of  = 0 and σ = 1, known 
as the standard normal distribution, and these tables can 
be used for any normal distribution after the variables are 
suitably rescaled by subtracting their mean and dividing 
by their standard deviation, (x − μ)/σ. Calculators have now 
all but eliminated the use of such tables.

The term “Gaussian distribution” refers to the German 
mathematician Carl Friedrich Gauss, who first developed 
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a two-parameter exponential function in 1809 in connec-
tion with studies of astronomical observation errors. This 
study led Gauss to formulate his law of observational error 
and to advance the theory of the method of least squares 
approximation. Another famous early application of the 
normal distribution was by the British physicist James 
Clerk Maxwell, who in 1859 formulated his law of distribu-
tion of molecular velocities—later generalized as the 
Maxwell-Boltzmann distribution law.

The French mathematician Abraham de Moivre, in his 
Doctrine of Chances (1718), first noted that probabilities 
associated with discretely generated random variables 
(such as are obtained by flipping a coin or rolling a die) can 
be approximated by the area under the graph of an expo-
nential function. This result was extended and generalized 
by the French scientist Pierre-Simon Laplace, in his 
Théorie analytique des probabilités (1812; “Analytic Theory of 
Probability”), into the first central limit theorem, which 
proved that probabilities for almost all independent and 
identically distributed random variables converge rapidly 
(with sample size) to the area under an exponential 
function—that is, to a normal distribution. The central 
limit theorem permitted hitherto intractable problems, 
particularly those involving discrete variables, to be han-
dled with calculus.

Permutations and 
combinations

The various ways in which objects from a set may be 
selected, generally without replacement, to form subsets 
are called permutations and combinations. This selec-
tion of subsets is called a permutation when the order of 
selection is a factor, a combination when order is not a 
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factor. By considering the ratio of the number of desired 
subsets to the number of all possible subsets for many 
games of chance in the 17th century, the French mathe-
maticians Blaise Pascal and Pierre de Fermat gave 
impetus to the development of combinatorics and prob-
ability theory. 

 The concepts of and differences between permuta-
tions and combinations can be illustrated by examination 
of all the different ways in which a pair of objects can be 
selected from fi ve distinguishable objects—such as the 
letters A, B, C, D, and E. If both the letters selected and 
the order of selection are considered, then the following 
20 outcomes are possible: 

 Each of these 20 different possible selections is called 
a permutation. In particular, they are called the permuta-
tions of fi ve objects taken two at a time, and the number 
of such permutations possible is denoted by the symbol 

5  P  2 , read “5 permute 2.” In general, if there are  n  objects 
available from which to select, and permutations ( P ) are to 
be formed using  k  of the objects at a time, the number of 
different permutations possible is denoted by the symbol 

n   P   k  . A formula for its evaluation is  

n   P   k   =  n !/( n  −  k )!  

 The expression  n ! (read “ n  factorial”) indicates that all 
the consecutive positive integers from 1 up to and includ-
ing  n  are to be multiplied together, and 0! is defi ned to 
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equal 1. For example, using this formula, the number of 
permutations of fi ve objects taken two at a time is  

(For  k  =  n ,   n   P   k   =  n ! Thus, for 5 objects there are 5! = 120 
arrangements.)  

 For combinations,  k  objects are selected from a set of 
 n  objects to produce subsets without ordering. Contrasting 
the previous permutation example with the correspond-
ing combination, the AB and BA subsets are no longer 
distinct selections. By eliminating such cases, there remain 
only 10 different possible subsets: AB, AC, AD, AE, BC, 
BD, BE, CD, CE, and DE. 

 The number of such subsets is denoted by   n   C   k  , read “ n  
choose  k .” For combinations, because  k  objects have  k ! 
arrangements, there are  k ! indistinguishable permutations 
for each choice of  k  objects. Hence, dividing the permuta-
tion formula by  k ! yields the following combination 
formula: 

   
 

 This is the same as the ( n ,  k ) binomial coeffi cient ( see  
binomial theorem). For example, the number of combina-
tions of fi ve objects taken two at a time is 
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The formulas for nPk and nCk are called counting formu-
las, because they can be used to count the number of 
possible permutations or combinations in a given situa-
tion without having to list them all.

