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PUBLISHERS' PREFACE.

'TVHE essays which comprise this volume appeared first in The

-^ Monist at different times during the years 1905 to 1916, and

under different circumstances. Some of the diagrams were photo-

graphed from the authors' drawings, others were set in type, and

different authors have presented the results of their labors in

different styles. In compiling all these in book form the original

presentation has been largely preserved, and in this way uniformity

has been sacrificed to some extent. Clarity of presentation was

deemed the main thing, and so it happens that elegance of typo-

graphical appearance has been considered of secondary importance.

Since mathematical readers will care mainly for the thoughts pre-

sented, we hope they wil) overlook the typographical shortcomings.

The first edition contained only the first eight chapters, and these

have now been carefully revised. The book has been doubled in

volume through the interest aroused by the first edition in mathe-

matical minds who have contributed their labors to the solution of

problems along the same line.

In conclusion we wish to call attention to the title vignette

which is an ancient Tibetan magic square borne on the back of

the cosmic tortoise.





INTRODUCTION.

rT"NHE peculiar interest of magic squares and all lusus numerorum

** in general lies in the fact that they possess the charm of mys-

tery. They appear to betray some hidden intelligence which by a

preconceived plan produces the impression of intentional design, a

phenomenon which finds its close analogue in nature.

Although magic squares have no immediate practical use, they

have always exercised a great influence upon thinking people. It

seems to me that they contain a lesson of great value in being a

palpable instance of the symmetry of mathematics, throwing thereby

a clear light upon the order that pervades the universe wherever

we turn, in the inflnitesimally small interrelations of atoms as well

as in the immeasurable domain of the starry heavens, an order

which, although of a different kind and still more intricate, is also

traceable in the development of organized life, and even in the

complex domain of human action.

Pythagoras says that number is the origin of all things, and

certainly the law of number is the key that unlocks the secrets of

the universe. But the law of number possesses an immanent order,

which is at first sight mystifying, but on a more intimate acquain-

tance we easily understand it to be intrinsically necessary ; and th ;
s

law of number explains the wondrous consistency of the laws of

nature. Magic squares are conspicuous instances of the intrinsic

harmony of number, and so they will serve as an interpreter of the

cosmic order that dominates all existence. Though they are a mere

intellectual play they not only illustrate the nature of mathematics,

but also, incidentally, the nature of existence dominated by mathe-

matical regularity.
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In arithmetic we create a universe of figures by the process of

counting ; in geometry we create another universe by drawing lines

in the abstract field of imagination, laying down definite directions

;

in algebra we produce magnitudes of a still more abstract nature, ex-

pressed by letters. In all these cases the first step producing the gen-

eral conditions in which we move, lays down the rule to which all

further steps are subject, and so every one of these universes is

dominated by a consistency, producing a wonderful symmetry.

There is no science that teaches the harmonies of nature more

clearly than mathematics, and the magic squares are like a mirror

which reflects the symmetry of the divine norm immanent in all

things, in the immeasurable immensity of the cosmos and in the

construction of the atom not less than in the mysterious depths of

the human mind.

Paul Carus.
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CHAPTER I.

MAGIC SQUARES.

'THE study of magic squares probably dates back to prehistoric

* times. Examples have been found in Chinese literature written

about A. D. 1 125* which were evidently copied from still older

documents. It is recorded that as early as the ninth century magic

squares were used by Arabian astrologers in their calculations of

horoscopes etc. Hence the probable origin of the term "magic"

which has survived to the present day.

THE ESSENTIAL CHARACTERISTICS OF MAGIC SQUARES.

A magic square consists of a series of numbers so arranged

in a square, that the sum of each row and column and of both the

corner diagonals shall be the same amount which may be termed

the summation (S). Any square arrangement of numbers that

fulfils these conditions may properly be called a magic square.

Various features may be added to such a square which may en-

hance its value as a mathematical curio, but these must be considered

non-essentials.

There are thus many different kinds of magic squares, but this

chapter will be devoted principally to the description of associated

or regular magic squares, in which the sum of any two numbers

that are located in cells diametrically equidistant from the center

of the square equals the sum of the first and last terms of the

series, or n2
-j- 1.

Magic squares with an odd number of cells are usually con-

* See page 19 of Chinese Philosophy by Paul Cams.
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structed by methods which differ from those governing the con-

struction of squares having an even number of cells, so these two

classes will be considered under separate headings.

ASSOCIATED OR REGULAR MAGIC SQUARES OF ODD NUMBERS.

The square of 3 X 3 shown in Fig. 1 covers the smallest ag-

gregation of numbers that is capable of magic square arrangement,

and it is also the only possible arrangement of nine different num-

bers, relatively to each other, which fulfils the required conditions.

It will be seen that the sum of each of the three vertical, the three

horizontal, and the two corner diagonal columns in this square is

15, making in all eight columns having that total: also that the sum

of any two opposite numbers is 10, which is twice the center num-

ber, or n2

-f- 1.

The next largest odd magic square is that of 5X5, and there

are a great many different arrangements of twenty-five numbers,

8 / 6

3 s 7

* ? Z

S = 15.

/7 24 / S /S

2$ s- 7 /* /6

4 6 /J 20 22

/o /2 /s> 2/ J

// /S 2S 2 9

S = 65.

Fig. 1. Fig. 2.

which will show magic results, each arrangement being the pro-

duction of a different constructive method. Fig. 2 illustrates one

of the oldest and best known arrangements of this square.

The sum of each of the five horizontal, the five vertical, and the

two corner diagonal columns is 65, and the sum of any two numbers

which are diametrically equidistant from the center number is 26,

or twice the center number.

In order intelligently to follow the rule used in the construction

of this square it may be conceived that its upper and lower edges

are bent around backwards and united to form a horizontal cylinder

with the numbers on the outside, the lower line of figures thus

coming next in order to the upper line. It may also be conceived
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that the square is bent around backwards in a direction at right

angles to that which was last considered, so that it forms a vertical

cylinder with the extreme right- and left-hand columns adjacent to

each other.

An understanding of this simple conception will assist the

student to follow other methods of building odd magic squares

that are to be described, which are based on a right- or left-hand

diagonal formation.

Referring to Fig. 2, it will be seen that the square is started

by writing unity in the center cell of the upper row, the consecutive

numbers proceeding diagonally therefrom in a right-hand direction.

Using the conception of a horizontal cylinder, 2 will be located in the

lower row, followed by 3 in the next upper cell to the right. Here

the formation of the vertical cylinder being conceived, the next up-

per cell will be where 4 is written, then 5 ; further progress being

here blocked by 1 which already occupies the next upper cell in

diagonal order.

When a block thus occurs in the regular spacing (which will

be at every fifth number in a 5 X 5 square) the next number must

in this case be written in the cell vertically below the one last filled,

so that 6 is written in the cell below 5, and the right-hand diagonal

order is then continued in cells occupied by 7 and 8. Here the

horizontal cylinder is imagined, showing the location of 9, then the

conception of the vertical cylinder will indicate the location of 10;

further regular progression being here once more blocked by 6,

so 11 is written under 10 and the diagonal order continued to 15.

A mental picture of the combination of vertical and horizontal cyl-

inders will here show that further diagonal progress is blocked by

11, so 16 is written under 15. The vertical cylinder will then indi-

cate the cell in which 17 must be located, and the horizontal cylinder

will show the next cell diagonally upwards to the right to be occu-

pied by 18, and so on until the final number 25 is reached and the

square completed.

Fig. 3 illustrates the development of a 7 X 7 square constructed

according to the preceding method, and the student is advised to

follow the sequence of the numbers to impress the rule on his mem-
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ory. A variation of the last method is shown in Fig. 4, illustrating

another 7X7 square. In this example 1 is placed in the next cell

horizonally to the right of the center cell, and the consecutive

numbers proceed diagonally upward therefrom, as before, in a

right-hand direction until a block occurs. The next number is then

written in the second cell horizontally to the right of the last cell

filled (instead of the cell below as in previous examples) and the

upward diagonal ord:r is resumed until the next block occurs.

S = 175

30 39 48 / /O /9 26 4 29 /2 *7 20 vs 28

38 *7 7 9 /# 27 29 3S // 36 /9 44 *7 J

46 6 s '7 26 3S *7 /O 42 /S 43 26 2 34

S /4 /6 2S 34 36 4S 4/ '7 49 25 / 33 S
/3 /S 24 33 42 44 4 /6 4S 24 7 32 S 40

2/ 26 32 4/ 43 3 /2 ^7 23 6 3/ /4 39 /s

22 3/ 40 49 z // 20 2% S 30 /3 38 2/ 46

Fig. 3. Fig. 4.

/o /8 / /4 Z2

// Zb 7 20 3

'7 f A3 2/ 9

23 6 /9 2 /S~

4- /2 2S 8 M

S = 65.

Fig. 5-

Then two cells to the right again, and regular diagonal order con-

tinued, and so on until all the cells are filled.

The preceding examples may be again varied by writing the

numbers in left-hand instead of right-hand diagonal sequence,

making use of the same spacing of numbers as before when blocks

occur in the regular sequence of construction.

We now come to a series of very interesting methods for

building odd magic squares which involve the use of the knight's

move in chess, and it is worthy of note that the squares formed by
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these methods possess curious characteristics in addition to those

previously referred to. To chess-players the knight's move will

require no comment, but for those who are not familiar with this

game it may be explained as a move of two cells straight forward

in any direction and one cell to either right or left.

The magic square of 5 X 5 illustrated in Fig. 5 is started by

placing t in the center cell of the upper row, and the knight's

move employed in its construction will be two cells upward and

one cell to the right.

Using the idea of the horizontal cylinder 2 must be written

in the second line from the bottom, as shown, and then 3 in the

second line from the top. Now conceiving a combination of the

horizontal and vertical cylinders, the next move will locate 4 in the

extreme lower left-hand corner, and then 5 in the middle row. We
now find that the next move is blocked by 1, so 6 is written below

5, and the knight's moves are then continued, and so until the

last number, 25, is written in the middle cell of the lower line, and

the square is thus completed.

In common with the odd magic squares which were previously

described, it will be found that in this square the sum of each of

the five horizontal, the five perpendicular, and the two corner diag-

onal columns is 65, also that the sum of any two numbers that are

diagonally equidistant from the center is 26, or twice the number

in the center cell, thus filling all the qualifications of an associated

magic square.

In addition, however, to these characteristics it will be noted

that each spiral row of figures around the horizontal and vertical

cylinders traced either right-handed or left-handed also amounts

to 65. In the vertical cylinder, there are five right-hand, and five

left-hand spirals, two of which form the corner diagonal col-

umns across the square, leaving eight new combinations. The same

number of combinations will also be found in the horizontal cylin-

der. Counting therefore five horizontal columns, five vertical col-

umns, two corner diagonal columns, and eight right- and left-

hand spiral columns, there are in all twenty columns each of

which will sum up to 65, whereas in the 5X5 square shown
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in Fig. 2 there will be found only sixteen columns that will amount

to that number.

This method of construction is subject to a number of varia-

tions. For example, the knight's move may be upwards and to the

left hand instead of to the right, or it may be made downward and

either to the right or left hand, and also in other directions. There

are in fact eight different ways in which the knight's move may

be started from the center cell in the upper line. Six of these

moves are indicated by figure 2's in different cells of Fig. 6, and

each of these moves if continued in its own direction, varied by

the breaks as before described, will produce a different but associated

square. The remaining two possible knight's moves, indicated by

cyphers, will not produce magic squares under the above rules.

/

2 2

2 2

2 2

/9 2 /S 2d

/2 2S S 4

/o /8 / '4 22 /O

// 24 7 20 6

'7 J
-

/3 2/ S) '7

2d 6 /# 2 /s

4 /2 25 <? /6

Fig. 6. Fig. 7-

It may here be desirable to explain another method for locating

numbers in their proper cells which some may prefer to that which

involves the conception of the double cylinder. This method con-

sists in constructing parts of auxiliary squares around two or more

sides of the main square, and temporarily writing the numbers in

the cells of these auxiliary squares when their regular placing car-

ries them outside the limits of the main square. The temporary

location of these numbers in the cells of the auxiliary squares will

then indicate into which cells of the main square they must be per-

manently transferred.

Fig. 7 shows a 5 X 5 main square with parts of three auxiliary
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squares, and the main square will be built up in the same way as

Fig. 5-

Starting with I in the center of the top line, the first knight's

move of two cells upward and one to the right takes 2 across the

top margin of the main square into the second cell of the second

line from the bottom in one of the auxiliary squares, so 2 must be

transferred to the same relative position in the main square. Start-

ing again from 2 in the main square, the next move places 3 within

the main square, but 4 goes out of it into the lower left-hand corner

of an auxiliary square, from which it must be transferred to the

same location in the main square, and so on throughout.

The method last described and also the conception of the double

cylinders may be considered simply as aids to the beginner. With

a little practice the student will be able to select the proper cells in

the square as fast as figures can be written therein.

Having thus explained these specific lines of construction, the

general principles governing the development of odd magic squares

by these methods may now be formulated.

1. The center cell in the square must always contain the middle

number of the series of numbers used, i. e., a number which

is equal to one-half the sum of the first and last numbers of

the series, or n2
-f- 1.

2. No associated magic square can therefore be started from its

center cell, but it may be started from any cell other than

the center one.

3. With certain specific exceptions which will be referred to

later on, odd magic squares may be constructed by either

right- or left-hand diagonal sequence, or by a number of so-

called knight's moves, varied in all cases by periodical and

well defined departures from normal spacing.

4. The directions and dimensions of these departures from

normal spacing, or "break-moves," as they may be termed,

are governed by the relative spacing of cells occupied by

the first and last numbers of the series, and may be deter-

mined as follows:
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Rule: Place the first number of the series in any desired cell

(excepting the center one) and the last number of the series

in the cell which is diametrically opposite to the cell con-

taining the first number. The relative spacing between the

cell that contains the last number of the series and the cell

that contains the first number of the serines must then be

repeated whenever a block occurs in the regular progres-

sion.

EXAMPLES.

Using a blank square of 5 X 5, 1 niay be written in the middle

cell of the upper line. The diametrically opposite cell to this being

the middle cell in the lower line, 25 must be written therein. 1 will

therefore be located four cells above in the middle vertical column,

or what is the same thing, and easier to follow, one cell below 25.

/ /S

s
*

/6

6 20

/o 2/
- 1

// 26'
LirJ

>/6 /s~-

20- *2/

*• £<j- *

>// /o

Fig. 8. Fig. 9.

When, therefore, a square of 5X5 is commenced with the first

number in the middle cell of the upper line, the break-move will

be one cell downward, irrespective of the method of regular ad-

vance. Fig. 8 shows the break-moves in a 5 X 5 square as above

described using a right-hand upward diagonal advance.

Again using a blank 5X5 square, 1 may be written in the cell

immediately to the right of the center cell, bringing 25 into the cell

to the left of the center cell. The break-moves in this case will

therefore be two cells to the right of the last cell occupied, irrespec-

tive of the method used for regular advance. Fig. 9 illustrates the

break-moves in the above case, when a right-hand upward diagonal

advance is used. The positions of these break-moves in the square
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will naturally vary with the method of advance, but the relative

spacing of the moves themselves will remain unchanged.

Note : The foregoing break-moves were previously described in

several specific examples (See Figs, i, 2, 3, 4, and 5) and

the reader will now observe how they agree with the gen-

eral rule.

Once more using a blank square of 5X5, l rnay be written

in the upper left-hand corner and 25 in the lower right-hand corner.

1 will then occupy a position four cells removed from 25 in a left-

hand upward diagonal, or what is the same thing and easier to

follow, the next cell in a right-hand downward diagonal. This will

therefore be the break-move whenever a block occurs in the regular

spacing. Fig. 10 shows the break-moves which occur when a

/ /s

/6 S
s

zo
s

6

2/ /o

//
i

/ -/f
1

*-«T
1

j
20 i r

/o
i
2/

1

*

2S
4-

Fig. 10. Fig. 11.

knight's move of two cells to the right and one cell upward is used

for the regular advance.

As a final example we will write 1 in the second cell from the

left in the upper line of a 5 X 5 square, which calls for the placing

of 25 in the second square from the right in the lower line. The

place relation between 25 and 1 may then be described by a knight's

move of two cells to the left and one cell downward, and this will

be the break-move whenever a block occurs in the regular spacing.

The break-moves shown in Fig. 11 occur when an upward right-

hand diagonal sequence is used for the regular advance.

As before stated odd magic squares may be commenced in

any cell excepting the center one, and associated squares may be

built up from such commencements by a great variety of moves,
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such as right-hand diagonal sequence, upward or downward, left-

hand diagonal sequence upward or downward, or a number of

knight's moves in various directions. There are four possible moves

from each cell in diagonal sequence, and eight possible moves from

each cell by the knight's move. Some of these moves will produce

associated magic squares, but there will be found many exceptions

which can be shown most readily by diagrams.

Fig. 12 is a 5 X 5 square in which the pointed arrow heads in-

dicate the directions of diagonal sequence by which associated

squares may be constructed, while the blunt arrow heads show the

directions of diagonal sequence which will lead to imperfect results.

Fig. 13 illustrates the various normal knight's moves which may be

XXXX X
XX XXX
XX XXX
XX XXX
XXXXX

Fig. 12.

B
m

e

ffi.

if?

n

Fig. 13.

started from each cell and also indicates with pointed and blunt

arrow heads the moves which will lead to perfect or imperfect re-

sults. For example it will be seen from Fig. 12 that an associated

5X5 square cannot be built by starting from either of the four

corner cells in any direction of diagonal sequence, but Fig. 13 shows

four different normal knight's moves from each corner cell, any

of which will produce associated squares. It also shows four other

normal knight's moves which produce imperfect squares.

EXAMTLES OF 5X5 MAGIC SQUARES.

Figs. 14 and 15 show two 5X5 squares, each having 1 in

the upper left-hand corner cell and 25 in the lower right-hand
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corner cell, and being constructed with different knight's moves.

Fig. 16 shows a similar square in which an elongated knight's move

/ /S 24 S '7 / 24 '7 /s $ / /S /o 22 /*

23 7 /6 S /¥ '4 7 s 23 /6 20 7 2b // J

za 4 /3 21 6 22 zo /3 6 4 9 2/ /3 S '7

/2 2/ /O /£> J /O 3 2/ /9 / Z 23 /S 2 /s
,
6

9 /S 2 // 2S /S // 9 2 25 / 2 4 /6 8 2J

Fig, 14. Fig. 15. Fig. 16.

is used for regular advance. The break-move is necessarily the

same in each example. (See Fig. 10.)

s / 24 '7 /«T

s 23 /6 /* 7

Z2 20 A3 6 4.

/$ /2 /O <3 2/

// S> 2 26- /*

/& / '7 fi 24

26 /4 *r /7> 7
6 22 /3> 4 20

/9 /O 2/ /2 6

2 /# & 2S //

Fig. 17. Fig. 18.

Figs. 17, 18, 19 and 20 show four 5X5 squares, each having

1 in the second cell from the left in the upper line and 25 in the

22 / /o /4 '? 2d / 9 /2 ZO

// 20 24- J 7 /6~ /s 2/ 4 7
J- s> /3 '7 2/ 2 /o A3 /6 24

to 23 2 6 /s /& 22 S S //

s> /2 /6 2S 4 6 '4 '7 2S 3

Fig. 19. Fig. 20.

second cell from the right in the lower line, and being built up

respectively with right- and left-hand upward diagonal sequence
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and upward right- and downward left-hand knight's moves, and

with similar break-moves in each example. See Fig. n.)

Figs. 21, 22, and 23 illustrate three 5X5 squares, each having

1 in the upper right-hand corner and 25 in the lower left-hand

corner, and being built up respectively with upward and downward

right-hand normal knight's moves, and a downward right-hand

elongated knight's move.

For the sake of simplicity these examples have been shown in

5X5 squares, but the rules will naturally apply to all sizes of odd

magic squares by using the appropriate numbers. The explana-

tions have also been given at some length because they cover gen-

eral and comprehensive methods, a good understanding of which

is desirable.

It is clear that no special significance can be attached to the

/<s /O 22 /* / 2 /2 20 23 / /z 26 9 20 /

// 3 20 7 24 /<f 2/ * 7 /s * /s 2/ 7 /s

$ 2/ /6 s '7 2 /O A3 /6 24. /6 2 /3 24 to

2 /$ 6 2d /s // /S 22 S S S /9 S // 22

2S /2 * /6 <9 25 J 6 /* '7 2S 6 '7 j /y-

Fig. 21. Fig. 23.Fig. 22.

so-called knight's move, per se, as applied to the construction of

magic squares, it being only one of many methods of regular spa-

cing, all of which will produce equivalent results. For example, the

3X3 square shown in Fig. 1 may be said to be built up by a suc-

cession of abbreviated knight's moves of one cell to the right and

one cell upwards. Squares illustrated in Figs. 2, 3, and 4 are also

constructed by this abbreviated knight's move, but the square illus-

trated in Fig. 5 is built up by the normal knight's move.

It is equally easy to construct squares by means of an elongated

knight's move, say, four cells to the right and one cell upwards

as shown in Fig. 24, or by a move consisting of two cells to the

right and two cells downwards, as shown in Fig. 25, the latter being

equivalent to a right hand downward diagonal sequence wherein

alternate cells are consecutively filled.
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There are in fact almost innumerable combinations of moves

by which these odd magic squares may be constructed.

The foregoing method for building odd magic squares by a

Po ss 4S Z3 / 63 *7 34 /Z

s 6s 46 33 // 70 *7 44 21

/3 7* 66 46 2/ S *7 3-4 3Z

20 7 66 S3 3/ /* 77 3~s 42

30 '7 76 66 4/ /3 6 6s SZ

40 *7 S 6^ S/ 29 /6 7* 6z

3~o 2S /S 7* 6/ 33 7.6 4 7*

60 J<P 2S 3 7' 43 36 /'/ 7*

7" At* 3S /3 s/ S9 J7 24 z

S = 369-

Fig. 24.

continuous process involves the regular spacing of consecutive

numbers varied by different well defined break-moves, but other

methods of construction have been known for many years.

30 31/ 20 /6~ / 77 7* SS S3

49 44 30 2S // 6 7* 6* 63

S3 S4 4O 3S z/ /6 2 7s 64

63 SS so /,s 3/ z6 /z 7 7*

7s 6s 60 46 4/ 36 22 '7 «i

s 7* 7" s6 S/ *7 J2 V /3

/* 4 fe 66 6/ *7 42 2S 26

/3 /4 £ 7* 7' *7 S2 3S J3

23 z* /o s f/ 6? 62 4<S 43

S = 3<$9.

Fig. 25.

One of the most interesting of these other methods involves

the use of two or more primary squares, the sums of numbers in

similarly located cells of which constitute the correct numbers for
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transfer into the corresponding cells of the magic square that is

to be constructed therefrom.

This method has been ascribed primarily to De la Hire but has

been more recently improved by Prof. Scheffler.

It may be simply illustrated by the construction of a few 5X5
squares as examples. Figs. 26 and 27 show two simple primary

squares in which the numbers 1 to 5 are so arranged that like num-

bers occur once and only once in similarly placed cells in the two

squares ; also that pairs of unlike numbers are not repeated in the

same order in any similarly placed cells. Thus, 5 occupies the ex-

treme right-hand cell in the lower line of each square, but this com-

bination does not occur in any of the other cells. So also in Fig. 27

4 occupies the extreme right-hand cell in the upper line, and in Fig.

/ 5 * 3 2

J 2 / S 4-

s 4 J 2 /

2 / 5~ 4 6

4 3> 2 / S

/ J J~ 2 *

S 2 4 / J

4 / 3 S 2

3 S 2 * /

2 * / 3 S

Fig. 26. Fig. 27.

26 this cell contains 2. No other cell, however, in Fig. 27 that con-

tains 4 corresponds in position with a cell in Fig. 26 that contains 2.

Leaving the numbers in Fig. 26 unaltered, the numbers in Fig. 27

must now be changed to their respective root numbers, thus pro-

ducing the root square shown in Fig. 28. By adding the cell num-

bers of the primary square Fig. 26 to the corresponding cell numbers

Primary numbers

Root numbers . -

.

i, 2, 3, 4, 5.

o, 5, 10, 15, 20.

of the root square Fig. 28, the magic square shown in Fig. 29 is

formed, which is also identical with the one previously given in

Fig. 14.

The simple and direct formation of Fig. 14 may be thus com-

pared with the De la Hire method for arriving at the same result.
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It is evident that the root square shown in Fig. 28 may be dis-

pensed with by mentally substituting the root numbers for the pri-

mary numbers given in Fig. 27 when performing the addition, and

by so doing only two primary squares are required to construct the

magic square. The arrangement of the numbers 1 to 5 in the two

primary squares is obviously open to an immense number of varia-

/o 20 5- /s

20 s /J /o

/s /o 20 s

/o 20 s /s

s /s /o s

/ /s 24 $ '7

23 7 /6 S /</

20 4 /J 22 6

/2 2/ /o /S J

9 /s 2 // 2S

Fig. 28. Fig. 29.

tions, each of which will result in the formation of a different but

associated magic square. Any of these squares, however, may be

readily constructed by the direct methods previously explained.

A few of these variations are given as examples, the root num-

bers remaining unchanged. The root square Fig. 32 is formed

from the primary square Fig. 31, and if the numbers in Fig. 32

Fig. 30.

/ 4 1 s J / S~ ^ 5 2

4 2 s J / 3 2 / J" 4

2 S J / ^ S 4 J 2 /

S J / * 2 2 / J~ & £

J / * 2 J- 4 J 2 / J~

Fig. 31.

are added to those in the primary square Fig. 30, the magic square

Fig. 33 will be produced, This square will be found identical with

that shown in Fig. 15.

As a final example the magic square shown in Fig. 37, pre-

viously given in Fig. 17, is made by the addition of numbers in the
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primary square Fig. 34 to the numbers occupying similar cells in

root square Fig. 36, the latter being derived from the primary square

Fig. 35. If the root square shown in Fig. 38 is now constructed

20 /6~ /o «T

/o s O 20 /*

20 /? /o 5-

S~ 20 /sr /o

/f /o s O 20

/ 2* '7 /s f

/* 7 s 23 /6

2Z 20 /j 6 *

/O 3 z/ /S /2

/S // 9 2 2S

Fig. 32. Fig. 33-

from the primary square Fig. 34 and the root numbers therein added

to the primary numbers in Fig. 35, the magic square shown in Fig.

39 is obtained, showing that two different magic squares may be

s

/ 4 2 & J

Fig. 34.

^ / 24 '7 /S

s 26 /6 /* 7

22 20 /d 6 4

/9 /% /O 3 2/

// 3 2 2S /<s

Fig. 37-

2 / s 4 3

/ 6~ 4 3 Z

f 4 3 2 /

4 3 2 / f

J 2 / jr 4

Fig. 35.

/o O /S~ s 20

20 /O O /S S
6~ 20 /o /s

ys & 20 /o

/s s- 20 so

Fig. 38.

s O 20 /s so.

20 /s /o 6~

20 /S /o s

/S /o jT 20

/o s O 20 /S

Fig. 36.

/2 / 20 s> 2A

2/ /s 4 /s 7
/0 24 /J z /6

/£> s 22 // s~

J '7 6 2S /^

Fig. 39-

made from any two primary squares by forming a root square from

each of them in turn. Fig. 39 has not been given before in this

book, but it may be directly produced by an elongated knight's
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move consisting of two cells to the right and two downward, using

the normal knight's move of two cells to the left and one cell down-

ward as a break-move at every block in the regular spacing.

It will be observed in all the preceding examples that the

number 3 invariably occupies the center cell in all 5X5 primary

squares, thus bringing 10 in the center of the root squares, and 13 in

the center of the magic squares, no other number being admissible

in the center cell of an associated 5X5 magic square. A careful

study of these examples should suffice to make the student familiar

with the De la Hire system for building odd magic squares, and

f
4- /O

J S /s

2 J /* 20

/ 7 /«3 /9 2S

-6 /2 /s 24-

// O 23

/6 22

2/

J /6 9 22 /s

20 f 2/ /* 2

7 2f /<3 / /£

24 /2 & /s 6

// 4 '7 /0 2*

Fig. 40. Fig. 41.

this knowledge is desirable in order that he may properly appre-

ciate the other methods which have been described.

Before concluding this branch of the subject, mention may

be made of another method for constructing odd magic squares

which is said to have been originated by Bachet de Meziriac.

The application of this method to a 5 X 5 square will suffice for

an example.

The numbers 1 to 25 are written consecutively in diagonal

columns, as shown in Fig. 40, and those numbers which come

outside the center square are transferred to the empty cells on

the opposite sides of the latter without changing their order. The

result will be the magic square of 5 X 5 shown in Fig. 41. It

will be seen that the arrangement of numbers in this magic square
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is similar to that in the y X 7 square shown in Fig. 4, which

was built by writing the numbers 1 to 49 consecutively according

to rule. The 5X5 square shown in Fig. 41 may also be written

out directly by the same rule without any preliminary or additional

work.

ASSOCIATED OR REGULAR MAGIC SQUARES OF EVEN
NUMBERS.

The numbers in the two corner diagonal columns in these magic

squares may be determined by writing the numbers of the series in

arithmetical order in horizontal rows, beginning with the first

number in the left-hand cell of the upper line and writing line after

line as in a book, ending with the last number in the right-hand cell

/ /f /* 4-

/2 6 7 9

s /o // s-

/6 j z /6

/ 2 j 4-

5- 6 7 f

9 /a // /z

/* /« /s /6

Fig. 42. Fig- 43-

of the lower line. The numbers then found in the two diagonal

columns will be in magic square order, but the position of the other

numbers must generally be changed.

The smallest even magic square that can be built is that of

4 X 4, and one of its forms is shown in Fig. 42. It will be

seen that the sum of each of the four horizontal, the four vertical,

and the two corner diagonal columns in this square is 34, making

in all ten columns having that total ; also that the sum of any two

diametrically opposite numbers is 17, which is the sum of the first

and last numbers of the series. It is therefore an associated square

of 4 X 4-

The first step in the construction of this square is shown in

Fig. 43, in which only the two corner diagonal columns, which are
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written in heavy figures, have the correct summation. The numbers

in these two columns must therefore be left as they are, but the loca-

tion of all the other numbers, which are written in light figures, must

be changed. A simple method for effecting this change consists in

substituting for each number the complement between it and 17.

Thus, the complement between 2 and 17 is 15, so 15 may be written

in the place of 2, and so on throughout. All of the light figure

/6 z 3 76

s // /# S

9 7 6 /z

7/ /4 /s /

/ *. ^ '6 s

z f ^N /£- 6

J Jk. J> /<c 7

* *r ^* /J s

Fig. 44. Fi2 45-

numbers being thus changed, the result will be the magic square

shown in Fig. 42.

The same relative arrangement of figures may be attained by

leaving the light figure numbers in their original positions as shown

in Fig. 43, and changing the heavy figure numbers in the two

corner diagonal columns to their respective complements with 17.

It will be seen that this is only a reversal of the order of the figures

/ JS ->* J 32 6

30 S ZS 2? 7/ 7
24 2d /f /6 /* /<>

/3 O 2/ 21 2o /s

/2 26 9 /O 29 26

3/ 2 4- 33 S 36

/ 2 3 * s 6
7 <? 7 /0 // 'Z

/3 /v /s 76 '7 /s

/£ 20 2/ 22 ZJ 24t

2S 26 zy ZS 29 3o

3/ J2 J3 3* 36~ 36

Fig. 46. Fig. 47.

in the two corner diagonal columns, and the resulting magic square

which is shown in Fig. 44 is simply an inversion of Fig. 42.

Fig. 45 is a geometrical diagram of the numbers in Fig. 42,

and it indicates a regular law in their arrangement, which also holds

good in many larger even squares, as will be seen later on.
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There are many other arrangements of sixteen numbers which

will fulfil the required conditions but the examples given will suffice

to illustrate the principles of this square.

The next even magic square is that of 6 X 6, and one of its

many variations is shown in Fig. 46. An analysis of this square

/ 3J s* 33 32 6

AO S 28 2/ // zs

24 2d /S /6 zo /O

/8 '7 2/ 22 /* /3

n 26 /o 9 20 ?

*f s- 4 3 z 66

Fig. 48.

with the aid of geometrical diagrams will point the way not only

to its own reconstruction but also to an easy method for building

other 6X6 squares of this class.

Fig. 47 shows a 6 X 6 square in which all the numbers from

X <s
1 ss

J A
^K.

3V

* • N )33

si
*• 3t

6c 3 J/

3o /j<3

'? '¥(.

2$

B
/<*"<

*7
'<* <

26
'7

Fig. 49.

I to 36 are written in arithmetical sequence, and the twelve numbers

in the two corner diagonal columns will be found in magic square

order, all other numbers requiring rearrangement. Leaving there-

fore the numbers in the diagonal columns unchanged, the next step

will be to write in the places of the other numbers their complements

with 37, making the square shown in Fig. 48. In this square

twenty-four numbers (written in heavy figures) out of the total of
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thirty-six numbers, will be found in magic square order, twelve

numbers (written in light figures) being still incorrectly located.

Finally, the respective positions of these twelve numbers being re-

versed in pairs, the magic square given in Fig. 46 will be produced.

Fig. 50 shows the geometrical diagrams of this square, A
being a diagram of the first and sixth lines, B of the second and

fifth lines, and C of the third and fourth lines. The striking ir-

regularity of these diagrams points to the irregularity of the

square which they represent, in which, although the sum of each

of the two corner diagonal, the six horizontal, and the six perpendic-

ular columns is in, yet only in the two diagonal columns does the

sum of any two numbers which occupy diametrically opposite cells,

amount to 37, or the sum of the first and last numbers of the series.

Owing to their pronounced irregularities, these diagrams convey

but little meaning, and in order to analyze their value for further

constructive work it will be necessary to go a step backwards and

make diagrams of the intermediate square Fig. 48. These diagrams

are shown in Fig. 49, and the twelve numbers therein which must

be transposed (as already referred to) are marked by small circles

around dots, each pair of numbers to be transposed in position

being connected by a dotted line. The numbers in the two corner

diagonal columns which were permanently located from the be-

ginning are marked with small circles.

We have here correct geometrical figures with definite and well

defined irregularities. The series of geometrical figures shown in

A, B, and C remain unchanged in shape for all variations of these

6X6 squares, but by modifying the irregularities we may readily
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obtain the data for building a large number of variants, all showing,

however, the same general characteristics as Fig. 46.

A series of these diagrams, with some modifications of their

irregularities, rs given in Fig. 51, and in order to build a variety

of 6 X 6 magic squares therefrom it is only necessary to select three

"o ay!

ti) ci

><
<r

/2

Fig. 51 (First Part).

diagrams in the order A, B, and C, which have each a different form

of irregularity, and after numbering them in arithmetical sequence

from 1 to 36, as shown in Fig. 49, copy the numbers in diagrammatic

order into the cells of a 6 X 6 square.

It must be remembered that the cells in the corner diagonal
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columns of these even magic squares may be correctly filled by writing

the numbers in arithmetical order according to the rule previously

given, so in beginning any new even square it will be found helpful

to first write the numbers in these columns, and they will then serve

as guides in the further development of the square.

6 7

><><><><
df

c K / «

/<»
'' \ >

o><C I^C ^C o^C
/^ /6

Fig. 51 (Second Part).

Taking for example the 6X6 magic square shown in Fig. 46,

it will be seen from Fig. 49 that it is constructed from the diagrams

marked 1—9 and 17 in Fig. 51. Comparing the first line of Fig. 46

with diagram A, Fig-. 49, the sequence of numbers is 1,—35,—34

In unbroken order ; then the diagram shows that 33 and 3 must be
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transposed, so 3 is written next (instead of 33) then 32 and 6 in

unbroken order. In the last line of this square (still using diagram

A) 31 comes first, then, seeing that 5 and 2 must be transposed,

2 is written instead of 5 ; then 4 ; then as 3 and 33 must be trans-

posed, 33 is written instead of 3, 5 instead of 2, and the line is

finished with 36. Diagram B gives the development of the second

TABLE SHOWING 128 CHANGES WHICH MAY BE RUNG ON
THE TWENTY-FOUR DIAGRAMS IN FIG. 5 1.

A
I,
ii

a

2,
<<

3 or 4

5. 6, 7 or 8

B
9
10

11

12

13

15
16

17, 18, 19 or 20=16 changes
" " •' " = 16
" " " " =16
" " " " = 16

21, 22
f 23 or 24=16 "

" " " " = 16
a 11 a a _zr a

" " " " =16
Total changes =128 "

EXAMPLES.

Square derived from dia-

grams 2, 10, and 18.

/ 3S 4 33 32 6 / S 33 34 32 6

/% s 28 V // 2S 30 s 28 9 // 2S

Z4 '/ /5 /6 lO /S> /$ 23 /S /6 20 /S

/3 23 2/ 22 /* /8 2* /* 2/ 22 '7 /3

30 26 9 /o 2D 7 7 26 /O *7 23 /Z

3/ Z 44 J S 36 3/ J«T 4 3 Z 36

Square derived from dia-

grams 8, 13, and 22.

and fifth lines of the square in the same manner, and diagram C

the development of the third and fourth lines, thus completing the

square.

The annexed table shows 128 changes which may be rung on

the twenty-four diagrams shown in Figure 51, each combination

giving a different 6X6 square, and many others might be added

to the list.

The next size of even magic square is that of 8 X 8, and instead
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of presenting one of these squares ready made and analyzing it,

we will now use the information which has been offered by previous

examples in the construction of a new square of this size.

Referring to Fig. 45, the regular geometrical diagrams of the

4X4 square naturally suggest that an expansion of the same may

be utilized to construct an 8 X 8 square. This expanded diagram

/ v. *lv f%^x^sc
'7 *\* 3U* *r*\ ^»*o

Z ¥^^N*J /a r^ N s* // ir Nv *' f^^ N.A5

«l l^ J^a // Jc \s<t /jI \*t ^L^ Jj<f

*
\

^X«/ n. f N/j *° T^ ^•.r j/ r^^^
^T7

j- L^ J^ /J 4^ J SI i/l .ivv 25 Jl x^ J*

4 *^ « SO /* r^ "^ dV u f

—

^« *a J* f^ ^1^

/L J 6* /rf-I \fe 2j]l ^><ti J/l^ ^J»/y

i *^^ V /*r^^

Fig. 52.

^» v/ J* r"^ Njj

is accordingly shown in Fig. 52, and in Fig. 53 we have the magic

square that is produced by copying the numbers in diagrammatic

order.

/ 63 6z </ 3~ 39 St f

s6 /o // S3 S2 /4 /s 43

4S // /S 4* *</ ZZ 23 4/

zs 39 3i 28 29 JJ- J* 32

33 3/ 60 36 J7 *7 2<f 40

24 4Z 43 2/ 20 46 «? '7

/6 J<? 3~/ /3 /z •r* 6-3- $

*7 7 6 60 6/ 3 2 6*s

Totals = 260.

Fig. 53-

As might be anticipated, this square is associated and the ease

with which it has been constructed points to the simplicity of the

method employed.

The magic square shown in Fig. 53 is, however, only one of a
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multitude of 8 X 8 squares, all of which have the same general

characteristics and may be constructed with equal facility from

*7fc./.
.7V2.2. JVh. S JK.*..

Fig. 54-

'/i «L <£</ 9
(

> i
, St

M
6S

6Z.

to y

jxj
sr

r <r*

# &f n ,
«TJ

«r Co /j
,
SI

A!x! /s-\!x:
S i) \ V '4 </ \. *.?

Fig. 55-

various regular diagrams that can be readily derived from trans-

positions of Fig. 52. Five of these variations are illustrated in Fig.
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54, which also show the transpositions by which they are formed

from the original diagrams. To construct an associated magic square

from either of these variations it is only necessary to make four

copies of the one selected, annex the numbers 1 to 64 in arithmetical

/ 7 S9 60 4/ J* Z f

/6 /o S4c S6 sz S/ /s 3

4* *7 /J? 2/ 20 22 42 4/

OJ J* JO 2S 2$ 27 JS> 40

zs 26 3f 46 J/ as 6/ 32

24 2J 4* 4S 44 4* /<? '7

<T6 f& '4 /d >/2 // JS 49

*7 6* J 4- jr 6 d'f 6«

Totals = 260.

Fig. 56.

order as before explained, and then copy the numbers in diagram-

matic sequence into the cells of an 8 X 8 square.

It will be noted in the construction of the 4X4 and 8X8

V w

Fig. 57

squares that only one form of diagram has been hitherto used for

each square, whereas three different forms were required for the

6X6 square. It is possible, however, to use either two, three, or

four different diagrams in the construction of an 8 X 8 square, as
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/ 7 6l 6/ 60 *? Z <f

43 /o /4 S3 S2 // /S S6

4* 4Z /9 20 2/ 22 V 4/

40 3S 27 2S 23 30 «*<* 33

32 3/ 3S 36 <*7 3* 26 2S

24 /S 43 44 4s 4.6 23 '7

& SO S4 /3 /z JV SS /6

*7 63 6 3- 4 3 s<t 6*

Totals = 260.

Fig. 58.

Fig. 59.

/ 63 S9 4 S 62 ss s

S6 /o S4 /3 /2 s/ /s 49

24 V /9 4* 44 22 4Z '7

ZS J* 3<$ 2S 2S) 3S 3D 32

33 z6 30 36 V 27 3/ 40

4* 23 43 2/ 20 46 /<? 4"

/6 SO /4 S3 sz // 6S 9

s7 7 3 60 6/ 6 2 **

Totals = 260.

Fig. 60.
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shown in the annexed examples. Fig. 55 illustrates two different

forms from which the magic square Fig. 56 is constructed. Fig. 57

shows three different forms which are used in connection with the

square in Fig. 58, and in a similar manner Figs. 59 and 60 show

four different diagrams and the square derived therefrom. The

90 2/

S9 22.

ss t$

n **/

so 2J~

ss 26

8V *7

S5 25

SZ 20

6'/ JO

7° */

6j> *2

6s *J

6
7

vy

66 «f

fif «6

6« +7

65 V*

At *9

ht sa

Fig. 61.

foregoing examples are sufficient to illustrate the immense number

of different 8X8 magic squares that may be constructed by the

aid of various diagrams.

We now come to the magic square of 10 X 10, and applying

the comparative method to the last examples, it will be easy to ex-
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pand the three diagrams of the 6X6 square (Fig. 49) into five

diagrams that are required for the construction of a series of

/ 99 J 9? 96 S 94 <f 92 /9

90 /Z $f /* S/9 ss '7 S3 /9 //

89 79 26 77 2f 2A 7* 28 22 /'

6/ 69 6S 64 66 6s *7 66 42 ¥0

60 Ul Sf *7 4* *6 ** S6 49 s/

SO sz 46 >7 ss s6 S* 48 S9 4'

fit 32 68 6* 66 6 6' 6? 66 39 7°
2* 29 7* 2? 7s 7* 24 7s 7* 60

20 81 /8 8U /ST /6 *7 /6 89 8*

St 9 96 4 6 96~ 7 98 2, /o/>

Totals = 505.

Fig. 62.

10 X 10 squares. These five diagrams are shown in Fig. 61, and

in Fig. 62 we have the magic square which is made by copying the

/ - *'**¥ /J ,. >• /31 3i~ - • /2c;

2 -S^^N./«J '*
1
S* ""^./J/ J/5

f
X^^V^ //i>

J 1 \/¥* ts
, 1 /3o 7L ^i "'

M *^ ** /(// /6 -r^"^^^ '13 i/ f^^? "7

*" *^ 1 /tfiO '7 JL X /If i5 1 1 //<<

6 *^VV, ,3S Af -^>l "7 30 f^^\- //.T

7 L J /J/ '3 \ L \ "6 J/ <^ 1 //</

<r
~*^"^^y^ 90 my^ ^^>^ /is JZ ~^ ^•>^ //J

* i^ J /3J 3/ J 1 /:v 33 1 1 //z

/o *^ ^^ /3S 22 «r^^^^ /*J *</ *^ >• •//

// 1 1 /3</ * 3
\ ^ J* '*2 JJ-1 1 //<?

/* *^^^V>^. /JJ **•r^^^*+ '2/ J6 4^ ^^^ /OS

Fig. 63 (First part).

numbers from 1 to 100 in diagrammatic order into the cells of a

10 X 10 square.

It will be unnecessary to proceed further with the construction
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of other 10 X 10 squares, for the reader will recognize the strik-

ing resemblance between the diagrams of the 6><i6 and the 10 X

J7 v. * /OS *"* *^ . itf
6/ .C M *v

j/ ^^\ ^ SO ^S^^N- J>J- 62. j^^\- S3

js i 1 /06 S/ L l^* 63
k. J /A

4<? -S^ ^v_ /<3>r J^i {S^^s^. J>J 6* i^^^X- ^/

*' «^ 1 /o^ Si 1 J .9Z Ss
,

I /*?

* 2 f^^^ ^^» /(3J »r« -^*^^X- s/ <*/* .r^^^^N r*

+ 3 1 J /c?Z ss 1 1 50 "ALJ/
AtO ^^"^^v- /o/ tfrf -^^>l *? SS .^[^
*S 1 J //?£?

•?k J /^ Ss
t^J>?<

W ~S^\- Jtf J"' f""^r '7 7*\^^>7*
V
^*x

J .?• J^ L 1 f6 yA^s^7*

V/ +S^"N.J7 60 1*s''^v, is /**f^^/j
Fig. 63 (Second part).

/ /*3 '4Z 4 S /JS /3S s & /3S /J* /Z

/32 '4 /S /2S /2S /s /S /2S Z24, 22 23 /2/

/20 26 V "7 //6 30 3/ //3 /tz 3* 3S- /09

37 ,oy /06 */0 */ /.03 /02 ** *s 99 SS 4S

40 9S S* S2 S3 S/ SO s6 s7 S7 s6 60

St, 6*. 66 // SO 66 *7 77 7' 7° 7' 73

7Z 7* 7s 6s Ss 7* 7s 6s 6« SZ, S3 6/

ss S3 ss SS ss ss s/, 91 S3 s/ SO SS

s7 "7 <,4 /oo /o/ J/3 42. /Oif /OS 39 JS /pf

36 //0 /// 33 31 "</ //S 29 2S /// //S 2S~

2« /n /23 2/ 20 /26 '*7 '7 /S /30 /3/ /3

/3 3 // /O /3 6 /J7 7 6 /<//> /*/ 3 2 /**

Totals = 870.

Fig. 64.

10 squares, especially in connection with their respective irregu-

larities.
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It will also be seen that the same methods which were used for

varying the 6X6 diagrams, are equally applicable to the 10 X 10

diagrams, so that an almost infinite variety of changes may be rung

on them, from which a corresponding number of 10 X 10 squares

may be derived, each, of which will be different but will resemble

the series of 6 X 6 squares in their curious and characteristic im-

perfections.

/if Jo£

ltt> H

'7? JZ

'7' 33

77 J*

/?(* Jx

'7* Ji

'?+ V

,?3 Jf

/7 z. J/

'7' Mo

"/' *

yuf f-*i

Fig. 65 (First part).

We have thus far studied the construction of even magic

squares up to and including that of 10 X 10, and it is worthy

of remark that when one-half the number of cells in one side of

an even magic square is an even number the square can be made

associated, but when it is an uneven number it is impossible to

build a fully associated square with a straight arithmetical series. The

difficulty can however be easily overcome by using a suitable number

series. As this subject is fully treated in Cahpter XI under the

heading, "Notes on the Construction of Magic Squares of Orders

in which n is of the General Form 4/> + 2," it is not discussed here.

Fig. 63 shows a series of diagrams from which the 12 X I2
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tr* S/A

/si S* i

/Si
?<j

ist *o(

/so */

t+1 tti

/*t *>

fv-y *V

'i*G CTy

/*r *d

/¥* V|

)'V> *<

/*/*> <?<

/*// 7*<

"t 7*

/it 7*

'V 7*(

/a(>

/sr ?l

/J* V
AJ3 u
/ix 7?

/3/ J»

» /%i

*/3?

/%(> tr*

/zr Mi

/t*
'/<

/hi //<

/t% '/<

/v ?<<

/i* fir

\„
f fx\

Mlt /j

Y'7 fvk

. //* rsi

>//S /a

//* &*

*/'* f
Fig. 65 (Second Part).

/ /SS J /03 s /S/ /oo 7 /SS /O /s/> /I '*</ "t

/S2 /6 /so /S 7s 20 ,76 '7* 2A /p 2A~ /// 27 /S

/6s ,6? 3/ /6s AA /6a as At /60 AS /SS 4/0 AO /SS

//a /sa /SI «6 /SO «S /t/S '+7 S/ *</S SA IS /*2 s6

///0 SS /AS '*7 6/ /AS 6a 6* /A 2 66 6* /2S 6S /2?

7' ns 7* /2A /21 7" /20 //s 7* 7* //6 Si /'</ *//

tn St> //O ss /OS '°7 0' SI so /06 ss- /o/ *7 SS

98 /oo S6 /02, SS) S3 /OS /oA //></ 94- /oo *7 /// ss-

//3 »A //S 7* s-o /// 7* 77 /!/ "7 S/ /29 7Z /z6

7° nt rs *7 /&/ 6s /A A /At/. 63, /a6 /AO 6+ /A& s7
w H si /</*/ si /«6 so </S /4S V /*-/ /*/A ss- /s<+

to V* ,s? AO /SO *7 /6* /6z J* /<*v AX /A6 /s6 m
2.S /JO nf> '7* 2V '7* 2/ 12, '77 /s /?s '7 /s/ /6s

/SA /d /ts // "7 6 t /ss 3 /9Z V- /O// 2. /s6

Fig. 66.
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square in Fig. 64 is derived. The geometrical design of these

diagrams is the same as that shown in Fig. 52 for the 8X8 square,

and it is manifest that all the variations that were made in the 8X8
diagrams are also possible in the 12 X 12 diagrams, besides an

immense number of additional changes which are allowed by the

increased size of the square.

In Fig. 65 we have a series of diagrams illustrating the de-

velopment of the 14 X 14 magic square shown in Fig. 66. These

diagrams being plainly derived from the diagrams of the 6X6 and

10 X 10 squares, no explanation of them will be required, and it is

evident that the diagrammatic method may be readily applied to

the construction of all sizes of even magic squares.

It will be noted that the foregoing diagrams illustrate in a

graphic manner the interesting results attained by the harmonious

association of figures, and they also clearly demonstrate the almost

infinite variety of possible combinations.

/ 4 / J 2 4 / 4 * /

2 6 4 z J / J Z 2, 6

2 3 4 z J / 2 J 3 2

/ 4 / J Z *+ ¥ / / 4-

Fig. 67. Fig. 68. Fig. 69.

THE CONSTRUCTION OF EVEN MAGIC SQUARES BY DE LA
HIRE'S METHOD.

An associated magic square of 4 X 4 may be constructed as

follows

:

1. Fill the corner diagonal columns of a 4 X 4 square with the

numbers 1 to 4 in arithmetical sequence, starting from the

upper and lower left hand corners (Fig. 67).

2. Fill the remaining empty cells with the missing numbers of

the series 1 to 4 so that the sum of every perpendicular and

horizontal column equals 10 (Fig. 68).
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3. Construct another 4X4 square, having all numbers in the

same positions relatively to each other as in the last square,

but reversing the direction of all horizontal and perpendicular

columns (Fig. 69).

4. Form the root square Fig. 70 from Fig. 69 by substituting

root numbers for primary numbers, and then add the numbers

in this root square to similarly located numbers in the primary

square Fig. 68. The result will be the associated square of

4X4 shown in Fig. 72.

By making the root square Fig. 71 from the primary square

Fig. 68 and adding the numbers therein to similarly located numbers

PRIMARY ROOT

NUMBERS NUMBERS

I O

2 4

3 8

4 12

JZ /Z O / & /z

# 4 4 f /Z 4 C?

A* s £ V- /Z 4 <r

/I O /£ O <f 4 /2

Fig. 70. Fig. 71.

/ /S /¥ 4- / /z f /6

/z 6 7 3 /s- 6 /o J

f /o // <r '¥ 7 // ^

A3 J z /6 4 3 s- /6

Fig. 72. Fig. 73-

in the primary square Fig. 69, the same magic square of 4 X 4 will

be produced, but with all horizontal and perpendicular columns re-

versed in direction as shown in Fig. 73.

The magic square of 6 X 6 shown in Figure 46 and also a

large number of variations of same may be readily constructed by

the De la Hire method, and the easiest way to explain the process

will be to analyze the above mentioned square into the necessary

primary and root squares, using the primary numbers 1 to 6 with

their respective root numbers as follows

:

Primary numbers I, 2, 3, 4, 5, 6.

Root numbers o, 6, 12, 18, 24, 30.
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The cells of two 6X6 squares may be respectively rilled with

primary and root numbers by analyzing the contents of each cell in

Fig. 46. Commencing at the left-hand cell in the upper row, we

note that this cell contains 1. In order to produce this number by

the addition of a primary number to a root number it is evident that

o and 1 must be selected and written into their respective cells.

The second number in the top row of Fig. 46 being 35, the root

number 30 must be written in the second cell of the root square and

the primary number 5 in the second cell of the primary square, and

so on throughout all the cells, the finished squares being shown in

Figs. 74 and 75.

Another primary square may now be derived from the root

square Fig. 74 by writing into the various cells of the former the

/ 6S 64 6 62 6

60 / 2S 2? // 7

24 26 /S /6 /4 /&

/3 '7 2/ 22 20 //

/2 26 S> /O 23 26~

6/ 2 4 63 J 66

60 60 60

24 6 24 24 6 6

/<f // /2 /z /z /f

/2 /2 /* /s /s- /Z

77 24 6 6 w 24

60 O 60 60

Fig. 46 (Dup.) Fig. 74-

primary numbers that correspond to the root numbers of the latter.

This second primary square is shown in Fig. 76. It will be seen that

the numbers in Fig. y6 occupy the same relative positions to each

other as the numbers of the first primary square (Fig. 75), but the

direction of all columns is changed from horizontal to perpen-

dicular, and vice versa.

To distinguish and identify the two primary squares which are

used in these operations, the first one (in this case Fig. 75) will in

future be termed the A primary square, and the second one (in this

case Fig. 76) the B primary square.

It is evident that the magic square of 6 X 6 shown in Fig. 46

may now be reconstructed by adding the cell numbers in Fig. 74
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to the similarly placed cell numbers in Fig. 75. Having thus in-

versely traced the development of the magic square from its A and B

primary and root squares, it will be useful to note some of the general

characteristics of even primary squares, and also to study the rules

which govern their construction, as these rules will be found in-

structive in assisting the student to work out an almost endless

variety of even magic squares of all dimensions.

1. Referring to the 6 X6 A primary square shown in Fig. 75, it

will be noted that the two corner diagonal columns contain

the numbers 1 to 6 in arithmetical order, starting respectively

from the upper and lower left hand corner cells, and that the

diagonal columns of the B primary square in Fig. 76 also

contain the same numbers in arithmetical order but starting

/ S * J 2 6

6 2 * J S /

6 5 3 4 2 /

/ S 3 4 2 6

6 2 J 4 <T /

/ 2 /A J S 6

/ 6 6 / 6 /

S 2 s s 2 2

4 4 J J 3 4

J j & 4. 4 J

Z j~ 2 z S y
6 / / 6 / 6

Fig. 75. Fig. 76.

from the two upper corner cells. The numbers in the two

corner diagonal columns are subject to many arrangements

which differ from the above but it will be unnecessary to

consider them in the present article.

2. The numbers in the A primary square Fig. 75 have the same

relative arrangement as those in the B primary square Fig.

j6, but the horizontal columns in one square form the per-

pendicular columns in the other and vice versa. This is a

general but not a universal relationship between A and B

primary squares.

3. The sum of the series 1 to 6 is 21 and the sum of every

column in both A and B 6 X 6 primary squares must also

be 21.
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4. The sum of every column in a 6 X 6 root square must be 90,

and under these conditions it follows that the sum of every

column of a 6X6 magic square which is formed by the

combination of a primary square with a root square must be

in (21 +90= in).

5. With the necessary changes in numbers the above rules hold

good for all sizes of A and B primary squares and root

squares of this class.

We may now proceed to show how a variety of 6 X 6 magic

squares can be produced by different combinations of numbers in

b

c

d

e

/

1st line

2nd
1 i

3rd
i i

4th
< <

5th
i i

6th
(.

/ Z 4t J s 6

/ d~ * J 2 6

/ S J 2 6

6 s J ^ 2 /

6 2 J ^ f /

6 2 * J J~ /

Fig. 77.

/ 6

Z J-

J

J 4*

z S~

/ 6

a, b, or c.

a, e, or /.

c, d, or e.

c
y
d, or e.

a, e, or /.

a, b, or c.

Fig. 78.

primary and root squares. The six horizontal columns in Fig. 75

show some of the combinations of numbers from 1 to 6 that can be

used in 6 X 6 A primary squares, and the positions of these columns

or rows of figures relatively to each other may be changed so as

to produce a vast variety of squares which will naturally lead to

the development of a corresponding number of 6 X 6 magic squares.

In order to illustrate this in a systematic manner the different

rows of figures in Fig. 75 may be rearranged and identified by letters

as given in Fig. yy.
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Fig. 78 shows the sequence of numbers in the diagonal columns

of these 6 X 6 A primary squares, and as this arrangement cannot

be changed in this series, the various horizontal columns or rows in

Fig. 77 must be selected accordingly. The small letters at the right

No. 1. No. 2. No. 3. No. 4. No. 5. No. 6.

a a b b c c

/ e f e a f

c d c d d e

d c d c e d

e / e / f a

b b a a b b

Fig. 79-

of Fig. 78 indicate the different horizontal columns that may be used

for the respective lines in the square ; thus either a, b, or c column

in Fig. 77 may be used for the first and sixth lines, a, e, or f for the

second and fifth, and c, d, or e for the third and fourth lines, but

neither b, c, or d can be used in the second or fifth lines, and so forth.

Six different combinations of columns are given in Fig, 79.

from which twelve different 6X6 magic squares may be con-

structed. Taking column No. 1 as an example, Fig. 80 shows an

a

i

c

d

e

b

Fig. 80.

/ 2 ^ J S 6 / 6 / 6 6 /

6 z ^ 3 S~ / Z 2 s 6' Z s-

/ s J 4 Z 6 4 * J J s *
6 s J 4 2 / 3 J 4 4 4 J

6 z J 4 S~ / J~ s 2, Z S" z

/ «r * J Z 6 6 / 6 / / 6

Fig. 81.

A primary square made from the combination a, f, c, d, e, b, and

Fig. 81 is the B primary square formed by reversing the direction

of the horizontal and perpendicular columns of Fig. 80. The root

square Fig. 82 is then made from Fig. 81 and the 6X6 magic

square in Fig. 84 is the result of adding the cell numbers of Fig. 82

to the corresponding cell numbers in Fig. 80.
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The above operation may be varied by reversing the horizontal

columns of the root square Fig. 82 right and left as shown in Fig.

83 and then forming the magic square given in Fig. 85. In this way

two different magic squares may be derived from each combination.

30 30 30 O 30 30 60 O

6 6 2*/ 2* 6 2^ 24 6 24 ZM 6 6

/s /s /2 /Z /z /r // /z /z /z /<f /f

/2 /z /f /s /<r /z /Z /? /<? /<? /Z /z,

2* 24 6 6 Z4 4 6 14 6 6 24 24-

30 30 30 JO 30 O ^0

Fig. 82. Fig. 83.

It will be noted that all the 6X6 magic squares that are con-

structed by these rules are similar in their general characteristics

to the 6X6 squares which are built up by the diagrammatic system.

Associated 8X8 magic squares may be constructed in great vari-

ety by the method now under consideration, and the different com-

/ J2 4- 33 6S- 6 / 32 3¥ J 3iT 6

/z <f 2$ 27 // 26- 30 <f ZS *7 // 7

'? 26 /3~ /6 '4 2* /4 '/ /& /6 20 24-

/S '7 2/ 22 2o /J /S 23 2/ 2Z 'V /3

30 26 £ /o 20 7 /2 26 9 /O 2<9 2S

3/ s- 3& J Z 36 3/ 3- 4- 33 2 36

Fig. 84. Fig. 85.

binations of numbers from 1 to 8 given in Fig. 86 will be found use-

ful for laying out a large number of A primary squares.

Fig. 87 shows the fixed numbers in the diagonal columns of

these 8 X 8 A primary squares, and also designates by letters the

specific rows of figures which may be used for the different hori-

zontal columns. Thus the row marked a in Fig. 86 may be used
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for the first, fourth, fifth, and eighth horizontal columns but cannot

be employed for the second, third, sixth or seventh columns, and so

forth.

Fig. 88 suggests half a dozen combinations which will form

a

b

c

d

e

aa

bb

cc

dd

ee

/ 7 6 * J" J z s

/ 2, 6 * J" J 7 #

/ z t s ^ 6 7 s*

/ 7 3 4 S" 6 z £

/ 7 J s 4 6 z f

<r z j s 4 6 7 /

s 7 J eT 4- 6 z /

8 7 6 4 6~ 6 z /

r z 6 6~ <A J 7 /

r z 6 ^ J- J 7 /

Fig.!

as many primary squares, and it is evident that the number of

possible variations is very large. It will suffice to develop the first

and third of the series in Fig. 88 as examples.

1st line

2nd "

3rd
"

4th
"

5th
"

6th
"

7th
"

8th
"

/ ?

z 7
J /

4 «T

4 *r

6 6
z /

/ s

a, b, c, d, or e.

b, c, aa, dd, ovee.

d, e, aa, or cc.

a, b, d, cc, or ee.

a, b, d, cc, or ee.

d, e, aa, or cc.

b, c, aa, dd, or ee.

a, b, c, d, or e.

Fig. 87.

Fig. 89 is the A primary square developed from column No. 1

in Fig. 88, and Fig. 90 is the B primary square made by reversing

the direction of all horizontal and perpendicular columns of Fig. 89.

Substituting root numbers for the primary numbers in Fig. 90, and
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adding these root numbers to the primary numbers in Fig. 89 gives

the regular magic square of 8 X 8 shown in Fig. 91. The latter will

be found identical with the square which may be written out directly

from diagrams in Fig. 52.

No. 1. No. 2. No. 3. No. 4. No. 5. No. 6.

a b c d e a

aa b c dd ee b

aa d cc e e e

a b cc d ee d

a b cc d ee d

aa d cc e e e

aa b c dd ee b

a b c d e a

Fig. 88.

Fig. 92 shows an A primary square produced from column

No. 3 in Fig. 88. The B primary square Fig. 93 being made in the

regular way by reversing the direction of the columns in Fig. 92.

Primary numbers . . 1, 2, 3, 4, 5, 6, 7, 8.

Root numbers o, 8, 16, 24, 32, 40, 48, 56.

/ 7 6 v 6~ 3 2 <?

aa,

<za

a-

a,

aa

aa,

a,

/ f <r / / f * /

s 2 3 «r ¥ 6 7 / 7 2 2 7 7 2 2, 7
s 2 3 j- 4 6 7 / 6 3 3 6 6 3 6 6

/ 7 6 ^ s- 3 2 <? 4 J~ j- 4 4 j- J~ V
/ 7 6 * J~ 3 2 S J~ 4r 4 s~ <r ^ 4 jr

<? 2 3 s- & 6 7 / 3 6 6 j 3 6 6 3

f 2 3 s- 4* 6 7 / 2 7 7 2 2 7 7 2

/ 7 6 4 J- 3 2 <f f / / f S / / <?-

Fig. 89. Fig. 90.

The associated magic square of 8 X 8 in Fig 94 is developed from

these two primary squares as in the last example, and it will be

found similar to the square which may be formed directly from

diagram No. 2 in Fig. 54.
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/ 66 6z /A s- 6~& JV t

S6 /o Jt S3 sz /4 /S 4$

4S /g /# 4S 44 22 26 4/

2S 63 j/ Zf 23 3S 34 3Z

33 3/ 30 36 *7 2? 26 40

24c 41 43 2/ ZO 46 *7 '7

/6 so 6~/ /6 /Z 3~4 ss" 3

s7 7 6 6o 6* 3 z 64

Totals = 260.

Fig. 91.

/ 2 79 s ¥ 3 7 / a

c

cc

cc

cc

cc,

c

C

7 / f f- / f / /

/ 2 79 «r 4 J 7 cT 2 2 7 7 7 7 2 Z

/ 7 J ^ «r 6 2 7 79 79 6 3 6 j 6 6

S 7 c5 ^ «T 6 2 / 3- s~ 4 4 V ^ JT S~~

f 7 J 4 s~ 77 2, / 4 4 J~ s- J- 3~ 4 ^

<r 7 J 4 <r 79 2 / 3 3 6 6 69 6 3 3

/ 2 4 s 4 3 7 S 7 7 2 z 2, z ? 7
/ 2 79 s~ 4 J 7 <r f <f / / / / f <r

Fig. 92. Fig. 93.

/ 2 t>2 6/ 60 S3 7 f / 7 792 60 6/ 33 z f

£> /o 34 4~3 62 s/ /j- /6 /6 /o 3/ S3 32 34 /3T 3

4? *7 /£ 20 2/ 22 4Z 4f 4f 41 /& 2/ 20 22 *7 4/

40 33 27 2? 23 30 34 33 33 39 34 2f 23 *7 29 VO

32 3/ 3S 36 37 3f 26 23' 2S- 3/ 3f 36 J7 33' 26 32,

2^ 23 43 44 4S y/6 /S y7 24 /p 43 43' 44 46 23 '7

4*3 30 /4 /3 Z2, // 3~3~ ^6 s~6 so // /3 /2 /<* 3-3- 43

*7 ft 6 S V 3 63 64 s-7 63 6 4 S 3 s<f- 6«

Fig. 94- Fig. 95.
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Fig. 95 shows another 8X8 magic square which is constructed

by combining the A primary square in Fig. 89 with the B primary

square in Fig. 93 after changing the latter to a root square in the

manner before described. This magic square may also be directly

constructed from diagram No. 4 in Fig. 54.

It is evident that an almost unlimited number of different

8X8 magic squares may be made by the foregoing methods, and

their application to the formation of other and larger squares is

so obvious that it will be unnecessary to present any further ex-

amples.

COMPOSITE MAGIC SQUARES.

These squares may be described as a series of small magic

squares arranged quadratically in magic square order.

The 9X9 square shown in Fig. 96 is the smallest of this class

that can be constructed and it consists of nine 3X3 sub-squares

arranged in the same order as the numerals 1 to 9 inclusive in the

3X3 square shown in Fig. 1. The first sub-square occupies the

7/ 6>V &s & / 6 S3 y.t> s/

u £,s 70 3 s 7 4-* SO sz

*>7 7* 6s 4 £> z. 4& S4 *7

26 /s 24 4* *7 42 b2 SS 60

4/2/ 23 2S 3d v/ 43 *7 S3

22 Y 20 40 US 3<f SJ 63 s&

3S IS 33 s-o 7* 7* '7 /a /S

30 31 3V 7* 77 7* /z /v- s6

J/ 36 23 7* <?/ 7* /3 /t //

Totals = 369.

Fig. 96.

middle section of the first horizontal row of sub-squares, and it

contains the numbers 1 to 9 inclusive arranged in regular magic

square order being a duplicate of Fig. 1. The second sub-square
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is located in the right hand lower corner of the third horizontal row

of sub-squares and it contains the numbers 10 to 18 inclusive ar-

ranged in magic square order, and so on to the last sub-square

which occupies the middle section of the third horizontal row of

*/ ss 6>4 SO / /2 23 *¥ 4.S

s7 6s 79 a // 22 33 4* 4-6

'7 7* * /& 2/ 32 4i W St>

77 7 /? zo 3/ 42 S3 ss 66

& '7 /o 30 4' si 63 6s 76

/6 *7 29 40 jy 6Z 64 7* «T

2t 2t 3$ So 6/ /2 7* 4 /S

36 3S *? 6o 7' 7' 3 /</ 2S~

37 4S S£f 7* f/ z /3 24 3S

Totals = 369.

Fig. 97.

//3 /27 /j6 //6 / /r /</ 4 ?/ 9* 79 tv

/24 /// "9 /2/ /2 6 7 9 92 *6 *7 'f

/20 /22 /23 "7 <P /o // s Sf 9* 9^ <?s

/2S //s //* /2i /3 3 2 /6 93 S3 #2 f6

33 47 #6 36 6s 79 7* 6S- 97 /// //a /oo

49 3S 3? 4/ 76 7* 7' 7* /of /oZ /03 /*s

40 42 43 *7 ?z 79 7* 6? /<?*/ /06 /*/ //>/

4S- 3S 34 4S 77 67 66 So /Of 99 7* //z

«9 63 62 6Z /If /43 /42 /32 '7 3/ 30 20

60 S4 jrs s7 /t/0 /39 /3S "7 as 22 23 2J-

S6 Sf *'9 S3 /36 /3f /3f /33 2</ 0.&> 27 2/

6f S/ SO 6^ *// /3/ /3a /</</ *? '? /f JZ

Totals
= 870.

Fig. 98.

sub-squares, and which contains the numbers 73 to 81 inclusive.

This peculiar arrangement of the numbers 1 to 81 inclusive

forms a magic square in which the characteristics of the ordinary
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9X9 square are multiplied to a remarkable extent, for whereas in

the latter square (Fig. 97) there are only twenty columns which

sum up to 369, in the compound square of 9 X 9 there are an

immense number of combination columns which yield this amount.

This is evident from the fact that there are eight columns in the

first sub-square which yield the number 15; also eight columns in

the middle sub-square which yield the number 123—and eight col-

umns in the last sub-square which sum up to the number 231—and

15 + 123 + 231 = 369.

zs / z ZO /9

22 /6 9 '4 4

S // /J /s 2/

S /2 '7 /o /<?

7 or Z4 6 <6

Fig. 99.

Z3> / z 20 /9

22 /2 // /6 *A

S '7 /J 9 2/

S /o /ST /4 /S

7 Zf z^ 6 J

/ • • 25 / 2S~

* • « 2¥ Z I J 2*

J
<s

« 2d 3 o\ / z *

* , , 2Z 4
•v. A ^ zz

s . . *>' f
fl \A z/

O • . Zo 6 20

7 /° <\
/£ 7 /9

<f • • /if s L J /<f

& • • '7 &

\xf
,?

/o

{
/6 /o (/OS) '6

// \ / /J- //

\/\/
'r

n \ / /* /*, X K 'V-

Fig. 102. Fig.' 100. Fig. 101.

Totals of 3 X 3 squares = 39.
Totals of 5 X 5 squares = 65.

The 15 X 15 comes next in order and this may be constructed

with twenty-five 3 X 3's or nine 5 X 5's, and so on in the larger

sizes of these squares.

The next larger square of this class is that of 16 X 16 which

can only be built with sixteen sub-squares of 4 X 4- Next comes

the 18 X 18 compound square which may be constructed with

thirty-six sub-squares of 3 X 3 or with nine sub-squares of 6 X 6,

and so on indefinitely with larger and larger compound squares.
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CONCENTRIC MAGIC SQUARES.

Beginning with a small central magic square it is possible to

arrange one or more panels of numbers concentrically around it so

that after the addition of each panel, the enlarged square will still

retain magic qualifications.

Either a 3X3 or a 4X4 magic square may be used as a

nucleus, and the square will obviously remain either odd or even,

according to its beginning, irrespective of the number of panels

which may be successively added to it. The center square will

/9 2 20 / 2d

4 /6 9 /* 22

/* // /3 /s S

2/ /2 '7 /o S
J 2lf 6 2S 7

Fig. 103.

/ • • SS / 2S

2 • • 2V z A If **

J
r° V 3

°X\ /° ^
V . zz ° • /

{
T

ZZ

S • # 2/ r
f* /A X*i

1/

A • • 20 6 to

7 °\ f°
fff 7 O / \ ° /S

8 • * /S s //

o . • '7 9 * ^> '7

/o j /6 /a <r\ /N> '*

// A /•
/r " \ / \ p /J

~

tZ W \ P '4* n '^

Fig. 104.

Totals of 3 X 3 square = 39.

Totals of 5 X 5 square = 65.

Fig. 105.

naturally be associated, but after one or more panels have been added

the enlarged square will no longer be associated, because the pecu-

liar features of its construction will not permit the sum of every

pair of diametrically opposite numbers to equal the sum of the

first and last numbers of the series used. The sum of every hori-

zontal and perpendicular column and of the two corner diagonal

columns will, however, be the same amount.
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The smallest concentric square that can be constructed is that

of 5 X 5, an example of which is illustrated in Fig. 99.

The center square of 3 X 3 begins with 9 and continues, with

increments of 1, up to 17, the center number being 13 in accordance

with the general rule for a 5 X 5 square made with the series of

ID/aqonat Colutnns
_

4CK /0^

7*7 ^TaiitZ J-X STZneL

Fig 107.

Fig. 108.

3 X 3 3<? t

46 / 2 «3 42 4/ 4lO

4* 3S /A '4 32 3/ 3~

44 34 zs 1/ 26 /6 6

7 '7 23 2S *7 33 43

// 20 24 29 22 30 33

/2 /9 *7 36 /$ /S- 3S

/O 4£> 4S «7 8 3 4-

Fig. 106. Fig. no.

Totals of 3 X 3 square = 75

Totals of 5 X 5 square = 125

Totals of 7 X 7 square = 175

numbers 1 to 25. The development of the two corner diagonal

columns is given in diagram Fig. 100, the numbers for these col-

umns being indicated by small circles. The proper sequence of the
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other twelve numbers in the panels is shown in Fig. 101. The

relative positions of the nine numbers in the central 3X3 square

cannot be changed, but the entire square may be inverted or turned

one quarter, one half, or three quarters around, so as to vary the

Dt'afO al Co?u,

77

q63

«7

Fig. in.

9 X9 7&nel.

Fig. 112.

TOTALS

:

3X3 square 123,

5X5 square 205,

7X7 square 287,

9X9 square 369.

Fig. 113.

77 / 2 3 4 7* 7' 70 69

7^ 62 '7 /s /9 ss *7 s6 6

7* 6/ s/ 29 30 48 *7 Z/ 7

7* 60 so 44 *7 4Z 32 22 <?

9 23 33 39 4/ 43 49 3-9 7*

/4 27 36 40 4S 3S 46 ss 6*

/s 2<f 3S S3 sz ^4 3/ J-4 6?

/6 26 6s 64 63 24 23- 20 66

/S 8/ SO 79 7* /O // /2 s

Fig. 116.

position of the numbers in it relatively to the surrounding panel

numbers. Fig. 102 shows a 5 X 5 concentric square in which the

panel numbers occupy the same cells as in Fig. 99, but the central
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3X3 square is turned around one quarter of a revolution to the

right.

Several variations may also be made in the location of the panel

numbers, an example being given in Figs. 103, 104, and 105. Many

jOtagonal Columns

/ Os JO ^

'4

'7

26

2/

20

Zftt/nt itrj M *s)u>n it/'S in/

6x 6 raneis. 4X4 Spt terr-e, .

/ *6 // <* 26

£ - JS /Z f^ 2J-

J 1 «5* /3 *^ 2*

4 . »5J /* cr^ 20

S /S J2 /s *^ 22

6 O *' /<* <*^ 21

7 \S so //C^ 20

<f \ 29 /$ s"^ /3

3 ^ zt Fig. 119.

/o ^ *7

Fig. 118.

/ JS J^ S 30 6

JJ // 2S 2* '4 4

s 22 /6 '7 /& 2S

2S /S 20 2/ /s &

/o 23 /J /2 2* 27

J/ 2, J *3Z / 44

Fig. 117. Fig. 120.

Totals of 4 X 4 square = 74.

Totals of 6 X 6 square =111.

other changes in the relative positions of the panel numbers are

selfevident.

One of many variations of the 7 Y^J concentric magic square

is shown in Fig. no. The 3X3 central square in this example is

started with 21 and finished with 29 in order to comply with the
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general rule that 25 must occupy the center cell in a 7 X 7 square

that includes the series of numbers 1 to 49. The numbers for the

two corner diagonal columns are indicated in their proper order

by small circles in Fig. 106, and the arrangement of the panel num-

bers is given in Figs. 107, 108, and 109. As a final example of an

A.J/

Fig. 121.

*2Yutnierj in

6x6 Tanel*

' O

z

6

J*

3i~

33

32,

3/

^ 30

29

Fig. 122.

27

*7V2/»*lers in

4- X // Jyeta*-*'.

Fig. 123.

/ 3S JO s J* 6

JJ // 24 2J /4 4

2S /s 2/ 20 /S 3

/O 22 '7 /6 /£> 2?

r 2d /2 /3 26 23

j/ 2 7 32 6 36

Fig. 124.

Totals of 4 X 4 square = 74.

Totals of 6 X 6 square =111.

odd concentric square Fig. 1 16 shows one of 9 X 9, its development

being given in Figs, in, 112, 113, 114, and 115.

All these diagrams are simple and obvious expansions of those

shown in Figs. 100 and 101 in connection with the 5X5 concentric

square, and they and their numerous variations may be expanded
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indefinitely and used for the construction of larger odd magic

squares of this class.

The smallest even concentric magic square is that of 6 X 6, of

3>,'c>?" c.2 Co?«>

s*<i

*7

8*8- Taitel. 6*6 J&„et. 4 * £/ 69

J7.

Fig. 125.

Fig. 126.

/ 6> 61 4 5- i9 ss s

S6 /s 49 48 /9 44 20 9

SS *7 zs 39 JS 2S /s /o

// zn 36 30 3/ 33 43 *4

S3 42 32 34 3S 23 23 /2

/3 24 *7 27 Z6 40 4/ S2

/A AS /6 '7 46 2/ so s/

n I 3 6/ 6<? 6 7 64

Fig. 129.

Totals of 4 X 4 square = 130.

Totals of 6 X 6 square = 195.

Totals of 8 X 8 square = 260.

which Fig. 120 is an example. The development of this square

may be traced in the diagrams given in Figs. 117, 118, and 119.

The center square of 4 X 4 is associated, but after the panel is added
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the enlarged square ceases to be so, as already noted. Figs. 121,

122, 123, and 124 illustrate another example of this square with

diagrams of development.

H)fafoTtal Columns^ /0 X /OJZxntl

* C\

4/3

«6.

Hi

n/00

7s

oss

•CI

'0 O

/0O o *<

6x6 Tayiel /f X 1/ Stpuare .

Fig. 134.

Fig. 132.

Fig. 130. Fig. 131.

/ $9 98 S 94 9 90 /3 86 /O

97 /9 8/ so 22 23 77 7* 26 4

6 7* 33 67 66 *7 62 38 27 9S

93 7* 6s 43 *7 S6 46 36 28 S

/2 29 40 34 48 49 s~/ 6/ 7* 89

*7 7' 60 SO S2 6~3 •v 4/ JO /4

/6 J/ 42 SS 4S 44- ss S9 7° 8S

*4 32 63 3// 3S 64 39 68 6s '7

/8 7* 2.0 2/ 79 7s 2* 2^ 82 S3

9/ 2 3 96 7 92 // 8f /S /0#

TOTALS

:

4X4 square = 202

6X6 square = 303

8X8 square = 404

10 X 10 square = 505

Fig. 135.

A concentric square of 8 X 8 with diagrams are given in Figs.

125, 126, 127, 128, and 129, and one of 10 X 10 in Figs. 130, 131,

132, 133, 134, and 135. It will be seen that all these larger squares
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have been developed in a very easy manner from successive expan-

sions of the diagrams used for the 6X6 square in Figs. 117, 118,

and 119.

The rules governing the formation of concentric magic squares

have been hitherto considered somewhat difficult, but by the aid of

diagrams, their construction in great variety and of any size has

been reduced to an operation of extreme simplicity, involving only

the necessary patience to construct the diagrams and copy the num-

bers.

GENERAL NOTES ON THE CONSTRUCTION OF MAGIC SQUARES.

