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Preface

Ché se la voce tua sarà molesta
nel primo gusto, vital nutrimento
lascerà poi, quando sarà digesta.

(Dante, Paradiso, XVII, 130–132)

This book consists of lectures on classical algebraic geometry, that is, the methods
and results created by the great geometers of the late nineteenth and early twentieth
centuries.

This book is aimed at students of the last two years of an undergraduate program
in mathematics: it contains some rather advanced topics that could form material for
specialized courses and which are suitable for the final two years of undergraduate
study, as well as interesting topics for a senior thesis. The book will be welcomed by
teachers and students of algebraic geometry who are seeking a clear and panoramic
path leading from the basic facts about linear subspaces, conics and quadrics, learned
in courses on linear algebra and advanced calculus to a systematic discussion of
classical algebraic varieties and the tools needed to study them.

The topics chosen throw light on the intuitive concepts that were the starting
point for much contemporary research, and should therefore, in our opinion, make
up part of the cultural baggage of any young student intending to work in algebraic
geometry. Our hope is that this text, which can be a first step in recovering an
important and fascinating patrimony of mathematical ideas, will stimulate in some
readers the desire to look into the original works of the great geometers of the past,
and perhaps even to find therein motivation for significant new research.

Another reason which induced us to write this book is the observation that many
young researchers, though able to obtain significant results by using the sophis-
ticated techniques presently available, can also encounter notable difficulty when
faced with questions for which classical methods are particularly indicated. This
book combines the more classical and intuitive approach with the more formally
rigorous and modern approach, and so contributes to filling a gap in the literature.

This book, which we consider new and certainly different from texts published
in the last fifty years, is the text we would have liked on our desk when we began
our studies; it is our hope that it will serve as a useful introduction to Algebraic
Geometry along classical lines.

The ideal use for this text could well be to provide a solid preliminary course to
be mastered before approaching more advanced and abstract books. Thus we lay a
firm classical foundation for understanding modern expositions such as Hartshorne
[50], Mumford [68], Liu [65], or also Dolgachev’s forthcoming treatise [34]. Our
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text can also be considered as a more modern version of Walker’s classic book
[113], but greatly enriched with respect to the latter by the discussion of important
classes of higher dimensional varieties as mentioned above.

Prerequisites. We suppose that the reader knows the foundational elements of
Projective Geometry, and the geometry of projective space and its subspaces. These
are topics ordinarily encountered in the first two years of undergraduate programs
in mathematics. The basic references for these topics are the classic treatment of
Cremona [31] and the texts of Berger [13] and Hodge and Pedoe [52, Vols. 1, 2].
The introductory text [10] by the authors of the present volume is also useful. For
the convenience of the reader in the purely introductory Chapter 1 we have given a
concise review of those facts that will be most frequently used in the sequel.

Moreover to understand the book, in addition to a few elementary facts from
Analysis, the reader should also be familiar with the basic structures of Algebra
(groups, rings, polynomial rings, ideals, prime and maximal ideals, integral domains
and fields, the characteristic of a ring), as well as extensions of fields (algebraic and
transcendental elements, minimal polynomials, algebraically closed fields) as found
in the texts of [35] or [75].

Possible “Itineraries”. The book contains several “itineraries” that could suggest
or constitute topics for different advanced undergraduate courses in mathematics,
and also for graduate level courses. Here are some more precise indications, which
also offer a view of the topics treated here.

� Chapters 2 and 3 can be the introduction to any course in algebraic geometry.
They contain the essential notions regarding algebraic and projective sets: the
Hilbert Nullstellensatz, morphisms and rational maps, dimension, simple points
and singular points of an algebraic set, tangent spaces and tangent cones, the order
of a projective variety. If one then adds the brief comments on elimination theory
in Chapter 4, one has enough material for a semester course.

� Chapter 5 is dedicated to hypersurfaces in Pn with particular attention to algebraic
plane curves and surfaces in P3. It assumes only the rudiments of the geometry of
projective space and a thorough familiarity with projective coordinates. The topics
covered in this chapter, suitably amplified and accompanied by the exercises given
in Sections 5.7, 5.8, can in themselves form the program for a course that probably
requires more than a semester, especially if one adds the first two paragraphs of
Chapter 9 which are dedicated to quadratic transformations between planes and
their most important applications, for example the proof of the existence of a plane
model with only ordinary singularities for any algebraic curve.

� Chapter 6, which deals with linear systems of algebraic hypersurfaces in Pn,
contains topics necessary for the subsequent chapters. Veronese varieties and map-
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pings are introduced, as well as the notion of the blowing up of Pn with center a
subvariety of codimension � 2.

� The program for a specialized one semester course for advanced undergraduates
could be furnished by Chapter 7 and the first two sections of Chapter 9, which
are dedicated respectively to algebraic curves in Pn (with particular attention to
rational curves and the curves on a quadric in P3) and to quadratic transformations
between planes. The genus of a curve is introduced, and its birational nature is
placed in evidence. Adding the remaining results discussed in Chapter 9, which has
some originality with respect to the existing literature on Cremona transformations,
would give rise to a full year course.

� Chapter 8 is the natural continuation and completion of Chapter 7, and also
makes use of some results from the first two sections of Chapter 9. It deals with
the theory of linear series on an algebraic curve, including an extensive discussion
on the Riemann–Roch theorem, and an approach to the classification of algebraic
curves in Pn in terms of properties of the canonical series and the canonical curve.
This chapter was largely inspired by Severi’s classic text [100], where the so called
“quick method” for studying the geometry of algebraic curves is expounded. The
content of this chapter would give rise to a one semester course.

� Chapter 10 can furnish material for a one semester course for students who already
have a good mastery of the geometry of hyperspaces ([52, Vol. 1, Chapter V]), of
plane projective curves (Chapter 5, Section 5.7) and of Cremona transformations
between planes (Chapter 9, Sections 9.1, 9.3). Thus this chapter is well adapted
for an upper-undergraduate level course in mathematics or also for graduate level
courses. Nevertheless, the methods used are rather elementary. Among the topics to
which the most space is dedicated, we mention the rational normal ruled surfaces, the
Veronese surface, and the Steiner surface. Some of the surfaces already described
in the last section of Chapter 5 are here rediscovered and seen in a new light.
They are studied together with other surfaces that occupy an important place in
algebraic-projective geometry.

� Veronese varieties, Segre varieties, and Grassmann varieties are discussed in
Chapter 6, Section 6.7, Chapter 11 and Chapter 12 respectively. They constitute
examples of special varieties that every student of geometry should know. These
topics too could be part of an advanced course or graduate course. Among other
things, they might well suggest topics for research projects or a senior thesis.

� The numerous exercises of the text are in part distributed throughout the various
chapters, and in part collected in Chapter 13. They can be quite useful to young
graduates who are preparing for admission to a doctoral program or a position as
research assistant, or also to high school teachers preparing to qualify for promotion.
The easier exercises are merely stated; others, almost always new to this text, offer
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various levels of difficulty. Most of them are accompanied by a complete solution,
but in some cases the method of solution is merely suggested.

Sources. In addition to the already cited text [10] to which the present volume may
be seen as the natural successor, classical references and sources of inspiration for
part of the material contained here are the books by Bertini [14], [15], Castelnuovo
[25], Comessatti [27], Enriques and Chisini [36], Fano and Terracini [38], Hodge
and Pedoe [52], B. Segre [81], Semple and Roth [92], and C. Segre’s memoir [83].
We have also been influenced by more modern texts like Shafarevich [103] and
Harris [48], and, with particular reference to the topics regarding algebraic sets,
rational regular functions, and rational maps developed in the second chapter, by
Reid’s text [74].

Besides the texts mentioned above, in our opinion the very nice introductory
texts of Musili [69] and Kunz [60] as well as Kempf’s more advanced book [59] merit
special mention. We also call the reader’s attention to the charming “bibliographie
commentée” in Dieudonné’s text [33] which offers a panoramic view of the basic
and advanced texts and the fundamental articles which have constituted the history
and development of Algebraic Geometry, from the origins of Greek mathematics
up to the late 1960s. The bibliography is rendered even more valuable, topic by
topic, through interesting comments and historical notes illustrating an “excursus”
that starts from Heath’s interpretation of certain algebraic methods in Diophantus
and arrives at Mumford’s construction of the space of moduli for curves of a given
genus.

Changes and improvements with respect to the Italian version. The present
text offers some substantial changes and improvements with respect to the original
Italian version [9]. Among the major changes are an entirely new chapter, Chap-
ter 8, devoted to linear series on algebraic curves, a major revision to Chapter 2,
the new Section 4.3, giving greater detail regarding intersection multiplicities in
Chapter 4. Moreover a number of new exercises have been added throughout the
book, including, in particular, a new final section of Chapter 13.

Among the minor changes there is a new final paragraph in Chapter 10 dealing
with birational Cremona transformations between projective spaces of dimension 3.
There are also numerous corrections of minor typographical and mathematical er-
rors.

We thank the many colleagues and students who have had occasion to read
parts of the Italian version of the book, thus contributing to the correction of errors
and improving the exposition of the material. In particular, we wish to thank our
friends and colleagues L. Bădescu, E. Catalisano, A. Del Padrone, A. Geramita, P.
Ionescu, R. Pardini for their comments. We would like to thank I. Dolgachev who
first encouraged us to consider the possibility of a translation of the original version
of the book. We would also like to thank our friend and colleague A. Languasco for
his invaluable assistance in resolving various problems involving the use of LATEX.
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We also wish to thank D. B. Leep for his careful reading of portions of the text and
the useful suggestions for improvements in the presentation that he gave. Special
thanks are also due to F. Sullivan for the translation and for helping to make that
task a truly friendly interaction.

We are very grateful to Manfred Karbe and the European Mathematical Society
Publishing House not only for their professional and courteous manner, but also
for their unfailing warmth and encouragement that has gone well beyond mere
professional courtesy. The authors and the translator would also like to thank Irene
Zimmermann not only for her careful reading of the proofs and the many very
helpful suggestions she gave for improving the clarity and fluidity of the text, but
also for her great patience in waiting for the delayed arrival of its final version.

Finally, let us mention the web page

http://www.dima.unige.it/~beltrame/book.pdf

where data and updates regarding the book will be collected and an “errata corrige”
placed online.

Mauro C. Beltrametti
Ettore Carletti

Dionisio Gallarati
Giacomo Monti Bragadin

The authors and their translator
(from left to right: D. G., M. C. B., E. C., G. M. B., and F. S.)

http://www.dima.unige.it/~beltrame/book.pdf
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Chapter 1

Prerequisites

We assume that the reader is familiar with the fundamental notions of the projective
geometry of hyperspaces, for which one may consult any classical treatise. Bertini’s
book [14] is the preferred reference, but the texts of Hodge and Pedoe [52, Vols. 1, 2]
and of Cremona [31] also merit attention. We will refer to all of these for proofs
and further developments.

Nevertheless, we believe that a rapid review of the facts that will be most fre-
quently used here may be useful for the reader, and that is the goal of this first
chapter. We assume that the base field K is algebraically closed and of character-
istic zero. The reader may, should he so desire, assume that K D C, the field of
complex numbers, without substantial loss of generality in regard of the methods
and results expounded throughout the book.

1.1.1. Let � be an abscissa coordinate on a complex line r extended to include the
point at infinity P1. If

A D
�
a00 a01
a10 a11

�
(1.1)

is a non-degenerate 2� 2 matrix with complex entries (so that det.A/ D a00a11 �
a01a10 ¤ 0), the formula

�0 D a11�C a10

a01�C a00
(1.2)

furnishes a one-to-one correspondence between the numbers � and �0 (including
� D 1 and �0 D 1), so that we can determine a point of r by assigning the value
of �0. Thus we could take �0 rather than � as coordinate on r . We will say that �0
is a projective coordinate. In particular, if a00 D a11 D 1 and a10 D a01 D 0,
then equation (1.2) becomes �0 D �, and so the abscissa is a particular projective
coordinate.

Equation (1.2) can be considered as a formula for passing from one projec-
tive coordinate � on r to another projective coordinate �0 on r . Thus (1.2) is the
transformation formula for projective coordinates.

If � and �0 are projective coordinates on two lines r and r 0 (possibly coinciding),
then (1.2) establishes a one-to-one correspondence ! W r ! r 0 which includes all
points of the extended lines r and r 0 without exception. One says that ! is a
projectivity or a projective correspondence.

If �1, �2, �3, �4 are (the projective coordinates of) four points of r the element
(2 C [ f1g)

.�3 � �1/.�4 � �2/

.�3 � �2/.�4 � �1/
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is called the cross ratio of the four points (or of the four numbers). It will be denoted
by .�1; �2; �3; �4/. The cross ratio depends on the order in which the points are
taken, but it is easy to check that one obtains the same number if one interchanges
any two of the four numbers, and simultaneously interchanges the remaining two.
This implies that the 24 possible permutations of the �i yield only 6 distinct values
of the cross ratio. If one of these values is k, then the six cross ratios that one
obtains from the four points are

k;
1

k
; 1 � k; 1

1 � k ;
k

k � 1;
k � 1
k

:

If k D �1 or k D 1
2

or k D 2, then the six cross ratios reduce to only three� � 1; 1
2
; 2
�

and one says that �1, �2, �3, �4 constitute a harmonic set. If k D �1
we will say that �1, �2, �3, �4 form a harmonic quadruple, or that the elements
�1, �2, �3, �4 (in the given order) form a harmonic group (or harmonic range).

If one has k2CkC1 D 0 the six numbers reduce to only two, and �1; �2; �3; �4
is an equianharmonic quadruple.

The number

J D J.k/ ´ .k C 1/2.2k � 1/2.k � 2/2
.k2 � k C 1/3

does not depend on the order in which the four points are taken, and is called the
absolute invariant of the quadruple �1, �2, �3, �4.

An easy calculation shows that the cross ratio of four points is invariant under
coordinate transformations and projectivities. Indeed, if a00a11 � a01a10 ¤ 0 one
has

.�1; �2; �3; �4/ D
�
a11�1 C a10

a01�1 C a00
;
a11�2 C a10

a01�2 C a00
;
a11�3 C a10

a01�3 C a00
;
a11�4 C a10

a01�4 C a00

�
:

If �1, �2, and �3 are three distinct points of the line r and � is a variable point
of r we set

� D .�1; �2; �3; �/: (1.3)

Equation (1.3) has the form (1.2) and so � is a projective coordinate on r . It
follows that

.�1; �2; �3; �1/ D 1; .�1; �2; �3; �2/ D 0; .�1; �2; �3; �3/ D 1

and therefore one can choose projective coordinates on r in such a way that any
three arbitrarily assigned distinct points have coordinates 1, 0, 1. Such a choice is
unique since .1; 0; 1; �/ D lim�!1.�; 0; 1; �/ D �.

If � is a projective coordinate on the line r , then to each point of r we can
associate two numbers x0; x1 (not both zero) such that � D x1

x0
. They are defined
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by the point only up to a non-zero proportionality factor, since if a is an arbitrary
non-zero complex number the two ordered pairs .x0; x1/ and .ax0; ax1/ give the
same point. Moreover, the line r may be identified with the collection of such
ordered pairs .x0; x1/ (defined, that is, up to a non-zero factor).

We will say that x0; x1 are homogeneous projective coordinates on the line. To
indicate that the coordinates of P are x0; x1 we write P D Œx0; x1�.

The points A0 D Œ1; 0�, A1 D Œ0; 1� (called the fundamental points of the
coordinates) and U D Œ1; 1� (called the unit point), that is, the points � D 1,
� D 0 and � D 1, constitute a reference system S D fA0; A1; U g (cf. 1.1.5).

To determine a projective system of coordinates on r we can therefore take three
arbitrary distinct points A0, A1, U of r and impose the condition that they have
coordinates .1; 0/, .0; 1/, and .1; 1/.

If we introduce homogeneous projective coordinates, and set � D x1

x0
, �0 D x0

1

x0
0

,

equation (1.2) becomes
x0
1

x0
0

D a11x1 C a10x0

a01x1 C a00x0

and therefore, if � is a non-zero factor,´
�x0
0 D a00x0 C a01x1;

�x0
1 D a10x0 C a11x1:

(1.4)

If we set � D �
x0

x1

�
, � 0 D �x0

0

x0
1

�
, then instead of equation (1.4) we have the

corresponding matrix equation

�� 0 D A�:

1.1.2 (Projectivities of a line into itself). Let r be a line and !1 and !2 two projec-
tivities of r . The map!1B!2 W r ! r defined by setting!1B!2.�/ D !1.!2.�// is
a projectivity called the product of !1 and !2. Under this product the projectivities
of r form a (non-commutative) group which has the identity map on r as its neutral
element. To indicate that ! is the identity we will write ! D 1.

A non-identity projectivity (! ¤ 1) has two fixed points u, v, that is, points
such that !.u/ D u, !.v/ D v. If u and v are distinct, then the cross ratio
.u; v; �; !.�// is constant, that is, it does not depend on �. The resulting constant
is called the characteristic or multiplier of !. Projectivities of characteristic �1
are of special interest. They are called involutions and may be characterized as
non-identity projectivities for which !2 D 1.

Given a pair of points '0.x0; x1/ D 0, '1.x0; x1/ D 0 on the line, one sees
easily that the 11 pairs of points given by the equation

�0'0.x0; x1/C �1'1.x0; x1/ D 0; (1.5)
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with '0, '1 forms of degree two, are corresponding pairs in an involution. More
generally, an involution of order r consists of the set of all r-tuples of points given
by an equation of the type (1.5) with '0, '1 homogeneous polynomials of degree r .

The fixed points of an involution are usually referred to as double points.

1.1.3 (Algebraic correspondences between lines). If r and r 0 are two lines and �
and �0 are projective coordinates respectively on r and r 0, an equation

f .�; �0/ D 0 (1.6)

with f a polynomial, defines an algebraic correspondence ! W r ! r 0.
Projectivities are particular examples of algebraic correspondences. If we set

� D x1

x0
, �0 D x0

1

x0
0

in equation (1.6), and eliminate the denominators, we obtain a

bihomogeneous equation for an algebraic correspondence !, that is, an equation of
the form

'.x0; x1I x0
0; x

0
1/ D 0; (1.7)

where' is a homogeneous polynomial with respect to each pair of variables .x0; x1/
and .x0

0; x
0
1/.

If m is the degree of ' with respect to x0; x1 and n is its degree with respect
to x0

0; x
0
1, then one says that ' is an .m; n/ algebraic correspondence or of indices

m and n. To each � 2 r such a correspondence associates n points �0 2 r 0, and to
each � 2 r 0 are associated m corresponding points in r .

If r D r 0 one says that � is a fixed point for an algebraic correspondence if it
coincides with (at least) one of its corresponding points. Chasles’ correspondence
principle asserts that the number of fixed points for a non-identity .m; n/ algebraic
correspondence on a line r is equal to mC n.

1.1.4. Everything said up to now can be repeated without change when one considers
a fundamental form of the first type (a pencil of lines, a pencil of planes, etc.) rather
than a line r , or, more generally, a simply infinite algebraic entity whose elements
can be put into a one-to-one correspondence with P1. For example, the set of points
of a conic, those of the conics belonging to a pencil, or those of the lines belonging
to one of the two systems of lines of a quadric.

1.1.5. The discussion carried out for a line can be extended to the plane or ordinary
space, or, more generally, to the projective space Pn of dimension n, which we will
also denote by Sn. By definition Sn is the set of ordered homogeneous .n C 1/-
tuples of complex numbers (not all zero) .x0; x1; : : : ; xn/. These .nC1/-tuples are
the points of Sn, and x0; x1; : : : ; xn are projective and homogeneous coordinates
for the points of Sn.

The points having a single non-zero coordinate, namely the points

A0 D Œ1; 0; : : : ; 0�; A1 D Œ0; 1; : : : ; 0�; : : : ; An D Œ0; 0; : : : ; 1�;
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are called the fundamental points of the coordinates. They are the vertices of the
fundamental .nC 1/-hedron (or pyramid). The point U D Œ1; 1; : : : ; 1� is the unit
point. Together these points form the reference system S D fA0; A1; : : : ; An; U g
for the homogeneous projective coordinates x.

To change projective homogeneous coordinates in Sn means replacing the x’s
with x0’s related to the x’s by a non-degenerate linear relation

�x0
i D ai0x0 C ai1x1 C � � � C ainxn; i D 0; 1; : : : ; nI det.A/ D det.aij / ¤ 0:

(1.8)
The change of coordinate equations (1.8) can also be regarded as the formulas

relating the coordinates of two corresponding points under a mapping! of the space
Sn (with x-coordinates) to the space S 0

n (with x0-coordinates). Such a correspon-
dence is bijective (since det.A/ ¤ 0) and is called a non-degenerate projectivity or
non-degenerate projective correspondence.

1.1.6 (Quadrangles and quadrilaterals). We define a (plane) quadrangle or quad-
rangular set to be any set of four coplanar points, no three of which are collinear.

The dual figure of a quadrangle is the plane quadrilateral or quadrilateral set. It
consists of four lines in a plane, no three of which belong to a pencil (of concurrent
lines).

The complete quadrangle is the plane figure composed of four points (called
vertices) no three of which are collinear, and six lines (called sides), each of which
passes through two vertices. Two sides not containing a common vertex are said to
be opposite; the three points of intersection of the pairs of opposite sides are called
diagonal points, and constitute the vertices of the diagonal triangle.

1.1.7. For each index ˛, let U˛ be the set of points P of Sn with x˛ ¤ 0; ˛ D
0; 1; : : : ; n. Thus one has nC 1 subsets U0; U1; : : : ; Un which cover Sn and which
we will call standard affine charts. If x0; x1; : : : ; xn are the homogeneous pro-
jective coordinates in Sn we can take the quotients x0

x˛
; : : : ; x˛�1

x˛
;
x˛C1

x˛
; : : : ; xn

x˛
as

(projective, non-homogeneous) coordinates in U˛ .

1.1.8. Let us consider k C 1 points

P0 D Œx
.0/
0 ; x

.0/
1 ; : : : ; x.0/n �;

P1 D Œx
.1/
0 ; x

.1/
1 ; : : : ; x.1/n �; : : : ; Pk D Œx

.k/
0 ; x

.k/
1 ; : : : ; x.k/n �

inSn. We will writeP D �0P0C� � �C�kPk to indicate the point whose coordinates
are obtained by forming the linear combination with parameters �0; : : : ; �k (not all
zero) of the coordinates of the points Pj , j D 0; 1; : : : ; k. Thus, if .x0; x1; : : : ; xn/
are the coordinates of P , one has

�xi D �0x
.0/
i C � � � C �kx

.k/
i .� ¤ 0I i D 0; 1; : : : ; n/:
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We will denote the set of points P of the form �0P0 C �1P1 C � � � C �kPk by
J.P0; P1; : : : ; Pk/. It is clear that J.P0; P1; : : : ; Pk/ does not depend on the choice
of coordinates used for the individual points Pj .

Suppose that we have chosen coordinates for each of the pointsPj ; for example,
in such a way that each has first non-zero coordinate equal to 1. There are then two
possibilities:

(1) There is a point P in J.P0; : : : ; Pk/ which does not uniquely determine
the homogeneous (k C 1)-tuple �0; �1; : : : ; �k; that is, there are two non-
proportional .k C 1/-tuples .�0; : : : ; �k/ and .�0; : : : ; �k/ such that

kX
jD0

�jPj D
kX

jD0
�jPj :

This implies that one of the points Pj is a linear combination of the others,
and so could be deleted without changing J.P0; : : : ; Pk/.

(2) Each pointP 2 J.P0; : : : ; Pk/uniquely determines the homogeneous .kC1/-
tuple �0; �1; : : : ; �k of its coefficients �. In this case J.P0; : : : ; Pk/ can be
identified with the set of homogeneous .k C 1/-tuples .�0; : : : ; �k/, and is
therefore a k-dimensional projective space. We will call it the linear sub-
space Sk of Sn determined (or spanned) by the points P0; P1; : : : ; Pk . The
reference system in Sk for the projective and homogeneous coordinates � is
fP0; P1; : : : ; Pk;

Pk
jD0 Pj g.

In case (1) we will say that the points Pj are linearly dependent. In case (2) the
points Pj are linearly independent. One sees immediately that the necessary and
sufficient condition for the points Pj to be linearly independent is that the matrix

.x
.j /
i / formed from their coordinates have rank k C 1.

IfP D Œx0; x1; : : : ; xn� is an arbitrary point of Sn one hasP D x0A0Cx1A1C
� � � C xnAn, whence Sn coincides with the subspace spanned by the nC 1 linearly
independent points A0; : : : ; An.

The spaces S0, S1, S2 in Sn are respectively the points, lines, and planes of Sn.
The subspaces Sn�1 are called hyperplanes of Sn. By convention, the empty set is
also a subspace of Sn and its dimension is �1.

We remark explicitly that kC 1 is the maximal number of linearly independent
points that can lie in Sk . Furthermore, if P0; P1; : : : ; Pk are not linearly indepen-
dent, then one can choose a linearly independent subset of size hC1 < kC1, such
that J.P0; P1; : : : ; Ph/ is the subspace Sh defined by the original k C 1 dependent
points.

The intersection of subspaces is a subspace. The minimal (that is, of minimal
dimension) subspace that contains two or more subspacesS .1/; S .2/; : : : ; S .t/, or the
intersection of all the subspaces that contains all the S .j /, is called the conjunction
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(or, more simply and more frequently, the join) of the spaces S .1/; S .2/; : : : ; S .t/.
It is denoted by J.S .1/; S .2/; : : : ; S .t//.

If Sh and Sk are two subspaces of dimension h and k, and if Si and Sc are their
intersection and join respectively, then one has

hC k D c C i (Grassmann’s formula):

Two subspaces Sh and Sk are said to be skew if they have no point in common,
and hence have an ShCkC1 as join. Two skew subspaces Sh and Sk which have
Sn as join (so that h C k D n � 1) are said to be complementary. If Sh and
Sk are complementary, then on taking k C 1 independent points in Sk and h C 1

independent points in Sh one obtains nC 1 D hCkC 2 independent points which
span the entire space Sn.

1.1.9. We consider k C 1 linearly independent points P0; P1; : : : ; Pk and we let
P D Œx0; x1; : : : ; xn� be a point of the spaceSk which they span. The coordinates of
P are linear combinations of those of P0; P1; : : : ; Pk and so the .kC 2/� .nC 1/

matrix formed from the coordinates of the k C 2 points P;P0; P1; : : : ; Pk has
rank k C 1 (and indeed that is the necessary and sufficient condition to have P 2
J.P0; P1; : : : ; Pk/). This implies that .x0; x1; : : : ; xn/ is a solution to a system of
n�k linearly independent homogeneous linear equations. Conversely, any solution
P D Œx0; x1; : : : ; xn� of a system of n � k linearly independent homogeneous
linear equations in k C 1 unknowns can be written as a linear combination of
nC1� .n�k/ D kC1 independent solutions of the system, and so such solutions
constitute the points of an Sk .

In particular, a hyperplane Sn�1 of Sn is the locus of points of Sn that satisfy
a linear homogeneous equation (the equation of the Sn�1 in the reference system
S D fA0; A1; : : : ; AnIU g)

u0x0 C u1x1 C � � � C unxn D 0: (1.9)

This hyperplane can be identified with the homogeneous .nC 1/-tuple of com-
plex numbers (not all zero) u0; u1; : : : ; un. Thus, the hyperplanes of Sn are the
points of an n-dimensional projective space which we denote S�

n , and which is
called the dual of Sn. One has .S�

n /
� D Sn.

In S1, S2, and S3 the hyperplanes are respectively the points, lines, and planes.
The notion of linear independence extends naturally to the dual space S�

n . If
L0.x/ D 0; : : : ; Lk.x/ D 0 are the equations of k C 1 linearly independent hy-
perplanes, then the subspace S�

k
of S�

n determined by them consists of those hy-
perplanes having equation of the form �0L0.x/C � � � C �kLk.x/ D 0. Thus the
space S�

k
consists precisely of the hyperplanes that pass through (that is, contain)

the space Sn�k�1 common to the hyperplanesL0.x/ D 0; : : : ; Lk.x/ D 0, namely
Sn�k�1 with equations L0.x/ D L1.x/ D � � � D Lk.x/ D 0. The space S�

k
is

called the k-dimensional star with center or axis the common Sn�k�1.
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In S2 the stars S�
1 are pencils of lines, while in S3 the stars S�

1 and the stars S�
2

are respectively pencils and stars of planes.
The reference system S� for the coordinates u0; u1; : : : ; un in S�

n has as its
fundamental points the nC1 hyperplanes ˛i which, in the reference system S, have
equations xi D 0 .i D 0; 1; : : : ; n/. Moreover, the unit point is the hyperplane
which has equation

Pn
iD0 xi D 0 in the reference system S. Two reference systems

S and S� (one for the points and the other for the hyperplanes of the same Sn) related
in this way are said to be associated with each other. The hyperplanes ˛i are the
face hyperplanes of S, that is, ˛i D J.A0; A1; : : : ; Ai�1; AiC1; : : : ; An/.

If one chooses associated reference systems for the points and hyperplanes
of Sn, the equation (1.9) is the condition of incidence (or belonging) of a point and
a hyperplane. If one holds the x’s fixed in (1.9) and allows the u’s to vary, one
has the equation satisfied by the hyperplanes which are incident with x (that is,
which pass through x). Thus one has the equation of the point x. More generally,
any geometric procedure regarding points and hyperplanes which leads to a “po-
sitional” property will always have a double interpretation according to whether
one considers the variables to be the point coordinates or the hyperplane coordi-
nates. Thus in addition to every positional property that one proves to hold for the
spaces S0; S1; : : : ; S�

0 ; S
�
1 ; : : : one will also have the dual property for the spaces

S�
0 ; S

�
1 ; : : : ; S0; S1; : : : . This is the duality principle.

1.1.10. To project a point, or, more generally, a space Sa from a space Sk means
to consider the join space J.Sa; Sk/ of Sa and Sk , a space that we will call the
projecting space of Sa from Sk . To project Sa from Sk onto a space Sh means to
take the intersection of the projecting space J.Sa; Sk/with Sh. The space Sk is also
called the center of the projection (cf. §3.4.5).

1.1.11. Let ! be a non-degenerate projectivity between two projective spaces Sn
and S 0

n. One sees immediately that when a point varies in a hyperplane of one of the
two space the corresponding point also runs over a hyperplane in the other space in
such manner that ! induces a projectivity between the dual spaces S�

n and .S 0
n/

�.
If the two spaces are superposed (that is, if Sn and S 0

n are two distinct copies
of a common projective space, cf. [52, Vol. 1, Chapter VIII, § 1]) we may consider
not only the projectivities (called homographies or collineations) that send points
into other points, but also the projectivities (called reciprocities or correlations)
that send points into hyperplanes, that is, projectivities ! W Sn ! S�

n (which induce
projectivities S�

n ! Sn).
In the case of a homography between two superposed spaces the search for fixed

points, that is for points P such that !.P / D P , is of interest, for example, for
the classification of homographies. If x0

i D Pn
jD0 aijxj are the equations of the

homography, and x is a fixed point, there must be a complex number � ¤ 0 such
that x0

i D �xi , that is, �xi D Pn
jD0 aijxj , i D 0; : : : ; n. To have fixed points one

must find a � such that this system of linear homogeneous equations have non-trivial
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solutions: � must be a root N� of the characteristic equation

det.A � � I/ D

ˇ̌̌̌
ˇ̌̌̌
ˇ
a00 � � a01 � � � a0n
a10 a11 � � � � � a1n
:::

:::
:::

:::

an0 an1 � � � ann � �

ˇ̌̌̌
ˇ̌̌̌
ˇ ;

that is, one of the eigenvalues N� of the matrix A D .aij / which are certainly all
non-zero since A is non-degenerate. All the points of the linear subspace with
equations

N�xi D
nX

jD0
aijxj ; i D 0; 1; : : : ; n;

will be fixed points. The dimension of that subspace depends on the rank of the
matrix A � N� I. Thus every eigenvalue of A leads to a subspace of fixed points.

If the matrix A has nC 1 distinct eigenvalues �1; : : : ; �nC1 so that the matrices
A� �t I, t D 1; : : : ; nC 1, all have rank n (which is the most general situation) the
projectivity ! will then have n C 1 fixed points. It is easy to prove the following
fundamental result.

Theorem 1.1.12 (Fundamental Theorem for Projectivities). Given two .n C 2/-
tuples of independent points fP1; : : : ; PnC2g in Sn and fQ1; : : : ;QnC2g in S 0

n,
there exists one and only one projectivity ! W Sn ! S 0

n such that !.Pt / D Qt ,
t D 1; : : : ; nC 2.

This statement is equivalent to stating that a projectivity between two superposed
Sn’s having nC 2 fixed points is the identity.

If we effect a change of coordinates in Sn (associated to a matrix T ), and
if y, y0 are the new coordinates of x and x0, then the homography ! will be
represented by an equation y0

i D Pn
jD0 bijyj with B D .bij / a matrix similar to

A (B D TAT �1). Hence we may assume that the matrix A be in Jordan canonical
form (see, for example, the appendix of [9]). Thus we find exactly as many types
of homographies as there are types of Jordan canonical forms.

For example, when n D 1 the Jordan canonical forms are, for ˛; ˇ 2 C,

�
˛ 0

0 ˇ

�
;

�
˛ 0

1 ˛

�
;

�
˛ 0

0 ˛

�
:
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For n D 2 the Jordan canonical forms are, for ˛; ˇ; � 2 C,0@˛ 0 0

0 ˇ 0

0 0 �

1A ;
0@˛ 0 0

0 ˛ 0

0 0 ˇ

1A ;
0@˛ 0 0

1 ˛ 0

0 0 ˇ

1A ;
0@˛ 0 0

1 ˛ 0

0 0 ˛

1A ;
0@˛ 0 0

1 ˛ 0

0 1 ˛

1A ;
0@˛ 0 0

0 ˛ 0

0 0 ˛

1A :
1.1.13. Let ! W Sn ! S�

n be a reciprocity with equation �ui D Pn
jD0 aijxj ,

i D 0; : : : ; n. We will say that two points P D P.x/ and P 0 D P 0.x0/ of Sn
are reciprocals if P 0 belongs to the hyperplane corresponding to P (and then P
will belong to the hyperplane corresponding to P 0). The algebraic form for this
condition is

Pn
iD0 uix0

i D 0 or
Pn
iD0

�Pn
jD0 aijxj

�
x0
i D 0, or also

nX
i;jD0

aijx
0
ixj D 0: (1.10)

This bilinear equation expresses the fact that the two points P and P 0 are recip-
rocal, which means that each belongs to the hyperplane corresponding to the other.
If we fix the x’s, the equation is that of the hyperplane corresponding to the point
P.x/, while fixing the x0’s it is the equation of the hyperplane corresponding to
P 0.x0/. Thus the reciprocity ! is represented by the bilinear equation (1.10).

The involutory reciprocities are particularly noteworthy, namely those reciproc-
ities for which to each point P.x/ thought of as lying either in Sn or S�

n there
corresponds the same hyperplane of S�

n or Sn. For this to happen it is necessary
that there exist a � ¤ 0 such that one has the identity

nX
i;jD0

aijxix
0
j D �

nX
i;jD0

aijx
0
ixj .D �

nX
i;jD0

aj ixix
0
j /:

One must then have, for each pair of indices i; j , thataij D �aj i and this implies
that the matrix A D .aij / be either symmetric (� D 1) or anti-symmetric (skew-
symmetric, � D �1). Since an anti-symmetric matrix of odd degree is necessarily
degenerate, the anti-symmetric case is possible only if n is odd (so nC1 is even). In
the case of an odd dimensional space the involutory reciprocities with � D �1 are
called null systems or null polarities. Under a null polarity each point belongs to its
corresponding hyperplane. The symmetric case is possible for all n and one then
finds a reciprocity in which the auto-reciprocal points are precisely those which are
zeros of the quadratic form

Pn
i;jD0 aijxixj . Such a reciprocity is called a polarity

with respect to the quadric whose equation is
Pn
i;jD0 aijxixj D 0.
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1.1.14. Particularly simple examples of projectivities between two superposed Sn’s
are the so called projectivities of general type for which it is possible to choose a
representation with A being a diagonal matrix. For such a projectivity the spaces
which are loci of the fixed points are linearly independent, and they have as join the
entire space Sn.

If, in particular, there are two subspacesSh andSh0 which are loci of fixed points
and of complementary dimension (that is, hC h0 D n � 1) then the projectivity is
said to be a biaxial homography, and the two subspaces are its axes. The line r that
joins two corresponding points under a biaxial homography ! is supported by the
axes (that is, it intersects both axes), and is therefore fixed (that is, !.A/ 2 r for
every A 2 r), and on r the homography ! induces a projectivity that has as fixed
points the intersections of r with the axes. The characteristic of this projectivity
on r does not depend on the pair P;P 0 of corresponding points, and is therefore an
invariant c.!/ of ! called the characteristic of ! (cf. §1.1.2). If c.!/ D �1, we
say that ! is a harmonic biaxial homography.

A biaxial homography having as axes a pointO and a hyperplaneH is called a
homology of center O and axis H . If, moreover, c.!/ D �1 the homography ! is
said to be a harmonic homology.



Chapter 2

Algebraic Sets, Morphisms, and Rational Maps

This is an introductory chapter containing basic notions regarding affine and pro-
jective algebraic sets, the Zariski topology, as well as morphisms and rational maps.
These topics are discussed in Sections 2.2, 2.6.

In Section 2.1 we recall some preliminary topological definitions which are
useful for handling the topics subsequently developed. In Section 2.7 we give a
number of exercises.

The texts of Reid [74] (whose framework we follow), [72] and the first chapter
of Hartshorne’s book [50] constitute excellent references for the contents of this
chapter. Musili’s book [69] is another good reference to the material discussed in
this chapter. For any background result from algebra that we use, we also refer to
[35] and [120].

We assume through out the chapter, except for explicit mention to the contrary,
that the base ring K is a commutative algebraically closed field of characteristic
zero. UsuallyK will be the complex field C. We use the usual set theoretic notation
and terminology.

2.1 Review of topology

For the convenience of the reader we briefly recall some elementary notions of
topology which are necessary in the sequel. For further information and proofs of
properties that are only stated here we refer the reader to [58] or [18].

2.1.1 Topological spaces. A topology on a set X is a family � of subsets of X
satisfying the following properties.

(1) ;, X belong to � ;

(2) � is stable under arbitrary unions: if Ui 2 � for all i 2 I then
S
i2I Ui 2 � ;

(3) � is stable under finite intersections: if Ui 2 � for all i in the finite set I , thenT
i2I 2 � .

The elements of � are called open subsets ofX and (1)–(3) are called the axioms
for open subsets.

We say that the pair .X; �/ is a topological space; often we consider � as im-
plicitly understood and speak of X alone as a topological space.
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A subfamily B of � is a base of � if every open subset is a union of elements
of B.

The closed subsets of .X; �/ are the complements of the open subsets: that is,
A � X is closed if and only if X n A is open. The family F of closed subsets
satisfies the following properties.

(1) ;, X belong to F;

(2) F is stable under finite unions: if Fi 2 F for all i in the finite set I thenS
i2I Fi 2 F;

(3) F is stable under arbitrary intersections: if Ui 2 F for all i 2 I , thenT
i2I 2 F.

The verification of these properties is an easy application of De Morgan’s rules
[58, p. 4].

These properties characterize the topology in the sense that if one gives a family
F satisfying them, then there exists a unique topology � on X such that F is the
collection of closed subsets of � . Obviously it suffices to define the open subsets
of � as the complements of the subsets comprising F. The three properties listed
just above are called the axioms for closed subsets, and one can define a topology
on X by specifying the closed subsets.

The collection of all topologies on X is partially ordered by the relation � of
fineness: 	 � � (	 less fine (or coarser) than � ) if every open subset in 	 is also an
open subset of � , or equivalently if every closed subset of 	 is a closed subset of � .

A neighborhood of a point x 2 X is a set V such that there is an open subset U
of X with x 2 U � V . For every subset A � X one defines the two subsets

VA D fx 2 X j A is a neighborhood of xg
and

NA D fx 2 X j U \ A ¤ ; for each neighborhood U of xg
which are called respectively the interior and the closure of A. The points of VA are
called the interior points of A; those of NA are called adherent points of A.

The interior of A is the union of all the open sets of X which are contained
in A, or, equivalently, the largest open set of X which is contained in A. Dually,
the closure NA of A is the intersection of all the closed sets of X that contain A, or,
equivalently, the smallest closed set of X that contains A.

A subset A � X is dense if NA D X ; this happens if and only if A intersects
every non-empty open set of X .

If A � X , one defines a topology �A on A by decreeing that the open sets of �A
are precisely the intersections with A of open sets of � , that is, M � A is open in
the topology �A if and only if there is an open set U of � such that M D A \ U .
The topology �A is called the topology induced on A by � or the relative topology
on A induced by � , and .A; �A/ is said to be a subspace of .X; �/.
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2.1.2 Continuity, compactness, and connectedness. Consider two topological
spaces .X; �/ and .Y; 	/ and let f W X ! Y be a mapping. We say that f is
continuous at the point x 2 X if for every neighborhood V of f .x/ there is a
neighborhood U of x such that f .U / � V ; we say that f is continuous if it is
continuous at every point of X . The following conditions are equivalent:

(1) f is continuous;

(2) for every open A � Y the subset f �1.A/ is open in X ;

(3) for every closed A � Y the subset f �1.A/ is closed in X ;

(4) for all x 2 X and for every neighborhood V of f .x/ the set f �1.V / is a
neighborhood of x.

An application f W X ! Y is said to be a homeomorphism if it is continuous,
invertible (bijective), and the inverse f �1 is also continuous. If f is continuous and
invertible, an equivalent condition for f to be a homeomorphism is that f be an
open mapping (respectively, closed mapping), that is, for each open (respectively,
closed) subset U of X the subset f .U / is open (respectively, closed) in Y .

Topological properties preserved by continuous maps are particularly important:
that is, the properties such that if they hold for a space X they also hold for any
space Y which is the image of X under a continuous mapping.

A topological space .X; �/ is compact if from every open covering of X one
can extract a finite subcover; that is, if whenever one has X D S

i2I Ui with all Ui
open in � , there is a finite subset J � I such that X D S

j2J Uj . A subset A � X

is compact if it is compact in the topology induced by � on A.
A topological space is connected if there does not exist any proper non-empty

subset of X which is both open and closed, or equivalently, if it is not possible to
obtain X as a union of two disjoint non-empty open subsets. A subset A � X

is said to be connected if it is connected in the topology induced by � on A. A
maximal connected subset of X is called a connected component of X , that is, if
it is not properly contained in any larger connected subset of X . The connected
components ofX are closed subsets and form a partition ofX into disjoint subsets.

2.1.3 Product topology and quotient topology. LetX and Y be two topological
spaces, and let X � Y be their cartesian product as sets with p W X � Y ! X and
q W X � Y ! Y the canonical projection maps onto the first and second factors
respectively. The product topology onX�Y is the coarsest topology with respect to
which the projection maps p and q are continuous. The setX �Y with the product
topology is called the topological product of X and Y . The product topology on
X � Y has as a basis the family of products U � V where U is open in X and V is
open in Y . Indeed, if BX and BY are bases for the opens of X and Y respectively,
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then
BX�Y D fU � V j U 2 BX ; V 2 BY g

is a basis for the open sets of the topological product X � Y .
Now let 	 be an equivalence relation onX and let
 W X ! X= 	 be the natural

projection on the quotient. If � is a topology on X , the subsets M of X= 	 such
that 
�1.M/ is an open set of � are the open sets of a topology on X= 	. That
topology is called the quotient topology, and is the finest topology on X= 	 such
that the projection 
 is continuous. The open subsets of the quotient topology are
the images under 
 of saturated open subsets of X , namely the open subsets that
are unions of equivalence classes.

2.2 The correspondences V and I

Let An ´ An.K/ be an n-dimensional affine space over the field K and let
y1; : : : ; yn be affine coordinates in An. If a is an ideal of the polynomial ring
KŒY1; : : : ; Yn� we consider the “correspondence V ” which associates the subset
V.a/ to the ideal a where

V.a/ D fy 2 An j f .y/ D 0 for all f 2 ag:
The set V.a/ is the locus of the zeros of the polynomials in a. Since a is

finitely generated, V.a/ is the locus of zeros of a finite number of polynomials
fj 2 KŒY1; : : : ; Yn�, j D 1; : : : ; m.

The subsets X of An of the type X D V.a/ are called (affine) algebraic sets.
An algebraic set is said to be irreducible if there is no decompositionX D X1[X2
with X1, X2 algebraic sets strictly contained in X .

The correspondence V satisfies the following formal properties (where b and
ai indicate ideals of A D KŒY1; : : : ; Yn�).

(1) V..0// D An; V.A/ D ; (the empty set is not considered irreducible);

(2) a � b H) V.b/ � V.a/;

(3) V.a \ b/ D V.a/ [ V.b/ D V.ab/, where ab means the product of ideals;

(4) V
�P

i2I ai
� D T

i2I V.ai / (recall that the ideal sum, even if not finite, of
the ideals ai consists of all finite sums of elements of the ai ).

All the preceding properties are almost obvious except for (3), the inclusion
V.a \ b/ � V.a/ [ V.b/, which can be proved as follows. Let x 2 V.a \ b/
and suppose that x 62 V.a/ [ V.b/. Then there exist f 2 a and g 2 b such that
f .x/ ¤ 0 and g.x/ ¤ 0. Thus fg 2 a \ b but fg.x/ D f .x/g.x/ ¤ 0, which
contradicts the assumption that x 2 V.a \ b/.
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Let P D .a1; : : : ; an/ 2 An. We call mP ´ .Y1 � a1; : : : ; Yn � an/ the
ideal of P . It is easy to see that mP is a maximal ideal of KŒY1; : : : ; Yn�, and that
the homomorphism 	 W KŒY1; : : : ; Yn� ! K, defined by 	.f / D f .a1; : : : ; an/,
induces an isomorphism KŒY1; : : : ; Yn�=mP Š K. One has P D V.mP /.

If a is an ideal of KŒY1; : : : ; Yn� the radical of a is the ideal
p

a defined by
p

a ´ fg 2 KŒY1; : : : ; Yn� j gt 2 a for some integer t � 1g:
One sees immediately that

V.a/ D V.
p

a/:

Indeed, we have a � p
a whence V.

p
a/ � V.a/. Conversely, let y 2 V.a/ and

g 2 p
a. Then gt .y/ D g.y/t D 0 so that g.y/ D 0 and hence y 2 V.pa/.

Example 2.2.1. Recall that a polynomial f 2 KŒY1; : : : ; Yn� is irreducible if it is
not a constant and if whenever f D f1f2 with f1; f2 2 KŒY1; : : : ; Yn�, then one
of f1 and f2 is a constant.

An algebraic set X given by a single equation f D 0 (that is, associated to the
principal ideal .f /) is called a hypersurface in An. If n D 2 it is a plane affine
curve, if n D 3 it is an affine surface, etc. If K is algebraically closed such a
hypersurface is irreducible if and only if f is a power of an irreducible polynomial,
as follows from the Hilbert Nullstellensatz 2.2.2. If f is a polynomial of degree 1
(respectively of degree 2) we will say thatX is a hyperplane (respectively a quadric
or hyperquadric of An).

IfX is a subset of An, we consider the “correspondence I ” which toX associates
the ideal I.X/ � KŒY1; : : : ; Yn� defined by

I.X/ ´ ff 2 KŒY1; : : : ; Yn� j f .x/ D 0 for all x 2 Xg:
The ideal I.X/ is a radical ideal, namely

I.X/ D
p
I.X/ ´ ff 2 KŒY1; : : : ; Yn� j f t 2 I.X/ for some integer t � 1g:

It is surely obvious that I.X/ � p
I.X/. Moreover, f 2 pI.X/ if and only if

f t .x/ D 0 for all x 2 X and for some positive integer t . But this is equivalent to
.f .x//t D 0 and thus to f .x/ D 0 for all x 2 X , and so f 2 I.X/.

The correspondence I enjoys the following additional properties, where X , Y
and Xi denote subsets of An (cf. [120, Theorem 14, p. 38]).

(1) I.;/ D KŒY1; : : : ; Yn�; I.An.K// D .0/;

(2) X � Y H) I.Y / � I.X/;

(3) I
�S

i2I Xi
� D T

i2I I.Xi /.
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As far as the composition V B I is concerned, one has the following.

• If a is an ideal of KŒY1; : : : ; Yn� and X � An then

X � V.I.X// and a � I.V .a//:

In particular, if X D V.a/ is an algebraic set one has

X D V.I.X//:

The composition V B I of the correspondences V and I is thus the identity on
algebraic sets.

The inclusion a � I.V .a// can be a strict inclusion and so, in particular, the
composition I BV is not the identity. In this regard see Theorem 2.2.2 below which
shows how the composition I B V is the identity when restricted to radical ideals.
If K is not algebraically closed it suffices to consider a non-constant polynomial
f with no roots in K. For example, if K D R one can take f D Y 21 C 1. Then
a D .f / � KŒY1; : : : ; Yn� and a ¤ KŒY1; : : : ; Yn� because 1 62 a. However,
V.a/ D ; and so I.V .a// D KŒY1; : : : ; Yn�. IfK is algebraically closed it suffices
to observe that .f t / ¤ I.V .f t // whenever t � 2: indeed, V.f t / D V.f / and so
f 2 I.V .f // D I.V .f t //. But f 62 .f t /.

The following fundamental theorem holds. We propose here a quick proof (of
statement (1)) which is due to Kaplansky and which we heard from P. Ionescu. For
further details and complete proofs see, for instance, the two texts of Reid [74], [75]
or Shafarevich’s book [103].

Theorem 2.2.2 (Hilbert Nullstellensatz). Let K be an uncountable algebraically
closed field (in particular K D C). Then

(1) every maximal ideal m of A ´ KŒY1; : : : ; Yn� is of the form m D .Y1 �
a1; : : : ; Yn � an/ for some point P D .a1; : : : ; an/ 2 An.K/;

(2) if a is an ideal of A, a ¤ A, one has V.a/ ¤ ;;

(3) for every ideal a � A one has I.V .a// D p
a (hence in particular m is the

ideal I.P / of all polynomials that vanish at P ).

Proof. Write B D KŒY1; : : : ; Yn�=m, with m a maximal ideal of KŒY1; : : : ; Yn�.
Since B is a field generated over K by the classes of all monomials in Y1; : : : ; Yn
it follows that the dimension of B , as a K-vector space, is at most countable.

Let now b 2 B n K be an arbitrary element. We have to prove that b is
algebraic over K. To this end consider the family

˚
1
b�t

�
t2K of elements of the

field B . Since K is uncountable, this is in fact an uncountable family of elements
of B . Since dimK.B/ is at most countable, the elements of this family are linearly
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dependent overK, i.e., there exist finitely many non-zero elements �1; : : : ; �s 2 K
and elements t1; : : : ; ts 2 K, s � 1, such that

�1

b � t1 C � � � C �s

b � ts D 0:

Clearing denominators we get a non-zero polynomial f .T / 2 KŒT � of degree � 1

such that f .b/ D 0, i.e., b is algebraic overK. To see this, observe that f .ti / ¤ 0,
i D 1; : : : ; s. Since K is algebraically closed, we conclude that B D K.

Now, set ai ´ Yi mod m, i D 1; : : : ; n, and letP ´ .a1; : : : ; an/ 2 An.K/.
It is clear that the polynomials Yi � ai belong to the kernel of the quotient map
KŒY1; : : : ; Yn� ! KŒY1; : : : ; Yn�=m D B , i D 1; : : : ; n. This implies that mP 

m and, since mP is maximal, we get m D mP . �

If X D V.a/ is an algebraic set of An we will say that the quotient ring
KŒX� D KŒY1; : : : ; Yn�=I.X/ is the coordinate ring of X . We also say that the
pair .X;KŒX�/ is an affine algebraic variety. It is immediately clear that

• X is irreducible if and only if the ideal I.X/ is a prime ideal, that is, if and
only if its coordinate ring is an integral domain.

Indeed, let f1; f2 62 I.X/ and let Xi be the subset of X consisting of the points
at which fi vanishes, i D 1; 2. If X is irreducible one then has that the union
X1 [ X2 is strictly contained in X . Thus if x 2 X � .X1 [ X2/ we must have
f1f2.x/ ¤ 0 and so f1f2 62 I.X/, which is to say that I.X/ is a prime ideal.
Conversely, suppose that X is reducible, X D X1 [ X2, and let f1; f2 62 I.X/ be
such that f1.X1/ D 0 D f2.X2/ (i.e., fi vanishes at each point ofXi for i D 1; 2).
It follows that f1f2 2 I.X/ and so I.X/ is not prime.

In particular, by the preceding arguments, a hypersurface X D V.f / is irre-
ducible if and only if the polynomial f is a power of an irreducible polynomial.

2.2.3 The Zariski topology on an affine variety. In view of the properties of the
correspondence V , it is clear that the algebraic sets X � An form the set of closed
subsets of a topology on An, called the Zariski topology on An.

A basis for the open subsets of An is given by the open sets

Anf ´ An � V.f / D fy 2 An j f .y/ ¤ 0g;
with f .y/ 2 KŒY1; : : : ; Yn�. Open subsets of this type, complements of hypersur-
faces in An, are called principal open or basic open subsets of An. We will also
say that a principal closed subset is the complement V.f / of An

f
in An. Note also

that An
f1f2

D An
f1

\ An
f2

.
Let us now examine some properties of the Zariski topology.
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• An is not a Hausdorff space, because for every pair of non-empty open sets
U1, U2 one has U1 \ U2 ¤ ;. Indeed, if U1 \ U2 D ;, one would have
An D {AnU1 [ {AnU2 (where {AnU denotes the complement of U in An).
Since An is irreducible one would have either {AnU1 D ; or {AnU2 D ;. It
follows that every non-empty open set is dense in An.

• An is a Fréchet space (i.e., T1) in the sense that ifP andQ are any two distinct
points, each of the two is contained in an open set which does not contain the
other. In fact, if f is a polynomial satisfying f .P / ¤ 0 but f .Q/ D 0, then
the open set which is the complement of the algebraic set V.f / contains P
but not Q.

• An is compact, that is, every open cover An D S
˛ U˛ admits a finite subcover

An D Sh
iD1 Ui .

Since every ideal a ofKŒY1; : : : ; Yn� is generated by a finite number of poly-
nomials, one has that every closed subset of An is the intersection of a finite
number of principal closed subsets and every open subset is a finite union of
principal open subsets. It is then easy to see that from every open cover of
An one can extract a finite subcover. By the above remarks it suffices to show
this for a covering by principal open subsets. Let then An D S

˛ An
f˛

. It
follows that

T
˛ .V .f˛// D ; and therefore if a is the ideal generated by all

the polynomials f˛ one has a D KŒY1; : : : ; Yn�. Hence 1 2 K is a polyno-
mial linear combination of a finite number of elements f1; : : : ; fh of a. This

implies that V.f1; : : : ; fh/ D ; and thus that An D Sh
iD1 An

fi
.

A more general argument, which does not make use of the Hilbert Nullstel-
lensatz, goes as follows. From An D S

˛ An
f˛

we get

V
�X

˛

.f˛/
�

D
\
˛

.V .f˛// D ;:

Since KŒY1; : : : ; Yn� is noetherian, there exists a finite set of indices
f˛1; : : : ; ˛hg such that V.f˛1

; : : : ; f˛h
/ D V

�Ph
iD1.f˛i

/
� D ;. Thus we

have An D Sh
iD1 An

f˛i

.

• IfK D R or C, the Zariski topology in An is coarser than the usual euclidean
topology (where, as usual, C is identified with R2 via a C ib D .a; b/). In
fact the Zariski closed sets are also closed for the euclidean topology, since
polynomial functions are continuous.

IfX � An is an algebraic set, we can consider the Zariski topology onX , namely
the topology onX induced by the Zariski topology on An. For each f 2 KŒX� we
set

Xf ´ X � V.f / D fx 2 X j f .x/ ¤ 0g:
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The open sets Xf are called principal open subsets of X , and form a base for the
open subsets of the Zariski topology on X .

Remark–Example 2.2.4. We discuss a few more properties and examples.

(1) The closed sets of A1 are the finite subsets. The closed subsets of A2 are
finite unions of isolated points and algebraic curves.

(2) If a � KŒT1; : : : ; Tm� is an ideal, we consider the extended ideal

ae ´ aKŒY1; : : : ; Yn; T1; : : : ; Tm�:

The algebraic set V.ae/ in AnCm is called a cylinder.

(3) If X D V.a/ is an algebraic subset of An, a � KŒY1; : : : ; Yn�, then the
projection ofX on the space Am, where the coordinates of Am are Y1; : : : ; Ym
for m < n, is the algebraic set associated to the contracted ideal ac D
a \KŒY1; : : : ; Ym� (cf. Section 4.4).

(4) Let X1 � Ar and X2 � As be algebraic sets, and let T1; : : : ; Tr and
Y1; : : : ; Ys be coordinates in Ar and As respectively. Let a1 D .f1; : : : ; f�/ D
I.X1/ � KŒT1; : : : ; Tr � and a2 D .g1; : : : ; g�/ D I.X2/ � KŒY1; : : : ; Ys�.
In the product space Ar�As D ArCs with coordinatesT1; : : : ; Tr ; Y1; : : : ; Ys
the product X ´ X1�X2 is the algebraic set of ArCs associated to the ideal

a ´ ae1 C ae2 D .f1; : : : ; f�; g1; : : : ; g�/ � KŒT1; : : : ; Tr ; Y1; : : : ; Ys�;

that is, I.X/ D p
a.

(5) (Zariski topology on a product) For each pair r; s 2 N, the product topology
on Ar � As with respect to the Zariski topologies on Ar and As is strictly
coarser than the Zariski topology on ArCs .
Indeed, if a and b are ideals ofKŒT1; : : : ; Tr � andKŒY1; : : : ; Ys� respectively,
then one has

.Ar n V.a// � .As n V.b//
D Œ.Ar � As/ n .V .a/ � As/� \ Œ.Ar � As/ n .Ar � V.b//�
D Œ.Ar � As/ n V.ae/� \ Œ.Ar � As/ n V.be/�:

Thus the open sets of the basis of standard open subsets of the product topology
are open subsets in the Zariski topology on ArCs .
However, not every open subset in the Zariski topology on ArCs is an open
subset in the product topology. For example, the complement of V.x � y/ in
A2.x;y/ is not open in A1 � A1 since V.x � y/ is not closed in A1 � A1.
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LetX1 
 Ar andX2 
 As be algebraic sets. The Zariski topology onX1�X2
is the topology induced on X1 �X2 by the Zariski topology on ArCs . From
the preceding remarks we deduce that this topology is, in general, finer than
the product topology on X1 � X2 with respect to the Zariski topologies on
X1 and X2.

See Section 11.2 for the case of the products of projective spaces.

(6) If X is a subset of An, V.I.X// is the Zariski closure of X . One has X D
V.I.X// if and only if X is an algebraic set.

2.3 Morphisms

The contents of this section and the next one have been essentially taken from [74].
LetX � An be an irreducible algebraic subset andKŒX�DKŒY1; : : : ; Yn�=I.X/

its coordinate ring. We use xF to denote the class of a polynomialF 2 KŒY1; : : : ; Yn�
modulo the ideal I.X/.

Given a polynomial F 2 KŒY1; : : : ; Yn� and putting f D xF we have F 0.x/ D
F.x/ for every polynomial F 0 2 xF and for every x 2 X . Thus the polynomial
function

f W X ! K; f .x/ ´ F.x/; x 2 X;
is defined. Note that a polynomial function f W X ! K is a continuous map if we
consider the Zariski topology on bothX andK, whereK is identified with A1.K/.
(If K D R or C, the same is true for the euclidean topology.)

The setR of all such polynomial functions onX has a natural ring structure and
the map F 7! f defines a surjective ring homomorphism

KŒY1; : : : ; Yn� ! R ! 0

with kernel I.X/. Thus one has an isomorphism

KŒX� Š R;

which expresses the coordinate ring ofX as a ring of polynomial functions (defined
on all of X ) with values in K.

Now let An and Am be two affine spaces with coordinate rings KŒY1; : : : ; Yn�
and KŒT1; : : : ; Tm� respectively. We say that a map � W An ! Am is a morphism
(or regular map) if there arem polynomials F1; : : : ; Fm 2 KŒY1; : : : ; Yn� such that
for each y D .y1; : : : ; yn/ 2 An one has

�.y/ D .t1; : : : ; tm/ with tj D Fj .y1; : : : ; yn/ for j D 1; : : : ; m.

We also say that � is the “polynomial function given by F1; : : : ; Fm” and that

Tj D Fj .Y1; : : : ; Yn/; j D 1; : : : ; m;
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are its equations.
If X � An, W � Am are algebraic sets, we say that a map � W X ! W is a

morphism (or regular map) if it is the restriction to X of a morphism ˆ W An !
Am such that ˆ.X/ � W . Thus, if � W X ! W is a morphism there exist m
polynomial functions f1; : : : ; fm 2 KŒX� such that for every x 2 X one has
�.x/ D .f1.x/; : : : ; fm.x// 2 W (and we say that “� is the polynomial function
given by f1; : : : ; fm”).

We say that a morphism � W X ! W is an isomorphism if � is bijective and the
inverse ��1 is a morphism. If there exists an isomorphism � W X ! W we say that
X and W are isomorphic.

Note that a morphism � W X ! W is a continuous map if we consider the
Zariski topology on X and W . Furthermore, if � is an isomorphism, then it is a
homeomorphism.

Example 2.3.1. A bijective morphism need not be an isomorphism. For example,
let C1 and C2 be the two plane curves with equations y � 1 D 0 and y3 � x2 D 0

respectively. Let � W C1 ! C2 be the map that sends the point P 2 C1 to its
projection P 0 from the origin O onto C2. One sees that � is bijective, in particular
�.A/ D O only for A D .0; 1/. If .x; 1/ are the coordinates of P , the coordinates
of P 0 are x0 D x3, y0 D x2, and so � is a morphism. But ��1 is not a morphism
because, given P 0 D .x0; y0/ 2 C2, the coordinates of P D ��1.P 0/ are .x

0

y0 ; 1/

and x0

y0 62 KŒx0; y0�.

Exercise 2.3.2. Let � W X ! W be a morphism of algebraic sets withX � An and
W � Am. With the preceding notation, and considering the coordinatesT1; : : : ; Tm
in Am as polynomial functions, � is a polynomial function given by f1; : : : ; fm 2
KŒX� if and only if fj D Tj B � 2 KŒX� for j D 1; : : : ; m, that is, if and only if
the diagram

X
� ��

fj

���
��

��
��

��
��

��
W � Am

Tj

��
K

is commutative.
We observe that for x 2 X the j th component of �.x/ is Tj B�.x/, and therefore

for each j if we put fj D Tj B � we have

�.x/ D .T1 B �.x/; : : : ; Tm B �.x// D .f1.x/; : : : ; fm.x// :

Thus � is the morphism given by f1; : : : ; fm.
Conversely, if�.x/D .f1.x/; : : : ; fm.x//, forx 2 X , we then haveTj B�.x/ D

fj .x/ for all x 2 X and j D 1; : : : ; m, which is to say that Tj B � D fj 2 KŒX�.
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Theorem 2.3.3. Let X � An, W � Am be algebraic sets, and Y1; : : : ; Yn and
T1; : : : ; Tm coordinates in An and Am respectively. Then the following holds:

(1) A morphism � W X ! W induces aK-algebra homomorphism �� W KŒW � !
KŒX�.

(2) Conversely, every homomorphism ofK-algebras � W KŒW � ! KŒX� is of the
type � D �� with � W X ! W a uniquely determined morphism.

(3) If � W X ! W and  W W ! Z are morphisms of algebraic sets, then the
morphisms . B�/� and �� B � coincide as morphisms ofK-algebras; that
is, . B �/� D �� B  � W KŒZ� ! KŒX�.

Proof. Let g 2 KŒW �, that is, let g W W ! K be a polynomial function defined on
all of W . Set ��.g/ D g B �. We show that g B � 2 KŒX�. To see this it suffices
to note the following facts.

a) There exist F1; : : : ; Fm 2 KŒY1; : : : ; Yn� such that for all x 2 X one has
�.x/ D .f1.x/; : : : ; fm.x// with Fj .x/ D fj .x/ and fj the class of Fj in
KŒX�, j D 1; : : : ; m.

b) Let G 2 KŒT1; : : : ; Tm� be such that G.w/ D g.w/ for all w 2 W (so that
g is the class of G in KŒW �). We then have that P ´ G.F1; : : : ; Fm/ 2
KŒY1; : : : ; Yn� and its class in KŒX� is G.f1; : : : ; fn/. Moreover, for each
x 2 X we have

.g B �/.x/ D G.f1.x/; : : : ; fm.x// D G.f1; : : : ; fm/.x/ D P.x/:

Thus g B � 2 KŒX�. It is then easy to see that �� is a K-algebra homomorphism,
and this proves (1).

To prove (2), we consider the class tj of the coordinate Tj in Am as a function
on W . We set �.tj / D �j , j D 1; : : : ; m. Since � is a K-algebra homomorphism
(andKŒW � D KŒt1; : : : ; tm�), we have, for each g 2 KŒW �, �.g/ D g.�1; : : : ; �m/

and so �.g/.x/ D g.�1.x/; : : : ; �m.x// for all x 2 X . Let � W X ! Am be the
morphism defined by �.x/ ´ .�1.x/; : : : ; �m.x// for all x 2 X . By what has just
been said it follows that for all g 2 KŒW �we have g B� D �.g/, which means that
� D �� is induced by �.

To conclude it suffices to prove that Im.�/ � W . Let y 2 Im.�/, that is,
y D .�1.x/; : : : ; �m.x// for some x 2 X , and let F 2 I.W /. Then the class f of
F in KŒW � is zero whence F.t1; : : : ; tm/ D f .t1; : : : ; tm/ D 0 in KŒW �. Hence
� .F.t1; : : : ; tm// D 0 in KŒX�. But

0 D � .F.t1; : : : ; tm// D F .�.t1/; : : : ; �.tm// D F.�1; : : : ; �m/:

The �j ’s belong to KŒX� and F.�1; : : : ; �m/ 2 KŒX� is by definition the function
x 7! F .�1.x/; : : : ; �m.x//. Finally, for each x 2 X and for each F 2 I.W /, the
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coordinates .�1.x/; : : : ; �m.x// of y satisfy the condition F .�1.x/; : : : ; �m.x// D
0, from which it follows that y 2 W .

Statement (3) is merely the property of associativity for composition of map-
pings. For each h 2 KŒX� one has

. B �/�.h/ D h B . B �/ D .h B  / B �
D  �.h/ B � D ��. �.h// D .�� B  �/.h/: �

Corollary 2.3.4. A morphism � W X ! W of algebraic sets is an isomorphism if
and only if �� W KŒW � ! KŒX� is an isomorphism of K-algebras.

Proof. In fact we have .��1 B �/� D �� B .��1/� D idKŒX� and .� B ��1/� D
.��1/� B �� D idKŒW �. �

2.4 Rational maps

We recall the definition of the field of fractions of an integral domain.

Definition 2.4.1. LetA be an integral domain. The field of fractions Frac.A/ is the
localizationS�1.A/ ofAwith respect to the multiplicatively closed setS ´ Anf0g,
that is

Frac.A/ D .A � S/= 	;
where “	” is the equivalence relation defined by .a; s/ 	 .a0; s0/ ” as0 D a0s.
Thus we have

Frac.A/ D ˚
a
b

j a; b 2 A; b ¤ 0 and a
b

D a0

b0 () ab0 D a0b
�
:

Let X � An be an irreducible algebraic set on which we consider the Zariski
topology. Let KŒX� be the ring of coordinates and K.X/ the field of fractions
of KŒX�, that is, indicating by xF the class modulo I.X/ of a polynomial F 2
KŒY1; : : : ; Yn�,

K.X/ D ˚
g
h

j g; h 2 KŒX�; h ¤ 0; g
h

D g0

h0 ” gh0 D g0h
�
:

An element f 2 K.X/ is called a rational function on X . Let U � X be an open
and let P 2 U . We say that a rational function f 2 K.X/ is regular at P if there
exists a neighborhood UP of P such that

f D g

h
; g; h 2 KŒX�; h.x/ ¤ 0 for all x 2 UP . (2.1)

We say that f is regular on U if it is regular at each point of U .
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We note explicitly that if f is regular in a point P 0 2 U with P ¤ P 0 then we
will also have that

f D g0

h0 ; g0; h0 2 KŒX�; h0.x/ ¤ 0 for all x 2 UP 0 ; (2.2)

with UP 0 a suitable neighborhood of P 0. Obviously it follows that gh0 D hg0 on
UP \ UP 0 , and (2.1) and (2.2) are said to be local representations of f in P and
P 0 respectively.

The set dom.f / of points x 2 X where f is regular is called the domain or
domain of definition of f . If x 2 dom.f / there then exist an open subset Ux of
X containing x and a local representation f D g

h
with h ¤ 0 in Ux . Obviously

Ux � dom.f /. Note that f W dom.f / ! K is a continuous map in the Zariski
topology.

We now discuss some properties of rational functions.

• A rational function f 2 K.X/ which is regular on an open set U does not,
in general, have a global representation valid on all of U .

Example 2.4.2. Let X � A4.C/ be the quadric with equation Y1Y2 � Y3Y4 D 0.
If we let yi denote the class of Yi in CŒX�, i D 1; : : : ; 4, we have y1y2�y3y4 D 0

in CŒX�. We consider the rational function

f D y1

y3
D y4

y2
2 C.X/:

More precisely, y1

y3
is a representation for f on the open set U3 ´ fy3 ¤ 0g

while y4

y2
represents f on the open set U2 ´ fy2 ¤ 0g. Hence f is defined on

U D U2 [ U3, but does not have a global representation on U .

Exercise 2.4.3. Let f; f 0 2 K.X/ be distinct rational functions. Then there exists
a non-empty open subset U � X such that f .x/ ¤ f 0.x/ for all x 2 U . Let

f D g

h
; f 0 D g0

h0

be defined on the principal open subsets Xh and Xh0 respectively. We have gh0 ¤
g0h since f ¤ f 0. Consider the open subset

U ´ fx 2 X j .gh0 � g0h/hh0.x/ ¤ 0g:
Since U � Xh and U � Xh0 both f and f 0 are defined on U , and for each x 2 U
we have (since .gh0 � g0h/.x/ ¤ 0)

f .x/ D g.x/

h.x/
¤ g0.x/
h0.x/

D f 0.x/:
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The following lemma shows that a rational function regular on all of X is a
polynomial function.

Lemma 2.4.4. Let K be an algebraically closed field and let f 2 K.X/ be a
rational function on an algebraic set X . Then:

(1) The domain dom.f / is a dense open subset of X .

(2) dom.f / D X if and only if f 2 KŒX�.
Proof. We consider the “ideal a of the denominators” of f defined by

a ´ fh 2 KŒX� j f h 2 KŒX�g D ˚
h 2 KŒX� j f D g

h
; g 2 KŒX�� [ f0g:

One then has

X � dom.f / D fx 2 X j h.x/ D 0 for all h 2 ag D V.a/:

Thus X � dom.f / is an algebraic set and so dom.f / D X � V.a/ is a Zariski
open subset ofX ; in particular it is a dense open subset and we have dom.f / D X .
Furthermore, cf. Theorem 2.2.2,

dom.f / D X ” V.a/ D ; ” 1 2 a ” f 2 KŒX�: �

IfX � An,W � Am are algebraic sets, we say that a map � W X ! Am is a ra-
tional map or rational transformation if there exist rational functions f1; : : : ; fm 2
K.X/ such that

�.x/ D .f1.x/; : : : ; fm.x// for every x 2
m\
jD1

dom.fj /: (2.3)

By definition � is defined on the open subset

dom.�/ ´
m\
jD1

dom.fj /;

which we call the domain of �. We will also say that � is regular at the points
x 2 dom.�/.

If�.dom.�// � W then� W X ! W is a rational map between the two algebraic
setsX andW . The map � W X ! W is dominant if �.dom.�// is dense inW , that
is, if � .dom.�// D W .

We note that, given two rational maps � W X ! W ,  W W ! Z between alge-
braic sets, one can then consider the rational map  B � W X ! Z, the composition
of � and  , whenever �.dom.�//\ dom. / ¤ ;. In particular, this is always the
case if � is dominant.
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Remark 2.4.5. Let � W X ! W , with �.X/ dense in W , and  W W ! Z be
rational transformations between algebraic sets. If Im. / is dense in Z then also
Im. B �/ is dense in Z. It follows that . B �/� D �� B  �.

Remark 2.4.6. In the preceding notation, let � W X ! W be a rational map defined
as in (2.3). Each g 2 KŒW � is of the form g D G modulo I.W / for some
G 2 KŒT1; : : : ; Tm� and g B � D F.f1; : : : ; fm/ is a well-defined element of
K.X/. Thus, exactly as in the case of morphisms, one has a morphism of K-al-
gebras �� W KŒW � ! K.X/. However, if h 2 ker.��/ ¤ .0/ then ��.g=h/ is not
defined and so �� does not admit an extension to a homomorphism of K-algebras
K.W / ! K.X/, except precisely in the case in which ker.��/ D .0/. In this
regard we have the following fact.

• If � W X ! W is a dominant rational map, the homomorphism �� W KŒW � !
K.X/ is injective (and so admits an extension to �� W K.W / ! K.X/).

Indeed, if g D G modulo I.W / in KŒW � then

��.g/ D G.f1; : : : ; fm/:

Hence ��.g/ D 0 means that G D 0 on Im.�/, that is,

��.g/.x/ D G.f1.x/; : : : ; fm.x// D 0

for every x 2 X . Hence G D 0 on W because Im.�/ D W ; that is to say,
G 2 I.W / and so g D 0.

In the case of a morphism one has the following equivalence.

• Let � W X ! W be a morphism of algebraic sets. Then �� W KŒW � ! KŒX�

is injective if and only if � is dominant.

Indeed, let g 2 KŒW � be such that g B � D ��.g/ D 0, that is such that
.g B �/.x/ D 0 for all x 2 X , or again, such that G.f1.x/; : : : ; fm.x// D 0 where
the fj are the classes in KŒX� of the polynomials Fj 2 KŒY1; : : : ; Yn� and g is the
class of G 2 KŒT1; : : : ; Tm�. Thus, G vanishes on a dense subset of W (since �
is dominant) and so vanishes on all of W . Therefore G 2 I.W /, from which it
follows that g D 0 and �� is injective. To prove the converse one notes that the
kernel of �� consists of those polynomial functions g 2 KŒW � such that g B� D 0,
namely those g 2 KŒW � that vanish on Im.�/ and hence also on Im.�/. Since
ker.��/ D .0/, we have that g 2 KŒW � vanishes on Im.�/ if and only if it vanishes
on W . From this it follows that W D Im.�/, since otherwise it would be possible
to choose a point w in the open complement of Im.�/ in W , and g 2 KŒW � such
that g.w/ ¤ 0 (it suffices to take g to be a non-zero constant function).
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Theorem 2.4.7. Let � W X ! W be a rational map between algebraic sets. Then
the following holds:

(1) If � is dominant, � defines a homomorphism of K-algebras �� W K.W / !
K.X/.

(2) Conversely, every homomorphism of K-algebras � W K.W / ! K.X/ is of
the form � D �� with � a dominant rational map.

(3) If � W X ! W and  W W ! Z are dominant rational maps, then the
composition . B �/� D �� B  � W K.Z/ ! K.X/ is a homomorphism of
K-algebras.

Proof. The first point follows immediately from Remark 2.4.6, and the proofs of
.2/ and .3/ are slight modifications of the proofs for the corresponding statements
in Theorem 2.3.3. �

Let � W X ! W be a dominant rational map between algebraic sets. We say
that � is a birational isomorphism (or birational transformation, or also that X
and W are birationally equivalent via �) if there exists a dominant rational map
 W W ! X which is inverse to �, that is such that � B D idW and  B � D idX
(where defined).

From Theorem 2.4.7 and the definition just given one has:

Proposition 2.4.8. Two algebraic sets X andW are birationally equivalent if and
only if K.X/ Š K.W /.

2.4.9 Morphism from an open set of an affine variety. Let X , W be affine
varieties, and U � X an open subset.

A morphism ' W U ! W is a rational map ' W X ! W such that U � dom.'/,
so that ' is regular at every point P 2 U .

If U1 � X and U2 � W are opens, then a morphism ' W U1 ! U2 is just a
morphism ' W U1 ! W such that '.U1/ � U2. An isomorphism is a morphism
which has a two-sided inverse morphism.

Note that if X , W are affine varieties, then by Lemma 2.4.4 (2),

fmorphisms ' W X ! W g D fpolynomial maps ' W X ! W gI
the left-hand side of the equality consists of rational objects satisfying regularity
conditions, whereas the right-hand side is defined more directly in terms of poly-
nomials.

With regard to principal open sets, it is opportune to make the following obser-
vation.

• If X � An is an algebraic set and f 2 KŒX�, then Xf is isomorphic to an
affine algebraic set W � AnC1.
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Indeed, let J D I.X/ � KŒY1; : : : ; Yn� and choose F 2 KŒY1; : : : ; Yn�

for which f D F modulo I.X/. Consider the ideal a D .J; YnC1F � 1/ �
KŒY1; : : : ; Yn; YnC1� and let W ´ V.a/ � AnC1.

We observe that at every point x of Xf one has f .x/ ¤ 0. The two maps

� W W ! Xf ; .y1; : : : ; yn; ynC1/ 7! .y1; : : : ; yn/;

 W Xf ! W; .y1; : : : ; yn/ 7! .y1; : : : ; yn; 1=f .y1; : : : ; yn// ;

are mutually inverse morphisms; therefore one has an isomorphism W Š Xf .
For example, if X D A1 and f D y1, so that Xf D X � f0g, then W � A2 is

the hyperbola of equation y1y2 D 1 and the isomorphism W Š Xf is obtained by
projection (Figure 2.1).

↑

→O

W

Xf y1

y2

Figure 2.1

2.4.10 Birational equivalence of an algebraic set with a hypersurface. Let us
here anticipate an important fact to which we shall return in the sequel (cf. §2.6.11
and Remark 3.4.10).

• An algebraic set X � An is birationally equivalent to a hypersurface V ´
V.F / in a suitable affine space.

In this regard we must recall a few results from the theory of fields, the proofs
of which may be found, for example, in [74, II, §3].

Lemma 2.4.11 (Noether Normalization Lemma). Let X � An be an algebraic
set, and let KŒX� D KŒy1; : : : ; yn� be its coordinate ring. Then there exist m � n

linear forms L1; : : : ; Lm in y1; : : : ; yn such that

(1) L1; : : : ; Lm are algebraically independent over K;
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(2) there exists a linear combination LmC1 of the yi with coefficients in
KŒL1; : : : ; Lm� such that K.X/ Š K.L1; : : : ; Lm; LmC1/.

The statement of the preceding lemma may be paraphrased by saying that the
extension K � K.X/ can be obtained as composition of a purely transcendental
extension K � K.L1; : : : ; Lm/ followed by an extension

K.L1; : : : ; Lm/ � K.L1; : : : ; Lm/.LmC1/;

with LmC1 algebraic overK.L1; : : : ; Lm/. ThusK.X/ Š K.L1; : : : ; Lm; LmC1/
with only one relation of algebraic dependence among the generators. The geo-
metric meaning of this fact is the basis for what we are in the process of proving.
Indeed, by Lemma 2.4.11 there is a polynomial f 2 K.L1; : : : ; Lm/ŒYmC1� such
that f .LmC1/ D 0. Hence, eliminating the denominators, we have a polynomial
F 2 KŒY1; : : : ; Ym; YmC1� such that F.L1; : : : ; Lm; LmC1/ D 0. We consider the
hypersurfaceV ´ V.F / � AmC1. One then has a morphism � W X ! V � AnC1
defined by

�.x/ ´ .L1.x/; : : : ; Lm.x/; LmC1.x// ; x 2 X:

By the above remarks, the field of fractions ofX isK.X/ D K.L1; : : : ; Lm; LmC1/
whence X is birationally equivalent to V by Proposition 2.4.8.

2.5 Projective algebraic sets

It is useful to recall a few definitions (see also [75]). A graded ring is a ring R
which is a direct sum

R D
M
d�0

Rd

where the Rd are subgroups of the abelian group of R such that for each pair of
indices d; d 0 � 0 one has

RdRd 0 � RdCd 0 :

Thus R0 is a subring of R and for each d � 0 the subgroup Rd is an R0-module.
The elements of Rd are called the homogeneous elements of degree d . An ideal a
of R is said to be homogeneous if

a D
M
d�0

.a \Rd /;

that is, for each f 2 a the decomposition f D f0 C f1 C � � � C fr with each
fj 2 Rj satisfies the condition that fj 2 a for j D 0; 1; : : : ; r .
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Example 2.5.1. The ring of polynomials KŒT1; : : : ; Tn� is graded in the obvious
way: if one puts

Rd D fhomogeneous polynomials of degree dg,

then RdRd 0 � RdCd 0 and one has the direct sum decomposition

KŒT1; : : : ; Tn� D
M
d�0

Rd :

If a is a homogeneous ideal ofKŒT1; : : : ; Tn� the quotient ringKŒT1; : : : ; Tn�=a
is also graded in a natural way by the grading induced by that of KŒT1; : : : ; Tn�.
More precisely, if 	 W KŒT1; : : : ; Tn� ! KŒT1; : : : ; Tn�=a is the canonical projec-
tion, one has 	.Rd /	.Rd 0/ � 	.RdCd 0/ and the direct sum decomposition

KŒT1; : : : ; Tn�=a D
M
d�0

	.Rd /:

Hereafter we will use Pn ´ Pn.K/ to denote a projective space of dimension
n over an algebraically closed field K, and we use x1; : : : ; xnC1 as homogeneous
coordinates for Pn.

Remark 2.5.2. A polynomial f 2 KŒX1; : : : ; XnC1� vanishes at a point x D
Œx1; : : : ; xnC1� of Pn if it is zero for all choices of the coordinates of x. Let
r ´ deg.f /. If f D Pr

iD0 fi , where the fi are homogeneous polynomials of
degree i for i D 0; : : : ; r , one then has

f .x/ D 0 if and only if f0.x/ D f1.x/ D � � � D fr.x/ D 0:

Indeed, iff .x/ D 0 one hasf .�x1; : : : ; �xnC1/ D Pr
iD0 �ifi .x1; : : : ; xnC1/ D 0

for every integer � > 0. Hence the polynomial p.�/ D Pr
iD0 �ifi .x/ 2 KŒ�� has

infinitely many zeros, which implies that fi .x/ D 0 for every index i , as stated.

Bearing this observation in mind, we define (as in the affine case, see Sec-
tion 2.2) the correspondences V and I as follows. If J is a homogeneous ideal of
KŒX1; : : : ; XnC1� and X is a subset of Pn we put

V.J / ´ fx 2 Pn j f .x/ D 0 for every homogeneous polynomial f 2 J g
and

I.X/ ´ ff 2 KŒX1; : : : ; XnC1� j f .x/ D 0 for all x 2 Xg:
It is easy to verify that I.X/ is a homogeneous ideal and that I.X/ D p

I.X/.
Let x1; : : : ; xnC1 be projective coordinates on Pn. A (projective) algebraic set

of Pn is a subset X � Pn of the form X D V.J / with J a homogeneous ideal
of R D KŒX1; : : : ; XnC1�. The set X is therefore the locus of zeros of a finite
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number of homogeneous polynomials fj 2 Rj , j D 1; : : : ; m, that is, X D V.a/,
where a D .f1; : : : ; fm/. An algebraic subset is said to be irreducible if there is no
decomposition X D X1 [ X2 with X1 and X2 algebraic sets strictly contained in
X . As in the affine case, X is irreducible if and only if I.X/ is a prime ideal. We
define a projective variety to be a pair .X;KŒX�/ whereX � Pn is an algebraic set
and KŒX� ´ KŒX1; : : : ; XnC1�=I.X/ is its coordinate ring.

We note explicitly that, as in the affine case (cf. Section 2.2), the homogeneous
ideal J and its radical

p
J define the same algebraic set X D V.J / D V.

p
J /,

and the same projective variety .X;KŒX�/ (cf. also Theorem 2.5.4). Hereafter it
will sometimes be necessary to distinguish varieties associated to different ideals
having the same radical (cf. Section 3.4).

Example 2.5.3. An algebraic set X given by a single homogeneous polynomial
(form) f D 0 (that is, associated to the principal homogeneous ideal .f / ) is said
to be a hypersurface of Pn. If n D 2 it is a projective plane curve, if n D 3

it is a projective surface, etc. Such a hypersurface X is irreducible if and only
if f is a power of an irreducible polynomial (this is a consequence of the Hilbert
Nullstellensatz, Theorem 2.2.2). If f is a form of degree 1 (respectively of degree 2)
we shall say thatX is a hyperplane (respectively a quadric or hyperquadric) of Pn.

It is simple to verify that the correspondences V , I satisfy the same formal
properties as in the affine case (cf. Section 2.2). In particular, J � I.V .J // for
every homogeneous ideal J and V.I.X// D X if X is a projective algebraic set.

There is, however, one fact to note. The improper ideal .1/ D KŒX1; : : : ; XnC1�
defines the empty set in AnC1 and therefore the empty set in Pn. On the other hand,
the ideal .X1; : : : ; XnC1/ defines the origin in AnC1 and once again the empty set
in Pn, that is, in Pn one has ; D V ..X1; : : : ; XnC1//. The ideal .X1; : : : ; XnC1/
is called the irrelevant ideal, and constitutes a “standard exception” in many state-
ments of the projective theory.

The homogeneous version of the Hilbert Nullstellensatz becomes:

Theorem 2.5.4. LetK be an algebraically closed field. Then for each homogeneous
ideal J � KŒX1; : : : ; XnC1� one has

(1) V.J / D ; if and only if .X1; : : : ; XnC1/ � p
J ;

(2) if V.J / ¤ ;, then I.V .J // D p
J .

Proof. Let 
 W AnC1 n f.0; : : : ; 0/g ! Pn be the canonical projection that defines
Pn. If J � KŒX1; : : : ; XnC1� is a homogeneous ideal we write V a.J / � AnC1
to indicate the affine algebraic set defined by J . Then, since J is homogeneous,
V a.J / has the property that

.˛1; : : : ; ˛nC1/ 2 V a.J / ” .�˛1; : : : ; �˛nC1/ 2 V a.J /; for all � 2 K�;
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and Pn � V.J / D .V a.J /� f.0; : : : ; 0/g/= 	, where x 	 y iff x D �y, � 2 K�,
for x; y 2 V a.J / � f.0; : : : ; 0/g. Hence

V.J / D ; ” V a.J / � f.0; : : : ; 0/g ” .X1; : : : ; XnC1/ � p
J ;

where the last implication follows from the affine version of the Nullstellensatz
(Theorem 2.2.2). Furthermore, if V.J / ¤ ; one has

f 2 I.V .J // ” f 2 I.V a.J // ” f 2 p
J : �

The affine algebraic set V a.J / � AnC1 is called the affine cone over the pro-
jective algebraic set X D V.J /, and it is denoted by C.X/. If


 W AnC1 n f.0; : : : ; 0/g ! Pn

is the map defined by .a1; : : : ; anC1/ 7! Œa1; : : : ; anC1� it follows that C.X/ D

�1.X/ [ f.0; : : : ; 0/g.

Corollary 2.5.5. The correspondences V and I determine mutually inverse bijec-
tions

(1) between the set of homogeneous radical ideals J � KŒX1; : : : ; XnC1� with
J ¤ KŒX1; : : : ; XnC1�, J ¤ .X1; : : : ; XnC1/, and the collection of projec-
tive algebraic subsets X � Pn;

(2) between the set of homogeneous prime ideals J � KŒX1; : : : ; XnC1� such
that J ¤ KŒX1; : : : ; XnC1�, J ¤ .X1; : : : ; XnC1/, and the set of irreducible
projective algebraic subsets X � Pn.

2.5.6 The Zariski topology on a projective variety. In strict analogy with the
affine case, the algebraic subsets X � Pn are the closed subsets of a topology on
Pn: called the Zariski topology on Pn. A base of open subsets is constituted by the
principal open subsets

Pnf ´ Pn � V.f / D fx 2 Pn j f .x/ ¤ 0; f a homogeneous polynomialg:
The space Pn can be covered by nC 1 particular principal open subsets, called

standard affine charts,

Ui ´ PnXi
D fŒx1; : : : ; xnC1� 2 Pn j xi ¤ 0g; i D 1; : : : ; nC 1:

For each i D 1; : : : ; nC 1 one associates to the point Œx1; x2; : : : ; xnC1� 2 Ui the
point �

x1

xi
;
x2

xi
; : : : ;

xi�1
xi

;
xiC1
xi

; : : : ;
xnC1
xi

�
2 An
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to obtain a bijection betweenUi and the affine space An. We say that the xj

xi
, j ¤ i ,

are the non-homogeneous (affine) coordinates in Ui . The Zariski topology on each
chart Ui is that induced by the Zariski topology on Pn.

Let X � Pn be an algebraic set, and let I.X/ be the homogeneous ideal as-
sociated to it. We suppose for simplicity that X is not contained in any of the
hyperplanes with equation Xi D 0, i D 1; : : : ; nC 1. We know that Pn is covered
by nC 1 affine charts Ui D PnXi

D Pn � fXi D 0g with affine coordinates

y
.i/
1 D x1

xi
; : : : ; y

.i/
i�1 D xi�1

xi
; y

.i/
iC1 D xiC1

xi
; : : : ; y

.i/
nC1 D xnC1

xi
: (2.4)

We set
X.i/ D X \ Ui :

ThenX.i/ � An is an affine algebraic set since, for example, for i D nC1 the point

P D Œy
.nC1/
1 ; : : : ; y

.nC1/
n ; 1� 2 X.nC1/ if and only if f .y.nC1/

1 ; : : : ; y
.nC1/
n ; 1/ D 0

for every polynomial f 2 I.X/, and thus X.nC1/ is the locus of the zeros of

polynomials in the affine coordinates .y.nC1/
1 ; : : : ; y

.nC1/
n /. More precisely, the

ideal of X.nC1/ in UnC1 Š An is

I.X.nC1// D ff .X1; : : : ; Xn; 1/ j f 2 I.X/g
and

I.X/d D ˚
XdnC1f

�
X1

XnC1
; : : : ; Xn

XnC1

� j f 2 I.X.nC1//with degf � d
�
;

where I.X/d is the degree d part of the homogeneous ideal I.X/.
We say that the X.i/ are the standard affine charts for X . From what we have

just seen it follows that the correspondence

X 7! X.i/ D X \ Ui
defines a bijection˚

algebraic subsets X � Pn j X 6� fXi D 0g�xy˚
algebraic subsets X.i/ � Ui Š An

�
:

2.5.7 Generic objects. Now that we have introduced the notion of algebraic set
and the Zariski topology we can give the notion of a generic object. We sometimes
use the world general with the same meaning. When a family of objects fXpgp2P

is parameterized by the points of an irreducible algebraic set P (that is, the objects
of the family are in one-to-one correspondence with the points of P), the statement
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“the generic object Xp has the property P ” means that “the subset of points p 2 P

for which the corresponding object Xp has the property P is a non-empty open
subset in the Zariski topology”.

For example, we will say that “x is a generic point” of an algebraic set X to
mean that the set of points of X from which we may choose the point x is a given
open subset that depends on the context, that is, one must exclude that x be in the
zero sets of certain polynomials not belonging to I.X/.

We shall often consider “generic” linear spaces Sr in Pn; by this we will mean
that the Sr vary in an open set of the Grassmann variety G.r; n/ which parameter-
izes the r-dimensional linear subspaces of Pn (and for this we refer the reader to
Chapter 12).

Again, given, for example, a point p0 2 P2, we say that “a generic line ` � P2

does not contain the point p0” to express the fact that the set of lines containing p0
is contained in a proper subvariety of the dual plane P2

�
(which consists of all the

lines in P2; see, for instance, [52, Vol. 1, Chapter V, §5]). Here is another example:
we say that “the generic conic is non-degenerate” (namely the associated matrix has
rank 3) to express the fact that the subset of conics in P2 can be parameterized by
the points of P5, and that the subset consisting of the degenerate conics is contained
in a proper subvariety of P5.

Exercise 2.5.8. Prove that, given a linear subspaceSr � Pn of dimension r � n�2,
the generic line of Pn does not intersect Sr .

2.6 Rational maps and birational equivalence

The contents of this paragraph are essentially taken from [74, III, §5]. Let X
be an irreducible algebraic set and let I.X/ � KŒX1; : : : ; XnC1� be the prime
ideal associated to X . Unlike what happens in the affine case, a polynomial F 2
KŒX1; : : : ; XnC1� can fail to define a polynomial function Pn ! K. In order for
F to define a polynomial function on Pn one must have that, for every � 2 K and
for every x D Œx1; : : : ; xnC1� 2 Pn,

F.x1; : : : ; xnC1/ D F.�x1; : : : ; �xnC1/

and this happens only if F is homogeneous of degree zero, that is, constant. Simi-
larly, if we set f D F modulo I.X/ we see that f defines a polynomial function
X ! K only if F is homogeneous of degree zero.

A rational function is a function X ! K defined by

f .x/ D g.x/

h.x/
; x 2 X;

where g; h 2 KŒX1; : : : ; XnC1� are homogeneous polynomials of the same de-
gree d . If h.x/ ¤ 0, the quotient g.x/=h.x/ is well defined, since for 0 ¤ � 2 K
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one has

g.�x1; : : : ; �xnC1/
h.�x1; : : : ; �xnC1/

D �dg.x1; : : : ; xnC1/
�dh.x1; : : : ; xnC1/

D g.x1; : : : ; xnC1/
h.x1; : : : ; xnC1/

:

Obviously g=h and g0=h0 define the same rational function on X if and only if
h0g � g0h 2 I.X/. From this it follows that the set of all rational functions is a
field, called the field of fractions of X ,

K.X/ ´ ˚
g
h

j g; h 2 KŒX1; : : : ; XnC1�; h … I.X/� = 	;
where g, h are homogeneous of the same degree and “	” is the equivalence relation
defined by

g

h
	 g0

h0 ” h0g � g0h 2 I.X/:
The notion of regular rational function is given just as in the affine case. If

f 2 K.X/ is a rational function, we say that f is regular in a point x 2 X if there
exists an expression f D g=h with g; h homogeneous polynomials of the same
degree such that h.x/ ¤ 0. The domain of f is

dom.f / ´ fx 2 X j f is regular in xg:
We set

OX;x ´ ff 2 K.X/ with f regular at xg:
Then OX;x is a subring of the field of fractions K.X/, called the local ring of X
at x.

Proposition 2.6.1. LetX � Pn be an algebraic set not contained in the hyperplane
of equation Xi D 0 and let X.i/ D X \ PnXi

be the corresponding affine chart.
One then has an isomorphism of the fields of fractions K.X/ Š K.X.i//, i D
1; : : : ; nC 1.

Proof. Suppose for example that i D n C 1. If g; h 2 KŒX1; : : : ; XnC1� are
homogeneous polynomials of the same degree d and h 62 I.X/, then g=h 2 K.X/
and the restriction to X.nC1/ is the function

g.X1=XnC1; : : : ; Xn=XnC1; 1/
h.X1=XnC1; : : : ; Xn=XnC1; 1/

2 K.X.nC1//:

Thus one obtains a map K.X/ ! K.X.nC1//, and it is easy to see that it is an iso-

morphism ofK-algebras. To construct the inverse map lety1 ´ y
.nC1/
1 ; : : : ; yn ´

y
.nC1/
n be the affine coordinates in X.nC1/ and let

p.y1; : : : ; yn/

q.y1; : : : ; yn/
2 K.X.nC1//
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be a rational function on X.nC1/. Put p D P modulo I.X/, q D Q modulo I.X/
and introduce the homogeneous coordinates given by (2.4). Then the quotientP=Q
may be rewritten as

P.X1=XnC1; : : : ; Xn=XnC1/
Q.X1=XnC1; : : : ; Xn=XnC1/

D G.X1; : : : ; XnC1/
H.X1; : : : ; XnC1/

;

whereG,H are homogeneous polynomials of the same degree inKŒX1; : : : ; XnC1�.
Passing to the quotient modulo I.X/, the fraction G=H gives rise to a rational
function g=h 2 K.X/. �

Rational maps between projective (or affine) varieties are defined by way of
rational functions. If X � Pn is an irreducible algebraic set, then a rational map
(or rational transformation) ' W X ! Am is defined by setting

'.x/ ´ .f1.x/; : : : ; fm.x//; x 2 X;
where f1; : : : ; fm 2 K.X/. This map ' is well defined on the intersectionTm
jD1 dom.fj /.

A rational map (or rational transformation) ' W X ! Pm is defined by setting

'.x/ ´ Œf1.x/; : : : ; fmC1.x/�; x 2 X;
where f1; : : : ; fmC1 2 K.X/ and it is well defined on the set, which is an open
dense subset of X (cf. Lemma 2.4.4),

mC1\
iD1

dom.fi / � fx 2 X j f1.x/ D � � � D fmC1.x/ D 0g:

One notes that if g 2 K.X/ is a non-zero element, then gf1; : : : ; gfmC1 define
the same rational map. Then, assuming that the image of X is not contained in the
hyperplane of Pm defined by XmC1 D 0, one can suppose that one has fmC1 D 1.
From this it follows that there exists a bijection between the two sets (for the natural
immersion Am � Pm see, for instance, the discussion in [13, Vol. I, Chapter 5])

frational maps ' W X ! Am � Pmg
and ˚

rational maps ' W X ! Pm such that '.X/ 6� fXmC1 D 0g�;
inasmuch as each of these maps is given by m elements f1; : : : ; fm 2 K.X/.

The preceding remarks are summarized in the following definition.

Definition 2.6.2. A rational map ' W X ! Pm is regular at a point x 2 X if there
exists an expression ' D .f1; : : : ; fmC1/, fi 2 K.X/, i D 1; : : : ; mC 1, such that
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a) the rational functions f1; : : : ; fmC1 are regular at x;

b) fi .x/ ¤ 0 for at least one index i .

The set on which ' is regular is the domain of '; it is an open subset of X and
is denoted by dom.'/.

If W � Pm is an algebraic set and '.dom.'// � W , ' W X ! W is a rational
map between the two algebraic sets X and W . As in the affine case, we shall say
that ' W X ! W is dominant if '.dom.'// is dense inW , that is, ifW is the closure
of '.dom.'//.

Note that if ' D .f1; : : : ; fmC1/ W X ! Pm is a rational map then there is an
open subset U � X such that 'jU W U ! Am

.i/
D PmXi

� Pm is a morphism: it
suffices to take U 
 T

j dom.fj =fi /, where fi ¤ 0. Then 'jU is the morphism
given by ffj =fig, j D 1; : : : ; mC 1, j ¤ i .

Definition 2.6.3. If U 
 X is an open subset of a projective variety X , then a
morphism ' W U ! W is a rational map ' W X ! W such that U � dom.'/.
Thus, a morphism ' W U ! W is a rational map which is regular on all of U .

Example 2.6.4 (Projection of a quadric from one of its points). The map 
 W P3 !
P2 defined by Œx1; x2; x3; x4� 7! Œx2; x3; x4� is a rational map, and indeed is a
morphism away from the point P0 D Œ1; 0; 0; 0�. LetQ � P3 be a quadric contain-
ing the point P0. Each point P of P2 corresponds to the line ` of P3 that passes
through P and P0, and ` generally meets Q at P0 and at a second point '.P /.
Putting P 7! '.P / we obtain a rational map ' W P2 ! Q.

For example, ifQ has equationX1X4 D X2X3, then the restriction 
jQ W Q !
P2 has as its inverse the rational map ' W P2 ! Q given by Œx2; x3; x4� 7!	
x2x3

x4
; x2; x3; x4



.

As an exercise, determine dom.
/ and dom.'/.

As in the affine case (cf. Section 2.4), we say that a dominant rational map
' W X ! W between two projective varieties is a birational isomorphism or bi-
rational transformation (or also, that X and W are birationally equivalent or
birationally isomorphic via ') if there exists an inverse dominant rational map
 W W ! X , that is, such that ' B  D idW ,  B ' D idX (where defined).

Proposition 2.6.5. Let ' W X ! W be a rational map between projective (or affine)
varieties. The following three conditions are equivalent.

(1) ' is a birational equivalence.

(2) ' is dominant and '� W K.W / ! K.X/ is an isomorphism.

(3) There exist open sets X0 � X , W0 � W such that ' restricted to X0 is an
isomorphism ' W X0 ! W0.
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Proof. The K-algebra homomorphism '� is defined exactly as in the affine case
(cf. Theorem 2.4.7) and the equivalence .1/ , .2/ is obtained as in Theorem 2.4.7
and Proposition 2.4.8.

The implication .3/ ) .1/ follows from the fact that an isomorphism ' W X0 !
W0 and its inverse '�1 W W0 ! X0 give rise to a birational map X ! W .