Point estimation

Point estimation is the process of finding an approximate 
value of some parameter, such as the mean (average), of 
a population from random samples of the population. 
The precise accuracy of any particular approximation is 
unknown pre, but probabilistic statements concerning 
the accuracy of such numbers as found over many experi-
ments can be constructed.

It is desirable for a point estimate to be: (1) Consistent. 
The larger the sample size, the more accurate the esti-
mate. (2) Unbiased. The expectation of the observed 
values of many samples (“average observation value”) 
equals the corresponding population parameter. For 
example, the sample mean is an unbiased estimator for the 
population mean. (3) Most efficient or best unbiased—of 
all consistent, unbiased estimates, the one possessing the 
smallest variance (a measure of the amount of dispersion 
away from the estimate). In other words, the estimator 
that varies least from sample to sample. This generally 
depends on the particular distribution of the population. 
For example, the mean is more efficient than the median 
(middle value) for the normal distribution but not for 
more “skewed” (asymmetrical) distributions.

Several methods are used to calculate the estima-
tor. The most often used, the maximum likelihood 
method, uses differential calculus to determine the maxi-
mum of the probability function of a number of sample 
parameters. The moments method equates values of 
sample moments (functions describing the parameter) to 
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population moments. The solution of the equation gives 
the desired estimate. The Bayesian method, named for 
the 18th-century English theologian and mathematician 
Thomas Bayes, differs from the traditional methods by 
introducing a frequency function for the parameter being 
estimated. Although with the Bayesian method sufficient 
information on the distribution of the parameter is usu-
ally unavailable, the estimation can be easily adjusted as 
additional information becomes available.

Poisson distribution

The Poisson distribution helps characterize events with 
low probabilities of occurrence within some definite time 
or space. French mathematician Siméon-Denis Poisson 
developed his function in 1830 to describe the number of 
times a gambler would win a rarely won game of chance in 
a large number of tries. Letting p represent the probability 
of a win on any given try, the mean, or average, number of 
wins (λ) in n tries will be given by λ = np. Using the Swiss 
mathematician Jakob Bernoulli’s binomial distribution, 
Poisson showed that the probability of obtaining k wins is 
approximately λk/eλk!, where e is the exponential function 
and k!  =  (k  −  1)(k  −  2)⋯2∙1. Noteworthy is the fact that λ 
equals both the mean and variance (a measure of the dis-
persal of data away from the mean) for the Poisson 
distribution.

The Poisson distribution is now recognized as a vitally 
important distribution in its own right. For example, in 
1946 the British statistician R.D. Clarke published “An 
Application of the Poisson Distribution,” in which he 
disclosed his analysis of the distribution of hits of flying 
bombs (V-1 and V-2 missiles) in London during World 
War II. Some areas were hit more often than others. The 
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British military wished to know if the Germans were tar-
geting these districts (the hits indicating great technical 
precision) or if the distribution was by chance. If the mis-
siles were in fact only randomly targeted (within a more 
general area), the British could simply disperse important 
installations to decrease the likelihood of their being hit.

Clarke began by dividing an area into thousands of 
tiny, equally sized plots. Within each of these, it was 
unlikely that there would be even one hit, let alone more. 
Furthermore, under the assumption that the missiles fell 
randomly, the chance of a hit in any one plot would be a 
constant across all the plots. Therefore, the total number 
of hits would be much like the number of wins in a large 
number of repetitions of a game of chance with a very 
small probability of winning. This sort of reasoning led 
Clarke to a formal derivation of the Poisson distribution 
as a model. The observed hit frequencies were close to the 
predicted Poisson frequencies. Hence, Clarke reported 
that the observed variations appeared to have been gener-
ated solely by chance.

Queuing theory

Queuing theory is a subject in operations research 
that deals with the problem of providing adequate but 
economical service facilities involving unpredictable 
numbers and times or similar sequences. In queuing 
theory the term customers is used, whether referring to 
people or things, in correlating such variables as how 
customers arrive, how service meets their requirements, 
average service time and extent of variations, and idle 
time. When such variables are identified for both cus-
tomers and facilities, choices can be made on the basis of 
economic advantage.
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Queuing theory is a product of mathematical 
research that grew largely out of the need to determine 
the optimum amount of telephone switching equip-
ment required to serve a given area and population. 
Installation of more than the optimum requires exces-
sive capital investment, while less than optimum means 
excessive delays in service.