There are two variables that govern the summation of magic

squares formed of numbers that follow each other with equal in-

crements throughout the series, viz.

:

1. The Initial, or starting number.

2. The Increment, or increasing number.

When these two variables are known, the summations can be

easily determined, or when either of these variables and the sum-

mation are known, the other variable can be readily derived.

The most interesting problem in this connection is the construc-

tion of squares with predetermined summations, and this subject

will therefore be first considered, assuming that the reader is familiar

with the usual methods of building odd and even squares.

* * *

If a square of 3 X 3 is constructed in the usual manner, that is,

beginning with unity and proceeding with regular increments of

1, the total of each column will be 15.

Totals

Fig. 136.

If 2 is used as the initial number instead of 1 and the square

is again constructed with regular increments of 1, the total of each

column will be 18.

s / 6

3 S 7
* $ z
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9 Z 7

4- 6 s

S /o 6

Totals = i£

Fig. 137.

If 2 is still used as the initial number and the square is once

more constructed with regular increments of 2 instead of 1, the

total of each column will be 30.

/6 Z '2

6 /o '4

8 /$ 4

Total = 30.

Fig. 138.

It therefore follows that there must be initial numbers, the use

of which with given increments will entail summations of any pre-

determined amount, and there must also be increments, the use of

which with given initial numbers, will likewise produce predeter-

mined summations.

These initial numbers and increments may readily be determined

by a simple form of equation which will establish a connection be-

tween them and the summation numbers.

Let:

A = initial number,

fS = increment,

n = number of cells in one side of square,

S = summation.

Then, if A = 1 and p = 1

J(»
8 + i)=S.

If A and p are more or less than unity, the following general

formula may be used

:

An + p—(n*— i)=S.

It will be found convenient to substitute a constant, (K) for
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— (n 2 -- i) in the above equation, and a table of these constants is

therefore appended for all squares from 3X3 to 12X 12.

Squares

:

3X3
4X4
5X5
6X6
7X7
8X8
9X9
10 X 10

ti X 11

12 X 12

Const. = K

12

3^

60

105

168

252

360

495

660

858

When using the above constants the equation will be

:

EXAMPLES.

What initial number is required for the square of 3 X 3, with

1 as the increment, to produce 1903 as the summation?

Transposing the last equation

:

S — BK

or

T9 3— (1 X 12)

=A,

: 630 V:! = Initial No.

63/t 6 60

J

6JSi

632-k &34i &36f

6-33j 63Sf 63 /i

Totals = 1903.

F13. T33-

We will now apply the same equation to a square of 4 X 4, in

which case:

1903-d x 30) = 468M = Initial No .
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46S-& <cS2ir 4S-'* 4? 'It

47? t /+/3JC */*£" 476^

*7<rt 4*-?/* *?**: *?2lr

4. So £ 4^70* 4t&?£ «/Jf

Totals = 1903.

Fig. 140.

Also to a square of 5 X 5,

x9°3— (1 X 60)
368.6 = Initial No.

3S4-6 3f/6 3Y?e. 6 37S6 3S2.6

3<?o6 372 6 3?v.6 3S/6 3S3.

6

J//. 6 373-6 3S06 3S/6 3S<?.6

377.6 379.6 3 86.6 3SS-6 370.6

3/S-6 3 S3'.

6

3f2 6 36$.6 376.6

Totals = 1903.

Fig. 141.

And for a square of 6X6.

I9°3— (1 X 105) _
299 2

/3
= Initial No.

*9?^ 333 j- 332 f 30/ f 330^ 30«f

32* f-
306 £ 326^ 325~^ 30ff 306~T

322 r 32/ £- 6/3 j- 3'¥ T- 3/2 x 3'7 \

3//T 3'3~T 3/9^ 320^ 3/f*r 3/6 f

3/Ot- 32* r 30/

f

30<? j- 327 f 323 t

32?t 300 £ 3 02 J 33/ t 303 f 33</f

Totals

= 1903-

Fig. 142.

The preceding examples illustrate the construction of squares

built up with progressive increments of 1, but the operation may be

varied by using increments that are greater or less than unity.

EXAMPLES.

What initial number must be used in a square of 3 X 3, with

increments of 3, to produce a summation of 1903?
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Applying the equation given on page 56, but making p = 3

instead of 1, we have:

1903— (3 X 12) = 622V3 .

622 V3 is therefore the initial number and by using this in a

3X3 square with progressive increments of 3, the desired results

are obtained.

*<*3T 622-f 6s/f

62S

f

634.J 640 f

63/ f &46i 62si

Totals = 1903.

$2Si

Fig. 143.

To find the initial number with increments of 10.

IQO3 (IOXI2) , . T • • « XT-2-2 ^ £1 L— 594y3
— Initial No.

664cf ff4f 6*4$

6/45 <£j^-f 6s4t

624i 6/4$ 604-5

Totals = 1903.

Fig. 144.

Or to find the initial number with increments of 1
/3 .

x9°3— OA X 12) . t • • , xt-^ y* = 633 = Initial No.

Totals = 1903.

63&f 633 634* T

633f 63vf 6iS~

6*9 tASf 6j3f

Fig. 145-

These examples being sufficient to illustrate the rule, we will

pass on another step and show how to build squares with predeter-

mined summations, using any desired initial numbers, with proper

increments.
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EXAMPLES.

What increment number must be used in a square of 3X3,
wherein 1 is the initial number and 1903 the desired summation?

Referring to equation on page 56 and transposing, we have

An
K

: p = increment, or

1903— (1 X3) __
j

12
58 Vs = Increment.

Starting therefore with unity and building up the square with

successive increments of 158 1

/3 , we obtain the desired result.

Totals = 1903.

Fig. 146.

When it is desired to start with any number larger or smaller

than unity, the numbers in the equation can be modified accordingly.

Thus if 4 is selected as an initial number, the equation will be

:

//ogi / /SZf

5/7 t 63#t 9f/

476 /z6?t /s&i

1903— (4X3) _ TC-7/
12 57 /l2

//077s: 4- 74'^r

3/S>7t 6s«?k 940-?£

47*~ /2SvA /6/-%r

Increment.

Totals = 1903.

Fig. 147.

With an initial number of 1
/3 .

1903— (VaX 3) = I5g^ = increment.

//O Q-ri 7S?zH

J/77T 634-% 9S-/-&

*7J~-7i /2ASr^ /SS-^x

Totals = 1903,

Fig. 148.
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It is thus demonstrated that any initial number may be used

providing- (in a square of 3X3) it is less than one-third of the

summation. In a square of 4 X 4 it must be less than one-fourth

of the summation, and so on.

To illustrate an extreme case, we will select 634 as an initial

number in a 3 X 3 square and find the increment which will result

in a summation of 1903.

^03— (634 X 3) yi2 = Increment.

6$vii 6±v fa*/ /*.

6*>u-k 6&y& 6*vk
6&*/h 6*?k 63*/ fa.

Totals = 1903.

Fig. 149.

Having now considered the formation of magic squares with

predetermined summations by the use of proper initial numbers

and increments, it only remains to show that the summation of any

square may be found, when the initial number and the increment

are given, by the application of the equation shown on page 56, viz. :

Aw + /?K = S.

EXAMPLES.

Find the summation of a square of 3 X 3 using 5 as the initial

number, and 7 as the increment.

(5 X 3) + (7 X 12) = 99 = Summation.

Totals = 99.

su s~ 40

'9 J J *7
2.6 6/ / z

Fig. 150.

What will be the summation of a square of 4 X 4 using 9 as

an initial number and 11 as an increment?

(9 X 4) + ( XI X 30) = 366 = Summation.
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9 / 65 /rz 42

/30 6p 4 7* <?7

?6 /Of "9 jr3

/*/ 3/ 20 '7v

- * /o

6 2 - 2

4 - 6 $

Totals = 366.

Fig. 151.

The preceding equations may also be used for the construction

of magic squares involving zero and minus quantities, as illustrated

in the following examples.

What will be the summation of a square of 3 X 3, using 10 as

the initial number with — 2 increments ?

(10 X 3) + (— 2 X 12) =: 6 = Summation.

Totals = 6.

Fig. T52.

What initial number must be used in a square of 3 X 3 with

increments of — 3 to produce a summation of 3 ?

3
- (-3X12) =I3 = InitialNa

Totals = 3.

Fig. 153.

What initial number is required for a 3 X 3 square, with in-

crements of 1, to produce a summation of o?

(i X 12) T V 1 XT—

—

= — 4 = Initial No.

Totals = o.

- f /3 - 2

7 / - S-

^ - // / O

— z z

- / // -3

Fig. 154-
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What increment must be used in a square of 3 X 3 wherein

12 is the initial number and — 12 the required summation?

— 12— (12X3)
12

-/6 /Z - J>

// -& —/Z

O — 2o s

— 4 = Increment.

Totals : : 12.

Fig. 155.

What increment must be used in a square of 4 X 4 wherein 48

is the initial number and 42 the summation?

42— (48X4)
30

= — 5 = Increment.

#f -2Z -'7 J3

-7 23 /s <r

/6 J - z zs
- /z 3S M$ ~ 27

Totals = 42.

Fig. 156.

The foregoing rules have been applied to examples in squares

of small size only for the sake of brevity and simplicity, but the

principles explained can evidently be expanded to any extent that

may be desired.

Numbers following each other with uniform increments have

been used throughout this article in the construction of magic

squares, in order to illustrate their formation according to certain

rules in a simple manner. It has however been shown by various

writers that the series of numbers used in the construction of

every magic square is divided by the breakmoves into n groups of n

numbers per group (n representing the number of cells in one

side of the square), and that the numbers in these groups do not

necessarily follow each other in regular order with equal increments,

but under certain well defined rules they may be arranged in a
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great variety of irregular sequences and still produce perfect magic

squares.

Referring to Fig. 40 as an example, many different 5X5
squares may be formed by varying the sequence of the five groups,

and also by changing the arrangement of the numbers in each group.

Instead of writing the five diagonal columns in Fig. 40 with

the numbers 1 to 25 in arithmetical order thus:

a. 1 2 3 4 5

b. 6 7 8 9 10

c. 11 12 13 14 15

d. 16 17 18 19 20

e. 21 22 23 24 25

they may be arranged in the order b e c a d, which will develop

the 5X5 square shown in Fig. 17.

Other variations may be made by re-arranging the consecutive

numbers in each group, as for example thus:

a. 1 4 3 2 5

b. 6 9 8 7 10

c. 11 H 13 12 15

d. 16 19 18 17 20

e. 21 24 23 22 25

The foregoing may be considered as only suggestive of many

ways of grouping numbers by which magic squares may be pro-

duced in great variety, which however will be generally found to

follow regular constructive rules, providing that these rules are

applied to series of numbers arranged in similar consecutive order.



CHAPTER II.

MAGIC CUBES.

rT^HE curious and interesting characteristics of magic squares

"*- may be developed in figures of three dimensions constituting

magic cubes.

Cubes of odd numbers may be constructed by direct and con-

tinuous process, and cubes of even numbers may be built up by the

aid of geometrical diagrams. In each case the constructive meth-

ods resemble those which were previously explained in connection

with odd and even magic squares.

As the cube is a figure of three dimensions it is naturally more

difficult to construct in magic formation than the square (which

has only two dimensions) because the interrelations between the

various numbers are more complext than those in a square and not

so easily adjusted one with the other to sum the magic constants.

THE ESSENTIAL CHARACTERISTICS OF MAGIC CUBES.

A magic cube consists of a series of numbers so arranged in

cubical form that each row of numbers running parallel with any

of its edges, and also each of its four great diagonals shall sum

the same amount. Any cubical arrangement of numbers that fulfils

these conditions may be properly termed a magic cube. As in the

case of magic squares, various interesting but non-essential features

may be added to these requisites, and in this way many different

kinds of magic cubes may be constructed. In the present chapter,

however, associated or regular magic cubes will be principally

described.
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ASSOCIATED OR REGULAR MAGIC CUBES OF ODD NUMBERS.

The smallest magic cube is naturally 3X3X3-
Fig. 157 shows one of these cubes, and in columns I, II and

III, Fig. 158, there are given the nine different squares which it

contains. In this cube there are twenty-seven straight columns,

two diagonal columns in each of the three middle squares, and four

diagonal columns connecting the eight corners of the cube, making

in all thirty-seven columns each of which sums up to 42. The

center number is also 14 or (n :i

-\- i)/2 and the sum of any pair of

diametrically opposite numbers is 28 or n 3 + 1.

Totals — 42

Fig. 157.

In describing the direct method of building odd magic squares,

many forms of regular advance moves were explained, including

right and left diagonal sequence, and various so-called "knight's

moves." It was also shown that the order of regular advance was

periodically broken by other well-defined spacings which were

termed ''breakmoves." In building odd magic squares, only one

form of breakmove was employed in each square, but in the con-

struction of odd magic cubes, two kinds are required in each cube

which for distinction may be termed n and n2 breakmoves respec-

tively. In magic cubes which commence with unity and proceed

with increments of 1, the n2 breakmoves occur between each mul-

tiple of n2 and the next following number, which in a 3X3X3
cube brings them between 9 and 10, 18 and 19, and also between

the last and first numbers of the series, 27 and 1. The n breakmoves
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are made between all other multiples of n, which in the above case

brings them between 3 and 4, 6 and 7, 12 and 13, 15 and 16, 21 and

22, and 24 and 25. With this explanation the rules for building

the magic cube shown in Fig. 1 may now be formulated, and for

convenience of observation and construction, the cube is divided

horizontally into three sections or layers, each section being shown

separately in Column 1, Fig. 158.

It may be mentioned that when a move is to be continued up-

ward from the top square it is carried around to the bottom square,

THREE SQUARES THREE SQUARES THREE SQUARES
FROM TOP TO BOTTOM FROM FRONT TO BACK FROM LEFT TO RIGHT

COLUMN I. COLUMN II. COLUMN III.

/o 26 6

24 / '7

S /J /3

2d 3 /A

7 /4 2/

/2 2S S

9 /3 20

// 27 4

22 2 /S

8 /S /9

/2 2S S

22 2 /S

U / '7

7 '* 2/

// 27 4

/o 26 6

2d J ;6

9 /d 20

/o 24- s

25 7 /2

9 // 22

26 / /S

3 /* 2S

/J V 2

6 '7 /9

/A 2/ S

20 4 /J

Fig. 158.

All totals = 42.

and when a move is to be made dowmvard from the bottom square,

it is carried around to the top square, the conception being similar

to that of the horizontal cylinder used in connection with odd magic

squares.

Commencing with 1 in the center cell of the top square, the

cells in the three squares are filled with consecutive numbers up

to 2J in accordance with the following directions:

Advance move. One cell down in next square up (from last

entry).
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n breakmove. One cell in downward right-hand diagonal in

next square down (from last entry).

n2 breakmove. Same cell in next square down (from last

entry).

If it is desired to build this cube from the three vertical squares

from front to back of Fig. 157, as shown in Column II, Fig. 158,

the directions will then be as follows: commencing with 1 in the

middle cell of the upper row of numbers in the middle square,

Advance move. One cell up in next square up.

n breakmove. One cell in downward right-hand diagonal in

next square up.

n 2 breakmove. Next cell down in same square.

TABLE I.

A B C A B C A B C

1 / / / \0 Z / / \9 3 / /

2 / / 2 II 2 / 2 20 3 / z

3 / / 3 12 Z / 3 21 3 / 3

4 / 2 / 13 Z 2 / 22 3 Z J

5 / Z 2 14 z Z 2 25 3 2 2

6 / 2 3 15 z Z d 24 3 Z 6

7 / 3 / \6 z 3 / 25 3 J J

8 / 3 2 7 z 6 Z 26 3 3 Z

9 / 3 3 18 z d 3 27 3 3 3

Fig. 159.

Finally, the same cube may be constructed from the three vertical

squares running from left to right side of Fig. 157, as shown in

Column III, Fig. 158 commencing, as in the last example, with 1

in the middle cell of the upper row of numbers in the middle

square, and proceeding as follows:

Advance move. Three consecutive cells in upward right-hand

diagonal in same square (as last entry).

11 breakmove. One cell in downward right-hand diagonal in

next square down.
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n 2 breakmove. One cell down in same square (as last entry).

Five variations may be derived from this cube in the simple

way illustrated in Table 1 on the preceding page.

Assign three-figure values to the numbers i to 27 inclusive in

terms of 1, 2, 3 as given in Table I, Fig. 159, and change the

numbers in the three squares in Column I, Fig. 158, to their cor-

responding three-figure values, thus producing the square shown in

Fig. 160. It is evident that if the arrangement of numbers in the

three squares in Column I were unknown, they could be readily

produced from Fig. 160 by the translation of the three-figure values

into regular numbers in accordance with Table I, but more than

Square-

A B C A B C A 6 C

2 / / 3 3 2 / 2 3

J 2 3 / / / 2 3 Z

/ 3 2 2 2 6 3 / J

J 2 2 / / 3 2 3 J

/ 3 / 2 2 2 3 / 3

2 / 3 3 3 / / 2 Z

/ 3 3 2 2 / 3 / 2

2 / 2 3 3 3 / 2 /

3 2 / / / 2 2 3 3

2"-?

3? .

/" Jtnie*

Fig. 160.

this can be accomplished. The letters A, B, C, in Table I indicate

the normal order of the numerals 1, 2, 3, but by changing this order

other triplets of 3 X 3 squares can be made which will differ more

or less from the original models in the arrangement of their cell

numbers, but which will retain their general magic characteristics.

The changes which may be rung on A, B, C, are naturally six, as

follows

:

A. B. C. C. B. A.

B. C. A. B. A. C.

C. A. B. A. C. B.
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The combination of 1, 2, 3 being given in normal order in the

original cube, the five cubes formed from the other combinations

are shown in Figs. 161 -165.

These magic cubes may also be constructed by the direct method

in accordance with the annexed directions.

2 /s 22 4 /# 20 2 2* /6 4 26 /2 /o 24 s

24 / '7 26 / /S /S / 26 /S / 23 26 / /&

/6 23 3 /z 23 7 22 '7 3 20 /S 7 6 '7 /S

/s /£) $ '7 /3 6 /S 7 20 V 3 22 2d 7 /2

7 /* 2/ 3 /* 2S /9 '4 3 /9 /* 3 3 /* 23

20 9 /J 22 9 // S 2/ /j 6 25 // /6 2/ S

2S S /2 2/ S /6 2S // 6 2/ /3 s J? // 22

// 2/ 4 /J 27 z S ^7 /o s 27 /o /3 27 z

6 /o 26 S /o 24 /2 4> 26 /6 z 24 20 4 /S

FIG. l6l (B.C. A.) FIG. l62. (C.A.B.) FIG. 163. (C.B.A.) FIG. 164. (b.A.C.) FIG. l65.(A.C.B.)

Fig. 166 is an example of another 3X3X3 cube in which the

first number occupies a corner cell, and the last number fills the

diametrically opposite corner cell, the middle number coming in

TOP SQUARE. MIDDLE SQUARE.

Fig. 166.

BOTTOM SQUARE.

/ '7 24 23 3 *6 /<? 2Z Z

/s /s <f 7 /4 2/ 20 <5? /3

26 6 /o J2 2S d' 4 // *7

the center cell in accordance with the rule. Fig. 167 shows this

cube with the numbers changed to their three-figure values from

which ^\o, variations of Fig. 166 may be derived, or they may be

constructed directly by the directions which are marked with the

changes of A. B. C. for convenient reference.
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The analysis of the numbers in Fig. 157 and Fig. 166 into their

three-figure values in terms of 1, 2, 3, as shown in Figs. 160 and

167, makes clear the curious mathematical order of their arrange-

ment which is not apparent on the face of the regular numbers as

DIRECTIONS FOR CONSTRUCTING THE 3X3X3 MAGIC CUBE SHOWN IN FIG. 157

AND FIVE VARIATIONS OF THE SAME.

COMBINA

TION
ADVANCE MOVES n BREAKMOVES ?l

2 BREAKMOVES

A. B. C.
One cell down in next

square up

One cell in right-hand

downward diagonal

in next square down

Same cell in next

square down

B. C A.

Three consecutive

cells in upward

left-hand diagonal

in same square

One cell to left in

next square up
Same as in A. B. C.

C. A. B.
One cell to right in

next square up

One cell up in next

square up
Same as in A. B. C.

C. B. A. Same as in B. C. A. Same as in C. A. B. Same as in A. B C.

B. A. C. Same as in A. B. C. Same as in B. C. A. Same as in A. B. C.

A. C. B. Same as in C. A. B. Same as in A. B. C. Same as in A. B. C.

they appear in the various cells of the cubes. For example, it may

be seen that in every subsquare in Figs. 160 and 167 (corresponding

to horizontal columns in the cubes) the numbers 1, 2, 3 are each

repeated three times. Also in every horizontal and perpendicular
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column there is the same triple repetition. Furthermore, all the

diagonal columns in the cubes which sum up to 42, if followed into

their analyses in Figs. 160 and 167 will also be found to carry simi-

lar repetitions. A brief study of these figures will also disclose

other curious mathematical qualities pertaining to their intrinsic

symmetrical arrangement.

The next odd magic cube in order is 5X5X5, and Fig. 168

shows one of its many possible variations. For convenience, it is

divided into fi\e horizontal sections or layers, forming five 5X5
squares from the top to the bottom of the cube.

Commencing with 1 in the first cell of the middle horizontal

Top

Souarc

J&elton

Oactare.

A B C A B C A B C

/ / / 2 J 2 3 2 J

2 2 J 3 / / / 3 2

3 3 2 / 2 3 2 / /

3 2 Z / / 3 2 3 /

/ 3 / 2 2 2 3 / 3

2 / 3 J 3 / / 2 2

2 3 3 3 2 / / / 2

3 / 2 / 3 3 2 2 /

/ 2 / 2 / 2 J 3 J

J? .

2"^
,

Fig. 167.

column in the third square, this cube may be constructed by filling

in the various cells with consecutive numbers up to 125 in accord-

ance with the following directions:

Advance moves. One cell up in next square down.

n breakmove. Two cells to the left and one cell down (knight's

move) in same square as the last entry.

n 2 breakmove. One cell to right in same square as last entry.

This cube exhibits some interesting qualifications. Examin-

ing first the five horizontal squares from the top to the bottom of

the cube as shown in Fig. 168, there are:
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50 straight columns summing up to 315

10 corner diagonal columns summing up to. . 315

40 sub-diagonal columns summing up to.... 315

Total 100 columns having the same summation.

DIRECTIONS FOR CONSTRUCTING THE 3X3X3 MAGIC CUBE SHOWN IN FIG. 166

AND FIVE VARIATIONS OF THE SAME.

COMBINA-

TIONS
ADVANCE MOVES n BREAKMOVES n 2 BREAKMOVES

A. B. C.
One cell to left in next

square up

One cell in upward

left-hand diagonal

in next square down

One cell in downward
right-hand diago-

nal in next square

down

B. C. A.

Three consecutive

cells in upward left-

hand diagonal in

same square

One cell in upward

right-hand diago-

nal in next square

up

Same as in A. B. C.

C. A. B.
One cell up in next

square up

One cell in downward

left-hand diagonal

in next square up

Same as in A. B. C.

C. B. A. Same as in B. C. A. Same as in C. A. B. Same as in A. B. C.

B. A. C. Same as in A. B. C. Same as in B. C. A. Same as in A. B. C.

A C. B. Same as in C. A, B. Same as in A. B. C. Same as in A B. C.

In the five vertical squares from front to back of this cube

there are:
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50 straight columns summing up to 315

6 corner diagonal columns summing up to . . 315

20 sub-diagonal columns summing up to.... 315

Total 76 columns having the same summation.

In the five vertical squares from right to left of cube, there are,

as in the last case, 76 columns which all sum up to 315. In the com-

plete cube there are also four great diagonals and also a number

of broken diagonals that sum up to 315.

i- 3- 5-

<*/ 2* /Otf /o 66 JO S/ S2 //6 /$ J 34 6s 2/ 122

//o // 42 7* 7# ss //# 2S 26 *7 66 sf /Od S 40

4* <** ss /// *7 / 62 66 S4 /2S /o$ /S~ */ 72 7*

86 "7 26 23 60 6s /OO /o/ 7 6S 47 S6 *4 //s /6

4 6$ 6/ 32 /26 /Of /6 4* 7s 76 SO //6 22 2S S£>

TOP SQUARE.

2.

BOTTOM SQUARE

/06 /2 4* 7* SO $s> /zo 2/ 27 ss

43 JS S/ //2 /* 2 63 ** 9S /2t

*7 /// 24 60 S6 70 96 /oz r 63

s- 6/ 62 $6 '*# /08 /* 43- 7' 77
6s 39 /OS 6 57 46 S2 S6 /"* 20

Fig. 168.

A table similar to Fig. 159 may be laid out giving three-figure

values for the numbers in 5X5X5 cubes from 1 to 125, and by

changing the numbers in Fig. 168 to these three-figure values, a

square similar to Fig. 160 will be produced from which five varia-

tions of Fig. 168 may be derived. Similar results, however, can

be obtained with less work by means of a table of numbers con-

structed as shown in Fig. 169. (Table II.)

The three-figure values of cell numbers in 5X5X5 magic

cubes are found from this table as follows:
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Select the root-number which is nearest to the cell-number, but

below it in value. Then write down

i. The section numbei in which the root-number is found,

2. The primary number over the root-number,

3. The difference between the root-number and the cell-number.

Three figures will thus be determined which will represent the

required three-figure value of the cell-number.

Examples. The first number in the first row of the upper

square in Fig. 168 is 67. The nearest root-number to this and be-

low it in value is 65 in section 3 under the primary number 4 and the

TABLE II.

T-n'mart/JSoS. / z 3 4 S Section.

/O s /O /s zo

/ z 3 /< s Section,

2S JO 3S 40 4S

Rod JYcs-

/ 2 J A s Section,

3SO SJ- 60 6s 7°

Pix»,ar<y Alj. / Z 3 & s Sectec n,

4-/•* SO SS so 9S

7*1-//nary C/YeS- / z 3 M jr •Section.

/oo /OS //o //<? /ZO

Fig. 169.

difference between the root-number and the cell-number is 2. The

three-number value of 67 is therefore 3. 4. 2. Again, the fourth

number in the same row is 10. The nearest root-number but beloiv

it in value is 5 in section 1 under the primary number 2, and the

difference between the root-number and the cell-number is 5. The

three-figure value of 10 is therefore 1. 2. 5. By these simple opera-

tions the three-figure values of all the cell-numbers in the 5X5X5
cube in Fig. 168 may be quickly determined, and by the system of

transposition previously explained, five variations of this cube may

be constructed.
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The shorter method of building these 5X5X5 cubes by the

direct process of filling the different cells in regular order with

consecutive numbers may, however, be considered by some to be

preferable to the more roundabout way. (See directions in the

following table.)

DIRECTIONS FOR CONSTRUCTING THE 5X5X5 MAGIC CUBE SHOWN IN FIG. 168

AND FIVE VARIATIONS OF THE SAME.

COMBINA-

TIONS
ADVANCE MOVES 11 BREAKMOVES ?l

2 BREAKMOVES

A. B. C.
One cell up in next

square down

Two cells to left and

one down in same
square as last entry

One cell to right in

same square as last

entry

B. C. A.

Two cells to left and

one up for five

consecutive num-

bers in same square

Two cells in upward

left hand diagonal

in next square down
Same as in A. B. C.

C. A. B.

Two cells in left hand

downward diago-

nal in next square

up

One cell in right-

hand downward di-

agonal in next

square up

Same as in A. B. C.

C. B. A, Same as in B, C. A. Same as in C. A. B. Same as in A. B. C.

B. A. C. Same as in A. B. C. Same as in B. C. A. Same as in A. B. C.

A. C. B. Same as in C. A. B. Same as in A. B. C. Same as in A. B.C.

Fig. 170 is another example of a 5 X 5 X 5 magic cube which

is commenced in the upper left-hand corner of the top square, and

finished in the lower right-hand corner of the bottom square, the
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middle number of the series (63) appearing in the center cell of the

cube according to rule.

Odd magic cubes may be commenced in various cells other

than those shown in the preceding pages, and they may be built

up with an almost infinite number of variations. It would, however,

be only superfluous and tiresome to amplify the subject further, as

the examples already submitted cover the important points of con-

struction, and may readily be applied to further extensions.

/ si 3S /w 7J 6f /6 9J 2S /09 'Z4 SS 6 *7 43

7* cT f/ <>7 //s /OS 6* 20 96 *-7 42 /23 S4 /o *6

"7 7* 4 ss 36 26 ,o
7 63 /9 /oo $0 */ /22 S3 3>

//<? //6 7* j <S4 $& 30 /06 6z /<? S <$# 4-S /2/ sz

<fj 33 /20 7' 2, <7 9S 29 //o 6t &/ 7 ss ** /25

TOP SQUARE.

2. 4-

BOTTOM SQUARE.

33 //* 70 2/ 77 22 4<? toy 60 //

76 3Z //3 63/ zs /S 2/ *7 /03 S9

21, SO 3/ //z 6j ss /'* ss «6 /OZ

67 23 7>* 3£ /// //>/ s7 /3 s>^ so

//s 66 zz 7* *4- 49 /OS 66 /z S>3

Fig. 170.

Any sizes of odd magic cubes larger than 5X5X5 may be

constructed by the directions which govern the formation of 3 X 3

X 3 and 5 X 5 X 5 cubes

ASSOCIATED OR REGULAR MAGIC CUBES OF EVEN NUMBERS.

Magic cubes of eyen numbers may be built by the aid of geo-

metric diagrams, similar to those illustrated in the preceding chap-

ter, which describes the construction of even magic squares.
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Fig. 171 shows one of the many possible arrangements of a

4X4X4 cube, the diagram of which is given in Fig. 172.

There are fifty-two columns in this cube which sum up to 130,

viz., sixteen vertical columns from the top of the cube to the

DIRECTIONS FOR CONSTRUCTING THE 5X5X5 MAGIC CUBE SHOWN IN FIG. 170

AND FIVE VARIATIONS OF THE SAME.

COMBINA-

TIONS
ADVANCE MOVES n BREAKMOVEG ?l

2 BREAKMOVES

A. B. C.

Five consecutive cells

in upward left hand

diagonal in next

square up

One cell in upward

right-hand diago-

nal in next square

up

One cell in downward
right-hand diago-

nal in next square

down

B. C. A.
Two cells down in

second square down

One cell in downward
left-hand diagonal

in second square

down

Same as in A. B. C.

C. A. B.
Two cells to right in

next square up

Two cells in down-

ward right hand

diagonal in next

square down

Same as in A. B. C.

C. B. A. Some as in B. C. A. Same as in C. A. B. Same as in A. B. C.

B. A. C. Same as in A. B. C. Same as in B. C. A. Same as in A. B. C.

A. C. B. Same as in C. A. B. Same as in A. B. C. Same as in A. B. C.

bottom, sixteen horizontal columns from the front to the back, six-

teen horizontal columns from right to left, and four diagonal columns

uniting the four pairs of opposite corners. The sum of any two
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numbers, which are diametrically opposite to each other and equi-

distant from the center of the cube also equals 65 or n3
-f- 1.

Another feature of this cube is that the sum of the four num-

bers in each of the forty-eight sub-squares of 2 X 2 is 130.

It has been shown in the chapter on "Magic Squares" that the

(Top.)

Section I.

Section II

Section III.

Section IV.

(Bottom.)

/ 63 6% 4

60 6 7 *7

S6 /o // S3

/a ft so /6

4S /s /s SaS

2/ 43 4c2 24

2S 3$ 3S If

36 30 J/ 33

32 34 35 2,3

*7 *7 z6 4°

4' 23 zz 44

zo 4-6 *7 '7

49 /J" /4- 3~Z

/2 *4 6S 9

? ss 5'9 3~

6/ 3 Z *4

Fig. 171.

Totals = 130.

Fig. 172.

square of 4 X 4 could be formed by writing the numbers 1 to 16

in arithmetical order, then leaving the numbers in the two corner

diagonals unchanged, but changing all the other numbers to their

complements with 17 or n 2 + 1. It will be noted in the magic cube

of 4X4X4, given in Fig. 171, that in the first and last of the
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four sections (I and IV) this rule also holds good. In the two

middle sections (II and III) the rule is reversed ; the numbers in the

two corner diagonals being complements with 65 or n3 + 1, and all

the other numbers in arithmetical order.

Fig. 173 shows four squares or sections of a cube, with the

numbers 1 to 64 written in arithmetical order. Those numbers

that occupy corresponding cells in Fig. 171 are enclosed within

circles. If all the other numbers in Fig. 173 are changed to their

complements with 65, the total arrangement of numbers will then

be the same as in Fig. 171.

In his interesting and instructive chapter entitled "Reflections

on Magic Squares"* Dr. Paul Carus gives a novel and ingenious

analysis of even squares in different "orders" of numbering, these

orders being termed respectively 0, ro, i and ri. It is shown that

the two magic squares of 4 X 4 (in the chapter referred to) con-

z 6 ©
S s

S /2

'9 /s

V © ZO

iZ Zi

@ z6 V
23 ©© 3Z

J3 66

© 3f 3S>©
© *z 43 ©
*<T 4<?

© So «r/

S6 © St

*r 60

© 6z 6*

Fig. 173.

sist only of and ro numbers ; ro numbers being in fact the com-

plements of numbers with n 2
-\- 1. This rule also obtains in the

magic cube of 4 X 4 X 4 given in Fig. 171. The four sections of

this cube may in fact be filled out by writing the numbers, in arith-

metical order in the cells of the two corner diagonal columns of

sections I and IV, and in all the cells of sections II and III, ex-

cepting those of the two corner diagonal columns, and then writing

the ro numbers, also in arithmetical order, in the remaining empty

cells of the four sections.

Fig. 171 may be considered as typical of all magic cubes of

4X4X4 and their multiples, of this class, but a great many varia-

tions may be effected by simple transpositions. For example, Fig.

* See p. 113 ff.
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174 is a 4X4X4 cube which is constructed by writing the four

numbers that are contained in the 2X2 sub-squares (Fig. 171) in

a straight line, and there are many other possible transpositions

which will change the relative order of the numbers, without de-

stroying the magic characteristics of the cube.

Section I.

(Top.)

Section II.

Section III.

Section IV.

(Bottom.)

/ 63 60 6

62, 4 7 s7

s6 /o /3 &/

// S3 60 /6

4S JS 2/ 43

/S *s 4* 24-

zs 3£> 36 30

38 zs 3/ 33

32 34 *7 V
3J~ 23 26 40

4/ 25 20 46

22 44 *7 '7

*s /s- /2 #4-

/* SZ sj- S>

6 S& 6/ 3

SS 3~ 2 64

Fig. 174. Fig. 175.

Totals = 130.

The arrangement of the numbers in Fig. 174 follows the dia-

grammatic order shown in Fig. 175.

The next even magic cube is 6X6X6, but as Chapter IX

of this book has been devoted to a description of these cubes they

will be passed over here.
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The 8X8X8 magic cube follows next in order. Fig. 176

shows this cube divided, for convenience, into eight horizontal layers

or sections, and Fig. 177 gives the diagrammatic order of the num-

bers in the first and eighth sections, the intermediate sections being

built from similar diagrams, numbered in arithmetical order.

/ Sft $to 4- & S07 S06 <f

S04 /o // sot SOO '4- /S 497

496 /s /9 493 49Z 2Z Z3 489

ZS 48? 486 ZS 29 4*3 4SZ 32

33 479 *7* 36 J7 47S 4/4 40

4/2 42 4-3 *6g 468 4* «7 46S

464. SO d~/ 46/ 460 &4- SS *sy

s7 AtSS 4-S/+ 60 6/ 4.i/ J+SO 64-

3S4- /30 A3/ 3f/ 3fO /34 /3S 3/7

'*7 J7r 3/4 /</</ '4' 3// 3/o '44

/4s- 36/ 366 /*.* /&9 363 362 /sz

360 /3~4- /J-J- 36/ 3S6 /S<P /S9 3S3

3SZ /6z /63 3*9 J48 /66 /6y 34S

/*9 343 34Z, //Z /?3 339 33<f '7*

'77 3SS 334- Sfo /S/ 33/ 33c /s*.

3Zf /s6 "7 3ZS 32</ s&o /3/ 32/

Section I. Section III.

44s 66 *7 44* 444 70 7' 44/

7J 439 43S 76 77 J/3S 434 <fo

// 43t 4-30 S4 8S ^zy //26 S*

4Z4 90 3/ 4ti/ #20 94 9S «//

4/6 3S 33 4/3 4/2 /02 /o3 mo9

/OS 40/ 406 /OS /09 403 402 //Z

//J 399 393 //6 "7 39S 394 /zo

392 /ZZ /23 JS9 368 /26 fZ7 3S&

Section II.

t93 3/9 3/tf /96 **? 3/S 3/4- ZOO

3/2 202 203 3og 30s 206 20J Jos

304 2/0 2// 30/ 300 2/41 2/3-
2fJ

*'7 23S 294 220 2Z/ 29/ 2SO 22</

22s 28? 286 22* 229 2S3 2S2 23Z

2 to 23*+ 23J- 277 '/' 23* 233 1/3

27Z 242 243 263 26* 2At6 2<// 26s

249 2,63 z6z zsz 2S3 2S9 2St 2S6

(First Part.)

Fig. 176.

Section IV.

It will be seen from these diagrams that the 8 X 8 X 8 magic

cube is simply an expansion of the 4X4X4 cube, just as the

8X8 magic square is an expansion of the 4X4 square. In like

manner all the diagrams which were given for different arrange-

ments of 8 X 8 magic squares may also be employed in the con-

struction of 8X8X8 magic cubes.
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An examination of Fig. 176 will show that, like the 4X4X4
cube in Fig. 171 it is built up of and ro numbers exclusively. In

sections I, IV, V, and VIII, the cells in the corner diagonal columns,

and in certain other cells which are placed in definite geometrical

relations thereto, contain numbers, while all the other cells con-

2S? 2SS 2S*/ 260 26/ 23/ ZSO 26*.

Z4* 266 z6/ 24S 244 2/0 zy/ zw

240 Z/V Vs 23/ 2i6 7* 273 23 3

2t/ 23/ 23 O 2S9 2SS 227 226 2t*

2S3 223 222 Z32 293 Z/3 2/8 236

2/6 23S 233 2/3 2'Z 30Z 303 20£>

tos J06 jay 20S 20^ 3/0 J// 2 0/

3/3 /33 /3S 3/6 3// /sj- /3# 320

/zs 3H 3S/ /2S /24 330 33/ fZi

333 //3 //£ 336 33/ //S //v *+00

40/ /// //£> 4*9 yos /07 /06 yoS

/ay 4/0 //// /#/ /00 4'9 4/S 97

36 4./S 4/3 93 32, 422 *Z3 S3

*2S *7 S6 42S 429 S3 sz 43Z

433 /s 7* #3A «*7 7s 7* 440

7* 44Z 4/#3 63 6* 496 44f
6s

Section V. Section VII.

/JZ 322 323 /f9 /// 326 32/ //J-

J2S /S3 /tz 332 333 //3 //f 336

33/ //s- '/4 340 J#/ '7' //O 394

/6f 3J/

6

39/ /6s /6t/ 3so *3J/ /6s

/60 36-1/ 3SS /s7 /s6 36V 33-3 /6~3

36/ /JV /S0 3L9 36s "*7 /</& 36*

36j /4-S /</Z 3/2. 3/3 /39 /3<? 3/6

/36 3/, 373 /33 /sz 3*2 JS3 /29

Section VI.

993 63 6z 4SZ 4S3 3'6> M 4S6

S6 4Sf 4*9 S3 sz 462 463 49

*S 966 46/ 4S 44 4/0 +/' 4'

4/d 39 3f 4/6 V7 36- 34- 4*0

4*/ 3/ 30 4f4 4f3 z7 26 4M

24 //SO //9/ 2/ 20 4-94 434 '7

/6 43f 433 /3 /Z 6OZ S03 9

60S 7 6 jo/- SOS J Z 6/Z

(Second Part.)

Fig. 176.

Section VIII.

tain ro numbers. In sections II, III, VI, and VII, the relative

positions of the and ro numbers are reversed.

By noting the symmetrical disposition of these two orders of

numbers in the different sections, the cube may be readily con-

structed without the aid of any geometrical diagrams. Fig. 178

shows sections I and II of Fig. 176 filled with and ro symbols
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/ *. • j-/a. /7 V i U96 J3 v 4 >/<f<3 ** JL J *<**•
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'

»*/* s7 %r' * */ s6

/o ^ \_ ^JV7 J 2/* ^^N * s7 *2 r^ y^ SS 4 r ^s- v j-*r
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/j L 1 SOO 2J 1 1 ^<f4^ ^5- 1 \^6s 6'
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Fig. 177.

"o" numbers. Q "ro" numbers.

• • • • • • • •
• •• • •• • •
• •• • • • ••
• • • • • • • •
• • • • • •• •

• •• • •• ••
• •• • • • • •
• • •• • •• •

Fig. 178.
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without regard to numerical values, and the relative symmetrical

arrangement of the two orders is therein plainly illustrated. This

clear and lucid analysis, for which we are indebted to Dr. Cams,

reduces the formation of a rather complicated numerical structure

to an operation of the utmost simplicity.

In this cube there are 192 straight columns, and 4 great diag-

onals (which unite the eight corners of the cube) each of which

sums up to 2052 ; also 384 half columns and the same number of

2X2 sub-squares each of which has the summation of 1026. It

will also be seen that the sum of any two numbers, which are lo-

cated in cells diametrically opposite to each other and equidistant

from the center of the cube, is 513 or n3
-\- 1.

GENERAL NOTES ON MAGIC CUBES.

Magic cubes may be constructed having any desired summa-

tions by using suitable initial numbers with given increments, or

by applying proper increments to given initial numbers.

* * *

The formula for determining the summations of magic cubes

is similar to that which was given in connection with magic squares

and may be expressed as follows

:

Let:

A = initial number,

/? := increment,

n = number of cells in each column of cube,

S = summation
;

then if A = 1 and /3 = 1 :

—

J-
(nB +l)=S .

If A and /? are more or less than unity, the following general

formula may be employed:

To shorten the above equation,— (w3— 1) may be expressed

as a constant (K) for each size of cube as follows:
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or:

or:

Cubes. Const. = K.

3X3X3 39

4X4X4 126

5X5X5 3io

6X6X6 645

7X7X7 1 197

8X8X8 2044

9X9X9 3276

10 X 10 X 10 4995

When using the above constants the equation will be:

(1) An + f3K=S,

(3) ^= A.
n

EXAMPLES.

What increment number is required for the cube of 3 X 3 X 3

with an initial number of 10 to produce summations of 108?

Expressing equation (2) in figure values:

108— (10X3) =2
39

2<f 60 20 su /4 40 26 64 4S

s6 /o 42 2Z 36 so 30 6z /6

24 SS 46 J2 ss /s S2- /z 44

Fig. 179. S = 108.

What increments should be used in a cube of 4X4X4 to

produce summations of 704 if the initial number is 50?

704 —(5QX4) _ A

F26
- 4>
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SO 248 22^ 62

286 7° 7* 2fr

2?0 st so 2S&

2» 2SO 2^6 //O

2SS

/60

/46

//<$

2/S

202

/6f>

2/k /^2

/9<?

/yo

226

/£#

/ft

'7* /S2 /s6 /6z

'S* /S4 /6~0 206

2/0 /ss /3^ 222

/a6 230 234 '/¥

2*Z /06 /oz 2S*

#4- 26l 266 S2,

9# 2?S 2S2 66

290 ss S¥ 302

Section I (Top). Section II. Section III.

Fig. 180.

Totals = 704.

Section IV (Bottom).

What initial number must be used with increments of 10 to

produce summations of 1906 in a 3X3X3 cube?

Expressing- equation (3) in figure values:

I906- (IOX39) = 505V,.

J9&4 /SSj

/JSJ

j/<rj 6^3

SOfi

sssi

66st

6ss*

7"'2Ji

s/$s:

S2Sf

6'/si 74s

j

6ssi

63S$ 70s*

S4Sj

sssi

?/si

6isi

60>Sf /JSa

SVSj

63s£

<$/*$

Top Section. Middle Section.

Fig. 181.

Totals = 1906.

Bottom Section.

What initial number is required for the cube of 5X5X5,
with 4 as increment number, to produce summations of 1906?*

1906— (4X310) _
5

The preceding simple examples will be sufficient to illustrate

the formulae given, and may suggest other problems to those who

are interested in the subject.

It will be noted that the magic cubes which have been described

in this chapter are all in the same general class as the magic squares

which formed the subject of the previous chapter.

There are, however, many classes of magic squares and cor-

responding cubes which differ from these in the general arrange-

* This example was contributed by the late Mr. D. B. Ventres of Deep
River, Conn.



MAGIC CUBES. 87

ment of numbers and in various other features, while retaining the

common characteristic of having similar column values. An ex-

ample of this differentiation is seen in the interesting "Jaina" square

39/.Z sz/.z S4S.I /6sf.z 2/3.2

S69.Z /p.z Z9/.Z 42/z 44S.Z

32/.Z 34S.2 46'A Z S/JZ /9/.Z

4/3.Z Mf.Z zz/.z z^s.z 369. Z

/4S.Z Z63.Z j/d.z 4.9/

z

62/z

Section I (Top).

JZ9.Z 333.Z JfSfZ Sf/2 20S.Z

4t/-z 60SZ ZZ9.Z 2JJ.Z JS/.Z

/33.Z ZSfi 3f/.Z jos.z 6z9.Z

40J.Z SZS2 S63.2 /Sf.Z zs/.z

ss-p.z /e/.z 30S.Z 4Z9.Z 443.2

*//'

w/.z

<77.z dC/.Z

S49Z

60/.Z

S2£Z

^.6-J.Z

2S3.ZJffz

42S.2

s7r

Zi*9z

6V/.2

S/,9.Z/tt2

4V&Z

3S3.Z

6zs:Z

Z77.Z7/

Section II.

4SS.2 609Z 2/3.2 ziy.z d6/.z

/sy.z 26/z JSJ2 so9.

2

6'&2

4-os.z s/j.z s&y.z /4t.z zsxz

a~6/- z /ss.z 30az A/3.Z 43/2

3/JZ J3f.Z 46/. z ttf.Z Z09.Z

Section III. Section IV.

WZ z6s:z 3*22 4331 6//.Z

J9JZ S//.Z J-4/.Z /6s:z 2S9.Z

S6*:z /tff.Z 29J.2 4//.1 44'. Z

J//.Z J4/.Z 46s:z $?sz /S3.Z

tff.Z sssz 2//.Z Z4/Z JJj:z

Section V.

Fig. 182.

described by Dr. Carus in his "Reflections on Magic Squares."

Squares of this class can readily be expanded into cubes which will

naturally carry with them the peculiar features of the squares.
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Another class is illustrated in the "Franklin Squares," and

these can also be expanded into cubes constructed on the same

general principles.

The subject of magic squares and cubes is indeed inexhaustible

and may be indefinitely extended. The philosophical significance

of these studies has been so ably set forth by Dr. Carus that the

writer considers it unnecessary to add anything in this connection,

but he trusts that the present endeavor to popularize these inter-

esting problems may some time lead to useful results.



CHAPTER III.

THE FRANKLIN SQUARES.

rTAHE following letter with squares of 8 X 8 and 16X16 is

-** copied from "Letters and papers on Philosophical subjects by

Benjamin Franklin, LL. D., F.R.S.," a work which was printed in

London, England, in 1769.

From Benjamin Franklin Esq. of Philadelphia.

To Peter Collinson Esq. at London.

Dear Sir:—According to your request I now send you the arith-

metical curiosity of which this is the history.

Being one day in the country at the house of our common

friend, the late learned Mr. Logan, he showed me a folio French

book filled with magic squares, wrote, if I forget not by one Mr.

Frenicle, in which he said the author had discovered great ingenuity

and dexterity in the management of numbers ; and though several

other foreigners had distinguished themselves in the same way, he

did not recollect that any one Englishman had done anything of the

kind remarkable.

I said it was perhaps a mark of the good sense of our mathe-

maticians that they would not spend their time in things that were

merely difficiles nugcc, incapable of any useful application. He

answered that many of the arithmetical or mathematical questions

publicly proposed in England were equally trifling and useless.

Perhaps the considering and answering such questions, I replied,

may not be altogether useless if it produces by practice an habitual
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readiness and exactness in mathematical disquisitions, which readi-

ness may, on many occasions be of real use. In the same way

says he, may the making of these squares be of use. I then con-

fessed to him that in my younger days, having once some leisure

(which I still think I might have employed more usefully) I had

amused myself in making these kind of magic squares, and, at

length had acquired such a knack at it, that I could fill the cells of

any magic square of reasonable size with a series of numbers as

fast as I could write them, disposed in such a manner that the sums

of every row, horizontal, perpendicular or diagonal, should be

equal; but not being satisfied with these, which I looked on as com-

& 6'i ,4' /&' ><P & Jtf V*

t# y 6* y H J* M ><$>

s-S fi y '/i 2/ ** ^Z **L

/,/ / 44 **4
^*s j< *Z kz

?s 47* 7 W £ii u J$ *2

/ y ?7 ft *< 44 2J- H
&'o &S z /.$- >tf Jv\ >* **

///> / fr 4& H >4 J% ^
Fig. 183.

mon and easy things, I had imposed on myself more difficult tasks,

and succeeded in making other magic squares with a variety of

properties, and much more curious. He then showed me several

in the same book of an uncommon and more curious kind ; but as

I thought none of them equal to some I remembered to have made,

he desired me to let him see them; and accordingly the next time

I visited him, I carried him a square of 8 which I found among my

old papers, and which I will now give you with an account of its

properties (see Fig. 183). The properties are:

1. That every straight row (horizontal or vertical) of 8 num-

bers added together, makes 260, and half of each row, half of 260.

2. That the bent row of 8 numbers ascending and descending
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diagonally, viz., from 16 ascending to 10 and from 23 descending to

17 and every one of its parallel bent rows of 8 numbers make 260, etc.,

etc. And lastly the four corner numbers with the four middle numbers

#0 ¥7 Z6Z 2#9 / 2,'J- 4'0 ?7 7% <f£
N
/#? '*< /$6 /jy /fa /ss

s£ j& ail / 2fO Z&/ z/s /J&w /6y /<?% /3£ /2# )o3 >« H
/08 2/'<) zsb 26// *7 AS JVX SK /0£ /%3

\
h% /<£S /#<? ?

*l
66 W ** *r z&z 2&D 2<£o 07 /ss )6s /><£ /SQ )%* /o( 4% &s>

*/' %/6 %3'6 &fi y z4 4/
f7'6 X >i )o% >57 /<*£ )fe) /£#

s&- *i 2,6 //6 *4 2&4 2/jr 2/>2 /X3 /y<? yjy /J<f M /&/£ h7. 7\
205 z/y. 2<4f 2^6 4/ z-i trb fi H V& Sty ^r /$$ h? '>< SS.2

s>'s 4'*A z-f 'A 2*/* za'6 z/i
/

Z04 /JV '7\ )fr# /frO "A )&f ^X
%fo 2/2 #7 WV sA 2,0 ?^ fA M >* MP *4 S#s /^cf ?7* /X0

sJ 4« /# //4 z/t z/s V*' &6 //<? '7«{ /^ )^Z 7/^r >X* S3 ><

&7 %/0 2J& Mf2 /.£ x/ ?? >* >2 />/ //«- >#3 '#& y^ '/*

fr'S> 4,'S '<? ',<$ 24/ 2//'a %>9 26>S V77X /&J >w />* //£, <?< J>€?

/p'6 zis Z2S 2fd
/
#- z& 3& 4<> *<? \ /GO /2S /3£^ >6v /&&

$2 &£ 3'& y ZA4 2*7 222 /#s /90 /6j /d$ /*/ s\<*^ S*. *7

//</ Z£3 2&6 2SS - £ $'/ 3<V ?* 6# >«r >* /2? /*? /ay /*£ /$/

fa Jj' 6<i / 26Y? 226 21V /fd /&2 /*/ /6v /23 /2<? *X M s 6$;

Fig. 184.

jf f X /2

ri /.$ \ \
// /d >. 6,

/ /X >a

Fig. 185.

make 260. So this magical square seems perfect in its kind, but

these are not all its properties, there are 5 other curious ones which

at some time I will explain to you.

Mr. Logan then showed me an old arithmetical book in quarto,
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wrote, I think by one Stifelius, which contained a square of 16

which he said he should imagine to be a work of great labour; but

if I forget not, it had only the common properties of making the

same sum, viz., 2056 in every row, horizontal, vertical and diagonal.

Not willing to be outdone by Mr. Stifelius, even in the size of my
square, I went home, and made that evening the following magical

square of 16 (see Fig. 184) which besides having all the properties

of the foregoing square of 8, i. e., it would make 2056 in all the

same rows and diagonals, had this added, that a four-square hole

being cut in a piece of paper of such a size as to take in and show

through it just 16 of the little squares, when laid on the greater

I ~T JZ/,i* fieftns -^®S'
X
«'"39-*\ /^"-Z^"' enJs

Fig. 186.

square, the sum of the 16 numbers so appearing through the hole,

wherever it was placed on the greater square should likewise make

2056. This I sent to our friend the next morning, who after some

days sent it back in a letter with these words:

"I return to thee thy astonishing

"or most stupendous piece

"of the magical square in which". . .

.

—but the compliment is too extravagant and therefore, for his sake,

as well as my own I ought not to repeat it. Nor is it necessary,

for I make no question but you will readily allow the square of 16
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to be the most magically magical of any magic square ever made

by any magician.

I am etc. B. F.

It will be seen that the squares shown in Figures 183 and 184

are not perfect according to the rules for magic squares previously

Fig. 187.

given, but the interesting feature of their bent diagonal columns

calls for more than passing notice. In order to facilitate the study

of their construction, a 4 X 4 square is given in Fig. 185 which

presents similar characteristics.
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The dotted lines in this square indicate four bent diagonal col-

umns, each of which has a total of 34 ; three of these columns being

intact within the square and one being broken. Four bent diagonal

columns may be formed from each of the four sides of the square,

but only twelve of these sixteen columns have the proper totals.

Adding to these the eight straight columns, we find that this square

contains twenty columns with summations of 34. The 4X4 "Ja*na
"

square contains sixteen columns which sum up to 34 while the

ordinary 4X4 magic square may contain only twelve.

The 8X8 Franklin square (Fig. 183) contains forty-eight col-

umns which sum up to 260, viz., eight horizontal, eight vertical, six-

teen bent horizontal diagonals, and sixteen bent vertical diagonals.

s 8 *7 60

S/4 SS /o //

43 42 23 ZZ

zs ZS 40 *7

6z 63 Z 3

/3 /6 4& sz

20 '7 4* *s

3S 34- 3/ 30

Section 1.

(Top.)

Section 3.

Fig. 188.

S9 SS 7 6

/Z 9 S6 S3

Zt Z4 4' 44

3S 3$ 26 z7

A / 6¥ 6>

s/ S# /J- '4-

46 +7 /# /S

Z9 3Z 33 36

Section 2.

Section 4.

(Bottom.)

whereas the pandiagonal associated 8X8 magic square may contain

only thirty-two columns and diagonals of the same summation.

In addition to the other characteristics mentioned by Franklin

in his letter concerning his 8 X 8 magic square it may be stated that

the sum of the numbers in any 2X2 sub-square contained therein

is 130, and that the sum of any four numbers that are arranged dia-

metrically equidistant from the center of the square also equals 130.

In regard to his 16 X 16 square, Franklin states in his letter

that the sum of the numbers in any 4X4 sub-square contained

therein is 2056. The sub-division may indeed be carried still further,

for it will be observed that the sum of the numbers in any 2X2
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sub-square is 514, and there are also other curious features which a

little study will disclose.

4^ Stefan iffins..

Z ~" S*e?t»>i ene?<s

c5 *" iSec?""*- ends

J ' Sae-tloit ieff'nS-

.\ r £V S**t?»n Ay

/« Ouc/ior* ends.

Jp-$ Stefan ends.

Fig. 189.

The Franklin Squares possess a unique and peculiar symmetry

In the arrangement of their numbers which is not clearly observable

on their faces, but which is brought out very strikingly in their
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geometrical diagrams as given in Figs. 186 and 187, which illustrate

respectively the diagrams of the 4 X 4 and 8X8 squares.

Magic cubes may be readily constructed by expanding these

diagrams and writing in the appropriate numbers.

The cube of 4 X 4 X 4 and its diagram are given as examples

in Figs. 188 and 189, and it will be observed that the curious char-

acteristics of the square are carried into the cube.

AN ANALYSIS OF THE FRANKLIN SQUARES.

In The Life and Times of Benjamin Franklin, by James Parton,

(Vol. I, pp. 255-257), there is an account of two magic squares, one

8X8, the other 16 X 16, which are given here in Figs. 191 and 192.

P

= 260 = 130 = 130 = 260

1

u
J L 1

U
= 260 = 130 = 260

= 260 = 260 =260

PROPERTIES OF FRANKLIN^ 8X8 SQUARE.

Fig. 190.

=260

Mr. Parton explains the 8X8 square as follows:

"This square, as explained by its contriver, contains astonishing

"properties: every straight row (horizontal or vertical) added to-
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52 61 4 13 20 29 36 45

14 3 62 51 46 35 30 19

53 60 5 12 21 28 37 44

11 6 59 54 43 38 27 22

55 58 7 10 23 26 39 42

9 8 57 56 41 40 25 24

50 63 2 15 18 31 34 47

16 1 64 49 48 33 32 17

FRANKLIN 8X8 SQUARE.

Fig. 191.

200 217 232 249 8 25 40 57 72 89 104 121 136 153 168 185

58 39 26 7 250 231 218 199 186 167 154 135 122 103 90 71

198 219 230 251 6 27 38 59 70 91 102 123 134 155 166 187

60 37 28 5 252 229 220 197 188 165 156 133 124 101 92 69

201 216 233 248 9 24 41 56 73 88 105 120 137 152 169 184

55 42 23 10 247 234 215 202 183 170 151 138 119 106 87 74

203 214 235 246 11 22 43 54 75 86 107 118 139 150 171 182

53 44 21 12 245 236 213 204 181 172 149 140 117 108 85 76

205 212 237 244 13 20 45 52 77 84 109 116 141 148 173 180

51 46 19 14 243 238 211 206 179 174 147 142 115 110 83 78

207 210 239 242 15 18 47 50 79 82 111 114 143 146 175 178

49 48 17 16 241 240 209 208 177 176 145 144 113 112 81 80

196 221 228 253 4 29 36 61 68 93 100 125 132 157 164 189

62 35 30 3 254 227 222 195 190 163 158 131 126 99 94 67

194 223 226 255 2 31 34 63 66 95 98 127 130 159 162 191

64 33 32
1 256 225 224 193 192 161 160 129 128 97 96 65

FRANKLIN l6Xl6 SQUARE.

Fig. 192.



98 THE FRANKLIN SQUARES.

= 1028 = 2056

= 2056

LL
= 2056 = 2056

P

= 2056

= 2056 = 1028 =2056—128
PROPERTIES OF FRANKLIN^ l6X l6 SQUARE.

Fig. 193.

"D
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"gether makes 260, and each half row half 260. The bent row of

"eight numbers ascending and descending diagonally, viz., from 16

"ascending to 10, and from 23 descending to 17, and every one of

"its parallel bent rows of eight numbers, makes 260. Also, the bent

= 2056 = 20564-128

10 jC)

= 2056 = 2056

PROPERTIES OF FRANKLIN'S l6Xl6 SQUARE.
Fig. 193 (con.).

"row from 52 descending to 54, and from 43 ascending to 45, and

"every one of its parallel bent rows of eight numbers, makes 260.

"Also, the bent row from 45 to 43, descending to the left, and from
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"23 to 17, descending to the right, and every one of its parallel bent

"rows of eight numbers, makes 260. Also, the bent row from 52

"to 54, descending to the right, and from 10 to 16, descending to

"the left, and every one of its parallel bent rows of eight numbers,

"makes 260. Also, the parallel bent rows next to the above-men-

tioned, which are shortened to three numbers ascending and three

"descending, etc., as from 53 to 4 ascending and from 29 to 44

"descending, make, with the two corner numbers, 260. Also, the two

"numbers, 14, 61, ascending, and 36, 19, descending, with the lower

"four numbers situated like them, viz., 50, 1, descending, and 32, 47,

"ascending, makes 260. And, lastly, the four corner numbers, with

"the four middle numbers, make 260.

"But even these are not all the properties of this marvelous

"square. Its contriver declared that it has 'five other curious ones,'

"which he does not explain; but which the ingenious reader may

"discover if he can."

These remarkable characteristics which Mr. Parton enumerates

are illustrated graphically in the accompanying diagrams in which the

relative position of the cells containing the numbers which make up

the number 260, is indicated by the relation of the small hollow

squares (Fig. 190).

Franklin's 16X16 square is constructed upon the same principle

as the smaller, and Mr. Parton continues:

"Nor was this the most wonderful of Franklin's magical

"squares. He made one of sixteen cells in each row, which besides

"possessing the properties of the squares given above (the amount,

"however added, being always 2056), had also this most rcmark-

"able peculiarity : a square hole being cut in a piece of paper of such

"a size as to take in and show through it just sixteen of the little

"squares, when laid on the greater square, the sum of sixteen num-

"bers, so appearing through the hole, wherever it was placed on the

"greater square, should likewise make 2056."

The additional peculiarity which Mr. Parton notes of the 16X

16 square is no more remarkable than the corresponding fact which

is true of the smaller square, that the sum of the numbers in any



1 2 3 4 5 6 7 8

A 1 2 3 4 5 6 7 8

B 9 10 11 12 13 14 15 16

C 17 18 19 20 21 22 23 24

D 25 26 27 28 29 30 31 32

E 33 34 35 36 37 38 39 40

F 41 42 43 44 45 46 47 48

G 49 50 51 52 53 54 55 56

H 57 58 59 60 61 62 63 64

12 3 4 5 6 7 8

Fig. 194. THE PLAN OF CONSTRUCTION.
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Fig. 195. First Step.

KEY TO THE SCHEME OF SIMPLE
ALTERNATION-

Fig. T96. Second Step.

COMPLETED SCHEME OF SIMKW
ALTERNATION.

1 16 17 32 33 48 4£ 64

63 50 47 34 31 18 15 2

3 14 19 30 35 46 51 62

61 52 45 36 29 20 13 4

5 12 21 28 37 44 53 60

59 54 43 38 27 22 11 6

7 10 23 26 39 42 55 58

57 56 41 40 25 24 9 8

Fig. 197. Third Step.

8X8 MAGIC SQUARE CONSTRUCTED BY SIMPLE ALTERNATION".
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2X2 combination of its cells yields 130. The properties of the

larger square are also graphically represented here (Fig. 193).

A clue to the construction of these squares may be found as

follows

:

We write down the numbers in numerical order and call the

cells after the precedent of the chess-board, with two sets of symbols,

letters and numbers. We call this "the plan of construction" (Fig.

194).

Before we construct the general scheme of Franklin's square

we will build up another magic square, a little less complex in prin-

ciple, which will be preparatory work for more complicated squares.

We will simply intermix the ordinary series of numbers according

to a definite rule alternately reversing the letters so that the odd

rows are in alphabetical order and the even ones reversed. In order

to distribute the numbers in a regular fashion so that no combina-

tion of letter and number would occur twice, we start with 1 in the

upper left-hand corner and pass consecutively downwards, alter-

nating between the first and second cells in the successive rows,

thence ascending by the same method of simple alternation from 1

in the lower left-hand corner. We have now the key to a scheme

for the distribution of numbers in an 8X8 magic square. It is the

first step in the construction of the Franklin 8X8 magic square, and

we call it "the key to the scheme of simple alternation" (Fig. 195).

It goes without saying that the effect would be the same if we

begin in the same way in the right-hand corners,—only we must

beware of a distribution that would occasion repetitions.

To complete the scheme we have to repeat the letters, alternatelv

inverting their order row after row, and the first two given figures

must be repeated throughout every row, as they are started. The

top and bottom rows will read 1, 8; 1, 8; 1, 8; 1, 8. The second

row from the top and also from the bottom will be 7, 2; 7, 2; 7, 2:

7, 2. The third row from the top and bottom will be 3, 6 ; 3, 6

;

3, 6; 3, 6; and the two center rows 5, 4; 5, 4; 5, 4; 5, 4. In

every line the sum of two consecutive figures yields 9. This is the

second step, yielding the completed scheme of simple alternation

(Fig. 196).
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The square is now produced by substituting for the letter and

figure combinations, the corresponding figures according to the con-

secutive arrangement in the plan of construction (Fig. 197).

Trying the results we find that all horizontal rows sum up to

260, while the vertical rows are alternately 260— 4, and 260 + 4.

The diagonal from the upper right to the lower left corner yields

a sum of 260+32, while the other diagonal from the left upper

corner descending to the right lower corner makes 260— 32. The

upper halves of the two diagonals yield 260, and also the sum of

the lower halves, and the sum total of both diagonals is accordingly

520 or 2X260. The sum of the two left-hand half diagonals re-

sults in 260— 16, and the sum of the two half diagonals to the

right-hand side makes 26o-f-i6. The sum of the four central cells

plus the four extreme corner cells yields also 260.

Considering the fact, that the figures 1 to 8 of our scheme run

up and down in alternate succession, we naturally have an arrange-

ment of figures in which sets of two belong together. This binate

peculiarity is evidenced in the result just stated, that the rows yield

sums which are the same with an alternate addition and subtraction

of an equal amount. So we have a symmetry which is astonishing

and might be deemed magical, if it were not a matter of intrinsic

necessity.

We represent these peculiarities in the adjoined diagrams (Fig.

198) which, however, by no means exhaust all the possibilities.

We must bear in mind that these magic squares are to be re-

garded as continuous ; that is to say, they are as if their opposite

sides in either direction passed over into one another as if they

were joined both ways in the shape of a cylinder. In other words

when we cross the boundary of the square on the right hand, the first

row of cells outside to the right has to be regarded as identical

with the first row of cells on the left; and in the same way the

uppermost or first horizontal row of cells corresponds to the first

row of cells below the bottom row. This remarkable property of

the square will bring out some additional peculiarities which mathe-

maticians may easily derive according to general principles; espe-

cially what was stated of the sum of the lower and upper half-
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d
= 26o-|-i6 =260— 16

260—

4

u a-
=260— 32 =2604-32

= «6o

2604-4

= 260 = 2X 260 = 260

Fig. 198. PROPERTIES OF 8X8 SQUARE BY SIMPLE ALTERNATION.

AB

A= 2056—

8

J

B = 2066 + 8

A+B= 2X2056 r—
= 2056

= 2056

= 2056

Fig. 199. PROPERTIES OF 16XL.6 SQUARE BY SIMPLE ALTERNATION.
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diagonal of any bent series of cells running staircase fashion either

upward or downward to the center, and hence proceeding in the

opposite way to the other side.

The magic square constructed according to the method of sim-

n

%
= 2056— 128 = alternately 2056— 64 and 2056 -|- 64

a

~- = 2056 -f- 128 = alternately 2056— 64 and 2056 + 64

PROPERTIES OF l6X l6 SQUARE BY SIMPLE ALTERNATION.

Fig- 199 (con.).

pie alternation of figures is not, however, the square of Benjamin

Franklin, but we can easily transform the former into the latter

by slight modifications.

We notice that in certain features the sum total of the bent
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Fig. 200. First Steps. Fig. 201.
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8 9 10 11 12 13 14 15 16

A

B

C

D

E

F

G

H

1

K

L

M

N

p

Q

205. C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 B

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 C

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 E

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 % F

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 Q

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 H

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
1

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 K

161 162 163 164 165 166 167 168 169 171) 171 172 173 174 175 176 L

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 M

193 194 .195 196 197 198 199 200 201 202 203 204 205 206 207 208 N

209 210 211 212 213 214 •215 216 217 218 219 220 221 222 223 224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 P

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 Q

Fig.

1 2

SEC

3

UT

4

IVE

5

AR

6

RAN

7

GE

8

MEI

9

*T (

10

3F 1

11 12

1BE

13

RS

14

IN i

15 16

\ 16X16 SQUARE

A
,

B
16

C D E F G H 1 K L M N O P

Q
,5

P
2

N M L K 1 H G F E D C B A

3 14

13 4

5 12

11 6

7 10

9 8

9 8

7 10

11 6

5 12

13 A

3 • 4

15 2

1 16

Fig. 206. KEY TO THE SCHEME OF SIMPLE ALTERNATION.



io8 THE FRANKLIN SQUARES.

*1 B
»6

C
1

D
,6

E
1

F
16

G
.

H
16

1

1

K
16

L
l

M
i6

N
1 °,6 P

t °16

°15
P
2 °15 N

2
M
15

L
2

K
.5

'2 H
15

G
2

F
15

E
2

D
15

C
2

B
15

A
2

A
3

B
.4

C
3

D
,4

E
3

F
,4 °3 H

,4 '3 K
,4

L
3

Mu N
3 °I4

P
3

Q
.4

°,3 P
4 °I3

N
4

M
13

L
4

K
,3 '4 H

13
G

4
F
13-

E
4

D
I3

C
4

B
.3

A
4

A
5

B
12 C

5 °U E
5

F
12 °5 H

.2 's
K
12

L
5

M
.2 5 °.2 P

5 °,2

°11 P
6 °1l

N
6

M
11

L
6 *11 «6 H

11 °6 F
11

E
6

D
11

C
6

B
11

A
6

A
7

B
,o

C
7

D
10

E
7

F
10

G
7

H
10 '7 So L

7
M

10
N

7 °.o
P
7

Q
,0

Qq P
8 °9 N

8
M

9
L
8

K
9 '8 H

9
G
8

F
9

E
8

D
9 C

8
B
9

A
8

A
9

B
8

C
9

D
8

E
9

F
8 °9 H

8 '9 S L
9

M
8 % °8 % °8

°7 p
io °7 N

io
M

7
L
io

K
7 '.0 H

7
G
,o

F
7

E
10

D
7

C
10

B
7

A
10

A
11

B
6

C
11

D
6

E
11

F
6 °11 H

6 ',1 K
6

L
1,

M
6

N
11 °6 P

1l °6

<>5 P
12 °5 N

12
M

5
L
12 S 'l2

H
5

G
12

F
5

E
12

D
5

C
12

B
5

A
12

A
13

B
4

C
13

D
4

E
13

F
4

G
13

h
4 '.3 K

A
L
13

M
4

N
13 °4 P

13 ^4

<>3 P
,4 °3 N

14
M
3

L
14

K
3 '14 H

3
G

14
F
3

E 14 D
3

CU B
3
A
14

A 15
B
2

C
15

D
2

E
15

F
2

G
.5

H
2 '15 K

2
L 15 M

2
N
»5 °2 P

»5 °2

Ol P
!6 °l N

16
M

l

L
16 *1 '«6 H

1
G
16 F

.
E
16

D
l Cl6 B

» *16

Fig. 207. SCHEME OF SIMPLE ALTERNATION.

1 32 33 64 65 % 97 128 129 160 161 192 193 224 225 256

255 226 223 194 191 162 159 130 127 98 95 66 63 34 31 2

3 30 35 62 67 94 99 126 131 158 163 190 195 222 227 254

253 228 221 1% 189 164 157 132 125 100 93 68 61 36 20 4

5 26 37 60 69 92 101 124 133 156 165 188 197 220 229 252

251 230 219 198 187 166 155 134 123 102 91 70 59 38 27 6

7 26 39 58 71 90 103 122 135 154 167 186 199 218 231 250

249 232 217 200 185 168 153 136 121 104 89 72 57 40 25 8

9 24 41 56 73 88 105 120 137 152 169 184 201 216 233 248

247 234 215 202 183 170 151 138 119 106 87 74 55 42 23 10

11 22 43 54 75 86 107 11« 139 150 171 182 203 214 235 246

245 236 213 204 181 172 1 49 140 117 108 85 76 53 44 21 12

13 20 45 52 77 84 109 116 141 148 173 180 205 212 237 244

243 238 211 206 179 174 147 142 115 110 83 78 51 46 19 14

15 18 47 50 79 82 111 IU 143 146 175 178 207 210 239 242

241 240 209 208 177 176 145 144 113 112 81 80 49 48 17 16

Fig. 208. 16 X 16 MAGIC SQUARE CONSTRUCTED BY SIMPLE ALTERNATION.



THE FRANKLIN SQUARES. IO9

A
1

B
16

C D e F G H 1 K L M N P

°>5 P
2

N M L K 1 H G F E D C B A

3 14

13 4

16 1

2 15

14 3

4 13

12 5

6 11

10 7

8 9

5 12

11 6

7 10

9 8

ig. 209. KEY TO THE SCHEME OF ALTERNATION WITH QUATERNATE TRANS-

POSITION.

A
.

B
.6

C
1

D
.6

E
,

F
16

G
l

H
.6 'l

K
.6

L
1

M
.6

N
.

°.6 P
.

Q
,6

°15 P
2 °I5

N
2

M
.5

L
2

K
15 '2 H

15
G
2

F
15

E
2

D
,5

C
2

B
15

A
2

A
3

B
»4

C
3

D
.4

E
3

F
14

G
3

H
.4

'3 K
.4

L
3

M
«4

N
3 °,4 P

3 °14

°13
P
4 °,3 N

4
M
13

L
4

K
.3 '4 H

.3
G 4 F

13
E
4

D
,3

C
4

B
13

A
4

A
16

B
,

C
.6

D
l

E
,6 n G

.6
H

. '.6 K
l

L
.6

M
l

N
10 °l

P
.G

Q
1

°2 P
15 °2 N

.5
M

2
L
.5

K
2 '.5 H

2
C
.5

F
2

E
15

D
2

C
.5

B
2

A
«5

A
14

B
3

C
,4

D
3

E
14

F
3 °.4 H

3 'l4
K
3

L
.4 *3 N

14 °3 P
.4

Q
3

°4 P
13 °4 N

.3
M

4
L
,3

K
4 '13 H

4
G

.3
F
4

E
«3

D
4

C
.3

B
4

A
13

A
.2

B
5

C
,2

D
5 E

.2
F
5

G
.2

H
5

1

12
K
5

L
,2

M
5

N
«2 °5 P

12
Q
5

Q
6

pu °6 N H M
6

L n K
6 '.. H

6
Gn F

6
E n D

6
C
11

B
6

A
.1

A
«o

B
7

c
.o

D
7

E
.o

F
7

G
.o

H
7 '.0 K

7 So M
7

N
10 °7 p

«o
Q

7

Q
8

P
9 °8 N

9 M
8

L
9

K
8 '9 H

8
G

9
F
8

E
9

D
8

C
9

B
8

A
9

A
5

B
12

C
5 °.2 E

5
F
,2 °5 H

.2 •s
K
.2

L
5

M
12

N
5 °12 P

5
Q
12

°11 P6 °l.
N
6

N
11

L
6 S. '6 H

l.
G
6

F M E 6 D
ll

C
6

B
1.

A
6

A
7

B
.o

C
7

D
10

E
7

F
.o

G
7

H
.o h So L

7
N
10

N
7 °.o

P
7 °I0

°9 P
8 °9 N

8
M
9

L
8 S '8 H

9 G
8

f9 E
8

D
9

C 8
B
9

A
8

Fig. 210. SCHEME OF ALTERNATION WITH QUATERNATE TRANSPOSITION.



no THE FRANKLIN SQUARES.

. 32 33 64 65 % 97 128 129 160 161 192 193 224 225 256

255 226 223 194 191 162 159 130 127 98 95 66 63 34 31 2

3 30 35 62 67 94 99 126 131 158 163 190 195 222 227 254

253 228 221 1% 189 164 157 132 125 100 93 68 61 36 29 4

16 17 48 49 80 81 112 113 144 145 176 177 208 209 240 241

242 239 210 207 178 175 146 143 114 111 82 79 50 47 18 15

14 19 46 51 78 83 110 115 142 147 174 179 206 211 238 243

244 237 212 205 180 173 148 141 116 109 84 77 52 45 20 13

12 21 44 53 76 85 108 117 140 149 172 181 204 213 236 245

246 235 214 203 182 171 150 139 118 107 86 75 54 43 22 11

10 23 42 55 74 87 106 119 138 151 170 183 202 215 234 247

248 233 216 201 184 169 152 137 120 105 88 73 56 41 24 9

5 28 37 60 69 92 101 124 133 156 165 188 197 220 229 252

251 230 219 198 187 166 155 134 123 102 91 70 59 38 27 6

7 26 39 58 71 90 103 122 135 154 167 186 199 218 231 250

249 232 217 200 185 168 153 136 121 104 89 72 57 40 25 8

Fig. s,.m. a SQUARE CONSTRUCTED BY ALTERNATION WITH QUATERNATE TRANS
POSITION.

N 8 °9 P
8 Q 9

A
8 B

9
C
8 D

9
E
8 F 9

G
8 H

9 '8 K
9

L
8

M
9

D
10

C
7

8
io

A
7

Q
10

P
7 °10 N

7
M
.o L

7 So '7 H
,0

G
7

F
10

E
7

N 6 °1.
P
6 °ll

A
6

B
,1

C
6

D
11

E
6

F
,1

G
6 H„ »6 Si

L
6

M
„

D
12

C
5

B
12

A
5 °I2

P
5 °»2 N

5
M

,2
L
5 *I2 '5 H

.2
G
5

F
12

E
5

N 9 °8 P
9 °8 A 9 B

8
C
9

D
8

E
9

F
8

o 9
H
8 '9 S L

9
M

8

D
7 So B

7
A
I0

Q
7

p
.o °7 N

10
M

7
L
.o

K
l 'io

H
7

G
.o

F
7

E
10

N
1l °6 P

11 °6 A
1.

B
6

C„ D
6

E
1!

F
6

GM H
6 ',.

K
6

L
1,

M
6

D5
C
>2

B
5

A
>2 °5 P

<2 °5 N
,2

M
5

L
12

K
5 '.2 H

5 °,2 F
5

E
12

N
13 °4 P

13 °4 A
»3

B
4

C
13

D
4

E
13

F
4

G
.3

H
4 '.3

K
4

L
.3

M
4

D
3

C
«4 B

3
A
14 °3 P

,4 °3 N
14

M
3

L
«4

K
3 >14

H
3

G
.4

F
3

E M

N
15 °2 P

15 °2 A
15

B
2

C
15

D
2

E
15

F
2 °15 H

2 '15
K
2

L
15

M
2

D
1

C
16 B

.
A
16 °1 P

16 °l
N
.6

M
1

L
16

K
,

|6 «l
G
.6

F
,

E
16

N
4 °,3 P

4
Q
13

A
4

B
.3

C
4

D
,3

E
4

F
13

G
4

H
,3 '4 K

13
L
4

M
13

D
14

C
3 B

14
A
3 Q

14
P
3 °«4 N

3 ">4 L
3

K
14 >3 H

.4
G
3

FU E
3

N
2 °«5 P

2 °I5 A
2

B
«5

C
2

D
15

E
2

F
.5 °2 H

15 '2 K
»5

L
2

M
15

D
16

C
.

B
.6

A
, °16 P

1 °,6 N
«

M
.6

L
1 16 'l H

16
G

.

F
,6

E
1

Fig. 212. SCHEME OF FRANKLIN'S i6X 16 SQUARE.



THE FRANKLIN SQUARES. Ill

diagonals represents regularities which counterbalance one another

on the right- and the left-hand side. In order to offset these results

we have to shift the figures of our scheme.

We take the diagram which forms the key to the scheme of our

distribution by simple alternation (Fig. 195) , and cutting it in the

middle, turn the lower half upside down, giving the first two rows as

seen in Fig. 200 in which the heavy lines indicate the cutting. Cutting

then the upper half in two (i. e., in binate sections), and transposing

the second quarter to the bottom, we have the key to the entire ar-

rangement of figures; in which the alternation starts as in the

scheme for simple alternation but skips the four center rows passing

from 2 in the second cell of the second row to 3 in the first cell of

the seventh, and from 4 in the second cell of the eighth passing to

5 in the first cell, and thence upwards in similar alternation, again

passing over the four central rows to the second and ending with 8

in the second cell of the first row. Then the same alternation is pro-

duced in the four center rows. It is obvious that this can not start

in the first cell as that would duplicate the first row, so we start with

1 in the second cell passing down uninterruptedly to 4 and ascending

as before from 5 to 8.