The essential implication is .1/ ) .3/. We give a proof as in [74, p. 87]. By
hypothesis, there exist mutually inverse rational maps' W X ! W and W W ! X .
We set

X 0 ´ dom.'/ � X and ˛ ´ 'jX 0 W X 0 ! W;

and similarly

W 0 ´ dom. / � W and ˇ ´  jW 0 W W 0 ! X:

In the diagram

ˇ�1.X 0/
ˇ �� X 0 ˛ �� WT

W

���������������������

all the arrows are morphisms and the equality of the morphisms idW jˇ�1.X 0/ D ˛Bˇ
follows from the equality of the rational maps idW D ' B  . Thus

˛.ˇ.x// D x for all x 2 ˇ�1.X 0/.

We set X0 ´ ˛�1ˇ�1.X 0/ and W0 ´ ˇ�1˛�1.W 0/. Then by construction
' W X0 ! ˇ�1.X 0/ is a morphism. On the other hand, ˇ�1.X 0/ � W0 since
x 2 ˇ�1.X 0/ implies that ˛.ˇ.x// D x and so x 2 ˇ�1˛�1.W 0/ D W0. It follows
that ' W X0 ! W0 is a morphism. In the same way one proves that  W W0 ! X0
is a morphism. �

The preceding proposition has an important consequence.

Corollary 2.6.6. Given a projective (or affine) varietyX , the following two condi-
tions are equivalent.

(1) The field of fractions K.X/ is a purely transcendental extension of K, that
is, K.X/ Š K.t1; : : : ; td / for some integer d .

(2) There is a dense open subset X0 � X which is isomorphic to a dense open
subset U0 � Ad .

A variety that satisfies the conditions of Corollary 2.6.6 is said to be rational.
In particular condition (2) is the precise statement of the fact that a rational variety
X can be parameterized by d independent variables (cf. Section 6.6).

We now give some further properties of rational transformations between pro-
jective varieties.
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2.6.7 (Local representation of a rational transformation). Let X be a subvariety
of Pn. In the set of all rational transformations ' W Pn ! Pm we introduce an
equivalence relation with respect to X in the following way.

Let '1; '2 W Pn ! Pm be two rational transformations. We say that '1 	 '2 if
for each point x 2 X at which '1 and '2 are both defined one has '1.x/ D '2.x/.
Note that the set dom.'1/ \ dom.'2/ \ X of points of X in which '1 and '2 are
both defined is an open subset of X (cf. Definition 2.6.2).

Let Œ'� be an equivalence class and � 2 Œ'� one of its representatives (so that
' D � onU ´ dom.'/\dom.�/\X ). The closureX 0 D �.U / does not depend
on � but only on the class Œ'�; we shall say that Œ'� is a rational transformation
X ! X 0 and that X 0 is a rational transform of the projective variety X .

The rational transformation Œ'� is defined outside of its exceptional set E ´T
�2Œ'�.E� \ X/, where E� ´ Pn n dom.�/. For every point x 2 X the image

Œ'�.x/ is the image �.x/ under any rational transformation � 2 Œ'� such that
x 2 dom.�/.

From the fact that the ring of polynomialsKŒX1; X2; : : : ; XnC1� is a Noetherian
ring one easily deduces that a finite number of representatives of Œ'� suffice to
describe Œ'�: that is, there exist a finite number h of representatives �1; �2; : : : ; �h
of Œ'� such that for every x 62 E one has Œ'�.x/ D �j .x/ for some j D 1; : : : ; h.

Example 2.6.8. Consider two surjective rational transformations �1; �2 W P2 !
P1, defined by

�1.x/ D Œx0; x2�; �2.x/ D Œx2; x1�;

where x D Œx0; x1; x2� is a point of P2. One sees immediately that they are
equivalent with respect to the conic � with equation x0x1 � x22 D 0. Hence we
have

E�1
D P2 n dom.�1/ D A1 D Œ0; 1; 0�; E�2

D P2 n dom.�2/ D A0 D Œ1; 0; 0�;

and thus E D E�1
\E�2

\ � D ;. One then has

�1.� n A1/ D P1 n Œ0; 1�; �2.� n A2/ D P1 n Œ1; 0�I
and therefore the rational transform � 0 of � is � 0 D P1. Thus �1 and �2 are two
representatives of an everywhere defined rational transformation Œ'� W � ! P1.

2.6.9 (The fibers of a rational transformation). If ' W X ! W is a morphism
between projective varieties, the fiber of ' at (or over) a pointw 2 W is the inverse
image '�1.w/ of w; it is a closed subset of X since ' is obviously a continuous
map.

If' W X ! W is a rational transformation between projective varieties,X � Pn,
W � Pm, let U D dom.'/ be the open set of X where ' is defined, and let
'U W U ! '.U / be the restriction morphism of ' to U . If w 2 '.U / we call the
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projective closure '�1.w/ of '�1
U .w/ inX the fiber of ' overw, that is, the closure

of '�1
U .w/ in the Zariski topology onX . More precisely, '�1.w/ is the union of the

inverse image '�1
U .w/ ofw under 'U and of the exceptional setE' D X n dom.'/

of ', cf. §2.1.1.
If the fiber '�1.w/ over a generic point w (which means variable in any open

set) of 'U .U / contains only one point not belonging to E' , the transformation is
birational. In this case if

Yj D 'j .X1; : : : ; XnC1/; j D 1; : : : ; mC 1; (2.5)

are the equations of a rational transformation Pn ! Pm that determine ' (by
restriction to X ) and if .f1; : : : ; ft / is a system of generators of the homogeneous
ideal of X , the system of equations´

Yj D 'j .X1; : : : ; XnC1/;
f˛.X1; : : : ; XnC1/ D 0;

(2.6)

where j D 1; : : : ; mC1 and˛ D 1; : : : ; t , permits one to recover theX1; : : : ; XnC1
as algebraic and uniform functions (that is, “single valued”) and hence as rational
functions of the Y1; : : : ; YmC1. Indeed, since the X1; : : : ; XnC1 are homogeneous
coordinates, from (2.6) one can deduce (see, for instance, Exercise 13.1.1) formulas
like the following: ´

Xi D �i .Y1; : : : ; YmC1/;
gˇ .Y1; : : : ; YmC1/ D 0;

(2.7)

where �i , i D 1; : : : ; nC1, are homogeneous polynomials all of the same degree in
the ringKŒY1; : : : ; YmC1� and the polynomialsgˇ , ˇ D 1; : : : ; s, comprise a system
of generators of the ideal ofW � Pm. Thus one has, together with' W X ! W , also
a birational transformation � W W ! X ; moreover ' and � are mutually inverse.

2.6.10 (Finite morphisms). Let ' W X ! W be a dominant morphism between
affine varieties. By what we have seen in Section 2.4, it defines an immersion
'� W KŒW � ! KŒX� and thus KŒW � can be regarded as a subring of KŒX�. One
says that ' is a finite morphism if KŒX� is an integral extension of KŒW �.

Now let ' W X ! W be a finite morphism (and so, by definition, also dominant)
between affine varieties.

Since KŒW � can be viewed as a subring of KŒX� (via '�), we will use the
same symbol to denote a function of KŒW � and its transform under '�, that is the
“same” function regarded as an element ofKŒX�. An ideal a ofKŒW �, generated by
g1; : : : ; gt , gives rise to an ideal '�.a/ ofKŒX�, generated by '�.g1/; : : : ; '�.gt /,
that is, by g1; : : : ; gt inKŒX�. Thus '�.a/ D aKŒX� is the extended ideal of a. In
particular if mw is the maximal ideal associated to the point w 2 W , mwKŒX� is
the ideal of KŒX� whose zeros are the points of the fiber '�1.w/.
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Let X � An, W � Am. Then there exist m polynomial functions f1; : : : ; fm
such that '.x1; : : : ; xn/ D .w1; : : : ; wm/ with wj D fj .x1; : : : ; xn/. The coordi-
nates x1; : : : ; xn regarded as elements of KŒX� D KŒx1; : : : ; xn� are integral over
KŒW �, and so for each i D 1; : : : ; n one has an equation of the form

x
ri
i C b

.i/
1 .w/x

ri �1
i C � � � C b.i/ri .w/ D 0;

wherew D .w1; : : : ; wm/. This equation (which is a consequence of the equations
wj D fj .x1; : : : ; xn/ that define the morphism) is satisfied by the i th coordinate
of the points of the fiber '�1.w/. Hence these points are finite in number for each
w 2 W .

• A finite morphism ' W X ! Y is surjective.

In fact, if there were w 2 W with f �1.w/ D ;, by what we have just seen one
would have the contradiction mw D KŒX�.

• (Finiteness is a local property) A morphism ' W X ! W of projective (or
affine) varieties is finite if there exists an affine open cover fU˛g of W such
that '�1.U˛/ is affine and the restriction '˛ W '�1.U˛/ ! U˛ is a finite
morphism for each index ˛.

2.6.11 (Birational equivalence of a projective variety with a hypersurface). Among
the transformations between two projective spaces one has in particular the projec-
tions.

Projecting the points of Pn from a subspace Sk of Pn onto a subspace Sk0 skew
to it and of dual dimension (that is, kCk0 D n� 1) one obtains a rational mapping
' W Pn ! Sk0 defined by setting '.x/ D J.x; Sk/ \ Sk0 for all x 62 Sk . The
exceptional set E' of the mapping ' coincides with Sk (cf. Exercise 2.7.37).

Let Vd be a variety of pure dimension d in Pn, with d < n (cf. Section 3.3).
Let x be a point not belonging to Vd and let ' W Pn ! Sn�1 be the projection of
Pn from x onto a hyperplane Sn�1. The restriction 'Vd

of ' to Vd is the projection
of Vd from x onto Sn�1. Since ' is a rational transformation having x as its
only exceptional point (this means that E' D fxg) and x 62 Vd , the restriction
'Vd

W Vd ! Sn�1 is a morphism and has all its fibers finite (since otherwise Vd
would contain the line joining x to the image '.P / of a point P 2 Vd ). Moreover,
the image V 0 of Vd is a variety of pure dimension d .

If d < n � 1, we repeat the procedure: that is, we project V 0
d

D '.Vd / from a
point of Sn�1 not belonging to V 0

d
onto an Sn�2 � Sn�1, and so on. After a finite

number of projections we arrive at a surjective rational mapping 
 W Vd ! Pd with
all fibers finite (cf. §2.6.10).

If the process of successive projections described above is terminated at the next
to last step, one obtains a rational map 	 W Vd ! Xd , which is surjective and has
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all fibers finite, where Xd is a hypersurface in PdC1. With a suitable choice for
the successive centers of projection, one proves that it is always possible to arrange
matters so that 	 is a birational isomorphism (cf. §3.4.5). Therefore, every pure
d -dimensional projective variety is the birational transform of a hypersurface in
PdC1 (a fact discussed in §2.4.10 for the affine case and to which we will return at
greater length in Remark 3.4.10) and can therefore be represented in the following
form: ´

xi D 'i .u0; : : : ; udC1/; i D 0; : : : ; n;

f .u0; : : : ; udC1/ D 0;
(2.8)

where '0; '1; : : : ; 'n 2 KŒu0; : : : ; udC1� are homogeneous polynomials all of the
same degree, and f D 0 is the equation of the hypersurface Xd � PdC1.

If Xd is a hyperplane of PdC1 (and then one can suppose that it has equation
udC1 D 0) equation (2.8) is replaced by a representation of the type

xi D 'i .u0; : : : ; ud /; i D 0; 1; : : : ; n; (2.9)

and Vd is a rational variety (i.e., Vd is the birational transform of a linear space).
One notes however that, given formulas like those of (2.9), they do not in general

give a rational variety but only a unirational variety, that is, the rational transform
of a linear space.

2.7 Complements and exercises

As usual, unless otherwise specified, K denotes an algebraically closed field.

2.7.1. A descending chain X1 
 X2 
 � � � of algebraic sets becomes stationary.

It suffices to note that the associated chain of ideals I.X1/ 
 I.X2/ 
 � � � is stationary
and that I.X/ D I.X 0/ implies X D X 0.

2.7.2. Every algebraic set X is a finite union of irreducible algebraic sets.

Indeed, if for some X this were not true, that X would not be irreducible, and if X D
X1 [ X2 the reducibility property would also hold for at least one of the Xi , i D 1; 2.
Suppose X2 D X 0

2
[ X3; then in the same way X3 D X 0

3
[ X4, and so on. Thus one

arrives at a non-stationary sequence of strict inclusions X � X2 � X3 � X4 � � � � , which
contradicts Exercise 2.7.1.

2.7.3. The decomposition of an algebraic set X D X1 [X2 [ � � � [Xt , with each
Xi an irreducible algebraic set, is reduced if none of the Xi is superfluous. Every
algebraic set X uniquely determines its reduced decomposition.

Let X D X1 [ X2 [ � � � [ Xt D X 0
1

[ X 0
2

[ � � � [ X 0
t 0 . Since Xj ´ X \ Xj D

.[iX
0
i
/ \ Xj D S

i .X
0
i

\ Xj / and since Xj is irreducible, there is an index i such that
Xj � X 0

i
. Similarly for some index h we have X 0

i
� Xh. Hence Xj � X 0

i
� Xh. From

this it follows that Xj .D Xh/ D X 0
i
, and so on.
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2.7.4 (Primary decomposition). The decomposition of an affine algebraic set X D
V.a/ as a union of irreducible algebraic sets corresponds to the primary decomposi-
tion of the ideal a, that is, to the representation of a as an intersection a D q1\� � �\
qh of primary ideals qj . More precisely, one has I.X/ D p

a D p1\p2\� � �\ph
where pj D p

qj is a prime ideal and soX D X1[X2[� � �[Xh, withXj D V.pj /,
j D 1; : : : ; h.

2.7.5. If ' W X ! Y is a morphism of algebraic sets and X 0 is a closed subset of
X the restriction 'jX 0 W X 0 ! Y is a morphism.

2.7.6. Let ˛.t/; ˇ.t/ 2 KŒt�. Then ' W A1 ! A2 defined by '.t/ D .˛.t/; ˇ.t// is
a morphism. Verify that Im.'/ is a closed subset of A2.

2.7.7 (Frobenius morphism). Let K D Zp D Z=.p/, and let p be a prime
number. The Frobenius morphism ' W An ! An is the morphism defined by
'.x1; : : : ; xn/ D .x

p
1 ; : : : ; x

p
n /. If X � An is a closed subset, the Frobenius

morphism maps X into X .

For each f 2 KŒT1; : : : ; Tn�, we have .f .x1; : : : ; xn//
p D f .x

p

1
; : : : ; x

p
n /. The points

of X that have coordinates in K are precisely those points of X which are fixed under the
action of '. In fact, every � 2 Zp satisfies the equation T p � T D 0.

2.7.8. Let ' W C ! A1, where C is the hyperbola with equation xy D 1 in the
affine plane and where ' is defined by '.x; y/ D x. Is the morphism ' surjective?
Is it dominant?

2.7.9. Let Y � X be closed subsets of An. Then every regular function on Y is
the restriction of a regular function onX . Hence, the inclusion i W Y ,! X induces
a surjective morphism i� W KŒX� ! KŒY �.

2.7.10. Let ' W X ! Y be a morphism between affine algebraic sets. If the induced
morphism '� W KŒY � ! KŒX� is surjective, then ' is injective and Im.'/ is a closed
subset of Y .

Suppose that '.x/ D '.x0/, with x and x0 2 X . Then, since '� is surjective, every
function f 2 KŒX� necessarily assumes the same value at x and x0. This implies that
x D x0.

The kernel of '� is an ideal of KŒY �, and if '� is surjective it follows that Im.'/ D
V.ker.'// by way of the correspondence V .

2.7.11. In A2 we consider the curve with equation y D P.x/ where P.x/ 2 KŒx�
is a polynomial. The projection .x; y/ 7! .x; 0/ on the x-axis gives an isomorphism
between this curve and A1.

2.7.12. The diagonal of an affine algebraic set X , 
X ´ f.x; x/ j x 2 Xg, is
closed in X �X .

The diagonal
An of An is the closed linear subvariety V.T1 �TnC1; : : : ; Tn �T2n/ �
An � An and hence the diagonal 
X , of a closed subset X of An, is the closed subset
.X �X/ \
An of X �X .
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2.7.13. In the affine plane A2 we consider two curves C1 and C2 with equa-
tions f1 D 0, f2 D 0. The points they have in common are the solutions
of the system f1.Y1; Y2/ D 0, f2.T1; T2/ D 0, Y1 D T1, Y2 D T2. But
f1.Y1; Y2/ D f2.T1; T2/ D 0 are the equations of C1 � C2 in the product space
A4 D A2 � A2 and Y1 D T1, Y2 D T2 are the equations of the diagonal 
 in
A4. Thus the problem of finding the intersection of the two curves C1, C2 can be
translated into the problem of finding the intersection of the closed subset C1 �C2
with the linear subspace 
.

More generally, let V1, V2 be algebraic subsets of An and consider the space
A2n regarded as a product An�An. If Y1; : : : ; YnIT1; : : : ; Tn are the coordinates in
A2n, then the generators of the ideal of the diagonal
 are Yi �Tj , i; j D 1; : : : ; n.
One then sees that the map ' W V1 \V2 ! .V1 �V2/\
 defined by '.v/ D .v; v/

is an isomorphism.

2.7.14. Consider in the affine plane the curve C with equation x2 D y2 C y3 and
the line ` with equation y D 1. If P is a point of ` and O is the coordinate origin,
the line rOP intersects C in three points, two (at least) of which always coincide
with O . Discarding the two intersections that fall at O there remains a third, say
'.P / (which could possibly itself also coincide with the originO). In this way one
obtains a morphism ' W ` ! C . Prove that the associated morphism '� is injective.

2.7.15. LetX1 andX2 be algebraic sets and consider the projectionspi W X1�X2 !
Xi , i D 1; 2, defined by p1.x; y/ D x, p2.x; y/ D y. They are surjective but not
injective. Verify that p�

1 , p�
2 are injective but not surjective morphisms.

2.7.16. An isomorphism ' W X ! X , with X an affine algebraic set, is said to be
an automorphism of X . The automorphisms of A1 are precisely the maps of the
form 'a;b W x 7! ax C b, a ¤ 0. They form a group.

2.7.17. The map '.x; y; z/ ´ .x; yC˛.x/; zCˇ.x; y//, with ˛, ˇ polynomials,
is an automorphism of A3 (note that its inverse is .x0; y0; z0/ 7! .x0; y0 �˛.x0/; z0 �
ˇ.x0; y0//). Similarly, the map '.x; y/ ´ .x; y C ˛.x// is an automorphism of
A2. Verify that these automorphisms form a group.

2.7.18. Let ˛1; : : : ; ˛n be polynomials in KŒx1; : : : ; xn�. If

'.x1; : : : ; xn/ D .˛1.x1; : : : ; xn/; : : : ; ˛n.x1; : : : ; xn//

is an automorphism of An the determinant of the Jacobian matrix
�
@˛i

@xj

�
belongs to

K�. The map that associates ' to det
�
@˛i

@xj

�
2 K� is a homomorphism of the group

of automorphisms of An into the multiplicative group K�. (Note however that the
converse does not hold in general. More precisely, if ˛1; : : : ; ˛n 2 KŒX1; : : : ; Xn�
have Jacobian matrix with determinant in K�, then, on setting x ´ .x1; : : : ; xn/,
the map x 7! .˛1.x/; : : : ; ˛n.x// does not necessarily define an automorphism
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of An when the characteristic of the base field is positive; in characteristic zero, it
defines an automorphism of An in the casen D 1, and forn � 2 the question remains
an open problem (the “Jacobian Conjecture”): for this see [109, Introduction].)

2.7.19. Study the morphism ' W A2
.x;y/

! A2
.x0;y0/

defined as follows: '.x; y/ D
.x; xy/. Is ' an isomorphism? Is Im.'/ an open set? Is Im.'/ either closed or
dense? (Note that Im.'/ D A2 n fx0 D 0g [ .0; 0/.)

Study the restriction of' to the parabola with equationy D x2 or to the parabola
with equation y2 D x. Are these restrictions isomorphisms (between the parabola
and its image)?

2.7.20. Consider two planes 
 and 
 0 and let x1, x2 be coordinates in 
 , and y1,
y2 coordinates in 
 0. Let moreover C1 � 
 and C2 � 
 0 be two curves with
equations x2 � x1 � 1 D 0 and .y2 � y1 � 1/2 � 4y1 D 0 respectively. Verify that
.x1; x2/ 7! .y1 D x21 ; y2 D x22/ defines an isomorphism ' W C1 ! C2. (Note that
the inverse transformation '�1 is .y1; y2/ 7! ..y2�y1� 1/=2; .y2�y1C 1/=2/.)

2.7.21. Let X be an irreducible affine algebraic set and let x be a point of X .
We denote the local ring of x by KŒX�x , namely, the localization of KŒX� in its
maximal ideal mx formed by the functions inKŒX� which do not assume the value
0 at x. The functions ofK.X/ that are regular at the point x are of the form P

Q
with

P;Q 2 KŒX�, Q.x/ ¤ 0; therefore they are the elements of the local ring KŒX�x .
It follows that KŒX� D T

x2X KŒX�x (cf. Section 2.6).

2.7.22. An affine algebraic setX is said to be unirational if there exists a dominant
rational transformation An ! X of some affine space An intoX . IfX is unirational
there exists an integer d such that K.X/ � K.t1; : : : ; td / (cf. Corollary 2.6.6).

2.7.23. An irreducible quadric X of An is rational; that is, a hypersurface with
equation F.T1; : : : ; Tn/ D 0 with F.T1; : : : ; Tn/ a polynomial of degree two is
a rational variety. A birational isomorphism between the quadric X in An and
An�1 is obtained by way of the projection of X from any one of its non-singular
points P , which means that P must be a point in which at least one of the first
order partial derivatives of F does not vanish, cf. Section 3.1. If X passes through
the origin .0; : : : ; 0/ and F D A1.T1; : : : ; Tn/ � A2.T1; : : : ; Tn/ with the Ai ho-
mogeneous polynomials of degree i , i D 1; 2 (and A1 ¤ 0/, a birational iso-
morphism ' W An�1

.Y1;:::;Yn�1/
! X is given, for example, by .y1; : : : ; yn�1/ 7!

.y1�; : : : ; yn�1�; �/, where � D A1.y1;:::;yn�1;1/
A2.y1;:::;yn�1;1/

. If U1 is the open subset of An�1

complementary to the quadric of equation A2.Y1; : : : ; Yn�1; 1/ D 0 and U2 is the
open set formed by the points of X for which Tn ¤ 0, then the restriction of
' W U1 ! U2 is bijective.

2.7.24. In the affine space A3 over a fieldK (of characteristic 0 � p ¤ 3) consider
the surface F defined by the equation x3 C y3 C z3 D 1. It is a rational surface.
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Indeed, if r , s are two skew lines lying in F (for example those with equations: xCy D
z � 1 D 0 and x C "y D z C " D 0, "3 D 1, " ¤ 1), a line transversal to r and s (that is,
intersecting both) meets F in a point P (besides the two points in which it intersects r and s)
and meets a fixed plane 
 in a point P 0. Then P 7! P 0 defines a birational isomorphism
' W F ! 
 .

2.7.25. In A2 consider the curve C with equation x2 C y2 D 1 and f D x
y�1 2

K.C/. For what points of C is the rational function f defined?

2.7.26. In what points of the plane curve C of equation x3 C y3 � x D 0 is the
rational function x

xCy 2 K.C/ defined?

2.7.27. In what points of the plane curve C of equation y2 D x2 C x3 is the
function x

y
regular? Prove that x

y
62 KŒC �.

2.7.28. Prove that the plane curve C with equation .x2 C y2/2 D xy is rational.

Consider the circle �t of equation x2 C .y � t /2 D t2 passing through the origin O
and tangent there to the x-axis. Away from O , the intersection C \ �t consists of a single
point Pt . Then t 7! Pt defines a birational isomorphism of A1 with C .

2.7.29. Let A be a K-algebra and let X be an irreducible closed subset of some
affine space An such thatA Š KŒX�. ThenA does not have 0-divisors and is finitely
generated over K. Conversely, a K-algebra A with no 0-divisors and finitely gen-
erated overK is the ring of coordinates of some irreducible closed affine algebraic
set.

Let A D KŒt1; : : : ; tn�. The K-homomorphism 	 W KŒT1; : : : ; Tn� ! KŒt1; : : : ; tn�

defined by Ti 7! ti is surjective and hence KŒt1; : : : ; tn� Š KŒT1; : : : ; Tn�=ker.	/. The
kernel ker.	/ is a prime ideal of KŒT1; : : : ; Tn� inasmuch as KŒT1; : : : ; Tn� is a domain.
Thus A is the coordinate ring of the algebraic set associated to ker.	/.

2.7.30. An extensionL ofK is isomorphic to the field of rational functions of some
irreducible affine algebraic set if and only if L is finitely generated over K.

Indeed, if L D K.t1; : : : ; tn/, then L is the field of fractions of KŒt1; : : : ; tn�, that is
L D K.X/, where X is the algebraic set having KŒt1; : : : ; tn� as coordinate ring.

2.7.31 (Lüroth’s theorem, cf. Theorem 7.4.1). Let X be an affine algebraic set of
dimension 1. If there exists a dominant rational transformation A1 ! X , then
X is birationally isomorphic to A1 (that is, there exists a birational isomorphism
A1 ! X ).

Here we give the outline of an algebraic proof, based on the theory of fields. See
Theorem 7.4.1, p. 218 for an elementary proof that uses elimination theory.

By hypothesis K � K.X/ 
 K.t/ with t indeterminate and where the first inclusion is
strict.
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We observe that t is algebraic overK.X/ because an arbitrary element � 2 K.X/ has the
form � D A.t/

B.t/
, with A.t/; B.t/ 2 KŒt�, and so t is a root of �B.T / � A.T / 2 k.�/ŒT � �

K.X/ŒT �.
Let F 2 K.X/ŒT � be the monic minimal polynomial of t over K.X/ and suppose that

� D A.t/
B.t/

is one of the coefficients of F and � 62 K (such a � certainly exists). One proves
that �B.T / � A.T / has degree not greater than (and so equal to) the degree n of F with
respect to T . Thus �B.T / � A.T / is the minimal polynomial of t over K.�/. Then

ŒK.t/ W K.�/� D ŒK.t/ W K.X/�ŒK.X/ W K.�/�;

and so n D nŒK.X/ W K.�/�. Therefore ŒK.X/ W K.�/� D 1 which implies that K.X/ D
K.�/.

2.7.32. Let X � Pn be an algebraic set. Then X D ; if and only if there exists an
integer s � 0 such that .X1; : : : ; XnC1/s � I.X/.

Let fF1; : : : ; Frg be a homogeneous basis for the ideal I.X/, and letA be the polynomial

ringK
h

X1

Xi
; X2

Xi
; : : : ;

XnC1

Xi

i
. InA consider the polynomialsFj

�
X1

Xi
; X2

Xi
; : : : ;

XnC1

Xi

�
, j D

1; : : : ; r ; if X D ; they generate the whole ring A. Then

1 D G1

�
X1

Xi

; : : :

�
F1

�
X1

Xi

; : : :

�
C � � �

and so, for an integer si � 0, and for each i D 1; : : : ; nC 1,

X
si

i
D G1F1 C � � � 2 I.X/:

2.7.33 (Quasi-projective varieties). A quasi-projective variety is an open subset V
of a projective algebraic setX � Pn. Thus, V D AnB ,A,B closed in Pn,B � A.

2.7.34. Let X be a quasi-projective variety in Pn, x a point of X and f D P
Q

a homogeneous rational function of degree zero with Q.x/ ¤ 0: f is a regular
function at x. A function f regular at each point x 2 X is a regular function onX .
The regular functions onX form a ringKŒX�. In contrast to what happens in the case
of closed algebraic sets, it is not necessarily true that KŒX� is a finitely generated
K-algebra (see, for instance [2, Chapter 14]). If X is a projective algebraic set one
has KŒX� D K.

2.7.35. Each point x of a quasi-projective variety X has an affine neighborhood,
that is a neighborhood isomorphic to an affine algebraic set.

Let X � Pn and suppose that x is contained in the chart U1 of Pn, that is x D
Œx1; : : : ; xnC1�withx1 ¤ 0. SinceX , as a quasi-projective variety, is of the formX D AnB ,
A, B closed subsets of Pn, it follows that X \ U1 D W n W1, where W D A \ U1,
W1 D U1 \ B are closed subsets of U1. Since x 2 X \ U1, then x 62 W1. Therefore there
exists f 2 KŒW � such that f .W1/ D 0 and f .x/ ¤ 0. The principal open affine W1 of W
is a neighborhood of x, isomorphic to an affine closed subset (cf. Section 2.3).



2.7. Complements and exercises 49

2.7.36. The composition of birational isomorphisms is a birational isomorphism.

Let X , W , Z be projective algebraic sets and ˛ W X ! W , ˇ W W ! Z birational
isomorphisms. Then there exist two open subsetsX0 � X ,W0 � W such that the restriction
˛jX0

W X0 ! W0 is an isomorphism. Similarly there exist two open setsW 0
0

� W ,Z0 � Z

such that ˇjW 0
0

W W 0
0

! Z0 is an isomorphism. Then

˛�1.W0 \W 0
0/ Š W0 \W 0

0 Š ˇ.W0 \W 0
0/:

This means that the restriction ˇ B ˛j˛�1.W0\W 0
0/ W ˛�1.W0 \W 0

0
/ ! ˇ.W0 \W 0

0
/ is an

isomorphism.

2.7.37 (Projections). In Pn let E be a linear space of dimension d , with equations
L1 D L2 D � � � D Ln�d D 0 where the Li are linearly independent linear forms.
The rational map p W Pn ! Pn�d�1 given by p.x/ D ŒL1.x/; : : : ; Ln�d .x/�,
x 2 Pn, is said to be the projection from E. It is regular at Pn n E. If X is
an algebraic set of Pn, the restriction pjX W X ! Pn�d�1 is a finite morphism if
X \E D ;; it is a rational mapping if X \E is non-empty (and distinct from X ).

2.7.38. The rational map' W P2 ! P2, given by Œx1; x2; x3� 7! Œx2x3; x3x1; x1x2�,
is a birational automorphism of P2 (that is, a birational isomorphism of P2 with
itself). Prove that the inverse image '�1.r/ of a line r is a conic which describes
a homaloidal net as r varies, that is, a net with three base points, cf. Section 9.1.
Find two open subsets between which the restriction of ' is an isomorphism.

2.7.39. Let X � Pn be a projective variety. There exist forms of every order m
which do not vanish on any irreducible component of X .

If X D S
i Xi , with irreducible components Xi and xi 2 Xi , consider a hyperplane

containing none of the points xi (which are finite in number) and its arbitrary powers.

2.7.40. Let ' W X ! Y be a morphism of quasi-projective varieties X , Y . Then,
its graph �' ´ f.x; '.x//; x 2 Xg is a closed subset ofX �Y , and is isomorphic
to X .

One has �' D .' � idY /
�1.
Y /, which is the inverse image of a closed set under a

morphism and hence is closed. The restriction of the projection p W X � Y ! Y to �' is
inverse to the graph morphism X ! �' , defined by x 7! .x; '.x//, as required.

2.7.41. Let X be a projective variety, and Y quasi-projective. Then the second
projection p2 W X � Y ! Y is a closed map, that is, it sends closed sets into closed
sets.

This is a general topological fact. If X , Y are topological spaces with X compact, then
the projection p W X � Y ! Y is a closed map (see for instance [18, Corollary 5, p. 103]).

2.7.42. Let X be a projective variety, Y a quasi-projective variety and ' W X ! Y

a morphism. Then the image Im.'/ is closed in Y .
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Indeed, the graph �' is a closed subset of X � Y by Exercise 2.7.40; on the other hand
Im.'/ D p2.�'/, where p2 W �' ! Y denotes the projection on the second factor. Then
Im.'/ is closed by Exercise 2.7.41.

2.7.43. LetX1 � Am andX2 � An be algebraic sets. ThenX1�X2 is irreducible
if and only if X1 and X2 are irreducible.



Chapter 3

Geometric Properties of Algebraic Varieties

In this chapter we discuss some fundamental properties of algebraic varieties which
we will use in the sequel. By an algebraic variety over the base fieldK we mean an
ordered pair .X;KŒX�/ where X is an affine or projective algebraic set and KŒX�
is its coordinate ring. Unless otherwise specified, the base field K is algebraically
closed and of characteristic zero. Usually K will be the complex field C.

In Section 3.1 we define the tangent space of a variety at one of its points and we
introduce the notions of singularity and dimension. Since these are local properties
one can in practice assume thatX is an affine algebraic set. In this section we have
substantially followed the exposition of [74, III, §6]. In Section 3.2 we introduce
the notion of independent polynomials and study a useful characterization of them
in terms of the rational map they define.

In Section 3.3 we return to the concept of dimension, discussing some equivalent
formulations in the case of a projective algebraic set. Here we have followed
the discussion given in [48, Lecture 11], to which we refer the reader for further
interesting examples.

In Section 3.4, making use of classical methods of projective geometry, we
introduce and study the order of a projective variety, as well as the notions of
tangent cone and multiplicity of a singular point.

3.1 Tangent space, singularities and dimension

In this section we assume thatX is an affine algebraic set and we begin by consider-
ing the case of hypersurfaces. Let f 2 KŒY1; : : : ; Yn� be an irreducible polynomial,
f … K, and put X ´ V.f / � An. Let x D .a1; : : : ; an/ be a point of X and
` a line that passes through x. Since x 2 X , the coordinates of x are roots of the
restriction of f to ` (in the sense specified in the course of the proof of the following
proposition).

Proposition–Definition 3.1.1. Let X D V.f / � An be an irreducible hypersur-
face. The point x 2 X is a multiple root of fj` if and only if the line ` is contained
in the affine linear subspace Tx.X/ � An defined by the equation

nX
iD1

@f

@Yi
.x/.Yi � ai / D 0:

The space Tx.X/ is called the tangent space to X at x. We say that every line
contained in Tx.X/ and passing through x is tangent to X at x.
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If .@f=@Yi /.x/ D 0 for each i D 1; : : : ; n we say that each line ` passing
through x is tangent to X at x.

Proof. We consider parametric equations for ` of the form

Yi D ai C bi t; i D 1; : : : ; n;

where x D .a1; : : : ; an/ and .b1; : : : ; bn/ is the direction vector of `. Then

fj` ´ f .: : : ; ai C bi t; : : : / D g.t/

is a polynomial in t and t D 0 is a root of g.t/ (corresponding to the point x). Thus
t D 0 is a multiple root of g.t/ if and only if @g

@t
.0/ D 0, that is, if and only if

nX
iD1

bi
@f

@Yi
.x/ D 0:

This condition is equivalent to the fact that ` � Tx.X/. �

Definition 3.1.2. The point x is non-singular .or regular, or simple/ forX D V.f /

if .@f=@Yi /.x/ ¤ 0 for some i D 1; : : : ; n; otherwise x is a singular point (or
multiple, or a singularity) for X .

The preceding definitions lead to the following conclusion:

• The tangent spaceTx.X/ to a hypersurfaceX at one of its pointsx is an .n�1/-
dimensional affine subspace of An if x is non-singular, and Tx.X/ D An if
x 2 X is singular.

Remark 3.1.3. Suppose that K D R or K D C, and that .@f=@Yi /.x/ ¤ 0 for
example for i D 1. Consider the map p W An ! An defined by .Y1; : : : ; Yn/ 7!
.f; Y2; : : : ; Yn/; the determinant of the Jacobian matrix0BBB@

@f

@Y1
.x/

@f

@Y2
.x/ : : :

@f

@Yn
.x/

0 1 : : : 0

0 0 : : : 1

1CCCA
is non-zero at x. Thus, by the Inverse Function Theorem, there exists a neigh-
borhood U � An, x 2 U , such that the restriction pjU W U ! p.U / � An is a
diffeomorphism of the neighborhood U with the open set p.U / of An in the usual
Euclidean topology of Rn or Cn, that is, pjU is bijective and both p and p�1 are dif-
ferentiable functions of real or complex variables. In other words, .f; Y2; : : : ; Yn/
is a new system of coordinates on An near to x. This implies that an euclidean
neighborhood of x in the hypersurface X of equation f D 0 is diffeomorphic to
an open set in An�1 with coordinates .Y2; : : : ; Yn/. We express this fact by saying
that close to the non-singular point x the non-singular variety X has .Y2; : : : ; Yn/
as local parameters (cf. paragraph 3.1.15).
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Let us consider the set

Reg.X/ ´ fx 2 X; x non-singularg
of non-singular points of X .

Proposition 3.1.4. LetX D V.f / � An be an irreducible hypersurface. Suppose
that K D C. Then the set Reg.X/ is a dense open subset of X in the Zariski
topology.

Proof. The complement of Reg.X/ is the set Sing.X/ of singular points, which is
defined by the equations

@f

@Yi
D 0; i D 1; : : : ; n:

Hence Sing.X/ D V
�
f; @f
@Y1
; : : : ; @f

@Yn

� � An is a closed subset ofX . But,X being
irreducible (since f is), in order to prove that Reg.X/ is a dense open subset it
suffices to prove that it is non-empty (cf. Section 2.2).

We proceed by contradiction. Suppose that X D V.f / D Sing.X/. Then each
of the polynomials @f=@Yi must vanish on X , that is, @f=@Yi 2 I.X/ D p

.f / D
.f / (cf. Theorem 2.2.2). It follows that @f=@Yi is divisible by f inKŒY1; : : : ; Yn�;
but considered as a polynomial in Yi , @f=@Yi has degree strictly less than the degree
of f . Hence if @f=@Yi is divisible by f , @f=@Yi it must necessarily be the zero
polynomial. This is possible only if Yi does not appear in f ; and if this happens
for every index i , then f is a constant, which we have excluded. �

We can now define the tangent space to an affine algebraic set X at one of its
points, and study some properties related to the concept of dimension (see also
Section 3.3 for further characterizations of the notion of dimension).

Definition 3.1.5. Let X � An be an affine algebraic set and x D .a1; : : : ; an/ a
point of X . For each f 2 KŒY1; : : : ; Yn� we set

f .1/x ´
nX
iD1

@f

@Yi
.x/.Yi � ai /:

This is an affine linear polynomial, that is, linear plus a constant (the first order part
of the Taylor series development of f at x). We define the tangent space Tx.X/ of
X at x by setting

Tx.X/ ´
\

f 2I.X/
ff .1/x D 0g:

If X D V.a/ (where we can always suppose that a is a radical ideal and so
a D I.X/, cf. Theorem 2.2.2) one sees immediately that the linear parts of the
polynomials of a generate an ideal a.1/ ´ ff .1/x ; f 2 ag and so

Tx.X/ D V.a.1//:
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Let ff1; : : : ; fmg be a set of generators of I.X/. Since the linear part of the
sum of two polynomials is the sum of the linear parts of the two summands, one
has that for each g 2 I.X/, the linear part g.1/x of g in x is a linear combination
of those of the fj , j D 1; : : : ; m. Therefore, a.1/ D .f

.1/
1;x ; : : : ; f

.1/
m;x/. Hence the

definition of Tx.X/ becomes simply

Tx.X/ D V.f
.1/
1;x ; : : : ; f

.1/
m;x/ D

m\
jD1

ff .1/j;x D 0g � An:

Proposition 3.1.6. Given an algebraic set X � An, the function X ! N defined
by x 7! dim Tx.X/, x 2 X , is an upper semi-continuous function in the Zariski
topology on X , that is, for every integer r , the subset

S.r/ ´ fx 2 X j dim Tx.X/ � rg � X

is closed in X .

Proof. Let ff1; : : : ; fmg be a set of generators for I.X/ and

Tx.X/ D
m\
jD1

ff .1/j;x D 0g � An

the tangent space to X at x. Then x 2 S.r/ if and only if the Jacobian matrix�
@.f1; f2; : : : ; fm/

@.Y1; Y2; : : : ; Yn/
.x/

�
´

�
@fj

@Yi
.x/

�
iD1;:::;n; jD1;:::;m

(3.1)

has rank � n�r , that is, if and only if every minor of order .n�rC1/�.n�rC1/
of the matrix (3.1) vanishes. On the other hand, every element .@fj =@Yi /.x/ of the
matrix is a polynomial function of x. Thus every minor is the determinant of a
matrix of polynomials, and so is itself a polynomial. From this it follows that
S.r/ � X � An is an algebraic set. �

Corollary–Definition 3.1.7. There exist an integer r and an open dense subset
X0 � X � An such that

dim Tx.X/ D r for x 2 X0 and dim Tx.X/ � r for all x 2 X .

We say that r D dim.X/ is the dimension of X , and that n � r D codimAn.X/ is
the codimension ofX . A point x 2 X is said to be non-singular if dim Tx.X/ D r ,
and singular if dim Tx.X/ > r; the variety X is non-singular if each of its points
is non-singular. The closed subset Sing.X/, the locus of the singular points of X ,
is the singular locus of X ; it is empty if X is non-singular.
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Proof. Let r ´ minx2Xfdim Tx.X/g; then we obviously have S.r/ D X and the
set S.r C 1/ is strictly contained in X . Hence

S.r/ � S.r C 1/ D fx 2 X j dim Tx.X/ D rg
is open and non-empty. �

3.1.8 (Jacobian criterion). We remark explicitly that a sufficient condition for the
point x to be simple on the affine variety X � An.K/, the locus of zeros of the

ideal .f1; f2; : : : ; fm/, is that the rank at x of the Jacobian matrix
�
@.f1;f2;:::;fm/
@.Y1;Y2;:::;Yn/

�
should be n � dim.X/. This follows easily on noting that

n � dim.X/ � %

�
@.g1; : : : ; gt /

@.Y1; : : : ; Yn/
.x/

�
� %

�
@.f1; : : : ; fm/

@.Y1; : : : ; Yn/
.x/

�
D n � dim.X/;

where .g1; g2; : : : ; gt / is the ideal I.X/ of X .
This proposition is known as the “Jacobian criterion for simple points”. Under

the hypothesis that the field K is of characteristic zero, and so, in particular, if
K D R or K D C, the Jacobian criterion is a necessary and sufficient condition
for non-singularity, provided that .f1; f2; : : : ; fm/ is the ideal I.X/. The reader
wishing to study this question in detail can consult Zariski’s fundamental memoir
[119], as well as [103, Chapter II] and [81, Chapter III].

As an immediate consequence, one has that if x is a simple point for X and F
is an irreducible hypersurface passing simply through x and not containing X , the
necessary and sufficient condition for x to be a multiple point of the varietyX \F ,
the intersection ofX withF , is that the tangent hyperplane toF at x should contain
the tangent space to X at x (cf. §5.2.4). Indeed, if f D 0 is the equation of F , this
is the necessary and sufficient condition to have

%

�
@.f1; : : : ; fm; f /

@.Y1; Y2; : : : ; Yn/
.x/

�
D %

�
@.f1; f2; : : : ; fm/

@.Y1; Y2; : : : ; Yn/
.x/

�
D n � dim.X/ D codAn.X \ F / � 1:

We shall also need several elementary notions from the theory of fields (which
may be found, for example, in [62]).

Definition 3.1.9. If k � K is an extension of fields, the transcendence degree ofK
over k is the maximal number of elements of K that are algebraically independent
over k. It is indicated by tr:deg:kK.

More precisely, given˛1; : : : ; ˛m 2 K, we say that˛1; : : : ; ˛m are algebraically
independent over k if they are not solutions of a common polynomial in kŒT �. We
say that ˛1; : : : ; ˛m generate the transcendental part of the extension k � K if
K is an algebraic extension of k.˛1; : : : ; ˛m/, where k.˛1; : : : ; ˛m/ is the field of



56 Chapter 3. Geometric Properties of Algebraic Varieties

fractions of kŒ˛1; : : : ; ˛m� (i.e., of the k-algebra kŒ˛1; : : : ; ˛m� generated as a ring
by k and ˛1; : : : ; ˛m). We say that ˛1; : : : ; ˛m form a transcendence basis if they
are algebraically independent over k and they generate the transcendental part of
the extension k � K. It is not difficult to prove that a transcendence basis is a
maximal set of algebraically independent elements ofK over k, and also a minimal
set of generators (of the transcendental part of the extension k � K), and that any
two transcendence bases of K over k have the same number of elements.

3.1.10 The case of hypersurfaces. IfX D V.f / � An is an (irreducible) hyper-
surface defined by a non-constant polynomial f , then dim.X/ D n � 1. Indeed,
for each non-singular point x 2 X (such points form a dense open subset in view
of Proposition 3.1.4), the tangent space is defined by the linear equation f .1/x D 0

and so r D minx2Xfdim Tx.X/g D n � 1:
We now prove that tr:deg:KK.X/ D n � 1; from this it follows, in particular,

that for a hypersurface X ,

dim.X/ D tr:deg:KK.X/ D n � 1:
Consider the quotient mapping

	 W KŒY1; : : : ; Yn� ! KŒX� D KŒY1; : : : ; Yn�=.f /

and let yi ´ 	.Yi /, i D 1; : : : ; n. Suppose, to fix our ideas, that the indeterminate
Y1 actually appears in f and consider the elements y2; : : : ; yn 2 K.X/. If one had
tr:deg:KK.X/ < n� 1, they would be algebraically dependent and so there would
exist a polynomial g.Y2; : : : ; Yn/ 2 KŒY2; : : : ; Yn� such that

g.y2; : : : ; yn/ D 0;

that is, g 2 ker.	/ D .f /. But that is absurd because Y1 does not appear in g.
Hence tr:deg:KK.X/ � n � 1. Since one certainly has tr:deg:KK.X/ < n, it

follows that tr:deg:KK.X/ D n � 1.
The remainder of this section deals with the proof, via reduction to the case

of hypersurfaces, of the fact that the equality dim.X/ D tr:deg:KK.X/ holds for
every algebraic set X � An. The first thing to prove is that for a point x 2 X ,
the tangent space Tx.X/, which, by what has just been seen, is defined in terms
of a particular system of coordinates in An, is really independent of the choice of
coordinates.

3.1.11 Intrinsic nature of the tangent space. Let x D .x1; : : : ; xn/ 2 X � An

be a point of an affine variety X . By means of the coordinate change

Y 0
i ´ Yi � ai ; i D 1; : : : ; n;
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we may suppose that x D .0; : : : ; 0/ is the coordinate origin. Then Tx.X/ � An

is a linear subspace of Kn. Let mx be the ideal of x in KŒX� and let us denote by
Mx D .Y1; : : : ; Yn/ � KŒY1; : : : ; Yn� the ideal of x in An. Then obviously

mx Š Mx=I.X/:

Theorem 3.1.12. Let X � An be an affine algebraic set and x 2 X one of its
points. With the preceding notation,

(1) there is a natural isomorphism of vector spaces

.Tx.X//
� Š mx=m

2
x;

where . /� denotes the dual of a vector space;

(2) if f 2 KŒX� is such that f .x/ ¤ 0, and Xf � X is a principal affine open
subset, then the natural map Tx.Xf / ! Tx.X/ is an isomorphism.

Proof. Let .Kn/� be the vector space of linear forms on Kn. A basis for .Kn/�
is fY1; : : : ; Yng. Since x D .0; : : : ; 0/, for each f 2 KŒY1; : : : ; Yn� the linear part
f
.1/
x is in a natural way an element of the dual vector space .Kn/�. Consider the

map
d W Mx ! .Kn/�

defined by putting d.f / ´ f
.1/
x for each f 2 Mx .

The map d is obviously surjective. Indeed, the linear formsY1; : : : ; Yn 2 .Kn/�
are the images of the elements Y1; : : : ; Yn 2 Mx . Moreover ker.d/ D M 2

x since

f
.1/
x D 0 if and only if f has quadratic terms in Y1; : : : ; Yn in minimal degree; that

is, if and only if f 2 M 2
x . Thus

Mx=M
2
x Š .Kn/�:

This proves (1) in the particular case X D An.
In the general case one has the restriction map .Kn/� ! .Tx.X//

�, dual to the
inclusion Tx.X/ � Kn, which sends a linear form � on Kn into its restriction to
Tx.X/. By composition one obtains a map

D W Mx ! .Kn/� ! .Tx.X//
�;

which is surjective since both factors are such. It suffices to prove that

ker.D/ D M 2
x C I.X/; (3.2)

because from this it follows that

mx=m
2
x D Mx=.M

2
x C I.X// Š Tx.X/

�:
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To prove (3.2) one notes that f 2 ker.D/ if and only if f .1/x jTx.X/
D 0, that is to

say
f .1/x D

X
i

aig
.1/
i;x for some gi 2 I.X/, ai 2 KŒY1; : : : ; Yn�

(recall that Tx.X/ � Kn is the subspace defined by fg.1/x D 0; g 2 I.X/g). The
last condition is equivalent to

f �
X
i

aigi 2 M 2
x for some gi 2 I.X/,

which means that f 2 M 2
x C I.X/.

To prove (2) one observes that I.Xf / D .I.X/; Tf � 1/ � KŒY1; : : : ; Yn; T �.
Hence if y D .a1; : : : ; an; b/ 2 Xf , then Ty.Xf / � AnC1 is defined by the
equations that define Tx.X/ � An with the addition of a linear equation in which
T appears, of type cT � f .x/b D 0, for some constant c ¤ 0. �

Corollary 3.1.13. Let X � An be an affine algebraic set and x 2 X one of its
points. The tangent space Tx.X/ depends only on a neighborhood of x.

Furthermore, if x 2 X0 and y 2 W0, where X0 andW0 are open subsets in the
affine varieties X and W respectively, and ' W X0 ! W0 is an isomorphism such
that '.x/ D y, then there exists a natural isomorphism Tx.X0/ ! Ty.W0/. Hence
dim Tx.X0/ D dim Ty.W0/.

In particular, if X and W are birationally equivalent, dim.X/ D dim.W /.

Proof. By considering, if necessary, a smaller neighborhood of x in X , we may
suppose X0 to be isomorphic to an affine algebraic set (cf. §2.4.9). Then W0 too is
affine, and ' induces an isomorphism KŒX0� Š KŒW0� sending the ideal mx of x
into the ideal my of y. Therefore, mx=m

2
x Š my=m

2
y , that is, Tx.X0/ Š Ty.W0/.

�

Theorem 3.1.14. For each affine algebraic set X � An,

dim.X/ D tr:deg:KK.X/:

Proof. Equality holds for hypersurfaces, as observed in §3.1.10. Moreover, every
affine variety is birationally equivalent to a hypersurface (cf. §2.4.10) and both
terms of the required equality are the same for birational equivalent varieties. �

3.1.15 Local parameters. Let X be an affine variety of dimension n, x 2 X a
non-singular point of X , OX;x the local ring of x and mx � OX;x the maximal
ideal. One says that u1; : : : ; un are local parameters at x if they form a basis of
mx=m

2
x . Given the isomorphism dx W mx=m

2
x ! .Tx.X//

� of Theorem 3.1.12
one has that the following data are equivalent.
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(1) u1; : : : ; un are local parameters.

(2) dxu1; : : : ; dxun are linearly independent over Tx.X/.

(3) The system of linear equations dxu1 D � � � D dxun D 0 has only the trivial
solution in Tx.X/.

Let u1; : : : ; un be local parameters at x (and thus rational functions on X , reg-
ular and zero at x). One can find an affine neighborhood U of x (and containingT
i dom.ui /) such that u1; : : : ; un 2 KŒU �, cf. Exercise 2.7.35. If Fi is a poly-

nomial that determines the function ui (i.e., ui D Fi modulo I.U /) on U and if
Xi is the hypersurface of U of equation Fi D 0, one has I.X/ C .Fi / � I.Xi /

(since I.X/ � I.Xi / and Fi 2 I.Xi /) and so, bearing in mind the equations for
the tangent space given in Definition 3.1.5, one has Tx.Xi / � Li , where Li is the
subspace of Tx.X/ defined by the equation dxFi D 0. Since dim Tx.X/ D n,
one has dimLi D n � 1 and so dim Tx.Xi / � n � 1. On the other hand (cf.
Corollary–Definition 3.1.7) dim Tx.Xi / � dimXi � n � 1, and so dim Tx.Xi / D
dimXi D n� 1. ThenX1; : : : ; Xn intersect (or cut) transversally at x, that is, x is
non-singular for each of them and in some neighborhood of x one has

T
i Xi D fxg.

[Indeed, a component of
T
i Xi having positive dimension and passing through x

would have tangent space in x of positive dimension and contained in all the spaces
Tx.Xi / which, rather, have in common only the point x in view of the preceding
equivalent characterization of local parameters.]

If u1; : : : ; un are local parameters at the non-singular point x one has

mx D .u1; : : : ; un/:

Indeed, let U � AN be an affine neighborhood of x in which one has
T
i Xi D

fxg. If T1; : : : ; TN are the coordinates in AN and t1; : : : ; tN are the corresponding
functions on U and if x D .0; : : : ; 0/ one has

mx D .t1; : : : ; tN / D .u1; : : : ; un; t1; : : : ; tN /:

By definition of local parameters one has tN D �1u1C� � �C�nunC� with � 2 m2
x .

That is,

tN D �1u1 C � � � C �nun C �1u1 C � � � C �nun C �0
1t1 C � � � C �0

N tN ;

�i 2 K, �i ; �0
j 2 mx . Hence

tN .1 � �0
N / D .�1 C �1/u1 C � � � C .�n C �n/un C �0

1t1 C � � � C �0
N�1tN�1:

But �0
N 2 mx; so 1 � �0

N is invertible in OX;x and therefore tN belongs to the
ideal .u1; : : : ; un; t1; : : : ; tN�1/OX;x . Hence, on iterating, one obtains the desired
conclusion.
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Exercise 3.1.16. Let X � An, Y � Am be affine algebraic sets and let X � Y �
AnCm be their product. Prove that

dim.X � Y / D dim.X/C dim.Y /:

Letx1; : : : ; xn be coordinates in An regarded as elements ofKŒX�; and similarly
let y1; : : : ; ym in KŒY �. We put d1 D dim.X/, d2 D dim.Y /. If fx1; : : : ; xd1

g,
fy1; : : : ; yd2

g are transcendence bases respectively for K.X/ and K.Y /, the ele-
ments x1; : : : ; xd1

; y1; : : : ; yd2
are algebraically independent overK. Indeed, were

they not, there would exist a polynomial F D F.X1; : : : ; Xd1
; Y1; : : : ; Yd2

/ non-
zero on X � Y such that, for each point x D .x1; : : : ; xn/ in X , the polynomial
F.x1; : : : ; xd1

; Y1; : : : ; Yd2
/ 2 KŒY1; : : : ; Yd2

� would vanish on Y and so would
have all of its coefficients zero. Analogously, for each y D .y1; : : : ; ym/ 2 Y ,
the polynomial F.X1; : : : ; Xd1

; y1; : : : ; yd2
/ would have all of its coefficients

equal to zero; but this contradicts the hypothesis on F . It then suffices to note
that K.X � Y / D K.x1; : : : ; xn; y1; : : : ; ym/ is an algebraic extension of
K.x1; : : : ; xd1

; y1; : : : ; yd2
/.

3.1.17 Singularities and tangent spaces for projective varieties. We begin by
recalling the following formula for homogeneous functions due to Euler which we
will use hereafter.

Exercise 3.1.18 (Euler’s formula). Let � be a homogeneous differentiable function
of x1, x2, x3, : : : , and let m be the degree of �. ThenX

i

xi
@�

@xi
D m�: (3.3)

Conversely, every differentiable solution of this equation is homogeneous of
degree m in x1, x2, x3, : : : .

Indeed, let � D �.x1; x2; x3; : : : / be a homogeneous function of x1, x2, x3; : : :
of degree m and differentiable. From the equality

�.tx1; tx2; tx3; : : : / D tm�.x1; x2; x3; : : : /

one has, on deriving both sides with respect to t , thatX
i

xi�xi
.tx1; tx2; tx3; : : : / D mtm�1�.x1; x2; x3; : : : /

from which (3.3) follows on putting t D 1.
Conversely, let � D �.x1; x2; x3; : : : / be a solution of (3.3) so that one has the

identity X
i

xi�xi
.x1; x2; x3; : : : / D m�.x1; x2; x3; : : : /:



3.1. Tangent space, singularities and dimension 61

Therefore, one then also has, on replacing xi by txi ,X
i

txi�xi
.tx1; tx2; tx3; : : : / D m�.tx1; tx2; tx3; : : : /: (3.4)

If we set T .t/ ´ �.tx1; tx2; tx3; : : : /, then (3.4) may be rewritten in the form

t
@T .t/

@t
D mT.t/

or
@

@t

�
T .t/

tm

�
D 0:

Therefore T .t/=tm D C , where C is independent of t . Setting t D 1 one obtains
C D �.x1; x2; x3; : : : / and so T .t/ D tm�.x1; x2; x3; : : : /, that is,

�.tx1; tx2; tx3; : : : / D tm�.x1; x2; x3; : : : /:

This proves that � is a homogeneous function of degree m.

3.1.19. It is hardly necessary to observe how the notion of singularity given in
Corollary–Definition 3.1.7 extends to the projective case. If x is a point of a pro-
jective algebraic setX � Pn we know in fact that x is contained in a suitable affine
neighborhood X0 � X : it suffices to take, for example, X0 to be a principal open
subset containing x (cf. §2.5.6 and also Exercise 2.7.35). Then x is singular or non-
singular according to its singularity or non-singularity forX0. By Corollary 3.1.13
this fact does not depend on the choice of X0.

We observe that if X is reducible, then each of its non-singular points belongs
to only one of the irreducible components of X .

Let us consider the important case of hypersurfaces. Let then X D V.f /

with f a homogeneous form of degree r . Analogously to the affine case (cf.
Definition 3.1.2) we have that a point x D Œx1; : : : ; xnC1� 2 X is singular if and
only if

@f

@x1
.x/ D � � � D @f

@xnC1
.x/ D 0: (3.5)

One notes, however, that in the projective case the conditions (3.5) are equivalent
to the vanishing at the point x of n arbitrarily chosen of the nC1 partial derivatives
@f=@xi , i D 1; : : : ; nC 1. Indeed, by Euler’s formula (3.3) one has

rf D
nC1X
iD1

xi
@f

@xi

and thus the preceding assertion follows from the fact that f .x/ D 0.
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Thus we conclude that x 2 X D V.f / is singular if and only if nC1 arbitrarily
chosen out of the following nC 2 conditions hold:

f .x/ D 0;
@f

@x1
.x/ D � � � D @f

@xnC1
.x/ D 0:

If x is a non-singular point the tangent space toX at x is the hyperplane in Pn with
equation

nC1X
iD1

xi
@f

@xi
.x/ D 0: (3.6)

Note also that if x belongs to the affine chart X.i/ D X \ PnXi
, then the hyperplane

with equation (3.6) is the projective closure of the tangent hyperplane to X.i/ at x
(cf. §2.5.6).

In the general case, if X � Pn is an algebraic subset and x 2 X a point
belonging to the affine chart X.i/, the tangent space Tx.X/ � Pn to X at x is the
projective closure of the tangent space Tx.X.i// to X.i/ at x. (Bear in mind the
“local structure” of the tangent space expressed by Corollary 3.1.13.)

See also §5.2.4 for related questions.

3.2 Independence of polynomials. Essential parameters

Considerm polynomials fj .x1; x2; : : : ; xn/ inKŒx1; x2; : : : ; xn�. We will say that
they are independent if there is no non-zero polynomial

�.y1; y2; : : : ; ym/ 2 KŒy1; y2; : : : ; ym�
such that the polynomial �.f1; f2; : : : ; fm/ 2 KŒx1; x2; : : : ; xn� is identically zero.
This is equivalent to saying that the morphism ' W An.K/ ! Am.K/, defined by
the equations 8̂̂̂̂

<̂
ˆ̂̂:
y1 D f1.x1; x2; : : : ; xn/;

y2 D f2.x1; x2; : : : ; xn/;
:::

ym D fm.x1; x2; : : : ; xn/;

is surjective. Indeed, if Im.'/ D Am.K/, then there are no non-zero polynomials
that vanish in each point

.f1.x1; x2; : : : ; xn/; f2.x1; x2; : : : ; xn/; : : : ; fm.x1; x2; : : : ; xn// 2 Im.'/:

Conversely, if ' is not surjective, then the image V of ' is a closed algebraic
subset of Am.K/ and if

g1.y1; y2; : : : ; ym/; g2.y1; y2; : : : ; ym/; : : : ; gh.y1; y2; : : : ; ym/
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is a system of generators for the ideal I.V / of polynomials vanishing on V one has
that for each x D .x1; x2; : : : ; xn/ 2 An.K/,

gt .f1.x/; f2.x/; : : : ; fm.x// D 0; t D 1; : : : ; h;

and therefore f1; : : : ; fm are dependent.
It is then obvious that the polynomials f1; f2; : : : ; fm can be independent only

if n � m.
Consider the Jacobian matrix, with elements in KŒx1; x2; : : : ; xn�,

J D
�
@.f1; f2; : : : ; fm/

@.x1; x2; : : : ; xn/

�
´

�
@fj

@xi

�
jD1;:::;m; iD1;:::;n

and denote by %.x/ its rank in the point x 2 An.K/.
One sees immediately that if the polynomials fj are dependent, then %.x/ < m

for each point x 2 An.K/. Indeed, in that case there exists a non-zero polynomial
� in KŒy1; y2; : : : ; ym� and an identity of the form

�.x/ D �.f1.x/; f2.x/; : : : ; fm.x// D 0;

for all x 2 An.K/. This identity also implies the following relations, for i D
1; : : : ; n,

@�

@xi
.x/ D

�
@�

@f1

@f1

@xi
C @�

@f2

@f2

@xi
C � � � C @�

@fm

@fm

@xi

�
.x/ D 0:

However these can hold simultaneously only if the rank %.x/ ofJ in x is less thanm.
One notes that if fj .x1; x2; : : : ; xn/ are linear homogeneous polynomials, the

Jacobian matrix is nothing but the matrix formed by their coefficients and one
recovers a well-known theorem from theory of linear forms.

Conversely it is well known that if the Jacobian matrix J has rank % � m, then
m�% of the polynomialsfj are functions of the other remaining polynomials and the
n “superabundant” parameters x1; x2; : : : ; xn (bound by relations between the fj )
can be replaced with essential parameters in number %; and one has dim.V / D %.
Compare, for example, [14, Chapter 9], and also [102, Parte I, pp. 255–262].

3.2.1 Tangent space as span of the derived points. We now describe a useful
procedure for obtaining the tangent space.

Let u1; : : : ; ukC2 be affine coordinates in AkC2.C/; T1; : : : ; TnC1 affine coor-
dinates in AnC1.C/; and � W AkC2 ! AnC1 the map defined by the formulas8̂̂̂̂

<̂
ˆ̂̂:

T1 D f1.u1; : : : ; ukC2/;
T2 D f2.u1; : : : ; ukC2/;

:::

TnC1 D fnC1.u1; : : : ; ukC2/;

(3.7)
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with fi functions having continuous first partial derivatives, i D 1; : : : ; nC 1. Let
W � AnC1 be the image (we consider W as parameterized subvariety of AnC1).

If the parameters u1; : : : ; ukC2 are essential (which means that the functions fi
can not be expressed in terms of % < kC2 parameters)W is a variety of dimension
k C 2 (cf. Section 3.3). The analytic condition in order for this to occur is that one
has

rank

�
@.f1; : : : ; fnC1/
@.u1; : : : ; ukC2/

�
D k C 2 (3.8)

almost everywhere. If P D . Nu1; : : : ; NukC2/ is a point at which (3.8) holds we will
say that .P; �.P // is a regular pair of the correspondence � . In this case �.P / is
a non-singular point of W and the space SkC2 tangent at �.P / to W is the space

spanned by the k C 3 points �.P /; @�.P /
@u1

; : : : ; @�.P /
@ukC2

, where

@�.P /

@uj
´

��
@f1

@uj

�
P

; : : : ;

�
@fnC1
@uj

�
P

�
; j D 1; : : : ; k C 2:

In AkC2 we take a line p containing P and we consider its image �.p/. If
.�1; : : : ; �kC2/ is a vector along p, the line p is the locus of the points . Nu1 C
�1t; : : : ; NukC2 C �kC2t / and the curve �.p/ is given parametrically by the equa-
tions 8̂̂<̂

:̂
T1 D f1. Nu1 C �1t; : : : ; NukC2 C �kC2t /;

:::

TnC1 D fnC1. Nu1 C �1t; : : : ; NukC2 C �kC2t /:
Moreover, a vector Ev tangent to �.p/ in the point

�.P / D .f1. Nu1; : : : ; NukC2/; : : : ; fnC1. Nu1; : : : ; NukC2//

has components8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

x1 D
�
@f1

@u1

�
P

�1 C � � � C
�

@f1

@ukC2

�
P

�kC2;

:::

xnC1 D
�
@fnC1
@u1

�
P

�1 C � � � C
�
@fnC1
@ukC2

�
P

�kC2:

Therefore,

Ev D �1
@�.P /

@u1
C � � � C �kC2

@�.P /

@ukC2
(3.9)

and �1; : : : ; �kC2 (which are coordinates of the line p in the star of lines of AkC2
passing through P ) are the components of Ev with respect to the basis�

@�.P /

@u1
; : : : ;

@�.P /

@ukC2

�
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of the space of tangent vectors toW at �.P /. Thus we have established the following
fact:

• If .P; �.P // is a regular pair, � induces a non-degenerate projectivity between
the star of lines of AkC2 passing through P and the star of tangent lines at
�.P / to W (that is, corresponding to the tangent vectors to W at �.P /).

Now let ˆ be a hypersurface of AkC2 with equation �.u1; : : : ; ukC2/ D 0,
passing through P and having a tangent hyperplane there, and let �.ˆ/ � W be its
image.

Consider the lines p tangent atP toˆ. For these lines the vector .�1; : : : ; �kC2/
satisfies the condition

�1

�
@�

@u1

�
P

C � � � C �kC2
�

@�

@ukC2

�
P

D 0: (3.10)

To these vectors there correspond the vectors (3.9) whose components are connected
by the relation (3.10). Thus in the space SkC2 one finds the tangent vectors at �.P /
toW to be a .kC1/-dimensional subspace, which is the space of vectors tangent at
�.P / to �.ˆ/. The equation of this space (in the space of tangent vectors at �.P /
to W ) is (3.10).

If �.P / is a simple point of W and if at P the hypersurface ˆ is endowed with
a tangent hyperplane, the tangent lines at �.P / to �.ˆ/ thus form a linear space
T�.P /, of dimension k C 1 D dim.ˆ/ D dim.�.ˆ//. One sees that �.P / is a
non-singular point for �.ˆ/, and T�.P / is the tangent space at �.P / to �.ˆ/. We
observe that if the functions fi , i D 1; : : : ; nC1, are polynomials it is not necessary
to limit ourselves to the complex field because one can define derivatives formally.

Suppose now that the functions fi , i D 1; : : : ; nC 1, are homogeneous poly-
nomials all of the same degreem. The varietyW is then a cone having as its vertex
the coordinate origin. Indeed, if Q D .Nt1; : : : ; NtnC1/ D �.P / D �. Nu1; : : : ; NukC2/
is a point of W (and so Nti D fi . Nu1; : : : ; NukC2/, i D 1; : : : ; n C 1) one has, for
arbitrary �,

fi .� Nu1; : : : ; � NukC2/ D �mfi . Nu1; : : : ; NukC2/ D �m Nti ; i D 1; : : : ; nC 1;

and therefore every point of the line joining the origin O to Q belongs to W .
The tangent space toW atQ is spanned by the pointsQ; @Q

@u1
; : : : ; @Q

@ukC2
, where

@Q

@uj
´

��
@f1

@uj

�
P

; : : : ;

�
@fnC1
@uj

�
P

�
; j D 1; : : : ; k C 2:

On the other hand, by Euler’s theorem on homogeneous functions one has (cf. Ex-
ercise 3.1.18)

mQ D Nu1 @Q
@u1

C � � � C NukC2
@Q

@ukC2
;
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where mQ denotes the point with coordinates .mNt1; : : : ; mNtnC1/, and hence the
tangent space at Q to W passes through the origin and can be considered as the
space spanned by the origin and the points @Q

@u1
; : : : ; @Q

@ukC2
.

Assuming this, let X be the projective algebraic variety (of dimension k, cf.
Section 3.3) defined by the equations

Ti D fi .u1; : : : ; ukC2/; i D 1; : : : ; nC 1; (3.11)

and
�.u1; : : : ; ukC2/ D 0; (3.12)

where T1; : : : ; TnC1 are projective homogeneous coordinates in Pn and u1; : : : ;
ukC2 are projective homogeneous coordinates in PkC1.

If we interpret T1; : : : ; TnC1 as non-homogeneous affine coordinates in an affine
space AnC1, and u1; : : : ; ukC2 as non-homogeneous affine coordinates in an affine
space AkC2, then in AkC2 we have a cone ˆ� with vertex at the coordinate origin,
and with equation (3.12), while in AnC1 we have a cone W � with vertex at the
coordinate origin and equation (3.11).

The lines of AnC1 passing through the origin are the points of a projective
space Pn (which can be thought of as the “hyperplane at infinity”, 
1, of AnC1)
and similarly the lines of AkC2 passing through the origin are the points of a
projective space PkC1 (“hyperplane at infinity”, 	1, of AkC2). The projective
variety W � Pn with equations (3.11) is the section of the cone W � by 
1 and
hence the tangent space to W at its generic point is defined by the k C 2 derived
points

�j ´
�
@f1

@uj
; : : : ;

@fnC1
@uj

�
; j D 1; : : : ; k C 2I

and the projective hypersurface ˆ � PkC1 with equation (3.12) is the intersection
of the cone ˆ� with 	1.

The tangent vectors to the variety X defined by the equations (3.11) and (3.12)
in its generic point (that is, the directional vectors of the tangent lines in the generic
point) are the vectors

PkC2
jD1 �j �j with

PkC2
jD1

�
@�
@uj

�
�j D 0 (cf. (3.10)).

Example 3.2.2. Notation as in §3.2.1. We wish to write the equations of the tangent
line in the generic pointQ of the projective curve L of P5 defined by the equations8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

T1 D u21;

T2 D 2u1u2;

T3 D u22;

T4 D 2u1u3;

T5 D 2u2u3;

T6 D u23

(3.13)
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and
�.u1; u2; u3/ D 0; (3.14)

where� is an arbitrary homogeneous polynomial. We consider the Veronese surface
F represented by (3.13) (cf. Example 10.2.1). The derived points are

�1 D Œu1; u2; 0; u3; 0; 0�; �2 D Œ0; u1; u2; 0; u3; 0�; �3 D Œ0; 0; 0; u1; u2; u3�:

Thus the generic point of the tangent plane to F at a point Q belonging to L (Q is
the image, under (3.13), of a point Œu1; u2; u3� such that �.u1; u2; u3/ D 0) is

Œ�1u1; �1u2 C �2u1; �2u2; �1u3 C �3u1; �2u3 C �3u2; �3u3�:

In order that this point belongs to the tangent line to L at Q it is necessary that
(cf. (3.10))

�1
@�

@u1
C �2

@�

@u2
C �3

@�

@u3
D 0:

For the line to be tangent to L at Q it is then sufficient to eliminate the parameters
�1, �2, �3 from the equations8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

T1 D �1u1;

T2 D �1u2 C �2u1;

T3 D �2u2;

T4 D �1u3 C �3u1;

T5 D �2u3 C �3u2;

T6 D �3u3;

0 D �1
@�
@u1

C �2
@�
@u2

C �3
@�
@u3
:

The first, third, and sixth equation give �1 D T1

u1
, �2 D T3

u2
, �3 D T6

u3
. Substituting

into the remaining equations (and then eliminating the denominators) one finds the
equations of four hyperplanes: the three hyperplanes

u22T1 C u21T3 � u1u2T2 D 0;

u23T1 C u21T6 � u1u3T4 D 0;

u23T3 C u22T6 � u2u3T5 D 0;

(3.15)

whose intersection is the tangent plane 
 to F at Q, and the hyperplane

u2u3
@�

@u1
T1 C u1u3

@�

@u2
T3 C u1u2

@�

@u3
T6 D 0 (3.16)

which intersects 
 along the tangent line to L at Q.
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One notes that the hyperplane with equation (3.16) does not pass through the
tangent plane to F atQ and is therefore independent of the hyperplanes (3.15). We
verify that it does pass through Q. Indeed, one has, if m D deg.�/,

u2u3
@�

@u1
u21 C u1u3

@�

@u2
u22 C u1u2

@�

@u3
u23 D u1u2u3

� 3X
iD1

ui
@�

@ui

�
D mu1u2u3�.u1; u2; u3/:

3.3 Dimension of a projective variety

Let X � Pn be a projective variety, which, except for explicit mention to the
contrary, we shall suppose to be irreducible.

The discussion regarding the dimension of an affine variety carried out in Sec-
tion 3.1 and Proposition 2.6.1 lead one naturally to define the dimension of X as
the transcendence degree of its function field K.X/ over the base field K (which,
as usual, we assume to be algebraically closed),

dim.X/ D tr:deg:KK.X/: (3.17)

In the sequel we will study the geometric meaning of (3.17), discussing some
equivalent formulations expressed in terms of projective geometry.

We begin by proposing the following alternative definition of dimension.

Definition 3.3.1. The dimension of a varietyX � Pn is the smallest integer k such
that there exists a subspace Sn�k�1 � Pn disjoint from X (or, equivalently, such
that a generic Sn�k�1 � Pn is disjoint from X ).

One observes that given a generic Sn�k , a generic Sn�k�1 contained in Sn�k
is a generic Sn�k�1 of Pn. It follows that if X � Pn has dimension k, the generic
Sn�k meetsX in a finite number of points. Moreover, in the same way, the generic
Sn�kC1 meetsX in a variety that consists of infinitely many points since otherwise
the generic Sn�k would be disjoint from X . We can then express Definition 3.3.1
in the following equivalent form.

Definition 3.3.2. The dimension of a variety X � Pn is the integer k such that the
generic Sn�k � Pn meets X in a finite number of points.

If X � Pn has dimension k, we write dim.X/ D k. One has 0 � k � n � 1.
A 0-dimensional variety is a finite number of points. We will say curve, surface,
hypersurface, to indicate varieties of dimension 1, 2, n � 1 respectively. An Sr of
Pn is a variety of dimension r .

3.3.3. Note that from either of the two definitions 3.3.1, 3.3.2, there follows the
(apparently obvious) fact:
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• IfX is an irreducible variety and Y is a variety properly contained inX , then
dim.Y / < dim.X/.

This fact can also be seen directly as follows. Without loss of generality we
may suppose that Y � X are affine varieties in An and that Y too is irreducible.

Let d D dim.X/ and K.X/ D K.x1; : : : ; xd ; xdC1; : : : ; xn/. No matter how
one chooses d C 1 indices i1; i2; : : : ; idC1 the elements xi1 ; xi2 ; : : : ; xidC1

satisfy
a polynomial relation f .xi1 ; xi2 ; : : : ; xidC1

/ D 0, which necessarily also holds on
Y , and so dim.Y / � dim.X/.

Suppose that dim.Y / D dim.X/ D d , and that there exists 0 ¤ u 2 KŒX�with
u D 0 onY . Let x1; : : : ; xd be algebraically independent coordinates onY and thus
also on X . The elements u; x1; : : : ; xd 2 KŒX� are algebraically dependent and
thus there is a polynomial relation f .u; x1; : : : ; xd / D 0. We can even choose the
polynomial f so that f .0; x1; : : : ; xd / ¤ 0. Over Y one has f .0; x1; : : : ; xd / D 0

(since u D 0 on Y ) and thus, by the hypothesis on x1; : : : ; xd , the polynomial
f .0; x1; : : : ; xd / is identically zero. It follows that f .0; x1; : : : ; xd / D 0 on X as
well; but this contradicts the independence of x1; : : : ; xd . Thus u D 0 on Y implies
that u D 0 on X ; therefore Y D X .

In the situation of 3.3.3, the difference dim.X/� dim.Y / is called the codimen-
sion of Y in X . If dim.X/ � dim.Y / D 1, the variety Y is called a divisor of X .
In particular, a hypersurface X � Pn is a divisor of Pn.

It is useful to make the following remark explicit:

Proposition 3.3.4. LetX � Pn be a variety of dimension k. If Sr is a linear space
of dimension r � n � k, then Sr meets X .

Proof. Indeed, set t D n�k� 1 in Definition 3.3.1. Then t is the maximum of the
dimensions of the subspaces of Pn which do not meet X . Thus, a linear space Sr
meets X as soon as r > n � k � 1. �

Remark 3.3.5. If Sr is a subspace of Pn and X is a variety contained in it, the
dimension of X as a variety of Pn coincides with its dimension as a variety of Sr .
Indeed, if k is the dimension of X as variety of Sr , an arbitrary Sn�k of Pn meets
Sr in a space of dimension � r � k and so meets X ; and a generic Sn�k�1 of Pn

meets Sr in a generic Sr�k�1 which does not meet X .

We now show that Definitions 3.3.1 and 3.3.2 are equivalent to (3.17).
Let X � Pn and let k D dim.X/ be the dimension expressed by Defini-

tions 3.3.1, 3.3.2. In view of Definition 3.3.1 there exists a space Sn�k�1 � Pn

disjoint from X . Consider the projection of Pn from that Sn�k�1 onto a space Pk

disjoint from Sn�k�1 and let 
 W X ! Pk be the restriction. If x is a point of X ,
the join J.x; Sn�k�1/ is, by Grassmann’s formula, 1.1.8, an Sn�k that meets Pk in
a point. Then


.x/ ´ J.x;Pn�k�1/ \ Pk
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and, for a generic x 2 X (that is, a generic y D 
.x/ 2 Pk), the fiber 
�1.
.x//
consists of the finite number of points in which Sn�k D J.x; Sn�k�1/meetsX (cf.
Definition 3.3.2 and the successive Proposition 3.4.8). This means that the map

 W X ! Pk is generically finite.

The key point, which however is based on notions outside the scope of the
present book, is an algebraic fact from field theory (for whose proof we refer the
reader to [48, (7.16)]) which assures us that in the presence of a generically finite
map 
 W X ! Pk one has

K.Pk/ D K.x1; : : : ; xk/ ,! K.X/:

This inclusion of fields expresses the field of fractionsK.X/ ofX as a finite exten-
sion of K.x1; : : : ; xk/, that is, K.X/ is a K.x1; : : : ; xk/-vector space of finite di-
mension. From this it follows thatK.X/ is an algebraic extension ofK.x1; : : : ; xk/
(see, for example, [75] or [62]); that is, every element a 2 K.X/ is the root of a
polynomial p.T / 2 K.x1; : : : ; xk/ŒT � with coefficients inK.x1; : : : ; xk/. By def-
inition (cf. Definition 3.1.9), this means that the transcendence degree of K.X/
over K is k. Thus we may conclude that Definitions 3.3.1 and 3.3.2 are geometric
formulations of the notion of dimension equivalent to (3.17).

We extend the definition of dimension to include possibly reducible varieties by
defining the dimension of an arbitrary variety as the maximum of the dimensions
of its irreducible components.

We say that a variety X has pure dimension k if all the irreducible components
of X have the same dimension k.

Exercise 3.3.6. Let X � Pn be a variety of dimension k and Sn�1 � Pn a generic
hyperplane; that is, not containing any irreducible component of X and such that
the intersection Sn�1 \ X is irreducible if X is irreducible (cf. Theorem 6.3.11).
Then

dim.Sn�1 \X/ D k � 1: (3.18)

Indeed, we setW ´ Sn�1\X . A generic Sn�k�1 of Sn�1 is also generic in Pn

(because Sn�1 is generic) and so does not intersectX ; thus, it does not intersectW .
Since n�k�1 D .n�1/� .k�1/�1, one concludes in virtue of Definition 3.3.1
that W as a subvariety of Sn�1 (and so of Sn) has dimension k � 1.

Iterating the reasoning, one sees that the section of X by a space Sn�k is a
0-dimensional variety, that is, a finite number of points.

One notes that ifZ � Pn is a hypersurface that does not contain any irreducible
component of X , one has

dim.Z \X/ D k � 1;
which extends the relation (3.18). Indeed, let f D f .x0; : : : ; xn/ be the form
that defines the hypersurface Z and put X1 ´ X \ Z. One has dim.X1/ <
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dim.X/ by 3.3.3. Consider a form f1, degf1 D degf , that does not vanish on any
irreducible component of X1 (cf. Exercise 2.7.39) and let Z1 be the hypersurface
with equation f1 D 0 and X2 D X1 \ Z1. Iterating the procedure one obtains a
sequence

X D X0 � X1 � X2 � � � � ;
with XiC1 D Xi \ Zi , Zi ´ ffi D 0g, degfi D degf , dimXiC1 < dimXi .
Since dimX0 D k, the variety XkC1 is empty. This means that f; f1; : : : ; fk do
not have common zeros on X . We can obviously suppose that X is irreducible
and consider the map ' W X ! Pk defined by '.x/ D Œf .x/; f1.x/; : : : ; fk.x/�.
On the other hand ' is a finite morphism (for this see Problem 13.1.16) and so
dim.X/ D dim.'.X// D k. But '.X/ is a closed subset of Pk; thus '.X/ D Pk

again by 3.3.3. If one had dim.X1/ < dim.X/�1, then the closed subsetXk would
be empty and so the forms f; f1; : : : ; fk�1 would not have common zeros onX and
so the point Œ0; 0; : : : ; 0; 1� 2 Pk would not belong to'.X/. Thus dim.X1/ D k�1.
In fact, dim.Xi / D k � i .

One should also note that if X � An is an affine variety of dimension k and
H � An is a hyperplane not containing any irreducible component of X , by the
preceding remarks and the definition of dimension it follows immediately that

dim.H \X/ D k � 1:

We now prove a fundamental result on the dimension of the intersection of
varieties; we treat the affine and projective cases separately.

Theorem 3.3.7 (Affine case). LetX , Y be irreducible subvarieties of dimensions s,
t in An. Then every irreducible componentZ ofX \Y has dimension � sC t �n.

Proof. If Y 
 X the inequality is obvious, and so we suppose that Y 6� X .
Consider the product X � Y � A2n, which is a variety of dimension s C t (cf.

Exercise 3.1.16). Let 
 ´ f.x; x/; x 2 Ang � A2n be the diagonal. Then An

is isomorphic to 
 via the map x 7! .x; x/ and, under that isomorphism, X \ Y

corresponds to .X � Y / \ 
. Since 
 has dimension n, and since s C t � n D
.sC t /Cn� 2n, we have reduced to proving the result for the two varietiesX �Y
and 
 in A2n.

Now,
 is the intersection of exactly n affine hyperplanes in A2n, namely those
with equations x1 � y1 D 0; : : : ; xn � yn D 0, where x1; : : : ; xn; y1; : : : ; yn are
the coordinates of A2n. Now n applications of Exercise 3.3.6 gives the desired
conclusion. �

Theorem 3.3.8 (Projective case). Let X , Y be irreducible subvarieties of dimen-
sions s, t in Pn. Then every irreducible component Z of X \ Y has dimension
� s C t � n. Therefore, if s C t � n � 0, then X \ Y ¤ ;.
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Proof. The first part of the thesis follows from the definition of dimension and the
preceding Theorem 3.3.7, since Pn is covered by affine spaces.

Let C.X/, C.Y / be the affine cones over X , Y in AnC1. Then C.X/, C.Y /
have dimensions sC1, tC1 respectively. Moreover C.X/\C.Y / ¤ ; since both
contain the origin O D .0; : : : ; 0/. By Theorem 3.3.7,

dim.C.X/ \ C.Y // � .s C 1/C .t C 1/ � .nC 1/ D s C t � nC 1 > 0:

Thus C.X/ \ C.Y / contains some point P ¤ O , and so X \ Y ¤ ;. �

3.4 Order of a projective variety, tangent cone
and multiplicity

In Section 2.5 we defined a projective variety X � Pn as the locus of the zeros
X D V.a/ of a homogeneous ideal a of the ringKŒT1; : : : ; TnC1�. While the ideal a
determines the varietyX ,X does not determine the ideal; indeed two ideals that have
the same radical have the same locus of zeros (cf. Section 2.2 and Corollary 2.5.5).

The attitude that we prefer to assume is that of considering as projective varieties
the ordered pairs .X; a/ formed by an algebraic set X and by an ideal a for which
X D V.a/ is the set of its zeros. We will use the term (projective) scheme for
the pair .X; a/. In this way, if a and b are two different ideals that have the same
radical, .X; a/ and .X;b/ are two different schemes having the same associated
algebraic set V.a/ D V.b/ as support. In this setting, we will say that .X; a/ is a
reduced scheme (or also reduced variety) if a D p

a. In essence this is the point of
view of the classical geometers, for whom it was more than natural to distinguish,
for example the hypersurface X with equation f D 0, from the hypersurface X 0
with equation f 2 D 0, and to say thatX 0 is the double ofX , i.e., X counted twice,
and that every point of X is double for X 0.

The classical geometers, when they thought of a variety X , in reality had in
mind a system of algebraic equations that define it, and concepts like double or
triple varieties, etc., were considered obvious. Yet they were indispensable in order
to have fundamental instruments available, like, for example, the theorems of Bézout
(cf. Sections 4.2, 4.5).

As far as the notion of order is concerned, we start by considering the simplest
case, that of a hypersurface X , with equation

f .T1; : : : ; TnC1/ D 0:

Define the order of X to be the degree r of the polynomial f D f .T1; : : : ; TnC1/.
If f is irreducible the order r is nothing but the number of points common to

X and a line not contained in X . In fact, these points are obtained by resolving an
algebraic equation g.t/ D 0, not identically zero, of degree r and each of the points
corresponds to one of the solutions. Naturally, in agreement with what has been
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said above, each point must be counted with multiplicity equal to the multiplicity
of the root of g.t/ to which it corresponds.

If the polynomial f is a power of an irreducible polynomial, f D '�, the
equation g.t/ D 0 has all of its �-fold roots independent of the line and each
such root furnishes a point which should be counted � times. The order of the
hypersurface X continues to be the number of its intersections with a line in virtue
of the fact thatX D �F is the multiple of the hypersurface F with equation ' D 0.

In an affine chart, with Y1; Y2; : : : ; Yn as non-homogeneous coordinates, we
consider a hypersurface and one of its points x, and we can certainly suppose that x
coincides with the coordinate origin. We assume that there are no terms of degree
< m in the polynomial f , while there really are terms of degree m, and we write

f D fm C fmC1 C � � � ;
where fj is a homogeneous polynomial of degree j in Y1; : : : ; Yn. In this case we
will say that x is a point of multiplicity m for the hypersurface X (which means
that m is the order of vanishing of f in x) and that the hypersurface TCx.X/ of
equation fm D 0 is the tangent cone to X at x.

The definition is justified by the fact that for every line not contained in X and
passing through x the equation g.t/ D 0 which gives its intersection with X has
the root that corresponds to the point x as a root of multiplicity at least m (and in
general exactly m), and so x should be counted at least m times in the group of
intersections. The lines (generators) of the cone TCx.X/ are exceptional in that
for each of them the equation g.t/ D 0 has the root furnished by the point x with
multiplicity at least mC 1. Thus all the generators of TCx.X/ can be considered
to be tangent to X at x (cf. Proposition–Definition 3.1.1).

If m D 1 the point x is non-singular and the tangent cone coincides with the
tangent space (hyperplane) at x.

The multiplicity of a point for a hypersurface thus coincides with the order of
the tangent cone at the given point (for further details see Section 5.2).

Example 3.4.1. Let X be an algebraic variety and P one of its points. If P is
singular onX , the tangent space TP .X/ toX atP (cf. Section 3.1) does not furnish
a good description of the local geometry of X at P . In particular, if X � A2 ´
A2.K/ is a plane curve and P a singular point of X , the tangent space coincides
with the tangent space TP .A2/ D A2 of the ambient affine space A2 at P .

The “tangent cone” furnishes a better description of the local structure of a
variety at its singular points. For example, ifX � A2

.x;y/
is the curve with equation

y2 � x2.x C 1/ D 0 the tangent cone is the union of the lines with equations
x ˙ y D 0, tangent to the two branches of X at O D .0; 0/ (and O is a node for
X ). Similarly, the tangent cone to the curve X with equation y2 � x3 D 0 is the
line y D 0, counted twice (and O is a cusp for X ) (see also §9.2.5). In each of
the two cases O is a double point; that is, of multiplicity two, which is equal to the
order of the tangent cone.
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LetX D V.a/ � An be an affine algebraic set and let x be a point ofX . After a
suitable change of coordinates if necessary, we may suppose that x coincides with
the coordinate origin.

Definition 3.4.2. Let X D V.a/ � An be an affine algebraic set, containing the
coordinate origin x D .0; : : : ; 0/. We define the tangent cone to X at x to be the
subvariety TCx.X/ of An defined by TCx.X/ D .V .a�/; a�/, where a� is the
homogeneous ideal generated by all the homogeneous polynomials f � which are
initial forms of the polynomials f 2 a.

Abuse of language. For brevity, and when there is no chance of confusion, hereafter
we will sometimes write “tangent cone” rather than “support of the tangent cone”.

3.4.3 Intrinsic nature of the tangent cone. One might think that the preceding
definition depends on the particular immersion ofX in An. To render that definition
intrinsic it is useful to make use of the notion of the associated graded ring of an
ideal in a commutative ring.

Let then A be a ring and a an ideal of A. We consider the graded abelian group

GA.a/ D
M
d�0

ad=adC1; a0 D A;

where the elements of ad=adC1 are considered as homogeneous elements of degree
d . It is possible to define a multiplication in GA.a/ in the following way. If
Nx 2 ad=adC1 and Ny 2 ad

0
=ad

0C1 one has x 2 ad and y 2 ad
0
and so xy 2 adCd 0

.
We then set

Nx Ny D xy 2 adCd 0

=adCd 0C1:
It is easy to see that this operation is well defined, associative, commutative, and
distributive with respect to addition. In this way GA.a/ becomes a graded ring
which we will call graded ring associated to A with respect to the ideal a.

Now suppose that a is finitely generated and let a D .a1; : : : ; as/. Then a basis
for ad is given by the monomials of the type ai11 : : : a

is
s with i1 C � � � C is D d . It

then follows that

Sa1 i1 : : : Sas is D a
i1
1 : : : a

is
s 2 ad=adC1;

where Sai 2 a=a2. Thus one sees that GA.a/ is generated over A=a by the classes
Sai of the ai modulo a2. If we then set �i D ai mod a2, we will have

GA.a/ D A=aŒ�1; : : : ; �s�:

It is then immediate to consider the homomorphism

' W A=aŒY1; : : : ; Ys� ! A=aŒ�1; : : : ; �s� D GA.a/;
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defined by '.Yi / D �i , for i D 1; : : : ; s. The homomorphism ' is homogeneous
of degree zero and surjective, and the kernel ker.'/ is the homogeneous ideal of
A=aŒY1; : : : ; Ys� that has as generators the forms xF .Y1; : : : ; Ys/ inA=aŒY1; : : : ; Ys�
such that xF .�1; : : : ; �s/ D 0, namely, such that F.a1; : : : ; as/ 2 arC1, where r is
the degree of F . Thus, one has

GA.a/ D A=aŒ�1; : : : ; �s� Š A=aŒY1; : : : ; Ys�=ker.'/: (3.19)

Let then X D V.a/ � An be an affine variety containing the coordinate
origin x D .0; : : : ; 0/. Let KŒY1; : : : ; Yn� be the ring of polynomials and let
m D .Y1; : : : ; Yn/=a be the maximal ideal that defines the origin as a point of
X in the ring A D KŒY1; : : : ; Yn�=a.

The intrinsic nature of the definition of the tangent cone given in Definition 3.4.2
is then expressed by the isomorphism

GAm.mAm/ Š KŒY1; : : : ; Yn�=ker.'/ Š KŒY1; : : : ; Yn�=a
�; (3.20)

where a� is the homogeneous ideal generated by all the homogeneous polynomials
f � that are initial forms of the polynomials f 2 a. To prove (3.20), we observe
that

GAm.mAm/ D
M
d�0

mdAm=m
dC1Am:

Now, Am=mAm Š A=m and there is an isomorphism of A=m-vector spaces

.mAm/
d=.mAm/

dC1 Š md=mdC1

defined by setting, for each x 2 md ,

Nx D class of
x

1
2 mdAm mod mdC1Am.

One has Nx D 0 if and only if x
1

2 mdC1Am, that is, if and only if there exists

t 62 m such that xt 2 mdC1; since mdC1 is m-primary (i.e.,
p

mdC1 D m) this
is equivalent to x 2 mdC1. From this it then follows that GAm.mAm/ Š GA.m/
and so, by (3.19),

GAm.mAm/ Š A=mŒY1; : : : ; Yn�=ker.'/ Š KŒY1; : : : ; Yn�=ker.'/:

There remains to prove that ker.'/ D a�, and, since these are homogeneous ideals,
it suffices to prove that if f .Y1; : : : ; Yn/ ¤ 0 is a form of degree r inKŒY1; : : : ; Yn�
one has f 2 a� if and only if f 2 ker.'/. On the other hand, under the given
hypotheses and setting yi D Yi mod a, so that m D .y1; : : : ; yn/, one has the
equivalences

f .Y1; : : : ; Yn/ 2 ker.'/ ” Nf .y1; : : : ; yn/ 2 mrC1

” f .Y1; : : : ; Yn/ 2 .Y1; : : : ; Yn/rC1 C a

” f .Y1; : : : ; Yn/ 2 a�:
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Remark 3.4.4. In contrast to what happens for the tangent space (cf. Defini-
tion 3.1.5), one notes that if X D V.a/ with a D .f1; : : : ; fm/, the tangent cone at
X is not always the intersection of the tangent cones to the individual hypersurfaces
with equations fi D 0, i D 1; : : : ; m. It suffices to observe that the initial form of a
sum of polynomials does not necessarily belong to the ideal generated by the initial
forms of the summands. For example,C D V.a/ � A3, with a D .x�y2; z3�x/,
is an irreducible curve formed by the intersection of two cylinders. The tangent
cone to each of the cylinders at the origin is the plane with equation x D 0which can
not be the tangent cone to C inasmuch as the initial form y2 of .x�y2/C .z3�x/
does not belong to the ideal .x/ generated by the initial forms of the two summands.
In order to have all the “information” possible regarding the origin as a point of
the curve C we must keep in mind the tangent cones to all the surfaces that pass
throughC . For example, one must also consider the tangent cone (consisting of the
plane y D 0 counted twice) of the surface with equation y2 D z3 which obviously
contains C .

Another difficulty is related to the fact that even when a is a prime ideal, the
ideal a� of initial forms can very well not be prime. It is necessary to consider the
primary decomposition of the ideal a�, that is to write a� D q1 \ � � � \ qh with qj
primary ideals, j D 1; : : : ; h, see 2.7.4; to each of these is associated an irreducible
component V.

p
qj / of the tangent cone, which will be “counted” a suitable number

of times (cf. Exercise 3.4.11 (2)).

If X D V.a/ and x D .0; : : : ; 0/ 2 X , the ideal a.1/ D ff .1/x ; f 2 ag
generated by the linear forms f .1/x of the polynomials f 2 a at x is obviously
contained in the ideal a� generated by the initial forms of the polynomials f 2 a.
Thus one has

V.a�/ � Tx.X/ D V.a.1// � An;

that is, the (support V.a�/ of the) tangent cone to X at x is a subvariety of the
tangent space Tx.X/.

As in the case of tangent spaces (cf. Section 3.1), if X � Pn is a projective
algebraic set and x is one of its points, we can choose an affine chart An � Pn

complementary to a hyperplane not containing x and consider the closure of the
tangent cone TCx.X \ An/ � An in Pn. In this way we obtain a projective variety
that we call the projective tangent cone to X at x.

We now wish to extend the notion of order, tangent cone, and multiplicity of a
point to varieties of arbitrary dimension in such a way as to retain the fact that the
multiplicity of a singular point on a variety X is the order of the tangent cone in
that point.

Unlike the case of hypersurfaces examined above, for projective varieties of
arbitrary dimension the situation is not at all simple, and a rigorous algebraic treat-
ment, for which we refer the reader for example to [48] and [49], requires tools
which are outside the scope of this book.
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We will overcome the obstacle by using the methods of projective geometry.
However, we will need some preliminary observations which are usually considered
evident in classical texts and left to the reader’s intuition, or possibly to verification
in the case of examples.

3.4.5 Projection of a variety from linear spaces. In Pn consider an irreducible
varietyX of dimensionk and a generic subspaceSr of Pn of dimension r � n�k�1.

We define the cone that projects X from Sr (or the projecting cone of X from
Sr ) to be the locusV of the subspacesSrC1 that join the givenSr with the individual
points of X . The Sr is called the vertex of V , and each space SrC1 is said to be a
generator of V . We prove that

• the projecting cone V is an algebraic set of dimension dim.V / D r C kC 1.

Suppose that the variety X is the locus of common zeros of the homogeneous
polynomials fj .T1; : : : ; TnC1/ belonging to KŒT � ´ KŒT1; : : : ; TnC1�. That is,
X D V.a/ where a D .: : : ; fj .T /; : : : /. Let Sr be the intersection of the n � r

independent hyperplanes with equationsHq.T1; : : : ; TnC1/ D 0, q D 1; : : : ; n�r .
The spaceSrC1 that joinsSr with a pointx D Œa1; : : : ; anC1� 2 X has equations

H1.T /

H1.x/
D H2.T /

H2.x/
D � � � D Hn�r.T /

Hn�r.x/
I (3.21)

and the equations of V are obtained by eliminating the parameters a1; : : : ; anC1
from the system consisting of the n� r �1 equations (3.21) and from the equations
fj .a1; : : : ; anC1/ D 0.

We will also say that the intersection X 0 D V \ Sn�r�1 is the projection of X
from Sr onto a subspace Sn�r�1 skew to it.

We observe that if the center of projection Sr has equations T1 D T2 D
� � � D Tn�r D 0, the projection X 0 D V.b/ of X from Sr onto the Sn�r�1
with equations Tn�rC1 D � � � D TnC1 D 0 (where T1; T2; : : : ; Tn�r are ho-
mogeneous coordinates) is the algebraic set associated to the contracted ideal
b D ac ´ a\KŒT1; : : : ; Tn�r �. The projecting cone V is the algebraic set defined
by the same equations in Pn, that is, V D V.bKŒT1; : : : ; TnC1�/, cf. §5.2.3.

As far as the dimension is concerned, we observe that a generic space H D
Sn�r�k�2 does not meet Sr and is joined to Sr by a spaceL D Sn�k�1 which does
not meet X (cf. Definition 3.3.1). Thus H does not meet V because if there were
a point A 2 V \ H , the space L, that contains the join J.A; Sr/, would meet X
(inasmuch as the join J.A; Sr/ is one of the spaces SrC1 of V and so contains a
point of X ). Thus, by Definition 3.3.1, we have that dim.V / � r C k C 1.

To prove the equality, we consider a generic space Sn�r�k�1. The join space
	 ´ J.Sn�r�k�1; Sr/ has dimension n�k and so, again by Definition 3.3.1, meets
X in at least one point P . The space J.P; Sr/, namely, the generator space of V
that passes throughP , and the space Sn�r�k�1, both contained in the space 	 , have
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a point in common by Grassmann’s formula, see 1.1.8. Thus, our Sn�r�k�1 meets
V , and so dim.V / > r C k.

Example 3.4.6. In P5 we consider the surface X which is the locus of zeros of the
polynomials

T1T2 � T3T4 � T5T6; T4 � T5; T5 � T6:
We project X from the line S1 with equations T1 D T2 D T3 D T4 D 0 onto the
subspace S3 D PŒT1;T2;T3;T4� skew to it.

If x D Œa1; : : : ; a6� is a generic point ofX , the join S2 D J.x; S1/ has equations

T1

a1
D T2

a2
D T3

a3
D T4

a4
:

Remembering that a1a2 � a3a4 � a5a6 D 0 and a4 D a5 D a6, we eliminate the
parameters a1; : : : ; a6, to obtain the equation

T1T2 � T3T4 � T 24 D 0: (3.22)

In this case the projecting cone is the hypersurface V of P5 with equation (3.22).
The same equation, read in S3 D P ŒT1;T2;T3;T4�, represents the projection X 0 of X
from the line S1 onto S3.

We now consider the particular case r D n� k� 2 of the preceding discussion.
Let 	 be a generic Sn�k of Pn. It meets X in a finite number of points, and so
contains a finite number of chords ofX consisting of the lines that join pairs of these
points. A generic Sn�k�1 of 	 does not contain any of these lines and therefore
a space Sn�k�2 contained in it (and thus a generic Sn�k�2 of Pn) does not meet
chords of X .

Thus we find spaces Sn�k�1 passing through such Sn�k�2 and having in com-
mon with X only a single point. This implies that the generic Sn�k�1 generator
of the cone V that projects X from Sn�k�2 contains only one point of X (whereas
particular generator spaces may very well meet X in more than a single point). In
this case we will say that the projection 
 ofX from the Sn�k�2 onto a space SkC1
which is skew to it is simple. Then for a generic point x0 belonging to the projection
X 0 D V \ SkC1, the inverse image 
�1.x0/ consists of the unique point in which
Sn�k�1 D J.x0; Sn�k�2/ meets X .

There can, however, be special spaces Sn�k�2 from which X is projected mul-
tiply. If the generic generator space of V meets X in � � 2 points we say that the
projection is �-fold.

In the case r D n � k � 2 under consideration, the cone V that projects X
from Sn�k�2 onto a subspace SkC1 is a hypersurface of Pn and the projection
X 0 D V \ SkC1 is a hypersurface in SkC1. In this case, the elimination of the
parameters a1; : : : ; anC1 described above, where x D Œa1; : : : ; anC1� is a generic
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point ofX , leads to a single equation � D 0 which is the equation of the projecting
cone V , and whose degree is the order of V .