Random walk

A random walk is a process for determining the prob-
able location of a point subject to random motions, 
given the probabilities (the same at each step) of moving 
some distance in some direction. Random walks are an 
example of Markov processes, in which future behaviour 
is independent of past history. A typical example is the 
drunkard’s walk, in which a point beginning at the origin 
of the Euclidean plane moves a distance of one unit for 
each unit of time, the direction of motion, however, being 
random at each step. The problem is to find, after some 
fixed time, the probability distribution function of the 
distance of the point from the origin. Many economists 
believe that stock market fluctuations, at least over the 
short run, are random walks.

Sampling

In statistics, a process or method of drawing a representa-
tive group of individuals or cases from a particular 
population is called sampling. Sampling and statistical 
inference are used in circumstances in which it is imprac-
tical to obtain information from every member of the 
population, as in biological or chemical analysis, industrial 
quality control, or social surveys. The basic sampling 
design is simple random sampling, based on probability 



317

theory. In this form of random sampling, every element of 
the population being sampled has an equal probability of 
being selected. In a random sample of a class of 50 stu-
dents, for example, each student has the same probability, 
1/50, of being selected. Every combination of elements 
drawn from the population also has an equal probability of 
being selected. Sampling based on probability theory 
allows the investigator to determine the likelihood that 
statistical findings are the result of chance. More com-
monly used methods, refinements of this basic idea, are 
stratified sampling (in which the population is divided 
into classes and simple random samples are drawn from 
each class), cluster sampling (in which the unit of the 
sample is a group, such as a household), and systematic 
sampling (samples taken by any system other than random 
choice, such as every 10th name on a list).

Sampling is known as process or method of drawing a representative group of 
individuals or cases from a particular population, such as a jar of jellybeans. 
Shutterstock.com
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An alternative to probability sampling is judgment 
sampling, in which selection is based on the judgment of 
the researcher and there is an unknown probability of 
inclusion in the sample for any given case. Probability 
methods are usually preferred because they avoid selec-
tion bias and make it possible to estimate sampling error 
(the difference between the measure obtained from the 
sample and that of the whole population from which the 
sample was drawn).

Standard deviation

In statistics, the standard deviation is a measure of the 
variability (dispersion or spread) of any set of numerical 
values about their arithmetic mean (average; denoted by 
μ). It is specifically defined as the positive square root of 
the variance (σ2). In symbols, σ2 = Σ(xi − μ)2/n, where Σ is a 
compact notation used to indicate that as the index (i) 
changes from 1 to n (the number of elements in the data 
set), the square of the difference between each element xi 
and the mean, divided by n, is calculated and these values 
are added together. The variance is used procedurally to 
analyze the factors that may influence the distribution or 
spread of the data under consideration.

Stochastic process

A stochastic process involves the operation of chance. For 
example, in radioactive decay every atom is subject to a 
fixed probability of breaking down in any given time inter-
val. More generally, a stochastic process refers to a family 
of random variables indexed against some other variable 
or set of variables. It is one of the most general objects of 
study in probability. Some basic types of stochastic pro-
cesses include Markov processes, Poisson processes (such 
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as radioactive decay), and time series, with the index vari-
able referring to time. This indexing can be either discrete 
or continuous, the interest being in the nature of changes 
of the variables with respect to time.

Student’s t-test

Student’s t-test is a method of testing hypotheses about 
the mean of a small sample drawn from a normally distrib-
uted population when the population standard deviation 
is unknown. In 1908 William Sealy Gosset, an Englishman 
publishing under the pseudonym Student, developed the 
t-test and t distribution. The t distribution is a family of 
curves in which the number of degrees of freedom (the 
number of independent observations in the sample minus 
one) specifies a particular curve. As the sample size (and 
thus the degrees of freedom) increases, the t distribution 
approaches the bell shape of the standard normal distribu-
tion. In practice, for tests involving the mean of a sample 
of size greater than 30, the normal distribution is usually 
applied.