A closer examination will show that the rows are binate, which

means in sets of two. The four inner numbers, 3, 4, 5, 6 and the

two outer sets of two numbers each, 1, 2 and 7, 8, are brought to-

gether thus imparting to the whole square a binate character (Fig.

202).

We are now provided with a key to build up a magic square

after the pattern of Franklin. We have simply to complete it in

the same way as our last square repeating the letters with their

order alternately reversed as before, and repeating the figures in

each line.

When we insert their figure values we have a square which is

not the same as Franklin's, but possesses in principle the same

qualities (Fig. 203).

To make our 8X8 square of binate transposition into the

Franklin square we must first take its obverse square; that is to

say, we preserve exactly the same order but holding the paper
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with the figures toward the light we read them off from the obverse

side, and then take the mirror picture of the result, holding the

mirror on either horizontal side. So far we have still our square

with the peculiarities of our scheme, but which lacks one of the

incidental characteristics of Franklin's square. We must notice

that he makes four cells in both horizontal and vertical directions

sum up to 130 which property is necessarily limited only to two

sets of four cells in each row. If we write down the sum of 1+2+
3+4+5+6+7+8=2Xi8, we will find that the middle set 3+4+
5+6 is equal to the rest consisting of the sum of two extremes,

1+4, and 7+8. In this way we cut out in our scheme (Fig. 202), the

rows represented by the letters C r D, E, F in either order and ac-

cordingly we can shift either of the two first or two last vertical

rows to the other side. Franklin did the former, thus beginning

his square with G4 in the left upper corner as in Fig. 204. We have

indicated this division by heavier lines in both schemes.

The greater square of Franklin, which is 16X16, is made after

the same fashion, and the adjoined diagrams (Figs. 205-212) will

sufficiently explain its construction.

We do not know the method employed by Franklin ; we pos-

sess only the result, but it is not probable that he derived his square

according to the scheme employed here.

Our 16X16 square is not exactly the same as the square of

Franklin, but it belongs to the same class. Our method gives the

key to the construction, and it is understood that the system here

represented will allow us to construct many more squares by simply

pushing the square beyond its limits into the opposite row which

by this move has to be transferred.

There is the same relation between Franklin's \6y^l6 square

and our square constructed by alternation with quaternate trans-

position, that exists between the corresponding 8X8 squares.

p. c.



CHAPTER IV.

REFLECTIONS ON MAGIC SQUARES.

MATHEMATICS, especially in the field where it touches philos-

ophy, has always been my foible, and so Mr. W. S. Andrews's

article on "Magic Squares" tempted me to seek a graphic key to the

interrelation among their figures which should reveal at a glance

the mvsterv of their construction.

THE ORDER OF FIGURES.

In odd magic squares, 3X3, 5X5, 7X7, etc., there is no

difficulty whatever, as Mr. Andrews's diagrams show at a glance

(Fig. 213). The consecutive figures run up. slantingly in the form

S

* /o

J 3 /s

z ^ /* 20

/ 7 /J /9 2S

6 /2 /^ 24-

// '7 23

/6 22

2/

J /6 9 22 /s

20 £ 2/ /* 2

7 2J /d / /S

24 /2 & /s 6

// 4l '7 /& 26

Fig. 213. A SPECIMEN OF 5 X 5 MAGIC SQUARE.

of a staircase, so as to let the next higher figure pass over into the

next higher or lower cell of the next row, and those figures that ac-

cording to this method would fall outside of the square, revert

into it as if the magic square were for the time (at the moment of

crossing its boundary) connected with its opposite side into the
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shape of a cylinder. This cannot be done at once with both its two

opposite vertical and its two opposite horizontal sides, but the pro-

cess is easily represented in the plane by having the magic square

extended on all its sides, and on passing its limits on one side we

must treat the extension as if we had entered into the magic square

on the side opposite to where we left it. If we now transfer the

figures to their respective places in the inside square, they are shoved

over in a way which by a regular transposition will counteract their

regular increase of counting and so equalize the sums of entire rows.

The case is somewhat more complicated with even magic

squares, and a suggestion which I propose to offer here, pertains

to their formation. Mr. Andrews begins their discussion by stating

that "in regard to regular or associated magic squares it is not only

necessary that each row, column and corner diagonal shall sum

the same amount, but also that the pairs of numbers which sum

n2
-f- i must occupy cells which are located diametrically equidis-

tant from the center of the square."

The smallest magic square of even numbers is, of course, 4X4;
and he points out that if we write the figures in their regular order

in a 4 X 4 square, those standing on the diagonal lines can remain

in their places, while the rest are to be reversed so as to replace

every figure by its complementary to 17 (i. e., 2 by 15, 3 by 14, 5 by

12, 9 by 8) the number 17 being the" sum of the highest and lowest

numbers of the magic square (i. e., n2
-f- 1). It is by this reversal

of figures that the inequalities of the natural order are equalized

again, so as to make the sum of each row equal to 34, which is one

fourth of the sum total of all figures, the general formula being

;/ 2
v J

We will now try to find out more about the relation which the

magic square arrangement bears to the normal sequence of figures.

For each corner there are two ways, one horizontal and one

vertical, in which figures can be written in the normal sequence;

accordingly there are altogether eight possible arrangements, from

which we select one as fundamental, and regard all others as mere

variations, produced by inverting and reversing the order.
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As the fundamental arrangement we choose the ordinary way

of writing from the left to the right, proceeding in parallel lines

downward. We call this ''the original order" or o. Its reverse

proceeds from the lower right-hand corner toward the left, and

line by line upward, thus beginning the series where the ordinary

arrengement ends, and ending where it started, as reflected on the

ground glass of a camera. We call this order "the reversed orig-

inal," or simply ro.

Another order is produced by following the Hebrew and Arabic

mode of writing: we begin in the upper right-hand corner, proceed-

ing to the left, and then continue in the same way line by line

downward. This, the inverse direction to the original way, we call

briefly i or "mirror" order.

The reverse order of /', starting in the lower left corner, pro-

ceeding to the right, and line by line upward, we call ri, or "lake"

order. Further on we shall have occasion to present these four orders

by the following symbols : o by £ ; ro by @ ; i by >J« ; ri by +.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

6 5 4 3 2 1

12

18

24

11

17

23

10

22

9 8 7

15 H 13

21 20 19

30 29 28 27 26 25

36 35 34 33 32 31

ORDER O (0), ORIGINAL. ORDER I (*J«), MIRROR.

31 32 33 34 35 36 36 35 34 33 32 31

25 26 27 28 29 30 30 29 28 27 26 25

19 20 21 22 23 24 24 23 22 21 20 19

13 14 15 16 17 18 18

12

17

11

16 15 14 13

7 8 9 10 11 12 10 9 8 7

1 2 3 4 5 6 6 5 4 3 2 1

ORDER ri (+ ), LAKE. ORDER ro (©), CAMERA.

Fig. 214.
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/ /^ /4 *

/z 6 7 9

* /o // S

/J J z /6

/6 z 3 76

s // 70 S

9 7 6 /z

4 /4 /s /

/ 66 so 4 S 6z ss S

S6 /o S4 /J sz s/ /s 49

24 V 79 4* *4 2Z 42 '7

zs 34 3<S 2S 29 .3 J- 3D JZ

33 z6 30 36 V 27 J/ 40

4"? 23 4J 2/ 20 46 /<f 4/

76 so /^ S3 JZ // ss 9

67 7 3 6o 6/ 6 Z *¥

/ /4A '42 4 S /33 /3S s 3 /3S /3fy /Z

/J2 '4 /s /23 /2S /S /3 /7S /24 22 23 /2/

/20 26 V "7 s/6 3o 3/ //3 //2 34 3S /09

J7 '°7 /o6 40 4/ /OS /02 44 4S 99 SS 4S

43 9S 34 S2 S3 3/ 30 S6 s7 S7 t6 60

S4 6z 66 s/ SO 66 "7 77 76 7° 7' 73

7Z 7* 7s 63 6f 7* 73 6y 6« S2, S3 6/

ss S3 SS SS S3 SS 34 31 33 s/ SO 3*

37 "7 4* /oo /p/ y/J 42, /04 /cs 39 3t /of

36 //0 /// 33 3Z "<t //S zo 2S /ts "3 2S

24 /u /2J 2/ SO /26 '*7 '7 /6 /SO /J/ /3

/33 // /O /3/S /J7 7 6 /40 '4' 3 2 /4*

Fig. 215. EVEN SQUARES IN MULTIPLES OF FOUR.*
* These squares, 4X4 and its multiples, consist of and ro orders only,

<uid it will be sufficient to write out the two 4X4 squares, which show how
o and ro are mutually interchangeable.

1
°\ ro ro\

\ro\o \ro\

\ro\o \ro\

\o\ro ro\
|

ro ro\

ro ro °\
ro ro °\

ro ro\
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It will be noticed that i is the vertical mirror picture of o and

ro of ri, and vice versa. Further if the mirror is placed upon one

of the horizontal lines, ri is the mirror picture of o as well as ro of i

and vice versa.

There are four more arrangements. There is the Chinese way

of writing downward in vertical columns as well as its inversion,

and the reversed order of both. This method originated by the use

of bamboo strips as writing material in China, and we may utilize

the two vowel sounds of the word "bamboo" (viz., a and it) to name

the left and the right downward order, a the left and u the right,

the reverse of the right ru and of the left ra, but for our present

purpose there will be no occasion to use them.

Now we must bear in mind that magic squares originate from

the ordinary and normal consecutive arrangement by such transpo-

sitions as will counteract the regular increase of value in the nor-

mally progressive series of figures ; and these transpositions depend

upon the location of the several cells. All transpositions in the

cells of even magic squares are brought about by the substitution

of figures of the ro, i, and ri order for the original figures of the

ordinary or o order, and the symmetry which dominates these

changes becomes apparent in the diagrams, which present at a glance

the order to which each cell in a magic square belongs.

Numbers of the same order are grouped not unlike the Chladni

acoustic figures, and it seems to me that the origin of the regular-

ity of both the magic figures and this phenomenon of acoustics, is

due to an analogous law of symmetry.

The dominance of one order o, ro, i, or ri, in each cell of an

even magic square, is simply due to a definite method of their

selection from the four different orders of counting. Never can

a figure appear in a cell where it does not belong by right of some

regular order, either o, ro, i, or ri.

The magic square of 4 X 4, consists only of o and ro figures,

and the same rule applies to the simplest construction of even squares

of multiples of four, such as 8 X 8, and 12 X 12.

There are several ways of constructing a magic square of 6 X 6.

Our first sample consists of 12 o, 12 ro, 6 ri, and 6 { figures. The
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12 o hold the diagonal lines. The 12 ro go parallel with one of

these diagonals, and stand in such positions that if the whole magic

square were diagonally turned upon itself, they would exactly cover

the 6 i, and 6 ri figures. And again the 6 i and 6 ri also hold toward

each other places in the same way corresponding to one another;

if the magic square were turned upon itself around the other diag-

onal, each ri figure would cover one of the i order.

/ 3S * 33 32 6 / s J3 *4 32 6

/2 S 28 V // 2S so s 28 9 // 2S

2* '7 /S /6 20 /s> /$ 2A /S /6 20 /3

/3 23 2/ 22 /* /$ 2* /* 2/ 22 '7 /6

JO 26 3 /o 2D 7 7 26 /O *7 23 /2

J/ 2 44 J S 66 J/ JS J Z J*

Fig. 216. 6X6 EVEN SQUARES.

If we compare the magic squares with the sanc!-covered glass

plates which Chladni used, and think of every cell as equally filled

with the four figures that would fall upon it according to the normal

sequence of 0, ro, i, and ri ; and further if we compare their change

into a magic square to a musical note harmonizing whole rows into

equal sums, we would find (if by some magic process the different

values of the several figures would mechanically be turned up so

O O

RO

as to be evenly balanced in rows) that they would present geomet-

rically harmonious designs as much as the Chladni acoustic figures.

The progressive transformations of o, ro, i, and ri, by mirroring,

are not unlike the air waves of notes in which represents the crest

of the wave, ro the trough, i and ri the nodes.

In placing the mirror at right angles progressively from to

i, from i to ro, from ro to ri, and from ri to o, we return to the

beginning thus completing a whole sweep of the circle.* The re-

* See diagram on page 115.
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Fig. 217. CIILADNI FIGURES.*

*The letter a indicates where the surface is touched with a finger; while

b marks the place where the bow strikes the glass plate. In the four upper
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verse of o which is ro represents one-half turn, i and ri the first and

third quarter in the whole circuit, and it is natural, therefore, that

a symmetry-producing wave should produce a similar effect in the

magic square to that of a note upon the sand of a Chladni glass

plate.

MAGIC SQUARES IN SYMBOLS.

The diagrams which are offered here in Fig. 218 are the best

evidence of their resemblance to the Chladni figures, both exhibiting

in their formation, the effect of the law of symmetry. The most

••

>••©©••!

8X8. 32 and 32 ro. 10 X 10. 72 and 72 ro.

SQUARES OF MULTIPLES OF FOUR.

Constructed only of and ro.

•*00®0*# •©+••+©•
+®*00*®+ #®+##+®#
©+••••+© *©•©©•©*m •+©••©+•m •+&••$+•
©+••••+0 *©#®0#0*
+•*©©*•+ •©+••+©•
•i-000®*# •©+••+©•

8X8 SQUARES.

Constructed from all the orders, 0, ro, i, and ri.

Fig. 218.

diagrams the plate has been fastened in the center, while in the lower ones

it has been held tight in an excentric position, indicated by the white dot.
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elegant way of rendering the different orders, i, ri, o, and ro, visible

at a glance, would be by printing the cells in four different colors,

*•©©©©•*
©©•**•©©

©©•**•©©
*•©©©©•*
ANOTHER 8X8 SQUARE.

It will be noted that in this square the arrangement of the o symbols
corresponds very closely to the distribution of the sand in the second of the
Chladni diagrams. The same may be said of the two following figures, and it

is especially true of the first one of the 8X8 squares just preceding.

•0*
*•©
+*
*•+ +•

+

•*++©•
©•©*•©
*©••©©
*+••+©
+•©*•+
•*©©©•

12 o, 12 ro, 6 i, 6 ri.

•©•*
©•*©
•*©•
*©•©

©•+©••*+•©
•+©•©©•*+•
+©•©••©•*+
©•©•++•©•*
•©•+©*+•©•

40 0, 40 ro, 10 i, 10 ri.

The reader will notice that there is a remarkable resemblance
between the symmetry displayed in this figure and in the fourth
of the Chladni diagrams.

Fig. 218. (con.). EXAMPLES OF 6X6 AND 10X 10 MAGIC SQUARES.

but for proving our case, it will be sufficient to have the four orders

represented by four symbols, omitting their figure values, and we
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here propose to indicate the order of o by

ri by -)-.

>, ro by @, i by *,

THE MAGIC SQUARE IN CHINA.

In the introduction to the Chou edition of the Yih King, we

find some arithmetical diagrams and among them the Loh-Shu, the

scroll of the river Loh, which is a mathematical square from I to 9,

so written that all the odd numbers are expressed by white dots,

i. e., yang symbols, the emblem of heaven, while the even numbers

m fa- rt

• •

o
• m 9 11

A

o

I
-T-

THE SCROLL OF LOH. THE MAP OF HO.*

(According to Ts'ai Yiiang-ting.)

Fig. 219. TWO ARITHMETICAL DESIGNS OF ANCIENT CHINA.

are in black dots, i. e., yin symbols, the emblem of earth. The in-

vention of the scroll is attributed to Fuh-Hi, the mythical founder

of Chinese civilization, who according to Chinese reports lived 2858-

2738 B. C. But it goes without saying that we have to deal here

with a reconstruction of an ancient document, and not with the

document itself. The scroll of Loh is shown in Fig. 219.

The first unequivocal appearance of the Loh-Shu in the form of

a magic square is in the latter part of the posterior Chou dynasty

*The map of Ho properly does not belong here, but we let it stand be-
cause it helps to illustrate the spirit of the times when the scroll of Loh was
composed in China. The map of Ho contains five groups of odd and even
figures, the numbers of heaven and earth respectively. If the former are re-

garded as positive and the latter as negative, the difference of each group
will uniformly yield +5 or — 5.
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(951-1126 A. D.) or the beginning of the Southern Sung dynasty

(1127-1333 A. D.). The Loh-Shu is incorporated in the writings

of Ts'ai Yuan-Ting who lived from 1135-1198 A. D. (cf. Mayers,

Chinese Reader's Manual, I, 754a), but similar arithmetical dia-

grams are traceable as reconstructions of primitive documents among

scholars that lived under the reign of Sung Hwei-Tsung, which

lasted from 1101-1125 A. D. (See Mayers, C. R. M., p. 57.)

The Yih King is unquestionably very ancient and the symbols

yang and yin as emblems of heaven and earth are inseparable from

its contents. They existed at the time of Confucius (551-479 B. C),

for he wrote several chapters which are called appendices to the

Yih King, and in them he says (III, I, IX, 49-50. S. B. E., XVI,

P. 365.) :

"To heaven belongs 1 ; to earth, 2 ; to heaven, 3 ; to earth, 4

;

to heaven, 5 ; to earth, 6 ; to heaven, 7 ; to earth, 8 ; to heaven, 9

;

to earth, 10.

"The numbers belonging to heaven are five, and those belonging

to earth are five. The numbers of these two series correspond to

each other, and each one has another that may be considered its

mate. The heavenly numbers amount to 25, and the earthly to 30.

The numbers of heaven and earth together amount to 55. It is

by these that the changes and transformations are effected, and the

spiritlike agencies kept in movement."

This passage was written about 500 B. C. and is approximately

simultaneous with the philosophy of Pythagoras in the Occident,

who declares number to be the essence of all things.

One thing is sure, that the magic square among the Chinese

cannot have been derived from Europe. It is highly probable, how-

ever, that both countries received suggestions and a general impulse

from India and perhaps ultimately from Babylonia. But the .devel-

opment of the yang and yin symbols in their numerical and occult

significance can be traced back in China to a hoary antiquity so as

to render it typically Chinese, and thus it seems strange that the

same idea of the odd numbers as belonging to heaven and the even

ones to earth appears in ancient Greece.

I owe the following communication to a personal letter from
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Professor David Eugene Smith of the Teachers' College of New
York:

"There is a Latin aphorism, probably as old as Pythagoras,

Deus imparibus numeris gaudet. Virgil paraphrases this as follows

:

Numero deus impare gaudet. (Eel. viii, 75). In the edition I have

at hand* there is a footnote which gives the ancient idea of the

nature of odd and even numbers, saying:

"
. . .impar Humerus immortalis, quia dividi integer non potest,

par numerus mortalis, quia dividi potest; licet Varro dicat Pytha-

goreos putare imparem numerum habere iinem, parem esse infinitum

[a curious idea which I have not seen elsewhere] ; ideo medendi

causa multarumque rerum impares numeros servari: nam, ut supra

dictum est, superi dii imparl, inferi pari gaudent.

"There are several references among the later commentators

to the fact that the odd numbers are masculine, divine, heavenly,

while the even ones were feminine, mortal, earthly, but I cannot just

at this writing place my hands upon them.

"As to the magic square, Professor Fujisawa, at the Inter-

national Congress of Mathematicians at Paris in 1900, made the

assertion that the mathematics derived at an early time from the

Chinese (independent of their own native mathematics which was

of a somewhat more scientific character), included the study of

these squares, going as far as the first 400 numbers. He did not,

however, give the dates of these contributions, if indeed they are

known."

As to other magic squares, Professor Smith writes in another

letter:

"The magic square is found in a work by Abraham ben Ezra

in the eleventh century. It is also found in Arabic works of the

twelfth century. In 1904, Professor Schilling contributed to the

Mathematical Society of Gottingen the fact that Professor Kielhorn

had found a Jaina inscription of the twelfth or thirteenth century

* P. Virgilii Maronis
|
Opera,

|
cum integris commentariis

|
Servii, Phi-

largyrii, Pierii,
|
Accedunt

|
Scaligeri et Lindenbrogii

| |
Pancratius

Masvicius
| . . . |

Tom. I,
|

. . . |
Leonardiae,

| . . .
|

. . cIdIdccxvtt.I
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in the city of Khajuraho, India, a magic square of the notable

peculiarity that each sub-square sums to 34."

Fig 220 is the square which Professor Smith encloses.

We must assume that we are confronted in many cases with

an independent parallel development, but it appears that suggestions

must have gone out over the whole world in most primitive times

perhaps from Mesopotamia, the cradle of Babylonian civilization,

or later from India, the center of a most brilliant development of

scientific and religious thought.

How old the magic square in China may be, is difficult to say.

It seems more than probable that its first appearance in the twelfth

century is not the time of its invention, but rather the date of a

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

Fig. 220.

recapitulation of former accomplishments, the exact date of which

can no longer be determined.

THE JAINA SQUARE.

Professor Kielhorn's Jaina square is not "an associated or

regular magic square" according to Mr. Andrews's definition, quoted

above. While the sums of all the rows, horizontal, vertical, and

diagonal, are equal, the figures equidistant from the center are not

equal to n2
-f- 1, viz., the sum of the first and last numbers of the

series. Yet it will be seen that in other respects this square is more

regular, for it represents a distribution of the figure values in what

might be called absolute equilibrium.

First we must observe that the Jaina square is continuous,

by which I mean that it may vertically as well as horizontally be

turned upon itself and the rule still holds good that wherever we

may start four consecutive numbers in whatever direction, back-



126 REFLECTIONS ON MAGIC SQUARES.

ward or forward, upward or downward, in horizontal, vertical, or

slanting lines, always yield the same sum, viz. 34, which is 2(n2
-\-i)

;

and so does any small square of 2 X 2 cells. Since we can not bend

the square upon itself at once in two directions, we make the result

visible in Fig. 221, by extending the square in each direction by

half its own size.

Wherever 4X4 cells are taken out from this extended square,

we shall find them satisfying all the conditions of this peculiar kind

of magic squares.

The construction of this ancient Jaina equilibrium- square re-

quires another method than we have suggested for Mr. Andrews'

10 5 16 3 10 5 16 3

15 4 9 6 15 4 9 6

1 14 7 12 1 14 7 12

8 11 2 13 8 11 2 13

10 5 16 3 10 5 16 3

15 4 9 6 15 4 9 6

1 14 7 12 1 14 7 12

8 11 2 13 8 11 2 13

Fig. 221.

"associated squares/' and the following considerations will afford us

the key as shown in Fig. 222.

First we write the numbers down into the cells of the square

in their consecutive order and call the four rows in one direction

A, B, C, D; in the other direction 1, 2, 3, 4. Our aim is to re-

distribute them so as to have no two numbers of the same denomi-

nation in the same row. In other words, each row must contain

one and only one of each of the four letters, and also one and only

one of each of the four figures.

We start in the left upper corner and write down in the first

horizontal row the letters A, B, C, and D, in their ordinary succes-

sion, and in the second horizontal row, the same letters in their
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inverted order. We do the same with the numbers in the first and

second vertical rows. All that remains to be done is to fill out the

rest in such a way as not to repeat either a letter or a number. In

the first row there are still missing for C and D the numbers 2 and 3,

of which 2 must belong to C, for C3 appears already in the second

row and 3 is left for D.

In the second row there are missing 1 and 4, of which 1 must

belong to B, because we have B4 in the first row.

In the first vertical row the letters B and C are missing, of

which B must belong to 3, leaving C to 4.

12 3 4

A

B

c

D

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

A
1

B
4 C D

D 2 C
3 B A

3 2

4 1

In Consecutive Order. The Start for a Redistribution.

*1 B
4

C
2

D
3

»2 C 3
B

l
A
4

B
3

A
2

D
4

C
l

C
4

D
1

A
3

B
2

The Perfected Redistribution.

1 8 10 15

14 11 5 4

7 2 16 9

12 13 3 6

Figure Values of the Square.

Fig. 222.

In the second vertical row A and D are missing for 1 and 2.

Ax and D 2 exist, so A must go to 2, and D to 1.

In the same simple fashion all the columns are filled out, and

then the cell names replaced by their figure values, which yields

the same kind of magic square as the one communicated by Prof.

Smith, with these differences only, that ours starts in the left

corner with number 1 and the vertical rows are exchanged with

the horizontal ones. It is scarcely necessary to point out the beauti-

ful symmetry in the distribution of the figures which becomes fully

apparent when we consider their cell names. Both the letters, A,
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B, C, D, and the figures, i, 2, 3, 4, are harmoniously distributed

over the whole square, so as to leave to each small square its dis-

tinct individuality, as appears from Fig. 223.

A B C D 1 4 2 3

D C B A 2 3 1 4

B A D C 3 2 4 1

C D A B 4 1 3 2

Fig. 223.

The center square in each case exhibits a cross relation, thus:

c B 3 1

A D 2 4

In a similar way each one of the four groups of four cells in

each of the corners possesses an arrangement of its own which is

symmetrically different from the others.

p. c.



CHAPTER V.

A MATHEMATICAL STUDY OF MAGIC
SQUARES.

A NEW ANALYSIS.

IV >f AGIC squares are not simple puzzles to be solved by the old

**** rule of "Try and try again," but are visible results of "order"

as applied to numbers. Their construction is therefore governed by

laws that are as fixed and immutable as the laws of geometry.

It will be the object of this essay to investigate these laws, and

evolve certain rules therefrom. Many rules have been published

Fig. 224. Fig. 225. Fig. 226.

a ,h c Z »' JL
X.

s / 6 23 2 20

d c 9 2y y
2 / j s 7 /Z /s /S

h in n X.
2 V 4 s 2 /O 2<f 7

Fig. 227.

by which various magic squares may be constructed, but they do

not seem to cover the ground comprehensively.

Let Fig. 224 represent a 3 X 3 magic square. By inspection we

note that:

h -f- c = b -f- m
and h -\- m = g -}- c

therefore 2h = b -\- g

In this way four equations may be evolved as follows:
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2h — b -f g

2n = b -\- d

2c — d -\- m
2a = m -f- g

It will be seen that the first terms of these equations are the

quantities which occur in the four corner cells, and therefore that

the quantity in each corner cell is a mean between the two quan-

tities in the two opposite cells that are located in the middle of

the outside rows. It is therefore evident that the least quantity in

the magic square must occupy a middle cell in one of the four

outside rows, and that it cannot occupy a corner cell.

Since the middle cell of an outside row must be occupied by the

least quantity, and since any of these cells may be made the middle

cell of the upper row by rotating the square, we may consider this

cell to be so occupied.

Having thus located the least quantity, it is plain that the next

higher quantity must be placed in one of the lower corner cells,

and since a simple reflection in a mirror would reverse the position

of the lower corner cells, it follows that the second smallest quantity

may occupy either of these corner cells. Next we may write more

equations as follows

:

a -\- e -\- n = S (or summation)

d+e+g=S
h + e + c = S

also

a -\-d + h = S

therefore

2>e = S

and

e = S/3

Hence the quantity in the central cell is an arithmetical mean

between any two quantities with which it forms a straight row or

column.
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With these facts in view a magic square may now be constructed

as shown in Fig. 225.

Let x, representing the least quantity, be placed in the middle

upper cell, and x -j- y in the lower right-hand corner cell, 3/ being

the increment over x.

Since x -f- 3/ is the mean between x and the quantity in the

left-hand central cell, this cell must evidently contain x -f- 23/.

Now writing x -\- v in the lower left-hand corner cell, (con-

sidering v as the increment over x) it follows that the central

right-hand cell must contain x -\- 2v.

Next, as the quantity in the central cell in the square is a mean

between x -f- 23/ and x -f- 2v, it must be filled with x -\- v -\- y. It

now follows that the lower central cell must contain x -\- 2v -\- 23/,

and the upper left-hand corner cell x -f- 2V -\- y} and finally the

upper right-hand corner cell must contain x -\- v -f- 23/, thus com-

pleting the square which necessarily must be magic with any con-

ceivable values which may be assigned to x, v, and 3/.

We may assign values to x, v, and y which will produce the

numbers 1 to 9 inclusive in arithmetical progression. Evidently x

must equal 1, and as there must be a number 2, either v or 3/ must

equal 1 also.

Assuming y = 1, if z^=i or 2, duplicate numbers would

result, therefore v cannot be less than 3.

Using these values, viz., x = 1. 3/ = 1 and v = 3, the familiar

3X3 magic square shown in Fig 226 is produced.

Although in Fig. 226 the series of numbers used has an initial

number of 1, and also a constant increment of 1, this is only an

accidental feature pertaining to this particular square, the real fact

being that a magic square 0/3X3 is always composed of three sets

each of three numbers. The difference between the numbers of

each trio is uniform, but the difference between the last term of one

trio and the first term of the next trio is not necessarily the same as

the difference between the numbers of the trios.

For example, if x = 2, y = 5 and v = 8, the resulting square

will be as shown in Fig. 227.
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The trios in this square are as follows:

2— 7— 12

io— 15 — 20

18— 23 — 28

The difference between the numbers of these trios is y = $>

and the difference between the homologous numbers is v = 8.

A recognition of these different sets of increments is essential

to the proper understanding of the magic square. Their existence

is masked in the 3X3 square shown in Fig. 226 by the more or less

accidental quality that in this particular square the difference be-

tween adjacent numbers is always 1. Nevertheless the square given

in Fig. 226 is really made up of three trios, as follows:

1st trio 1 — 2— 3

2d " 4— 5— 6

3d « 7-8-9

in which the difference between the numbers of the trios is y = 1,

and the difference between the homologous numbers is v = 3.

Having thus acquired a clear conception of the structure of a

3X3 magic square, we are in a position to examine a 9 X 9 com-

pound square intelligently, this square being only an expansion of

the 3X3 square, and governed by the same constructive rules.

Referring to Fig. 229 the upper middle cells of the nine sub-

squares may first be rilled, using for this purpose the terms, x, t, and

s. Using these as the initial terms of the subsquares the square may

then be completed, using y as the increment between the terms of

each trio, and v as the increment between the homologous terms of

the trios. The completed square is shown in Fig. 228, in which the

assignment of any values to x, y, v, t and s, mill yield a perfect,

compound 9X9 square.

Values may be assigned to x, y, v, t and ^ which will produce

the series 1 to 81 inclusive. As stated before in connection with

the 3X3 square, x must naturally equal 1, and in order to produce

2, one of the remaining symbols must equal 1. In order to avoid

duplicates, the next larger number must at least equal 3, and by
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the same reason the next must not be less than 9 and the remaining

one not less than 27. Because i-f-i-|-3 + 9 + 27 = 4 I > which

is the middle number of the series 1 — 81, therefore just these

values must be assigned to the five symbols. The only symbol

whose value is fixed, however, is x, the other four symbols may have

the values 1 — 3 — 9 or 27 assigned to them indiscriminately, thus

producing all the possible variations of a 9 X 9 compound magic

square.

If v is first made 1 and y = 2, and afterwards 3/ is made 1 and

v = 2, the resulting squares will be simply reflections of each other,

etc. Six fundamental forms of 9 X 9 compound magic squares

may be constructed as shown in Figs. 230, 231, and 232.

Only six forms may be made, because, excluding x whose value

is fixed, only six different couples may be made from the four re-

maining symbols. Six cells being determined, the rest of the square

becomes fixed.

These squares are arranged in three groups of two each, on

account of the curious fact that the squares in each pair are mu-

tually convertible into each other by the following process

:

If the homologous cells of each 3X3 subsquare be taken in

order as they occur in the 9X9 square, a new magic 3X3 square

will result. And if this process is followed with all the cells and

the resulting nine 3X3 squares are arranged in magic square

order a new 9X9 compound square will result.

For example, referring to the upper square in Fig. 230, if the

numbers in the central cells of the nine 3X3 subsquares are ar-

ranged in magic square order, the resulting square will be the

central 3X3 square in the lower 9X9 square in Fig. 230. This

law holds good in each of the three groups of two squares (Figs.

230, 231 and 232) and no fundamental forms other than these can

be constructed.

The question may be asked : How many variations of 9 X 9

compound magic squares can be made? Since each subsquare may

assume any of eight aspects without disturbing the general order of

the complete square, and since there are six radically different, or
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fundamental forms obtainable, the number of possible variations

is 6 X 89
!

We will now notice the construction of a 4 X 4 magic square

as represented in Fig. 233. From our knowledge of this magic

square we are enabled to write four equations as follows:

a-\-h-\-p-\-y = S (Summation)

g -\- h -\- n -\-m = ^

k+o+p+s=S
t-\-o-\-n-\-d = S

By inspection of Fig. 233 it is seen that the sum of the initial

terms of these four equations equals S, and likewise that the sum
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of their final terms also equals 5\ Hence h-\-n-\-o-\-p = S. It

therefore follows

:

(1st) That the sum of the terms contained in the inside 2X2
square of a 4 X 4 square is equal to S.

(2d) Because the middle terms of the two diagonal columns

compose this inside 2X2 square, their end terms, or the terms in

the four corner cells of the 4X4 square must also equal S, or

:

a + d + t + y = S

(3d) Because the two middle terms of each of the two inside

columns (either horizontal or perpendicular) also compose the cen-

tral 2X2 square, their four end terms must likewise equal S.

We may also note the following equations

:

b-\-c-\-v-\-x = S

b-\-c + a-\-d = S
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therefore

a -\- d = v -f- x,

which shows (4th) that the sum of the terms in any two contiguous

corner cells is equal to the sum of the terms in the two middle cells

in the opposite outside column.

Because

g -\- h + n +^ = S

and

it follows that

o+h+n+p= S

g + m = -\-p

or, (5th) that the sum of the tzvo end terms of any inside column,

(either horizontal or perpendicular) is equal to the sum of the tzvo

middle terms in the other parallel column.

Since

t-\-o-\-n-\-d = S

and

h-\-o-\-n-\-p = S

therefore

t-\- d — h-\- p

or (6th) the sum of the tzvo end terms of a diagonal column is equal

to the sum of the two inside terms of the other diagonal column.

These six laws govern all 4 X 4 magic squares, but the regu-

lar or associated squares also possess the additional feature that

the sum of the numbers in any two cells that are equally distant

from the center and symmetrically opposite to each other in the

square equals S/2.

Squares of larger dimensions do not seem to be reducible to

laws, on account of their complexity.

NOTES ON NUMBER SERIES USED IN THE CONSTRUCTION OF

MAGIC SQUARES.

It has long been known that magic squares may be construct :d

from series of numbers which do not progress in arithmetical order.
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Experiment will show, however, that any haphazard series cannot

be used for this purpose, but that a definite order of sequence

is necessary which will entail certain relationships between different

members of the series. It will therefore be our endeavor to deter-

mine these relationships and express the same in definite terms.

Let Fig. 237 represent a magic square of 4X4. By our

rule No. 4 it is seen that "the sum of the terms in any two con-

tiguous corner cells is equal to the sum of the terms in the two

middle cells in the opposite outside column/' Therefore in Fig.

237, a -\- d = v + s, and it therefore follows that a— v = s— d.

In other words, these four quantities form a group with the inter-
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relationship as shown. By the same rule (No. 4) it is also seen

that a -\- t = I -f- p, and hence also, a— / = p— t, giving another

group of four numbers having the same form of interrelationship,

and since both groups have "a' as an initial number, it is evident

that the increment used in one of these groups must be different

from that used in the other, or duplicate numbers would result. It

therefore follows that the numbers composing a magic square are

not made up of a single group, but necessarily of more than one

group.

Since the term "a" forms a part of two groups, we may

write both groups as shown in Fig. 238, one horizontally and the

other perpendicularly.

Next, by rule No. 5, it is shown that "the sum of the two end

terms of any inside column (either horizontal or perpendicular) is

equal to the sum of the tzvo middle terms in the other parallel col-

umn." It therefore follows that v -f- b = k -f- or*;— o = fc— b.

Using the term v as the initial number, we write this series perpen-

dicularly as shown in Fig. 239. In the same way it is seen that
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/ -f- g = n -\- 0, or /— = n— g, thus forming the second hori-

zontal column in the square (Fig. 240). Next p -f- m = h -f- k or

p— k — h— m, forming the third horizontal column and in this

simple manner the square may be completed as shown in Fig. 241.

It is therefore evident that a 4 X 4 magic square may be

formed of any series of numbers whose interrelations are such as

to permit them to be placed as shown in Fig. 241.

The numbers 1 to 16 may be so placed in a great variety of

ways, but the fact must not be lost sight of that they only inciden-

tally possess the quality of being a single series in straight arith-

metical order, being really composed of as many groups as there

are cells in a column of the square. Unless this fact is remem-

bered, a clear conception of magical series cannot be formed.

In illustration of the above remarks, three diagrams are given

in Figs. 242-244. Figs. 242 and 243 show arrangements of the
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numbers 1 to 16 from which the diverse squares Figs. 245 and 246

are formed by the usual method of construction.

Fig. 244 shows an irregular series of sixteen numbers, which,

when placed in the order of magnitude run as follows

:

2-7-9-10-11-12- 14- 15-17- 18- 19-20-21-26-30-33

The magic square formed from this series is given in Fig. 247.

In the study of these number series the natural question presents

itself: Can as many diverse squares be formed from one series as

from another? This question opens up a wide and but little ex-

plored region as to the diverse constitution of magic squares. This

idea can therefore be merely touched upon in the present article,

examples of several different plans of construction being given in

illustration and the field left at present to other explorers.

Three examples will be given, Fig. 245 being what is termed
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an associated square, or one in which any two numbers that are

diametrically opposite and equidistant from the center of the square

will be equal in summation to any other pair of numbers so

situated. The second, Fig. 246, is a square in which the sum

of every diagonal of the four sub-squares of 2 X 2 is equal, and

the fourth, Fig. 248, a square in which the pairs of numbers having

similar summations are arranged symmetrically in relation to a

perpendicular line through the center of the square.

Returning now to the question, but little reflection is required

to show that it must be answered in the negative for the following

reasons. Fig. 247 represents a magic square having no special

qualities excepting that the columns, horizontal, perpendicular and

diagonal, all have the same summation, viz., 66. Hence any series

/ 74. /2 * / 7 "/ /z z '7 33 '4 / // 6 /6

s // /O s /o /6 s 3 26 /s> // /O 74 /J b d>

/z 7 6 9 /s 9 4 7? /s 2/ /S /2 7 2 /s /o

/d 2. J /S 8 2 // '3 20 9 7 30 /2 8 9 s

Fig. 245. Fig. 246. Fig. 247. Fig. 248.

of numbers that can be arranged as shown in Fig. 241 will yield

magic squares as outlined. But that it shall also produce squares

that are associated, may or may not be the case accordingly as the

series may or may not be capable of still further arrangement.

Referring to Fig. 237, if we amend our definition by now call-

ing it an associated square, we must at once introduce the following

continuous equation

:

a + y = h + o = t + d = n + k = b + s = c + v = g + p = tn + l,

and if we make our diagram of magic square producing numbers

conform to these new requirements, the number of groups will at

once be greatly curtailed.

The multiplicity of algebraical signs necessary in our amended

diagram is so great that it can only be studied in detail, the complete

diagram being a network of minus and equality signs.

The result will therefore only be given here, formulated in the
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following laws which apply in large measure to all associated

squares.

I. Associated magic squares are made of as many series or

groups of numbers as there are cells in a column.

II. Each series or group is composed of as many numbers as

there are groups.

III. The differences between any two adjoining numbers of a
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Fig. 249. Fig. 250.

series must obtain between the corresponding numbers of all the

series.

IV. The initial terms of the series compose another series, as

do the second, third, fourth terms and so on.

V. The differences between any adjoining numbers of these

secondary series must also obtain between the corresponding terms

of all the secondary series.

/ * 7 /O /3

8 // '4 7 20

/s /s Z/ Z4 z7
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Fig. 251.
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The foregoing rules may be illustrated by the series and asso-

ciated square shown in Figs. 242 and 245.

Following and consequent upon the foregoing interrelations

of these numbers is the remarkable quality possessed by the asso-

ciated magic square producing series as follows

:

If the entire series is written out in the order of magnitude and
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the differences between the adjacent numbers are written below,

the row of differences will be found to be geometrically arranged

on each side of the center as will be seen in the following series

taken from Fig. 249.

3 - 4 - 13-14-18-19-21-22-28-29-31-32-36-37-46-47

19 1 4 1 2 1 (6) 1 2 1 4 1 9 1

In the above example the number 6 occupies the center and the

other numbers are arranged in symmetrical order on each side of it.

It is the belief of the writer that this rule applies to all associated

squares whether odd or even.

The following example will suffice to illustrate the rule as

applied to a 5 X 5 magic square, Fig. 251 showing the series and

Fig. 252 the square.

1.4.7.8 .10. 11. 13. 14. 15. 17. 18. 20. 21. 22. 24. 25. 27. 28. 29. 31. 32. 34. 35. 38. 41

3 3 I 2 I 2 I I2I2l|l2I2I I2I2I33
The diagram shown in Fig. 253 is given to impress upon the

reader the idea that a natural series of continuous numbers may

be arranged in a great variety of different magic square producing

series. A perfect 9X9 square will be produced with any con-

ceivable values that may be assigned to the symbols a, b, c, d and g,

used in this diagram. If the square is to be normal we must assign

the numbers 1, 1, 3, 9, 27 for these symbols, and a must equal 1. It

is then evident that for 2 there is a choice of four cells, as this num-

ber may be either a -\- b, a -\- c, a -f- d or a -\- g. Selecting a -f- b for

2, makes b = 1. There is then a choice of three for 4, and for

this number we will choose a -\- d, making d = 3. A choice of

two, (a -f g and a -f- c) now remains for 10. Selecting a -f- g,

(and thus making g = 9) 28 becomes the fixed value of a + c,

giving the value of 27 to c. It is thus evident that after locating

1 in any cell (other than the central cell) we may then produce at

will (4X3X2=) 24 different 9X9 magic squares. Neverthe-

less, each of these twenty-four squares will be made on exactly

the same plan, and using the same breakmoves ; the variations,

radical as they may appear to be, are only so because different
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series of the same numbers are employed, of which series, it has

been shown, there are at least twenty-four.

If the reader will take Fig. 253 and fill in number values,

making "b" (successively) = 3, 9, and 27, he will acquire a clear

idea of the part taken in magic squares by the series conception.

The work of determining the possible number of 9 X 9 magic
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Fig. 253.

squares is now greatly simplified, for all elements are thus de-

termined saving one, i. e., the number of possible modes of pro-

gression.

1 may be located in any of 80 cells and progress may be made

in x ways, and 24 variants may be constructed in each case. There-

fore, the possible number of different 9X9 squares will be at least
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80 X 24 X x = 1920X.

A single example will serve to illustrate the possibilities open

to x, the numerical value of which will be left for the present for

others to determine. As previously given, let

a = t

b= 1

d= 3

<7
= 9

Then Fig. 254 will represent a 9 X 9 square based on the

arrangement of symbols given in Fig. 253.

29 /6 33 20 6/ 24 6s 32 69

72 32 /S 36 23 64 27 6s 2S

3/ 7J 35 22 32 26 *7 J /'

74 34 7* 3S 2S 42 2 7° 6

3 77 <V #/ 4/ / *s 3' 7*

76 /2 So 40 s7 44 4- 4S s

// 79 /s St 43 60 *7 7 S'

34 '4- j-j /s SSJ 46 63 so /o

/3 JO '7 ss 2/ 62 4$ 66 S3

Fig. 254.

Considering the numbers 1 to 81 to be arranged in arithmetical

order the construction of this square must be governed by the fol-

lowing rule:

Regular spacing : Three successive cells in upward right-hand

diagonal.

Breakmoves between

3 and 4
6 " 7

9 " 10

12 " 13 etc.

Three cells down and one to left.

(Extended knight's move.)
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and between

two cells to the right.

In fact, however, the square is built up by the common rule,

viz. :

Regular spacing: Nine successive cells in upward right-hand

diagonal, and all breakmoves, two cells to the right, the numbers

1 to 81 being arranged in the following series:

1.2.3 28 . 29
.
30 55.56.57

4.5.6 31.32.33 58.59.60

7.8.9 34.35.36 61 .62.63 etc., etc.

As shown above, the numbers i to 81 may be arranged in at

least twenty-four of such magic square producing series, thus giving

twenty-four different squares, by the same method of progression,

and using the same breakmoves.

L. s. F.



CHAPTER VI.

MAGICS AND PYTHAGOREAN NUMBERS.

"I have compiled this discourse, which asks
for your consideration and pardon not only be-
cause the matter itself is by no means easy to

be handled, but also because the doctrines herein
contained are somewhat contrary to those held
by most of the Platonic philosophers." Plutarch.

rTAHE mysterious relationships of numbers have attracted the

-* minds of men in all ages. The many-sided Franklin, whose 200th

anniversary the philosophical, scientific, and literary worlds have

recently celebrated, used to amuse himself with the construction

of magic squares and in his memoirs has given an example of his

skill in this direction, by showing a very complicated square with

the comment that he believes the same to be the most magical magic

square yet constructed by any magician.

That magic squares have had in centuries past a deeper mean-

ing for the minds of men than that of simple mathematical curios

we may infer from the celebrated picture by Albert Diirer entitled

"Melancolia," engraved in 15 14. The symbolism of this engraving

has interested to a marked degree almost every observer. The figure

of the brooding genius sitting listless and dejected amid her un-

completed labors, the scattered tools, the swaying balance, the flow-

ing sands of the glass, and the magic square of 16 beneath the bell,

—these and other details reveal an attitude of mind and a connection

of thought, which the great artist never expressed in words, but

left for every beholder to interpret for himself.

The discovery of the arrangement of numbers in the form of

magic diagrams was undoubtedly known to the ancient Egyptians
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and this may have formed part of the knowledge which Pythagoras

brought back from his foreign travels. We have no direct evidence

that the Pythagorean philosophers in their studies of the relation-

ship of numbers ever combined them into harmonic figures, yet th?

MELANCHOLY.

supposition that they did so is not at all improbable. Such diagrams

and their symbolic meanings may well have formed part of the

arcana of the esoteric school of Pythagoras, for similar facts were

accounted by ancient writers as constituting a part of the aporrheta
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of the order and the story is told of an unworthy disciple who re-

vealed the secret of the construction of the dodecahedron inscribed

within a sphere, this being a symbol of the universe.

Among the best expositions of the Pythagorean philosophy are

sections of the "Timaeus" and "Republic" of Plato. These dia-

logues were written after Plato's return from Magna Grsecia, where

from contact with Archytas of Tarentum and other philosophers,

he imbibed so much of the Italian school that his whole system of

philosophy became permeated with Pythagorean ideas. It is even

suggested that he incorporated into these dialogues parts of the

lost writings of Philolaus, whose works he is known to have pur-

chased. No portions of the dialogues named have been more

puzzling to commentators than the vague references to different

numbers, such as the number 729, which is chosen to express the

difference between the kingly man and the tyrant, or the so-called

number of the State in the "Republic," or the harmonic number of

the soul in the "Timaeus" of which Plutarch said that 'it would be

an endless toil to recite the contentions and disputes that have from

hence arisen among his interpreters-" Either our text of these pas-

sages is corrupt or Plato is very obscure, throwing out indirect hints

which would be intelligible only to those previously informed. Plato

states himself in the "Phaedrus" that "all writings are to be regarded

purely as a means of recollection for him who already knows," and

he, therefore, probably wrote more for the benefit of his hearers

than for distant posterity.

It is upon the principle of a magic square that I wish to inter-

pret the celebrated passage in the "Republic" referring to the number

729, proceeding from this to a discussion of certain other numbers

of peculiar significance in the Pythagorean system. My efforts in

this direction are to be regarded as purely fanciful ; the same may be

said, however, of the majority of other methods of interpretation.

The passage from the "Republic" referred to (Book IX, § 587-8,

Jowett's translation) reads as follows:

Socrates. "And if a person tells the measure of the interval

which separates the king from the tyrant in truth of pleasure, he



MAGIC SQUARES AND PYTHAGOREAN NUMBERS. I49

will find him, when the multiplication Is completed living 729 times

more pleasantly, and the tyrant more painfully by this same interval."

Glaucon. "What a wonderful calculation."

Socrates. "Yet a true calculation and a number which closely

concerns human life, if human life is concerned with days and nights

and months and years."

The number 729 is found to be of great importance all through

the Pythagorean system. Plutarch states that this was the number

belonging to the sun, just as 243 was ascribed to Venus, 81 to Mer-

cury, 27 to the moon, 9 to the earth, and 3 to Antichthon (the earth

opposite to ours). These and many similar numbers were derived

frem one of the progressions of the Tetractys,— 1 :2 : 14 :8 and 1 -.3

: 19:27. The figures of the above proportions were combined by

Plato into one series, 1, 2, 3, 4, 9, 8, 27. (Timaeus, § 35). Plutarch

in his "Procreation of the Soul," which is simply a commentary

i*pon Plato's "Timaeus," has rep-

resented the numbers in the form

of a triangle; the interior num-

bers, 5, 13, and 35, representing

the sums of the opposite pairs,

were also of great importance.

The deep significance of the

Tetractys in the system of Py-

thagoras may be inferred from

a fragment of an oath contained

in the "Golden Verses."

Nat /ma tov afJLtTepov if/v^a irapahovra rerpaKTov

Hayau, aevdov <f>vcreo)S p<.£w/ao.t' k)(OV(rav.

"Yea, by our Tetractys which giveth the soul the fount and

source of ever flowing nature
!"

Odd numbers were especially favored by the Pythagoreans

and of these certain ones such as 3 and its higher powers were

considered to have a higher significance than others and in this way,

perhaps, arose the distinction between expressible and inexpressible

or ineffable numbers (apiOixol farol ko.1 apprjTot). Numbers which

expressed some astronomical fact also held high places of honor,

Fig. 25
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as may be seen from a statement by Plutarch (loc. cit.) in reference

to the Tetractys. "Now the final member of the series, which is

27, has this peculiarity, that it is equal to the sum of the preceding

numbers (1+2+3+4+9+8) ; it also represents the periodical num-

ber of days in which the moon completes her monthly course ; the

Pythagoreans have made it the tone of all their harmonic intervals.
,,

Fig. 256.

This passage indicates sufficiently the supreme importance of

the number 2J.

If we construct a magic square 27X27 upon the plan of a

checker-board—arranging the numbers 1 to 729 first in numerical

order, then shifting the 9 largest squares (9X9) into the positions

indicated in the familiar 3X3 square, repeating the process with
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the subdivisions of the 9X9 squares and so on down—we will arrive

at the following combination. 1

It will be noted that we have 365 white squares or days and

364 dark squares or nights—a veritable ''checkerboard of nights and

days." The number 365, the days of the solar year, very appro-

priately occupies the centre of the system. The columns, hori-

zontals, and diagonals of the central square 3X3 foot up 1095, or

the days of a 3 year period, those of the larger center square 9X9
foot up 3285 the days of a 9 year period, while those of the entire

combination 27X27 foot up 9855,2 the days of a 27 year period,

—

in other words, periods of years corresponding to the Tetractys

I
f 3> 9> 27- We may with safety borrow the language of Plato and

say that the above arrangement of numbers "is concerned with days

and nights and months and years."

The interpretation of the other passage referred to in the "Re-

public"—the rinding of the number of the State—(Book VIII,

§ 546) has been a subject of the greatest speculation and by con-

sulting the various editions of Plato it will be found that scarcely

any two critics agree upon a solution.3 As Jowett remarks, it is

a puzzle almost as great as that of the Beast in the Book of Reve-

lation. Unfortunately we have no starting-point from which to

begin our calculations; this and the very uncertain meanings of

many of the Greek terms have caused many commentators to give

up the solution of the problem in sheer despair. Aristotle, who was

a hearer of Plato's, writes as if having a full knowledge of the

mystery; Cicero, however, was unable to solve the riddle and his

sentiment became voiced in the proverb numeris Platonicis nihil

obscurius.

By taking a hint from our magic square and starting with the

1 This method of constructing composite magic squares is, so far as I

know, original with the writer. It bears some resemblance to the method of
Schubert (see "Compound Magic Squares," p. 44) ; the numbers of each
square, however, increase in periods of threes instead of by sequence.

2 Not only the perpendiculars, horizontals, and diagonals of this large
square foot up 9855, but there are an almost indefinite number of zig-zag

lines, which give the same footing.

8 Schleiermacher, Donaldson, and Schneider suggest 216, and much may
be said in favor of this number. Jowett gives 8000 as the possible solution.

Others suggest 951, 5040, 17,500, 1728, 10,000, etc.
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number 2J, I believe we may arrive at as good a solution of the

problem as any that I have seen suggested. The following inter-

pretation of the Greek terms is offered.

avt-r/ostq Swa/ievai te kcu the square of the num-

SwaffTEvdjuEvaL ber times its root, 272 X|/ 27= 2187

pslg cnrooTaoEig increased by thrice the

first terms (of the

Tetractys)
( I+2 -r3 _|_4 _|_9 ) X 3= 5?

rirrapag ds opovg \afiov- and four times the

aat whole series (i-j-2-f-3-}-4-r-9-|-8-r-27)X4= 2 i6

dfioiovvrtjv te Kal clvo- of numbers unlike yet

fioLovvTuv Kal av^ovTuv bearing the same ra-

nal (f>6iv6rvu)v tio whether increas-

ing or decreasing

(1. e. 1 :2 : :$ :8 or 8:4: :2 :i It may also refer

to the ascending and descending figures

of the triangle. 8, 4, 2, 1, 3, 9, 27)

ndvraTrpoayyopaKalpTjTa makes the sum com-

irpbg bXhfka aizEiprjvav mensurable and ex-

pressible in all its

parts. sum= 2460

(i e. 2460 is easily divisible by 1, 2, 3, 4, 5,

6, io, 12 etc.)

cjv Efrtrpirog -rrvOfifyv, this sum increased by

Vi 2460X134= 3280

KEfiwadi ovCvyEig and adding 5 32804-5= 3285

rplg ab^eEtg is multiplied by 3 32g5X3_ 9g55

This solution of the problem, 9855, it will be noted, brings us

again but by a different route to the magic number of our large

square. The second part of the passage contains a description of

the number by which the above calculation may be verified.

6vo dp/novlag napix^Tai (the number) yields

two harmonic parts,

one of which is a

square 3X3= 9

multiplied by 100: 9Xloo_. gOQ

the other has one side

equal to the square
3

T7/ ivpopJjKEL 6e, and the other oblong 3X2g85_ 8g55

sum= 9855

T7jV flEV LGTJV lOdKig,

EKarbv Toaavra.Kir
t

Tyv fie 'iao[n']K7) juev,
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The remainder of the passage describes the length of the ob-

long which we have shown above to be 2985

:

inarbv fiev apiB/nuv anb (the oblong) is 100

SiapLETpuv irefi-rradog, times the side of a

rectangle having di-

agonals of 5. 100X3=300

(i. e. having sides of 3 and 4.)

orjrcjv deofxevuv ivbg suae- less of one each of the

rtov, expressible parts, i. e.

4 and 5

apprjTwv 6e Svelv, and 2 of the inexpressi- 300—(5-|-4-|-3+3)== 2^5

ble

kaarbv 6e nvfiuv rpiddog plus 100 times the cube

of 3 (3)
3Xioo= 2700

sum= 2985

Plato states that the number of the State "represents a geo-

metrical figure which has control over the good and evil of births.

For when your guardians are ignorant of the right seasons and unite

bride and bridegroom out of due time, the children will not be

goodly and happy." The number 9855, expressing a period of

27 years, might thus represent the dividing line between the ages

when men and women should begin to bear children to the State,

—

20-27 years for women, 27-34 years for men. ( See also "Republic/'

Book V, §460). Aristotle in his "Politics" (V, 12. 8) says in

reference to the number of the State that when the progression of

number is increased by 1
/3 and 5 is added, 2 harmonies are produced

giving a solid diagram. This, as may be seen from our analysis of

the first part of the passage, may have reference to the number

3285, which, being represented by 3
2
X365, may be said to have the

dimensions of a solid.

In his "Reflections on Magic Squares" Dr. Carus gives- some

very striking examples of the relationship between magic squares

and the musical figures of Chladni. I would like to touch before

concluding upon a closely related subject and show certain connec-

tions which exist between the magic square, which we have con-

structed, and the numbers of the Pythagorean harmonic scale. This

scale had, however, more than a musical significance among the
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Greek philosophers; it was extended to comprehend the harmony

of planetary movements and above all else to represent the manner

in which the "soul of the universe" was composed. It is especially

in the latter sense that Plato employs the scale in his "Timaeus."

In a treatise by Timaeus the Locrian upon the "Soul of the

World and Nature," we find the following passage : "Now all these

proportions are combined harmonically according to numbers, which

proportions the demiurge has divided according to a scale scien-

tifically, so that a person is not ignorant of what things and by what

means the soul is combined; which the deity has not ranked after

the substance of the body , but he made it older by taking the

-first of unities which is 384. Now of these the first being assumed

it is easy to reckon the double and triple; and all the terms, with

their complements and eights must amount to 114,695." (Trans-

lation by Burge.)

Plato's account of the combination of the soul is very similar

to the above, though he seems to have selected 192, (384/2) for the

first number. Plutarch in his commentary makes no mention of

Timaeus, but states that Crantor4 was the first to select 384, for the

reason that it represented the product of 82X6, and is the lowest

number which can be taken for the increase by eighths without

leaving fractions. Another very possible reason, which I have not

seen mentioned, is that 384 is the harmonic ratio of 27
2/2 or 364.5,

a number which expresses very closely the days of the year.

243:256:1364.5:384.

The proportion 243:256(3 5
:4

4
) was employed by the Pyth-

agoreans to mark the ratio5 which two unequal semitones of the

harmonic scale bear to one another.

Batteux has calculated the 36 terms of the Pythagorean scale

starting with 384 and his series must be considered correct, for it

fulfils the conditions specified by Timaeus,—the numbers all footing

* Crantor lived nearly 100 years after Timaeus the Locrian. The treatise

upon the "Soul of the World and Nature," which bears the latter's name
probably belongs to a much later period.

5 For further references to this ratio see Plato's "Timaeus," § 36, and
Plutarch's "Procreation of the Soul," § 18.
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up 1 14,695 : A few of the numbers of this harmonic scale marking

the "first unity" and several of the semitones will be given.

f E
1

384

1st octave 486

729 (For Batteux's full series and

\i
972

1458

method of calculation the

2nd octave reader is referred to Burge's

translation of Plato Vol. VI.

3rd octave \

C
I B flat

1944

2187
p. 171).

4th octave B flat 4374

By referring to our magic square it will be noted that the first

of unities" 384, constitutes the magic number of the small 3X3
square beginning with the number 100. If we arrange the magic

numbers of the 81 squares (3X3) in the order of their magnitudes

we find that they fall into 9 series of 9 numbers, each series beginning

as follows:

I II III IV V VI VII VIII IX

87 330 573 816 1059 1302 1545 1788 2031

The intervals between these series are worthy of note.

Between

INTERVALS.

and II 243 the first member of the ratio 243:256.

" III 486 C of the 1st octave

" IV 729 F " " 1st
"

M V 972 C " " 2nd "

" VII 1458 F " " 2nd "

" IX 1944 C " " 3 rc*
"

If we arrange the magic numbers of the large squares (9X9)

in the same way, it will be found that they fall into 3 series of 3

numbers, each series beginning

I II III

1017 3204 5391

Interval between I and II = 2187 B-flat of the 3rd octave.

I " 111 = 4374 B-flat " " 4th "

Numerous other instances might be given of the very intimate

connection between magic squares and various Pythagorean num-

bers, but these must be left for the curious-minded to develop for

themselves. Such connections as we have noted are no doubt in
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some respects purely accidental, being due to the intrinsic harmony

of numbers and therefore not implying a knowledge by the ancients

of magic squares as we now know them. The harmonic arrangement

by the Greeks of numbers in geometrical forms both plane and

solid may, however, be accepted, and Plato's descriptions of various

numbers obscure and meaningless as they were to succeeding gen-

erations, may have been easily comprehended by his hearers when

illustrated by a mathematical diagram or model.6

Differences between the methods of notation in ancient and

modern times have necessarily produced differences in the concep-

tion of numerical relations. The expression of numbers among the

Greeks by letters of the alphabet was what led to the idea that every

name must have a numerical attribute, but the connection of the

letters of the name was in many cases lost, the number being re-

garded as a pure attribute of the object itself. A similar confusion

of symbols arose in the representation of various concepts by geo-

metrical forms, such as the five letters of YrEIA and the symboliza-

tion of health by the Pythagoreans under the form of the pentalpha

or five-pointed star.

It was the great defect of the Greek schools that in their search

for truth, methods of experimental research were not cultivated.

Plato in his "Republic" (Book VII, §530-531) ridicules the em-

piricists, who sought knowledge by studying the stars or by com-

paring the sounds of musical strings, and insists that no value is

to be placed upon the testimony of the senses. "Let the heavens

alone and train the intellect" is his constant advice.

If the examples set by Pythagoras in acoustics and by Archi-

medes in statics had been generally followed by the Greek philos-

ophers, our knowledge of natural phenomena might have been ad-

vanced a thousand years. But as it happened there came to prevail

but one idea intensified by both Plato and Aristotle, and handed

down through the scholastics even to the present time, that knowl-

6 The description of the number of the State in the "Republic" and that

of the Soul in the "Tirmeus" render such a mode of representation almost
necessary. Plutarch ("Procreation of Soul," § 12) gives an illustration of an
harmonic diagram 5X7 containing 35 small squares "which comprehends in

its subdivisions all the proportions of the first concords of music."
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edge was to be sought for only from within. Hence came the flood

of idle speculations which characterized the later Pythagorean and

Platonic schools and which eventually undermined the structure of

ancient philosophy. But beneath the abstractions of these schools

one can discover a strong undercurrent of truth. Many Pythago-

reans understood by number that which is now termed natural law.

Such undoubtedly was the meaning of Philolaus when he wrote

"Number is the bond of the eternal continuance of things," a senti-

ment which the modern physicist could not express more fittingly.

As the first study of importance for the youth of his "Republic"

Plato selected the science of numbers; he chose as the second ge-

ometry and as the third astronomy, but the point which he empha-

sized above all was that these and all other sciences should be

studied in their "mutual relationships that we may learn the nature

of the bond which unites them." "For only then," he states, "will

a pursuit of them have a value for our object, and the labor, which

might otherwise prove fruitless, be well bestowed." Noble utter-

ance! and how much greater need of this at the present day with

our complexity of sciences and tendency towards narrow speciali-

zation.

In the spirit of the great master whom we have just quoted

we may compare the physical universe to an immense magic square.

Isolated investigators in different areas have discovered here and

there a few seemingly restricted laws, and paying no regard to the

territory beyond their confines, are as yet oblivious of the great

pervading and unifying Bond which connects the scattered parts

and binds them into one harmonious system. Omar, the astron-

omer-poet, may have had such a thought in mind, when he wrote:

"Yes; and a single Alif were the clue

—

Could you but find it—to the treasure-house

And peradventure to the Master too;

Whose secret presence, through creation's veins

Running quicksilverlike eludes your pains;" etc.

When Plato's advice is followed and the "mutual relationships

between our sciences" are understood we may perchance find this

clue, and having found it be surprised to discover as great a sim-
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plicity underlying the whole fabric of natural phenomena as exists

in the construction of a magic square.

c. A. B.

MR. BROWNE'S SQUARE AND LUSUS NUMERORUM.

The 27 X 27 square of Mr. C. A. Browne, Jr. is interesting

because, in additon to its arithmetical qualities commonly possessed

by magic squares, it represents some ulterior significance of our

calendar system referring to the days of the month as well as the

days of the year and cycles of years. It is wonderful, and at first

sight mystifying, to observe how the course of nature reflects even

to intricate details the intrinsic harmony of mathematical relations

;

and yet when we consider that nature and pure thought are simply

the result of conditions first laid down and then consistently carried

out in definite functions of a distinct and stable character, we will

no longer be puzzled but understand why science is possible, why

man's reason contains the clue to many problems of nature and,

generally speaking, why reason with all its wealth of a priori

thoughts can develop at all in a world that at first sight seems to be

a mere chaos of particular facts. The purely formal relations of

mathematics, materially considered mere nonentities, constitute the

bond of union which encompasses the universe, stars as well as

motes, the motions of the Milky Way not less than the minute com-

binations of chemical atoms, and also the construction of pure

thought in man's mind.

Mr. Browne's square is of great interest to Greek scholars be-

cause it throws light on an obscure passage in Plato's Republic, re-

ferring to a magic square the center of which is 365, the number of

days in a year.

The construction of Mr. Browne's square is based upon the

simplest square of odd numbers which is 3X3. But it becomes

somewhat complicated by being extended to three in the third power

which is 27. Odd magic squares, as we have seen, are built up

by a progression in staircase fashion, but since those numbers

that fall outside the square have to be transferred to their cor-
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responding places inside, the first and last staircases are changed

into the knight's move of the chessboard, and only the middle one

retains its original staircase form. We must construct the square

so that the central figure, which in a 3X3 square is 5, must always

fall in the central cell. Accordingly, we must start the square

beginning with figure 1 outside of the square in any middle cell

immediately bordering upon it, which gives four starting-points

from which we may either proceed from the right or the left, either

upwards or downwards which yields eight possibilities of the 3X3
square. For the construction of his 27X27 square, Mr. Browne

might have taken any of these eight possibilities as his pattern.

2 7 6

9 5 1

4 3 8

7

7

8 3 4

1 5 9

6 7 2

9 1

1 9

4 3 8

9 5 1

2 7 6

3

3

6 7 2

1 5 9

8 3 4

9 3

1 3

2 9 4

7 5 3

6 1 8

9

9

6 1 8

7 5 3

2 9 4

7 7

7 7

4 9 2

3 5 7

8 1 6

9

9

8 1 6

3 5 7

4 9 2

3 7 11
THE EIGHT POSSIBLE ARRANGEMENTS OF THE 3X3 MAGIC SQUARE.

Fig. 257.

He selected the one starting on the top of the square and moving

toward the right, and thus he always follows the peculiar arrange-

ment of this particular square. It is the fourth of the eight arrange-

ments shown in Fig. 274. Any one who will take the trouble to

trace the regular succession of Mr. Browne's square will find that it

is a constant repetition of the knight's move, the staircase move

and again a knight's move on a small scale of 3X3 which is repeated

on a larger scale 9X9, thus leading to the wonderful regularity

which, according to Mr. Browne's interpretation of Plato, astonished

the sages of ancient Greece.

Any one who discovers at random some magic square with its
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immanent harmony of numbers, is naturally impressed by its ap-

parent occult power, and so it happens that they were deemed super-

natural and have been called "magic." They seem to be the product

of some secret intelligence and to contain a message of ulterior

meaning. But if we have the key to their regularity we know that

the harmony that pervades them is necessary and intrinsic.

Nor is the regularity limited to magic squares. There are

other number combinations which exhibit surprising qualities, and

I will here select a few striking cases.

If we write down all the nine figures in ascending and descend-

ing order we have a number which is equal to the square of a num-

ber consisting of the figure 9 repeated 9 times, divided by the sum

of an ascending and descending series of all the figures thus

:

^ £ 999999999X999999999
12345678987654321 = I+aH.3+4+5+6+7+8+9+8+7+6+5+4+3+3+I

-

The secret of this mysterious coincidence is that iiXi i=I2I
;

111X111=12321; 1111X1111=1234321, etc., and a sum of an

ascending and descending series which starts with 1 is always

equal to the square of its highest number. 1+2+1=2X2; 1+2+
3+4+3+2+1=4X4, etc., which we will illustrate by one more

instance of the same kind, as follows:

T01jrfi , i10T 7777777X7777777
»345676543«=

I+ a+3+4+5+6+7+6+5+4+3+ a+I
.

There are more instances of numerical regularities.

All numbers consisting of six equal figures are divisible by 7,

and also, as a matter of course, by 3 and 11, as indicated in the

following list:

111111:7=15873
222222: 7=31746
333333-7=476i9

444444 : 7=63492

555555:7=79365
666666:7=95238

777777:7=111111
888888:7=126984

999999:7=142857
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Finally we will offer two more strange coincidences of ;i litstts

numerorum.

0X9+ 1 =

1

1 X 9 + 2 = 1

1

12 X9 + 3= m
123X9 + 4= mi
1234X9 + 5 = urn

12345 X9 + 6= iiiiii

123456X9 + 7= limn
1234567X9 + 8= 11111111

12345678X9 + 9= 11 in 11 1

1

123456789 X9+ 10 =1111111111.

1 X 8+i= 9

12 X 8 + 2 = 98

123 X 8 + 3 = 987

1234 X 8 + 4 = 9876

12345 X 8 + 5 = 98765

123456x8 + 6 = 987654

1234567 X 8 + 7 = 9876543

12345678X8 + 8 = 98765432

123456789 X 8 + 9 = 987654321.

No wonder that such strange regularities impress the human

mind. A man who knows only the externality of these results will

naturally be inclined toward occultism. The world of numbers as

much as the actual universe is full of regularities which can be

reduced to definite rules and laws giving us a key that will unlock

their mysteries and enable us to predict certain results under defi-

nite conditions. Here is the key to the significance of the a priori.

Mathematics is a purely mental construction, but its compo-

sition is not arbitrary. On the contrary it is tracing the results of

our own doings and taking the consequences of the conditions we

have created. Though the scope of our imagination with all its

possibilities be infinite, the results of our construction are definitely

determined as soon as we have laid their foundation, and the actual
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world is simply one realization of the infinite potentialities of being.

Its regularities can be unraveled as surely as the harmonic relations

of a magic square.

Facts are just as much determined as our thoughts, and if we

can but gain a clue to their formation we can solve the problem of

their nature, and are enabled to predict their occurrence and some-

times even to adapt them to our own needs and purposes.

A study of magic squares may have no practical application,

but an acquaintance with them will certainly prove useful, if it

were merely to gain an insight into the fabric of regularities of any

kind. p. c.



CHAPTER VII.

SOME CURIOUS MAGIC SQUARES AND COM-

BINATIONS.

A TANY curious and interesting magic squares and combinations

L'*- have been devised by the ingenious, a selection of which will

be given in the following pages, some of the examples being here

presented for the first time in print.

The curious irregularities of the 6X6 magic squares were re-

ferred to in the first chapter, and many unsuccessful attempts have

been made to construct regular squares of this order. An interesting

/6 /u 33 34 S 6

/3 /s 36 3S S 7

/2 /o '7 /S 28 26

9 // 20 /& 25 27

32 30 / 2 24 2Z

29 3/ 4- J 2/ 26

32 3/ / J 2/ 23

29 30 ^ 2, 21, 22

9 // 20 /S 25 2/

/2 /O '7 /s 2# 26

/6 /s 33 35 S 7

/3 /* 36 3^ S 6

Fig. 258. Fig. 259.

6X6 square is illustrated in a work entitled Games, Ancient and

Oriental by Edward Falkener,* and is here reproduced in Fig. 258.

It will be seen however that the two corner diagonals of this square

do not sum in, but by a transposition of the figures this imper-

fection is corrected in Fig. 259. Other transpositions are also pos-

sible which will effect the same result. The peculiarity of this

* Published by Longmans Green & Co., London and New York, 1892.
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square consists in its being divided into nine 2X2 squares in each

of the four subdivisions of which the numbers follow in arithmetical

sequence, and the 2X2 squares are arranged in the order of a

3X3 magic square, according to the progressive value of the

numbers 1 to 36. The construction of this 6X6 square is regu-

lar only in relation to the totals of the 2X2 squares, as shown in

Fig. 260.

Fig. 261 is a remarkable 8X8 square which is given on page

300 of the above mentioned book, and which is presented by Mr.

Falkener as "the most perfect magic square of 8 X 8 that can be

constructed." Some of its properties are as follows:

1. The whole is a magic square of 8X8.
2. Each quarter is an associated 4X4 square.

3. The sixteen 2^2 subsquares have a constant summation

of 130.

/22 /o do

41 74 /06

S$ /5S 26

Fig. 260.

4. Each quarter contains four 3X3 squares the corner numbers

of which sum 130.

5. Any 5X5 square which is contained within the 8X8 square

has its corner numbers in arithmetical sequence.

A very interesting class of squares is referred to in the same

work on pages 337-338 and 339 as follows

:

"The Rev. A. H. Frost, while a missionary for many years in

India, of the Church Missionary Society, interested himself in his

leisure hours in the study of these squares and cubes, and in the

articles which he published on the subject gave them the name of

'Nasik' from the town in which he resided. He has also deposited

'Nasik' cubes in the South Kensington Museum (London) and he

has a vast mass of unpublished materials of an exhaustive nature

most carefully worked out.
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"Mr. Kesson has also treated the same subject in a different way

and more popular form in the Queen* He gives them the very-

appropriate name of Caissan Squares, a name given to these squares,

he says, by Sir William Jones.

"The proper name, however, for such squares should rather be

'Indian,' for not only have the Brahmins been known to be great

adepts in the formation of such squares from time immemorial, not

only does Mr. Frost give his an Indian name, but one of these

squares is represented over the gate of Gwalior, while the natives of

/ S9 6 6 /4 2 60 63 /s / se 3 60 <f 63 6 6/

46 24 *7 33 V 2/ 28 ^4 /6 66 '*/ S3 S) SO // 62

32 3S ^/ /& 3/ 3? 44 /S '7 42 /£ «4 2*, *7 22 4S

S/ £ 6 A* SO / Z S 63 32 34 30 <>7 2S J4 *7 36

3 s7 St/ /6 4 s<s SS /3 <?7 2 S9 4- 64 7 6z S

48 22 2S 3S 4S 23 26 36 s6 /$ «*" /3 49 /o sy /2

SO 40 4J '7 2S 33 42 ZO 4/ /8 43 20 4S 23 46 2/

49 // S 62 S2 /o 7 6/ 40 6/ 38 23 33 26 3S 2S

Fig. 261. Fig. 262.

India wear them as amulets, and La Loubere, who wrote in 1693,

expressly calls them 'Indian Squares.'

"In these Indian squares it is necessary not merely that the

summation of the rows, columns and diagonals should be alike, but

that the numbers of such squares should be so harmoniously bal-

anced that the summation of any eight numbers in one direction

as in the moves of a bishop or a knight should also be alike."

An example of one of these squares is given in Fig. 262 and

examination will show it to be of the same order as the "Jaina"

square described by Dr. Cams in a previous chapter (pp. 125 ff.),

but having enlarged characteristics consequent on its increase in

size. It will be seen that the extraordinary properties as quoted

* Published in London, England.
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above in italics exist in this square, so that starting from any cell

in the square, with a few exceptions, any eight numbers that are

covered by eight consecutive similar moves will sum 260. In

addition to this the numbers in every 2X2 square, whether taken

within the square or constructively, sum 130; thus, 1 + 58 + 16

+ 55 = 130 and 1 + 16 + 61 + 52 = 130, also 1 + 58 + 40 + 31

= 130 etc. Furthermore, (as in the Jaina square) the properties

of this square will necessarily remain unchanged if columns are

taken from one side and put on the other, or if they are removed

from the top to the bottom, or vice versa, it being a perfectly con-

tinuous square in every direction.

The wonderful symmetry of this square naturally invites atten-

tion to the method of its construction, which is very simple, as may

/ 3 <? 6

//f /* S //

'7 /S 2* 22

J2 JO 2S 27

2 4* 7 s

/S /z /o /Z

/S 20 2d 2/

J/ 29 26 2<f

/ Z4- 4 /S

<r // S /o

/A 2 /6 J

/2 7 s 6

Fig. 263. Fig. 264.

be seen by following the natural sequence of the numbers 1 to 32

in Fig. 263 which shows the disposition of the numbers of the first

half of the series. The second half is simply a complementary repe-

tition of the first half. The numbers of this square are arranged

symmetrically in relation to similarly located cells in diagonally

opposite quarters, thus, (referring to Fig. 262) 1+64 = 65 and

4 -j- 61 = 65 etc. This feature permits the completion of Fig. 26^

by filling in the vacant cells at random with their respective differ-

ences between 65 and the various numbers already entered.

Fig. 264 shows a 4 X 4 square constructed by the same method

and having similar properties, with natural limitations due to its

small size. This square strikingly resembles the Jaina square as
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modified by Dr. Carus (see Fig. 222, p. 127) the numbers and

arrangement of same in the two corner diagonal columns being

identical in both squares, while the other numbers are differently

located.

Fig. 265 is an original 8X8 square contributed by Mr. L. S.

Frierson, which combines to a limited extent some of the curious

characteristics of the Franklin and the Jaina or Indian squares. It

possesses the following properties

:

1. Considered as a whole it is an 8 X 8 magic square.

2. Each quarter is in itself a magic square.

3. The four central horizontal columns make two 4X4 magic

squares.

/ 2S s6 1>S 2 26 SS V
w 64 // 2 33 63 /S /o

s7

(

33 /S 24 S<$ M /S 23

32 S' 4/ 43 3/ 7 42 SO

3 27 s^ 46 A 2£ S3 4S

3$ 62 /s // <V 6/ 20 /2

S3 3S /4 22 60 36 /J 2/

30 6 43 S/ 23 s 4 4- S2

\ /\ /\
J>,

/ O/'

y VX\y
-**

r/ /'\ / \

> / V,

y/ ST

^l

\ /
T j> t\

Fig. 265. Fig. 266.

4. It contains twenty-five 2X2 squares, each having a con-

stant summation of 130.

5. It also contains twenty-four 3X3 squares, the four corner

cells of which have a constant summation of 130.

6. Any 4X4 square has a constant summation of 520.

7. In any 5X5 square the four corner cells contain numbers

in arithmetical sequence.

8. Any rectangular parallelogram which is concentric with

any of the nine subcenters contains numbers in its corner

cells that will sum 130, excepting when the diagonals of

any of the four subsquares of 4 X 4 form one side of the

parallelogram.
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9. Any octagon of two cells on a side, that is concentric with

any of the nine subcenters will have a constant summation

of 260.

10. No less than 192 columns of eight consecutive numbers

may be found having the constant summation of 260 as

follows (see Fig. 266) :

Horizontal columns 8

Perpendicular columns 8

Perpendicular zig-zags (A to A
x ) 8

Horizontal zig-zags (A to A2 ) 8

Corner diagonals 2

Constructive diagonals (D to DJ 6

Bent diagonals (as in Franklin squares) (T to T x and

T to T2 ) 16

Columns partly straight and partly zig-zag (as V to V
x ) 88

Columns partly diagonal and partly zig-zag (as P to D
x ) 32

Double bent diagonal columns (as M to N) 16

Total 192

Mr. Frierson has also constructed an 8 X 8 square shown in

Fig. 267, which is still more curious than the last one, in that it

perfectly combines the salient features of the Franklin and the In-

dian squares, viz., the bent and the continuous diagonals, besides

exhibiting many other interesting properties, some of which may

be mentioned as follows

:

1. Any 2X2 square has a constant summation of 130, with

four exceptions.

2. The corner cells of any 3X3 square which lies wholly to

the right or left of the axis AB sum 130.

3. The corner cells of any 2X4, 2X6 or 2X8 rectangle

perpendicular to AB and symmetrical therewith sum 130.

4. The corner cells of any 2 X 7 or 3 X 6 rectangle diagonal

to AB sum 130, as 12 + 50 + 45 + 23 = 130, 49+16 +
19 + 46=130 etc., etc..
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5. The corner cells of any 5X5 square contain numbers in

arithmetical progression.

6. Any constructive diagonal column sums 260.

7. Any bent diagonal sums 260.

8. Any reflected diagonal sums 260.

(Note: Reflected diagonals are shown in dotted lines on Fig. 267.)