We now define the order of a projective variety in terms of the orders of the
projecting cones.

Definition 3.4.7. The order deg.X/ of a k-dimensional projective varietyX � Pn

is the maximal order of the .n�1/-dimensional cones that one obtains by projecting
X from spaces Sn�k�2.

Proposition 3.4.8. The order deg.X/ of ak-dimensional projective varietyX � Pn

is the number of points which X has in common with a generic Sn�k .

Proof. Let S be a generic Sn�k�2 and ` a line skew to it. The join space J.S; `/
is a generic Sn�k that, by Definition 3.3.2, meets X in a finite number � of points.
The line ` meets the cone V that projects X from S in m D deg.V / points, each
of which belongs to a generator space Sn�k�1 of V . Since the projection 
 of X
from S is simple (in view of the fact that S is generic) each of these spaces Sn�k�1
contains one and only one point of X . These points are contained in our Sn�k;
hence such a generic Sn�k meetsX in (at least)m points, and so � � m. It follows
that � � deg.X/.

Conversely, let x be one of the points in which Sn�k meets X . The � spaces
J.x; S/, which belong to the cone V , have dimension n � k � 1 and lie in a space
Sn�k that contains `, and so each has a point in common with `. From this it follows
that � � m � deg.X/. �

As a consequence of Proposition 3.4.8 we can reformulate the definition of order
in the following equivalent fashion.

Definition 3.4.9. The order deg.X/ of a k-dimensional algebraic set X � Pn is
the order of the .n� 1/-dimensional cone obtained by projecting X from a generic
space Sn�k�2, that is, it coincides with the order of the hypersurface X 0 which is
the projection of X from a generic Sn�k�2 into a subspace SkC1.

In the sequel we shall often use the notationXd
k

to indicate an algebraic variety
of dimension k and order d .

Remark 3.4.10 (Explicit construction of a birational map between a projective
variety and a hypersurface). In §2.4.10 we have proved the birational equivalence
of any affine algebraic set with a hypersurface. In §2.6.11 we observed that as a
consequence of essentially algebraic facts the analogous result also holds in the
projective case.

If X � Pn is a projective algebraic set of dimension k, the construction of a
simple projection
 W X ! X 0 � SkC1 ofX from a genericSn�k�2 into a subspace
SkC1 skew to it, discussed in this paragraph, constitutes a geometric proof of the
birational equivalence of X with a hypersurface in PkC1.
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We now propose two alternative and elementary definitions of multiplicity. Let
X D Xd

k
� Pn be a k-dimensional projective variety of order d . Let L be the set

of Sn�k�2 in Pn in general position with respect to X , namely such that

i) they do not contain points of X ;

ii) from each of them X is projected simply.

With this as premise, let x be a point ofX and 
� W X ! SkC1 the projection from
a space 	 2 L. If �� .x/ is the multiplicity of the point 
� .x/ for the hypersurface

� .X/ � SkC1, we take as the multiplicity of X at x (or of x for X ) the integer

�x.X/ D inf
�2L

�� .x/:

Note that this definition agrees with that given above in the case of hypersurfaces
(k D n� 1). Indeed, if X D Xn�1 is a hypersurface of Pn the projection 
 W X !
SkC1 D Sn is the identity.

The following is another method (useful for explicit calculation) for defining
multiplicity and tangent cone in a point. We say that X D Xd

k
has multiplicity

�x.X/ D s at x if the number of points different from x common to X and a
generic linear space Sn�k passing through x is d � s. The union of those particular
spaces Sn�k that have not more than d � s � 1 distinct points different from x

in common with X constitute the projective tangent cone �k , of order s, to X
at x. One notes that this definition agrees with that given previously in the case
of hypersurfaces. The fact that �k has order s can be easily seen as follows. We
consider a generic Sn�k�2 and we project X and �k onto a subspace SkC1. In this
way we find two hypersurfaces X 0 and � 0 that have their orders equal to that of X
and to that of �k respectively. Let x0 2 SkC1 be the projection of the s-fold point
x of X . The cone �� tangent to X 0 at x0 thus has order s. But �� D � 0. Indeed,
the generator lines of the cone �k (with vertex x) are contained in spaces Sn�k that
pass through x and that away from x have at most d � s � 1 intersections with
X and are projected from the space Sn�k�2 in SkC1 into the lines through x0 and
having at most d � s � 1 intersections with X 0 away from x0. This means that the
generator lines of the cone project onto the generators of � 0.

We note explicitly that the two definitions proposed are equivalent. Indeed, if
x 2 X is a point of multiplicity s on the basis of the first definition, its image 
.x/
under the projection 
 W X ! X 0 � SkC1 from a generic subspace Sn�k�2 onto a
subspace SkC1 skew to it is an s-fold point for the hypersurface X 0 of SkC1. Thus,
a generic line ` of the space SkC1 has exactly d � s points different from 
.x/

in common with X 0. Joining these points with Sn�k�2 one obtains d � s generic
spaces Sn�k�1 each of which meets the variety X in a point. Thus we have d � s

distinct points of X (and also distinct from x) which are the points different from
x and common to X and to the (generic) space Sn�k which joins Sn�k�2 with the
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line `. Thus x is a point of multiplicity s on the basis of the second definition
proposed. The verification of the converse is analogous.

Exercises 3.4.11. LetX D V.a/ be an algebraic set of the affine space A3 contain-
ing the origin O D .0; 0; 0/. Describe the tangent space TO.X/ and the tangent
cone TCO.X/ at O in the two following cases:

.1/ a D .x � y2; x C yz C z3/I .2/ a D .xz � y2; x3 � yz; z2 � x2y/:
(1) a D .x�y2; xCyzC z3/ is a prime ideal; X D V.a/ is a curve of order 6

passing through the origin O . The tangent space TO.X/ at O is the plane x D 0.
Since the dimension of this space is bigger than dim.X/, O is a multiple point
for X . The ideal a� of the initial forms of the polynomials of a is .x; y2 C yz/ D
.x; y/ \ .x; y C z/ and thus the tangent cone TCO.X/ is a pair of lines passing
through O (and contained in TO.X/).

Using the second definition proposed, it is easy to verify that O is a point of
multiplicity 2 for X . In this regard, one notes that the points common to X and
the plane 
 W �z D �x C �y passing through O are the solutions of the system of
equations

x � y2 D x C yz C z3 D �z � �x � �y D 0:

The result of the elimination of x and z from this system, that is, the result of
elimination of z from the system

y2 C yz C z3 D �z � �x � �y D 0;

is
y2Œ�2.�C �/C .�2�C �3/y C 3��2y2 C 3�2�y3 C �3y4� D 0:

Therefore there are four intersections of X with 
 distinct from O if 
 is generic;
there are instead only three if �.�C �/ D 0, that is, if 
 passes through the z-axis
or through the line x D y C z D 0. Thus one finds two pencils of planes that have
as axes the two lines constituting the tangent cone (cf. Section 5.3).

(2) The ideal a.1/ of the linear forms of the polynomials of a is the ideal .0/;
hence TO.X/ D A3.

The ideal a� of the initial forms of the polynomials of a is a� D .y2 �
xz; yz; z2/. Since

p
a� D .y; z/ the tangent cone TCO.X/ at O is the x-axis

counted a suitable number of times.
It is useful to note that the smallest integer � such that .

p
a�/� � a is � D 3.

Indeed, y2 62 a� and so � � 3. Furthermore, y3 D y.y2 � xz/ C x.yz/ 2 a�.
Then, if A;B 2 KŒx; y; z� are two arbitrary polynomials we have

.Ay C Bz/3 D A3y3 C .3A2By/yz C .3AB2y C B3z/z2 2 a�:

The variety X D V.a/ is the monomial curve of 5th order locus of the point
P.t/ D .t3; t4; t5/. To see this it suffices to observe that if x ¤ 0, and thus
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y; z ¤ 0, then, setting t ´ y
x

, one has t D z
y

(since y2 D xz in the ring of
coordinates KŒX�) and hence

t2 D y

x

z

y
D z

x
:

Thus

y D z2

x2
D t4I x D y

x

y
D t3I z D ty D t5:

Standard arguments from the algebra of polynomials, which we give here for
completeness, show that the ideal a is prime, inasmuch as it coincides with the
kernel of the morphism  W KŒx; y; z� ! KŒt� defined by  .x/ D t3,  .y/ D t4,
 .z/ D t5; in particular X is an irreducible curve.

The inclusion a � ker. / is obvious. To prove the opposite inclusion we set
˛ D xz � y2, ˇ D yz � x3, � D z2 � x2y. An arbitrary f 2 KŒx; y; z� can be
written in the form

f D A.x; y; z2/C zB.x; y; z2/ D AC �z C xzLC yzM;

with � 2 K, A;L;M 2 KŒx; y; z2�. Since

z2 D x2y C �; xz D y2 C ˛; yz D x3 C ˇ;

we have

f D �z C g.x; y/C �; with g 2 KŒx; y�; � 2 a D .˛; ˇ; �/:

If f 2 ker. / one obtains

0 D �t5 C g.t3; t4/

and therefore � D 0 and g.x; y/ is the zero polynomial (because no summand of
g.t3; t4/ can be of degree 5). Thus ker. / D a.

The curve X has the origin O as a triple point. In fact, the planes passing
through O have at most two distinct points in common with X ; exactly two if the
plane is generic. The planes of the pencil �y C �x D 0 are exceptional in that the
generic plane of this pencil meets X in only one point different from O; the plane
z D 0 does not meet the curve away fromO . Thus one has a triple point atO with
three tangents lines that coincide there with the x-axis, and with the plane z D 0

as osculating plane.
One also notes thatX constitutes an example of a curve which is not a complete

intersection in A3 (cf. Section 7.1 and the note 5.8.5), which is however a set-theo-
retical complete intersection of the two surfaces y2�xz D 0, x5Cz3�2x2yz D 0

which have the same tangent plane at every simple point ofX (cf. [71] and also [19]).



Chapter 4

Rudiments of Elimination Theory

In Section 4.1 we introduce the Euler–Sylvester resultant of two polynomials and
we recall some of its basic properties. As an application, in Section 4.2 we define
the intersection multiplicity of two algebraic coplanar curves and we prove Bézout’s
theorem (Theorem 4.2.1), which gives the numbers of points common to two such
curves.

In Section 4.3, by using another interpretation of the resultant, we show that
the intersection multiplicity of two coplanar curves is independent of the system of
projective coordinates chosen.

In Section 4.4 we discuss a procedure for the elimination of an indeterminate
first proposed by Kronecker.

In Section 4.5 we introduce the intersection multiplicity in higher dimension
and we state Bézout’s theorem in its full generality.

4.1 Resultant of two polynomials

Let A be an integral domain with identity and of characteristic zero. Suppose
furthermore thatA is a factorial ring, that is, an integral domain such that every non-
zero element admits a unique factorization (up to units) as a product of irreducible
elements. An element a ¤ 0 of A is said to be irreducible if it is not invertible and
if for all b; c 2 A such that a D bc, either b or c is invertible. It is known that the
ring AŒX� of polynomials in the indeterminate X is also factorial.

Consider two non-zero polynomials f; g 2 AŒX� of degrees n and m that have
a non-zero common divisor h 2 AŒX�. Setting f D hf1, g D �hg1 one then has

fg1 C gf1 D 0: (4.1)

If h has degree � s the degree of f1 will then be � n � s and that of g1 will be
� m � s.

Conversely, suppose that there exist two non-zero polynomials f1 of degree
� n � s and g1 of degree � m � s (with s > 0) such that one has (4.1). Each
of the irreducible divisors of f is a divisor of the product gf1 and so, AŒX� being
factorial, either it divides f1 or it divides g. Since deg.f1/ � n� s < n D deg.f /,
some divisor of f divides g, whence f and g have a common divisor of degree
� s. Thus we have established the following fact:

• A necessary and sufficient condition for two (non-zero) polynomials f and
g to have a non-zero common divisor h of degree � s is that there exist two
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non-zero polynomials f1 of degree � n � s and g1 of degree � m � s such
that fg1 C gf1 D 0.

Now, if f D a0X
n C a1X

n�1 C � � � C an, g D b0X
m C b1X

m�1 C � � � C bm with
a0b0 ¤ 0, the necessary and sufficient condition for the existence of two non-zero
polynomials

f1 D p0X
n�sCp1Xn�s�1C� � �Cpn�s; g1 D q0X

m�sCq1Xm�s�1C� � �Cqm�s

such that (4.1) holds, or, equivalently, such that q0; : : : ; qm�s; p0; : : : ; pn�s satisfy
the homogeneous system8̂̂̂̂

<̂
ˆ̂̂:
a0q0 C b0p0 D 0;

a1q0 C a0q1 C b1p0 C b0p1 D 0;
:::

anqm�s C bmpn�s D 0

is that the matrix0BBBBB@
a0 0 0 : : : 0 b0 0 0 : : : 0

a1 a0 0 : : : 0 b1 b0 0 : : : 0

a2 a1 a0 : : : 0 b2 b1 b0 : : : 0
:::

:::
:::

:::
:::

:::
:::

0 0 0 : : : an 0 0 0 : : : bm

1CCCCCA
with nCm� sC1 rows and .n� sC1/C .m� sC1/ D mCn�2sC2 columns
has rank < mC n � 2s C 2. In particular, in the case s D 1, one has:

• The necessary and sufficient condition in order that f and g should have a
common divisor of degree > 0 is the vanishing of the determinant of order
mC n,

R.f; g/ D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

a0 a1 a2 : : : an 0 : : : : : : : : : 0

0 a0 a1 a2 : : : : : : an : : : : : : 0
:::

:::
:::

:::
:::

:::
:::

:::

0 : : : : : : : : : : : : : : : : an
b0 b1 b2 : : : : : : bm : : : : : : : : : 0

0 b0 b1 b2 : : : : : : bm 0 : : : 0
:::

:::
:::

:::
:::

:::
:::

:::

0 : : : : : : : : : : : : : : : : bm

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌
: (4.2)

This determinant is called the Euler–Sylvester resultant of the two polynomials f
and g obtained via elimination of the indeterminate X .
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If R.f; g/ D 0 there exist two polynomials f1 of degree n� 1 and g1 of degree
m � 1 such that

fg1 C gf1 D 0:

Lemma 4.1.1. Let A be a factorial ring, and let R.f; g/ be the Euler–Sylvester
resultant of two polynomials f; g 2 AŒX�. Then

(1) R.f; g/ D 0 if and only if f and g have a common divisor of degree > 0;

(2) R.f; g/ belongs to the ideal .f; g/ generated by f and g.

Proof. The above discussion shows statement (1).
To show (2), observe that if pi D ai0X

t C ai1X
t�1 C � � � C ait 2 AŒX�,

i D 0; : : : ; t , are t C 1 polynomials of degree � t one hasˇ̌̌̌
ˇ̌̌̌
ˇ
a00 a01 : : : a0t
a10 a11 : : : a1t
:::

:::
:::

at0 at1 : : : at t

ˇ̌̌̌
ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ̌̌̌
ˇ
a00 a01 : : : a0 t�1 p0
a10 a11 : : : a1 t�1 p1
:::

:::
:::

:::

at0 at1 : : : at t�1 pt

ˇ̌̌̌
ˇ̌̌̌
ˇ D

tX
iD0

Hipi

with Hi 2 A.
On the other hand R.f; g/ is the determinant of the coefficients of the m C n

polynomials of degree t � mC n � 1,

pi D X if if i D 0; : : : ; m � 1I pi D X i�mg if i D m; : : : ; mC n � 1:
Thus one has

R.f; g/ D H0.f /C� � �CHm�1.Xm�1f /CHmC1.g/C� � �CHmCn�1.Xn�1g/;

with Hi 2 A, i D 0; : : : ; mC n � 1, and hence

R.f; g/ D Pf CQg with P;Q 2 AŒX�. (4.3)

Therefore one has
R.f; g/ 2 A \ .f; g/;

where .f; g/ denotes the ideal of AŒX� generated by f , g. �

The resultant ideal of f , g is the ideal of A generated by R.f; g/. By the
preceding lemma one then has

.R.f; g// � A \ .f; g/:
Note that if A is a field the following equality holds (cf. Section 4.4):

.R.f; g// D A \ .f; g/:
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Indeed, in that case the element R.f; g/ is invertible and so by (4.3) one has .f; g/ D
AŒX�.

The determinant R.f; g/ is a sum of products of the type

˙ai1 : : : aim bj1
: : : bjn

I
the weight of a product of this type is the sum i1 C � � � C im C j1 C � � � C jn. One
sees easily that all the summands of R.f; g/ have the same weight.

We will denote the element of R.f; g/ that belongs to row ˛ and column ˇ by
.˛; ˇ/.

If ˛ � m one has .˛; ˇ/ D aˇ�˛ (.˛; ˇ/ D 0 if ˛ > ˇ); if ˛ > m one has
instead .˛; ˇ/ D bˇ�˛Cm (.˛; ˇ/ D 0 if ˇ � ˛ C m < 0/. An arbitrary non-zero
summand appearing in the development

P˙.r1; s1/.r2; s2/ : : : .rmCn; smCn/ of
the determinant R.f; g/ is a product of m C n elements .r; s/ such that each row
and each column contains one of the factors. Therefore, the weight of an arbitrary
non-zero summand is

.s1 � r1 C � � � C sm � rm/C .smC1 � rmC1 CmC � � � C smCn � rmCn Cm/;

namely
mCnX
iD1

si �
mCnX
jD1

rj Cmn D mn:

We conclude that the resultant R.f; g/ is isobaric of weight mn.
For further properties of the determinant R.f; g/ we refer the reader, for exam-

ple, to [62, V, §10] and to [35, 14.1].

4.1.2 The homogeneous case. We add a few observations with regard to the ho-
mogeneous case.

(1) Let f , g be two binary forms (i.e., homogeneous polynomials of KŒx0; x1�)
of degrees n, m respectively:

f .x0; x1/ D
nX
iD0

aix
n�i
0 xi1; g.x0; x1/ D

mX
jD0

bjx
m�j
0 x

j
1 :

Assume that f , g have positive degree with respect to x0 and let us consider
f , g as elements of AŒx0�, where A ´ KŒx1�. We denote by R.f; g; x0/ the
Euler–Sylvester resultant of f; g 2 AŒx0�. Then by Lemma 4.1.1 we know
that

(a) the polynomials f , g have a common divisor in A of positive degree if
and only if R.f; g; x0/ is the zero polynomial in A;
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(b) R.f; g; x0/ 2 .f; g/ \ A.

Moreover, one has
R.f; g; x0/ D xmn1 R.f; g/;

where R.f; g/ is defined by (4.2).

To see this, write

R.f; g; x0/ ´

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

a0 a1x1 a2x
2
1 � � � anx

n
1 0 � � � � � � � � � 0

0 a0 a1x1 a2x
2
1 � � � � � � anx

n
1 � � � � � � 0

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

0 : : : : � � � � � � � � � � � � anx
n
1

b0 b1x1 b2x
2
1 � � � � � � bmx

m
1 � � � � � � � � � 0

0 b0 b1x1 b2x
2
1 � � � � � � bmx

m
1 0 � � � 0

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

0 : : : : � � � � � � � � � � � � bmx
m
1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
:

Multiply the second row by x1, the third by x21 , and so on, the mth by xm�1
1 ,

the .mC 2/nd by x1, the .mC 3/rd by x21 , and so on, the .mC n/th by xn�1
1 ,

to get


 ´

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

a0 a1x1 a2x
2
1 � � � anx

n
1 0 � � � � � � � � � 0

0 a0x1 a1x
2
1 a2x

3
1 � � � � � � anx

nC1
1 � � � � � � 0

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

0 : : : : � � � � � � � � � � � � anx
nCm�1
1

b0 b1x1 b2x
2
1 � � � � � � bmx

m
1 � � � � � � � � � 0

0 b0x1 b1x
2
1 b2x

3
1 � � � � � � bmx

mC1
1 0 � � � 0

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

0 : : : : � � � � � � � � � � � � bmx
mCn�1
1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
:

Thus


 D R.f; g; x0/x
1C2C���Cm�1
1 x1C2C���Cn�1

1 D R.f; g; x0/x
m.m�1/

2 C n.n�1/
2

1 :

On the other hand,


 D x
1C2C���C.mCn�1/
1 R.f; g/ D x

.mCn/.mCn�1/
2

1 R.f; g/:

Comparing the two equalities we have the result.

Similar conclusions hold by interchanging x0 and x1.

(2) If f1; f2; : : : ; fh are homogeneous polynomials in KŒx0; : : : ; xr � of degrees
d1; d2; : : : ; dh and if d D maxfd1; : : : ; dhg, consider, together with the sys-
tem of equations

f1 D f2 D � � � D fh D 0; (4.4)
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also the system that one obtains by substituting for every equation fj D 0,
j D 1; : : : ; h, the r C 1 equations (all homogeneous of degree d ):

x
d�dj

i fj D 0; i D 0; : : : ; r: (4.5)

It is clear that every solution of the system (4.4) is also a solution of (4.5)
and one sees immediately that conversely every proper solution of the system
(4.5) is also a solution of the system (4.4).

With these facts as premise, let '1; '2; : : : ; 'h 2 KŒx0; : : : ; xr � be forms of the
same degree d , and suppose that one wishes to eliminate the variable x0 from the
system of equations

'1 D '2 D � � � D 'h D 0: (4.6)

We set
x0 D y0 and xi D y1x

0
i ; i D 1; : : : ; r:

If
'j D ˛0jx

d
0 C ˛1j .x1; : : : ; xr/x

d�1
0 C � � � C ˛dj .x1; : : : ; xr/;

˛sj 2 KŒx1; : : : ; xr � being homogeneous polynomials of degree s, s D 0; : : : ; d ,
one has that for each j D 1; : : : ; h:

'0
j ´ 'j .y0; y1x

0
1; : : : ; y1x

0
r/

D ˛0jy
d
0 C ˛1j .x

0
1; : : : ; x

0
r/y1y

d�1
0 C � � � C ˛dj .x

0
1; : : : ; x

0
r/y

d
1 ;

and so the polynomials '0
j 2 KŒy0; y1; x

0
1; : : : ; x

0
r � are binary forms belonging to

the ring AŒy0; y1� where A D KŒx0
1; : : : ; x

0
r �.

We construct the resultant system of these h binary forms by writing the Euler–
Sylvester determinant R.F;G/ .D R.F;G; y0/ in our previous notation) of the two
binary forms

F.y0; y1/ D
hX

jD1
�j'

0
j and G.y0; y1/ D

hX
jD1

�j'
0
j :

It is a bihomogeneous polynomial in the two sets of indeterminates�D .�1; : : : ; �h/,
� D .�1; : : : ; �h/ with coefficients in KŒx0

1; : : : ; x
0
r �. On imposing the conditions

that all the coefficients of R.F;G/ be zero one obtains a system of homogeneous
equations

�t .x
0
1; : : : ; x

0
r/ D 0; t D 1; 2; : : : : (4.7)

If Nx0
1; : : : ; Nx0

r is a solution of the system (4.7), there exists a common zero for the
binary forms '0

j ; that is, there exist Ny0
0, Ny0

1 such that

'j . Ny0
0; Ny0

1 Nx0
1; : : : ; Ny0

1 Nx0
r/ D 0; j D 1; : : : ; h:
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But this means that . Ny0
0; Ny0

1 Nx0
1; : : : ; Ny0

1 Nx0
r/ is a solution of the system (4.6).

Since the polynomials �t in (4.7) are homogeneous andxi D y1x
0
i , i D 1; : : : ; r ,

the system of equations (4.6) is equivalent to the system

�t .x1; : : : ; xr/ D 0; t D 1; 2; : : : ; (4.8)

which therefore is a resultant system of the system (4.6). The equations (4.8)
represent the cone V projecting the variety X D V.'1; : : : ; 'h/, that is, V D
V.: : : ; �t ; : : : /.

4.2 Bézout’s theorem for plane curves

As a simple application of the tools introduced in Section 4.1 we prove Bézout’s
theorem which gives the number of points common to two coplanar algebraic curves.

In the projective plane P2 D P2.K/ over an algebraically closed field K, let
C n, Cm be two algebraic curves of orders n andm and equations f D 0 and g D 0

respectively and not having common components.
We fix a system of homogeneous projective coordinates x0; x1; x2 choosing

as the point A0 D Œ1; 0; 0� a point not belonging to C n [ Cm and we write the
equations f D 0, g D 0 ordering them with respect to x0:

f .x0; x1; x2/ D a0x
n
0 C a1.x1; x2/x

n�1
0 C � � � C an.x1; x2/ D 0;

g.x0; x1; x2/ D b0x
m
0 C b1.x1; x2/x

m�1
0 C � � � C bm.x1; x2/ D 0;

where ai , bj are homogeneous polynomials of degree equal to the corresponding
index and a0b0 ¤ 0.

We set A D KŒx1; x2� and consider the polynomials f , g as elements of
the ring AŒx0�. Elimination of the indeterminate x0 gives a resultant polyno-
mial R.x1; x2/ ´ R.f; g; x0/ isobaric of weight mn; and since the coefficients
ai , bj are homogeneous polynomials of degree equal to their respective indices,
R.x1; x2/ 2 KŒx1; x2� is a homogeneous polynomial of degree mn. It is not the
zero of A because otherwise the two polynomials f , g would have a common
divisor h.x0; x1; x2/ of degree � 1 with respect to x0 in AŒx0� D KŒx0; x1; x2�

which contradicts the hypothesis that the two curves C n, Cm have no common
components.

If y1, y2 are two elements of K such that R.y1; y2/ D 0, the two polynomials
in KŒx0�

f .x0; y1; y2/ D a0x
n
0 C a1.y1; y2/x

n�1
0 C � � � C an.y1; y2/;

g.x0; y1; y2/ D b0x
m
0 C b1.y1; y2/x

m�1
0 C � � � C bm.y1; y2/

have a common divisor of positive degree (in x0) and thus at least one common
root y0. Then there exists at least one point Œy0; y1; y2� common to the two curves
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and having y1 and y2 as last two coordinates (that is, belonging to the line with
equation y2x1 � y1x2 D 0), so that y2x1 � y1x2 is one of the linear factors of the
binary form R.x1; x2/.

Thus we may conclude that the equation R.x1; x2/ D 0 represents the union of
the lines passing throughA0 and containing points common to the two curves. Each
of these lines (which are finite in number, since there exists only a finite number of
pairs .y1; y2/ such that R.y1; y2/ D 0) contains only a finite number of common
points of the two curves (because otherwise it would be a component common to
each of them) and therefore C n and Cm have a finite number of points in common.

If the point A0 has been chosen outside of the lines that contain pairs of these
points, each linear factor of R.x1; x2/ furnishes a single common point of the
two curves, and so the number of distinct common points of C n and Cm equals
the number of distinct linear factors of R.x1; x2/ and is therefore � mn, since
R.x1; x2/ is a homogeneous polynomial of degree mn.

We denote the multiplicity with which a linear factor corresponding to a common
pointP of the two curves appears in the factorization ofR.x1; x2/ bymP .C n; Cm/.
This non-negative integermP .C n; Cm/ is called the intersection multiplicity of the
two curves in P . In Section 4.3 (see in particular Corollary 4.3.10) we will show
that it does not depend on the choice of coordinate system.

If we agree to count each common point of the two curves with multiplicity
equal to the intersection multiplicity of the two curves at the given common point,
one thereby obtains Bézout’s theorem for plane curves (cf. Theorem 4.5.2).

Theorem 4.2.1. Let C n and Cm be curves in P2 of orders n and m respectively.
Then

mn D
X

P2Cn\Cm

mP .C
n; Cm/:

It would be easy to prove that if P is r-fold for one of the two curves and s-fold
for the other, the intersection multiplicity at P satisfies mP .C n; Cm/ � rs; with
equality when the two curves present the simple case atP , namely, they do not have
any common tangent at P . If instead t is the number of common tangents at P ,
then

mP .C
n; Cm/ � rs C t: (4.9)

In this regard see [87].

4.3 More on intersection multiplicity

We would like to thank our colleague L. Bădescu for calling our attention to the
results discussed in this section and for letting us freely use [3] from which the
content of the section is taken. We also refer to [62, Chapter V].
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The aim of this section is to prove that the intersection multiplicitymP .C n; Cm/
defined above depends only on the curves C n and Cm and P 2 C n \Cm, and not
on the projective system of coordinates chosen.

The algebraic result that will be used is the following.

Theorem 4.3.1. Let A D KŒY � be the polynomial ring in one indeterminate Y
over a fieldK and let f; g 2 AŒX� be two monic polynomials inX with coefficients
in A and without non-constant common factors. Then:

dimK.AŒX�=.f; g// D dimK.A=.R.f; g///;

where R.f; g/ is the resultant of f and g.

To prove Theorem 4.3.1 we first need another interpretation of the resultant. We
shall use the following simple lemma.

Lemma 4.3.2. Let h.X1; : : : ; Xn/ 2 ZŒX1; : : : ; Xn� be a polynomial with integral
coefficients. If h.X1; X1; X3; : : : ; Xn/ D 0 (that is, if h becomes zero when we
substitute X1 for X2 and leave the other Xi fixed, i ¤ 2), then X1 � X2 divides h
in ZŒX1; : : : ; Xn�.

Proof. It is an easy consequence of Ruffini’s theorem and we left it to the reader. �

Let now be v0; t1; : : : ; tn; w0; u1; : : : ; um be independent variables over Z and
consider the polynomials in ZŒv0; t1; : : : ; tn; w0; u1; : : : ; um�ŒX�:

fv D v0.X � t1/ : : : .X � tn/ D v0X
n C v1X

n�1 C � � � C vn;

gw D w0.X � u1/ : : : .X � um/ D w0X
m C w1X

m�1 C � � � C wm:

Thus

vi D .�1/iv0si .t1; : : : ; tn/ and wj D .�1/jw0sj .u1; : : : ; um/;
where si .t1; : : : ; tn/ and sj .u1; : : : ; tm/ are the i -th and the j -th elementary sym-
metric polynomials, i D 1; : : : ; n, j D 1; : : : ; m. Then it is easy to prove that

v0; v1; : : : ; vn; w0; w1; : : : ; wm

are still algebraically independent over Z.

Proposition 4.3.3. Under the above notation one has

R.fv; gw/ D vm0 w
n
0

nY
iD1

mY
jD1

.ti � uj /:
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Proof. Denote by‚ the right-hand side of the equality in the statement of the propo-
sition, and set ZŒv; w� ´ ZŒv0; v1; : : : ; vn; w0; w1; : : : ; wm�. Since R.fv; gw/ μ
R.v0; v1; : : : ; vn; w0; w1; : : : ; wm/ 2 ZŒv; w� is homogeneous of degree m in the
variables v0; : : : ; vn and homogeneous of degree n in w0; w1; : : : ; wm, we get

R.fv; gw/D vm0 w
n
0h.t1; : : : ; tn; u1; : : : ; um/DR.v0; t1; : : : ; tn; w0; u1; : : : ; um/;

with
h.t1; : : : ; tn; u1; : : : ; um/ 2 ZŒt1; : : : ; tn; u1; : : : ; um�:

By the discussion made in Section 4.1, we see that the resultant vanishes when
we substitute ti for uj , i D 1; : : : ; n, j D 1; : : : ; m. Therefore by Lemma 4.3.2
the element ti � uj (which is a prime element of ZŒv0; t1; : : : ; tn; w0; u1; : : : ; um�)
divides the polynomialR.v0; v1; : : : ; vn; w0; w1; : : : ; wm/. Since for different pairs
.i; j / and .i 0; j 0/, ti � uj and ti 0 � uj 0 are coprime, it follows that ‚ divides
R.v0; t; w0; u/ ´ R.v0; t1; : : : ; tn; w0; u1; : : : ; um/.

From ‚ ´ vm0 w
n
0

nQ
iD1

mQ
jD1

.ti � uj / and the equality

nY
iD1

gw.ti / D wn0

nY
iD1

mY
jD1

.ti � uj /;

we get

‚ D vm0

nY
iD1

gw.ti / D vm0

nY
iD1
.w0t

m
i C w1t

m�1
i C � � � C wm/: (4.10)

Similarly,

‚ D .�1/nmwn0
mY
jD1

fv.uj / D .�1/nmwn0
mY
jD1

.v0u
n
j Cv1un�1

j C� � �Cvn/: (4.11)

From (4.10) we see that ‚ is homogeneous of degree n in w0; : : : ; wm, and from
(4.11) we see that‚ is homogeneous of degreem in v0; : : : ; vn. Since the polyno-
mial R.v0; t; w0; u/ has exactly the same homogeneity properties, and is divisible
by‚, it follows thatR.v0; t; w0; u/ D k‚, with k 2 Z. Since bothR.v0; t; w0; u/
and‚ have a monomial vm0 w

n
m occurring in them with coefficient 1, it follows that

k D 1. The proposition is proved. �

Corollary 4.3.4. Letf; g 2 AŒX� be two polynomials with coefficients in a factorial
ring A. Assume thatK is a field containing A such that these polynomials have all
their roots in K, i.e.,

f D a0X
n C a1X

n�1 C � � � C an D a0.X � �1/ : : : .X � �n/;
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g D b0X
m C b1X

m�1 C � � � C bm D b0.X � �1/ : : : .X � �m/;
with �i ; �j 2 K, i D 1; : : : ; n, j D 1; : : : ; m. Then

R.f; g/ D am0 b
n
0

nY
iD1

mY
jD1

.�i � �j /:

Proof. We use the notation introduced above. From the universal property of poly-
nomial rings it follows that there is a unique homomorphism of rings

' W ZŒv0; t1; : : : ; tn; w0; u1; : : : ; um� ! K

such that '.v0/ D a0, '.w0/ D b0, '.ti / D �i , i D 1; : : : ; n, and '.uj / D �j ,
j D 1; : : : ; m. It also follows that '.vi / D ai , i D 1; : : : ; n, and '.wj / D bj ,
j D 1; : : : ; m. The homomorphism ' extends uniquely to a homomorphism of
rings

x' W ZŒv0; t1; : : : ; tn; w0; u1; : : : ; um�ŒX� ! KŒX�

such that the restriction of x' to ZŒv0; t1; : : : ; tn; w0; u1; : : : ; um� coincides with '
and x'.X/ D X . Then x'.fv/ D f and x'.gw/ D g, whence x'.R.fv; gw// D
R.f; g/. Now the conclusion follows from Proposition 4.3.3. �

Proposition 4.3.5. Let A D KŒY � be the polynomial ring with coefficients in a
field K in the indeterminate Y and let M be a free A-module of rank n � 1. Let
' W M ! M be an injective homomorphism of A-modules. Then

dimK.M='.M// D dimK.A= det.'//:

Proof. Let e1; : : : ; en be a basis of M , and let � D .˛ij /i;jD1;:::;n be the matrix
associated to ' with respect to this basis. Since A is a principal ideal domain
(a domain in which every ideal can be generated by one element), there are two
invertible n � n matrices �1 and �2 with coefficients in A such that

�1� �2 D

0BBB@
ı1 0 : : : 0

0 ı2 : : : 0
:::

:::
: : :

:::

0 0 : : : ın

1CCCA ;
with ı1; : : : ; ın 2 Anf0g and ıi divides ıiC1, i D 1; : : : ; n�1 (see [62, XV, §2]). If
 W M ! M is the homomorphism associated to the matrix�1� �2 with respect
to the basis e1; : : : ; en, we have

dimK.M= .M// D dimK.M='.M//;
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because the matrices�1 and�2 are invertible. Further, det. / D det.�1� �2/ D
� det.�/, with � D det.�1/ det.�2/ 2 K n f0g. Therefore

dimK.A= det.'// D dimK.A= det. //:

Thus we may replace ' for  , i.e., there is no loss of generality if we assume that
the matrix of ' with respect to the basis e1; : : : ; en has the diagonal form0BBB@

ı1 0 : : : 0

0 ı2 : : : 0
:::

:::
: : :

:::

0 0 : : : ın

1CCCA ;
with ı1; : : : ; ın 2 A n f0g and ıi divides ıiC1, i D 1; : : : ; n � 1. It follows
that M='.M/ is generated by the classes xi ´ ei mod '.M/, i D 1; : : : ; n.
Moreover, it follows easily thatM='.M/ D Ax1 ˚ � � � ˚Axn and Axi Š A=ıiA,
i D 1; : : : ; n, whence

dimK.M='.M// D
nX
iD1

dimK.A=ıiA/ D
nX
iD1

deg.ıi /: (4.12)

On the other hand,

det.'/ D

ˇ̌̌̌
ˇ̌̌̌
ˇ
ı1 0 : : : 0

0 ı2 : : : 0
:::

:::
: : :

:::

0 0 : : : ın

ˇ̌̌̌
ˇ̌̌̌
ˇ D ı1ı2 : : : ın;

and therefore

dimK.A=.det.'// D dimK.A=.ı1ı2 : : : ın//

D deg.ı1ı2 : : : ın/ D
nX
iD1

deg.ıi /:
(4.13)

Comparing (4.12) and (4.13) we get the result. �

Proof of Theorem 4.3.1. Write

f D XnCa1Xn�1C� � �Can; ai D ai .Y / 2 A D KŒY �; i D 1; : : : ; n; (4.14)

and

g D Xm C b1X
m�1 C � � � C bm; bj D bj .Y / 2 A D KŒY �; j D 1; : : : ; m:
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Denote by Nx 2 AŒX�=.f / the class of X . Since f is monic,

f1; Nx; Nx2; : : : ; Nxn�1g
is a basis of the A-module M ´ AŒX�=.f /. Moreover, (4.14) yields

Nxn C a1 Nxn�1 C � � � C an D 0: (4.15)

LetK 0 be a field which contains A D KŒY � as a subring such that the polynomials
f and g have all the roots in K 0. Let t1; : : : ; tn 2 K 0 be the roots of f and
s1; : : : ; sm 2 K 0 the roots of g. Then

AŒX�=.f; g/ Š M=g0M; where g0 D g mod .f / 2 M:
We shall first prove the result for m D 1. Thus g D X � s, with s D s1 2 A,
whence g0 D Nx � s. Then the multiplication (denoted “�”) by g0 D Nx � s yields in
M the relations

. Nx � s/ � 1D .�s/ � 1C 1 � Nx C 0 � Nx2 C � � � C 0 � Nxn�1;
. Nx � s/ � NxD 0 � 1C .�s/ � Nx C 1 � Nx2 C � � � C 0 � Nxn�1;

:::

. Nx � s/ � Nxn�2 D 0 � 1C 0 � Nx C � � � C .�s/ � Nxn�2 C 1 � Nxn�1;

. Nx � s/ � Nxn�1 D .�an/ � 1C .�an�1/ Nx C � � � C .�a2/ � Nxn�2C .�s � a1/ � Nxn�1:

The last equality follows from (4.15). Thus the matrix associated to the injective
map of A-modules ' W M ! M defined by '.x/ D g0 � x, for each x 2 M , is the
following:

�.s/ D

0BBBBBBB@

�s 1 0 : : : 0 0

0 �s 1 : : : 0 0

0 0 �s : : : 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 : : : �s 1

�an �an�1 �an�2 : : : �a2 �.s C a1/

1CCCCCCCA
Then an easy calculation yields det.�.s// D .�1/nf .s/, whence by Corollary 4.3.4,
one has det.'/ D det.�.s// D R.f; g/. Then by Proposition 4.3.5 we get the con-
clusion in the case m D deg.g/ D 1.

If m � 2, set xM ´ K 0ŒX�=.f /K 0ŒX�. Then xM is a K 0-vector space with
the basis the classes of 1;X; : : : ; Xn�1 modulo the extended ideal .f /K 0ŒX�, and
M 
 xM . (In fact, xM Š M ˝A K 0, although we do not need this.) Then the
morphism ' is the restriction toM of the composition map '1 B'2 B � � � B'm, where
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the map 'j W xM ! xM is defined by 'j .y/ D . Nx � sj /y, for each y 2 xM . By the
case m D 1, we know that det.'j / D .�1/nf .sj /, whence

det.'/ D
mY
jD1

det.'j / D .�1/nm
mY
jD1

f .sj /

D .�1/nm
nY
iD1

mY
jD1

.ti � sj / D .�1/nmR.f; g/;

where the last equality follows from Corollary 4.3.4. Then we conclude Theo-
rem 4.3.1 again by Proposition 4.3.5. �

Remark 4.3.6. Proposition 4.3.5 remains still valid if we replace A D KŒY � by
the localization KŒY �.Y�c/ defined by

KŒY �.Y�c/ ´ ˚
P.Y /
Q.Y /

j Q.c/ ¤ 0
�
;

where c is an arbitrary element ofK. Indeed, the ringKŒY �.Y�c/ is still Euclidean,
in fact it is a discrete valuation ring, see Definition 4.3.7 below. Using this remark,
from the proof of Theorem 4.3.1 it follows that Theorem 4.3.1 remains valid if we
replace A D KŒY � by the localization KŒY �.Y�c/.

We now need the concept of discrete valuation ring.

Definition 4.3.7. LetA be a local Noetherian domain which is not a field, and let m
be the maximal ideal ofA. We say thatA is a discrete valuation ring (DVR for short)
if m is generated by one element t . Any such element t is called a uniformising
parameter, or sometimes regular parameter, for A.

Example 4.3.8. Let K be a field and let c 2 K be an arbitrary element. Let

A ´ ˚
P
Q

with P;Q 2 KŒY � and Q.c/ ¤ 0
�
:

ThenA is the fraction ring of the polynomial ringKŒY � in the indeterminate Y with
respect to the multiplicative system Sc ´ fQ 2 KŒY � j Q.c/ ¤ 0g. Indeed, since
the ideal .Y � c/ is maximal in KŒY �, the ideal m ´ .Y � c/A is maximal in A.
Moreover, since Sc D KŒY � n .Y � c/, m is the unique maximal ideal of A, that
is, .A;m/ is a local ring, with maximal ideal m generated by t D Y � c (in other
words, Y �c is a uniformising parameter forA). It follows that .A;m/ is a discrete
valuation ring.

We are now ready to prove that the intersection multiplicitymP .C n; Cm/ intro-
duced in Section 4.2 is independent of the system of projective coordinates chosen.
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Corollary 4.3.9. LetC n andCm be two curves in the projective plane P2 of degrees
n and m and equations F D 0, G D 0 respectively, and having no common
irreducible components. Let P 2 C n \ Cm. Then the intersection multiplicity
mP .C

n; Cm/ can be calculated by the formula

mP .C
n; Cm/ D dimK.OP2;P =.f; g//;

where f and g are local equations of C n and Cm around P (i.e., if P 2 P2xi
D

P2 n fxi D 0g then we can take f D F=xni and g D G=xmi /.

Proof. According to the proof of Theorem 4.2.1 we can choose a system of projec-
tive coordinates of P2 such that the pointP0 D Œ1; 0; 0� does not belong toC n[Cm
and then the equations of C n and Cm are of the following form:

F.x0; x1; x2/ D a0x
n
0 C a1.x1; x2/x

n�1
0 C � � � C an.x1; x2/;

G.x0; x1; x2/ D b0x
m
0 C b1.x1; x2/x

m�1
0 C � � � C bm.x1; x2/;

with a0; b0 2 K n f0g and ai .x1; x2/ and bj .x1; x2/ homogeneous polynomials of
degrees i and j respectively. Therefore there is no loss of generality in assuming
a0 D b0 D 1. Moreover, we have P 2 P2x1

[ P2x2
because the point Œ1; 0; 0� 62

C n \Cm. If for instance P 2 P2x2
then we can take x2 D 1 in the above equations

to get

f .x0; x1/ ´ F.x0; x1; 1/ D xn0 C a1.x1; 1/x
n�1
0 C � � � C an.x1; 1/;

g.x0; x1/ ´ G.x0; x1; 1/ D xm0 C b1.x1; 1/x
m�1
0 C � � � C bm.x1; 1/:

Setting x0 D X , x1 D Y , ai .Y / D ai .Y; 1/ and bj .Y / D bj .Y; 1/, i D 1; : : : ; n

and j D 1; : : : ; m, we get

f D f .X; Y / D Xn C a1.Y /X
n�1 C � � � C an.Y / 2 AŒX�;

g D g.X; Y / D Xm C b1.Y /X
m�1 C � � � C bm.Y / 2 AŒX�;

where f; g 2 AŒX� are monic polynomials with coefficients in A ´ KŒY �. Since
C n andCm have no irreducible components in common, f and g have no common
non-constant factors. By Theorem 4.3.1,

dimK.AŒX�=.f; g// D dimK.A=.R.f; g///;

where R.f; g/ is the resultant of f and g. Now, according to Remark 4.3.6 we also
have

dimK.A
0ŒX�=.f; g// D dimK.A

0=.R.f; g///; (4.16)

where c is a root of R.f; g/ and A0 D KŒY �.Y�c/ D ˚
P.Y /
Q.Y /

j Q.c/ ¤ 0
�
, which

is a discrete valuation ring (see Example 4.3.8). Then clearly the right-hand side
coincides with mP .C n; Cm/ defined in Section 4.2.
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Now, to any point P 2 K2 it corresponds a maximal ideal mP in AŒX� D
KŒY;X�. Then the local ring OP2;P is by definitionAŒX�mP

D KŒY;X�mP
. Since

by the proof of Theorem 4.2.1, there is a bijective correspondence between the set
C n \ Cm and the roots of R.f; g/, we infer that the ring A0ŒX�=.f; g/ is itself
local. Let c 2 K be the unique root of R.f; g/ which corresponds to the given
point P 2 C n \ Cm, say P D .c0; c/, cf. the proof of Theorem 4.2.1. Then the
rings A0ŒX�=.f; g/ and OP2;P =.f; g/ are fractions rings of KŒX; Y �=.f; g/ with
respect to the multiplicative systems S1 ´ fh1.Y / 2 KŒY � j h1.c/ ¤ 0g and
S2 ´ fh2.X; Y / 2 KŒX; Y � j h2.c0; c/ ¤ 0g respectively. Obviously, S1 
 S2.
In particular, we get a canonical homomorphism of K-algebras

' W A0ŒX�=.f; g/ ! OP2;P =.f; g/:

Then we claim that ' is in fact an isomorphism and, in particular,

dimK.A
0ŒX�=.f; g// D dimK.OP2;P =.f; g//: (4.17)

To see this, first observe that A0ŒX�=.f; g/ and OP2;P =.f; g/ are rings having each
just one prime ideal (the maximal ideal). Indeed, since C n \ Cm is finite, the K-
algebraKŒX; Y �=.f; g/ has only finitely many prime ideals and all of them are max-
imal. Since A0ŒX�=.f; g/ is a local ring which is a fraction ring of KŒX; Y �=.f; g/
it follows that A0ŒX�=.f; g/ has just one prime ideal (namely, the maximal ideal
mA0ŒX�=.f;g/). From this we deduce that '�1.mOP2;P

/ D mA0ŒX�=.f;g/, i.e., ' is a
homomorphism of local rings. This latter fact implies that the class Œh2� of every
polynomial h2 2 S2 (that is, such that h2.P / ¤ 0) in A0ŒX�=.f; g/ is invertible in
A0ŒX�=.f; g/. Finally, since OP2;P =.f; g/ is the fraction ring of A0ŒX�=.f; g/ with
respect to the multiplicative system fŒh2� j h2 2 S2g, we get (4.17).

Thus, by combining (4.16) and (4.17) we get

mP .C
n; Cm/ D dimK.OP2;P =.f; g//;

which is exactly what we wanted. �

Corollary 4.3.10. The intersection multiplicitymP .C n; Cm/ depends only on C n,
Cm and P 2 C n \ Cm and not on the system of projective coordinates chosen.

Proof. We have to prove that if 	 2 PGL2.K/ is a projective linear automorphism
of P2 then mP .C n; Cm/ D m�.P /.	.C

n/; 	.Cm//. Using Corollary 4.3.9 the
conclusion is clear because the rings OP2;P =.f; g/ and OP2;�.P /=.f B 	; g B 	/ are
isomorphic as K-algebras (and hence also as K-vector spaces). �

Let us point out that Corollary 4.3.9 is also very efficient for computing explicitly
the intersection multiplicities in many cases via the following result. To this end,
we propose below some exercises.
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Proposition 4.3.11. Let C n and Cm be two affine curves in A2 such that the
intersection C n \ Cm contains just one point P . Let f and g be the equations of
C n and Cm respectively. Then there is a canonical isomorphism of K-algebras

KŒX; Y �=.f; g/ Š OA2;P =.f; g/:

Proof. We have a canonical homomorphism of K-algebras ' W KŒX; Y �=.f; g/ !
OP2;P =.f; g/. If mP is the maximal ideal of KŒX; Y � corresponding to P , then
OP2;P D S�1

P KŒX; Y �, whereSP D fh 2 KŒX; Y � j h.P / ¤ 0g D KŒX; Y � nmP .
Since by hypothesis C n \ Cm D fP g, then by the Hilbert Nullstellensatz 2.2.2,
mP =.f; g/ is the only prime ideal ofKŒX; Y �=.f; g/, and thereforeKŒX; Y �=.f; g/
is a local ring. It follows that '�1.mOP2;P

=.f; g// D mP =.f; g/ and, in partic-
ular, the class of every h 2 SP in KŒX; Y �=.f; g/ is invertible (cf. the proof
of Corollary 4.3.9). This finishes the proof because OP2;P =.f; g/ is the fraction
ring of KŒX; Y �=.f; g/ with respect to the multiplicative system 
.SP /, where

 W KŒX; Y � ! KŒX; Y �=.f; g/ is the canonical homomorphism of K-algebras.

�

Exercise 4.3.12. Let C , `1 and `2 be the curves in A2 of equations x2 C y2 D 1,
y D 1 and y D 0 respectively. Find C \ `1, C \ `2 and the respective intersection
multiplicities.

Exercise 4.3.13. Let C be the curve of A2 of equation y2 D x2.x C 1/. Find the
intersection multiplicities at the points of intersection of C with the axis y D 0.

Exercise 4.3.14. Find the intersection multiplicity of the curves of equations y D
xn (n � 2) and y D 0 in A2 at the origin.

Exercise 4.3.15. Find the intersection multiplicity of the curves of equations y2 D
x3 and y2 D x2.x C 1/ in A2 at the origin.

4.4 Elimination of several variables

Let J D .f1; : : : ; fh/ be a homogeneous ideal of KŒx0; : : : ; xr �. We will assume
that J is a radical ideal and thatX D V.J/ � P r is the projective variety associated
to J. Let Ai , i D 0; : : : ; r , be the r C 1 fundamental points of a fixed system of
reference in P r .

Let � be a conical hypersurface containing X and having the linear space
Sr�m�1 D J.AmC1; : : : ; Ar/ as vertex, where xmC1; : : : ; xr are projective ho-
mogeneous coordinates (cf. §5.2.3). If f .x0; : : : ; xm/ D 0 is the equation of � we
have f 2 J and so f 2 J\KŒx0; : : : ; xm�. Conversely, if f 2 J\KŒx0; : : : ; xm�,
the hypersurface with equation f D 0 containsX D V.J/ and is a cone with vertex
the given Sr�m�1.
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For each m � r , consider the contracted ideal

Jm ´ KŒx0; : : : ; xm� \ J: (4.18)

One notes that Jm is a homogeneous ideal of KŒx0; : : : ; xm�. Indeed, if j̨ are
homogeneous polynomials ofKŒx0; : : : ; xm� and f D P

j j̨ , then, in view of the
homogeneity of J, it follows that for each index j ,

f 2 Jm ” f 2 J ” j̨ 2 J ” j̨ 2 Jm:

Moreover, obviously one has Jr D J and

Jm D JmC1 \KŒx0; : : : ; xm�; m � r � 1:
In §3.4.5 the cone projecting X from Sr�m�1 D J.AmC1; : : : ; Ar/ was defined
to be the algebraic set V D V.JmKŒx0; : : : ; xr �/, and the projection X 0 of X
from Sr�m�1 onto the space Sm D J.A0; : : : ; Am/ was defined as the intersection
X 0 D V \ Sm, that is, X 0 D V.Jm/ � Sm.

Remark 4.4.1. Note that the space Sr�m that joins Sr�m�1 D J.AmC1; : : : ; Ar/
with a point P D Œa0; : : : ; am� 2 X 0 � Sm contains the entire line joining
P to a point x 2 X of which P is the projection, and so intersects X at x.
This point x has coordinates .a0; : : : ; am; amC1; : : : ; ar/, whence the polynomials
fi .a0; : : : ; am; xmC1; : : : ; xr/ in KŒxmC1; : : : ; xr � have at least ŒamC1; : : : ; ar � 2
Sr�m�1 as common zero.

The projecting cone V is a locus of zeros of polynomials in which the variables
xmC1; : : : ; xr do not appear. We shall say that Jm is the resultant ideal of the ideal
J D .f1; : : : ; fh/ with respect to the indeterminates xmC1; : : : ; xr , or also that Jm
is the resultant of the elimination of the variables xmC1; : : : ; xr from the equations
fi D 0, i D 1; : : : ; h. The geometric interpretation of this procedure may be stated
as follows:

• To eliminate the variables xmC1; : : : ; xr from the equations f1 D � � � D
fh D 0 means to find the equations of the cone that projects X D V.J/, J D
.f1; : : : ; fh/, from Sr�m�1 D J.AmC1; : : : ; Ar/ on Sm D J.A0; : : : ; Am/.

Note that different orderings of the variables lead to different resultant ideals.
Since we have Jm D JmC1 \KŒx0; : : : ; xm�, elimination of the indeterminates

xmC1; : : : ; xr can be realized by way of successive eliminations of a single coordi-
nate; it is then sufficient to have available a procedure for the elimination of a single
variable.

In general, the most modern and advantageous approach to the theory of elim-
ination is that based on algorithms of computational type that make essential use
of the notion of “Groebner basis” of a given ideal. For this we refer the reader to
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[28, Chapter 3], to [35, Chapters 14, 15] and to [76] for a systematic exposition
of the theory. Here we limit ourselves to explaining a procedure, suggested by
Kronecker, for the elimination of a single indeterminate.

With the notation introduced in the course of this section, we eliminate, as
an example, the variable xr . If the original ideal J D .f1; f2/ is generated by
only two polynomials f1, f2, the resultant of the elimination of xr is immediately
obtained by writing the Euler–Sylvester determinant, after having ordered the two
polynomials f1, f2 with respect to xr and considering f1, f2 as elements of AŒxr �,
where A D KŒx0; : : : ; xr�1� (cf. Section 4.1).

If the number of polynomials generating the ideal J is greater than two, one can
make use of a trick, suggested by Kronecker, which reduces the question to the case
of two equations.

We work over an affine chart, for example U0 D fŒx0; : : : ; xr � j x0 ¤ 0g. We
set

'i .x1; : : : ; xr/ D fi .1; x1; : : : ; xr/; i D 1; : : : ; h;

and consider the system of equations

'1 D '2 D � � � D 'h D 0: (4.19)

If d is the highest degree of the polynomials 'i and if, for example, '1 has degree d ,
we can replace the polynomials 'i with the polynomials 'i C '1, all of degree d .
Hence without loss of generality we may suppose that the polynomials 'i are all of
the same degree, i D 1; : : : ; h.

Every solution of the system (4.19) is a solution of the two equations

f ´ �1'1 C � � � C �h'h D 0 and g ´ �1'1 C � � � C �h'h D 0; (4.20)

for any choice of coefficients� D .�1; : : : ; �h/ and� D .�1; : : : ; �h/. Conversely,
if .y1; : : : ; yr/ is a solution of the two equations (4.20) for every choice of the
parameters � and �, then .y1; : : : ; yr/ is a zero of the ideal .'1; : : : ; 'h/, which we
will again denote by J.

In order to find a system of equations for the cone V D V.J\KŒx1; : : : ; xr�1�/
that projects X D V.J/ from the point Ar D Œ0; : : : ; 0; 1� 62 U0, or equivalently, in
order to find the points Œy1; : : : ; yr�1; 0� of the hyperplane of equation xr D 0 for
which there exists a solution of the system

'1.y1; : : : ; yr�1; xr/ D � � � D 'h.y1; : : : ; yr�1; xr/ D 0;

it then suffices to require that the resultant R.f; g/ of the two polynomials given
in equation (4.20) (considered as polynomials in the variable xr with coefficients
in KŒx1; : : : ; xr�1; �; ��) be zero for any choice of the parameters � and �.

The resultant R.f; g/ is a bihomogeneous polynomial in the two series of vari-
ables �, � with coefficients in KŒx1; : : : ; xr�1�. On requiring that the coefficients
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vanish we obtain a system of equations

�j .x1; : : : ; xr�1/ D 0; j D 1; 2; : : : ;

for the cone V that we will also call the resultant system of the system (4.19).
Bearing in mind that the ideal J is a radical ideal, and since �j D 0 on V D
V.J \KŒx1; : : : ; xr�1�/, one has

�j 2
p

J \KŒx1; : : : ; xr�1� �
p

J D J

for every index j . In conclusion

�j .x1; : : : ; xr�1/ 2 J \KŒx1; : : : ; xr�1�; j D 1; 2; : : : :

We observe explicitly that the polynomials �j need not be a minimal system of
generators of the ideal J \KŒx1; : : : ; xr�1�. On the other hand, the computational
methods for elimination cited above do permit one to determine a minimal system
of generators for the ideal J \KŒx1; : : : ; xr�1�.

4.5 Bézout’s theorem

One of the most important facts about the order of a given variety is Bézout’s
theorem, the general form of which we wish to discuss briefly in this section. We
pattern our discussion on the exposition given in [48, Lecture 18]. In Section 4.2,
the theorem was proved in the case of plane curves by using the concept of the
resultant of two polynomials.

For our present purposes we must recall a few definitions. Suppose that X and
Y are two algebraic sets in Pn and that dim.X/C dim.Y / � n. By Theorem 3.3.8
it follows that we then have X \ Y ¤ ;; let p be a point of X \ Y . We say that
X and Y intersect transversally at p if they are non-singular at p with tangent
spaces Tp.X/ and Tp.Y / such that the join J.Tp.X/; Tp.Y // is all of Pn. IfZ is an
irreducible component of the intersectionX\Y , we will say thatX and Y intersect
transversally along Z if X and Y intersect transversally at a generic point p 2 Z.
If this happens for every irreducible component of X \ Y , we will say that X and
Y intersect transversally.

We say that X and Y intersect properly in Pn if every irreducible component
Z of X \ Y has dimension

dim.Z/ D dim.X/C dim.Y / � n:
Hence in particular X \ Y has “the expected dimension” (cf. Theorem 3.3.8).

The proof of the two forms of Bézout’s theorem that follow will require some
tools which are outside the scope of the present book, and so we refer the reader,
for the general case, to the proof given in [48, Lecture 18].
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Theorem 4.5.1 (Weak form). Let X and Y be algebraic sets in Pn of pure dimen-
sions k and k0 respectively. Suppose that k C k0 � n and that X and Y intersect
transversally. Then

deg.X \ Y / D deg.X/ deg.Y /:

In particular, if X and Y intersect properly and k C k0 D n, the equality assures
that the intersection X \ Y consists of deg.X/ deg.Y / points.

To each pair of varieties X; Y � Pn that intersect properly, and to each irre-
ducible variety Z � Pn of dimension dim.X/ C dim.Y / � n, we can associate
a non-negative integer mZ.X; Y /, called the intersection multiplicity of X and Y
along Z, which satisfies the following properties:

i) mZ.X; Y / � 1 if Z � X \ Y (and mZ.X; Y / D 0 if Z 6� X \ Y );

ii) mZ.X; Y / D 1 if and only if X and Y intersect transversally at a generic
point p 2 Z, which means that X and Y intersect transversally along Z;

iii) mZ.X; Y / is additive, that is,

mZ.X [X 0; Y / D mZ.X; Y /CmZ.X
0; Y /

for each X and X 0 such that all three intersection multiplicities are defined
and X and X 0 do not have common components.

Theorem 4.5.2 (Strong form). Let X and Y be algebraic sets in Pn both of pure
dimension which intersect properly. Then

deg.X/ deg.Y / D
X
Z

mZ.X; Y / deg.Z/;

as Z varies over all the irreducible components of X \ Y .

If X and Y intersect properly and dim.X/ C dim.Y / D n (and therefore
dim.X \ Y / D 0) and p is a point of X \ Y then the intersection multiplicity
mp.X; Y / can be described in a simple way as

mp.X; Y / D dimK

�
OPn;p=.I.X/C I.Y //

�
;

where OPn;p is the local ring of Pn at p, I.X/ and I.Y / are the ideals that define
X and Y in Pn and the dimension is that of the quotient ring considered as a vector
space over K. (See Corollary 4.3.9 where the above equality is proved in the case
of plane curves. See also Theorem 4.2.1 which is the special case for two plane
curves of Theorem 4.5.2.)

In particular this is the case for two plane curvesX , Y . The relation given above
thus describes the intersection multiplicity of two plane curves X and Y in a point
p which we have already met in Section 4.2.
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See Section 5.7 for exercises regarding the calculation of the intersection multi-
plicity of plane curves and also Section 5.2 for a discussion of the useful case of the
intersection multiplicity mp.X; Y / of a hypersurface X with a line Y at a point p.

Exercise 4.5.3. We use the same symbol to denote both a plane algebraic curve
and its equation. Let f , g be two curves passing through a point P , ' a curve not
passing through P , and  an arbitrary curve. One has

mP .f; g/ D mP .'f; g C  f /:

A deeper study of intersection multiplicities is beyond the scope of the present
book. However, making use of only those properties of intersection multiplicities
already discussed, we obtain various consequences of Theorem 4.5.2.

Corollary 4.5.4. Let X and Y be algebraic sets in Pn both of pure dimension and
which intersect properly. Then

deg.X \ Y / � deg.X/ deg.Y /:

Corollary 4.5.5. Let X and Y be algebraic sets in Pn both of pure dimension and
which intersect properly. Suppose that

deg.X \ Y / D deg.X/ deg.Y /:

Then X and Y are both non-singular at the generic point of every irreducible
componentX \Y . In particular, ifX and Y have complementary dimensions they
are then necessarily non-singular at all the points of X \ Y .

Proposition 4.5.6. If X � Pn is an irreducible algebraic set of dimension k (not
contained in any hyperplane of Pn) then deg.X/ � n � k C 1.

Proof. (Sketch) We consider a generic linear space Sn�kC1 � Pn. Then the in-
tersection X \ Sn�kC1 is an irreducible curve C � Pn�kC1, not contained in any
hyperplane of Pn�kC1: for a complete proof of this fact, apparently almost obvious
but actually non-trivial, we refer the reader to [48, (18.10)].

It follows that deg.X/ D deg.C /. It is then sufficient to observe that for an
irreducible algebraic curve C , belonging to an arbitrary projective space P r but not
contained in any hyperplane of P r , one has

deg.C / � r:

Indeed, we consider r generic (and so independent) points x1; : : : ; xr of C and the
hyperplaneH containing them. We have fx1; : : : ; xrg � H \C and so deg.C / D
deg.H \ C/ � r . �
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We say that a variety Xd
k

� Pn is of minimal degree if d D n � k C 1. Later
we shall return to the detailed study of certain interesting classes of varieties of
minimal degree: see Sections 7.4, 10.3. The study and classification of varieties
of minimal degree constitutes an important and interesting classical problem; we
shall return to this subject, in the case of surfaces, in Section 10.3 (see, for example,
[82], [84], [8], [92], and also [48, (19.9)]).



Chapter 5

Hypersurfaces in Projective Space

This chapter is devoted to the study of a very important class of projective varieties,
namely that of hypersurfaces, the subvarieties of a projective space Pn, of maximal
dimension n � 1, which are defined as the locus of zeros of a homogeneous poly-
nomial of a given degree d , the order of the hypersurface. By reconsidering the
notion of multiplicity of a point of a hypersurface given in Section 3.4, we study in
Section 5.2 the conditions for an arbitrary point of the space Pn to be a point of an
assigned multiplicity s for a hypersurface X .

In Section 5.3 we consider algebraic envelopes, that is, the hypersurfaces of
the dual projective space Pn�; by duality one obtains also for algebraic envelopes
the same properties previously studied for algebraic hypersurfaces. An important
example of an algebraic envelope is constituted by the tangent hyperplanes to a
given hypersurface (cf. Proposition 5.3.1).

In Section 5.4 we introduce the notion of polarity with respect to a hypersurface
and we study its fundamental properties; polarity was considered and carefully
discussed in [52, Vol. 2, Chapter XIII] (for the special cases of conics and quadrics
see also [10, Chapters 6, 7]). Section 5.6 contains some useful complementary
topics regarding polars; in particular, the notion of Hessian hypersurfaces and that
of the class of a hypersurface.

Section 5.5 is dedicated to the simplest hypersurfaces in the space Pn; namely
the quadrics, defined by a homogeneous form of degree d D 2. They enjoy impor-
tant geometric properties, the study of which is sketched here in the general case:
we refer the reader to loc. cit. where the case of quadrics in P3 was extensively
developed.

In Section 5.7 we consider the hypersurfaces of P2, that is, algebraic plane
curves, and we study some of their properties via a series of exercises, giving
particular prominence to the remarkable case of cubics.

Section 5.8 contains complements and exercises which illustrate some notewor-
thy properties of surfaces in P3.

5.1 Generalities on hypersurfaces

Let KŒT0; : : : ; Tn� D L
d�0Rd be the graded ring of polynomials in n C 1 in-

determinates with coefficients in K. If f 2 Rr is a homogeneous polynomial of
degree r , the locusX D V.f / of the points Œx0; : : : ; xn� 2 Pn ´ Pn.K/ such that

f .x0; : : : ; xn/ D 0; (5.1)

that is, the locus of the zeros of f , is an algebraic hypersurface of order r .
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The algebraicity and the order of a hypersurface are clearly projective properties,
that is, they are invariant under projectivities.

If f is irreducible we say that X is irreducible; if however f D f
�1

1 : : : f
�h

h
,

with fi distinct irreducible forms, i D 1; : : : ; h, we say thatX is reducible (or split)
and that the hypersurfacesXi ´ V.fi / are its irreducible components. In that case
X is composed of the hypersurfacesXi counted with their respective multiplicities

�i . We will write X D Ph
iD1 �iXi . If the multiplicities �i are all equal to 1, we

will say that X is reduced.
In particular, when n D 1, X is a finite set of points; if each of these points is

counted according to its multiplicity thenX consists of exactly r D deg.X/ points.
Note that, since K is algebraically closed, the only irreducible hypersurfaces

in P1 are those of first order, namely single points. Unless otherwise specified, all
hypersurfaces we consider are supposed to be irreducible and reduced.

5.1.1 Sections of a hypersurface by linear spaces. Let Sk D J.P0; : : : ; Pk/ be
the linear subspace defined by the k C 1 independent points P0; : : : ; Pk and let
�0; : : : ; �k be the internal projective coordinates for this Sk with respect to the
reference system fP0; : : : ; PkIPk

iD0 Pig. Each point P of Sk has coordinates
T0; : : : ; Tn that are linear forms in �0; : : : ; �k and so the condition for P to belong
to the hypersurface X D V.f / � Pn may be translated into the equation

g.�0; �1; : : : ; �k/ D 0; (5.2)

where g 2 KŒ�0; : : : ; �k� is a homogeneous polynomial of degree equal to that
of f .

Equation (5.2) represents a hypersurface X 0 of Sk . The only exception is when
Sk is contained in X , in which case (5.2) vanishes. Thus, the following fact holds:

• Every hypersurfaceX of order r D deg.X/ in Pn is cut by a subspace Sk not
contained in it in a hypersurface of Sk of the same order r . In particular, a
line not situated on a hypersurface of order r has exactly r points in common
with the hypersurface (provided that each point is counted with the correct
multiplicity). IfX is reduced, a generic line of Pn has exactly r distinct points
in common with X (and thus one rediscovers, in the case of hypersurfaces,
the statement of Proposition 3.4.8).

From this it follows that if r C 1 points of a line ` belong to a hypersurface X
of order r , then the line ` lies on X .

We note that if X is reducible, so too are its sections by linear spaces Sk . But
the converse does not hold in general. Indeed, it can happen that an irreducible
hypersurface X intersects an Sk with the resulting hypersurface in Sk split. This
always happens when k D 1 (and r � 2), inasmuch as a binary form (that is, a
homogeneous polynomial in two indeterminates) of degree r is the product of r
linear factors and hence a hypersurface of order r of a line S1 consists of r points
(not necessarily all distinct).
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5.2 Multiple points of a hypersurface

In Section 3.4 we have already introduced the notion of the multiplicity of a point
of a hypersurface X . In particular we have seen that if X � An is an algebraic
hypersurface of an affine space in which y1; : : : ; yn are non-homogeneous coordi-
nates, the condition for the coordinate origin x D .0; : : : ; 0/ to be an s-fold point
of X is that in the equation f .y1; : : : ; yn/ D 0 of X there do not appear terms of
degree < s.

Now we wish to indicate the condition for an arbitrary point x D Œa0; : : : ; an�

of Pn to be s-fold for the projective hypersurface that is the locus of the zeros of
the homogeneous polynomial f .x0; : : : ; xn/. To this end it is necessary to consider
the intersection multiplicity in x of X with a generic line passing through x (cf.
Section 4.5). Indeed, if a hypersurface X is cut by every line passing through a
point A in a hypersurface (that is, in a set of points) having A as at least an s-fold
point, and thus if the intersection multiplicity atA ofX with every line issuing from
A is at least s, then A is at least an s-fold point for X ; and it is exactly an s-fold
point if for a generic line issuing from A the intersection multiplicity is precisely s.
For this it suffices that there be a line for which that multiplicity is s.

Let us consider the hypersurface X � Pn of order r given by the equation

f .T0; : : : ; Tn/ D 0

and the line ` that contains the two points A D Œa0; : : : ; an� and P D Œy0; : : : ; yn�.
The variable point on ` is

Œ�a0 C �y0; �a1 C �y1; : : : ; �an C �yn�; �; � 2 K; .�; �/ ¤ .0; 0/;

and it belongs to X if and only if

f .�a0 C �y0; �a1 C �y1; : : : ; �an C �yn/ D 0: (5.3)

We set f .a/ ´ f .a0; : : : ; an/, f .y/ ´ f .y0; : : : ; yn/ and also


yf .a/ ´ y0

�
@f

@T0

�
A

C � � � C yn

�
@f

@Tn

�
A

´
�
y0

@

@T0
C � � � C yn

@

@Tn

�
f .a/;


syf .a/ ´
�
y0

@

@T0
C � � � C yn

@

@Tn

�.s/
f .a/

´
X
i1;:::;is

yi1yi2 : : : yis

�
@sf

@Ti1@Ti2 : : : @Tis

�
A

:
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In particular, 
1yf .a/ D 
yf .a/. Then one can rewrite (5.3) in the form

�rf .a/C �r�1�
yf .a/C 1

2Š
�r�2�2
2yf .a/C � � �

� � � C 1

sŠ
�r�s�s
syf .a/C � � � C �rf .y/ D 0:

(5.4)

Equation (5.4) is solved by the coordinates .�; �/ of the points of the line rAP that
belong to the hypersurface X .

Suppose now that A 2 X , that is, that f .a/ D 0. Among the solutions .�; �/
of (5.4) one then has .1; 0/ which gives the point A. The necessary and sufficient
condition for this to be a simple solution, that is, of multiplicity 1, is that
yf .a/ ¤
0 (so that � appears to the first degree in (5.4)).

The intersection multiplicity of the line rAP with X in the point A will be s if


yf .a/ D 
2yf .a/ D � � � D 
s�1y f .a/ D 0 and 
syf .a/ ¤ 0: (5.5)

Suppose that, on calculating all the various partial derivatives at the point A, the
partial derivatives 0th (i.e., f .a/), 1st; 2nd; : : : ; .s�1/st of f all turn out to be 0, and
for this, in view of Euler’s formula for homogeneous functions (cf. Exercise 3.1.18),
it is (necessary and) sufficient that all the partial derivatives of order .s � 1/ should
be zero. Then A is an s-fold point, or a point of multiplicity s for X ; and the
intersection multiplicity atA ofX with the line rAP is at least s. It is exactly s (and
thus the number of points distinct from P which belong to bothX and the line rAP
is r � s) if rAP is a generic line issuing fromA, that is, if P is a generic point of Pn.
More precisely, P must not belong to the hypersurface of order s with equation


sT f .a/ D
X
i1;:::;is

Ti1Ti2 : : : Tis

�
@sf

@Ti1@Ti2 : : : @Tis

�
A

D 0: (5.6)

Interpreting equation (5.6) as the condition for which a point P is such that the line
rAP has intersection multiplicity > s at A with X , one sees that this hypersurface
is the locus of lines issuing from A, namely, a cone with vertex A. This cone, of
order s, is the (projective) tangent cone to X at A (cf. Section 3.4; see also the
paragraphs 5.8.4 and 5.8.6 for the description of the tangent cone to a hypersurface
in a point of an s-fold variety).

When the line rAP is a generator of the cone, that is, when P satisfies condition
(5.6), the intersection multiplicity of rAP with X in the point A is greater than s
(since one has 
syf .a/ D 0). It will be s C h, h > 0, when P , besides satisfying
(5.6), also satisfies the equations


sC1y f .a/ D 
sC2y f .a/ D � � � D 
sCh�1
y f .a/ D 0;

but not the equation

sChy f .a/ D 0:
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If s D 1, that is, if f .a0; : : : ; an/ D 0, but not all the first partial derivatives of f
at the point A vanish, then A is a non-singular point of X . In that case the tangent
cone has equation

nX
iD0

Ti

�
@f

@Ti

�
A

D 0;

that is, it coincides with the tangent hyperplane to X at A (cf. §3.1.17).
We make two explicit remarks:

• IfA is an s-fold point forX , then every space Sk passing throughA intersects
X in a hypersurface X 0 ´ X \ Sk � Sk that has at A multiplicity at
least s. Indeed the intersection of X with a line ` passing through A and
situated in Sk coincides with the intersection of the same line with X 0 (since
X \ ` D X \ Sk \ ` D X 0 \ `). The multiplicity of A for X 0 is exactly s if
the relevant Sk is not contained in the tangent cone to X at A.

• If s D 1, that is, when A is a simple point of X , every generic space Sk
(that is, not contained in the tangent hyperplane to X at A) intersects X in
a hypersurface X 0 � Sk having A as a simple point. If, however, Sk is
contained in the space Sn�1 tangent to X at A, the point A will be at least
double for the hypersurface section.

5.2.1 Fundamental point as multiple point. What we have seen in the course
of the first part of this section becomes particularly easy in the case in which the
multiple point A of a hypersurface X D V.f / � Pn is one of the fundamental
points for the coordinate reference system. It is always possible to reduce to this
case via a change of coordinates.

To fix ideas, we suppose that A D A0 D Œ1; 0; : : : ; 0� and we redo the entire
calculation after having ordered the polynomial f with respect to T0:

f D f0T
r
0 C f1T

r�1
0 C f2T

r�2
0 C � � � C fr D 0;

where fi D fi .T1; : : : ; Tn/ is a homogeneous polynomial of degree i in only the
indeterminates T1; : : : ; Tn, i D 0; : : : ; r (thus f0 is a constant).

IfP D Œy0; : : : ; yn�, a variable point on the line rA0P is Œ�C�y0; �y1; : : : ; �yn�.
Substituting in the expression for f (and having set y D .y1; : : : ; yn)), one finds
the equation

f0�
r C f1.y/�

r�1�C f2.y/�
r�2�2 C � � �

� � � C fs�1.y/�r�sC1�s�1 C fs.y/�
r�s�s C � � � C fr.y/�

r D 0;

which gives the intersections of the line rA0P withX . In order for at least s of these
intersections to coincide with A0 no matter how the point P may be chosen, the
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latter equation must have � D 0 as an s-fold root, no matter how the y1; : : : ; yn be
chosen, and thus

f0.T1; : : : ; Tn/ D f1.T1; : : : ; Tn/ D � � � D fs�1.T1; : : : ; Tn/ D 0:

Thus a hypersurface of order r that has A0 as an s-fold point must have equation
of the form

fs.T1; : : : ; Tn/T
r�s
0 C fsC1.T1; : : : ; Tn/T r�s�1

0 C � � � C fr.T1; : : : ; Tn/ D 0:

The points P D Œy0; : : : ; yn� which when joined to A0 give the lines for which
at least s C 1 of the intersections with the hypersurface X fall at A0; are those
that satisfy the condition fs.y/ D 0. Hence, they are the points of the cone with
equation

fs.T1; : : : ; Tn/ D 0:

Therefore, in order that A0 be s-fold for the hypersurface X it is necessary and
sufficient that in the equation for X the variable T0 should appear with degree at
most r � s; in that case the coefficient of T r�s

0 , set equal to zero, gives the equation
of the tangent cone to X at A0.

The generators common to the cones of equations

fs.T1; : : : ; Tn/ D 0; fsC1.T1; : : : ; Tn/ D 0; : : : ; fsCh.T1; : : : ; Tn/ D 0 (5.7)

are the lines issuing from A0 for which (at least) s C h C 1 intersections with X
are absorbed by A0. In general these lines exist only if h � n� 2; and if h D n� 2
they are (in general) finite in number and are called principal tangents to X at A0.
If h > n� 2 the hC 1 cones (5.7) have in common (in general) only the vertex A0.

Example 5.2.2. If A is a non-singular point of a surface X in P3, there are two
principal tangents to X at A (in this case, with the preceding notation, s D h D 1

and the two principal tangents are the intersections of the tangent plane f1 D 0

at A with the quadric cone of equation f2 D 0). Each of these has intersection
multiplicity at least 3 (and only 3 if A is generic) with the surface X at A (and
not just 2 as happens for a generic line passing through A and lying in the tangent
plane).

5.2.3 Conical hypersurfaces. Let X be a hypersurface of order r endowed with
an r-fold point A. Then X is a locus of lines issuing from A. Indeed, if P is
an arbitrary point of X distinct from A, the line rAP has at least r C 1 points in
common with X (at least r at A plus the point P ) and thus, since deg.X/ D r , the
line rAP is contained in X (cf. Section 3.4). In this case we say that X is a conical
hypersurface with vertex A or a cone with vertex A.
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If one intersects a conical hypersurface X with vertex A with a hyperplane H
not passing through A one finds a hypersurface X 0 of H that has the same order
as X ; and X is the cone that projects X 0 from A (cf. Section 3.4).

Conversely, if X 0 is a hypersurface of order r of a hyperplane H , the locus X
of the lines that join the single points of X 0 with a point A not belonging to H is a
hypersurface of order r having A as an r-fold point, that is a cone of order r with
vertex A. Indeed, let ` be a generic line of Pn and 	 the plane J.`; A/ joining `
andA. The plane 	 intersectsH in a line `0 (generic inH ) that meetsX 0 in r points
Q1; : : : ;Qr . The r lines rAQj

, j D 1; : : : ; r , that lie on X , are coplanar with `
and so the intersections of `withX are the r points in which the lines rAQj

meet `.
Hence deg.X/ D r . If then Q is a point of H not belonging to X 0, the line rAQ,
that is, an arbitrary line of Pn passing through A and not belonging to X , does not
meet X outside of A and therefore A is an r-fold point for X .

We note explicitly that the order of a conical hypersurface X can be defined as
the number of generators of X that belong to a generic plane passing through the
vertex.

The analytic representation of a conical hypersurface X having one of the fun-
damental coordinate points as vertex is particularly simple. Suppose for example
that X has as vertex the point A0 D Œ1; 0; : : : ; 0�. If r is the order of X the point
A0 is r-fold forX and so in the equation forX the variable T0 must appear at most
to degree r � r D 0, that is, the variable T0 must be missing. The equation of the
cone is thus of the form

f .T1; : : : ; Tn/ D 0: (5.8)

This same equation can be interpreted as the equation of a hypersurface X 0 in
the hyperplane T0 D 0 (where T1; T2; : : : ; Tn are the homogeneous projective
coordinates) andX is the cone that projectsX 0 fromA0. NaturallyX 0 is represented
in Pn by the equations T0 D f .T1; : : : ; Tn/ D 0.

That an equation like (5.8) represents a cone of vertex A0 can also be seen by
observing that if P D Œ0; x1; x2; : : : ; xn� is a point satisfying the equation, this
equation will also be satisfied by every point Œ�; �x1; �x2; : : : ; �xn�, .�; �/ ¤
.0; 0/, of the line that joins P with A0.

More generally, if f .TkC1; TkC2; : : : ; Tn/ is a polynomial of degree r in which
the variables T0; T1; : : : ; Tk are missing, the equation

f .TkC1; TkC2; : : : ; Tn/ D 0 (5.9)

represents in Pn the coneX projecting from the vertex Sk D J.A0; A1; : : : ; Ak/ the
hypersurface X 0 represented in the space Sn�k�1 .T0 D T1 D � � � D Tk D 0/ by
the same equation (5.9), cf. Section 3.4. The hypersurface X 0 has as its equations
in Pn:

T0 D T1 D � � � D Tk D f .TkC1; TkC2; : : : ; Tn/ D 0:
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5.2.4 Sections of varieties by tangent hyperplanes. Let F , G be two hypersur-
faces in P r which have the same tangent hyperplane at the point A, a common
simple point of both F andG. We will say that A is a point of contact of F andG,
or also that at A the two hypersurfaces touch or are tangent.

It is easy to see that A is at least a double point for the intersection of F and
G. We place ourselves in an affine chart containing A and in which x1; : : : ; xn are
coordinates (non-homogeneous) with originA. If '1 D 0 is the hyperplane tangent
to both the hypersurfaces in A let

f D '1 C ˛2 C ˛3 C � � � D 0; g D '1 C ˇ2 C ˇ3 C � � � D 0

be the equations of F and G, where '1, j̨ , ˇk are homogeneous polynomials
whose degree is expressed by the subscript. The intersection variety L of F and G
can be obtained by intersecting one of the two hypersurfaces with the hypersurface
of equation

f � g D .˛2 � ˇ2/C .˛3 � ˇ3/C � � � D 0

which has A as at least a double point; thus A is at least a double point of L.
In particular, the intersection X 0 of a hypersurface X having A as simple point

with the hyperplane H tangent to it at A has the point A as a double point. This
however is geometrically obvious because an arbitrary line ofH issuing from A is
tangent at A toX and so at least two of its intersections withX , so too withX 0, are
absorbed by A. We now prove the following more general fact.

• If P is a simple point of a variety Vk of dimension k every hypersurface
X having P as a simple point and tangent there to Vk (which means that
the tangent hyperplane at P to X contains the space Sk tangent to Vk at P )
intersects Vk in a variety Vk�1 for which P is (at least) a double point. We
will again say that P is a point of contact of X and Vk .

In particular the section of Vk by a generic tangent hyperplane at P (that is,
with a generic hyperplane of the star with center the space Sk tangent to Vk
at P ) is a variety Vk�1 for which P is (at least) a double point.

Since we are dealing with a local question it suffices to consider the affine case
and to suppose that Vk is a complete intersection of n � k algebraic hypersurfaces
Fj of An, each having P as a simple point and tangent hyperplanes at P that are
linearly independent. Assuming P to be the coordinate origin O and the tangent
hyperplanes at O to the Fj to be the hyperplanes xj D 0, one finds that Vk has
equations of the form

xj D fj .x1; : : : ; xn/; j D 1; : : : ; n � k;
where the fj are polynomials lacking terms of degree < 2, and xj � fj D 0 is the
equation of the hypersurface Fj .
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A hypersurface G having O as a simple point with tangent hyperplane passing
through the space Sk tangent to Vk (that is, through the space Sk with equations
x1 D x2 D � � � D xn�k D 0) has equation of the form

�1x1 C �2x2 C � � � C �n�kxn�k C ' D 0;

with ' a polynomial lacking terms of degree < 2. On the other hand, to intersect
Vk with G is just to intersect Vk with the hypersurface of equation

�1f1.x1; : : : ; xn/C �2f2.x1; : : : ; xn/C � � � C �n�kfn�k.x1; : : : ; xn/C ' D 0

having a double point at O .

Remark 5.2.5. We know that the necessary and sufficient condition in order that a
point P of a hypersurface F (with equation f D 0, f irreducible polynomial) in
Pn should be simple for F is that�

@f

@T0
;
@f

@T1
; : : : ;

@f

@Tn

�
P

¤ .0; 0; : : : ; 0/:

Analogously, ifF1,F2 are two hypersurfaces passing simply through a pointP (and
with equations f1 D 0, f2 D 0), the necessary and sufficient condition in order
that P be a simple point for their intersection variety Vn�2, that is, the necessary
and sufficient condition in order that at P the two hypersurfaces do not have the
same tangent hyperplane, is that the Jacobian matrix

�
@.f1; f2/

@.T0; : : : ; Tn/

�
D

0BB@
@f1

@T0
: : :

@f1

@Tn
@f2

@T0
: : :

@f2

@Tn

1CCA
should have rank 2 at P (cf. §3.1.8).

Exercise 5.2.6. Let X be a hypersurface of Pn and H � Pn a hyperplane that
intersectsX in a hypersurface (ofH ) having an s-fold pointP . Then the multiplicity
of P for X is � s.

As in §5.2.1, we may suppose that P D Œ1; 0; : : : ; 0� and assume that H is the
hyperplane T1 D 0. If X has equation

f D f0T
r
0 C f1.T1; : : : ; Tn/T

r�1
0 C � � � C fr.T1; : : : ; Tn/ D 0;

the hypersurface X 0 D X \H is represented in H by the equation

f0T
r
0 C f1.0; T2; : : : ; Tn/T

r�1
0 C � � � C fr.0; T2; : : : ; Tn/ D 0:

Since P is s-fold for X 0, we must have

f0 D f1.0; T2; : : : ; Tn/ D � � � D fs�1.0; T2; : : : ; Tn/ D 0 (5.10)
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and

fs.0; T2; : : : ; Tn/ ¤ 0:

Hence fs.T1; T2; : : : ; Tn/ ¤ 0 and so P is a point of multiplicity � s forX (and P
is exactly s-fold for X if f0.T1; T2; : : : ; Tn/ D � � � D fs�1.T1; T2; : : : ; Tn/ D 0).
Furthermore, we have:

• If the generic hyperplane passing through P intersects X in a hypersurface
X 0 having P as an s-fold point, then P is also an s-fold point for X .

Indeed, by the above, the multiplicity ofP forX is � s. On the other hand, ifP is s-
fold for the sections ofX with s independent hyperplanes, thenP is at least s-fold for
X . Indeed, if for each i D 1; 2; : : : ; s one has fj .T1; : : : ; Ti�1; 0; TiC1; : : : ; Tn/ D
0 (j D 0; 1; : : : ; s � 1) the homogeneous polynomials f0; f1; : : : ; fs�1 (which all
have degree < s) are divisible by T1T2 : : : Ts and are therefore identically zero.

5.3 Algebraic envelopes

In a projective space Pn, where x0; x1; : : : ; xn are projective point coordinates, we
choose the coordinates u0; u1; : : : ; un for the hyperplanes so that the condition of
membership point-hyperplane is u0x0 C u1x1 C � � � C unxn D 0 (cf. [52, Vol. 1,
Chapter V, §5]).

Assuming the above choice, let � be an algebraic envelope of class � of
hyperplanes of Pn, that is, the totality of the hyperplanes of Pn whose coordi-
nates annihilate a homogeneous polynomial '.u0; : : : ; un/ 2 KŒu0; : : : ; un� of
degree �.

As one sees via duality, the class of � is the number of hyperplanes of � that
belong to a generic pencil, that is, passing through a generic Sn�2.

Everything that has been said regarding algebraic hypersurfaces in Sections 5.1
and 5.2 can be repeated via duality for algebraic envelopes (cf. [52, Vol. 1, Chap-
ter IX, §7]); in particular, one can give the notions of a simple or multiple hyperplane
for an algebraic envelope.

The following are examples of pairs of dual statements.

A point P is s-fold for an algebraic
hypersurface X of order r if the
number of points of X other than
P which belong to a generic line
through P is r � s.

A hyperplane … is s-fold for an al-
gebraic envelope � of class � if the
number of hyperplanes of � other
than…which pass through a generic
Sn�2 belonging to … is � � s.
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The points of the space which when
joined with an s-fold point P of a
hypersurface X of order r give lines
` such that the points of X distinct
from P and belonging to ` are in
number at most r � s � 1 form the
points of an algebraic cone of order s.
In particular, if s D 1, that is, if P
is a simple point, this cone is a hy-
perplane, the tangent hyperplane to
X at P .

The hyperplanes of the space that
intersect with an s-fold hyperplane
… of an envelope � of class � to
give spacesSn�2 such that the hyper-
planes of� distinct from… and pass-
ing through the Sn�2 are in number
at most �� s�1 are the hyperplanes
of an algebraic envelope of class s.
In particular, if s D 1, that is, if… is
a simple hyperplane, this envelope is
a point which is said to be a charac-
teristic point of ….

If f D 0 is the equation of a hyper-
surface X , the equation of the tan-
gent hyperplane to X at a simple
point P is

nX
iD0

xi

�
@f

@xi

�
P

D 0:

If ' D 0 is the equation of an alge-
braic envelope � , the equation of the
characteristic point of a simple hy-
perplane … of � is

nX
iD0

ui

�
@'

@ui

�
…

D 0:

The study of an algebraic envelope � in the neighborhood of one of its hyper-
planes… turns out to be very easy if one assumes a projective reference system such
that… is one of the fundamental hyperplanes. For example, if… D Œ1; 0; : : : ; 0� is
an s-fold hyperplane of � , the equation of � will have the following form:

u��s
0 �s.u1; : : : ; un/C u��s�1

0 �sC1.u1; : : : ; un/C � � � C ��.u1; : : : ; un/ D 0;

where the �j are forms of degree j , j D s; : : : ; �. The equation �s.u1; : : : ; un/ D
0 represents an envelope ˆ of class s, the dual figure to the tangent cone to a
hypersurface at an s-fold point P (cf. §5.2.1). It consists of the hyperplanes that
cut out on … the spaces Sn�2 of an envelope of class s (just as a cone of vertex P
consists of the points that joined with P constitute the lines of a cone of order s).

Proposition 5.3.1. The tangent hyperplanes to an algebraic hypersurface X form
an algebraic envelope.

Proof. If f D 0 is the equation of X and u0; : : : ; un are the coordinates of the
tangent hyperplane at a simple point P D Œx0; : : : ; xn� of X , one has

�ui D @f

@xi
; i D 0; : : : ; n; and u0x0 C � � � C unxn D 0: (5.11)

The elimination of x0; : : : ; xn from this system of equations leads to an algebraic
equation g�.u0; : : : ; un/ D 0 satisfied by the coordinates of the tangent hyperplane
at every simple point of X .
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The equation g�.u0; : : : ; un/ D 0 is also satisfied by the coordinates of each
hyperplane that passes through a multiple point of X . Indeed, g�.u0; : : : ; un/ D 0

is the necessary and sufficient condition for the n C 2 equations (5.11) to admit
solutions �; x0; : : : ; xn; and it is clear that they admit the solution .�; x0; : : : ; xn/
with � D 0 and x0; : : : ; xn the coordinates of a multiple pointP ofX if Œu0; : : : ; un�
is an arbitrary hyperplane that passes through P .

If, for example, the singularities of X are isolated multiple points, the poly-
nomial g�.u0; : : : ; un/ will be divisible by the linear factors (raised to suitable
powers) that represent the multiple points of X . When these factors have been re-
moved, there remains the equation g.u0; : : : ; un/ D 0 of the envelope of the tangent
hyperplanes to X (cf. Example 5.3.3). �

Remark 5.3.2 (The dual hypersurface). Notation remains as in Proposition 5.3.1.
On applying Euler’s formula, see Exercise 3.1.18, equations (5.11) are seen to be
equivalent to the system 8<: �ui D @f

@xi
; i D 0; : : : ; n;

f .x0; : : : ; xn/ D 0:

(5.12)

Equations (5.12) show that the envelope of tangent hyperplanes to X is the image
of the hypersurface X (with equation f .x0; : : : ; xn/ D 0) under the rational map

' W X ! PnŒu0;:::;un�

defined by

x D Œx0; : : : ; xn� 7!
�
@f

@x0
.x/; : : : ;

@f

@xn
.x/

�
:

Moreover one sees immediately that

(1) '.X/ is a point if and only if X is a hyperplane;

(2) if X is not a hyperplane: ' is regular at x if and only if x is a simple point
for X .

We will say that '.X/ is the dual hypersurface of X .
For example, the dual curve of a conic is a conic: see [52, Vol. 2, Chapter XIII,

§2] for further details. See also Exercise 13.1.9 for the case of the dual curve of a
plane cubic.

In similar fashion one obtains the dual version of Proposition 5.3.1: the charac-
teristic points of the hyperplanes of an algebraic envelope are those of an algebraic
hypersurface, called the adhering hypersurface of the envelope.

Consider in particular a plane algebraic curve C and the envelope of its tan-
gents � . Every simple point P of C is the characteristic point of the tangent to C
at P .
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If C has singularities, the envelope � will be endowed with dual singularities.
For example, to an ordinary s-fold point there corresponds via duality a line of �
with s characteristic distinct points, that is a tangent line to C at s distinct points,
and that will be called a bitangent if s D 2, tritangent if s D 3, : : : . To a cusp of C
there corresponds via duality an inflectional line, that is, a line p from every generic
point of which there emerge � � 2 lines distinct from p, where � is the class of �
(and so p is a double line); the line p has a single characteristic point (at which the
two characteristic points come to coincide).

Example 5.3.3 (Dual character of cusps and flexes). To further clarify the fact
that cusps and flexes are mutually dual it can be useful to seek the equation of the
envelope of tangents of plane cubic with equation x30 � x21x2 D 0, which has the
cusp Œ0; 0; 1� with tangent x2 D 0 and the flex Œ0; 1; 0� with tangent x1 D 0 (see
also Section 5.7).

One must eliminate x0, x1, x2 and � from the four equations

�u0 D 3x20 ;

�u1 D �2x1x2;
�u2 D �x21 ;
u0x0 C u1x1 C u2x2 D 0:

Setting the values of x2 deduced from the second and fourth equations equal, one
has

�u1

2x1
D u0x0 C u1x1

u2

or, in view of the third equation,

�u1u2 D 2u0x0x1 C 2u1x
2
1 D 2u0x0x1 � 2�u1u2;

that is,
3�u1u2 D 2u0x0x1:

Squaring both sides and bearing in mind the first and the third equations one has

9�2u21u
2
2 D 4u20x

2
0x
2
1 D 4u20

��u0
3

�
.��u2/ D �4

3
�2u30u2;

and finally
g.u0; u1; u2/ D 4u30u2 C 27u21u

2
2 D 0:

On eliminating the linear factor u2 (which corresponds to the singular point of C ,
that is the point Œ0; 0; 1� whose equation is u2 D 0) one has the equation of the
envelope � of the tangents to C :

g.u0; u1; u2/ D 4u30 C 27u21u2 D 0: (5.13)
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It has a double line Œ0; 0; 1�, that is the line with equation x2 D 0, which is an
inflexional tangent to C .

The simple line Œ0; 1; 0� is the line, `, of equation x1 D 0. This line absorbs all
three lines of the envelope emerging from its characteristic point u1 D 0, because
on setting u1 D 0 in (5.13) one finds u30 D 0. Thus ` is the cuspidal tangent of C .

Exercise 5.3.4. Determine the tangential equation, i.e., the equation of the envelope
of the hyperplanes tangent to the quadric Q in Pn of equation

Pn
i;jD0 aijxixj D 0.

The result of elimination of the parameters x0; x1; : : : ; xn, � from the equations

0 D u0x0 C u1x1 C � � � C unxn;

�u0 D a00x0 C a01x1 C � � � C a0nxn;

:::

�un D an0x0 C an1x1 C � � � C annxn

is ˇ̌̌̌
ˇ̌̌̌
ˇ
0 u0 : : : un
u0 a00 : : : a0n
:::

:::
:::

un an0 : : : ann

ˇ̌̌̌
ˇ̌̌̌
ˇ D 0;

that is,
Pn
i;jD0Aijuiuj D 0, where Aij are the algebraic complements (cofactors)

of the elements aij of the matrix A D .aij / of the coefficients of Q.

5.4 Polarity with respect to a hypersurface

In the projective space Pn D Pn.K/, with homogeneous coordinates x0; : : : ; xn,
consider a hypersurface X of order r > 1 with equation

f .x0; : : : ; xn/ D 0;

where f is a form of degree r with coefficients in K. Let P D Œy0; : : : ; yn� be a
point of Pn. The equation

nX
iD0

yi
@f

@xi
D 0 (5.14)

represents a hypersurface of order r � 1 that is said to be the first polar of P with
respect to X (or also first polar of X with respect to P ). We will denote it by
X1.P /.

Example 5.4.1. In the case of the plane P2, if f .x0; x1; x2/ D 0 is the equation
of a non-singular conic, equation (5.14) is the equation of the polar line �.P / of
the point P D Œy0; y1; y2�, where � W P2 ! P2

�
is the correlation defined by the
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matrix A of the coefficients of the equation f .x0; x1; x2/ D 0 (see also [52, Vol. 2,
Chapter XIII, §2]).

Notation. IfM andN are respectively matrices of type .p; q/ and .r; q/, henceforth
we will use the symbol M tN to denote the usual matrix product of M with the
transpose of N .

The following important result holds. It expresses the fact that the operation
of “polarization with respect to the pole P ”, that is, the operation that maps f to

1yf , is covariant with respect to projectivities, so that the first polar of a point with
respect to a hypersurface has a geometric (projective) meaning.

Theorem 5.4.2. Let X be a hypersurface of Pn with equation f .x0; : : : ; xn/ D 0.
Let P be a point of Pn and X1.P / the first polar of P with respect to X . Let
' W Pn ! Pn be a projectivity. Set P � ´ '.P /, X� D '.X/ and .X1.P //� D
'.X1.P //. One then has

.X1.P //
� D X�

1 .P
�/;

that is, the transform of X1.P / is the first polar of P � with respect to X�.

Proof. Suppose that ' is expressed in matricial form

� t .x0
0; : : : ; x

0
n/ D A t .x0; : : : ; xn/;

where � 2 K is a non-zero constant and A is an invertible matrix in MnC1.K/.
Then, multiplying on the left by ��1A�1, one has

A�1 t .x0
0; : : : ; x

0
n/ D ��1 t .x0; : : : ; xn/:

Thus, setting �A�1 D .bij /, the equation of X� becomes

f �.x0
0; : : : ; x

0
n/ D f

� nX
jD0

b0jx
0
j ;

nX
jD0

b1jx
0
j ; : : : ;

nX
jD0

bnjx
0
j

�
D 0

and so
@f �

@x0
j

D
nX
iD0

@f

@xi

@xi

@x0
j

D
nX
iD0

@f

@xi
bij :

From this it follows that

nX
jD0

x0
j

@f �

@x0
j

D
nX

jD0
x0
j

nX
iD0

@f

@xi
bij D

nX
iD0

� nX
jD0

bijx
0
j

� @f
@xi

D
nX
iD0

xi
@f

@xi
;

which gives the desired result. �
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As a consequence of the preceding theorem we may now conclude that in order
to study properties of the polar hypersurfaces of points P , Q, : : : with respect to a
given hypersurfaceX , of a given order r , there is no loss of generality in supposing
that P , Q, : : : coincide with the vertices A0, A1, : : : of the fundamental .nC 1/-
hedron. For example, if P D Ai is the point whose only non-zero coordinate is
yi D 1, one has
1y D @

@xi
and so the first polar ofAi with respect toX has equation

@f

@xi
D 0:

The first polar of a point Q D Œz0; : : : ; zn� with respect to the first polar of
P D Œy0; : : : ; yn� (with respect to X ) is called the second mixed polar of P , Q
(with respect to X ) and has equation

nX
iD0

zi
@

@xi

� nX
jD0

yj
@f

@xj

�
D 0;

that is
nX

i;jD0
ziyj

@2f

@xi@xj
D 0; (5.15)

and clearly coincides with the second mixed polar ofQ, P . In particular, assuming
Q D P ,

nX
i;jD0

yiyj
@2f

@xi@xj
D 0 (5.16)

is the equation of the second pure polar of P with respect to X .
In analogous fashion one defines the successive polarsXs.P /, s D 2; : : : ; r�1,

which are hypersurfaces of order r � s; the equation of the sth polar of the point
P D Œy0; : : : ; yn� is X

i1;:::;is

yi1 : : : yis
@sf

@xi1 : : : @xis
D 0: (5.17)

The .r � 2/nd polar Xr�2.P / is also called the polar quadric of P . The .r � 1/st

polar Xr�1.P / is also called the polar hyperplane of P . The hypersurface X is
also called the 0th polar.

If n D 1, that is for a line,X and the successive polars are groups of points, and
the polars are called polar groups.

The theory of polars may be efficiently formalized by using the operator


a ´ a0
@

@x0
C � � � C an

@

@xn
;
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where a D .a0; : : : ; an/, and its symbolic powers


0a D 1; 
1a D 
a; 
2a D a20
@2

@x20
C 2a0a1

@2

@x0@x1
C � � � :

If f .x/ D f .x0; : : : ; xn/ is a homogeneous polynomial and P D Œy0: : : : ; yn�

is a designated point in Pn, the notations 
af .x/ (or 
af ), 
af .y/ indicate
respectively


af D 
af .x/ D a0
@f

@x0
C � � � C an

@f

@xn
I


af .y/ D
�
a0
@f

@x0
C � � � C an

@f

@xn

�
P

:

Equations (5.14) and (5.16) may be rewritten respectively in the form
1yf .x/ D 0

and 
2yf .x/ D 0. In general the sth polar Xs.P /, s D 2; : : : ; r � 1, has equation


syf .x/ D 0:

We say that a point P is self-conjugate (with respect to X ) if P belongs to any
one of its successive polars Xs.P /. In this regard one has the following result (cf.
[52, Vol. 2, Chapter XIII, §2] for the case of conics).