First, a null hypothesis is usually formulated, which 
states that there is no effective difference between the 
observed sample mean and the hypothesized or stated 
population mean (i.e., that any measured difference is only 
caused by chance). In an agricultural study, for example, 
the null hypothesis could be that an application of fertil-
izer has had no effect on crop yield, and an experiment 
would be performed to test whether it has increased the 
harvest. In general, a t-test may be either two-sided (also 
termed two-tailed), stating simply that the means are not 
equivalent, or one-sided, specifying whether the observed 
mean is larger or smaller than the hypothesized mean. The 
test statistic t is then calculated. If the observed t-statistic 
is more extreme than the critical value determined by the 
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appropriate reference distribution, the null hypothesis is 
rejected. The appropriate reference distribution for the 
t -statistic is the  t  distribution. The critical value depends 
on the signifi cance level of the test (the probability of 
erroneously rejecting the null hypothesis). 

 For example, suppose a researcher wishes to test the 
hypothesis that a sample of size  n  = 25 with mean  x  = 79 
and standard deviation  s  = 10 was drawn at random from 
a population with mean μ = 75 and unknown standard 
deviation. Using the formula for the  t -statistic, 

the calculated  t  equals 2. For a two-sided test at a common 
level of signifi cance α = 0.05, the critical values from the  t
distribution on 24 degrees of freedom are −2.064 and 
2.064. The calculated  t  does not exceed these values, hence 
the null hypothesis cannot be rejected with 95 percent 
confi dence. (The confi dence level is 1 − α.) 

 A second application of the  t  distribution tests the 
hypothesis that two independent random samples have 
the same mean. The  t  distribution can also be used to 
construct confi dence intervals for the true mean of a pop-
ulation (the fi rst application) or for the difference between 
two sample means (the second application).               
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Bayesian estimation  Technique for calculating the 
probability of the validity of a proposition based 
on a prior estimate of its probability and new rele-
vant evidence. 

binomial distribution  A common distribution 
function for discrete processes in which a fi xed 
probability prevails for each independently gener-
ated value. 

biometry  English biometric school developed from the 
work of the polymath Francis Galton.

catenary  Curve formed by a perfectly fl exible chain sus-
pended between its two fi xed extremities.

combinatorics  Concerned with problems of selection, 
arrangement, and operation within a fi nite or discrete 
system (also called combinatorial mathematics).

confi dence intervals  Interval estimates of population 
parameters. 

distribution function  A mathematical expression that 
describes the probability that a system will take on a 
specifi c value or set of values.

eugenics  Selection of desired heritable characteristics to 
improve future generations, typically referring 
to humans.

hypothesis testing  Draws on data from a sample to 
make conclusions about a population parameter or a 
population probability distribution. 

interval estimates  Estimate that includes a statement 
concerning the degree of confi dence that the interval 
contains the estimated population parameter.
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isomorphic  Being of identical or similar form, shape, or 
structure.

nonparametric method  A statistical method requiring 
fewer assumptions about a population or probability 
distribution. 

p-value  Measure of how possible the sample results are, 
assuming a true null hypothesis. A smaller p-value 
indicates less likely sample results. 

partition  Division of a set of objects into a family of 
subsets that are mutually exclusive and jointly 
exhaustive.

Philosophe  Any 18th-century French writer, scientist, 
and thinker convinced of the supremacy and  
efficacy of human reason and nature.

point estimate  Value of a sample statistic used as 
a single estimate of a population parameter,  
without statements regarding the quality or 
precision. 

probability density function  A function whose 
integral is calculated to find probabilities associated 
with a continuous random variable.

qualitative data  Provide labels or names for groups of 
comparable items. 

quantitative data  Measure either how much or how 
many of something.

regression  A process to determine a line or curve best 
representing the general trend of a data set.

regression to the mean  A model in which progeny tend 
to have the same variance as their parents.

residual  The difference between the observed value of y 
and the value of y predicted by the estimated regres-
sion equation.

sample space  The set of all possible outcomes of an 
experiment.
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statistical test  Assesses whether observed results give 
reasonable assurance of causation, rather than merely 
random fluctuations.

stochastic process  A process in probability theory 
involving the operation of chance.

t distribution  A family of curves in which the number of 
degrees of freedom specifies a particular curve.

z-score  Represents the relative position of the data 
value by indicating the number of standard deviations 
it is from the mean.
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