By dividing this square into quarters, and subdividing each

quarter into four 2X2 squares, the numbers will be found sym-

metrically arranged in relation to cells that are similarly located in

diagonally opposite 2X2 squares in each quarter, thus : 64 -f- 1 —
65, 57 + 8 = 65 etc.

av *7 4 S St 49 / 2 A3

X X 6d ?*" /< /<+ ss ?i>

^/ 60^
/' /' *4 V2' /6

2 7 if-2 J9 /o AS S{ SA

4S 4/ ?*. 2/ 40 W 2<? 29

/£
;m

2.2 *7 #2- 27 JO J* *4

j,'S W '7 24 ^7 J6 2,5 j 2

/<f 2d 4* 4-* 26 y/ J«f JS

B

Fig. 267. Fig. 268.

Another 8X8 square by Mr. Frierson is given in Fig. 268

which is alike remarkable for its constructive simplicity and for

its curious properties. Like Fig. 267 this square combines the

principal features of the Indian and the Franklin squares in its

bent and continuous diagonal columns.

To render its structure graphically plain, the numbers 1 to 32

are written within circles. The numbers in the complete square are

arranged symmetrically in relation to the two heavy horizontal lines

so that when the numbers in the first half of the series are entered,

the remaining numbers may be filled in at random as explained in

connection with the 8X8 Indian square (Fig. 263).

Two other examples of the Frierson squares showing inter-
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esting constructive features are given in Figs. 269 and 270. The

scheme followed in these squares may also be employed in making

magic rectangles, two examples of which are given in Figs. 271

and 2J2. In Fig. 272 the numbers are arranged in the following

series before they are entered in the rectangle:

1 • 5 • 9 •
x 3 •

l 7 • 2I
•
25 • 29

2 . 6 . 10 . 14 . 18 . 22 . 26 . 30

3 . 7 . 11 . 15 . 19 . 23 . 27 . 31

4 . 8 . 12 . 16 . 20 . 24 . 28 . 32

Fig. 269. Fig. 270.

Fig. 271. Fig. 272.

Figs. 273 and 274 are ingenious combinations of 4 X 4 squares

also devised by Mr. Frierson. Fig. 273 is a magic cross which

possesses many unique features. It is said to contain the almost

incredible number of 160,144 different columns of twenty-one num-

bers which sum 147 1.
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Some of the properties found in the magic pentagram Fig. 274

may be stated as follows

:

Each 4X4 rhombus is perfectly magic, with summations of

162. It therefore follows that from any point to the next the num.-

Z s6 '*/} /OS

9/ ti/S 38 20

(28 7* *7 SS

7* /9 92 //O

3 *7 /2* fo8

90 /i& 39 2/

f29 7s 36 S4

7* /a S3 ///

V S8 ns IOJ s S3 r?if /06

t \

6 60 (23 /os 7 6/ /22 /o*t

88 *</* *o zz 88 /*/* 4/ 13 *7 f«7 #2 2¥ 86 /46 43 2S

(30 7* 3S S3 /J/ 77 Sif ST.
[j

/3Z 7* 33 S/ /33 79 32 SO

7' '7 S4 //2 7° /6 AT //J 69 /s 96 //¥ 68 "f *7 //6

8 62 /2/ /03

SS /»s 4*/ 26

'3+ 80 3/ 4S

*? /3 98 //6

3 63 (20 (OZ

8# (38 *s 27
/3S 8/ 30 &
66 '2 S3 "/

/o 6« //# /of

83 /3? 96 28

(36 8Z 29 *7

6s // /0O t'/6

Fig. 273.

bers sum 324, and also that every bent row of eight numbers which

is parallel with the rows from point to point sums 324.

In each 4X4 rhombus there are five others of 2 X 2 whose

numbers sum 162, also four others of 3 X 3, the corner numbers of

which sum 162.
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In each 4X4 rhombus, every number ends with one of two

numbers, viz., o and 1, 2 and 9, 3 and 8, 4 and 7, 5 and 6.

Fig. 274.

Modifications of the concentric magic squares (described in the

first chapter) have been devised by Mr. Frierson, two examples of

which are shown in Figs. 275 and 276.

// ** 25 /* ^ 3

/8 2/ 20 /J 5 32

22 '7 /6 /9 28 9

23 /2 /3 26 6 3/

/ 35 27 33 <3 7

36 2 /O 4 30 24

7/ / s/ 32 so Z 30 3 ys

Z/ 4/ 6/ S6 26 /3 6s 2S *7

3/ 8/ // ZO 62 6s '7 63 /3

34 40 60 43 z<s 64. /3 SS 27

4* 4-Z 22 S4 33 7* 7 /o 72

33 S3 /S 68 /6 44 S3 77 s

43 Z3 6? /4 66 24 33 S3 23

76 4- 70 7* 8 J7 36 30 3S

6 7* /z 3 7* 4S *6 *7 SZ

Fig. 275. Fig. 276.

A 5X5 magic square, curiously quartered with four 2X3
magic rectangles, devised by Dr. Planck, is shown in Fig. 277.

The interesting 9X9 magic, Fig. 278, was made by Mr. Frier-

son. It possesses the following properties

:
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1. All odd and even numbers are segregated.

2. Any pair of numbers located equally above and below the

horizontal axis end in the same integer.

3. The sum of any pair of numbers located equally right and

left of the perpendicular axis ends with 2.

4. The twenty-five odd numbers within the circles make a

balanced 5X5 square.

S of 92 = 360
S of 5

2 = 205
S of 42 = 165

S of square = 65

S of rectangles = J 39
I 26

2S / 23 6 /O

/2 /+ 3 20 /6

2 24 /3 8 /8

// 7 2/ 3 /7

/S /3 S 22 4-

42 £8 OS 64 :o 8 44. 34 SO

2 66 S4
c-:

// V 78 26 70

/Z 6 (") S3 ?) 69e 46 20

sz 3S® 3/ ?*) 67 8 60

'73* 6S 43 ;-) 33e 77
C')

22s /SB s/
c~;

47 :-) 30

62 36W 73 (?) 23 0) 76 7(9

72 S6 4 V 7/R 28 /6 80

32 48 38 74K /8 74 24 40

Fig. 277. Fig. 278.

: 6200

S = 2126

S33 J2S 526 S36

S28 S34 S33 S37

S32 S30 S23 S3f

S27 S3 7 S3* S24-

/32S /342 /3S/ /33S 73*4

/3SC /334 /343 7332 734/

/347 /33/ /340 7343 J333

/J33 /348 /337 7346 /330

7336 /3 4S /J 29 /33S 73 S

Z

Fig. 279. Fig. 280.

5. The sixteen odd numbers between the circles make a bal-

anced 4X4 square.

6. The great square is associated.

It is purposed to treat of magic squares composed exclusively

of prime numbers in another book. Mr. Chas. D. Shuldham has

contributed original 4X4 and 5X5 magics, having the lowest
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possible summations when made exclusively of consecutive com-

posite numbers, as shown in Figs. 2?9 and 28o
#

There is nothing curious in the construction of these squares,

as in this particular they follow the same rules that are applied to

all squares that are made from any consecutive arithmetical series.

Thus in the square of order 4 given in Fig. 279, 524 takes the

place of 1 in an ordinary square, 525 of 2, and so on. They are

here submitted to the reader simply as examples of common squares,

having the lozvest possible summations that can be made from a

series containing no prime numbers. There are many longer se-

quences of consecutive composite numbers, from which larger squares

might be made, but they run into such high values that the construc-

tion of magics therewith becomes laborious.

Dr. C. Planck has kindly contributed the following list of con-

secutive composite numbers that can be used for squares of order 6

to order 12 under the condition of lowest possible summations.

For Order 6. 15,684 — I 57 I9 = 36 numbers
" "

7. 19,610 — 19,758 = 49
" "

8 - 3^398 — 3M6i = 64
" "

9- 155,922 — 156,002 = 81 "

" "
10. 370,262 — 370,361 = 100 "

" "
it. 1,357,202 — i,357>322 = I21

" "
12. 2,010,734 — 2,010,877 = 144

Many attempts have been made to construct magic squares

from a natural series of numbers by locating each succeeding num-

ber a knight's move from the last one, until every cell in the square

is included in one continuous knight's tour. This difficult problem

however has never been solved, and the square in question probably

does not exist. Many squares have been made that sum correctly

in their lines and columns, but they all fail in their two diagonals and

therefore are not strictly magic.

In Games Ancient and Oriental (p. 325) one of the most

interesting squares of the above description is presented, and it is

reproduced here in Fig. 281, the knight's tour being shown in Fig.

282.
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This square, like all others of its kind, fails in its two diagonals,

but it is remarkable in being quartered, i. e., all of its four corner

4 X 4's are magic in their lines and columns, which sum 130.

Furthermore, if each corner 4 X 4 is subdivided into 2 X 2's, each

of the latter contains numbers that sum 130. It is stated that this

square was made by Mr. Beverly and published in the Philosophical

Magazine in 1848.

If the use of consecutive numbers is disregarded, a continuous

/ 4* 3/ SO 33 /6 63 ;s

30 S/ 46 3 62 /S /4 3S

47 2 4* 32 /S 34 /7 64-

32 23 4- 4S 20 6/ 36 /3

S 44 2S S6 2 40 2/ 60

2* S3 8 */ 24 S7 /Z 37

43 6 SS 26 3S /O SSf 22

S4 27 42 7 ss 23 38 //

/\

) \ / \ \6*

L^^ > <^s\

Fig. 281. Fig. 282.

knight's tour may be traced through many different magic squares,

in which every period of n numbers throughout the tour will sum S.

A square having this quality is shown in Fig. 261. The knight's

©I

@]

©>

w)

\Sy $2^

*®

Fig. 283.

tour through this square is given in Fig. 283 in which the starting

numbers of each period of eight are marked by circles with arrow

heads indicating the direction of progression.
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Oddities and curios in magics might be illustrated almost with-

out end, but one more will suffice as a final example.

Fig. 284 shows an 18 X 18 magic made by Mr. Harry A.

Sayles, the most interesting feature of which is the method of its

production from the values of n
/i9- The lines of recurring deci-

mals for yi9 , %9 , % 9
3%9 are arranged one below the other

so as to form a magic square. S = 81. It will be seen that the

sequence of the digits in all lines is the same, the position of the

decimal point in relation to the series being the only difference.

/'9
= .O S 2 6 3 / 3 7 8 9 4 7 3 6 8 4 2 /

t/
S'9 .

* ./ O S 2 6 3 / s- 7 8 3 4 7 3 e 8 4 2

/'9 = ./ s 7 8 3 4 7 3 6 8 4 2 / O s 2 6 3

/'9
= .2 / <S 2 6 3 / & 7 8 3 4 7 3 6 8 ^

/'9 as .2 <s 3 / s 7 8 3 4 7 3 6 8 ^ 2 / O S
4/ - .3 / S 7 8 3 4 7 3 6 8 4 2 / O S 2 6
7 /
S'9

- .J 6 8 4 2 / 3~ 2 6 3 / jr 7 8 3 4 7

/'9 = 4 2 / 3~ 2 6 3 / 3- 7 8 3 4 7 3 6 8
9 / = .4 7 3 a 8 4 2 / 3- 2 6 3 / 3- 7 8 3
*o7
S'9

^ .s 2 <5 3 / 3* 7 8 3 4 7 3 e 8 4 2 / O

As = .S 7 8 s 4- 7 3 <S 8 <4 2 / 3' Z a 3 /

% - .6 3 / s 7 8 3 * 7 3 6 f <?- 2 / 3- Z
/J/
S'3

= .6 8 4 2 / O S 2 6 3 / S 7 8 3 4 7 3
S4-/
//9

= •7 3 6 8 4 2 / O J- 2 6 3 / 3~ 7 8 3 &
/s/ = •7 f 3 4 7 3 6 8 4 2 / O 3- 2 6 3 / S
/a/ » >r *• 2 / O 3~ 2 6 3 / 3~ 7 8 9 4- 7 <3 6

% = .8 3 4 7 3 6 8 4 2 / 3~ 2 <S 3 / 3~ 7
/9/
//s = .& 4 7 3 <S 8- 4 2 / O 3~ 2 6 3 / 3- 7 8

Fig. 284.

A peculiar feature of the recurring decimals used in this square

may be mentioned, although it is common to many other such

series, with variations. %o = .052631578947368421 decimal

repeats. Starting with the first 5 and dividing by 2 each integer

determines the next integer following, thus

:
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2) 52631578 = 2631578

The same procession follows for w
/19 and also for 1/(19X2")

though the operation will not apply in all cases to the first few

numbers of each series.

If the decimal .05263 1, consisting of 18 figures, is divided

into two even sections of 9 figures each, and one section superposed

on the other, the sum will be a series of 9's thus:

.052631578

947368421

999999999

The series is thus shown to consist of nine 9's = 81, so that each

line of the square, Fig. 284, must sum 81. Also, as any two num-

bers symmetrically located above and below the horizontal axis

of the square sum 9, each column also consists of nine 9's = 81.

It is not easy to understand why each of the two diagonals

of this square should sum 81, but if they are written one over the

other, each pair of numbers will sum 9.

Considering its constructive origin, and the above mentioned

interesting features, this square, notwithstanding its simplicity, may

be fairly said to present one of the most remarkable illustrations of

the intrinsic harmony of numbers. w. s. a.



CHAPTER VIII.

NOTES ON VARIOUS CONSTRUCTIVE PLANS BY WHICH
MAGIC SQUARES MAY BE CLASSIFIED.

AN odd magic square must necessarily have a central cell, and if

^*- the square is to be associated, this cell must be occupied by the

middle number of the series, [(n2 + O/2] around which the other

numbers must be arranged and balanced in pairs, the sum of each

pair being n2
-j- 1. Although in 5 X 5 and larger odd squares the

pairs of numbers are capable of arrangement in a multitude of

different ways relative to each other as pairs, yet when one number

of a pair is located, the position of the other number becomes

fixed in order to satisfy the rule that the sum of any two numbers

that are diametrically equidistant from the center number must

equal twice that number, or n2
-\- 1.

In an even magic square, however, there is no central cell and

no middle number in the series, so the method of construction is

not thus limited, butt he pairs of numbers which sum n2
-f- 1 may

be harmoniously balanced either around the center of the square,

as in odd squares, or in a variety of other ways.

Mr. L. S. Frierson has cleverly utilized this feature as the basis

for a series of constructive plans, according to which the various

types of even squares may be classified. He has shown eleven dif-

ferent plans and Mr. Henry E. Dudeney has contributed the twelfth,

all of which may be used in connection with 4X4 squares. These

twelve constructive plans clearly differentiate the various types

of 4 X 4 squares,—there being for example one plan for the asso-

ciated or regular squares, another plan for the Franklin squares.
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another for the pandiagonal or continuous squares and so forth, so

that a knowledge of these plans makes it easy to classify all 4 X 4

squares. Six of the eleven plans given by Mr. Frierson cover

distinct methods of arrangement, the remaining five plans being

made up of various combinations.

plan no. 1.

In this plan, which is the simplest of all, the pairs of numbers

that sum n2
-\- 1 are arranged symmetrically in adjacent cells, form-

/6 / /J 4

7 /o 6 //

2 /j j /4

3 s /2 S

Fig. 285. Fig. 286.

ing two vertical columns, as shown in Fig. 285, and diagrammatically

in Fig. 286.

plan no. 2.

This plan differs from No. 1 only in the fact that the pairs of

* / /3 /6

/// /s J 2

// /o 6 7
J s /z 3

Fig. 287. Fig. 288.

numbers are placed in alternate instead of in adjacent columns, as

seen in Figs. 287 and 288.

plan no. 3.

/ /J // /6

s /2 j s

/// 2 /s j

// 7 /o 6

Fig. 289. Fig. 290.
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According to this plan the pairs of numbers are arranged sym-

metrically on each side of the central axis, one-half of the elements

being adjacent to each other, and the other half constructively ad-

jacent as shown in Figs. 289 and 290. This arrangement furnishes

the Franklin squares when expanded to 8X8, providing that the

numbers in all 2X2 subsquares are arranged to sum 130 (See

Figs. 291 and 292). If this condition is not fulfilled, only half of

sz 6/ 4 /3 20 29 36 4S

/* 3 6z S/ *6 3S 30 /3

S3 60 s /Z 2/ 2S *7 44

// 6 S3 S4 43 3# V 2Z

S5 ss 7 /o 23 26 33 42

9 * s7 s6 4/ 4# 2S 24

5<9 63 2 /s /<? 3/ 34 «7

/6 / 64 49 4* 33 32 '7

Fig. 291. Fig. 292.

the bent diagonals will have proper summations. An imperfect

Franklin square of this type may be seen in Fig. 268.

plan no. 4.

In this plan the pairs of numbers are arranged adjacent to each

other diagonally, producing four centers of equilibrium (See Figs.

293 and 294).

/ 7 /* /2

/o /6 J 3

/J 9 4 6

s 2 // /3

-><-

>f

-><-

>e

Fig. 293. Fig. 294.

Magic squares constructed on this plan exhibit in part the fea-

tures of the Franklin and the pandiagonal squares.
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TLAN NO. 5.

The pairs of numbers in this plan are arranged in alternate

cells in the diagonal columns, and it produces the continuous squares

which have been termed Jaina, Nasik and pandiagonal squares.

Fig. 295 is the Jaina square as modified by Dr. Cams (Fig. 222, p.

127), and Fig. 296 shows the arrangement of the pairs of numbers.

/ 8 /o /j

'4 // s u

7 % /6 3

/2 /J j 6

\ /

C \

\

Fig. 295. Fig. 296.

The diagram of the Nasik square (Fig. 262) is a simple expansion

of Fig. 296, and the diagram of the Frierson square (Fig. 267)

shows a design like Fig. 296 repeated in each of its four quarters.

PLAN no. 6.

Under this plan the pairs of numbers are balanced symmet-

rically around the center of the square, and this arrangement is

common to all associated squares, whether odd or even. Fig. 297

/ /5 14 //

n 6 7 9

s JO // 5

/3 J 2 A.6

\
\ \

/

vl
/ \

Fig. 297. Fig. 298.

shows a common form of 4 X 4 square, the diagrammatic plan

being given in Fig. 298.
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PLAN NO. 7.

Magic squares on this plan are formed by combining plans

t6 / n s

2 // 6 /s

7 /* j /o

9 s /j

Fig. 299. Fig. 300.

Nos. i to 3, a square and its diagram being shown in Figs. 299 and

300.

PLAN NO. 8.

This plan covers another combination of plans 1 and 3, and

Figs. 301 and 302 show square and diagram.

// U j 6

* 9 /6 /

/o 7 z /s

s 4 /d /2

Fig. 301. Fig. 302.

PLAN NO. 9.

This is a combination of plans 2 and 3, a square and its dia-

gram being given in Figs. 303 and 304.

s / /2 /6

/o /4 3 7

/s // 6 2

4 s /j 3

Fig. 303. Fig. 304.
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PLAN NO. 10.

This is also a combination of plans 2 and 3 and is illustrated in

Figs. 305 and 306.

n 4 /j j

/ 9 /6 <?

/j 7 2 /O

/4 J "*

Fig. 305. Fig. 306.

PLAN NO. II.

One-half of this square is made in accordance with plan No.

2, but in the other half the pairs of numbers are located apart by

knight's moves, which is different from any plan hitherto considered.

It is impossible to arrange the entire square on the plan of the

/ 2 /6 /S

/J /4 4 J

/I 7" 3 6

s // J /o zHK
Fig. 307. Fig. 308.

knight's move. Figs. 307 and 308 show this square and its construc-

tive plan.

PLAN no. 12.

We are indebted to Mr. Henry E. Dudeney for the combination

shown in Figs. 309-310, thus filling a complete dozen plans which

probably cover all types of 4 X 4 magic squares.

2 /s / /6

// /o & S

*4 6 /J 4

7 6 /l s

Fig. 309. Fig. 310.
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In even squares larger than 4X4 these plans naturally exhibit

great diversity of design. The following 6X6 squares with their

respective plans are given as examples in Figs. 311, 312 to 321, 322.

/ Z# z; /o S 36

JS 26 2S /2 // 2

3 22 2/ /6 /s ^
33 2* 2d /^ / 3 4^

20 6 # 29 3/ V
/3 s 7 30 32 /s

Fig. 311. Fig. 312.

/ 26 27 /2 9 36

JS 2S 2<f // /o 2

3 2$ 2/ / /6 34-

33 22 24 /S /3 4

20 8 <y 30 3/ '7

/S 7 6 23 32 /#

Fig. 3T3-

/ JS J4 J 32 6

JO S 2* 27 // 7

24 23 /s /6 A/ /s>

/3 '7 2/ 22 20 A/

/2 26 9 /a 29 2S

3/ 2 ^ 33 J 36

Fig. 314.

x
\l-

"
/

+-<•/^ Af-
- V\7?- ,

-U 3t7 -4-
\ - J%£\ -\
/y ^r\
/]/ Vl
s X-A -_ \

Fig. 31S. Fig. 316.

Figs. 315 and 317 are identical with 6X6 squares shown on

pages 19 and 24. All squares of this class have the same charac-

teristic plans.
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The peculiar structure of the squares shown in Figs. 319 and

321 is visualized in their plans (Figs. 320 and 322). Fig. 314 is

worthy of notice in having eight pairs of numbers located apart

/ s 33 34 32 6

30 <r 2<$ 9 // 2S

/* 23 / S /6 20 /S)

24 '4 2/ 22 '7 /J

7 26 /O 27 2J /2

3/ 3S ¥ 3 2 36

/

\\ /,
s /
^N y/\ &&
7V

y s
:^

//
'

Fig. 317. Fig. 318.

/ 36 26 23 /3 /2

32 2 2S 24 '¥ //

3 J4 27 2S 2 /O

33 ^ 2/ 22 /S /6

20 '/ 7 6 23 32

/9 /<? s fi 3/ 30

^ -^ Z^-
x"

- -?V- •»*.

**><S <£-
^ *7V- **.

Fig. 3T9. Fig. 3-? 3.

2S 24 /3 /2 / 36

26 23 '4 // 3S 2

2/ 2 2 /S s6 J 3^

27 28 £> /o 33 4
3~ £ 2.9 32 20 V
7 6 J/ 30 /<9 /<f

Fig. 32T. Fig. 322.

by knight's moves. Figs. 323, 324 and 325 illustrate another 6X6
square with its plan and numerical diagram. It will be seen that

the latter is symmetrically balanced on each side, differing in this
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/ 26 2S // 3 36

3S 2S 27 /2 /o 2

3 23 2/ /* /6 3^.

33 21 *</ /S /3 4

20 S 6 2.9 3/ '7

/S 7 s 30 32 /f

Fig. 323-

Fig. 324. Fig. 325.

respect from the numerical diagrams of the 6X6 squares as de-

scribed in Chapter I.

Figs. 326-333 are four 6X6 magic squares contributed by

Mr. E. Black which show an interesting symmetry in their con-

structive plans.

3S 2 28 9 4- 36

/* 23 /2 2S /s 2Z

n 20 6 3/ /o 27

s 32 /3 24 36 /

23 S 34- *3 /6 2/

// 26 /a /S 30 7

Fig. 326. Fig. 327.



NOTES ON VARIOUS CONSTRUCTIVE PLANS. 187

56 6 2/ /6 23 3

3/ / /S 22 34 f

// 23 /3 2S 24 S

26 /4 /Z /8 /3 2S

S 3S '7 20 * 30

B 32 27 JO 7 33

Fig. 328.

3 Z / 36 3S 34

3/ 32 33 * S 6

/s /3 23 /$ 20 2f

Z2 24 "+ /8 n /6

/z // /O 27 26 25

29 23 30 7 8 9

Fig. 330.

3Z S /*+ 23 29 8

3S 2 /& 2Z 34 3

2S JS 28 /O O /3

/Z /S 27 9 20 2£+

6 3/ /6 2/ 7 AO

/ 36 // 26 4 33

\/ \
~~7\ /\

1 1 V 1 1

1 1 / ~r 1

Y VA /

Fig. 329.

Fig. 331-

1 1
\ /

1 1

1 1 /V 1 '

Fig. 332. Fig. 333-

THE MATHEMATICAL VALUE OF MAGIC SQUARES.

The following quotations bearing on the above subject are

copied from a paper entitled "Magic Squares and Other Problems

on a Chessboard" by Major P. A. MacMahon, R.A., D.Sc., F.R.S.,

published in Proceedings of the Royal Institution of Great Britain,

Vol. XVII, No. 96, pp. 50-61, Feb. 4, 1892.

"The construction of magic squares is an amusement of great

antiquity; we hear of their being constructed in India and China
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before the Christian era, while they appear to have been introduced

into Europe by Moscopulus who flourished at Constantinople early

in the fifteenth century.

"However, what was at first merely a practice of magicians

and talisman makers has now for a long time become a serious

study for mathematicians. Not that they have imagined that it

would lead them to anything of solid advantage, but because the

theory was seen to be fraught with difficulty, and it was considered

possible that some new properties of numbers might be discovered

which mathematicians could turn to account. This has in fact

proved to be the case, for from a certain point of view the subject

has been found to be algebraical rather than arithmetical and to be

intimately connected with great departments of science such as the

'infinitesimal calculus,' the 'calculus of operations,' and the 'theory

of groups.'

"No person living knows in how many ways it is possible to

form a magic square of any order exceeding 4X4. The fact is

that before we can attempt to enumerate magic squares we must

see our way to solve problems of a far more simple character.

"To say and to establish that problems of the general nature

of the magic square are intimately connected with the infinitesi-

mal calculus and the calculus of finite differences is to sum the

matter up."

It is therefore evident that this field of study is by no means

limited, and if this may be said in connection with magic squares

the statement will naturally apply with a larger meaning to the

consideration of magic cubes.



CHAPTER IX.

MAGIC CUBES OF THE SIXTH ORDER.

TT is stated by Dr. C. Planck in his article on "The Theory of

* Reversions," Chapter XII, pp. 298 and 304, that the first magic

cube of this order was made by the late W. Firth, Scholar of

Emanuel, Cambridge, England, in 1889. The pseudo-skeleton of

Firth's construction is shown in Fig. 585, on p. 304 and its develop-

ment into a magic 6 s
is given by Dr. Planck in Fig. 587. He also

presents in Fig. 597 in the same chapter another magic 6'! which he

made in 1894 by the artifice of "index-cubes, " and gives a full

explanation of his method.

Although the cube presented in this chapter by Prof. H. M.

Kingery is imperfect in its great diagonals, and therefore not

strictly magic, it possesses many novel and interesting features,

being an ingenious example of the general principle of the "Frank-

lin" squares carried into the third dimension, and showing, as it

does, perfect "bent diagonals." The same method will construct

cubes of 10, 14, and other cubes of the 4/> + 2 orders.

The second article in this chapter by Mr. Harry A. Sayles

gives a clear and concise solution of the problem by the La Hireian

method. Mr. Sayles's cube is strictly magic.

The cube offered in the third article by the late John Worthing-

ton, besides being strictly magic, shows the unique feature of hav-

ing perfect diagonals on the six outside squares. w. s. a.

A "FRANKLIN" CUBE OF SIX.

For a long time after cubes had been constructed and analyzed

consisting of odd numbers and those evenly even (divisible by 4),

the peculiar properties of the oddly even numbers baffled all attempts
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to treat them in like manner. While the following construction

does not comply with all the criteria laid down for "magic" cubes

it has some remarkable features which appear to the writer to

deserve attention. It will at least serve to arouse some criticism

and discussion, and may contain hints for a complete solution of

the problem.

In the first place six magic squares were constructed, exactly

similar in plan except that three of them began (at the upper left-

hand corner) with odd numbers, each of which was 1 or 1 plus a

multiple of 36, and the other three with even numbers, each a mul-

tiple of 18. In the first three squares the numbers were arranged

in ascending order, in the other three descending. The initial

numbers were so chosen that their sum was 651, or (n/2) (n3
-|- 1),

which is the proper summation for each dimension of the projected

magic cube. In the construction of these original squares, by the

way, the diagrams presented in the first chapter of this book

proved a great convenience and saved much time.

Each of the six squares so made is "magic" in that it has the

same sum (651) for each column, horizontal row and corner diag-

onal. As the initial numbers have the same sum the similarity of

the squares, with ascending arrangement in one half and descending

in the other half, insures the same totals throughout for numbers

occupying corresponding cells in the several squares ; e. g., taking

the third number in the upper row of each square and adding the

six together we reach the sum 651, and so for any other position

of the thirty-six.

In constructing our cube we may let the original six squares

serve as the horizontal layers or strata. We have seen that the

vertical columns in the cube must by construction have the correct

summation. Furthermore, as the successive right-and-left rows in

the horizontal squares constitute the rows of the vertical squares

facing the front or back of the cube, and as the columns in the

horizontal squares constitute the rows of the vertical squares facing

right or left, it is easily seen that each of these twelve vertical

squares has the correct summation for all its columns and rows.

Here appears the first imperfection of our cube. Neither the
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diagonals of the vertical squares nor those of the cube itself have

the desired totals, though their average footing is correct. It is true

further that the footings of the two cubic diagonals originating at

opposite extremities of the same plane diagonal average 651, though

neither alone is right.

At this point, however, we come upon an interesting fact.

While the cubic diagonals vary, the two half-diagonals originating

at opposite extremities of either plane diagonal in either the upper

or the lower face, and meeting at the center of the cube, together

have the sum 651. These correspond in the cube to the "bent

diagonals" of Franklin's "square of squares." Of course a moment's

reflection will show that this feature is inevitable. The original

squares were so constructed that in their diagonals the numbers

equidistant from the middle were "complementary," that is, taken

together they equaled 217, or ;r -j- 1, 11 representing the number of

cells in a side of the square. In taking one complementary pair from

each of three successive squares to make our "bent diagonal" we

must of necessity have 3 X 217 = 651.

As in the Franklin squares, so in this cube do the "bent diag-

onals" parallel to those already described have the same totals. A
plane square may be thought of as being bent around a cylinder so

as to bring its upper edge into contact with the lower, and when

this is done with a Franklin square it will be seen that there is

one of these "bent diagonals" for each row. In like manner, if it

were possible by some, fourth-dimension process analogous to this

to set our cube upon itself, we should see that there were six (or

in general n) "bent diagonals" for each diagonal in each of the

horizontal faces, or 24 in all, and all having the same sum, 651.

The occurrences of S may be tabulated as follows

:

In the vertical columns 36 or ri
2

In the rows from front to back 36 or ri
1

In the rows from right to left 36 or n 1

I11 the diagonals of the original square .... 12 or 211

In the cubic "bent diagonals" 24 or ^n

144 or 3?r-f6n
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The column of n values at the right represents the "general" num-

bers, found in cubes of 10, 14, etc., as well as in that of 6.

All these characteristics are present no matter in what order

the original squares are piled, which gives us 720 permutations.

Furthermore, only one form of magic square was employed, and

Mr. Andrews has given diagrams to illustrate at least 128 forms,

any one of which might have been used in the construction of our

cube.* Still further, numerous transpositions within the squares

are possible—always provided the vertical totals are guarded by

making the same transpositions in two squares, one ascending and

the other descending. From this it is easy to see that the numbers

1-2 16 may be arranged in a very great number of different ways

to produce such a cube.

So much for the general arrangement. If we so pile our original

squares as to bring together the three which begin with odd numbers

and follow them with the others (or vice versa) we find some new

features of interest. In the arrangement already discussed none

of the vertical squares has the correct sum for any form of diagonal.

The arrangement now suggested shows "bent diagonals" for the

vertical squares facing right and left as follows : Each of the outside

squares—at the extreme right or left—has four "bent diagonals"

facing the upper and four facing the lower edge. These have their

origin in the first, second, fourth and fifth rows moving upward or

downward, i. e., in the first two rows of each group—those yielded

by original squares starting with odd and those with even number?.

Each of the four inside vertical squares has but two "bent diag-

onals" facing its upper and two facing its lower edge, and these

start in the first and fourth rows—the first of each group of three.

This will be true no matter in what order the original squares are

piled, provided the odd ones are kept together and the evens to-

gether. This will add 32 (8 for each of the two outer and 4 for each

of the four inner squares) to the 144 appearances of the sum 651

tabulated above, making 176; but this will apply, of course, only

to the cube in which the odd squares are successive and the even

squares successive. As the possible permutations of three objects

* See pp. 22 and 23.
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number 6, and as each of these permutations of squares beginning

with odd numbers can be combined with any one of the equal num-

ber of permutations of the even squares, a total of 36 arrangements

is possible.

While the straight diagonals of these squares do not give the

required footing the two in each square facing right or left average

that sum: thus the diagonals of the left-hand square have totals of

506 and 796, of the second square 708 and 594, third 982 and 320,

fourth 596 and 706, fifth 798 and 504, and the right-hand square

986 and 316, each pair averaging 651. I have not yet found any

arrangement which yields the desired total for the diagonals, either

straight or bent, of the vertical squares facing back or front ; nor do

their diagonals, like those just discussed, average 651 for any single

square, though that is the exact average of the whole twelve.

By precisely similar methods we can construct cubes of 10, 14,

18, and any other oddly-even numbers, and find them possessed of

the same features. I have written out the squares for the magic

cube of 10, but time would fail to carry actual construction into

higher numbers. Each column and row in the 10-cube foots up

5005, in the 14-cube 19,215, in the 30-cube 405,015, and in a cube

of 42 no less than 1,555,869! Life is too short for the construction

and testing of squares and cubes involving such sums.

That it is possible to build an absolutely "perfect" cube of 6 is

difficult to affirm and dangerous to deny. The present construction

fails in that the ordinary diagonals of the vertical squares and of

the cube itself are unequal, and the difficulty is made to appear in-

superable from the fact that while the proper summation is 651,

an odd number, all the refractory diagonals are even in their sum-

mation.

The diagrams in Figure 335 are especially valuable because

they show how the numbers of the natural series 1-2 16 are arranged

in the squares which constitute the cube. This is a device of Mr.

Andrews's own invention, and certainly is ingenious and beautiful.

The diagrams here given for squares of six can be expanded on

well-defined principles to apply to those of any oddly-even number,

and several of them are printed in Chapter I.
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It will be noticed that the numbers 1-108 are placed at the left

of the diagrams, and those from 109 to 216 inclusive at the right in

inverse order. Consequently the sum of those opposite each other

is everywhere 217. In each diagram are two pairs of numbers con-

nected by dotted lines and marked O- These in every case are to

be interchanged. Starting then at the heavy dot at the top we follow

the black line across to 215, down to 212 (substituting 3 for 213)

and back to 6; then across on the dotted line to 210 and along the

zigzag black line to 8, 208, 207, 11 and 7 (interchanged with 205) ;

down the dotted line to 204, then to 203, 15, 16, 14 (in place of 200),

199; then across the diagram and upward, observing the same meth-

ods, back to 216. This gives us the numbers which constitute our

square No. I, written from left to right in successive rows. In like

manner the diagrams in column II give us square No. -II, and so

on to the end. It is worthy of notice that in the fourth column of

diagrams the numbers are written in the reverse of their natural

order. This is because it was necessary in writing the fourth square

to begin with the number 145 (which naturally would be at the bot-

tom of the diagram) in order to give the initial numbers the desired

sum of 651. II. M. K.

A MAGIC CUBE OF SIX.

The two very interesting articles on Oddly-Even Magic Squares

by Messrs. D. F. Savage and W. S. Andrews, which appear in

Chapter X, might suggest the possibilities of extending those

methods of construction into magic cubes. It is an interesting

proposition and might lead to many surprising results.

Although the cube to be described here is not exactly of the

nature mentioned above, it follows similar principles of construc-

tion and involves features quite unusual to cubes of this class.

The six respective layers of this cube are shown in Fig. 336. All

of its 108 columns, and its four great diagonals give the constant

summation of 651. If we divide this into 27 smaller cubes, which

we will call cubelets, of eight cells each, the six faces, and also
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two diagonal planes of any cubelet give constant summations.

For example, we will note the central cubelet of the first and

A- 139 161 26 174 147

S& 166 107 188 33 12

38 152 138 3 103 157

"79 17 84 165 184 22

»83 2/ 13 175 89 170

IOZ 156 148 94 8 143

18 153 136 163 23 158

99 180 1 82 104 185

181 19 95 »76 171 9

100 )54 149 14 90 144

167 5 I08 189 172 10

86 144 162 27 91 145

J55 zo 150 15 169 142

IOI 182 96 177 88 7

6 87 106 187 92 173

141 168 (60 25 II 146

151 16 137 83 105 153

97 178 2 164 166 24

193 58 80 215 33 66

112 31 134 53 120 20 \

125 71 57 132 130 76

44 206 III 30 49 211

48 210 202 40 116 35

129 75 67 121 197 62

2

207 72 55 26 212 77

/26 45 190 109 131 50

46 108 122 41 36 198

127 73 68 203 117 63

32 194 135 54 37 J99

"3 53 81 216 118 64
4-

74 20S 69 204 34 61

128 47 »23 42 115 196

195 114 133 52 113 38

60 33 79 214 20C>65

70 zos 56 110 132 78

124 43 191 29 51 213

Fig. 33&

second layer, which is shown diagrammatically in Fig. 337. Its

summations are as follows.

The six faces

:

57 138 T38 84 57 192

192 3 3 165 in 30

30 165 192 30 84 165

ITT 84 57 in 138 3

390 300 390 390 390 390
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The two diagonal planes

:

57

165

138

192

in

84

3

390 390

138-

\^57—7*

84-

-192

III -30

Fig. 337-

Also, if the sum of the eight cells in each of the cubelets be

taken as a whole, we have a 3X3X3 cube with 37 summations, each

amounting to 2604.

The construction of this cube is by La Hireian method, using

two primary cubes shown in Figs. 338 and 339. Fig. 338 con-

tains 27 cubelets, each containing eight cells with eight equal num-

bers ; the numbers in the respective cubelets ranking in order as the

series, 1, 2, 3,. . . .27. These 2y cubelets are arranged according to

the methods of any 3X3X3 cube. This gives us a primary cube

with all the features of the final cube.

Fig. 339 is also divided ino 27 cubelets, each of which must con-

tain the series o, 27, 54, 81, 108, 135, 162, 189. The arrangement

of the numbers in these 2j cubelets must be such as will give the

primary cube all the required features of the final cube. The eight

numbers of the cubelet series are, for convenience, divided by 27,

and give the series o, 1, 2, 3, 4, 5, 6, 7, which can easily be brought

back to the former series after the primary cube is constructed.
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To construct the cubelet, we divide the above series into two

sets of four numbers each, so that the sums of the two sets are equal,

and the complementaries of one set are found in the other. This

division is o, 5, 6, 3 and 7, 2, 1, 4, which separates the complemen-

4 4 26 26 12 12 4 4 26 26 12 12

4 4 26 26 12 12 4 4 26 26 12 12

17 17 3 3 22 22 17 17 3 3 *2 22

17 17 3 3 22 22 17 17 3 3 22 22

21 21 13 13 8 8 21 21 13 13 8 8

21 21 13 13 8 8 21 21 13 13 8 8

18 18 1 1 23 23 18 18 1 1 23 23

18 18 1 I 23 23 18 18 I 1 23 23

19 13 14 14 9 9 19 19 14 14 9 9

13 19 14 14 9 9 19 19 14 14 9

5 5 27 27 10 10 5 5 27 27 IO 10

5 5 27 27 10 10 5 5 27 27 10 IO

J AV

20 20 15 15 7 7 20 20 15 15 7 7

20 ZO 15 15 7 7 20 20 15 15 7 7

6 6 25 25 II II G 6 25 25 II II

6 6 25 25 II II 6 6 25 25 II II

16 16 a 2 24 24 16 16 2 2 2* 2*

16 16 2 2 24 24 16 16 2 2 24 24
i C

Fig. 338.

taries and gives two sets, each amounting to 14. We can place one

set in any desired order on one face, and it only remains to place

the four complementaries in the opposite face, so that the four lines

connecting complementary pairs are parallel.
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These cnbelets are arranged in the primary cube with the

o, 5, 6, 3 faces placed in the 1st, 3d, and 5th layers, and the 7, 2, 1, 4

faces placed in the 2<\, 4th, and 6th layers, which arrangement satis-

fies the summations perpendicular to the layers.

5 5 O 6 5 7 2 2 7 1 2

3 6 3 6 3 4 1 4 J 4 7

3 5 5 3 5 4 £ 2 7 4 2

6 3 6 G 1 7 4 1 1 7

6 O O 6 3 6 1 7 7 1 4 1

3 5 5 3 5 4 2 2 4 7 2

5 5 € O 5

3 6 O 3 3 6

6 3 € 6

3 5 5 3 5

6 3 € 6

3 S 5 3 5

7 2 2 1 7 2

4 1 7 4 4 1

1 7 4 1 1 7

4 2 2 7 4 2

1 7 4 1 1 7

4 2 2 7 4 2

5 S 6 5 2 7 z 7
1 2

3 6 3 6 3 O 4 1 4 1 4 7

O 3 3 6 3 6 7 4 4 1 4 1

5 6 5 5 2 1 2 7 7 2

5 5 3 3 5 2 7 2 4 4 2

3 6 6 6 4 1 7 1 1 7
1

<

Fig. 339-

It now remains to adjust the pairs in the cnbelets to suit the

summations in the layers and the four diagonals. We first arrange

the pairs that will give the diagonal summations, and by doing so,

we set the position of four numbers in each of the layers 3 and 4,
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and eight numbers in each of the layers I, 2, 5 and 6. We then ar-

range the remaining numbers in the layers 1, 3 and 5 to suit the

twelve summations of each layer, which consequently locates the

numbers for layers 2, 4 and 6, since complementary pairs must lie

perpendicularly to the cubes layers. This gives us a primary cube

such as that shown in Fig. 339.

The numbers in each cell of Fig. 339 must then be multiplied by

27, and added to the respective cells in Fig. 338, which combination

gives us the final cube shown in Fig. 336. H. A. s.

MAGIC CUBE OF SIX.

In the cube, whose horizontal squares are shown in Fig. 340, the

sum of each of the normal rows (those perpendicular to the

faces of the cube) is 651, and the sum of each of the sixteen

diagonals connecting the corners of the cube is the same.

These diagonals include the entire diagonals of the surfaces

of the cube and the four diagonals of the solid running from corner

to corner through the center of the cube.

Top Square.

Bottom Square.

Front Square.

Rear Square.

Left Square,

Right Square.

DIAGONALS.

106 116 115

IO9 12 II

111 117 118

108 13 14

112 I3I I32

107 31 29

I06 I30 I36

109 30 25

106 37 40
112 126 121

109 34 38

107 127 125

103 104 107

202 205 112

98 97 I 10

207 204 105

82 84 I IO

190 189 IO5

83 88 108

191 185 III

182 l8l I05

89 92 III

183 177 I 10

90 94 108
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Diagonals of 106

the Solid. 109

107

112

152 147 70 66 no
H3 139 77 78 105

153 156 63 61 in
46 42 172 171 108

FIRST OR TOP SQUARE. SECOND SQUARE.

106 8 7 212 209 109 166 130 129 32 30 164

199 Il6 "3 16 12 195 37 152 148 137 143 34

196 114 "5 11 IS 200 33 151 150 142 140 35

21 203 202 103 100 22 128 4i 47 157 154 124

17 205 208 99 104 18 126 46 44 155 153 127

112 5 6 210 211 107 161 131 133 28 31 167

THIRD SQUARE. FOURTH SQUARE.

163 135 136 25 27 165 55 192 191 83 81 49

36 145 149 144 138 39 93 60 57 176 174 91

40 I46 147 139 141 38 89 62 63 172 175 90

121 48 42 156 159 125 182 74 77 70 65 183

123 43 45 158 160 122 180 75 73 68 71 184

168 134 132 29 26 162 52 188 190 82 85 54

FIFTH SQUARE. SIXTH OR BOTTOM SQUARE.

50 185 186 86 88 56 in 1 2 213 216 108

92 61 64 169 171 94 194 117 120 9 13 198

96 59 58 173 170 95 197 119 118 14 10 193

179 79 76 67 72 178 20 206 207 98 101 19

181 78 80 69 66 177 24 204 201 102 97 23

53 189 187 87 84 51 105 4 3 215 1214 no

Fig. 340.
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The foregoing cube was constructed in the following manner.

The foundation of this construction is the cube of 3 which is

shown in Fig. 341.

FIRST OR
TOP SQUARE

SECOND OR
MIDDLE SQUARE.

THIRD OR
BOTTOM SQUARE

19 5 18 IS 25 2 8 12 22

17 21 4 1 14 27 24 7 11

6 16 20 2b 3 13 10 23 9

Fig. 341.

FIRST, OR TOP, AND SECOND SQUARES.

144 144 32 32 136 136

144 144 32 32 136 136

128 128 160 l60 24 24

128 128 160 160 24 24

40 40 120 120 152 152

40 40 120 120 152 152

THIRD AND FOURTH SQUARES. FIFTH AND SIXTH SQUARES.

112 112 192 192 8 8 56 56 88 88 168 168

112 112 192 192 8 8 56 56 88 88 168 168

104 104 208 208 184 184 48 48 80 80

104 104 208 208 184 184 48 48 80 80

200 200 16 16 96 96 72 72 176 176 64 64

200 200 16 16 * 96 72 72 176 176 64 64

Fig. 342. The Basic Cube.

The sum of each normal row in the above cube, whether run-

ning from left to right, from rear to front or from top to bottom,

is 42 ; and the sum of each diagonal of which the central term 14

is a member, as 19 14 9, 5 14 23, 15 14 13, etc., is also 42.
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Deduct i from each term of the above cube and multiply

the remainder by 8. With each of these multiples construct a cubic

group consisting of eight repetitions of the multiple. Substitute

FIRST OR TOP SQUARE. SECOND SQUARE.

3 2 8 6 5 3

5 I 4 7 2 8

8 7 3 5 3 I

4 6 8 2 2 5

5 3 3 2 8 6

2 8 I 5 7 4

6 7 I 3 4 6

4 8 5 2 7 i

I 2 6 4 6 8

5 3 i 7 7 4

4 6 6 7 i 3

7 I 8 4 2 5

THIRD SQUARE. FOURTH SQUARE.

3 2 4 8 7 3

I 4 7 3 4 8

7 8 2 S i 4

6 5 8 3 3 2

8 5 i 2 8 3

2 3 5 6 4 7

6 7 5 I 2 6

8 5 2 6 5 i

2 i 7 4 8 5

3 4 i 6 6 7

I 4 8 7 i 6

7 6 4 3 5 2

FIFTH SQUARE. SIXTH OR BOTTOM SQUARE.

2 3 8 7 2 5

8 5 4 6 3 i

2 i 2 8 8 6

3 5 5 3 4 7

8 6 5 I 2 5

4 7 3 2 8 3

7 6 I 2 7 4

I 4 5 3 6 8

7 8 7 I i 3

6 4 4 6 5 2

i 3 4 8 7 4

5 2 6 7 i 6

Fig. 343- The Group Cube.
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FIRST OR TOP SQUARE. SECOND SQUARE.

147 146 40 38 141 139 150 151 33 35 140 142

149 145 36 39 138 144 148 152 37 34 143 137

136 135 163 165 *? 25 129 130 166 164 30 32

132 134 168 162 26 29 133 131 161 167 31 23

45 43 123 122 160 158 44 46 126 127 153 155

42 48 121 125 159 156 47 41 128 124 154 157

THIRD SQUARE. FOURTFI SQUARE.

"5 114 196 200 15 11 118 119 197 193 10 14

"3 116 199 195 12 16 120 "7 194 198 13 9

7 8 106 109 209 212 2 1 in 108 216 213

6 5 112 107 211 210 3 4 105 116 214 215

208 205 17 18 104 99 201 204 24 23 97 102

202 203 21 22 100 103 207 206 20 19 10

1

98

FIFTH SQUARE. SIXTH OR BOTTOM SQUARE.

58 59 96 95 170 173 63 62 89 90 175 172

64 61 92 94 171 169 57 60 93 9i 174 176

186 185 50 56 88 86 191 192 55 49 81 83

187 189 53 51 84 87 190 188 52 54 85 82

80 78 18J 177 66 69 73 75 180 184 71 68

76 79 179 178 72 67 77 74 182 183 65 70

Fig. 344. The Complete Cube.
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each of these groups for that term of the cube from which it was

derived, and the result will be a cube with six terms in each row.

The horizontal squares of this cube are shown in Fig. 342, the

second square being the same as the first, the fourth as the third,

and the sixth as the fifth.

The sum of the terms in each normal row of the preceding

cube is 624, and the sum of each diagonal which includes two terms

from the central group of the cube is also 624. It follows that the

middle two squares in each normal direction are magical and that

each diagonal of the solid has the same sum as the normal rows.

This cube is called the basic cube.

Another magic cube with six terms in each row was next con-

structed. This cube is called the group cube. Each position which

in the basic cube is occupied by a cubic group of eight equal num-

bers is occupied in the group cube by a cubic group consisting of

the numbers 1, 2, 3, 4, 5, 6, 7, 8. All of the rows and diagonals

which have equal sums in the basic cube will have equal sums in the

group cube.

Adding together the terms which occupy corresponding posi-

tions in the basic cube and the group cube the result is the complete

cube shown in Fig. 344, containing the numbers from 1 to 63 = 216.

In the complete cube the middle two squares in each direction

are magical while the outer squares are not.

To bring these magical squares to the surface the squares of

each set of parallel squares may be permuted as follows:

Original order 1, 2, 3, 4, 5, 6,

Permuted order 3, 2, 1, 6, 5, 4.

The result is the final cube shown in Fig. 340.

The above permutation is subject to two conditions. The sev-

eral sets of parallel squares must all be permuted in the same man-

ner. Any two parallel squares which in the original cube are located

on opposite sides of the middle plane of the cube and at an equal

distance from it, in the permuted cube must be located on opposite

sides of the middle plane of the cube and at an equal distance from it.

These conditions are for the protection of the diagonals. J. w.



CHAPTER X.

VARIOUS KINDS OF MAGIC SQUARES.

OVERLAPPING MAGIC SQUARES.

A PECULIAR species of compound squares may be called over-

lapping magic squares. In these the division is not made as usual

by some factor of the root into four, nine, sixteen or more subsquares

of equal area, but into several subsquares or panels not all of the

same size, some lying contiguous, while others overlap. The sim-

plest specimens have two minor squares of equal measure apart in

opposite corners, and in the other corners two major squares which

overlap at the center, having as common territory a middle square

? X 2, 3 X 3, or larger, or only a single cell. Such division can be

made whether the root of the square is a composite or a prime

number, as 4-5-9; 4-6-10; 5-6-1 1 ; 6-9-15; 8-12-20 etc. The natural

series 1 to n2 may be entered in such manner that each subsquare

shall be magic by itself, and the whole square also magic to a higher

or lower degree. For example the 9-square admits of division into

two minor squares 4X4, and two major squares 5X5 which over-

lap in the center having one cell in common. For convenience, the

process of construction may begin with an orderly arrangement of

materials.

The series 1 to 81 is given in Fig. 345, which may be termed a

primitive square. The nine natural grades of nine terms each, ap-

pear in direct order on horizontal lines. It is evident that any natural

series 1 to n2 when thus arranged will exhibit n distinct grades of n

terms each, the common difference being unity in the horizontal

direction, n vertically, n-\-i on direct diagonals, and n— 1 on trans-
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verse diagonals. This primitive square is therefore something more

than a mere assemblage of numbers, for, on dividing it as proposed,

there is seen in each section a set of terms which may be handled

as regular grades, and with a little manipulation may become mag-

ical. The whole square with all its component parts may be tilted

over to right or left 45 °, so that all grades will be turned into a diag-

onal direction, and all diagonals will become rectangular rows, and

presto, the magic square appears in short order. The principle has

been admirably presented and employed in various connections on

pp. 17 and 113. It is a well-known fact that the primitive square

gives in its middle rows an average and equal summation ; it is also

a fact not so generally recognized, or so distinctly stated, that all

/ z 3 4 S 6 7 * 3

/o // /2 /3 '4 /s /6 '7 /S

/3 20 2/ 22 23 24 2S 26 27

2S 23 30 3/ 32 33 <3* 3S 66

*7 3<f 3S 4-0 4' 42 43 M4 *s

46 *7 4* 4<9 SO s/ 32 S3 S4

ss s6 *7 S<f S3 60 6/ 62 63

6* 6s 66 67 6s 6s 7° 7' 7*

7* 7* 7* 7* 77 7* 7* So <$/

Fig. 345-

the diagonal rows are already correct for a magic square. Thus in

this 9-square the direct diagonal, 1, 11, 21, 31 etc. to 81 is a mathe-

matical series, 4^ normal cuuplets — 369. Also the parallel partial

diagonal 2, 12, 22, 32, etc. to J2, eight terms, and 73 to complete it,

= 369. So of all the broken diagonals of that system ; so also of

all the nine transverse diagonals ; each contains 4^ normal couplets

or the value thereof = 369. The greater includes the less, and these

features are prominent in the subsquares. By the expeditious plan

indicated above we might obtain in each section some squares of fair

magical quality, quite regular and symmetrical, but when paired

they would not be equivalent, and it is obvious that the coupled
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squares must have an equal summation of rows, whatever may be

their difference of complexion and constitution. The major squares

are like those once famous Siamese twins, Eng and Chang, united by

a vinculum, an organic part of each, through which vital currents

must flow; the central cell containing the middle term 41, must be

their bond of union, while it separates the other pair. The materials

being parceled out and ready to hand, antecedents above and con-

sequents below, an equitable allotment may be made of normal

couplets to each square. Thus from N. W. section two grades may

be taken as they stand horizontally, or vertically, or diagonally or

any way symmetrically. The consequents belonging to those, found

in S. E. section will furnish two grades more and complete the

square. The otfrer eight terms from above and their consequents

from below will empty those compartments and supply the twin

4-square with an exact equivalent. Some elaborate and elegant

specimens, magic to a high degree, may be obtained from the follow-

ing distribution:

1st grade 1, 3, 11, 13 (all odd), 2, 4, io, 12 (all even)
;

2d grade 19, 21, 29, 31 and 20, 22, 28, 30.

Then from N. E. section two grades may be taken for one of

the major squares; thus 5, 6, 7, 8, 9 and 23, 24, 25, 26, 27 leaving

for the twin square, 14, 15, 16, 17, 18 and 32, 33, 34, 35, 36. To

each we join the respective consequents of all those terms forming

4th and 5th grades, and they have an equal assignment. But each

requires a middle grade, and the only material remaining is that

whole middle grade of the 9-square. Evidently the middle portion,

39, 40, 41, 42, 43 must serve for both, and the 37, 38, and their

partners 44, 45 must be left out as undesirable citizens. Each hav-

ing received its quota may organize by any plan that will produce

a magic and bring the middle grade near the corner, and especially

the number 41 into a corner cell.

In the 5-square Fig. 346 we may begin anywhere, say the cell

below the center and write the 1st grade, 14, 15, 16, 17, 18, by a

uniform oblique step moving to the left and downward. From the

end of this grade a new departure is found by counting two cells

down or three cells up if more convenient, and the 2d grade, 32,
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33> 34> 35> 3^ £oes in Dy tne same step of the 1st grade. All the

grades follow the same rule. The leading terms 14, 32, 39, 46, 64

may be placed in advance, as they go by a uniform step of their

own, analogous to that of the grades ; then there will be no need of

any "break-move," but each grade can form on its own leader

wherever that may stand, making its proper circuit and returning

to its starting point. The steps are so chosen and adjusted that

every number finds its appointed cell unoccupied, each series often

crossing the path of others but always avoiding collision. The re-

sulting square is magic to a high degree. It has its twelve normal

couplets arranged geometrically radiating around that unmatched

middle term 41 in the central cell. In all rectangular rows and in

all diagonals, entire and broken, the five numbers give by addition

so <& 3d /6 67
34 '7 6s 9) 40

8 *7 w 3S /s

42 '36 a 6s 4S

/S 66 43 43
s")

4s SS 7* 6

SJ 7° 3/ 44

/6 30 ^/ S2.

SS ~) 77 /Z 27

7* 3 z*® S3

Fig. 347-

There are twenty such rows. Other re-

Fig. 346.

the constant S = 205.

markable features might be mentioned.

For the twin square Fig. 347 as the repetition of some terms and

omission of others may be thought a blemish, we will try that dis-

carded middle grade, 37, 38, 41, 44, 45. The other grades must be

reconstructed by borrowing a few numbers from N. W. section so

as to conform to this in their sequence of differences, as Mr. Frier-

'

son has ably shown (Fig. 249, p. 141). Thus the new series in line

5-6-9-12-13, 23-24-27-30-31, 37;38- (41) -44-45 etc. has the differ-

ences 1 3 3 1 repeated throughout, and the larger grades will

necessarily have the same, and the differences between the grades

will be reciprocal, and thus the series of differences will be balanced

geometrically on each side of the center, as well as the normal

couplets. Therefore we proceed with confidence to construct the

5-square Fig. 347 by the same rule as used in Fig. 346, only applied
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in contrary directions, counting two cells to right and one upward.

When completed it will be the reciprocal of Fig. 346 in pattern,

equivalent in summation, having only the term 41 in common and

possessing similar magical properties. It remains to be seen how

those disorganized grades in the N. W. section can be made available

for the two minor squares. Fortunately, the fragments allow this

distribution

:

Regular grades 1, 2, 3, 4,—irregular grades 7, 8, 10, 11

19, 20, 21, 22 25, 26, 28, 29

These we proceed to enter in the twin squares Figs. 348 and

349. The familiar two-step is the only one available, and the last

half of each grade must be reversed, or another appropriate permu-

tation employed in order to secure the best results. Also the 4th

grade comes in before the 3d. But these being consequents, may

7) 23 ft *7

7z S6 s zs

// C4 7*®
7* S4- /o Z6

:>) 22, V 63

73 6z 2 2/

4 s/ <&
SO 6/ 3 ZO

Fig. 348. Fig. 349-

go in naturally, each diagonally opposite its antecedent. The squares

thus made are magical to a very high degree. All rectangular and

all diagonal rows to the number of sixteen have the constant

S = 164. Each quadrate group of four numbers = 164. There are

nine of these overlapping 2-squares. The corner numbers or two

numbers taken on one side together with the two directly opposite

= 164. The corner numbers of any 3-squares = 164. There are

four of these overlapping combinations arising from the peculiar

distribution of the eight normal couplets.

These squares may pass through many changes by shifting

whole rows from side to side, that is to say that we may choose any

cell as starting point. In fact both of them have been thus changed

when taking a position in the main square. The major squares

shown in Figs. 346 and 347 pass through similar changes in order to
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bring the number 41 to a corner. With these four subsquares all

in place we have the 9-square, shown in Fig. 350, containing the

whole series 1 to 81. The twenty continuous rows have the con-

stant S = 164 + 205 = 3°9- Besides the 4-squares in N. W. and

S. E. there is a 4-square in each of the other corners overlapping

the 5-square, not wholly magic but having eight normal couplets

placed geometrically opposite, so that taken by fours symmetrically

they = 164. The four corner numbers 31 + 36 + 22 -f- 73 = 164.

This combination may be taken as typical of the odd squares

which have a pair of subsquares overlapping by a single cell. What-

ever peculiarities each individual may exhibit they must all conform

7s 3-3 // 25- /4 6s 4S 42 36

/o 26 7* S4- 43 43 32 /J 66

7/ s7 7 23 33 /6 *7 sc 39

<? 2<f 72 s6 6f 46 40 34 '7

j-z 6s /3> JO 4/ JS /s 6* *7

/z 27 3<f 3~/
77 SO 20 J 6/

*7 S3 /' & 24- 4- 60 <?/ /s

7* 6 23 ^S ss 7J 2/ 2 62

3/ 44 S3~ 7° & / 63 7* 2Z

Fig. 350.

to the requirement of equal summation in coupled subsquares ; and

for the distribution of values the plan of taking as a unit of measure

the normal couplet of the general series is so efficacious and of such

universal application that no other plan need be suggested. These

principles apply also to the even squares which have no central cell

but a block of four cells at the intersection of the axes. For ex-

ample, the 14-square, Fig. 351, has two minor subsquares 6X6, and

two major squares 8X8, with a middle square 2X2. This indi-

cates a convenient subdivision of the whole area into 2-squares.

Thus in N. W. section we have sixteen blocks ; it is a quasi-4-square,

and the compartments may be numbered from 1 to 16 following

some approved pattern of the magic square, taking such point of
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departure as will bring 16 to the central block. This is called 1 for

the S. E. section in which 2, 3, etc. to 16 are located as before.

Now as these single numbers give a constant sum in every line,

so will any mathematical series that may replace them in the same

order as 1st, 2d, 3d terms etc. Thus in 1 the numbers 1, 2, 3, 4,

in 2 ; 5, 6, 7, 8, and so on by current groups, will give correct results.

In this case the numbers 1 to 18, and 19 to 36 with their consequents

should be reserved for the twin minor squares. So that here in

the N. W. section we begin with 37, 38, in 1 instead of 1, 2, leaving

*/ /?3 6s /3/ s6 /42 4* 'S+ yU_ /33 4 /<ps /</v

4* /so 66 /J 2 SS /w #3 /S3 /S6 6 '*7 /3& / '7

*7 /3£> 33 /s7 so /vs 6z /j 6 3 /s /S3 S /s/ /3S

SS /#0 40 /SS //3 "<7 6/ /3S /fS /6 /3 /30 /S2 2,

/4S s/ /33 63 /3S 60 /60 3S /z /36 /O 3 /3/ /73

///6 SZ /3*/ 6// ,3? so. /S3 J7 /S3 /so 3~ /SZ // Z4-

/J/3 S3 /SS *f /S2 +6 /iO 6s /OS 30 /03 33 //s s/

/44 s^ /s6 ¥Z /s/ ^s /23 67 /oy SS /OV 3^ //6 <rz

2S 36 /7S 2Z "7 ,66 33 s7 /2/ 7s /26 7Z //9 sv-

/6i Z4- /6i) '7* /3 3S /oo 3S /2 2 76 /2S 7' //3 S3

y 33 /6s 26 /63 '77 7* /23 SS /// 36 /02 7* /20

'7° <3* 6/ '7* /6y zo 7* /z<z s6 Z/2- 33~ /P/ 77 //&

30 /// 2* 2/ //J /6, 3/ /OS 7* "7 7° /2S fS //o

'7' /6z 23 '7* 29 <3Z 32 /06 so //£ 63 '*? *7 /OS

Fig. 35i.

the 3, 4 spaces to be occupied by the consequents 159, 160. Then

in 2 we continue 39, 40 (instead of 5, 6) and so following the path

of the primary series, putting two terms into each 2-square, and

arriving with 67, 68 at the middle square. Then the coupled terms

go on 69, 70—71, 72 etc. by some magic step across the S. E. section

reaching the new No. 16 with the terms 97, 98. This exhausts

the antecedents. Each 2-square is half full. We may follow a

reversed track putting in the consequents 99, 100 etc. returning to the
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starting point with 159, 160. It is evident that all the 2-squares

are equivalent, and that each double row of four of them = 1576,

but it does not follow that each single row will = 788. In fact they

do so, but that is due to the position of each block as direct or re-

versed or inverted according to a chart or theorem employed in

work of this kind. The sixteen rectangular rows, the two entire

diagonals and those which pass through the centers of the 2X2
blocks sum up correctly. There are also many bent diagonals and

zzs 2/6 J 222 J- 7 7J /^3 7* /*/ V /39 73 /S2 /3S>

/o / 226 // 22/ 2/9 /S3 S3 /s/ ss /#3 *7 /*/ SS 7*

6 ZQO // /s 2/2 2// S9 /23 9/ '*7 33 /6 6 /z6 #/ /^S

2/<r <? 2/3 2/0 /2 '7 ,3/ *7 /64 93 /33 /oo SO sz ///*

z 22^- /* /S 2/S 20

S

/o/ //9 /OS /2Y //S ss /6/ /so 76

*'7 3 Z/* 203 /3 /6 /2S /o7 /Z3 /OS /02. 96 /60 s* /</a.

77 /*.9 // /ss 6s> /s7 //2 "7 //O /OS /2/ /3At- 32 ///s 7*

sz '7+ 6* /6z 7° /S6 /// //3 //S /06 /20 9S /2S S6 /4lO

/*/ 4* /SO ^6 /s6 40 //6 /OS "4- /22 /o*s /62 9* /A/6 So

s6 '7* 66 /60 /6s /<r* *7 /6y 3£> 23 36 /3V- /93 2* 2o2

'7* 4-S /6a 63 7* ss /S9 S3 "7 /SS /32 JO 3S ZO 2o6

ss /// /6S /sS js /6/ 4"/ /ss 62 32 33 /9? /SO 200 26

//6 SC 6s *7 /ss 6s /SZ 67 /6^- /j6 /3/ 3/ 3* /J3 V
"¥ /6s V //z 46 /;o *7 ///6 43 2/ 204- 26 2S 207 /3S

6/ 42 /SS S4* /S6 s6 '7* so '77 20S 22 203 20/ 2S /s

Fig. 352.

zigzag rows of eight numbers that = 788. Each quarter of the

square = 1576 and any overlapping 4-square made by four of the

blocks gives the same total. The minor squares are inlaid. Thus in

the N. E. square if the twenty numbers around the central block be

dropped out and the three at each angle be brought together around

the block we shall have a 4-square magical to a high degree. In

fact this is only reversing the process of construction.

Fig. 352 is a 15-square which develops the overlapping principle

to an unusual extent. There are two minor squares 6X6, and two
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major squares 9X9 with a middle square 3 X 3 in common. The

whole area might have been cut up into 3-squares. The present

division was an experiment that turned out remarkably well. The

general series, 1 to 225 is thus apportioned. For N. W. 6-square

the numbers 1 to 18 and 208 to 225 ; for S. E. 19 to 36 and 190 to

207; that is just eighteen normal couplets to each. For S. W. 9-

square the numbers 37 to y2 and 154 to 189; for N. E. 73 to 108

and 118 to 153; for the middle square, 109 to 117. Figs. 353 and

354 show the method of construction. The nine middle terms are

first arranged as a 3-square, and around this are placed by a well-

known process (Fig. 103, p. 47) eight normal couplets 101 -j- 125

etc. forming a border and making a 5-square. By a similar process

/* /SJ ?6 AT/ ss /</3 *7 '*/ ss

/#s SO /J/ *7 /AS 39 /J3 /oo s/

'4* /A/ /oz /2J "7 /Z6 /OS 3S sz

7* /6O /2/ //Z "7 //o /OS 36 /SV

///Z 32 /20 /// //A //f /06 /6y- *+

7* /2<9 /e>*f- //6 /03 //*. /2 2 Sf /*S

/^o &V- //S /o/ //3 ZO<S /2* /JZ St

fo /26 S3 /23 3/ ' z7 33 /AS /4>6

/6P 7* /*J 7* /*/V /33 7* /fZ

/ 223 & 22/ 2/3 /o

220 9) /*& 2// 6

s 2/6 2, tO /2 '7 2/<S

22^ /*8 2/J3 2,

3 2/t 2oS /6 /6 2/p

2/6 J 222 S 7 22S

Fig. 353- Fig. 354-

this is enlarged to a 7-square, and this again to a 9-square, Fig. 353.

Each of these concentric, or bordered, or overlapping squares is

magic by itself. The twin square N. E. is made by the same process

with the same 3-square as nucleus. In order to bring this nucleus to

the corner of each so that they may coalesce with a bond of union,

both of the squares are turned inside out. That is, whole rows are

carried from bottom to top and from left to right. Such trans-

position does not affect the value of any rectangular row, but it

does affect the diagonals. In this case the corner numbers, 74, 138

and 152 become grouped around the other corner 88, each of the

couplets having the same diagonal position as before. Thus we
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obtain a 7-square with double border or panel on the North and

East, still magic. This 7-square may now be moved down and out

a little, from the border so as to give room to place its bottom

row above, and its left column to the right, and we have a 5-square

with panels of four rows. Again we move a little down and out

leaving space for the bottom and left rows of the 5-square and thus

the 3-square advances to the required position, and the four squares

still overlap and retain all of their magical properties. The twin

square S. W. passes through analogous transformation. The minor

squares were first built up as bordered 4
2
's as shown in Fig. 354 and

then the single border was changed to double panel on two sides,

but they might have gone in without change to fill the corners of the

main square. As all this work was done by the aid of movable

numbered blocks the various operations were more simple and

rapid than any verbal description can be. The 1 5-square (Fig. 352)

as a whole has the constant S = 1695 in thirty rectangular rows

and two diagonals, and possibly some other rows will give a correct

result. If the double border of fifty-two normal couplets be re-

moved the remaining n-square, 4-7-1 1 will be found made up of

two 4-squares and two overlapping 7-squares with middle 3-square,

all magic. Within this is a volunteer 7-square, of which we must

not expect too much, but its six middle rows and two diagonals are

correct, and the corner 2X2 blocks pertaining to the 4-squares

although not composed of actual conolets have the value thereof,

224 -f- 228. However, without those blocks we have two overlapping

5-squares all right. By the way, these 4-squares have a very high

degree of magic, like those shown in Fig. 350, with their 2-squares

and 3-squares so curiously overlapping. Indeed, this recent study

had its origin some years ago from observing these special features

of the 4-square at its best state. The same traits were recognized

in the 8's and other congeners ; also some remarkable results found

in the oddly-even squares when filled by current groups, as well as

in the quartered squares, led gradually to the general scheme of

overlapping squares as here- presented. d. f. s.
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ODDLY-EVEN MAGIC SQUARES.

A convenient classification of magic squares is found by recog-

nition of the root as either a prime number or evenly-even, or oddly-

even, or oddly-odd. These four classes have many common traits,

but owing to some characteristic differences, a universal rule of

construction has hitherto seemed unattainable. The oddly-even

squares especially, have proved intractable to methods that are

readily applicable to the other classes, and it is commonly believed

that they are incapable of attaining the high degree of magical

character which appears in those others.

As some extensive explorations, recently made along those lines,

have reached a very high latitude, the results will now be presented,

showing a plan for giving to this peculiar sort, more than the

ordinary magical properties.

Problem : To make oddly-even squares which shall have proper

summation in all diagonal and rectangular rows except two, which

two shall contain S— i and S+ 1 respectively. This problem is

solved by the use of auxiliary squares.

If 11 is an oddly-even root, and the natural series I, 2, 3 etc. to

n 2
is written in current groups of four terms, thus:

1.2.3.4.—5.6.7.8.—9. 10. 1 1. 12.— 13. 14. 15. 16. etc.

0.1.2.3.—0.1.2.3.—o. 1. 2. 3.— o. 1. 2. 3. etc.

1 5 9 13 etc.

then from each current group a series 0.1.2.3 may be subtracted,

leaving a series 1.5. 9. 13 etc. to rr—3, a regular progression of

n2
/4 terms available for constructing a square whose side is 11/2.

As there are four such series, four such squares, exactly alike,

readily made magic by well-known rules, when fitted together around

a center, will constitute an oddly-even square possessing the magical

character to a high degree. This will serve as the principal auxil-

iary. Another square of the same size must now be filled with the

series 0.1.2.3 repeated n 2
/4 times. The summation 311/2 being

always odd, cannot be secured at once in every line, nor equally

divided in the half lines, but all diagonal and all rectangular rows.
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except two of the latter., can be made to sum up correctly. Hence

the completed square will show a minimum of imperfection.

In illustration of these general principles, a few examples will

be given, beginning properly with the 2-square, smallest of all and

first of the oddly-even. This is but an embryo, yet it exhibits in

its nucleated cells some germs of the magical character, capable of

indefinite expansion and growth, not only in connection with those

of its own sort, but also with all the other sorts. Everything being

reduced to lowest terms, a very general, if not a universal principle

of construction may be discovered here. Proceeding strictly by

rule, the series 1.2.3.4. affords only the term 1. repeated four

times, and the series 0.1.2.3. taken once. The main auxiliary

(Fig. 355) is a genuine quartered 2-square, equal and identical and

regular and continuous every way. S=2.

/ /

/ /

/

2 6

O 2

J /

6

2 /

/ 2

J *

Fig. 355- Fig. 356. Fig. 357- Fig. 358. Fig. 359.

The second auxiliary (Fig. 356) taking the terms in direct order,

has eight lines of summation, showing equality, S=3, in all four

diagonals, while the four rectangular rows give inequalities 1.5

and 2.4; an exact balance of values. This second auxiliary may

pass through eight reversed, inverted or revolved phases, its semi-

magic character being unchanged. Other orders may be employed,

as shown in Figs. 357 and 358, bringing equality into horizontal or

vertical rows, but not in both directions at the same time. Now
any one of these variables may combine with the constant shown

in Fig. 355, developing as many as twenty-four different arrange-

ments of the 2-square, one example of which is given in Fig. 359.

It cannot become magic unless all its terms are equal; a series

whose common difference is reduced to zero. As already suggested,

this 2-square plays an important part in the present scheme for

producing larger squares, pervading them with its kaleidoscopic

changes, and forming, we may say, the very warp and woof of their

substance and structure.

The 6-square now claims particular attention. The main auxil-
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iary, Fig. 360, consists of four 3-squares, each containing the series

1.5.9. 13 etc * *° 33- The 3-square is infantile; it has but one plan

of construction ; it is indeed regular and can not be otherwise, but it

is imperfect. However, in this combination each of the four has a

different aspect, reversed or inverted so that the inequalities of par-

tial diagonals exactly balance. With this adjustment of subsquares

the 6-square as a whole becomes a perfect quartered square, S=i02

;

it is a quasi 2-square analogous to Fig. 355.

The four initial terms, 1 . 1 . 1 . 1 symmetrically placed, are now

to be regarded as one group, a 2-square scattered into the four

quarters; so also with the other groups 5.5.5.5 etc. Lines con-

necting like terms in each quarter will form squares or other

/3 33 S S 33 /3

'7 2S 2S '7 3

23 / 2/ 2/ / 23

23 / 2/ 2/ / 23

3 '7 2S 2S '7 3

/3 33 S S 33 /3

2 2 3 z

3 / / 3 O /

O Z Z O 3 z

3 O / 3 / /

O 3 z O Z 2,

3 O / 3 / /

Fig. 360. Fig. 361.

rectangles, a pattern, as shown in Fig. 363, with which the sec-

ond auxiliary must agree. The series 0.1.2.3 is used nine times

to form this second square as in Fig. 361. There are two con-

ditions : to secure in as many lines as possible the proper summation,

and also an adjustment to the pattern of Fig. 360. For in order that

the square which is to be produced by combination of the two

auxiliaries shall contain all the terms of the original series, 1 to 36,

a group 0.1.2.3 of the one must correspond with the group 1 . 1 . 1 .

1

of the other, so as to restore by addition the first current group

1.2.3.4. Another set 0.1.2.3 must coincide with the 5.5.5.5;

another with the 9.9.9.9 and so on with all the groups. The

auxiliary Fig. 361 meets these conditions. It has all diagonals cor-

rect, and also all rectangular rows, except the 2d and 5th verticals,

which sum up respectively 8 and 10.
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Consequently, the finished square Fig. 362 shows inequality in

the corresponding rows. However, the original series has been

restored, the current groups scattered according to the pattern, and

although not strictly magic it has the inevitable inequality reduced

to a minimum. The faulty verticals can be easily equalized by trans-

posing the 33 and 34 or some other pair of numbers therein, but

the four diagonals that pass through the pair will then become in-

correct, and however these inequalities may be shifted about they

can never be wholly eliminated. It is obvious that many varieties

of the finished square having the same properties may be obtained

by reversing or revolving either of the auxiliaries, and many more

by some other arrangement of the subsquares. It will be observed

/3 3 5 7 s 36 /£

/ 2 /S 26 2S '7 /o

29 3 23 2/ 4* 3/

32 / 22 24- 2 30

3 20 27 26' /3 //

/6 JJ 6 S 34 /v

|
——| 2

11IT

,
'

l • /

Fig. 362. Fig. 363.

that in Fig. 360 the group 21 is at the center, and that each 3-square

may revolve on its main diagonal, 1 and 25, 9 and 33, 29 and 5

changing places. Now the subsquares may be placed so as to bring

either the 5 or the 13 or the 29 group at the center, with two

changes in each case. So that there may be 8X8X8=512 variations

of this kind. There are other possible arrangements of the sub-

squares that will preserve the balance of the partial diagonals, but

the pattern will be partly rhomboidal and the concentric figures

tilted to right and left. These will require special adaptation of

the second auxiliary.

We come now to the 10-square, no longer hampered as in the

6-square, by the imperfection of the subsquares. The main auxil-

iary Fig. 364 consists of four 5-squares, precisely alike, each contain-

ing the series 1.5.9 etc - to 97> ^=245, in every respect regular

and continuous. All four face the same way, but they might have
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been written right and left, as was necessary for the 3-square. The

groups 1. 1. 1. 1, 5.5.5.5 etc. are analogously located, and the pat-

tern consists of equal squares, not concentric but overlapping. The

10-square as a whole is regular and continuous. S=490.

7* 29 ss '7 7* 29 S3~ 4/ '7

4S [/ 77 33 *3 4S / 77 33 S3

37 93 43 J- « *7 33 4-9 3- 6/

s 6s» s7 S3 3 7?S 2/ 3/ S3

V s7 A3 63 23' t/ *7 /3 63 23'

7J 23 SS #/ '7 7* 23 ?£ */ '7

4S / 77 33 S3 43 / 77 33 ?3

J7 33 43 3~ 6/ *7 33 43 3- 6/

3 66- 2/ *7 <T3 3 6s 2/ #7 S3

s/ *7 /3 69 2S 8/ *7 /j 69 A
Fig. 364.

3 / O 3 2 2 O 2 2

3 Z 3 O / / 3 / /

3 / O 3 2 Z 2 2

3 O 2 3 O / / 3 / /

O 3 / O 3 2 2 2 2

3 3 3 O / / 2 / /

3 O O 3 2 2 / 2 Z

3 O 3 3 O / / 2 / /

3 O O 3 2 2 / 2 *

3 O 3 3 ° / / 2 / /

Fig. 365.

The second auxiliary Fig. 365 is supposed to have at first the

normal arrangement in the top line 0.3.0.0.3.2.2.1.2.2. which

would lead to correct results in the rectangular rows, but an alter-

nation of values in all diagonals, 14 or 16. This has been equalized

by exchange of half the middle columns, right and left, making all
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the diagonals =15, but as the portions exchanged are unequal

those two columns are unbalanced. The exchange of half columns

might have taken place in the 1st and 8th, or in the 2d and 6th, either

the upper or the lower half, or otherwise symmetrically, the same

results following.

The resultant square Fig. 366 contains all the original series, 1 to

100; it has the constant 8=505 in thirty-eight out of the total of

forty rows. When made magic by transposition of 15 and 16, or

some other pair of numbers in those affected columns, the four

diagonals that pass through such pair must bear the inequality.

Here, as in the previous example, the object is to give the second

/•> 3Z *6 4/ 20 7* J/ ss 4S /3

48 / 7* 66 89 46 Z SO <$4 SO

*7 #6 d'O s 64 63 3s 43 7 66

/z 6s 2J /oo S6 /O 66 2^ 9f S£+

8/ 60 /4 63 28 86 ss /6 7' 27

76 23 88 44 '7 7* JO *7 42 /#

4S 4 77 63 32 *7 J 7* 6s 9/

40 36 S2 S 6/ j* s* &/ 6 62

9 68 2/ 3/ s6 // 67 22 33 ss

8* *7 /6 7* 2S *2 S8 /S 7° 26

Fig. 366.

auxiliary equal summation in all diagonals at the expense of two

verticals, and then to correct the corresponding error of the fin-

ished square by exchange of two numbers that differ by unity.

In all cases the main auxiliary is a quartered square, but the

second auxiliary is not ; hence the completed square cannot have the

half lines equal, since S is always an odd number. However,

there are some remarkable combinations and progressions. For

instance in Fig. 366 the half lines in the top row are 252 -|- 253 ; in

the second row 253+252 ; and so on, alternating all the way down.