Proposition 5.4.3. Let X D V.f / be a hypersurface of order r > 1 of Pn. Then
X is the locus of points of Pn self-conjugate with respect to X , that is, a point P
belongs to any of it successive polars Xs.P /, s D 1; : : : ; r � 1, if and only if P
belongs to X .

Proof. Let P D Œy0; : : : ; yn� and let y D .y0; : : : ; yn/. For s D 1 one has

1yf .y/ D rf .y/ by Euler’s formula and so
1yf .y/ D 0 if and only if f .y/ D 0.
In general it suffices to observe that


syf .y/ D r.r � 1/.r � 2/ : : : .r � s C 1/f .y/: �

Here are some properties of polars.

Proposition 5.4.4 (Permutability Theorem). Let X D V.f / be a hypersurface of
order r > 1 in Pn. Then the sth polar of a point P with respect to the t th polar
(with respect to X ) of a point Q coincides with the t th polar of Q with respect to
the sth polar of P (with respect to X ), that is

.Xt .Q//s.P / D .Xs.P //t .Q/:

Proof. Let P D Œy0; : : : ; yn�, y D .y0; : : : ; yn/ and Q D Œz0; : : : ; zn�, z D
.z0; : : : ; zn/. It suffices to observe that


sy

t
zf D 
tz


s
yf;

where f D 0 is the equation of the hypersurface X .
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If P D A0 and Q D A1 this is nothing more than the property

@s

@xs0

�
@tf

@xt1

�
D @t

@xt1

�
@sf

@xs0

�
D @tCsf
@xs0@x

t
1

: �

Proposition 5.4.5 (Section Theorem). Let X D V.f / be a hypersurface of order
r > 1 in Pn. LetSh be a linear space of Pn not contained inX and letX 0 ´ X\Sh
be the hypersurface section of X by Sh. Let P be a point of Sh. Then the section
by Sh of the sth polar of P with respect to X is the sth polar of P with respect to
X 0, that is

Sh \Xs.P / D X 0
s.P /:

Proof. One need only observe that if P D A0 D Œ1; 0; : : : ; 0� and the equations of
Sh are xhC1 D xhC2 D � � � D xn D 0, one has�

@sf

@xs0

�
xhC1DxhC2D���DxnD0

D @sf .x0; : : : ; xh; 0; : : : ; 0/

@sxs0
: �

The most important result in the theory of polarity is the following “reciprocity
theorem”.

Theorem 5.4.6 (Reciprocity Theorem). Let X be a hypersurface of order r > 1 in
Pn. Given two points P , Q in Pn, if the sth polar of P with respect to X passes
through Q, 0 < s < r , then the .r � s/th polar of Q with respect to X passes
through P .

Proof. We may assume thatP D A0 D Œ1; 0; : : : ; 0� andQ D A1 D Œ0; 1; 0; : : : ; 0�.
Let f D 0 be the equation of X and let � be the coefficient of xs0x

r�s
1 in f :

f D � � � C �xs0x
r�s
1 C � � � :

The equation of the sth polar Xs.P / is

@sf

@xs0
D sŠ�xr�s

1 C .� � � / D 0;

where .� � � / stands for terms of degree < r � s with respect to x1. Similarly the
equation of the .r � s/th polar Xr�s.Q/ is

@r�sf
@xr�s
1

D .r � s/Š�xs0 C .� � � / D 0;

where .� � � / stands for terms of degree < s with respect to x0.
Therefore, � D 0 is the necessary and sufficient condition in order that Xs.P /

pass through Q, and also the necessary and sufficient condition for Xr�s.Q/ to
pass through P . �
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Remark 5.4.7 (Alternative proof of Theorem 5.4.6). Here we give an alternative
proof of the preceding theorem which is independent of the fact that one can choose
the coordinates in an opportune fashion. This argument also yields other conse-
quences which will be considered in a subsequent observation (see Remark 5.4.8).

With the same notation as in Theorem 5.4.6, consider Taylor’s formula for the
polynomial f .x0; : : : ; xn/:

f .a0 C b0; a1 C b1; : : : ; an C bn/

D f .a0; : : : ; an/C b0
@f

@a0
C � � � C bn

@f

@an

C 1

2Š

�
b20
@2f

@a20
C 2b0b1

@2f

@a0@a1
C � � �

�
C � � �

C 1

sŠ

X
bi1 : : : bis

@sf

@ai1 : : : @ais
C � � � ;

(5.18)

where, for simplicity of notation, @f
@ai

indicates @f
@xi

calculated at .a0; : : : ; an/.
Putting ai D �yi , bi D �zi , i D 0; : : : ; n, in (5.18) one obtains

f .�y0 C �z0; : : : ; �yn C �zn/ D f .�y0; : : : ; �yn/C � � �
C 1

sŠ

X
�zi1 : : : �zis

�
@sf

@xi1 : : : @xis

�
xi D�yi

C � � � :

But f being a homogeneous polynomial of degree r we have

f .�y0C�z0; : : : ; �yn C �zn/ D �rf .y0; : : : ; yn/C � � �
C 1

sŠ
�r�s�s

X
zi1 : : : zis

@sf

@yi1 : : : @yis
C � � � ; (5.19)

and, interchanging � with � and y with z,

f .�z0C�y0; : : : ; �zn C �yn/ D �rf .z0; : : : ; zn/C � � �
C 1

sŠ
�r�s�s

X
yi1 : : : yis

@sf

@zi1 : : : @zis
C � � � : (5.20)

The left-hand sides of (5.19) and (5.20) coincide and so the right-hand sides of
(5.19) and (5.20) are the same polynomials in � and �. In particular the condition
that they have equal coefficients of �s�r�s may be written as:

1

sŠ

X
yi1 : : : yis

@sf

@zi1 : : : @zis
D 1

.r � s/Š
X

zi1 : : : zir�s

@r�sf
@yi1 : : : @yir�s

: (5.21)

Now, the equation of the sth polar of the point P D Œy0; : : : ; yn� with respect to X
is X

yi1 : : : yis
@sf

@xi1 : : : @xis
D 0I
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and the equation of the .r � s/th polar of the point Q D Œz0; : : : ; zn� with respect
to X is X

zi1 : : : zir�s

@r�sf
@xi1 : : : @xir�s

D 0:

If the sth polar of P passes through Q then the left-hand side of (5.21) is zero and
so too must be the right-hand side, that is, the .r�s/th polar ofQ passes throughP .

Remark 5.4.8 (Double method for reading the equation of a polar). Notation as in
Theorem 5.4.6 and Remark 5.4.7. We set

's.t; x/ ´
X
i1;:::;is

ti1 : : : tis
@sf

@xi1 : : : @xis
:

The polynomial's.t; x/ is homogeneous of degree swith respect to t D .t0; : : : ; tn/

and of degree r � s with respect to x D .x0; : : : ; xn/. The equation of the sth

polar of P D Œy0; : : : ; yn� with respect to X is 's.y; x/ D 0. It passes through
Q D Œz0; : : : ; zn� if 's.y; z/ D 0. Therefore 's.y; z/ D 0 is the condition in
order for Q to belong to the sth polar of P and so, by Theorem 5.4.6, it is also the
condition for P to belong to the .r � s/th polar of Q. Hence 's.x; z/ D 0 is the
equation of the .r � s/th polar of Q. It follows that the same equation

's.y; x/ D 0;

of degree s with respect to y D .y0; : : : ; yn/ and of degree r � s with respect to
x D .x0; : : : ; xn/, represents both the sth polar of the point Œy0; : : : ; yn� when y is
fixed (and so the variables are the x’s) and the .r�s/th polar of the point Œx0; : : : ; xn�
when x is fixed (and the y’s vary).

In particular, consider the equation (of degree r � 1 in the x’s)

'1.y; x/ D y0
@f

@x0
C � � � C yn

@f

@xn
D 0

of the first polar of the point Œy0; : : : ; yn� with respect to X . On fixing x ´ a D
.a0; : : : ; an/ and allowing the y’s to vary, one has the equation of the .r�1/th polar
of the point A D Œa0; : : : ; an�:

y0

�
@f

@x0

�
a

C � � � C yn

�
@f

@xn

�
a

D 0: (5.22)

IfA is a point of the hypersurfaceX of equation f .x0; : : : ; xn/ D 0, equation (5.22)
is the equation of the tangent hyperplane at A to X . (Here we tacitly assume that
A is a non-singular point for X : in this regard see the discussion in the following
paragraph 5.4.10.) Thus we have proved the following fact.
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Proposition 5.4.9. Let X be a hypersurface of order r in Pn and let P be a non-
singular point ofX . Then the tangent hyperplane toX atP is the .r�1/st polar ofP
with respect toX ; analytically, if f D 0 is the equation ofX andP D Œy0; : : : ; yn�,

X
i1;:::;ir�1

yi1 : : : yir�1

@r�1f
@xi1 : : : @xir�1

D
nX
iD0

�
@f

@xi

�
P

xi :

5.4.10 The singular case. Let X be a hypersurface in Pn of order r > 1, with
equation f .x0; : : : ; xn/ D 0, and let P be a point of Pn. Suppose that the sth polar
of P with respect to X is indeterminate for 1 � s � r � 1. If we suppose that
P D A0 D Œ1; 0; : : : ; 0�, this means that @

sf
@xs

0

is the null polynomial. It follows that

the derivative @s�1f

@xs�1
0

does not depend on x0, that the derivative @s�2f

@xs�2
0

is of degree

one with respect to x0 and so on, that f is of degree s � 1 with respect to x0. This
means that P is a point of multiplicity r � s C 1 for X .

Analogously, one has that if the .r � s C 1/st polar of P with respect to X is
indeterminate, then P is an s-fold point for X .

Conversely, if P is an s-fold point for X , then f may be written in the form

f D fs.x1; x2; : : : ; xn/x
r�s
0 C fsC1.x1; x2; : : : ; xn/xr�s�1

0 C � � �
� � � C fr.x1; x2; : : : ; xn/:

Thus one has
@r�sC1f
@xr�sC1
0

D 0

and also that
@r�sf
@xr�s
0

D .r � s/Šfs.x1; x2; : : : ; xn/:

Therefore we have:

Proposition 5.4.11. LetX be a hypersurface of Pn of order r > 1. For each integer
s D 1; : : : ; r � 1, a necessary and sufficient condition in order for a point P to be
s-fold forX is that the .r � sC 1/st polar of P with respect toX be indeterminate.
In that case the .r � s/th polar of P with respect toX is the tangent cone toX at P .

5.5 Quadrics in projective space

In this paragraph we consider the remarkable case of hypersurfaces of order r D 2

in Pn ´ Pn.K/. We define a quadric (or hyperquadric) in the projective space Pn
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as a hypersurface Q defined by a quadratic form

f .x0; : : : ; xn/ D
nX

i;jD0
aijxixj D 0; aij D aj i ; (5.23)

with coefficients aij 2 K. We will say that the symmetric matrix A D .aij / 2
MnC1.K/ is the matrix associated to the quadric Q. Thus, on setting � ´
.x0; : : : ; xn/, equation (5.23) may be rewritten in matrix form

�A t� D 0: (5.24)

If �.A/ is the rank of A we set

� D �.A/ � 1:
If � D n, that is if det.A/ ¤ 0, Q is non-degenerate (or not specialized). If
� D n � � we will say that Q is � times specialized.

5.5.1 Singular points of a quadric. The system of linear equations having A as
its matrix of coefficients,

�A D .0; : : : ; 0/ (5.25)

has non-trivial solutions � D .y0; : : : ; yn/ only when Q is degenerate. More pre-
cisely, if Q is � times specialized the solutions of (5.25) are the points of a space
S��1, called the singular space of Q.

The singular points, that is, the points of that space S��1, are double points for
Q because the system (5.25) may be rewritten in the form

nX
iD0

aijxi D 0; that is,
@f

@xj
D 0, j D 0; : : : ; n. (5.26)

A quadric which is � times specialized therefore has a double subspace S��1 and
is thus a cone having this S��1 as vertex (cf. §5.2.3). We will say that it is an
S��1-quadric cone.

Exercise 5.5.2. Consider a quadric Q that is � times specialized, and let r be a line
of Pn that meets both the locus S��1 of singular points of Q and its complement in
Q. Then it is easy to prove directly that r is contained in Q.

Indeed, let Z D Œz0; : : : ; zn� be a point of Q, Z 62 S��1, and let r D rYZ
be a line that passes through Z and meets S��1 in a point Y D Œy0; : : : ; yn�. As
u; v vary in K, the point P D uY C vZ traces the line r . Consider the vectors
� D .y0; : : : ; yn/, � D .z0; : : : ; zn/. By equation (5.24), P 2 Q if and only if

.u�C v�/A t .u�C v�/ D 0; (5.27)
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that is
u2�A t�C uv.�A t� C �A t�/C v2�A t� D 0I

or again, since �A t� D �A t�,

u2�A t�C 2uv�A t� C v2�A t� D 0:

Since Y is a singular point of Q we have �A t� D �A t� D 0. On the other hand
we also have �A t� D 0 since Z 2 Q. Thus equation (5.27) hold for all u; v 2 K,
namely r is contained in Q.

The following proposition shows that the study of specialized quadrics reduces
to the study of non-degenerate quadrics.

Proposition 5.5.3. Let Q be a quadric � times specialized in Pn and let S��1 be
the linear space that is the locus of its singular points. Then there is a linear space
Sn�� skew to S��1 and a non-degenerate quadric Q0 in Sn�� such that Q is the
cone with vertex S��1 projecting Q0.

Proof. Set � D n � �. We may suppose that S��1 is the space that joins the
n� � D � vertices A	C1; A	C2; : : : ; An of the reference .nC 1/-hedron. Then the
linear equations (5.26) that define S��1 become x0 D x1 D � � � D x	 D 0 and so
the equation (5.23) of Q assumes the form

	X
i;hD0

aihxixh D 0 (5.28)

with det..aih/i;hD0;:::;	/ ¤ 0.
Since in equation (5.28) the variables x	C1; : : : ; xn are missing, a � times spe-

cialized quadric is the cone that projects from its vertex S��1 a non-degenerate
quadric Q0, with equation (5.28), in a space S	 D Sn�� skew to S��1. �

We note a final point:

• The necessary and sufficient condition in order that one of the fundamental
points of the reference system be singular for Q is that one of the variables be
missing from the equation of Q. For example, the point A0 D Œ1; 0; : : : ; 0� is
singular if and only if the variable x0 is missing.

5.5.4 Polarity with respect to a quadric. The study of the polarity with respect
to a hypersurface X becomes particularly simple in the case when X is a quadric
Q so that one need only consider first polars, which are hyperplanes. One sees
immediately that the polar hyperplane Q1.P / of a point P with respect to Q is
nothing more than the hyperplane corresponding to P in the involutory reciprocity
� of Pn having as matrix of coefficients the (symmetric) matrix A associated to Q
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(cf. [52, Vol. 2, Chapter XIII, §2]). In other words, Q1.P / D �.P /. The point P
is called the pole of �.P /.

The results given in Section 5.4 reduce simply, in the case r D 2, to the follow-
ing.

(1) Given two points P1, P2, if the polar hyperplane of P1 passes through P2,
the polar hyperplane of P2 passes through P1 (and the two points are said
to be reciprocal or conjugate with respect to Q). Similarly, if the pole of a
hyperplane 
1 belongs to a hyperplane 
2, that of 
2 belongs to 
1 (and the
two hyperplanes are said to be reciprocal or conjugate with respect to Q).

(2) IfP is a simple point of Q, the polar hyperplane ofP is the tangent hyperplane
in P to Q.

(3) If Q0 is a quadric section of Q by a linear space L, and P is a point of L,
the polar hyperplane of P with respect to Q0 is the section of L by the polar
hyperplane of P with respect to Q.

(4) If Q is � times specialized and S��1 is its vertex, the polar hyperplane of each
point P 2 S��1 is indeterminate; and S��1 belongs to the polar hyperplane
of each point P 62 S��1.

Furthermore,

a) The quadric Q is the locus of the self-conjugate points with respect to Q, that
is, of the points P such that P 2 �.P /.

b) The polar hyperplane of a point P 62 Q with respect to Q is the locus of
the harmonic conjugates P 0 of P with respect to the pairs of points of Q

collinear with P . Indeed, on each line ` starting from P (and not tangent
to Q) the polarity � induces a non-degenerate involution which sends P to
the intersection of ` with the polar hyperplane of P . The fixed points of this
involution are the intersections of ` with Q.

c) The line joining two mutually reciprocal points of Q is contained in Q. Indeed,
if P is a point of Q, the polar hyperplane of P with respect to Q is the tangent
hyperplane to Q there. A point R reciprocal to P thus belongs to the tangent
hyperplane to Q at P and if R belongs to Q the line rPR has three points in
common with Q (two at P and one at R), and thus is contained in Q.

d) (Polar space of a given subspace) The polar hyperplanes of the points of a sub-
space Sh of Pn form a star†h (of dimension h) whose center Sn�h�1 is called
the polar space of Sh. It is obtained by intersecting the polar hyperplanes of
hC 1 linearly independent points Pj of Sh.

One sees immediately that Sh is the polar space of its polar Sn�h�1. Indeed,
every point of Sn�h�1 belongs to the polar hyperplanes of the points Pj and
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therefore, by the Reciprocity Theorem, its polar hyperplane passes through
these points and so too through the space Sh that joins them.

Suppose that two mutually polar spaces Sh and Sn�h�1 have a space Si in
common. Each point R 2 Si is self-conjugate with respect to Q. Indeed, if
we regard R for example as a point of Sh one sees immediately that its polar
hyperplane passes through the space Sn�h�1 which is the polar space of Sh
and so through the point R itself which belongs to that Sn�h�1. This means
that

• if two mutually polar spaces are not skew, their intersection is contained
in the quadric.

For the sequel it will be useful to consider the special case n D 1.

Remark 5.5.5. A non-specialized quadric Q of P1 is constituted by a pair of distinct
points (since the square matrix of the quadratic form f .x0; x1/ D 0which defines Q

is non-degenerate). Moreover, for each P0 2 P1, if P1 D Q1.P0/ is the polar point
of P0 with respect to Q, one has P0 D Q1.P1/ by the Reciprocity Theorem 5.4.6.

We will say that a set fP0; : : : ; Png of n C 1 linearly independent points con-
stitutes a self-polar .nC 1/-hedron with respect to a quadric Q (or with respect to
the polarity � associated to Q) if each of the points Pi coincides with the pole of
the hyperplane Hi generated by the remaining points Pj , j D 0; : : : ; n, j ¤ i , or
equivalently (cf. Theorem 5.4.6)

�.Pi / D Hi D hP0; : : : ; 
Pi ; : : : ; Pni:
We now prove the existence of a self-polar .nC 1/-hedron.

Lemma 5.5.6. Let Q be a non-specialized quadric in Pn. Then in Pn there exist
infinitely many systems of nC 1 independent points P0; P1; : : : ; Pn none of which
belongs to Q and constituting a self-polar .nC 1/-hedron with respect to Q.

Proof. We proceed by induction on n. If n D 1 it suffices to take as P0 an arbitrary
point distinct from the two points comprising Q and as P1 the polar point of P0
with respect to Q (cf. Remark 5.5.5).

Ifn > 1we take asP0 an arbitrary point not belonging to Q and letH0 D Q1.P0/

be the polar hyperplane of P0 with respect to Q. Moreover let Q0 be the quadric
section ofH0, Q0 D Q\H0. By the inductive hypothesis there exist n independent
pointsP1; : : : ; Pn 2 H0 that constitute (inH0) a self-polar n-hedron with respect to
the quadric Q0. In virtue of the Section Theorem 5.4.5, the polar hyperplaneHj of
Pj with respect to Q intersectsH0 along the space Sn�2 polar to Pj with respect to
Q0, which is to say along the space joining the points fP1; : : : ; 
Pj ; : : : ; Png. Since
Hj passes throughP0,Hj is the join of the n points fP0; P1; : : : ; 
Pj ; : : : ; Png. �
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5.5.7 Reduction to canonical form of a quadric in Pn. LetQbe a non-specialized
quadric in Pn, A D .aij / 2 MnC1.K/ the associated matrix and � W Pn ! Pn� the
polarity associated to A. By Lemma 5.5.6 we can take as our fundamental points
A0 D Œ1; 0; : : : ; 0�; : : : ; An D Œ0; : : : ; 0; 1�, the vertices of a self-polar .n C 1/-
hedron with respect to Q. Then the polar hyperplane �.Ai / D hA0; : : : ; yAi ; : : : ; Ani
ofAi with respect to Q has equation xi D 0, i D 0; : : : ; n. On the other hand �.Ai /
has equation

xAi
A t .x0; : : : ; xn/ D 0;

where xAi
is the vector of the coordinates of Ai , i D 0; : : : ; n. Thus one must have

aij D 0; i; j D 0; : : : ; n; i ¤ j;

and so the equation of the quadric Q assumes the diagonal form

nX
iD0

˛ix
2
i D 0; (5.29)

with all coefficients ˛i D ai i different from zero. By a suitable choice of the unit
point one can then always suppose that (5.29) is rewritten in the canonical form

nX
iD0

x2i D 0: (5.30)

Exercise 5.5.8. As an exercise, we give a variant of the preceding argument for
obtaining (5.29), (5.30).

We begin by considering the case n D 1. Let P0, P1 be two points of a line
not belonging to Q and mutually reciprocal with respect to Q, that is such that each
is the polar point of the other (cf. Remark 5.5.5). Since P0 and P1 are distinct we
may suppose that P0 D Œ1; 0� and P1 D Œ0; 1� and write the equation of Q in the
form

ax20 C bx21 D 0

with ab ¤ 0. It then suffices to change the unit point via a change of coordinates
expressed by

x0
0 D ˛x0; x0

1 D ˇx1;

with ˛ and ˇ such that ˛2 D a, ˇ2 D b, in order to obtain equation (5.30).
Now let n � 2. We take a point P0 not belonging to Q and its polar hyperplane

H0 D Q1.P0/. Since P0 does not belong to H0 we may assume that the reference
system is chosen so that P0 D A0 and H0 has equation x0 D 0. Hence we can
suppose that the equation of Q is of the form

a00x
2
0 C g.x1; : : : ; xn/ D 0;

where g D 0 is the equation of a non-specialized quadric in Sn�1 D H0. One
completes the proof easily by induction on n.
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5.5.9 The linear subspaces of a quadric. Let Q be a non-specialized quadric in
Pn and Sh � Pn a linear space. If Sh is contained in Q, it belongs to its polar
Sn�h�1 (cf. §5.5.4, d)). Hence h � n � h � 1, that is,

h �
�
n � 1
2

�
;

where “Œ �” denotes the greatest integer function.
We now prove that Q contains linear subspaces Sh of maximal dimension h D

h.n/ D 	
n�1
2



.

The hyperplane TP tangent to Q in one of its points P intersects Q in a cone �
with vertexP which contains every linear spaceSh lying onQ and passing throughP.

Consider a hyperplaneH not passing throughP and let Q0 be the quadric section
of Q withSn�2 D H\TP . Every maximal linear subspace of Q intersects thisSn�2
in a space Sh�1 of maximal dimension in Q0: indeed, if Q0 contained a linear space
of dimension > h� 1, that space, joined with P , would give a space of dimension
> h lying in Q. Conversely, each Sh�1 lying on Q0 gives, when joined with P , a
space Sh belonging to Q. Thus there is a bijection between the set of subspaces of
maximal dimension of Q issuing from a fixed point and the totality of the subspaces
of maximal dimension of the quadric sections Q0 � Sn�2. Therefore the maximal
dimension h.n/ of the linear spaces lying on a quadric Q � Pn verifies the relation

h.n/ D 1C h.n � 2/:
If n D 2p C 1 is odd, one has the (p � 1) relations

h.2p C 1/ D 1C h.2p � 1/;
h.2p � 1/ D 1C h.2p � 3/;

:::

h.5/ D 1C h.3/:

Summing term by term, and bearing in mind that h.3/ D 1, one obtains

h.n/ D h.2p C 1/ D p � 1C h.3/ D p D
�
n � 1
2

�
:

Similarly, if n D 2p is even, one has the (p � 1) relations

h.2p/ D 1C h.2p � 2/;
h.2p � 2/ D 1C h.2p � 4/;

:::

h.4/ D 1C h.2/:
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Again summing term by term, and remembering that h.2/ D 0, one obtains

h.n/ D h.2p/ D p � 1C h.2/ D p � 1 D
�
n � 1
2

�
:

The subspaces of maximal dimension h.n/ lying on Q are 1d.n/, where d.n/
is recursively defined by the relation

d.n/ D d.n � 2/C .n � 1/ � h.n/; (5.31)

on taking into account that d.2/ D 1 (points on a conic are parameterized by one
parameter). Indeed, if we consider a generic Sn�h.n/, it will cut Q in a quadric xQ
and a generic linear subspace of maximal dimension of Q in a point. Thus it suffices
to count the linear subspaces of maximal dimension of Q issuing from the points
of xQ (which are 1n�h.n/�1). On the other hand, as has already been observed, the
spaces of maximal dimension issuing from a fixed point on Q are 1d.n�2/. Thus
d.n/ D d.n � 2/C n � h.n/ � 1, that is (5.31).

Then, if n D 2p C 1 is odd, we have the relations

d.2p C 1/ D d.2p � 1/C 2p � p D d.2p � 1/C p;

d.2p � 1/ D d.2p � 3/C p � 1;
:::

d.5/ D d.3/C 2:

Summing term by term and recalling that d.3/ D 1 (the lines on a quadric in P3

are 11, which means that they depend on one parameter) one obtains

d.n/ D d.2p C 1/ D 1C 2C � � � C p D p.p C 1/

2
D n2 � 1

8
:

If n D 2p is even, one has

d.2p/ D d.2p � 2/C 2p � p D d.2p � 2/C p;

d.2p � 2/ D d.2p � 4/C p � 1;
:::

d.4/ D d.2/C 2:

Once again adding term by term and recalling that d.2/ D 1, one finds that

d.n/ D d.2p/ D 1C 2C � � � C p D p.p C 1/

2
D n.nC 2/

8
:

Note that, if n is odd, on Q there are two different systems of linear subspaces
of maximal dimension (indeed, by way of successive intersections of the original
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quadric Q with linear subspaces of codimension 2, one obtains a non-specialized
quadric Q0 in P3, that contains two arrays of lines). The linear subspaces of maximal
dimension of a quadric in a space of even dimension by contrast form a unique
system (if fact, in the same way, in this case one obtains a conic Q0, whose points
constitute a unique system).

For example, a non-singular quadric in P4 contains a unique 3-dimensional
system of lines. A quadric in P5 contains two different systems of planes, both of
dimension 3.

Exercise 5.5.10. Let Q be a quadric in Pn tangent to a linear space Sh along a
subspace Sh�1. Show that if h � n=2 then Sh�1 contains a double (that is, singular
for Q) subspace of dimension � 2h � n � 1.

In fact, if xhC1 D � � � D xn D 0 are the equations of Sh and xh D xhC1 D
� � � D xn D 0 are those of Sh�1, then the equation of Q may be written in the form

x2h C LhC1xhC1 C � � � C Lnxn D 0;

with Lj linear forms. The linear space with equations xh D xhC1 D � � � D xn D
LhC1 D � � � D Ln D 0 has dimension 2h � n � 1, and all its points are double
points for Q.

5.6 Complements on polars

In the following discussion we will systematically employ the results of Sections 5.1,
5.2 and 5.4 without explicit reference.

Let X be a hypersurface in Pn of order r . We have seen in §5.4.10 that if P is
an s-fold point of X , the .r � s C 1/st; .r � s C 2/nd; : : : polars of P with respect
to X are indeterminate and the .r � s/th polar is the tangent cone to X at P . Now
we consider the j th polar Xj .P / of the s-fold point P , under the hypothesis that
j � r � s.

If P D A0 D Œ1; 0; : : : ; 0�, the hypersurface X has equation

f D xr�s
0 fs.x1; : : : ; xn/C xr�s�1

0 fsC1.x1; : : : ; xn/C � � � C fr.x1; : : : ; xn/ D 0;

and fs.x1; : : : ; xn/ D 0 is the equation of the tangent cone TCP .X/ to X at P .
The j th polar Xj .P / has equation

@jf

@x
j
0

D .r � s/.r � s � 1/ : : : .r � s � j /fs.x1; : : : ; xn/xr�s�j
0

C .r � s � 1/ : : : .r � s � j � 1/fsC1.x1; : : : ; xn/xr�s�j�1
0 C � � � D 0:

Recalling that Xj .P / has order r � j , we have thus established the following
fact:
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Lemma 5.6.1. Let X D V.f / be a hypersurface of order r in Pn, P an s-fold
point of X , TCP .X/ the tangent cone to X at P . For each j � r � s the j th polar
Xj .P / has P as an s-fold point with TCP .X/ as tangent cone.

Now letQ be an arbitrary point of Pn andP ¤ Q an s-fold point ofX . Suppose
that Q D A1 D Œ0; 1; : : : ; 0� and also that P D A0 D Œ1; 0; : : : ; 0�. The first polar
X1.P / of P has equation

@f

@x1
D xr�s

0

@fs.x1; : : : ; xn/

@x1
C xr�s�1

0

@fsC1.x1; : : : ; xn/
@x1

C � � �

� � � C @fr.x1; : : : ; xn/

@x1
D 0

and so has multiplicity r � 1 � .r � s/ D s � 1 at P , and its tangent cone at P ,
with equation @fs

@x1
D 0, is the first polar ofQ with respect to the tangent cone to X

at P . But the case when the polynomial fs.x1; : : : ; xn/ doesn’t depend on x1, so
that @fs

@x1
D 0, is an exception. If that happens, then the point P is at least s-fold for

X1.Q/ and the tangent cone to X at P has the line rPQ as its vertex.
More generally, the j th polar Xj .Q/ of Q has equation

@jf

@x
j
1

D xr�s
0

@jfs

@x
j
1

C xr�s�1
0

@jfsC1
@x
j
1

C � � � C @jfr

@x
j
1

D 0

and one has the following result.

Lemma 5.6.2. Let X be a hypersurface of order r in Pn, P an s-fold point of X ,
and TCP .X/ the tangent cone to X at P ; let Q ¤ P be an arbitrary point of Pn.
The j th polar Xj .Q/ of Q generally has multiplicity s � j .D r � j � .r � s//

in P , and has as its tangent cone in P the j th polar ofQ with respect to TCP .X/;
in symbols

TCP .Xj .Q// D .TCP .X//j .Q/:

In the exceptional case in which the variable x1 appears in fs.x1; : : : ; xn/ only
to a degree < j (and Q D A1) the multiplicity of Xj .Q/ at P is > s � j . In this
case the tangent cone toX atP has the line rPQ as at least an .s�j /-fold generator
(that is, each point of the line is a point of multiplicity at least s � j for X ).

In particular Lemma 5.6.2 assures us that if P is a double point of X the first
polarX1.Q/ ofQ with respect toX passes simply throughP and has as its tangent
hyperplane atP the polar hyperplane ofQwith respect to the tangent coneTCP .X/.
This hyperplane is the locus of the harmonic conjugates of Q with respect to the
pairs of points of TCP .X/ that are collinear withQ, and so (if P is a double point
with non-singular tangent cone) it is not tangent to TCP .X/.
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Now let X again be a hypersurface of order r in Pn, P D A0, and Q D A1. If
s1, s2 are positive integers such that s ´ s1 C s2 < r (and so r � 3) we have

@s1

@x
s1
0

�
@s2f

@x
s2
1

�
D @s2

@x
s2
1

�
@s1f

@x
s1
0

�
: (5.32)

Now, the vanishing of the left-hand side of (5.32) means that in the equation
@s2f

@x
s2
1

D 0 of the sth
2 polarXs2.A1/ ofA1 the variable x0 appears to degree � s1�1,

and therefore that A0 is a point of multiplicity � r � s2 � .s1 � 1/ D r � sC 1 for
Xs2.A1/. The vanishing of the right-hand side of (5.32) means that in the equation
@s1f

@x
s1
0

D 0 of the sth
1 polarXs1.A0/ ofA0 the variable x1 appears to degree � s2�1,

and thus that A1 is a point of multiplicity � r � s1 � .s2 � 1/ D r � s C 1 for
Xs1.A0/. Thus we have:

Lemma 5.6.3. Let X be a hypersurface of order r in Pn, P , Q two points of Pn

and s1, s2 positive integers such that s ´ s1 C s2 < r . If the sth
2 polar Xs2.Q/ of

Q has P as (at least) an .r � sC 1/-fold point, then the sth
1 polarXs1.P / of P has

Q as (at least) an .r � s C 1/-fold point.

For example, if s1 D 1 and s2 D r�2, we find that if the polar quadricXr�2.Q/
of Q has P as a double point, the first polar X1.P / of P has a double point at Q.

5.6.4 The Hessian hypersurface. Let X � Pn be a hypersurface of order r and
let H be the locus of points P of Pn whose quadric polar Xr�2.P / with respect to
X has a double point.

By Lemma 5.6.3, if P is a point of H and Q is the double point of its quadric
polarXr�2.P /, the first polarX1.Q/ ofQ has a double point atP ; and conversely,
if the first polarX1.Q/ ofQ has a double point at P , the quadric polarXr�2.P / of
P hasQ as a double point. Therefore, H can be defined as the locus of the double
points for some first polar.

In order for the quadric polar of P D Œy0; : : : ; yn�, which has equation (cf.
(5.21) and Remark 5.4.8)

X
i1;:::;ir�2

yi1 : : : yir�2

@r�2f
@xi1 : : : @xir�2

D
nX

i;jD0
xixj

@2f

@yi@yj
D 0;

to have a double point it is necessary and sufficient that the determinant of the matrix
of coefficients vanish (cf. Section 5.5). Thus, the locus H of points of Pn whose
polar quadric has a double point, or also the locus of the double points of the first
polars, is the hypersurface represented by the equation

det

�
@2f

@yi@yj

�
D 0: (5.33)
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This hypersurface is called the Hessian hypersurface ofX and has order deg.H/ D
.nC 1/.r � 2/.

One sees immediately that H passes through every multiple point P of X .
Indeed, if the multiplicity of P is s � 3, then at P all the second order partial
derivatives of f vanish and so P satisfies (5.33). Moreover, we have seen that if P
is only a double point for X , the polar quadric of P is the tangent cone to X at P
and hence has a double point at P , which is to say P 2 H.

It is easy to prove that the Hessian hypersurface ofX generally has multiplicity
mP .H/ D .n C 1/.s � 2/ C 2 at an s-fold point P of X . In fact, suppose that
P D Œ1; 0; : : : ; 0� is an s-fold point of X , and so

f D xr�s
0 fs.x1; : : : ; xn/C xr�s�1

0 fsC1.x1; : : : ; xn/C � � � C fr.x1; : : : ; xn/:

By observing the following table, in which position .i; j / shows the degree of
@2f
@xi@xj

with respect to x0,

r � s � 2 r � s � 1 r � s � 1 : : : r � s � 1
r � s � 1 r � s r � s : : : r � s

:::
:::

:::
:::

r � s � 1 r � s r � s : : : r � s
one sees immediately that the degree of H with respect to x0 is in general

.r � s � 2/C n.r � s/ D 2.r � s � 1/C .n � 1/.r � s/ D .r � s/.nC 1/ � 2:
It follows that

deg.H/�..r�s/.nC1/�2/ D .r�2/.nC1/�.r�s/.nC1/C2 D .nC1/.s�2/C2;
that is, mP .H/ D .nC 1/.s � 2/C 2.

We shall now see how the non-singular points of a hypersurface which belong
to the Hessian may be characterized.

Let P D A0 be a simple point of X and x1 D 0 the tangent hyperplane to X at
P , so that

f D xr�1
0 x1 C xr�2

0 f2.x1; : : : ; xn/C � � � :
If f2 D Pn

i;jD1 aijxixj , a direct calculation (long but elementary and which we
omit for brevity) shows that the necessary and sufficient condition for the Hessian
of X to pass through P is

det.aij / D 0:

But this says that the quadric cone with equations x1 D f2 D 0 (the locus of the
lines having intersection multiplicity> 2 withX at P ) has a double generator, that
is, the tangent hyperplane to X at P is tangent to the quadric cone f2 D 0.
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If P is a simple point of X belonging to the Hessian one says that P is a
parabolic point. The parabolic points of a plane algebraic curve X are its flexes,
which are in number (if X is non-singular) 3r.r � 2/. The parabolic points of a
surface of order r in P3 are the points for which the two principal tangents coincide.
In general they are the points of a curve, which is called the parabolic curve of the
surface X , of order 4r.r � 2/.

The locus of the parabolic points is the intersection of the hypersurface X with
its Hessian and is (in general) an .n�2/-dimensional variety of order r.r�2/.nC1/,
cf. Corollary 4.5.5.

If X is a quadric (the case r D 2), the Hessian determinant is a constant
(D 2nC1 det.A/, whereA is the matrix of the coefficients of the quadric) and so the
points of a non-degenerate quadric are all non-parabolic, while the simple points of
a degenerate (but irreducible) quadric are all parabolic (cf. Section 5.5).

5.6.5 The class of a hypersurface. As an application of the theory of polar hyper-
surfaces and of Bézout’s theorem, we calculate the class of an algebraic hypersurface
X of order r in Pn. The class � D �.X/ ofX is the number of tangent hyperplanes
to X that belong to a generic pencil, that is, that pass through a generic Sn�2.

Let S D Sn�2 be a generic .n�2/-dimensional subspace, and letP1; : : : ; Pn�1
be n � 1 linearly independent points of S . Let … be the hyperplane tangent to X
at one of its non-singular points Q. If … (which is the .r � 1/th polar of Q with
respect to X ) passes through S , that is, if … contains all the points Pj , the first
polar of each of these points with respect toX passes throughQ by the Reciprocity
Theorem (Theorem 5.4.6). Conversely, ifQ is a simple point ofX belonging to the
first polars of the points Pj , the tangent hyperplane to X at Q contains the points
Pj and therefore passes through S .

The pointsQ in whichX has tangent hyperplane passing through S are thus the
simple points ofX that belong to the first polars of the points Pj , j D 1; : : : ; n�1.
Since these polars are hypersurfaces of order r�1, the number of such pointsQ, that
is, the class of X , is, by Bézout’s theorem (Theorem 4.5.2), �.X/ � r.r � 1/n�1.

With respect to a reference system having among its fundamental points the
pointsQ D A0, P1 D A1; : : : ; Pn�1 D An�1, the equation of the hyperplane… is
xn D 0 and that of X is

f D xr�1
0 xn C xr�2

0 f2.x1; : : : ; xn/C � � � D 0:

The first polars of the points Aj have equations

@f

@xj
D xr�2

0

@f2.x1; : : : ; xn/

@xj
C � � � D 0I

and @f2

@xj
D 0 is the equation of the tangent hyperplane to X1.Aj / at Q, j D
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1; : : : ; n� 1. The hypothesis that Sn�2 is generic implies that the polynomials @f2

@xj

are not null and therefore A0 is a simple point of X1.Aj /, for j D 1; : : : ; n � 1.
The condition in order for the n hyperplanes xn D 0, @f2

@xj
D 0, j D 1; : : : ; n�1,

not to be linearly independent is that the matrix of their coefficients have rank
� n � 1, namely that the matrix ƒ 2 Mn�1.K/ of the coefficients of the linear
forms f .j /2 .x1; : : : ; xn�1; 0/, have rank %.ƒ/ � n � 2, where f .j /2 ´ @f2

@xj
. Thus

the cone with equations

f2.x1; : : : ; xn�1; xn/ D xn D 0;

consisting of the lines having multiplicity of intersection at least 3 with X at A0,
should have its locus of double points of dimension � 1 (cf. (5.7) in §5.2.1).

Since the points for which this occurs are at most 1n�2 (1n�1 for the points
of X and the relation %.ƒ/ � n � 2 imposes at least one condition) for a generic
space Sn�2 there do not pass tangent hyperplanes of this nature. (Indeed, in the
dual space Pn� the pencil of hyperplanes is a line, and a generic line of Pn� does
not meet a variety of dimension � n � 2.)

Hence we may conclude that each non-singular point Q of X for which X
has tangent hyperplane passing through a generic Sn�2 D J.P1; : : : ; Pn�1/ is a
non-singular point for the first polar X1.Pj / of each of the points Pj . Moreover,
the n hypersurfacesX;X1.P1/; X1.P2/; : : : ; X1.Pn�1/ intersect transversally atQ
(having there linearly independent tangent hyperplanes) and thus their intersection
multiplicity at Q is mQ.X;X1.P1/; X1.P2/; : : : ; X1.Pn�1// D 1.

By Bézout’s theorems 4.5.1 and 4.5.2, we may then conclude that if X is non-
singular its class is �.X/ D r.r � 1/n�1.

Suppose now that X has a node of the most general type, that is, a double point
P whose tangent cone has no multiple generators. Let P D A0 D Œ1; 0; : : : ; 0� and
let

f D xr�2
0 f2.x1; : : : ; xn/C � � � D 0

be the equation of X . The point P D A0 is non-singular for X1.Pj / and @f2

@xj
D 0

is the equation of the tangent hyperplane to X1.Pj / at P . The first polars X1.Pj /
have intersection multiplicity

mQ.X;X1.P1/; : : : ; X1.Pn�1// D 2

withX atQ. Indeed, by the hypotheses of generality assumed, then�1 hyperplanes
@f2

@xj
D 0 tangent to the first polars X1.Pj /, j D 1; : : : ; n � 1, at P1 D A0 have

in common a line ` (passing through A0). This line is not contained in the cone
with equation f2 D 0 tangent to X at A0, because otherwise from the identity (cf.
Exercise 3.1.18)

2f2 D x1
@f2

@x1
C x2

@f2

@x2
C � � � C xn

@f2

@xn
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and the fact that xn D 0 is a generic hyperplane, one would have that also the

hyperplane @f2

@xn
D 0would contain the line ` and so `would be a singular generator

of the cone f2 D 0.
On the other hand, by what we have seen above, and in the case of a hypersurface

of order r all of whose singularities are only isolated double points P of the most
general type, it follows from Bézout’s theorem (Theorem 4.5.2) that

deg.X/ deg.X1.P1// : : : deg.X1.Pn�1//

D �.X/C
X
P

mP .X;X1.P1/; : : : ; X1.Pn�1//;

where the sum is extended over the isolated double points P 2 X . Thus, if d is the
number of these double points, the class of X is

�.X/ D r.r � 1/n�1 � 2d:

In analogous fashion one proves that if the singularities of X are only isolated
multiple points of multiplicity si and of the most general type, then the class of X
is

�.X/ D r.r � 1/n�1 �
X
i

si .si � 1/n�1:

See [44], [43] for results regarding the class of an algebraic surface; and also the
texts [108] and [115] for an exposition of other results on the notion of class for
algebraic varieties.

5.7 Plane curves

The exercises of this section serve to illustrate some properties of plane curves
related to the theory developed in this chapter. Exercises 5.7.13–5.7.20 are dedicated
to the remarkable case of plane cubics, that is, plane algebraic curves of order 3; in
this regard see also [113, Chapter III, §6]. We assume that K D C.

We start by recalling a few definitions. Let P be a non-singular point of a plane
algebraic curve X (of order r > 1) and let ` be the tangent to X at P . We say that
P is a flex ofX if the intersection multiplicity of ` andX at P ismP .X; `/ � 3. If
mP .X; `/ D 3, P is an ordinary flex or flex of the first kind; if mP .X; `/ D 2C h,
P is a flex of type h. IfmP .X; `/ D 4, that is, if P is a flex of the second type, one
also says that P is a point of undulation.

An s-fold point P of a plane algebraic curve X is said to be ordinary if the
tangent cone to X at P consists of s mutually distinct tangent lines such that the
intersection multiplicity at P of each of these withX is sC1 (that is, the minimum
possible); in the case s D 2, an ordinary double point is also called a node.
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A double point P having its two tangent lines coinciding with a single line `
is called an .ordinary/ cusp if the intersection multiplicity of ` with X at P is
mP .X; `/ D 3, the minimum possible.

In the rest of this section, X � P2 will denote an (irreducible) algebraic plane
curve of order r with equation f .x0; x1; x2/ D 0.

5.7.1. LetX ,X 0 be two plane cubics having a common pointP as an ordinary cusp
of both curves, and with the same cuspidal tangent. Prove that mP .X;X 0/ D 6.

In affine coordinates, ifP D .0; 0/ is the common cusp and the line y D 0 is the common
tangent, the two cubics have equations of the form

y2 C f3.x; y/ D 0; y2 C g3.x; y/ D 0;

withf3, g3 homogeneous polynomials of degree 3. IfC is the curve with equationf3�g3 D
0, one has (cf. Exercise 4.5.3)

mP .X;X
0/ D mP .X; C / D 6;

since P is a double point for X and a triple point for C . Note that the number of common
tangents to the two cubics X , X 0 at P is t D 2, in agreement with relation (4.9).

5.7.2. In the plane 
 we consider an algebraic curve X , a point Q not belonging
toX and a simple point P ofX belonging to the first polarX1.Q/ ofQ. We know
that if Q is a generic point one has mP .X;X1.Q// D 1 (cf. §5.6.5). Prove that
mP .X;X1.Q// > 1 if and only if P is a flex of X .

If r is the order of X and if Q D Œ0; 1; 0�, P D Œ1; 0; 0� then the equation of X has the
form

f D xr�1
0 x2 C xr�2

0 .ax2
1 C bx1x2 C cx2

2/C xr�3
0 f3.x1; x2/C � � � ;

with a; b; c 2 C and f3 a form of degree 3 in x1, x2. And in order for the first polar of Q,
which has equation

@f

@x1

D xr�2
0 .2ax1 C bx2/C xr�3

0

@f3

@x1

C � � � D 0;

to be tangent at P to X , that is, that it have the line ` with equation x2 D 0 as tangent at P ,
it is necessary and sufficient that a D 0, that is, that P be a flex (if a D 0 one has in fact
mP .X; `/ � 3).

5.7.3. We know that if X is a plane algebraic curve and P is an s-fold point of X ,
the first polarX1.Q/ of a generic pointQ of the plane hasP as an .s�1/-fold point
(cf. Lemma 5.6.2). If P is an s-fold ordinary point for X , that is, with s distinct
tangents, the two curves X and X1.Q/ do not have any tangent in common at P
and thus mP .X;X1.Q// D s.s � 1/.
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Suppose that P D Œ1; 0; 0�, Q D Œ0; 1; 0� and that x1 D 0 is one of the s tangents to X
at P , so that X has equation

f D xr�s
0 x1fs�1.x1; x2/C xr�s�1

0 fsC1 C � � �
with fs�1 a binary form not divisible by x1. The first polar of Q has equation

@f

@x1

D xr�s
0

�
fs�1 C x1

@fs�1

@x1

�
C � � � D 0

and the polynomial fs�1 C x1
@fs�1

@x1
is not divisible by x1. Thus a simple tangent of X is

not tangent to X1.Q/.

5.7.4. Let P be an s-fold point for X and Q a generic point of the plane. The first
polar X1.Q/ of Q with respect to X has at P multiplicity mP .X1.Q// � s � 1;
and we havemP .X1.Q// > s�1 if and only if the s tangents toX atP all coincide
with the line rPQ.

If P D A0 D Œ1; 0; 0� and Q D A1 D Œ0; 1; 0�, the equation of X is

f D xr�s
0 fs.x1; x2/C xr�s�1

0 fsC1.x1; x2/C � � � D 0;

and the equation of X1.Q/ is

@f

@x1

D xr�s
0

@fs

@x1

C xr�s�1
0

@fsC1

@x1

C � � � D 0:

That X1.Q/ has multiplicity � s � 1 at P is a consequence of Lemma 5.6.2. The condition
for P to be at least s-fold for X1.Q/ is that @fs

@x1
D 0 and so fs D xs

2
; therefore, the s

tangents to X at P coincide with the line rPQ W x2 D 0.

5.7.5. If P is an ordinary cusp for X , the first polar X1.Q/ of a generic point
Q 2 P2 has a non-singular point at P with tangent that coincides with the cuspidal
tangent, and at P the intersection multiplicity of X with X1.Q/ is 3.

If P D A0 D Œ1; 0; 0� with cuspidal tangent having equation x1 D 0, the equation of X
is

f D xr�2
0 x2

1 C xr�3
0 f3.x1; x2/C � � � D 0;

with f3 not divisible by x1, while that of X1.Q/ is

@f

@x1

D 2xr�2
0 x1 C xr�3

0

@f3

@x1

C � � � D 0:

From this it follows that P is non-singular for X1.Q/ with tangent x1 D 0.
In particular, the system of equations f D @f

@x1
D 0 is equivalent to the system f D

g D 0, where

g ´ 2f � x1

@f

@x1

D xr�3
0

�
2f3 � x1

@f3

@x1

�
C � � � :

The equation g D 0 represents a curve C having P as a triple point with all tangents distinct
from the cuspidal tangentx1 D 0ofX atP . It follows thatmP .X;X1.Q//DmP .X; C / D 3

(cf. Section 4.2).
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5.7.6. Let H be the Hessian curve of X . Prove that the following:

(1) An ordinary double point P of X is also a double point for H and the inter-
section multiplicity of X and H at P is 6.

(2) An ordinary cusp P of X is a triple point ofH and two (and, in general only
two) of the three tangents toH at P coincide with the cuspidal tangent ofX .
The intersection multiplicity of X and H at P is 8.

(1) If P D A0 D Œ1; 0; 0� and the equation of X is

f D xr�2
0 x1x2 C xr�3

0 f3.x1; x2/C � � � D 0;

one finds that the Hessian equation is

H D .r�1/.r�2/x1x2x
3r�8
0 C.r�1/

�
2.r�2/x1x2

@2f3

@x1@x2

�2.r�1/f3

�
x3r�9

0 C� � � D 0:

Since 3r � 8 D 3.r � 2/ � 2 D deg.H/ � 2, P is a double point of H . If we set

g ´ H�.r�1/.r�2/x2r�6
0 f D

�
2.r�1/.r�2/x1x2

@2f3

@x1@x2

�2.r�1/2f3

�
x3r�9

0 C� � � ;

we see that the system f D H D 0 is equivalent to f D g D 0, and the equation g D 0

represents a curve C that has at P a triple point (3r � 9 D 3.r � 2/ � 3 D deg.C / � 3)
without any tangent in common with X . It follows that mP .X;H/ D mP .X; C / D 6.

(2) The equation of X is

f D xr�2
0 x2

1 C xr�3
0 f3.x1; x2/C � � � D 0;

where x1 D 0 is the equation of the cuspidal tangent at P D Œ1; 0; 0�. Calculation shows
that the equation of the Hessian is

H D �2.r � 1/.r � 2/x2
1

@2f3

@x2
1

x3r�9
0 C � � � D 0;

and so two of the three tangents to H at P coincide with the cuspidal tangent of X . On
setting

g ´ H C 2.r � 1/.r � 2/@
2f3

@x2
1

x2r�7
0 f;

one finds that the system f D H D 0 is equivalent to f D g D 0, and the equation g D 0

represents a curve C that has (in general) a quadruple point without any tangent in common
with X at P . Thus mP .X;H/ D mP .X; C / D 8.

5.7.7. Show that a non-singular point P ofX is a flex if and only if the polar conic
P with respect to X is degenerate: one of its components is the tangent to X at P ,
and the other does not pass through P . The flexes of X are therefore the simple
points of X through which the Hessian curve passes.
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If P D A0 D Œ1; 0; 0�, the equation of X is of the form

f D xr�1
0 .ax1 C bx2/C xr�2

0 .a11x
2
1 C 2a12x1x2 C a22x

2
2/C � � � D 0;

a; b; a11; a12; a22 2 C. The equation of the polar conic of P is

@r�2f

@xr�2
0

D .r � 1/Š.ax1 C bx2/x0 C .r � 2/Š.a11x
2
1 C 2a12x1x2 C a22x

2
2/ D 0:

The necessary and sufficient condition in order that the polar conic of P be degenerate isˇ̌̌̌
ˇ̌0 a b

a a11 a12

b a12 a22

ˇ̌̌̌
ˇ̌ D �a11b

2 C 2a12ab � a22a
2 D 0;

namely, that the coordinates of the point Œ1; b;�a� should annull the quadratic form f2 ´
a11x

2
1

C 2a12x1x2 C a22x
2
2

, and thus that the latter should be divisible by ax1 C bx2. If
we set

a11x
2
1 C 2a12x1x2 C a22x

2
2 D .ax1 C bx2/.cx1 C dx2/; c; d 2 C;

we have
@r�2f

@xr�2
0

D .r � 2/Š.ax1 C bx2/..r � 1/x0 C cx1 C dx2/:

In particular, one component of the polar conic is the line ` tangent to X at P and the other
component does not pass through P . On the other hand, P is a flex for X if and only if
ax1 C bx2 divides the quadratic form f2; indeed, this is equivalent to mP .X; `/ � 3.

Since the Hessian curve of X is the locus of the points P 2 P2 whose polar quadric is
degenerate (cf. §5.6.4), one has that the flexes ofX are the simple points ofX through which
the Hessian curve passes.

5.7.8. LetP be an ordinary flex ofX . ThenX and its HessianH meet transversally
at P and so mP .X;H/ D 1.

Take P to be the point Œ1; 0; 0� and the inflectional tangent to be the line with equation
x2 D 0, so that the equations of X and H may be written in the form

f D xr�1
0 x2 C xr�2

0 x2f1.x1; x2/C xr�3
0 f3.x1; x2/C � � � ;

H D .r � 1/
�
.r � 2/

�
@f1

@x1

�2

x2 � .r � 1/@
2f3

@x2
1

�
x3r�7

0 C � � � :

It then suffices to observe that P is a non-singular point for H (3r � 7 D 3.r � 2/ � 1 D
deg.H/�1) and the tangent toH atP is distinct from the inflectional tangent ofX inasmuch
as f3.x1; x2/ is not divisible by x2 since P is an ordinary flex.

5.7.9. Suppose that X has only Plückerian singularities, that is, only nodes and
ordinary cusps. If r , d , k are the order, the number of nodes and the number of
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cusps and �, ı, � are the dual characters that is, the class, the number of bitangents
and the number of flexes, one has the following two relations:

� D r.r � 1/ � 2d � 3k; (5.34)

� D 3r.r � 2/ � 6d � 8k; (5.35)

known as Plücker’s formulas. In addition to these relations, one also has the dual
relations

r D �.� � 1/ � 2ı � 3�; (5.36)

k D 3�.� � 2/ � 6ı � 8�: (5.37)

These formulas are not independent: given any three of them one can deduce the fourth.
Indeed, from (5.34), (5.35) or (5.36), (5.37) one obtains the relation

3r � k D 3� � �:
If k D 0, that is, if X has only nodes, the class is � D r.r � 1/ � 2d (cf. §5.6.5). Relation
(5.34) (for k � 0) then follows from Exercise 5.7.5.

We have seen in Exercise 5.7.7 that the flexes of X are the non-singular points of X
which belong to the Hessian curve, whose order is 3.r �2/. In the case k > 0 relation (5.35)
then follows from Exercise 5.7.6 and Theorem 4.2.1. Relation (5.36) follows by duality from
(5.34) (cf. Example 5.3.3).

5.7.10. A non-singular C 4 has 24 flexes and 28 bitangents.

This follows immediately from Plücker’s formulas.

5.7.11. Show that any non-singular plane curve of order 4 can be represented by an
equation of the type '22 � '1'3 D 0, where 'j .x0; x1; x2/ denotes a homogeneous
polynomial of degree j , j D 1; 2; 3.

Let C be a non-singular plane quartic with equation f D 0, '1 D 0 the equation of a
bitangent ` to C and '2 D 0 that of a conic passing through the two points of tangency. In
the pencil of quartics f C �'2

2
D 0 there is a quartic split into the line ` and an additional

cubic '3 D 0. To obtain that curve, it suffices to choose � in such a way to ensure that the
quartic f C �'2

2
D 0 of the pencil passes through a point of ` distinct from the two points

of contact of ` with C .

5.7.12. Prove that it is possible to choose three homogeneous polynomials
'2.x0; x1; x2/, '3.x0; x1; x2/, '4.x0; x1; x2/ of degrees 2, 3, 4 respectively so
that the polynomial '2'4 � '23 is the product of six linear forms.

Let � be a conic with equation '2.x0; x1; x2/ D 0, and let C be a cubic with equation
'3.x0; x1; x2/ D 0 that intersects � in six distinct points Pi . Then let `i be the tangents to
� in the points Pi . In the pencil with equation '2

3
� �`1`2`3`4`5`6 D 0 we take the curve

that contains a point of � distinct from the points Pi . This curve splits into � and a further
quartic of equation '4.x0; x1; x2/ D 0. Thus, '2'4 � '2

3
D `1`2`3`4`5`6.
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5.7.13. A plane cubic C can not have two multiple points in view of Proposi-
tion 7.2.7; it can have only a node or an ordinary cusp. Using Plücker’s formulas
(cf. 5.7.9) one sees that if C is non-singular its class is 6 and it has nine flexes. The
class of a cubic with a node is 4 and there are three flexes. Finally, a cuspidal cubic
has class 3 and only one flex. A cubic with (one) singular point is rational and one
can easily find its rational parametrization by intersecting it with the pencil of lines
having center at the singular point.

5.7.14. Show that the plane cubics that pass through eight generic points of the
plane, also pass through a ninth point determined by the others.

The cubics in the plane form a linear system † of dimension 9, and passing through a
point imposes one linear condition on the system (cf. Sections 6.1, 6.2). Hence the cubics of
† that pass through eight generic points of the plane form a pencil ˆ and so they also pass
through the ninth base point of the pencil ˆ.

5.7.15. Prove the following facts.

(1) If six of the nine base points of a pencil of cubics belong to a conic � then
the remaining three points are collinear.

(2) LetA, B , C andA0, B 0, C 0 be two triples of collinear points on a plane cubic
C. The lines rAA0 , rBB0 , rCC 0 intersect C in three points A00, B 00, C 00 which
are also collinear.

(3) The tangentials of three collinear points of a cubic C are collinear (the tan-
gential of a point P 2 C is the point in which the tangent at P again meets
the cubic).

(4) The line joining two flexes of a plane cubic meets the cubic in a third flex.

Statement (1) is a simple consequence of 5.7.14. Indeed, the cubic composed of the
conic � and the line r that joins two of the three base points that do not belong to � passes
through eight base points of the pencil, and so r must also pass through the ninth point.

One could also reason as follows: the curve of the pencil that passes through a point P
belonging to � but distinct from the six base points that lie on � contains � as component (by
Bézout’s theorem); the residual component is a line that must contain the three remaining
base points.

Statements (2), (3), (4) are special cases of (1). To prove (2) it suffices to consider the
conic � composed of the two lines that join the two triples of collinear points A, B , C and
A0, B 0, C 0. Statement (3) is merely (2) in the particular case A D A0, B D B 0 and so
C D C 0. If then A D A0 D A00 and B D B 0 D B 00 one must also have C D C 0 D C 00 and
thus one obtains (4). For this last statement one can also reason as follows. Let L and M
be two flexes of the cubic C, r the line that joins them and N the remaining intersection of
C with r . The pencil of cubics determined by the cubic C and the cubic that is split into the
line r counted three times has as base points the points L, M , N each counted three times.
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Figure 5.1

The cubic split into the three tangents of C at L,M ,N contains eight of the nine base points
of the pencil, and so must also contain the ninth, so that N too is a flex (Figure 5.1).

5.7.16. Another demonstration of Pascal’s theorem on conics (cf. [13, Vol. II, Chap-
ter 16]).

Let A1, A2, A3, A4, A5, A6 be six points of a conic � . The two triples of lines
f D .rA1A2

; rA3A4
; rA5A6

/, g D .rA4A5
; rA6A1

; rA2A3
/ define a pencil of cubics whose

base points are the six points Ai , together with the three points L D rA1A2
\ rA4A5

,
M D rA2A3

\ rA5A6
and N D rA3A4

\ rA1A6
(Figure 5.2). Since the points Ai belong to

a conic, the three points L, M , N are collinear by Exercise 5.7.15 (1).

5.7.17 (G. Salmon’s theorem [36, Vol. I, pp. 271–272]). Let C be a non-singular
cubic. Two of the six tangents that issue from a point M of C coincide with the
tangent at M . Prove that the absolute invariant of the other four tangents does not
depend on M (cf. 1.1.1). It is called the modulus of the cubic.

On C we take two points M , M 0 and let A be the remaining intersection of C with the
line rMM 0 , t a line issuing from A and tangent to C elsewhere and T the relative point of
tangency. Consider a line r issuing fromM that intersects the cubic in two points P ,Q and
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let P 0, Q0 be the remaining intersections of the cubic with the lines rTP , rTQ. The two
lines r , t intersect C in the two triples of points M , P , Q and A, T , T . Therefore, the three
points M 0, P 0, Q0 belong to a line r 0 by Exercise 5.7.15 (2).

A

CM

P
Q

T

M 0

Q0
P 0 r 0

r

t

Figure 5.3

Thus one has a one-to-one algebraic correspondence between the two pencils of lines
centered at M and M 0, which is therefore a projectivity: two lines like r and r 0 correspond
to each other. To the four tangents issuing fromM there correspond the four tangents issuing
from M 0 (note that the class of C is 6, and if P is a point of C, two of the six tangents to C

issuing from P coincide with the tangent at P ).
If the quadruple of tangents issuing from a generic point M of C to touch the cubic

elsewhere is harmonic or equianharmonic (that is, if the quadruple of points cut out by the
four tangents on a line not passing throughM is harmonic or equianharmonic, cf. 1.1.1), we
say that C is a harmonic or respectively equianharmonic cubic.
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5.7.18. Let P be a flex of a cubic X . The polar conic of P splits into the tangent
at X and a residual line called the harmonic polar of P . Show that the cubic is
mapped into itself under the harmonic homology having P as its center and as axis
its harmonic polar.

If the tangent at the flex P D Œ0; 1; 0� is the line x0 D 0 and if the harmonic polar of P
is the line x1 D 0 one finds that X has an equation of the form x0x

2
1

� '.x0; x2/ D 0, with
' a form of degree 3. One sees immediately that X is mapped into itself by the harmonic
homology defined by Œx0; x1; x2� 7! Œx0;�x1; x2� (cf. 1.1.14).

5.7.19. LetX be a non-singular cubic, F a flex ofX . Calculate the modulus of the
cubic (cf. Exercise 5.7.17).

Let r be the polar harmonic of F (cf. Exercise 5.7.18). Since X is non-singular, the line
r meetsX in three pointsA,B ,C of contact of the tangents issuing fromF and distinct from
the tangent in F (by the Reciprocity Theorem 5.4.6). To calculate the modulus of the cubic
it then suffices to calculate the cross ratio R.A;B; C;D/ where D is the intersection of the
line r with the tangent at F . If the tangent at the flex F D Œ0; 1; 0� is the line x0 D 0 and if
the harmonic polar of F is x1 D 0, the equation of X has the form x0x

2
1

� '.x0; x2/ D 0,
with ' a form of degree 3.

The pointsA,B ,C , the intersections ofX with the line r , are given by x1 D '.x0; x2/ D
0 and so in the induced coordinate system on the line r W x1 D 0 one has A D Œa; 1�,
B D Œb; 1�, C D Œc; 1�, D D Œ0; 1�, where a, b, c are the roots (surely distinct by the
hypothesis that X is non-singular) of the cubic equation '.x; 1/ D 0, x D x0=x1. Then

R.A;B; C;D/ D

ˇ̌̌̌
c 1

a 1

ˇ̌̌̌
ˇ̌̌̌
c 1

b 1

ˇ̌̌̌ W

ˇ̌̌̌
0 1

a 1

ˇ̌̌̌
ˇ̌̌̌
0 1

b 1

ˇ̌̌̌ D b.c � a/
a.c � b/ :

5.7.20. Let O be a fixed point on a non-singular cubic X . Given two points P , Q
onX we define the sum P CQ to be the point that one obtains onX by projecting
the remaining intersection of X with the line rPQ from O . Show that in this way
one obtains the structure of an abelian group on X with O as the neutral element.

The only property which is not obvious is the associative law. In the Figure 5.4 the points
P C Q and R C Q are shown. In order to prove that .P C Q/ C R D P C .Q C R/ it
suffices to show that the three pointsP ,Z, andQCR are collinear, whereZ is the remaining
intersection of the cubic with the line joiningR withP CQ. To this end, consider the triples
of points P CQ, N , O and R, Q, M . The lines rP CQ;R, rNQ and rOM intersect X in
the three points Z, P , QCR, which are therefore collinear by Exercise 5.7.15 (2).
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M

N

O

P

Q

R

X

Z

QCR
P CQ

P CQCR

Figure 5.4

5.8 Surfaces in P3

The remarks and exercises which follow serve to illustrate the theory developed in
this chapter with regard to some of the properties of surfaces in P3; see also [92,
Chapters IX, XIII]. We assume that K D C.

5.8.1 Normal singularities of a surface. One says that a surface X in P3 has
normal (or ordinary) singularities if its singularities are (at most) the following:

(1) A double nodal curve L, that is, such that in each generic point of L the
tangent cone to X is composed of a pair of distinct planes; and in this case
the point is said to be a double biplanar point for X .

(2) On the curve L a finite number of double points (for X ) with coincident
tangent planes; such points are called cuspidal points (or pinch-points, or
also uniplanar double points).

(3) On the curve L a finite number of triplanar triple points (that is, triple points
of X at which the tangent cone to X splits into three distinct planes) and
which are also triple points for the curve L.
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If each point of the curve L is a cuspidal point, L is said to be a cuspidal double
curve (and in that case X does not have normal singularities).

Normal singularities are the only singularities that the generic projection in P3

of a non-singular surface F embedded in P5 can possess [37]. The interest of the
notion of normal singularities depends on the following fact:

• Every algebraic surface S has a non-singular birational model .that is, bi-
rationally isomorphic to it/ embedded in P5.

This important theorem was discovered by various authors. The first rigorous
proof is due to Levi [64]; for more recent proofs see, for example, Walker [112] and
Zariski [116], [117] (see also Exercise 13.1.21 for a discussion of the analogous
result for algebraic curves).

The extension of Levi’s theorem to three dimensional varieties is due to Zariski
[118]; finally, in 1964, Hironaka [51] proved the fundamental result that every
irreducible algebraic variety over a field K of characteristic zero possesses non-
singular birational models.

With regard to the generic projectionX in P3 of a non-singular algebraic surface
F in P5, Franchetta [39] has proved that the double curve ofX is irreducible with a
unique exceptional case when F is the Veronese surface, whose generic projection
is in fact the Steiner surface (cf. Exercise 10.5.6) whose nodal double curve is a
triple of lines issuing from a point.

5.8.2. Consider a surface X in P3, of order r , and having a double point P . Study
the behavior at P of the first polar X1.Q/ of a point Q ¤ P .

We take P and Q to be the points A0 D Œ1; 0; 0; 0� and A1 D Œ0; 1; 0; 0�, so that

X W xr�2
0 '2.x1; x2; x3/C xr�3

0 '3.x1; x2; x3/C � � � D 0;

X1.Q/ W xr�2
0

@'2

@x1

C xr�3
0

@'3

@x1

C � � � D 0:

Initially we suppose that the cone � (with equation '2 D 0) tangent to X at P is not a pair
of planes both of which pass throughQ. This is equivalent to supposing that the polynomial
@'2

@x1
not be null. In that caseX1.Q/ passes simply throughP and the plane 
 (with equation

@'2

@x1
D 0) tangent to X1.Q/ at P is the polar plane of Q with respect to � .

If Q does not belong to � , then 
 is the locus of the harmonic conjugates of P with
respect to the pairs of points of � collinear with Q. (In particular, if � is a pair of distinct
planes ˛, ˇ neither of which passes throughQ, then
 is the harmonic conjugate with respect
to ˛ and ˇ, in the pencil of planes with axis the line r D ˛ \ ˇ, of the plane that joins Q
with r .) The point P is a node for the line L D X \X1.Q/ and � \
 is the pair of tangents
of L at P .

If, however, Q belongs to � , 
 is the tangent plane to � at Q and P is (in general) a
double point with coincident tangents for L.

In the exceptional case that @'2

@x1
is the null polynomial (which happens if and only if �

is a pair of planes both of which contain Q) the point P is (at least) double for X1.Q/.
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5.8.3. Prove that if two surfaces F , G in P3 are mutually tangent at a point P
(simple for both of them), that is, if at P they have the same tangent plane, P is at
least double for the curve L D F \G.

It suffices to observe that if P is the origin of a system of affine coordinates x, y, z and
if

f D z C '2 C '3 C � � � D 0I g D z C �2 C �3 C � � � D 0

are the equations of F and G, the curve L can be represented by the system of equations
f D f � g D 0 and is therefore the intersection of F with the surface of equation '2 �
�2 C '3 � �3 C � � � D 0 which passes doubly through P .

5.8.4 (Tangent cone in a point of a double curve). Let L be a curve in P3 and X a
surface passing doubly through L. Show that ifP is a simple point of L the tangent
cone to X at P is a pair of planes passing through the tangent of L at P .

The question is of local nature, and so we may suppose that L is the complete intersection
of two surfaces with equationsf D 0, g D 0 both passing simply throughP and not mutually
tangent there.

It is known (cf. the next note 5.8.5) that if F D 0 is the equation of the surfaceX passing
doubly through L, the polynomial F belongs to the ideal .f; g/2 D .f 2; fg; g2/. Let then

F D Af 2 C 2Bfg C Cg2; A; B; C 2 CŒx0; x1; x2; x3�:

We have,

Fij ´ @2F

@xi@xj

D 2A
@f

@xi

@f

@xj

C 2B

�
@f

@xi

@g

@xj

C @f

@xj

@g

@xi

�
C 2C

@g

@xi

@g

@xj

C � � � :

Thus, on putting fi D @f
@xi

, gi D @g
@xi

, i D 0; 1; 2; 3, we have

@2F

@xi@xj

� 2.Afifj C B.figj C fjgi /C Cgigj / 2 .f; g/:

Hence,  
@2F

@xi@xj

!
P

D 2ŒA.P /fi .P /fj .P /C B.P /.fi .P /gj .P /

C fj .P /gi .P //C C.P /gi .P /gj .P /�

and the tangent cone toX at P (namely, the cone of equation F00.P /x
2
0

C2F01.P /x0x1 C
� � � D 0) is

A.P /
X
i;j

fi .P /fj .P /xixj C B.P /
X
i;j

Œfi .P /gj .P /C fj .P /gi .P /�xixj

C C.P /
X
i;j

gi .P /gj .P /xixj D 0;
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which is to say

A.P /
�X

i

fi .P /xi

�2 C 2B.P /
�X

i

fi .P /xi

��X
i

gi .P /xi

�
C C.P /

�X
i

gi .P /xi

�2 D 0;

and thus it is a pair of planes passing through the line
P

i fi .P /xi D P
i gi .P /xi D 0

tangent to L at P .
If B.P /2 � A.P /C.P / D 0 the two planes coincide and P is a cuspidal point (or

pinch-point) of X .
In the special case that B2 � AC 2 .f; g/ each point of L is a cuspidal point (of the

surface) and L is a cuspidal double curve.
If L is a nodal double curve it can have only finitely many cuspidal points, namely the

solutions of the system f D g D B2 � AC D 0.
To obtain the tangent cone to X at a generic point P 2 L it suffices to intersect X with

an arbitrary plane 
 passing through P (but not through the tangent of L at P ) and then to
take the two planes that join the tangent of L atP with the tangents atP to the curveX \
 .

5.8.5. Note. If p is a prime ideal of the ring A (commutative and with identity), the
symbol p.s/ denotes its sth symbolic power, that is, the set (which one immediately
sees to be an ideal) of elements x 2 A such that there is a y 62 p for which one has
xy 2 ps .

If A D KŒy1; : : : ; yn� one has f 2 p.s/ if and only if the affine hypersurface
f D 0 passes s-fold through V.p/. It is then obvious that ps � p.s/. It follows
that ps D p.s/ if and only if p is an ideal of principal class (and thus, in particular,
if p is generated by only two elements); cf. [17], [16].

An interesting example of a prime ideal p � KŒx; y; z� such that p2 ¤ p.2/ is
the ideal p D .xz�y2; x3�yz; z2�x2y/ already encountered in Exercise 3.4.11
(cf. [71, Chapter I]); indeed, the polynomial f D x5 � 3x2yz C xy3 C z3 does
not belong to p2 inasmuch as a polynomial of p2 can not contain the monomial z3,
but it belongs to p.2/ because one has

xf D .x3 � yz/2 C .xz � y2/.z2 � x2y/ 2 p2:

5.8.6 Tangent cone at a point of an s-fold variety. Let Vk be an s-fold variety
for the hypersurface X in Pn defined by the equation F D 0. Moreover, let
P D Œ1; 0; : : : ; 0� be a simple point of Vk and suppose that x1 D � � � D xn�k D 0

is the tangent space Sk at P to Vk . Since Vk is locally (near P ) a complete
intersection, we can suppose that Vk is the locus of zeros of a homogeneous prime
ideal p D .f1; : : : ; fn�k/, where

fj D x
dj �1
0 xj C � � � ; j D 1; : : : ; n � kI dj D degfj :
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Since F 2 ps we can write

F D
X
i

Ai�i CH;

where �i 2 ps ,H 2 psC1, and theAi are polynomials not all of which vanish at P .
One sees immediately that the coefficient of the highest power of x0 in F is a

form of degree s in the indeterminates x1; : : : ; xn�k with constant coefficients.
Therefore, the tangent cone to X at P has as its vertex the tangent space to Vk

at P . In particular, if L is an s-fold curve of a surface X in P3, the tangent cone to
X at a simple point P of L consists of s planes passing through the tangent to L

at P .
For our later purposes it is useful to give more detail in the case of a hypersurface

passing through a linear space which we may assume to be defined by the equations
x0 D � � � D xn�k�1 D 0. Let F 2 .x0; : : : ; xn�k�1/2 so that

F D L00x
2
0 C 2L01x0x1 C � � � C Ln�k�1n�k�1x2n�k�1 CG.x0; : : : ; xn�k�1/;

where the coefficients Lij D Lij .xn�k; xn�kC1; : : : ; xn/ are homogeneous poly-
nomials of degree r �2 in the indeterminates xn�k; xn�kC1; : : : ; xn andG belongs
to .x0; : : : ; xn�k�1/3.

At a generic point P D Œ0; : : : ; 0; an�k; an�kC1; : : : ; an� of Sk we have

1

2

�
@2F

@xi@xj

�
P

D Lij .an�k; an�kC1; : : : ; an/;

and thus the tangent cone to X at P has equation:

L00.an�k; an�kC1; : : : ; an/x20 C 2L01.an�k; an�kC1; : : : ; an/x0x1 C � � �
� � � C Ln�k�1 n�k�1.an�k; an�kC1; : : : ; an/x2n�k�1 D 0:

This equation represents a quadric cone that has as vertex the space Sk .
The points of Sk belonging to the hypersurface D (in Sk) with equation


 D det.Lij .an�k; an�kC1; : : : ; an// D 0

are exceptional. If P is a point of D for which the matrix

.Lij .an�k; an�kC1; : : : ; an//

has rank k C 1 � �, the tangent cone at P has a double space of dimension k C �

(even though P is in general only a double point for F ). It is not impossible that

 is the null polynomial.

In particular, if k D n � 2 and thus

F D L00x
2
0 C 2L01x0x1 C L11x

2
1 CG.x0; x1/;
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the tangent cone at P consists of the pair of hyperplanes

L00.a2; : : : ; an/x
2
0 C 2L01.a2; : : : ; an/x0x1 C L11.a2; : : : ; an/x

2
1 D 0:

We will say that P is a bihyperplanar double point if the two hyperplanes are
distinct, and a unihyperplanar double point if the two hyperplanes coincide. The
hypersurface D of the space Sn�2 which is the locus of the unihyperplanar double
points is the intersection of Sn�2 with the hypersurface having equation

L01.x2; : : : ; xn/
2 � L00.x2; : : : ; xn/L11.x2; : : : ; xn/ D 0;

and so has order 2.r � 2/. On it there may very well be points of multiplicity > 2,
and so on.

In the case in which X is a surface in P3 and k D 1, the locus D is in general
composed of a finite number of points: the uniplanar points (or pinch-points) and
possible points of multiplicity > 2 that X possesses on the double line. The most
general case is that in which one has 2.r � 2/ pinch-points. But it can happen that
all the points of the double line are uniplanar, and in that case the line is said to be
cuspidal double.

The extension to the case in which the double variety is not a linear space is only
formally more complex. An example of a surface in P3 having a cuspidal double
curve is given by the surface spanned by the tangents of the space curve itself.

5.8.7 (Hypersurfaces in P4 with a double line). In general a hypersurface X of P4

with a double line r has at each point of r a tangent cone whose vertex is just the
line r .

Consider, for example, the cubic hypersurface X with equation

x0x
2
2 C x1.x

2
3 C ax2

4/C '3.x2; x3; x4/ D 0;

where '3 is a form of degree 3 and a 2 C, which passes doubly through the line r W x2 D
x3 D x4 D 0. The tangent cone at the generic point P D Œ�; �; 0; 0; 0� of r is

�x2
2 C �.x2

3 C ax2
4/ D 0:

In each generic point of r the tangent cone is irreducible, and is the cone that projects the
conic � W x0 D x1 D �x2

2
C�.x2

3
Cax2

4
/ D 0 from r . This cone is a pair of hyperplanes if �

is degenerate, that is, if��2 D 0. For� D 0 one has two distinct hyperplanes x2
3

Cax2
4

D 0;
while � D 0 gives the double hyperplane x2

2
D 0.

In particular, if a D 0, the line r is a particular double line because in each of its points
the tangent cone is composed of the pair of hyperplanes �x2

2
C�x2

3
D 0 (which coincide if

�� D 0).
In this case we say that r is a bihyperplanar double line (cf. Exercise 13.1.34).

5.8.8. Find all the cubic surfaces passing doubly through the line x2 D x3 D 0 and
for each of them find the pinch-points on that line (i.e., the uniplanar points).
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The generic cubic surfaceX passing doubly through the line x2 D x3 D 0 has equation
of the type

x2
2LC 2x2x3M C x2

3N D 0;

where L, M , N are linear forms in x0, x1, x2, x3. The tangent cone to X at the generic
point P D Œa; b; 0; 0� of the double line has equation (cf. §5.8.6)

x2
2L.a; b; 0; 0/C 2x2x3M.a; b; 0; 0/C x2

3N.a; b; 0; 0/ D 0;

and so it splits into two coincident planes if M.P /2 � L.P /N.P / D 0. The pinch-points
are thus the points of intersection of the line x2 D x3 D 0 with the quadric having equation
M 2 � LN D 0.

5.8.9 Apparent boundary. The apparent boundary of a surface X � P3 from a
point O (or with respect to O) is the closure � of the locus of points P 2 X such
that the tangent plane atP toX passes throughO . It is nothing more than the curve
of intersection of X with the first polar X1.O/ of O .

Therefore (cf. Lemma 5.6.2) an s-fold point ofX is (in general) an s.s�1/-fold
point for � . It is easy to see that a point A of � that is simple for X is in general
also simple for � . Indeed, let A D Œ1; 0; 0; 0�, O D Œ0; 1; 0; 0� and assume that the
tangent plane to X at A is x2 D 0, so that the equation of X may be written in the
form

f ´ xn�1
0 x2 C xn�2

0 .ax21 C � � � /C � � � D 0;

where n is the order of X . One then has

@f

@x1
D xn�2

0 .2ax1 C � � � /C � � � D 0

and in general the two planes x2 D 0, 2ax1C � � � D 0 are distinct. (The two planes
coincide only if the two principal tangents of X at A coincide with the line rAO ).

The apparent boundary carried byO over a plane 
 , is the line � 0 which is the
intersection of 
 with the apparent boundary ofX fromO , that is, the projection of
� from O onto 
 . If L is a curve traced on X and passing through a point A of � ,
the tangents to L and to � at A are both contained in the tangent plane 	 toX at A;
since this plane passes through O , the projection L0 of L from O onto 
 is tangent
to � 0 at the point A0, the projection of A. This fact is known as the “theorem of the
apparent boundary” (Figure 5.5).

5.8.10. Prove that an algebraic surface of order 3 contains a line, and that a surface
X r of order r > 3 does not (at least in general) contain any line.

The necessary and sufficient condition for the surface Xr with equation f .x; y; z/ D 0

in A3 to contain the line of equations x � az � b D y � cz � d D 0 is that a, b, c, d annull
the r C 1 coefficients of the polynomial f .azC b; czCd; z/ 2 CŒz�. One finds a system of
r C 1 equations in the four unknowns a, b, c, d . If r C 1 � 4, that is, if r � 3, the system
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Figure 5.5.

has solutions and thus Xr contains lines (infinitely many lines if r � 2, a finite number, in
general, if r D 3). If, however, r � 4 the system, in general, has no solutions.

5.8.11. Let X be a surface (non-singular or with at most only nodes of the most
general type, cf. §5.6.5) of P3. Then, its class is �.X/ D 2 if and only if X is a
quadric.

That a quadric of P3 has class equal to two is obvious. The converse follows by duality
from Exercise 5.3.4.

5.8.12. Consider a cubic surface X of general type, and choose as the point
Œ1; 0; 0; 0� one of its non-singular points P , so that the equation of X has the form

f D x20'1.x1; x2; x3/C 2x0'2.x1; x2; x3/C '3.x1; x2; x3/ D 0;

where 'j .x1; x2; x3/ is a homogeneous polynomial of degree j , j D 1; 2; 3. Put
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 ´ '1'3 � '22 , and let V be the cone with equation 
 D 0. Verify the identity

'1f D
�
1

2

@f

@x0

�2
C
;

and use it to prove the following facts:

(1) The tangent planes to V are precisely the tangent planes toX that contain P .

(2) Every double generator of the cone V which does not belong to the plane with
equation '1 D 0 contains a double point of X , and conversely each double
point of X belongs to a double generator of V .

The first polar X1.P / of P with respect to X has equation @f
@x0

D 0 and, by the
Reciprocity Theorem (Theorem 5.4.6), the curve C ´ X \X1.P / is the locus of the points
of contact of X with the tangent planes containing P . On the other hand, 
 belongs to the
ideal generated by f and by @f

@x0
, and so V contains the curve C ; since the variable x0 does

not appear in 
, we conclude that V is the cone that projects C from P (cf. §3.4.5). From
this (1) follows.

Each double point ofX is obviously also double for the surface of equation
�

@f
@x0

�2 D 0

and hence is double for the cone V ; therefore belongs to a double generator of V . Moreover,
a double generator of V that does not belong to the plane '1 D 0meets the surfaceX1.P / W
@f
@x0

D 0 in a double point for the surface with equation '1f D 0, and hence a double point
for X . This proves (2).

5.8.13. Show that a non-singular cubic surfaceX (of general type) contains twenty-
seven lines.

In the notation of 5.8.12, let P D Œ1; 0; 0; 0� be a non-singular point of X , and

f D x2
0'1.x1; x2; x3/C 2x0'2.x1; x2; x3/C '3.x1; x2; x3/ D 0

the equation of X . Let V be the cone, with equation
 ´ '1'3 � '2
2

D 0, that projects the
curve C D X \X1.P / from P . A bitangent plane of the cone V (that is, a plane tangent to
V along two distinct generators) is a bitangent plane ofX that passes throughP . It intersects
X in a cubic with two double points; by Theorem 4.2.1 this cubic splits and contains the line
` joining the two double points. Hence, every bitangent plane of the cone V contains a line
lying in X .

Conversely, the plane joining P with a line of X meets X in a (reducible) cubic with
two double points, and so is bitangent to X . By the generality hypothesis made on X , the
polynomials '1, '2, '3 are such that the plane quarticC with equation '1'3 �'2

2
D x0 D 0

is non-singular (equivalently, V is a quartic cone of general type). Using Plücker’s formulas
proved in 5.7.9, we have that the number of flexes � and the class � of C are � D 24 and
� D 12, so that the number ı of bitangent lines to C is ı D 28. So V has twenty-eight
bitangent planes. One of these is the plane '1 D 0 that is a generic tangent plane (i.e., non-
bitangent) to X , and which therefore does not contain lines of the surface, since otherwise
its intersection with X would be reducible. The other twenty-seven bitangent planes each
contain a line of X .
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For a description of the configuration of the lines of X see for instance [74, III, §7] or
also [15, §11].

We recall a few definitions. We say that a surface in P3 (or more generally in
P r ) is ruled if it is the locus of 11 lines, called generators. A curve of the surface
that meets each generator in only one point is said to be a directrix. A generator g
of a ruled surface X is said to be simple if the generic point of g is non-singular
for X . On the other hand, g is said to be multiple (double, triple, …) if each of its
points is multiple (double, triple, …) for X . A generator g is said to be singular if
g is simple for X and the tangent plane to X in the generic points P 2 g is fixed
as P varies in g. A ruled surface is said to be developable if the simple generators
are all singular.

5.8.14 Criterion for developability of a ruled surface. In a system of affine
coordinates in A3, let us represent a ruled surface X in the form8̂<̂

:
x D ˛.u/C t l.u/;

y D ˇ.u/C tm.u/;

z D t;

(5.38)

where ˛.u/, l.u/, ˇ.u/,m.u/ are twice continuously differentiable functions of the
parameter u, and suppose that the generator g.u/ corresponding to the value u of
the parameter is singular, that is, that the tangent plane to X along g.u/ is fixed.

We consider two plane sections of X , for example the two sections L0, L1
that one has for t D 0 and t D 1, and the points A, B where they meet g.u/. If
the generator is singular the tangent planes to X at A and B coincide and so the
tangent to L0 at A and the tangent to L1 at B are coplanar. Thus, since they are
contained in the two parallel planes z D 0, z D 1, they must be parallel. It follows
that their direction vectors .˛0.u/; ˇ0.u/; 0/ and .˛0.u/C l 0.u/; ˇ0.u/Cm0.u/; 0/,
must be parallel, where the prime indicates the derivative with respect to u. Hence
˛0.u/.ˇ0.u/Cm0.u// � ˇ0.u/.˛0.u/C l 0.u// D 0, which is to say

˛0.u/m0.u/ � ˇ0.u/l 0.u/ D 0: (5.39)

This is the necessary and sufficient condition in order for g.u/ to be singular. If
the ruled surface is developable, that is, if all of its generators are singular, this
condition is verified for all values of the parameter u. Condition (5.39) is obviously
satisfied if l 0.u/ D m0.u/ D 0, that is, if l.u/ and m.u/ are constants (in which
case X is a cylinder).

If l 0.u/, m0.u/ are not both zero, condition (5.39) implies that there exists a
function 	.u/ such that

˛0.u/ D 	.u/l 0.u/; ˇ0.u/ D 	.u/m0.u/: (5.40)
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On every generator we then take the pointP.u/ obtained for t D �	.u/. Supposing
that this point is not independent of u [if P.u/ were independent of u, the ruled
surface X would be a cone with vertex .˛.u/; ˇ.u/; 0/] one obtains the curve � on
X defined by parametric equations8̂<̂

:
x D ˛.u/ � 	.u/l.u/;
y D ˇ.u/ � 	.u/m.u/;
z D �	.u/:

The tangent line to � at its generic point P.u/ joins the point P.u/ (which belongs
to g.u/) to the improper point

Œ˛0.u/ � 	.u/l 0.u/ � 	 0.u/l.u/; ˇ0.u/ � 	.u/m0.u/ � 	 0.u/m.u/;�	 0.u/; 0�
D Œ�	 0.u/l.u/;�	 0.u/m.u/;�	 0.u/; 0�;

that is, to the improper point Œl.u/;m.u/; 1; 0� of g.u/. The generator g.u/ is then
the tangent to � at P.u/ and X is the surface spanned by the tangents of � .

Bearing in mind (5.40), the osculating plane of � at P.u/ has equationˇ̌̌̌
ˇ̌ x � ˛.u/C 	.u/l.u/ y � ˇ.u/C 	.u/m.u/ z C 	.u/

	 0.u/l.u/ 	 0.u/m.u/ 	 0.u/
	 00.u/l.u/C 	 0.u/l 0.u/ 	 00.u/m.u/C 	 0.u/m0.u/ 	 00.u/

ˇ̌̌̌
ˇ̌ D 0;

that is, ˇ̌̌̌
ˇ̌x � ˛.u/ y � ˇ.u/ z

l.u/ m.u/ 1

l 0.u/ m0.u/ 0

ˇ̌̌̌
ˇ̌ D 0:

Thus � coincides with the tangent plane toX at the point of the generator g.u/ that
comes from the value t D 0 of the parameter, that is, with the tangent plane to the
ruled surface along the generator.

Note in addition that, again recalling (5.40), criterion (5.39) is the necessary and
sufficient condition in order that the tangent plane to X at the point P.u/ coming
from the value t D �	.u/ of the parameter t should be indeterminate.

In conclusion, for developable ruled surfaces the following property holds: On
every generator of a developable ruled surfaceX there is a singular point, at which
the ruled surface does not have a well-defined tangent plane. If this point is fixed
(that is, does not depend on u)X is a cone with vertex in that point. Otherwise, the
locus of the singular points P.u/ of the various generators is a curve � , called the
regression edge, having as tangent and as osculating plane at P.u/ the generator
g.u/ and the tangent plane to X along g.u/.

As an example, we consider the affine cubic surface F W z2y � x2 D 0. The
line x D z D 0 is double for F. Every plane of the pencil with axis r therefore
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meets the surface in a line, and thus F is ruled. For F we consider the parametric
representation 8̂<̂

:
x D ut;

y D u2;

z D t:

For each fixed u the generator g.u/ is the line passing through .˛.u/; ˇ.u/; 0/ D
.0; u2; 0/ and having direction vector .l.u/;m.u/; n.u// D .u; 0; 1/. Applying the
preceding criterion, in order for g.u/ to be a singular generator it is necessary and
sufficient that

ˇ0.u/l 0.u/ D 2u D 0;

which means that u D 0; thus one has the singular generator x D y D 0 (along
which the fixed tangent plane is x D 0).

5.8.15. Let F be the surface with equation x20x1 � x22x3 D 0. Noting that F has a
double line and then observing that it is a ruled surface, find the singular generators
and the pinch-points on the double line.

Since x2
0
x1 � x2

2
x3 2 .x0; x2/

2 \ .x1; x3/, F contains the two lines r W x0 D x2 D 0,
s W x1 D x3 D 0 and r is a double line. A generic plane passing through r meets F in
another line. Therefore F is a ruled surface.

A plane passing through s meets F in a conic that has a double point P on r and which
thus splits into two lines g, g0. The two planes hr; gi, hr; g0i form the tangent cone to F atP .
If g D g0, P is a uniplanar point (or pinch-point). On r there are two pinch-points. Indeed,
the section with the plane �x1 C �x3 D 0 (containing s) is´

�x1 C �x3 D 0;

x3.�x
2
0 C �x2

2/ D 0

and it consists of the line s and the two lines g, g0 given by the system �x1 C �x3 D
�x2

0
C �x2

2
D 0, which coincide if �� D 0. The two pinch-points (intersections of r with

the two planes x1 D 0, x3 D 0) are P1 D Œ0; 0; 0; 1� and P2 D Œ0; 1; 0; 0�. The singular
generators are p1 W x1 D x2 D 0 and p2 W x0 D x3 D 0; along each of them the tangent
plane to F is fixed (the plane x1 D 0 and the plane x3 D 0 respectively).

5.8.16. LetX be a surface in P3 having at most nodes of the most general type and
let d be the number of its nodes. Let r be the order of X and suppose that X is not
ruled. Prove that d � 4 if r D 3 and d � 16 if r D 4.

Then write the equation of a cubic surface with four nodes.

By 5.8.11 we know that the class �.X/ of a ruled surface X of order > 2 is at least 3.
Thus we have (cf. §5.6.5)

�.X/ D r.r � 1/2 � 2d � 3:

Since d is an integer by parity one obtains r.r � 1/2 � 2d � 4; and thus d � 4 if r D 3 and
d � 16 if r D 4.
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A cubic that has four nodes in the vertices of the fundamental tetrahedron has equation

ax1x2x3 C bx2x3x0 C cx3x0x1 C dx0x1x2 D 0; a; b; c; d 2 C; abcd ¤ 0:

5.8.17 (The Kummer surface). Let X be the quartic hypersurface defined by the
equation

f D x20'2.x1; x2; x3/C 2x0'3.x1; x2; x3/C '4.x1; x2; x3/ D 0;

where 'j .x1; x2; x3/ are homogeneous polynomials of degree j , j D 2; 3; 4, such
that
 D '2'4�'23 is the product of six linear forms `i 2 CŒx1; x2; x3� (cf. 5.7.12)
Using the identity (immediately verified)

'2f D
�
1

2

@f

@x0

�2
C
; (5.41)

prove that X has sixteen double points.

Let Pij D Œ0; a; b; c� be a double point of the curve with equation
 D x0 D 0, namely
one of the fifteen points defined by `i D j̀ D x0 D 0. The tangent cone '2 D 0 to
X at its double point Œ1; 0; 0; 0� meets the plane x0 D 0 in a conic � that is tangent to
the six lines `i D x0 D 0. Since Pij 62 � one has '2.a; b; c/ ¤ 0. Consider the point
Qij D 	 � '3.a;b;c/

'2.a;b;c/
; a; b; c



(of which Pij is the projection on the plane x0 D 0). The

coordinates ofQij annull the partial derivative @f
@x0

D 2.x0'2 C '3/; and soQij is double

for the surface
�

1
2

@f
@x0

�2 D 0. Furthermore,Qij is double for the cone with equation
 D 0

and so, bearing in mind that '2.a; b; c/ ¤ 0, we obtain by (5.41) that Qij is a double point
for X . Thus X has sixteen double points; the fifteen points Qij and in addition the point
Œ1; 0; 0; 0�.

Historical note. The difficult problem of determining the maximum number �.r/
of isolated double points (i.e., not belonging to multiple lines) that a surface of order
r in P3 can have has been resolved only for r � 6. Besides the results �.2/ D 1,
�.3/ D 4, �.4/ D 16 one has:

�.5/ D 31 (Togliatti [107]: �.5/ � 31, Beauville [7]: �.5/ � 31);

�.6/ D 65 (Jaffe and Rubermann [56]: �.6/ � 65, Barth [5]: �.6/ � 65).

5.8.18. Let X be a ruled surface in P3 and let g be a simple generator of X . Prove
the following:

(1) If g is a singular generator of X then g contains a point that is multiple for
X (which is said singular point of the singular generator).

(2) (Chasles’ theorem) If g is non-singular, associating to each point of g the
tangent plane toX in that point one obtains a projectivity between the pointed
line g and the pencil of planes having g as axis.
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In the affine space A3 let X be the ruled surface which is the locus of P.u; t/ D
.a.u/C t l.u/; b.u/C tm.u/; c.u/C tn.u//, where a.u/, b.u/, c.u/, l.u/, m.u/, n.u/ are
functions of a parameter u.

It suffices to observe that the tangent plane at the pointP.u; t/ of the generator g D g.u/

is 
t W LC tM D 0, where L D 0 and M D 0 are the equations of the tangent planes to X
in the points P.u; 0/ and P.u; t1/, and t1 denotes the improper point on the t -axis in the
.u; t/-plane.

If g.u/ is singular, and henceL D kM , k 2 C, the tangent plane atP.u; t/ has equation
.k C t /M D 0 and so on g.u/ there is the singular point P.u;�k/, at which the tangent
plane does not exist.

5.8.19. Show that the normals to a ruled surface F � A3.R/ in the points of a
non-singular generator g span a hyperbolic paraboloid.

The normal nP at a point P to g is the perpendicular at P to the tangent plane 
P to F

atP . Its improper pointNP thus belongs to the improper line r1 of the planes perpendicular
to g.

The correspondence 
P 7! NP between the pencil of planes with axis g and the line
r1 is algebraic and bijective, and hence projective.

By Chasles’ theorem, see 5.8.18 (2), the points P and NP thus correspond under a
projectivity between the two lines g, r1.

A simple check shows that the locus of the lines that join points corresponding under a
projectivity between two skew lines is a non-singular quadric (cf. 13.1.41). Then the lines
nP are the generators of a quadric that is a hyperbolic paraboloid because it contains the
improper line r1.

5.8.20. If X � P3 is a (non-developable) ruled surface of order r , its class is
�.X/ D r .

A generic line ` meets X in r distinct points P1; : : : ; Pr ; from each of these points Pi

there issues a generator gi of the ruled surface. It then suffices to observe that the tangent
planes toX (at the points Pi ) containing the line ` are the r planes that join `with the single
generators gi , i D 1; : : : ; r , cf. 5.8.18 (2).

5.8.21. Let X be a non-developable ruled surface of order r > 2. Show that X
contains a multiple curve L, which in general is a double curve, that meets every
non-singular generator in r�2 points. The curve L is also called a double directrix.

Let g be a simple generator. A generic plane 
 passing through g meets X in a curve �
of order r which splits into g and a residual curve � of order r � 1. The curve � intersects
g in r � 1 double points of � . By 5.8.18 (2) the plane 
 is tangent to X at only one of these
points; the other r � 2 points are double for X (cf. Exercise 5.2.6). As 
 varies in the pencil
with axis g, these r � 2 points describe a double curve L.

5.8.22. The double curve of a non-developable ruled cubicX is necessarily a line d
and the tangent cone at a point P 2 d splits into a pair of planes passing through d.
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The ruled surface X is said to be general (or of general type) if the tangent cones
in the points P of d are pairs of planes both of which vary as P varies on d; and
then they are the pairs of corresponding elements in an involution ! of the pencil
of planes having d as axis (cf. [52, Vol. 1, Chapter VIII, §2]). The two points of d
corresponding to the two fixed planes of ! are the cuspidal points (or pinch-points)
of X ; at them the tangent cone consists of a pair of coinciding planes. Note that
if X is a general ruled cubic, from each point P 2 d, which is not cuspidal, there
issue two distinct generators of the ruled surface: the two lines that when joined
with d define the two planes into which the tangent cone to X at P splits.

A general ruled cubic X also has a rectilinear directrix which is skew to the
double line.

Prove these results and use them to find a simple analytic representation for a
general ruled cubic.

The double curve L of a ruled cubic is necessarily a straight line, which we will denote
by d. Indeed, two arbitrary points A, B of L are joined by a line lying on X , having at least
four intersections with it (two in A, two in B). Thus, L can not be a plane curve of order
� 2 because otherwise X would contain the plane of L.

But neither can it be a space curve, because the chords of a space curve span all the space
(cf. Exercise 7.5.2).

Let P be a generic point of the double line d and let ˛, ˇ be the two tangent planes toX
at P . The three intersections of a line passing through P and contained in one of these two
planes coincide withP . Therefore, each of the two planes meets the ruled cubic in a curve of
third order having P as triple point, and thus that curve must be composed of the double line
d counted twice and of another line containing P . Therefore from each point P of d there
issue two generators a, b of X (which coincide only if P is one of the pinch-points). The
plane of these two lines intersects X in another line r which is skew to d. A plane passing
through r meets the ruled cubic in a curve consisting of r and a pair of lines issuing from
the point in which the plane intersects d. All the generators of X are thus supported by r ,
which is therefore a simple directrix.

Take the cuspidal points to be A3 D Œ0; 0; 0; 1� and A2 D Œ0; 0; 1; 0� (so that the double
line d has equations x0 D x1 D 0) and take as points A0 D Œ1; 0; 0; 0� and A1 D Œ0; 1; 0; 0�

the intersections of r with the planes (of equations x1 D 0 and x0 D 0) which when doubly
counted give the tangent cones in A3 and A2 respectively, and finally take the unit point
Œ1; 1; 1; 1� to be a point of the surface. One finds that the ruled surface then has the simple
equation x2

0
x2 � x2

1
x3 D 0. (Note that the planes x1 D 0 and x0 D 0 meet X , besides in

the double line d counted twice, respectively in the lines x1 D x2 D 0 and x0 D x3 D 0.)

5.8.23 (Cayley’s ruled cubic, cf. 10.5.17). Represent analytically a ruled cubic X
which is not a cone, and such that the tangent cones in the points of the double
directrix are pairs of planes, one of which is fixed.

We have seen in 5.8.22 that the double directrix is a line d. A cubic hypersurface passing
doubly through the line with equations x0 D x1 D 0 has an equation of the form

x2'2.x0; x1/C x3'
0
2.x0; x1/C �3.x0; x1/ D 0;
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where '2, '0
2

are quadratic forms and �3 is a cubic form. The tangent cone in the generic
point P D Œ0; 0; h; k� of d has equation h'2.x0; x1/C k'0

2
.x0; x1/ D 0. If the fixed plane

is x1 D 0 one then finds an equation for X of the form

x1x2.ax0 C bx1/C x1x3.cx0 C dx1/Cmx3
0 C nx2

0x1 C px0x
2
1 C qx3

1 D 0:

Note that m ¤ 0, for otherwise X would be reducible. One must also have ad � bc ¤ 0.
Indeed, if ad D bc, the surface X would have Q D Œ0; 0;�c; a� D Œ0; 0;�d; b� as a triple
point and thus would be a cone with vertex Q.

The equation of X may be rewritten as

mx3
0 C x2

1.px0 C qx1 C bx2 C dx3/C x0x1.nx0 C ax2 C cx3/ D 0:

We can then effect a change of coordinates such that X receives the equation

x3
0 C x2

1x2 C x0x1x3 D 0:

Note that the fixed plane x1 D 0 osculates the ruled surface along the double line d (which
means that it intersects X along the line d counted three times) and from each point P of d

there issues a single generator gP (and not two, as in the case of the general ruled surface in
5.8.22). More precisely, the tangent cone toX at the point P D Œ0; 0; h; k� of d has equation
hx2

1
C kx0x1 D x1.hx1 C kx0/ D 0 and the plane hx1 C kx0 D 0 meets X in the line d

counted twice and in the further generating line gP . The generator contained in the plane
x1 D 0 is d which is thus simultaneously a double directrix and a generator.



Chapter 6

Linear Systems

The notion of “linear system of divisors” on an algebraic variety X plays a crucial
role in algebraic geometry. The present chapter is dedicated to that concept in the
case of linear systems of projective hypersurfaces, that is, in the case X D Pn.
The topics discussed here constitute an indispensable prerequisite for the reading
of Chapters 9 and 10.

In Sections 6.1, 6.2 we will give the general definitions, in particular that of the
dimension of a linear system, and we consider the hypersurfaces of a linear system
that satisfy specific conditions.

In Section 6.3 we study the base locus of a linear system†, that is, the locus of
those points common to all the hypersurfaces which make up the system†. In this
regard, Bertini’s first theorem (Theorem 6.3.11), is one of the fundamental theorems
of algebraic geometry. It assures us that the generic hypersurface of † does not
have singularities outside of its base subvariety.

Some properties of the Jacobian variety of a linear system†, that is, the projec-
tive variety which is the locus of the zeros of the ideal generated by the minors of
maximal order of the Jacobian matrix associated to†, are discussed in Section 6.4.

In Section 6.5 we consider the notions of simple and composite linear sys-
tems, and we state Bertini’s second theorem (Theorem 6.5.2), which describes the
structure of reducible linear systems, that is, those consisting entirely of reducible
hypersurfaces.

In Section 6.6 we study the notion, fundamental in algebraic geometry, of the
projective image of a linear system and describe unirational and rational varieties
in terms of projective images of linear systems. In this regard, we state Lüroth’s
theorem (Theorem 6.6.2), proved in Section 7.4, and Castelnuovo’s theorem (The-
orem 6.6.3), which concern the cases of curves and surfaces respectively.

Section 6.7 is dedicated to the Veronese varieties, that is, to the varieties Vn;d
which are the projective images of the linear systems†n;d of all the hypersurfaces
of a suitable order d in Pn. The Veronese varieties constitute a very interesting
example of rational varieties; we shall dedicate ample space to Veronese surfaces
in the course of Chapter 10.

Finally, in Section 6.8 we mention a class of rational transformations widely
used in algebraic geometry: blow-ups of a variety X along a given subvariety B .
We examine the interesting particular cases in which B is a point or a linear space
Pb . The case of blowing up a plane at a point will be reconsidered in §9.2.7 within
the context of the study of quadratic transformations between planes.
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6.1 Linear systems of hypersurfaces

Let fj .T0; : : : ; Tn/ D 0, j D 0; 1; : : : ; h, be algebraic hypersurfaces in Pn ´
Pn.K/ all of the same order r . The totality of the hypersurfaces with equations of
the form

�0f0 C � � � C �hfh D 0; (6.1)

where �0; : : : ; �h are elements of the base field K not all equal to zero, is said to
be a linear system of hypersurfaces of order r or, more briefly, a linear system of
order r .

Since theK-vector space V of homogeneous polynomials of degree r in nC 1

indeterminates is generated by the
�
nCr
r

�
monomials T ˛0

0 T
˛1

1 : : : T
˛n
n , where 0 �

˛i � r , ˛0 C � � � C ˛n D r , which are linearly independent, all the hypersurfaces
of a given order r in Pn constitute a linear system which can be viewed as the
projective space P.V / D PN.r/, where

N.r/ D
 
nC r

n

!
� 1:

The linear system † represented by the equation (6.1) is the subspace S of PN.r/

generated by the hC 1 “points” given by the hypersurfaces with equation fj D 0

(see also Section 6.6).
By the dimension of † we mean its dimension as a subspace of PN.r/. If

dim†.� h/ is the dimension of the system†with equation (6.1), the same system
can be obtained by taking linear combinations of any dim† C 1 of its linearly
independent hypersurfaces.

A linear system † of dimension 1 will be called a pencil; if dim† D 2 we will
say that † is a net of hypersurfaces.

From now on we will assume, as we may without loss of generality, that the
hypersurfaces fj D 0 in (6.1) are linearly independent, and thus that h D dim†.
We will also write that † is a system 1h.

In the case n D 1 linear systems are customarily referred to as linear series (of
groups of points of P1). A linear series of dimension h and order r is denoted by the
symbol ghr . Its elements are groups of r points (not necessarily all distinct) of P1.

All statements regarding the space P.V / D PN.r/ and its subspaces can be
referred to the totality of the hypersurfaces X rn�1 � Pn of order r and to linear
systems of hypersurfaces. Thus, for example, if †1 and †2 are two linear systems
of hypersurfaces of order r in Pn, then so too are their intersection †1 \ †2 and
their join †1 C†2 (i.e., the set of hypersurfaces having equation f C g D 0 with
f 2 †1, g 2 †2) and one has

dim†1 C dim†2 D dim.†1 C†2/C dim.†1 \†2/:
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The linear systems of hypersurfaces X rn�1 � Pn are particular algebraic systems,
where by algebraic system we mean an algebraic varietyX in PN.r/. The dimension
of X is, by definition, the dimension of the algebraic system. An algebraic system
is said to be irreducible, reduced, pure, : : : according to whether or not the variety
X that represents it is irreducible, reduced, pure, : : : (cf. Chapter 3).

6.2 Hypersurfaces of a linear system that satisfy given
conditions

We will say that a condition K imposed on the hypersurfacesX rn�1 of Pn is linear if
it translates into a system of linear equations among the coefficients of the equation
of X rn�1. The set of all the hypersurfaces of a given order that satisfy a linear
condition constitutes a linear system.

We will say that K is a linear condition of dimension d if it translates into d
independent linear equations, so that the hypersurfaces of given order r that satisfy
the condition constitute a linear system of dimension N.r/ � d .

Similarly, we say that K is an algebraic condition of dimension d if it translates
into polynomial equations that define a variety of codimension d in PN.r/.

The hypersurfaces in Pn of a given order r that satisfy a linear condition are
the points of a subspace of PN.r/; those that satisfy an algebraic condition are the
points of a closed algebraic subset of PN.r/.

An important example of a linear condition is that of passage through a given
point P with assigned multiplicity. In order that the hypersurface with equation
f D 0 have a point P with multiplicity s it is necessary and sufficient that in that
point all the partial derivatives of order s � 1 of f should vanish. The number of
such derivatives is equal to the number of combinations with repetitions of s � 1

objects chosen from a class of nC 1 objects, namely
�
nCs�1
s�1

� D �
nCs�1
n

�
.

It is useful to perform this calculation in the following alternative fashion. We
may suppose that P is the origin of a system of affine coordinates. Then in the
equation of a hypersurface having P as an s-fold point, the constant term, the
n D �

n
1

� D �
n
n�1

�
coefficients of the linear terms, the

�
nC1
2

� D �
nC1
n�1

�
coefficients

of the terms of degree two, : : : , the
�
nCs�2
s�1

� D �
nCs�2
n�1

�
coefficients of the terms of

degree s � 1 must be zero. Moreover, we have

1C
 

n

n � 1

!
C
 
nC 1

n � 1

!
C � � � C

 
nC s � 2
n � 1

!
D
 
nC s � 1

n

!
:

This argument assures us that these are indeed independent linear conditions, and
therefore s-fold passage through a given point P is indeed a linear condition of
dimension

�
nCs�1
n

�
.
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Example 6.2.1 (The case of plane curves). The algebraic plane curves of order r
that pass with multiplicity s.� r/ through a given pointP constitute a linear system
whose dimension is 

r C 2

2

!
� 1 �

 
s C 1

2

!
D r.r C 3/

2
� s.s C 1/

2
:

Example–Definition 6.2.2 (Regular systems). Let P1; P2; : : : ; Pq be q points of
Pn. Passage through any one of them imposes a linear condition on the hypersur-
facesX rn�1 of degree r in Pn. For particular choices of q, n, or r these q conditions
can fail to be independent.

A trivial example is the following: we take three collinear points in the plane
and impose on the lines of the plane to contain these points. One obtains three linear
conditions which are manifestly not independent inasmuch as passing through two
of these points implies passage also through the third.

A more interesting example is the following. Once again in the plane, we
consider two curves of order 3 and the nine points that they have in common. Each
of these points imposes a linear condition on the cubics in the plane. But the nine
conditions are not independent because otherwise the curve of order 3 containing
these points would be unique.

In any case, one does have that if r is sufficiently large with respect to q (for
example if r > q�1), then the conditions imposed by the q points are independent.
Indeed, one immediately finds curves of order > q � 1 (having q � 1 lines as
components) that pass through q�1 chosen arbitrarily among the q assigned points
but not through the remaining point.

The algebraic plane curves of order r that pass with multiplicities s1; s2; : : : ; st
through t distinct points P1; P2; : : : ; Pt constitute a linear system † of dimension

dim† � r.r C 3/

2
�

tX
iD1

si .si C 1/

2
: (6.2)

Note that the right-hand side of (6.2) may well be negative; even in that case the
system† can still be non-empty. For example, on imposing that a quartic have five
given double points, the right-hand side of (6.2) yields �1, but the system† of such
quartics is non-empty since it clearly contains the square of the conic through the
five points.

The non-negative integer

	 ´ dim† � r.r C 3/

2
C

tX
iD1

si .si C 1/

2

is called the superabundance of†. If 	 D 0 the system is said to be regular; in that
case the

Pt
iD1

�
si C1
2

� D Pt
iD1

si .si C1/
2

conditions imposed by the si -fold points
Pi , i D 1; : : : ; t , are independent. As we shall see in Lemma 7.2.14 this is always
the case if the curves are rational. If 	 > 0 one says that † is superabundant.
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Another example of a linear condition on the hyperfurfaces X rn�1 in Pn is that
of possessing a given component with an assigned multiplicity s. This amounts to
considering hypersurfaces with equations of the form psf where p is a fixed and
f an arbitrary homogeneous polynomial.

An important example of an algebraic but non-linear condition is that of pos-
sessing a not specified point of a given multiplicity s � 2. It is a condition of
dimension  

nC s � 1
n

!
� n:

In particular, when s D 2 one has a condition of dimension 1. In this case the
condition corresponds to requiring the existence of a non-trivial solution to the
system of equations arising from the vanishing of the nC 1 first partial derivatives
of the polynomial defining the hypersurface.

Consider for example the case of the quadrics in Pn, that is, the case r D 2.
In order that the quadric with equation

P
aijxixj D 0 should have a double point

it is necessary and sufficient that there be proper solutions to the system of nC 1

linear homogeneous equations in n C 1 indeterminates having .aij / as its matrix
of coefficients. This means that the point of PN.r/ having the coefficients aij as
coordinates must belong to the algebraic hypersurface of order nC 1 represented
in PN.r/ by the equation det.aij / D 0.

Furthermore it can be proved that the algebraic plane curves of order r with d
nodes constitute an algebraic system of dimension r.rC3/

2
� d . The classical proof

is due to Severi [101] (cf. also [36, Vol. III, pp. 386–387]). For a modern treatment
of this topic we refer the reader, for example, to Sernesi’s book [94, IV.7].

6.3 Base points of a linear system

A point x that belongs to all the hypersurfaces having equations f0 D 0, f1 D 0,
…, fh D 0 which determine a linear system † of equation (6.1) evidently belongs
to all the hypersurfaces of the system. We will say that x is a base point of †. If
the generic hypersurface of† has x as a simple point, we will say that x is a simple
base point.

More generally, suppose that the point x has, for each of the hypersurfaces
fj D 0, a multiplicity at least as great as s. Then the same fact will hold for any
other hypersurface of †. If in addition x has multiplicity exactly s for at least one
of the fj D 0, the same will hold for the generic hypersurface of† and we will say
that x is an s-fold base point. One sees immediately that if x is an s-fold base point,
the system † can be obtained by taking a linear combination of hypersurfaces all
having the same multiplicity s in that point.

The locus of base points of † is the base variety. It is the algebraic variety
B D V.f0; f1; : : : ; fh/ associated to the homogeneous ideal .f0; f1; : : : ; fh/. One
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says that B , or one of its components, is an s-fold base variety of † if each of its
generic points is an s-fold base point.

We define the degree deg† of a linear system † of hypersurfaces in Pn to be
the number of points, not belonging to the base variety, which are common to n
generic hypersurfaces of †.

One says that P is an isolated base point if it does not belong to any irreducible
base variety of dimension > 0. Similarly, an irreducible base variety of dimension
k is said to be an isolated base variety if it does not belong to any irreducible base
variety having dimension > k.

An s-fold isolated base point is said to be ordinary if the tangent cone there to
the generic hypersurface of the system does not have any multiple generator and it
varies with the hypersurface.

An s-fold isolated base variety Bk of dimension k is an s-fold ordinary base
variety if the tangent cone to the generic hypersurface of † at the generic point
of Bk does not have any multiple generator SkC1, and that cone varies with the
hypersurface.

It is not excluded that on the ordinary s-fold base variety there are subvarieties
that are base varieties of multiplicity s0 > s for †. For example, the surfaces in P3

that pass simply through a curve having a triple point x with non coplanar tangents
are constrained to have x as at least a double point.

One can say something more regarding the s-fold base points, not limiting
ourselves to their multiplicities, but also considering the possibility of there being
fixed tangents. For example, if at an s-fold base point x of the linear system (6.1)
the hypersurfaces that define it have a common tangent (that is, a line common to
their tangent cones at x), then all the hypersurfaces of the system will have that
same common tangent at x.

We now return to the case in which the hypersurfaces of the h-dimensional
linear system † are merely required to pass (simply) through the various given
points. Passage through any one of these points is equivalent to one condition, so
that giving a number q of points, with q � h, one will have, in general, a linear
system of dimension h � q.

However, we have seen that the dimension will rise whenever imposing the
passage through those q points does not constitute imposition of independent con-
ditions.

In particular, for q D h, one has the following:

Theorem 6.3.1. In a linear system 1h of hypersurfaces there is, in general, only
one hypersurface that passes through h given points .that is, the system includes
only one hypersurface that passes through h generic points, namely points that
represent h independent conditions/.

Remark 6.3.2 (“Generic” points with respect to a linear system). In regard to the
statement of Theorem 6.3.1, one does well to look a bit more deeply at the meaning
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of the term “generic”. To start with, one takes an arbitrary first point P1, provided
only that it not belong to the base variety of the given linear system† of dimensionh.
Then the hypersurfaces of† that pass through P1 do not exhaust the entire system,
but rather constitute a certain linear system 1h�1. This new system will contain as
base points all those of the previous system, together with the point P1 as well, and
possibly other new points too. One then takes a point P2 different from all these
base points. The hypersurfaces of the second linear system which pass through P2
do not exhaust it, but rather constitute a certain linear system 1h�2, which will
have as base points all those already encountered, together with the point P2 and
possibly other new points as well. In analogous fashion one then takes a point P3,
and so on, until one has h points, through which will really pass one and only one
hypersurface of †.

The fact that the preceding theorem has a converse is important. More precisely,
one has the following result which we will only state here (and for whose proof one
may consult, for example [14, Chapter 10]).

Theorem 6.3.3. Letƒ be an algebraic system 1h of hypersurfaces in Pn all having
the same order, and with generic member non multiple. If only one hypersurface of
ƒ passes through h generic points of Pn, then ƒ is a linear system.

We observe that the hypothesis in Theorem 6.3.3 that the generic hypersurface
ofƒ should not be multiple is essential. It suffices to consider the algebraic system
ƒ of dimension 2 consisting of the double degenerate conics of a plane (that is,
constituted by a double line). Through two generic points of the plane there passes
one and only one conic of ƒ, and yet ƒ is not a linear system.

The reasoning by which we arrived at a set ofh points through which there passes
only one hypersurface of the linear system † with equation (6.1) can be repeated
when, instead of a linear system †, one has an algebraic system ƒ of dimension h
consisting of algebraic hypersurfaces. Rather than a single hypersurface one now
arrives at a 0-dimensional algebraic system of hypersurfaces, that is, at a finite
number i.ƒ/ of hypersurfaces of ƒ.

The number i.ƒ/, namely, the number of hypersurfaces of ƒ that pass through
h generic points of the space, is called the index of the algebraic system ƒ. If ƒ is
linear, then i.ƒ/ D 1. The following fact is easily seen:

• If ƒ is a pure and reduced algebraic system of hypersurfaces of order r with
the dimension of ƒ being h > 0, and if the generic hypersurface of ƒ is
without multiple subvarieties that vary with it, then the index ofƒ is equal to
the order of the variety Vh that represents ƒ in PN.r/.

Indeed, the hypersurfaces of ƒ that pass through a point P are the points of a
hyperplane section of Vh, and thus the index of ƒ is the number of points that Vh
has in common with the space in which h generic hyperplanes of PN.r/ meet.
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We also note that the hypothesis that the generic hypersurface of ƒ be without
multiple subvarieties that vary with it is also essential. For example, the system ƒ

of double lines in the plane has index i.ƒ/ D 1 since through two points there
passes only one doubly degenerate conic, but it is represented in P5 by a surface
of fourth order (the Veronese surface, which we will study in Example 10.2.1 and
Section 10.4).

6.3.4 Section of a linear system by a subspace. Given a linear system † of
hypersurfaces of order r in Pn, we consider a subspace S not contained in the base
variety of † and the linear system †0 of the hypersurfaces of † that contain it.
The intersections with S of the hypersurfaces of † constitute a linear system †0 of
hypersurfaces of S (cf. Section 5.1) and it is easy to see that

dim†0 D dim† � dim†0 � 1:
Indeed, we assume that the reference system is chosen so that the equations of S
.D St / are xtC1 D xtC2 D � � � D xn D 0. Put h D dim† and h0 D dim†0,
and choose hC 1 hypersurfaces '0 D 0; '1 D 0; : : : ; 'h D 0 in † among which
there are h0 C 1, for example those with equations '0 D 0; '1 D 0; : : : ; 'h0

D 0,
contained in†0 (and thus the forms '0; '1; : : : ; 'h0

all belong to the ideal generated
by xtC1; xtC2; : : : ; xn, while none of the remaining forms 'h0C1; : : : ; 'h belongs
to that ideal). The system of equations

hX
iD0

�i'i D xtC1 D � � � D xn D 0

is equivalent to the system

hX
iDh0C1

�i'i .x0; : : : ; xt ; 0; : : : ; 0/ D xtC1 D � � � D xn D 0:

Therefore dim†0 � h � h0 � 1; and in fact the equality dim†0 D h � h0 � 1

holds in view of the hypothesis that no hypersurface having as equation a linear
combination of 'h0C1; : : : ; 'h contains S . So we have the following

Theorem 6.3.5. A linear system † of hypersurfaces cuts out on a subspace S a
linear system whose dimension is equal to that of † diminished by the maximum
number of linearly independent forms belonging to † and passing through S .

Exercise 6.3.6. In P3 we consider a plane 
 and in 
 we take a linear system †

of algebraic curves of order r . Supposing that dim† D h (� r.rC3/
2

), determine
the maximal dimension ı that a linear system of surfaces of order r in P3 that cuts
† in 
 can have. Similarly, given in a subspace St of Pn a linear system † of
hypersurfaces of order r , determine the maximal dimension of the linear systems
of hypersurfaces of a fixed order r that can cut † in St .
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6.3.7 Section of a linear system by an irreducible subvariety. We consider a
linear system † of hypersurfaces in Pn and an irreducible and reduced variety X .
The hypersurfaces of†meetX in a totality D of divisors (that is, of subvarieties of
codimension 1) which we will call a linear system or linear series of divisors of X .
If it happens that there is a one-to-one correspondence between the elements of D

and the hypersurfaces of † we will say that D has dimension equal to that of †.
As we have seen in §6.3.4 in the case in which X was a linear space, one can take
in † a linear system †0 complementary to the system †0 of hypersurfaces of †
passing through X and one sees that there is a one-to-one correspondence between
hypersurfaces of †0 and divisors of D. Thus the relation

dim D D dim† � dim†0 � 1
holds. In most cases it is convenient to consider, rather than D, the totality (which
we will continue to call D), of the variable parts of the divisors of D. In other words,
one can dispense with possible components common to all the divisors of D. By
contrast, it can sometimes be opportune to add a fixed divisor to all the elements of
a linear system.

6.3.8 Tangent cones at a base point. It is easy to see that the tangent cones to the
hypersurfaces X rn�1 of a linear system † of dimension h at an s-fold base point x
constitute a linear system of dimension h � h0, where h0 is the maximum number
of linearly independent hypersurfaces that can be found in† all having x as a point
of multiplicity > s.

To prove this it suffices to assume that x is the point Œ1; 0; : : : ; 0� and to choose a
system of generators g0; g1; : : : ; gh0�1; fh0

; : : : ; fh in† that are linearly indepen-
dent and such that the h0 hypersurfaces gj D 0 have x as at least an .s C 1/-fold
point:

gj D xr�s�1
0 '

.j /
sC1 C xr�s�2

0 '
.j /
sC2 C � � � ; j D 0; : : : ; h0 � 1I

fi D xr�s
0 '.i/s C xr�s�1

0 '
.i/
sC1 C � � � ; i D h0; : : : ; h:

The generic hypersurface of † has equation
P
i �ifi CP

j �jgj D 0, that is

xr�s
0 .�h0

'.h0/
s C � � � C �h'

.h/
s /C xr�s�1

0 .� � � /C � � � D 0:

As the parameters � vary, the tangent cone to that hypersurface at x runs over the
linear system

�h0
'.h0/
s C � � � C �h'

.h/
s D 0;

generated by the h� h0 C 1 cones with equations '.h0/
s D 0; : : : ; '

.h/
s D 0. These

equations are linearly independent. Indeed, if there were h � h0 C 1 elements
ah0

; : : : ; ah not all zero in K such that

ah0
'.h0/
s C � � � C ah'

.h/
s D 0;
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the hypersurface ah0
fh0

C � � � Cahfh D 0 would have x as at least an .sC 1/-fold
point and so its equation would be a linear combination of g0; g1; : : : ; gh0�1 and
the polynomials g0; g1; : : : ; gh0�1; fh0

; : : : ; fh would not be linearly independent.

Remark 6.3.9 (Tangent hyperplanes to the hypersurfaces of a pencil at a base point).
Let P be an s-fold base point of a pencil † of hypersurfaces. One observes that
if in the pencil there is a hypersurface having P as at least an .s C 1/-fold point,
then all the other hypersurfaces of the pencil have at P the same tangent cone; and
conversely, if two generic hypersurfaces of the pencil have the same tangent cone
at P , in the pencil there is a hypersurface having multiplicity at least s C 1 at P .
In particular, two hypersurfaces have at the point P , simple for both of them, the
same tangent hyperplane if and only if in the pencil that they determine there is an
(obviously unique) hypersurface having P as singular point.

6.3.10 Bertini’s first theorem. An important theorem, known as “Bertini’s first
theorem”, states that over a base field of characteristic zero the generic hypersurface
of a linear system † without fixed components does not have singularities outside
the base variety. For a modern proof we refer to [48, Lecture 17] and also to [50,
Chapter III, §10].

Note that the hypothesis requiring the base field K to have characteristic zero
is essential, since there are counterexamples in characteristic p > 0. The modern
proof of Bertini’s theorem uses “generic smoothness” type results in an essential
way, while the classical proof uses some delicate analytical arguments. For a
complete panorama of Bertini type theorems we also refer to [57].

Here we offer an elementary proof, along the lines of the classical approach,
and also inspired by the argument given in [92, Chapter VI, §1].

Theorem 6.3.11 (Bertini’s first theorem). Let K be a field of characteristic zero,
and let † be a linear system without fixed components of hypersurfaces of order
r in Pn.K/. If the generic hypersurface of † has a (variable) s-fold point, with
s � 2, the locus of such points is a base variety that is at least .s � 1/-fold for †.

Proof. Let

† W �0f0.x1; : : : ; xn/C �1f1.x1; : : : ; xn/C � � � C �hfh.x1; : : : ; xn/ D 0;

where fj .x0; : : : ; xn/ are linearly independent homogeneous polynomials of de-
gree r , without common factors, h D dim†.

If f 2 CŒx0; : : : ; xn�, we will use f � to denote an arbitrary .s�2/-nd derivative
of f .

Fix an index j 2 f1; : : : ; hg. We suppose that the generic hypersurface of the
pencil

ĵ W f0.x0; x1; : : : ; xn/C tfj .x0; x1; : : : ; xn/ D 0;
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contained in †, has an s-fold point P which varies with the parameter t . Thus the
point P satisfies the equations

@

@xi
.f �
0 C tf �

j / D @f �
0

@xi
C t

@f �
j

@xi
D 0; i D 0; : : : ; n: (6.3)

By Euler’s theorem on homogeneous functions (cf. Exercise 3.1.18) we have

.r � s C 2/.f �
0 C tf �

j / D
nX
iD0

xi
@

@xi
.f �
0 C tf �

j / D 0:

Arguing by contradiction, suppose that f �
j .P / ¤ 0 (or, equivalently, f �

0 .P / ¤ 0)
which means that P is not an .s � 1/-fold point of the base variety of the pencil
ĵ . Substituting the value

t D �f
�
0

f �
j

in (6.3) we find

'i .x0; : : : ; xn/ WD @f �
0

@xi
� f �

0

f �
j

@f �
j

@xi
D 0; i D 0; : : : ; n;

as well as

@

@xi

 
f �
0

f �
j

!
D 1

f �
j

 
@f �
0

@xi
� f �

0

f �
j

@f �
j

@xi

!
D 0; i D 0; : : : ; n:

This implies that the point P does not depend on t (since P satisfies the equa-
tion 'i .x0; : : : ; xn/ D 0, where the rational function 'i is independent of t ,
i D 0; : : : ; n), and so contradicts the assumption made on P . Thus one must
have f �

j .P / D f �
0 .P / D 0, which is to say that P is an .s � 1/-fold point for the

base variety of the pencil ĵ .
Since the same reasoning applies to each of the pencils ĵ as j varies in

f1; : : : ; hg, this establishes the desired conclusion.
Let us finally note a crucial point: 'i .x0; x1; : : : ; xn/ can not be identically zero

for every i D 0; : : : ; n. Otherwise

@

@xi

 
f �
0

f �
j

!
would be identically zero for every i , and so one would have f �

0 D kf �
j for some

k 2 C. Therefore, for each i D 0; : : : n, it would follow that

@

@xi
.f �
0 / D k

@

@xi
.f �
j /;

and so (6.3) would be equivalent to @
@xi
.f �
j / D 0, i D 0; : : : ; n. Thus there would

not exist variable s-fold points for the generic hypersurface of †. �
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Example 6.3.12. The quadric F� � P3 with equation

x21 C x0.x2 � �x3/ D 0

is a cone with vertex Œ0; 0; �; 1�. As � varies it describes a pencil † of quadrics
whose generic element has a double point. The locus of the double points Œ0; 0; �; 1�
of the quadrics of † is the line x0 D x1 D 0 which is a (simple) base line for †.

6.4 Jacobian loci

We consider the linear system † of hypersurfaces X rn�1 � Pn of equation

�0f0 C � � � C �hfh D 0;

where fj are linearly independent homogeneous polynomials of degree r , so that
dim† D h.

Theorem 6.3.11 assures us that the generic hypersurface of † does not have
singular points outside the base variety. There may however be particular hyper-
surfaces in † having a multiple point that is not a base point of the system.

LetP D Œy0; y1; : : : ; yn� be a point of Pn that is multiple for some hypersurface
of the system. Then there exist h C 1 elements �0; : : : ; �h (not all of which are
zero) from the field K such that

�0
@f0

@yi
C �1

@f1

@yi
C � � � C �h

@fh

@yi
D 0; i D 0; : : : ; n; (6.4)

where we have written @
@yi

rather than
�
@
@xi

�
.y0; y1; : : : ; yn/. The linear homo-

geneous system (6.4) thus admits non-trivial solutions and so the Jacobian matrix� @fj

@xi

�
jD0;:::;h
iD0;:::;n

(with nC 1 rows and hC 1 columns) has rank < hC 1 at P , that is

%

�
@fj

@yi

�
< hC 1: (6.5)

Conversely, if this condition holds the system (6.4) has non-trivial solutions and so
there exist hypersurfaces of † having P as at least a double point.

The projective variety which is the locus of the zeros of the ideal generated by
the minors of order hC1 of the Jacobian matrix is called the Jacobian variety of†.

If h > n, condition (6.5) is always satisfied (indeed, the Jacobian matrix then
has rank � nC 1 < hC 1). It follows that if † has dimension h > n, every point
of Pn is multiple for some hypersurface of the system (this means that the Jacobian
variety coincides with all of Pn). In fact we know that the hypersurfaces of † that
have a given point P (which is not a base point) as double point constitute a linear
system whose dimension is h � n � 1. (One really does have a linear condition
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of dimension n C 1, inasmuch as it is expressed by the n C 1 independent linear
conditions obtained by setting the first partial derivatives of the equation of the
generic hypersurface of † equal to zero.)

If h D n the condition (6.5) reduces to det
� @fj

@yi

� D 0. The Jacobian variety is
then the hypersurface with equation

det

�
@fj

@xi

�
D 0I

and its order is .nC 1/.r � 1/.
One can prove that when h � n, the Jacobian variety generally has dimension

h � 1 and order (cf. [89, n. 5] and also [14, Chapter 10, n. 11]) 
nC 1

h

!
.r � 1/n�hC1:

As for the dimension, if one desires that the Jacobian matrix have rank h (as happens
in the general case), it suffices to annull all the minors of order hC 1 that contain
a non-zero minor of order h. The number of such minors is nC 1 � h. Thus one
obtainsnC1�h equations that define a variety of dimensionn�.nC1�h/ D h�1.

6.4.1 The Jacobian group of a series g1
r . Consider P1 with homogeneous coor-

dinates x0, x1 and the linear series g1r on P1 represented by

�0'0.x0; x1/C �1'1.x0; x1/ D 0;

where '0, '1 are forms of degree r .
We impose the passage through a pointP 2 P1 and we let fP;P2; : : : ; Prg be the

group of r points of the line that constitutes the group of points of g1r containing P .
Thus we obtain an involution of order r on the line, that is, an algebraic totality of
groups of r points that has the property that its groups are in algebraic one-to-one
correspondence with the values of a parameter, and that every point of the line
determines the group containing it (one notes that to each point P;P2; : : : ; Pr of
the group there corresponds the same value of the parameter, cf. §1.1.2). Making
each point P of the line correspond to the r � 1 points P2; : : : ; Pr (which are, in
general, distinct from P ) one obtains an algebraic correspondence ! W P1 ! P1

of indices .r � 1; r � 1/, endowed with 2.r � 1/ fixed points (cf. §1.1.3). These
2.r � 1/ points are the double points of the involution and constitute the Jacobian
group of g1r .

The Jacobian group consists of the s-fold points of the series g1r , s � 2. These
are the points P 2 P1 for which the group fP;P2; : : : ; Prg of the g1r containing P
is such that s � 1 of its remaining points P2; : : : ; Pr coincide with P . Hence an
s-fold point of the series is counted s � 1 times in the Jacobian group.
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This fact is immediate from an analytic point of view. If, for example, the s-fold
point is A1 D Œ0; 1� and '1.x0; x1/ D 0 is the equation of the group containing
A1, one clearly has '1.x0; x1/ D xs0fr�s.x0; x1/, where fr�s is a form of degree
r � s. It then suffices to calculate the Jacobian matrix of '0, '1 and observe that
its determinant is divisible by xs�10 .

Example 6.4.2. In P1 consider the linear series g13 represented by

�0.x0 � x1/x20 C �1x
3
1 D 0:

The group fP;P2; P3g of g13 that contains the point P D Œa0; a1� corresponds to
the value of the parameter �0 W �1 such that �0.a0 � a1/a20 C �1a

3
1 D 0, that is

�0 W �1 D a31 W a20.a1 � a0/:
So one finds that group by solving the equation a31.x0�x1/x20Ca20.a1�a0/x31 D 0,
or

.a1x0 � a0x1/Œ.a1x0 � a0x1/2 C 3a0a1x0x1 � a1x1.a1x0 C a0x1/� D 0:

The point P is (at least) double for g13 if a1x0�a0x1 is a divisor of the polynomial
.a1x0 � a0x1/2 C 3a0a1x0x1 � a1x1.a1x0 C a0x1/; that is, if a0a1 D 0. The two
points A0 D Œ1; 0� and A1 D Œ0; 1� are both triple for g13 .

6.4.3 Exercises. Some further properties of the Jacobian variety are described in
the exercises proposed here.

(1) What is the Jacobian variety of a generic pencil of quadrics in Pn?

The Jacobian variety of a pencil † of quadrics is constituted by the vertices
of the quadric cones belonging to †. If the pencil is generic the Jacobian
variety is a finite set with nC 1 points.

For the first few values of n this fact is easily verified in the following way.
If n D 2, let

�0f0.x0; x1; x2/C �1f1.x0; x1; x2/ D 0

be the equation of the pencil of conics. The Jacobian matrix is0BBB@
@f0

@x0

@f0

@x1

@f0

@x2

@f1

@x0

@f1

@x1

@f1

@x2

1CCCA :
The Jacobian variety then consists of the three points belonging to the inter-
section of the two conics of equation

@f0

@x0

@f1

@x1
� @f0

@x1

@f1

@x0
D 0I @f0

@x0

@f1

@x2
� @f0

@x2

@f1

@x0
D 0
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and distinct from the point in which the lines @f0

@x0
D 0, @f1

@x0
D 0 meet.

In the case of a pencil of quadrics

�0f0.x0; x1; x2; x3/C �1f1.x0; x1; x2; x3/ D 0

in P3, the Jacobian matrix is0BBB@
@f0

@x0

@f0

@x1

@f0

@x2

@f0

@x3

@f1

@x0

@f1

@x1

@f1

@x2

@f1

@x3

1CCCA :
Consider the quadrics with equation

@f0

@x0

@f1

@x1
� @f0

@x1

@f1

@x0
D 0;

@f0

@x0

@f1

@x2
� @f0

@x2

@f1

@x0
D 0

and
@f0

@x0

@f1

@x3
� @f0

@x3

@f1

@x0
D 0:

The three quadrics contain the line r with equation @f0

@x0
D @f1

@x0
D 0. Two of

the three quadrics intersect the third, outside of r , in two cubics belonging
to the same family, that is, both are curves of type .2; 1/ (while r is a curve
of type .0; 1/). Thus they meet in .2; 1/.2; 1/ D 4 points which make up the
Jacobian variety of the pencil (cf. Section 7.3).

(2) Let C � Pn be a rational curve of order r (cf. Section 7.4). How many of
the hyperplanes that pass through a generic Sn�2 are tangent to C ?

The pencil of hyperplanes with center the given Sn�2 cuts out a linear series
g1r on the curve C (Š P1) where r is the order of C . The hyperplanes of
the pencil that are tangent to C are in one-to-one correspondence with the
2.r � 1/ points of the Jacobian group of g1r , cf. §6.4.1.

(3) Prove that the Jacobian curve of a net of algebraic plane curves having an
s-fold base point P passes through P with multiplicity 3s � 1.

Let r be the order of the curves of the net, and let P D Œ1; 0; 0�. Further, let

fi D xr�s
0 '.i/s C � � � ; i D 1; 2; 3;

with '.i/s a homogeneous polynomial of degree s in x1, x2, be three inde-
pendent curves of the net. By Euler’s formula for homogeneous functions
(Exercise 3.1.18), we have

s'.i/s D x1
@'

.i/
s

@x1
C x2

@'
.i/
s

@x2
; i D 1; 2; 3;
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and so

det

0BBBBB@
@'

.1/
s

@x1

@'
.2/
s

@x1

@'
.3/
s

@x1

@'
.1/
s

@x2

@'
.2/
s

@x2

@'
.3/
s

@x2

'
.1/
s '

.2/
s '

.3/
s

1CCCCCA D 0:

From this it follows easily that in the homogeneous polynomial of degree
3.r � 1/ given by

det

0BBBBBBB@

@f1

@x0

@f2

@x0

@f3

@x0

@f1

@x1

@f2

@x1

@f3

@x1

@f1

@x2

@f2

@x2

@f3

@x2

1CCCCCCCA
the indeterminate x0 appears at most to degree 3r � 3s � 2. The multiplicity
of P for the Jacobian curve is thus 3.r � 1/ � .3r � 3s � 2/ D 3s � 1.

(4) Show that the Jacobian curve of a net of algebraic plane curves of order r
can also be defined as the locus of the points in the plane that are contact
points between curves of the net.

Suppose that the point x (not a base point) is at least double for a curve C of
the net. Then the curves of the net passing through x constitute a pencil of
curves all (except for the curve C ) having the same tangent at the point x (cf.
Remark 6.3.9). Indeed, if x D Œ1; 0; 0�, the curve C has equation of the type
xr�2
0 '2.x1; x2/C � � � D 0, '2 a form of degree 2. Hence the curves of† that

pass through x describe a pencil (defined by the curve C and by a curve of
† passing simply through x, with equation xr�1

0 '1.x1; x2/C � � � D 0, '1 a
linear form) that has an equation of the form

�1x
r�1
0 '1.x1; x2/C �2x

r�2
0 '2.x1; x2/C � � � D 0:

Therefore (if�1 ¤ 0) they all have as their tangent at x the line with equation
'1.x1; x2/ D 0. Hence x is a point of contact of the two curves.

Conversely, suppose we have a point x in the plane that is a contact point for
two curves of the net. These two curves will determine a pencil of curves
(of the net) all tangent to one another at the point x. Therefore, there will
be a curve in the pencil having x as a double point. Thus x is a point of
the Jacobian variety. This reasoning is no longer valid if x is a base point;
nevertheless, any possible base points also belong to the Jacobian variety.
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(5) Prove that the Jacobian surface of a linear system 13 of surfaces in P3 may
be regarded as the locus of the points of contact of two surfaces of the system,
or also as the locus of the points x such that the surfaces of the net of surfaces
that pass through x have a common tangent at x.

The reasoning is analogous to that of the preceding exercise.

(6) In a pencil of algebraic plane curves of order r there are, in general, 3.r�1/2
curves endowed with a double point.

Indeed, let f , g be two forms of degree r in x0, x1, x2. The points where the
Jacobian matrix 0BBB@

@f

@x0

@f

@x1

@f

@x2

@g

@x0

@g

@x1

@g

@x2

1CCCA
has rank1 are the points that annull the two minors of order 2 which contain the
first column, except for the points that annull @f

@x0
and @g

@x0
(where the matrix

has, in general, rank 2). Thus one finds the 4.r � 1/2 � .r � 1/2 D 3.r � 1/2
points of the Jacobian group of the pencil. This number coincides with that
of the curves of the pencil which are endowed with a double point.

6.5 Simple, composite, and reducible linear systems

Let† be a linear system of hypersurfacesX rn�1 in Pn. We say that† is simple if the
hypersurfaces of † that contain a point P are not required to contain a variety W ,
properly containing P (and depending on P ); in the contrary case we say that† is
composed with the congruence � of the variety W , or simply that † is composite.
If the varieties W are 0-dimensional, that is, groups of points, one says that † is
composed with the involution � .

As is clear from the analysis carried out in Section 6.6, the following is a char-
acteristic property of the congruence �: every point of the space (which is not a
base point of †) belongs to one and only one variety of � , and every variety W
of � is determined by each of its points (the case of a composite linear system †

corresponds to the case in which the closure of the projective image of † has di-
mension < n, or has dimension n and the generic fiber of the associated morphism
' consists of a finite number t > 1 of points; cf. Section 6.6).

Obviously every linear system† of dimension h < n is composite. Indeed, the
hypersurfaces of such a system which pass through a generic point P are those of
a linear system †0 of dimension h� 1 (cf. Section 6.3), which certainly has a base
varietyW passing through P and hence not contained in the base variety of†. The
varietyW is the intersection of h hypersurfaces that define†0. In particular, a pencil
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† of hypersurfaces is a composite system and the varietiesW are the hypersurfaces
of †.

A linear system of cones having the same vertex is composite, because the cones
that pass through a generic point P have in common a linear space that contains P .

Example 6.5.1 (Geiser’s involution). A non-trivial example of a composite linear
system is the linear system† of plane cubic curves that pass through seven arbitrary
points of the plane. Indeed, the cubics of † that contain an eighth point P form
a pencil ˆ and thus all of them also pass through the ninth base point P 0 of ˆ.
Similarly, the cubics of the system that pass through P 0 also pass through P . The
pairs .P; P 0/ are the elements of a plane involution � which is called Geiser’s
involution and † is composed with � .

The same discussion could be made for plane curves of order r � 4 which
contain r2 � 2 points; but one must note that for r2 � 2 generic points with r > 4
such a linear system does not exist, while for r D 4 it consists of a single curve,
on which one can not impose an additional condition of passing through another
arbitrary point.

A linear system † of hypersurfaces X rn�1 in Pn is said to be irreducible if its
generic hypersurface is irreducible. One says that† is reducible if its hypersurfaces
are all reducible. Note that in the case of an algebraic system of hypersurfacesX rn�1
we have said that the system is irreducible or reducible according to the irreducibility
or reducibility of the variety that represents the system in PN.r/. A linear system,
which is represented by a linear space, obviously is always an irreducible algebraic
system. Thus, to call a linear system of reducible hypersurfaces a reducible system
should not cause any confusion.

The following are examples of reducible linear systems.

• Linear system with a fixed component, that is, a linear system defined by

�.�0f0 C �1f1 C � � � C �hfh/ D 0; (6.6)

whose hypersurfaces have a fixed component (or part), namely, the common
component with equation � D 0.

• Linear system composed with a pencil, that is, of the type

�0'
h C �1'

h�1 C �2'
h�2 2 C � � � C �h 

h D 0; (6.7)

where ',  are forms of the same degree. The left-hand side of (6.7) is a
binary form in ',  and so is the product of h factors of the type �' C � .
Every hypersurface of† is thus split into h hypersurfaces of the pencilˆwith
equation �' C � D 0: the hypersurfaces of † that pass through a point P
all have the hypersurface ofˆ that passes through that point as a component.
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In regard to reducible linear systems, there is the following important theorem,
known as “Bertini’s second theorem”, for the proof of which we refer the reader to
[14, Chapter 10, n. 13] and [100, p. 45]).

Theorem 6.5.2 (Bertini’s second theorem). A reducible linear system of hypersur-
faces in Pn (n > 1) either has a fixed component, or is composed with a pencil, or
satisfies both these conditions.

The two foregoing examples thus exhaust all possible cases for reducible linear
systems.

Exercise 6.5.3. Let † be a linear system of hypersurfaces in Pn, of dimension
h � n, and with equation

�.�0f0 C �1f1 C � � � C �h�1fh�1/C �hfh D 0:

Then the hypersurface‚with equation � D 0 belongs to the Jacobian variety of†.
In particular, the fixed component of a linear system with equation (6.6) is contained
in the Jacobian variety of †.

This is geometrically evident. Indeed, if P is a generic point of ‚ every
hypersurface FP of † that one obtains for values of the parameters � such that
�0f0.P / C �1f1.P / C � � � C �h�1fh�1.P / D �h D 0 passes through P and
contains ‚. The residual component meets ‚ in a locus of singular points of FP .
Thus P belongs to the Jacobian variety of †.

This fact can also be seen analytically as follows. The Jacobian matrix of the
polynomials �fj and fh is

J D

0BBBBBBBBB@

@�

@x0
f0 C �

@f0

@x0

@�

@x0
f1 C �

@f1

@x0
: : :

@fh

@x0
@�

@x1
f0 C �

@f0

@x1

@�

@x1
f1 C �

@f1

@x1
: : :

@fh

@x1
: : : : : : : : : : : :

@�

@xn
f0 C �

@f0

@xn

@�

@xn
f1 C �

@f1

@xn
: : :

@fh

@xn

1CCCCCCCCCA
and may be written as a sum J D AC �B , where

A D

0BBBBBBBBB@

@�

@x0
f0

@�

@x0
f1 : : :

@fh

@x0

@�

@x1
f0

@�

@x1
f1 : : :

@fh

@x1
: : : : : : : : : : : :

@�

@xn
f0

@�

@xn
f1 : : :

@fh

@xn

1CCCCCCCCCA
and B D

0BBBBBBBBB@

@f0

@x0
: : :

@fh�1
@x0

0

@f0

@x1
: : :

@fh�1
@x1

0

: : : : : : : : : : : :

@f0

@xn
: : :

@fh�1
@xn

0

1CCCCCCCCCA
:
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The minors of order hC1 of the matrix J that are not divisible by � are all contained
in A, and they are all zero since in the matrix A all the columns except the last are
proportional; therefore the Jacobian variety contains the hypersurface ‚.

6.6 Rational mappings

In the projective space Pn D Pn.K/, with x0; x1; : : : ; xn as homogeneous projec-
tive coordinates, let

† W �0f0 C �1f1 C � � � C �hfh D 0; (6.8)

with �0; : : : ; �h elements of the field K which are not all zero, be a linear system
of dimension h spanned by the hypersurfaces of order r with equations fj D 0.
The system † forms an h-dimensional projective space, and �0; : : : ; �h are the
projective coordinates there with respect to a reference system having ff0; : : : ; fhg
as its fundamental .hC 1/-hedron and

Ph
jD0 fj as unit element.

Now let Ph be a projective space of dimension h over the fieldK, with homoge-
neous coordinatesX0; X1; : : : ; Xh, let Ph

�
be the dual space of Ph, that is, the space

whose points are the hyperplanes of Ph, and let ' W † ! Ph
�

be a (non-degenerate)
projectivity.

We may assume that we have chosen the reference system of Ph so that a
hypersurface of † and the hyperplane corresponding to it under ' have the same
coordinates, and so that to the hypersurface

�0f0 C �1f1 C � � � C �hfh D 0 (6.9)

there corresponds the hyperplane with equation

�0X0 C �1X1 C � � � C �hXh D 0: (6.10)

We consider a linear system†1, of dimensionh�1, contained in†. The hyperplanes
of Ph which are images under the projectivity ' of the hypersurfaces of†1 are those
of an .h � 1/-dimensional star, namely, they are the hyperplanes that pass through
a point of Ph.

LetP D Œx0; x1; : : : ; xn� be a point of Pn not belonging to the base variety of†,
that is, to the variety B which is the locus of the zeros of the ideal .f0; f1; : : : ; fh/.
One may then associate to P the center P 0 D ŒX0; X1; : : : ; Xh� of the star of
hyperplanes of Ph that ' associates to the linear system †1 of those hypersurfaces
of † that pass through P .

Thus one has a rational map '� W Pn ! Ph, defined on the open set U of Pn

which is the complement of B . To obtain the analytic representation of this map it
suffices to observe that the hypersurfaces of † that pass through P , in other words
the hypersurfaces that one obtains by imposing the condition

�0f0.x0; x1; : : : ; xn/C � � � C �hfh.x0; x1; : : : ; xn/ D 0
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on the parameters �, correspond to the hyperplanes (6.10) with coefficients satisfy-
ing this same condition. In other words, these are the hyperplanes that pass through
the point P 0 with coordinates

f0.x0; x1; : : : ; xn/; f1.x0; x1; : : : ; xn/; : : : ; fh.x0; x1; : : : ; xn/:

Here then are the equations of '�:

Xj D fj .x0; x1; : : : ; xn/; j D 0; 1; : : : ; h: (6.11)

The closure V (in the Zariski topology) of the image '�.U / is called the projective
image of the linear system †. If one replaces the basis ff0; f1; : : : ; fhg chosen to
define † with another basis, one finds as projective image of † a variety that is
the transform of V under a projectivity of Ph. Therefore, the projective image of a
linear system of hypersurfaces is defined by the system only up to a projectivity.

A variety of this type, namely a projective variety that can be represented in the
form (6.11), is called a unirational variety; and (6.11) is its parametric representa-
tion. In other words:

• A unirational variety is the projective image of a linear system of hypersur-
faces of a projective space (cf. 2.7.22).

Remark 6.6.1. Assume that † has an equation of the form

�.�0f0 C �1f1 C � � � C �hfh/ D 0;

where � D 0 is the equation of the fixed component of †, common to all the
hypersurfaces of†. It is then evident that the projective imageV of† coincides with
the projective image of the system†0 having equation �0f0C�1f1C� � �C�hfh D
0, and of the same dimension h as †.

Hence by considering a projective image of a linear system † we can always
assume that † has no fixed components.

Let '�
U be the restriction of '� to U . If P 0 D Œa0; a1; : : : ; ah� is a point of

'�.U /, the subvariety of Pn which is the locus of points which bestow rank one on
the matrix�

f0.x0; x1; : : : ; xn/ f1.x0; x1; : : : ; xn/ : : : fh.x0; x1; : : : ; xn/

a0 a1 : : : ah

�
is the fiber '��1.P 0/ of '� over P 0. That locus contains the base variety B and is
the union of B and the fiber '�

U
�1.P 0/ of '�

U over P 0, that is, the set of points P
of U such that '�

U .P / D P 0 (cf. §2.6.9).
The dimension of V coincides with the rank of the Jacobian matrix associated to

the rational map (6.11) (cf. Section 3.2). In any case it is obvious that the dimension
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of V can not exceed n; and the necessary and sufficient condition for dim.V / D n

is that for every generic point P 0 2 '�.U /, the fiber '�
U

�1.P 0/ be a 0-dimensional
set, that is, consist of a finite number t of points.

If t D 1, that is, if every generic point of '�.U / comes from a single point of
U , the variety V is rational and '� W Pn ! V � Ph is a birational isomorphism
(cf. Section 2.6). We note explicitly that

• the projective image of a simple linear system of hypersurfaces of a projective
space is a rational variety.

If t > 1 the system† is composed with the involution � (of order t ) consisting
of the groups of t points that are inverse images of generic points of '�.U / (cf.
Section 6.5).

If, on the other hand, dim.V / < n, the system † is composed with the con-
gruence of the fibers '��1.P 0/ of '� over points P 0 2 '�.U /. Note that, in view
of equations (6.11), the fiber '��1.P 0/ is an algebraic set of Pn; if '��1.P 0/ has
dimension q for a generic point P 0, one has dim.V / D n � q.

In the case in which† is not simple, it is possible that the same variety is also the
projective image of a simple linear system †0. This is always true in the two cases
n D 1 (curves) and n D 2 (surfaces), which will be further studied in Chapter 7,
Section 7.4 and in Chapter 10, by virtue of two classical theorems that we here only
state. For the case of surfaces we refer the reader to [23] and also to [6, Chapter V]
and [4, Chapter VI, §2] (for the proof of Lüroth’s theorem see also Exercise 2.7.31
and Section 7.4).

Theorem 6.6.2 (Lüroth’s theorem). Every unirational curve is rational.

Theorem 6.6.3 (Castelnuovo’s theorem [23]). Every unirational surface is rational.

However, examples are known of varieties of dimension � 3 which are unira-
tional but not rational; for example, the general cubic hypersurface X33 in P4 (in
this regard see [48, Lecture 18, Example 18.19] and [26]).

6.6.4. We note explicitly that the h C 1 hypersurfaces with equations fj D 0 in
(6.8) are linearly independent (that is, dim† D h) if and only if the variety V , the
projective image of †, is embedded in Ph and not in a space of lower dimension.
Indeed, the condition in order that all the points

P 0 D Œf0.x0; x1; : : : ; xn/; f1.x0; x1; : : : ; xn/; : : : ; fh.x0; x1; : : : ; xn/�

belong to the hyperplane with equation
Ph
jD0 ujXj D 0 is that one have, for each

choice of the variables xi , i D 0; : : : ; n,

hX
jD0

ujfj .x0; x1; : : : ; xn/ D 0I
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and this means the linear dependence of the fj ’s.

6.6.5 (Order of the projective image of a linear system). Let† be a linear system of
dimension h and degreeD of hypersurfaces of Pn, and let V be its projective image.
If † is composed with an involution � of degree t (in particular dim.V / D n and
so h � n) the order of V is D

t
.

This fact can be seen more precisely as follows. Let B be the base variety of†
and let '� W Pn ! Ph be the rational map defined on the open subsetU � Pn which
is the complement of B . We can suppose that the system † is irreducible, so that
it does not contain any fixed component, and consequently that B has codimension
at least 2 in Pn.

We consider the graph G of '� in U � V , i.e., G .Š U/ ´ f.P; '�.P // j
P 2 U g, and let Z be the closure of G in Pn � V . Let p1 W Pn � V ! Pn, and
p2 W Pn�V ! V be the projections on the factors, and let
 D p1jZ W Z ! Pn and
f D p2jZ W Z ! V be the restrictions to Z. One obtains a commutative diagram
(the elementary resolution of the locus of indeterminacy of '�)

Z




����
��

��
�� f

���
��

��
��

��

Pn
'�

�� V � Ph

with 
 and f surjective morphisms. Moreover 
 is a birational morphism, and an
isomorphism outside of B . Since † is composed with an involution of order t , the
morphism '� (and so also f ) is generically finite, and of degree t .

Let H1; : : : ;Hn be n (generic) hyperplane of Ph whose intersection with V is
therefore a finite set of points, in number equal to the order deg.V / of V . To these
points there correspond n divisors f �H1; : : : ; f �Hn of Z and the intersection

f �H1 \ � � � \ f �Hn D t .H1 \ � � � \Hn \ V /
consists ofD D t deg.V / points. This numberD depends only on† and coincides
with the number of points thatn generic hypersurfaces of† have in common outside
the base locus B , that is, with the degree of †. In particular, if t D 1, the degree
of † coincides with the order of V . Since B ¤ Pn the (possibly reducible) variety
Y ´ f .
�1.B// is properly contained in V , for purely dimensional reasons.
Hence it is always possible to choose hyperplane H1; : : : ;Hn in such a way that
H1\� � �\Hn\Y D ;. Indeed, ifm ´ deg.Y / < n, we can chooseH1; : : : ;Hm so
thatH1\� � �\Hm\Y is a finite number of points, and thusH1\� � �\Hn\Y D ;.

It follows that the n (generic) hypersurfaces F1; : : : ; Fn of † that correspond
bijectively to H1; : : : ;Hn meet outside of B in only D points.

Now suppose that dim.V / < n, so that the system † is composed with the
congruence of the fibers of '�. The reasoning given then clearly shows that in this
case n generic hyperplane sections of V do not have any point in common, and



6.7. Projections and Veronese varieties 189

so the corresponding (generic) hypersurfaces F1; : : : ; Fn of † do not meet outside
of B . In this case † has degree D D 0.

For example, if † is a pencil of lines in P2 with center a point B , the variety Z
is the blow-up, 
 W Z ! P2, of P2 at the pointB , 
�1.B/ is the exceptional lineE
(see Section 6.8), and the morphism f W Z ! P1 is that contracting all the proper
transforms of the lines of the pencil. In this case one has Y D P1 and obviously
D D 0.

6.6.6 (Projective image of a composite linear system). With the notations as in
Section 6.5, let † be a linear system of hypersurfaces in Pn.

First suppose that the system † is composed with a pencil �' C � D 0, that
is, that it has an equation of the type

�0'
h C �1'

h�1 C �2'
h�2 2 C � � � C �h 

h D 0; �0�h ¤ 0:

Set t D '
 

. One then has a parametric representation for the projective image V of
† given by

X0 W X1 W � � � W Xh D th W th�1 W � � � W 1;
so that V is a rational curve in Ph (cf. Section 7.4).

More generally, consider a linear system † of hypersurfaces of Pn composed
with the congruence � of the varieties that are the loci of zeros of the minors of the
matrix �

'0 '1 : : : ; '	
a0 a1 : : : a	

�
;

with 'j 2 KŒx0; x1; : : : ; xn� homogeneous polynomials of the same degree, aj 2
K, j D 0; : : : ; �, and with � � n. Thus, we are considering a linear system †

having equation

�0F0.'0; : : : ; '	/C �1F1.'0; : : : ; '	/C � � � C �hFh.'0; : : : ; '	/ D 0;

with Fi forms in the '0; : : : ; '	 of the same degree. The rational transformation
� W Pn ! Ph, associated to †, where h D dim†, has as fibers the subvarieties
(of dimension � n � �) that constitute � , and so the projective image V of † has
dimension dim.V / � n � .n � �/ D �.

In the preceding case in which † was composed with a pencil, the congruence
� was constituted by the hypersurfaces of the pencil �' C � D 0.

6.7 Projections and Veronese varieties

We return to consideration of the system † of equation (6.8) and we suppose that
† is contained in a linear system †0, of dimension h0 > h, of hypersurfaces in Pn

all of the same order d . We denote by B0 the base variety of †0, by U0 the open
complement ofB0 in Pn, and we do for†0 what we have done in Section 6.6 for†.
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We use '0 W †0 ! .Ph0/� to denote the projectivity between †0 and the space
of all the hyperplanes of Ph0 , and V0 to indicate the projective image of †0.

Consider the hyperplanes of Ph0 that are images under '0 of the hypersurfaces
of† � †0. They constitute anh-dimensional star. Indeed, they are the hyperplanes
of Ph0 containing a fixed linear space O of dimension h0 � h � 1. These are the
hyperplanes Sh0�1 D J.O; Sh�1/ that project the subspaces Sh�1 of a space Sh
skew to O from the vertex O. Thus, on restricting '0 to †, one gets a projectivity
' W † ! S�

h
between† and the space of hyperplanes of Sh. In this way one obtains

a variety V in Sh which is the projective image of †.
If U is the open complement in Pn of the base variety B of†, one has U � U0

(since B0 � B).
Let '�

0 W U0 ! Ph0 be the morphism associated to the projectivity '0, which is
thus defined on U . To the hypersurfaces of † that pass through a point x 2 U the
projectivity '0 associates the hyperplanes of Ph0 that pass through O and through
the point'�

0 .x/. These hyperplanes intersectSh in the spacesSh�1 that pass through
the projection '�

0 .x/ from O onto Sh. It follows that the variety V , the projective
image of †, is the projection of V0 from O onto Sh; and one has a commutative
diagram

U0
'�

0 �� Ph0

��

V0

��

� ���

U
� �

		

'�

�� Ph V� ���

where the vertical arrows indicate the projection from O onto Sh.
The preceding can also be seen immediately in an analytic fashion by choosing

a basis ff0; f1; : : : ; fh; : : : ; fh0
g of †0 that contains the basis ff0; f1; : : : ; fhg of

†. For V and V0 one finds the following parametric representations:

V W

8̂̂<̂
:̂
X0 D f0.x0; x1; : : : ; xn/;

:::

Xh D fh.x0; x1; : : : ; xn/;

and V0 W

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

X0 D f0.x0; x1; : : : ; xn/;

:::

Xh D fh.x0; x1; : : : ; xn/;

:::

Xh0
D fh0

.x0; x1; : : : ; xn/:

As a consequence of this fact one has the following important result.

Proposition–Definition 6.7.1. Every unirational variety V , of dimension n, in Ph

is the projection of the variety Vn;d , the projective image of the linear system †n;d
of all the hypersurfaces of any sufficiently large order d in Pn. The variety Vn;d is
called the Veronese variety of indices .n; d/.



6.7. Projections and Veronese varieties 191

Proof. Assume that the variety V is the projective image of a linear system † of
hypersurfaces of a given order d in Pn. It then suffices to apply the reasoning used
above to the system †0 D †n;d . �

With regard to Veronese varieties Vn;d we note the following facts.

(1) The variety Vn;d is embedded in a space PN.d/ of dimension

N.d/ D
 
nC d

d

!
� 1

but not in any space of lower dimension.

(2) The system †n;d is without base points, and thus determine a morphism
'n;d W Pn ! Vn;d � PN.d/.

(3) The system †n;d is obviously simple, because the hypersurfaces of a given
order that contain a given point P need not necessarily pass through other
points determined by P : therefore the morphism 'n;d W Pn ! Vn;d is an
isomorphism.

(4) The order of Vn;d is dn. Indeed, the order of an n-dimensional variety is the
number of points in which it is met by a general linear subspace of codimen-
sion n; that is, by the space in which n general hyperplanes intersect. Such
hyperplanes correspond to n general hypersurfaces of †n;d , which meet in
dn points (note that dn is the degree of †n;d , cf. §6.6.5).

(5) The equation of an arbitrary hypersurface of order d in Pn can be written in
the form X

ai1:::idxi1 : : : xid D 0;

where the sum is extended over all theN.d/C1 combinations with repetitions
of class d of the nC 1 integers 0; 1; 2; : : : ; n. Therefore, denoting byXi1:::id
the projective coordinates in PN.d/, one has the parametric representation for
Vn;d :

Xi1:::id D xi1 : : : xid : (6.12)

Equation (6.12) is the analytic expression of the morphism 'n;d W Pn !
PN.d/ (whose image is Vn;d ) which is called the Veronese morphism, or
Veronese immersion of Pn realized by the hypersurfaces of order d . To each
subvariety W of Pn, the Veronese morphism 'n;d associates a subvariety
'n;d .W / � PN.d/, an isomorphic transform of W , called Veronese image
of W .

(6) One sees immediately that Vn;d is the locus of the zeros of the quadratic forms

X˛1:::˛d
Xˇ1:::ˇd

D X�1:::�d
Xı1:::ıd

; (6.13)
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where .˛1; : : : ; ˛d ; ˇ1; : : : ; ˇd / and .�1; : : : ; �d ; ı1; : : : ; ıd / are the same
combination with repetition of class 2d of the n C 1 integers 0; 1; : : : ; n
(so that ˛1; : : : ; ˛d ; ˇ1; : : : ; ˇd and �1; : : : ; �d ; ı1; : : : ; ıd differ only in the
order of the terms).

One can prove that the quadratic forms (6.13) are the generators of the ideal
I.Vn;d / of polynomials ofKŒXi1:::id � which vanish on Vn;d (for this see [48,
pp. 24 and 51] and also [20]).

(7) IfX is a projective variety in Pn and F is a hypersurface of order n that inter-
sects onX the subvariety Y , then the Veronese image 'n;d .Y / is a hyperplane
section of 'n;d .X/.

Examples 6.7.2. Among the Veronese varieties there are the rational normal curves
C d in Pd . They are projective images of the linear system †1;d of all the groups
of d points of P1.

If † D †2;d is the linear system of all the algebraic plane curves of a given
order d one has the Veronese surface V2;2 � P5 (of order 4) in the case d D 2, and
the Del Pezzo surface V2;3 � P9 (of order 9) in the case d D 3.

These special varieties and their projections will be more extensively studied
in the sequel: see in particular Section 7.4, Example 10.2.1, Section 10.4 and
Exercise 10.5.7.

6.8 Blow-ups

In the projective space Pn we consider an irreducible, reduced and non-singular
variety V of dimension d < n�1, the locus of the zeros of a homogeneous ideal a,
and a simple linear system † (and so of dimension h > n) of hypersurfaces

hX
iD0

�ifi .x0; : : : ; xn/ D 0;

with fi 2 a linearly independent forms of the same degree, and without base points
outside of V .

Since† is simple, the projective image of† is a varietyW birationally isomor-
phic to Pn, and embedded in Ph.

We suppose moreover that in the open set U D Pn n V there does not exist any
pair of points such that the hypersurfaces of† passing through one of them all pass
through the other as well. This implies that if � W Pn ! W is the birational map
determined by †, the restriction �U W U ! �.U / is an isomorphism.

All these hypotheses hold, for example, if † is the linear system of all the
hypersurfaces passing through V and having order m which is sufficiently large,
for example such that there exist hypersurfaces of order m � 1 passing through V .
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Indeed, if P andQ are two arbitrary points of U it suffices to add a hyperplane that
contains P but not Q to a hypersurface of order m� 1 passing through V in order
to obtain a hypersurface of † that passes through only one of the two points.

In the sequel we will suppose that† is the linear system of all the hypersurfaces
of order m � 0, although, as we shall see in some examples, a linear system
contained in † may suffice provided that it has sufficiently high dimension.

Now let P be a point of V and ˆP the star 1n�d�1 of the linear spaces SdC1
in Pn that pass through the space TP tangent to P at V . The hypersurfaces of †
whose tangent hyperplane at P contains a given linear space SdC1 passing through
TP form a linear system of dimension h � 1 (inasmuch as they are obtained by
imposing on the tangent hyperplanes at P , which already pass through TP , the
passage through a point of SdC1 not belonging to TP ) to which there corresponds a
star†1, of dimension h�1, of hyperplanes of Ph. As SdC1 varies inˆP the center
P 0 of †1 describes (under the present hypotheses) a linear space LP of dimension
n � d � 1.

Analytically we may obtain LP as follows. To the generic point Œ�a0 C
�b0; : : : ; �an C�bn� of a line r issuing from P D Œa0; : : : ; an� there corresponds
on W the point with coordinates

Xi D fi .�a0 C �b0; : : : ; �an C �bn/

D �nfi .a0; : : : ; an/C �n�1�
nX
kD0

�
@fi

@xk

�
P

bk C � � � .i D 0; : : : ; h/:
(6.14)

If P 2 V (and so fi .a0; : : : ; an/ D 0) the right-hand terms of (6.14) are divisible
by �. On suppressing the common factor � and then setting � D 0 one sees that to
the pointP (which lies on r for� D 0) there is associated the point with coordinates

Xi D
nX
kD0

�
@fi

@xk

�
P

bk; i D 0; : : : ; h; (6.15)

which runs over the linear space LP D J.P .0/; P .1/; : : : ; P .h//, where

P .i/ D
�
@fi

@x0
;
@fi

@x1
; : : : ;

@fi

@xn

�
; i D 0; : : : ; h;

as the line r varies in the star with center P (that is, as the parameters bk vary). The
matrix whose rows are formed by the coordinates of these points has rank d C 1.
(Indeed, it is the matrix of coefficients of the equations of the hyperplanes tangent
at P to V , hyperplanes which meet in the space TP whose dimension is d .)

For each point P 2 V one thus has a linear space LP of dimension n � d � 1.
The locus E D S

P2V LP of these linear spaces is a hypersurface of W (in fact
dim.E/ D .n � d � 1/ C d D n � 1) and is represented parametrically by the
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equations (6.15) in which not only the parameters b0; : : : ; bn are considered as vari-
able, but also the point P , that is, the parameters a0; : : : ; an. The correspondence
	 W W ! Pn defined by setting 	W nE D ��1

U is a rational map of varieties. It
is called the blow-up of Pn with center V or also the dilatation of V in Pn. The
hypersurface E is called the exceptional divisor of the blow-up. The effect of 	 is
that of replacing Pn by the variety W and the variety V � Pn by a divisor of W .

We observe that in order to obtain the blow-up of the varietyV which is the locus
of the zeros of the ideal generated by the homogeneous polynomials f0; f1; : : : ; ft
it suffices to take as † the linear system of all hypersurfaces of order m D 1 C
maxiD1;:::;t degfi (cf. paragraph 11.3.4). For example, if V is a linear space it
suffices to take the linear system consisting of the quadrics that contain it.

Example 6.8.1 (Blowing up Pn at a point, cf. §9.2.7). When one wishes to study a
question that regards the neighborhood of a pointP of Pn (for example, to examine
the behavior of a hypersurface at the point P ) it is convenient to use not the blow-
up W of Pn with center P , obtained by way of the linear system † (of dimension
h D �

nC2
2

� � 2/ of the quadrics passing through P , but rather the variety obtained
from W by projection from a suitable space … of Ph onto a linear space skew
to …. This is equivalent to replacing † with a linear system contained in † (cf.
Section 6.7).

Suppose that P is the point A0 D Œ1; 0; : : : ; 0� and consider one of the linear
systems †i with equation

�0x
2
i C x0.�1x1 C �2x2 C � � � C �nxn/ D 0; i D 1; 2; : : : ; n;

whose base variety is the union of the point P and the space Sn�2 with equation
x0 D xi D 0.

Since dim†i D n, the projective imageW � of†i is a projective space Sn. The
rational transformation �i W Pn ! Sn represented by the equations

�.´ �i / W

8̂̂̂<̂
ˆ̂:
X0 D x2i ;

X1 D x0x1;
:::

Xn D x0xn;

(6.16)

which may be inverted rationally by

	 W

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

x0 D X0Xi ;

x1 D X1Xi ;
:::

xi D X20 ;

:::

xn D XnXi ;
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is a birational isomorphism.
The exceptions to the bijectivity of the correspondence are: in Pn the point A0

and the space … W x0 D xi D 0, and in Sn the point A�
i and the space …� W X0 D

Xi D 0.
In the affine chart U0 D fx0 ¤ 0g � Pn the system†i has P as its unique base

point.
We cover U0 with the open sets U0i where x0xi ¤ 0. Putting xi D 1 in

(6.16) one finds that 	 makes the point Œx0; x1; : : : ; xi�1; 1; xiC1; : : : ; xn� of U0i
correspond to the point of Sn with coordinates

X0 W X1 W � � � W Xn D 1 W x0x1 W � � � W x0xi�1 W x0 W x0xiC1 � � � W x0xn;
which belongs to the open set U 0

0i D fX0Xi ¤ 0g of Sn.
Therefore, if x0; x1; : : : ; xi�1; xiC1; : : : ; xn are non-homogeneous coordinates

in U0i and X1; X2; : : : ; Xn are non-homogeneous coordinates in U 0
0 D fX0 ¤ 0g,

the restrictions �U0i
and 	U 0

0i
have the following equations:

�U0i
W

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

X1 D x0x1;

X2 D x0x2;
:::

Xi�1 D x0xi�1;
Xi D x0;

XiC1 D x0xiC1;
:::

Xn D x0xn;

and 	U 0
0i

W

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

x0 D Xi ;

x1 D X1

Xi
;

x2 D X2

Xi
;

:::

xi�1 D Xi�1
Xi

;

xiC1 D XiC1
Xi

;

:::

xn D Xn

Xi
:

Example 6.8.2 (Blow-up of Pn along a line, cf. Exercise 9.5.8). In P3 we consider
the line ` with equations x0 D x1 D 0. The projective image of the linear system
† of dimension 6 of all the quadrics passing through `, with equation

† W x0.�0x0 C �1x1 C �2x2 C �3x3/C x1.�4x1 C �5x2 C �6x3/ D 0;

is the variety W 4
3 locus of the point Œx20 ; x0x1; x0x2; x0x3; x

2
1 ; x1x2; x1x3�. The

exceptional surface is the locus of the point Œ0; 0; a0b2; a0b3; 0; a1b2; a1b3� and



196 Chapter 6. Linear Systems

thus is the quadric with equation X0 D X1 D X4 D X2X6 � X3X5 D 0. The
linear spaces LP , P 2 ` (each of which is obtained by fixing the ratio b2 W b3) are
the generators of an array.

If instead of taking the system † of all quadrics passing through ` one takes a
system contained in† (but satisfying the conditions imposed at the beginning of this
section) one obtains another model W 0 of the blow-up, an isomorphic projection
of W 4

3 .

Example 6.8.3. Suppose now that B is a linear space Sb in Pn and that † is the
linear system of all the hypersurfaces of order r having B as s-fold subvariety. If
we assume that B has equations xbC1 D xbC2 D � � � D xn D 0 then for† one has
the equation X

'˛1˛2:::˛n�b
.x0; : : : ; xn/x

˛1

bC1x
˛2

bC2 : : : x
˛n�b
n D 0;

where 0 � j̨ � s,
P
j j̨ D s and '˛1˛2:::˛n�b

.x0; : : : ; xn/ are homogeneous
polynomials of degree r � s.

Bearing in mind that the maximal number of hypersurfaces of order r in Pn�b�1
which are linearly independent is

�
n�b�1Cr

r

�
, the projective image of † is the

closure of the image of the rational transformation ' W Pn n B ! PN (where
N D �

n�b�1Cr
r

� � 1) given by the equations

X˛1˛2:::˛n�b
D '˛1˛2:::˛n�b

.x0; : : : ; xn/x
˛1

bC1x
˛2

bC2 : : : x
˛n�b
n :

Let � D Œ�0; �1; : : : ; �n� be a point of Pn not belonging to B and T D J.�; Sb/ the
space SbC1 that joins it to B . The image '.P / of the generic point

P D Œ�0; : : : ; �b; ��bC1; ��bC2; : : : ; ��n�; �0; : : : ; �b; � 2 K;
of T has coordinates

X˛1˛2:::˛n�b
D '˛1˛2:::˛n�b

.�0; : : : ; �b; ��bC1; : : : ; ��n/�s�˛1

bC1 : : : �
˛n�b
n ;

that is,

X˛1˛2:::˛n�b
D '˛1˛2:::˛n�b

.�0; : : : ; �b; ��bC1; : : : ; ��n/�˛1

bC1 : : : �
˛n�b
n : (6.17)

Putting � D 0 in (6.17), one finds the following representation for the exceptional
variety E of the blow-up of Pn along B:

X˛1˛2:::˛n�b
D '˛1˛2:::˛n�b

.�0; : : : ; �b; 0; : : : ; 0/�
˛1

bC1 : : : �
˛n�b
n :

From this it is apparent that E is the locus of 1b Veronese varieties Vn�b�1;s .
In particular, in the case s D 1, E is the locus of linear spaces of dimension

n � b � 1; if moreover B is an s-fold point, one finds a Veronese variety Vn�1;s .
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Algebraic Curves

We have already dedicated ample attention to algebraic plane curves in Section 5.7
(see also [42] and [92, Chapter II]). In this chapter we consider algebraic curves
embedded in projective spaces of arbitrary dimension.

In Section 7.1 we recall some general properties of projective curves. In Sec-
tion 7.2 we use an approach which may be historically attributed to Riemann, cf.
Remark 7.2.15, to introduce the notion of the genus of an algebraic curve. This is an
important birational invariant which plays a key role in the study and classification
of algebraic curves. Several exercises, proposed at the close of the section, furnish
a useful complement to the general theory; among other things, rational curves are
characterized as those of genus zero.

Section 7.3 is dedicated to the study of an important class of algebraic curves
which is particularly rich in geometric properties, namely those contained in a
quadric in P3.

In Section 7.4 we introduce rational normal curves, that is, the curves of order n
embedded in a projective space Pn. These curves constitute the 1-dimensional case
of the Veronese varieties introduced in Section 6.7; thus they have a simple matricial
algebraic representation. We mention, among other results, the elementary proof
of Lüroth’s theorem (Theorem 7.4.1), which establishes that unirational curves are
rational, and the analysis of the projective generation of a rational normal curve,
discussed in paragraph 7.4.5, which extends Steiner’s theorem for conics.

Finally Section 7.5 contains a collection of completely solved exercises, and
constitutes an essential complement to the theory developed in the chapter.

7.1 Generalities

In Chapter 3, we defined algebraic projective curves as algebraic projective varieties
of dimension 1. Among them there are in particular the hypersurfaces of P2, that
is, the algebraic plane curves about which we have written at length in Section 5.7.

For an arbitrary projective variety V , we have also defined its order, the multi-
plicity of a point (simple or singular) of V , and the concepts of tangent space and
tangent cone at a point of V . We assume that K D C.

7.1.1 Algebraic curves in Pr . In P r we consider an irreducible algebraic curveC
of order n, which we will suppose not to be contained in spaces of lower dimension.
In this case we will say that C is embedded (or non-degenerate) in P r . We recall
the following facts.
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(1) C is birationally isomorphic to a plane algebraic curve C 0 and one obtains
a generically bijective and algebraic map C ! C 0 via projection from a
generic Sr�3.

(2) The order of C , equal to that of its generic plane projection, is the number
of points that it has in common with a generic hyperplane; we will also write
C n to indicate that C is a curve of order n.

(3) The multiplicitymP .C / of a multiple pointP ofC is the minimal intersection
multiplicity atP ofC with hyperplanes passing throughP , so that the generic
hyperplane passing through P has n � mP .C / points different from P in
common with C .

(4) If P is a simple point of C the tangent line at P to C is the intersection of the
tangent hyperplanes to C at P , that is, the tangent hyperplanes at P to the
hypersurfaces containing C and passing simply through P . The tangent line
to C at one of its simple points is thus the center of a star†r�2, of dimension
r�2, of hyperplanes tangent there toC . IfH is the generic such hyperplane,
the intersection multiplicitymP .C / at P with C is 2, and the hyperplanes of
†r�2 for which one has mP .C / > 2 are those of a star having as its center
the osculating plane of C at P .

The most general situation, namely when P is a generic point of the curve,
is that there are r � 1 stars †j , of dimensions j D r � 2; r � 3; : : : ; 1; 0,
each contained in the preceding, and such that the hyperplanes of †j have
at P intersection multiplicity r � j with C . The center of †j is the space
Sr�j�1 osculating of C at P . In particular, the star †0 consists of a single
hyperplane, the osculating hyperplane; it is the unique hyperplane having (at
least) r intersections with the curve C all absorbed by P .

(5) If a hyperplane Sr�1 contains n C 1 points of a curve C n, then it contains
infinitely many; therefore, ifC n is irreducible, Sr�1 contains the entire curve.
The following corollary is important (a special case of Proposition 4.5.6).

• If an irreducible C n is embedded in P r , then n � r . (Indeed, the
hyperplane defined by r points of C n contains at least r points of C n.)

The definition of an irreducible algebraic curve as the locus of the zeros of
a prime polynomial ideal implies that every algebraic curve is the intersection
of algebraic hypersurfaces, and we know that the intersection of r � 1 algebraic
hypersurfaces in P r is, in general, an algebraic curve. Be aware, however, that an
algebraic curve C � P r is not, in general, a complete intersection, in the sense that
it can be obtained as the intersection of r � 1 algebraic hypersurfaces that intersect
along it transversally, that is, of r � 1 hypersurfaces that have independent tangent
hyperplanes in almost all of its points (i.e., in all of the points of C except for at
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most a finite number of them). Examples of curves in P r which are not complete
intersections are, for r > 2, the curves of order r , about which we shall speak in
Section 7.4.

Exercise 7.1.2 (More on the order of a curve). We again take up the discussion of
Section 3.4, and we show the constancy of the order of the cone that simply projects
a curve C from a space Sr�3 contained in a space Sr�2 that does not intersect C
in any point (by Definition 3.3.1 we know that a generic Sr�2 is disjoint from C ).
This constant value is the order of C .

Indeed, let ˛ and ˇ be two Sr�3 contained in the same Sr�2 which does not
meet C in any point. If n is the order of the cone Xnr�1 projecting C from ˛, a
hyperplane passing through Sr�2 contains n spaces Sr�2 generators of that cone
(those that join ˛ with the n intersection points of the cone with a generic line),
therefore it meets C in n points which give, when joined with ˇ, n spaces Sr�2
generators of the cone that projects C from ˇ. Thus the two cones have the same
order n.

If ˛ and ˇ are not contained in some Sr�2 that does not meet C , we insert
between them (as it is obviously possible) a finite number of spacesL1; L2; : : : ; Lq
of dimension r � 3 in such a way as to obtain a chain ˛;L1; L2; : : : ; Lq; ˇ of Sr�3
such that for any two consecutive terms there is an Sr�2 containing them but not
meeting C . Thus one returns to the preceding case.

7.1.3 Algebraic curves in P3. Suppose that the curve C is embedded in P3.
At each of its simple points there is a tangent line, the axis of the pencil †1 of
tangent planes at P . The osculating plane is the plane of †1 whose intersection
multiplicity with the curve at P is at least 3. Possible points on the curve for which
this intersection multiplicity is at least 4 are said to be stationary points.

A simple point of the curve at which all the planes of †1 have intersection
multiplicity with C at least 3 is a flex of C .

The class ofC is defined to be the number of osculating planes that pass through
a generic point of the space. Another projective characteristic of the curve is its
rank, namely the order of the ruled surface formed by the tangents to the curve,
which is given by the number of tangents that meet a generic line.

The figure formed by the points, the tangents and the osculating planes of an
algebraic space curve C is self-dual in the given space: to the points of C there
correspond by duality the osculating planes, and the tangents correspond to tangents.

By Bézout’s theorem two algebraic surfaces in P3, having orders m1, m2 and
without common components, meet along an algebraic curve of order m1m2, and
it is then evident that an algebraic curve C whose order is a prime number and that
is not contained in any plane can not be the complete intersection of two algebraic
surfaces that meet transversally along C .
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We note, however, that when one must study the local properties of a simple
point, namely properties that concern the neighborhood of the point (for example
questions of intersection multiplicity at the point) one does not lose generality in
supposing that the curve C is a complete intersection. Indeed, every simple point
of C belongs to some Zariski open set U such that the restriction of C to U is a
complete intersection of restrictions toU of two algebraic surfaces. If the curve has
no multiple points this holds for each of its points: this fact is expressed by saying
that a non-singular curve is locally a complete intersection.

7.1.4 Planar projections of an algebraic curve in P3. If we project a curve
C � P3 from a generic point O of the ambient space onto a plane 
 we obtain a
curve C 0 for which it is easy to find the projective characteristics.

First of all, the order of C 0 is equal to the order of C .
The class of C 0 is equal to the rank of C . Indeed, let P be a point of 
 , t 0 one of

the tangents to C 0 that pass through P and T 0 the corresponding point of contact.
The tangent t of C that has t 0 as projection is supported by the line rOP at a point
P0. Thus, the class of C 0 is equal to the number of tangents of C that meet the
line rOP , which is a generic line in P3. But, the number so defined is precisely the
rank of C .

Furthermore, the following properties hold true.

(1) A double point of C 0 that is not the projection of a double point of C comes
from a chord ofC issuing fromO . SinceO is generic (and so does not belong
to the ruled surface formed by the tangents to C , to the ruled surface formed
by the trisecants of C , or to the ruled surface formed by the lines that join
pairs of points of contact of bitangent planes to C ), the trace of every chord
of C passing throughO is a double point with distinct tangents for the curve
C 0.

(2) Since the chords ofC are in number 12 while two conditions are imposed on
a line in P3 by passage throughO , one sees that a finite number of chords of
C pass through O; hence one can not avoid having chords that pass through
the center of projection.

(3) A flex ofC 0 can arise either from a flex ofC or from an osculating plane ofC
that passes through O . Since there are 11 osculating planes of C , the point
O belongs to a finite number of osculating planes.

(4) A bitangent of C 0 that is not the projection of a bitangent of C is the trace in

 of a bitangent plane of C that passes throughO . We note that an algebraic
space curve of order n � 4 has 11 bitangent planes. Indeed, let t be a
tangent to C . We say that two points A and A0 of C correspond to one
another when they are two of the n�2 further intersections of C with a plane
passing through t . Thus one obtains a symmetric algebraic correspondence
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! of indices .n� 3; n� 3/ on C . The fixed points of ! are points of contact
of C with planes through t and tangent to C in another point. Therefore, if
n � 4, every tangent to C belongs to a finite number of bitangent planes.

Moreover, let us explicitly point out the following facts.

(1) If the center of projection O belongs to the tangent to C at a point P , the
projection P 0 of P is a cusp of C 0, and the cuspidal tangent is the trace in 

of the osculating plane to C at P .

(2) The projected curve C 0 has a tacnode if O belongs to the line that joins the
two points of contact of C with a bitangent plane (cf. §9.2.5).

(3) The projection of C has a triple point if O belongs to a trisecant of C .

In conclusion:

• The generic plane projection of a non-singular algebraic curve in P3 has
no other singularities except double points with distinct tangents, flexes and
bitangents.

We leave to the reader the task of seeing how all this must be modified in the
case in which the curve C is projected into 
 from one of its points.

We merely observe that if one projects the curve C of order n from one of
its generic points (which is thus non-singular) onto a plane 
 one obtains as its
projection a curve of order n � 1 which passes simply through the trace O 0 of the
tangent to C atO , and has as tangent atO 0 the trace in 
 of the osculating plane to
C at O .

7.2 The genus of an algebraic curve

We consider an irreducible algebraic curve C in Pn D Pn.C/, the locus of ze-
ros of a prime ideal p, and its homogeneous coordinate ring CŒy0; : : : ; yn� D
CŒx0; : : : ; xn�=p together with its field of fractions, that is, the field of rational
functions on C . We consider a pencil † of algebraic hypersurfaces

† W �f .x0; : : : ; xn/C �h.x0; : : : ; xn/ D 0; (7.1)

and assume that the curve C is not contained in all of the hypersurfaces of †.
If all the hypersurfaces of † meet C in a single common set of points, that

is, if the points common to C and the generic hypersurface of † are all contained
in the base variety of †, then † contains one (and only one) hypersurface that
passes through C . Indeed, if P is a point of C outside of the base variety of the
pencil, then the hypersurface of † passing through P contains the entire curve C
because it has more intersections with C than are allowed by Bézout’s theorem.
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Conversely, if † contains a hypersurface that passes through C , we may suppose
this hypersurface to be one of the hypersurfaces chosen to define the pencil, for
example, h.x0; : : : ; xn/ D 0; and one sees immediately that the group of points
constituted by the intersection of C with the hypersurfaces (7.1) does not change
as �, � vary.

We exclude this case, and thus suppose that † has no hypersurfaces passing
through C and consequently that the hypersurface (7.1) intersects C in a group of
points not all of which are fixed as �, � vary, so that one has an 11 of groups of
points of C . We will say that these are the groups of a linear series of dimension 1
(D dim†/ on C . Possible fixed points, that is, possible points which are common
to all the groups of the series, may at pleasure be understood as included (entirely
or in part) in all the groups of the series, or excluded (entirely or in part) from
all such groups. If r is the number of points of a generic group of the series (or
better, of all groups of the series when the points of a group are counted with
suitable multiplicity) we will say that r is the order of the linear series; and we
will denote this series with the symbol g1r (cf. §6.3.7). We will say that a linear
series is partially contained in another series if by adding a fixed group to each of
its groups one obtains groups of the second series. We refer to Chapter 8 for the
general theory of linear series on an algebraic curve C .

We observe that the groups of the series g1r cut out on C by the pencil (7.1)
appear as groups of constant value (level) of the rational function

� D f .y0; : : : ; yn/

h.y0; : : : ; yn/
2 C.C /

(that is, as inverse images '�1.t/, for t 2 C [ f1g, where ' W C ! C [ f1g is
the map associated to � , defined where h ¤ 0).

A series g1r on C may thus be defined as the totality of the groups of constant
value of a rational function on the curve. We note that possible points of C that are
common zeros of the two polynomials f and h are the points of indeterminacy of
the function � , and constitute a fixed divisor that we mean to exclude from all the
groups of the series. Two rational functions

f .y0; : : : ; yn/

h.y0; : : : ; yn/
;
f 0.y0; : : : ; yn/
h0.y0; : : : ; yn/

2 C.C /

define the same linear series on C if

f .x0; : : : ; xn/h
0.x0; : : : ; xn/ � f 0.x0; : : : ; xn/h.x0; : : : ; xn/

belongs to the ideal p of the polynomials in CŒx0; : : : ; xn� that vanish on C .
This way of looking at a linear series g1r makes it clear that the notions of linear

series and the order of such a series are birational invariants. Indeed, ifC 0 is a curve
birationally equivalent toC , which means that there exists a birational isomorphism
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	 W C ! C 0, to each rational function onC and to its groups of constant level, there
correspond (under the isomorphism C.C / Š C.C 0/ between the function fields) a
rational function of C 0 and its groups of constant level.

The notion of the Jacobian group of a linear series on P1 (cf. §6.4.1) is easily
extended to the case of a linear series g1r on the curve C . For each point P 2 C we
consider the fiber (group of constant level)

'�1'.P / D fP;P2; : : : ; Prg
of the rational map ' W C ! C [ f1g. Thus the groups of points of g1r constitute
an algebraic totality of groups of r points that have the property that its groups are
in algebraic and bijective correspondence with the values of a parameter t 2 C
and that each point of the curve C specifies the group to which it belongs. If one
makes each point P 2 C correspond to the r � 1 points P2; : : : ; Pr one obtains
an algebraic correspondence � W C ! C . The Jacobian group of g1r may then be
defined as the collection of points P 2 C such that P coincides with (at least) one
of the points P2; : : : ; Pr that correspond to it, that is, with the set of points P 2 C
such that the fiber '�1'.P / is made up of < r distinct points.

The Jacobian group consists of the s-fold points of the series g1r , s � 2. These
are the pointsP 2 C for which the group fP;P2; : : : ; Prg of the g1r containingP is
such that s�1 of its remaining pointsP2; : : : ; Pr coincide withP . Hence an s-fold
point of the series is counted s� 1 times in the Jacobian group, cf. paragraph 6.4.1.

Example 7.2.1. If C is a plane curve, a point P is s-fold for the g1r cut out on C
by a pencil of lines through (a point) O if there is a line of the pencil which has s
of its intersections with the curve concentrated at P . For example, an ordinary flex
P with tangent hO;P i is a triple point of the g1r and thus should be counted twice
in calculating the order r of the Jacobian group. Moreover, an ordinary multiple
point of C belongs to the Jacobian group only if one of the tangents at P passes
through O .

We now introduce an important birational invariant of an algebraic curve. We
know that every algebraic curve is the birational transformation of a plane curve.
Moreover we shall see in Chapter 9, Theorem 9.2.4, that it can be reduced via a suit-
able birational transformation to a plane curve whose only singularities are ordinary
multiple points (see also Exercise 13.1.21). We may therefore limit ourselves to the
consideration of plane curves having only multiple points with distinct tangents.

Let C be an algebraic curve and � a plane model for C endowed with only
ordinary singularities (that is, ordinary multiple points). On � we consider two
linear series g ´ g1m, g0 ´ g1m0 of dimension 1 and orders respectively m and
m0 (which, for simplicity, we suppose to be without fixed points). Let r be the
number of points of � that constitute the Jacobian group of g (cf. §6.4.1), and let
r0 be the analogous object for g0. We note that a point of a group of g that is an
ordinary s-fold point of the curve does not belong, in general, to the Jacobian group
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of g. Indeed, we shall see in Chapter 9, Section 9.2 that by means of a quadratic
transformation the ordinary s-fold point can be replaced by s distinct simple points.

Assuming this, we say that two groups of the series g correspond when they
contain two points of the same group of the series g0 (i.e., two groups G1, G2 of
g correspond when there exists a group of g0 that contains a point A of G1 and a
point B of G2). We obtain in this way an algebraic correspondence ! between the
groups of g which is symmetric, and which therefore has equal indices (cf. §1.1.3).
If G D fP1; P2; : : : ; Pmg is a group of g and fPi ;Hi2; : : : ;Him0g is the group of
g0 that containsPi , them0 �1 groupsG0

i2; : : : ; G
0
im0 of g defined byHi2; : : : ;Him0

are all in correspondence withG. Indeed, Pi 2 g andHit 2 G0
it so thatPi andHit

are two points of the same group of g0 (the one defined by Pi ). Thus to the group
G there correspond m.m0 � 1/ groups G0

it (Figure 7.1). Therefore ! W � ! � is
an algebraic correspondence of indices .m.m0 � 1/;m.m0 � 1//.

G0
i2

G0
it

G0
im0

P1
Pi

Hi2

Hit

G

Him0

Pm

Figure 7.1

We now seek the fixed points of !, namely the groups of g that coincide with
one of their corresponding groups. The coinciding of the two corresponding groups
can happen because the two points (belonging to groups of g0) by which they are
determined coincide, and therefore each of the points of the Jacobian group of g0
leads to a fixed point of!. In this way one finds r0 fixed points. But the coincidence
of the two corresponding groups can also arise from a multiple point of the curve � .
Indeed, let O be an s-fold point of � . The group G of g that contains O is formed
by s points O D O1; O2; : : : ; Os coinciding at O (but to be considered distinct)
and by m � s further points. The group of g0 determined by any one of the points
Oj , j D 1; : : : ; s, contains, in addition to O , also other s � 1 points each of which
defines a group of g0 which is in correspondence with G and which coincides with
G (having the point O in common with G). An s-fold point of the curve leads to
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s.s � 1/ fixed points of the correspondence !.
Let † W �f .x0; x1; x2/ C �h.x0; x1; x2/ D 0 be a pencil of algebraic curves

that meets � , outside of possible fixed points, in the series g. The groups of g are
in algebraic one-to-one correspondence with the curves of † and thus the series g
is a projective line (on which �, � are homogeneous coordinates). Hence one can
apply Chasles’ principle of correspondence (cf. §1.1.3) to the correspondence ! to
conclude that there are 2m.m0 � 1/ fixed points. One then has the relation

r0 C
X

s.s � 1/ D 2m.m0 � 1/: (7.2)

Similarly, interchanging the roles of the two series g, g0, one has

r C
X

s.s � 1/ D 2m0.m � 1/: (7.3)

Thus, on subtracting term by term, we have

r � 2m D r0 � 2m0:

Thus we have arrived at the following important result.

Theorem 7.2.2. The difference r � 2m between the number r of points in the
Jacobian group and twice the order m of a linear series g1m (without fixed points)
of dimension 1 belonging to an irreducible algebraic curve C does not depend on
the choice of the series, but rather is a characteristic of the curve which is invariant
under birational isomorphisms.

Equation (7.3) makes it evident that r is an even integer. We can then consider
the integer

p ´ 1

2
r �mC 1 (7.4)

which is called the genus of the curve C . It is a birational invariant that occupies a
fundamental position in the theory of algebraic curves.

Remark 7.2.3. Let C be an irreducible plane curve of orderm and genus p, whose
multiple points are ordinary singularities. On C , the lines of the pencil having
center in a generic point O of the plane cut out a linear series g1m. The order of the
Jacobian group of g1m coincides with the class, �, of C (cf. §5.6.5). Therefore the
class of C is expressed by the relation

� D 2.p Cm � 1/:
Remark 7.2.4. If one makes no hypothesis on the singularities of a plane curve
C , the evaluation of the order of the Jacobian group of a linear series g1m on C is
somewhat delicate and requires, among other things, a detailed study of the behavior
of the polars at the multiple points of the curve (see [111]), as well as the theory of
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branches. For a brief introduction to linear branches and basic references on this
topic, see Section 8.1. For more extensive discussions of these matters we refer the
reader to the classical treatises, and in particular, for the case in which the curve C
has only linear branches, to [86, n. 37], [91, §9, p. 238 ff.], [100, p. 112 ff.], and
[36, Vol. I, Chapter I, pp. 174–180; Vol. III, Chapter I, p. 55].

The following result, which also includes the case in which the series g1m has
fixed points, is particularly useful: A point P that is s-fold for a generic group of
a linear series g1m and .s C s0/-fold for a particular group of the series is to be
counted 2s C s0 � 1 times in the calculation of the order of the Jacobian group of
the series.

We shall see in 7.2.8 that when the curve C also has k cusps of the first kind,
then the class � of C satisfies

� D 2mC 2p � 2 � k:

If, as Enriques [36, Vol. I, p. 280] writes, one bears in mind that the points of the
curveC in a neighborhood of a cuspP belong to a single (non-linear) branch, every
line passing through P has two infinitely near intersections there with a branch of
the curve, and so can be considered to be tangent to a branch of C . We can then say
that the number of tangents to branches of such a curve C passing through a point
remains 2mC 2p � 2. Therefore the relation expressed in Remark 7.2.3 continues
to hold (when one replaces � by � C k). We also refer forward to paragraph 9.2.5
for details on the notion of successive neighborhoods of a point on a plane curve.

Corollary 7.2.5. An irreducible algebraic rational curve C , that is, a curve bira-
tionally isomorphic to P1, has genus p D 0.

Proof. It suffices to consider a linear series g11 on P1; for that series one has r D 0

(cf. §6.4.1) and equation (7.4) then gives p D 0. �

It is useful to introduce another numerical character for an algebraic plane
curve C .

Definition 7.2.6. Let C be an irreducible plane curve of order n whose multiple
points P1; : : : ; Pt have multiplicities s1; : : : ; st (t � 0). Define the deficiency of C
to be the integer

ı ´ .n � 1/.n � 2/
2

�
tX
iD1

si .si � 1/
2

:

Proposition 7.2.7. Let C be an irreducible plane curve of order n whose multiple
points P1; : : : ; Pt have multiplicities s1; : : : ; st (t � 0). Then:

(1) If C is irreducible the deficiency is non-negative.
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(2) If C is irreducible and its multiple points are all with distinct tangents, the
deficiency coincides with the genus.

Proof. (1) If Q is a generic point of the plane, the first polar C1.Q/ of Q with
respect to C is a curve having multiplicity si � 1 at the points Pi and its intersec-
tion multiplicity with C at Pi is mPi

.C; C1.Q// � si .si � 1/, i D 1; : : : ; t (cf.
Lemma 5.6.2 and Exercise 5.7.3). By Bézout’s theorem one then has

n.n � 1/ �
tX
iD1

si .si � 1/ � 0

and thus also

n.n � 1/
2

�
tX
iD1

si .si � 1/
2

C n � 1 � n � 1 > 0;

which is to say

.n � 1/.nC 2/

2
�

tX
iD1

si .si � 1/
2

> 0:

Given these facts, we consider the linear system † of the curves of order
n � 1 having multiplicity si � 1 at the points Pi . We find that, cf. Example–
Definition 6.2.2,

dim† � .n � 1/.nC 2/

2
�

tX
iD1

si .si � 1/
2

.> 0/

whence for .n�1/.nC2/
2

� Pt
iD1

si .si �1/
2

simple points Qj chosen arbitrarily on
C there passes a curve C 0 of † (and actually there pass infinitely many since
dim† > 0).

This C 0 and the given curve C thus have at least
Pt
iD1 si .si � 1/ intersections

in the points Pi and at least .n�1/.nC2/
2

�Pt
iD1

si .si �1/
2

intersections in the points
Qj . Thus, by Beźout’s theorem,

n.n � 1/ �
X
i

mPi
.C; C 0/C

X
j

mQj
.C; C 0/

�
tX
iD1

si .si � 1/C .n � 1/.nC 2/

2
�

tX
iD1

si .si � 1/
2

;

that is
.n � 1/.n � 2/

2
�

tX
iD1

si .si � 1/
2

� 0:
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(2) Consider the pencil of lines having center in a generic pointO of the plane.
On C the lines of this pencil cut out a linear series g1n of order n. As noted in
Remark 7.2.3, the number of points of the Jacobian group of g1n coincides with the
class � D n.n�1/�Pi si .si �1/ ofC . Equation (7.4) then establishes the desired
result. �

We give, in the form of exercises, some useful complements regarding the notion
of the genus of an (irreducible) algebraic curve.

7.2.8. Let C be an algebraic plane curve of order n having only ordinary multiple
points and cusps of the first kind as singular points. Let � be the class of C and k
the number of cusps. Prove that the Jacobian group of the linear series g1n cut out
on C by a generic pencil ˆ of lines consists of � C k points.

Let a, b be the lines that join a generic point O (not belonging to the plane 

that contains C) with an ordinary s-fold pointA and with a cuspB respectively. Let
Q be a quadric (not a cone) passing through a, b.

In the projection of Q from O onto 
 (cf. Example 2.6.4 and also Section 7.3),
to the curve C there corresponds on Q a curve � having s distinct pointsA1; A2; : : :
on the line rOA and which is tangent to the line rOB at a point B 0 (Figure 7.2).

A

B
C

O

A2

A1

�B 0

a

b




P

Figure 7.2

The series g1n cut out on C by the lines of 
 issuing from the center P of ˆ has
as its correspondent on � the series g1n cut out by the planes passing through the
line rOP . While the plane J.A; rOP / intersects � in s distinct points (whence A
does not belong to the Jacobian group of g1n), the plane J.B; rOP / is tangent at B 0
to � and so B is a point of the Jacobian group of g1n. Furthermore, from P there
issue � tangents to C in distinct points which are points of the Jacobian group of g1n.
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7.2.9. The genus of a plane curveC of order nwhose only singularities are d nodes
and k ordinary cusps is

p D 1

2
.n � 1/.n � 2/ � d � k:

Consider the pencil of lines having center in a generic pointO of the plane. On
C the lines of this pencil cut out a linear series g1n of order n. By Plücker’s formulas
(see 5.7.9), the class of C is � D n.n� 1/� 2d � 3k and so by Exercise 7.2.8 the
number of points of the Jacobian group of g1n is r D n.n� 1/� 2d � 2k. Equation
(7.4) then furnishes the required expression.

7.2.10. LetC be an irreducible plane algebraic curve of order n and endowed with
Plückerian singularities, that is, d nodes, k ordinary cusps, � flexes of the first kind,
ı bitangents. Define the genus of the envelope of tangents of C to be the number

1

2
.� � 1/.� � 2/ � ı � �;

where � is the class of C . Verify that C and the envelope of its tangents have the
same genus.

Eliminating d from the first two of Plücker’s formulas (cf. 5.7.9) one obtains

3� � � D 3n � k:
This relation may also be written in the form

n � 2.� � 1/ � k D � � 2.n � 1/ � �;
or also, using the first and third Plücker formulas,

�.� � 1/ � 2ı � 3� � 2.� � 1/C � D n.n � 1/ � 2d � 3k � 2.n � 1/C k;

or
.n � 1/.n � 2/ � 2d � 2k D .� � 1/.� � 2/ � 2d � 2�:

In conclusion

1

2
.n � 1/.n � 2/ � d � k D 1

2
.� � 1/.� � 2/ � ı � �

and thus in view of 7.2.9 one obtains the desired equality.