Also in the top row the alternate numbers 73 -|-86-|-20-|-31+43=253
and the 32, 41 etc. of course= 252. The same peculiarity is found

in all the rows. Figs. 364 nad 365 have similar combinations. Also
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Figs. 360, 361 and 362. This gives rise to some Nasik progressions.

Thus in Fig. 364 from upper left corner by an oblique step one cell to

the right and five cells down : 73+29+85+41 etc. ten terms, prac-

tically the same as the top row= 490. This progression may be

taken right or left, up or down, starting from any cell at pleasure.

In Fig. 365 the ten terms will always give the constant S= 15 by the

knight's move (2, 1) or (1,2) or by the elongated step (3,4). Fig.

366 has not so much of the Nasik property. The oblique step one to the

right and five down, 73+29+86 44 etc. ten terms = 505. This

progression may start from any cell moving up and down, right and

left by a sort of zigzag. The second auxiliary is richest in this

Nasik property, the main auxiliary less so, as it is made by the

knight's move ; and the completed square still less so, as the other

two neutralize each other to some extent. A vast number of varia-

tions may be obtained in the larger squares, as the subsquares

admit of so many different constructive plans.

The examples already presented may serve as models for the

larger sizes ; these are familiar and easily handled, and they clearly

show the rationale of the process. If any one wishes to traverse

wider areas and to set down more numbers in rank and file, no

further computations are required. The terms 0.1.2.3 are always

employed: the series 1.5.9 etc - t0 97> an(^ after that 101.105.109

and so on. The principal auxiliary may be made magic by any

approved process as elegant and elaborate as desired, the four sub-

squares being facsimiles. The second auxiliary has for all sizes an

arrangement analogous to that already given which may be tabu-

lated as follows:

6-square, 030— 222 top row
10-square, 03003—22122 " "

14-square, 0330003—2221221 " "

18-square, 033300003 — 222212112 " "

etc.

The top row being thus written, under each term is placed its

complement, and all succeeding rows follow the same rule, so that

the 1 st, 3d, 5th etc. are the same, and the 4th, 6th, 8th etc. are repe-

titions of the 2d. This brings all the 0.3 terms on one side and all
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the 1.2 terms on the opposite. In columns there is a regular alter-

nation of like terms; in horizontals the like terms are mostly con-

secutive, thus bringing the diagonals more nearly to an equality

so that they may be corrected by wholesale at one operation. This

systematic and somewhat mechanical arrangement insures correct

summation in rows and columns, facilitates the handling of diag-

onals, and provides automatically for the required pattern of the

2-squares, in which both the auxiliaries and the completed square

must agree. In making a square from the table it should be ob-

served that an exchange of half columns is required, either the

upper or the lower half, preferably of the middle columns; but as

we have seen in the io-square, several other points may be found

suitable for the exchange.

/ s /3> 6>

/d s / sr

/ s /3 3

/d 3> / &

o *3 o J*

/ Z / 2

J O J o

2 / z /

/ <? A3 /z

'V // 2 7

* J- /6 <S>

/s~ /o 6 6

Fig. 367. Fig. 368. Fig. 369.

This plan and process for developing to so high a degree of

excellence, the oddly-even squares, starting with the 2-square, and

constantly employing its endless combinations, is equally applicable

to the evenly-even squares. They do not need it, as there are many

well-known, convenient and expeditious methods for their construc-

tion. However, in closing we will give a specimen of the 4-square,

type of all that class, showing the pervading influence therein of the

truly ubiquitous 2-square.

The primaries Figs. 367 and 368 as well as the complete square

Fig. 369 singly and together fill the bill with no discount. Each

is a quartered square, magic to a high degree. Each contains

numerous 2-squares, four being compact in the quarters and five

others overlapping. And there are many more variously scattered

abroad especially in Fig. 368. While these specimens seem to con-

form exactly to foregoing rules they were actually made by contin-
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uous process using the knight's move (2, 1) and (1, 2). The pattern

is rhomboidal.

In all the combinations here presented, and especially in these

last specimens, the 2-square is pervasive and organic. "So we have

a symmetry," as one of our philosophical writers has said
—

"which is

astonishing, and might be deemed magical, if it were not a matter

of intrinsic necessity." d. f. s.

NOTES ON ODDLY-EVEN MAGIC SQUARES.

The foregoing article on oddly-even squares by Mr. D. F.

Savage is a valuable contribution to the general literature on magic

squares. Mr. Savage has not only clearly described a clever and

unique method of constructing oddly-even squares, but he has also

lucidly demonstrated the apparent limit of their possible perfection.

The arrangement of concentric quartets of four consecutive

numbers in his 6X6 square is strikingly peculiar, and in studying

this feature it occurred to the writer that it might be employed in

the development of these squares by a direct and continuous process,

using the arithmetical series 1 to n2 taken in groups of four con-

secutive terms, 1.2.3.4.

—

5.6.7.8. etc.

The constructive method used by Mr. Savage is based on the

well-known and elegant plan of De la Hire, but the two number

series which he has chosen for the first and second auxiliary squares

are unusual, if not entirely new. It is difficult to see how these

unique squares could have been originally evolved by any other

method than that adopted by Mr. Savage, and the different con-

structive scheme presented herewith must be regarded as only a

natural outcome of the study of his original plan. It may also tend

to throw a little additional light on the "ubiquitous 2X2 square" and

to make somewhat clearer the peculiar features that obtain in these

oddly-even squares.

Referring to Fig. 370 (which is a reflected inversion of Fig.

361 and therefore requires no further explanation) it will be seen

that this square contains nine quadrate groups of the series 0.1.

2.3., the numbers in each group being scattered in each of the
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3X3 quarters, and in concentric relationship to the 6X6 square.

The numbers of these quadrate groups are not, however, distributed

in any apparent order as viewed numerically, although the diagram

3 / 3 / /

3 2 2 2

3 / 3 / /

2 2 O 3 2

3 / / 3 O /

2 2 O 3 2

Fig. 370.

of their consecutive forms, which will be referred to later on, re-

veals the symmetry of their arrangement.

Any middle outside cell of the. 3X3 quarters containing a

z k — y\ x
A

Fig. 371.

15 15

D

cypher can be used as a starting point for a 6X6 square, and in-

spection will show four such cells in Fig. 370.

Selecting the second cell from the left in the upper line to start

/ + ?2

9. //

16 >- 6 /*
.--'

13
""

-'
7 >

N

v
~- --

/2 /
4

/O

3*- -*

Fig. 372.

32 / 2Z 24 2 30

9 20 27 25 /9 //

;6 33 6 S J* '¥-

/3 3S 7 S 36 /&

/2 /<? 26 28 '7 /o

29 J 23 2/ 4- 3/

Fig. 373-

from, the numbers in the quadrate concentric group of which this

cell is a member will be seen to have the formation shown in Fig.

371 A, so the first group of four numbers (1.2.3.4) in the series
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i to 36 are similarly placed in Fig. 372, running also in the same

relative numerical order.

To secure magic results in the completed square, each suc-

ceeding entry in the 3X3 quarters must follow the last entry in

magic square order. For the next entry in Fig. 372 there is conse-

quently a choice of two cells. Selecting the lower right-hand

corner cell of the 3X3 quarter of Fig. 370 used at the start, it is seen

to be occupied by 1, and the formation of the quadrate concentric

group is as shown in Fig. 371B. The terms 5.6.7.8 are therefore

entered in Fig. 372 in similarly located cells, and as before, in the

a t 1 2. 33 *h

--i^**^--

16

15 15

2 2

218 17

Fig. 374- Fig. 375-

same relative numerical order. The next quadrate group of 9.10.

11. 12 have the order shown in Fig. 371 C,—13. 14. 15. 16 are ar-

ranged as in Fig. 37 iD, and so on until all of the 36 cells are filled.

The resulting finished square is shown in Fig. 373.

Fig. 374 shows the different forms of the nine consecutive

quadrate groups contained in Fig. 373, written in regular order, and

it discloses the harmonious relationship of the couplets.

There are two alternative forms for the first group, as shown

in Fig. 374. If the square is to be pan-diagonal or continuous at the

expense of the summation of two vertical columns, the right-hand
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form must be used, but if the square is to be strictly magic at the

expense of making four diagonals incorrect, then the left-hand

form is correct.

This graphic presentation of number order is instructive, as it

shows at a glance certain structural peculiarities which are not ap-

parent on the face of the square.

8 25 zz 24 26 6

33 zo 3 / JS 3S

/6 3 30 32 /o /*

/3 // 3/ 23 /2 /S

36 /S Z 4 '7 3*

S V 23 2/ 28 7
Fig. 376.

Another of the many variants of this 6X6 square may be made

by starting from the fourth cell of the second line in Fig. 370, this

being also a middle outside cell of a 3X3 square.

Under this change the forms of the quadrate groups are shown

in Fig. 375, the resulting square being given in Fig. 376.

20 4/ 86 32 7* 7s 3/ SS 43 /3

89 36 7s / ^8 46 2 <80 3* 30

63 s so S3 40 39 3S 4$ 7 64.

56 s7 23 68 s /o 66 24- 38 *4

2S 72 /4 S3 84 83 *7 /3 7' 27
26 7° /6 SS SZ 8/ 60 /S 63 28

SS 93 2/ 67 // /Z 6s 22 /oo S3

62 6 S2 $4 J7 3S 96 S/ 8 6/

9/ JS 77 3 V 4.S 4- 7* 33 32

/s 44 88 30 /* 7* 29 57 42 '/

+1 -I
Fig. 377-

When these 6X6 squares are made pan-diagonal, i. e., perfect

in all their diagonals, the normal couplets are arranged in harmonic

relation throughout the square, the two paired numbers that equal

n2
-\-i being always located in the same diagonal and equally spaced

11/2 cells apart. If the square is made strictly magic, however, this
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harmonic arrangement of the couplets is naturally disturbed in the

imperfect diagonals.

The above remarks and rules will of course apply generally to

10X10 and larger squares of this class. A 10X10 square modified

from Mr. Savage's example to secure the harmonic arrangement

of the couplets, as above referred to, is given in Fig. 377. w. s. a.

NOTES ON PANDIAGONAL AND ASSOCIATED MAGIC SQUARES.

The reader's attention is invited to the plan of a magic square

of the thirteenth order shown in Fig. 378 which is original with the

Fig. 378.

writer. It is composed of four magic squares of the fourth order,

two of the fifth order, two of the seventh order, two of the ninth

order, one of the eleventh order and finally the total square of the

thirteenth order, thus making twelve perfect magics in one, several

of which have cell numbers in common with each other.

To construct this square it became necessary to take the arith-

metical series 1, 2, 3.... 169 and resolve it into different series

capable of making the sub-squares. A close study of the con-

stitution of all these squares became a prerequisite, and the fol-
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lowing observations are in a large part the fruit of the effort to

accomplish the square shown. This article is intended however

to cover more particularly the constitution of squares of the fifth

order. The results naturally apply in a large degree to all magic

squares, but especially to those of uneven orders.

It has of course been long known that magic squares can be

built with series other than the natural series i, 2, 3. . . . 11
2
, but the

perplexing fact was discovered, that although a magic square might

result from one set of numbers when arranged by some rule, yet

when put together by another method the construction would fail

to give magic results, although the second rule would work all right

with another series. It therefore became apparent that these rules

were in a way only accidentally right. With the view of explaining

Fig. 379. Fig. 380.

cz a h c d g JC y J i V
v /

a. d § 6 c J i
;-)

JC y
a. 6 c d g V̂ ;

JC y S t

a. g V 6 c d y J t :o oc

a. c & g -) b t n̂ JC y 6

Fig. 381.

these puzzling facts, we will endeavor to analyze the magic square

and discover, if possible, its raison d'etre.

The simplest, and therefore what may be termed a "primitive"

square, is one in which a single number is so disposed that every

column contains this number once and only once. Such a square

is shown in Fig. 379, which is only one of many other arrangements

by which the same result will follow. In this square every column

has the same summation (a) and it is therefore, in a limited sense,

a magic square.

Our next observation is that the empty cells of this figure may

be filled with other quantities, resulting, under proper arrangement,

in a square whose every column will still have a constant summa-

tion. Such a square is shown in Fig. 380 in which every column sums

a-\-b-\-c-\-d-^-g, each quantity appearing once and only once

in each row, column, and diagonal. These squares however have



VARIOUS KINDS OF MAGIC SQUARES. 23

1

the fatal defect of duplicate numbers, which can not be tolerated.

This defect can be removed by constructing another primitive square,

of five other numbers (Fig. 381), superimposing one square upon the

other, and adding together the numbers thus brought together.

This idea is De la Hire's theory, and it lies at the very foundation

of magical science. If however we add a to x in one cell and in

another cell add them together again, duplicate numbers will still

result, but this can be obviated by making the geometrical pattern

in one square the reverse of the same pattern in the other square.

This idea is illustrated in Figs. 380 and 381, wherein the positions of

a and v are reversed. Hence, in the addition of cell numbers in

two such squares a series of diverse numbers must result. These

series are necessarily magical because the resulting square is so.

We can now lay down the first law regarding the constitution of

magical series, viz., A magic series is made by the addition, term to

term, of x quantities to x other quantities.

As an example, let us take five quantities, a, b, c} d and g, and

add them successively to five other quantities x, y, s, t and v, and

we have the series:

a-\- x a + y a -{- s a + t a + v

b + x b + y b + s b + t b + v

c -f- x c + y c -\-s c + t c -\-v

d + x d + y d + s d + t d + v

g + * g + y g + s g + t g + v

This series, with any values given to the respective symbols, will

produce magic squares if properly arranged. It is therefore a

universal series, being convertible into any other possible series.

We will now study this series, to discover its peculiar proper-

ties if we can, so that hereafter it may be possible at a glance to

determine whether or not a given set of values can produce mag-

ical results. First, there will be found in this series a property

which may be laid down as a law, viz.:

There is a constant difference between the homologous num-

bers of any two rows or columns, whether adjacent to each other

or not. For example, between the members of the first row and the



232 VARIOUS KINDS OF MAGIC SQUARES.

corresponding members of the second row there is always the con-

stant difference of a— b. Also between the third and fourth rows

there is a constant difference c— d, and between the second and

third columns we find the constant difference y— ^ etc., etc. Second,

it will be seen that any column can occupy any vertical position in

the system and that any row could exchange place with any other

row. (As any column could therefore occupy any of five positions

in the system, in the arrangement of columns we see a total of

5X4X3X2X1 = 120 choices.

Also we see a choice of 120 in the rows, and these two factors

indicate a total of 14,400 different arrangements of the 25 numbers

and a similar number of variants in the resulting squares, to which

point we will revert later on.)

This uniformity of difference between homologous numbers of

a. b C d
t

g

sS

2'

t
a 6 c

J/

b c
tX.

d 3"

S
a
t

S'
J/ 3

6
t

c

c
t

C? a. 6

/ 23 /3/ 223 263

'*7 Z29 /3/ 7 sa>

ts7 •7 Sd //j /s;

SD /O/ /63 22? *7

/J3 2S? p '7 /07

/6a 2S? / S3 '7*

zz7 7* 2d ,67 "7

67 '7 A>7 223 /3y

S3 '°7 223 /S/ *7

/Of /Si 267 7 <?d

Fig. 382. Fig. 383. Fig. 384.

any two rows, or columns, appears to be the only essential quality

of a magical series. It will be further seen that this must neces-

sarily be so, because of the process by which the series is made, i. e.,

the successive addition of the terms of one series to those of the

other series.

As the next step we will take two series of five numbers each,

and, with these quantities we will construct the square shown in

Fig. 382 which combines the two primitives, Figs. 380 and 381.

By observation we see that this is a pure square, i. e., in no

row, column, or diagonal is any quantity repeated or lacking. Be-

cause any value may be assigned to each of the ten symbols used,

it will be seen that this species of square depends for its peculiar

properties upon the geometrical arrangement of its members and not

on their arithmetical values ; also that the five numbers represented
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by the symbols a, b, c, d, g, need not bear any special ratio to each

other, and the same heterogeneity may obtain between the numbers

represented by x, y, s, t, v.

There is however another species of magic square which is

termed "associated" or "regular," and which has the property that

the sum of any two diametrically opposite numbers equals twice

the contents of the central cell. If we suppose Fig. 382 to be such

a square we at once obtain the following equations:

(1) (d + s) -f- (d + x) = 2d -\- 23/ .-. x -\- s — 2y

(2) (d + t) + (d + v) = 2d + 23/ .-.t + v= 23/

(3) ( c + y) + (g + J) =2d + 2y .-.c + g= 2d

(4) (a + y) + (b -\- y) = 2d -\- 2y .-. a + b = 2d

Hence it is evident that if we are to have an associated square,

the element d must be an arithmetical mean between the quantities

c and g and also between a and b. Also, y must be a mean between

x and s, and between t and v. It therefore follows that an associated

square can only be made when the proper arithmetical relations

exist between the numbers used, while the construction of a con-

tinuous or pandiagonal square depends upon the method of ar-

rangement of the numbers.

The proper relations are embraced in the above outline, i. e.,

that the central term of each of the five (or x) quantities shall be

a mean between the diametrically opposite pair. For example,

1,4,9,14,17, or 1,2,3,4,5, or 1,2,10,18,19, or 1,10,11,12,21

are all series which, when combined with similar series, will yield

magical series from which associated magic squares may be con-

structed.

The failure to appreciate this distinction between pandiagonal

and associated squares is responsible for much confusion that exists,

and because the natural series 1, 2, 3,4. . . .n2 happens, as it were,

accidentally to be such a series as will yield associated squares, em-

pirical rules have been evolved for the production of squares which

are only applicable to such a series, and which consequently fail

when another series is used. For example, the old time Indian

rule of regular diagonal progression when applied to a certain class
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of series will yield magic results, but when applied to another class

of series it fails utterly!

As an example in point, the following series, which is composed

of prime numbers, will yield the continuous or Nasik magic square

shown in Fig. 383, but a square made from the same numbers ar-

ranged according to the old rule is not magic in its diagonals as

shown in Fig. 384.

I 7 37 67 73

17 23 53 83 89
IOI 107 137 167 173

157 163 193 223 229

191 197 2.27 257 263

The fundamentally partial rules, given by some authors, have

elevated the central row of the proposed numbers into a sort of

axis on which they propose to build. This central row of the series

is thrown by their rules into one or the other diagonal of the com-

pleted square. The fact that this central row adds to the correct

summation is, as before stated, simply an accident accruing to the

normal series. The central row does not sum correctly in many

magical series, and rules which throw this row into a diagonal are

therefore incompetent to take care of such series.

Returning to the general square, Fig. 382, it will be seen that

because each row, column and diagonal contains every one of the

ten quantities composing the series, the sum of these ten quantities

equals the summation of the square. Hence it is easy to make a

square whose summation shall be any desired amount, and also at

the same time to make the square contain certain predetermined

numbers.

For example, suppose it is desired to make a square whose

summation shall be 666, and which shall likewise contain the num-

bers 6, in, 3 and 222. To solve this problem, two sets of five

numbers each must be selected, the sum of the two sets being 666,

and the sums of some members in pairs being the special numbers

wished. The two series of five numbers each in this case may be
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3

6 108

20 216

50 100

100 63

179 -f- 487 = 666

from which by regular process we derive the magic square series

3 6 20 50 100

in 114 128 158 208

219 222 236 266 316

103 106 120 150 200

66 69 83 113 163

containing the four predetermined numbers. The resulting magic

J "</ zs6 /sv /66

266 200 66 6 /Z8

6s 20 /5S J/6 /05

208 2/3 /06 S3 fO

/20 //d /oo /// 222

/ 5-3 8 /5 /3

/* /2 /J 2/ 4Z

33 4 4* // 6

45 S 26 /6 /o

3 22 7 3>3 2S

Fig. 385. Fig. 386. Fig. 387.

square is shown in Fig. 385, the summation of which is 666 and which

is continuous or pandiagonal. As many as eight predetermined num-

bers can be made to appear together with a predetermined sum-

mation, in a square of the fifth order, but in this case duplicate

numbers can hardly be avoided if the numbers are selected at ran-

dom. We may go still further and force four predetermined num-

bers into four certain cells of any chosen column or row as per fol-

lowing example:

A certain person was born on the 1st day of the 8th month,

was married at the age of 19, had 15 children and is now 102 years

old. Make a pandiagonal square whose S = 102 and in which

numbers 1, 8, 15, 19 shall occupy the first, third, fourth and fifth

cells of the upper row.

Referring to the universal square given in Fig. 382,
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a = X = I

c = 3 * = 5

d = 9 f = 6

S = 6 v =13

These eight quantities sum 43, so that the other pair (b and y)

must sum 59, (43 + 59^=102). Making therefore 6= 20 and

y= 39, and replacing these values in Fig. 382, we get the desired

square shown in Fig. 386.

As previously shown, continuous squares are dependent on the

geometrical placing of the numbers, while associated squares depend

also upon the arithmetical qualities of the numbers used. In this

connection it may be of interest to note that a square of third order

can not be made continuous, but must be associated ; a square of the

fourth order may be made either continuous or associated, but can

not combine these qualities ; in a square of the fifth order both qual-

ities may belong to the same square. As I showed in the first article

of this chapter, very many continuous or Nasik squares of the

fifth order may be constructed, and it will now be proven that asso-

ciated Nasik squares of this order can only be made in fewer

numbers.

In a continuous or "pure" square each number of the sub-series

must appear once and only once in each row, column, and diagonal

(broken or entire). Drawing a square, Fig. 387, and placing in it

an element x as shown, the cells in which this element cannot then

be placed are marked with circles. In the second row only two cells

are found vacant, thus giving only two choices, indicating two

forms of the square. Drawing now another square, Fig. 388, and

filling its first row with five numbers, represented by the symbols

t, v, x, y and s, and choosing one of the two permissible cells for x in

the second row, it will be seen that there can be but two variants

when once the first row is filled, the contents of every cell in the

square being forced as soon as the choice between the two cells in

the second row is made for x. For the other subsidiary square,

Fig. 389, with numbers represented by the symbols, a, b, c, d and g,

there is no choice, except in the filling of the first row. If this row

is filled, for example, as shown in Fig. 389, all the other cells in this



VARIOUS KINDS OF MAGIC SQUARES. 237

square must be filled in the manner shown in order that it may fit

Fig. 388.

Now, therefore, taking the five symbols x, y, s, t, v, any one

of them may be placed in the first cell of the first line of Fig. 388.

For the second cell there will remain a choice of four symbols, for

the third cell three, for the fourth cell two, for the fifth cell no

choice, and finally in the second line there will be a choice of two

cells. In the second subsidiary there will be, as before, a choice of

five, four, three and finally two, and no choice in the second row.

Collecting these choices we have (5x4x3x2x2) X (5 X 4 X 3 X2 )

= 28,800, so that exactly 28,800 continuous or Nasik squares of the

fifth order may be made from any series derived from ten numbers.

Fig. 388. Fig. 389.

t V X y J tz 6 c d s / S 2 6 4

X y 5 t V d g a 6 C J 4 6~ 2

s ± V X y 5 c d g CL s 3 4 /

V X y s t S a b c d 4 / S Z 3

y 6 t V X c d. $ CL 3 2 J 4 / S

Fig. 390.

Only one-eighth of these, or 3600, will be really diverse since any

square shows eight manifestations by turning and reflection.

The question now arises, how many of these 3600 diverse Nasik

squares are also associated? To determine this query, let us take the

regular series 1, 2, 3. . . .25 made from the ten numbers

1

o

3

10

4

J 5

5

20

Making the first subsidiary square with the numbers 1, 2, 3,4, 5,

(Fig. 390) as the square is to be associated, the central cell must

contain the number 3. Selecting the upward left-hand diagonal to

work on, we can place either 1, 2, 4 or 5 in the next upward cell of

this diagonal (a choice of four). Choosing 4, we must then write

2 in its associated cell. For the upper corner cell there remains

a choice of two numbers, 1 and 5. Selecting 1, the location of 5

is forced. Next, by inspection it will be seen that the number 1
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may be placed in either of the cells marked. , giving two choices.

Selecting the upper cell, every remaining cell in the square becomes

forced. For this square we have therefore only

4x2x2= 16 choices.

For the second subsidiary square (Fig. 391) the number 10 must

occupy the central cell. In the left-hand upper diagonal adjacent

cell we can place either o, 5, 15 or 20 (four choices). Selecting

o for this cell, 20 becomes fixed in the cell associated with that con-

taining o. In the upper left-hand corner cell we can place either

5 or 15 (two choices). Selecting 15, 5 becomes fixed. Now we

cannot in this square have any further choices, because all other

15's must be located as shown, and so with all the rest of the num-

bers, as may be easily verified. The total number of choices in this

/s /o & 20

s 20 /s /O

20 /s /O s

/o s O 20 /s

O 20 /s so S

:)
^ s

/A

/ V 6 45 S 4*

3S '7 30 2/ J/ /6

66 /z W 8 40 /J

7 4S z 43 6 44

23 /s 34 /S J3 20

42 /o *7 '9 J<f S

Fig. 391. Fig. 392. Fig. 393.

square are therefore 4x2= 8, and for both of the two subsidiaries,

16x8=128. Furthermore, as we have seen that each square has

eight manifestations, there are really only 12%= 16 different plans

of squares of this order which combine the associated and Nasik

features.

If a continuous square is expanded indefinitely, any square

block of twenty-five figures will be magic. Hence, with any given

square, twenty-five squares may be made, only one of which can be

associated. There are therefore 16 x 25 = 400 variants which can

be made according to the above plan. We have however just now

shown that there are 3600 different plans of continuous squares of

this order. Hence it is seen that only one plan in nine (
360%oo= 9)

of continuous squares can be made associated by shifting the lines

and columns. Bearing in mind the fact that eight variants of a
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square may be made by turning and reflection, it is interesting to

note that if we wish a square of the fifth order to be both associated

and continuous, we can locate unity in any one of the four cells

marked in Fig. 392, but by no constructive process can the de-

sired result be effected, if unity is located in any cells marked O-

Then having selected the cell for 1, the cell next to 1 in the same

column with the central cell (13) must contain one of the four

numbers 7, 9, 17, or 19. The choices thus entailed yield our esti-

mated number of sixteen diverse associated Nasik squares, which

may be naturally increased eight times by turning and reflection.

That we must place in the same row with 1 and 13, one of the

four numbers 7, 9, 17, or 19 is apparent when it is noted that of

the series

12345
o 5 10 15 20

having placed 3 and 10 in the central cells of the two subsidiaries,

and o and 1 in two other cells, we are then compelled to use in the

same line either 5 or 15 in one subsidiary and either 2 or 4 in the

other subsidiary, the combination of which four numbers affords

only 7 and 17, or 9 and 19.

With these facts now before us we are better prepared to con-

struct those squares in which only prime numbers are used, etc.

Reviewing a list of primes it will be seen that every number ex-

cepting 2 and 5 ends in either 1, 3, 7 or 9. Arranging them there-

fore in regular order according to their terminal figures as

1 11 31 41

3 13 23 43

7 17 37 47 etc.

we can make an easier selection of desired numbers.

A little trial develops the fact that it is impossible to make

five rows of prime numbers, showing the same differences between

every row, or members thereof, and therefore a set of differences

must be found, such as 6, 30, 30, 6 (or some other suitable set).

Using the above set of differences, the series of twenty-five primes

shown on page 234 may be found. In this series it will be seen that
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similar differences exist between the homologous numbers of any

row, or column, and it is therefore only necessary to arrange the

numbers by a regular rule, in order to produce the magic square in

Fig- 383-

These facts throw a flood of light upon a problem on which

gallons of ink have been wasted, i. e., the production of pandiagonal

and regular squares of the sixth order. It is impossible to dis-

tribute six marks among the thirty-six cells of this square so that

one and only one mark shall appear in every column, row and

diagonal. Hence a primitive pandiagonal magic square of this

/s7 /3 23 '*/ /09 3/ /// /38 36 66 /oz /OO 7*

/us 2S '7 /J\3 6/ /39 S9 32 /34 /04 68 98 7°

/6 JSi, /y 26 s7 S6 30 //2 /36 99 /OS 60 //o

22 /*a /S6 '4 //J "4 /40 S8 34 6s 7/ /33 J7

*7 7* O4 76 /S/ /g 2/ 89 /#6 /3S 3S 29 /4/

79 3/ 7* 92 *7 82 /so /ss // 63 ">7 33 /37

74 36 7* 95 /*J /S9 /S 20 88 //S 6'S /O/ 63

90 SO 93 77 /3 24 8/ /43 /S2 S4- //6 /03 67

/6<t 6 3 /67 8S /4Z /S6 /2 28 64 /06 /OS 6z

7 /6j /6s 86 / /3Z 44 33 /2S so V8 //8 /24

/6z 8 84 z /63 38 /26 /3/ 4S /20 /22 SZ 46

s 83 /6/ /o /66 /29 43 40 /28 /23 "7 49 S/

*7 /6s S /60 4- 4/ /Z7 /30 *2 *7 S3 /2/ //9

Fig. 394-

order is excluded by a geometrical necessity. In this case the

natural series of numbers is not adapted to construct pandiagonal

squares of this order. That the difficulty is simply an arithmetical

one is proven by the fact that 6x6 pandiagonal squares can be

made with other series, as shown in Fig. 393. We are indebted to

Dr. C. Planck for this interesting square which is magic in its six

rows, six columns and twelve diagonals, and is also four-ply and

nine-ply, i. e., any square group of four or nine cells respectively,

sums four or nine times the mean. It is constructed from a series

made by arranging the numbers 1 to 49 in a square and eliminating
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all numbers in the central line and column, thus leaving thirty-six

numbers as follows:*

I 2 3 5 6 7

8 9 10 12 13 14

15 16 17 19 20 21

29 30 3i 33 34 35

36 37 38 40 41 42

43 44 45 47 4% 49

Fig. 394 shows the completed square which is illustrated in

skeleton form in Fig. 378. All the subsquares are faultless except

the small internal 3x3, in which one diagonal is incorrect.

l. s. F.

SERRATED MAGIC SQUARES.

The curious form of magic squares which is to be described

here possesses a striking difference from the general form of magic

squares.

'4

/f? J4> 30

29 24 4-0 3 1

39 /7 S 36 // 2S 22

4 27 to 7 21 /S 3Z 3S 36

20 33 31 Z6 37 9 3

4t /8 2 34- /3

/z 6

2S

Z3

Bn
1

4:

Fig. 395. Fig. 396.

To conform with the saw-tooth edges of this class of squares,

I have ventured to call them "serrated" magic squares.

A square containing the series 1, 2, 3, 4, 41 is shown in

Fig. 395. Its diagonals are the horizontal and vertical series of nine

numbers, as A in Fig. 396. Its rows and columns are zigzag as

* For further information regarding squares of this type wherein n is of

the form 4/? + B- See p. 267.
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shown at B, and are sixteen in number, a quantity which is always

equal to the number of cells which form the serrations.

All of this class of squares must necessarily contain the two

above features.

/4

/9 30 16

2? 40 / 24- 8

39 S // 22 r7 36 2S

4 /O 2/ 32 33 Z7 7 ts 3S

zo 3/ 37 3 33 26 ?

41 Z /J /8 34

/z 23 6

28

Fig. 397-

But, owing to its Nasik formation, Fig. 395 possesses other fea-

tures as follows:

There are nine summations each of the square and cruciform,

as at C and D in Fig. 396, the centers of which are 40, 11, 32, 5, 21,

37, 10, 31 and 2 respectively. Of E and F there are six summations

each, and of the form G there are twelve summations.

This square was formed by the interconcentric position of the

/ 2 3 4- S 6 7 3 &

/o // /Z /J /4 /s /6 /7 /s

'9 20 2/ 22 23 2+ zs 26 27

28 29 3o 3J 3Z 33 34 33- 36

37 38 39 40 4-/

Fig. 398.

two Nasik squares shown in Fig. 397, and the method of selecting

their numbers is clearly shown in Fig. 398.

There are numerous other selections for the sub-squares and

the summations are not necessarily constant. This is shown by the

following equations.
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Let N and 11 equal the number of cells on a side of the large

and small squares respectively, and let S equal the summations.

Then, when the means of each sub-square are equal

^ (l+N 2+»2)(N+ «)
b "

2

When the large square has the first of the series and the small

square has the last of the series

N(l+ N2
) .

?i(l+ n2
)

S = + - +N2«
2

'

2

When the large square has the last of the series and the small

square has the first of the series

S =
no±n!)

+«o±«
2
_) +Nw2

8

7 36 /6>

log 67 IS 6/ eo

/G? 4Z /OO 43 91 44 82

//O 73 /O/ 74 2Z 68 83 69 2S

/// 48 /oz 49 Zl SO 30 s/ Z6 SZ /7

z 79 /03 80 20 e/ Z9 7S 87 76 /6 77 /OS

/ S4 /o SS /9 S6 28 *7 86 S8 9S S9 /04 60 //3

9 37 96 38 Z7 39 8S 33 94 34 // 3S //Z

97 ez 88 63 84 64 93 6S /Z 66, 3

89 4S 3/ 46 9Z 40 /3 4-/ 4-

32. 70 23 7/ /4 7Z S

Z4 S3 99 47 6

98 78 /07

/06

Fig. 399-

Only in such squares that fit the first equation, is it possible to

have complementary pairs balanced about the center ; in other words

known as regular or associated squares.

Fig. 399 is one of this class and has summations of 855. In

this case the mean of the series was used in the 7X7 sub-square and

the remaining extremes made up the 8X8 square.
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Figs. 400, 401, and 402 are the smallest possible examples of

serrated squares. Fig. 400 is regular and is formed with the first

of the above mentioned equations, and its summations are 91. Fig.

4

23 /+ /S

24 /9 /O J- S

1'
6> & '3 /7 2o zs

f8 2.1 J£> 7 2

// /Z 3

22.

4

/4 '8 9

XT 2S- 7 Z3 S

/ 20 6 21 // 22 /6

/2 /9 /o /7 2

8 24 3

/3

i3

Z3 Z /8

24 9 /6 7 /4

/O A /S J" 20 6 ZS

2/ 3 '9 / //

<7 a /2

22

Fig. 400. Fig. 401. Fig. 402.

401 is formed with the second equation and its summations are 97.

Fig. 402 is formed with the third equation and its summations are 85.

h. a. s.

LOZENGE MAGIC SQUARES.

Recently the writer has noticed in a weekly periodical a few

examples of magic squares in which all of the odd numbers are

arranged sequentially in the form of a square, the points of which

meet the centers of the sides of the main square and the even

numbers filling in the corners as shown in Fig. 405.

These articles merely showed the completed square and did not

show or describe any method of construction.

A few simple methods of constructing these squares are de-

' scribed below, which may be found of some interest.

To construct such squares, n must necessarily be odd, as 3, 5,

7, 9, 11 etc.

A La Hireian method is shown in Figs. 403, 404, and 405, in

which the first two figures are primary squares used to form the

main square, Fig. 405. We begin by filling in the cells of Fig. 403,

placing 1 in the top central cell and numbering downward 1, 2, 3

to 7 or n. We now repeat these numbers pan-diagonally down to

the left filling the square.

Fig. 404 is filled in the same manner, only that we use the series
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0, i, 2, to 6 or n— 1 in our central vertical column, and repeat these

pan-diagonally down to the right. The cell numbers in Fig. 404 are

then multiplied by 7 or n and added to the same respective cell

numbers of Fig. 403, which gives us the final square Fig. 405.

s 6 7 1 2. 3 4 3 z / 6 S 4 26 zo »/^<* 33 3Z

6 7 / Z 3 4 S 4 3 z / £> S 34- Uy '« 9 ^<* 4-0

7 / 2 3 4 f 6 S 4 3 z 1 6 **) '*, Z3 17 // > **

/ Z 3 4- S 6 7 & S 4 3 Z / O <- 37 3/ 2S /? '3 »
Z 3 4 S 6 7 1 £ S 4 3 2 / *\<S 39 33 27 2'/4
3 4 S 6 7 / Z 1 6 S 4- 3 z JO ^<7 4/ 3Jy^ /6

4 S 6 7 / Z 3 Z 1 6 S 4 3 /8 /Z *\<*/ '* 30 Z4

Fig. 403. Fig. 404. Fig. 405.

Another method is shown in Fig. 406 where we have five sub-

squares placed in the form of a cross. The central one of these is

filled consecutively from 1 to n 2
. We then take the even numbers of

the upper quarter, in this case 2, 8 and 4, and place them in the

same respective cells in the lower sub-square. The lower quarter

l&

ZZ Z4-

1 2 3 4- S
/o 6 7 s 3 /o 6

1+ // tz 13 14- /5 /Z

zo /6 17 /a id zo 16

2/ ZZ Z3 z+ 26

Z 4
a

Fig. 406.

or 22, 18 and 24, are placed in the upper square. Likewise the

left-hand quarter is placed in the right-hand square, and the right-

hand quarter in the left-hand square. This gives us the required

square, which is shown in heavy numbers.

A third method is to write the numbers consecutively, in the

form of a square, over an area of adjacent squares as in Fig. 407.
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The mean of the series must be placed in the center cell of the

central or main square and the four next nearest to the center must

find their places in the corner cells of the main square, which con-

17

'4 7^^ '6

y 'u 7 ^ «*

<- r7 /3 3 d
^ <3 /?

1'
'*

8 ^ f?
'* /z

Fig. 407. Fig. 408.

/^\
/
t£

// 5^
\

/t 2? 21 /3 >\

/ <ff f-7 39 3/ 23 /S 7^\
/<?

6S S7 4? 4/ 33 2S /7 *>

/ 4o ^< 67 s? s/ 43 3S z7
/

/4s 2o 'Z «N
¥X

69 6/ S3
f/

/

/4 38 30 zz /4- ^ 2_ 7/

f/
/

^ i+ S6 46 40 3Z 24 /6 ^%/

\
<:

66 S3 So 4Z 3+ 26 '*/
/

\\* 63 60 SZ 44 36/
/

\
\7f

70 6Z "/
/

\
<:

7
f/

/

\ /
Fig. 409.

sequently governs the spacing in writing the series. We then re-

move all these numbers to the same respective cells in the main

square, and this gives us the square shown in Fig. 408.
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This last method is not preferable, owing to the largeness of

the primary arrangement, which becomes very large in larger squares.

It might however be used in the break-move style where the steps

are equal to the distance from the center cell to the corner cell, and

the breakmoves are one cell down when 1 is at the top.

What seems to be the most simple method is shown in Fig. 409

where the odd numbers are written consecutively in the main square,

and directly following in the same order of progression the even

numbers are written.

42 34 26 m A \~ 66 S8 so

SZ 4-4-

y)
'„ // ^

k*
68 60

6Z */'37 2? Zl /3 >
-Z*

70

*/
<« 47 3? 3/ 23 /s h <0

% 6S S7 +9 4/ 33 2S '7 b
2\V 67 & SZ 43 3S *7/Jo

/2 ^<7 69 6/ S3 *S/ '23 Zo

2Z /4 ^X 7/ 63)^ 38 30

3Z 24- /6 8^
*0\

<» S6 40 40

Fig. 410.

The even numbers necessarily run over into three adjacent sub-

squares. These are removed to the same respective cells in the

main square, the result of which is shown in Fig. 410.

The summations of Fig. 405 are 175, the summations of Figs.

406 and 408 are 65, and the summations for Fig. 410 are 369. Also,

all complementary pairs are balanced about the center.

h. a. s.



CHAPTER XL

SUNDRY CONSTRUCTIVE METHODS.

A NEW METHOD FOR MAKING MAGIC SQUARES OF ODD
ORDERS.

TN an endeavor to discover a general rule whereby all forms of

-** magic squares might be constructed, and thereby to solve the

question as to the possible number of squares of the fifth order, a

method was devised whereby squares may be made, for whose con-

struction the rules at present known to the writer appear to be in-

adequate.

A general rule, however, seems as yet to be unattainable ; nor

does the solution of the possible number of squares of an order

higher than four seem to be yet in sight, though, because of the

discovery, so to speak, of hitherto unknown variants, the goal must,

at least, have been brought nearer to realization.

The new method now to be described does not pretend to be

other than a partial rule, i. e., a rule by which most, but possibly

not all kinds of magic squares may be made. It is based on De la

Hire's method, i. e., on the implied theory that a normal magic square

is made up of two primary squares, the one superimposed on the

other and the numbers in similarly placed cells added together. This

theory is governed by the fact that a given series of numbers may

be produced by the consecutive addition of the terms of two or more

diverse series of numbers. For example, the series of natural num-

bers from one to sixteen may be regarded (a) as a single series,

as stated, or (Z?) as the result of the addition, successively, of all
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the terms of a series of eight terms to those of another series of

two terms. For example, if series No. 1 is composed of 0-1-2-3-4-5-6

and 7 and series No. 2 is composed of 1 and 9, all the numbers from

1 to 16 may be thus produced. Or (c) a series of four numbers,

added successively to all the terms of another series of four num-

bers, will likewise produce the same result, as for example 0-1-2

and 3, and 1-5-9 and T 3-

Without undertaking to trace out the steps leading up to the rule

to be described, we will at once state the method in connection with

a 5 X 5 square. First, two primary squares must be made, which

will hereafter be respectively referred to as the A and B primary

squares. If the proposed magic square is to be associated, that is, if

its complementary couplets are to be arranged geometrically equi-

distant from the center, the central cell of each square must naturally

3 /o 3

3 /o 3

3 /o 3

3 /o 3

3 /o 3

Fig. 411. Fig. 412. Fig. 413-

be occupied by the central number of the series of which the square

is composed. The two series in this case may be 1-2-3-4-5 and 0-5-

10-15-20. The central number of the first series being 3 and of the

second series 10, these two numbers must occupy the central cells of

their respective squares.

In each of these squares, each of the terms of its series must be

represented five times, or as many times as the series has terms.

Having placed 3 and 10 in their respective central cells, four other

cells in each square must be similarly filled. To locate these cells,

any geometrical design may be selected which is balanced about the

central cell. Having done this in primary square A the reverse of

the same design must be taken for primary square B, two examples

being shown in Figs. 411 and 412 and Figs. 413 and 414.
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Having selected a design, the next step will be to fill the central

row, which may be done by writing in any of the four empty cells

in this row, any of the four remaining terms of the series. The

/o

/o

/o

/o

/o

®
<
Jy

* / » s 2

V,
.

(f)

/ s 2 ^

K s 2 9 /

4 / (4 S z

s 2 4 / CO
2 4 / ^) s

Fig. 414. Fig. 415. Fig. 416.

opposite cell to the one so filled must then be rilled with the com-

plementary number of the one last entered. Next, in either of the

two remaining empty cells, write either of the remaining two terms

s /s ® 20

20 s /s 1°;

/s Qo) 20 s

& 20 s /s

<?>) 20 s /s

6 /# S /2 24

23 /O '7 4 //

/S / /J 2S 7
/S 22 3 /6 j

2 /* 2/ S 20

X
V>

Q)
c
3
;

CO

Fig. 417. Fig. 419.Fig. 418.

of the series, and, in the last empty cell the then remaining number,

which will complete the central row as shown in Fig. 415. All the

other rows in the scjuare must then be filled, using the same order

4 S~ / 2
's,

2 * S /

/ 2 * S

& / 2 *

$ *• s / 2

& s 20 /s

O 2,0 /s
S /

s

20 /s (") s

/S
(?)

s 20

s 20 /s ft

/* /o / 22 /s

2 2J /s /S 6

2/ V /j S s

20 // / 3 2^

<5 4- 2S /6 /z

Fig. 420. Fig. 421. Fig. 422.

of numbers as in this basic row, and the square will be completed as

shown in Fig. 416. The second square can then be made up with the

numbers of its series in exactly the same way, as shown in Fig. 417.
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Adding together the terms of Figs. 416 and 417, will give the asso-

ciated 5X5 magic square shown in Fig. 418, which can not be made

by any previously published rule known to the writer. Another

example may be given to impress the method on the student's mind,

Fig. 419 showing the plan, Figs. 420 and 421 the A and B primary

7)
CO

?)

»
£

7)

£

/ / z J s 6

6 7 ® / z j s

k\ / z J s 6 7
s 6 7 (?) / 2 6

/ 2 6 s 6 7 <?,

J s 6 7 s) / 2

2 j s 6 7 ® /

Fig. 423. Fig. 424.

squares, and Fig. 422 the resulting magic square. Any odd square

can be readily made by this method, a 7 X 7 being shown. Fig. 423

shows the plan, Figs. 424 and 425 being the primary squares and

426 the complete example. Returning to the 5X5 square, it will be

seen that in filling out the central row of the A primary square

JS 'V 2S 7 42V O </Z /8 29 3 4S 26 6

/* 28 7 42 (k O JS 20 3S // 43 2J J 40

3S '9 2S 7 42 (P^ 4 36 /6 3/ /2 48 28

28 7 4-2® 3S /^ 33 /3 4S 26~ / J7 '7

& 3S /4 28 7 42 22 2 38 /& 3^ /4 46

7 4% c-:
O JS /4 28 /O *7 27 7 33 /<? 30

42H 3S /4 Z8 7 44 24 S 4/ 2/ 32 <?

Fig. 425. Fig. 426.

Fig. 415, for the first of the four empty cells, there is a choice of

16, and next a choice of four. Also for the B primary square there

are the same choices. Hence we have

( 16 X 4)
2 = 4096 choices.
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In addition to this, by reversing the patterns in the two primary

squares, the above number can be doubled.

It is therefore evident that with any chosen geometrical plan,

8192 variants of associated 5X5 squares can be produced, and as at

least five distinct plans can be made, 40,960 different 5X5 asso-

ciated squares can thus be formed. This however is not the limit,

for the writer believes it to be a law that all "figures of equilibrium''

Q
\ G
\

q

'/

CO

CO
CO

CO

<£

b
s

Cv

Fig. 427. Fig. 428. Fig. 429.

will produce magic squares as well as geometrically balanced dia-

grams or plans.

Referring to Fig. 427, if the circles represent equal weights

connected as by the dotted lines, the system would balance at the

center of the square. This therefore is a "figure of equilibrium"

and it may be used as a basis for magic squares, as follows : Fill the

CO k̂J / C) * s Z

CO q
2 * s / CvcS :o J- 2

/ N

4- /

G CO w S / 2 ^

(?) K ^ / z j~

Fig. 430. Fig. 431. Fig. 432.

marked cells with a number, as for example 1 as in Fig. 428; then

with the other numbers of the series, (excepting only the central

number) make three other similar "figures of equilibrium" as shown

separately in Figs. 429, 430 and 431, and collectively in Fig. 432.

The five cells remaining empty will be geometrically balanced, and

must be filled with the middle terms of the series (in this instance
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3) thus completing the A primary square as shown in Fig. 433.

Fill the B primary square with the series 0-5- 10-15-20 in the same

manner as above described and as shown in Fig. 434. The com-

/ * s 2 s /s /o zo 6 cJ /f /f ZZ

z * s / CO /o zo AT J- /z z* s /6 f

s z * / zo /s /o s 2S '7 /3 3 /

'£ s / z 4- /s s zo /o /# /o 2/ z 'y-

4 / z s /o s 20 /s 4- // 7 Z3> 20

Fig. 433- Fig. 434. Fig. 435-

bination of Figs. 433 and 434 produces the associated magic square

given in Fig. 435.

There are at least five different "figures of equilibrium" that

s /J" 20 00 / z 4- s 2 4 / 0y S

s /s ZO (^ O s CO / 2 *- (3] s z 4 /

yj 20 S ¥ CO / z 4 / S z

zo \/o O S /s z ^ s / S z 4 /

O s /S zo / z ^ S / £ S 2 ^

Fig. 436. Fig. 438.Fig. 437-

can be drawn in a 5 X 5 square, and these can be readily shown to

give as many variants as the geometrical class, which as before

noted yielded 40,960 different squares. The number may therefore

3 6 '7 2^- /s 2 S /6 26 /S

/o /s z/ /2 V- S SO 22 /</ /

/3 2S /j / 7 /6> 2/ /J S 7

ZZ /4 s s /6 2S /2 V 6 /<?

// 2 £ 20 23 // J /O '7 24-

Fig. 439- Fig. 440.

now be doubled, raising the total to 81,920 associated 5X5 magic

squares that are capable of being produced by the rules thus far

considered.
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The student must not however imagine that the possibilities of

this method are now exhausted, for a further study of the subject

will show that a geometrical pattern or design may often be used

not only with its own reverse as shown, but also with another

entirely different design, thus rendering our search for the universal

rule still more difficult.

4 2 s ?. / 2 (0 * S / 7) / 4 2 s

CO / ¥ 2 s * s / 2 s CO / V 2-

z J- (0 / & / 2 q: 4 s 2 s / «-

/ 4- z s :o 7) ¥ s / 2 4- z s V̂ /

s ' 4- 2 f / 2 Z 4- / 4- 2 s K
Fig. 441. Fig. 442. Fig. 443-

For example the pattern shown in Fig. 436 may be combined in

turn with its reverse shown in Fig. 437 and also with Fig. 438, mak-

ing the two associated magic squares shown in Figs. 439 and 440.

In consideration of this as yet unexplored territory, therefore,

C)

c^N

(j

d

Fig. 444.

c
c

c:

D
c

c;
Fig. 445.

the rules herein briefly outlined can only be considered as partial,

and fall short of the "universal" rule for which the writer has been

seeking. Their comprehensiveness however is evidenced by the

fact that any square made by any other rule heretofore known to the

writer, may be made by these rules, and also a great variety of other
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squares which may only be made with great difficulty, if at all, by

the older methods.

To show the application of these rules to the older methods,

a few squares given in Chapter I may be analyzed.

Figs. 441, 442 and 443 show the plans of 5 X 5 squares given

in Figs. 22, 23 and 41 in the above mentioned chapter.

Their comprehensiveness is still further emphasized in squares

of larger size, as for exarriple in the 7X7 square shown in Fig. 426.

Two final examples are shown in Figs. 444 and 445 which give

plans of two 9X9 squares which if worked out will be found to

be unique and beyond the power of any other rule to produce. In

conclusion an original and curious 8X8 square is submitted in

/ /4< 7 /z B

/s * 3 6

\

C

/o S /6 6

s // z A3

d 4 /s 6 &

/* / /Z 7
// <? /J z,

D S /o J /6

/ /* 7 /z q /6 s /o

/s s 6 /J z // s

/o s /6 J Z2. 7 /v /

S // Z /J 6 m e
# /J * // 4 /& 6 ^

/6 J /o s /4 / /z. 7

S 6 /s V // f /j &

7 /z / e «r /o J /6

Fig. 446. Fig. 447.

Fig. 449. This square is both associated and continuous or Nasik,

inasmuch as all constructive diagonals give the correct summation.

The theory upon which the writer proceeded in the construction

of this square was to consider it as a compound square composed

of four 4X4 squares, the latter being in themselves continuous

but not associated. That the latter quality might obtain in the

8X8 square, each quarter of the 4 X 4 square is made the exact

counterpart of the similar quarter in the diagonally opposite 4X4
square, but turned on its axis 180 degrees.

Having in this manner made an associated and continuous

8X8 square composed of four 4X4 squares, each containing the

series 1 to 16 inclusive, another 8X8 square, made with similar
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properties, with a proper number series and added to the first square

term to term will necessarily yield the desired result.

Practically, the work was done as follows : In one quarter of

an 8X8 square, a continuous (but not associated) 4X4 square

was inscribed, and in the diagonally opposite quarter another 4X4
square was written in the manner heretofore described and now

illustrated in Fig. 446. A simple computation will show that in the

unfilled parts of Fig. 446, if it is to be continuous, the contents of

the cells C and D must be 29 and A and B must equal 5. Hence

A and B may contain respectively 1 and 4, or else 2 and 3. Choosing

2 and 3 for A and B, and 14 and 15 for D and C, they were located

4c<? 32 /6

4* » /6 32

/6 32 4-S 3>
3Z /6 S> 4S

tt

S6

32

*/

SS

/¥

^

ss

*7

/6 EE)
H
42

'7

60

s*

s

4*

34-5?

49

46

36

24-

*7

B
Fig. 448. Fig. 449.

as marked by circles in Fig. 447, the associated or centrally bal-

anced idea being thus preserved.

The other two quarters of the 8X8 square were then com-

pleted in the usual way of making Nasik 4X4 squares, thus pro-

ducing the A primary square shown in Fig. 447, which, in accord-

ance with our theory must be both associated and continuous which

inspection confirms.

As only the numbers in the series 1 to 16 inclusive appear in this

square, it is evident that they must be considered term by term with

another square made with the series 0-16-32-48 in order that the

final square may contain the series 1 to 64 inclusive. This is accom-

plished in Fig. 448, which shows a 4 X 4 square both associated and

continuous, composed of the numbers in the above mentioned

series.
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At this point, two courses of operation seemed to be open, the

first being to expand Fig. 448 into an 8 X 8 square, as in the case of

the A primary square, Fig. 447, and the second being to consider

Fig. 447 as a 4 X 4 square, built up of sixteen subsquares of 2 X 2

regarded as units.

The latter course was chosen as the easier one, and each indi-

vidual term in Fig. 448 was added to each of the four numbers in the

corresponding quadruple cells of Fig. 447, thus giving four terms

in the complete square as shown in Fg. 449. For example o being

the term in the upper left-hand cell of Fig. 448, this term was added

to 1 -14- 1 5-4 in the first quadruple cell of Fig. 447, leaving these

numbers unchanged in their value, so they were simply transferred

to the complete magic square Fig. 449. The second quadruple cell

in Fig. 447 contains the numbers 7-12-9-6, and as the second cell

in Fig. 448 contains the number 48, this number was added to

each of the last mentioned four terms, converting them respectively

into 55-60-57 and 54, which numbers were inscribed into the cor-

responding cells of Fig. 449, and so on throughout.

Attention may here be called to the "figure of equilibrium"

shown in Fig. 448 by circles and its quadruple reappearance in Fig.

449 which is a complete associated and continuous 8X8 magic

square, having many unique summations. l. s. f.

THE CONSTRUCTION OF MAGIC SQUARES AND RECTANGLES
BY THE METHOD OF "COMPLEMENTARY DIFFERENCES."*

We are indebted to Dr. C. Planck for a new and power-

ful method for producing magic squares, rectangles etc. This

method is especally attractive and valuable in furnishing a general

or universal rule covering the construction of all conceivable types

of squares and rectangles, both odd and even. It is not indeed the

easiest and best method for making all kinds of squares, as in many

cases much simpler rules can be used to advantage, but it will be

found exceedingly helpful in the production of new variants, which

* This article has been compiled almost entirely from correspondence re-

ceived by the writer from Dr. Planck, and in a large part of it the text of his

letters has been copied almost verbatim. Its publication in present form has
naturally received his sanction and endorsement. w. s. A.
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might otherwise remain undiscovered, seeing that they may be non-

La Hireian and ungoverned by any obvious constructive plan.

When a series of numbers is arranged in two associated col-

umns, as shown in Fig. 450, each pair of numbers has its distinctive

difference, and these "complementary differences," as they are

termed by Dr. Planck, may be used very effectively in the con-

struction of magic squares and rectangles. In practice it is often

quite as efficient and simpler to use half the differences, as given in

Fig. 450.

In illustrating this method we will first apply it to the con-

/ /s 7

2 '* 6

3 /s s

4 /2 4

J // 3

6 /O z

7 £ /

S

CL b

c C

6 a

Fig. 451.

2 5 4 6 /

7 6 S /O s

/J /6 /2 // /^

Fig. 450. Fig. 452.

struction of an associated or regular 3x5 magic rectangle, in which

the natural numbers 1 to 15 inclusive are to be so arranged that

every long row sums 40, and every short column sums 24. The

center cell must necessarily be occupied by 8, which is the middle

number of the series, and the complementary numbers must lie in

associated cells, such as a a— bb— cc in Fig. 451.

The first operation is to lay out a 3 x 5 rectangle and fill it

with such numbers that all the short columns shall sum 24, but

in which the numbers in the columns will not be placed in any

particular order. When two columns of this rectangle are filled

three pairs of complementary numbers will have been used, and

their differences will have disappeared, as these two columns must
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each sum 24. Hence, one complementary difference must equal

the sum of the other two.

We have therefore (neglecting the middle column) to make

two equations of the forms a = b + c from the complementary dif-

ferences, without using the same difference twice. Thus

:

7 "i * i

\ o,
5=3+2J

is such a pair of equations.

The first equation indicates that the greater of the two comple-

ments whose half difference is 7 can lie in the same column with

the lesser members of the pairs whose half differences are 6 and 1.

In other words, the numbers 15, 7 and 2 can lie in one column,

and their complements 14, 9 and 1 in the associated column. The

second equation (5 = 3 + 2) gives similar information regarding

the other pair of associated columns, and the three remaining num-

bers must then be placed in the middle column, thus producing the

rectangle shown in Fig. 452.

These equations determine nothing as to the placing of the

numbers in the rows, since in Fig. 452 the numbers in the columns

have no definite order.

The rows may now be attacked in a similar manner. Two of

the complementary differences in the upper or lower row must equal

the other three, and the equation will therefore be of the order

a + b = c + d + e.

In order that the disposition of numbers in the columns shall

not be disturbed, the numbers used in this equation must be so

chosen that any two numbers which appear together on the same

side of an equality sign in the short column equation, must not so

appear in a long row equation, also if two numbers appear on the

opposite sides of an equality sign in a short column equation, they

must not so appear in the long row equation.

There is only one such equation which will conform to the

above rules, viz.,

6 + 2 = 4 + 3+1.
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Interpreting this as before we have the rectangle given in Fig.

453, in which each of the three rows sums 40. We have now two

rectangles, Fig. 452 showing the correct numbers in the columns,

and Fig. 453 showing the proper disposition of the numbers in the

rows. By combining them we get the associated or regular magic

rectangle given in Fig. 454.

/ S 7 /o '* 7 S 4 /o /4

/ J 8 /3 /S /s /J s j /

2 6 9 // /2 2 6 /z // 3

Fig. 453- Fig. 454-

(ID

If a mere shuffling of pairs of complementary rows or columns

is ignored, this is the only solution of the problem.*

There are two pairs of equations of the form

a = b + c

d = e + f

namely, the one given in (I) and

7 = 5 + 2'

4 = 3 + 1.

and there are nine equations of the form

a + b = c + d + e

but of these nine equations only one will go with (I) and none

will go with (II) so as to conform with the above rules.

If the condition of association is relaxed there are thirty-nine

different 3x5 magic rectangles.

This method can naturally be used for constructing all sizes of

magic rectangles which are possible,t but we will only consider

one of 5 x 7 as a final example.

* The solution of this problem of the associated rectangle is the first step

in the construction of the higher ornate magics of composite odd orders. For
example, if the above single solution for the 3X5 rectangle did not exist it

would be impossible to construct a magic, pan-diagonal, associated (= regu-
lar) square of order 15, which shall be both 9-ply and 25-ply, i. e., any square
bunch of 9 cells to sum up 9 times the mean, and any square bunch of 25 cells

25 times the mean. c. p.

t A magic rectangle with an odd number of cells in one side and an even
number in the other, is impossible with consecutive numbers, c. p.
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Fig. 455 shows the associated series of natural numbers from

1 to 35 with their half differences, from which the numbers must

be chosen in accordance with the above rules. In this case three

will be three equations of the order

/ 3S '7

2 3^ /6

3 33 /s

4 32 /4

S 3/ /3

6 30 /2

7 23 //

8 28 /O

3 27 3

/O 26 S

// 25 7
/2 24- 6

/3 23 s

/* 22 4

/& 2/ 3

/6 20 2

'7 /3 /

/8

/3 2Z 33 29 23 2/ 20

35 3/ 3/+ 2S 30 24 25

S /O 4- /8 32 26 2?

// /2 6 7 2 S /

/6 /S /3 8 3 /4 '7

Fig. 456.

JO 3/ 3^ / 7 3 /*

2S 26 2£ /6 /s A3 3

32 2* /S /s '7 /2 V-

33 23 2/ 20 8 /O //

22 2/ 29 3 6" 2 S 6

Fig. 457.

3 3/ 34 7 30 /* /

/6 /5 /3 2S 3 26 25

/3 /2 4 /8 32 24- '7

// /O <J3 8 23 2/ 20

33 22 6 23 2 J 27

vig- 455- Fig. 458.

a + b = c + d + e

for the columns, and two equations of the order

a+b+c=d+e+f+g
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for the rows. The following selection of numbers will satisfy

the conditions:

1 + 17= 9 + 7 + 2"

4+13= 8+ 6 + 3 (Ill)

15 + 16=14+12 + 5.

for the columns, and

12+13 + 16=17+11 + 9+ 41
[ (IV)

7+ 8+10= 2+ 3 + 5 + 15 J

for the rows.

Fig. 456 is a rectangle made from (III) in which all the

columns sum 90, and Fig. 457 is a rectangle made from (IV) in

which all the rows sum 126. Combining these two rectangles pro-

duces Fig. 458 which is magic and associated.

We will now consider this method in connection with magic

squares and will apply it to the construction of a square of order 5

as a first example. In this case two equations of the order

a + b = c + d + e

will be required for the rows and two more similar equations for

the columns.

The following will be found suitable for the rows

:

12+11 = 10 + 9 + 4]
(V)

1+ 6= 7 + 5+2J

and

11 + 8=12 + 6+1
I-

(VI)
10 + 7= 9 + 5 + 3'

for the columns.

It will be seen that the rule for pairs of numbers in the same

equation is fulfilled in the above selection. In (V) 12 and 11 are on

the same side of an equality sign, but in (VI) these numbers are

on opposite sides, also, 10 and 9 are on the same side in (V) and

on opposite sides in (VI) and so on.
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The resulting magic square is given in Fig. 459, it is non-

La Hireian, and could not easily be made in any way other than as

above described.

The construction of a square of order 6 under this method

presents more difficulties than previous examples, on account of

the inherent disabilities natural to this square and we will consider

it as a final example. The method to be employed is precisely the

same as that previously discussed.

For the columns three equations should be made of the form:

or

a+b+c = d+e+f

a + b c+d+e+f

and three similar equations are required for the rows, all being

subject to the rule for "pairs and equality sign" as above described.

2t+ J 3 * 23

2/ 6 // S /3

/2 /6 A3 /o /*

7 /s /S 20 S

/ 2Z '7 23 2

Fig. 459-

On trial, however, this will be found to be impossible,* but if for

one of the row- or column-equations we substitute an inequality

whose difference is 2 we shall obtain a square of 6, which will be

"associated," but in which two lines or columns will be erratic, one

showing a correct summation - 1 and the other a correct summa-

tion + 1. The following equations (VII) may be used for the

columns

:

11+ 7= 9+ 5+ 3 + 11

25 + 17+13 = 21 + 19+15 >

35 + 31+23 = 33 + 29 + 27 J

and for the rows

:

(VII)

:

It is demonstrably impossible for all orders = 4/> -f- 2 >
l - e -> 6, 10, 14,, etc. c.p.
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29 + 25 = 33 + 13+ 7+1

35 + 19+ 3-31 + 21+ 5 j- (VIII)

27 + 23^17+15 + 11 + 9.

the last being an inequality. Fig. 460 shows the complementary

/ 36 3S

2 3S 33

3 34- 3/

V 33 23

S 3Z 27

6 3/ 2S

7 SO 23

<$ 23 2/

3 28 /3

/o 2? '7

// 26 /&

/2 2S /3

/s zy //

/* 23 9

/& 2Z 7
/6 2/ s

'7 20 J

\" /3 /

24- 3/ 36 3S 23 z/

22 27 34 33 2S 20

/* 25 30 32 26 /s

/6 <f 2 / 6 /3

'7 3 •^ 3 /o /S

/<$ // S 7 /2 23

Fig. 461.

33 3/ Z /z /& /S

36 2<? 20 J <? /6

32 30 /O // /3 /^

26 24 23 s 7 V
3^ 23 2/ / 3

2S 22 /3 * 6 3S

Fig. 462.

/S 3/ 2 33 /z /6~

/6 S 36 3 2<S 20

'4 // 30 32 /O /3

24 27 S 7 26 23

'7 3 34 / 23 2/

22 2S 4 3S 6 /3

Fig. 460.

pairs of natural numbers 1

which in this case are used in

stead of the half differences,

Fig. 463.

to 36 with their whole differences,

the equations (VII) and (VIII) in-

because these differences cannot be
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halved without involving fractions. Fig. 461 is the square derived

from equations (VII) and will be found correct in the columns.

Fig. 462 is the square formed from equations (VIII) and is correct

in the 1st, 2d, 5th, and 6th rows, but erratic in the 3d and 4th rows.

The finished six-square made by combining Figs. 461 and 462 is

shown in Fig. 463 which is associated or regular, and which gives

Af 3/ 2 /£ /2 JJ

/6 $ 36 20 2S 6

/* // 30 /3 /O 32

22 2S 4 /9 6 3S

'7 3 3^ 2/ 23 /

24- 27 S 23 26 7

A B

C D

Fig. 464. Fig. 465.

correct summations in all the columns and rows excepting the 3d

and 4th rows which show - 1 and + 1 inequalities respectively.

Fig. 463, like Fig. 459, could not probably be produced by any

other method than the one herein employed, and both of these

squares therefore demonstrate the value of the methods for con-

structing new variants. Fig. 463 can be readily converted into a

/ /2 / /¥

z A3 # //

/6 J /o S

3 6 A5~ 4-

/ /Z /* /

Z /3 // <f

3 6 * /s

/6 3 3- /o

Fig. 466. Fig. 467.

continuous or pan-diagonal square by first interchanging the 4th

and 6th columns and then, in the square so formed, interchanging

the 4th and 6th rows. The result of these changes is given in

Fig. 464 which shows correct summations in all columns and rows,

excepting in the 3d and 6th rows which carry the inequalities

shown in Fig. 463. This square has lost its property of association

by the above change but has now correct summation in all its diag-
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onals. It is a demonstrable fact that squares of orders 4p + 2,

(i. e., 6, 10, 14 etc.) cannot be made perfectly magic in columns and

rows and at the same time either associated or pandiagonal when

constructed with consecutive numbers.

Dr. Planck also points out that the change which converts all

even associated squares into pan-diagonal squares may be tersely

expressed as follows

:

Divide the square into four quarters as shown in Fig. 465.

Leave A untouched.

Reflect B.

Invert C.

Reflect and invert D.

/ ** 32 S3 z 43 3/ S4

s& /S 3S) '4 ^7 20 40 /3

38 /s S3 /<? *7 /6 6o '7

23 s6 4 «' 30 ss 3 42

23 6z /o 3S 24 6/ & 36

4* s 43 2£ *7 6 sa *7

S2 2S 4S <S s/ 26 46 7

// 3^ 22 63 /z 33 2/ 6#-

Fig. 468.

The inverse change from pan-diagonal to association is not

necessarily effective, but it may be demonstrated with the "Jaina"

square given by Dr. Cams on p. 125, which is here repeated in Fig.

466. This is a continuous or pan-diagonal square, but after making

the above mentioned changes it becomes an associated or regular

square as shown in Fig. 467.

Magic squares of the 8th order can however be made to com-

bine the pan-diagonal and associated features as shown in Fig. 468

which is contributed by Mr. Frierson, and this is true also of all

larger squares of orders 4p. w. s. A.
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NOTES ON THE CONSTRUCTION OF MAGIC SQUARES OF
ORDERS IN WHICH n IS OF THE GENERAL FORM 4/> + 2.

It is well known that magic squares of the above orders, i. e.,

62
, 102

, 142
, 182

, etc., cannot be made perfectly pandiagonal and ornate

with the natural series of numbers.

Dr. C. Planck has however pointed out that this disability is

purely arithmetical, seeing that these magics can be readily con-

structed as perfect and ornate as any others with a properly selected

series of numbers.

In all of these squares n is of the general form 4p + 2, but they

can be divided into two classes

:

Class I. Where n is of the form Sp - 2, as 62
, 142

, 222
etc.

Class II. Where n is of the form Sp + 2, as 102
, 182

, 262
etc.

The series for all magics of Class I may be derived by making

a square of the natural series 1 to (n+l) 2 and discarding the numbers

in the middle row and column.

Thus, for a 62 magic the series will be:

12 3 — 567
8 9 10 — 12 13 14

15 16 17 — 19 20 21

29 30 31 — 33 34 35

36 37 38 — 40 41 42

43 44 45 — 47 48 49

The series for all magics of Class II may be made by writing

a square of the natural numbers 1 to (n+3) 2 and discarding the

numbers in the three middle rows and columns. The series for a

102 magic, for example, will be:

1 2 3 4 5 . . 9 10 11 12 13

14 15 16 17 18 . . . 22 23 24 25 26

27 28 29 30 31 . . 35 36 37 38 39

40 41 42 43 44 . . 48 49 50 51 52

53 54 55 56 57 . . 61 62 63 64 65
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105 106 107 108 109

118 119 120 121 122

131 132 133 134 135

144 145 146 147 148

157 158 159 160 161

113 114 115 116 117

126 127 128 129 130

139 140 141 142 143

152 153 154 155 156

165 166 167 168 169

By using series as above described, pandiagonal magics with

double-ply properties, or associated magics may be readily made

either by the La Hireian method with magic rectangles, or by the

path method as developed by Dr. C. Planck.

7 z ti

/ 6 s
Fig. 469.

42 7 /*

O 3$ 2S

7 z J 7 z 3

/ 6 s / 6 &

7 Z 3 7 z 3

/ 6 s / 6 s-

7 2 <3 7 z <3

/ 6 S / 6 <r

Fig. 470. Fig. 471,

Referring now to the La Hireian method and using the 62

magic as a first example, the rectangles required for making the

two auxiliary squares will necessarily be 2x3, and the numbers used

therein will be those commonly employed for squares of the seventh

order, i. e., (6+1 )
2

, with the middle numbers omitted thus:

12 3 — 567
7 14 — 28 35 42

It may be shown that a magic rectangle having an odd number

of cells in one side, and an even number of cells in the other side

is impossible with consecutive numbers, but with a series made as

above it can be constructed without any difficulty, as shown in

Figs. 469 and 470.
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Two auxiliary squares may now be made by filling them with

their respective rectangles. If this is done without forethought,

a plain pandiagonal magic of the sixth order may result, but if

attention is given to ornate qualities in the two auxiliaries, these fea-

tures will naturally be carried into the final square. For example, by

the arrangement of rectangles shown in Figs. 471 and 472 both auxil-

iaries are made magic in their six rows, six columns and twelve

o 42 O 42 o J/2 7 4* 3 4& z 4$

35 7 35 7 35 7 ® /3 40 (f) 4/ /Z

28 '4 28 /4 zs /4 3S /6 3/ 2/ 30 '7

O 42 O /S-2 o 4-2 Q) 48 jr {43) 6 *7

35 7 35 7 35 7 42 3 38 /4 37 /o

28 '4 28 /* 28 /4 'z9 20 33& >4 /6>

Fig. 472. Fig. 473-

7 2 3 3 2 7 42 O 42 O 42

/ 6 5 <5 6 / 35 7 35 7 35 7

7 2 3 3 2 7 28 /4 28 '4 28 /^

/ 6 5 5 6 / 28 '4 28 '4 28 /4

7 Z- 3 3 2 7 3S 7 3S 7 3S 7
/ 6 5 5 6 / O *A2 O 42 O 4Z

Fig. 474- Fig. 475.

diagonals, and they are also 4-ply and 9-ply. Their complementary

couplets are also harmoniously connected throughout in steps of

3, 3. These ornate features are therefore transmitted into the fin-

ished 62 magic shown in Fig. 473. If it is desired to make this square

associated, that is with its complementary couplets evenly balanced

around its center, it is only necessary to introduce the feature of

association into the two auxiliary squares by a rearrangement of
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their magic rectangles as shown in Figs. 474, 475 and 476. the last

figure being a pandiagonal associated magic.

The next larger square of Class I is 142
, and it can be made

with the natural series 1 to (14+1) 2 arranged in a square, discard-

ing, as before, all the numbers in the central row and column.

The rectangles for this square will necessarily be 2x7 and the

numbers written therein will be those ordinarily used for a square

/ 44 3 4S z 49

36 /3 40 /Z 4/ 8

3S /6 3/ '7 30 Z/

Z9 ZO 33 /& 34 /s

4Z & 3S /o *7 /4

/ 4* <r *7 6 43

Fig. 476.

of the fifteenth order, (14+1) 2
, with the middle numbers omitted,

thus:

12 3 4 5 6 7

15 30 45 60 75 90

— 9 10 11 12 13 14 15

— 120 135 150 165 180 195 210

Simple forms of magic rectangles for the auxiliaries are shown

in Figs. 477 and 478 but many other arrangements of the couplets

will work equally well..

/s 2 3 /Z // 6 7
/ /4 /3 4 S /o $

z/o /? 30 /6s /SO ys 90

f9S /SO 4S So /3S /zo

Fig. 477. Fig. 478.

The smallest magic of Class II is 102
, the series for which is

given below. The rectangles used for filling the two auxiliaries of

this square are 2x5, and they can be made with the numbers which

would be commonly used for a square of the thirteenth order (10+3) 3

omitting the three middle numbers in each row thus

:
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12 3 4 5

13 26 39 52

9 10 11 12 13

104 117 130 143 156

Figs. 479 and 480 show these two rectangles with a simple ar-

rangement of the numbers. The two auxiliaries and the finished 102

magic are given in Figs. 481, 482 and 483. Fig. 483 is magic in its

/3 2 // 4 <r /S6 /3 /30 39 <?2

/ /Z 3 /O s O /43 Z6 "7 /04

Fig. 479. Fig. 480.

ten rows, ten columns and twenty diagonals. It is also 4-ply and

25-ply. Like the 62 magic, this square can also be associated by

changing the disposition of the magic rectangles in the auxiliaries.

The above examples will suffice to explain the general con-

/3 2 // 4 s /3 2 // 4 s*

/ /Z 3 /o 9 / /Z 3 /O 9

/3 2 // ^ s /3 z // 4 s

/ /2 3 /o a / /z 3 /o 9

/3 2 // 4- s /3 z // 4- S*

/ /Z 3 /o 9 / /z J /o 9

/3 z // * <? /3 z // ^ *r

/ /Z 3 /o 9 / /z 3 /o 9

/3 2 // 4 <r /3 z // 4* <r

/ /2 3 /o 9 / /z 3 /o 9

Fig. 481.

struction of these squares by the La Hireian method with magic

rectangles. It may however be stated that although the series pre-

viously described for use in building these squares include the lower

numerical values, there are other series of higher numbers which

will produce equivalent magic results.
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/s6 O /S6 O /s6 O /s6 O /s6
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z6 /30 z6 /30 26 /30 279 /30 26 /JO
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/oy SZ /09 SZ /04 SZ /oy SZ /O*/ SZ

Fig. 482.
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/30 4-' /2# 43 /22 SZ //a SO '2/ 99

,os 69- to? 62 //3 S3 //6 ss //*/ 6/

Fig. 483-
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The following table illustrates another rule covering the selec-

tion of numbers for all magic squares of these orders.

ORDER
OF NATURAL SERIES DISCARDING NUMBERS IN

SQUARE

6th 1 to( 6+1) 2 the middle row and column.

10th 1 to ( 10+3) 2 the 3 middle rows and columns.

14th 1 to(14+5) 2 the 5 middle rows and columns.

18th 1 to(18+7) 2 the 7 middle rows and columns.

22nd 1 to (22+9) 2 the 9 middle rows and columns.

26th 1 to (26+11) 2 the 11 middle rows and columns,

and so forth.

These figures show that this rule is equivalent to taking the

(3w — 4\ 2 n — 4—^— ) and omitting the central

rows and columns. In comparing the above with the rules pre-

viously given, for which we are indebted to Dr. C. Planck, it will

be seen that in cases of magics larger than 102
it involves the use of

unnecessarily large numbers.

The numerical values of the ply properties of these squares

are naturally governed by the dimensions of the magic rectangles

used in their construction. Thus the rectangle of the 62 magic

(Fig. 473) is 2x3, and this square is2 2-ply and 3 2-ply. The rectangle

of the 102 magic being 2x5, the square may be made 22-ply and

5 2-ply, and so forth.

The formation of these squares by the "path" method which has

been so ably developed by Dr. C. Planck* may now be considered.

The first step is to rearrange the numbers of the given series in

such a cyclic order or sequence, that each number being written con-

secutively into the square by a well defined rule or path, the re-

sulting magic will be identical with that made by the La Hireian

method, or equivalent thereto in magic qualities. Starting, as before,

with the 62 magic, the proper sequence of the first six numbers is

found in what may be termed the "continuous diagonal" of its magic

rectangle. Referring to Fig. 469, this sequence is seen to be 1, 2, 5,

* The Theory of Path Nasiks, by C. Planck, M.A., M.R.C.S., published
by A. T. Lawrence, Rugby, England.
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7, 6, 3, but it is obvious that there may be as many different se-

quences as there are variations in the magic rectangles.

The complete series given on page 267 must now be rearranged

in its lines and columns in accordance with the numerical sequence

CO(^)0®©
CO / z 3 r 6 7

CO » 9 /O /z /3 'V

(3) /s /6 '7 /9 20 Zf

CO Z3 30 «v 33 34 3&

(s^ 36 *7 3S 40 4/ 42

(r *3 44 4S *7 4* «#

GY^TX^?^)

Z9

*<3

36

/&

30

M
*7

/6

&

/z

<33

*/

40

/9

7

/4

3S

¥$

//Z

z/

6

/3

*¥

4*

4'

zo

/o

6/

4$

6S

'7

Fig. 484. Fig. 485.

of the first six numbers as above indicated. To make this arrange-

ment quite clear, the series given on p. 267 is reproduced in Fig. 484,

the numbers written in circles outside the square showing the numer-

ical order of lines and columns under rearrangement. Fig. 485 shows

the complete series in new cyclic order, and to construct a square

directly therefrom, it is only necessary to write these numbers con-

7 3
\

z

V

/ s~ 6

A B

C D

Fig. 486. Fig. 487.

secutively along the proper paths. Since the square will be pandiag-

onal it may be commenced anywhere, so in the present example we

will place 1 in the fourth cell from the top in the first column, and

will use the paths followed in Fig. 473 so as to reproduce that square.

The paths may be written 3, 2

4, 3

and since we can always write
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/ 2 3 4 9 /3 /z // /# 5-

/^ /S /6 '7 zz 26 zs 24 Z3 /<$

27 ZS 29 30 3S 3S 3<? *7 36 3/

/fO *' ^Z 43 4S sz 5-/ so 4$ *4

/OS /06 /oy /OS //3 "7 //6 //s //4 /OS

"7 /SS /S9 /60 /6S /6s /6s /6y /66 /6/

/*¥ /t/5 /?6 '*7 /SZ /s6 /SS /S& /S3 ///#

/3/ /32 /33 A3* /3S /^3 '4Z //// /^o /3S

//S //& /zo /Z/ /z6 /30 /Z9 /zs /zy /ZZ

S3 Si+ SS s6 6/ 6s 64 63 6z */

Fig. 488.

A3 /60 z /6/ // /69 4 /S8 s /s7

V /^O 3S /39 29 AV 66 /yz 3S /3 d

"7 f6 /06 *7 //S 6s /OS S^ /o9 6s

//+*, Z3 /ss ZZ ///6 /¥ /S3 zs /SZ /6

/30 V* //S 4*/ /ZS sz /Z/ 4' /Z2 so

/ /66 /z /6s 3 /sy /o /6s S /SS)

3>e /3V zs /3 6 <>7 a^3 30 /3Z 3/ /«/

/OS 6z //6 6/ /oy S3 /A/ 6*/ //3 ss~

/6 6 '7 /^S /g /St/ 26 '«7 /s /?s 2V-

//S 4S /2S vs /20 VO /zy s/ /26 //z

Fig. 489.
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-(« -a) instead of a, we may write this 3,2
-2,3

This only means

that the numbers in the first column of Fig. 485 (which may be

termed the leading numbers) are to be placed in order along the

path (3, 2), as in the numbers enclosed in circles in Fig. 473; and

then starting from each cell thus occupied, the remaining five num-

bers in each of the six rows of Fig. 485 are to be written along the

path (-2, 3). It will be seen that this is equivalent to writing the

successive rows of Fig. 485 intact along the path (-2,3), or (3,-2)

and using a "break-step" (1, -1), as in Fig. 486 where the first

break-step is shown with an arrow. The break-step is always given

Zf 2 3 ^ '7 /6 /s ? /A

/ 20 A5> /s <r 6 7 /v &

Fig. 490.