7.2.11. LetC be an irreducible algebraic curve. Show that its genus is non-negative.

Since the genus is invariant under birational isomorphisms, the genus of C co-
incides with that of its generic plane projection C �. Moreover, we shall see in
Chapter 9, Theorem 9.2.4, that C � can be reduced via a suitable birational transfor-
mation to a plane curve whose only singularities are ordinary multiple points. One
then concludes by applying Proposition 7.2.7.
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7.2.12. The maximum number of double points that an irreducible plane algebraic
curve of order n can have is

.n � 1/.n � 2/
2

:

It suffices to note that for an irreducible curve that has as its only singularities
d double points one has, by 7.2.9 and 7.2.11, .n�1/.n�2/

2
� d � 0.

7.2.13. An irreducible curve C is rational if and only if it has genus zero.

A rational curve has genus zero, as observed in Corollary 7.2.5.
We prove the converse. We know that two birationally isomorphic algebraic

curves have the same genus, and that every algebraic curve is the birational transform
of a plane curve. Again using Theorem 9.2.4 we may assume thatC is a plane curve
of a given order n and genus p with ordinary multiple points of multiplicities si ,
and that

p D .n � 1/.n � 2/
2

�
X
i

si .si � 1/
2

D 0: (7.5)

The dimension of the linear system † of the curves of order n � 2 that pass with
multiplicity si�1 through each of the si -fold points ofC and throughn�3 additional
points of C is at least, cf. Example–Definition 6.2.2,

.n � 2/.nC 1/

2
� .n � 3/ �

X
i

si .si � 1/
2

D 1; (7.6)

where the equality is a consequence of (7.5). Equation (7.6) may be rewritten as

n.n � 2/ D
X
i

si .si � 1/C .n � 3/C 1:

By Bézout’s theorem it follows that the generic curve of a pencilˆ � † has only one
variable point in common with C , and therefore the points of C are in one-to-one
algebraic correspondence with the values of one parameter.

From this result one obtains a practical procedure for finding a parametric rep-
resentation of a curve of genus zero.

In the projective plane consider, for example, the curveC of order n D 4whose
Cartesian equation is .x2 C y2/2 � xy D 0 (the lemniscate of Bernoulli). It has
three double points: the origin O and the two circular points, Œ1; i; 0�, Œ1;�i; 0�.
Hence p D 0. We take a pencil of curves of order n� 2 (that is, a pencil of conics)
passing through the double points (that is, of circles passing throughO) and through
an additional simple point P of C (1 D n � 3), chosen arbitrarily. For example
we can take as P one of the two non-singular points that C possesses in the first
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order neighborhood of O; that is, we impose on the circles to have tangent at O
that coincides with one of the two tangents of C , for example, with the axis x.

Thus we have the pencil ˆ W x2 C y2 D �y, � 2 C. The system of equations´
.x2 C y2/2 � xy D 0;

x2 C y2 D �y

is equivalent to the system ´
�y.x2 C y2/ � xy D 0;

y.�2y � x/ D 0:

The unique solution that depends on � is the point
�
�3

�4C1 ;
�

�4C1
�
. So we have the

parametric equations for the lemniscate:8̂̂̂<̂
ˆ̂:
x D �3

�4 C 1
;

y D �

�4 C 1
:

We now prove a result, which will be useful in the sequel, and which implies,
in particular, that a linear system of rational plane curves is regular (cf. Example–
Definition 6.2.2).

In this regard, recall that the degree of a linear system†of plane curves is defined
to be the number deg† of intersections of two generic curves of † excluding base
points.

Lemma 7.2.14. Let † be a linear system of plane curves of order n and genus p,
with base points of given multiplicities si . Let 	 be the superabundance of†. Then

(1) deg† � dim† � 1;

(2) p � 	 .

Proof. For simplicity we suppose that the base points are ordinary, although the
same conclusions hold in general. If dim† D h, for h � 1 points of the plane
(distinct from the base points) there pass at least 11 curves of †. Two of these
curves have in common at least h � 1 points and so deg† � h � 1. From the
relations (cf. Example–Definition 6.2.2, Proposition 7.2.7 (2))

dim† D n.nC 3/

2
�
X
i

s2i C si

2
C 	;
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and

p D n2 � 3nC 2

2
�
X
i

s2i � si
2

one obtains
hC p D n2 C 1 �

X
i

s2i C 	:

On the other hand, by Bézout’s theorem,

deg† D n2 �
X
i

s2i :

Thus, hC p D deg†C 	 C 1 and so

deg† D hC p � 	 � 1 � h � 1;
that is p � 	 . �

Remark 7.2.15. The path that we have followed to introduce the genus p of an
algebraic curve C (which may be historically attributed to Riemann) is based on
the notion of the Jacobian group, and on the construction and study of a suitable
algebraic correspondence between groups of points of 1-dimensional linear series
on a plane model � of C , with � having only ordinary singularities. Although this
approach involves some rather weighty technical issues which make for difficult
reading, it has the advantage of leading to a direct proof of the crucial fact that the
genus p is a birational invariant (cf. Theorem 7.2.2).

An alternative approach to the introduction of the genus p of an algebraic curve
C originates in the work of Weierstrass. It may be found in Chapter 8, Section 8.5.

7.3 Curves on a quadric

In this section we illustrate some of the properties of the geometry of an important
class of algebraic curves in P3, namely those contained on a quadric surface.

7.3.1 The stereographic projection of a quadric. Let Q be a non-specialized
quadric in P3, O an arbitrary point of Q and 
 a plane not passing through O .
We say that a point P of Q and a point P 0 of 
 correspond if P is the second
intersection of Q with the line rOP 0 ; this means that P 0 is the projection of P
from O onto 
 . The correspondence that is thus obtained is clearly a birational
isomorphism ' W Q ! 
 . One usually says that ' is the stereographic projection
of Q onto 
 (cf. Example 2.6.4).

It is easy to see which points are exceptions to the bijectivity of '.
The unique point of Q to which ' does not associate a well-defined point is the

point O: the points corresponding to O are all the points of the line r in which 
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intersects the plane 	 of the two generators a and b of Q passing through O (i.e.,
the intersection with the tangent plane to Q at O). Indeed, if P 0 is any point of r
(not contained in a [ b), the second intersection of Q with the line rOP 0 coincides
with O . Thus there is a fundamental point on Q, the point O , to which there
corresponds in 
 an exceptional line, the line r . In the plane 
 there are instead
two fundamental points, the traces A and B of the two generators a and b. All the
points of a, except for the pointO , are in fact projected fromO into the same point
A of 
 , and similarly the points of b other than O all have the same projection B .
Since the lines a and b belong to the plane 	 , the two points A and B belong to r .

There are no other exceptions, since ' induces an isomorphism between the two
open sets Q n a [ b and 
 n r .

Now consider a line t of 	 passing throughO and a curve L belonging to Q that
passes throughO and has t as tangent there. The cone � that projects L fromO has
the line t among its generators and thus the projection L0 of L from O (that is, the
locus of the traces in 
 of the generators of �) passes through the trace T of t in 

(note that T 2 r), and has there as tangent the trace h of the osculating plane of L at
O (cf. §7.1.4). Bearing in mind that 	 is the tangent plane to Q at O (so that every
direction of 	 issuing from O is that of the tangent to a curve of Q) one therefore
has a bijective algebraic correspondence, and hence a projectivity, between the

a

b

h
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directions t issuing from O and belonging to the quadric and the points T of r .
Hence the stereographic projection of Q has resolved the first order neighborhood
on Q (i.e., the set of those directions) replacing it with a line. One usually says that
in the neighborhood of O the quadric has an infinitesimal line (namely, the line r).

Note that all the curves L belonging to the quadric, passing through O and
having in common there both the tangent t and the osculating plane, have as pro-
jections in 
 curves having at T the same tangent h as the projection L0 of L. The
stereographic projection of the quadric is thus useful also for the study of the second
order neighborhood of O on Q, that is, the set of the first order neighborhoods of
the points in the first order neighborhood of O .

One can say something analogous for the two points A and B . There exists
a projectivity between the directions of 
 issuing, for example, from A and the
points of the line a. Indeed, if S is a point of a, the tangent plane there to the
quadric (contains a and) meets 
 along a line s0 of the pencil with center A, and
thus determines a direction of 
 issuing from A. Conversely, each line of the plane

 that passes through A is the image of a plane passing through a, which, in virtue
of Chasles’ theorem 5.8.18 (2), is tangent to the quadric at a well-defined point
S of a. The correspondence that one obtains in this way between the pencil of
lines of 
 with center A and the line a with distinguished point is algebraic and
bijective, whence it is a projectivity. All the curves L1 traced in Q and having a
given tangent s at a given point S of a have as projections in 
 curves having the
line s0 that corresponds to S as tangent at A. This s0 depends only on the tangent
plane of Q at S , which means that s0 does not change as s varies in this plane.

Again let Q be a non-specialized quadric in P3, and let a and b the two lines of
Q issuing from one of its points O . We denote by fag that of the two rulings of Q

that contains a and by fbg the one that contains b.
Let C be an algebraic curve (not necessarily irreducible) of order n traced on

Q. Every plane meets it in n points and this happens, in particular, for the tangent
planes of Q, which meet Q along two generators. The n intersections of C with a
tangent plane, for example with the plane 	 of the two lines a and b, are distributed
on the lines a and b and therefore if ˛ is the number of points that C has on a and
ˇ is the number of points that C has on b, one has n D ˛ C ˇ. Any other line
a0 2 fag is skew to a and supported by b. If, as we suppose, a0 is generic, it will not
pass through any of the ˇ points in whichC meets b, and thus if ˛0 is the number of
intersections of a0 with C one has ˛0 C ˇ D n so that ˛ D ˛0. All the lines of fag
thus meet C in the same number of points, and the same holds for the lines of fbg.

A curve that has ˛ points in common with the lines of a ruling, for example
with the lines of fag, and ˇ points in common with those of fbg will be called a
curve of type .˛; ˇ/, or a curve belonging to the family .˛; ˇ/. The algebraic curves
of order n traced on Q are partitioned into the n C 1 families .0; n/; .1; n � 1/;

.2; n � 2/; : : : ; .n � 1; 1/; .n; 0/. In particular, the two rulings fag, fbg are the
families .0; 1/ and .1; 0/.
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A surface of order n meets every generator of Q in n points, and thus cuts Q in
a curve of type .n; n/.

We shall see later that conversely each curve of type .n; n/ on Q is the complete
intersection of Q with a surface of order n. A curve split into two curves of types
.˛; ˇ/ and .˛0; ˇ0/ is a curve of type .˛ C ˛0; ˇ C ˇ0/, and so on.

We return to the projection of Q from the point O into the plane 
 . A generic
curve C of type .˛; ˇ/ not passing throughO has as projection into 
 a curve C 0 of
order n D ˛ C ˇ which passes through the two points A and B with multiplicities
˛ and ˇ respectively. Conversely, let C 0 be a curve of 
 having order n D ˛ C ˇ

and for which A and B are respectively ˛-fold and ˇ-fold multiple points. The
cone � that projects C 0 fromO has the two lines a and b as respectively ˛-fold and
ˇ-fold multiple generators. Hence the cone intersects the quadric in a curve of order
2.˛Cˇ/ which includes the two lines a and b counted respectively ˛ and ˇ times.
The residual component, of order ˛Cˇ, is a curve of type .˛; ˇ/. Its intersections,
for example, with a generic line q 2 fag, have as projections the intersections of C 0
with the projection of q, that is, with a line of the pencil of center B . Indeed, since
the line q is skew to a and is supported by b, its projection is a line of the pencil of
center B which meets C 0, outside of B , in ˛ points.

Since the curves of type .˛; ˇ/ have as projections in 
 the curves of a linear
system (the linear system of the curves of order ˛Cˇ with the two multiple points
A and B of respective multiplicities ˛ and ˇ), we will say that they form a linear
system. Moreover, what has been said for linear systems of algebraic plane curves
can now be extended to linear systems of algebraic curves of Q. This will be further
clarified by analytic means in Section 11.1.

It is easy to determine the number of common points of two generic curves of
types .˛; ˇ/ and .˛0; ˇ0/ belonging to Q: it suffices to count the number of common
points of their projections from O into 
 excluding the intersections that fall at A
and B (because the latter are not projections of points common to the two curves).
The result is:

.˛; ˇ/.˛0; ˇ0/ ´ .˛ C ˇ/.˛0 C ˇ0/ � ˛˛0 � ˇˇ0 D ˛ˇ0 C ˇ˛0: (7.7)

Since the linear system of the curves of type .˛; ˇ/ is projected into the linear
system of the plane curves of order ˛Cˇ with two points of assigned multiplicities
˛ and ˇ respectively (note that such a system is regular, as can be seen by writing
the equation of one of its curves, cf. Example–Definition 6.2.2) its dimension is

.˛ C ˇ/.˛ C ˇ C 3/

2
� ˛.˛ C 1/

2
� ˇ.ˇ C 1/

2
D ˛ˇ C ˛ C ˇ: (7.8)

Since the genus of a space curve is equal to that of its plane projections, the
genus of a non-singular curve of type .˛; ˇ/ is given by

p D .˛ C ˇ � 1/.˛ C ˇ � 2/
2

� ˛.˛ � 1/
2

� ˇ.ˇ � 1/
2

D .˛ � 1/.ˇ � 1/ (7.9)
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(see 7.2.9 and note that under the tacit hypothesis that the projection of Q from O

into
 is generic one has that the pointsA andB of multiplicity ˛ andˇ are ordinary
singularities).

In particular, an .˛; 1/-curve is rational, in agreement with the fact that its points
are in bijective correspondence with the lines of one of the two rulings, and similarly
for .1; ˇ/-curves.

In order to prove that every curve of type .n; n/ is the complete intersection of
the quadric with a surface of order n it suffices to observe that the linear system†Q

cut out on Q by all the surfaces of order n in P3 has the same dimension n2 C 2n

as that of the linear system of the curves of type .n; n/ given by (7.8). Indeed, the
linear system † of all the surfaces of order n in P3, whose dimension is

�
nC3
3

�� 1
(cf. Section 6.1), contains the linear system †0 consisting of all the surfaces that
split into Q and a surface of order n � 2 and which thus has dimension

�
nC1
3

� � 1.
It follows that

dim†Q � dim†0 � 1 D
 
nC 3

3

!
� 1 �

 
nC 1

3

!
D n2 C 2n:

Examples 7.3.2. Let Q be a non-specialized quadric. The curves of second order
on Q are those of types .0; 2/ and .2; 0/, which are the pairs of lines of a given
ruling, and the curves of type .1; 1/ which are the plane sections of Q.

Let us consider the curves of order 3. Those of types .0; 3/ and .3; 0/ are the
triples of lines of a given ruling. On Q there are two families of dimension 5
consisting of space cubics which are generically irreducible, namely the curves of
type .1; 2/ and those of type .2; 1/. Through five generic points of Q there passes
one and only one cubic of each family. In view of (7.7), two cubics of the same
family have in common .1; 2/.1; 2/ D 4 points, while two cubics of different
families meet in .1; 2/.2; 1/ D 5 points.

As far as curves of order 4 are concerned, besides the quadruples of lines cor-
responding to the types .0; 4/ and .4; 0/, there are two families of rational quartics,
the curves of types .1; 3/ and .3; 1/, and in addition there is a family of curves of
type .2; 2/ which give quartics of genus 1. These .2; 2/-curves are the complete
intersections of Q with the other quadrics in P3. (One notes that the quadrics of P3

constitute a system of dimension 9, so that on Q they cut out a linear system of di-
mension 8, and 8 is, by (7.8), the dimension of the system of curves .2; 2/ on Q.) On
the other hand, a curve of type .1; 3/, and similarly of type .3; 1/, belongs to a single
quadric. Indeed, a quadric F that contains a curve C of type .3; 1/ must contain
every trisecant ofC , that is, every line .0; 1/. Therefore it coincides with Q. Curves
of types .3; 1/ and .1; 3/ are the residual intersections of Q with cubic surfaces that
contain two lines of Q belonging to the same ruling.

Remark 7.3.3 (The case of a specialized quadric). One can also do stereographic
projection onto a plane 
 in the case in which Q is specialized and irreducible, that
is, when Q is a cone. One must take the center of projection O distinct from the
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vertex V of Q. The tangent plane 	 to the quadric atO touches the quadric along a
generator and so we obtain two coinciding exceptional lines, a D b, on Q and two
coinciding fundamental points A D B in 
 .

A point P of the cone, distinct from O , has a well-defined projection P 0 in 
 .
On the other hand, to the point O there correspond all the points of the line r
common to the two planes 	 and 
 .

The fundamental point A (A D B) comes from every point of the generator a.

a D b

A D B

V

r

O

	




Figure 7.4

The generators of the cone have as their projections the lines of the plane 

issuing from the point A: indeed, each generator passes through the vertex of the
cone which has the point A as its projection.

A generic plane section has as its projection a conic tangent at A to the line r .
Conversely, a conic � of 
 tangent to r at A is projected from O onto a quadric
cone that has the line a counted twice in common with Q and then another plane
section whose projection is � .

Let C be an arbitrary algebraic curve traced on the cone. If n is its order, the
n intersections with a plane ˛ passing through the vertex are located on the two
generators p and q common to the cone and ˛. If one allows ˛ to run over the
pencil of planes that has as axis the line p one sees that all the generators q of the
cone must contain the same number of points of C distinct from the vertex V . So
if h is the number of points (other than V ) common to C and a generic generator of
Q and m is the multiplicity of the vertex V for C , one has n D 2hCm. Moreover
the curves of the cone may be classified on the basis of the numbers h and m.
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The projection of C from the point O is a curve C 0 of order n with a point of
multiplicity hCm at A to which an h-fold point A0 is “infinitely near” (that is, A0
is a point in the first order neighborhood of A, cf. §9.2.5), arising from the fact that
the tangents to C in the h points that it has in common with the line a lie in the
plane 	 and hence have the same projection r .

It is a simple exercise to prove that the curves having multiplicity m at the
vertex of the cone and meeting the generators in h further points constitute a linear
system†whose dimension is h2ChmC 2hCm. Their genus (if they do not have
other singularities outside the m-fold point at the vertex) is .h � 1/.h C m � 1/.
Furthermore, two curves C 2hCm and C 2h

0Cm0
meet in 2hh0 C hm0 C h0m points

outside of the vertex. If one counts the intersections at the vertex too, rather than
just the variable intersections, the two curves have 2hh0 Chm0 Ch0mCmm0 points
in common.

7.4 Rational curves

The following result plays a crucial role in the theory of algebraic curves (cf. Exer-
cise 2.7.31 and Theorem 6.6.2).

Theorem 7.4.1 (Lüroth’s theorem). Let C be a curve with parametric equations
.in non-homogeneous coordinates/

xi D �i .t/

�0.t/
; �0.t/; �i .t/ 2 CŒt �; i D 1; : : : ; n:

If every point of C comes from k � 1 values of the parameter t it is possible to find
a new parameter � , a rational function of t , in such a way that there is a bijection
between points of C and values of � .

Proof. We suppose, as is permissible, that the polynomials �i .t/, i D 0; 1; : : : ; n,
do not have common factors of positive degree and are all of the same degree.

Let t1 be a generic value of t and let P1 D �
�1.t1/
�0.t1/

; : : : ; �n.t1/
�0.t1/

�
. The values

t1; : : : ; tk that give the same point are those that give rank 1 to the matrix�
�0.t/ �1.t/ : : : �n.t/

�0.t1/ �1.t1/ : : : �n.t1/

�
;

that is, they are the common zeros of the polynomials

ˆij .t; t1/ ´ �i .t1/�j .t/ � �j .t1/�i .t/; i; j D 0; : : : ; n; i ¤ j:

This means that t1; : : : ; tk are the zeros of the greatest common divisor,
.t; t1/, of
the polynomials ˆij . Let


.t; t1/ ´ a0.t1/t
k C a1.t1/t

k�1 C � � � C ak.t1/:
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As t1 varies the coefficients ah.t1/ can not remain proportional to constants, since
otherwise the roots of 
.t; t1/ D 0 would be independent of t1, and that is absurd
because t1 is among those roots.

We may suppose that the roots of 
.t; t1/ D 0 all vary with t1 because if one
of them were to remain fixed we could neglect it and say that every point of C
comes from k � 1 values of the parameter. In particular if t1 is generic, 
.t; t1/ is
a polynomial of degree k in t and so a0.t1/ ¤ 0.

It is obvious that we would have arrived at the same equation 
.t; t1/ D 0 if
instead of t1 we had initially chosen any other of the values t2; t3; : : : ; tk that give
the same point P.t1/. Therefore, for at least one index j (let it be, for instance,
j D 1), the ratio aj .t1/

a0.t1/
really depends on t1 and is

a1.t1/

a0.t1/
D a1.t2/

a0.t2/
D � � � D a1.tk/

a0.tk/
:

If we then set

� ´ a1.t/

a0.t/
;

we obtain a bijective correspondence between the points of the curve and the values
of the parameter � . Indeed, if t1; : : : ; tk are all the values of t giving the same point
P , one has

a1.t1/

a0.t1/
D a1.t2/

a0.t2/
D � � � D a1.tk/

a0.tk/
: (7.10)

The function � D a1.t/
a0.t/

then assumes the same value for t D t1; : : : ; tk and thus to
a point P there corresponds a unique value of � .

Conversely, for each fixed � 2 C we consider the equation

�a0.t/ � a1.t/ D 0; (7.11)

which is of degree k and uniquely determined by � . If t1 is one of its roots, that is,
if �a0.t1/�a1.t1/ D 0, or equivalently if � D a1.t1/

a0.t1/
, then t2; : : : ; tk are also roots,

in view of (7.10). Thus (7.11) furnishes the entire set of values of t corresponding
to a common point of the curve.

To get the new parametric representation of C we eliminate t from each of the
n systems of equations (i D 1; : : : ; n)´

�a0.t/ � a1.t/ D 0;

xi�0.t/ � �i .t/ D 0:

The elimination (which is done by writing the Euler–Sylvester resultant, cf.
Section 4.1) leads to an algebraic equation g.xi ; �/ D 0 which to each value of �
associates a unique value of xi (the i th coordinate of the point that corresponds
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to � ). We know that xi turns out to be a rational function of � , see Section 2.6.
(We observe that the Euler–Sylvester resultant is a polynomial of degree k in the
xi which will be the kth power of a polynomial of degree one with respect to xi .)

One has infinitely many parameters in bijective algebraic correspondence with
the points of the curve: if � is one of them, every other analogous parameter � 0,
having to be related to � by way of the points of the curve via a bijective algebraic
correspondence, will necessarily have the form

� 0 D a� C b

c� C d
(7.12)

with ad � bc ¤ 0. Thus it is possible (since equation (7.12) is a non-degenerate
bilinear relation which thus represents a projectivity) to choose a parameter whose
values are in bijective algebraic correspondence with the points of the curve, and in
such a way as to assign three arbitrary distinct assigned values to three arbitrarily
chosen distinct points of the curve. �

We can define a rational curve in P r as the locus C of a point of P r whose
homogeneous coordinates xi may be expressed in the form

xi D fi .�/; i D 0; : : : ; r; (7.13)

where the fi .�/ are polynomials in a non-homogeneous coordinate �without com-
mon factors. Equations (7.13) in fact define a rational map P1 ! C which in
view of Lüroth’s theorem (cf. Exercise 2.7.31 and also [14, p. 270]) is a birational
isomorphism. Hence C is a rational curve (cf. 7.2.13 and Corollary 2.6.6).

It is obvious that the property of being a rational curve is invariant under pro-
jectivities.

• A rational curve C is algebraic.

Indeed, consider a generic Sr�3, which we may assume to have equations x0 D
x1 D x2 D 0. The equation of the cone that projects C from that space may be
obtained immediately by eliminating the parameter � from the two equations

f .�/ D f1.�/x0 � f0.�/x1 D 0;

g.�/ D f2.�/x0 � f0.�/x2 D 0:

We know that the elimination is performed with rational operations (for example by
the method of Euler–Sylvester, cf. Section 4.1) and so leads to an algebraic equation
F.x0; x1; x2/ D 0, which is homogeneous inasmuch as the coefficients of f .�/
and g.�/ are linear and homogeneous in the variables x0, x1, x2. Thus the cone
projecting C from a generic Sr�3 is algebraic, and so C appears as an intersection
of algebraic hypersurfaces (the cones projecting it from the various Sr�3 in P r ).
This proves that C is a (1-dimensional) algebraic variety.
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By Lüroth’s theorem one may assume that to each � there corresponds a point
of C , and conversely each generic point of C comes from a single value of �. One
then sees immediately that the order ofC is the maximal degreen of the polynomials
fi .�/.

Writing �=� rather than � and multiplying by �n, we obtain homogeneous
polynomials of degree n in �, � in the second terms of equations (7.13):

xi D ai0�
n C ai1�

n�1�C � � � C ain�
n; i D 0; : : : ; r: (7.14)

The hypothesis that the given curve C n of order n is embedded in P r assures
us that these polynomials are linearly independent, which is to say that the matrix
of coefficients .aij / has rank r C 1.

If r < n we may adjoin to the equations (7.14) other n � r equations of the
same type, chosen so as to have nC 1 equations whose second terms are linearly
independent (and this may be done in infinitely many ways).

Such equations will give a curve of order n in Pn of which the given C n in P r

is a projection. Thus we have the following result which gives a way to study the
rational curves of a given order n belonging to an arbitrary space (of dimension
� n) by deducing them via projection from degree n curves in Pn.

Theorem 7.4.2. A rational irreducible curve C n is either a curve C n in Pn or the
projection of such a curve in a space P r with r < n.

We now study some noteworthy properties of irreducible curves C n in Pn.

Proposition 7.4.3. An irreducible curve C n in Pn is rational.

Proof. Take n�1 arbitrary distinct points ofC n; they are linearly independent, and
therefore they generate a space Sn�2. Otherwise, for these points and two further
points of C n there would pass some hyperplane containing the nC 1 points of C n

and thus the entire curve. It follows that the points of C n correspond bijectively to
the spaces Sn�1 of the pencil with axis Sn�2 and so to the values of a parameter �.
The homogeneous coordinates of the points of the curve may then be written as
polynomials in that parameter in the form of equation (7.13). �

Proposition 7.4.4. An irreducible curve C n of Pn has no multiple points.

Proof. Indeed, the order of an irreducible curve L embedded in Pn and having a
multiple point P is certainly > n, as one sees immediately by observing that a
hyperplane containing P and other n � 1 points of the curve L must have at least
nC 1 intersections with L. (For the notion of multiple point of a curve in a higher
dimensional spaces see Section 3.4.) �

We will also say that a curve C n in Pn is a rational normal curve (of order n).
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7.4.5 Projective generation of a curve C n in Pn. Let ˆ1; ˆ2; : : : ; ˆn be pen-
cils of hyperplanes. We will say that they are projectively referred if there exist
projectivities !ij W ˆi ! ĵ such that !ij B !jk D !ik , !i i D idˆi

.
Assuming this, we now prove the following theorem which extends Steiner’s

theorem on the projective generation of a conic to the case of a curve C n in Pn,
[31, Chapter XIV].

Theorem 7.4.6 (Projective generation of a curve C n in Pn, I). An irreducible alge-
braic curveC n of ordern in Pn is the locus of the points common ton corresponding
hyperplanesHi of n projectively referred pencils (that is, such that!ij .Hi / D Hj ).

Conversely, let S .1/n�2; S
.2/
n�2; : : : ; S

.n/
n�2 be the centers of n projectively referred

pencils of hyperplanes ˆ1, ˆ2; : : : ; ˆn, and suppose that if S .i/n�1 2 ˆi , i D
1; : : : ; n, are corresponding hyperplanes then their intersection consists of a sin-
gle point (this happens in general ). Then the locus of the points common to n
corresponding hyperplanes is a curve C n in Pn.

Proof. Consider n spaces S .1/n�2; S
.2/
n�2; : : : ; S

.n/
n�2 that are .n�1/-secants of C n and

the pencils ˆ1, ˆ2; : : : ; ˆn having them as centers.
We say that two hyperplanes Hi and Hj correspond to each other when they

contain a common pointP ofC n. Thus one has a bijective algebraic correspondence
between the two pencils, and hence a projectivity !ij . The n pencils are thus
projectively referred. (We note explicitly that if P is one of the points belonging
to the center, for example, of ĵ then to the hyperplane of ˆi passing through P
there corresponds under !ij a hyperplane of ĵ tangent at P to C n.) This proves
the first part of the statement.

To prove the converse we take two hyperplanes L1 D 0 and M1 D 0 in the
pencilˆ1. IfLi D 0 andMi D 0 are the hyperplanes of the pencilˆi corresponding
to them it is permissible to suppose that to the hyperplane L1 C �M1 D 0 there
correspond the hyperplanes Li C �Mi D 0 of ˆi , i D 1; : : : ; n.

Solving the system formed by the equations of the n corresponding hyperplanes,8̂̂̂̂
<̂
ˆ̂̂:
L1 C �M1 D 0;

L2 C �M2 D 0;

:::

Ln C �Mn D 0;

(7.15)

one finds the homogeneous coordinates of their common point as a polynomial of
degree n in the parameter �:

xi D ai0�
n C ai1�

n�1 C � � � C ain; i D 0; 1; : : : ; n: (7.16)

This proves that the locus described by that point as � varies is a curveC n contained
in Pn. If the n pencils of hyperplanes are chosen generically, C n turns out to be
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embedded in Pn, that is, det.aij / ¤ 0: if det.aij / D 0one would in fact have a linear
relation between the variables xi and so C n would belong to some subspace Sn�1.
(We note explicitly that what we have seen holds in general: it is not excluded that by
choosing the n pencils in some particular manner, the n corresponding hyperplanes
might have in common not merely a point, but, for example, a line; and then rather
than a curve one would find a ruled surface.) �

Since, as it has been noted, we may suppose that det.aij / ¤ 0 in (7.16), it
follows that the given curve C n is projectively identical to the curve C 0n given by

x0 W x1 W � � � W xn�1 W xn D �n W �n�1 W � � � W � W 1: (7.17)

This means that C 0n D '.C /, where ' is the projectivity of Pn associated to the
matrix A D .aij /. So we may draw the following conclusion:

• All the irreducible curves C n in Pn are projectively identical and are para-
metrically representable in the form (7.17).

System (7.17) shows that the points ofC n are those that give rank 1 to the matrix�
L1 L2 : : : Ln
M1 M2 : : : Mn

�
(7.18)

and therefore C n is the base curve of a linear system of quadrics.
For example, if n D 3, one finds that the space curve of order 3 in P3 is the base

curve of the net of quadrics

�1.L2M3 �M2L3/C �2.L1M3 �M1L3/C �3.L1M2 �M1L2/ D 0:

For n D 2 one finds the equation of a conic in the form L1M2 � M1L2 D 0

which places its projective generation in evidence.
The consideration of the matrix (7.18) leads to another way of projectively

generating the curve C n. Consider the two stars † and †0 of hyperplanes having
as centers the points L1 D � � � D Ln D 0, M1 D � � � D Mn D 0 and a projectivity
between them. We may assume that the two hyperplanes

�1L1 C�2L2 C � � � C�nLn D 0; �1M1 C�2M2 C � � � C�nMn D 0 (7.19)

that one has for the same value of the parameters �1; : : : ; �n correspond in the
projectivity.

The coordinates of an arbitrary point P of C n render the Li proportional to
the Mi ; therefore, if we substitute the aforesaid coordinates in (7.19) we find two
linear equations in the �i such that each system of values of the �i that satisfies
the first also satisfies the other, and conversely, i D 1; : : : ; n. This means that each
hyperplane of the first star passing through P has as its corresponding hyperplane
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a hyperplane that also passes through P ; that is, P lies on two corresponding and
incident lines of the two stars (each line is the intersection of n� 1 hyperplanes of
the star). It is clear that the two centers are arbitrary points of C n.

In conclusion, in addition to the statement of Theorem 7.4.6 we also have the
following.

• (Projective generation of a C n in Pn, II) An irreducible curve C n in Pn is the
locus of the points common to two corresponding and incident lines under a
projectivity between two stars of lines .having two points of C n as centers/.

Conversely, two stars of projective lines generate (in general) a curve of order
n, as the locus of points of incidence of corresponding lines. Indeed, intersecting
the two stars with a hyperplane one finds a projectivity between two superposed
hyperplanes; and thenfixed points of the projectivity are the points of the hyperplane
that belong to the two corresponding and incident lines.

An immediate consequence of the foregoing is the following result that extends
the case n D 2.

Proposition 7.4.7. For nC 3 generic points P1; P2; : : : ; PnC3 of Pn there passes
one and only one curve C n of order n.

Proof. By Theorem 1.1.12 we know that there is a single projectivity between the
stars of lines having as centers PnC2 and PnC3 and under which the nC 1 pairs of
lines .rPnC2Pi

; rPnC3Pi
/, i D 1; 2; : : : ; n; nC 1, correspond. �

7.4.8 Osculating hyperplanes to a curve C n in Pn. We consider a curve C n in
Pn and denote by u0; : : : ; un the coordinates of the osculating hyperplane… to C n

at one of its points P , that is, of the unique hyperplane whose n intersections with
the curve are all absorbed by P (cf. §7.1.1). If C n is represented in the form (7.17)
and P D Œx0; : : : ; xn� D Œ�n0; : : : ; 1�, the equation

u0�
n C u1�

n�1 C � � � C un D 0;

which furnishes the intersections of C n with…, must be equivalent to the equation

.� � �0/n D �n � n�0�n�1 C
 
n

2

!
�20�

n�2 � � � � C .�1/n�n0 D 0:

Thus,

u0 D 1; u1 D �n�0; u2 D
 
n

2

!
�20; : : : ; un D .�1/n�n0 :

Hence one has the relations

u0 D xn; u1 D �nxn�1; u2 D
 
n

2

!
xn�2; : : : ; un D .�1/nx0



7.5. Exercises on rational curves 225

among the coordinates xi of P and the ui . Thus we have proved the following

Theorem–Definition 7.4.9 (Clifford). The points of a curve C n in Pn correspond
to its osculating hyperplanes under the reciprocity ' associated to the matrix

A D

0BBBB@
0 : : : 0 0 1

0 : : : 0 �n 0

0 : : :
�
n
2

�
0 0

: : : : : : : : : : : : : : :

.�1/n : : : 0 0 0

1CCCCA :
If n is even, the matrixA is symmetric and ' is a polarity with respect to a quadric;
if n is odd the matrix A is antisymmetric and ' is a null polarity.

In the first case C n is contained in the quadric which is the locus of the self-
conjugate points, called the Clifford quadric (and coincides with it if n D 2). In
the second case every point of Pn is self-conjugate and the spaces Sn�1 osculating
C n at its intersections with a given hyperplane H meet in a point of H .

7.5 Exercises on rational curves

7.5.1. Determine the singularities of the rational plane cubic C3 with parametric
equations:

xi D ai t
3 C bi t

2 C ci t C di ; i D 1; 2; 3; ai ; bi ; ci ; di 2 C:

The possible singularity of C3 can only be a double point (cf. 7.2.12). To
calculate its coordinates we first procure the condition for three points of the cubic
to be collinear.

Let t1, t2, t3 be the parameters of three collinear points Pi D P.ti /, i D 1; 2; 3.
This is equivalent to saying that there exist u1; u2; u3 2 C, not all zero, such that
the line u1x1 C u2x2 C u3x3 D 0 meets C3 in these three points. Thus t1, t2, t3
are the roots of the equation

P3
iD1 ui .ai t3 C bi t

2 C ci t C di / D 0, which means

� 3X
iD1

aiui

�
t3 C

� 3X
iD1

biui

�
t2 C

� 3X
iD1

ciui

�
t C

3X
iD1

diui D 0:

If we set 	1 D t1 C t2 C t3, 	2 D t1t2 C t2t3 C t3t1, 	3 D t1t2t3 then we have

� 3X
iD1

aiui

�
	1 C

3X
iD1

biui D 0;
� 3X
iD1

aiui

�
	2 �

3X
iD1

ciui D 0;

� 3X
iD1

aiui

�
	3 C

3X
iD1

diui D 0;
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that is, 8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

3X
iD1

ui .ai	1 C bi / D 0;

3X
iD1

ui .ai	2 � ci / D 0;

3X
iD1

ui .ai	3 C di / D 0:

The necessary and sufficient condition for the existence of such u1, u2, u3 is thenˇ̌̌̌
ˇ̌a1	1 C b1 a2	1 C b2 a3	1 C b3
a1	2 � c1 a2	2 � c2 a3	2 � c3
a1	3 C d1 a2	3 C d2 a3	3 C d3

ˇ̌̌̌
ˇ̌ D 0: (7.20)

Subtracting the first column multiplied by a2

a1
from the second column and then the

first column multiplied by a3

a1
from the third column one sees that (7.20) may be

rewritten in the form:

At1t2t3 C B.t1t2 C t2t3 C t3t1/C C.t1 C t2 C t3/CD D 0; A;B; C;D 2 C:
(7.21)

Equation (7.21) is the necessary and sufficient condition in order for the points
coming from the values t1, t2, t3 of the parameter to be collinear.

With this in hand, we order (7.21) with respect to t3,

t3.At1t2 C B.t1 C t2/C C/C Bt1t2 C C.t1 C t2/CD D 0; (7.22)

and we resolve the symmetric system´
At1t2 C B.t1 C t2/C C D 0;

Bt1t2 C C.t1 C t2/CD D 0:

We find a pair of numbers t1, t2 which together with any t3 satisfy equation (7.22).
SinceP.t1/,P.t2/,P.t3/ are collinear no matter how t3 is chosen (and they exhaust
the intersection of C3 with a line) we must have that P.t1/ D P.t2/ is a double
point of C3 (a node if t1 ¤ t2; and a cusp if t1 D t2, which means that the two
polynomials At2 C 2Bt C C and Bt2 C 2C t CD have a common zero).

7.5.2. Let C be an irreducible non-planar cubic in P3.

(1) Show both synthetically and analytically that for each point of P3 there passes
one and only one chord (or a tangent) of C , and write the equation for the
ruled surface of the tangents to C .
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(2) Study the singular points and flexes of the plane projections of C .

(1) For a point not belonging to a cubicC there can not pass more than one chord
of the curve, because otherwise C would lie in the plane of two concurrent chords
(since that plane has at least four intersections withC ). The chords ofC (which are
in number 12) can not fill merely a surface, because in that case through each point
of that surface there would have to pass infinitely many (i.e., the 11 determined by
passage through the point). On the other hand, a surface that contains all the chords
of a curve would also have to contain all the cones that project the curve from one
of its points, and the curve would be planar.

This fact can be derived analytically in the following fashion. LetC be the locus
of the point P.t/ D Œt3; t2; t; 1� and O D Œa0; a1; a2; a3� a point not belonging to
C . If P.�/ and P.�/ are two points of the curve C which are collinear with O ,
the matrix 0@a0 a1 a2 a3

�3 �2 � 1

�3 �2 � 1

1A
has rank two. Hence ˇ̌̌̌

ˇ̌a0 a1 a2
�3 �2 �

�3 �2 �

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌a1 a2 a3
�2 � 1

�2 � 1

ˇ̌̌̌
ˇ̌ D 0;

that is, ´
a0 � a1.�C �/C a2�� D 0;

a1 � a2.�C �/C a3�� D 0:

This implies that � and � are the roots of the quadratic equationˇ̌̌̌
ˇ̌x
2 x 1

a0 a1 a2
a1 a2 a3

ˇ̌̌̌
ˇ̌ D 0: (7.23)

Thus for each pointO not belonging toC there passes one and only one chord ofC .
The trace P 0 of this chord upon a plane 
 not passing through O is the double

point of the cubic � , the projection of C from O onto 
 .
If the roots of (7.23) coincide, that is, if O is a point of the quartic surface with

equation
.x0x3 � x1x2/2 � 4.x0x2 � x21/.x1x3 � x22/ D 0; (7.24)

one has a tangent rather than a chord of C (at the point P.�/ D P.�// and P 0 is a
cusp of � .

Equation (7.24) is the equation of the ruled surface F of the tangents ofC . From
it one sees that a space cubic has rank 4, which means that four is the number of
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�

P 0
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P.�/ D P.�/

C



�

P 0

O

Figure 7.5

tangents of the cubic supported by a generic line (in the four points in which the
line intersects the quartic F).

(2) Suppose now that the osculating plane ˛ to C in one of its points P passes
throughO . Since by Clifford’s theorem (Theorem 7.4.9), ˛ is the polar plane of P
under the null polarity determined by C , the polar plane of O passes through P .
Conversely, if the polar plane of O passes through P , the osculating plane of P
passes throughO . Hence the points of C with osculating plane that passes through
O are the intersections of C with the plane corresponding to O under the null
polarity.

Since under a null polarity every point belongs to its polar hyperplane (inasmuch
as each point of the space is self-conjugate) we may conclude as follows.

i) If O does not belong to the quartic F, that is, if through O there passes no
tangent of C , the curve has a node and hence three flexes in view of (5.35),
which belong to the line ˛ \ 
 .

ii) If O belongs to F (but not to C ), let P be the point of contact of C with the
tangent t of C passing through O . The projection � of C from O onto the
plane 
 has a cusp (in the point P 0 D t \ 
) and thus only one flex. The
osculating plane of C at P passes through O and does not meet C outside
of P . Hence, the cuspidal tangent of � is the trace in 
 of the osculating
plane of C at P .

7.5.3. The twisted cubic C 3 in P3 is the base curve of a net † of quadrics. Two
quadrics of the net meet also in a line, which is a chord of C 3. The net † contains
infinitely many quadric cones having vertex on C 3, and C 3 may be defined as
the further intersection of two quadric cones having a common generator (but not
tangent along that line).

Exploit this fact to find the parametric representationP.t/ D Œt3; t2; t; 1� ofC 3.
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We have seen in Section 7.4 that C 3 is the base curve of a net of quadrics. Two
quadrics of the net meet in a curve C 4 which is composed of C 3 and a further
line r , which is a chord of C 3. Indeed, the complete intersection of a quadric Q

with another quadric is a quartic curve C 4 of type .2; 2/. If C 3 is on Q a curve
of type .1; 2/, then the residual component is a line r D .1; 0/ and meets C 3 in
.1; 2/.1; 0/ D 2 points (cf. Section 7.3).

Let r D rV V 0 be a chord of C 3, with V D A0 D Œ1; 0; 0; 0� and V 0 D A3 D
Œ0; 0; 0; 1�, and let F and F 0 be the quadric cones projecting C 3 from V and V 0 and
thus having in common the generator r . We take the point A2 D Œ0; 0; 1; 0� in the
tangent plane to F along r , and the point A1 D Œ0; 1; 0; 0� in the plane tangent to
F 0 along the same line r .

A3 A1

A0

A2

F 0

F

r

V 0

V

Figure 7.6

The equation of F (in which the variable x0 does not appear since F is a cone
with vertexA0) represents in the plane x0 D 0 the intersection ofF with that plane,
that is a conic tangent at A3 to the line x1 D 0. Thus the equation of F is

x1.x3 C ax1 C bx2/C hx22 D 0:

Similarly F 0 has equation

x2.x0 C a0x1 C b0x2/C h0x21 D 0:

The equations

X0 D x0 C a0x1 C b0x2; X1 D x1; X2 D x2; X3 D x3 C ax1 C bx2
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represent a projectivity (non-degenerate) that fixes the two points V and V 0 and
transforms the two cones into the surfaces with equations

X1X3 C hX22 D 0I X2X0 C h0X21 D 0:

It then suffices to suppose that the unit point belongs to these two cones in order
to have h D h0 D �1 and thus the parametric representation P.t/ D Œt3; t2; t; 1�

for the residual C 3 that is their intersection outside of the line r (see also Exam-
ple 11.1.1).

7.5.4. Consider a curveC 4 in P4. Determine the number of osculating hyperplanes
and the number of trisecant planes of C 4 that pass through a generic point of P4.

For each generic point P of P4 there pass four osculating hyperplanes of C 4.
Indeed, by Theorem 7.4.9, the osculating hyperplanes of C 4 correspond to the
points of osculation under the polarity with respect to a quadric Q. The osculating
hyperplanes that pass through P are then the osculating hyperplanes at the points
in which C 4 is met by the polar hyperplane of P with respect to Q.

We now seek the trisecant planes of C 4 which issue from a generic point A not
on C 4.

We project C 4 from one of its points O onto S3 D 
 and we let � be the
projected cubic. For the point A0, the projection of A fromO onto S3, there passes
a chord hB 0; C 0i of � . Moreover, the plane determined by the points B 0, C 0, O is
a trisecant plane of our C 4 passing through A because the lines (coplanar) rOA0 ,
rOB0 , rOC 0 each contain a point of the quartic. As O varies on C 4 one obtains 11

trisecant planes of C 4 passing through A.
One can also obtain this result in the following way.
Let C 4 be the locus of the point P.t/ D Œt4; t3; t2; t; 1� and let Pi D P.ti /,

i D 1; 2; 3, be three points of C 4 contained in a plane ˛ passing through A. Each
point Q of ˛ lies in the hyperplane 
 defined by the points P1, P2, P3 and by an
arbitrary P4 D P.t4/ on C 4. On the other hand, if

u0x0 C u1x1 C u2x2 C u3x3 C u4x4 D 0

is the equation of 
 , the four numbers t1; t2; t3; t4 are the solutions of the equation

u0t
4 C u1t

3 C u2t
2 C u3t C u4 D 0

whence
u0 W u1 W u2 W u3 W u4 D 1 W �	1 W 	2 W �	3 W 	4

where

	1 D
X
i

ti ; 	2 D
X
ij

ti tj ; 	3 D
X
ijk

ti tj tk; 	4 D t1t2t3t4:
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Therefore, the equation of 
 is

x0 � 	1x1 C 	2x2 � 	3x3 C 	4x4 D 0I
and if the coordinates of A are a0, a1, a2, a3, a4 we will have

a0 � 	1a1 C 	2a2 � 	3a3 C 	4a4 D 0 (7.25)

for any choice of t4. But (7.25) is a linear equation in t4 of the type

t4f .t1; t2; t3/C g.t1; t2; t3/ D 0:

Hence, the equations of the trisecant plane are

f .t1; t2; t3/ D g.t1; t2; t3/ D 0; (7.26)

where

f .t1; t2; t3/ D x1 � .t1 C t2 C t3/x2 C .t1t2 C t2t3 C t3t1/x3 � t1t2t3x4;
g.t1; t2; t3/ D x0 � .t1 C t2 C t3/x1 C .t1t2 C t2t3 C t3t1/x2 � t1t2t3x3:

Since A does not belong to C 4 the matrix�
x0 x1 x2 x3
x1 x2 x3 x4

�
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has rank 2 (since the Cartesian equations of C 4 are obtained by setting the second
order minors of the matrix equal to zero, cf. Exercise 7.5.10) and therefore equations
(7.26) are two independent linear equations in the three unknowns t1 C t2 C t3,
t1t2 C t2t3 C t3t1, t1t2t3. This suffices to conclude that there exist 11 trisecant
planes of C 4 passing through A.

7.5.5. Write the equation of the variety of the chords of the curve C 4 in P4 which
is the locus of the point P.t/ D Œt4; t3; t2; t; 1�.

Let r be the chord that joins the two points P1 D P.t1/ and P2 D P.t2/ of C 4

in P4, and let x D Œx0; x1; x2; x3; x4� be any one of its points. If P3 D P.t3/ and
P4 D P.t4/ are two points of C 4, the fact that x, P1 and P2 are collinear implies
that the point x belongs to the hyperplane J.P1; P2; P3; P4/ for any choice of t3,
t4. Thus the polynomial, in t3, t4,

x0 � 	1x1 C 	2x2 � 	3x3 C 	4x4 D 0; (7.27)

where

	1 D
X
i

ti ; 	2 D
X
ij

ti tj ; 	3 D
X
ijk

ti tj tk; 	4 D t1t2t3t4;

must be the null polynomial. On the other hand (7.27) can be written in the form

x0 � .t1 C t2/x1 C t1t2x2 � .t3 C t4/.x1 � .t1 C t2/x2 C t1t2x3/

C t3t4.x2 � .t1 C t2/x3 C t1t2x4/ D 0;
(7.28)

and hence must be 8̂<̂
:
x0 � .t1 C t2/x1 C t1t2x2 D 0;

x1 � .t1 C t2/x2 C t1t2x3 D 0;

x2 � .t1 C t2/x3 C t1t2x4 D 0:

(7.29)

So the coordinates of the point x satisfy the equationˇ̌̌̌
ˇ̌x0 x1 x2
x1 x2 x3
x2 x3 x4

ˇ̌̌̌
ˇ̌ D 0 (7.30)

(otherwise the system (7.29) in the two unknowns t1 C t2, t1t2 would have no
solution). The variety swept out by the chords of C 4 is thus a cubic hypersurface
of P4, of equation (7.30).

7.5.6. Prove that for any C 4 in P4 the ruled surface formed by its tangents is a
surface of order 6.
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The order of the ruled surface of the tangents ofC 4 is the number of the tangents
of C 4 that meet a plane 
 . Each of these tangents gives, when joined with 
 , a
tangent hyperplane to C 4. Conversely, a tangent hyperplane to C 4 in a point P
passes through the tangent to C 4 at P , which meets every plane 
 contained in that
hyperplane. We then consider the pencil of hyperplanes having 
 as axis and we
say that two points of C 4 correspond when they belong to the same hyperplane in
the pencil. On the curve C 4, the locus of the point P.t/ D Œt4; t3; t2; t; 1� (or, if
one prefers, on the line on which the parameter t varies) one obtains a symmetric
algebraic correspondence of indices .3; 3/, cf. §1.1.3. The six fixed points of that
correspondence are the points of contact of the tangents of C 4 that meet 
 . The
order of the ruled surface is therefore 6.

7.5.7. Let � be a rational quartic curve in P3. A point P of � is stationary
if the osculating plane to � at P is hyperosculating (which means that the four
intersections with � are all absorbed by P ). Show that � possesses four stationary
points and 11 trisecants, lies on a unique quadric Q and is met by the generators
of one of the two rulings of Q in three points, and by those of the other ruling in a
point (that is, � is a curve of type .3; 1/ on Q, cf. Section 7.3) .

The curve � is the projection of a curve C 4 in P4 from a point A onto a
hyperplane S3 of P4, cf. Theorem 7.4.2. If A is a generic point of P4, then � is a
rational quartic of general type in P3. It possesses four stationary points coming
from the four osculating planes of C 4 that pass through A; and it has 11 trisecant
lines (which sweep out a surface S ) which are the traces on S3 of the 11 trisecant
planes passing through A (cf. Exercise 7.5.4).

For nine arbitrary points of � there passes a quadric Q � P3 containing � . This
is the unique quadric that contains � because every quadric passing through � must
contain all the trisecant lines of � (since it has at least three intersections with those
trisecants).

Thus a rational quartic in P3 lies on a unique quadricQ, the locus of the trisecants,
and it is met by the lines of one of the two rulings of Q in three points, and in only
one point by the lines of the other ruling, which is to say that it is a curve of type
.3; 1/ on Q.

7.5.8. Study the quartic curve� in P3 that is obtained as the projection of a rational
normal curve C 4 from a generic point of the hypersurface X33 of the chords of C 4.

Suppose thatA is a point lying on the varietyW D X33 of the chords, but not on
the ruled surface X62 of the tangent lines to C 4 (cf. Exercises 7.5.5, 7.5.6). Since
C 4 has no quadrisecant planes, through A there passes a single chord r of C 4 (if
one had a quadrisecant plane, the space S3 joining the plane with a point P of C 4

not contained in the plane would have five intersections with C 4). The trace O of
the line r on the hyperplane 
 D P3 is the unique double point of � .



234 Chapter 7. Algebraic Curves

IfM andN are the points at which r meetsC 4, the 11 trisecant planes that pass
throughA all contain the line that joins the pointsA,M , andN (cf. Exercise 7.5.4)
and thus their trace in 
 passes through O . Three of these lines can not lie in a
common plane of 
 passing through O . Indeed, each of them meets � , outside of
O , in a further point, and therefore a plane of 
 passing through O and containing
three of those lines would give, when joined to A, a 5-secant hyperplane (in the
points M , N , H , P , Q; see Figure 7.8). Therefore the trisecant planes of C 4 that
pass throughAmeet 
 along the generators of a quadric cone with vertexO . Those
generators are unisecants of � (without counting the intersections at the vertexO).

Q

A

C 4

�

H

P3

M

N

O

P

r

Figure 7.8

In this case the quartic � (that has O as a double point) lies on 11 quadrics
passing through O; and all these quadrics contain � . Hence � is a base curve of a
pencil of quadrics having a fixed tangent plane at O (for this, see Remark 6.3.9).

7.5.9. Study the rational plane quartics as projections of a curve C 4 of P4.

The rational plane quartics are obtained by projecting the curveC 4 from a line r
not meetingC 4 onto a plane
 skew to r . The various cases arise in correspondence
with the various positions of r with respect to the variety W D X33 of the chords
of C 4 (cf. Exercise 7.5.5). If r is a generic line which therefore meets W in three
distinct points, the projection is a quartic � that has as double points the traces on

 of the three chords of C 4 that meet r . If r belongs to a trisecant plane of C 4 the
quartic � has a triple point.
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Since the order of the ruled surface X62 of the tangents to C 4 is 6 (cf. Exer-
cise 7.5.6), the plane that joins r with a pointR of 
 meets six tangents ofC 4 (each
in one of the six points in which the plane meets the surface X62 ). Each of these
tangents has as its projection onto 
 a tangent of � issuing fromR. Hence, a plane
rational quartic is a curve having class � D 6.

7.5.10. Prove that the homogeneous ideal of the polynomials in CŒx0; : : : ; xn� van-
ishing on the curveC n in Pnwhich is the locus of the pointP.t/D Œtn; tn�1; : : : ; t; 1�
is generated by the second order minors of the matrix�

x0 x1 : : : xn�1
x1 x2 : : : xn

�
:

Let I.n/ be the homogeneous ideal of the polynomials vanishing on C n and
let Ik be the ideal generated by the minors of the matrix�

xk xkC1 : : : xn�1
xkC1 xkC2 : : : xn

�
:

We prove that I0 D I.n/. The assertion certainly holds for n D 2.
Since I0 is generated by elements of the type xixjC1 � xiC1xj , i; j D 0; : : : ;

n � 1, which vanish on the points of C n, one has I0 
 I.n/.
To prove that I.n/ 
 I0 we may proceed by induction on n assuming that

I.n � 1/ 
 I0.
Let fm 2 I.n/ be a form of degreem. Each monomial in which the variable x0

appears may be modified modulo I0 bearing in mind that x0xi � x1xi�1 2 I0 and
so x0xi D x1xi�1 modulo I0. Via successive modifications one arrives at a form
gm�1.x0; x1/ and at a form g0

m.x1; x2; : : : ; xn/ such that

fm � x0gm�1.x0; x1/ � g0
m.x1; x2; : : : ; xn/ 2 I0: (7.31)

But I0 
 I.n/. Hence x0gm�1.x0; x1/C g0
m.x1; x2; : : : ; xn/ 2 I.n/, that is,

tngm�1.tn; tn�1/C g0
m.t

n�1; : : : ; 1/ D 0 for all t . (7.32)

Now, tngm�1.tn; tn�1/ contains only terms that have degree � nC.m�1/.n�1/ D
mn�mC 1 with respect to t ; while the terms of g0

m.t
n�1; : : : ; 1/ are all of degree

� m.n � 1/ D mn �m. Thus from (7.32) one obtains

tngm�1.tn; tn�1/ D 0 for all t ,
and also

g0
m.t

n�1; : : : ; 1/ D 0 for all t .

From the first condition it follows that gm�1.x0; x1/ is the null polynomial, and
from the second, on using the inductive hypothesis, one has g0

m.x1; x2; : : : ; xn/ 2
I.n�1/ 
 I0. Equation (7.31) then implies that fm 2 I0 and therefore I.n/ 
 I0,
which was to be proved.
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7.5.11 (Space curves in A3 as the set-theoretic intersection of three surfaces). Let
C be an algebraic curve in A3, where x, y, and z are the coordinates. Suppose that
C does not contain (as a component) any line parallel to the z-axis.

We observe first that the contracted ideal I.C/ \ CŒx; y� is principal (cf. Sec-
tion 4.4). Indeed, let f1, f2 be polynomials in CŒx; y�\ I.C/. One has .f1; f2/ �
I.C/ and so V.f1; f2/ � C . Then f1, f2 are both multiples of the same polyno-
mial, since otherwise the equations f1 D f2 D 0 would give a set of lines parallel
to the z-axis which contains C (and hence C would split in some of them).

Hence I.C/ \ CŒx; y� D .g/ and g D 0 is the equation of a curve in the
hx; yi-plane which is the closure of the projection of C in that plane with axis of
projection the z-axis (note that under the projection some points may be missing,
for example those corresponding to vertical asymptotes).

Now let M be the set of polynomials of I.C/ having positive degree with respect
to z and let h D azn C bzn�1 C � � � C c 2 M be a polynomial of minimal degree
n.> 0/ in z, with a; b : : : ; c 2 CŒx; y�. Let f D Azm C Bzm�1 C � � � C C be a
polynomial of I.C/, with A;B; : : : ; C 2 CŒx; y�. If in CŒx; y�Œaz� we divide the
polynomial

fam D A.az/m C Ba.az/m�1 C � � � C amC

by the polynomial

han�1 D .az/n C b.az/n�1 C � � � C can�1;

we get a relation of the form

fam D han�1q C r; (7.33)

where the degree of r with respect to z is less then the degree n of h. By the
minimality of n this degree is zero which is to say that r D r.x; y/ 2 CŒx; y�. So
we have r 2 .h; f / \ CŒx; y� whence r 2 .g/ D I.C/ \ CŒx; y�. On the other
hand h 2 I.C/. Thus the two summands on the right-hand side of equation (7.33)
are zero on C . A common point of the surfaces g D 0 and h D 0 belongs to the
surface with equation amf D 0; and if that point is not a zero of f it must be a
zero of a. In conclusion

V.g; h/ D C [ flines parallel to the z-axisg:
It follows that C is the (set-theoretic) intersection of three surfaces: it suffices to
take a third surface that contains C but no lines parallel to the z-axis (for example,
C D V.g; h; h0/where h0 D 0 is the equation of the cylinder that projects C parallel
to the axis x).

The same result holds also in the projective case. It suffices to choose the
reference system such that the plane at infinity does not contain components of the
curve C in order to reduce to the affine case.
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Note. It is not known whether a curve in A3 or P3 is always the set theoretic
intersection of two surfaces. In the special case of a non-singular (or, more generally,
locally complete intersection) curve C in A3, it is nowadays a classical fact (see
[105], and also [60]) that C is a set theoretic intersection of two surfaces.



Chapter 8

Linear Series on Algebraic Curves

This chapter is the natural development and completion of Chapter 7, and makes
use of some results from Section 9.2. Its aim is to furnish an introduction to the
study of the geometry on an algebraic curve in complex projective space.

In Section 8.1 we give some remarks on the theory of branches for an algebraic
plane curve endowed with ordinary singularities. Moreover, we prove that an arbi-
trary irreducible algebraic curve has birational models whose only singularities are
multiple points with distinct and coplanar tangents. These considerations allow us
to interpret a curve as a collection of linear branches rather than as a set of points.
That interpretation permits us to introduce the language of divisors on a curve in an
elementary way, without requiring any knowledge of local algebra.

The language of divisors is useful in the study of the geometry on an algebraic
curve, and in particular for the introduction of linear series, to which Section 8.2
is dedicated. We define the order and the dimension of a linear series and discuss
some of their general properties.

In Section 8.3 we define linear equivalence between divisors, which leads to the
notion of a complete linear series. Brill and Noether’s Restsatz plays a central role
and permits us to introduce the notion of the difference between two linear series.

In Section 8.4 we study the projective image of a linear series in terms of
simple series and series composed with an involution, and we give a geometric
characterization of complete linear series. The material in this section is closely
related to the part of the theory developed in Chapter 6, taken up again in Chapter 10
for the case of surfaces.

In Section 8.5 we introduce the genus of a curve according to Weierstrass, an
interpretation that offers notable advantages with respect to the definition used in
Section 7.2, which dates back to Riemann, and which made use only of the notion
of 1-dimensional linear series on a suitable plane model of the given curve. In
particular, the alternative interpretation of the genus that we present here allows
quick proofs for several key points in the theory (see, for example, the proof of
Proposition 8.5.2).

Moreover, in that section we also discuss one of the central problems in the theory
of linear series, related to the notion and interpretation of the index of speciality of
a divisor. Furthermore, we interpret the non-singular spatial models and the planar
models with only nodes of a given curve in Pn in terms of the projective images of
linear series on the curve, a subject that we shall discuss in Section 9.2.

In Section 8.6 the canonical series of a curve is defined and studied, and its crucial
birational invariance is proved. The problem cited above (Problem–Definition 8.5.3)
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finds an answer in the fundamental theorem of Riemann–Roch, which is extensively
discussed in this section for the case of a non-singular curve. This theorem is based
on a result due to M. Noether, the Noether reduction theorem (Proposition 8.6.10).

In Section 8.7 we discuss some further properties of the canonical series and
its projective image, thereby obtaining a crude classification of the non-singular
curves in Pn.

Section 8.8 is a brief account of the algebraic correspondences between two
curves. After having stated (without proof) Zeuthen’s formulas and the Cayley–Brill
correspondence principle, we offer some of their applications and consequences in
the form of exercises.

In Section 8.9 we give a brief and elementary introduction to moduli varieties
for algebraic curves. We illustrate a heuristic method for calculating the number
of classes of birational equivalence for curves of a given genus p (� 2). The
hyperelliptic case, which presents some particularly notable aspects, is based upon
the classification theorem 8.9.2.

Finally, various examples and exercises are collected in Section 8.10, where
we also state Halphen–Castelnuovo’s bound for the genus of an irreducible curve
embedded in Pn.

Excellent expositions of the subjects treated in this chapter may be found in the
text [1], and the two memoirs [86], [99]. Severi’s text [100] has been a particular
font of inspiration. It develops the so-called “quick method” for the study of the
geometry of algebraic curves. For a modern and completely general discussion of
these matters, including a discussion of the Riemann–Roch problem in the singular
case, the reader may consult Serre’s text [95] (see also [61]).

8.1 Divisors on an algebraic curve with ordinary singularities

For our purposes in the discussion that follows, it is useful to introduce the notion
of a (linear) branch of a given algebraic curve. Here we limit ourselves to the
consideration of plane curves, and refer the reader to Severi’s text [97, pp. 65–72]
for the general case (see also [114, Chapter 2]).

8.1.1 The local study of a plane algebraic curve. If one wishes to study an
irreducible plane curveC of orderd in a neighborhood of its pointO , it is convenient
to make use of affine coordinates x, y with originO . The equation of the curve C ,
ordered according to increasing powers of x, y, then assumes the form:

f1.x; y/C f2.x; y/C f3.x; y/C � � � D 0; (8.1)

where f1; f2; f3; : : : are homogeneous polynomials in x, y of degrees 1; 2; 3; : : : .
It is important to show how the given curve C can be approximated near the

point O by simpler algebraic curves.
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We begin by supposing that O is a simple point. In this case, to simplify the
calculations, we choose the x-axis to coincide with the line whose equation is
f1.x; y/ D 0, namely the tangent to C at O . The equation (8.1) then assumes the
form

y C f2.x; y/C f3.x; y/C � � � D 0: (8.2)

Since the left-hand side of (8.2) vanishes forx D y D 0 but its first partial derivative
with respect toy is non-zero atO D .0; 0/, equation (8.2) defines, in a neighborhood
of x D 0, an implicit function y.x/ which admits a power series representation of
the type

y D m1x Cm2x
2 Cm3x

3 C � � � (8.3)

in that neighborhood.
The coefficients m1; m2; m3; : : : may be calculated by observing that, on sub-

stituting in (8.2) the power series (8.3) in place of y, one must obtain an identity
with respect to x. Let

f2.x; y/ D b0x
2 C b1xy C b2y

2;

f3.x; y/ D c0x
2 C c1x

2y C c2xy
2 C c3y

3;

f4.x; y/ D d0x
4 C d1x

3y C � � � :
Then setting the successive coefficients of x; x2; x3; : : : equal to zero one obtains
the following equations for the m1; m2; m3; : : : :

m1 D 0; m2 C b0 D 0; m3 C b1m2 C c0 D 0;

m4 C b1m3 C .b2m2 C c1/m2 C d0 D 0; : : : :

These equations allow one to calculate the successive coefficients mi . Thus one
finds

y D �b0x2 C .b0b1 � c0/x3 C � � � : (8.4)

Carrying out the calculation up to the coefficient mu of xu, where u is an arbitrary
integer � 2, equation (8.4) gives a parabola of order u which, in a sufficiently
small neighborhood of O , coincides with the given curve up to infinitesimals of
order uC 1. At O the two curves have a contact of order u; we agree to say that
the point O counts uC 1 times as a point common to both the curves.

We further remark that if the tangent ` W y D 0 to C at O has intersection
multiplicitymO.C; `/ D qC1withC there (cf. Section 4.5), then the polynomials
f2; f3; : : : ; fq will all be divisible by y; thus in (8.4) the coefficients of the terms
of degree � q will be zero. In that caseO is a flex of order q� 1 (q � 2) having as
its tangent the x-axis and the curve C may be approximated in the neighborhood
of O by a parabola of the type

y D mqC1xqC1 C � � � Cmux
u
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of an arbitrary order u � q C 1 (and having intersection multiplicity u with C
at O).

The points of C in the neighborhood ofO are said to form a linear branch with
origin O .

Suppose now thatO is a multiple point for the curve C . Here we consider only
the case of a singular point with distinct tangents. The study of the general case is
much more complicated (beside [114, Chapter 2], see, for example, [10, §8.2] for
indications regarding the case of a double point). On the other hand, as we shall
show in §8.1.2, for our purposes it is sufficient to reduce to the case of ordinary
singularities.

Let O then be an s-fold point with distinct tangents for the curve C . We will
suppose that one of the s tangents at O coincides with the x-axis. The equation of
C may then be written in the form

y's�1.x; y/C fsC1.x; y/C fsC2.x; y/C � � � C fd .x; y/ D 0;

where 's�1; fsC1; : : : ; fd are homogeneous polynomials of degrees equal to their
indices; more explicitly, we have

y.a0x
s�1 C � � � C as�1ys�1/C .b0x

sC1 C � � � /C .c0x
sC2 C � � � /C � � � D 0;

for suitable constants a0; : : : , b0; : : : , c0; : : : , but where, however, we must have
a0 ¤ 0.

Consider then a parabola, of arbitrarily large order u, with equation of the type

y D m2x
2 Cm3x

3 C � � � Cmux
u: (8.5)

On seeking the intersections at O of this parabola with the curve C one finds the
following equation in x:

.m2x
2 Cm3x

3 C � � � /Œa0xs�1 C a1x
s�2.m2x2 C � � � /C � � � �

C Œb0x
sC1 C b1x

s.m2x
2 C � � � /C � � � �C Œc0x

sC2 C � � � � D 0:

That is,

.a0m2 C b0/x
sC1 C .a0m3 C a1m

2
2 C b1m2 C c0/x

sC2 C � � � D 0;

which always has x D 0 as .s C 1/-fold root. The conditions in order for the root
x D 0 to have multiplicity s C 2, or s C 3, or s C 4, : : : , are successively

a0m2 C b0 D 0; a0m3 C a1m
2
2 C b1m2 C c0 D 0; : : : :

Since a0 ¤ 0, these conditions permit one to calculate successively all the mi
without limitations, that is, no matter how large u may be.
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Thus there exists a well-defined parabola of order u � 2 and arbitrarily large,
having contact of order sCu� 1 with C atO; we will say that there exists a linear
branch of C with origin O which is tangent at O to the x-axis. The simplest of
these parabolas is that having equation

y D �b0
a0
x2:

SinceO is an ordinary s-fold point, one can repeat the preceding considerations
for each of the s tangents of C at O and therefore:

• The neighborhood of an s-fold pointO with distinct tangents `1; `2; : : : ; `s is
composed of s linear branches with origin O and tangent at O respectively
to the lines `1; `2; : : : ; `s .

In general, if P has coordinates .x0; y0/, for the branch that has origin at P and
with tangent the line y � y0 D m.x � x0/ one finds a power series in .x � x0/ of
the type

y D y0 Cm.x � x0/C a.x � x0/2 C � � � ; (8.6)

for suitable constants a; : : : . To each point P of the curve there are thereby as-
sociated the branches that have P as origin and conversely a branch belonging to
C , that is represented by a power series like (8.6) for which one has the identity
f .x; y0 Cm.x � x0/C a.x � x0/2 C � � � / D 0, has as its origin the point .x0; y0/
of the curve. In conclusion:

• We may conceive of the curve (which by hypothesis is endowed only with
ordinary singularities) as a set of linear branches rather than as a set of
points.

8.1.2 (Ordinary models of curves). In Section 9.2 we shall prove that a plane
algebraic curve may be transformed by a sequence of quadratic transformations
into a plane curve having only ordinary singularities, that is, multiple points with
distinct tangents.

Later in this chapter (see Theorem 8.5.7) we shall prove that every irreducible al-
gebraic curve has non-singular models in any projective space of dimension r � 3,
as well as plane models with only nodes (that is, double points with distinct tan-
gents). For the present, we establish the following preliminary result.

Proposition–Definition 8.1.3. For every r � 2, an irreducible algebraic curve C

has birational models X embedded in P r and having as singularities only multiple
points with distinct and coplanar tangents. We will say that the curve X is an
ordinary model of the original curve C.

Proof. Suppose that C is embedded in a space Sr with r > 2. Let C0 be its projec-
tion from a generic Sr�3 onto a plane and let C0 be a curve endowed with multiple
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points having distinct tangents obtained from C0 by way of repeated quadratic trans-
formations. The curve C0 is a birational model for C.

To have a model embedded in P3 and with its multiple points having distinct
and coplanar tangents it suffices to take

i) a line ` in the plane 
 of C0 whose intersections with C0 are all distinct, and
two distinct points A, B on ` which do not belong to C0;

ii) a pointO not belonging to the plane and a non-degenerate quadric Q passing
through the two lines rOA, rOB .

Consider the stereographic projection from the point O , ' W Q ! 
 , described
in §7.3.1. It sends the quadric Q onto the plane
 . The inverse image� ´ '�1.C0/
of the curve C0 is a birational model of C and is endowed with multiple points having
distinct coplanar tangents (since at each of the multiple points the tangents of �
there belong to the corresponding tangent plane to Q).

To obtain a birational modelX of C endowed with singular points having distinct
and coplanar tangents and embedded in P r it suffices to consider a rational normal
ruled surface Fr�1 � P r of order r � 1, and to project onto it the plane curve C0
from the space Sr�3 joining r � 2 generic points of Fr�1. For the details we refer
to the exposition given in Section 10.3. �

Thus in the sequel when we wish to study the geometry of an irreducible alge-
braic curve, to which end it is useful to introduce the language of divisors, we may
always refer to a non-singular curve or to its ordinary modelX , endowed with only
singularities having distinct (coplanar) tangents.

If the curve X is non-singular, a divisor is defined as an element of the free
abelian group, Div.X/, generated by the points of X . This group is called the
group of Weil divisors of X .

The question is not so easy when the curve is allowed to have arbitrary singu-
larities. In this regard a complete discussion may be found in Chapter IV of Serre’s
text [95].

However, in the case of curves whose multiple points all have distinct tangents
(so that an s-fold point may be regarded as s superimposed simple points) we can
introduce divisors in an elementary fashion, without recourse to any knowledge of
local algebra.

8.1.4 (Divisors: the case of plane curves). Let X be a plane curve with ordinary
singularities. An effective divisor is defined as a formal sum of type

D D n1R1 C n2R2 C � � � ;
where R1;R2; : : : are branches belonging toX and then1; n2; : : : are non-negative
integers. By a divisor we mean an element of the free abelian group D.X/ generated
by the effective divisors. Since the sum of effective divisors is an effective divisor,
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every divisor turns out to be the difference of two effective divisors. Thus, a divisor
D is a formal sum of the type D D P

i niRi with ni 2 Z. We define the degree
of D to be the integer deg.D/ D P

i ni . The support Supp.D/ of the divisor D is
the set of points of X which are origins of its branches R1;R2; : : : .

According to the usual modern terminology, we say that an effective divisor D
is an effective Cartier divisor if, for each point P 2 Supp.D/, there exists a regular
(polynomial) function 'P that locally definesD at P . The necessary and sufficient
condition in order for this to occur is that for each P 2 Supp.D/ all the branches
of the curve X with origin P appear in D with positive coefficient.

In general, a divisor is a Cartier divisor if for each point P 2 Supp.D/ there
exists a rational function 'P that locally definesD at P . The set of Cartier divisors
of X constitutes a group, called the group of Cartier divisors of X and denoted by
Cart.X/. The degree of a divisor defines a homomorphism deg W Cart.X/ ! Z.

If the curve X is non-singular, the Weil group and the Cartier group coincide,
and, more precisely, both coincide with the group D.X/ defined above. In fact in
such a case each linear branch is identified with the point of X which is the origin
of it. In the singular case, the group D.X/ can be interpreted as the group of (Weil
or Cartier) divisors of a suitable non-singular birational model of the curve X .

8.1.5 (Intersection multiplicity of a curve with a linear branch). In the same plane
as the curve X let us consider another irreducible algebraic curve � . Let P be a
common point of the two curves and let R be a branch belonging to X . We define
the intersection multiplicitymP .�;R/ of � with a linear branch R of the curveX
having P as origin in the following way.

We assume that the coordinate system is chosen so that P is the coordinate
origin and so that the tangent to R at P has the equation y D 0, and we suppose
that the branch R is then represented by the power series

y D ax2 C bx3 C cx4 C � � � ;
with a; b; c; : : : suitable constants, and moreover that the curve � has equation

g.x; y/ D gt .x; y/C gtC1.x; y/C � � � ;
where gj .x; y/ is a homogeneous polynomial of degree j (so that P is a point of
multiplicity t for �). If, for some integer " and suitable constants k0; k1; k2; : : :
with k0 ¤ 0, one has

g.x; ax2 C bx3 C cx4 C � � � / D xtC".k0 C k1x C k2x
2 C � � � /;

then we put
mP .�;R/ ´ t C ":

If R1;R2; : : : ;Rs are the s branches of X that have as origin an s-fold point
P of the curve X , the divisor

D D m1R1 Cm2R2 C � � � CmsRs .mj > 0/
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can be represented locally by a polynomial 'P .x; y/ such that, for each i D
1; 2; : : : ; s, one has that mi is the intersection multiplicity at P of the branch Ri

with the curve having equation 'P .x; y/ D 0. The intersection multiplicity ofX in
P with the curve ˆP ´ 'P .x; y/ D 0 is the sum of the intersection multiplicities
of ˆP with the individual branches Ri having origin P ; that is,

mP .X;ˆP / D
sX
iD1

mP .ˆP ;Ri /:

8.1.6 (The case of a space curve). The extension to the case in which X is not a
plane curve does not present any substantial new difficulties, once one has a suitable
representation for a linear branch R belonging toX and with origin at a given s-fold
point P .

We limit ourselves to some brief remarks, considering for example the case in
which X is embedded in P3. By what has been seen in §8.1.2, we may suppose
thatX belongs to a non-singular quadric Q and that it has only multiple points with
distinct coplanar tangents. We take a system of affine coordinates x; y; z such that

i) the point P is the coordinate origin;

ii) the tangent to the branch R at P has equations x D y D 0;

iii) the s tangents to X at P are contained in the plane z D 0.

If the quadric Q has equation z D xy and if´
z D 0;

y D ax2 C bx3 C cx4 C � � �
is the projection of R in the plane z D 0 from the point at infinity on the z-axis,
then the branch R has the representation:´

y D ax2 C bx3 C cx4 C � � � ;
z D x.ax2 C bx3 C cx4 C � � � /:

If g.x; y; z/ D 0 is the equation of a surface G having P as t -fold point, and if,
for some choice of constants " � 1 and k0 ¤ 0,

g.x; ax2 C bx3 C cx4 C � � � ; x.ax2 C bx3 C cx4 C � � � //
D xtC".k0 C k1x C k2x

2 C � � � /;
then the intersection multiplicity at P of the surface G with the linear branch R is

mP .G;R/ ´ t C ":
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8.2 Linear series

Let X be an ordinary model, in the sense specified in Proposition 8.1.3, of a given
irreducible algebraic curve. We assume thatX is embedded in a projective space Pn.

We introduce the notion of linear series by extending the definition of 1-dimen-
sional linear series introduced in Section 7.2 (see also §6.3.7).

Thus we consider an arbitrary linear system † of algebraic hypersurfaces

† W �0'0.x0; : : : ; xn/C �1'1.x0; : : : ; xn/C � � � C �t't .x0; : : : ; xn/ D 0;

and we suppose that the curve X is not contained in the base variety of †. Every
hypersurfaceF of† not passing throughX intersectsX properly and cuts out onX
(counting the intersection multiplicities) a divisor X \ F D Pk

iD1 niPi of degree

d ´ Pk
iD1 ni .D � deg.X/, where � is the degree of the hypersurfaces of †).

Moreover we suppose that the hypersurfaces of†meetX in points not all of which
are fixed as �0; : : : ; �t vary (that is, they are not all contained in the base variety
of †) so that one has 1r divisors on X , where r is the number of parameters on
which the determination of one of its divisors depends. We will say that these are
the divisors of a linear series gr

d
, of dimension r and order d . We shall also say

that this gr
d

is the series cut out on X by the linear system † (and, obviously, in
this case, d > 0). The notation gr

d
was introduced by M. Noether [70].

A point belonging to the support of each of the divisors of such a gr
d

is called
a fixed point of gr

d
. In most cases one neglects possible fixed points or at least

some of them. The fixed points, if there are any, can then be considered in all
or in part as making up part of every divisor of the series. Hence, in general, if
D D P

i qiQi C P
j mjMj is a divisor of the series, and the Mj are the fixed

points, we will also say that the system † cuts out (away from the fixed points) a
linear series grq of order q D P

i qi .
If dim† D t , one obviously has r � t ; but one can not always affirm that r D t .

This equality certainly holds in the case when every divisor of the gr
d

belongs to
only one hypersurface of † so that one has a one-to-one correspondence between
the hypersurfaces of † and the divisors of the gr

d
.

If, however, two different hypersurfaces F1, F2 of† cut out the same divisorD
of the gr

d
onX , the hypersurface of the pencil �F1C�F2 D 0 containing a generic

point P of X will also contain the whole curve X since it has more intersections
with X than allowed by Bézout’s theorem. Therefore, the situation in which the
correspondence between the hypersurfaces of † and the divisors of the gr

d
is not

bijective can occur when † contains some hypersurface containing X .
Let H be the linear system of hypersurfaces of † that contain X and let h

(� �1) be its dimension. Note that imposing on a hypersurface the condition that
it pass through a curve X requires imposing a certain number of linear conditions.
Therefore the hypersurfaces of a linear system that pass through a curve themselves
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form a linear system. If there are no such hypersurfaces, we will have a linear
system of dimension �1.

For a divisorD of gr
d

there pass 1hC1 hypersurfaces of†. They constitute the
linear system joining H with a hypersurface of† having equation D 0 and which
cuts out the divisorD onX . Indeed, if '0; : : : ; 'h is a base of H, the hypersurfaces
�0'0 C � � � C �h'h C �hC1 D 0 all intersect the curve X in the divisor D cut
out by the hypersurface  D 0. Moreover, there can not pass through D more
that 1hC1 hypersurfaces of†. Otherwise, they would form a linear system H0 of
dimension at least hC 2 and the system of dimension at least hC 1 consisting of
the hypersurfaces of H0 passing through a generically fixed point of X would be
contained in H.

Bearing this in mind, we may suppose that of the t C 1 linearly independent
forms '0; : : : ; 't that generate † there are hC 1 in H. The t � h remaining forms
define a linear system L, of dimension t � h � 1, which can not have forms in
common with H, since otherwise, the systems H and L, would, by Grassmann’s
formula, both belong to a linear system of dimension at most t � 1 and containing
†. The forms of L, none of which pass through the curveX , meetX in the divisors
of the series gr

d
cut out by †, and there is a bijection between the forms of L and

the divisors they cut out on X . In particular, r D dim L.
Thus we have proved the following result.

Theorem 8.2.1. Let X be a curve of Pn, † a linear system that cuts out on X
a linear series gr

d
, and let H be the linear system of dimension h consisting of

the forms of † passing through X . It is always possible to obtain gr
d

on X by
way of a linear system L which is contained in † and whose hypersurfaces are in
bijective correspondence with the divisors of the given gr

d
. Moreover, one also has

the relation
r D dim† � h � 1:

The fact that a series gr
d

can always be thought of as cut out on X by a linear
system L of dimension r has as a consequence the following facts.

(1) For r generic points ofX there passes one and only one divisor of the givengr
d

.

(2) The divisors of gr
d

that pass through a generic point P of X form a linear
series gr�1

d
having P as fixed point. On removing P one has a series gr�1

d�1
which is called the residual series of P with respect to gr

d
.

More generally, the divisors of a series gr
d

passing through s � r generic
points of X form a linear series gr�s

d
. On removing the s points (that are

fixed points for this series which may, however, have other fixed points), one
obtains the series gr�s

d�s residual to these s points with respect to the given gr
d

.

From this it obviously follows that

r � d: (8.7)
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One then sees immediately that r D d if and only if X is a rational curve.
Indeed, the residual series of a divisor made up of d �1 generic points with respect
to a series gd

d
is a series g11 which, as we have seen above, can be cut out on X by

the hypersurfaces of a pencil.

8.3 Linear equivalence

The theory of linear series on a curve is based on the notion of linear equivalence
between divisors which we now introduce.

In the course of this section X will denote a curve in Pn, which we suppose to
be an ordinary model of a given irreducible algebraic curve. OnX we consider two
(possibly coinciding) effective divisorsA andB both having the same degree d . We
will say thatA andB are linearly equivalent, and we will writeA � B , if there exists
a divisorM on X and two (possibly coinciding) hypersurfaces of the same order �
that intersect X respectively in the divisors ACM and B CM . This is equivalent
to saying that the two divisors A and B belong to a common r-dimensional linear
series gr

d
on X , r � 1. For example, one may take the series cut out on X (away

from the fixed divisor M ) by the linear system † of all hypersurfaces of order �
passing through M . Thus, A and B are linearly equivalent if and only if they are
both level divisors of the same rational function onX , namely the rational function
arising as quotient of the corresponding two elements of † (cf. Section 7.2).

The relation just introduced is clearly reflexive and symmetric. One also sees
immediately that if A � B and B � C one also has A � C . Indeed, suppose that
f1 D 0 and f2 D 0 are two hypersurfaces of the same order that meet X in the
two divisors A C M and B C M ; and suppose that g1 D 0 and g2 D 0 are two
hypersurfaces, these too also having the same order, that meetX in the two divisors
B C L and C C L. Consider the three hypersurfaces of equations f1g1 D 0,
f2g1 D 0, and f2g2 D 0. They have the same order, and intersect X respectively
in the divisors

AC .B CM C L/; B C .B CM C L/; C C .B CM C L/:

Thus, A � C ; moreover, the divisors A, B , and C can be cut out on X , apart from
a fixed divisor, by three hypersurfaces of the same order.

In the set of divisors of a given order d , we have thus defined an equivalence
relation. The equivalence class of an effective divisor A of degree d is called a
complete series of order d and is denoted by jAj. Moreover, one sees that the
(effective) divisors of jAj can be obtained by intersecting the curve X , apart from
a fixed divisor, with a linear system of hypersurfaces.

By the above it follows that

• two effective divisors of the same degree d are linearly equivalent if and only
if they both belong to a common linear series of order d .
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Hence, in particular, a series gr
d

is entirely contained in a single complete one.
More precisely, we have:

Lemma 8.3.1. Let gr
d

be a linear series on the curve X . If gr
d

is not a complete
series, then it is contained in a seriesgrC1

d
. In particular, a linear series is contained

in a complete series. Moreover a complete series of given order is a linear series.

Proof. If gr
d

is not a complete series, then there exists a divisor B (of order d )
outside of gr

d
which is equivalent to all the divisors of gr

d
. Suppose that gr

d
is cut

out by the linear system of hypersurfaces

�0'0 C �1'1 C � � � C �r'r D 0;

and that '0 D 0, '1 D 0; : : : ; 'r D 0, respectively, cut out on X the divisors
A0 C L;A1 C L; : : : ; Ar C L. Since A0 � B there exist two forms of the same
order, of equations ˛ D 0 and ˇ D 0, which cut out on X the divisors A0 C M

and B C M . For j D 1; 2; : : : ; r , the forms with equations ˛'0 D 0, ˇ'0 D 0,
and ˛'j D 0 all have the same order. On X they cut out, respectively, the divisors
A0 C .A0 CM CL/, B C .A0 CM CL/, Aj C .A0 CM CL/, j D 1; 2; : : : ; r .
Therefore the .r C 1/-dimensional linear series grC1

d
cut out on X by the linear

system
† ´ �'0ˇ C �0˛'0 C � � � C �r˛'r D 0

contains (outside of the divisor A0 CM C L) the series gr
d

.
Iterating this argument, one sees that a linear series is contained in a complete

series (which, in turn, is a linear series).
Assuming this, let jAj be a complete series of order d , and let r be the maximum

dimension of the linear series of order d that are contained in jAj. One sees imme-
diately that there exists one and only one gr

d
contained in jAj, and that it coincides

with jAj. Indeed, there can be no divisor of degree d in jAj which does not belong
to gr

d
because such a divisor would, as an element of jAj, be equivalent to all the

divisors of gr
d

, but would also be contained in a larger linear series of order d and
dimension r C 1 still contained in jAj. �

From Lemma 8.3.1 we deduce the following statements:

(1) The complete linear series that contains a given linear series is unique.

(2) An arbitrary divisor A of X determines the complete linear series jAj that
contains it. In particular, if on the curve X there exist no divisors equivalent
toA, then this divisor by itself constitutes a complete linear series, jAj D g0

d
,

of dimension zero.
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8.3.2 Sum and difference of linear series. We now introduce the notions of the
sum and difference of two complete linear series. In this regard, let A, B , C ,
D be effective divisors (possibly non-distinct) on the curve X . The notion of
linear equivalence leads us to conclude that if A � B and C � D then one has
A C C � B C D. Indeed, if A � B one has A C C � B C C . To see this
it suffices to note that if f1 D 0, f2 D 0 are two hypersurfaces that cut out on
X (outside of a possible fixed divisor L) the divisors A and B respectively, and if
the hypersurface g D 0 cuts out the divisor C C M , then the two hypersurfaces
f1g D 0 and f2g D 0 give respectively the divisors A C C C .L C M/ and
B C C C .LCM/. Similarly, from C � D it follows that B C C � B CD.

This leads us to the notion of the sum series of two complete linear series jAj,
jBj. It is the complete series defined by a divisor of the form ACB , with A 2 jAj,
B 2 jBj, and is denoted by jAC Bj.

We now prove that subtracting equivalent divisors from equivalent divisors one
obtains equivalent divisors. In symbols:

if AC B � C CD and A � C then B � D: (8.8)

Indeed, if f0 D 0 and f1 D 0 cut out ACB CM and C CDCM while g0 D 0

and g1 D 0 cut out ACL and C CL, the hypersurfaces f0g1 D 0 and f1g0 D 0

respectively cut out the divisors ACB CM CC CL and C CDCM CACL,
that is, B C .ACM C C C L/ and D C .ACM C C C L/. Thus B � D.

Let jAj be a complete series on the curve X and consider (if there are any)
all the divisors of jAj that contain a given divisor B (of degree not larger than
that of A). Removing B from these divisors one finds equivalent divisors which
constitute a linear series. By Theorem 8.2.1, such a residual series is of dimension
� dim jAj � deg.B/, with equality if and only if the passage through B imposes
independent conditions on the hypersurfaces of the linear system which cuts out
jAj on X . This series is called the residual series of B with respect to jAj.

This residual series turns out to be complete. Indeed, a possible divisor C
equivalent to all the divisors of jAj that contain B , but distinct from each of them,
when added to B would give a divisor equivalent to A but not contained in jAj, and
that is not possible because jAj is complete. Hence the residual series is complete.
Let then B1 � B and suppose that there exist divisors of jAj containing B and
divisors of jAj containing B1; then there exist two divisors R, R1 on X such that
B CR � A � B1 CR1. By (8.8) one has R � R1 and so jRj D jR1j.

Thus we can state the following proposition known as the “Restsatz” of Brill
and Noether (cf. [100, p. 105]).

Proposition 8.3.3 (Restsatz). Let jAj be a complete series on the curve X . The
residual divisors R of a given divisor B with respect to the complete series jAj
constitute a complete series, jRj. Moreover the residual divisorsR are also residual
divisors with respect to the same series of every other divisor equivalent to B .
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The series jRj in Proposition 8.3.3 is also called the difference series of the two
series jAj and jBj, and one writes jRj ´ jA � Bj.

The definition of the difference series jA�Bj may be extended also to the case
in which a divisorB on the curveX is not contained in some divisorA 2 jAj. More
precisely, for arbitrary effective divisors A, A1, B , B1, we decree that

A � B � A1 � B1 ” AC B1 � A1 C B:

In particular, if A � B , the divisor A � B is the zero divisor and jA � Bj is the
zero series. Note that if A and B are two divisors of the same degree, but are not
equivalent, then the series jA � Bj has order zero but is not the zero series.

Linear equivalence extends to divisors and the divisor operations pass to the
quotient. The quotient group Pic.X/ ´ Cart.X/= � is called group of divisor
classes of X , or the Picard group of X .

The difference series of two divisors A and B may then be defined in an equiv-
alent manner as

jA � Bj ´ fD effective divisor j A � D C Bg:
In fact, the set of all effective divisors linearly equivalent to a given divisor A
(not necessarily effective) is called the complete linear series defined by A and
is again denoted by jAj. In particular, if A is not effective and if there exist no
effective divisors equivalent to A, the series jAj reduces to the empty set and has
dimension �1.

One notes that the series jA � Bj depends only on the complete series jAj and
jBj and not on the particular divisors A 2 jAj and B 2 jBj. We say that a linear
series gr

d
on the curve X is complete if gr

d
D jAj for some divisor A on X .

We note also the following elementary but useful fact.

Lemma 8.3.4. LetA be a divisor on the curveX . If dim jAj � 0, one has deg.A/ �
0. Moreover, if dim jAj � 0 and deg.A/ D 0, thenA is a divisor linearly equivalent
to zero.

Proof. If dim jAj � 0, the complete linear series jAj is not the empty set. Hence A
is linearly equivalent to some effective divisorA0. Since linearly equivalent divisors
have the same degree, one has deg.A/ D deg.A0/ � 0. If moreover deg.A/ D 0,
thenA0 is an effective divisor of degree zero. But the only effective divisor of degree
zero is, up to linear equivalence, the null divisor. �

8.4 Projective image of linear series

In the sequel we consider a curve X lying in a projective space Pn, with homo-
geneous coordinates x0; : : : ; xn, and assume that X is an ordinary model for an
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irreducible algebraic curve. On the curve X we consider the linear series gr
d

cut
out by the hypersurfaces of the linear system of dimension r , cf. Theorem 8.2.1,

† W �0f0.x0; : : : ; xn/C � � � C �rfr.x0; : : : ; xn/ D 0:

If y0; : : : ; yr are homogeneous coordinates in a projective space P r , a rational map
' W Pn ! P r is thereby defined and represented by the equations

yi D fi .x0; : : : ; xn/; i D 0; : : : ; r: (8.9)

It associates to each point P of Pn, not belonging to the base variety of †, a
well-defined point '.P / of P r .

We projectively refer the hypersurfaces of† to the hyperplanes of P r , saying that
the hypersurface�0f0C� � �C�rfr D 0 corresponds to the hyperplane�0y0C� � �C
�ryr D 0. To the hypersurfaces of† that pass through a point Nx 2 Pn, that is, to the
hypersurfaces that one obtains by imposing the relation �0f0. Nx/C� � �C�rfr. Nx/ D
0 among the parameters, there correspond the hyperplanes of P r whose coefficients
are bound by the same relation, namely, the hyperplanes that pass through the point
Ny 2 P r with coordinates .f0. Nx/; : : : ; fr. Nx//.

If P describes the curve X , the point '.P / (if it varies) describes in P r an irre-
ducible algebraic curve X which is called the projective image of gr

d
. A parametric

representation of X is given by the equations (8.9), where one understands that
the variables x0; x1; : : : ; xn are constrained to satisfy the equations of the curveX .
More precisely, if I.X/ � KŒx0; : : : ; xn� is the homogeneous ideal of polynomials
vanishing onX and fp1; : : : ; pmg is a system of homogeneous generators of I.X/,
then the curve X � P r is represented by the equations

X ´
´
yi D fi .x0; : : : ; xn/; i D 0; : : : ; r;

pj .x0; : : : ; xn/ D 0; j D 1; : : : ; m:

Suppose that in† there are no forms containingX . This means that there do not
exist non-null .rC1/-uples .�0; : : : ; �r/ for which the equation�0y0C� � �C�ryr D
0 is satisfied by all the points of X. From this one concludes that the space of
minimal dimension that contains the curve X has dimension r . Let us recall that
if we replace a basis chosen to define gr

d
with another basis, we find as projective

image of gr
d

a curve that is the transform of X under a projectivity of the ambient
space P r (cf. Section 6.6).

We observe explicitly that two points P;P 0 2 X , not belonging to the base
variety of †, have the same image '.P / D '.P 0/ in X if and only if the .r C 1/-
uples .f0.P /; : : : ; fr.P //, .f0.P 0/; : : : ; fr.P 0// are proportional; that is, if and
only if the divisors of our gr

d
that pass through P also contain P 0.

Two cases are possible, according to whether or not the restriction 'jX W X ! X

is generically bijective.
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a) A generic point of X comes from a unique point of X .

In this case the two curves X , X are birationally equivalent, which means
that the restriction 'jX W X ! X is a birational map. Then the divisors of gr

d

containing a generic point of X (varying in the open set on which the map
is an isomorphism) do not have in common other points of the curve. In this
case we will say that gr

d
is a simple linear series. One has:

• The curve X has order d .

Indeed, the series gr
d

corresponds on X to the series HX cut out by the
hyperplanes. But the order of X is the number of intersections of X with
a generic hyperplane

Pr
iD0 �iyi D 0 of Sr and such points correspond

bijectively to the points of the divisor of gr
d

cut out onX by the hypersurface
of equation

Pr
iD0 �ifi D 0.

As to the exceptions to bijectivity, several points P1; : : : ; P� of X , not be-
longing to the base variety of † (and not necessarily distinct), produce the
same point of X if and only if the .r C 1/-uples

.f0.P1/; : : : ; fr.P1//; : : : ; .f0.P�/; : : : ; fr.P�//

are proportional. This means that all the divisors of gr
d

that pass through any
one of the points P1; : : : ; P� must also contain all the others. One then says
that H D fP1; : : : ; P�g is a neutral divisor with respect to the series gr

d
.

The divisor H imposes a single condition on the divisors of gr
d

which are to
contain it. All of its points have as corresponding point in X a single point
P 0 D '.Pj /, j D 0; : : : ; �, which will be an �-fold point of X.

b) Every point of X corresponds to � � 2 points of X .

The divisors of order �, each of which corresponds to a point of X, form an
algebraic series 	1� (in general not linear), that is, they constitute a simply
infinite totality of divisors of degree � � 2. The series 	1� is such that
every point of X belongs to one and only one of the divisors constituting 	1�.
Moreover, the divisor of gr

d
that contains a pointP contains the whole divisor

of 	1� to which P belongs. One says in this case that gr
d

is composed with

the involution 	1�. Every divisor of gr
d

is then made up of d
�

divisors of the

series 	1�, to each of which there corresponds a single point of X. Therefore:

• The curve X has order d
�

.

The map 'jX W X ! X is only rational and is an �-fold covering of the
curve X.

Thus we have proved the following:
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Proposition 8.4.1. Let gr
d

be a linear series on the curve X � Pn and let X be
the non-degenerate curve in P r that is the projective image of gr

d
. If gr

d
is simple,

the curve X is a birational model of X and has order d . Furthermore, the series
corresponding to gr

d
is the series HX cut out by the hyperplanes of P r .

The completeness of a linear series is expressed in geometric terms by the
following proposition.

Proposition 8.4.2. Let gr
d

be a simple linear series on the curve X � Pn, and let
X � P r be the projective image curve of gr

d
. The following are equivalent:

(1) The series gr
d

is complete.

(2) The curve X can not be obtained as the projection of a curve of the same
order embedded in a projective space of dimension > r .

Proof. If gr
d

is not complete, consider the linear series gm
d

, m > r , in which it is
(totally) contained. Let X� � Pm be the curve, of order d D deg.X/, which is
the projective image of gm

d
. On X� the given gr

d
corresponds to the series cut out

by the r-dimensional linear system of hyperplanes of Pm passing through a linear
space Sm�r�1 that does not meet X� (since the series gr

d
and gm

d
have the same

order). Let � be the projection of X� from Sm�r�1 into a projective space Sr
skew to Sm�r�1. There is a bijective correspondence between the projective image
X of gr

d
and the curve � under which the hyperplane sections of one correspond

to the hyperplane sections of the other. That correspondence is thus induced by a
projectivity between the two spaces P r and Sr . The curve X is thus, like � , the
projection of a curve of the same order belonging to a higher dimensional projective
space.

Conversely, suppose that the projective image X of the series gr
d

(which has
order d and is embedded in P r ) were the projection of a curve X� embedded in a
space Sm of dimensionm > r . The series HX of hyperplane sections of X is then
the projection of the series g�r

d cut out on X� by the hyperplane sections that pass
through the center of projection, which is contained in the linear series of all the
hyperplane sections of X�. This means that g�r

d (and so too HX) is not a complete
series on X. Consequently, neither is the linear series gr

d
that corresponds to HX .

For the proof one could also make use of an analytic argument as in Section 6.7
(where one should consider X and X� in place of V and V0 and r andm in place of
h and h0 respectively, and where the variables x0; : : : ; xn are understood to satisfy
the equations defining X). �

We will say that the curveX in Pn is linearly normal if the series HX D gndeg.X/
cut out by the hyperplanes of Pn is a complete series. SinceX obviously coincides
with the projective image curve of HX , Proposition 8.4.2 allows us to conclude that
a curve X � Pn is linearly normal if it can not be obtained as the projection of a
curve of the same order embedded in a projective space of dimension > n.
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Remark 8.4.3. A given linear series gr
d

on a curve X � Pn may very well have
several projective images, not only because there is freedom in the choice of the
system of forms whose linear combinations determine the linear system† that cuts
out the gr

d
on X , but also because a given linear series can be cut out by different

linear systems of hypersurfaces.
A projective model (or image) of a series gr

d
may be constructed geometrically

by imposing an arbitrary projective correspondence between the divisors of gr
d

and
the hyperplanes of Sr . Two projective models of the same gr

d
belonging to two

spaces Sr , S 0
r thus correspond under the projectivity which makes two hyperplanes

that cut homologous divisors correspond to each other.

8.4.4 Birational correspondences between curves. We now consider two irre-
ducible algebraic curves that stand in birational correspondence. To each generic
(and so non-singular) point of one there corresponds a unique point of the other,
but this need not hold for every point. The following argument, taken from [100,
pp. 79–81], shows a basic fact, important in itself and for the sequel (see also Ex-
ercise 8.10.7 for a reformulation of the proof of the second part of the statement of
the proposition).

Proposition 8.4.5. Let ' W X ! X 0 be a birational map between two irreducible
algebraic curves. Then the following holds.

(1) To each non-singular point P of X there corresponds a uniquely determined
s-fold point P 0 of X 0 with s � 1; and similarly on interchanging the role of
the two curves.

(2) IfX andX 0 are non-singular, the map ' is a morphism, and bijective without
exceptions.

Proof. The second statement is an immediate consequence of the first.
We prove (1). By Proposition 8.1.3, we may surely suppose that X and X 0

are endowed with only ordinary singularities. Suppose that X 0 is embedded in a
projective space Sn and has order d . The hyperplanes of Sn cut out a linear series
HX 0 on X 0 which is without fixed points. To HX 0 there corresponds on X a linear
series gn

d
.

Let P be a non-singular point of X . The divisors of gn
d

containing P form, for
any P , a series gn�1

d
with base point P . Suppose that the divisors of this series

have d � s variable points .s � 1/. Under ', to gn�1
d

there corresponds on X 0 a
linear series that again has order d , and which is contained in the linear series HX 0

of hyperplane sections of X 0. The linear series thus induced on X 0 is therefore cut
out by the hyperplanes that pass through a well-defined point P 0 of Sn. Since the
divisors of this series have only d � s variable points, the point P 0 belongs to X 0
and is an s-fold point ofX 0. (Note that we do not assert that P 0 comes from several
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distinct points ofX . For example, ifX 0 is the plane curve obtained by projection of
a space curveX from a pointO lying on the tangent toX at one of its non-singular
points P , the projection P 0 of P is a cuspidal double point for X 0 to which there
corresponds only the point P .) �

8.5 Special linear series

The method that we have used to introduce the genus p of a curve X (which may
be attributed to the work of Riemann) is based on the notion of Jacobian divisor
and on the construction and study of a suitable algebraic correspondence between
the divisors of 1-dimensional linear series on a plane model C of X having only
ordinary singularities. It presents technical difficulties of some significance which
make Section 7.2 rather difficult reading, but also offers the advantage of a direct
proof of the crucial fact of birational invariance of p (cf. Theorem 7.2.2 and (7.4)).

For a quick reconstruction of the geometry on a curve X it is particularly con-
venient to use an alternative definition of the genus, namely the property expressed
by a famous theorem of Weierstrass known as the “Lückensatz” (see [100, p. 164]).
In 8.5.10 we will show that the two notions of genus do indeed coincide.

Proposition–Definition 8.5.1 (The genus according to Weierstrass). Let C be an
irreducible algebraic curve and let X be an ordinary model of C. We define the
genus ofX to be the minimal integer p such that pC 1 arbitrary points ofX are a
divisor of a linear series grpC1 with r � 1 (while p generic points of X constitute
an isolated divisor, i.e., a series g0p). In particular, the genus p is a birational
invariant, which allows one to define the genus of the curve C as the genus p ofX .

Notation. In the remainder of this section we use X to denote an ordinary model
of a given irreducible algebraic curve.

The following facts are consequences of the definition of the genus of a curve.

Proposition 8.5.2. Let X be a curve of Pn of genus p and let gr
d

be a linear series
on X . Then

(1) p � 0, and p D 0 if and only if the curve X is rational;

(2) if gr
d

is complete, one has r � d � p;

(3) if A is a generic divisor consisting of d � p points of X , one has dim jAj D
d � p.

Proof. (1) See the comment regarding the equality in formula (8.7), at the end of
Section 8.2.

(2) By the Restsatz (Proposition 8.3.3), the residual series of a divisor consisting
of d �p�1 generic points with respect to a complete series gr

d
is a complete series
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of dimension r � .d �p � 1/ and order pC 1. From Proposition–Definition 8.5.1
it then follows that r � .d � p � 1/ � 1, that is, r � d � p.

(3) Now letA be a generic divisor consisting of d � p points ofX . Observe that
A can be obtained as a sum H CB of two generic divisors consisting respectively
of p and d � p points. Since B imposes d � p independent conditions on the
divisors of the series jAj which are to contain it, the residual series of B with
respect to jAj has dimension r � .d � p/. Bearing in mind that the divisor B
consists of p generic points, Proposition–Definition 8.5.1 ensures that one then has
dim jAj � .d � p/ D 0. Thus dim jAj D d � p. �

The important inequality expressed by Proposition 8.5.2 (2) leads naturally to
the division of linear series into two types, according to whether or not the equality
actually holds. In the first case .r D d�p/ the linear series is said to be non-special;
if instead r > d � p, the series is special.

Problem–Definition 8.5.3. The central problem in the theory of linear series is that
of determining the dimension

r D d � p C i; i � 0;

of the complete series defined by a divisor A of degree d on a curve of genus p, or
equivalently to calculate the difference i ´ r � .d � p/, which is called the index
of speciality of the series jAj, or also of the divisor A (which is said to be special
if i > 0).

We shall return to this problem later (see Theorem 8.6.12).

Two conditions, both of which are sufficient (but not necessary) in order for
a series gr

d
to be non-special, are given by the following theorem (compare with

Proposition 8.6.15).

Theorem 8.5.4. Let X be a curve of Pn with genus p and let gr
d

be a linear series
on X . Then:

(1) If d > 2p � 2 the series is non-special.

(2) If r > p � 1 the series is non-special (and has order d � 2p).

Proof. We may surely suppose that the series gr
d

is complete.
(1) Letd > 2p�2. Suppose, by way of contradiction, that one has r � d�pC1.

The residual series of a divisorA consisting ofp generic points of the curveX would
be a complete series gr�p

d�p (partially contained in gr
d

), and the residual series of a

divisor of gr�p
d�p with respect to gr

d
would be a series of order d � .d �p/ D p and

dimension � r � .d � p/ � 1. By the definition of the genus, see Proposition–
Definition 8.5.1, this is not possible because in that series there is the divisor A
consisting of p generic points.
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(2) Suppose now that r > p � 1, and put r D p C e .e � 0/. Then, by (8.7),
we have d � p C e. The residual series of a divisor A consisting of p generic
points with respect to gr

d
is a complete series ge

d�p (partially contained in gr
d

),
and the residual series of a divisor of ge

d�p with respect to gr
d

would be a series
of order p and dimension � r � .d � p/ containing A. Thus, again in view of
Proposition–Definition 8.5.1, we have r � .d �p/ D 0, that is, r D d �p. It then
follows that d D r C p > p � 1C p, and so d � 2p. �

One also has:

Theorem 8.5.5. Let X be a curve in Pn of genus p and let gr
d

be a linear series
on X . If d > 2p, the series does not have neutral divisors (and so is simple) and
does not have fixed points.

Proof. By Theorem 8.5.4, the series gr
d

is non-special, and so one has r D d � p.
Let G be a neutral divisor consisting of � � 2 points. Since G imposes a

single condition on the divisors of gr
d

which contain it, the residual series of G
with respect to gr

d
would be a series gr�1

d��. Such a series would be simultaneously
special inasmuch as

r � 1 D d � p � 1 > d � p � � D .d � �/ � p;
and non-special inasmuch as

r � 1 D d � p � 1 > p � 1:
Similarly, the residual series gr

d�1 of a fixed point with respect to gr
d

would be
special because r D d � p > .d � 1/� p, and non-special because r D d � p >
p � 1. �

8.5.6 Non-singular spatial models and plane models with nodes. Consider a
complete linear series gr

d
on a curve X of genus p in Pn and suppose that d > 2p.

Then by Theorems 8.5.4 and 8.5.5 it is non-special (i.e., r D d � p), and does not
have neutral divisors. Therefore its projective image X is a linearly normal curve
of order d in Sr and is birationally isomorphic toX . The fact that gr

d
is simple and

without neutral divisors ensures moreover that X does not have multiple points.
Indeed, if P were an s-fold point of X with s � 2 the residual series of P with
respect to the series gr

d
(which is cut out on X by the hyperplanes of Sr ) would be

a series gr�1
d�s cut out on X by the hyperplanes of Sr passing through P . This series

gr�1
d�s would be, simultaneously, special because r � 1 D d �p � 1 > .d � s/�p

and non-special because r � 1 D d � p � 1 > p � 1.

• Thus it is always possible to transform a curve X birationally into a non-
singular curve X belonging to a projective space of sufficiently large dimen-
sion r .
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If r > 3, a generic Sr�4 does not meet the three dimensional variety V3 of
the chords of X (see, in this regard, [48, (11.24), (11.25)]) and so projecting X

from Sr�4 into a subspace S3 skew to it, one thereby has a non-singular projected
curve X0.

If one then considers a generic point O in S3, and projects X0 from O onto
a generic plane 
 , one obtains a plane curve X0 which has as singularities only
double points with distinct tangents, called nodes. More precisely, the point O
should be chosen outside of the ruled surface consisting of the trisecants of X0,
outside of the ruled surface consisting of the tangents of X0, and outside of the
ruled surface consisting of the lines that join pairs of points of contact of X0 with
its bitangent planes. The nodal singularities described above can not be avoided
because the chords of a space curve belonging to S3 cover the entire space.

Applying the previous reasoning to an ordinary model X of a given spatial
irreducible algebraic curve one thus obtains the following fundamental result (see
also Section 9.2 and Exercise 13.1.21).

Theorem 8.5.7. An irreducible algebraic curve C has non-singular birational mod-
els belonging to every space P r of dimension r � 3. Moreover, it has plane models
whose singularities are only nodes.

Exercise 8.5.8. An irreducible algebraic curve C of genus p can be transformed
birationally into a (linearly normal) non-singular curve of order d > 2p in the pro-
jective space Pd�p . Indeed, a curve of that order and genus in Pd�p is necessarily
non-singular.

The first statement is an obvious consequence of Theorems 8.5.4 and 8.5.5. The
second statement follows from the fact that the series gd�p

d
of hyperplane sections

(of an ordinary model of C) is non-special in view of Theorem 8.5.4 and so is
complete, and it has no neutral divisors again by Theorem 8.5.5.

8.5.9. Consider a complete linear series gr
d

on a curveX in Pn, and let C be a plane
model with only nodes for the curve X . We note explicitly that the curve C has
order d and that under the birational transformation X ! C the initial series gr

d
is

transformed into a linear series of the same dimension (inasmuch as the dimension
of a linear series is clearly a birational invariant) and of the same order d .

Indeed, the map X ! C factorizes into the birational map ' W X ! X � P r

and the two successive projections P r ! P3 ! P2 with respective centers a
generic Sr�4 � P r and a generic pointO 2 P3. The linear series corresponding to
gr
d

in X is the series HX , which obviously has order d . In view of the genericity
of the centers of projection, the curve C � P2 has the same order, d , as X, and to
the series HX there corresponds on C another series still of the same order d (but
not, in general, cut out by the lines in the plane).

If the curveX is non-singular, then under the birational transformationX ! C ,
every linear series is transformed in C into a series of the same order (and same
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dimension). In fact we know that the birational model X is non-singular, and so the
birational map ' W X ! X is a morphism, bijective without exceptions by what we
have seen in paragraph 8.4.4. Every given linear series on X is thus transformed
in X into a series of the same order, to which, by the genericity of the centers of
projection described above, there corresponds a series of the same order on the
plane model C .

8.5.10. Using Theorem 8.5.7, we show here how the genus introduced in Defini-
tion 8.5.1 does indeed coincide with the genus previously introduced in Section 7.2.

We consider a plane model C of an algebraic and irreducible curve of genus p
according to Definition 8.5.1. Let C be of order d and let it have d nodal double
points which make up a divisor D, and let C have no other singular point. Then
let P be a divisor consisting of p generic points of C and let � be an algebraic
curve, of arbitrary orderN , passing through the points P and the nodesD. We can
also suppose that the curves C and � have intersection multiplicity 2 at the double
points of C (cf. Section 4.2). If N is the order of � , the curves � and C have in
common an additional divisor A consisting of Nd � 2d � p points. The linear
system †D of the curves of order N that pass through the nodes D has dimension
(cf. Example–Definition 6.2.2)

dim†D � N.N C 3/

2
� d:

Moreover, the linear system†0 of the curves of orderN that contain C as component

has dimension dim†0 D .N�d/.N�dC3/
2

. Hence the linear series D of divisors cut
out on C (outside of the base locusD) by the curves of†D has dimension, cf. 6.3.7,

dim†D � dim†0 � 1 � N.N C 3/

2
� d � .N � d/.N � d C 3/

2
� 1

D Nd �
 
d � 1
2

!
� d:

Among the divisors of this series there is the divisor A C P ; and the residual
series jRj of jAj (with respect to the complete series defined by D) is a series
that has among its divisors the divisor P , and which therefore has dimension 0 by
Definition 8.5.1. On the other hand, the dimension of jRj is

� Nd �
 
d � 1
2

!
� d � deg.A/ D Nd �

 
d � 1
2

!
� d � .Nd � 2d � p/

D d C p �
 
d � 1
2

!
:
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Note that if N � 0 we may assume that the left-hand inequality is in fact an
equality. Hence we have d C p � �

d�1
2

� D 0, that is

p D .d � 1/.d � 2/
2

� d; (8.10)

a relation that coincides with the expression of the genus as defined by Riemann
and introduced in Section 7.2; see in particular 7.2.9.

We explicitly note the following immediate consequence of the above remarks.

Corollary 8.5.11. A non-singular curve X of genus p has plane models of order
d with only d D .d�1/.d�2/

2
� p nodes.

8.5.12. Let X be an irreducible curve in Pn of genus p. If p D 1, X is called
elliptic. If p � 2 and X contains a series g12 , the curve X is called hyperelliptic.
We will discuss some noteworthy properties of elliptic and hyperelliptic curves
in Section 8.7.

8.6 Adjoints and the Riemann–Roch theorem

In this section we illustrate one of the fundamental results of the theory of linear
series, the Riemann–Roch theorem, and we discuss some of its consequences. The
proof of this theorem is based on the notion of adjoint curve to a given algebraic
plane curve, and on the derived notion of canonical series. An essential property
of the canonical series, that of being a birational invariant, allows one to extend the
theory to include also non-singular curves in projective spaces. The first part of this
section is dedicated to these preliminary results.

8.6.1 The adjoints and the canonical series of a plane curve. Let C be a fixed
irreducible algebraic plane curve of order n and genus p, and whose multiple points
P1; : : : ; Pt have multiplicities s1; : : : ; st (t � 0). We suppose for simplicity that
the multiple points are all ordinary (i.e., with distinct tangents), although this last
hypothesis is not really necessary; for this see Section 9.2.

An adjoint curve (or simply an adjoint) of C is a plane algebraic curve that has
multiplicity greater than or equal to si � 1 at the point Pi for each i D 1; : : : ; t .

The adjoints of order m of C constitute a linear system, Am. Let 	m be the
superabundance of Am.

8.6.2. With the notation and assumptions as above, let us summarize here some
basic properties of adjoints.

(1) If there exist adjoints of a given orderm� 1, then the adjoints of orderm cut
out on C , away from the singular points, a linear series gr

d
whose degree is

d D mn �P
i si .si � 1/.
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If m is sufficiently large the adjoints of order m have multiplicities si � 1,
i D 1; : : : ; t , at the singular points P1; : : : ; Pt of C , and present the simple
case with the curve C (see Section 4.2). Thus the statement is clear for
integers m � 0. It then suffices to observe that the adjoints of order m �
1 together with an arbitrary straight line furnish adjoints of order m and
therefore cut out on C , away from the singular points, a linear series of order
mn �P

i si .si � 1/ � n D .m � 1/n �P
i si .si � 1/.

(2) If n � 2, then adjoints of every order m � n � 2 exist; and if p � 1 (and so
n � 3/ there also exist adjoints of order n � 3.1

Indeed, the dimension of the linear system of adjoints of order m is

dim Am D m.mC 3/

2
�
X
i

si .si � 1/
2

C 	m

D m.mC 3/

2
� .n � 1/.n � 2/

2
C p C 	m

D .mC n/.m � nC 3/

2
C p C 	m � 1;

(8.11)

where the second equality is a consequence of the genus formula 2p D
.n�1/.n�2/�Pi si .si � 1/ (cf. Definition 7.2.6, Proposition 7.2.7). There-
fore, if m � n � 2, one has dim Am � n � 2 C p C 	m � 0. If p � 1,
then

dim An�3 � p C 	n�3 � 1 � 	n�3 � 0:

(3) If p � 1, the linear system of adjoints of order m � n � 2 is regular, and
cuts out a complete and non-special linear series gr

d
on C , away from the

singular points.

By (2), we know that there exist adjoints of order � n�3. Hence property (1)
gives

d � n.n � 2/ �
X
i

si .si � 1/ D 2p C n � 2 > 2p � 2:

Thus the series gr
d

is non-special by Theorem 8.5.4, and so

r � d � p.D mn �
X
i

si .si � 1/ � p/: (8.12)

On the other hand r D dim Am � dim†0 � 1, where†0 is the linear system
of adjoints of order m that contain the curve C (cf. 6.3.7). In view of (8.11)

1With regard to the possible existence of adjoints of order � n� 4, see Exercise 8.10.16.
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it follows that

r � .mC n/.m � nC 3/

2
C p

C 	m � 1 � .m � n/.m � nC 3/

2
� 1

D mn � p �
X
i

si .si � 1/C 	m:

(8.13)

Therefore

mn � p �
X
i

si .si � 1/C 	m � mn � p �
X
i

si .si � 1/;

and so 	m D 0. In particular (8.13) gives the equality in (8.12), which implies
the completeness of the linear series gr

d
.

(4) If p � 1 (and so n � 3/ the linear system of adjoints of order n�3 is regular
and cuts out on C , away from the singular points, a complete linear series
g
p�1
2p�2 with index of speciality i.gp�1

2p�2/ D 1.

From (2) and (3) we know that dim An�2 D n C p � 2 � n � 1. Thus
we can impose on the curves of An�2 the condition that they pass through
n � 1 collinear but otherwise arbitrary points. The adjoints that one obtains
all split into the line containing the points and an adjoint curve of order n�3.
Conversely, every adjoint of order n � 3 taken together with a line forms an
adjoint of order n � 2.

Hence the adjoints of order n � 3 cut out on C a linear series gr
d

where

d D n.n � 2/ �
X
i

si .si � 1/ � n D 2p � 2

and, since r D dim An�2 � .n � 1/C 	n�3,

r D nC p � 2 � .n � 1/C 	n�3 D p � 1C 	n�3:

On adjoining a fixed point to this series, one obtains a series gp�1C�n�3

2p�1
which, if 	n�3 > 0, would have dimension > p � 1 D .2p � 1/ � p, and
thus would be special; however, its degree being 2p � 1 > 2p � 2, any
such gp�1C�n�3

2p�1 is also non-special by Theorem 8.5.4 (1). In conclusion,
	n�3 D 0.

The linear series gp�1
2p�2 is complete because there exists no gp2p�2 that con-

tains it. Otherwise, such a gp2p�2 would be simultaneously non-special by
Theorem 8.5.4 (2) (having dimension > p � 1) and also special (having di-
mension p > .2p � 2/ � p).

Then, by definition of the index of speciality, one has i.gp�1
2p�2/ D 1.
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The adjoints of order n � 3 are called canonical adjoints of C .
The linear series cut out on the curve C (away from its multiple points) by the

canonical adjoints will be called the canonical series of C and will be denoted by
jKC j. By a canonical divisor KC we mean a divisor belonging to the canonical
series.

In view of property (4) above, the equality (8.11) and the genus formula (8.10),
we know that

deg.KC / D 2p � 2 D n.n � 3/ �
X
i

si .si � 1/;

as well as
dim An�3 D dim jKC j D p � 1: (8.14)

8.6.3 Projective Restsatz. Let C be an irreducible algebraic plane curve of order
n and genus p as above.

We say that two divisorsA,B of points of C are mutually residual with respect to
the adjoints of a given order m if together they constitute the complete intersection
of C with an adjoint of order m. We also say that B is the residual divisor of A
with respect to the relevant adjoint.

Two divisors A, A0 of C are said to be coresidual if they are both mutually
residual (with respect to adjoint curves) to a given divisor B (possibly null), that is,
if there exist two adjoints (not necessarily of the same order) whose intersections
with C are the divisors AC B and A0 C B .

Lemma 8.6.4. Two linearly equivalent divisors A, A0 of C are coresidual.

Proof. Let L D �0f0C� � �C�rfr be the linear system of curves that cut out on C the
linear seriesgr

d
to which the two divisors belong (cf. Theorem 8.2.1 and Section 8.3).

If the curves of L are not already adjoints, we consider a fixed adjoint A, with
equation g D 0. All the curves of the linear system L0 D �0gf0 C � � � C �rgfr
then are adjoints of C and cut C in the fixed divisor B D C \ A and in the divisors
of gr

d
. Thus the two divisors A, A0 are both mutually residual to the divisor B and

so are coresidual. If the curves of L are already adjoints, then B is the null divisor.
�

8.6.5. Completeness of the linear series cut out by the adjoints of a given order:
an alternative proof. Let us propose the following different argument (cf. 8.6.2 (3)
and (4)).

On the curve C we consider two equivalent divisors A, A0 which in view of the
preceding lemma are coresidual. Consider an adjoint of orderm containingA (that
is, m is an arbitrary integer for which the linear system Am of adjoints of order m
containing A has dimension � 0). It cuts the curve C , away from multiple points
and away from A, in a certain divisor H (of degree � 0) which will therefore be a
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residual divisor for A. By the Restsatz (Proposition 8.3.3), the divisor H is also a
residual divisor for A0.

Since A and A0 are divisors of the same order, also the two divisors ACH and
A0 CH are divisors of the same order. Thus, the adjoint that passes throughH and
which must give A0 as further intersection with C will also be of order m. Hence
A0, which is an arbitrary divisor equivalent toA, can be obtained as the intersection
of C with adjoints of order m passing through H . Thus one has that the adjoints
of a given order m that pass through H cut out the complete series jAj on C . In
particular, if deg.H/ D 0, the adjoints of a given order m cut out the complete
series jAj on C . From this the desired result follows. �

The argument given above allows us to state the Restsatz in the following form,
called the “Projective Restsatz” (cf. [100, p. 153]).

Proposition 8.6.6 (Projective Restsatz). Every residual divisor of a given divisor
D on C with respect to the adjoints of a given order is the residual divisor with
respect to the same adjoints of an arbitrary divisor of jDj.
Remark 8.6.7. The preceding discussion furnishes a method for effectively con-
structing the complete series defined by a given divisor on an irreducible curve X
of PN .

We refer to a plane model C of X and consider an adjoint Am of sufficiently
large order m so that Am passes through a given divisor D. If H is the residual
divisor, the adjoints of orderm that pass throughH cut out, away from the singular
points of C , the complete series jDj. We give some examples to illustrate the
procedure.

(1) On a plane quintic C with three nodes (and so of genus p D 3) we consider
a divisor D D P4

iD1 Pi of degree 4.
In order to construct the complete series jDj we take an adjoint A3 of order 3

passing throughD. It cuts C , away from the three nodes and the four points Pi , in
a divisor H of order 5. The adjoints of order 3 that pass through H cut out on C

(away from the nodes and the divisor H ) the complete series jDj. They constitute
a pencil and so jDj D g14 .

In particular, in the case in which the four points Pi all belong to a straight
line r , the cubic A3 splits into the line r and a conic � passing through the three
nodes. One of the five points in which A3 meets C is the fifth intersection O of r
with C ; the other four are points of � . The third order adjoints that pass through
these five points are all split into the fixed part � (because they contain seven points
of � ) and a line passing through O . In this case the series jDj is cut out on C by
the straight lines of the pencil with center O (and is again a series g14).

(2) On a plane quintic C with a double point A, consider three points P , Q, R
belonging to a straight line r passing throughA and a fourth pointO of C not lying
on r . We wish to construct the linear series jDj where D D O C P CQCR.
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An adjoint of second order passing through D decomposes into the line r and
a second line passing through O . This second line further cuts the quintic in four
points collinear with O . The adjoint conics that pass through these four points
all then pass through O as well, which is therefore a fixed point of the series jDj
(which is the series g14 cut out on C by the lines passing through O). The residual
series of O with respect to this series is the series g13 cut out on C by the lines of
the pencil with center A (see Exercise 13.3.2).

Example 8.6.8. Consider the linear seriesgr
d

cut out on a plane curve (with ordinary
singularities) C by all the curves of a given order m. One sees immediately that
it is complete if C does not have multiple points, inasmuch as in that case every
curve of order m is an adjoint.

If however C has multiple points, the series gr
d

is not, in general, complete. For
example, the lines in the plane cut out on a cubic with a double point a linear series
g23 which is not complete. On the other hand, since such a cubic is a rational curve,
the complete series that contains its linear sections is a series g33 in agreement with
statements (1), (2) of Proposition 8.5.2.

8.6.9 The reduction theorem and the Riemann–Roch theorem. In view of The-
orem 8.5.7, given an irreducible algebraic curve, we may consider a plane model
C for it, and suppose that model to have order n and genus p, and to have d nodes
but no other multiple point. We will assume that p � 1.

The following result is also known as “Noether’s reduction theorem” (see [100,
p. 154]).

Proposition 8.6.10 (Noether’s reduction theorem). Let C be a plane model of an
irreducible algebraic curve of PN . Suppose that a divisorA of the curve C be such
that there exists a canonical adjoint containing its points except for one point, P .
Then the complete series jAj has P as fixed point.

Proof. Consider, as in the Figure 8.1, the curve C , of order n, the divisorA of which
P is a part, and a canonical adjoint A of order n � 3 that passes through all the
points of A except P and cuts out on C one more divisor B . This adjoint, together
with a line ` passing through P (and which meets C in the n � 1 other points H )
forms an adjoint of order n� 2 which cuts C , away from the multiple points, in the
divisor B C ACH .

The divisor B C H is thus a residual divisor to A with respect to the adjoints
of order n � 2. Therefore the complete series jAj is cut out on C by the adjoints
of order n � 2 passing through B C H . But these adjoints all contain the line `
(inasmuch as they have the n� 1 pointsH in common with it). Hence P is a fixed
point of jAj. �

It is useful to note that the preceding statement may be reformulated in the
following way. If G is a divisor contained in some canonical divisor KC and P
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is an arbitrary point of the curve C , then one and only one of the following cases
holds.

(1) All the canonical divisors that contain G also contain the point P ; or

(2) P is a fixed point of the series jG C P j.
We can now prove an important property of special linear series.

Proposition 8.6.11. Let C be a plane model of an irreducible algebraic curve
of PN . A complete and special linear series on C is partially contained in the
canonical series jKC j.
Proof. On the curve C , of genus p, consider a complete and special linear series
gr
d

. One then has r > d � p. We must prove that every divisor of gr
d

is contained
in some canonical divisor.

The statement holds if r D 0. Indeed, we know by (8.14) that the canonical
series has dimension p � 1. On the other hand, g0

d
is a unique divisor of d < p

points. Thus there exists a canonical divisor containing the d points.
We now proceed by induction. Let P be a generic point of C (and thus not

fixed for gr
d

) and let G be a divisor residual to P with respect to gr
d

, so that
gr
d

D jG C P j. The complete series jGj is a special gr�1
d�1 (because r � 1 >

d � 1� p) and so is contained in the canonical series by the induction hypothesis.
All the canonical divisors that containG also contain P , since otherwise in view of
Noether’s reduction theorem, P would be a fixed point for jG C P j D gr

d
which

contradicts the present hypothesis. In conclusion, the series jG C P j is partially
contained in jKC j. �
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The following theorem clarifies the issue raised in Problem–Definition 8.5.3,
namely to specify the geometric meaning of the index of speciality of a complete
linear series. It is a central result in the theory of linear series. In what follows we
will make systematic use of Theorem 8.5.7.

Theorem 8.6.12 (Riemann–Roch theorem, I). Let C be a plane model, of genus
p .� 1/, of an irreducible algebraic curve in PN . Let i.D/ be the index of speciality
of a divisorD of degreed on C . Then i.D/�1 is the dimension of the series residual
to D with respect to the canonical series jKC j of C . (Equivalently, i.D/ is the
maximum number of linearly independent canonical divisors that contain D, that
is, i.D/ � 1 D dim jKC �Dj.)
Proof. Let j.D/ � 1 ´ dim jKC �Dj be the dimension of the residual series of
D with respect to the canonical series. It will suffice to prove that

dim jDj D d � p C j.D/; (8.15)

since by (8.15) and the definition of the index of speciality one then has j.D/ D
i.D/ and so the theorem follows.

Equation (8.15) is obvious if j.D/ D 0. Indeed, in that case canonical divisors
containing D do not exist, so the series jDj is non-special by Proposition 8.6.11
whence dim jDj D d � p D d � p C j.D/.

If j.D/ D 1 there is a unique canonical divisor KC containing D. If then P is
a point not belonging to KC , the divisor D C P does not belong to any canonical
divisor (for otherwise a canonical divisor containing D C P would be a canonical
divisor ¤ KC containing D). This means that j.D C P / D 0 and so, by the
preceding case,

dim jD C P j D .d C 1/ � p C j.D C P / D d � p C 1 D d � p C j.D/:

On the other hand, by Noether’s reduction theorem (Proposition 8.6.10), the point
P is fixed for the series jD C P j and so dim jD C P j D dim jDj. Thus (8.15) is
also true for j.D/ D 1.

We can now proceed by induction. A point P chosen generically on C does not
belong to the canonical divisors containing D (and does not belong to D) whence

dim jKC �D � P j D dim jKC �Dj � 1;
which is equivalent to j.D C P / D j.D/ � 1. From the induction hypothesis we
have

dim jDCP j D .dC1/�pCj.DCP / D .dC1/�pCj.D/�1 D d�pCj.D/:
Since, as already noted, dim jD C P j D dim jDj, equation (8.15) follows. �
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As an immediate consequence of Proposition 8.6.11 and Theorem 8.6.12 we
obtain that

• the special linear series on C are the linear series contained in the canonical
series jKC j.

In this regard, the following important fact holds.

Remark 8.6.13. With notation as in Theorem 8.6.12, the canonical series jKC j is
the unique gp�1

2p�2 belonging to C .

In fact, gp�1
2p�2 is obviously special inasmuch as p � 1 > .2p � 2/ � p, and is

thus contained in jKC j. Since gp�1
2p�2 has the same dimension as jKC j the two series

must coincide.

The above uniqueness property ensures that the canonical series is a birational
invariant, thus allowing us to define the canonical series of a non-singular curveX
in PN of genus p to be the unique (complete) linear series gp�1

2p�2 belonging to X .
More precisely, bearing in mind what was noted in paragraph 8.4.4, it is the series
that corresponds on the curve X to the canonical series jKC j of the plane model C

of X . We will denote by jKX j (or simply by jKj) the canonical series of X . By
a canonical divisor KX (or simply K) on X we mean a divisor belonging to the
canonical series. In particular,

deg.KX / D 2p � 2:
We can now reformulate the Riemann–Roch theorem in the non-singular case

in the following form.

Theorem 8.6.14 (Riemann–Roch theorem, II). Let X be a non-singular curve of
PN , of genus p, and let D be a divisor on X of degree d . Then one has

dim jDj � dim jK �Dj D d C 1 � p:
Proof. Let C be a plane model, endowed with only nodes, of the curve X . The
statement then follows from Theorem 8.6.12 and the definition of the index of
speciality, once one observes that, under the birational map X ! C described in
§8.5.6, the series jDj is transformed into a linear series gr

d
on C which still has

order d D deg.D/ and dimension r D dim jDj; for this we refer to 8.5.9. �

It is hardly necessary to observe that in the case of a linear series gr
d

on a curve
X of genus p D 0 the index of speciality is zero, and the Riemann–Roch theorem
reduces to the equality r D d .

We illustrate a notable consequence of the Riemann–Roch theorem. The fol-
lowing proposition gives a necessary (but not sufficient) condition for a linear series
to be special (compare with Theorem 8.5.4).
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Proposition 8.6.15 (Clifford’s theorem). LetX be a non-singular curve of PN and
let gr

d
be a linear series on X . If gr

d
is special, then d � 2r .

Proof. We can surely suppose that the linear series gr
d

is complete. We take r
generic points P1; P2; : : : ; Pr on the curve. They impose r independent condi-
tions on the canonical divisors that are to contain them, and so there are at least r
conditions imposed on the canonical divisors by the divisor G of gr

d
that contains

the points P1; P2; : : : ; Pr (and which is determined by them). Hence the dimen-
sion of the residual series jK � Gj of G with respect to the canonical series is
� p � 1 � r . Thus, by the Riemann–Roch theorem, i � 1 � p � 1 � r , where
i is the index of speciality of G. But we also have r D d � p C i , that is,
i � 1 D r C p � d � 1, and therefore r C p � d � 1 � p � 1 � r , from which it
follows that 2r � d . �

8.7 Properties of the canonical series and canonical curves

In this paragraph we discuss some properties of the canonical series jKj of a non-
singular curve X of Pn and of its projective image, which we shall also call the
canonical model of X (defined up to a projectivity). These considerations also
lead to a “coarse” classification of the curves of Pn, which we summarize for the
convenience of the reader in Table 8.1 at the end of this section.

In view of what we have seen in Section 8.6, a rational curve does not have a
canonical series in the sense that the canonical divisorK has degree deg.K/ D �2
and jKj D g�1�2 D ;.

If X is an elliptic curve the canonical series jKj is of type g00 and so the divisor
K is linearly equivalent to zero (cf. Lemma 8.3.4).

The following results are important in regard to the canonical series of a curve
of genus � 2.

Proposition 8.7.1. Let X be a non-singular curve in Pn of genus p � 2 and let
jKj be the canonical series. Then:

(1) jKj does not have fixed points.

(2) If jKj is simple it does not have neutral pairs.

Proof. (1) If M were a fixed point, then on choosing a point P not belonging to
jKj, the series jK �M C P j would be a series gp�1

2p�2 distinct from the canonical
series, which contradicts the conclusion of Remark 8.6.13.

(2) If P1, P2 were a neutral couple, then on choosing two points A, B not
belonging to jKj, the series jK � P1 � P2 C A C Bj would be a series gp�1

2p�2
distinct from the canonical series, which again contradicts Remark 8.6.13. �

The following two propositions show that the hyperelliptic curves (cf. 8.5.12)
are those whose canonical series is composite (with a series g12).
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Proposition 8.7.2. Let X be a non-singular curve in Pn of genus p � 2. If the
canonical series jKj is not simple, it can be composed only with a series g12 .

Proof. Indeed, suppose that jKj is composed with an involution 	1� of order� � 2.
In this case, having chosen p � 1 arbitrary points of X which pairwise do not
belong to a common divisor of 	1�, the canonical divisor that contains them consists
of �.p � 1/ points, and so �.p � 1/ D 2p � 2, which is to say � D 2.

If then P , Q is a pair of points of 	12 , there exist canonical divisors constituted
by P ,Q and 2p�4 additional points forming a divisorH consisting of p�1 pairs
of points of 	12 . The divisor H imposes only p � 2 conditions on the canonical
divisors that contain it, and so the residual series of H with respect to jKj is a
complete linear series g.p�1/�.p�2/

.2p�2/�.2p�4/ D g12 containing the pair of points P , Q.

Every pair of 	12 thus belongs to a linear series g12 . But on the curve X there can
not be more than one g12 , for otherwise X would be birationally isomorphic to a
plane cubic (for this, see Exercise 8.10.8); and that is not possible in view of the
hypothesis that p � 2. In conclusion the involution 	12 coincides with g12 . �

Proposition 8.7.3. If a non-singular curve X in Pn of genus p � 2 contains a
series g12 , then the canonical series is composed with that g12 .

Proof. The series g12 is certainly complete (otherwise it would be contained in a
series g22 and so the curve would be rational) and therefore, if i is its index of
speciality, we have 1 D 2 � p C i , that is, i D p � 1. This means that for every
pair of points of the g12 there pass p � 1 independent canonical divisors, that is,
dim jK � g12j D dim jKj � 1. Thus a given pair of points of g12 impose only one
condition on the canonical divisorsK which are to contain it; that is, the series jKj
is composed with g12 . �

Among the hyperelliptic curves, there are in particular all the curves of genus
p D 2 inasmuch as they have a series g12 as canonical series.

By what we have proved previously, we know that the canonical series gp�1
2p�2 on

a non-hyperelliptic curve X , which thus must be of genus p � 3, is simple, and its
projective image is a curve X of order 2p�2 in a space Sp�1, which is birationally
isomorphic toX , and on which the canonical series is cut out by the hyperplanes of
Sp�1. The curve X is called canonical model ofX (and, as we know, it depends on
the basis chosen to define gp�1

2p�2). In fact, two canonical models ofX correspond to
each other under a projectivity of their spaces Sp�1. One says that X is a canonical
curve of genus p. In this regard we note that

• every non-singular curve of genus p .� 3/ and order 2p � 2 in Sp�1 is a
canonical curve.

Indeed, it suffices to observe that the hyperplanes cut out a linear series gp�1
2p�2

on the given curve.
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In the case of a hyperelliptic curveX of genusp � 2, the image of the canonical
series (which is composed with a series g12) is a curve C of order 2p�2

2
D p � 1

in Sp�1. Hence C is a rational normal curve of order p � 1 whose points are in
bijective correspondence with the pairs of g12 . More precisely, one has a double
covering X ! C whose fibers are the divisors of g12 .

Remark 8.7.4 (Series of type g12 on a curve of genus � 1). LetX be a non-singular
curve of genus p � 1. If p D 1, an arbitrary pair of points constitutes a non-special
divisor A, and hence by the Riemann–Roch theorem they define a non-special (and
complete) linear series g12 D jAj. Thus, an elliptic curve contains 11 complete
linear series g12 .

One may reach the same conclusion in a more elementary fashion by following
the procedure described in paragraph 8.5.6. If p D 1, the curveX is isomorphic to
the projective image of a series g23 , which is a non-singular plane cubic C in view
of the inequality 3 > 2p. If A, B are two points of C , the pencil of lines with
center at the third intersection P of C with the line rAB cuts out on C a series g12
containing the divisor AC B . Thus there are 11 linear series of type g12 , just as
many as there are points P of C .

If p D 0, there are (non-complete) linear series g12 on the rational curve X
which are contained in the (complete) series g22 consisting of all the pairs of points
of the curve. Such g12 are in number 12, just as many as there are lines in the plane
of the projective image conic of g22 .

Example 8.7.5 (Canonical curves of genus p D 3; 4; 5). The canonical curves of
genus p D 3 are the non-singular plane quartics. In general, let �m be the maximal
number of independent hypersurfaces of orderm > 1 in the space Sp�1 that contain
a canonical curve C 2p�2. The dimension r of the linear series gr

m.2p�2/ cut out

on C 2p�2 by the linear system of all the hypersurfaces of Sp�1 of order m is, cf.
Theorem 8.2.1,

r D
 
p � 1Cm

p � 1

!
� 1 � �m:

On the other hand, this series is non-special because m > 1 implies that its order
2m.p � 1/ is greater than 2p � 2. Hence, by the Riemann–Roch theorem, 

p � 1Cm

p � 1

!
� 1 � �m � 2m.p � 1/ � p

(where the equality holds if the series gr
m.2p�2/ is complete), that is,

�m �
 
p � 1Cm

p � 1

!
� 1 � 2m.p � 1/C p:
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For example, if p D 4, we have

�m �
 
mC 3

3

!
� 6mC 3I �2 � 1I �3 � 5I : : : :

The canonical curve C 6 � P3 of genus p D 4 is thus contained in a quadric
Q, and really in only one quadric since a space curve of order 6 can not belong
to two quadrics. Furthermore, it belongs to all the cubics of a linear system of
dimension � 4, the generic member of which does not contain the quadric Q as
component, in view of the fact that there are only 13 cubic surfaces in P3 which
split into a given quadric and a residual plane.

Therefore, the canonical curve C 6 of genus p D 4 is the complete intersection
of a quadric with a cubic surface in P3. The generators of a system of lines of the
quadric (or the generators of the cone if the quadric is a cone) cut out a linear se-
ries g13 . Thus C 6 is a trigonal curve (that is, by definition, 3 is the minimal order
of a base point free linear series of dimension � 1 belonging to the curve, cf. [1,
Chapter 3, §2]).

If p D 5 the canonical curve is a C 8 in P4. One then has �2 � 3 and so C 8

belongs to three linearly independent quadrics, which generate a net. Since�3 � 15,
C 8 belongs to a linear system of cubic hypersurfaces having dimension � 14. In
general, the three independent quadrics passing throughC 8 have in common only a
curve (as happens for three generic hypersurfaces in P4), and this curve is the curve
C 8, the base locus for the net of quadrics. It can, however, happen that the three
independent quadrics contain a common surface F. The quadrics passing through
the surface of order 4 common to two quadrics belong to the pencil defined by the
latter quadrics. It follows that the order of the surface F is < 4. Since C 8 does
not belong to any S3, the surface F has order � 3 (for otherwise C 8 � F � P3).
Hence, if the canonical curve C 8 is not the complete intersection of three quadrics,
it belongs to a cubic surface F3 � P4, the base surface of the net of quadrics passing
through C 8.

In the following Table 8.1, X is a non-singular curve in Pn of genus p, jKj is
its canonical series and C is the canonical model of X .

Remark 8.7.6. For an irreducible algebraic curve with arbitrary singularities and
lying in a projective space of any given dimension, the canonical series is defined
as the image of the canonical series of a non-singular birational model apart from
possible fixed points (which may arise from the fact that the two curves are only
birationally equivalent).
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Table 8.1. “Coarse” classification of the curves of Pn.

p K X C

0 g�1
�2

D ; rational

1 g0
0

elliptic

double cover exists

X ! C D P1

2 g1
2

; without fixed points hyperelliptic whose fibers are the

divisors of g1
2

C D Cp�1 � Sp�1

rational normal;

double cover exists
g

p�1

2p�2
; without fixed points; hyperelliptic X ! C

� 3 composed with a series g1
2 whose fibers are the

divisors of g1
2

C D C 2p�2 � Sp�1

g
p�1

2p�2
; without fixed points; non-hyperelliptic canonical curve

simple of genus p

8.8 Some results on algebraic correspondences between two
curves

In this section we present, in deliberately terse form, some results regarding alge-
braic correspondences between curves, indicating some applications in the form of
exercises. For the proofs and further information one may consult, for example,
Severi’s text [100].

Possible singularities of the curves under consideration will always be supposed
to be ordinary in the sense of Proposition 8.1.3.

By an .m; n/ algebraic correspondence (or a correspondence with indicesm, n)
between two algebraic curvesC , C 0 we mean a correspondence! W C ! C 0 which
associates m points of C 0 to each point of C and n points of C to each point of
C 0, and such that the coordinates of two associated points are related by algebraic
equations.
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8.8.1 (Zeuthen’s formula). Zeuthen’s formula establishes a relation between the
genera p, p0 of the two curves C , C 0, the indices of the correspondence, and the
numbers ı, ı0 of ramification points of C and C 0. Here by ramification point,
for example, of C we mean a point to which there corresponds on C 0 a group of
m points not all of which are distinct. In the case in which the correspondence
presents only double points, that is, to each ramification point there correspond
only two coinciding points, the following formula (due to Zeuthen) holds:

ı � ı0 D 2n.p0 � 1/ � 2m.p � 1/:
8.8.2 (Genus of an involution on an algebraic curve). If the divisors of an involution
	1� on C are birationally referred to the points of an algebraic curve C 0 of genus p0,
we will say that p0 is the genus of 	1�. To give an involution 	1� is thus equivalent
to giving an algebraic correspondence of indices .1; �/ between the two curves C
and C 0.

Applying Zeuthen’s formula to this correspondence (in which we set m D 1

and so ı D 0) one obtains the equality

2.p � 1/ D 2�.p0 � 1/C ı0

thus establishing the relationp0 � p. Hence, on a curve of genusp every involution
has genus not greater than p. In particular (cf. Theorem 6.6.2):

• (Lüroth’s theorem) On a rational curve every involution is rational.

8.8.3 (The Cayley–Brill correspondence principle). Suppose C 0 D C , that is, we
consider an .m; n/ algebraic correspondence ! between two superimposed copies
of C . Chasles’ correspondence principle, according to which an algebraic corre-
spondence of indices m, n on a rational curve possesses m C n fixed points, is a
particular case of the Cayley–Brill correspondence principle.

Let P be an arbitrary point of C and !.P / the group ofm points corresponding
to it. As P varies on C , the various divisors !.P / are not, in general, linearly
equivalent. However, it can happen that there exists an integer v such that the
divisors !.P /C vP are equivalent, with P variable on C . One then says that ! is
a correspondence with valence and that v is its valence.

One proves that on a non-hyperelliptic curve there exist only correspondences
with valence.

The Cayley–Brill correspondence principle affirms that if p is the genus of C
then an .m; n/ correspondence of valence v has mC nC 2vp fixed points.

8.8.4 (Number of .rC1/-fold points of a series gr
d

on a curve of genus p). For each
point P of C let GP be the divisor of the given gr

d
defined by the point P counted

r times. Consider the correspondence ! W C ! C that associates to the point P
the remaining d � r points ofGP . The fixed points of ! are the .rC 1/-fold points
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of gr
d

. We denote their number by Œd; r C 1�. We know the first index m D d � r

and the valence v D r of !. It is not difficult to prove that the second index, that
is the number n of divisors of the series that contain a point P 0 2 C 0 (where now
C 0 D C ) and which haveP as r-fold point, is the number Œd �1; r� of r-fold points
of the series gr�1

d�1 constituting the residual series of P 0 with respect to gr
d

. By the
Cayley–Brill correspondence principle one obtains the recursive formula:

Œd; r C 1� D d � r C Œd � 1; r�C 2rp: (8.16)

The number Œd �rC1; 2� of double points of a series g1
d�rC1 onC is also the order

r D 2.r C p � 1/ of the Jacobian group of g1
d�rC1, cf. (7.4). Thus one obtains:

• The number of .r C 1/-fold points of a series gr
d

on a curve C of genus p is

Œd; r C 1� D .r C 1/.d � r C rp/:

In particular, the number of Weierstrass points, namely the p-fold points for
the canonical series of the curve C , is Œ2p � 2; p� D p.p2 � 1/.

Exercise 8.8.5 (Flexes of an elliptic curve). We say that a point P of an elliptic
cubic C corresponds to its tangential P 0. Since P 0 is tangential to four points
P (through P 0 there pass four tangents to C distinct from the tangent at P 0, cf.
Exercise 5.7.17), one thus has an algebraic correspondence ! W C ! C of indices
.1; 4/ and valence v D 2, whose fixed points are the flexes of the cubic. By the
Cayley–Brill correspondence principle, their number is then 1C4C.2�2�1/ D 9.

This result can also be obtained immediately by observing that the flexes are
triple points of the series g23 cut out on C by the lines of the plane.

Exercise 8.8.6 (Stationary points of a quartic of the first kind). An elliptic space
quartic has sixteen stationary points, that is, points at which the osculating plane is
hyperosculating. The stationary points are in fact the 4-fold points of the series g34
cut out by plane sections.

Exercise 8.8.7 (Sextatic points of an elliptic cubic). An elliptic cubicC has twenty-
seven sextatic points, that is, points that absorb the six intersections of C with an
irreducible conic. They are the 6-fold points of the series g56 cut out on C by the
conics. In view of what was seen in §8.8.4, this series has 6.6�5C1�5/ D 36 six-
fold points. Nine of these are the flexes of the cubic (for which the hyperosculating
conic is the flexional tangent counted twice).

Exercise 8.8.8. Prove that the sextatic points of an elliptic cubic are the tangentials
of the flexes.

LetH be a rectilinear section of the cubicC , and letF andP be a flex and one of
its three tangential points (the tangentials of three collinear points ofC are collinear,
cf. Exercise 5.7.15). We then have F C 2P � H and so 3F C 6P � 3H . But
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3F � H , and therefore 6P � 2H . Hence 6P is linearly equivalent to a section by
a conic, and is in fact a section by a conic inasmuch as the conics cut out a complete
linear series on C .

Exercise 8.8.9. A non-hyperelliptic curveX can not have infinitely many birational
transformations into itself.

Indeed, a birational transformation of the canonical model C of X sends hy-
perplane sections into hyperplane sections and so is subordinate to a projectivity of
Sp�1, where p is the genus of X . But the projectivities of Sp�1 that send C into
itself are finite in number because they must change hyperosculating hyperplanes
into hyperosculating hyperplanes, that is, Weierstrass points into Weierstrass points
(and the latter are in number p.p2 � 1/).
Exercise 8.8.10. Let a point O and an irreducible algebraic curve C of order d
and genus p be given in the plane. How many normals to C issue from O?

We say that two points P and P 0 correspond if the line rPP 0 and the tangent to
C at P are perpendicular.

One thus obtains an algebraic correspondence ! on C whose fixed points are
the points of C which are the feet of normals issuing from O .

To a point P of C there correspond the points of contact of C with the tangents
issuing from the improper point H of the line orthogonal to the line rOP ; their
number is the class � of C . These points are the intersections P 0

1; P
0
2; : : : of the

curve C with the first polar of H with respect to C . Thus one has an algebraic
correspondence ! with first index �. One sees immediately that the second index
is the order d of the curve; indeed, the points corresponding to a point P 0 are the
d intersections of the curve with the perpendicular drawn throughO to the tangent
at P 0.

AsP varies, the divisor!.P / remains equivalent to itself inasmuch as it consists
of the intersections of C with a curve of order d � 1 (the first polar of H ). This
means that the valence of ! is v D 0.

By the Cayley–Brill correspondence principle we have that the number of nor-
mals issuing from a point P on a plane algebraic curve C of order d and genus p
is d C � D 3d C 2p � 2.

8.9 Some remarks regarding moduli

The classification of algebraic curves is a fundamental problem.
Here we limit ourselves to an elementary introduction outlining a few major

points. In addition to the fundamental texts [32] and [67] we refer the reader also
to the introductory survey [93] (see also [46, pp. 253–259]).

Let Mp be the set of birational isomorphism classes of curves of genus p. The
problem is to describe Mp . For low values of p the solution is simple.

In view of our discussion on rational curves, the space M0 reduces to a point.
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Consider the case p D 1. We begin with the observation that an elliptic curve
X has a non-singular plane cubic as birational model. Indeed, we consider the
complete series defined by a divisor D consisting of three (distinct) points of X .
The series jDj is non-special, and so, by the Riemann–Roch theorem, jDj is a
series g23 . Being of prime order, jDj is surely simple. Thus, its projective image is
a non-singular plane cubic C (compare with 8.10.13). We also refer the reader to
[113, Chapter 3, §6] for a description of the further properties of plane cubics.

The results discussed in Section 5.7 (see, in particular, the theorem of G. Salmon,
Exercise 5.7.17) then allow one to conclude that the expression

J D J.k/ ´ .k C 1/2.2k � 1/2.k � 2/2
.k2 � k C 1/3

;

introduced in 1.1.1, where k denotes the cross ratio of the four tangents drawn to
the cubic C from one of its points, is the modulus of the curve X . It depends only
on the birational model C of X and assumes all possible values in C. Thus M1

may be identified with C via J .

Deligne and Mumford [32] have shown that Mp for p � 2 is an irreducible
quasi-projective variety of dimension 3p � 3 (over any fixed algebraically closed
field). In the case p D 2, Igusa [55] has given an explicit construction of M2.

We now illustrate a heuristic method for calculating the number of classes of
birational equivalence for curves of a given genus p. By the above remarks we may
suppose that p � 2.

We begin by considering the general case, namely, that of non-hyperelliptic
curves. Since all curves of genus 2 are hyperelliptic, we may assume in fact that
p � 3.

If two non-hyperelliptic curves of genus p are birationally equivalent, their
canonical curves C 2p�2 � Sp�1 correspond to each other under a projectivity of
their spaces Sp�1. In fact, the canonical divisors of the first are mapped to the
canonical divisors of the second, and so the hyperplanes of the two spaces Sp�1
are in correspondence, thus giving rise to a projectivity between the two spaces that
maps one curve onto the other.

A C 2p�2 of Sp�1 of genus p � 3 projects from p � 3 of its points into a plane

 and therein onto a curve C

pC1
1 of genus p with p.p�1/

2
�p D 1

2
.p2�3p/ double

points.
If one changes the centers of projection on C 2p�2 to p � 3 other points, one

obtains another curve C
pC1
2 as projection in 
 . For generic choices of the two

sets of p � 3 points on the curve C 2p�2, the corresponding projections in 
 are
not projectively equivalent, that is, they do not correspond to each other under a
projectivity of P2. Indeed, a projectivity of 
 that sends (collinear) points of C

pC1
1

in (collinear) points of C
pC1
2 extends to a projectivity of Sp�1 sending each of the

two groups of p�3 points on the curveC 2p�2 into the other, and so would give rise



8.9. Some remarks regarding moduli 279

to a birational correspondence of C 2p�2 with itself. Therefore, the curve C 2p�2
would have infinitely many automorphisms, in contrast with what was shown in
Exercise 8.8.9.

Hence, starting from a givenC 2p�2 one obtains 1p�3 projectively inequivalent
plane models (this being the number of spaces Sp�4 in Sp�1 generated by groups
of p � 3 points taken as centers of projection). Bearing in mind that there are 18

projectivities of 
 , one sees that each canonical curve leads to a continuous family
of dimension p � 3C 8 D pC 5 of curves all of which are birationally equivalent
to the initial curve X .

However, the curves of 
 having order p C 1 and genus p (and thus endowed
with 1

2
.p2 � 3p/ double points) constitute an algebraic system of dimension, cf.

Example–Definition 6.2.2,

1

2
.p C 1/.p C 4/ � 1

2
.p2 � 3p/ D 4p C 2:

In conclusion, the number of birational equivalence classes of the curve X is

4p C 2 � .p C 5/ D 3p � 3:
In order to treat the hyperelliptic case, which presents some particularly notable

aspects, we need the following lemma.

Lemma 8.9.1. A hyperelliptic curve X of genus p � 2 is birationally equivalent
to a plane curve of order p C 2 having a point of multiplicity p (and no other
singularities).

Proof. On X take p C 2 generic points (that is, points belonging to p C 2 distinct
divisors of the g12). They form a non-special divisorD; indeed, since the canonical
series is composed with theg12 , a canonical divisor that containsDmust also contain
p C 2 other points, which is impossible because 2.p C 2/ > 2p � 2. From this it
follows that the complete series jDj is a series g2pC2.

The series g2pC2 is simple, that is, without neutral pairs. Indeed, to contain
a neutral pair imposes a single condition on the divisors of the series. Thus, the
residual series of a neutral pair would be a series g1p . But, by definition of the
genus, p generic points constitute an isolated divisor. Furthermore, g2pC2 has no
fixed points because the residual series of a fixed point would be a g2pC1, and the
residual series of another (not fixed) point with respect to that g2pC1 would be a
series g1p .

In conclusion, the projective image of the series g2pC2 is a curve CpC2 � P2

birationally equivalent toX . On CpC2, the g2pC2 is cut out by the lines of the plane.
Let A C B be a divisor of the series g12 on CpC2 and let O be the divisor

constituted by the residual intersection of CpC2 with the line hA;Bi. We take
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another arbitrary divisor A0 C B 0 of our g12 . One has the linear equivalences

AC B � A0 C B 0 and AC B CO � A0 C B 0 CO:

But jACBCOj is the complete series defined by the lines of the plane. Therefore,
the line hA0; B 0i contains O , no matter how the pair of points A0, B 0 (of the series
g12) are chosen. It follows thatO is a point of multiplicityp for the curve CpC2. �

Let CpC2 be a plane model of a hyperelliptic curve of genus p � 2, ant letO be
the point of multiplicity p of CpC2. We fix a system of homogeneous coordinates
.x0; x1; x2/ in the plane in such a way that O is the point Œ0; 1; 0�. For CpC2 we
then have an equation of the form, cf. §5.2.1,

CpC2 W 'p.x0; x2/x21 C 2'pC1.x0; x2/x1 C 'pC2.x0; x2/ D 0;

where'i .x0; x2/ is a homogeneous polynomial of degree i ,p � i � pC2. Passing
to affine coordinates x D x0

x2
, y D x1

x2
, O is the point at infinity along the axis y

and
CpC2 W y2'p.x/C 2y'pC1.x/C 'pC2.x/ D 0: (8.17)

By way of the birational isomorphism´
u D x;

v D y'p.x/C 'pC1.x/;

8<:
x D u;

y D v � 'pC1.u/
'p.u/

;

the equation of CpC2 becomes (on eliminating the denominators):

v2 D '2pC1.u/ � 'p.u/'pC2.u/:

Thus one obtains as birational model for CpC2 a plane curve of order 2p C 2

with the point O at infinity on the v-axis as a point of multiplicity 2p, and with
equation of the form

C
2pC2
1 W v2 D f2pC2.u/: (8.18)

The polynomial f2pC2.u/ may be written in the form

f2pC2.u/ D �.u � a1/.u � a2/ : : : .u � a2pC2/; (8.19)

where � is a non-zero constant and the roots ai 2 C are distinct since the curve
C
2pC2
1 does not have multiple points on the u-axis. Moreover, the 2p C 2 double

points of the series g12 on C
2pC2
1 are projected onto the u-axis by the lines u D

a1; : : : ; u D a2pC2 (cf. §8.8.4).
Let � denote one of the complex roots of the equation

z2 D .a1 � a2pC2/ : : : .a2pC1 � a2pC2/;



8.9. Some remarks regarding moduli 281

and consider the birational isomorphism8̂̂<̂
:̂
u0 D 1

a2pC2 � u;

v0 D v

�.a2pC2 � u/pC1 ;

which has as its inverse 8̂̂<̂
:̂
u D a2pC2 � 1

u0 ;

v D �
v0

u0pC1 :

Under this birational isomorphism, the curve C
2pC2
1 is transformed into the

curve C
2pC1
2 having equation

v02 D �

�
.a2pC2 � a1/u0 � 1� : : : �.a2pC2 � a2pC1/u0 � 1�

.a2pC2 � a1/ : : : .a2pC2 � a2pC1/
;

or

v02 D �

�
u0 � 1

a2pC2 � a1
�

� � �
�
u0 � 1

a2pC2 � a2pC1

�
: (8.20)

In this way one finds a second birational plane model of order 2pC1which has
a singular point of multiplicity 2p � 1 at the point at infinity on the v0-axis. The
2p C 2 double points of the series g12 are now projected to the u0-axis by the lines
u0 D a1; : : : ; u

0 D a2pC1 and by the line at infinity of the plane hu0; v0i.
We can now prove the following classification theorem.

Theorem 8.9.2. In two affine planes with coordinates x, y and x0, y0, consider two
hyperelliptic curves C and C 0, of degree 2p C 2 and genus p � 2, of equations,
respectively,

C W y2 D f2pC2.x/ and C 0 W y02 D f 0
2pC2.x0/:

Then a necessary and sufficient condition for C and C 0 to be birationally equivalent
is that the 2pC2 double points of the two seriesg12 , cut out by the two groups of lines
f2pC2.x/ D 0 and f 0

2pC2.x0/ D 0, respectively, correspond under a projectivity
of P1(cf. §8.8.4).

Proof. A birational transformation ' W C ! C 0 changes the series g12 of C into the
series g12 of C 0 and subordinates a bijective algebraic correspondence ! W ˆ ! ˆ0,
where ˆ and ˆ0 are the two pencils of lines cutting out the two g12’s on C and C 0,
respectively. Note that ! is in fact a projectivity (cf. §1.1.3).

Since ' changes the double points of the series g12 of C into the double points of
the series g12 of C 0, the projectivity ! transforms the group of lines f2pC2.x/ D 0
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into the group of lines f 0
2pC2.x0/ D 0 and viceversa. Thus the condition is neces-

sary.
We now prove the sufficiency of this condition. Write

f2pC2.x/ D �.x � a1/.x � a2/ : : : .x � a2pC2/

and
f 0
2pC2.x0/ D �0.x0 � a0

1/.x
0 � a0

2/ : : : .x
0 � a0

2pC2/;
as in the form (8.19), with �, �0 non-zero constants. Suppose that the two groups
of points fa1; : : : ; a2pC2g and fa0

1; : : : ; a
0
2pC2g are transformed into each other by

a projectivity of P1. Let

x D ˛x0 C ˇ

�x0 C ı
(8.21)

be the affine expression of the projectivity with ˛; ˇ; ı; � 2 C. Then

f2pC2.x/ D f2pC2
�
˛x0 C ˇ

�x0 C ı

�
D �

.�x0 C ı/2pC2
2pC2Y
iD1

.˛ � �ai /
�
x0 � ıai � ˇ

˛ � �ai
�
:

However, in view of (8.21) we also have

a0
i D ıai � ˇ

˛ � �ai ; i D 1; : : : ; 2p C 2;

and so, on setting % ´ �
�0

Q2pC2
iD1 .˛ � �ai /, we find that

f2pC2.x/ D f2pC2
�
˛x0 C ˇ

�x0 C ı

�
D %�0

Q2pC2
iD1 .x0 � a0

i /

.�x0 C ı/2pC2 D %
f 0
2pC2.x0/

.�x0 C ı/2pC2 :
(8.22)

Let t be one of the complex roots of the equation z2 � % D 0, and consider the
birational isomorphism 8̂̂<̂

:̂
x D ˛x0 C ˇ

�x0 C ı
;

y D t
y0

.�x0 C ı/pC1 :

In view of (8.22), this birational map transforms the curve C W y2 D f2pC2.x/ into
the curve with equation

%
y02

.�x0 C ı/2pC2 D %
f 0
2pC2.x0/

.�x0 C ı/2pC2 ;

that is, into the curve C 0 W y02 D f 0
2pC2.x0/. �
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Remark 8.9.3. Consider a curve CpC2 of order p C 2 and having an equation
of type (8.17). Then CpC2 has the point at infinity O of the y-axis as a p-fold
point whose (generally distinct) tangents have equation 'p.x/ D 0. If CpC2 has
no other singularity then it is of genus p. Indeed, the presence of the p-fold point
as the only singularity forces the genus to be at most p (as one can readily verify
using the genus formula, cf. Definition 7.2.6, Proposition 7.2.7). On the other
hand, every plane curve � of order p C 2 having an ordinary p-fold point O is
hyperelliptic. Indeed, the pencil of lines with center at O cuts out a linear series
g12 on � . However, the genus of � is not necessarily p because it could very well
have other multiple points. The canonical series on � is cut out by the adjoints of
order .p C 2/� 3 D p � 1. Since these adjoints pass through O with multiplicity
p � 1 they are split into lines issuing fromO . This proves that the canonical series
is composed with a g12 . If � has other multiple points, the lines joining O with the
multiple points are fixed components of the adjoint curves of order p� 1, each line
being counted with appropriate multiplicity.

The other two curves C
2pC2
1 , C

2pC1
2 obtained via birational transformations

from (8.17) and with equations (8.18) and (8.20) respectively, both have a compli-
cated singularity at the point O at infinity on the y-axis. The tangents at O (which
are in number 2p or 2p � 1, respectively) all coincide with the line at infinity.

Here we merely note that in the case of an even number of tangents, on resolving
the singularity (see also Section 9.2), one sees that O is a 2p-fold point with p
infinitely near double points, while in the odd case O is a .2p � 1/-fold point with
p infinitely near double points. For a detailed analysis of the singularity we refer
the reader to [36, Vol. III, pp. 92–94].

8.9.4. Bearing in mind that Mp is a variety, the condition “X is sufficiently general
among the curves of genusp” (or, in the usual terminology, “X has general moduli”)
may be expressed by saying that X can be chosen in a Zariski open subset of Mp .

It is easy to see that a genus 3 curve X with general moduli has no non-identity
birational transformations into itself. Indeed, as seen in Exercise 8.8.9, a birational
transformation of the canonical model C 2p�2 of X is subordinate to a projectivity
of Sp�1 that permutes the set of p.p2 � 1/ Weierstrass points. If the curve has
general moduli, such a projectivity is necessarily the identity.

For particular curves, however, there may exist birational automorphisms that
induce a permutation of the set of Weierstrass points. A theorem of Schwarz and
Klein (see [100, p. 173]) guarantees that the number of such automorphisms is finite.
Here are some famous examples of such particular curves, cf. [36, Vol. III, p. 238].

(1) The Klein quartic, with equation

x30x1 C x31x2 C x32x0 D 0;

has a group of 168 birational automorphisms, called the Klein group. In this
regard, a classical theorem of Hurwitz [54] states that a smooth curve of genus
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p � 2 (over a field of characteristic 0) has at most 84.p�1/ automorphisms.
Thus, Klein’s quartic shows the sharpness of the Hurwitz bound for curves
of genus 3.

(2) The Valentiner sextic, with equation

10x30x
3
1 C 9x2.x

5
0 C x51/ � 45x20x21x22 � 135x0x1x42 C 27x62 D 0;

has a group of 360 birational automorphisms, called the Valentiner group.

A hyperelliptic curve has at least the involutory automorphism induced by its
g12 , and in general has no others except for the identity map.

8.10 Complements and exercises

The possible singularities of the curves considered are always supposed to have
distinct tangents (cf. Proposition 8.1.3).

We also refer to Section 13.3 for further exercises whose solution makes essential
use of the theory of the planar representation of rational surfaces developed in
Chapter 10.

8.10.1. Given four distinct points A, B , C , D on an elliptic cubic X , the divisors
ACB and C CD are equivalent if and only if the lines rAB and rCD meet on the
curve.

We note first that an elliptic cubic is a non-singular plane curve. If the lines
rAB and rCD meet on X in a point H one then has, by definition, AC B CH �
C CD CH , so that AC B � C CD.

Conversely, assume A C B � C C D. If H is the further intersection of X
with the line rAB , one then has AC B CH � C CD CH . Therefore C , D, H
are collinear points, and hence rAB \ rCD D H .

8.10.2. Two points of an elliptic cubicX are linearly equivalent only if they coincide.

An arbitrary line passing through a point A of X is a (first order) adjoint that
also meets the curve in two other points P , Q. The unique adjoint of first order
that contains these two points cuts the curve in the point A and thus it is the unique
divisor of the complete series jAj. Therefore, there do not exist divisors equivalent
to A but distinct from A.

8.10.3. Prove that three non-collinear points of a non-singular plane quartic form
an isolated divisor.

A conic � passing through the three pointsA,B , C (that is an adjoint of order 2)
meets the quartic also in five other points. The conics passing through these five
points cut out the complete series defined by the divisor ACB CC . If among the
five points no four are collinear, then there is a unique conic passing through them,
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namely the conic � . Consequently,ACBCC does not have divisors to which it is
linearly equivalent. If instead four of the five points belong to a line `, then through
them there pass 11 conics (among which is � ) all split into ` and a variable line in
a pencil with center on the quartic.

8.10.4. Give an example of a linear series with a neutral pair on a curve X � Pn.

It suffices to consider the series cut out onX by the hyperplanes that pass through
a generic Sn�3. If d and p are the order and genus of X , there are as many neutral
pairs as there are chords of X supported by that Sn�3. But these are in number
.d�1/.d�2/

2
� p (the number of double points of a generic plane projection of X ).

8.10.5. Prove that on a plane curve X the linear series cut out by all the curves of
a given order m is simple.

8.10.6 (cf. Proposition 8.7.3). Give examples of composite linear series on a curveX .

(1) Let X be a plane curve of order d with a .d � 2/-fold point O . The curves
C of order d � 3 (i.e., the canonical adjoints ofX ) cut out onX a composite series
(composed with a series g12), because they are all split into d � 3 lines passing
through O , and each line has two further points of intersection with X in addition
to O . Thus the curves C that pass through a point P 2 X contain the line rPO ,
and consequently pass through P 0, where P 0 is the further intersection of C away
from P and O .

(2) An example of a linear series composed with an involution is obtained by
considering a curve X on a cone V � Pn where X meets the generator spaces in
� points not belonging to the linear space S constituting the vertex of the cone.
The hyperplanes passing through S cut out on X a linear series composed with
an involution 	1�. Indeed, a hyperplane passing through S and through a generic
point P of the curve contains the generator space G joining S with P . Therefore
it contains the entire divisor of the intersections of the curve X with G.

In this case 	1� is said to be an involution of genus p (and is said to be non-
rational if p > 0), where p denotes the sectional genus of the cone V , that is,
the genus of the curve obtained as intersection of V with a generic linear space of
dimension n � dim.V /C 1.

In the case, like that of the cone, of a variety V , locus of 11 linear spaces, the
sectional genus is also called simply the genus of V .

A further (and apparently more general) example is obtained by considering a
variety V which is the locus of 11 linear spaces issuing from a linear space S ,
and on it a curve X that meets each of those linear spaces in � variable points.
The hyperplanes passing through S cut out on X a linear series composed with an
involution 	1� of genus p, where p is the genus of V .

8.10.7 (cf. §8.4.4). Let ' W X ! X 0 be a birational map between two non-singular
algebraic curves. Then ' is a morphism and bijective without exceptions.
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Suppose that X is embedded in Pn and has order d . The linear series gn
d

of the
hyperplane sections of X is simple and has no fixed points. Under ' W X ! X 0 to
gn
d

there corresponds onX 0 a linear series which is simple and without fixed points.
The residual series of a point P 0 2 X 0 with respect to that linear series is a gn�1

d�1.
To this series there again corresponds onX a series gn�1

d�1 cut out by the hyperplanes
passing through a point P (belonging to X ). To the point P 0 there corresponds the
pointP . Similarly, to each point ofX there corresponds a well-defined point ofX 0.

8.10.8. An irreducible algebraic curve X on which there are two simply infinite
linear series g1

d
and g1

d 0 is birationally isomorphic to a plane curve of order d Cd 0
having two multiple points with multiplicities d and d 0.

In particular, if X contains two g12’s, then is an elliptic curve.

Consider a plane model C of the curve X (cf. Theorem 9.2.4). The two linear
series can be referred projectively to two coplanar pencils of lines, with centers O
and O 0. If we consider two divisors of g1

d
and g1

d 0 to be in correspondence when
they have (at least) a point in common, we obtain an algebraic correspondence !
of indices d 0, d between the two pencils, and the locus of the points common to
corresponding lines is a curve C 0 birationally isomorphic to C . Indeed, a generic
point P of C belongs to a divisor of g1

d
and to a divisor of g1

d 0 , and so determines a
pair of corresponding lines in the two pencils, that is a point P 0 of C 0. Conversely,
a pointP 0 of C 0 belongs to two corresponding lines, and so determines two divisors
from the two series which have a point P in common.

To find the order of C 0 we must determine the number of its intersections with a
generic line `, and these are the fixed points in the .d 0; d / algebraic correspondence
induced by ! on `. By Chasles’ correspondence principle, §1.1.3, the order of C 0
is d C d 0. The two series g1

d
and g1

d 0 are cut out on C 0 by the two pencils of lines
having centersO andO 0 respectively. One then sees immediately thatO andO 0 are
multiple points for C 0 of multiplicity d and d 0 respectively (a generic line through
O meets C 0, away from O , in .d C d 0/ � d 0 D d points; and similarly for O 0).

8.10.9. Verify that the canonical adjoints of an algebraic plane curve are covariant
with respect to Cremona transformations, namely that a Cremona transformation of
the plane sending a curveX into a curveX 0 maps the system of canonical adjoints
of X into the system of canonical adjoints of X 0.

8.10.10. Prove that the canonical series on a curveC.˛; ˇ/ lying on a non-singular
quadric Q in P3 is cut out by the curves of type .˛ � 2; ˇ � 2/.

We make use of the properties of the stereographic projection of a quadric, as
discussed in §7.3.1. The projection C of C.˛; ˇ/ from a point of Q not belonging
to C.˛; ˇ/ onto a plane 
 has order ˛ C ˇ and has (only) two multiple points A
and B of multiplicities ˛ and ˇ respectively. The canonical adjoints of C contain
the line rAB as component. The residual components, which are curves of order
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˛Cˇ� 4 having multiplicities ˛� 2 in A and ˇ� 2 in B , are the projections from
O of the curves of type .˛ � 2; ˇ � 2/ of Q.

Conversely, the curves of type .˛ � 2; ˇ � 2/ on Q constitute a linear system
of dimension ˛ˇ � ˛ � ˇ D .˛ � 1/.ˇ � 1/ � 1 D p � 1, where p is the genus
of the curve C.˛; ˇ/. On C.˛; ˇ/ that system cuts out a linear series having order
˛.ˇ � 2/C ˇ.˛ � 2/ D 2.˛ˇ � ˛ � ˇ/ D 2p � 2 and having the same dimension
p � 1.

For example, on a non-singular .3; 3/ curve which is the complete intersection
of Q with a cubic surface, the canonical series is given by the .1; 1/ curves, that is,
by the plane sections of Q. Thus the .3; 3/ curve is a canonical projective curve.

8.10.11. A plane quartic C with two nodes is the projection of a non-singular
quartic in S3.

The series g24 D HC of rectilinear sections is non-complete. Indeed, by the
Riemann–Roch theorem, the complete series gr4 that contains it (which is non-
special) has dimension r D 4 � p D 3, since the genus p of C is p D 1. Hence
the quartic is the projection of the curveX which is the projective image of a series
g34 (the curve X is the base quartic of a pencil of quadrics).

One can avoid an appeal to the Riemann–Roch theorem by observing that among
the second order adjoints of C (that is, the conics that pass through the two nodes
A and B) there are, in particular, those split into the line that joins the two double
points and a residual line. Thus the linear series HC is contained in the linear series
cut out, away from the two nodes, by the conics passing through A and B . These
conics constitute a 3-dimensional linear system. On C they cut out a complete
series g34 containing our g24 .

An even more elementary way to reach the same conclusion is the following.
Take a pointO outside of the plane of C and consider a quadric Q passing through
the two lines rOA and rOB . The cone that projects C from O meets Q in a curve of
order 8 that contains the two lines rOA, rOB counted twice; the residual component
is a non-singular quartic C.2; 2/ and C is the projection of C.2; 2/ from O .

8.10.12. A plane quartic C with two nodes is the projection of a non-singular quintic
in S4.

To a divisor of the g24 of rectilinear sections of C we adjoin a point (of C ),
thus obtaining an effective divisor D of degree 5. The genus of C being p D 1,
it follows from Theorem 8.5.4 that this divisor is non-special, and so it defines a
complete series jDj D g45 whose projective image is thus a quintic X in S4. The
series g24 is partially contained in g45 and C is the projection of X from a point
P 2 X .

8.10.13. An elliptic curve X of order d is the projection of a curve of order d
embedded in Pd�1 which is called an elliptic normal curve of order d .
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The series H of the hyperplane sections of X is non-special since X has genus
p D 1. Hence it is contained in a complete series gd�1

d
whose projective image

is a curve X of order d embedded in Pd�1. If H is not already a complete series
(that is, if it has dimension < d � 1), then X is the projection of X.

8.10.14. Find the dimension of the linear system †0 of surfaces of order N.� 0/

in P3 that pass through a given curve C . In particular, consider the cases in which
C is a line, a conic, a cubic, a rational C 4 or an elliptic C 4.

The linear system †N of the surfaces in P3 of order N has dimension t D�
NC3
N

� � 1. Consider the linear series gr
N deg.C/ cut out by the surfaces of †N that

do not contain C . By the Riemann–Roch theorem (applied to the complete series
defined by the series gr

N deg.C/), we have r � N deg.C / � p C i where p is the
genus of C and i is the index of speciality of the series. If p � 1, then gr

N deg.C/ is
non-special by Theorem 8.5.4. Therefore the dimension sought is

dim†0 � t � r D
 
N C 3

N

!
� 1 �N deg.C /C p:

For N � 0 we may assume that the gr
N deg.C/ is complete and therefore equality

holds in the preceding inequality.

8.10.15. Determine the dimension of the linear system of hypersurfaces of order
N.� 0/ in Pn that pass through a given curve C . In particular, discuss the cases
in which C is a rational normal curve or a elliptic normal curve.

Consider, for example, the case of an elliptic normal curve in Pn, that is, a
non-singular curve of genus p D 1 and order nC1. Then the same reasoning given
in 8.10.14 shows that the required dimension is 

N C n

N

!
�N.nC 1/:

8.10.16. Let C be a plane algebraic curve of order d and genus p. Find the
condition in order that it be the projection of a curveX of the same order embedded
in SR .R > 2/.

It is a question of finding the condition for the series g2
d

cut out on C by the
lines of the plane to be contained in a series gr

d
with r � R.

The series g2
d

is contained in a (complete) series of order d and dimension
� d � p, and so for every integer R � d � p it is contained in a linear series gR

d
.

Therefore, if R � d � p (that is, if p � d � R) the curve C is the projection of a
curve X of order d and contained in SR.

Suppose then that p � d � R C 1. If g2
d

is contained in a series gr
d

with
r � d � p C 1 > d � p, then it must be special, and so, by the Riemann–Roch



8.10. Complements and exercises 289

theorem, dim jKC � g2
d

j � 0. Hence every line ` of the plane meets C in d points
which belong to an adjoint of order d �3, which splits into the line ` and an adjoint
of order d � 4. In particular, if Ad�4 denotes the linear system of adjoints of order
d � 4, one has dim Ad�4 D dim jKC � g2

d
j.

It follows that if p � d �RC 1 the curve C can be the projection of a curve of
the same order belonging to a space of dimension > 2 only if it possesses adjoints
of order d � 4.

Now on C the linear system Ad�4 of the adjoints of order d �4 cuts out a linear
series gtm which has

• order m D 2p � 2 � d , because by adjoining d collinear points to a divisor
of the given series one obtains a canonical divisor;

• dimension t greater than or equal to that of Ad�4, because no curve of Ad�4
can contain C as component;

• index of speciality i.gtm/ � 3, inasmuch as every group of gtm belongs at least
to the 12 canonical divisors that are obtained by adjoining to it a rectilinear
section; and so the g2

d
is contained in the series jKC � gtmj. It follows that

i.gtm/ � 1 � 2.

Thus by the Riemann–Roch theorem one has

t � dim Ad�4 � .2p � 2 � d/ � p C i.gtm/ � p � d C 1:

If i is the index of speciality of gr
d

one has r D d � p C i , and that is to say
that the dimension of the linear system of adjoints of order d �3 passing through d
collinear points (namely, the dimension of Ad�4) is

i � 1 D r C p � d � 1:
But r � R, whence

dim Ad�4 � RC p � d � 1:
On the other hand, if C has si -fold points (actual, or in the successive infinitely

near neighborhoods) the dimension of Ad�4 is

1

2
.d � 4/.d � 1/ � 1

2

X
si .si � 1/C 	

D 1

2
.d � 2/.d � 1/ � d C 1 � 1

2

X
si .si � 1/C 	 D p � d C 1C 	;

where 	 denotes the superabundance. Thus

dim Ad�4 D p � d C 1C 	 � RC p � d � 1:
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Therefore
	 � R � 2:

Conversely, if 	 � R�2, the dimension of the linear system of adjoints of order
d � 4 is dim Ad�4 � p � d CR� 1. We know that dim Ad�4 D dim jKC � g2

d
j,

and so every rectilinear section of C belongs to (at least) p � d C R independent
canonical divisors, which is to say i.g2

d
/ � p � d CR. Thus, the linear series cut

out on C by the lines is contained in a complete linear series whose dimension is
r � d � p C .p � d CR/ D R. In conclusion we have shown:

A necessary and sufficient condition in order for C to be obtained as a projection
of a curve of the same order belonging to a space SR (but not as a projection of a
curve of the same order embedded in SRC1) is that C admit adjoint curves of order
d � 4 forming a linear system of superabundance � R � 2.

8.10.17 (Halphen–Castelnuovo’s bound). Let X be a reduced, irreducible curve of
order d embedded in Pn. Then the genus p of X is bounded by

p �
�
d � 2
n � 1

��
d � n �

��
d � 2
n � 1

�
� 1

�
n � 1
2

�
; (8.23)

where Œx� means the greatest integer � x.
If n D 3, then

	
d�2
2



is d�2

2
for d even and d�3

2
for d odd. Thus for a degree

d curve in P3 one has

p �

8̂̂<̂
:̂
d � 2
2

�
d � 2 � d � 2

2

�
D .d � 2/2

4
if d is even,

d � 3
2

�
d � 2 � d � 3

2

�
D .d � 1/.d � 3/

4
if d is odd.

Whence, in any case,

p �
�
.d � 2/2

4

�
:

This is Halphen’s theorem, [47]. This theorem was extended to curves in Pn

by Castelnuovo [21], [22], as in (8.23). The maxima assigned by Halphen and
Castelnuovo are effectively achieved by certain curves. The curves of maximum
genus in P3 lie on non-singular quadrics, and are the curves of the type .˛; ˛/ for
d D 2˛ even, and of the type .˛; ˛ C 1/ for d D 2˛ C 1 odd.

8.10.18. Prove that for an algebraic curve X in P3 having order d and genus
p � d � 2 the chords issuing from a generic point P belong to a cone of order
d � 4.

The projection of X from a point P in P3 is a plane curve C of order d and
genus p which, by what we have seen in 8.10.16, possesses at least one adjoint of
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order d � 4. This means that the chords of X issuing from P belong to a cone of
order d � 4.

For example, a canonical curve of genus p D 4 has order 6 and from every
generic point of P3 there issue six chords (equal in number to the number of double
points of its plane model, cf. Corollary 8.5.11) which belong to a quadric cone.

Consider a curveX in P3 of order d D 2m and genusp D 2m�1. Such curves
exist if 2m�1 � .m�1/2, that is,m > 3 (see §8.10.17). From every generic point
of the space there issue 2m2 � 5mC 2 chords of X , all of which lie on a cone of
order deg.X/ � 4 D 2m � 4. This cone also meets the cone projecting X from P

in 2m.2m � 4/ � 2.2m2 � 5mC 2/ D 2m � 4 lines.

8.10.19 (Genus formula for a complete intersection curve). LetX be a non-singular
curve which is a complete intersection in Pn, that isX is obtained as the intersection
of n�1 algebraic hypersurfaces, of degree di , i D 1; : : : ; n�1, that intersect along
it transversally (cf. Section 7.1). The curveX is thus of order

Qn�1
iD1 di by Bézout’s

theorem (Theorem 4.5.2), and its genus p is expressed by the relation

p D 1C 1

2

n�1Y
iD1

di

� n�1X
iD1

di � n � 1
�
:

This a consequence of the so called “adjunction formula”, which implies that
the canonical divisors of jKX j are cut out on X by the hypersurfaces of degreePn�1
iD1 di � n � 1. We refer e.g., to [12] for the general theory.



Chapter 9

Cremona Transformations

This chapter is dedicated to the study of generically bijective algebraic correspon-
dences between projective spaces of the same dimension r , with special regard for
the case r D 2. Such transformations are called “Cremona transformations” in
honor of L. Cremona who studied them from the most general point of view, and
emphasized their great importance for the development of algebraic geometry.

In Sections 9.1 and 9.2, ample space is given to the quadratic transformations
between planes, that is, to the transformations that change the lines of one of the two
planes into the conics of a homaloidal net of the other, to some of their important
applications, like, for example, the transformation of a given algebraic curve into
a plane algebraic curve having as singularities only multiple points with distinct
tangents, and to the study of the structure of a singularity of an algebraic curve via
the technique of blowing up a point.

In Section 9.3, after having shown how the study of Cremona transformations
between planes may be identified with that of homaloidal nets of algebraic plane
curves, we study such nets and their fundamental curves. Here the Cremona equa-
tions and the Noether–Rosanes inequality (see §9.3.9) are particularly important.
They lie at the base of the Noether–Castelnuovo theorem, Theorem 9.3.10, ac-
cording to which every Cremona transformation between planes is the product of
quadratic transformations.

As far as the case r > 2 is concerned, we limit ourselves to a few remarks in
Section 9.4. In particular, the various possible types of homaloidal linear systems
of quadrics in three space are determined. The exercises proposed in Section 9.5,
and completely resolved there, constitute an important deepening of the theory
developed in this chapter.

For a modern view of the topics discussed in this chapter and also for their appli-
cations to advanced problems in algebraic geometry, see the preface of Iskovskikh
and Reid in [53].

9.1 Quadratic transformations between planes

A Cremona transformation is a birational isomorphism between projective spaces,
that is, a dominant rational map between two projective spaces of the same dimen-
sion which has a rational inverse mapping (cf. Section 2.6).

The study of these transformations is rather simple in the case in which the
spaces in question are two planes.
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In a plane S2 consider a net of conics, that is, a 2-dimensional linear system †

of conics (cf. Section 6.1). We will say that it is a homaloidal net if it possesses
three base points, that is, three points through which all the conics of† pass. Thus
there are three different types of homaloidal nets of conics: the nets † D ABC

of conics with three distinct base points A, B , C ; the nets † D AAB of conics
passing through two points A and B and all having at one of them, say A, the same
tangent; the nets † D AAA of conics mutually osculating at a point A (cf. [13,
Vol. II, Chapter 16]).

In order to have three conics that generate a homaloidal net † it suffices to
annihilate the minors of a matrix�

L0 L1 L2
M0 M1 M2

�
whose elements are linear forms in the indeterminates x0, x1, x2. Indeed, the two
conics with equations

L0M1 � L1M0 D 0; L0M2 � L2M0 D 0 (9.1)

have four points in common, one of which is the point in which the two linesL0 D 0,
M0 D 0 intersect. This point does not lie on the third conic which however does pass
through the other three because its equation L1M2 �L2M1 D 0 is a consequence
of (9.1); indeed, it is obtained from (9.1) by eliminating the ratio L0 W M0. Thus
for † one has the equation

�0.L1M2 � L2M1/C �1.L2M0 � L0M2/C �2.L0M1 � L1M0/ D 0;

with �0, �1, �2 elements of the base field K not all of which are zero.
Assuming this, let x0, x1, x2 be projective coordinates in a plane S2 and y0, y1,

y2 projective coordinates in another plane S 0
2 that may of course coincide with S2.

Moreover, let � be the algebraic correspondence between the two planes defined by
two algebraic equations ´

f .x0; x1; x2Iy0; y1; y2/ D 0;

g.x0; x1; x2Iy0; y1; y2/ D 0:
(9.2)

We ask what form these two equations must have in order that � be a birational
isomorphism in such a way that every generic point of each of the two planes
corresponds to a unique point of the other plane.

That certainly occurs if the equations (9.2) are bilinear equations, that is, two
equations that can be written in the form´

y0L0.x0; x1; x2/C y1L1.x0; x1; x2/C y2L2.x0; x1; x2/ D 0;

y0M0.x0; x1; x2/C y1M1.x0; x1; x2/C y2M2.x0; x1; x2/ D 0;
(9.3)
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and also in the form´
x0F0.y0; y1; y2/C x1F1.y0; y1; y2/C x2F2.y0; y1; y2/ D 0;

x0G0.y0; y1; y2/C x1G1.y0; y1; y2/C x2G2.y0; y1; y2/ D 0;
(9.4)

with Li , Mi , Fi , Gi linear forms.
We shall see, however, that in this way one obtains only a very particular class

of birational isomorphisms between the two planes, namely the quadratic trans-
formations. We refer, for example, to (9.3). They immediately give, for some
� 2 K�, 8̂<̂

:
�y0 D L1M2 � L2M1;

�y1 D L2M0 � L0M2;

�y2 D L0M1 � L1M0;

which we will write in the sequel as

y0 W y1 W y2 D L1M2 � L2M1 W L2M0 � L0M2 W L0M1 � L1M0: (9.5)

In this way y0, y1, y2 can be assumed to be equal to three quadratic forms in the
xi , i D 0; 1; 2. Therefore if P 0 D P 0.y/ ´ Œy0; y1; y2� belongs to the line r � S 0

2

with equation
�0y0 C �1y1 C �2y2 D 0;

the point P D P.x/ ´ Œx1; x2; x3� corresponding to it via (9.5) belongs to the
conic with equation

�0.L1M2 � L2M1/C �1.L2M0 � L0M2/C �2.L0M1 � L1M0/ D 0:

This conic varies in a homaloidal net † of conics in S2 as the line r varies in the
net of lines of S 0

2. To the lines of a plane there thus correspond the conics of a
homaloidal net of the other plane. This correspondence between lines and conics
is bijective, algebraic and without exceptions: it is a projectivity between the net of
lines of a plane and a homaloidal net of conics in the other plane.

Conversely, let † be an arbitrary homaloidal net of conics in S2 and consider a
projectivity ! between the net † and the net of lines in S 0

2. If P is a point distinct
from the base points of †, the conics of † that pass through P form a pencil that
has four base points: the three base points of † and the point P . To this pencil
there corresponds via ! a pencil of lines in S 0

2 whose base point P 0 is determined
by P . Moreover, to a point P 0 2 S 0

2 there corresponds a pencil of conics in † (the
image of the pencil of lines with center P 0) and thus the common point P , the new
base point of this pencil different from the base points of the net. Hence the map
defined by P 7! P 0 gives rise to a birational isomorphism, that is, to a Cremona
transformation S2 ! S 0

2 which transforms the conics of † into the lines of S 0
2.
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We may therefore conclude:

• To give a quadratic transformation between two planes is the same as giving
a homaloidal net of conics in one of them.

Quadratic transformations are rational maps defined and bijective only on two
open sets. In each of the two planes there are in fact points which do not have a
well-defined corresponding point. In the plane S2 the exceptional points are the
base points of the net †, and analogously in S 0

2 the exceptional points are the base
points of the homaloidal net †0 of equation

�0.F1G2 � F2G1/C �1.F2G0 � F0G2/C �2.F0G1 � F1G0/ D 0;

with �0, �1, �2 not all zero in K.
We shall see later that† and†0 are two nets of the same type, and thus one has

three projectively distinct types of quadratic transformations between planes.
The base points of each of the two homaloidal nets are called fundamental points

of the quadratic transformation. To the fundamental points of one of the two planes
there is associated a line in the other plane which is called the exceptional line
corresponding to that fundamental point.

If, for example, at the base point A the conics of † are not all tangent to the
same line, then to a pencil ˆ of conics of † having a given tangent t at A there
corresponds a pencil of lines in S 0

2. The locus described by the center T 0 of this
pencil as t varies is a rational curve E 0 whose points correspond bijectively to the
directions of S2 issuing from A. One sees immediately that E 0 is a line. Indeed,
a point common to E 0 and to a generic line r 0 of S 0

2 can correspond only to the
unique tangent line at A to the conic of † that corresponds to r 0. Thus E 0 is the
exceptional curve that corresponds to the fundamental point A.

If the conics of † have the same tangent but are not mutually osculating at the
base point A, then to define a point T 0 of E 0 one can make use of a pencil ˆ of
conics of† that are mutually osculating atA. If the net† has a unique base pointA
(and so the conics of † osculate at A) one uses a pencil of hyperosculating conics.

9.1.1 Classification of the quadratic transformations between planes. The
study of quadratic transformations between two planes is easily handled with ana-
lytic tools by seeking the simplest possible representations for the various types of
homaloidal nets † of conics in the plane S2 (in this regard see §9.3.7).

If the three base points of† are distinct we may suppose that they coincide with
the points A0 D Œ1; 0; 0�, A1 D Œ0; 1; 0�, and A2 D Œ0; 0; 1� and thus obtain the
following equation for the net:

�0x1x2 C �1x2x0 C �2x0x1 D 0:

If there are only two base points, we may suppose that the conics of † are
tangent at A2 D Œ0; 0; 1� to the line rA1A2

W x0 D 0 and furthermore also pass
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through A0 D Œ1; 0; 0�. Then for † we will have the equation

�0x2x0 C �1x0x1 C �2x
2
1 D 0:

Finally, it the conics of † are mutually osculating at A2 D Œ0; 0; 1�, we may
suppose that † contains the two degenerate conics x20 D 0 and x0x1 D 0. In †
we take an irreducible conic � and we assume that the points A0 D Œ1; 0; 0� and
A1 D Œ0; 1; 0� are respectively the further intersection of � with the line x1 D 0 and
the pole of that line with respect to � . If one chooses as unit point U D Œ1; 1; 1� a
point of � we find that � has the equation x0x2 � x21 D 0 and so † is defined by

�0.x0x2 � x21/C �1x
2
0 C �2x0x1 D 0:

A0

A1

A2

U

�

Figure 9.1

Here then are the three types of quadratic transformations.

Type I. � W S2 ! S 0
2 is defined by y0 W y1 W y2 D x1x2 W x2x0 W x0x1.

This formula may easily be inverted and gives for ��1 the expression

x0 W x1 W x2 D y1y2 W y2y0 W y0y1:
Indeed, if x0x1x2 ¤ 0, we have

y0 W y1 W y2 D 1

x0
W 1
x1

W 1
x2
;

or also

x0 W x1 W x2 D 1

y0
W 1
y1

W 1
y2
:

Thus, multiplying the second term of the last equality by y0y1y2 one obtains the
desired expression for ��1.
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Type II. � W S2 ! S 0
2 is defined by y0 W y1 W y2 D x2x0 W x0x1 W x21 .

One has
y0

y1
D x2

x1
D y0y2

y1y2
I y1

y2
D x0

x1
D y21
y1y2

;

and then
x0 W x1 W x2 D y21 W y1y2 W y0y2

is the expression for ��1.

Type III. � W S2 ! S 0
2 is defined by y0 W y1 W y2 D x0x2 � x21 W x20 W x0x1.

In this case one has

y0

y1
D x0x2 � x21

x20
D x2

x0
�
�
x1

x0

�2
I y2

y1
D x1

x0
:

Hence
x2

x0
D y0

y1
C
�
y2

y1

�2
D y0y1 C y22

y21

and then
x0

x1
D y1

y2
D y21
y1y2

I x0

x2
D y21
y0y1 C y22

:

Therefore ��1 is given by

x0 W x1 W x2 D y21 W y1y2 W y0y1 C y22 :

In all three cases one sees that the equations of � and its inverse have the same
form (up to a change in the order of the coordinates). Thus it is confirmed that the
two homaloidal nets † and †0 are of the same type, and so there exist only three
projectively distinct types of quadratic transformations between planes.

9.2 Resolution of the singularities of a plane algebraic curve

In this section we wish to show that by suitably combining quadratic transformations
one can transform a plane algebraic curve into an algebraic plane curve endowed
with only ordinary singular points.

9.2.1 The transform of a plane algebraic curve by way of quadratic transfor-
mations. We wish to examine the effect of a quadratic transformation � on a curve
C passing through a fundamental point of � . We limit ourselves to the case in which
� is of type I; it is, however, a useful exercise for the reader to work out the other
two cases.
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Let � W S2 ! S 0
2 be a quadratic transformation of type I. In S2 we consider

an algebraic curve C n of order n passing simply through one of the fundamental
points, for example A0, and tangent there to the line ax1 C bx2 D 0, a; b 2 K.
The curve C n, whose equation is written in the form

f .x0; x1; x2/ D xn�1
0 .ax1 C bx2/C xn�2

0 '2.x1; x2/C � � � D 0;

with '2.x1; x2/ form of degree two in x1, x2, is transformed by � into the curve of
equation

f .y1y2; y2y0; y0y1/ D .y1y2/
n�1y0.ay2 C by1/

C .y1y2/
n�2y20'2.y2; y1/C � � � D 0:

Therefore to the curve C n there corresponds in S 0
2 a curve that contains the line

y0 D 0 as a simple component. That component is the exceptional line associated
to the fundamental pointA0. The residual component (which we will call the proper
transform of C n, cf. Proposition–Definition 9.2.2), with equation

.y1y2/
n�1.ay2 C by1/C y0.� � � / D 0;

cuts the liney0 D 0 not only in the fundamental pointsB1 D Œ0; 1; 0�,B2 D Œ0; 0; 1�

in S 0
2 but also in the point Œ0; a;�b�which depends only on the tangent line toC n at

A0. It follows that all the curves through A0 with a given tangent have as (proper)
transforms curves having a common point of intersection with the line y0 D 0.
This point is thus associated with the direction issuing from A0 and belongs to that
tangent. Therefore, one introduces the following terminology:

• Given a quadratic transformation of type I, the exceptional line corresponding
to a fundamental point represents the first order neighborhood of that point.

More generally, consider a curve C n having A0 as s-fold point and let
's.x1; x2/ D 0 be the equation of the tangent cone at A0, so that the equation
of C n may be written in the form

f .x0; x1; x2/ D xn�s
0 's.x1; x2/C xn�s�1

0 'sC1.x1; x2/C � � � D 0;

with 's , 'sC1 forms of degree s, s C 1 respectively. Since

f .y1y2; y2y0; y0y1/ D .y1y2/
n�s's.y2y0; y0y1/

C .y1y2/
n�s�1'sC1.y2y0; y0y1/C � � �

D ys0..y1y2/
n�s's.y2; y1/C y0.� � � //;

the curve transformed under � decomposes into the exceptional line y0 D 0

counted s times and a residual curve C 0 which meets the line y0 D 0 in the funda-
mental pointsB1,B2 and also in the additional points defined byy0 D 's.y2; y1/ D
0 (which may also be, in whole or in part, among the points B1 and B2).
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Thus there is a bijective correspondence between the set of tangent lines to C n

at A0 (which correspond to the linear factors of 's.x1; x2/) and the intersections
of C 0 with the exceptional line that corresponds to A0. If t1; t2; : : : ; th are the
tangents of C n at A0 and m1; m2; : : : ; mh are their respective multiplicities (that
is, the multiplicities of the corresponding roots of the equation 's.x1; x2/ D 0) we
will have h points T1; T2; : : : ; Th on the line y0 D 0 and m1; m2; : : : ; mh will be
the intersection multiplicities of C 0 with the line y0 D 0 in these points. They may
be either simple or multiple points for C 0, of multiplicitiesm�

i � mi , i D 1; : : : ; h.
In particular

hX
iD1

m�
i �

hX
iD1

mi D s: (9.6)

If C n has in common with the exceptional line rA1A2
of S2 (that is, with the

exceptional line of the transform ��1 W S 0
2 ! S2 corresponding to the fundamental

pointB0 D Œ1; 0; 0�) the pointsL1; L2; : : : ; Lk different from the pointsA1 andA2,
the curveC 0 will have a corresponding multiple pointB0 with k tangents `1; : : : ; `k
(cf. Figure 9.2).

What has been said for the point A0 may be repeated for A1 and A2 and one
arrives at the following conclusion:

Proposition–Definition 9.2.2. Let � W S2 ! S 0
2 be a quadratic transformation of

type I. Let C n be an algebraic curve in S2 having multiplicities s0; s1; s2, si � 0, at
the pointsA0; A1; A2 respectively. If the equation of C n is f .x0; x1; x2/ D 0, then
the equation f .y1y2; y2y0; y0y1/ D 0 represents a curve in S 0

2 of order 2n which
we will call the total transform of C n. The total transform splits and contains the
exceptional lines corresponding to A0, A1, A2 counted s0 times, s1 times, and s2
times respectively. The residual curve C 0, which is irreducible if C n is irreducible,
is the proper transform of C n. Its order is

2n � s0 � s1 � s2:
The curve C n meets the lines r12 D rA1A2

, r02 D rA0A2
, and r01 D rA0A1

,
namely the exceptional lines of S2 corresponding to the fundamental points B0,
B1, and B2 of S 0

2, respectively in n � s1 � s2 points, in n � s0 � s2 points, and in
n� s0� s1 points other than the fundamental pointsA0, A1, andA2. Therefore the
fundamental points B0, B1, B2 are points of multiplicity n � s1 � s2, n � s0 � s2,
and n� s0� s1 for C 0 .and have all tangents distinct if C n meets the lines r12, r02,
r01 in distinct points/.

9.2.3 Transformation of an algebraic plane curve into an algebraic plane curve
with only multiple points with distinct tangents. Again let C be an algebraic
curve of order n in the plane S2 and having a non-ordinary s-fold point P and
further multiple points Qj of multiplicities qj .



300 Chapter 9. Cremona Transformations

A0

t2

Cn

L1 L2 L3

t1

x0 D 0
B0

C 0

`1`2
`3

y0 D 0

T2
T1

Figure 9.2

We consider two lines, a and b, issuing from P and each having in common
with C other n� s distinct points different from P . Let c be a line that meets C in
n distinct points not belonging to a [ b.

With this as premise, let † be the homaloidal net of conics having as base
points P , M D a \ c, N D b \ c. Note that the curve C does not pass through
the points M or N . Bearing in mind Proposition–Definition 9.2.2, the quadratic
transformation � (of type I) defined by † transforms C into a curve C 0 of order

n0 D 2n � s;

for which the images Q0
j of the points Qj have the same multiplicities qj as the

points Qj for C (because the multiple points Qj do not belong to the exceptional
lines a, b, c and away from them there is an isomorphism which induces projectiv-
ities between the pencils of directions issuing from Qj and from Q0

j , cf. §3.2.1).
The point P however will be transformed into a set of points T1; : : : ; Th whose
multiplicities s1; : : : ; sh are such that

Ph
iD1 si � s (cf. (9.6)). The curve C 0 will

have moreover three new multiple points B0, B1, B2 each having distinct tangents
(since the lines a, b, and c cut the curve C in distinct points), of multiplicities
n� s, n� s and n, coming from the lines a, b and c respectively (cf. Proposition–
Definition 9.2.2).

If ı and ı0 are the deficiencies of C and C 0, that is

ı ´ .n � 1/.n � 2/
2

� s.s � 1/
2

�
X
j

qj .qj � 1/
2

;

ı0 ´ .n0 � 1/.n0 � 2/
2

� 2.n � s/.n � s � 1/
2

� n.n � 1/
2

�
X
j

qj .qj � 1/
2

�
hX
iD1

si .si � 1/
2

;
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we find that

2.ı � ı0/ D
hX
iD1

si .si � 1/

and so ı0 � ı; and we have ı0 < ı if si � 2 for at least one index i .
Since the deficiency can not be negative (cf. Proposition 7.2.7), we may conclude

that with a finite number of quadratic transformations one arrives at a curve C � on
which in place ofP there are simple points while the multiple points that have been
adjoined are all ordinary.

IfC has another non-ordinary multiple point, the same singularity will be found
in a point of C �. For C � and this point we do what we have just done for C and
P , and so on. Since the number of singular points of C is finite, this procedure
terminates after a finite number of steps, and we obtain the following important
result (cf. Exercise 13.1.21).

Theorem 9.2.4 (Model of a plane curve with only ordinary singularities). Let C
be an algebraic plane curve. It is always possible to transform C into an algebraic
plane curve C all of whose singularities are ordinary by means of a finite number
of quadratic transformations.

And in fact every linear system† of algebraic plane curves may be transformed
via a finite number of quadratic transformations into a linear system †0 with all
base points being ordinary points.

9.2.5 Structure of a multiple point. Let P be an s-fold point of a plane curve C .
We have seen that by successive quadratic transformations one can transform C

into a curve C such that P is replaced by a finite number of points on C , all of
which are simple.

If the point P is changed into the points P1; P2; : : : of C 0 by a quadratic trans-
formation having P as one of its base points, so that the respective multiplicities
are s1; s2; : : : , we will say that the curve C has a point P1 of multiplicity s1, an
s2-fold point P2, : : : in the first order neighborhood of P .