ZZ> 2 2/ ^ '3 6 '7 <? s> /O /3>

/ 22 <3 20 5~ /<r 7 /6 /& /* //

Fig. 491.

29 Z *7 ^ 25 6 2Z s a 20 // /<? /2>

/ 2# 3 26 <5~ 2^ 7 22 2/ /o /& /Z //

Fig. 492.

by summing up the coordinates ; thus, the paths here being

1). The re-

3,2
-2,3

by summing the columns we get (1, 5), that is (1,

suiting square is, of course, identical with Fig. 473.

As previously stated, this square being pandiagonal, it may be

commenced in any of its thirty-six cells, and by using the same

methods as before, different aspects of Fig. 473 will be produced.

Also, since by this method complementary pairs are always sepa-

rated by a step (w/2, n/2), any of the thirty-six squares thus formed
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may be made associated by the method described under the heading

"Magic Squares by Complementary Differences," viz., Divide the

square into four quarters as shown in Fig. 487 ; leave A untouched,

reflect B, invert C and reflect and invert D. For this concise and

elegant method of changing the relative positions of the comple-

mentary couplets in a square we are indebted to Dr. Planck.

The next square in order is 102
. The series of numbers used

is given on page 267 and their rearrangement in proper cyclic order

for direct entry may be found as before in the continuous diagonal

of its magic rectangle. The sequence shown in Fig. 479 is, 1, 2, 3, 4,

9, 13, 12, 11, 10, 5, and the complete rearrangement of the series in

accordance therewith is given in Fig. 488. Various 102 magics may

be made by using this series with different paths. The paths 5,4
-4,5

will produce Fig. 483, and will make Fig. 489, which is5,2

2,5

equivalent to Fig. 483 in its ornate features.

These squares and all similarly constructed larger ones of these

orders may be changed to the form of association wherein the com-

plementary couplets are evenly balanced around the center of the

square, by the method previously explained. It will be unnecessary

to prolong the present article by giving any examples of larger

squares of this class, but the simple forms of magic rectangles for

18 2 and 222 and 262 magics, shown in Figs. 490, 491, and 492, may be

of some assistance to those who desire to devote further study to

these interesting squares.* w. s. a. l. s. f.

NOTES ON THE CONSTRUCTION OF MAGIC SQUARES OF
ORDERS IN WHICH n IS OF THE GENERAL FORM 8/>+2.

It has just been shown that the minimum series to be used in

constructing this class of squares is selected from the series 1, 2,

* More generally, if p, q are relative primes, the square of order pq will

be magic on its pq rows, pq columns and 2 pq diagonals, and at the same time
/>
2-ply and g

2-ply, if it be constructed with the paths I p, q I, and the period be

\Q,P\
taken from the continuous diagonal of the magic rectangle p X Q- The limi-

tations are dictated by the magic rectangle. Evidently p and q must both be

>.i, and consecutive numbers must fail if the order is = 2 (mod. 4); in all

other cases consecutive numbers will suffice. c. p.
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3, (n + 3)
2

, by discarding 3 rows and columns from the natural

square of the order n + 3.

It is' not necessary, however, to discard the three central rows

and columns, as was therein explained, there being numerous

/n + 2\ 2

variations, the total number of which is always equal to (
—

-r— 1

Fig. 493- Fig. 494. Fig. 495-

l§§i i 1 1 § S 8~
111 1 1 1 111^^ , ^JL.i i i i i

Sllliiiiliiii S^p^l^^lii iM^^iS^^
111 i 1 i 111ill i l

illiSiiiiS^ii iigpiii^pi§ iiiiisi^i^is
111 1 1 1 111111 p § 1 ill

i^i^illll^S ^ilpip^i^i ^l^i^i^^^
111 1 1 1 ill
ill 1 I I 11^1

_ ill i i I ill
Fig. 496. Fig. 497- Fig. 498.

1 i i^^iiil^p^ill111111^^IL^lL^iL^liilniliill^111illillilliiiliipipiiill

^sl^^il^^slsl^^i^s^p
I 1 Iill111^I^^IL^^ILO^i^l^^l^IIIillilllilii^^l^iipIII

Fig. 499. Fig. 501.Fig. 500.

therefore the 102 can be constructed with 9 different series, the 183

with 25 different series, the 262 with 49 different series, and so on.

In Figs. 493 to 501 are shown all the possible variations of dis-

carding rows and columns for the 102
, Fig. 493 representing the

series explained in the foregoing article.

The central row and column must always be discarded, the
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remaining two rows and columns can be cast out symmetrically in

relation to their parallel central row or column and should be an
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odd number of rows or columns from it. In other words, we cast

out the central row, then on each side of it we cast out the 1st, 3d,
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5th, or 7th, etc. rows from it, and irrespective of the rows, we do

likewise with the columns.

In a manner already explained, numbers are selected according

to the series desired and arranged in rectangles with which the

magic square is constructed.

A set of rectangles with their respective series is shown in

Fig. 502, and the following table will give directions for their use.

Series Rectangles (See Fig. 502)

Fig. 493 A andX
Fig. 494 B andX
Fig. 495 C andX
Fig. 496 A and Y
Fig. 497 B and Y
Fig. 498 C and Y
Fig. 499 A and Z
Fig. 500 B and Z
Fig. 501 C and Z

Fig. 503-

For example, suppose we were to construct a square, using the

series denoted in Fig. 495. By referring to the table it is seen that we

must employ rectangles C and X. By usiruj the La Hireian method

these rectangles are placed as shown in Fig. 503, care being taken to

arrange them in respect to the final square, whether it is to be asso-

ciated or non-associated.

*

* See preceding article.
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6S /07 S6 J/3 S3 //7 SS /O8 6/ /JO

40 /28 49 /22 47 //S SO /27 44 /2S

/43 29 /34- 3S /36 39 /33 30 /39 32

/4 /S4 23 /48 2/ /44 24 /S3 /£ /S7

/69 3 /60 9 /62 /3 /Se 4 /6S <£

S3 //S 62 /09 60 /OS 63 //4 S7 //2

Sz /2C 43 /26 +S /30 42 /Z/ <f8 /23

'3/ 37 /<W 3/ /38 27 /4/ 36 /3S 34

Z6 /44 17 JS2 /& /S6 /6 /47 22 /49

/S7 // /66 S /64 / /67 /O /<£>/ 8

Fig. 504.

/ Z 3 S 6? 8 3 // /2 /3

27 Z8 29 3/ 32 34 3S 37 38 39

40 41 42 44 4S 47 +8 SO S/ Sz

S3 S4 SS S7 S8 <£o 6/ 63 64 6S

66 67 68 70 7/ 73 74 76 77 78

32 23 94 96 97 93 /oo /02 /03 /04

/OS /06 /07 103 //o //2 f/3 //s //<£ //7

//s /& /20 /22 /23 /2S /2S /28 /29 /30

/3/ /32 /33 /3S /3<6 '38 '39 /<?/ /42 /+3

/S7 /S8 /S? /£/ /6z Z64- /6S /S7 /68 /69

Fig. 505.
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/ 2 tt 9 6 13 /2 3 S 6

27 28 37 3S 32 39 38 29 3/ 34

t/8 f/9 /28 /26 /Z3 /SO /Z9 /20 /22 /2S

/oS /06 //S //3 //o //7 //6 /07 /09 //2

92 93 /oz /OO 97 /04 /03 94 ?6 9?

*7 /SS /67 /6S /62 /69 /68 /S9 /&/ /64

/3/ /32 /4/ /39 /36 /43 /42 /33 /3S /38

40 4/ So 4-8 4S S2 S/ 4Z 44- 4-7

S3 S4 S3 6/ S8 6S 64 SS S7 60

66 67 76 74- 71 78 77 68 70 73

Fig. 506.

s /62 / /68 tt /6/ 6> /S7 /Z *7

/oo 73 to4 67 94 74 9? 78 93 68

S7 /to S3 //6 63 /oe S8 /oS 64 //S

/26 47 /30 41 /20 48 /2S S2 //9 4Z

/3S 32 /3f 38 t4l 3/ /36 27 /4Z 37

3 t6+ /3 /S6 3 /6S 8 /69 2 /S9

96 71 92 77 /oz 7o 97 66 /03 76

6/ //2 6S /06 SS //3 60 //7 S4 /07

122 4S t/S S/ /Z8 4-4- /23 40 /29 So

!39 34 /43 28 /33 3S /38 33 /3Z 29

Fig. 507.
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A non-associated square resulting from rectangles C and X is

shown in Fig. 504. Another example is shown in Figs. 505, 506

and 507. Here a series corresponding to Fig. 500 has been selected

and the natural square is shown in Fig. 505, the heavy lines indi-

cating the discarded rows and columns. The rows and columns

are re-arranged according to the numerical sequence of the contin-

uous diagonals* of rectangles B and Z of Fig. 502, this re-arrange-

ment being shown in Fig. 506.

In constructing the final square, Fig. 507, an advance move - 4,

-5 and a break move 1, 1 was used.

It will be unnecessary to show examples of higher orders of

these squares, as their methods of construction are only extensions

of what has been already described. It may be mentioned that these

squares when non-associated can be transformed into associated

squares by the method given in the preceding article. h. a. s.

GEOMETRIC MAGIC SQUARES AND CUBES.

The term 'geometric" has been applied to that class of magic

squares wherein the numbers in the different rows, columns, and

diagonals being multiplied together give similar products. They

are analogous in all respects to arithmetical magic squares.

Any feature produced in an arithmetical square can likewise

be produced in a geometric square, the only difference being that the

features of the former are shown by summations while those of the

latter are shown by products. Where we use an arithmetical series

for one, we use a geometric series for the other, and where one is

constructed by a method of differences the other is constructed by

ratios.

These geometric squares may be considered unattractive because

of the large numbers involved, but they are interesting to study,

even though the actual squares are not constructed. The absurdity

of constructing large geometric squares can be easily shown. For

example, suppose we were to construct an 8th order square using

the series 2°, 2 1
, 2 2

, 23
, .... 2

63
, the lowest number would be 1 and

* See preceding article.
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the highest number would be 9,223,372,036,854,775,808. Who would

be willing to test the accuracy of such a square by multiplying to-

gether the numbers in any of its rows or columns ?

Analogous to the arithmetical squares the geometric squares

may be constructed with a straight geometric series, a broken geo-

metric series, or a series which has no regular progression.

I have divided the methods of construction into four groups,

namely: the "Exponential method," the "Exponential La Hireian

method," the "Ratio method," and the "Factorial method."

The Exponential Method.

The most common way of constructing these squares is with

a straight geometric series, arranged in the same order as a straight

arithmetical series would be in any summation square. This is

equivalent to the following.

Form any magic with a straight arithmetical series as in Fig.

508. Consider these numbers as exponents by repeating any number

7 S Z 7
z° z

s IZ8 1 3Z

z 4- (3 2
2

z+ z* + 1(5 64-

•? 8 1 Z3 z8
z' 8 ZS6 Z

p = 4096

Fig. 508. Fig. 509. Fig. 510.

(in this case 2) before each of them, which will give us a square as

shown in Fig. 509. It may be noticed that 2 is taken 12 times as a

factor in each of the rows, columns, and diagonals, therefore form-

ing a geometric square with constant products of 4096. The square

transposed in natural numbers is shown in Fig. 510.

4 -3 2 3* 3-3 3
Z

81 dt 3

-1 1 3 3" 3' 3
3

•k 3 27

S -Z 3' 3
s 3- 1 243

/

P=27

Fig. 51 1. Fig. 512. Fig. 513.

Fig. 51.1, 512 and 513 show the same process involving negative

exponents.
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Figs. 514, 515 and 516 show how fractional exponents may be

used; and the use of both fractional and negative exponents is

shown in Figs. 517, 518 and 519.

Figs. 520 and 521 show the exponential method applied to a

fourth order square. The exponents in Fig. 520 taken alone, ob-

viously form an arithmetical magic.

3i O 2*

1 z 3

>i 4- t

Fig- 514-

*i -/ 'i

O / Z

k 3 -i

4* 4° 4$

4' 42
4 3

4* 44 4*

Fig. 515.

3* 3-' 3
3*

3° 3' 3*

3* 3
3 3-*

128 / 3Z

4 /6 64

8 Z56 Z

Fig. 516.

VZ43
1

3 l/Z7

1 3 3

13 27 if

P = 4096

P -27

Fig. 517. Fig. 518. Fig. 519-

This square is an associated square with the products of each

complementary pair equaling 32.

-s
2 z9 z* z

z

32 S/2 ZS6
1

2* z° z' 2* 64- / Z 3

Z* z+ 2
S
z" 4 /6 3Z i

z
7

z
3 2" 2!° tza i

1
IOZ4

1024

Fig. 520. Fig. 521.

The Exponential La Hireian Method.

Two primary squares are shown in Figs. 522 and 523. One is

filled with the powers 0, 1 and 2 of the factor 2, and the other with

the powers 0, 1 and 2 of the factor 5. Each primary square in itself

is a geometric magic with triplicate numbers. Figs. 522 and 523

multiplied together, cell by cell, will produce the magic shown in

Fig. 524.

The factor numbers, in this case 2 and 5, are not necessarily



286 SUNDRY CONSTRUCTIVE METHODS.

different, but when they are alike the exponents must suit the con-

dition, to avoid duplicate numbers in the final square. To make this

clearer: if we form two primary squares that will add together and

form an arithmetical magic, the same factor number may be added

to each of these primary squares, using the former numbers as ex-

P = iooo

2* 2* 2' 5' S* 5' S loo Z

2* 2' 2' 5° 5' S* 4- IO ZS

2' 2' 2* 5* S° S' SO 1 zo

Fig. 522. Fig. 523- Fig- 524.

ponents, and the two will become geometric primary squares that

will multiply together and form a geometric magic without duplicate

numbers.

Figs. 525, 526 and 527 show the same methods applied to the

fourth order squares. This is a Jaina square, and is consequently

pandiagonal and also contains the other Jaina features.

P = 2985984

3' 3' 3* 3' •

Z
6

Z
z

z z+ / /9Z 36 43Z

3* 3' 3' 3' Z* z* z° 2< /OS /44 3 64

3' 3' 3* 3' z< z* z
6

z 48 4 /7Z8 3

3' 3
3 3° 3' z* z z+ 2

2
S76 Z7 /6 /Z

Fig. 525. Fig. 526. Fig. 527-

Figs. 528, 529, 530 show the application of a double set of

factors to the primary squares. The constants of Fig. 528 are

3 x 5
3 and those of Fig. 529 are 23 x 7. This is also a Jaina square.

The Ratio Method.

If we fill a square with numbers as in Fig. 531, such that the

ratios between all horizontally adjacent cells are equal, and the
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ratios between all vertically adjacent cells are equal, we have a

natural square which can be formed into a geometric magic by any

of the well-known methods.

The horizontal ratios in Fig. 531 are 2 as represented by the

figure at the end of the division line, and the vertical ratios are 3

as indicated, and Fig. 532 shows the magic arrangement of this

series.

In a fourth order square, as in Fig. 533, the horizontal ratios

P = 21000

3° S' S* 3' z' Z° z* 7' z S /OO Zl

3' sz
jr' 3° z

z 7' z' z° /2 /7S /o /

S' 3° 3' S* 7' z* z" z' 3S + 3 so

s
2 3' 3° s' Z° z' 7' z* 2S 6 7 zo

Fig. 528. Fig. 530.Fig. 529.

are not necessarily equal, and neither are the vertical ratios. A
magic may be made from this natural square by forming the num-

bers in the upper row into a primary square as in Fig. 534. The

numbers in the left-hand column are then formed into another pri-

mary square as in Fig. 535. These two primary squares will then

produce the magic shown in Fig. 536.

/ Z 4- /S / /Z

3 6 IZ 4 6 S

B /s 36 3 36 z

Fig. 531. Fig. 532.

P = 2l6

Fig. 537 is a balanced natural square. This series will produce

a perfect Jaina, or Nasik,* or an associated square. Figs. 538, 539

and 540 show it arranged in a Nasik formation.

Mr. L. S. Frierson's arithmetical equation squares also have

their geometric brothers. Where he applies the equation a-b =

e A concise description of Nasik squares is given in Enc. Brit.



288 SUNDRY CONSTRUCTIVE METHODS.

c - d, we use the proportion a:b::c:d. Fig. 542 shows a natural

equation square, and besides the proportions there shown, the diag-

onals of the magic depend on the necessary proportion a:b::c:d

as indicated in the respective cells of Fig. 544a.

P = 756o
i i\ ii

/ Z 3 9

4 8 /Z 36

S /O /s 4S

7 /4 Zl 63

12 3 9

9 3 2!
2/33
3 9/2

I 7 4 S

4 S I 7

5 4 7 /

7 / S 4

/ /4 /2 +s

36 AT 2 7

/o 4 63 3

2/ 9 S 8

Fig. 533- Fig. 534- Fig. 535- Fig. 536.

The magic is then formed by revolving the diagonals 180° as

is shown in Fig. 543, or by interchanging the numbers represented

by like letters in Fig. 541.

: I44OO

z i 1

1 2 s /O

3 6 /s 30

4 3 20 40

/z 2+ 60 120

/ 2 /O s

/O S / z

1 2. /o s

10 S 1 2

1 tz / /Z

3 4 3 4

IZ / IZ /

4 3 4 3

/ Z4 /O 6O

30 ZO 3 8

/Z 2 /ZO S

40 IS 4 €

Fig. 537. Fig. 538. Fig: 539- Fig. 540.

Another form of natural equation square is shown in Fig. 546.

The diagonals in this square depend on the equation a x b = c x d

(see Fig. 544b). The magic is made by interchanging the numbers

A B

c F E C

p E F P

A 3
28

3 W4

7 ::

21

43

56

84

84 3 4 /4

/ IZ Zl S6

23 8 7 9

6 49 24 2

14112

Fig. 541. Fig. 542. Fig. 543.

represented by like letters in Fig. 545, producing Fig. 547 and then

adjusting to bring the numbers represented by the A's and D's in

Fig. 545, in one diagonal and the numbers represented by the B's

and (7s in the other diagonal, or in other words, shifting the left-
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hand column of Fig. 547 so as to make it the right-hand column,

and then shifting the bottom line of the square thus formed to the

top. The result of these changes is shown in Fig. 548.

ZZaZ
c

Fig. 544a.

3 A

A 3

c P

c

4Z) :35> 70 : <ZI

Z > '4 : -8 J r ./

6 :

' 9 II

-10 ; <3

14 3 <zs- '-&) c 7

Fig. 545- Fig. 546.

2 i 1 ~ %
L

/ Z 3
. 4 s

6 IZ 18 Z4 30

7 14 Zl Z8 3S

II zz 33 44 55

13 26 33 SZ 65

Fig. 549-

/ 7 13 6 //

6 // i 7 13

7 13 6 II /

1/ / 7 13 6

13 6 II 1 7

Fig. 55i.

a

ZaZZ
c

Fig. 544Z?.

: 1 1760

42 35 / 8

Z 4 21 70

ZS 14 fO 3

s 6 JS 7

6 516 7 S

35 / 8 42

4 2/ 70 Z

14 IO 3 28

Fig. 547- Fig. 548.

/ Z 3 4- 5

3 4 S / Z

5 / Z 3 4

Z 3 4 S /

4 S / Z 3

Fig. 550.

P: : 720720

/ /4 3$ Z4 55

/8 44 5 7 Z6

35 /3 IZ 33 4

Z2 3 23 65 6

SZ 30 II 2 21

Fig. 552.

Fig. 549 is a fifth order natural square, and Figs. 550, 551 and

552 clearly show the method of forming the magic, which is pan-

diagonal.
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In the same manner Dr. Planck constructed his arithmetical

Nasik squares* of orders Ap + 2, we can likewise construct geo-

metric squares.

Fig. 553 shows a natural 7x7 square with the central row and

column cast out. This is formed by path method into the Nasik

square, rearranging the columns in this order 1, 4, 32, 64, 16, 2

P > 22 X io42

Z 2 2>-

'f
! 2

1 Z 4- /£ 3Z 64-

z
J

f*

z"

z
3S

2"

Z* 2*3 z2 z+* z' Z"

Z™ Z* z 3> z 7
z+° z"

z" z'
s z 30 zzo p2S z*

z° z 47
Z.+ 2+z zs z«

Z« z* 2*7 z'3 z* z9

Z*B z" Z3Z z" z» z'6

Fig- 553. Fig. 554.

and the rows in this order 1, 2 7
, 2

28
, 242

, 2 35
, 214 and using advance

move 2, 3 and a break-move - 1, - 1.

The Factorial Method.

In this method we fill two primary squares, each with n sets

of any n different numbers, such that each row, column, and diag-

onal contains each of the n different numbers.

To avoid duplicates in the magic, the primary squares should

have only one number in common, or they may not have any number

in common. Also, no two numbers in one primary square should

have the same ratio as two numbers in the other primary square.

This may be more clearly explained by an example. Suppose

we select two sets of numbers as follows for constructing a fourth

order square.

12 4 7

13 5 6

Four sets of the upper row of numbers are to fill one primary

* See "Notes on the Construction of Magic Squares" (n in the form of

4P + 2), p. 267.
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square and four sets of the lower row are to fill the other. These

two groups contain only one number in common, but the magic

would contain duplicate numbers due to the duplicate ratios 2 : 4 as

3 : 6. Therefore 2x6 = 4x3, consequently the duplicate numbers

would be 12. But if we interchange the numbers 2 and 5, the fault

will be corrected and the square can then be constructed without

duplicate numbers.

The square in Fig. 555 is constructed with the two groups

12 3 4

1

P — 5040

6 7

P = 362880

/ JS Z4 14

IZ Z8 3 S

Zl 6 /o 4

zo Z 7 JS

/ /O Z/ 3Z S4-

Z8 48 9 Z /5

/8 3 ZO 4-Z S

30 7 /6 Z7 4

Z4 36 6 jr /4

Fig. 555- Fig. 556.

/ 3Z /£ / Z43 81

6+ Z * 7Z5 3 3

Fig. 557- Fig. 558. Fig. 559.

A fifth order square is shown in Fig. 556 and in this case the

following groups are used:

12 3 4 6

15 7 8 9

This square is pan-diagonally magic.

I will now show how a Nasik sixth order square may be made

by a method derived from Dr. Planck's method of constructing

Nasik squares with arithmetical series.

Fill two six-celled rectangles, each with six different numbers,

the two rectangles to have no more than one number in common.
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The numbers in each rectangle should be arranged so that the

products of its horizontal rows are equal, and the products of its

vertical rows are equal.

Two of such sets of numbers that will suit the above conditions

will not be found so readily as in Dr. Planck's examples above men-

tioned.

729 /9Z 9 46656 3 576

3Z 486 2S92 Z 7776 I6Z

11664 IZ 144- Z9I6 48 36

1 I555Z 81 64 243 5164

233Z8 6 zaa 1458 96 IS

te 37z /296 4 3888 3Z4

Y— 101,559,956,668,416.

Fig. 560.

The two sets forming the magic rectangles in Figs. 557 and 558

are taken from the following groups:

2° 2 1 2 2 2 3 24 2 5 26

30 31 32 33 34 35 30

Each group is a geometrical series of seven numbers, and in form-

ing the rectangle, the central number in each group is omitted.

/ z *
3

3 6 /Z

3

9 /S 36

S /o zo /s 30 60 45 30 ISO

zs SO too 75 /SO 300 Z2.5 450 900

Fig. 561.

The rectangles are arranged in primary squares as shown in

Fig. 559, and the two rectangles in Figs. 557 and 558 so arranged

will produce the square in Fig. 560. This square is pan-diagonal,

22-ply and 3 2-ply.*

* A square is said to be m 2-ply when the numbers in any m 2 group of con-
tiguous cells give a constant product in geometric squares, or a constant sum
in arithmetical squares.



SUNDRY CONSTRUCTIVE METHODS. 293

Geometric Magic Cubes.

I will here briefly describe the analogy between the series which

may be used in constructing cubes, and those used in constructing

squares.

It is obvious that an unbroken geometric series of any sort may

/ 90 300 /SO 4 4S /80 7S 2

60 2S 18 9 30 too SO 36 IS

4S0 IZ S ZO 2Z5 6 3 /o Boo

p = 27000

Fig. 562.

be arranged in a cube of any order, by placing the numbers in the

cube in the same progression as the numbers of an arithmetical

series would be placed in forming an arithmetical cube. This may

be accomplished by an extension of the method exemplified in Figs.

508 to 521 inclusive.

2 1 z

z s /o

3 (*)(?)
30

4 GO(£ 40

Q 2+ 60 « Ca
64

4Z

56

ms>

70

/os\zio

/40 280,
3

84o

7,

K

27

103

18

S4

t?

/3S 270*

180

IS40

90

360

Fig. 563.

P = 57,i53,6oo

7S60 2 S 7S6 7 S40 2/6 70 9 420 /68 90 /20 /26 3/S /2

3 fZ€0 S04 30 360 4Z /OS 36 260 S4 /3S 28 /83 ZO 8 /890

4 94S 378 40 270 S6 /4-0 27 2IO 72 /80 2/ 2S2 /s 6 2520

630 Z4 60 63 84 4S /8 84-0 /08 3S /4 /08O /O /S/2 3780 1

Fig. 564-

In using the Exponential La Hireian method, the same process

is followed in cubes as in squares, the main difference being that

three primary cubes are necessarily used.

Fig. 561 shows a natural cubic series, obtained by the ratio

method. The three squares represent the three planes of the cube.
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The numbers 5 at the left of the first square represent the ratio

between vertically adjacent cells in each of the planes. The num-

bers 2 above represent the ratio between horizontally adjacent cells

in each of the planes, and the numbers 3 between the squares repre-

sent the ratio between adjacent cells from plane to plane.

By rearranging this series into a cube according to the path

methods as in arithmetical cubes many results may be obtained,

one of which is shown in Fig. 562.

A fourth order balanced or associated series is shown in Fig.

563. This series is analogous to the plane series in Fig. 537, and

may be transformed into a magic cube by the following well-known

method

:

Interchange the numbers in all associated pairs of cells which

are inclosed in circles, producing the result shown in Fig. 564.

The possibilities in using the Factorial method in constructing

cubes, have not been investigated by the writer. h. a. s.



CHAPTER XII.

THE THEORY OF REVERSIONS.

SQUARES like those shown in Figs. 565 and 566, in which the

numbers occur in their natural order, are known as natural

squares. In such squares, it will be noticed that the numbers in

associated cells are complementary, i. e., their sum is twice the

mean number. It follows that any two columns equally distant

from the central bar of the lattice are complementary columns,

that is, the magic sum will be the mean of their sums. Further any

two numbers in these complementary columns which lie in the same

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Fig. 565. Fig. 566.

row have a constant difference, and therefore the sums of the two

columns differ by n times this difference. If then we raise the

lighter column and depress the heavier column by n/2 times this

difference we shall bring both to the mean value. Now we can

effect this change by interchanging half the numbers in the one

column with the numbers in the other column lying in their respec-

tive rows. The same is true with regard to rows, so that if we can

make n/2 horizontal interchanges between every pair of comple-

mentary columns and the same number of vertical interchanges
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between every pair of complementary rows, we shall have the

magic sum in all rows and columns. It is easy to see that we can

do this by reversing half the rows and half the columns, provided

the two operations are so arranged as not to interfere with one

another. This last condition can be assured by always turning over

columns and rows in associated pairs, for then we shall have made

horizontal interchanges only between pairs of numbers previously

untouched between pairs, each of whose constituents has already

received an equal vertical displacement; and similarly with the

vertical interchanges. By this method, it will be noticed, we always

secure magic central diagonals, for however we choose our rows

and columns we only alter the central diagonals of the natural

1 58 59 4 5 62 63 8

( 16 55 54 13 12 51 50 9

17 42 43 20 21 46 47 24

( 32 39 38 29 28 35 34 25

\ 40 31 30 37 36 27 26 33

41 18 19 44 45 22 23 48

( 56 15 14 53 52 11 10 49

57 2 3 60 61 6 7 64

)

)

Fig. 567.

square (which are already magic) by interchanging pairs of com-

plementaries with other pairs of complementaries.

Since the n/2 columns have to be arranged in pairs on. either

side of the central vertical bar of the lattice, 11/2 must be even,

and so the method, in its simplest form, applies only to orders = o

(mod 4). We may formulate the rule thus : For orders of form pn,

reverse m pairs of complementary columns and m pairs of comple-

mentary rows, and the crude magic is completed.

In the following example the curved lines indicate the rows

and columns which have been reversed (Fig. 567).

We have said that this method applies only when n/2 is even
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but we shall now show that by a slight modification it can be applied

to all even orders. For suppose n is double-of-odd ; we cannot

then arrange half the columns in pairs about the center since their

number is odd, but we can so arrange n/2— 1 rows and n/2—

1

columns, and if we reverse all these rows and columns we shall

have made n/2— 1 interchanges between every pair of comple-

mentary rows and columns. We now require only to make the

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

Fig. 568.

one further interchange between every pair of rows and columns,

without interfering with the previous changes or with the central

diagonals. To effect this is always easy with any orders = 2

(mod 4), (6, 10, 14 etc.), excepting the first. In the case of 62

an artifice is necessary. If we reverse the two central diagonals

of a square it will be found, on examination, that this is equivalent

to reversing two rows and two columns ; in fact, this gives us a

\ 1 /
-

1 /
1

— \ 1

/ 1 \
/ - \

36 32 3 4 5 31

12 29 9 28 26 7

13 14 22 21 17 24

19 23 16 15 20 18

25 11 27 10 8 30

6 2 34 33 35 1

Fig. 569- Fig. 570.

method of forming the magic 4
2 from the natural square with the

least number of displacements, thus

:

Applying this idea, we can complete the crude magic 62 from

the scheme shown in Fig. 569 where horizontal lines indicate hori-

zontal interchanges, and vertical lines vertical interchanges ; the

lines through the diagonals implying that the diagonals are to be

reversed. The resulting magic is shown in Fig. 570.
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The general method here described is known as the method

of reversions, and the artifice used in the double-of-odd orders is

called the broken reversion. The method of reversions, as applied

to all even orders, both in squares and cubes, was first (?) investi-

gated by the late W. Firth, Scholar of Emmanuel, Cambridge.*

The broken reversion for 62 may, of course, be made in

various ways, but the above scheme is one of the most symmetrical,

and may be memorialized thus : For horizontal changes commence

at the two middle cells of the bottom rozv, and progress upward

and divergently along two knight's paths. For vertical changes turn

the square on one of its sides and proceed as before.

J_^ ^_
I

!

j

^ j^j

1 92 8 94 95 96 97 3 9 10

20 12 13 84 85 86 87 88 19 11

71 29 23 74 75 76 77 28 22 30

40 39 38 67 66 65 64 33 62 31

50 49 48 57 56 55 54 43 42 51

60 59 58 47 46 45 44 53 52 41

70 69 68 37 36 35 34 63 32 61

21 72 73 24 25 26 27 78 79 80

81 82 83 17 15 16 14 18 89 90

91 2 93 4 6 5 7 98 99 100

Fig. 571. Fig. 572.

In dealing with larger double-of-odd orders we may leave the

central diagonals "intact" and invert n/2— 1 rows and n/2— 1

columns. The broken reversion can then always be effected in a

multitude of ways. It must be kept in mind, however, that in

making horizontal changes we must not touch numbers which have

been already moved horizontally, and if we use a number which

has received a vertical displacement we can only change it with

a number which has received an equal vertical displacement, and

similarly with vertical interchanges. Lastly we must not touch

the central diagonals.

* Died 1889. For historical notice see pp. 304-305.
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Fig. 571 is such a scheme for io2
, with the four central rows

and columns reversed, and Fig. 572 shows the completed magic.

It is unnecessary to formulate a rule for making the reversions

in these cases, because we are about to consider the method from a

broader standpoint which will lead up to a general rule.

If the reader will consider the method used in forming the

magic 62 by reversing the central diagonals, he will find that this

artifice amounts to taking in every column two numbers equally

distant from the central horizontal bar and interchanging each of

them with its complementary in the associated cell, the operation

being so arranged that two and only two numbers are moved in

each row. This, as we have already pointed out, is equivalent to

reversing two rows and two columns. Now these skew inter-

changes need not be made on the central diagonals—they can be

made in any part of the lattice, provided the conditions just laid

down are attended to. If then we make a second series of skew

changes of like kind, we shall have, in effect, reversed 4 rows and 4

columns, and so on, each complete skew reversion representing

two rows and columns. Now if n = 2 (mod 4) we have to reverse

n/2— 1 rows and columns before making the broken reversion,

therefore the same result is attained by making (n— 2V4 com-

plete sets of skew reversions and one broken reversion. In like

manner, if n = o (mod 4), instead of reversing n/2 rows and

columns we need only to make 11/4 sets of skew reversions.

We shall define the symbol [X] as implying that skew inter-

changes are to be made between opposed pairs of the four numbers

symmetrically situated with regard to the central horizontal and

vertical bars, one of which numbers occupies the cell in which the

symbol is placed. In other words we shall assume that Fig. 573a

indicates what we have hitherto represented as in Fig. 573^7.

Further, it is quite unnecessary to use two symbols for a vertical

or horizontal change, for Fig. 573c sufficiently indicates the same

as Fig. 573c?. If these abbreviations are granted, a scheme like

Fig. 569 may be replaced by a small square like Fig. 574, which is

to be applied to the top left-hand corner of the natural 62
.

Fig. 575 is the extended scheme from Fig. 574, and Fig. 576
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is the resulting magic. The small squares of symbols like Fig. 574

may be called index squares.

The law of formation for index squares is sufficiently obvious.

To secure magic rows and columns in the resulting square, the

symbols — and
|

must occur once on each row and column of the

index, and the symbol X an equal number of times on each row

and column ; that is, if there are two series X X • • • • X the symbol

X must appear twice in every row and twice in every column, and

x \/

/\

d

Fig. 573.

so on. But we already know by the theory of paths that these

conditions can be assured by laying the successive symbolic periods

along parallel paths of the index, whose coordinates are prime to

the order of the index. If we decide always to use parallel diagonal

paths and always to apply the index to the top left-hand corner

of the natural square, the indsx square will be completely repre-

- 1 x

\-

1

-/
l\- -/
- ,s

>
/ -

1/\
1 / \
/ t \

36 5 33 4 2 31

25 29 10 9 26 12

18 20 22 21 17 13

19 14 16 15 23 24

7 11 27 28 8 30

6 32 3 34 35 1

Fig. 574- Fig. 575 Fig. 576.

sented by its top row. In Fig 574 this is
| X I |, which we

may call the index-rod of the square, or we may simply call Fig.

576 the magic
| X I

—
I

I

I

- Remembering that we require (n—2)/4

sets of skew reversions when n = 2 (mod 4) and n/4 when n = o,

it is obvious that the following rule will give crude magic squares

of any even order n :

Take a rod of n/2 cells, n/4 symbols of the form X, (using

the integral part of n/4 only), and if there is a remainder when n
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is divided by 4, add the symbols
|
and — . Place one of the sym-

bols X in the left-hand cell of the rod, and the other symbols

in any cell, but not more than one in each cell. The result is an

index-rod for the magic n2
.

Take a square lattice of order 11/2, and lay the rod along the

top row of the lattice. Fill up every diagonal slanting downward

and to the right which has a symbol in its highest cell with repeti-

tions of that symbol. The resulting index-square if applied to the

top left-hand corner of the natural n2
, with the symbols allowed

the operative powers already defined, will produce the magic n2
.

The following are index-rods for squares of even orders

:

42
|x|

1

& M -l"l

82 W |x|
1

102
\x

12 2 [x

142

ix-

XX

*PM XI

When the number of cells in the rod exceeds the number of

symbols, as it always does excepting with 62
, the first cell may be

left blank. Also, if there are sufficient blank cells, a X may

1x1 ill 1-lx l-l

- x_J_JLj^x

- x_- x_J_±
j_- x_- x.±
1 1 - x - x

144 134 135 9 140 7 6 137 4 10 11 133

24 131 123 124 20 127 126 17 21 22 122 13

120 35 118 112 113 31 30 32 33 111 26 109

48 107 46 105 101 102 43 44 100 39 98 37

85 59 94 57 92 90 55 89 52 87 50 60

73 74 70 81 68 79 78 65 76 63 71 72

61 62 75 69 77 67 66 80 64 82 83 84

49 86 58 88 56 54 91 53 93 51 95 96

97 47 99 45 41 42 103 104 40 106 38 108

36 110 34 28 29 114 115 116 117 27 119 25

121 23 15 16 125 19 18 128 129 130 14 132

12 2 3 136 8 138 139 5 141 142 143 1

Fig. 577- Fig. 578.

be replaced by two vertical and two horizontal symbols. Thus 12 2

might be given so
| X |

I | !
I

—
1 X 1 ^ • This presentation of
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12 2
is shown in Figs. 577, 578, and 14

2 from the index-rod given

above, in Figs. 579 and 580.

Of course the employment of diagonal paths in the construction

of the index is purely a matter of convenience. In the following

index for io2
,

(Fig. 581) the skew-symbols are placed along two

xl-ixi 1

1x1 1

x|-|x| I |x| I

J_X.^>i X
X_J_X^_X
_.*_!_x_:l_x_

x_j_x_^x
x x_±_x

-

- x XIX
Fig. 579-

196 13 194 4 5 191 189 8 188 10 11 185 2 183

169 181 26 179 19 20 176 175 23 24 172 17 170 28

168 156 166 39 164 34 35 36 37 159 32 157 41 155

43 153 143 151 52 149 49 50 146 47 144 54 142 56

57 58 138 130 136 65 134 133 62 131 67 129 69 70

126 72 73 123 117 121 78 77 118 80 116 82 83 113

98 111 87 88 108 104 106 105 93 103 95 96 100 85

99 97 101 102 94 90 92 91 107 89 109 110 86 112

84 114 115 81 75 79 119 120 76 122 74 124 125 71

127 128 68 60 66 132 64 63 135 61 137 59 139 140

141 55 45 53 145 51 147 148 48 150 46 152 44 154

42 30 40 158 38 160 161 162 163 33 165 31 167 29

15 27 171 25 173 174 22 21 177 178 18 180 16 182

14 184 12 186 187 9 7 190 6 192 193 3 195 1

Fig. 580.

parallel paths (2, 1) and the symbols — and
|
are then added so

that each shall appear once in each row and once in each column,

but neither of them on the diagonal of the index slanting upward

and to the left.

X 1 x» -

X - X 1

1 X X- —
— X 1 X
- X 1 x.

Fig. 581.

Crude cubes of even orders we shall treat by the index-rod

as in the section on squares. The reader will remember that we

constructed squares of orders =0 (mod 4) by reversing half the
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rows and half the columns, and it is easy to obtain an analogous

method for the cubes of the same family. Suppose we reverse the

V-planes* in associated pairs ; that is, turn each through an angle

of 180 round a horizontal axis parallel to the paper-plane so that

the associated columns in each plane are interchanged and reversed.

We evidently give to every row of the cube the magic sum, for half

the numbers in each row will be exchanged for their complemen-

1 62 63 4

5 58 59 8

9 54 55 12

13 50 51 16

17 46 47 20

21 42 43 24

25 38 39

35

28

3229 34

33 30 31 36

37 26 27 40

41 22 23 44

45 18 19 48

49 14 15 52

53 10 11 56

57 6 7 60

61 2 3 64

Magic in rows only.

Fig. 582. The natural 43 with V-planes reversed.

» 1 62 63 4

(
56 11 10 53 \

\ 60 7 6 57 )
•

13 50 51 16

17 46 47 20

(
40 27 26 37 \

\ 44 23 22 41 }
29 34 35 32

33 30 31 36

{
24 43 42 21 \

\ 28 39 38 25 )
45 18 19 48

49 14 15 52

(
8 59 58 5 \

\ 12 55 54 9 ;
61 2 3 64

Magic in rows and columns.

Fi. 583. Being Fig. 583 with H-planes reversed.

1 62 63 4

56 11 10 53

60 7 6 57

13 50 51 16

32 35 34 29

41 22 23 44

37 26 27 40

20 47 46 17

48 19 18 45

25 38 39 28

21 42 43 24

36 31 30 33

49 14 15 52

8 59 58 5

12 55 54 9

61 2 3 64

Magic in rows, columns and lines.

Fig. 584. Being Fig. 19, with P-planes reversed.

CRUDE MAGIC 4
3

.

taries. If we do likewise with H-planes and P-planes the rows and

linest will become magic. But as with the square, and for like

reasons, these three operations can be performed without mutual

* P-plane = Presentation-, or Paper-plane ; H-plane = Horizontal plane

;

V-plane = Vertical plane.

t "Line" = a contiguous series of cells measured at right angles to the
paper-plane.
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interference. Hence the simple general rule for all cubes of the

double-of-even orders:

Reverse, in associated pairs, half the V-planes, half the H-

planes and half the P-planes.

With this method the central great diagonals, of course, main-

tain their magic properties, as they must do for the cube to be

considered even a crude magic. To make the operation clear to

2 53
8

6' 74 2
63
5

2
538

6' 74
5
63
2

6~l

2
538

6' 7
4
6

7|
4

8
53
2

6 4
17

2
53
8

2
a3
5

6
47

l

6 I7
4

2
53
8

6*a2

|

73
5

5
a 3
8

6'47

'

73
5

6 2

6 372

4
5 '8

5
s3
2

6~l

8
, 5
4

2
73
6

' 735

6**2 5
23
8
^82

|

73
5

8352

4
7 '6 2

63
5

8352

4
7 '6

2
35
8

4' 7
6

6, 7
4

2
53
8

'476

2
3a
5

47,6
8
36
2

2 S35
6"7

|

4
71
6

8
35
2

Fig. 585.

the reader we append views of 4
3 at each separate stage, the central

pair of planes being used at each reversion.

By this method the reader can make any crude magic cube of

order 4m. With orders of form 4771 + 2 we find the same diffi-

culties as with squares of like orders. So far as we are aware

no magic cube of this family had been constructed until Firth sue-

1 17 24 15 19 8 26 6 10

23 3 16 7 14 21 12 25 5

18 22 2 20 9 13 4 11 27

Fig. 586.

ceeded with 6a in 1889. Firth's original cube was built up by the

method of "pseudo-cubes," being an extension to solid magics of

Thompson's method. The cube of 216 cells was divided into 27

subsidiary cubes each containing 2 cells in an edge. The 8 cells of

each subsidiary were filled with the numbers 1 to 8 in such a way

that each row, column, line, and central great diagonal of the large

cube summed 27. The cube was then completed by using the
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magic 3
3 in the same way that 62

is constructed from 3*. Firth

formulated no rule for arrangement of the numbers in the pseudo-

cubes, and great difficulty was encountered in balancing the central

great diagonals. His pseudo-skeleton is shown in Fig. 585, where

each plate represents two P-planes of 6 3
, each plate containing 9

pseudo-cubes. The numbers in the subsidiaries are shown in dia-

grammatic perspective, the four "larger" numbers lying in the

anterior layer, and the four "smaller" numbers, grouped in the

center, in the posterior layer.

II III.

2 8 134 129 186 192

6 4 130 133 190 188

182 178 21 24 121 125

177 181 22 23 126 122

144 138 174 169 16 10

140 142 170 173 12 14

120 115 149 147 63 59

119 116 145 151 61 59

51 55 112 107 161 165

53 49 111 108 167 163

155 157 65 71 100 103

153 159 69 67 99 104

5 3 132 135 189 187

1 7 136 131 185 191

180 184 18 19 127 123

183 179 17 20 124 128

139 141 172 175 11 13

143 137 176 171 15 9

206 204 42 45 78 76

202 208 46 41 74 80

89 93 198 199 38 34

94 90 197 200 33 37

28 30 82 85 212 214

32 26 86 81 216 210

117 114 146 152 62 60

118 113 150 148 64 58

54 50 109 106 168 164

52 56 110 105 162 166

154 160 70 68 97 102

156 158 66 72 98 101

201 207 48 43 73 79

205 203 44 47 77 75

95 91 193 196 36 40

92 96 194 195 39 35

31 25 88 83 215 209

27 29 84 87 211 213

IV VIV
Fig. 5&7.

If we use this with the magic of Fig. 586 we obtain the magic

63 shown in Fig. 587.

This cube is non-La Hireian, as is frequently the case with

magics constructed by this method.

The scheme of pseudo-cubes for 6 3 once found, we can easily

extend the method to any double-of-odd order in the following

manner. Take the pseudo-scheme of next lower order [e. g., 63 to

make io3
, io3 to make 14

3 etc.]. To each of three outside plates

of cubes, which meet at any corner of the skeleton, apply a replica-

plate, and to each of the other three faces a complementary to the
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plate opposed to it, that is a plate in which each number replaces

its complementary number (i for 8, 2 for 7, etc.). We now have

a properly balanced skeleton for the next double-of-odd order,

wanting only its 12 edges. Consider any three edges that meet at

a corner of the cube ; they can be completed (wanting their corner-

cubes) by placing in each of them any row of cubes from the

original skeleton. Each of these three edges has three other edges

parallel to it, two lying in the same square planes with it and the

third diagonally opposed to it. In the former we may place edges

complementary to the edge to which they are parallel, and in the

latter a replica of the same. The skeleton wants now only its 8

corner pseudo-cubes. Take any cube and place it in four corners,

no two of which are in the same row, line, column, or great diag-

onal (e. g., B, C, E, H in Fig. 602), and in the four remaining

corners place its complementary cube. The skeleton is now com-

plete, and the cube may be formed from the odd magic of half its

order.

This method we shall not follow further, but shall now turn

to the consideration of index-cubes, an artifice far preferable.

Before proceeding, the reader should carefully study the method

of the index-rod as used for magic squares (pp. 299-302).

The reversion of a pair of planes in each of the three aspects,

as previously employed for 4
s

, is evidently equivalent to inter-

changing two numbers with their complementaries in every row,

line, and column of the natural cube. If therefore we define the

symbol X as implying that such an interchange is to be made not

only from the cell in which it is placed, but also from the three

other cells with which it is symmetrically situated in regard to the

central horizontal and vertical bars of its P-plane, and can make

one such symbol operate in every row, line and column of an index-

cube whose edge is half that of the great cube, we shall have

secured the equivalent of the above-mentioned reversion. For

example, a X placed in the second cell of the top row of any

P-plane of 4
3

, will denote that the four numbers marked a in Fig.

588 are each to be interchanged with its complement, which lies in

the associated cell in the associated P-plane.
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From this it follows that we shall have a complete reversion

scheme for any order 4m, by placing in every row, line and column

of the index (2m) 3
, m of the symbols X- In the case of orders

4m X 2, after placing m such symbols in the cube (2m -\- i) 3
, we

have still to make the equivalent of one reversed plane in each of

the three aspects. This amounts to making one symmetrical ver-

tical interchange, one symmetrical horizontal interchange, and one

symmetrical interchange at right angles to the paper-plane in every

QQ

Fig. 588.

row, line and column. If we use the symbol
|

to denote such a ver-

tical interchange, not only for the cell in which it stands, but also

for the associated cell, and give like meanings to — and • , for hori-

zontal changes and changes along lines, we shall have made the

broken reversion when we allow each of these symbols to operate

once in every row, column and line of the index. For example,

a in Fig. 589 means b in its own P-plane, and c in the associated

P-plane; while d indicates that the numbers lying in its own

a b c d e f

A

B

Fig. 589.

P-plane as in e are to be interchanged, A with A and B with B,

with the numbers lying in the associated plane /. We can always

prepare the index, provided the rod does not contain a less number

of cells than the number of symbols, by the following rule, n

being the order.

Take an index-rod of 11/2 cells, 11/4 symbols- of the form X,
(using the integral part of n/4 only), and if there is any remainder

when n is divided by 4 add the three symbols
|

, — , •
. Now prepare

an index square in the way described on page 300, but using the
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diagonals upward and to the right instead of upward to the left,*

and take this square as the first P-plane of an index-cube. Fill

I [I III IV

64 2 3 61 48 18 19 45 32 34 35 29 16 50 51 13

5 59 58 8 21 43 42 24 37 27 26 40 53 11 10 56

9 55 54 12 25 39 38 28 41 23 22 44 57 7 6 60

52 14 15 49 36 30 31 33 20 46 47 17 4 62 63 1

Fig. 590.

every great diagonal of the cube, running to the right, down and

away, which has a symbol in this P-plane cell, with repetitions of

that symbol.t This index-cube applied to the near, left-hand, top

_!_-_!__XX

X _XJ_^1J_
j_XXj_-
-•XXI

1 *1*H'H
Index Rod. Index Square.

Fig. 591.

corner of the natural n3
, with the symbols allowed the operative

powers already defined, will make the magic ns
.

This method for even orders applies universally with the single

X X -
1

• 1
• X X - X •

1
- X - X X •

1
•

1
- X X

X -
1

• X • X X -
1 •

1
- X X X X •

1
-

1
- X X •

-
1 • X X X X -
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1
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1
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1

1
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1
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1 • 1
— X X X X •

1
-

• X X -
1

-
1

• X X X X •
1

-
1
- X X • X •

1
- X

Fig. 592. Index Cube,

exception of 63
, and in the case of 63 we shall presently show

that the broken reversion can still be made by scattering the sym-

bols over the whole cube. The following are index-rods for various

cubes.

43 [xD 123
I I

|x|x|

83 Ixl I
|x| 143

I
|x|-|x|.|x|||

103

* Either way will do, but it happens that the former has been used in the

examples which follow.

t More briefly, in the language of Paths, the symbols are laid, in the square,

on (1, 1) ; their repetitions in the cube, on (1, — 1, 1).

xu
xmE
xhl-lxl.
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As in the case of index-rods for squares, the first cell may be

left blank, otherwise it must contain a X-

\ \ .
1

- - / / 1
- \ \ . / / - \ •

1
- \ / - /

\ •
1
- \ / - • - \ \ •

1 / / - •
1

- \ \ / / -
•

1

- \ \ / / - \ \ •
1
- - / / 1

- \ \ • • • -

1
- \ \ • / / - \ •

1
- \ / - / - \ \ •

1 / / -
- \ \ •

1
/ / - •

1
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1
- - • •

/ / 1
• \ \ 1 / / \ \ • / / 1

• \ \
1

/ / • \ \ / 1 / \ • \ • • 1 • \ \
1
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• \ \ 1 / / • \ \ / 1 / \ • \

- \ \ •
1

/ / - •
1
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\ \ •
1
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- \ \ • / / - \ \ • / / 1

\ •
1
- \ / - / - \ \ •

1 • • - \ \ •
1 / •

• .

1
- \ \ • / - \ \ •

1
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1
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1
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1
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1
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1
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1

• \ \
/ 1 / \ • \ / / 1

• \ \ - • / 1 • \ \ -
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1
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1
•

\ \ •
1 / / \ • \ / 1 / \ \ • / / 1

\ \ •
1
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\ • \ / 1 / s \ • / / 1
\ \ •

1 / /
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\ N •
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\ \ •

1 • / • \ \ • • 1
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1
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1
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Fig. 593- Extended Reversion Scheme for io3
.

Fig. 590 is a 4
:!

, made with the index-rod given above. It has

only half the numbers removed from their natural places. Figs.
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100C 999 903 94 6 5 7 8 992 991

990 912 83 17 986 985 14 18 19 981

921 72 28 977 976 975 974 23 29 30

61 39 968 967 935 36 964 963 32 40

50 959 958 944 55 46 47 953 952 41

51 949 948 54 45 56 957 943 942 60

31 62 938 937 65 966 934 933 69 70

71 22 73 927 926 925 924 78 79 980

920 82 13 84 916 915 87 88 989 911

910 909 93 4 95 |96 97 998 902 901

191 109 898 897 805 106 894 893 102 110

120 889 888 814 185 116 117 883 882 111

880 879 823 174 126 125 127 128 872 871

870 832 163 137 866 865 134 138 139 861

841 152 148 857 856 855 854 143 149 150

151 142 153 847 846 845 844 158 159 860

831840 162 133 164 836 835 167 168 869

830 829 173 124 175 176 177 878 822 821

181 819 818 184 115 186 887 813 812 190

101 192 808 807 195 896 804 803 199 200

800 702 293 207 796 795 204 208 209 791 310 699 698 604 395 306 307 693 692 301

711 282 218 787 786 785 784 213 219 220 690 689 613 384 316 315 317 318 682 681

271 229 778 777 725 226 774 773 222 230 680 622 373 327 676 675 324 328 329 671

240 769 768 734 265 236 237 763 762 231 631 362 338 667 666 665 664 333 339 340

760 759 743 254 246 245 247 248 752 751 351 349 658 657 645 346 654 653 342 350

750 749 253 244 255 256 257 758 742 741 341 352 648 647 355 656 644 643 359 360

261 739 738 264 235 266 767 733 732 270 361 332 363 637 636 635 634 368 369 670

221 272 728 727 275 776 724 723 279 280 630 372 323 374 626 625 377 378 679 621

281 212 283 717 716 715 714 288 289 790 620 619 383 314 385 386 387 688 612 611

710 292 203 294 706|705 297 298 799 701 391 609 608 394 305 396 697 603 602 400

501 492 408 597 596 595 594 403 409 410 401 502 503 497 496 495 494 508 599 510

590481 419 588 587 515 416 584 583 412 420 511 512 488 487 415 516 484 483 519

430 579 578 524 475 426 427 573 572 421 521 479 478 424 525 576 527 473 472 530

570 569 533 464 436 435 437 438 562 561 470 469 433 534 535 536 567 538 462 461

560 542 453 447 556 555 444 448 449 551 460 442 543 544 456 455 547 558 549 451

550 452 443 454 546 545 457 458 559 541 450 552 553 557 446 445 554 548 459 441

540 539 463 434 465 466 467 568 532 531 440 439 563 564 566 565 537 468 432 431

471 529 528 474 425 476 577 523 522 480 580 429 428 574 575 526 477 423 422 571

411 482 518 517 485 586 514 513 489 490 581 589 418 417 585 486 414 413 582 520

491 402 493 507 506 505 504 498 499 600 591 592 598 407 406 405 404 593 509 500

Fig. 594. First 6 plates of io3
, made from Fig. 593. (Sum = 5005.)
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591 and 592 are the index-rod, index-square and index-cube for

103
, and Fig. 593 is the extended reversion scheme obtained from

these, in which \ and / denote single changes between associated

cells, and the symbols
|

, — , and • , single changes parallel to columns,

rows, and lines. Figs. 594 and 595 show the resulting cube.

If we attack 63 by the general rule, we find 4 symbols, X, —

,

I

, • , and only 3 cells in the rod ; the construction is therefore

601 399 398 304 605 696 607 393 392 610

390 389 313 614 615 616 687 618 382 381

380 322 623 624 376 375 627 678 629 371

331 632 633 367 366 365 364 638 669 640

641 642 358 357 345 646 354 353 649 660

651 659 348 347 655 356 344 343 652 650

661 662 668 337 336 335 334 663 639 370

330 672 673 677 326 325 674 628 379 321

320 319 683 684 686 685 617 388 312 311

700 309 308 694 695 606 395 303 302 691

801 802 198 197 105 806 194 193 809 900

811 189 188 114 815 886 817 183 182 820

180 179 123 824 825 826 877 828 172 171

170 132 833 834 166 165 837 868 839 161

141 842 843 157 156 155 154 848 859 850

851 852 858 147 146 145 144 853 849 160

140 862 863 867 136 135 864 838 169 131

130 129 873 874 876 875 827 178 122 121

890 119 118 884 885 816 187 113 112 881

891 899 108 107 895 196 104 103 892 810

300

211

721

731

260

250

770

771

781

210

202

712

722

269

259

249

239

779

782

792

703

713

278

268

243

753

238

228

788

793

704

287

277

234

744

754

764

227

217

797

296

286

225

735

745

756

765

775

216

206

295

285

726

766

746

755

736

276

215

205

707

284

274

737

757

747

267

224

214

794

798

718

273

263 262

748 252

258

233

223

783

708

709

789

729

242

232

772

719

299

291

720

780

740

251

241

761

730

290

201

100 99 3 904 905 906 997 908 92 91

90 12 913 914 86 85 917 988 919 81

21 922 923 77 76 75 74 928 979 930

931 932 68 67 35 936 64 63 939 970

941 59 58 44 945 956 947 53 52 950

960 49 48 954 955 946 57 43 42 951

961 969 38 37 965 66 34 33 962 940

971 972 978 27 26 25 24 973 929 80

20 982 983 987 16 15 984 918 89 11

10 9 993 994 996 995 907 98 2 1

Fig. 595. Last 4 plates of io3
, made from Fig. 593. (Sum =5005.)

impossible. Suppose we construct an index-cube from the rod

1 X 1 I 1

—
1, we shall find it impossible to distribute the remaining

symbol [
•

] in the extended reversion-scheme obtained from this

index. The feat, however, is possible if we make (for this case

only) a slight change in the meanings of
j
and — . By the general

rule X operates on 4 cells in its own P-plane, where, by the rule of
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association, the planes are paired thus

:

i with 6

2 " 5

3 " 4

the meanings of
|
and — , in this special case, we must make

. In interpreting

I II III

\ 1
- - • /

1
- \ / - •

- \ 1
• / -

• / 1 \

1
. / \

/ 1
• V

\ • / 1

\ 1
• /

\ / 1
.

- • / \ 1
-

/ - •
1
- \

• / - - \ 1

1
- \ / - •

- \ 1
• / -

\ 1
- - • /

/ 1
• \

• / 1 \

T • / \

\ / 1
•

\ • / 1

s 1 . /

/ - • 1
- \

• / - - N 1

- • / \ 1
-

- \ 1
• / -

\ 1
- - • /

1
- \ / - •

1
• / S

/ 1
• \

• / 1 \

\ 1
• /

\ / 1
•

\ • • 1

• / - ~ \ 1

- • • \ 1
-

/ - •
1
- \

IV VI

Fig- 596. Extended Reversion-Scheme for 6 3
.

Ill

216 32 4 3 185 211

25 11 208 207 8 192

18 203 21 196 200 13

199 197 15 22 194 24

7 206 190 189 29 30

186 2 213 34 35 181

109 107 111 76 104 144

102 116 117 136 83 97

121 122 94 93 131 90

132 92 88 87 125 127

84 137 99 118 134 79

103 77 142 141 74 114

67 41 178 177 38 150

48 173 63 154 170 43

168 56 52 51 161 163

162 50 165 58 59 157

169 155 45 64 152 66

37 176 148 147 71 72

145 146 70 69 179 42

151 65 153 46 62 174

60 158 159 166 53 55

54 167 57 160 164 49

61 47 172 171 44 156

180 68 40 39 149 175

78 143 105 112 140 73

138 98 82 81 119 133

91 89 130 129 86 126

85 128 124 123 95 96

120 80 135 100 101 115

139 113 75 106 110 108

36 182 183 214 5 31

187 188 28 27 209 12

193 23 195 16 20 204

19 17 202 201 14 198

210 26 10 9 191 205

6 215 33 184 212 1

IV V VI

Fig. 597, made from Fig. 596. Sum =651.

a cyclic change in the right-hand column of this little table.

1 with 4
Thus for

1 with 5
2

u
4

3 " 6

and for "—

"

This means
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that a [I], for example, in the second P-plane has its usual

meaning in that plane, and also acts on the two cells which would

be the associated cells if the 4th plane were to become the 5th, etc.

If we extend this scheme, there will be just room to properly dis-

tribute the [
•

] 's in the two parallelopipeds which form the right-

6 32 3 34 35 1

7 11 27 28 8 30

19 14 16 15 23 24

18 20 22 21 17 13

25 29 10 9 26 12

36 5 33 4 2 31
1
- x

55 04 52 03 01 50

40 44 13 12 41 15

25 31 33 32 24 20

30 21 23 22 34 35

10 14 42 43 11 45

05 51 02 53 54 00

Fig. 598. Fig. 599- Fig. 600.

T 11 TIT

555 051 003 002 504 550 150 104 453 452 101 405 205 354 252 303 351 200

040 014 543 542 011 515 115 444 142 413 441 110 345 241 213 212 314 340

025 534 032 523 531 020 435 131 123 122 424 430 230 224 333 332 221 325

530 524 022 033 521 035 425 121 432 133 134 420 220 331 323 322 234 235

010 541 513 512 044 045 440 414 112 143 411 145 315 211 342 243 244 310

505 001 552 053 054 500 100 451 403 402 154 155 350 304 202 253 301 255

300 254 302 203 251 355 400 401 153 152 454 105 055 501 502 553 004 050

245 311 312 343 214 240 410 144 412 113 141 445 510 511 043 042 544 015

320 321 233 232 334 225 135 421 422 433 124 130 520 034 522 023 031 535

335 231 223 222 324 330 125 434 132 423 431 120 030 024 533 532 021 525

215 344 242 313 341 210 140 114 443 442 111 415 545 041 013 012 514 540

250 204 353 352 201 305 455 151 103 102 404 450 005 554 052 503 551 000

IV VIV

Fig. 601.

hand upper and left-hand lower quarters of the cube, as shown

in Fig. 596.

This scheme produces the cube shown in Fig. 597, which is magic

on its 36 rows, 36 columns, 36 lines, and on its 4 central great diag-

onals.
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Fig. 596 is the identical scheme discovered by Firth in 1889,

and was obtained a few months later than the pseudo-skeleton

shown in Fig. 585. A year or two earlier he had discovered the

broken reversion for squares of even order, but he never general-

ized the method, or conceived the idea of an index-cube. The

development of the method as here described was worked out by

the present writer in 1894. About the same time Rouse Ball, of

Trinity College, Cambridge, independently arrived at the method

of reversions for squares (compare the earlier editions of his

^^\ ^^
Gi-

B

D c D

C

Hj

^^\ ^^"

Bi-

G

^
Fig. 602. Fig. 603. Fig. 604.

P J
Fig. 605, 1st reversion. Fig. 600, 2d reversion. Fig. 607, 3d reversion.

A B C D

Fig. 608, 4th reversion.

Mathematical Recreations, Macmillan), and in the last edition,

1905, he adopts the idea of an index-square ; but he makes no

application to cubes or higher dimensions. There is reason to

believe, however, that the idea of reversions by means of an index-

square was known to Fermat. In his letter to Mersenne of April

1, 1640, (CEnvres de Fermat, Vol. II, p. 193), he gives the square

of order 6 shown in Fig. 598. This is obtained by applying the

index (Fig. 599) to the bottam left-hand corner of the natural

square written from below upward, i. e., with the numbers 1 to 6
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in the bottom row, 7 to 12 in the row above this, etc. There is

nothing surprising in this method of writing the natural square, in

fact it is suggested by the conventions of Cartesian geometry, with

which Fermat was familar. There is a much later similar instance

:

Cayley, in 1890, dealing with "Latin squares," writes from below

upward, although Euler, in his original Memoire (1782), wrote

1 2 3 4

248 247 246 245

252 251 250 249

13 14 15 16

17 18 19 20

232 231 230 229

236 235 234 233

29 30 31 32

33 34 35 36

216 215 214 213

220 219 218 217

45 46 47 48

49 50 51 52

200 199 198 197

204 203 202 201

61 62 63 64

65 66 67 68

184 183 182 181

188 187 186 185

77 78 79 80

81

16S

172

93

82

167

171

94

S3

166

170

95

84

165

169

96

97 98 99 100

152 151 150 149

156 155 154 153

109 110 111 112

113 114 115 116

136 135 134 133

140 139 138 137

125 126 127 128

129

120

124

141

130

119

123

142

131

118

122

143

132

117

121

144

145

104

108

157

146

103

107

158

147

102

106

159

148

101

105

160

161

92

173

162

87

91

174

163

86

90

175

164

85

89

176

177

72

76

189

178

71

75

190

179

70

74

191

180

69

73

192

193 194 195 196

56 55 54 53

60 59 58 57

205 206 207 208

209 210 211 212

40 39 38 37

44 43 42 41

221 222 223 224

225 226 227 228

24 23 22 21

28 27 26 25

237 238 239 240

241 242 243 244

8 7 6 5

12 11 10 9

253 254 255 256

Fig. 609.

from above downward. Another square of order 6, given by

Fermat, in the same place, is made from the same index, but is dis-

guised because he uses a "deformed" natural square.

It is interesting to note that all these reversion magics (unlike

those made by Thompson's method), are La Hireian, and also that

the La Hireian scheme can be obtained by turning a single outline
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on itself. To explain this statement we will translate the square

in Fig. 576 into the scale whose radix is 6, first decreasing every

number by unity. This last artifice is merely equivalent to using

the n2 consecutive numbers from o to n2— 1, instead of from 1 to

n2
, and is convenient because it brings the scheme of units and

the scheme of 6's digits into uniformity.

1 254 255 4

248 11 10 245

252 7 6 249

13 242 243 16

17 238 239 20

232 27 26 229

236 23 22 233

29 226 227 32

33 222 223 36

216 43 42 213

220 39 38 217

45 210 211 48

49 206 207 52

200 59 58 197

204 55 54 201

61 194 195 64

65 190 191 68

184 75 74 181

188 71 70 185

77 178 179 80

129 126 127 132

120 139 138 117

124 135 134 121

141 114 115 144

81

168

172

93

174

91

87

162

175

90 165

86

163

84

169

96

145 110 111 148

104 155 154 101

108 151 150 105

157 98 99 160

97 158 159 100

152 107 106 149

156 103 102 153

109 146 147 112

161 94 95 164

88 171 170 85

92 167 166 89

173 82 83 176

113 142 143 116

136 123 122 133

140 119 118 137

125 130 131 128

177 78 79 180

72 187 186 69

76 183 182 73

189 66 67 192

193 62 63 196

56 203 202 53

60 199 198 57

205 50 51 208

209 46 47 212

40 219 218 37

44 215 214 41

221 34 35 224

225 30 31 228

24 235 234 21

28 231 230 25

237 18 19 240

241 14 15 244

8 251 250 5

12 247 246 9

253 2 3 256

Fig. 610.

If we examine this result as shown in Fig. 600 we find that

the scheme for units can be converted into that for the 6's, by

turning the skeleton through 180 about the axis AB ; that is to

say, a single outline turned upon itself will produce the magic.

The same is true of the cube ; that is, just as we can obtain

a La Hireian scheme for a square by turning a single square outline

once upon itself, so a similar scheme for a cube can be obtained



THE THEORY OF REVERSIONS. 3 1 ;

by turning a cubic outline twice upon itself. If we reduce all the

numbers in Fig. 597 by unity and then "unroll" the cube, we get

the La Hireian scheme of Fig. 601 in the scale radix 6.

If now we represent the skeleton of the 62
's: (left-hand) digits

by Fig. 602, and give this cube the "twist" indicated by Fig. 603, we

1 254 255 4

248 11 10 245

252 7 6 249

13 242 243 16

224 35 34 221

41 214 215 44

37 218 219 40

212 47 46 209

240 19 18 237

25 230 231 28

21 234 235 24

228 31 30 225

49 206 207 52

200 59 58 197

204 55 54 201

61 194 195 64

65 190 191 68

184 75 74 181

188 71 70 185

77 178 179 80

129 126 127 132

120 139 138 117

124 135 134 121

141 114 115 144

160 99 98 157

105 150 151 108

101 154 155 104

148 111 110 145

96 163 162 93

169 86 87 172

165 90 91 168

84 175 174 81

176 83 82 173

89 166 167 92

85 170 171 88

164 95 94 161

112 147 146 109

153 102 103 156

149 106 107 152

100 159 158 97

113 142 143 116

136 123 122 133

140 119 118 137

125 130 131 128

177 78 79 180

72 187 186 69

76 183 182 73

189 66 67 192

193 62 63 196

56 203 202 53

60 199 198 57

205 50 51 208

32 227 226 29

233 22 23 236

229 26 27 232

20 239 238 17

4S 211 210 45

217 38 39 220

213 42 43 216

36 223 222 33

241 14 15 244

8 251 250 5

12 247 246 9

253 2 3 256

Fig. 611.

shall get the skeleon of the 6's (middle) digits, and the turn

suggested by Fig. 604 gives that of the units (right-hand) digits.

Thus a single outline turned twice upon itself gives the scheme.

We can construct any crude magic octahedroid* of double-

* Dimensions Regular Figure Boundaries

2

3

4

etc.

Tetragon (or square
Hexahedron (cube)
Octahedroid.

etc.

4 one-dimensional straight lines

6 two-dimensional squares
8 three-dimensional cubes

etc.
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of-even order, by the method of reversions, as shown with 4
4 in

Figs. 605 to 608.

The first three reversions will be easily understood from the

figures, but the fourth requires some explanation. It actually

amounts to an interchange between every pair of numbers in asso-

ciated cells of the parallelopiped formed by the two central cubical

1 254 255 4

248 11 10 245

252 7 6 249

13 242 243 16

192 67 66 189

73 182 183 76

69 186 187 72

180 79 78 177

128 131 130 125

137 118 119 140

133 122 123 136

116 143 142 113

193 62 63 196

56 203 202 53

60 199 198 57

205 50 51 208

224 35 34 221

41 214 215 44

37 218 219 40

212 47 46 209

97 158 159 100

152 107 106 149

156 103 102 153

109 146 147 112

161 94 95 164

88 171 170 85

92 167 166 89

173 82 83 176

32 227 226 29

233 22 23 236

229 26 27 232

20 239 238 17

240 19 18 237

25 230 231 28

21 234 235 24

228 31 30 225

81

168

172

93

174

91

87

162

175

90

86

163

84

165

169

96

145 no 111 148

104 155 154 101

108 151 150 105

157 98 99 160

48 211 210 45

217 38 39 220

213 42 43 216

36 223 222 33

49 206 207 52

200 59 58 197

204 55 54 201

61 194 195 64

144 115 114 141

121 134 135 124

117 138 139 120

132 127 126 129

80 179 178 77

185 70 71 188

181 74 75 184

68 191 190 65

241 14 15 244

8 251 250 5

12 247 246 9

253 2 3 256

Fig. 612.

selections. If the reader will use a box or some other "rectangular"

solid as a model, and numbers the 8 corners, he will find that such

a change cannot be effected in three-dimensional space by turning

the parallelopiped as a whole, on the same principle that a right

hand cannot, by any turn, be converted into a left hand. But such

a change can be produced by a single turn in 4-dimensional space;
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in fact this last reversion is made with regard to an axis in the 4th,

or imaginary direction. The following four figures (609-612) show

each stage of the process, and if the reader will compare them with

the results of a like series of reversions made from a different

aspect of the natural octahedroid, he will find that the "imaginary"

reversion then becomes a real reversion, while one of the reversions

which was real becomes imaginary. Fig. 609 is the natural 4
4

after the first reversion, magic in columns only; Fig. 610 is Fig.

609 after the second reversion, magic in rows and columns ; Fig.

611 is Fig. 610 after the third reversion, magic in rows, columns

and lines; and Fig. 612 is Fig. 611 after the fourth reversion, magic

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X
X X X X X X X X

X X X X X X X X
X X X X X X X X

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X

X X X X X X X X
X X X X X X X X

X X X X X X X X
X X X X X X X X
X X X X X X X X

Fig. 613. Skew Reversion for 4
4

.

in rows, columns, lines and is, = crude magic 4
4

. The symbol i

denotes series of cells parallel to the imaginary edge.

Fig. 612 is magic on its 64 rows, 64 columns, 64 lines, and 64

ts and on its 8 central hyperdiagonals. Throughout the above opera-

tions the columns of squares have been taken as forming the four

cells of the P 1
-aspect ;* the rows of squares taken to form cubes,

of course, show the P 2-aspect.

This construction has been introduced merely to accentuate

the analogy between magics of various dimensions ; we might have

* Since the 4th dimension is the square of the second, two aspects of the
octahedroid are shown in the presentation plane. The 3d and 4th aspects are
in H-planes and V-planes. Since there are two P-plane aspects it might appear
that each would produce a different H-plane and V-plane aspect; but this is

a delusion.
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obtained the magic 4
4 much more rapidly by a method analogous

to that used for 4
3 (Fig. 590). We have simply to interchange

each number in the natural octahedroid occupying a cell marked

[X] in Fig. 613, with its complementary number lying in the

associated cell of the associated cube. Fig. 613 is the extended

skew-reversion scheme from the index-rod [ |Xl-

All magic octahedroids of double-of-odd order > io4 can be

constructed by the index-rod, for just as we construct an index-

square from the rod, and an index-cube from the square, so we

can construct an index-octahedroid from the cube. The magics 64

and io4 have not the capacity for construction by the general rule,

but they may be obtained by scattering the symbols over the whole

figure as we did with 63
. c. p.



CHAPTER XIII.

MAGIC CIRCLES, SPHERES AND STARS.

1\ /f AGIC circles, spheres and stars have been apparently much
^*^- less studied than magic squares and cubes. We cannot say

that this is because their range of variety and development is limited

;

but it may be that our interest in them has been discouraged, owing

to the difficulty of showing them clearly on paper, which is espe-

cially the case with those of three dimensions.

It is the aim of the present chapter to give a few examples of

what might be done in this line, and to explain certain methods of

construction which are similar in some respects to the methods used

in constructing magic squares.

MAGIC CIRCLES.

The most simple form of magic spheres is embodied in all per-

fect dice. It is commonly known that the opposite faces of a die

contain complementary numbers; that is, 6 is opposite to i, 5 is

opposite to 2, and 4 is opposite to 3—the complementaries in each

case adding to 7—consequently, any band of four numbers encirc-

ling the die, gives a summation of 14. This is illustrated in Fig. 614,

which gives a spherical representation of the die ; and if we imagine

this sphere flattened into a plane, we have the diagram shown in

Fig. 615, which is the simplest form of magic circle.

Fig. 616 is another construction giving the same results as Fig.

615 ; the only difference being in the arrangement of the circles. It

will be noticed in these two diagrams that any pair of complementary
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numbers is common to two circles, which is a rule also used in con-

structing many of the following diagrams.

Fig. 617 contains the series 1, 2, 3. . . . 12 arranged in four circles

of six numbers each, with totals of 39. Any one of these circles

laps the other three, making six points of intersection on which are

placed three pairs of complementary numbers according to the above

rule. The most simple way of following this rule is to start by pla-

cing number 1 at any desired point of intersection ; then by tracing

V6^
,

,.K> 8^ ,

;6C

Fig. 617. Fig. 618.

out the two circles from this point, we find their second point of

intersection, on which must be placed the complementary number

of 1. Accordingly we locate 2 and its complementary, 3 and its com-

plementary, and so on until the diagram is completed.

Fig. 618 is the same as Fig. 617, differing only in the arrange-

ment of the circles.

Fig. 619 contains the series t, 2, 3. ... 20 arranged in five circles

of eight numbers each, with totals of 84.
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Fig. 620 contains the series 1,2,3 14 arranged in five circles

of six numbers each, with totals of 45. It will be noticed in this

diagram, that the 1 and 14 pair is placed at the intersections of

three circles, but such intersections may exist as long as each circle

contains the same number of pairs.

4. I o

Fig. 621.

Fig. 621 contains the series 1, 2, 3. . . .24 arranged in six circles

of eight numbers each, with totals of 100.

Fig. 622 contains the series 1, 2, 3. . . .30 arranged in six circles

of ten numbers each, with totals of 155. Also, if we add together

any two diametrical lines of four and six numbers respectively, we

will get totals of 155 ; but this is only in consequence of the comple-

mentaries being diametrically opposite.
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Fig. 623 contains the series 1, 2, 3... 40 arranged in eight

circles of ten numbers each, with totals of 205.

Fig. 624 contains the series 1, 2, 3. . . .8 arranged in eight circles

of four numbers each, with totals of 18. This diagram involves a

feature not found in any of the foregoing examples, which is due

to the arrangement of the circles. It will be noticed that each

Fig. 622.

number marks the intersection of four circles, but we find that no

other point is common to the same four circles, consequently we need

more than the foregoing rule to meet these conditions. If we place

the pairs on horizontally opposite points, all but the two large circles

will contain two pairs of complementaries. The totals of the two

large circles must be accomplished by adjusting the pairs. This
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adjustment is made in Fig. 625, which shows the two selections that

will give totals of 18.

Fig. 626 contains the series 1, 2, 3.... 24 arranged in ten

circles of six numbers each, with totals of 75. This is accomplished

by placing the pairs on radial lines such that each of the six equal

circles contains three pairs. It then only remains to adjust these

I
; ig. 6-M

pairs to give the constant totals to each of the four concentric circles.

Their adjustment is shown diagrammatically in Fig. 627, which is

one of many selections that would suit this case.

Fig. 628 contains the series t, 2, 3.... 12 arranged in seven

circles and two diametrical lines of four numbers each with totals

of 26.

The large number of tangential points renders this problem
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Fig. 624.

Fig. 625.

1 *Sss^ 24

2<0^> 23

3<C^> Z2

4II Zl

5 X / 20

6 0\/ 19

7 /\ 18

6
1

17

9L^> >IG

I0<^>15
II <CT^>•14

|2r^^N13
Fig. 626. Fig. 627.
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quite difficult, and it appears to be solvable only by La Hireian

methods. It was derived by adding together the respective num-

bers of the two primary diagrams Figs. 629 and 630, and Fig. 630

was in turn derived from the two primary diagrams Figs. 631

and 632.

We begin first with Fig. 629 by placing four each of the niun-

Fig. 630.

bers o, 4, and 8 so that we get nine totals amounting to 16. This

is done by placing the 4's on the non-tangential circle ; which leaves

it an easy matter to place the o's and 8's in their required positions.

Fig. 630 must then be constructed so as to contain three sets of the

series 1, 2, 3, 4; each set to correspond in position respective to the

three sets in Fig. 629, and give totals of 10. This could be done by
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experiment, but their positions are much easier found with the two

diagrams, Figs. 631 and 632. Fig. 631 contains six o's and six 2's

giving totals of 4, while Fig. 632 contains six rs and six 2's giving

Fig. 632.

Fig. 633.

totals of 6. It will be noticed in Fig. 629 that the o's form a hori-

zontal diamond, the 8's a vertical diamond and the 4's a square,

which three figures are shown by dotted lines in Figs. 631 and 632.
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Besides giving the required totals, Figs. 631 and 632 must have their

numbers so arranged, that we can add together the respective dia-

monds and squares, and obtain the series 1, 2, 3, 4 for each diamond

and square, which is shown in Fig. 630. Figs. 630 and 629 are then

added together which gives us the result as shown in Fig. 628.

This diagram was first designed for a sphere, in which case

Fig. 634.

the two diametrical lines and the 5, 6, 7, 8 circle were great circles

on the sphere and placed at right angles to each other as are the

three circles in Fig. 614. The six remaining circles were equal and

had their tangential points resting on the great circles. The dia-

grams used here are easier delineated and much easier to under-

stand than the sphere would have been.

Fig. 633 contains the series 1, 2, 3 .... 54 arranged in nine
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circles of twelve numbers each with totals of 330. The arrange-

ment also forms six 3X3 magic squares.

We begin this figure by placing the numbers 1 to 9 in magic

square order, filling any one of the six groups of points; then,

Fig. 635-

44 48 92

1 2 3 4 92 44 48 4 40 52 88

4 3 2 1 44 48 92 8 36 56 84

2 1 4 3 48 44 92 12 32 60 80

3 4 1 2 92 48 44 16 28 64 76

20 24 68 72

Fig. 636. Fig. 637.

according to the first general rule, we locate the complementaries

of each of these numbers, forming a second and complementary

square. We locate the remaining two pairs of squares in the same

manner. The pairs of squares in the figure are located in the same

Fig. 638. Fig. 639.

relative positions as the pairs of numbers in Fig. 616, in which respect

the two figures are identical.

Fig. 634 contains the series t, 2, 3 .... 96 aranged in twelve

circles of sixteen numbers each^ with totals of 776. The sum of the
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1

sixteen numbers in each of the six squares is also 776. These

squares possess the features of the ancient Jaina square, and are

constructed by the La Hireian method as follows.

The series o, 4, 8, 12 .... 92 are arranged in six horizontal

groups of four numbers, as shown in Fig. 637, by running the series

down, up, down, and up through the four respective vertical rows.

The upper horizontal row of Fig. 637 is used to form the primary

square Fig. 636 ; likewise, five other squares are formed with the

remaining groups of Fig. 637. These six squares are each, in turn,

added to the primary square. Fig. 635, giving the six squares in Fig.

634. There is no necessary order in the placing of these squares,

since their summations are equal.

Figs. 638 and 639 show the convenience of using circles to show

up the features of magic squares. The two diagrams represent the

same square, and show eighteen summations amounting to 34.

H. a. s.

MAGIC SPHERES.

In constructing the following spheres, a general rule of placing

complementary numbers diametrically opposite, has been followed,

in which cases we would term them associated. This conforms with

a characteristic of magic squares and cubes.

Fig. 640 is a sphere containing the series 1, 2, 3. . . .26 arranged

in nine circles of eight numbers each, with totals of 108.

In this example, it is only necessary to place the pairs at dia-

metrically opposite points ; because all the circles are great circles,

which necessitates the diametrically opposite position of any pair

common to two or more circles. Otherwise we are at liberty to

place the pairs as desired ; so, in this sphere it was chosen to place

the series 1, 2, 3. . . .9 in magic square form, on the front face, and

in consequence, we form a complementary square on the rear face.

Fig. 641 is a sphere containing the series 1,2,3. . . - 2^ arranged

in seven circles of eight numbers each, with totals of 108.

This was accomplished by placing the two means of the series

at the poles, and the eight extremes in diametrically opposite pairs
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on the central horizontal circle. In order to give the sphere "associ-

ated" qualities, as mentioned before, the remaining numbers should

be placed as shown by diagram in Fig. 642. This shows the two

selections for the upper and lower horizontal circles. The numbers

for the upper circle are arranged at random, and the numbers in the

lower circle are arranged in respect to their complementaries in the

upper circle.

Fig. 640.

Fig. 644 is a sphere containing the series 1,2,3. .. .62 arranged

in eleven circles of twelve numbers each, with totals of 378.

This is a modification of the last example and represents tht

parallels and meridians of the earth. Its method of construction

is also similar, and the selections are clearly shown in Fig. 643.

Fig. 645 shows two concentric spheres containing the series

1, 2, 3 .... 12 arranged in six circles of four numbers each, with
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totals of 26. It also has three diametrical lines running through the

spheres with totals of 26.

The method for constructing this is simple, it being only neces-

sary to select three pairs of numbers for each sphere and place the

complementaries diametrically opposite each other.

Fig. 646 is the same as the last example with the exception that

Fig. 641.

two of the circles do not give the constant total of 26 ; but with this

sacrifice, however, we are able to get twelve additional summations

of 26, which are shown by the dotted circles in Figs. 647, 648 and

649. Fig. 647 shows the vertical receding plane of eight numbers

,

Fig. 648, the horizontal plane ; and Fig. 649, the plane parallel to the

picture, the latter containing the two concentric circles that do not

give totals of 26.
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In this example all pairs are placed on radial lines with one

number in each sphere which satisfies the summations of the twelve

dotted circles. The selections for the four concentric circles are

Poles

12^C
13

15

'14

Arctic and

Antarctic Circles

Tropics of Cancer
and Capricorn

Equator <

- \ • • 62

Zm
>>^ €1

*\ %G0
4 *^. J^ss
5

\
^58

6<^ ^i57
n

\
Sw

8<^ J^bb

*T
I

54

10 i>^^^53
XX \"^52
121^^51
J3r^^50
'14*^^•49
15

\

^48
16*^ J 47

17 r^*^46
18^^<r

45

19r^^44
20 Ik. ^43
21 r^^>|42
zzi^^^41
23r^^40
24 i^^ ^i39

^•^^•38
26. • 37

27. • 3G

28. •35

29. • 34
30. • 33

31 • • 32

Fig. 642. Fig. 643-

shown in Fig. 650. The full lines show the selections for Fig. 647

and the dotted lines for Fig. 648. It is impossible to get constant

totals for all six concentnr circles.
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Fig. 651 is a sphere containing the series 1, 2, 3.... 98, ar-

ranged in fifteen circles of sixteen numbers each, with totals of 792.

It contains six 3X3 magic squares, two of which, each form the

nucleus of a 5X5 concentric square. Also, the sum of any two dia-

metrically opposite numbers is 99.

To construct this figure, we must select two complementary

Fig. 644.

sets of 25 numbers each, that will form the two concentric squares

;

and four sets of 9 numbers each, to form the remaining squares, the

four sets to be selected in two complementary pairs.

This selection is shown in Fig. 652, in which the numbers en-

closed in full and dotted circles represent the selection for the front

and back concentric squares respectively. The numbers marked with
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Fig. 645. Fig. 646.

Fig. f 47. Fig. 648.

Fig. 649. Fig. 650.
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T, B, L and R represent the selections for the top, bottom, left and

right horizon squares respectively.

After arranging the numbers in the top horizon square, we

locate the complementary of each number, diametrically opposite

and accordingly form the bottom square. The same method is used

in placing the left and right square.

The numbers for the front concentric square are duplicated in

Fig. 651.

Fig. 653. The numbers marked by dot and circle represent the selec-

tion for the nucleus square, and the diagram shows the selections

for the sides of the surrounding panel, the numbers 4, 70, 34 and 40

forming the corners.

By placing the complementaries of each of the above 25 num-

bers, diametrically opposite, we form the rear concentric square.

After forming the six squares, we find there are twelve num-
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Fig. 652. Fig. 654.
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bers left, which are shown in Fig. 654. These are used to form the

four horizon triads. Two pairs are placed on the central circle, and

by selection, as shown in the diagram, we fill in the other two

circles with complementary numbers diametrically opposite. The

above selection is such that it forms two groups of numbers, each

with a summation of 198 ; this being the amount necessary to com-

plete the required summations of the horizon circles.

There are many selections, other than those shown in Fig. 652,

which could have been taken. A much simpler one would be to

select the top 25 pairs for the front and back concentric squares.

H- a. s.

MAGIC STARS.

We are indebted to Mr. Frederick A. Morton, Newark, N. J.,

for these plain and simple rules for constructing magic stars of all

orders.

A five-pointed star being the smallest that can be made, the

rules will be first applied to this one.

Choosing for its constant, or summation (S)=48, then:

(5x48)/2=120 = sum of series.

Divide 120 into two parts, say 80 and 40, although many other

divisions will work out equally well. Next find a series of five

numbers, the sum of which is one of the above twu numbers.

Selecting 40, the series 6 + 7 + 8 + 9+10 = 40 can be used. These

numbers must now be written in the central pentagon of the star

following the direction of the dotted lines, as shown in Fig. 655.

Find the sum of every pair of these numbers around the circle

beginning in this case with 6 + 9=15 and copy the sums in a sepa-

rate column (A) as shown below:

(A)

6+ 9=15 17+15 + 16 = 48

7+10=17 16+17+15 = 48

8+ 6=14 15 + 14+19 = 48

9t 7=16 19+16+13 = 48

10+ 8=18 13 + 18+1/ -48



340 MAGIC CIRCLES, SPHERES AND STARS.

Place on each side of 15, numbers not previously used in the

central pentagon, which will make the total of the three numbers

= 48 or S. 17 and 16 are here selected. Copy the last number of

the trio (16) under the first number (17) as shown above, and

under 16 write the number required to make the sum oi the second

trio = 48 (in this case 15). Write 15 under 16, and proceed as

before to the end. If proper numbers are selected Lo make the

s.um of the first trio = 48, it will be found that the first number of

the first trio will be the same as the last number of the last trio

(in this case 17) and this result will indicate that the star will sum

correctly if the numbers in the first column are written in their

Fig. 655. Fig. 656.

proper order at the points of the star, as shown in Fig. 656. If the

first and last numbers prove different, a simple operation may be

used to correct the error. When the last number is more than the

first number, add half the difference between the two numbers to

the first number and proceed as before, but if the last number is

less than the first number, then subtract half the difference from

the first number. One or other of these operations will always

correct the error.

For example, if 14 and 19 had been chosen instead of 17 and

16, the numbers would then run as follows

:

14+15 + 19 = 48

19+17 + 12 = 48

12+14 + 22 = 48

22+16+10 = 48

10+18 + 20 = 48
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The difference between the first and last numbers is seen to be 6

and 20 being more than 14, half of 6 added tc 14 makes 17 which

is the correct starting number. Again, if 21 Mid 12 had been se-

lected, then

:

21 + 15 + 12 = 4*

12+17+19 = 4*

19 + 14+15 = 4*

15 + 16+17 = 48

17 + 18+13 = 48

Fig. 659. Fig. )6o.

The difference between the first and last numbers i\«. here 8, and the

last number being less than the first, half of this difference sub-

tracted from 21 leaves 17 as before.

It is obvious that the constant S of a star 01 any order may

be changed almost indefinitely by adding or subtracting a number

selected so as to avoid the introduction of duplicates. Thus, the
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constant of the star shown in Fig. 656 may be reduced from 48 to

40 by subtracting 4 from each of the five inside numbers., or it may

be increased to 56 by adding 4 to each of the five outside numbers

and another variant may then be made by using the five inside

numbers of S--=40, and the five outside numbers of S = 56. These

three variants are shown respectively in Figs. 657, 658 and 659.

It is also obvious that any pair of five-pointed or other stars

may be superposed to form a new star, and by rotating one stai

over the other, four other variants may be made; but in these and

similar operations duplicate numbers will frequently occur, which

Fig. 66 1. Fig. 662.

of course will make the variant ineligible although its constant

must necessarily remain correct.

Variants may also be made in this and all other orders of

magic stars, by changing each number therein to its complement

with some other number that is larger than the highest number

used in the original star. The highest number in Fig. 656, for example

is 19. Choosing 20 as a number on which to base the desired variant

19 in Fig. 656 is changed to 1, 17 to 3 and so on throughout, thus

making the new five-pointed star shown in Fig. 660 with S = 32.

The above notes on the construction of variants are given in

detail as they apply to all orders of magic stars and will not need

repetition.

The construction of a six-pointed star may now be considered

Selecting 27 as a constant:
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(6x27)/2 = 81 = sum of the series.

Divide 81 into two parts, say 60 and 21, and let the sum of the

six numbers in the inner hexagon = 21, leaving 60 to be divided

among the outer points. Select a series of six numbers, the sum

of which is 21, say 1, 2, 3, 4, 5, 6, and arrange these six numbers in

hexagonal form, so that the sum of each pair of opposite numbers

C-2

3*2

tt t if

s

s

J

/ 2 3 4

6 7 8 9

// /Z /3 /4

/e rr /S &

Fig. 663. Fig. 664.

5 =c-z

/ /S f7 4

3 /2 /3 6
8 /2

/4 7 8 //

/G 3 a /9

/S =21+Z

Fig. 665.

= 7. Fig. 661 shows that these six inside numbers form part of two

triangles, made respectively with single and double lines. The

outside numbers of each of these two triangles must be computed

separately according to the method used in connection with the

five-pointed star. Beginning with the two upper numbers in the

single-lined triangle and adding the couplets together we have:
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(A)

3+1=4 12 + 4+11=27

5 + 4 = 9 11 + 9+ 7 = 27

6 + 2 = 8 7 + 8+12 = 27

Writing these sums in a separate column (A) and proceeding as

before described, the numbers 12, 11, 7 are obtained for the points

of the single-lined triangle, and in the same manner 13, 8, 9 are

found for the points of the double-lined triangle, thus completing

the six-pointed star Fig. 661.

The next larger star has seven points. Selecting 30 for a con-

stant, which is the lowest possible:

(7 x 30)/ 2 = 105 = sum of the series.

Dividing this sum as before into two parts, say 31 and 74.

seven numbers are found to sum 74, say, 6 + 8+10+11 + 12+13 + 14

Fig, 667. Fig. 668.

= 74, and these numbers are written around the inside heptagon

as shown in Fig. 662. Adding them together in pairs, their sums are

written in a column and treated as shown below, thus determining

the numbers for the points of Fig. 662.

14+13 = 27 1+27 + 2 = 30

10+11 = 21 2 + 21 + 7 = 30

6+12=18 7+18 + 5 = 30

8+14 = 22 5 + 22 + 3 = 30

13 + 10 = 23 3 + 23 + 4 = 30

11+ 6=17 4+17 + 9 = 30

12+ 8 = 20 9 + 20+1=30
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The next larger star has eight points and it can be made in

two different ways, viz., By arranging the numbers in one con-

tinuous line throughout as in stars already described having an odd

number of points, or by making it of two interlocking squares.

The latter form of this star may be constructed by first making a

42 with one extra cell on each of its four sdes, as shown in Fig. 663.

A series of sixteen numbers is then selected which will meet the

Fig. 669.

Fig. 671.

conditions shown by italics a, a, a, and b, b, b, in the figure, i. e.,

all differences between row numbers must be the same, and also all

differences between column numbers, but the two differences must

be unlike. The constant (S) of the series when the latter is ar-

ranged as a magic 42 must also be some multiple of 4. The series

is then put into magic formation by the old and well-known rule
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for making magic squares of the 4th order. The central 2x2

square is now eliminated and the numbers therein transferred to

the four extra outside cells as indicated by the letters A. B. C. D.

Finally all numbers are transferred in their order into an eight-

pointed star.

Fig. 672.

T \ej S=6/
3-9/
S-IOO

ig. 673-

Os)

[33)

Fig. 674. Fig. 675.

A series of numbers meeting the required conditions is shown

in Fig. 664, and its arrangement according to the above rules is given

in Fig. 665, the numbers in which, transferred to an eight-pointed

star, being shown in Fig. 666, S = 40. The 42 magic arrangement of

the series must be made in accordance with Fig. 665, for other magic

arrangements will often fail to work out, and will never do so in
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accordance with Fig. 663. The above instructions cover the simplest

method of making this form of star but it can be constructed in

many other different ways and also with constants which are not

evenly divisible by 4.

Turning now to the construction of the eight-pointed star by

the continuous line method, inspection of Figs. 666 and 667 will show

that although the number of points is the same in each star yet the

arrangement of numbers in their relation to one another in the

eight quartets is entirely different.

Fig. 676.

Choosing a constant of 39 for an example:

(39 x 8)/2= 156 = sum of series.

This sum is now divided into two parts, say 36 and 120. The sum

of the first eight digits being 36, they may be placed around the

inside octagon so that the sum of each opposite pair of numbers -9,

as shown in Fig. 667. Adding them together in pairs, as indicated

by the connecting lines in the figure, their sums are written in a

column and treated as before explained, thus giving the correct

numbers to be arranged around the points of the star Fig. 667.

These rules for making magic stars of all orders are so simple

that further examples are deemed unnecessary. Nine-, ten-, eleven-,

and twelve-pointed stars, made by the methods described, are shown
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respectively in Figs. 668, 669, 670 and 671. Several other diagrams

of ingenious and more intricate star patterns made by Mr. Morton

are also appended for the interest of the reader in Figs. 672 to 681

inclusive.

Fig. 678.
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Fig. 680.
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Fig. 68l.

W. S. A.



CHAPTER XIV.

MAGIC OCTAHEDROIDS.

MAGIC IN THE FOURTH DIMENSION.

Definition of terms : Rozu is a general term ; rank denotes a hori-

zontal right-to-left row; file a row from front to back; and column

a vertical row in a cube—not used of any horizontal dimension.

TF w2 numbers of a given series can be grouped so as to form a

* magic square and n such squares be so placed as to constitute a

magic cube, why may we not go a step further and group n cubes

in relations of the fourth dimension ? In a magic square containing

the natural series i . . .n2 the summation is—- '—-; in a magic cube

fi (11^ 1 1 ^
with the series 1. . .n 3

it is —-— ; and in an analogous fourth-

wfw4
—I— 1 ^

dimension construction it naturally will be—-— .

With this idea in mind I have made some experiments, and the

results are interesting. The analogy with squares and cubes is not

perfect, for rows of numbers can be arranged side by side to repre-

sent a visible square, squares can be piled one upon another to make

a visible cube, but cubes cannot be so combined in drawing as to

picture to the eye their higher relations. My expectation a priori

was that some connection or relation, probably through some form

of diagonal-of-diagonal, would be found to exist between the cubes

containing the n4 terms of a series. This particular feature did ap-

pear in the cases where n was odd. Here is how it worked out:

I. When n is odd.

1. Let «=3, then S=i23.—The natural series 1...81 was di-
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vided into three sub-series such that the sum of each would be

one-third the sum of the whole. In dealing with any such series

when n is odd there will be n sub-series, each starting with one of

the first n numbers, and the difference between successive terms will

be n+i, except after a multiple of n, when the difference is I. In

the present case the three sub-series begin respectively with I, 2, 3,

and the first is 1 5 9 10 14 18 19 23 27 28 32 36 37 41 45 46 50 54

55 59 63 64 68 "J2 73 JJ 81. These numbers were arranged in

three squares constituting a magic cube, and the row of squares

so formed was flanked on right and left by similar rows formed from

the other two sub-series (see Fig. 682).

25 38 60 28 77 18 67 8 48

33 79 11 72 1 50 21 40 62

65 6 52 23 45 55 35 75 13

29 78 16 68 9 46 26 39 58

70 2 Si 19 41 63 31 80 12

24 43 56 36 73 14 66 4 S3

69 7 47 27 37 59 30 76 17

20 42 61 32 81 10 7i 3 49

34 74 15 64 5 54 22 44 57

Fig. 682. ( 3
4
)

It is not easy—perhaps it is not possible—to make an abso-

lutely perfect cube of 3. These are not perfect, yet they have many

striking features. Taking the three cubes separately we find that

in each all the "straight" dimensions—rank, file and column—have

the proper footing, 123. In the middle cube there are two plane

diagonals having the same summation, and in cubes I and III one

each. In cube II four cubic diagonals and four diagonals of vertical

squares are correct ; I and III each have one cubic diagonal and one

vertical-square diagonal.

So much for the original cubes ; now for some combinations.

The three squares on the diagonal running down from left to right
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will make a magic cube with rank, file, column, cubic diagonals,

two plane diagonals and four vertical-square diagonals (37 in all)

correct. Two other cubes can be formed by starting with the top

squares of II and III respectively and following the "broken diag-

onals" running downward to the right. In each of these S occurs

at least 28 times (in 9 ranks, 9 files, 9 columns and one cubic diag-

317 473 604 TO 161 192 348 479 5io 36 67 223 354 385 536 567 98 229 260 411 442 598 104 135 286

no 136 292 448 579 6io ri 167 323 454 485 5ii 42 108 329 360 386 542 73 204 235 261 417 573 79

423 554 85 236 267 298 429 585 in 142 173 304 460 611 17 48 179 335 486 517 548 54 210 36i 392

21 F 367 398 529 60 86 242 273 404 560 586 117 148 279 435 461 617 23 154 3io 33^ 492 523 29 185

504 35 186 342 498 379 535 61 217 373 254 410 56i 92 248 129 285 436 592 123 4 160 3H 467 623

606 12 168 324 455 481 512 43 199 330 356 387 543 74 205 231 262 418 574 80 106 137 293 449 580

299 430 58i 112 143 174 305 456 612 18 49 180 331 487 5i8 549 55 206 362 393 424 555 81 237 268

87 243 274 405 556 587 118 149 280 43 t 462 618 24 155 306 337 493 524 30 181 212 368 399 530 56

380 531 62 2l8 374 255 406 562 93 249 130 281 437 593 124 5 156 312 468 624 505 31 187 343 499

193 349 480 506 37 68 224 355 38i 537 56a 99 230 256 412 443 599 105 131 287 3i8 474 605 6 162

175 30 r 457 613 '9 50 176 332 488 519 550 5i 207 363 394 425 55i 82 238 269 300 426 S82 113 144

588 "9 150 276 432 463 619 25 151 307 338 494 525 26 182 213 369 400 526 57 88 244 275 40; 557

25 f 407 563 94 250 126 282 438 594 125 1 157 313 469 625 501 32 188 344 500 376 532 63 219 375

69 225 351 382 538 569 100 226 257 413 444 600 101 132 288 319 475 6or 7 163 1 94 350 476 507 38

482 513 44 200 326 357 388 544 75 201 232 263 419 575 76 107 138 294 450 576 607 13 169 325 45i

464 620 21 152 308 339 495 521 27 183 214 370 396 527 58 89 245 271 402 558 589 120 146 277 433

127 283 439 595 121 2 158 3M 470 621 502 33 189 345 496 377 533 64 220 371 252 408 564 95 246

570 96 227 258 414 445 596 102 '33 289 320 47i 602 8 164 195 346 477 508 39 70 221 352 383 539

358 389 545 71 202 233 264 420 57i 77 108 139 295 446 577 608 14 170 321 452 483 5H 45 196 327

46 177 333 489 520 546 52 208 364 395 421 552 83 239 270 296 427 583 114 145 \7\ 302 458 614 20

3 159 315 466 622 503 34 190 341 497 378 534 65 216 372 253 409 565 9i 247 128 284 440 591 122

44i 597 103 '34 290 3i6 472 603 9 165 191 347 478 509 40 66 222 353 384 540 566 97 288 259 415

234 265 416 5/2 78 109 140 291 447 578 609 15 166 322 453 4S4 515 41 197 328 359 390 541 72 203

547 53 209 365 39i 422 553 84 240 266 297 428 584 1'5 14' 172 303 459 615 16 47 178 334 490 516

340 491 522 28 184 215 366 397 528 59 90 241 272 403 559 590 it6 '47 278 434 465 616 22 153 309

Fig. 683. (5
4
)

onal). Various other combinations may be found by taking the

squares together in horizontal rows and noting how some columns

and assorted diagonals have the proper summation, but the most

important and significant are those already pointed out. In all the

sum 123 occurs over 200 times in this small figure.

One most interesting fact remains to be noticed. While the
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three cubes were constructed separately and independently the figure

formed by combining them is an absolutely perfect square of 9, with

a summation of 369 in rank, file and corner diagonal (besides all

"broken" diagonals running downward to the right), and a perfect

balancing of complementary numbers about the center. Any such

pair, taken with the central number 41, gives us the familiar sum 123,

and this serves to bind the whole together in a remarkable manner.

I 255 254 4 248 10 11 245 240 18 19 237 25 231 230 28

252 6 7 249 13 243 242 16 21 235 234 24 228 30 3i 225

8 250 251 5 241 15 14 244 233 23 22 236 32 226 227 29

253 3 2 256 12 246 247 9 20 238 239 17 229 27 26 232

224 34 35 221 4i 215 214 44 49 207 206 52 200 58 59 197

37 219 218 40 212 46 47 209 204 54 55 201 61 195 194 64

217 39 38 220 48 210 211 45 56 202 203 53 193 63 62 196

36 222 223 33 213 43 42 216 205 51 50 208 60 108 199 57

192 66 67 189 73 183 182 76 81 175 174 84 168 90 91 165

69 187 186 72 180 78 79 177 172 86 87 169 93 163 162 96

185 7i 70 188 80 178 179 77 88 170 171 85 161 95 94 164

68 190 191 65 181 75 74 184 173 83 82 176 92 166 167 89

97 159 158 100 152 106 107 149 144 114 "5 141 121 135 134 124

156 102 103 153 109 147 146 112 117 139 138 120 132 126 127 129

104 154 155 IOI 145 in no 148 137 119 118 140 128 130 131 125

157 99 98 160 108 150 151 105 116 142 143 113 133 123 122 136

Fig. 684. (4
4
)

2. Let n= 5, then S= 1565.—In Fig. 683 is represented a group

of 5-cubes each made up of the numbers in a sub-series of the nat-

ural series 1 . . .625. In accordance with the principle stated in a pre-

vious paragraph the central sub-series is 1 7 13 19 25 26 32 .. . 625,

and the other four can easily be discovered by inspection. Each of

the twenty-five small squares has the summation 1565 in rank, file,

corner diagonal and broken diagonals, twenty times altogether in

each square, or 500 times for all.
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Combining the five squares in col. I we have a cube in which

all the 75 "straight" rows (rank, file and vertical column), all the

horizontal diagonals and three of the four cubic diagonals foot up

1565. In cube III all the cubic diagonals are correct. Each cube

also has seven vertical-square diagonals with the same summation.

Taking together the squares in horizontal rows we find certain

diagonals having the same sum, but the columns do not. The five

squares in either diagonal of the large square, however, combine to

produce almost perfect cubes, with rank, file, column and cubic

diagonals all correct, and many diagonals of vertical squares.

A still more remarkable fact is that the squares in the broken

diagonals running in either direction also combine to produce cubes

as nearly perfect as those first considered. Indeed, the great square

seems to be an enlarged copy of the small squares, and where the

cells in the small ones unite to produce S the corresponding squares

in the large figure unite to produce cubes more or less perfect.

Many other combinations are discoverable, but these are sufficient

to illustrate the principle, and show the interrelations of the cubes

and their constituent squares. The summation 1565 occurs in this

figure not less than 1400 times.

The plane figure containing the five cubes (or twenty-five

squares) is itself a perfect square with a summation of 7825

for every rank, file, corner or broken diagonal. Furthermore all

complementary pairs are balanced about the center, as in Fig. 682.

Any square group of four, nine or sixteen of the small squares is

magic, and if the group of nine is taken at the center it is "perfect."

It is worthy of notice that all the powers of n above the first lie in

the middle rank of squares, and that all other multiples of 11 are

grouped in regular relations in the other ranks and have the same

grouping in all the squares of any given rank. The same is true

of the figure illustrating 7
4

, which is to be considered next.

3. Let n=y, then 8=8407.—This is so similar in all its prop-

erties to the 5-construction just discussed that it hardly needs sep-

arate description. It is more nearly perfect in all its parts than the

5
4

, having a larger proportion of its vertical-square diagonals cor-

rect. Any square group of four, nine, sixteen, twenty-five or thirty



I 1295 1294 3 1292 6 1278 20 21 1276 23 1273 37 1259 1258 39 1256 42

1,290 8 1288 1287 11 7 25 1271 27 28 1268 1272 1254 44 1252 125' 47 43

1284 1283 15 16 •4 1279 3i 32 1264 1263 1265 36 1248 1247 5' 52 5o 1243

13 17 1281 1282 1280 18 1266 1262 34 33 35 1 26

1

49 53 1245 1246 1244 54

12 1286 9 10 1289 1285 1267 29 1270 1 269 26 30 48 1250 45 46 1253 1249

1291 2 4 1293 5 1296 24 1277 •275 22 1274 19 1255 38 40 1257 4i 1260

1 188 no in 1 186 "3 1 183 127 1 169 1 168 129 1 166 132 1 152 146 147 1150 149 "47

"5 1181 117 118 1 178 1 182 1 164 134 1162 1 161 *37 '33 151 "45 153 154 1 142 1 146

121 122 1 174 "73 1 175 126 1 158 1 157 141 142 140 "53 157 158 1 138 ^37 "39 162

1 176 1172 124 123 125 1171 139 143 "55 1 156 "54 144 1 140 1 136 160 159 161 i>35

1 177 119 1 180 1 179 116 120 138 1 160 135 136 1 163 "59 1 141 155 "44 "43 152 156

114 1 187 1 185 112 1 184 109 1 165 128 130 1 167 131 1170 150 "5i "49 148 1148 45

217 1079 1078 219 1076 222 1062 236 ^37 1060 239 1057 253 1043 1042 255 1040 258

IO74 224 1072 107

1

227 223 241 1055 243 244 J052 1056 1038 260 1036 1035 263 259

1068 1067 231 232 230 1063 247 248 1048 1047 1049 252 1032 103

1

267 268 266 1027

229 233 1065 1066 1064 234 1050 1046 250 249 251 1045 265 269 1029 1030 1028 270

228 1070 225 226 1073 1069 1051 245 1054 1053 242 246 264 1034 261 262 1037 1033

1075 218 220 1077 221 1080 240 1061 io59 238 1058 235 1039 254 256 1041 257 1044

865 43i 430 867 428 870 414 884 885 412 887 409 901 395 394 903 392 906

426 872 424 423 875 871 889 407 891 892 404 408 390 908 388 387 9" 907

420 419 879 880 878 4i5 895 896 400 399 401 900 384 383 9'5 916 914 379

877 881 417 418 416 882 402 398 898 897 899 397 913 917 381 382 380 918

876 422 873 874 425 421 403 '893 406 405 890 894 912 386 909 910 389 385

427 866 868 429 869 432 888 4i3 411 886 410 883 39

1

902 904 393 905 39*

864 434 435 862 437 859 45i 845 844 453 842 45* 828 470 47i 826 473 823

439 857 441 442 854 858 840 458 838 837 461 457 475 821 477 478 818 822

445 446 850 849 851 450 834 833 465 466 464 829 481 482 814 813 815 486

852 848 448 447 449 847 463 467 831 832 830 468 816 812 484 483 485 811

853 443 856 855 440 444 462 836 459 460 839 835 8.7 479 820 819 476 480

438 863 861 436 860 433 841 452 454 843 455 846 474 827 825 472 824 469

756 542 543 754 545 751 559 737 7& 561 734 564 720 5/8 579 718 581 715

547 749 549 550 746 75o 732 566 730 729 569 565 583 713 585 586 710 714

553 554 742 74i 743 558 726 725 573 574 572 721 589 590 706 705 707 594

744 740 556 555 557 739 57i 575 723 724 722 5/6 708 704 592 59i 593 703

745 55i 748 747 548 552 57o 728 567 568 73' 727 709 587 712 7" 584 588

546 755 753 544 752 54i 733 560 562 735 5*3 738 582 719 717 580 716 577'

Fig. 685, First Part. (64
: 8 = 3891)



T225 7i 70 1227 68 1230 1224 74 75 1222 77 1219 T206 92 93 T204 95 1 201

66 1232 64 *3 •235 1231 79 1217 8i 82 1214 1218 97 1 199 99 100 1 196 1200

6o 59 1239 1240 1238 55 85 86 1210 1209 121

1

90 103 104 1192 1 191 1 193 108

1237 1241 57 58 56 1242 1212 1208 88 87 89 1207 1194 1 190 106 105 107 1189

123r, 62 ^33 1234 65 61 1213 83 1 2 16 1215 80 84 '195 lot 1198 1 197 98 102

*7 1226 1228 69 1229 72 78 1223 1 22

1

7* 1220 73 96 1205 1203 94 1202 9i

180 1 1 18 1 1 19 .78 1 121 175 181 "15 1114 183 1 1 12 186 199 1097 1096 20 r 1094 204

1123 ^73 1.25 1126 170 '74 1 1 10 188 1 108 1 107 191 187 1092 206 1090 1089 209 205

I !2<J 1130 166 i*5 167 1134 1104 1103 195 196 194 1099 1086 1085 213 214 212 1081

168 164 1 132 "3' "33 i*3 •93 197 1 101 1 102 1 100 198 21

1

215 1083 1084 1082 216

169 1 127 172 171 1124 1 128 192 1 106 189 190 1 109 1 105 210 1088 207 208 1091 1087

1 122 •79 ^77 1 120 .76 1117 1 1 1

1

182 184 '"3 85 1 1 16 1093 200 202 1095 203 1098

1009 2S7 286 101

1

284 1014 ico8 290 291 1006 293 1003 990 308 309 988 3" 985

282 1016 280 279 10
1

9

1015 295 loot 297 298 998 1002 3U 983 3'5 3«* 980 984

276 275 1023 1024 1022 271 30i 302 994 993 995 306 3'9 320 976 975 977 324

102

1

1025 273 274 272 1026 99* 992 304 303 305 991 978 974 322 321 323 973

1020 278 1017 1018 28l 277 997 299 1000 999 296 300 979 3i7 982 981 3i4 31B

283 1010 1012 285 IOI3 288 294 1007 1005 292 1004 289 312 989 987 310 986 307

3*1 935 934 3^3 932 366 360 938 939 358 94i 355 342 95* 957 340 959 337

930 368 928 927 37+ 3*7 943 353 945 946 350 354 961 335 9*3 964 332 33*

924 923 375 17$ 374 919 949 95o 34* 345 347 954 967 968 328 3V 329 972

373 377 921 922 920 378 348 344 952 95' 953 343 330 326 970 9*9 971 325

372 926 369 37o 929 925 349 947 352 35' 944 948 33

1

9*5 334 333 962 966

93i 362 3*4 933 3*5 93* 942 359 357 940 35* 937 960 34i 339 958 338 955

504 794 795 502 797 499 505 79' 790 507 788 5'o 523 773 772 525 770 528

799 497 801 802 494 498 786 5'2 784 783 5i5 5H 768 530 766 7*5 533 529

805 806 490 489 491 810 780 779 5'9 520 5i8 775 762 761 537 538 53* 757

492 488 808 807 809 487 5'7 521 777 778 776 522 535 539 759 760 758 54o

493 803 496 495 800 804 5>* 782 5'3 5'4 785 781 534 7*4 53i 532 7*7 763

798 503 501 796 500 793 7*7 506 508 789 509 792 7*9 524 526 771 527 774

612 686 687 610 689 607 613 683 682 *'5 68o 618 *3i 6*5 664 *33 662 636

69. 605 693 694 602 606 678 620 676 *75 *23 619 660 638 658 *57 641 *37

697 698 598 597 599 702 672 671 627 628 626 667 *54 *53 *45 646 644 649

600 50 700 699 70

!

595 625 629 669 670 668 630 *43 647 651 652 650 648

601 695 604 603 692 696 624 6/4 621 622 677 673 642 656 *39 640 *59 *55

690 611 609 688 608 685 679 614 616 681 6.7 684 661 632 *34 6*3 *35 666

Fig. 685, Second Part. (64 : 8 = 3891)
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six small squares is magic, and if the group of nine or twenty-five

be taken at the center of the figure it is "perfect." The grouping

of multiples and powers Of n is very similar to that already described

for 5\

II. When n is even.

I. Let 11=4, then 8=514.—The numbers may be arranged in

I 4095 4094 4 5 4091 4090 8 4032 66 67 4029 4028 70 71 4025

4088 10 11 4085 4084 14 15 4081 73 4023 4022 76 77 4019 4018 80

4080 18 19 4077 4076 22 23 4073 81 4015 4014 84 85 401

1

4010 88

25 4971 4070 28 29 4067 4066 32 4008 90 9i 4005 4004 94 95 4001

4065 31 30 4068 4069 27 26 4072 96 4002 4003 93 92 4006 4007 89

24 4074 4075 21 20 4078 4079 17 4009 87 86 4012 4013 83 82 4016

16 4082 4083 13 12 4086 4087 9 4017 79 78 4020 4021 75 74 4024

4089 7 6 4092 4093 3 2 4096 72 4026 4027 69 68 4030 4031 65

4064 34 35 4061 4060 38 39 4057 97 3999 3998 100 IOI 3995 3994 104

41 405S 4^54 44 45 4051 4050 48 3992 106 107 3989 3988 no in 3985

49 4047 4046 52 53 4043 4042 56 3984 114 "5 398i 3980 118 119 3977

4040 58 59 4037 4036 62 63 4033 121 3975 3974 124 125 3971 3970 128

64 4034 4035 61 60 4038 4039 57 3969 127 126 3972 3973 123 122 3976

4041 55 54 4044 4045 51 50 4048 120 3978 3979 117 116 3982 3983 "3

4049 47 46 4052 4053 43 42 4056 112 3986 3987 109 108 3990 3991 105

40 4058 4059 37 36 4062 4063 33 3993 103 ro2 3996 3997 99 98 4000

II IV

Fig. 686, 84
, First Part (One cube written),

either of two ways. If we take the diagram for the 4-cube as

given in Chapter II, page 78, and simply extend it to cover

the larger numbers involved we shall have a group of four cubes

in which all the "straight" dimensions have S=5i4, but no diag-

onals except the four cubic diagonals. Each horizontal row of
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squares will produce a cube having exactly the same properties as

those in the four vertical rows. If the four squares in either diag-

onal of the figure be piled together neither vertical columns nor

cubic diagonals will have the correct summation, but all the diagonals

of vertical squares in either direction will. Regarding the whole

group of sixteen squares as a plane square we find it magic, having

3968 130 131 3965 3964 134 135 39<5i 193 3903 3902 196 197 3899 3898 200

137 3959 3958 140 141 3955 3954 144 3896 202 203 3893 3892 206 207 3889

US 3951 3950 148 149 3947 3946 152 3888 210 211 3885 3884 214 215 3881

3944 154 155 3941 3940 158 159 3937 217 3879 3878 220 221 3875 3874 224

160 3938 3939 157 156 3942 3943 153 3873 223 222 3876 3877 219 218 3880

3945 151 150 3948 3949 147 146 3952 216 3882 3883 213 212 3886 3887 209

3953 143 142 3956 3957 139 138 396o 208 3890 3891 205 204 3894 3895 201

136 3962 3963 133 132 3966 3967 129 3897 199 198 3900 3901 195 194 3904

161 3935 3934 164 165 3931 3930 168 3872 226 227 3869 3868 230 231 3865

3928 170 171 3925 3924 174 175 3921 233 3863 3862 236 237 3859 3858 240

3920 178 179 3917 39i6 182 183 3913 241 3855 3854 244 245 3851 3850 248

185 39" 3910 188 189 3907 3906 192 3848 250 251 3845 3844 254 255 3841

3905 191 190 3908 3909 187 186 3912 256 3842 3843 253 252 3846 3847 249

184 3914 3915 181 180 3918 3919 177 3849 247 246 3852 3853 243 242 3856

176 3922 3923 173 172 3926 3927 169 3857 239 238 3860 3861 235 234 3864

3929 167 166 3932 3933 163 162 3936 232 3866 3867 229 228 3870 3871 225

Fig. 686, 84
, Second Part (One cube writen).

the summation 2056 in every rank, file and corner diagonal, 1028

in each half-rank or half-file, and 514 in each quarter-rank or

quarter-file. Furthermore all complementary pairs are balanced about

the center.

The alternative arrangement shown in Fig. 684 makes each of the
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small squares perfect in itself, with every rank, file and corner diag-

onal footing up 514 and complementary pairs balanced about the

center. As in the other arrangement the squares in each vertical

or horizontal row combine to make cubes whose "straight" dimen-

sions all have the right summation. In addition the new form has

the two plane diagonals of each original square (eight for each

cube), but sacrifices the four cubic diagonals in each cube. In lieu

of these we find a complete set of "bent diagonals" ("Franklin")

like those described for the magic cube of six in Chapter IX.

If the four squares in either diagonal of the large figure be

piled up it will be found that neither cubic diagonal nor vertical

column is correct, but that all diagonals of vertical squares facing

toward front or back are. Taken as a plane figure the whole group

makes up a magic square of 16 with the summation 2056 in every

rank, file or corner diagonal, half that summation in half of each

of those dimensions, and one-fourth of it in each quarter dimension.

2. Let 11=6, then 8=3891.—With the natural series 1.. .1296

squares were constructed which combined to produce the six magic

cubes of six indicated by the Roman numerals in Figure 685.

These have all the characteristics of the 6-cube described in Chap-

ter IX—108 "straight" rows, 12 plane diagonals and 25 "bent"

diagonals in each cube, with the addition of 32 vertical-square

diagonals if the squares are piled in a certain order. A seventh

cube with the same features is made by combining the squares in

the lowest horizontal row—i. e., the bottom squares of the num-

bered cubes. The feature of the cubic bent diagonals is found on

combining any three of the small squares, no matter in what order

they are taken. In view of the recent discussion of this cube it seems

unnecessary to give any further account of it now.

The whole figure, made up as it is of thirty-six magic squares,

is itself a magic square of 36 with the proper summation (23346)

for every rank, file and corner diagonal, and the corresponding

fractional part of that for each half, third or sixth of those dimen-

sions. Any square group of four, nine, sixteen or twenty-five of the

small squares will be magic in all its dimensions.
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1

3. Let n=8, then 8=16388.—The numbers 1...4096 may be

arranged in several different ways. If the diagrams in Chap-

ter II be adopted we have a group of eight cubes in which

rank, file, column and cubic diagonal are correct (and in which

the halves of these dimensions have the half summation), but all

plane diagonals are irregular. If the plan be adopted of construct-

ing the small squares of complementary couplets, as in the 6-cube,

the plane diagonals are equalized at the cost of certain other features.

I have used therefore a plan which combines to some extent the ad-

vantages of both the others.

It will be noticed that each of the small squares in Fig. 686 is

perfect in that it has the summation 16388 for rank, file and corner

diagonal (also for broken diagonals if each of the separated parts

contain two, four or six—not an odd number of cells), and in balan-

cing complementary couplets. When the eight squares are piled

one upon the other a cube results in which rank, file, column, the

plane diagonals of each horizontal square, the four ordinary cubic

diagonals and 32 cubic bent diagonals all have 8=16388. What is

still more remarkable, the half of each of the "straight" dimensions

and of each cubic diagonal has half that sum. Indeed this cube of

eight can be sliced into eight cubes of 4 in each of which every rank,

file, column and cubic diagonal has the footing 8194; and each of

these 4-cubes can be subdivided into eight tiny 2-cubes in each of

which the eight numbers foot up 16388.

So much for the features of the single cube here presented.

As a matter of fact only the one cube has actually been written out.

The plan of its construction, however, is so simple and the relations

of numbers so uniform in the powers of 8 that it was easy to in-

vestigate the properties of the whole 84 scheme without having the

squares actually before me. I give here the initial number of each

of the eight squares in each of the eight cubes, leaving it for some

one possessed of more leisure to write them all out and verify my
statements as to the intercubical features. It should be remembered

that in each square the number diagonally opposite the one here

given is its complement, i. e., the number which added to it will

give the sum 4097.



362 MAGIC OCTAHEDROIDS.

I II III IV V VI VII VIII

I 3840 3584 769 3072 1281 1537 2304

4064 289 545 3296 1057 2784 2528 1825

4032 321 577 3264 1089 2752 2496 1857

97 3744 3488 865 2976 1377 1633 2208

3968 385 641 3200 ii53 2688 2432 1921

161 3680 3424 929 2912 1441 1697 2144

193 3648 3392 961 2880 1473 1729 2112

3872 481 737 3104 1249 2592 2336 2017

16388 16388 16388 16388 16388 16388 16388 16388

Each of the sixty-four numbers given above will be at the

upper left-hand corner of a square and its complement at the lower

right-hand corner. The footings given are for these initial .numbers,

but the arrangement of numbers in the squares is such that the

footing will be the same for every one of the sixty-four columns

in each cube. If the numbers in each horizontal line of the table

above be added they will be found to have the same sum: conse-

quently the squares headed by them must make a cube as nearly

perfect as the example given in Fig. 686, which is cube I of the table

above. But the sum of half the numbers in each line is half of

16388, and hence each of the eight cubes formed by taking the

squares in the horizontal rows is capable of subdivision into 4-cubes

and 2-cubes, like our original cube. We thus have sixteen cubes, each

with the characteristics described for the one presented in Fig. 686.

If we pile the squares lying in the diagonal of our great square

(starting with 1, 289, etc., or 2304, 2528, etc.) we find that its col-

umns and cubic diagonals are not correct ; but all the diagonals of

its vertical squares are so, and even here the remarkable feature of

the half-dimension persists.

Of course there is nothing to prevent one's going still further

and examining constructions involving the fifth or even higher pow-

ers, but the utility of such research may well be doubted. The purpose

of this article is to suggest in sketch rather than to discuss exhaus-

tively an interesting field of study for some one who may have time

to develop it. 11. m. k.
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FOUR-FOLD MAGICS.*

A magic square has two magic directions parallel to its sides

through any cell—a row and a column ; a magic cube has three magic

directions parallel to its edges, a row, a column and a "line," the latter

being measured at right angles to the paper-plane. By analogy,

if for no other reason, a magic 4-fold should have four magic direc-

tions parallel to its linear edges, a row, a column, a line, and an "z."

[The i is a convenient abbreviation for the imaginary direction,

after the symbol i= V

—

I -] It is quite easy to determine by analogy

how the imaginary direction is to be taken. If we look at a cube,

set out as so many square sections on a plane, we see that the direc-

tions we have chosen to call rows and columns are shown in the

square sections, and the third direction along a line is found by

taking any cell in the first square plate, the similarly situated cell

in the second plate, then that in the third and so on. In an octra-

hedroid the rows, columns and lines are given by the several cubical

sections, viewed as solids, while the fourth or imaginary direction

is found by starting at any cell in the first cube, passing to the cor-

responding cell of the second cube, then to that of the third, and

so on.

If we denote each of the nine subsidiaries of order 3 in Fig. 687

by the number in its central cell, and take the three squares 45, 1,

77, in that order, to form the plates of a first cube
; 73, 41, 9 to form

a second cube, and 5, 81, 37 for a third cube, we get an associated

octahedroid, which is magic along the four directions parallel to its

edges and on its 8 central hyperdiagonals. We find the magic sum

* The subject has been treated before in:

Frost (A. H.), "The Properties of Nasik Cubes," Quarterly Journal of
Mathematics, London, 1878, p. 93.

"C. P." (C. Planck), "Magic Squares, Cubes, etc.," The English Mechanic,
London, March 16, 1888.

Arnoux (Gabriel), Arithmetique graphique, Paris, 1894, Gauthier-Villars
et Fils.

Planck (C), The Theory of Path Nasiks, 1905. Printed for private circu-

lation. There are copies at the British Museum, the Bodleian, Oxford, and the

University Library, Cambridge.
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on 9 rows, 9 columns and 18 diagonals, the nine subsidiaries equally

weighted and magic in rows and columns, and further the square is

9-ply, that is, the nine numbers in any square section of order 3

give the magic sum of the great square.

It will be convenient here to turn aside and examine the evo-

lution of the Nasik idea and the general analogy between th^ figures

of various dimensions in order that we may determine how the Nasik

concept ought to be expanded when we apply it in the higher dimen-

sions. This method of treatment is suggested by Professor King-

ery's remark, p. 352, "It is not easy—perhaps it is not possible—to

make an absolutely perfect cube of 3." If we insist on magic central

65 6 52 29 78 16 20 42 61

36 73 14 27 37 59 72 I 50

22 44 57 67
x

8 48 31 80 12

69 7 47 33 79 11 24 43 56

28 77 18 19 41 63 64 5 54

26 39 58 71 3 49 35 75 13

70 2 51 34 74 15 25 38 60

32 81 10 23 45 55 68 9 46

21 40 62 66 4 53 30 76 17

Fig. 687.

diagonals we know that, in the restricted sense, there is only one

magic square of order 3, but if we reckon reflections and reversions

as different there are 8. If we insist on magic central great diag-

onals in the cube, as by analogy we ought to do, then, in the re-

stricted sense, there are just 4 magic cubes of order 3. But each

of these can be placed on any one of six bases and then viewed from

any one of four sides, and each view thus obtained can be duplicated

by reflection. In the extended sense, therefore, there are 192 magic

cubes of order 3. None of these, however, has the least claim to

be considered "perfect." This last term has been used with several

different meanings by various writers on the subject. From the

present writer's point of view the Nasik idea, as presently to be de-
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veloped, ought to stand pre-eminent ; next in importance comes

the ply property, then the adornment of magic subsidiaries, with the

properties of association, bent diagonals of Franklin, etc., etc., tak-

ing subordinate places.

The lattice idea certainly goes back to prehistoric time, and

what we now call the rows and columns of a rectangular lattice

first appealed to man because they disclose contiguous rectilinear

series of cells, that is sets of cells, whose centers are in a straight

line, and each of which has linear contact with the next. It must

soon have been noticed that two other series exist in every square,

which fulfil the same conditions, only now the contact is punctate

instead of linear. They are what we call the central diagonals. It

was not until the congruent nature of the problem was realized that

it became apparent that a square lattice has as many diagonals as

rows and columns together. Yet the ancient Hindus certainly recog-

nized this congruent feature. The eccentric diagonals have been

called "broken diagonals," but they are really not broken if we re-

member that we tacitly assume all space of the dimensions under

consideration saturated with contiguous replicas of the figure before

us, cells similarly situated in the several replicas being considered

identical. A. H. Frost* nearly 50 years ago invented the term "Nasik"

to embrace that species of square which shows magic summations

on all its contiguous rectilinear series of cells, and later extended

the idea by analogy to cubes,f and with less success to a figure in

four dimensions. If the Nasik criterion be applied to 3-dimensional

magics what does it require? We must have 3 magic directions

through any cell parallel to the edges, (planar contact), 6 such

directions in the diagonals of square sections parallel to the faces

(linear contact), and 4 directions parallel to the great diagonals of

the cube (point contact), a total of 13 magic directions through

every cell. It has long been known that the smallest square which

can be nasik is of order 4, or if the square is to be associated, (that

* Quarterly Journal of Mathematics, London, 1865, and 1878, pp. 34 and 93*.

t The idea of the crude magic cube is, of course, much older : Fermat
gives a 4

3
in his letter to Mersenne of the 1st of April, 1640. CEnvrcs de

Fermat, Vol. II, p. 191.
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is with every pair of complementary numbers occupying cells which

are equally displaced from the center of the figure in opposite di-

rections), then the smallest Nasik order is 5. Frost stated definitely*

that in the case of a cube the smallest Nasik order is 9 ; Arnouxt was

of opinion that it would be 8, though he failed to construct such a

magic. It is only quite recently^ that the present writer has shown

that the smallest Nasik order in k dimensions is always 2k
,

(or

2k-\-i if we require association).

It is not difficult to perceive that if we push the Nasik analogy

to higher dimensions the number of magic directions through any

cell of a &-fold must be ^(3^— 1), for we require magic directions

from every cell through each cell of the surrounding little £-fold

of order 3. In a 4-fold Nasik, therefore, there are 40 contiguous

rectilinear summations through any cell. But how are we to de-

termine these 40 directions and what names are we to assign to the

magic figures in the 4th and higher dimensions? By far the best

nomenclature for the latter purpose is that invented by Stringham,§

who called the regular m-dimensional figure, which has n (m— 1)-

dimensional boundaries, an m-fold n-hedroid. Thus the square is

a 2-fold tetrahedroid (tetragon), the cube a 3-fold hexahedroid

(hexahedron) ; then come the 4-fold octahedroid, the 5-fold deca-

hedroid, and so on. Of course the 2-fold octahedroid is the plane

octagon, the 3-fold tetrahedroid the solid tetrahedron ; but since the

regular figure in k dimensions which is analogous to the square and

cube has always 2k (k— 1) -dimensional boundaries—is in fact a

fc-fold 2/e-hedroid—the terms octahedroid, decahedroid, etc., as ap-

plied to magics, are without ambiguity, and may be appropriately

used for magics in 4, 5, etc. dimensions, while retaining the familiar

"square," "cube," for the lower dimensions.

To obtain a complete knowledge of these figures, requires a

study of analytical geometry of the 4th and higher dimensions, but,

by analogy, on first principles, we can obtain sufficient for our pur-

pose. If we had only a linear one-dimensional space at command

* Quarterly Journal, Vol. XV, p. no.

t Arithmetique graphique, Paris, 1894, P- !4°-

X Theory of Path Nasiks, 1905.

§ American Journal of Mathematics, Vol. Ill, 1880.
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we could represent a square of order 11 in two ways, ("aspects"),

either by laying the n rows, in order, along our linear dimension,

or by dealing similarly with the n columns. In the first aspect, by

rows, the cells which form any column cannot appear as contiguous,

though they actually are so when we represent the figure as a square

34 74 15 65 6 52 24 43 56

23 45 55 36 73 14 64 5 54

66 4 53 22 44 57 35 75 13

20 42 61 33 79 11 70 2 51

72 1 50 19 41 63 32 81 10

31 80 12 71 3 49 21 40 62

69 7 47 25 38 60 29 78 16

28 77 18 68 9 46 27 37 59

26 39 58 30 76 17 67 8 48

Fig. 688. Pi- and P2-aspects.

69 20 34

28 72 23

26 31 66

25 33 65

68 19 36

30 71 22

29 70 24

27 32 64

67 21 35

7 42 74

77' 1 45

39 80 4

38 79 6

9 41 73

76 3 44

78 2 43

37 81 5

8 40 75

47 61 15

18 50 55

58 12 53

60 11 52

46 63 14

17 49 57

16 51 56

59 10 54

48 62 13

69 7 47

20 42 61

34 74 15

25 38 60

33 79 11

65 6 52

29 78 16

70 2 51

24 43 56

28 77 18

72 1 50

23 45 55

68 9 46

19 41 63

36 73 14

27 37 59

32 81 10

64 5 54

26 39 58

31 80 12

66 4 53

30 76 17

71 3 49

22 44 57

67 8 48

21 40 62

35 75 13

Fig. 689. V-aspect. Fig. 690. H-aspect.

on a plane. Similarly we can represent a cube on a plane in three

aspects. Suppose the paper-plane is placed vertically before us and

the cube is represented by n squares on that plane (P-plane aspect).

We get a second aspect by taking, in order, the first column of each

square to form the first square of the new aspect, all the second col-
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umns, in order, to form the second square of the new aspect, and so

on (V-plane aspect). We obtain a third aspect by dealing simi-

larly with the rows (H-plane aspect). Here the ''lines, " which

appear as contiguous cells in the V- or H-plane aspects do not so

appear in the P-plane aspect, though they actually are contiguous

when we examine the cube as a solid in three dimensions. Now
consider an octahedroid represented by n cubes in a space of three

dimensions. We get a second aspect by taking the n anterior, vertical

square plates of each cube, in order, to form a first new cube ; the

n plates immediately behind the anterior plate in each cube to form

a second new cube, and so on. Evidently we obtain a third aspect,

in like manner, by slicing each cube into vertical, antero-posterior

plates, and a fourth aspect by using the horizontal plates. Carrying

on the same reasoning, it becomes clear that we can represent a

&-fold of order n, in k— 1 dimensions, by n (k—1) -folds, in k dif-

ferent aspects. Thus we can represent a 5-fold decahedroid of

order n, in 4-dimensional space, by n 4-fold octahedroids, and this in

5 different ways or aspects.

Return now to Fig. 687 and the rule which follows it, for form-

ing from it the magic octahedroid of order 3. If we decide to

represent the three cubic sections of the octahedroid by successive

columns of squares we get Fig. 688.

If we obtain a second aspect by using the square plates of the

paper-plane, as explained above, we find that this is equivalent

to taking the successive rows of squares from Fig. 688 to form our

three cubes, instead of taking the columns of squares. Thus the

presentation plane shows two different aspects of an octahedroid

;

this is due to the fact that the fourth dimension is the square of

the second. We may call these aspects P x
- and P2-aspects. The

aspect obtained by using antero-posterior vertical planes is shown in

Fig. 689, that from horizontal planes in Fig. 690. We may call these

the V- and H-aspects. If we use the rows of squares in Figs. 689

or 690 we get correct representations of the octahedroid, but these

are not new aspects, they are merely repetitions of P x , for they give

new views of the same three cubes as shown in Pj. In the same

way, if we turned all the P-plane plates of a cube upside down
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we should not call that a new aspect of the cube. The aspects

P2 , V, H can be obtained from P ± by turning the octahedroid as a

whole in 4-dimensional space, just as the V-plane and H-plane

aspects of a cube can be obtained from the P-plane aspect by

turning the cube in 3-dimensional space. Fig. 690, above, is Fig.

688 turned through a right angle about the plane of xy ; we can

turn about a plane in 4 dimensions just as we turn about a

straight line in 3 dimensions or about a point in 2 dimensions. It

will be noticed that in the four aspects each of the 4 directions

parallel to an edge becomes in turn imaginary, so that it cannot be

made to appear as a series of contiguous cells in 3-dimensional

space
;
yet if we had a 4-dimensional space at command, these four

directions could all be made to appear as series of contiguous cells.

There is one point, however, which must not be overlooked. When

we represent a cube as so many squares, the rows and columns ap-

pear as little squares having linear contact, but actually, in the

cube, the cells are all cubelets having planar contact. Similarly, in

an octahedroid represented as so many cubes the rows and col-

umns appear as cubelets having planar contact, but in the octa-

hedroid the cells are really little octahedroids having solid, 3-dimen-

sional contact.

When we examine the above octahedroid (Figs. 688-690) in all

its aspects we see that there are through every cell 4 different direc-

tions parallel to the edges, 12 directions parallel to the diagonals

of the square faces, and 16 directions parallel to the great diagonals

of the several cubical sections. There remain for consideration the

hyperdiagonals, which bear to the octahedroid the same relation that

the great diagonals bear to a cube. If we represent a cube by squares

on a plane we can obtain the great diagonals by starting at any

corner cell of an outside plate, then passing to the next cell of the

corresponding diagonal of the succeeding plate, and so on. Simi-

larly we obtain the hyperdiagonals of the octahedroid by starting

from any corner cell of an outside cube, passing to the next cell

on the corresponding great diagonal of the succeeding cube, and so

on. Evidently there are 8 central hyperdiagonals, for we can start
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at any one of the 8 corners of one outside cube and end at the oppo-

site corner of the other outside cube. There are therefore, through

any cell, 8 different directions parallel to the central hyperdiagonals.

With the directions already enumerated this makes a total of 40

directions through each cell and agrees with the result already stated.*

Evidently the number of ^-dimensional diagonals of a fc-fold is 2k~ J

,

and if the analogy with the magic square is to be carried through

then all the central ^-dimensional diagonals of a £-fold ought always

to be magic.

The smallest octahedroid which can have all these 40 directions

magic is 164
, and the writer has given one of the 256 square plates

of this magic and a general formula by which the number occupying

any specified cell can be determined. But it will be interesting to

determine how nearly we can approach this ideal in the lower orders.

The octahedroid of order 3 can be but crude, and practically Fig. 688

cannot be improved upon. All rows, columns, lines, and "i"s are

magic, and likewise the 8 central hyper-diagonals. Of course, since

the figure is associated, all central rectilinear paths are magic, but

this is of little account and other asymmetrical magic diagonal sum-

mations are purely accidental and therefore negligible.

Turning to the next odd order, 5 : Professor Kingery's Fig. 683

is not a magic octahedroid as it stands, but a magic can be obtained

from it by taking the diagonals of subsidiary squares to form the

5 cubes. Denoting each subsidiary by the number in its central cell,

we may use 602, 41, 210, etc. for the first cube; 291, 460 etc. for

the second cube ; 85, 149, etc. for the middle cube, etc., etc. But

few of the plane diagonals through any cell of this octahedroid are

magic. In fact no octahedroid of lower order than 8 can have all

its plain diagonals magic ; but by sacrificing this property we can

obtain a 5
4 with many more magic properties than the above.

In Fig. 691 the great square is magic, Nasik and 25-ply: the 25

subsidiaries are purposely not Nasik, but they are all magic in rows

* If we call the diagonals in square sections parallel to faces 2-dimensional,
those parallel to the great diagonals of cubical sections 3-dimensional, etc., etc..

then the number of w-dimensional diagonals of a &-fold is 2"*— 1 k \/m \(k—m) !

In fact the number required is the (w-|-i)th term of the expansion of
l/2(i-\-2)k. It will be noticed that this reckons rows, columns etc. as "diag-
onals of one dimension."
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and columns. If we take up the subsidiaries in the way just de-

scribed, viz., 513, 221, etc., for the first cube; 205, 413, etc., for the

second cube, and so on, we get a 5
4

, which has 20 contiguous recti-

linear summations through any cell, viz., the 4 directions parallel

to the edges and the whole of the 16 three-dimensional diagonals

parallel to the great diagonals of any cubical section. If the reader

495 58 271 589 152 478 66 259 597 165 136 54 267 . 85 173 499 62 255 593 156 482 75 263 576 169

178 391 84 297 615 186 379 92 285 623 199 387 80 293 606 182 400 88 276 619 195 383 96 289 602

511 204 417 110 323 524 212 405 118 306 507 225 413 101 319 520 208 421 114 302 503 216 409 122 315

349 537 230 443 6 332 550 238 426 19 345 533 246 439 2 328 541 234 447 15 336 529 242 435 23

32 375 563 126 469 45 358 571 139 452 28 366 559 147 465 36 354 567 135 473 49 362 555 143 456

70 258 596 164 477 53 266 584 172 490 61 254 592 160 498 74 262 580 168 481 57 275 588 151 494

378 91 284 622 190 386 79 292 610 198 399 87 280 618 181 382 100 288 601 194 395 83 296 614 177

211 404 117 310 523 224 412 105 318 506 207 425 113 301 519 220 408 121 314 502 203 416 109 322 515

549 237 430 18 331 532 250 438 1 344 545 233 446 14 327 528 241 434 22 340 536 229 442 10 348

357 575 138 451 44 370 558 146 464 27 353 566 134 472 40 361 554 142 460 48 374 562 130 468 31

270 583 171 489 52 253 591 159 497 65 261 579 167 485 73 274 587 155 493 56 257 600 163 476 69

78 291 609 197 390 86 279 617 185 398 99 287 605 193 381 82 300 613 176 394 95 283 621 189 377

411 104 317 510 223 424 112 305 518 206 407 125 313 501 219 420 108 321 514 202 403 116 309 522 215

249 437 5 343 531 232 450 13 326 544 245 433 21 339 527 228 441 9 347 540 236 429 17 335 548

557 150 463 26 369 570 133 471 39 352 553 141 459 47 365 561 129 467 35 373 574 137 455 43 356

595 158 496 64 252 578 166 484 72 265 586 154 492 60 273 599 162 480 68 256 582 175 488 51 269

278 616 184 397 90 286 604 192 385 98 299 612 180 393 81 282 625 188 376 94 295 608 196 389 77

111 304 517 210 423 124 312 505 218 406 107 325 513 201 419 120 308 521 214 402 103 316 509 222 415

449 12 330 543 231 432 25 338 526 244 445 8 346 539 227 428 16 334 547 240 436 4 342 535 248

132 475 38 351 569 145 458 46 364 552 128 466 34 372 565 136 454 42 360 573 149 462 30 368 556

170 483 71 264 577 153 491 59 272 590 161 479 67 260 598 174 487 55 268 581 157 500 63 251 594

603 191 384 97 290 611 179 392 85 298 624 187 380 93 281 607 200 388 76 294 620 183 396 89 277

311 504 217 410 123 324 512 205 418 106 307 525 213 401 119 320 508 221 414 102 303 516 209 422 115

24 337 530 243 431 7 350 538 226 444 20 333 546 239 427 3 341 534 247 440 11 329 542 235 448

457 SO 363 551 144 470 33 371 564 127 453 41 359 572 140 461 29 367 560 148 474 37 355 568 131

Fig. 691.

will write out the four aspects of the octahedroid, in the way already

explained, he will be able to verify this statement. As an example,

the 20 summations through the cell containing the number 325,

which lies in the first plate of the first cube of the P^aspect, are here

shown

:
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CUBICAL DIAGONALS

o o £
« o J : Pi-ASPECT P 2 -aspect V-ASPKCT H ASPECT

325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325

513 8 508 512 534 388 607 3 538 392 611 7 533 387 608 4 413 103 507 509

201 466 216 204 143 576 169 456 126 589 152 469 141 579 166 458 501 406 219 218

419 154 404 416 477 44 45i 164 494 3i 468 151 479 41 454 162 119 214 401 402

107 612 112 108 86 232 13 617 82 228 9 613 87 233 12 616 207 517 113 in

Since there are 20 magic summations through each of the 625

cells and each summation involves 5 cells, the total number of dif-

ferent symmetrical magic summations in this octahedroid is 2500.

This does not include the 8 central hyperdiagonals, which are also

magic, for this is not a symmetrical property since all the hyper-

diagonals are not magic.

The next odd order, 7, was the one which Frost attacked.

Glass models of his 7 cubes were for many years to be seen at the

South Kensington Museum, London, and possibly are still there.

He does not appear to have completely grasped the analogy between

magics in 3 and 4 dimensions, and from the account he gives in

The Quarterly Journal, he evidently assumed that the figure was

magic on all its plane diagonals. Actually it is magic on all plane

diagonals only in the P-aspect ; in the other 3 aspects it is Nasik in

one set of planes but only semi-Nasik in the other two sets of planes,

therefore of the 12 plane diagonals through any cell of the octa-

hedroid only 9 are magic* Frost obtained his figure by direct

application of the method of paths ; the present writer using the

method of formative square has obtained an example with one ad-

ditional plane magic diagonal. It is shown as a great square of order

49, magic on its 49 rows, 49 columns and 98 diagonals, and 49-ply, that

is any square bunch of 49 numbers gives the same sum as a row

or column. The 49 subsidiaries are equally weighted Nasiks, magic

on their 7 rows, 7 columns and 14 diagonals. If the subsidiaries be

taken up along the Indian paths, as in the previous examples, we

get 7 cubes forming an octahedroid of order 7. This is magic on

the 4 directions parallel to the edges, is completely plane Nasik in

* Probably the reader will have alrealy noticed that although there are 4
aspects, and 6 plane diagonals appear in each aspect, yet there are only 12

plane diagonals in all, since, with this method of enumeration, each diagonal
occurs twice.
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the P
1
and P..-aspects, and in the other two aspects it is Nasik in two

sets of planes and crude in the third set. Therefore of the 12 plane

diagonals through any cell 10 are magic. It is practically certain

that we can go no further in this direction with this order, but by

giving up the magic plane diagonals we can, as with 5* above, obtain

a larger number of magic summations on the higher diagonals.

When we consider the even orders we find those 2 = (mod 4)

of little interest. The powerful methods used for the other orders

are now useless if we insist on using consecutive numbers: we must

employ other methods. The best methods here are either to use an

extension of Thompson's method of pseudo-cubes, as employed by

Mr. Worthington in his construction of 63
(pp. 201-206),* or, best

of all, to use the method of reversions.

With orders = o(mod 4) we can give a greater number of ornate

features than with any other orders. We quote one example be-

low (Fig. 692).

The columns of Fig. 692 give the 4 cubes of an octahedroid of

order 4, which is crude in plane diagonals, but is magic on every

other contiguous rectilinear path, it has therefore 28 such paths

through each cell. The 28 magic paths through the cell containing

the number 155 are displayed below.

I CUBICAL DIAGONALS

~ •<*

X w J z Pi-ASPKCT P^-ASPECT V-ASPFCT H-ASPECT

155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155

38 70 98 101 2 50 242 I94 5 53 245 197 77 125 113 65 36 33 225 228

91 171 151 154 103 103 103 103 106 106 106 106 166 166 166 166 86 86 86 86

230 118 no 104 254 206 14 62 248 200 8 56 m6 68 80 128 237 240 48 45

HYPERDIAGONALS

155 155 155 155 155 155 155 155

256 208 16 64 253 205 13 61

I02 I02 102 102 102 IC2 102 102

I 49 24I I93 4 52 244 196
J

But this does not exhaust the magic properties, for this figure

is 4-ply in every plane section parallel to any face of the octahedroid.

* It was by this method that Firth in the 8o's constructed what was, almost
certainly, the first correct magic cube of order 6. Mr. Worthington's intro-

duction of magic central diagonals on all the faces is new. Though, of course,
not a symmetrical summation, this is a very pleasing feature.
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If the reader will examine the figure in its four aspects he will find

that 6 such planes can be drawn through any cell, and since a given

number is a member of four different 4-ply bundles in each plane,

it follows that each number is a member of 24 different bundles.

If we add the 28 rectilinear summations through any cell we see

1 128 193 192

240 145 48 81

49 80 241 144

224 161 32 97

248 137 56 73

25 104 217 168

200 185 8 121

41 88 233 152

13 116 205 180

228 157 36 93

61 68 253 132

212 173 20 109

252 133 60 69

21 108 213 172

204 181 12 117

37 92 229 156

254 131 62 67

19 110 211 174

206 179 14 115

35 94 227 158

11 118 203 182

230 155 38 91

59 70 251 134

214 171 22 107

242 143 50 79

31 98 223 162

194 191 2 127

47 82 239 146

7 122 199 186

234 151 42 87

55 74 247 138

218 167 26 103

4 125 196 189

237 148 45 84

52 77 244 141

221 164 29 100

245 140 53 76

28 101 220 165

197 188 5 124

44 85 236 149

16 113 208 177

225 160 33 96

64 65 256 129

209 176 17 112

249 136 57 72

24 105 216 169

201 184 9 120

40 89 232 153

255 130 63 66

18 111 210 175

207 178 15 114

34 95 226 159

10 119 202 183

231 154 39 90

58 71 250 135

215 170 23 106

243 142 51 78

30 99 222 163

195 190 3 126

46 83 238 147

6 123 198 187

235 150 43 86

54 75 246 139

219 166 27 102

Fig. 692.

that each of the 256 numbers takes part in 52 different summations.

The total number of different magic summations in the octahedroid

is therefore ^^-* ^= 3328. The six planes parallel to the faces

through 155 are shown in Fig. 693, and from them the 24 different

bundles in which 155 is involved can be at once determined.
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The reader might object that the border cells of a square section

cannot be involved in 4 bundles of that section; but this would

be to overlook the congruent property. The number 107, which

11 118 203 182

230 155 38 91

59 70 251 134

214 171 22 107

25 104 217 168

230 155 38 91

28 101 220 165

231 154 39 90

19 110 211 174

230 155 38 91

31 98 223 162

234 151 42 87

137 118 140 119

104 155 101 154

185 70 188 71

88 171 85 170

131 118 143 122

110 155 98 151

179 70 191 74

94 171 82 167

145 110 148 111

104 155 101 154

157 98 160 99

108 151 105 150

Fig. 693.

occupies a corner cell of the first section given above is contained in

the following bundles:

1251,134 |i34 59, 22 IO7 I07J2I4

1 22JI07] |I07|2I 4
|

203 I82|
1

1

182 IIj

It is noticeable that the four corner cells of a square form one of its

4-ply bundles.

It would have been desirable to indicate the methods by which

the above examples have been constructed, but exigencies of space

forbid. The four orders dealt with, 3, 5, 7, 4, were all obtained in

different ways. Fig. 692 was constructed by direct application, in

four dimensions, of the method of paths ; in fact, it is the octahedroid

2221
2212
2122
222 4#

The whole of its magic properties may be deduced by examination

of the determinant and its adjoint, without any reference to the

constructed figure. There is therefore nothing empirical about this

method.

c. p.



CHAPTER XV.

ORNATE MAGIC SQUARES.

GENERAL RULE FOR CONSTRUCTING ORNATE MAGIC SQUARES
OF ORDERS =0 (mod 4).

HPAKE a square lattice of order Am and draw heavy lines at

* every fourth vertical bar and also at every fourth horizontal bar,

thus dividing the lattice into m 2 subsquares of order 4. The "period"

consists of the Am natural numbers 1, 2, 3. .. . Am. Choose from

these any two pairs of complementary numbers, that is, pairs whose

sum is Am+l and arrange these four numbers, four times repeated,

as in a Jaina square (first type) in the left-hand square of the top

row of subsquares in the large lattice. It is essential that the Jaina

pattern shall contain only one complementary couplet in each of

its four columns, i. e., if the two pairs are a
x a 2 and b

1
b 2 , every

column must consist entirely of as, or entirely of b's. The first

Jaina type can be obtained by using the paths (1, 2) (2, 1) and the

order a x b ± a 2 b 2
four times repeated. This gives the square shown

in Fig. 694, which fulfils the conditions. Proceed in the same way

with each of the m subsquares in the top row, using a different

pair of complemcntaries in each sitbsquare. Since the period 1,

2, 3.... Am contains 2m complementary pairs and two pairs are

used for each subsquare, it follows that when the top row of sub-

squares is filled up, all the Am numbers will have been used.

Now fill all the remaining rows of subsquares in the large

lattice with replicas of the top row. The outline so constructed can

always be turned over either of its central diagonals without repe-

tition. The resulting square will therefore contain the first (Am) 2
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numbers without repetition or omission, and it will always have the

following magic properties.

A. The Great Square

1. is magic on its 4ra rows and Am columns

;

CL
/ h *« i*

«* h* a
, I,

«*, z, «* 2*

<** &z a
, *,

/O S7 /S S4 /2 49 73 S6

23 46 78 4-3 27 48 20 47

SO 77 SS 74 S2 2 S3 76

47 22 42 7J> 4S 24 44- 77

26 3S 3/ 38 28 33 2S 40

7 62 2 S3 S 64 4 S7

34 27 3S JO 36 2S *7 32

63 6 S8 «J 6j 8- 6o 7

Fig. 694. Fig. 695.

2. is pandiagonal, i. e., magic on its Sm diagonals

;

3. has Franklin's property of bent diagonals in an extended

sense; i. e., we can start at any cell in the top row, and proceeding

downward bend the diagonal at any heavy horizontal bar. It

2 <3 7 (3 4 7 S 8

7 6 2 «3 S ? 4 /

2 3 7 6 4 7 S <f

7 6 2 3 S 8 4 /

2 J 7 6 4- 7 S <?

7 6 2 3 S 8- 4 /

2 J 7 6 4 7 S 8

7 6 2 3 S 8 4 7

Fig. 696.

<? 48 8 48 8 48 8 48

76 40 j6 40 76 40 76 4o

48 8 48 8 48 * 48 *

40 76 40 76 40 76 4a /6

24 32 24 32 24 32 24 32

O S6 a 36 O *6 s6

32 24- 32 24- 32 24- 32 24-

S6 O S6 O S6 O s6 O

Fig. 697-

matters not how many times we bend, or at which of the heavy

bars, providing only that when the traverse is completed, the number

of cells passed over in the one direction (downward to the right)

shall be exactly equal to the number passed over in the other direc-



3/8 ORNATE MAGIC SQUARES.

27 46 /// /o6 3 S8 /3S 34 63 22 7* /3o

//Z /OS 26 46 /36 S3 -4 S7 76 /23 64 2/

34 33 //# 33 /O s/ 742 S7 70 /S 82 /23

"7 /OO 33 40 74/ 88 3 S2 8/ /24 63 /6

ZS 48 /OS /OS 7 6o /33 36 6/ 24- 73 /3Z

//3 /04 23 44 737 32 S s6 77 /28 6S 20

30 37 /20 #7 /Z 43 /44 8S 72 73 84 /2/

//6 /O/ 32 4/ /40 83 8 S3 80 /2S 68 /7

30 43 //4- /03 6 SS /38 3*7 66 /3 78 /27

//o /07 26 47 /34 3S 2 S3 7+ /J/ 62 23

37 42 //S /OZ 7 S4 /33 SO 67 /<? 73 /Z6

//3 38 3S 38 /+3 86 77 SO 83 /22 7/ /4

Fig. 698. S = 87o

//s //O /3/ /S8 3 78 Z43 /SO S/ 34 /SS /74 73 46 227 222

/JO /SS //4- /// Z4Z /3/ 2 73 734 /7S SO SS 226 223 78 +7

/26 33 /4Z '+7 /4 67 2S4 /73 6z 83 206 /6j JO 3S 238 2//

/+3 /46 /27 38 2SS /78 /S 66 207 /6z 63 82 233 2/0 3/ 34-

//8 ,07 /34 /SS 6 7S 246 /87 S4 3/ /S8 77/ 22 43 Z30 2/3

/32 /S7 //6 /OS 244- /83 4- 77 /S6 /73 sz 33 228 22/ ZO 4S

/23 /oz /3S /SO // 70 2S/ /S2 S3 86 203 /66 27 38 Z3S 2/4

/4/ /48 /ZS /OO 2S3 /SO /3 68 20S /64 6/ 84- 237 2/2 23 36

//7 /08 /33 /s6 s- 76 2+S /SS S3 3Z /S7 /72 2/ 44- 22S 2ZO

/ts /60 //3 //z 2+/ /3Z / 80 /3J /76 43 36 22S 224 /7 48

/2+ /o/ /40 /4S /Z 63 2S2 /8/ 60 8S 204- /6s Z8 37 236 2/3

/+*- /4S /28 37 2S<f '77 /6 6S 20S /6/ 64- 8/ zw ZOS 32 33

//3 /06 /JS /S* 7 7+ 247 /S6 SS SO /SS /70 23 42 23/ 2/8

/36 /S3 /20 /OS 2+8 /ss 8 74 200 /63 S6 83 2*2 2/7 Z4 4/

/2Z /03 /38 /s/ /O 77 2SO /83 S8 *7 202 '67 26 33 234 2/S

/37 /S2 /2/ /o* 243 /84 3 72- 20/ /S8 s-7 88 233 2/6 2S 40

Pi.;-. 6qc.
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tion (downward to the left). Similarly we may start at any cell

in the left-hand column and, proceeding diagonally to the right,

bend the diagonal at any heavy vertical bar under the same limita-

tions.

It will be noticed that when the order of the square is = 4

(mod 8), i. e., when m is odd, the central bars are not heavy bars,

7 38rZ 20 329 3 384 /8 397 S 386 /6 39S 7 388 /4 393 9 390 /2 39/

40 379 2/ 362. 38 377 23 364 3<? 37S ZS 36? 34 373 27 3ft 3Z 37/ 29 3/0

38/ Z 400 /9 383 4 398 '7 383 6 396 /S 387 8- 394 73 389 /C 392 //

3SO 39 36/ 2Z 378 37 3<f3 24 37<^ 3S 36s 26 374- 33 **7 ZS 37Z 3/ 36s 30

4/ 342 6b 3S~9 43 344 S8 38/ -9S 346 S6 3SS 47 348 S4 333 49 3SO S21 337

S-O 332 6/ 32Z 78 337 63 324 76 33S 6s* 326 7+ 333 67 328 72 33/ 69 330

34/ 42 360 s& 343 44- 3S8 3-7 343 46 386 83- 347 48 364 S3 340 S0 33~Z S/

540 79 32/ 62 338 77 323 64- 336* 7S 326 <& 334- 7S 327 68 33Z 7/ 329 70

37 30Z /oo 3/J 83 304- 38 3/7 86 306 96 3/8 87 308 94 3/3 89 400 SZ 3//

/zo 299 /o/ 282 //8 Z9J /03 284 //6 296^ /os- 286 //4 293 707 288 //Z 29/ /09 290

3o/ 82 320 39 303 8-4- 3/8 97 JOS 86 3/<f 9S 307 88 J/4- 93 3OS 90 3/Z s>/

100 //3 29/ /oz 238 //7 283 704 296 //S~ 28S /OS ZS4 7/6 287 /OS 29Z /// 229 //o

(2/ 26Z /40 273 /23 2&4 /38 277 /23T 266 /36 27S /27 268 /34 273 /29 27o /3Z 27/

/6o 239 /4/ 242 /S8 237 743 244 /s6 233 /4S 246 /6-4 2S3 /47 249 /s-z ZS/ /49 2S0

26/ /2Z 280 /3S Z63 /24 278 /37 283~ /26 276 /33~ 267 /28 274 /33 269 /30 27Z /3/

26o /39 24/ /4Z 2S8 /S7 243 744 236 /SS 24S /46 234 /S3 247 /48 232 /3~/ 249 /S0

'ft 22 2. /8o 239 /S~3 224 778 Z37 /6s 2.26 /76 23S 767 228 774 233 /6s 23O 77Z 23/

ZOO 2/3 /?/ 20Z /9f 2/7 783 204 /96 2/3 /8S 206 /94 2/3 78? 208 /sz 2// 789 2/0

27/ /6z 24-0 779 223 /64 238 /77 22S /& 236W 227 /68 234 7/3 ZZ9 /7o 232 '/'

2ZO /99 20/ /8z 2/8 727 203 /94 2/6 /9& 206 78*6 2/4 /93 207 /88 2/2. /9/ 2G& /90

Fig. 700.

and also the number of rows of subsquares is odd. We cannot

therefore in these cases get a magic bent diagonal traverse from

top to bottom of the square, but we may stop at the last heavy bar

before reaching the bottom of the square, when we shall have a

sum 4(m- 1) times the mean, or we may carry the diagonal beyond

the bottom of the square and traverse the top row of subsquares a
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second time, when the sum will be 4(m+l) times the mean. We
can get in these cases a diagonal traverse Am times the mean by
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inserting at any point one vertical scries of four cells between any

two heavy bars and then continuing diagonally.
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4. The great square is 4-ply, and therefore 4-symmetrical,

i. e., we may choose any vertical and any horizontal bar (not

necessarily heavy bars) and we shall find that any four cells, sym-

metrically situated with regard to these two bars as axes, will con-

tain numbers whose sum is four times the mean. It follows that

any Am cells which form a symmetrical figure with regard to any

such axes will contain numbers whose sum is the magic sum of the

great square.

B. The Subsquares

5. are balanced Jaina squares, i. e., each of them has the 36

summations of a Jaina and in each case the magic sum is four times

the mean number of the great square.

6. They have the property of subsidiary minors, i. e., if we

/. /S _-Z./S /J.4--Z4-.3 /2 S--//.<$ S. 3 --7./0

/ Z /6 /6 A3 /4 4 J /* // s 6 * 7 s /o

/6 /s / e, 4- 3 /3 Z4- S 6 /z // 3 /O S 7

/ 2 /6 /s /3 /+ 4- 3 /z // s 6 <f 7 3 /o

/# /S / 2 4- 3 /3 /+ s 6 /2 // & /O s- 7

Fig. 702.

erase any p rows of subsquares, and any p columns of the same

and draw the remaining rows and columns together, we have a

square with all the properties of the original great square.

EXAMPLES

In every case the Jaina pattern quoted above is used. Fig. 695 is

an example of order 8 and the complementaries have been paired

thus: 2,7 with 3,6; and 4,5 with 1,8. The La Hireian primaries

of Fig. 695 are shown in Figs. 696 and 697.

Fig. 698 is an example of an order 12 square in which the pairing

of the complementaries is 3,10 with 4,9; 1,12 with 5,8; and 6,7

with 2,11.
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A square of order 16 is shown in Fig. 699. The couplets in this

square are taken thus

:

8 and 9 with 7 and 10; 1 and 16 with 5 and 12;

4 and 13 with 6 and 11 ; 2 and 15 with 3 and 14.

Figs. 700 and 701 show respectively squares of orders 20 and 24

in which the couplets are taken in numerical order, i. e., for order

20, 1 and 20 with 2 and 19 ; 3 and 18 with 4 and 17, etc.

In Fig. 701 there are 1008 magic diagonal summations. Since we

/ 32 24/ 246 /33 224 43 48 /77 776 6s 3f //3 //2 /23 /So

242 2J3 Z 3/ so 47 /34 223 SS 3s /7S /7s /30 7S3 //4 7/7

/6 /7 2SS 22S 20S 203 S4- 33 /3Z /*/ a-o 8/ /2S 37 744- /4S

2SS 226 /S /a 63 34- 207 2/0 73 tz /$/ /6z /43 746, 727 ssa

73 20 2S3 22s 20S 2/2 6/ 36 7S3 /S4- 77 84- /26 /O0 74/ /48

ZS4 227 /4- 7S Sz 3S 206 2// 7S S3 /30 /S& /42 /47 726 33

4 23 244- 237 /3t 22/ S~2. 4S- /ro /73 fir 33 //* 703 732 /S7

243 239 3 3<7 &/ 4S /3S 222 67 34- /73 774 73/ /S8 //S //O

/2 2/ 2S2 223 204 2/3 So 37 /SS /6s 7* as Z24- 707 /4<7 /4S

2S/ 230 77 22 S3 ja 203 2/4 7S a* 787 /SS /JS /SO /2J /02

S 2S 24S 236 /97 220 S3 44- /*/ '72 Ss 42 /'7 /OS 733 /sf

246 23S 6 27 S4- 4-3 /3S 2/3 70 3/ 782 77/ 734 7SS //a- /07

* 2S 24-S 233 200 2/7 ss 4/ 7S4- /6s 72 as /20 /OS /3S /S3

247 234 7 2* SS 42 /33 2/a 7/ sto 783 /70 /3S7S4- //3 /06

J 24- 243 232 20/ 2/S S7 40 /fS /S* 73 a/ /2/ /04- /37 7S2

2so 23/ /O 23 S* 33 20Z 2/S 74- *7 /aS /S7 /3S- /sz /22 /04

Fig. 703.

can bend at any heavy bar, the number of bent diagonals from top

to bottom, starting at a given cell in the top row, is the same as the

number of combinations of 6 things 3 at a time, viz., 20. Therefore

there are 20x24 = 480 bent diagonals from top to bottom and 480

more from side to side. Adding the 48 continuous diagonals we

get 1008.

In the foregoing pages the question of magic knight paths has

not been considered. It is, however, easy for all orders > 8 and =
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(mod 8) to add the knight Nasik property zvithout sacrificing any of

the other features, by a proper choice of the complementary coup-

lets for the subsquare outlines. The example shown in Fig. 702 will

explain. It shows the top row of subsquares in a scheme for order

16. The numbers above the squares indicate the couplets used,

the Jaina pattern. Fig. 694, being used throughout. The rule is

simple: the leading numbers, 1, 13, 12, 8 'must sum four times

the mean of the period, i. e., 34, while of course no one of them

may be a complement of any other. Their complementaries 16,

4, 5, 9, will then have the same sum, and the second members in

each square will be similarly related. The square is completed by

filling the remaining rows with replicas and turning over a central

diagonal. Fig. 703 is a square of order 16 constructed from the

outline Fig. 702. It has all the properties of the 162 shown in Fig.

699 and is also magic on its 64 knight paths.

The following is an arrangement of the couplets for a square

of order 24:

]
1 .24-4. 2118. 17-5. 20110. 15-13.12111.14-16.9122. 3-18. 7[23. 2-19. 6|

c. P.

ORNATE MAGIC SQUARES OF COMPOSITE ODD ORDERS.

When we consider these orders in the light of the general rule

used for orders = (mod 4) it appears at first sight that they

cannot be made to fulfil all the conditions ; but it is not essential

to the ply property, nor to the balanced magic subsquares that the

numbers be taken in complementary pairs for the subsquares of the

outline. All that is necessary is that the groups of numbers chosen

shall all have the same sum.

Suppose, as an illustration, we are dealing with order 15. If

we can arrange the first 15 natural numbers in five balanced

columns, three in a column, and form five magic outlines of order 3,

using a different column thrice repeated for each outline, we shall

have five balanced magic outlines like Fig. 704. These can be ar-
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ranged in the first row of subsquares with replicas in the following

rows. If we can turn this outline upon itself in some way to avoid

repetitions, we shall have a magic square which will be 9-ply and

with magic subsquares. But will it be pandiagonal?

z 7 /S

7 /S 2

/S 2 7

Z 6 /2 // 3

/S A3 8 3 /

7 S 4- /O /4-

Fig. 704. Fig. 705.

In the small outlines of 9 cells made from Fig. 704 as a pattern,

it will be noticed that like numbers must always occur in parallel

diagonals ; therefore if we arrange the five small squares so that

like numbers always lie along / diagonals, the great outline will

z 7 /s 6 s A3 /Z 4 8 // /O 3 3 /4 /

7 /s 2 S /J 6 4- 8 /z /o 3 // /4 / 3

/S 2 7 /3 6 S 8 /2 4 J // /o / 3 /4~

Fig. 706.

be "boxed" and therefore magic in \ diagonals, but hi the /
diagonals we shall have in every case only five different numbers

each occurring thrice. The problem is thus reduced to finding a

2 /2 3 6 // /S 8 / /3 3 7 4 /4- S /O

3 & // 2 J2 / /3 3> /s 8 /4- S /o 7 4-

// 2 /2 3 6 3 /S 8 / A3 /O 7 4- /4 S

/2 3 6 // 2 8 / A3 3 /S 4- /4- s /o 7

6 // 2 /2 3 /3 3 /S 8 / S /O 7 4 /4-

Fig. 707-

magic rectangle 3x5. We therefore construct such a rectangle by

the method of "Complementary Differences"* as shown in Fig. 705.

In Fig. 706 we have the five magic outlines constructed from the

five columns of the rectangle, and placed side by side with like

* See "The Construction of Magic Squares and Rectangles by the Method
of Complementary Differences," by W. S. Andrews, pp. 257 ff.
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numbers always in the / diagonals, and so disposed that the number

in any / diagonal is always succeeded (when the diagonal passes

across into a neighboring square) by the number which succeeds it

in its row in the rectangle.

If an associated square is required the magic rectangle must

be associated and the large rectangle of subsquares must also be

associated as a whole. It will be noticed that all these conditions

will be fulfilled in practice if we write the successive columns of the

/ss 28 /// /2S 88 /36 20 478 726 8O 763 2/ /70 /33 8/

44 2// //4 /4 /8/ 33 22.4 /06 3 /94 3/ 2/9 779 / /83

/33 38 S7 /99 68 /47 34 S3 207 64 /43 /02 49 203 72

/S7 30 /67 /27 30 /S2 2.2. 780 /zz 8Z /63 /7 772 733 77

40 2/3 //S 70 /83 4/ 220 /08 // /SO 33 227 //S 3 737

/40 /03 S7 200 73 74/ 3S S8 20/ 6s /48 36 so Z08 66

/64 /6 /74 /34 76 7S9 23 766 /23 83 /S/ Z4 /73 /2/ f4

34 Z/8 "7 4- /88 42 2/4 7/3 /z 784 38 222 /09 8 /3Z

/4Z 703 47 202 7S /37 S7 60 737 67 7SO 3Z SZ 2/0 62

/60 /8 /76 /30 78 /*/ 2S /68 73/ 8S 733 26 /73 723 #f

3S 223 /// S /33 36 £/S 7/8 6 78S 43 2/<f //O 73 786

/*3 3/ S4 203 6/ /44 /o4 44 20t 74 /36 33 S3 /96 63

/S4 23 /77 /Z4 83 /6Z /9 /73 /32 73 7S8 27 /69 /28 87

37 22S /o7 7 /3S 32 2/7 /20 2 /87 4S 2/2 //Z 7S /8Z

/+3 33 s6 203 S3 /4f /oo 48 20S 70 /38} /o/ ss /98 7/

Fig. 708. S — 1695

magic rectangle Fig. 705 along the \ central diagonals of the suc-

cessive square outlines in the larger rectangle Fig. 706 and fill in all

the / diagonals with replicas. If now all the remaining rows of

subsquares be filled with replicas of the top row it will be found

that the whole outline cannot be turned over either of its central

diagonals without repetitions in the magic, but it can be turned

successfully in its own plane, about its central point through one

right angle, without repetitions. (This will bring the top row in

coincidence with the left-hand column, so that the right-hand square



386 ORNATE MAGIC SQUARES.

in Fig. 706 is turned on its side and lies over the left-hand square.)

The resulting magic is shown in Fig. 709. It is magic on its 15 rows,

15 columns, 30 diagonals and 60 knight paths, also 9-ply and asso-

ciated. The 25 subsquares of ordsr 3 all sum 339 on their 3 rows

and 3 columns. (It is easy to see that only one of them can have

magic central diagonals, for a magic of order 3 can only have this

property when it is associated, and in this case the mean number

must occupy the central cell, but there is here only one mean num-

z /27 2/0 6 /2S 208 /Z /24 203 // 73O /33 3 /34 /3S

2CZ /S /Z2 200 /3 /26 /33 8 /J2 20J 3 73/ 203 / /2S

/3S /37 7 /33 20/ 6 /28 2o7 4- /23 206 /O /2/ 204 /4-

32 'S7 /SO j6 /SS748 4Z /S4 /43 4/ /6o /38 33 /64 736

/42 4S /S2 740 43 /S6 /33 38- /62 /45 33 /f/ 743 3/ /S3

/fs /37 37 /63 /4/ 3S 7S8 /47 34 7S3 /46 4o /s/ /44 44-

/<J7 /7Z 6o /// /70 S8 //7 /69 S3 //S /7S 48 //4 /73 46

S2 /zo /*7 SO //8 /7/ 43 //J /77 SS /08 /78 SS /o6 /74

/SO 47 //2 /78 S/ //O /73 S7 /03 /68 SS //S /66 S4- //J

/22 SZ 7S /86 SO 73 /SZ 73 68 /3/ 8S 63 /89 83 6/

67 /JS 77 6S /33 S7 64 /88 81 70 /83 86 74 /?/ 84

30 6Z 787 88 66 /SS 8-3 72 /84 78 77 /30 76 63 /&4

2/2 zz /OS Z/S ZO /03 22Z /S 38 22/ ZS 33 2/3 29 97

37 zzs /7 3S 223 2/ 34 2/8 27 /oo 2/3 26 /#4 2// 24-

30 32 2J7 28 36 Z/S 23 /OZ 2/4 78 /o/ 220 /6 39 224

rig. 709. b = ic>95

ber, viz., 113, therefore only the central subsquare can have magic

diagonals.)

In exactly the same manner as above described, by using the

long rows of the magic rectangle, Fig. 705, instead of the short col-

umns, we can construct another ornate magic of order 15.

Fig. 707 shows the first row of 25-celled subsquares constructed

from the rows of the rectangle, and using a magic square of order

5 as pattern. If we fill the two remaining rows of subsquares with

replicas the outline can be turned over either of its central diagonals.

The resulting square is shown in Fig. 710. It is magic on 15 rows,
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15 columns, 30 diagonals and 60 knight paths, also 25-ply and asso-

ciated. Also the nine subsquares of order 5 are balanced nasiks,

summing 565 on their 5 rows, 5 columns and 10 diagonals.

The above method can of course be used when the order is

the square of an odd number, e. g., orders 9, 25, etc. These have

previously been dealt with by a simpler method which is not appli-

cable when the order is the product of different odd numbers.

/7 /3Z /S3 /7/ 86 30 /28 /6/ /78 78 22 /Z4 /64 /7086

/74 8/ 26 722 /6z /66 88 /8 /3S /S8 /79 SO 25- /27 /64

'3/ /S2 /77 84- 2/ /23 /6s /73 7* 28 /30 /S7 /69 89 ZO

87 24 /26 /& /67 S3 /6 /33 /S3 /8O 73 23 72S/6b /72

/s6 /76 77 27 /23 /63 /6s 30 23 /2/ /S5~'76 82 /3 /34

2/2 /z 33 7// 737 22S 8 37 7/8 /83 2'7 4- 4+ //# /30

7/4 /86 22/ 2 42 /06/33 2/3 /& 38 7/3 /8S 220 7 34-

// 32 //7 /as 2/6 J 4S 7/3 78/ 223 /O 37 703 /34-2/5

/32 2/3 6 */ /07 /88 2// 73 33 /20 /84 294- S~ 40 //Z

36 //6 /S2 222 3 43 /48 /3S 2/8 7 36 //6 '87 2/4 /4-

3Z 207 /44- *S7 7/ /OS 203 /3668 63 *7 /33 743 SO 70

64 66 /O/ /#7 /41 46 73 33 2/0/43 se 6S /<?o 20Z /JJ

206 A37 S7 6s 36 /38 /SO S3 6/ /0& 206 /4Z 43 74- 95-

7Z 33 20/ /46 47 68 3/ 208 /38 60 64- 704- 200 /4S SZ

74/ 66 6z /oz 2Q4 /4a 48 76 3S /36 /40 3S 67 34 20$

Fig. 710. S = 1695

A similar distinction arises in the case of orders = (mod 4)

previously considered. These were first constructed by a rule which

applied only to orders of form 2m, e. g., 4, 8, 16, 32, etc., but the

general rule is effective in every case.

There are two other ornate squares of order 15, shown in Figs.

708 and 711, these four forms of ornate squares being numbered in

ascending order of difficulty in construction. Fig. 708 is constructed

by using the paths ' ~
|

and taking the period from the continuous

diagonal of the magic rectangle Fig. 705.
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Fig. 7C8 is magic on 15 rows, 15 columns, 30 diagonals, 60 knight

paths, and is 9-ply, 25-ply and associated.

The square shown in Fig. 711 has been only recently obtained;

for many years the conditions therein fulfilled were believed to be

impossible. It is magic on 15 rows, 15 columns and 30 diagonals,

and is 3x5 rectangular ply, i. e., any rectangle 3x5 with long axis

horizontal contains numbers whose sum is the magic sum of the

square. Also the 15 subrectangles are balanced magics, summing

37 S3 /3/ 8/ /6~3 32 S3 /SS 83 /60 4S /0Z /88 73 /S/

'67 2/3 s S3 //S /SO 22Z 8 43 /06 /72 2/3 // s/ //8

/3S 27 /43 /33 6-/ /27 78 /46 20/ 73 /22 24 /40 20s 70

S7 /83 s& /s6 43 32 /SS to /&7 40 /-OS /32 83 /S4 3/

2/2 3 so //3 /73 223 /2 S3 /02 /SO 2/7 3 S6 /// /78

so /47 203 64 727 22 /38 206 &<? /33 /7 /44 200 74 /JO

787 78 /<f/ 3(6 /03 /S2 S4 /SS 44 /OO /3S 87 /SS 34 3/

2 S4 //o 773 220 /S S7 7/3 /69 2// 7 48 //6 /7/ 223

/SO 207 <?s /24 /6 /42 738 7/ /2S 28 /37 2&7 6s /34 2sr

82 /S3 4/ 36 /33 77 /S3 JS /04 /SO 30 /(?2 38 34 '8/

47 //4 /70 224 /O & //7 773 2/4 / S2 /08 /7& 2/6 /3

2/0 72 /28 /J /3<5 202 63 /3/ 2/ /48 /37 63 /25 23 /43

/S7 33 /O/ 7S6 88 /S2 33 3S /34 8S- /£s 42 38 /84 7^

/C7 /74 2/6 /4 SS /23 777 2/8 4 4& //2 /S& 22/ & S8

7^ /J2 23 733 736 &7 723 26 /4/ 208 02 /?3 ?o /49 203

Fig. 711. S = i695

1. 5 in their three long rows and 339 in their five short columns.

This square is not associated, and only half of its knight paths are

magic.

The three squares of order 15, shown in Figs. 708, 709, and

710 are described as magic on their 60 knight paths, but actually

they are higher Nasiks of Class II, as defined at the end of my

pamphlet on The Theory of Path Nasiks* Further, the squares in

Figs. 709 and 710 have the following additional properties.

* The Theory of Path Nasiks, by C. Planck, M.A., M.R.C.S., printed by
A. J. Lawrence, Rugby, Eng.
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Referring to the square in Fig. 710 showing subsquares of order

5 ; if we superpose the diagonals of these subsquares in the manner

described in my paper on "Fourfold Magics" (above, page 363,

last paragraph), we obtain three magic parallelopipeds 5x5x3.

Denoting each subsquare by the number in its central cell, the three

parallelopipeds will be:

I. 53, 169, 117.

II. 177, 113, 49.

III. 109, . 57, 173.

These three together form an octahedroid 5x5x3x3 which is

associated and magic in each of the four directions parallel to its

edges.

If we deal in like manner with Fig. 709 which has subsquares of

order 3 we obtain five magic parallelopipeds of order 3x3x5 to-

gether forming an associated magic octahedroid of order 3x3x5x5.
Since the lengths of the edges are the same as those of the octa-

hedroid formed from Fig. 710 square, these two four-dimensional

figures are identical but the distribution of the numbers in their

ci\\s is not the same. They can however be made completely iden-

tical both in form and distribution of numbers by a slight change

in our method of dealing with the square Fig. 709, i. e., by taking

the square plates to form the parallelopipeds from the knight paths

instead of the diagonals. Using the path (-1,2) we get 225, 106, 3,

188, 43 for the first plates of each parallelopiped, and then using

(2, - 1) for the successive plates of each, we obtain the parallelo-

pipeds :

I. 225, 8, 31, 118, 183

II. 106, 193, 213, 15, 38

III. 3, 45, 113, 181, 223

IV. 188, 211, 13, 33, 120

V. 43, 108, 195, 218, 1

This octahedroid is completely identical with that previously ob-

tained from Fig. 710, as can be easily verified by taking any number
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at random and writing down the four series of numbers through

its containing cell parallel to the edges, first in one octahedroid

and then in the other. The sets so obtained will be found iden-

tical.

c. P.

THE CONSTRUCTION OF ORNATE MAGIC SQUARES OF ORDERS
8, 12 AND 16 BY TABLES.

The following simple method for constructing ornate magic

squares of the above orders is presented in the belief that it is new

and original. All squares of orders 4m can be made by this method,

so it will suffice to explain in detail only the rules for constructing

squares of order 8.

/ y\6 4-

8 2
J

J s
,

7 6 4 7

S J s 2

Fig. 712. Fig. 713.

I. Make a magic rectangle with the first eight digits as shown

in Fig. 712. This is the only form in which this rectangle can be

/ 6 8 3

\
\

*

< /

• /

V

1

1

1 •

>

• 1

» 1

>

1

'

1
',

7 4 z s~

7 6 S 3

/ / s6 47 32 S7 76 /7 40 ^0
2 2 SS 42 J/ SS 7S 78 3S 7)

3 3 S4 43 30 S3 74 /S 38 <b
4 4 S3 44 2S 60 /J 20 37

r
s\

s S S2 4S 28" 6' 72 27 36 V)

6 6 S/ 46 27 62 77 22 3J-3
7 7 SO 47 26 63 70 23 343
a 8 43 48 2S~ 64 S 24 33 7)

7 * 2 «r

Fig. 714. Fig. 715.

made, i. e., no complementary couplet therein can be inverted

without destroying the magic feature, but the relative positions of

the couplets can naturally be shifted without affecting it.



ORNATE MAGIC SQUARES. 39'

II. Draw a table diagram such as Fig. 7-14, and write the row

numbers of the magic rectangle Fig. 712, alternately at the top and

bottom of the eight columns as shown by dotted lines.

III. Following the arithmetical order of the numbered columns,

write in the numbers 1 to 64 downward and upward, thus making

the table, Fig. 715.

©
6

©j
4

©
7

G

63

6o

62

S6

/o

57

/3

S3

//

S7 /6

<?/

23

46

44

22

47

'7

32

34

27

37

35

26

40

2S

33

36

36

28

38

33

48

43

2/

45

79

42

49

/S

S4

/2

S2

74

ss

58

6/

S
ss

64-

z)
3

S~

z

Fig. 716.

/ 6 r 3

/ / 48 2/ 60 23 S2 9 4o

s 33 /6 S3 >2S 6j 20 4/ S

3 2 47 22 S3 30 S/ /o 39

7 3f /S S4~ 27 6z 79 42 7

2 3 46 23 sr 3/ SO 7/ 38

6 35 /4 SS 26 63 /s 4-3 6

4 4 45 24 S7 32 43 /Z 37

8 36 /3 SO 2S 64 n 44 S

4 7 S Z

Fig. 717.

/ 4 6 7

8 S 3 2

Fig. 718.

7 6 7 4-

S~

/ / 4S 2/ 60 2S S6 73 36 S

(£) 32 49 72 37 f 4-/ 20 6/

6 3S /4 55 26 S9 22 47 2 3

(f)
62 /9 42 7 38 // SO 3/

7 34 /S S4 27 3-8 23 46 3 2

63 /$ 43 6 35* /O S7 36

4 4 4S 24 S7 28 S3 76 33 S

V 23 S2 & 40 S 44 77 64

Fig. 719. Fig. 720.

Note. A variety of different tables may be made on the above

principle by changing the progression, and each table will produce

a different magic square. Any number that will divide n2 (which

in this case is 64) without remainder may be used as an increment.

Thvs in the present case 2, 4, 8, 16 and 32 are available. When the
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//

€1
J

1

&

37

732

73S

2S

/'7

/47

73

777

/o6 74

S4

76

67

48

82

66

ss

42

ss

72

s6

/cu-

ss

80

62

98

44

68

32

38

/43

/7

//J

74

737

//

//S

29

3S

7S

SS

7(76 6

SS

87

6/

ss

43

36

6?

93

37

36

/24

30

7/8

/2

/36

/S

/8

/42

/27

33

/J3

27

24

/3S

2/

/OS

/OS

7<8

49

/02

84

64

87

40

70

//O

20

746

//6

26

/34

/3/

32

/2S

/67 73

S3

77 /03

SO

47

S3

6s~

S6

4/

89

7/

S7

60

73

63

37

45

34

69

S/

39

34

20

70

/3S

/3

7/4

/6

2

©
70

©
4-

3
s

^3
Fig. 721.

/

2

3

4

S

6

7

S

3

to

77

/z

8

/06

4 763

7

76

73

/6

79

22

2S

28

3/

34

/oo

27

34

9/

8?

XS

82

73

76

73

74

77

SO

83

86

89

32

SS

98

/O/

/04-

/07

/43

740

/J 7

734

73/

/28

/2S S3

/22

//9

//6

//3

//o

7S

7S

8/

84

87

SO

s6

ss

/02

/os 6

/08

36

33

30

27

24

2/

/8

/S

/2

3

77

J2

///

774

//7

/20

723

/26

723

732

/3S

7J8

747

/4+

72

69

66

63

60

S7

S4

S7

4S

4S

42

39

38

47

44

47

SO

S3

S6

SS

62

6s

68

7/

3S

32

29

26

23

20

77

/4

77

*

S

46 733

49

S2W27

Fig. 722.

/ 7 8 // 9 3

72 6 S 2 4 /O

7 77
'3 9 S 7

72 2 70 4 S 6

Fig. 723. Fig. 724-
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addition produces a number larger than 64, the lowest unused num-

ber of the series is substituted. For example, if 32 is made the

increment, the numbers in the columns of the table will run thus

:

1, 33, 2, 34, 3, 35 etc.

because

li 32 = 33, 33 + 32 = 65 substitute 2

2 + 32 = 34, 34 + 32 = 66 " 3 etc.

IV. The table must now be indexed with some arrangement

of the numbers 1 to 8 under the following conditions : The first

/ Z 3 4 s 6 7 8 S /o // /2 73 /4 /s /6

/

©
/3

©
6

®
/o

®
/s

3

©
/Z

©
8

/ /92 97 224 4/ iS2 73 248 //3 208 77 /76 8-9 232 S7 /36 /6

z /28 /S3 3Z /£/ 88 2JJ S6 /37 /6 '77 //2 209 40 7S3 72 249©
3 /JJ 6o 229 92 773 2C 20S //6 245 76 /49 44 22/ /OO /89 4- ^

4 2S2 69 /s6 37 2/2 /C9 /80 /3 74C S3 236 8S /64- 29 /96 72S©S 6 787 /02 2/3 46 747 7S 243 //S 203 22 77/ 94 227 62 /3/ //

6 /23 798 27 /66 83 238 S/ /42 // /82 /07 2/4 3S /S8 67 2S<4©
7 /JO 63 226 9S 77c 23 202 //s 242 79 /46 47 2/S 7(23 /86 7 7

8 2SS 66 /S9 34 2/S /06 783 /O /43 SO 239 82 /67 26 /9S /22©
s /JS J8 23/ 3C //S /8 207 7/4- ?47 74 /S/ 42 223 98- /9/ 2 2.

/o 2SO 7/ /S4 39 2/0 /// /78 7S /38 ss 234 87 762 3/ /94 /27©
// 3 /90 99 222 43 /SO 7S 246 //S 206 /9 /74 9/ 230 S9 /34- /4-

n /26 /9S 30 /63 86 2JS 3*4- /39 /4 779 //o 2// 38 /SS 70 23/ ©
/j /32 6/ 228 93 /72 2/ 204 7/7 244 77 /48 4S 220 /O/ /88 S° s-

74 2S3 6s /S7 J6 2/3 /08 78/ /2 /4/ S2 237 84 /6s 28 797 724©
/s 8 /as /04- 2/7 48 /4S 80 24/ /?o 20/ 24 /6s> 96 22s 6& /29 9

/€ S /2/ 200 2jr /6s 8-/ 240 49 /44 9 /84 /OS z/6 33 /60 6s 2S6©
Fig. 725.

four digits used must include no complementary couplet, and the

last four digits must be* selected so as to balance each of the first

four with its complementary. The straight arithmetical series is

used in Fig. 715 as it fulfils the above conditions, but any series,
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such as shown in the subjoined examples, will produce magic

results, and each arrangement will make a different magic square.

12 3 4 5 6

5 3 7 2 6 8

3 5 16 2 5

7 8 5 18 2

2 14 8 17
6 4 8 3 7 4

4 6 2 7 3 1

8 7 6 5 4 3 etc.

/ A3 6 /O /6 4 // 7

/ / /S2 97 224 4/ /S2 73 24S /2/ 200 2S /6s s/ 240 49 /44-s
z z /9/ 98 223 4Z /57 74- 247 /22 /S9 26 /67 S2 239 SO /43 /S)

3 3 /SO 99 222 43 /SO 7S 246 /23 /9S 27 /66 S3 23S s/ /42
/ m\

4 4 /?9 /CC> 22/ 44 /49 76 24S /24 797 28 /6S 8-4- 237 S2 /4/ V<5)

S S /SS /c/ 220 4S /48 77 244 /2S /$6 29 /64 s-s 236 S3 /4& 72)

6 6 /S7 /02 2/9 46 747 7S 243 /26 /9S 30 /63 <T6 233 S4 /39 V/)

7 7 7S6 /C3 2/3 47 746 79 242 /27 /94 3/ /62 S7 234 SJr /JS \/c\

s 8 /S3 /04 2/7 48 /46 s-o 24/ /28 /93 32 /6/ SS 2J3 S6 /J7
\9J

s /29 64- 22S 96 /69 24 20/ /20 243 72 7S3 40 209 7/2 /77 /6 s)

/O /30 S3 226 SS /70 23 202 //9 2SO 7/ /S4 39 2/0 /// /7S /s
(t)

// /3/ 62 227 94 /7/ 22 203 //S 2S/ 7C 736 38 2// //O /79 A*- V)

/2 /32 6/ zts 93 772 2/ 204 //7 2S2 69 /S6 37 2/2 /OS /SO /3 s)

/3 /33 6c 224 92 /73 20 206 7/6 2S3 6S /37 36 2/3 /OS /s/ /2
\)

/* 734 S9 230 9/ 774 /9 206 7/S 2S4 67 /SS OS 2/4 /07 /S2 // JJ

/S /3S ss 23/ 9C /7S /S 2C7 //4 2S3 66 /39 3+ 2/S /06 /S3 /O 2\

/6 /36 S7 232 89 776 /7 2C8 //3 236 6S /6o 33 2/A /03 /S4- 9 V)

S /2 3 /S 9 S /4- 2

Fig. 726.

The index numbers are written in columns on each side of the

table, those on one side being in reverse order to those on the

other side. One set of these numbers may be conveniently written
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in circles for identification, or any other way of distinguishing the

similar numbers may be used.

V. Make another 2x4 magic rectangle with a re-arrangement

/ /3 6 /o /S 3 /2 * / * /j 72 6 3 SO AT
/6 * // 7 2 74 S 3 /6 a <? s // /* 7 2

Fig. 727. Fig. 728.

/ /j s S 7 // 3 /s

/6 4 /2 s /O 6 74 z

/6

/&

/z

7

/o

7S

/ /6 /3 4

/t>6

732

/26

/3S

2SS
^e

/30

2S0

/33

2S3

2S6

220

/27

St-
2S4

249

-5f-
/68

/64

3S /63

223

/67

/62

9/

3S

22/

76S

96

224

93

37

90

9S

222
-A
/66

32

36

2/7

/6/

Fig. 729-

S /2 9 8 7

4/ /?6

8/

/72

2/2
^e-

46

?6
^

//S
l<r

/70

2/0

43

8-3

/73

4S

8S

2/6

4S

rs

'7'

2//

42

82

47

8̂7

/74

44
Xr

/69

2OS

//3

/44

244

//8^
/4

247 /74

/43

738

//S

//

24S

/20

/6

24S

"7

/3

/S9

//S

7S

246

/42

//6

}<-

24

1

W

73

49
Sir

204
^<-

78

S4

207
^4-

783

202

'7*

7<S

78/

SO

S6

20S

7*4

77

S3

203

/73

74

73
5<r
SS

206
$<-

782

76

3̂2

/77

77

70S
$<r-

74S
-*r

236

-*,<?-

7/0

}<r-

239

746

/9

/07

\/4S

X
237

2.4

//*

7S2

240

2/

/<?3

/47

/r

/06

)(r

Xr
238

/Of

1<T

/4 /S Z

l<c-

22^/OZ

/S6
}<r

227

)<r

/S9

226

/S4

99

27

229

/S7

32

/60

/<f<8

29

/SS

26

703

37

230

><-

/S3

S7
-*

6S

/96

/S7

-*r
70 /9S

/S/
-^

/99 66

7f6

794

S9

07

789

/97

64

72

67

69

63
•±,<r

7/

790
-*<-

60

6S

->*-

Fig. 730.

of couplets, such as shown in Fig. 713. Any other arrangement

that differs from Fig. 712 would, however, answer equally well.

VI. Draw an 8x8 lattice (Fig. 716) and write opposite the
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alternate cells of the two outside columns the eight numbers in

Figf. 713 in their linear order, from the top of the lattice down-

ward, and the same numbers (in circles) opposite the remaining

alternate cells from the bottom of the lattice upward.

Inspection of Figs. 715 and 716 will assist a clear understand-

ing of the above directions.

The magic square is now made by filling the cells of the lattice

with the numbers from the table in linear groups of four, according

/ 8 3 e

/ 4

z..

7
A-
/e'

i

S7

f
S

<$4

Js

7f
/3

>/

s<?

4&

t

4f
4>S

24-

3
X
2

J/,

3'7

J?

4*

4/

,4z

YS*

2P

2V

'47

4s

4p

"3<P

zs

2f

27

33

/ /6 S7 S6 /7 32 4/ 40

z 62 s/ 6 // 46 JS 22 27

3 s 3 64 4S 24- 2S 43 33

+ ss S4 3 /4- 43 3S /S 30

S 2 /S SS SS /S 3/ 42 33

6 6/ S2 S /2 4s 36 2/ 2$

7 7 /O 63 SO 23 26 47 34-

8 6b S3 4- /3 44- 37 20 Z9

Z 7 4 * Fig- 732.

Fig. 73i.

to their index numbers. The linear groups of four numbers in the

left-hand half of square are written from left to right and those

in the right-hand half of square from right to left.

Another example of an order 8 magic square, including rect-

angles and table, is shown in Figs. 717, 718, 719 and 720. The

progressive increment in the table, Fig. 717, is 32, as referred to

in a previous paragraph, and the index numbers are written in the

order shown in the first column of numbers on page 392.

The magic squares, Figs. 716 and 720, are 4-ply, associated and

pandiagonal.

In using the above rules there are at least three different ways

for producing variations.
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a. By changing the progression in the table.

b. By making divisions in the table (as in Fig. 726).

c. By using different arrangements of couplets in rectangles.

d. By using different arrangements of index numbers.

It is therefore evident that the possible number of variants is

very large, and each of them will possess the same ornate qualities

as those above described.

A magic square of order 12 is given in Fig. 721, and the table

used in its construction with two 2x6 magic rectangles in Figs.

722, 723 and 724. This square is 4-ply, associated and pandiagonal.

/ 3 8 6

/ T 4,0 '7 S<5 S7 32 4'/ /fi

z i- 3!?: ** ss. •?£. 37, 4*2 M
3 S3' Xp 1$-y£ *3r"

:

3J '/?' S4

4 dp 2f 44 /;J ^ 37 2\0 S3

S 6/ *fr 4\f /2 s 3 6 *y 3\2

6 6'2.
2J7 46-Ai& .3$. 22. s/

7 7" 3'4:
'2'f 'so : &$' -£dr 4{r ~/o

/ i j\3 24 43 64 & 4'8. 4

S 7 4 Z

/ / 40 /7 s6 S7 32 4/ /6

4 GO 23 44 73 4 37 20 S3

Z 2 39 /8 SS S8 3/ 42 /S

3 S3 30 43 /4 j 3* /3 s4-

8 r 33 24 43 64 2S 43 S

S 6/ ZS 4S /2 S 36 2/ S2

7 7 34 23 SO 6j 26 47 /O

6 02 27 46 // 6 *S 22 S/

Fig. 734-

Fig. 733-

A magic square of order 16 with its table and rectangles are

shown in Figs. 725, 726, 727 and 728. In addition to the ornate

features common to the squares shown in Figs. 716, 720 and 721,

this square is also knight Nasik. Fig. 725 can readily be changed

into a balanced, quartered, 4-ply, pandiagonal Franklin magic square

by one transposition, as shown in Fig. 730, which is indexed by the

rectangle Fig. 729. By this change it ceases to be associated and

knight Nasik, but acquires other ornate features besides becoming

a Franklin square. It contains nine magic subsquares of order

8, each of which is pandiagonal ; also, the numbers in the corner
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/ /z 3 /or s

/ / 2+ /33 /3Z 2'S 48 /09 /OS SS 7£ 49 *?

2 2 23 734 /3/ 26 47 zip /C7 ?6 7/ SO ST3

3 3^ 22& /JO 27 46. ./// /06 *XJ*; f/ /i

4 '36 /29 'V
42/ //2' /OS 28 *? szV **f

"6?

S /37 /'2S Jr 20 //3 /0+- 29 44- S3 r? 89 69

6 /3i /27 6
/f

/U /03 3p 43 J4- 79 90 67

7 /3}J /Z6 7 /> //S /02 3/ 42 SS 7f 3/ 6'6

<P Ao /is S. 7 //6 /b/ 32 4/ S6 77 92 6'S

9 /*/ /24 J /* //7. /oo j33 Jo sz ?'*. 93 6'4-

/O /C' '/f r<i /13 34- sir'i/J 99 sf 6,S 'sf '7S~

// // /± /43 722 Sf 3? //9 99 9f 6,2 s? 7f

/Z ,z /3 /j*\/2/ 36 3\7 /'20 9,7 96 4/ 6a 73

Z // 4 3 6 7
\

Fig. 735-

/ / / 24 /33 /32 2S 48 /09 /08 8S 72 49 84
' 6 /38 /2? 6 /9 //+ /03 30 43 S4 79 90 67

/2 /2 /3 /44 /2/ 36 37 J20 97 96 6/ 60 73

^ 7 /33 /26 7 /S //S /02 3/ 42 SS 7S 9/ 66

- 2 2 23 /34 /J/ 26 47 //O /07 86 7/ S~0 S3

J" 737 /28 S 20 //3 /04- 29 44- S3 8-a S3 6S

// // /4 /43 /22 33~ 38 //9 98 9S- 62 S3 74-

8- /40 /2S 9 77 //6 /<?/ 32 4/ S~6 77 32 6F
3 3 22 /3S /30 27 46 /// /06 87 70 S7 SZ

4- /36 /23 4- 2/ //2 /OS 2* 4S S~2 S/ S8 09

/O /O /& /42 /23 34- 39 //e 39 34- 63 s? 7S

J 74/ /24 9 /6 //7 700 33 40 S7 76 93 64-

Fig. 736.
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cells of any 4x4, 8x8, 12 x 12 square and the corner cells of the

great square sum S/4=514, as do also the corner numbers in any

2x4, 2x6, 2x8 rectangle etc.

The "table" method for constructing ornate magics is not limited

to the foregoing rules. For a long time the writer endeavored in

vain to make tables that would be competent to produce Franklin

/

z

3

4

S

6

7

8

9

/O

//

/2

/3

/4

/S

/6

/6 /4 /O /z

245

246

241 234

248

249

2S/

2S2

32

3/

30

23

24/

242

243

244-

236

23S

233

232

2S0 23/

230

22S

/6\/7

240

23S

238

237

ZS3

2S4

ZS3

2S6

22*

227

ZZ6

224

33

34

3S

36

2/3

2/4

2/S

2/6

2/7

2/8

2/3

4&

46

47

4S

64

63

62

6/

209

2/0

2//

2/2

204

203

202

20/

200

/99

/98

220/37

3-/

SO

49

37

38

39

40

4/

42

43

44

22/

Z2.2

223

224

20S

207

206

20S

60

S3

S8

S7

S6

SS

S4

S3

/S6

/93

37

98

39

/oo

/49

/SO

/S/

/S2

/S3

/S4

/S6

/09

/BS //O

/94- ///

//2

/28

/27

/26

/2S

/4S /44

/46

747

/4S

/40

739

/38

/37

/36

7(7/

/02

/03

/SS 734/07

/33

//6

Z/4-

//3

743

/42

/4/

/24

/23

/22

/04-/2/

/OS

73S /06

/08

/S7

//S /S8

/SS

/60

/8/

/82

783

/84

/20

//9

//8

//7

/3Z

/3/

730

/23

6S

66

67

68

Y*7

/88

77

7*

73

*o

36

9S

94-

93

/77

/78

779

7fO

/72

/7/

770

/<$9

/83 /<5£

786 767

/66

S4-

83

82

8-/

/76

77S

774-

/73

69

70

77

7Z

73

74

7S

/6S 76

789

/90

797

/92

&Z

9/

90

83

48

87

86

/64

/<33

/<$2\

/67

/S /3 77

Fig. 737-

squares directly without any transpositions, until it occurred to him

that this might be accomplished by bending the columns of the table.

This simple device worked out with perfect success, thus adding

another link to the scheme for making all kinds of the Am squares

by this method. The bending of the table columns also leads to the

construction of a number of other ornate variants, as will be shown

in examples to follow.
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Fig. 731 is a table constructed with the straight series 1 to 64.

the bending of the columns being shown by the dotted lines. As

in tables previously explained, each column of numbers is started

and finished following the arithmetical sequence of the numerals

at the top and bottom of the table, but the four middle numbers of

each column are bent three spaces out of line either to right or left.

It will be seen that the column numerals are written in couplets

/ / 32 24/ 240 33 64 209 208 37 /2S /4S /44 6S 96 777 /76

s 243 236 S 28 2/3 204 37 60 /43 /40 /o/ /24 /&/ /72 63 3Z

76 /6 /7 2f6 223 43 43 224 /93 //Z //3 /60 /2S SO #/ 792 76/

72 2S2 22S /Z 2/ 220 7S7 44 S3 /S6 /33 /08 777 783 /6S 76 8S

2 2 3/ 242 239 34 63 2/0 207 38 727 /46 /43 66 9S 778 /7S

6 246 233 6 27 2/4 203 3S S3 /so 733 /OZ /23 782 /7/ 70 97

73 /S /S 2SS 226 47 SO 223 /94 /// Z/4- /S3 /30 73 82 73/ 762

// 23/ 230 77 22 2/3 /98 43 34 /SS /34 707 //8 787 /66 73 86

3 3 30 243 233 3S 62 2// 206 SS /26 747 /42 67 34 /73 /74

7 247 234 7 26 2/3 202 33 S8 /s/ /38 /03 722 /83 77^ 7' SO

74 74- /3 2S4 227 46 S/ 222 /9S //o //S /S8 73/ 78 8<3 730 703

/o 2SO 23/ /C 23 278 /33 42 SS /S4 /3S /06 7/S /86 767 74 87

4 4 23 244 237 36 6/ 2/2 20£ /OO /2S748" /4/ 68 33 /SO /73

8 24* 233 8 2S 2/6 20/ 40 S7 /S2 /37 704 72/ /84 769 72 89

/3 73 20 2S3 228 4S 32 22/ /36 /OS 7/6 ;3~7 732 77 8-4 789 /64

3 249 232 3 24 2/7 200 4/ S6 /S3 /36 /OS /20 /8S 768 73 88

Fig. 73S.

= n+l, as marked by brackets. The relative positions of these

couplets may, however, be varied.

The horizontal lines of the table are indexed with the first eight

digits in straight series, but either of the series shown on page 3

or an equivalent, may be used.

This form of table differs essentially in one feature from those

previously described, there being no vertical central division, and

each complete line of eight numbers is copied into the magic square
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as written in the table. A table made in this way with bent columns

is in fact a square that is magic in its lines and columns but not in

its diagonals. The re-arrangement of its lines by the index num-

bers corrects its diagonals and imparts its ornate features.

An 8x8 lattice is now drawn and indexed on one side with the

7 3 /6 /? Z 4- IS 73

/ A 24f S 24& -37 234 27 Z38 3 246 7 242 29 236 2S 240

2 6? 2b2 33 206 33 2y6 37 272 67 204 S7 20S 3S 2/4 33 2/0

3 ss: 770 sy 774 fir y*4 63 yfo 33 y72 S3 776 67 y<f2 7y y7*

+ 37- 732 ~yo/ 74* 727 73* 723 742 S3 ys<? 703 /46 723 y40 y2y 744

s /23. 720 733 776, yss 746 yss yyo y3y /y* 733 774 ys7 /Of ys3 7/Z

6 73/ ff 7*7 7f y-sy 88 y66 84- 7*3 76 783 ?o y63 <P6" 767 #2

7 223 42 2/3 <46 /.S3 S6 7S7 S2 22y 44 2/7 48 yss S4 /33 SO

S 22S -24-' 223 20' 2SJ 70 2sy 74- 227 22 23 y 73- 2S3 /2 249 76

3 2 247 6 243 3* 233 28 237 4 24S 8 247 30 23S 26 233

yo 64 20/ 60 20S 34 2/S 32 2yy 62 203 S8 207 36 2/3 40 203

yy 36 763 32 y73 66 7S3 70 773 3+ y7y 30 77S 68 7*7 72 /77

yz 38 ysy /02 /47 y2f y37 y24 747 700 y4s 704 74S /26733 y22 743

73 /30 y/3 yj*- y/s y6o /OS /S6 yos 732 y/7 y36 y/3 yss /07 yj4 //y

74 ys2 73 y?# 77 /62 S7 /66 83 730 73- y*6 73 /64 8S y6* */

/S 224 4/ 22a 4S ys4- SS /3# s/ 222 43 2/S 47 /36 S3 200 43

y6 226 23 230 ys 2S6 3 2S2 /j 222 2/ 232 /7 2S4 yy 2S0 ys

y2 ya s 7 // & 6 f

Fig. 739-

first eight digits, so selected that alternate numbers form couplets

= n + 1 in each subdivision of the square.

Finally, the lines from the table (Fig. 731) are transferred to

the lattice in accordance with the index numbers, and the square

thus made (Fig. 732) is 4-ply, pandiagonal, and Franklin; also

each corner subsquare of ordsr 4 is a magic pandiagonal.
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Note. In some cases the numbers of the indexing couplets are

more widely separated, as in Fig. 734; while in other cases they

may be written adjoining each other. In all cases, however, a sym-

metrical arrangement of couplets is observed, but their positions,

as shown in these examples, is an essential feature only in connec-

tion with the particular squares illustrated.

Fig. 733 shows another table in which the columns are bent

Fig. 740.

through a space of four columns, which produces the magic square,

Fig. 734. This square is 4-ply, pandiagonal and knight Nasik.

Fig. 735 is a table with bent columns from which the square

of order 12, shown in Fig. 736, is constructed. This square is 4-ply

and pandiagonal, and it contains nine pandiagonal subsquares of

order 4, as shown by the heavy bars in the lattice.

A table and square of order 16 are shown in Figs. 737 and 738.

The square is 4-ply, pandiagonal and Franklin, and it also possesses
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many other interesting features. It is composed of 16 subsquares

of order 4, as shown by the heavy bars, and each subsquare is magic

and pandiagonal.

Fig. 739 is a table from which our final example of magic

square, shown in Figs. 740 and 741, is constructed. The table

series is made with increments of 32 and the columns are bent as

marked by the dotted lines. The square is 4-ply (and therefore

4 symmetrical) quartered, pandiagonal, knight Nasik, Franklin and

magic in its reflected diagonals. Also, any 9x9 square has its

/ 248 S 244 3/ 234 27 23<P 3 246 7 24Z 23 236 23- 240

224 4/ 220 4S 794 SS 738 S/ 222 43 2/8 47 796 S3 2O0 49

729 720 /J 3 //6 7S9 706 7SS 7/0 /37 7/8 736 7/4 /S7 /OS 7S3 7/2

36 /69 92 /73 66 783 70 779 24 77/ 90 776 68 787 72 /77

226 23 230 /3 2S6 9 2S2 73 22S 2/ 232 77 2S4 7/ 2SO 7S

63 202 S3 206 33 276 37 272 67 204 S7 20S 3S 2/4 39 2/0

98 7S/ /C2 /47 728 747 724- 747 /cc 749 704 745 /Z6 739 /22 743

tet 74 787 76 767 88 76£ <84 783 70 783 80 /63 86 767 SZ

2. 247 6 243 32 233 28 237 4- 243 8 24/ 30 235 26 239

223 42 2/3 46 7S3 S6 797 S2 227 44- 277 48 79S S4- 799 SV

73 C //3 734 //S 76? 70S 7S6 /C?3 732 7/7 736 //J 7S8 /07 /S4 777

ss 77C 3/ /74 6S 7*4 63 7SO 33 772 83 776 67 7S2 77 77<?

225 24 223 20 ZSS 7C 2S7 74 227 22 23/ 78 2S3 7Z 249 76

64 20/ 60 203 34 2/S OS 2/7 6Z 203 S8 207 3(3 273 40 203

97 /SZ /c/ /*$ /27 /3* 723 742 33 /SO 703 746 72S /40 72/ 744

/32 73 /sa 77 762 #7 766 S3 /SO 7S~ /S6 73 764 S3~ /6S #/

Fig. 741.

corner numbers in arithmetical sequence. Fig. 740 shows it laid

out in one continuous re-entrant knight's tour. The first number

of each of the 32 periods of 8 numbers is enclosed in a dotted cell

and an arrowhead points the direction of progression. The num-

bers in each of these periods sum S/2 = 1028, also, the numbers in

each half period sum S/4 = 514. Although this feature exists in
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many other squares, it may not be commonly known. Fig. 741 is

the same square written in the usual way to facilitate the checking

up of its several ornate qualities.

f. a. w.

THE CONSTRUCTION OF ORNATE MAGIC SQUARES OF ORDER
16 BY MAGIC RECTANGLES.

In the preceding paper Mr. Woodruff presents a remarkable

magic of order 16 which is 4-ply, pandiagonal, associated and

knight Nasik, a combination of ornate properties which has prob-

ably never been accomplished before in this order of square, and it

is constructed moreover by a unique method of his own devising.

(See Fig. 725.)

An analysis of Mr. Woodruff's magic by the La Hireian plan

shows its primary to be composed of sundry 2x8 rectangles having

no particular numerical arrangement that indicates intentional de-

,c

a 5

<z
\ i

^.
\ 1

.*'-'

y£
..'-

,

! ^ -.^

-T^-
\

Fig. 742.

sign. This feature might naturally be expected in a square made

by a new method, but it suggested to the writer that squares similar

to Mr. Woodruff's in their ornate qualifications might be formed

by applying the well-known method of magic rectangles on the La

Hireian principle, as described in the present paper.

In using 2x8 magic rectangles for making ornate squares of

order 16 by the La Hireian method, it is found that certain rect-

angles will produce knight Nasik squares while others will not. By

inspection of the arrangement of the numbers in any 2x8 magic

rectangle, guided by a simple rule, it may easily be determined if
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a knight Nasik square will result from its use, and if not, how the

numbers may be re-arranged to produce Nasik results.

There are four knight paths through each cell of a square, as

shown by dotted lines in Fig. 742, and the numbers included in

each of these paths must obviously sum the magic constant of the

square to be constructed if the latter is to be knight Nasik.

The La Hireian primary of order 16, shown in Fig. 743, is

made up of sixteen 2x8 magic rectangles, as indicated by the heavy

\d 8 /S ©Q 6 /J & /z /J 6 J 70 /S 8 7

/6®® 7 /4® 3~ 4 7/ 74 7 2 S 76

7 8 /S /o 3 6 /3 /Z /z /3 6 3 70 7S S 7

76 J? 2 7 /4 // 4 f s 4 77 74 7 Z 3 /6

7 8 /s /O J 6 /3 /z 72 73 6 3 70 /S f 7

/6 S> Z 7 /4 // 4 s s 4 // 74 7 Z 9 76

7 8 75 /O 3 6 /3 7z /z 73 6 3 70 7S <8 /

/6 9 z 7 /4 // 4 s J 4 // 74 7 z a 76

7 8 /S /O 3 6 /3 sz /z /J 6 3 70 7S <? 7

/6 a Z 7 /^ // 4 s s 4 // 74 7 z a 76

/ 8 /s /o 3 6 /3 /z /z /3 6 3 77 7S 8 7

/6 a 2 7 /4 // 4 s J- 4 // /4 7 Z a 76

/ 8 /S /O 3 6 /3 /z /z /3 6 3 70 7S 8- /

76 3 z 7 /4 // 4 s J 4 // 74 7 Z a 76

7 8- /s /O 3 6 73 /z /z 73 6 3 /O 76 8 7

/6 & z 7 /4 // 4 s s 4 7/ /4- 7 Z a /6

Avig- 743-

bars. Starting from any cell in Fig. 743, the sum of the numbers

included in the complete knight paths, indicated by aa and bb in

Fig. 742, will sum 136 = S, but the paths cc and dd will sum either

104 or 168, and therefore this primary is incompetent to produce a

knight Nasik magic square.

The knight paths aa and bb are necessarily Nasik, as they

include the numbers in one or other of the long rows of numbers

in the magic rectangles which sum 68. The other two knight paths.
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cc and dd, fail to be Nasik because they include the numbers en-

closed in circles in Fig. 743, or their complementaries, and these

numbers do not sum 68. It therefore follows that in order to

produce a knight Nasik primary, the magic rectangle from which

it is formed must show a summation of 68 for the numbers enclosed

in circles in Fig. 743 and their complementaries. A re-arrangement

of the couplets in the 2x8 magic rectangle, without inverting any

couplet, is shown in the La Hireian primary square, Fig. 744. By

<c /s 3 @® 6 /O & 8 /O 6 /2 /3 3 /S 7

/6 <£ 4 S e 9 9 7 // £ 4 /4 2 /6

/ /s j /3 /2 6 /o 8 8 /O 6 /2 /3 3 /S /

/6 2 /4 4 S // 7 S 9 7 // S 4 Z4- 2 /<5

/ /S 3 /3 /2 6 /a 8 8 /O 6 /2 /3 3 /S /

/6 2 /4 4 S // 7 & 9 7 // S 4 /4 2 /&

/ /S 3 /3 /2 6 /O s # /O 6 /2 /3 3 /s /

/<$ 2 /4 4 S // 7 3 9 7 // S <4 /4 2 /#

/ /S 3 /3 /2 6 /C s- 8 /O £? /2 /3 3 /S /

/6 2 /4 4 S // 7 s a 7 // S 4 /4 2 S&

/ /S 3 /3 /2 df /O s 8 /O <£ /2 /3 3 /S /

76 2 /4 4- S // 7 9 s 7 // S ^ /4 2 /&

/ /S 3 /3 /2 6 /O 8 8 /O & /2 /3 3 /S /

/6 2 /4- 4 S // 7 9 a 7 y/ S 4- /¥- 2 /&

/ /S 3 /3 /2 <5 /o 8 8 /O <$ /2 /3 3 /ST 7

/6 2 /4 4 S // 7 9 9 7 // S 4*> /4^ 2 /&

Fig. 744.

this re-arrangement, the numbers in circles are made to sum 68,

and the rectangle is therefore competent to produce a knight Nasik

square. A second La Hireian primary (Fig. 745) is made by

changing the numbers in Fig. 744 to their root numbers and then

turning this primary around its central point 90° to the right, thus

changing the horizontal lines in Fig. 744 into the vertical columns

in Fig. 745. The final magic square, Fig. 746, is constructed in the

usual way by adding together the numbers in these two primaries,
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cell by cell. Like its two primaries, this square is 4-ply, associated,

pandiagonal and knight Nasik.

If the magic square shown in Fig. 746 is divided into 2x8
rectangles in the same way as Fig. 744 or Fig. 745, these rectangles

will show the same features in summations as the rectangles of the

primary squares, i. e., each summation will be S/2.

Using the natural series 1 to 16 inclusive, it is only possible

to construct four distinct forms of 2 x 8 magic rectangles, as shown

in Figs. 747 and 748. The four columns of numbers in Fig. 747

240) 240 O 240 O 240 O 240 O 240 O 240 O 240 O

/6 &24) /6 224 /6 224 /C 224 76 2Z4- /6 224 '6 224 76 224-

2CS- ^z) zos 32 Z08 JZ 2C8 32 208 32 208 32 208 JZ 208 JZ

48J
/92 48 /JZ 48 /9Z 48 /stz 4* 'JZ 48 /9Z 4* /JZ 4* /9Z

(64)'76 64- '76 64 776 6* /76 64 '76 64 '76 64- '76 64 '76

/60& /60 sc /60 8-0 760 8-0 /6a 8*0 /6c 8Z> '6C SO '60 SO

36 (?*) 96 /44 96 /44 96 /44 36 /44 96 '44 96 /44- 96 /44

//Z /28 /JZ 728 //2 /2S //Z 72? /'Z JZ8 //Z '28 //Z /*8 '72

/28 //a /28 //2 /28 //£ 728 //Z /28 //z /2? //Z /28 //2 /28 //Z

96 /++ 96 /44- 96 /44 96 /44- 96 /44- 96 '44- 96 /44 36 /44-

/60 &o /60 SO /6o #0 /60 fO /6c ao 76o SO /60 80 /6<? *0

64 /76 64 /76 64 '76 64 /76 64. '76 64 776 64 '76 64 '76

48 /32 48 /JZ 48 '9Z 4-8 /J2 48 7SZ 48 /9Z 48 /S2 48 /JZ

208 J2 20S 32 208 3Z 208 JZ 2<?8 JZ Z08 JZ 208JZ 2cr JZ

/6 22* /6 224 /6 224 76 224 /6 224- /6 224 /6 224- '6 224-

24O O 240 O 24

O

240 O Z40 O 240 O 240 O 240 O

Fig- 745.

show the selection of numbers in the upper and lower rows of the

four forms of 2 x 8 rectangles, the numbers in circles being those

used in the upper rows of the respective rectangles.

The designs below the rectangles in Fig. 748, Forms I, II, III

and IV, show the geometric arrangement of the numbers as written

in the upper and lower lines of same. In the upper row of Form

III rectangle there is a departure from the column sequence of
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numbers in order to make it suitable for constructing Nasik magic

squares, and it is rather curious that this change is required only

in this one rectangle out of the four. The relative positions of the

couplets in each form of 2x8 rectangle may naturally be re-

arranged in a great many different ways without disturbing their

general magic qualities, although in some cases such re-arrangement

will upset the magic summation of the numbers in a zig-zag line

of cells, which, as previously noted, is of vital importance when

the square is to be knight Nasik.

I*}
/S 243 J3 2S2 6 2SO 8 S /0 246©% * 2SS«

32 \226\ 30 22S 2/ 2JJ 23 233 2Se9} 229 20 (Q)Q240

209
kZ)

2// 4S 220 3* 2/S 40 2/6 42 2/4 44- 22/ 3S 223 33

gj'94 62 /s6 S3 203 ss 20/ S7 /SS SS /S7 S2 206 So 20S

(£) /S/ 67 /8J 76 /S2 74- /S4 72 /S6 70 /SS 77 /7S 7S '77

/7<S \S2j /74 S4 /6s $/ '6? SS /<6$> 87 J7' SS~ /64 S4- /62 #6

S7 ys3\ 99 /S7 /OS /SO /o6 /S2 /04 /S4- /02 /S6 /0S '47 //' /4S

<$ /'4 /42 //6 /33 /23 /3S /2/ '37 //S /3y "7 732 /26 /30 /2S

/2s /27 /3' /2S /40 //S /3S /20 /J6 /22 /34- /24 /4/ //s /43 //3

"2 /46 "0 /4S /O/ /SS /03 /S3 /OS /S/ /07 /4S /O0 /SJ SS /6o

/6' JS /63 #3 '7* s6 /70 SS /6s 40 /66 9Z '73 S3 '7* S/

S0 '78 73 /SO 6s /S7 7/ /ss 73 /SS 7S 78/ 68 /so 66 /S2

49 207 s' 20S 6o /SS SS 20O s6 202 S4- 204 6/ /SS 63 /'S3

224 34 222 36 2/3 43 2/S 4' 2/7 39 2/S 37 2/2 46 2/0 48

'7 233 /s 237 28 230 26 232 24 234 22 236 29 227 s/ 22S

2S6 Z 2S9 4- 245 // 247 3 249 7 2S/ S 244- /4 242 /6

Fig. 746.

Inspection of these examples will show that the couplet 1—16

is common to all four forms, but in every other case there is a

difference. Thus the couplet 2—15 is only found in Form I, and

it is inverted in the other three forms. The couplet 3—14 exists

only in Form II, being elsewhere inverted. The couplet 4—13 is

seen in Forms III and IV, and is inverted in Forms I and II—and

so forth.
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Form I Form I L Form III. F>rmIV.

© *

•> ©
4 4-

5 S

6

© 7

© ©
S 3

©
©
©
©
/6

© ©
s

®
©
8

©
'3

©
©

©
Fit

@
/J

©

©
6

7

©
J?

/o Go)

©
/J

©

747-

Form I.

/ 2, 7 8 // /£ /J /4

/6 /S /o S £ .5" * J

12 3 4 5 67 8

10 15 H 13 '2

Form II

1 1 IJ 9

/ J ^ 8 /O /z /J /J"

/6 /^ // 3 7 s -^ z

12 3 4 5 6 7 8

><X*O0<X
10 15 H

7orrr

12

1 in

11 u y

/ <£ ^ A* 4 7 /2 /.T

/6 // <P <3 S3 /<7 e^ Z

' 2 3 4 5 678
>ooocx

15 '4 13 12

Form IV

1

1

10 9

/ ^ ^~ <5> /O // /4- /S

A* /J /2 3 7 6 3 z

12345678
>oocx
id 15 14 13 12 ii 10 y

Fig. 748.

/ Z •5 Z/ 20 *S /8 /O // /7 * /z

Z4 Z3 zz 4- S 6 7 /s /4- 9 s /«3

Fig. 749.
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The above described method will produce knight Nasik squares

of all orders = (mod 8) excepting order 8, but it will not apply

in this respect to orders = 4 (mod 8).

Fig. 749 shows a 2 x 12 magic rectangle that may be used

for la magic square of order 24 covering the knight Nasik property.

w. s. A.

PANDIAGONAL-CONCENTRIC MAGIC SQUARES OF ORDERS 4m.

These squares are composed of a central pandiagonal square

surrounded by one or more bands of numbers, each band, together

with its enclosed numbers, forming a pandiagonal magic square.

The squares described here are of orders 4m and the bands

or borders are composed of double strings of numbers. The central

square and bands are constructed simultaneously instead of by the

45 28 3S 22 47 26 33 24

43 8 63 /O S/
/-'''

61 /2

3/ 42 /7 40 & 44 38

3 S4 3 66 / 36 /S 38

46 27 36 2t 48 25 34 23

SO 7 64 3 K S 62 //

32 4/ /s 3? 30 43 20 37

4 S3 W S9 2 ss >6 S7

Fig. 750.

usual method of first forming the nucleus square and arranging

the bands successively around it.

A square of the 8th order is shown in Fig. 750, both the central

42 and 82 being pandiagonal. It is 42 ply, i. e., any square group

of 16 numbers gives a constant total of 8(w2 + 1), where n = the num-

ber of cells on the edge of the magic. It is also magic in all of its

Franklin diagonals ; i. e., each diagonal string of numbers bending
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at right angles on either of the horizontal or vertical center lines

of the square, as is shown by dotted lines, gives constant totals.

In any size concentric square of the type here described, all of its

concentric squares of orders 8ra will be found to possess the Frank-

lin bent diagonals.

The analysis of these pandiagonal-concentric squares is best

illustrated by their La Hireian method of construction, which is

© 3 7 H© 6 4 *'& 3 / 3

3 7 '0 6 4 *@ 3 / 3

7 3 /
1

3
j
4 6 4- 6

! / 3 7 3

7

©
3

8

/

8

3 \4 6

S

4

S

6 !
/ 3

Z

7

Z

3

8

© 8 8 '0 S S 'j® Z z 8

8 Z z 8 ! s
1

S S s
; z 8 8 Z

8

©
Z z 8 ! s S S s

\
z 8 8 z

7 3
'K£>

4 6 -i® / 3 7

© 7 3 '1® 4 6 *j© / 3 7

3 / 3 7 ! 6
1

4 6 *
!
3 7 3 /

3 / 3 7\a
1

4 <S ^ \ 3 7 3 /

Fig. 751.

here explained in connection with the 12th order square. The

square lattice of the subsidiary square, Fig. 751, is, for convenience

of construction, divided into square sections of 16 cells each. In

each of the corner sections (regardless of the size of the square

to be formed) are placed four l's, their position to be as shown in

Fig. 751. Each of these l's is the initial number of the series 1, 2,

3, (n/4) 2
, which must be written in the lattice in natural order,

each number falling in the same respective cell of a 16-cell section

as the initial number. Two of these series are indicated in Fig. 751

by circles enclosing the numbers, and inspection will show that each

of the remaining series of numbers is written in the lattice in the
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same manner, though they are in a reversed or reflected order. Any

size subsidiary square thus filled possesses all the magic features

of the final square.

99 S4 72 4S

/08 a /3S /8

63 90 36 8/

O //7 27 /Z6

Fig. 752.

A second subsidiary square of the 4th order is constructed with

the series 0, (w/4) 2
, 2(«/4) 2

, 3(w/4) 2
, 15.(n/4) 2

, which must

be so arranged as to produce a pandiagonal magic such as is shown

/oo 63 79 48 S03 60 76 S/ /06 S7 73 S4

/oj /8 /42 21 //2 /s /39 24 //s /2 /36 27

70 33 37 90 67 96 40 87 64 99 43 84

7 /20 28 /3S 4 /23 3/ /32 / /26 34 /29

/Of 6Z 80 47 /04 S9 77 SO /07 S6 74 S3

//O /7 /43 20 //3 /4 /40 23 //6 // /37 2*>

7/ 92 38 89 68 9S 4/ 86 6S 98 44 83

8 //9 29 m 5 /22 32 /3/ 2 /2S 3S /28

/02 6/ 8/ 46 /OS S8 78 49 /08 SS 75 S2

/// /6 /44 /9 //4 /3 /*/ 22 //7 /O /38 25

72 91 39 88 69 94 42 8S 66 97 4S 82

9 //B 30 /33 6 /2/ 33 /30 3 /24 36 /Z7

Fig. 753-

in Fig. 752. It is obvious that if this square is pandiagonal, several

of these squares may be contiguously arranged to form a larger

square that is pandiagonal and 42-ply, and also has the concentric

features previously mrntioned.
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Fig. 752 is now added to each section of Fig. 751, cell to cell,

which will produce the final magic square in Fig. 753.

With a little practice, any size square of order Am may be con-

structed without the use of subsidiary squares, by writing the numbers

directly into the square and following the same order of numeral

procession as shown in Fig. 754. Other processes of direct con-

/ 224 6/ 228 S 220 S7 232 9 2/6 S3 236 /3 2/2 49 240

//3 /76 77 /4S //7 /72 73 /S2 /2/ /68 69 /S6 /2S /64 6S /60

208 20 24/ 48 20/ 24 24S 44 /97 28 249 40 /93 32 2S3 36

'39 /OO /29 96 'SS /04 /33 92 /8/ /08 /37 88 '77 //2 @ 84

2 223 62 227 6 2/9 SS 23/ /O 2/5 S4 ® 2// St} @
//4 /7S 7S /47 "s /7/ 74 /S/ /22 /67® /SS /26®@@
206 '9 242 47 202 23 246 43 /98© 2SO 39 /94 3/ 2S4 3S

/90 99 /30 9S '36 /03 /34 9/ /82@ /38 87 /78 /// /42 83

3 2ZZ 63 226 7 Z/S S9 230 // @ SS 234 /S 2/0 S/ 238

"s /74 79 /46 //3 /70 7S /SO /23 (M6\ 7/ /S4 /Z7 /<62 *7 /S8

207 /s 249 46 203 22 347 42 /99 26 © 38 /9S®@>®
/9/ 98 /3/ 94 '/87 /02 /3S 90 'S3 /06 /39 (&)@) //o /43©
4 22/ 44 22S 8 2/Z 60 229 /2 2/3 S6 233 /6 20?® 237

"6 /73 80 /4S /20 /69 >4 /49 /24 /6S 72 /SJ /28 /6/ v<? /S7

208 /7 244 4S 204 2/ 248 '4/ 200 2S 2S2 37 /96 29 2S6 33

'92 97 /32 93 /88 /O/ 736 89 '34 /oS /40 8S /80 /09 /44 8/

Fig. 754-

struction may be discovered by numerous arrangements and com-

binations of the subsidiary squares.

Fig. 754 contains pandiagonal squares of the 4th, 8th, 12th and

16th orders and is 42-ply. The 8th and 16th order squares are also

magic in their Franklin bent diagonals.

These concentric squares involve another magic feature in

respect to zig-zag strings of numbers. These strings pass from
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side to side, or from top to bottom, and bend at right angks after

every fourth cell as indicated by the dotted line in Fig. 754. It should

be noted, however, that in squares of orders 8m + 4 the central four

numbers of a zig-zag string must run parallel to the side of the

square, and the string must be symmetrical in respect to the center

line of the square which divides the string in halves. For example

in a square of the 20th order, the zig-zag string should be of this form

\y^y and not of this form

In fact any group or string of numbers in these squares, that

is symmetrical to the horizontal or vertical center line of the magic

and is selected in accordance with the magic properties of the 16-

cell subsidiary square, will give the sum [r(n2 + l)]/2, where r =

the number of cells in the group or string, and n = the number of

cells in the edge of the magic. One of these strings is exemplified

in Fig. 754 by the numbers enclosed in circles.

To explain what is meant above in reference to selecting the

numbers in accordance with the magic properties of the 16-cell sub-

sidiary square, note that the numbers, 27, 107, 214, 166, in the exem-

plified string, form a magic row in the small subsidiary square, 70,

235, 179, 30 and 251, 86, 14, 163 form magic diagonals, and 66,

159, 255, 34 and 141, 239, 82, 52 form ply groups.
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Index squares, 300, 307, 314.

India, 123, 125, 165, 187.

Indian magic squares, 165, 167, 168.

Inlaid squares, 214.

Jaina, inscription, 124; square, 87, 94,

125ff, 165, 166, 287, 331, 376, 381,

383 ; square modified by Dr. Cams,

127, 167, 181.

Jones, Sir William, 165.

Jowett, 148, 151.

Kensington Museum, South, 164, 372.

Kesson, Mr., 165.

Khajuraho (India), Jaina inscription

in, 125.

Kielhorn, Prof., 124, 125.

Kingery, H. M., 189, 196, 362, 364,

370, 382.

Knight's move in magic squares, The,

4, 5-7, 12, 144f, 175, 405.

La Hireian method, 189, 198, 244, 268,

270, 273, 315-317, 331, 381, 411; Ex-

ponential, 285-290, 293.

See also "De la Hire."

La Hireian, Non-, 263, 305.

La Loubere, 165.

Latin squares, 315.

Letters and Papers on Philosophical

Subjects (By Benjamin Franklin),

89.

Life and Times of Benjamin Franklin

(By James Parton), 96.

Logan, Mr., 89, 91.
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Loh, The Scroll of, 122.

Lozenge magic squares, 244ff.

Lusus numerorum, vii, 158, 161.

MacMahon, Major P. A., 187?

Magic circles, 321ff.

Magic cubes, Characteristics of, 64;

Even, 76ff; General notes on, 84fT;

Geometric, 283ff, 293f; Odd, 64flF;

of the sixth order, 189ff.

Magic octahedroids, 317, 320, 351 ff.

Magic rectangles, 170, 268, 270f, 291 f,

384; Associated or regular, 258-262.

Magic series, Law of, 231

Magic spheres, 331ff; Concentric, 332.

Magic squares, and combinations,

163ff; and Other Problems on the

Chessboard, 187; and Pythagorean

numbers, 146ff; Associated or reg-

ular, 2ff, 18ff, 229ff, 233, 236, 238,

243, 253, 255, 256, 268, 270, 287, 385,

396; by alternation, 102ff; Compo-
site, 44ff, 260n, 383"; Concentric, 47ff,

215, 410, 413; Concentric, modified,

172; Continuous, 236, 256; Con-

struction of, 14, 54ff, 178ff; Defini-

tion of, 1 ; Earliest record of, 1

;

Even, 18ff, 34ff; Franklin, 88, 89ff,

94, 95, 111, 167, 168, 178, 180, 193;

Franklin, analyzed by Dr. Cams,

96ff; Frierson, 166; Frierson's anal-

ysis of, 129; Geometric, 283ff; In-

dian (La Loubere), 165; in sym-

bols, 120f; Inlaid, 214; Jaina, 87,

94, 125ff, 165, 166, 376, 383;

Knight's move in, 4, 5-7, 12, 144f,

175, 405; Lozenge, 244ff; Mathe-

matical study of, 129ff ; Nasik, 234,

236, 237f, 242, 255f, 287, 290, 291,

370, 383, 402, 403, 405, 408; Number
series in, 137ff; Odd, Iff, 248ff,

260n, 383; Oddly-even, 191, 217ff,

225ff; of form 4m, 296; of form

4/> + 2, 267ff, 290n ; of form 8/> + 2,

277ff; Ornate, 260n, 376ff; Over-

lapping, 207; Pan-diagonal, 229ff,

233, 235, 268, 269, 291, 292, 377, 396,

401, 402, 410ff; Pure, 232, 236;

Serrated, 241ff; with predetermined

summations, 54.

Magic stars, 5-pointed, 339-342; 6-

pointed, 342-344; 7-pointed, 344; 8-

pointed, 345-347.

Map of Ho, The, 122.

Mathematical Recreations (Rouse

Ball), 314.

Mathematical study of magic squares,

129ff; value of magic squares, 187.

Mathematics, Quarterly Journal of,

363.

Mayers, 123.

Melancholy, Diirer's picture of, 146,

147.

Mersenne, 314, 365n.

Method of De la Hire, 225 ; of rever-

sions, 298, 318; Schefiter's, 14;

Thompson's, 304, 315, 373.

Meziriac's (Bachet de) method of

constructing odd magic squares, 17.

Morton, Frederic A., 339, 348.

Moscopulus, 188.

Nasik Cubes, The Properties of

(Frost), 363n.

Nasik idea, Evolution of the, 364.

Nasik squares, 234, 236, 237f, 242, 255.

256, 287, 290, 291, 370, 383, 402, 403,

405, 408; defined, 365; and cubes,

164; Non-, 370.

Nasiks, The Theory of Path (C.

Planck), 273n, 363n, 388.

Natural squares, 295; Deformed, 315.

Number series, 137ff.

Odd magic cubes, 64ff.

Odd magic squares, Iff, 248i¥, 260n,

383; Bachet de Mezeriac's method

of constructing, 17; Breakmoves in,

7; Examples of breakmoves in, 8;

General principles of, 7.

Oddly-even magic squares, 196, 217ff,

225ff.

Omar, the astronomer poet, 157.

Orders of figures, (o, ro, i, ri),79,

113ff.

Ornate magics, 260n, 376ff.

Pan-diagonal magic squares, 227, 229FF,

233, 235, 268, 269f, 291, 292, 377,

396, 401, 402, 410ff.
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Parton, James, 96, 100.

Path method, 273.

Pentagram, Magic, 172.

"Phaedrus" of Plato, 148.

Philolaus, 148, 157.

Philosophical Magazine, 175.

Philosophical Subjects, Letters and

Papers on (Benjamin Franklin), 89.

Philosophy, Chinese (Dr.Paul Carus),

In; Pythagorean, 148.

Planck, C, 189, 240, 257, 258, 260n,

267, 268, 277, 290, 291, 292, 320, 375,

390; "Magic Squares, Cubes, etc.",

363n; The Theory of Path Nasiks,

273n, 363n, 388n.

Plato, 148ff, 159.

Platonic school, 157.

Plutarch, 146, 149, 150, 154, 156n.

"Politics" of Aristotle, 153.

Predetermined summations, Magic

squares with, 54.

Primary squares, 256, 285, 290, 292;

Construction by, 13-18, 224, 232.

Proceedings of the Royal Institution

of Great Britain, 187.

"Procreation of the Soul" (Plutarch),

149, 154, 156n.

Pseudo-cubes, 306; Method of, 304.

Pure magic square, 232, 236.

Pythagoras, vii, 123, 124, 147, 156;

Harmonic scale, of, 153, 154; Phi-

losophy of, 148; School of, 147.

Pythagorean numbers, 146ff.

Quarterly Journal of Mathematics,

365n, 366n, 372.

Quaternate transposition, Alternation

by, 109.

Queen, The, 165.

Rectangles, Magic, 170.

Reflections on Magic Squares, 79, 87,

113ff, 153.

"Republic" of Plato, 148, 153, 156,

157, 158.

Reversions, Method of, 298, 318;

Theory of, 295ff.

Royal Institution of Great Britain,

Proceedings of, 187.

Savage, D. R, 216, 225.

Sayles, Harry A., 176, 189, 201, 244,

247, 283, 294, 331, 339.

Scheffler, Prof., 14.

Schilling, Prof., 124.

Schleiermacher, 151n.

Schneider, 151n.

Schubert, Prof. Hermann, 151n.

Scroll of Loh, The, 122.

Series, Arithmetical, 291, 393 ; Magic,

231 ; Number, 137 fi.

Shuldham, Chas. D., 173.

Siamese twins, 209.

Smith, David Eugene, 124, 127.

"Soul of the World and Nature"

(Timaeus), 154.

South Kensington Museum (London),

164, 372.

Spheres, Harmony of the, vi.

State, Number of the, 153.

Stifelius, 92.

Stringham, 366.

Symbols, Magic Squares in, 120f.

Tetractys, 149, 151.

Theory of Path Nasiks (C. Planck),

273n, 366n.

Thompson's method, 304, 315, 373.

"Timaeus" of Plato, 148, 149, 154,

156n.

Timaeus the Locrian, 154.

Transposition, Alternation by, 106-112.

Ventres, D. B„ 86.

Verses, Golden, 149.

Virgil, 124.

Worthington, John, 189, 206, 373.

Yang and yin, 122, 123.

Yih King, 122, 123.
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DIAGRAMS OF COMPLETED MAGICS.

Magic Squares :

Order 3 : 2, 54, 55, 58, 59, 60, 62, 128,

159, 164, 284, 304;

4: 18, 19, 61, 62, 91, 94, 116,

125, 127, 136, 140, 141, 163,

166, 173, 179, 180, 181, 182,

183, 211, 224, 265, 291, 297,

343, 412;

5:2, 4, 11, 12, 15, 16, 17, 46,

47, 57, 113, 141, 173, 210,

235, 244, 246, 250, 253, 263,

289, 291

;

6: 19, 20, 24, 36, 40, 50, 51,

57, 118, 163, 172, 184, 185,

186, 187, 215, 219, 220, 226,

228, 238, 264, 265, 269, 270,

292, 297, 300;

7:4, 48, 245, 251;

8: 25, 27, 28, 43, 52, 90, 97,

101, 116, 126, 165, 167, 169,

170, 175, 180, 243, 256, 377,

391, 396, 410;

9 . i3
f
44, 45, 49, 134, 144, 172,

173, 208, 212, 215, 247;

" 10: 30, 53, 221, 222, 228, 272,

275, 281, 282, 298;

Order 12: 31, 45, 116, 301, 392, 398,

412;
" 13: 240;
" 14: 33, 213, 302;
" 15: 214, 386, 387, 388;
" 16: 91, 97, 108, 110, 382, 393,

395, 400, 403, 408, 413;

" 20: 379;
" 24: 380;
" 25: 370;
" 27: 150.

Magjc Cubes :

Order 3 : 65, 66, 69, 85, 86, 203, 293,

352, 364.

4: 78, 86, 293, 305, 308;

5 : 73, 76, 87

;

6: 191, 197, 202, 205, 305, 312,

313;

8: 81, 82.

" 10: 310, 311;

Magic Octahedroids :

Order 3: 352, 367;

4: 315, 316, 317, 318, 354, 374;

5: 353, 371;

6: 356-357;

8: 358-359.