If si � 2we can do forC 0 andPi what we have just done forC andP ; we obtain
the points Pi1; Pi2; : : : with multiplicities si1; si2; : : : in the first order neighbor-
hood of Pi . If these are not all simple points we can continue the procedure. The
process comes to an end, and leads, after a finite number of steps, to neighborhoods
of P in which C has only simple points. Thus at the s-fold point P there are
s1-fold, s2-fold, : : : points in the first order neighborhood of P . To each such “first
order” si -fold point there are then si1-fold, si2-fold, : : : points in the second order
neighborhood of P . Furthermore, each “second order” sij -fold point has (in the
third order neighborhood of P ) sij1-fold, sij2-fold, : : : points; and so on.

We say that .s1; s2; : : : ; sij ; : : : ; sijk; : : : / is the structure of the point P (or
structure of the singularity P ) of C and one can show that it does not depend on
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the particular sequence of quadratic transformations by which it was calculated. To
distinguish it from the points belonging to one of its successive neighborhoods, we
will also say that P is an actual point of the curve C .

To represent the structure of P schematically one can think of a “tree” as indi-
cated in the Figure 9.3.

s21 s2

s

s4

s1

s13

s22 s3 s11 s12

s221

s31
s33

s32
s111 s1111

Figure 9.3

Here in the figure that follows are, for example, the “trees” corresponding to a
node .1/, to an ordinary cusp .2/, to a tacnode .3/, to a cusp of the second kind .4/,
to an oscnode .5/, to a cusp of the third kind .6/ (and these “trees” can be taken as
the definitions of the corresponding singularity):

2� � �2 1

.4/

2� � �2 2

.5/

��
��

�
�

1

1

2� � � �2 2 1

.6/

2 ���
��

�
�
1

1

.1/

2 � � 1

.2/

2� �
�
�

2

.3/

��
��

1

1

9.2.6 Intersection multiplicity of two plane curves at a point. Let C n and �m

be two coplanar algebraic curves having respective multiplicities r and s at a point
P , and let .r; ri ; rij ; : : : / and .s; si ; sij ; : : : / be the structures of P respectively on
C n and�m. If we agree that the numbers ri ; rij ; : : : ; si ; sij ; : : : can also assume the
values zero, we can suppose that the two curves have the same points Pi , Pij ; : : :
in the successive neighborhoods of P .
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The intersection multiplicity at P is � D mn � h, where h is the number of
intersections of the two curves that do not occur at P .

A first quadratic transformation having P as base point and otherwise generic
changes C n and �m into two curves C 0 and � 0, whose orders are 2n � r and
2m�s, which have multiplicities r1; r2: : : : and s1; s2; : : : respectively at the points
P1; P2; : : : . Moreover they have three multiple points in common at the base points
B0,B1,B2 of the second homaloidal net, having multiplicities respectively n, n�r ,
n � r for C 0 and m, m � s, m � s for � 0 (cf. Proposition–Definition 9.2.2); at the
points B0, B1, B2 the curves C 0 and � 0 present the simple case.

The number of intersections of C 0 and � 0 which do not fall at the points Pi , B0,
B1, B2 will be equal to h. If �i is the intersection multiplicity of C 0 and � 0 at Pi
we have (cf. Section 4.2)

h D .2n � r/.2m � s/ �mn � 2.n � r/.m � s/ �
X
i

�i D mn � rs �
X
i

�i

and so the intersection multiplicity at P is

�P .C
n; �m/ D mn � h D rs C

X
i

�i :

In similar fashion we have, with the obvious meaning for the symbols,

�i D risi C
X
j

�ij ; �ij D rij sij C
X
k

�ijk; : : :

and finally one finds that

�P .C
n; �m/ D rs C

X
i

risi C
X
ij

rij sij C � � � :

As far as the numbermn of common points of two algebraic curves of ordersm
and n, it is the sum of the products of the multiplicities of the two curves in all their
common points, whether actual or in successive neighborhoods of actual points (cf.
Theorem 4.2.1).

9.2.7 Blowing up the plane at a point. When one wishes to “dilate” a point P of
the plane S2, replacing it with a line on which the first order neighborhood of the
point P is extended, one usually prefers to make use of a quadratic transformation
� of type II, assuming P to be a base point with variable tangent of a homaloidal
net having only two distinct base points.

If P D A0 D Œ1; 0; 0� and if A1 D Œ0; 1; 0� is the base point with fixed tangent
rA1A2

W x0 D 0, one finds that the net † has equation (cf. §9.1.1)

�0x0x2 C �1x0x1 C �2x
2
2 D 0
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and so the quadratic transformation � will be given by

� W

8̂<̂
:
y0 D x0x2;

y1 D x0x1;

y2 D x22 :

As usual, from
y0

y2
D x0

x2
;

y1

y0
D x1

x2

one obtains
x0

x1
D x0

x2

x2

x1
D y20
y1y2

and
x1

x2
D y1y2

y0y2
;

whence the inverse quadratic transformation is

��1 W

8̂<̂
:
x0 D y20 ;

x1 D y1y2;

x2 D y0y2:

On introducing affine coordinates x D x1

x0
, y D x2

x0
in S2, and x0 D y1

y0
, y0 D y2

y0
in

S 0
2, we find that the restrictions of � and ��1 to the affine charts U0 and U 0

0 defined
by x0 ¤ 0 and y0 ¤ 0 have equations

� W
8<: x

0 D x

y
;

y0 D y;

��1 W
´
x D x0y0;
y D y0:

The quadratic transformation � and its inverse ��1 are also called the blowing up
of the plane S2 at the point P . They constitute a particular case of a widely used
technique in algebraic geometry for the study of local properties of a given variety
(cf. Example 6.8.1).

Now let C be an algebraic curve of S2 having P D .0; 0/ as an s-fold point
(s � 1). In affine coordinates x, y the equation of C is thus of the type

fs.x; y/C fsC1.x; y/C � � � D 0;

with fj binary forms of degree j . Since

fs.x
0y0; y0/CfsC1.x0y0; y0/C � � � D y0s.fs.x0; 1/Cy0fsC1.x0; 1/C � � � /; (9.7)

the proper transform C 0 of C is the curve with equation

fs.x
0; 1/C y0fsC1.x0; 1/C � � � D 0

and it meets the axis y0 D 0, that is the exceptional line E that corresponds to P ,
in the points defined by fs.x0; 1/ D 0 which correspond to the tangents of C at P .
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The curve with equation (9.7) is also called the total transform of C (and it splits
into the proper transform C 0 and the exceptional line E counted s times).

If P is an ordinary s-fold point, the roots of the equation fs.x0; 1/ D 0 are all
simple and so on E there are s distinct non-singular points of C 0 (all with tangents
distinct from the line E). In this case the singularity at P is “resolved” and in the
first order neighborhood of P the curve C possesses s distinct simple points.

Suppose, in general, that at the s-fold pointP the curveC has tangents t1; : : : ; th
with multiplicities m1; : : : ; mh, where mi � 1,

Ph
iD1mi D s.

If Pi are the points of E that correspond to the tangents ti , the numbers mi are
the intersection multiplicities of C 0 with E at Pi and therefore the multiplicity of
C 0 at Pi will be si � mi , so that

Ph
iD1 si � s. This gives rise to the following

observations:

• If C has at least two distinct tangents at P (i.e., if h � 2) we have si < s for
each i D 1; : : : ; h. If P is an s-fold point with a single tangent t (h D 1), it
can happen that C 0 has multiplicity s in the point of E that corresponds to t .

We can now prove the following important result (for simplicity of notation we
will use the same symbol to denote both a curve and its equation).

Theorem 9.2.8 (M. Noether’s Af C B' theorem). In the plane consider two
algebraic curves f and ' and an algebraic curveH which has multiplicity rCs�1
at each point P , actual or belonging to a successive neighborhood of an actual
point, which is r-fold for f and s-fold for '. Then there exist two curves A and B
having multiplicities s � 1 and r � 1 respectively at P such that

H D Af C B':

Proof. We set degf D m, deg' D n, degH D N so that we have degA D N�m,
degB D N � n. Via successive quadratic transformations we can transform the
curve with equation f ' D 0 into a curve having only ordinary multiple points
(cf. Theorem 9.2.4). Thus we can reduce to the case in which f and ' have only
ordinary multiple points and do not have a common tangent at those points.

First we choose an integer N sufficiently large so that the conditions imposed
by the multiplicities r C s � 1 on the curves CN are independent. The dimension
of the linear system † of such curves CN will then be (cf. Example 6.2.1)

dim† D
 
N C 2

2

!
� 1 �

X
P

 
r C s

2

!
:

To evaluate the dimension of the linear system†� of the curves having equation of
the type Af C B' D 0 we see first of all in how many ways a given polynomial
H can be written in the form Af C B'.
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Let Af C B' D A1f C B1', that is, .A � A1/f D .B1 � B/'. Since
f and ' do not have common components and since the ring of polynomial is
a unique factorization domain, there must exist a homogeneous polynomial � of
degree N �m � n such that A � A1 D �', B1 � B D �f . Conversely, if � is an
arbitrary polynomial of degree N �m � n and Af C B' D H , we also have

A1f C B1' D .A � �'/f C .B C �f /' D H:

It follows that a polynomial H such that the curve with equation H D 0 belongs
to †� can be written in the form Af C B' in 1� ways, where

� D
 
N �m � nC 2

2

!
:

Hence the dimension of †� is 
N � nC 2

2

!
�
X
P

 
s

2

!
C
 
N �mC 2

2

!
�
X
P

 
r

2

!
�
 
N �m � nC 2

2

!
� 1

D
 
N C 2

2

!
� 1 �mn �

X
P

 
r C s

2

!
C
X
P

rs:

But
P
P rs D mn; hence

dim†� D
 
N C 2

2

!
� 1 �

X
P

 
r C s

2

!
D dim†:

Thus if N is sufficiently large we have † D †�, which establishes the desired
result.

Now we prove that if the theorem is true for a certain integer N , it is also true
for N � 1.

LetH be a curve of orderN�1 through the pointsP with multiplicities rCs�1
and suppose that the line x0 D 0 does not pass through any of the points P . Then
there is an identity of the form

x0H D A�f C B�'; (9.8)

for some homogeneous polynomials A�; B� 2 KŒx0; x1; x2�. Setting x0 D 0 here
we find that

A�.0; x1; x2/f .0; x1; x2/C B�.0; x1; x2/'.0; x1; x2/ D 0

and then since f .0; x1; x2/ and '.0; x1; x2/ do not have common factors (because
none of the points P 2 f \ ' are on the line x0 D 0) there exists a form �.x1; x2/

such that
A�.0; x1; x2/ D �.x1; x2/'.0; x1; x2/ (9.9)
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whence

�.x1; x2/'.0; x1; x2/f .0; x1; x2/C B�.0; x1; x2/'.0; x1; x2/ D 0:

Therefore
B�.0; x1; x2/ D ��.x1; x2/f .0; x1; x2/: (9.10)

Equations (9.9), (9.10) imply that there are forms A0.x0; x1; x2/, B0.x0; x1; x2/
such that

A�.x0; x1; x2/ D �.x1; x2/'.x0; x1; x2/C x0A0.x0; x1; x2/

B�.x0; x1; x2/ D ��.x1; x2/f .x0; x1; x2/C x0B0.x0; x1; x2/:

Substituting in equation (9.8) and suppressing the factor x0 one finds that

H D A0f C B0':

Thus the theorem is proved. �

Remark 9.2.9. Notation as in Theorem 9.2.8. We observe that if H is a curve
passing through all the points P , a suitable power of H satisfies the hypotheses of
Theorem 9.2.8 and so there exists an integer t such that

H t D Af C B';

in agreement with the Hilbert Nullstellensatz (Theorem 2.5.4).

9.3 Cremona transformations between planes

In a plane S2 consider an irreducible net† (that is, consisting of irreducible curves)
of order n � 2. Extending the notion of homaloidal net of conics, we will say that†
is a homaloidal net if it is a net of degree 1, which means that the intersections of any
two of its generic curves are all absorbed by the base points with a single exception.
If P1; P2; : : : ; Ph are the base points and if s1; s2; : : : ; sh are the multiplicities of
the curves of † at P1; P2; : : : ; Ph, we will write

† D C n.P
s1
1 ; P

s2
2 ; : : : ; P

sh
h
/:

We will suppose that the base points are all ordinary.

Proposition 9.3.1. Let † D C n.P
s1
1 ; P

s2
2 ; : : : ; P

sh
h
/ be a homaloidal net. Ev-

ery irreducible curve of † is rational and non-singular outside of the base points
P1; : : : ; Ph.
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Proof. One sees immediately that the generic curve C0 W '0 D 0 of † is rational.
Indeed, if C1 W '1 D 0, and C2 W '2 D 0 are two other curves of the net, both
generic, the points of C0 are in bijective algebraic correspondence with the curves
of the pencil �1'1 C �2'2 D 0 and thus with the values of the parameter �1=�2
(cf. Corollary 2.6.6).

By Bertini’s first theorem (Theorem 6.3.11), the generic curve of † is non-
singular outside of the base points. Since it is rational, it has genus p D 0 and so
(cf. 7.2.13)

1

2
.n � 1/.n � 2/ �

hX
iD1

si .si � 1/
2

D 0: (9.11)

Let C 0 be a curve of † having a multiple point distinct from the base points; by
equation (9.11), the deficiency of C 0 is then negative, which is not possible if C 0 is
irreducible (cf. Proposition 7.2.7). �

It is easy to prove that the following two relations hold:

hX
iD1

s2i D n2 � 1I
hX
iD1

si D 3n � 3: (9.12)

They are called the Cremona equations. The first, which follows from Bézout’s
theorem (Theorem 4.2.1), expresses the fact that the degree of † is 1. From it
and relation (9.11), which expresses the rationality of the curves of †, the second
follows immediately.

Equations (9.12) characterize homaloidal nets in the sense that a linear system
† of curves of order n with hmultiple points Pi of given multiplicities si such that
equations (9.12) hold can only be a homaloidal net, that is, dim† D 2, deg† D 1.
The condition deg† D 1 is a consequence of the first equation in (9.12). From
(9.12) one also deduces that

n.nC 3/

2
�

hX
iD1

si .si C 1/

2
D 2;

and therefore dim† � 2 (cf. Example–Definition 6.2.2). On the other hand † is
a regular system, which means that the base points impose independent conditions
on its curves (cf. Lemma 7.2.14), and so dim† D 2.

Remark 9.3.2. One says thatG D .nI s1; : : : ; sh/ is an arithmetic Cremona group
if .nI s1; : : : ; sh/ is a solution of the Cremona equations (9.12). One then says that
G is a geometric Cremona group if n is the order of an irreducible homaloidal net
† and s1; : : : ; sh are the multiplicities at the base points of †.
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Clearly a geometric Cremona group is also an arithmetic Cremona group; but
the converse does not hold in general. For example, a numeric solution of (9.12) is
given by

n D 6; h D 9; .s1; s2; : : : ; s9/ D .4; 3; 2; 1; 1; 1; 1; 1; 1/:

To it there corresponds no homaloidal net since an irreducible plane curve of order 6
can not have both a quadruple point and a triple point. Thus .6I 4; 3; 2; 1; 1; 1; 1; 1; 1/
is only a Cremona group in the arithmetic sense.

9.3.3. Given a homaloidal net † of curves of order n in S2,

† W �0'0.x0; x1; x2/C �1'1.x0; x1; x2/C �2'2.x0; x1; x2/ D 0; (9.13)

and having defined a projectivity! between† and the net of lines of a second plane
S 0
2, one obtains a Cremona transformation � W S2 ! S 0

2 between the two planes
S2 and S 0

2. We will also say that n is the order of the Cremona transformation � .
Geometrically, � is defined as follows.

• Let P be a point of S2, distinct from the base points of†. Imposing passage
throughP determines a pencilˆ of curves of†, and thus a pencilˆ0 D !.ˆ/

of lines in S 0
2. If P 0 is the center of ˆ0, then �.P / ´ P 0 (since the net is

homaloidal the transformation � thus defined is a birational isomorphism).

If, as we may, we suppose that to the curve in † with equation (9.13) there
corresponds under ! the line in S 0

2 defined by �0y0 C �1y1 C �2y2 D 0, then one
has the following analytic expression for the Cremona transformation � :8̂<̂

:
y0 D '0.x0; x1; x2/;

y1 D '1.x0; x1; x2/;

y2 D '2.x0; x1; x2/:

(9.14)

From these equations one can recover the xi which (by reason of the bijectivity of
the transformation) are rational functions of the yi . Prescinding from the technical
difficulties, one proceeds as follows. From the two equations

y0'1.x0; x1; x2/�y1'0.x0; x1; x2/D 0; y0'2.x0; x1; x2/�y2'0.x0; x1; x2/D 0

one eliminates, for example, the variablex1: this elimination is done via rational op-
erations through calculation of the Euler–Sylvester resultant (cf. Section 4.1). Thus
one finds a polynomial equation R.x0; x2/ D 0 (with coefficients homogeneous
polynomials in the yi ). On resolving this equation with respect to x0

x2
one finds

only one root that depends on the yi (since † is a homaloidal net); the others are
constant and are in fact the ratios of the coordinates x0, x2 of the base points of †.
Thus one obtains for this root an expression of the type x0

x2
D f .y0; y1; y2/, where
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f is a rational function of the yi . Repeat the argument eliminating the variable x0
to find x1

x2
as a rational function of y0, y1, y2.

Thus one obtains the inversion formulas for (9.14):8̂<̂
:
x0 D  0.y0; y1; y2/;

x1 D  1.y0; y1; y2/;

x2 D  2.y0; y1; y2/;

with  i .y0; y1; y2/ homogeneous polynomials of the same degree, and

�0 0.y0; y1; y2/C �1 1.y0; y1; y2/C �2 2.y0; y1; y2/ D 0 (9.15)

represents the homaloidal net †0 of curves in S 0
2 that correspond to the lines of S2.

It is hardly necessary to observe that when n D 1, the formulas (9.14) furnish
the equations of a projectivity between two planes.

Remark 9.3.4. We note that the two nets † and †0 have the same order. Indeed,
the intersections of a generic line r 0 of the plane S 0

2 with a curve � 0 of†0 correspond
bijectively to the intersections of the curve � in † that corresponds to r 0 with the
line in S2 that corresponds to the curve � 0.

9.3.5 (De Jonquières transformations). Consider the Cremona group G D .nIn �
1; 1; : : : ; 1/, where 1 appears 2n � 2 times; it satisfies equations (9.12) and hence
is arithmetic. We prove that G is also a geometric Cremona group. The Cremona
transformation associated toG, defined by the net† D C n.An�1; B1; : : : ; B2n�2/,
is called a De Jonquières transformation, or monoidal transformation.

To write the equations of such transformations � we observe that there exists
a curve (in general unique) � of order n � 1 with an .n � 2/-fold point at A and
passing simply through the points Bj . Indeed, one can impose

.n � 1/.n � 2/
2

C 2n � 2 D
 
nC 1

2

!
� 1

linear conditions on the curves of order n� 1 which are in number 1N.n�1/ where
N.n � 1/ D �

nC1
2

� � 1 (cf. Section 6.1).
Let � be such a curve and let ˆ be the pencil of curves of † that have in

common with � a pointM distinct from the pointsA;B1; : : : ; B2n�2. The number
of intersections of � with a generic curve of ˆ that are absorbed by the points A,
Bj , M is at least .n� 1/.n� 2/C 2n� 2C 1 D n.n� 1/C 1, one more than the
number implied by Bézout’s theorem. It follows that the curves of ˆ are all split
into � and a line of the pencil with center A.

If A D A2 D Œ0; 0; 1�, � has equation of the form

x2 n�2.x0; x1/C  n�1.x0; x1/ D 0;
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with  n�2,  n�1 binary forms of degrees n � 2 and n � 1 in x0, x1. And for the
net†, that joinsˆwith an arbitrary curve taken from† (outside ofˆ), one has the
equation

.x2 n�2 C  n�1/.�0x0 C �1x1/C x2'n�1 C 'n D 0; (9.16)

with 'n�1, 'n binary forms of degree n� 1 and n. From equation (9.16) it follows
that the De Jonquières transformation may be represented in the form8̂<̂

:
�x0
0 D x0.x2 n�2 C  n�1/;

�x0
1 D x1.x2 n�2 C  n�1/;

�x0
2 D x2'n�1 C 'n:

(9.17)

These formulas are easily inverted. First, one has
x0

0

x0
1

D x0

x1
and then

x0 D 	x0
0; x1 D 	x0

1; (9.18)

for some 	 2 K�. Substituting in the first equation of the system (9.17) one has

�x0
0 D 	x0

0.x2	
n�2 n�2.x0

0; x
0
1/C 	n�1 n�1.x0

0; x
0
1//

whence
� D 	n�1.x2 n�2.x0

0; x
0
1/C 	 n�1.x0

0; x
0
1//:

From the third equation of (9.17) we have

�x0
2 D 	n�1.x2'n�1.x0

0; x
0
1/C 	'n.x

0
0; x

0
1//

so that

x0
2 D x2'n�1.x0

0; x
0
1/C 	'n.x

0
0; x

0
1/

x2 n�2.x0
0; x

0
1/C 	 n�1.x0

0; x
0
1/
:

Resolving with respect to x2 we find

x0
2.x2 n�2 C 	 n�1/ D x2'n�1 C 	'n;

that is,
x2.x

0
2 n�2 � 'n�1/C 	.x0

2 n�1 � 'n/ D 0:

Therefore

x2 D �	.x
0
2 n�1 � 'n/

x0
2 n�2 � 'n�1

I 	 D �x2.x
0
2 n�2 � 'n�1/
x0
2 n�1 � 'n :

Bearing in mind (9.18), equations (9.17) are thus inverted as follows:8̂<̂
:
x0 D x0

0.x
0
2 n�2.x0

0; x
0
1/ � 'n�1.x0

0; x
0
1//;

x1 D x0
1.x

0
2 n�2.x0

0; x
0
1/ � 'n�1.x0

0; x
0
1//;

x2 D �x0
2 n�1.x0

0; x
0
1/C 'n.x

0
0; x

0
1/:

One finds formulas of the same type in (9.17), so that the two homaloidal nets †,
†0 associated to � are formed in the same way.
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9.3.6 Exceptional curves of a Cremona transformation between planes. Let
� W S2 ! S 0

2 be a Cremona transformation between two planes, and let † and †0
be the two homaloidal nets associated to � .

A base point of† does not have a well-defined corresponding point. To it there
is however associated a rational curve. We prove this fact in the simplest case, that
in which the base point P does not have fixed tangents: that is, there do not exist
lines tangent at P to all the curves of †.

The curves of † that have a given tangent a at P form a pencil to which there
corresponds a pencil of lines in S 0

2 whose centerP 0
a will be called the correspondent

of the point infinitely near to P in the direction a.
Let b be another generic line issuing from P and let P 0

b
be the correspondent

of P in the direction b. We have P 0
a ¤ P 0

b
. Indeed, if we had P 0

a D P 0
b
, the two

pencils of lines that have them as centers there would coincide and so too would
coincide the two pencils of curves of † corresponding to them. Consequently, all
the curves of † tangent at P to a would also be tangent there to b, and therefore
any two of them, having the two points infinitely near to P in the directions of the
lines a and b in common (that is, two intersections outside the base points of the
net), would be reducible. Since b is a generic line of the pencil with center P , all
the curves of † would be reducible, and for a homaloidal net that can not happen.

Thus, as the direction of the lines issuing from P varies, one finds 11 points
P 0 that trace out a rational curve ˛P (since its points are in bijective algebraic
correspondence with the lines of the pencil with center P , cf. 7.2.13). We will say
that this is the exceptional curve of S 0

2 corresponding to the point P . It represents
the first order neighborhood of P . We will also say that ˛P is an exceptional curve
(or fundamental curve) of the second net †0.

All of this may be repeated interchanging the two planes: to each base pointQ0
of the homaloidal net †0 in S 0

2 there corresponds in S2 a fundamental curve of the
first net †.

The Cremona transformation thus has the effect of substituting the first order
neighborhoods of the base points of one of the two nets with certain rational curves
that are exceptional for the other net.

9.3.7 (Analytic determination of the exceptional lines of a quadratic transformation).

(1) First let � W S2 ! S 0
2 be a transformation of type I,

y0 W y1 W y2 D x1x2 W x2x0 W x0x1I x0 W x1 W x2 D y1y2 W y2y0 W y0y1:
The pencilˆof conics of† tangent atA0 D Œ1; 0; 0� to the lineax1Cbx2 D 0,
represented by

ˆ W �x1x2 C x0.ax1 C bx2/ D 0;

is transformed into y0y1y2.�y0 C ay2 C by1/ D 0. Thus has as its proper
transform the pencil of lines �y0 C ay2 C by1 D 0, whose center Œ0; a;�b�
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is the point of S 0
2 that corresponds to the point of S2 infinitely close to A0 in

the direction ax1 C bx2 D 0. It traces out the line y0 D 0 which is therefore
the exceptional line corresponding to A0.

Analogous conclusions also hold for the other two base points.

(2) Now let � W S2 ! S 0
2 be a transformation of type II given by

y0 W y1 W y2 D x2x0 W x0x1 W x21 I x0 W x1 W x2 D y21 W y1y2 W y0y2:
Let A0 be the fundamental point in which the conics of † have variable
tangent. To the pencilˆ W x0.ax1 C bx2/C�x21 D 0 of conics of† tangent
at A0 D Œ1; 0; 0� to the line ax1 C bx2 D 0 there corresponds the pencil of
lines ay1 C by0 C �y2 D 0 which has center Œa;�b; 0� on the exceptional
line y2 D 0.

Now let A2 D Œ0; 0; 1� be the point where the conics of † have the common
tangent x0 D 0. To the pencil ˆ W x2x0 C ax21 C �x0x1 D 0 of conics of
† that are mutually osculating at A2 there corresponds the pencil of lines
y0 C ay2 C �y1 D 0 whose center Œa; 0;�1� belongs to the exceptional line
y1 D 0 corresponding to A2.

(3) Finally let � W S2 ! S 0
2 be a transformation of type III defined by

y0 W y1 W y2 D x0x2�x21 W x20 W x0x1I x0 W x1 W x2 D y21 W y1y2 W y0y1Cy22 :
To the pencilˆ W x0x2�x21Cax0x1C�x20 D 0 (whose four base points coin-
cide in the pointA2) there corresponds the pencil of lines y0Cay2C�y1 D 0

whose center Œa; 0;�1� traces the exceptional line y1 D 0 corresponding to
A2 D Œ0; 0; 1�.

9.3.8. We now study some properties of the exceptional curves of a Cremona trans-
formation � between two planes S2 and S 0

2. Let

† D C n.A
s1
1 ; A

s2
2 ; : : : ; A

sh
h
/; †0 D C n.B

r1
1 ; B

r2
2 ; : : : ; B

rh0

h0 /

be the two homaloidal nets associated to � . Let ˛1; : : : ; ˛h be the exceptional
curves of S 0

2 that correspond to the base points A1; : : : ; Ah of † and let tij be
the multiplicity of ˛i at Bj . Let ˇ1; : : : ; ˇh0 be the exceptional curves of S2 that
correspond to the base points B1; : : : ; Bh0 of†0 and let t 0j i be the multiplicity of ǰ

at Ai .

• To each curve C of † there corresponds in S 0
2 a line r not passing through

any of the points Bj and one has a bijective correspondence between the
intersections of r with ˛i and the tangents of C at Ai . Thus deg˛i D si .
Similarly, deg ǰ D rj .
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• The points of ˛i belonging to the neighborhood of Bj (that is, to the excep-
tional curve of S 0

2 corresponding to Bj , cf. §9.3.6) correspond bijectively to
the points of the neighborhood of Ai belonging to ǰ . This means that the
multiplicity of ˛i at Bj is equal to the multiplicity of ǰ at Ai ; that is,

t 0j i D tij :

• The generic line r in S2 does not pass throughAi ; hence the curveC 0 D �.r/

(i.e., a generic curve of †0) does not have points in common with ˛i that are
not base points of †0.
This implies that if P is a point of ˛i distinct from the base points of †0 the
curves of †0 passing through P form a pencil ˆ of curves all of which are
split and contain as component ˛i . The pencilˆ� of the residual components
corresponds to the pencil of lines in S2 issuing from Ai . Since the curve ˛i
is rational one thus has (cf. Proposition 7.2.7)

.si � 1/.si � 2/
2

�
h0X
jD1

tij .tij � 1/
2

D 0: (9.19)

• If P is a point of ˛i and � is the curve of ˆ� passing through P , then ˛i [ �
belongs to†0 and hasP as double point. Therefore each point of ˛i is double
for some curve of †0 and therefore belongs to the Jacobian curve J 0 of †0
(cf. Section 6.4). This means that the curves ˛i are components of J 0; and
in fact they exhaust J 0 because the sum of their orders is

Ph
iD1 si D 3n� 3,

which is equal to the order of J 0 (cf. Exercise 9.5.13).

The multiplicity of Bj for the curve J 0 is 3rj � 1, cf. Exercise 6.4.3 (3);
on the other hand it is equal to the sum of the multiplicities tij at Bj of its
components ˛1; : : : ; ˛h. Thus, one has the equation

hX
iD1

tij D 3rj � 1

and summing with respect to j gives

h0X
jD1

hX
iD1

tij D 3

h0X
jD1

rj � h0 D 3.3n � 3/ � h0: (9.20)

Similarly, interchanging the two nets, one has the equations

h0X
jD1

t 0j i D 3si � 1; (9.21)



9.3. Cremona transformations between planes 315

hX
iD1

h0X
jD1

t 0j i D 3

hX
iD1

si � h D 3.3n � 3/ � h: (9.22)

The left-hand sides of (9.20) and (9.22) are equal, hence

h D h0:

Thus † and †0 have the same number of base points.

• In virtue of equations (9.19), (9.21) we have (recall that t 0j i D tij )

.si � 1/.si � 2/
2

�
h0X
jD1

tij .tij � 1/
2

�
� h0X
jD1

tij � 3si C 1
�

D si .si C 3/

2
�

h0X
jD1

tij .tij C 1/

2
D 0

and hence ˛i is the unique curve of S 0
2 having order si and having the points

Bj as tij -fold points (cf. Section 6.2). Similarly ǰ is the unique curve of S2
having order rj and the multiplicities tij at the points Ai .

• Finally, we note that two curves ˛i , j̨ can not meet outside of the base points
of †0 because there is no point of S2 belonging to the neighborhood of Ai
and also to the neighborhood of Aj .

9.3.9 The Noether–Rosanes inequality. Let † D C n.A
s1
1 ; A

s2
2 ; : : : ; A

sh
h
/ be a

homaloidal net of curves of order n > 1. If s1 � s2 � s3 � � � � � sh we have

s1 C s2 C s3 � nC 1: (9.23)

The simple proof that we give here is due to Mlodziejowski (see [66] and [53,
p. 10]). Since

Ph
iD1 s2i D n2 � 1 (and s1 � s2 � s3 � � � � � sh) we have

s21 C s22 C s3.s3 C s4 C � � � C sh/ �
hX
iD1

s2i D n2 � 1:

On the other hand, by the second equality in (9.12), we have

s3 C s4 C � � � C sh D 3n � 3 � s1 � s2:
Hence

s21 C s22 C s3.3.n � 1/ � s1 � s2/ � n2 � 1;
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which is to say

s1.s1 � s3/C s2.s2 � s3/C 3.n � 1/s3 � n2 � 1:
But s1 � n � 1, s2 � n � 1. Therefore

.n � 1/.s1 � s3/C .n � 1/.s2 � s3/C 3.n � 1/s3 � n2 � 1
and, since n ¤ 1,

s1 � s3 C s2 � s3 C 3s3 � nC 1;

which is (9.23).

Theorem 9.3.10 (Theorem of Noether–Castelnuovo). A Cremona transformation
� W S2 ! S 0

2 between planes can always be obtained as a product of a finite number
of quadratic transformations and a projectivity.

Proof. In the case of Cremona transformations with ordinary base points, that is,
with base points in which it is not imposed on the curves to have fixed tangents, the
proof is very simple, and was found at the same time by Noether (and by Rosanes
and Clifford around 1870; see [77] and also [45, p. 74]). We give the demonstration
in that case.

Let � W S2 ! S 0
2 be a Cremona transformation and let † D C n.A

s1
1 ; : : : ; A

sh
h
/,

†0 D C n.B
r1
1 ; : : : ; B

rh
h
/ be the two homaloidal nets in S2 and S 0

2 associated to � .
By 9.3.8 the two nets have the same number of base points.

Let then ! W S 0
2 ! S 00

2 be a quadratic transformation between the plane S 0
2 and a

new plane S 00
2 and†00 the (homaloidal) net of the curves in S 00

2 which are transforms
of the curves of †0 by way of !.

If R is the net of lines in S2 one has �.R/ D †0 and thus !.�.R// D †00. The
product � ´ ! B � is a Cremona transformation � W S2 ! S 00

2 which has as its
second homaloidal net the net †00, the transform of R (this means that †, †00 are
the two homaloidal nets associated to �):

R � S2

�

���
��

��
��

��
��

��
� �� S 0

2 � †0

!

��
S 00
2 � †00

Let B1, B2, B3 be the three points of maximal multiplicity of †0. By (9.23) we
have

r1 C r2 C r3 � nC 1I
whence the three points are not collinear, and (using here the hypothesis that the
three base points are ordinary, cf. Remark 9.3.11) we may choose as! the quadratic
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transformation that has them as its fundamental points. In particular! is a quadratic
transformation of type I and so, bearing in mind Proposition–Definition 9.2.2, the
curves of †0 will be transformed by ! into curves of †00 of order n1 ´ 2n� r1 �
r2 � r3 < n. Therefore � D !�1 B � is the product of a quadratic transformation
!�1 and a Cremona transformation � whose order (i.e., the order of the curves of
the net) is n1 < n.

Operating on � as has just been done for � one can write � as a product of two
quadratic transformations and a Cremona transformation of order < n1.

In this way, iterating the procedure, one obtains � as a product of a finite number
of quadratic transformations and a possible projectivity. �

Remark 9.3.11. The problem is much more complicated when there are base points
with fixed tangents. The question was studied by Max Noether who believed that
he had resolved it. But Noether’s proof contained gaps that where pointed out by
C. Segre [88] who observed that it is not obvious that the three points of maximal
multiplicity of a homaloidal net can always be assumed to be base points of a net
of conics not all of which are reducible, a circumstance which is certainly possible
if the three points are distinct. The theorem does hold, however, in the general case
as was later proved by Castelnuovo [24].

9.4 Cremona transformations between projective spaces of
dimension 3

We start by considering the case of Cremona transformations between projective
spaces Sr , S 0

r of dimension r > 2. Consider an r-dimensional linear system † of
hypersurfaces

�0'0.x0; : : : ; xr/C � � � C �r'r.x0; : : : ; xr/ D 0; (9.24)

with base variety defined by the equations '0 D � � � D 'r D 0. If every choice of r
independent hypersurfaces of† has intersection with only a single point in common
outside the base variety, then † is said to be a homaloidal system of hypersurfaces
of Sr . Such a homaloidal system† determines a Cremona transformation � W Sr !
S 0
r . To † there is associated (as in the case of nets of conics) a homaloidal system
†0 in S 0

r .
In general† and†0 do not have the same order (that is, the hypersurfaces of†

do not have the same order as those of †0).
We will say that � is a Cremona transformation of type .n; n0/ if n and n0 are

the orders of † and †0.
Assuming this terminology, let � W Sr ! S 0

r be a Cremona transformation of
type .n; n0/, and let † and †0 be its two homaloidal systems. Let ` be a generic
line of Sr .
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Since † may always be supposed to be without fixed components, we can
consider an open set U of Sr that contains the line ` and such that the restriction
�jU W U ! �.U / is an isomorphism.

To then intersections with ` of a generic hypersurface of†, with equation (9.24),
there correspond bijectively the intersections of a generic hyperplane �0y0 C � � � C
�ryr D 0 of S 0

r with the curve L0 D �jU .`/ of S 0
r that corresponds to `. Therefore

n is the order of L0. On the other hand, since ` is the intersection of r � 1 generic
hyperplanes of Sr , the curve L0 is the intersection of r �1 generic hypersurfaces of
†0 (outside of the base variety). The curve L0 is called the proper transform of `.
Thus:

• Given a Cremona transformation � W Sr ! S 0
r of type .n; n0/ let †, †0 be

its two homaloidal systems. Then the order of † is equal to the order of the
intersection (outside the base variety) of r � 1 generic hypersurfaces of †0,
that is, of the proper transform of a generic line of Sr . The order of †0 is
defined similarly by interchanging Sr with S 0

r and † with †0. In particular,

n0 � nr�1; n � n0r�1
:

We now study the case r D 3 (and n D 2) more deeply. Let � W S3 ! S 0
3 be

a Cremona transformation, † and †0 its two homaloidal systems. Suppose that †
is a linear system of quadrics .n D 2). We wish to determine the structure of †
and †0.

We know that the order n0 of the system †0 is equal to the order of the variable
part of the intersection of two quadrics of †. If n0 D 1 then we must also have
n D 1 (use, for example, the relation n � n0r�1) and thus, since we suppose that �
is not a projectivity, n0 can only be 2, 3, or 4.

In † we fix a generic quadric Q0. Bearing in mind that the quadrics of † have
a single point in common outside of the base variety when taken three by three,
the other quadrics of † meet Q0 in curves of order 4 whose variable parts form a
homaloidal net 	 (in Q0).

If 	 is a homaloidal net of conics [which means that the variable part of the
intersection of two quadrics of† is a conic and thus � is of type .2; 2/], the quadrics
of † all pass through a conic �0. Two conics of 	 have two points in common (the
intersections of Q0 with the line common to the two planes that contain the two
conics). Since 	 is a homaloidal net, one of these points must be a base point of 	 .

If 	 is a net of cubics C 3 (and hence � is of type .2; 3/) † consists of quadrics
passing through a line `0. Since the quartic C 4 which is the intersection of two
quadrics of † is a curve of type .2; 2/ and `0 D .1; 0/ on Q0, the cubics C 3 are
of the type .1; 2/. Thus every cubic of 	 meets `0 in .1; 2/.1; 0/ D 2 points. This
means that `0 is a chord of every cubic of 	 (cf. Section 7.3 for the curves on a
quadric).
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Moreover, two cubics on 	 meet in .1; 2/.1; 2/ D 4 points; since 	 is a homa-
loidal net, three of these points must be base points for †.

If 	 is a net of quartics (and thus � is of type .2; 4/), 	 must have a double base
point O . Indeed, the curves of the net are rational (as was seen in Section 9.3) and
a non-singular quartic that is the intersection of two quadrics is not rational (it has
genus 1, cf. Corollary 7.2.5 and (7.9)).

The point O can not be double for all the quartics of †. Indeed, in that case
the quadrics of† would be cones with vertexO and would intersect two by two in
quartics split into lines; and then the curves of the net 	 would all be reducible. It
follows that the quadrics of † are tangent at O to a fixed plane.

Of the eight points common to two quartics of 	 , four are absorbed by O and
therefore three of the remaining four intersections must be base points of †.

So there are three possible types of homaloidal systems of quadrics and thus three
possible types of Cremona transformations � W S3 ! S3 having as first homaloidal
system a system of quadrics.

We now wish to determine the analytic structure of the Cremona transformation
associated to each of these types.

9.4.1 Cremona transformations of type .2 ; 2/. These transformations are called
quadratic transformations; the two homaloidal systems † and †0 are both linear
systems of quadrics and the base variety consists of a conic � and a further isolated
point A.

We choose the reference system in such a way that the conic � has equations
x0 D '.x1; x2; x3/ D 0 and the pointA is the pointA0 D Œ1; 0; 0; 0�. One then has

�0'.x1; x2; x3/C x0.�1x1 C �2x2 C �3x3/ D 0

as the equation for †. The formulas for the transformation � W S3 ! S 0
3 are

� W

8̂̂̂<̂
ˆ̂:
�y0 D '.x1; x2; x3/;

�y1 D x0x1;

�y2 D x0x2;

�y3 D x0x3;

� 2 K�; (9.25)

and they are easily inverted. Indeed, it follows from these formulas that xi D 	
x0
yi ,

i D 1; 2; 3, whence

�y0 D '

�
�

x0
y1;

�

x0
y2;

�

x0
y3

�
D �2

x20
'.y1; y2; y3/:

Therefore

xi D �

x0
yi D �

x0y0
y0yi ; i D 1; 2; 3I x0 D �

x0y0
'.y1; y2; y3/:
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Then, on setting x0y0

	
D �0, we obtain

��1 W

8̂̂̂<̂
ˆ̂:
�0x0 D '.y1; y2; y3/;

�0x1 D y0y1;

�0x2 D y0y2;

�0x3 D y0y3:

(9.26)

The system†0 has as its base variety the conic� 0 with equationy0 D '.y1; y2; y3/D
0 and the isolated point A0

0 D Œ1; 0; 0; 0�.
Let 
 W ax1 C bx2 C cx3 D 0, a; b; c 2 K, be a plane in S3 passing through

A0. The quadric of †0 that corresponds to it has equation

y0.ay1 C by2 C cy3/ D 0

and is composed of the plane y0 D 0 that contains � 0 and the plane 
 0 with equation
ay1 C by2 C cy3 D 0. The planes 
 and 
 0 correspond under a projectivity !
between the stars of planes having centers A0 and A0

0.
The quadrics of†meet 
 in the conics of a homaloidal net of conics havingA0

and the two points Q and R at which 
 meets � as base points. Thus � induces a
quadratic transformation � between the two planes with those three points as base
points. The homaloidal net on 
 0 cut out by †0 has as its base points A0

0 and the
intersections of � 0 with 
 0. The exceptional lines of � in 
 are the traces on 
 of
the plane of � and the two generators hA0;Qi, hA0; Ri of the cone � projecting
� from A0. Similarly, the exceptional lines in 
 0 are the traces on 
 0 of the plane
of � 0 and the two generators that are sections of 
 0 with the cone � 0 projecting � 0
from A0

0. In particular, the exceptional line corresponding to A0 is the trace of 
 0
in the plane of � 0 and similarly the exceptional line corresponding toA0

0 is the trace
of 
 in the plane of � .

From this one deduces that to the base locus of† (the pointA0 and the conic � )
there correspond the plane of � 0 (in which the first order neighborhood of A0 is
extended) and the cone � 0. To each point P of � there correspond the points of a
generator g0 of � 0, the image under the projectivity ! of the generator hA0; P i of
the cone � .

Analogous results may be obtained by interchanging S3 and S 0
3.

9.4.2 Cremona transformations of type .2 ; 3/. The first homaloidal system †

is a system of quadrics passing through a line and through three further points, and
the second homaloidal system †0 is a system of cubic surfaces.

If we choose the reference system so that the base line of † contains the points
A1 D Œ0; 1; 0; 0�, A2 D Œ0; 0; 1; 0�, and the three isolated base points become
A0 D Œ1; 0; 0; 0�, A3 D Œ0; 0; 0; 1� and U D Œ1; 1; 1; 1�, then the system † has the
equation

�0x0.x2 � x3/C �1x3.x1 � x0/C �2x0.x1 � x3/C �3x3.x2 � x0/ D 0:



9.4. Cremona transformations between projective spaces of dimension 3 321

The equations of the transformation � W S3 ! S 0
3 are

� W

8̂̂̂<̂
ˆ̂:
y0 D x0.x2 � x3/;
y1 D x3.x1 � x0/;
y2 D x0.x1 � x3/;
y3 D x3.x2 � x0/:

One verifies that these formulas are inverted by the following:

��1 W

8̂̂̂<̂
ˆ̂:
x0 D .y2 � y0/.y2y3 � y0y1/;
x1 D .y2 � y1/.y3 � y1/.y2 � y0/;
x2 D .y1 � y3/.y2 � y0/.y3 � y0/;
x3 D .y1 � y3/.y2y3 � y0y1/:

Therefore, the surfaces in the homaloidal system †0 having equation

�0.y2 � y0/.y2y3 � y0y1/C �1.y2 � y1/.y3 � y1/.y2 � y0/
C �2.y1 � y3/.y2 � y0/.y3 � y0/C �3.y1 � y3/.y2y3 � y0y1/

are the ruled cubics having as double line the line y1 � y3 D y2 � y0 D 0

and also having in common the three generators y0 D y2 D 0, y1 D y2 D 0,
y1 � y2 D y0 � y3 D 0, which are supported by the double line in three distinct
points (cf. 5.8.22).

9.4.3 Cremona transformations of type .2 ; 4/. The first homaloidal system †

is a system of quadrics passing through four points and having a given fixed tangent
plane at one of them, while the second homaloidal system†0 is a system of surfaces
of order 4. We choose the reference system so that the four base points of † are
A0 D Œ1; 0; 0; 0�, A1 D Œ0; 1; 0; 0�, A2 D Œ0; 0; 0; 1� and A3 D Œ0; 0; 0; 1� and let
a1x1Ca2x2Ca3x3 D 0 be the plane to which the quadrics of† are tangent atA0.
Thus one has for † the equation

�0x0.a1x1 C a2x2 C a3x3/C �1x2x3 C �2x3x1 C �3x1x2 D 0:

The Cremona transformation � W S3 ! S 0
3 is given by the equations

� W

8̂̂̂<̂
ˆ̂:
y0 D x0.a1x1 C a2x2 C a3x3/;

y1 D x2x3;

y2 D x3x1;

y3 D x1x2;



322 Chapter 9. Cremona Transformations

which are inverted by the following relations

��1 W

8̂̂̂<̂
ˆ̂:
x0 D y0y1y2y3;

x1 D y2y3.a1y2y3 C a2y3y1 C a3y1y2/;

x2 D y1y3.a1y2y3 C a2y3y1 C a3y1y2/;

x3 D y1y2.a1y2y3 C a2y3y1 C a3y1y2/:

One sees immediately that all the surfaces of the second homaloidal system †0
have the triple point A0

0 D Œ1; 0; 0; 0� and the double lines rA0
0
A0

1
, rA0

0
A0

2
, and rA0

0
A0

3
.

Hence these surfaces are Steiner surfaces, a particular type of rational surfaces that
we will study in Exercise 10.5.6. The base variety of†0 consists of the three double
lines and the conic with equation y0 D a1y2y3 C a2y3y1 C a3y1y2 D 0.

9.5 Exercises

9.5.1. In a Euclidean plane we choose a fixed pointO and decree that two pointsP
and P 0 are in correspondence when they are collinear with O and have distances
fromO whose product is a given constant. The transformation that one finds in this
way (which is called an inversion or transformation by reciprocal radius vectors)
is a quadratic transformation.

Describe the two homaloidal nets and study the images of the conics under this
transformation.

In orthogonal affine Cartesian coordinates, let P D .x; y/ and P 0 D .x0; y0/
be two corresponding points. Then

y0

x0 D y

x
I

p
x2 C y2

q
x02 C y02 D k; k 2 R�:

Put y0 D �y, x0 D �x. We then have �
p
x2 C y2

p
x2 C y2 D k and so � D

k
x2Cy2 . The equations of the transformation are then

x0 D kx

x2 C y2
I y0 D ky

x2 C y2
:

The inverse formulas are

x D kx0

x02 C y02 I y D ky0

x02 C y02 : (9.27)

Using the relations (9.27) we see that the lines of each of the two planes (super-
imposed) correspond in the other plane to the circles passing through the origin O
(possibly split into a line p passing through O and the line at infinity).
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This can also be seen immediately by elementary means as follows. LetA be the
orthogonal projection of the point O on the line r and let A0 be the corresponding
point of A. If P is another point of r and P 0 is its image we have OA � OA0 D
OP �OP 0, or OA

OP
D OP 0

OA0 . This means that the two triangles OAP and OP 0A0 are
similar. Therefore the two angles OAP and OP 0A0 are equal and so both are right
angles. The point P 0 thus belongs to the circle with diameter OA0 (Figure 9.4).

The conics are mapped into circular quartics (that is, having two double points
in the two circular points at infinity) with a double point at O . The two circular
points at infinity are biflecnodes (that is, points at which there are two ordinary
flexes with distinct inflectional tangents).

AA0O

P

P 0

r

Figure 9.4

9.5.2. The construction in 9.5.1 can be extended to any n-dimensional Euclidean
space.

9.5.3. Let 
 and 
 0 be two planes of S3 and let a and b be two lines placed in
general position with respect to 
 and 
 0. We say that two points P 2 
 and
P 0 2 
 0 correspond to each other when the line rPP 0 is supported by a and b. In
this way we define a quadratic transformation between 
 and 
 0. Find the base
points and the exceptional lines.

If P runs over the line r in 
 , the line passing through P and supported by a
and b runs over the quadric having a, b, and r as directrices. Then P 0 runs over
the conic r 0 which is the section of that quadric by 
 0. Thus one has a bijective
correspondence (in general) that transforms lines in one plane into conics in the
other.

Let A and B (respectively A0 and B 0) be the intersections of the lines a and b
with 
 (respectively 
 0); then let C D rA0B0 \
 , and C 0 D rAB \
 0 (Figure 9.5).
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a
b





 0

r

r 0

A

B

C

P

A0
B 0

C 0

P 0

Figure 9.5

The fundamental points (to which there correspond all the points of an exceptional
line in the other plane) are, for example in 
 , the points P for which one of the
following two situations holds.

(1) The line issuing fromP and meeting a and b lies on 
 0; there is only the point
C in which the line rA0B0 meets 
 and to C there corresponds the line rA0B0 .

(2) The line issuing from P and supported by a and b is indeterminate (i.e., there
are infinitely many); the points with this property are A and B (for example
to A there corresponds the intersection of 
 0 with the plane joining A and b,
that is the line rB0C 0).

9.5.4. Let Q be a non-specialized quadric in S3. We fix two of its points A and B .
If 
 and 
 0 are two planes, we say that two points P 2 
 and P 0 2 
 0 correspond
to each other when the lines rAP , rBP 0 meet Q (outside of A and B) in the same
point.

Describe the Cremona transformation between 
 and 
 0 obtained in this way.

Given P in 
 we consider the line rAP and its further intersection M with the
quadric Q. The point P 0 is the intersection with 
 0 of the line rMB . If P runs
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over a line r in the plane 
 , the line rAP sweeps out a plane that cuts Q in a conic
(traced by the point M ): to r there corresponds the conic which is the projection
of the former conic in the plane 
 0 from the point B . Thus lines are transformed
into conics (Figure 9.6).

The point P can be indeterminate in the following two cases.

(1) If the line rMB is indeterminate, that is, if M D B and thus P is the inter-
section N of the line rAB with 
 . In this case rMB is an arbitrary tangent to
Q at B and so to N there corresponds the trace on 
 0 of the tangent plane at
B to Q.

(2) If the point M is indeterminate, which means that if the line rAP lies on the
quadric, and thus ifP D T1 orP D T2 where T1 and T2 are the traces in 
 of
the two generators g1 and g2 of Q passing through A. For example, the point
T1 joined with A gives the line g1 on Q whose projection from B on 
 0 is the
line corresponding to T1. This line passes through the point N 0 D 
 0 \ rAB .
Moreover, the line g1 meets one of the two generators of Q passing throughB
and thus the plane determined by B and g1 contains this generator b; and the
projection from B onto 
 0 passes through the trace T 0

2 of b in 
 0. Similarly,
the projection from B of g2 into 
 0 gives the line that corresponds to T2 (and
which passes through the trace T 0

1 of the generator a of Q passing through B
and meeting g2).

The base points of the two homaloidal nets are N , T1, T2 and N 0, T 0
1, T 0

2.

9.5.5. Let 
 and 
 0 be two real Euclidean planes. We say that two points P D
.x; y/ and P 0 D .x0; y0/ correspond to each other when, on setting z D x C iy,
z0 D x0 C iy0, we have

z0 D az C b

cz C d
; (9.28)

with a; b; c; d 2 C, ad � bc ¤ 0. Show that this transformation sends the system
of circles of 
 onto the system of circles of 
 0 (possibly degenerating into a line
and the line at infinity).

Since

az C b

cz C d
D a

c
C
bc � ad
c2

z C d

c

;

the passage from z to z0 can be decomposed into four steps

z 7! z C d

c
7! 1

z C d
c

7! bc � ad
c2

1

z C d
c

7! a

c
C bc � ad

c2
1

z C d
c

D z0:
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A

B

P 0

M
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Q





 0

r

r 0

a b

A

B

T1

T2

T 0
1

T 0
2

g1
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 0

Figure 9.6

Thus one sees that the transformation (9.28) is the composition of transformations
of the following types:

z0 D z C �; z0 D �z; z0 D 1

z
; �; � 2 C; � ¤ 0: (9.29)

On the other hand, if � D �1 C i�2, the relation z0 D z C � means that

x0 C iy0 D x C iy C �1 C i�2 D x C �1 C i.y C �2/;

that is, z0 D z C � is a translation defined by´
x0 D x C �1;

y0 D y C �2:
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If � D �1 C i�2, the transformation z0 D �z may be rewritten

x0 C iy0 D .�1 C i�2/.x C iy/ D �1x � �2y C i.�2x C �1y/:

This means that z0 D �z is a particular direct similitude (which we will also call
a rotohomothety, that is, a rotation around the origin followed by a homothety, cf.
[13, Vol. I, Chapter 2]) defined by´

x0 D �1x � �2y;
y0 D �2x C �1y:

The structure of the transformation z0 D �z is best seen by writing z D rei� ,
z0 D r 0ei� 0

, � D �ei! . Then r 0ei� 0 D rei��ei! D r�ei.�C!/, that is rotation
through the angle ! and multiplication of the length by �.

Finally z0 D 1
z

may be rewritten

x0 C iy0 D 1

x C iy
D x � iy
x2 C y2

;

or 8̂̂<̂
:̂
x0 D x

x2 C y2
;

y0 D � y

x2 C y2
;

and so here one has a transformation by reciprocal radii (cf. 9.5.1) followed by a
symmetry with respect to the x-axis.

The three transformations (9.29) transform lines and circles into lines and circles,
and preserve the angles (and their sense); and so (9.28) is in general a quadratic
transformation (but can be a projectivity in special cases) that preserves angles and
the sense of angles. The transformations (9.28) are called Möbius transformations
of the second kind.

9.5.6. Let
 and
 0 be two real Euclidean planes. We say that two pointsP D .x; y/

and P D .x0; y0/ correspond to each other when, on setting z D x C iy and
z0 D x0 C iy0, one has

z0 D a Nz C b

c Nz C d
; (9.30)

where a; b; c; d 2 C, ad �bc ¤ 0, and Nz D x� iy. Show that this transformation
changes the system of circles of 
 (possibly degenerating into a line and the line at
infinity) into the system of circles of 
 0.

Reasoning as in Exercise 9.5.5 one sees that (9.30) are quadratic transformations
(in general) which preserve angles (but not the sense of angles); they are obtained
as a product of translations, rotohomotheties, transformations by reciprocal radii,
and symmetries. One says that (9.30) gives the Möbius transformations of the first
kind.
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9.5.7. Prove that the necessary and sufficient condition for the points z1, z2, z3, z4
in the Argand–Gauss plane to lie on a circle is that their cross ratio R.z1; z2; z3; z4/

be real.

Let z1, z2, z3, z4 be four points of a circle C . The Möbius transformation
z0 D ˛zCˇ

�zCı that sends z1, z2, z3 into three arbitrary points z0
1, z0

2, z0
3 of the real axis

will also send z4 into a point z0
4 of the real axis because it maps circles into circles

or lines. We then have

R.z1; z2; z3; z4/ D R.z0
1; z

0
2; z

0
3; z

0
4/ 2 R:

Conversely if R.z1; z2; z3; z4/ 2 R, a Möbius transformation that maps z1, z2, z3
into three points z0

1, z0
2, z0

3 of the real axis will also map z4 into a point z0
4 of the

real axis (because R.z0
1; z

0
2; z

0
3; z

0
4/ 2 R and z0

1; z
0
2; z

0
3 2 R). Then z1, z2, z3, z4,

corresponding to four collinear points, belong to a circle.

9.5.8. Examine the Cremona transformations �1, �2 between spaces S3 which are
represented in affine Cartesian coordinates by the equations

�1 W

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

x0 D x;

y0 D y

x
;

z0 D z

x

and �2 W

8̂̂̂<̂
ˆ̂:
x0 D x;

y0 D y;

z0 D z

x
:

Study the compositions �1 B �2, �2 B �1 and for each of them the two homaloidal
systems of surfaces.

We write the equations of �1 in homogeneous coordinates to obtain

x0
1

x0
0

D x1

x0
D x21
x0x1

I x0
2

x0
0

D x2

x1
D x2x0

x1x0
I x0

3

x0
0

D x3

x1
D x3x0

x1x0
;

whence

�1 D

8̂̂̂<̂
ˆ̂:
x0
0 D x0x1;

x0
1 D x21 ;

x0
2 D x0x2;

x0
3 D x0x3:

The first homaloidal system of quadrics has equation

�0x0x1 C �1x
2
1 C �2x0x2 C �3x0x3 D 0;

that is,
x0.�0x1 C �2x2 C �3x3/C �1x

2
1 D 0:
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These are quadrics that pass (simply) through A0 D Œ1; 0; 0; 0� and that are tangent
to the plane x0 D 0 along the line x0 D x1 D 0; thus they are cones. The base
variety then consists of a point and a conic (given by two coinciding lines). The
Cremona transformation �1 is a particular case of a transformation of the type .2; 2/.

The equations of �1 may be inverted to obtain the following expression for the
inverse transformation:

��1
1 W

8̂<̂
:
x D x0;
y D x0y0;
z D x0z0:

In homogeneous coordinates this becomes

x1

x0
D x0

1

x0
0

D x0
1x

0
0

x0
0
2

I x2

x0
D x0

1x
0
2

x0
0
2

I x3

x0
D x0

1x
0
3

x0
0
2
;

and thus

��1
1 W

8̂̂̂<̂
ˆ̂:
x0 D x0

0
2
;

x1 D x0
0x

0
1;

x2 D x0
1x

0
2;

x3 D x0
1x

0
3:

The second homaloidal system is

�0x
0
0
2 C �1x

0
0x

0
1 C �2x

0
1x

0
2 C �3x

0
1x

0
3 D 0

and consists of quadric cones passing (simply) throughA0
1 D Œ0; 1; 0; 0� and tangent

to the plane x0
1 D 0 along the line x0

1 D x0
0 D 0.

We write the equations of �2 in homogeneous coordinates to obtain

x0
1

x0
0

D x1

x0
D x21
x0x1

I x0
2

x0
0

D x2

x0
D x2x1

x0x1
I x0

3

x0
0

D x3

x1
D x3x0

x1x0
;

whence

�2 W

8̂̂̂<̂
ˆ̂:
x0
0 D x0x1;

x0
1 D x21 ;

x0
2 D x2x1;

x0
3 D x0x3:

The first homaloidal system of quadrics has equation

�0x0x1 C �1x
2
1 C �2x2x1 C �3x0x3 D 0;

or also
x1.�0x0 C �1x1 C �2x2/C �3x0x3 D 0:
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The base variety consists of a pair of distinct lines (given by x1 D x0x3 D 0)
having the point A2 D Œ0; 0; 1; 0� in common. (The other base point is the point
A3 D Œ0; 0; 0; 1�, contained in one of the two lines since the quadrics of the system
all have the same tangent plane x0 D 0 at A3.) The transformation �2 is also of
type .2; 2/.

The formulas for the inverse transformation are

��1
2 D

8̂<̂
:
x D x0;
y D y0;
z D x0z0:

The second homaloidal system is

�0x
0
0
2 C �1x

0
0x

0
1 C �2x

0
0x

0
2 C �3x

0
1x

0
3 D 0

and consists of quadrics passing through the pair of lines x0
0 D x0

1x
0
3 D 0 and

tangent at A0
3 D Œ0; 0; 0; 1� to the plane x0

1 D 0.
For the description of the composed maps �1 B �2, �2 B �1 one proceeds in

analogous fashion.

9.5.9. In what cases can the composition of two quadratic transformations between
planes be a Cremona transformation of order � 2?

Let �1 W 
 0 ! 
 00, and �2 W 
 00 ! 
 000 be the two quadratic transformations.
If †1, †2 are the two homaloidal nets of �1 and †3, †4 those of �2, in order

that �2 B �1 W 
 0 ! 
 000 be a Cremona transformation of order � 2 (i.e., either a
projectivity or a quadratic transformation) it is necessary and sufficient that at least
two of the three base points of †3 are also base points of †2. Indeed, in this way
the conics of †2 are transformed by �2 into lines (if the base points of †3 are
the same three base points as those of †2), in which case �2 B �1 is a projectivity,
or else into conics (if just two base points of †3 are also base points of †2); cf.
Proposition–Definition 9.2.2.

9.5.10. A quadratic transformation � W S2 ! S 0
2 between two planes is the inter-

section of two reciprocities in the sense that two pointsP andP 0 correspond if they
are reciprocal in two given reciprocities (i.e., P 0 is the intersection of the lines that
correspond to P under the two reciprocities).

Therefore, if we represent algebraic correspondences between two planes as
subvarieties of the Segre variety X64 realizing the inclusion P2 � P2 � P8 (see
Chapter 11), the quadratic transformations appear as sections ofX64 by the spaces
S6 in P8.

In Section 9.1 we have defined a quadratic transformation by way of two bilinear
equations; each of these represents a reciprocity inasmuch as each point of S2 is
made to correspond to a line of S 0

2 (see equations (9.3) and [52, Vol. 1, Chapter IX]),
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and two corresponding points under the quadratic transformation are reciprocal in
both.

Suppose that the two bilinear equations are written in the form8̂̂̂̂
<̂̂
ˆ̂̂̂:

2X
i;jD0

aijxiyj D 0;

2X
i;jD0

bijxiyj D 0

(9.31)

(where A D .aij / and B D .bij / are the matrices that define the two reciprocities).
Let P D Œx0; x1; x2� and P 0 D Œy0; y1; y2� be two corresponding points under � ,
that is, two points whose coordinates satisfy (9.31). To the pair .P; P 0/ 2 P2 � P2

there corresponds in the Segre variety X64 D P2 � P2 � P8 the point Q with
coordinates

Q D Œx0y0; x0y1; x0y2; x1y0; x1y1; x1y2; x2y0; x2y1; x2y2�:

The fact that the coordinates of P and P 0 satisfy equations (9.31) means that
the point Q belongs to the two hyperplanes with equations

P2
i;jD0 aijTij D 0,P2

i;jD0 bijTij D 0, where theTij are the coordinates in P8. Therefore the quadratic
transformations between two planes are the sections ofX64 by linear spacesS6 in P8.

We note that the quadratic transformations between two planes are in number
114. Indeed, the nets of conics in P2 are in number 16, the same as the number
of triples of points in the plane. Moreover, to each net of conics there correspond
18 quadratic transformations, since there are 18 projectivities between the net
† (Š P2) and the plane S 0

2. Of course, the subspaces S6 in P8 are also 114 in
number, since 14 is the dimension dim.G.6; 8// D .8�6/.6C1/ of the Grassmann
variety G.6; 8/ of the S6 in P8; see Chapter 12 for further details.

9.5.11. Let two non-degenerate conics � and ı be given in the plane. We decree that
two points P and P 0 correspond to each other if they are reciprocal with respect to
both conics (this means that the point P 0 D �.P /\ ı.P / is the intersection of the
polars of P with respect to the two conics). Study the (involutory) correspondence
� W 
 ! 
 0 defined by P 7! P 0.

If P runs over the line r , the polar of P with respect to � traces the pencil of
lines (with center the pole of r with respect to � ), and similarly for the polar of
P with respect to ı. The two pencils are projective (that is, in bijective algebraic
correspondence) and so the locus of the points common to corresponding lines is a
conic r 0 (cf. §7.4.5). This is the correspondent of r under � . As r varies one obtains
a net of conics.

Let A, B , C , and D be the points common to � and ı and let LMN be the
diagonal triangle of the quadrangle ABCD.
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Let X be the intersection of r with one of the sides of the triangle LMN , for
example LM . The polars of X with respect to � and ı both pass through N which
is the pole of the line rLM with respect to both conics. Thus the conic r 0 D �.r/

passes throughL,M , andN . The vertices of the diagonal triangle of the quadrangle
ABCD inscribed in both conics are thus base points of the quadratic transformation.

9.5.12. Let C be a plane quartic having three cusps. Verify that the three cuspidal
tangents belong to a pencil.

The quadratic transformation of the plane into itself with fundamental points
in the three cusps A, B , and C transforms C into a conic � tangent to the lines
a D BC , b D AC and c D AB in the points A0, B 0, and C 0. The lines AA0, BB 0,
andCC 0 (the images of the cuspidal tangents) have a common point by Brianchon’s
theorem applied to the hexilateral aabbcc where aa D A0, bb D B 0, cc D C 0 (cf.
[13, Vol. II, Chapter 16] and also [31, Chapter XIV]).

9.5.13. Let J be the Jacobian curve of the homaloidal net† D C n.P
s1
1 ; : : : ; P

sh
h
/.

Prove that J consists of the fundamental curves of † .

We know that J has order 3.n� 1/ and passes with multiplicity 3si � 1 through
the point Pi , i D 1; : : : ; h (cf. Section 6.4). Bearing in mind the relations (9.12),
the number of intersections of J with the generic C n of† that are absorbed by the
base points is at leastX

i

si .3si � 1/ D 3
X
i

s2i �
X
i

si D 3.n2 � 1/ � 3nC 3 D 3n.n � 1/:

Therefore J and the generic curve of † meet only in the base points.
The curves of † that pass through a point P of J other than the base points

thus have a common component which is also a component of J . Moreover, each
of these components imposes a single condition on the curves of † which must
contain it. Thus each of these components is a fundamental curve of †. Hence the
Jacobian curve consists of all the fundamental curves of †0 (which agrees with the
fact that the order of J is 3n � 3 D P

i si , with si the orders of the fundamental
curves). Each point of a fundamental curve is thus a double point for some curve
of the net (cf. 9.3.8). Therefore if P is a point of the fundamental curve ˛ different
from the base points of†, the curves of† passing through P split into the curve ˛
and a further curve passing through P .

9.5.14. Write the equation of the Jacobian curve J of the homaloidal net † D
C n.An�1; B1; : : : ; B2n�2/, given by

.x2 n�2 C  n�1/.�0x0 C �1x1/C x2'n�1 C 'n D 0;

of a De Jonquières transformation (cf. §9.3.5).

We know from Exercise 9.5.13 that the Jacobian curve is the union of the fun-
damental curves of the net. The fundamental curves are the curve � with equation
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x2 n�2 C  n�1 D 0 and the lines joining the .n � 1/-fold point A with the other
base points B1; : : : ; B2n�2, that is, the points (distinct from A) common to the two
curves

x2 n�2 C  n�1 D 0I x2'n�1 C 'n D 0:

The equation for the union of the lines hA;Bi i is obtained by eliminating x2 from
these two equations, and so is  n�2'n � 'n�1 n�1 D 0. Hence J is the curve
with equation

.x2 n�2 C  n�1/. n�2'n � 'n�1 n�1/ D 0:

The degree of this equation is (as it should be) n � 1C 2n � 2 D 3n � 3.

9.5.15. Let � W S3 ! S 0
3 be a Cremona transformation of type .2; 2/ and let � be

the base conic of the homaloidal system† in S3. Study the images of the lines of S3
that are supported by � .

If � has equations x0 D �.x1; x2; x3/ D 0, and A0 D Œ1; 0; 0; 0� is the further
isolated point, the equations of � are8̂̂̂<̂

ˆ̂:
x0
0 D �.x1; x2; x3/;

x0
1 D x0x1;

x0
2 D x0x2;

x0
3 D x0x3:

(9.32)

Let P D Œ0; a; b; c� be a point of � and let

r W

8̂̂̂<̂
ˆ̂:
x0 D t;

x1 D aC l t;

x2 D b Cmt;

x3 D c C nt

be a line passing through P (but not lying on the cone � with equation
�.x1; x2; x3/D 0). Substituting in (9.32) one has, for suitable constants A and B ,8̂̂̂<̂
ˆ̂:
x0
0 D �.aC lt; b Cmt; c C nt/ D �.a; b; c/C At C Bt2 D t .AC Bt/;

x0
1 D t .aC lt/;

x0
2 D t .b Cmt/;

x0
3 D t .c C nt/;

and so, suppressing the common factor t ,

r 0 W

8̂̂̂<̂
ˆ̂:
x0
0 D AC Bt;

x0
1 D aC l t;

x0
2 D b Cmt;

x0
3 D c C nt:
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Hence the transform of the line r is the line r 0.
The generators of the cone � are exceptional in this regard. IfP D Œ0; a; b; c� is

a point of the conic, the generator of the cone that passes throughP is the locus of the
point Œt; a; b; c� to which there corresponds under � the point P 0 with coordinates8̂̂̂<̂

ˆ̂:
x0
0 D �.a; b; c/ D 0;

x0
1 D at;

x0
2 D bt;

x0
3 D ct;

that is, P 0 D Œ0; a; b; c�.
Note that to a generic line of the space there corresponds a conic; if the line r

meets the conic � , the corresponding conic �.r/ splits into a generator of the cone
� (corresponding to the point at which r meets � ) and a second line r 0.

9.5.16. Examine the Cremona transformation � W S3 ! S 0
3 under which the two

points P D Œx0; x1; x2; x3� and P 0 D Œy0; y1; y2; y3� correspond when8̂<̂
:
f .x0; x1; x2; x3Iy0; y1; y2; y3/ D 0;

g.x0; x1; x2; x3Iy0; y1; y2; y3/ D 0;

h.x0; x1; x2; x3Iy0; y1; y2; y3/ D 0;

where f , g, and h are bilinear forms in the series of variables xi and yj , i; j D
0; 1; 2; 3. One finds a Cremona transformation of type .3; 3/. To the lines of one of
the two spaces there correspond curves of order 6 in the other space.

We rewrite the three equations ordering them, for example, with respect to the
variables yj :

At .x0; x1; x2; x3/y0 C Bt .x0; x1; x2; x3/y1

C Ct .x0; x1; x2; x3/y2 CDt .x0; x1; x2; x3/y3 D 0;

where At , Bt , Ct , andDt are linear forms for t D 1; 2; 3. Solving the system with
respect to the yj one finds

y0 W y1 W y2 W y3

D
ˇ̌̌̌
ˇ̌B1 C1 D1
B2 C2 D2
B3 C3 D3

ˇ̌̌̌
ˇ̌ W �

ˇ̌̌̌
ˇ̌A1 C1 D1
A2 C2 D2
A3 C3 D3

ˇ̌̌̌
ˇ̌ W
ˇ̌̌̌
ˇ̌A1 B1 D1
A2 B2 D2
A3 B3 D3

ˇ̌̌̌
ˇ̌ W �

ˇ̌̌̌
ˇ̌A1 B1 C1
A2 B2 C2
A3 B3 C3

ˇ̌̌̌
ˇ̌ :

Thus � is a Cremona transformation of type .3; n0/, and thus of type .3; 3/ by the
symmetry between the two series of variables.
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The homaloidal system † of S3 has as base variety the locus of points that
endow the matrix

M D
0@A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3

1A
with rank two. They form a curve C 6 of order 6; indeed, the system of equationsˇ̌̌̌

ˇ̌A1 B1 C1
A2 B2 C2
A3 B3 C3

ˇ̌̌̌
ˇ̌ D

ˇ̌̌̌
ˇ̌A1 B1 D1
A2 B2 D2
A3 B3 D3

ˇ̌̌̌
ˇ̌ D 0

defines a curve of order nine that splits into a curve C 6 and a cubic C 3 which is the
locus of the points that annul the minors of order 2 of the matrix0@A1 B1

A2 B2
A3 B3

1A :
Discarding this cubic there remains the curve C 6 mentioned above.

In particular, to each line inS3 there corresponds the curve of third order which is
the intersection (outside the base curveC 6) of the two cubic surfaces corresponding
to the two planes whose intersection is the line.

9.5.17. Among the Cremona transformations � as in Exercise 9.5.16 there are in
particular those of equations

y0 W y1 W y2 W y3 D 1

x0
W 1
x1

W 1
x2

W 1
x3
:

Study them. How is an elliptic cubic cone passing through the four vertices of the
reference tetrahedron transformed? (An elliptic cubic cone is a cone that projects
an elliptic cubic.)

We rewrite the equations of � in the form

y0 W y1 W y2 W y3 D x1x2x3 W x0x2x3 W x0x1x3 W x0x1x2:
A surface F of order n with equation f .y0; y1; y2; y3/ D 0 is transformed into the
surface G with equation

g.x0; x1; x2; x3/ D f .x1x2x3; x0x2x3; x0x1x3; x0x1x2/ D 0

of order 3n. In the equation for G each of the variables appear to degree at most n;
G has order 3n and has four 2n-fold points. Moreover, consider one of the edges
of the fundamental tetrahedron, for example the line x0 D x1 D 0. It is clear that
g 2 .x0; x1/n and so the edge is a line of multiplicity n. Hence the surfaceG passes
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with multiplicity 2n through every vertex Ai , i D 0; 1; 2; 3, and with multiplicity
n through each edge of the tetrahedron.

Suppose now that F passes throughA0 with multiplicity s0, so that its equation
may be rewritten in the form:

f D y
n�s0
0 ˛s0.y1; y2; y3/Cyn�s0�1

0 ˛s0C1.y1; y2; y3/C� � �C˛n.y1; y2; y3/ D 0:

Then the surface G D �.F / has equation

g.x0; x1; x2; x3/ D .x1x2x3/
n�s0xs00 ˛s0.x2x3; x1x3; x1x2/C � � �

� � � C xn0˛n.x2x3; x1x3; x1x2/ D 0;

that is
g.x0; x1; x2; x3/ D x

s0
0 g

�.x0; x1; x2; x3/ D 0;

where

g�.x0; x1; x2; x3/ D .x1x2x3/
n�s0˛s0.x2x3; x1x3; x1x2/C � � �

� � � C x
n�s0
0 ˛n.x2x3; x1x3; x1x2/:

Having discarded the plane x0 D 0 which must be counted s0 times (and which
corresponds to the point A0) there remains an equation g�.x0; x1; x2; x3/ D 0 of
degree 3n � s0, in which the variable x0 appears at most to degree n � s0 and
the variables x1, x2, and x3 still to degree n. Thus the surface G� of equation
g�.x0; x1; x2; x3/ D 0 has in the points A0, A1, A2, and A3 the multiplicities
3n� s0� .n� s0/ D 2n, 3n� s0�n D 2n� s0, 2n� s0, and 2n� s0 respectively.
Furthermore, one sees that

g� 2 .x1; x2/n\.x1; x3/n\.x2; x3/n\.x0; x1/n�s0 \.x0; x2/n�s0 \.x0; x3/n�s0 ;

whenceG� has the three edges of the tetrahedron that issue fromA0 as n-fold lines,
and the other three edges as .n � s0/-fold lines.

The conclusion is that if f passes with multiplicity s0, s1, s2, and s3 through
A0, A1, A2, and A3 respectively, then the proper transform G� has order

3n � s0 � s1 � s2 � s3;
and multiplicities

2n� s1 � s2 � s3; 2n� s0 � s2 � s3; 2n� s0 � s1 � s3; 2n� s0 � s1 � s2
in A0, A1, A2, and A3 respectively. Moreover, f passes through the lines rA0A1

,
rA0A2

, rA0A3
, rA1A2

, rA1A3
, and rA2A3

with respective multiplicities

n� s2� s3; n� s1� s3; n� s1� s2; n� s0� s3; n� s0� s2; n� s0� s1:
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Therefore, the cubic cone (the case n D 3, s0 D s1 D s2 D s3 D 1) is transformed
into a surface G� of order 3 � 3 � 1 � 1 � 1 � 1 D 5 which has five triple points,
namely the points A0, A1, A2, A3 all having multiplicity 2 � 3 � 1 � 1 � 1 D 3,
and also the transform of the vertex of the cone. The surfaceG� also passes simply
through the six lines rAiAj

(in agreement with the fact that on each of these it has
two triple points and so must contain that line).

9.5.18. Study the Cremona transformations' (of type .n; n/) between two spacesSn
realized as intersections of n reciprocities, in the sense that two points correspond
if they are reciprocal with respect to n given reciprocities (cf. Theorem 5.4.6).

If we represent the algebraic correspondences between two spaces Sn as sub-
varieties of the Segre varietyXd2n giving Pn�Pn � Pn.nC2/ (so thatXd2n has order
d D .2n/Š=nŠ nŠ/, then the transformations ' appear as sections of Xd2n by linear
spaces Sn.nC1/.

This is an extension of Exercises 9.5.16 and 9.5.10. See Chapter 11 for general
results on Segre varieties.

The equations of the transformation may be written in the form

Ai0.x0; : : : ; xn/y0 C Ai1.x0; : : : ; xn/y1 C � � � C Ain.x0; : : : ; xn/yn D 0;

where the Aij .x0; : : : ; xn/ are linear forms, i D 1; : : : ; n, j D 0; : : : ; n. The
variables yj are proportional to the minors of maximal order of the n � .n C 1/

matrix

M D

0B@A10 : : : A1n
:::

:::

An0 : : : Ann

1CA :
The first homaloidal system † of the transformation has as base variety Bn�2
the locus of the points that annihilate the minors of order n of M . To find the
equations of Bn�2 it suffices to annul the two minors made up of the columns
number .0; 1; 2; : : : ; n � 2; n � 1/ and .0; 1; 2; : : : ; n � 2; n/. It is an .n � 2/-
dimensional variety which contains the variety (to be discarded, cf. 9.5.16) which
is the locus of the zeros of the n � 1 minors of maximal order in the n � .n � 1/

matrix consisting of columns number .0; 1; 2; : : : ; n � 2/ of M .
If ı.n/ is the order of Bn�2 we have

ı.2/ D 3;

ı.3/ D 32 � ı.2/;
ı.4/ D 42 � ı.3/;

:::

ı.n/ D n2 � ı.n � 1/:
Thus, e.g., for n D 4, ı.2/ D 3, ı.3/ D 9 � 3 D 6, and ı.4/ D 16 � 6 D 10.
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9.5.19. Consider the matrix

A D .aij / D
0@x0 x1 x2
x1 x3 x4
x2 x4 x5

1A
and the matrix A� D .Aij / having as its elements the cofactors of the elements aij
of A. If Bij is the cofactor of Aij in A�, we have

Bij D aij det.A/:

From this deduce that the quadrics of P5 passing through a Veronese surface form
a homaloidal linear system (cf. Example 10.2.1).

If .x0; x1; x2; x3; x4; x5/ are coordinates in S5 and .y0; y1; y2; y3; y4; y5/ are
coordinates in a second space S 0

5, consider the two transformations defined by the
equations

' W

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

y0 D A11 D x3x5 � x24 ;
y1 D A12 D x1x5 � x2x4;
y2 D A13 D x1x4 � x2x3;
y3 D A22 D x0x5 � x22 ;
y4 D A23 D x0x4 � x1x2;
y5 D A33 D x0x3 � x21

and � W

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

x0 D y3y5 � y24 ;
x1 D y1y5 � y2y4;
x2 D y1y4 � y2y3;
x3 D y0y5 � y22 ;
x4 D y0y4 � y1y2;
x5 D y0y3 � y21 :

The equations of � B ' are

x0
i D xi det.A/; i D 0; : : : ; 5;

which means that � B ' D idS5
. Analogously one has ' B � D idS 0

5
; thus ' and �

are mutually inverse, that is, they are birational isomorphisms. It follows that the
linear system of quadrics with equation

P5
i;jD0 �ijAij D 0 is a homaloidal system.

On the other hand, it is known that
P5
i;jD0 �ijAij D 0 is the linear system of

the quadrics in S5 that pass through the Veronese surface (see Example 10.2.1 and
Section 10.4 for further details).

9.5.20. Consider the linear system † of hypersurfaces in Sr with equation

rX
iD0

�ix0x1 : : : xi�1xiC1 : : : xr D 0:

Is this a homaloidal system?

Consider the rational transformation � W Sr ! S 0
r with equations

yi D x0 : : : xi�1xiC1 : : : xr ; i D 0; : : : ; r: (9.33)
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On the open set where x0x1 : : : xi : : : xr ¤ 0, that is, outside the faces of the
fundamental .r C 1/-hedron, the equations (9.33) can be written in the form

yi D 1

xi
; i D 0; : : : ; r;

and one can immediately verify that they are rationally inverted by

xi D 1

yi
; i D 0; : : : ; r:

Thus � is a birational isomorphism and so † is a homaloidal system.



Chapter 10

Rational Surfaces

Rational surfaces, that is, the images of a plane under a rational transformation,
are of particular interest. In virtue of an important result due to Castelnuovo which
extends Lüroth’s theorem (cf. Theorems 6.6.2, 6.6.3 and 7.4.1) to surfaces, a rational
surface is birationally isomorphic to a plane 
 . Thus the algebraic geometry of a
rational surfaceF is reduced to that of the plane, so that all problems regarding curves
traced on F can be translated into questions regarding algebraic plane curves. In
particular to the linear system of the hyperplane sections of F there corresponds in

a linear system† of algebraic curves, defined up to a Cremona transformation. One
says that † represents the surface, and that the latter is the projective image of †.
The birational invariants of † are projective invariants of the surface: for example
the dimension of †, its degree, and the genera of its curves are the dimension of
the space in which F is embedded, the order of F, and the genera of its hyperplane
sections respectively. In general the algebraic correspondence between F and 
 is
bijective only generically: the exceptions to bijectivity are related to the base points
and fundamental curves of †.

The numerous examples drawn from the classical repertoire and the exercises
have the goal not only of introducing the reader to some surfaces of particular interest
(for example surfaces of minimal order, Veronese surfaces, Del Pezzo surfaces)
but also and especially offer the occasion to enter more deeply into the theory
which is expounded here only in its essential points. In particular, the results of
Section 10.3 furnish a complete classification of the surfaces of minimal order (cf.
Proposition 4.5.6).

10.1 Planar representation of rational surfaces

We return now, in the case of the plane, to the discussion carried out in Section 6.6.
Let u0; u1; u2 be projective coordinates in P2 D P2.K/ and x0; x1; : : : ; xr projec-
tive coordinates in P r D P r.K/.

Given rC1 homogeneous polynomials of the same degree 'j D 'j .u0; u1; u2/

inKŒu0; u1; u2�, j D 0; : : : ; r , consider the rational map ' W P2 ! P r defined by:8̂̂<̂
:̂
x0 D '0.u0; u1; u2/;

:::

xr D 'r.u0; u1; u2/:

(10.1)

The image of ' is an irreducible algebraic variety V whose dimension is � 2 and
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the condition that the dimension of V be exactly 2 is that the Jacobian matrix of
the polynomials 'j have rank % D 3 at all points of an open set in P2; indeed,
% is the dimension of the affine cone associated to V , and thus dim.V / D 2 if
% D 3 (cf. Section 3.2). This means that there do not exist two polynomials
P;Q 2 KŒu0; u1; u2� such that 'j 2 KŒP;Q�, j D 0; : : : ; r ; or equivalently that
the linear system † of algebraic curves with (system) equation

�0'0 C �1'1 C � � � C �r'r D 0 (10.2)

is not composed with a pencil (cf. Section 6.5). The rational map ' is defined
outside of the base points of the system †.

In agreement with the definitions given in Section 6.6, if dim.Im '/ D 2, we
say that F ´ Im ' is a rational surface in P r and that (10.1) is one of its parametric
representations; we also say that F is the projective image (or projective model) of
the linear system †.

If † is not simple but rather composed with an involution of order > 1 it is
possible, as Castelnuovo proved, to obtain the same surface F as the image of a
simple linear system †0 (cf. Theorem 6.6.3).

In the sequel we will suppose that† is simple and thus that there exists an open
set U � P2 such that 'jU W U ! '.U / is an isomorphism.

We note a few preliminary facts.

10.1.1. Substituting the basis f'0; : : : ; 'rg of† with another basis is equivalent to
replacing the right-hand sides of (10.1) with suitable linear combinations of them,
and so with replacing F by its image under a non-degenerate projectivity of P r .

This means that the projective model of† depends on† and not on the choices
of a basis for †.

10.1.2. Carrying out a Cremona transformation in the plane P2Œu0;u1;u2� is equiv-
alent to a change of parameters in the parametric representation of F. Therefore,
two linear systems such that each may be obtained from the other via a Cremona
transformation have the same projective model.

Hence we will be interested only in the birational invariants of the system †,
that is, those characteristics of the system which are invariant under Cremona trans-
formations.

Thus, for example, the order of †, that is, the order of its curves, is of no
interest. A problem that has been amply treated in the literature (but which we shall
not discuss) is that of seeking a linear system of minimal order that represents a
given surface.

However, the dimension of†will be of interest, as will its degree and its genus,
the former being the number of variable points (that is, points not absorbed by the
base points) common to two generic curves of †, and the latter being the genus of
the generic curve of †.
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10.1.3. If the curves with equations '0.u0; u1; u2/ D 0; : : : ; 'r.u0; u1; u2/ D 0

are linearly dependent, then to each relation of linear dependence

a0'0.u0; u1; u2/C � � � C ar'r.u0; u1; u2/ D 0

among them, there corresponds a hyperplane

a0x0 C a1x1 C � � � C arxr D 0

which contains every point of F. Thus the surface F is contained in a subspace
of P r .

Suppose that the linear system (10.2) has dimension h < r . If, for example, the
forms '0; '1; : : : ; 'h are linearly independent, then for suitable �j0; : : : ; �jh 2 K
we have

'j .u0; u1; u2/ D �j0'0.u0; u1; u2/C� � �C�jh'h.u0; u1; u2/; j D hC1; : : : ; r;
so that the surface F belongs to the intersection Sh of the r � h hyperplanes

xj D �j0x0 C � � � C �jhxh; j D hC 1; : : : ; r:

In this linear spaceSh we may suppose thatx0; x1; : : : ; xh are projective coordinates
and F is then represented by the equations8̂̂<̂

:̂
x0 D '0.u0; u1; u2/;

:::

xh D 'h.u0; u1; u2/:

Thus, the surface appears as the projective image of the linear system, of dimen-
sion h,

† W �0'0 C � � � C �h'h D 0:

In the sequel we will suppose that the linear system with equations (10.2) has
dimension r ; and then the projective model F will belong to Sr but not to any
linear space of lower dimension. Usually this fact is expressed by saying that F is
embedded in P r (cf. 6.6.4).

10.1.4. We prove that if†,†0 are two linear systems of curves in P2Œu0;u1;u2� and
one has† � †0, then the surface F, projective image of†, is the projection of the
image F0 of †0.

If dim† D r and dim†0 D r0, to define †0 we can take r0 C 1 linearly
independent curves chosen such that the first r C 1 belong to† and thus so that the
equation of †0 is

�0'0 C � � � C �r'r C �rC1'rC1 C � � � C �r0'r0 D 0;
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where '0 D 0; : : : ; 'r D 0 are curves of †.
The surface F0 is represented in Sr0 by the equations´

xi D 'i .u0; u1; u2/; i D 0; 1; : : : ; r;

xj D 'j .u0; u1; u2/; j D r C 1; : : : ; r0;

and its projection from the space defined by x0 D x1 D � � � D xr D 0 into the
linear space Sr with equations xrC1 D � � � D xr0 D 0 (in which x0; : : : ; xr are
homogeneous projective coordinates) is represented there by the equations

xi D 'i .u0; u1; u2/; i D 0; 1; : : : ; r;

and hence is a projective image of †.

In the sequel we shall suppose that the linear system † of equation (10.2) has
all base points ordinary.

If n is the order of † and B1; B2; : : : ; Bq are its base points with multiplicities
s1; s2; : : : ; sq , the degree D of † is expressed by the relation, cf. Theorem 4.2.1,

D D n2 �
qX
iD1

s2i : (10.3)

Bearing in mind that by Bertini’s first theorem (Theorem 6.3.11) the generic curve
of † is non-singular outside of the base points and recalling Proposition 7.2.7, the
genus p of † is given by

p D 1

2
.n � 1/.n � 2/ � 1

2

qX
iD1

si .si � 1/: (10.4)

To the points of P2Œu0;u1;u2� that satisfy the equation of the curve

a0'0 C � � � C ar'r D 0

of † there correspond the points of F that belong to the hyperplane

a0x0 C � � � C arxr D 0

and one has a bijection between the curves of † and the hyperplane sections of F.
Moreover, a curve of † and the corresponding hyperplane section of F are bira-
tionally isomorphic. Therefore:

• The genus of † coincides with the genus of the hyperplane sections of F.

Furthermore, as a particular case of §6.6.5, one has:
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• The order of F coincides with the degree of †.

10.1.5 (Curves of a linear system having multiple points that are not base points).
Let † be a linear system of plane curves of order n in P2Œu0;u1;u2�, and let r be its
dimension.

If r � 3, the Jacobian locus of † coincides with the entire space P2 (cf. Sec-
tion 6.4). Bearing in mind that a double point imposes three linearly independent
conditions on plane curves (cf. Section 6.2), every generic point P of the plane is
double for 1r�3 curves of †. To these curves there correspond 1r�3 curves on
the surface F, the projective image of †, all passing through '.P / and having a
double point there, that is, the sections of F by the tangent hyperplanes at '.P /.
The latter 1r�3 hyperplanes are those of the star having as center the tangent plane
to F at '.P /. If r D 3, F is a surface of P3 and to the unique curve of† having P
as double point there corresponds the section of F by the tangent plane at '.P /.

Among the curves of† having P as double point there can be some which have
P as (at least) a triple point. These exist, for any choice of P , if r � 6, because
a triple point in a given position involves six independent linear conditions on the
curves of the plane.

If r < 6 there can be particular points in the plane that are triple for the curves
of †. For example, if r D 5 and † W Pr

iD0 �i'i D 0, the system of six linear
equations in the parameters �0; �1; : : : ; �5,

@2.
P5
iD0 �i'i /

@uj @uk
D 0; that is;

5X
iD0

�i
@2'i

@uj @uk
D 0 .j; k D 0; 1; 2/;

has non-trivial solutions ifˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

@2'0

@u20

@2'0

@u0@u1
: : :

@2'0

@u22
@2'1

@u20

@2'1

@u0@u1
: : :

@2'1

@u22
: : : : : : : : : : : :

@2'5

@u20

@2'5

@u0@u1
: : :

@2'5

@u22

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

D 0:

Let C be the plane curve defined by the above equation and let L be the curve, of
degree � 6.n � 2/, consisting of the components of C which are not fundamental
curves, cf. §10.1.6. Let L0 be the corresponding curve on F. Thus L0 is the locus
of points of F wherein the tangent plane meets F in a curve with a triple point.

If r D 4 instead of a curve there are isolated points (finite in number) that are
triple for the curves of †.

If r D 3 in general there are no triple points for curves of †. But for particular
choices of † there may be curves with triple points. For example, a (non-ruled)
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cubic surface in P3 can have points P such that the tangent plane at P has in
common with F a cubic having P as triple point, that is, a triple of lines issuing
from P .

A point P that offers this particularity is called an Eckardt point (cf. Exer-
cises 10.5.22 and 13.1.36).

10.1.6 Fundamental curves of a linear system. Now assume that ! is a curve in
P2Œu0;u1;u2� which does not meet the curves of † (of which it is not a component)
outside of the base points of †. We will say that ! is a fundamental curve of
†. The curves of † that pass through a point of ! different from the base points
must therefore contain ! as component. The residual components of such curves
vary in a linear system � that is said to be partially contained in †. Since � has
dimension r �1 (inasmuch as a curve of†must satisfy only one condition in order
to contain !), the surface F0, the projective image of �, is embedded in P r�1.
Moreover, the image of the curve ! under (10.1) is a single point O 2 F, since if
P is a point of ! and '.P / D O , all the hyperplane sections that pass through O
contain '.!/.

If we adjoin the curve ! to the curves of � we obtain a linear system �0
.D �C !/, which is also of dimension r � 1, and is contained in †; we will also
say that ! is the fixed component of �0. Under (10.1) the curves of �0 correspond
to the curves arising as sections of F by the hyperplanes of the star with center O .
Therefore, the projective image F0 of � is the surface which is the projection of F

from O onto a hyperplane (note that F0 coincides with the projective image of the
linear system �0, cf. §6.6.6).

The order of F0, which means the degreeD0 of�, is the number of intersections
ofF0with a genericSr�3 in P r�1 and so is the number of intersections (other thanO)
of F with a generic Sr�2 � P r passing through O . The multiplicity of F at O is
thus (cf. Section 3.4)

�O.F/ D deg.F/ � deg.F0/ D D �D0;
where D is the degree of †.

To a fundamental curve ! of† there thus corresponds under (10.1) a pointO of
the surface F, which is called the fundamental point of F corresponding to !, and
to the points of ! there correspond “the points of F belonging to the neighborhood
of O”.

All this can be rediscovered very easily with analytic means if one takes r C 1

linearly independent curves to define †, of which r belong to �0, and thus have
equations of the form .'j ´/�fj D 0, j D 0; : : : ; r � 1, where � D 0 is the
equation of !. We will then have, cf. (6.6),

† W �.�0f0 C � � � C �r�1fr�1/C �r'r D 0;

�0 W �.�0f0 C � � � C �r�1fr�1/ D 0:
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The second equation represents the surface that is locus of the point Œf0; : : : ; fr�1�,
and this surface appears as the projection (from the point Œ0; 0; : : : ; 0; 1� onto the hy-
perplane x0 D 0) of the surface which is the locus of the point Œ�f0; : : : ; �fr�1; 'r �,
that is, the projective image of† (with equation�0'0C� � �C�r�1'r�1C�r'r D 0).

One then sees immediately that to the curve ! there corresponds on the surface
F (the image of†) the point Œ0; 0; : : : ; 0; 1�, and that the surface F0 represented by
� is the projection of F from that point.

Note that the fundamental curves of † are finite in number .� 0/. Otherwise,
for each point P of P2 there would exist a fundamental curve !P containing P .
Every curve C of † would then meet infinitely many fundamental curves !P , as
P varies in C , away from the base points. All these curves would be components
of C , but this is absurd.

10.1.7 Exceptional curves corresponding to base points. We again consider the
rational map ' as in (10.1), that sends the point P D Œu0; u1; u2� 2 P2 to the point

'.P / D Œ'0.u0; u1; u2/; : : : ; 'r.u0; u1; u2/� 2 F:

It is defined away from the base points of the system † and, by the simplicity
hypothesis on †, is bijective on an open set U of P2.

Suppose, for example, that B is an s-fold ordinary base point, and let t be a
line of P2 passing through B . The curves of † for which t is one of the s tangents
in B form a linear system †.t/ of dimension r � 1 to which there corresponds a
linear system of the same dimension consisting of hyperplane sections of F and
thus a point T of F. As t varies in the pencil of lines of P2 passing through B , the
point T describes a rational curve ˇ on F. We say that ˇ is the exceptional curve
corresponding to the base point B .

It is easy to see that ˇ is a rational normal curve of order s. The order of ˇ
is s because s is the number of points of ˇ belonging to the generic hyperplane
section. Every curve C of† has, in fact, s distinct tangent t1; : : : ; ts at B and each
of them corresponds, as described above, to a point of intersection of ˇ with the
hyperplane section of F corresponding to C (note that the curve C belongs to the
s linear systems †.ti / corresponding to the tangents ti , i D 1; : : : ; s).

It follows that in order to impose on a hyperplane section L of F that it contain
ˇ as a component it suffices to impose on L that it contain sC1 points of ˇ, that is,
to be the curve corresponding to a curve � of † such that � has B as .s C 1/-fold
point. Conversely, if a curve � of† has B as .sC 1/-fold point, the corresponding
hyperplane section L of F meets ˇ in s C 1 points and thus contains ˇ.

Hence the hyperplanes of P r that containˇ are those and only those correspond-
ing to curves of † having B as .s C 1/-fold point, and which are thus subject to
sC1 further independent linear conditions (cf. Section 6.2). These linear conditions
mean that those hyperplanes must pass through s C 1 linearly independent points,
and so must contain the space Ss which is their join.
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See Exercise 10.5.14 for the analysis of a remarkable example where the base
point B is not ordinary.

10.1.8 Curves on a rational surface. The planar representation (10.1) of the
surface F permits an easy analysis of the algebraic curves traced on F.

In the plane 
 consider a linear system † of curves C n of order n passing
through the points B1; : : : ; Bq with the multiplicities s1; : : : ; sq . We will say that
† is a system complete with respect to the base group G D fBs11 ; : : : ; Bsqq g if it
contains all curves C n in 
 having multiplicities sj at the points Bj . In this case
we will write † D C n.B

s1
1 ; : : : ; B

sq
q /.

Let F be the projective image of a linear system †, not necessarily complete.
On the surface F, take an algebraic curve L of order m having, for j D 1; : : : ; q,
a total of hj points in common with the exceptional curves ǰ corresponding to
the base points Bj , and also having multiplicity � in the fundamental point O of
F corresponding to the fundamental curve ! of P2Œu0;u1;u2�. The curve L is the
image of a curve L0 in P2Œu0;u1;u2� which meets the curve !, away from the base
points, in � points and passes through the points Bj with multiplicities hj .

In general, the curves of the system † (by hypothesis non-composite) intersect
L0 in a simple linear series of groups of points, and then the orderm of L, that is, the
number of its intersections with the generic hyperplane section of F, is the number
of intersections of L0 with the generic curve of † which are not absorbed by the
base points. Therefore, if m0 is the order of L0, one has, by Bézout’s theorem,

m D m0n �
qX

jD1
hj sj : (10.5)

• If L is the complete intersection of F with a hypersurface G of order d , the
curve L0 (possibly completed by adjoining fundamental curves) belongs to
the linear system d†. Assuming for convenience that † is complete, d† is
the linear system of curves of order dn that is complete with respect to the

base group fBds11 ; : : : ; B
dsq
q g. For example, if ! is the fundamental curve of

† that corresponds to the point O of F, and L0 C �!, � 2 K, is a curve of
d†, the curve L will be the complete intersection of F with a hypersurface
G of order d passing through O with multiplicity �.

• It can happen that on a particular curve L0 of the plane 
 of the parameters
the system † cuts out, away from the base points, a linear series of order m
composed with an involution it of order t . This means that all the curves of
† that pass through a generic point P of L0 are constrained to pass through
other t �1 points of the same curve. In this case each group of it corresponds
to a single point of L and L is a multiple curve, more specifically, a curve of
order m

t
counted t times.



348 Chapter 10. Rational Surfaces

In the same way, if the linear system † is composed with an involution of
order t , which means that all the curves of† that pass through a generic point
P of the plane are constrained to pass through other t � 1 points, the surface
which is the projective image of † has order D

t
, where D is the degree of †

(cf. §6.6.5 and 10.1.4).

10.1.9 The multiple points of a rational surface under its planar represen-
tation. Let F be the projective image of a linear system † with degree D and
dimension r (so that F has order D and is embedded in P r ) and let O be an s-
fold point of F. Then to the star 1r�1 of hyperplanes passing through O there
corresponds in 
 a linear system †0 � † of dimension r � 1 and degree D � s

because two generic hyperplanes passing throughO have a subspace Sr�2 in com-
mon which meets F outside of O in D � s other points. The system †0 repre-
sents the surface F0 which is the projection of F from O into an Sr�1 not passing
through O .

Conversely, if † contains a linear system †0 of dimension r � 1 and degree
D� s, to this system there corresponds an s-fold point of F in P r , namely the point
common to the hyperplanes corresponding to the curves of †0.

This situation which, as we have seen in §10.1.6, can occur when † has fun-
damental curves, can also happen if † does not have fundamental curves (in the
following example its base points are not ordinary in the sense of Section 6.3). E.g.,
consider the linear system

† W �0un�s
0 's.u1; u2/C �1u

n�s�1
0 'sC1.u1; u2/C � � � D 0

whose curves, of order n, all have the same s tangents 's.u1; u2/ D 0 at the s-fold
base point A0 D Œ1; 0; 0�.

Let †0 � † be the system consisting of the curves of † that are obtained for
�0 D 0, and which thus have A0 as .sC 1/-fold point. IfD andD0 are the degrees
of † and †0 respectively, we have, cf. (4.9),

D D n2 � .s2 C s/ � c;
and

D0 D n2 � .s C 1/2 � c;
where c is the contribution given by the base points distinct from A0 in the calcu-
lation of the intersections of the curves of † and of †0. Thus

D0 D D � Œ.s C 1/2 � .s2 C s/� D D � .s C 1/: (10.6)

In conclusion, the hyperplanes of P r that correspond to the curves of †0 have in
common an .s C 1/-fold point of F.
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Examples 10.1.10. We now give a few examples.

(1) The linear system† of conics tangent at a given point to a line has dimension 3
and degree 2; the projective image is a quadric cone in P3 (cf. Remark 7.3.3).

(2) The linear system † of cubics tangent at a given point to a given line has
dimension 7 and degree 7; the projective image is a surface F, of order 7, in
P7 with a double point. (Use the relation (10.6) with s D 1 and D D 9.)

(3) Consider the linear system of cubics tangent to three given lines in three given
points A, B , C . The projective image is a cubic surface F3 in P3 with (at
least) three double points. The surface F3 has a fourth double point if the
cubics of† are tangent to a conic in the three points A, B , and C . The conic
is a fundamental curve (cf. §10.1.6).

The cubic F3 with four nodes may be also be represented by a linear system†0
of plane cubics passing through the six vertices of a complete quadrilateral (cf.
§1.1.6). This can be seen by transforming† under a quadratic transformation
having A, B , and C as fundamental points (cf. Exercise 10.5.20).

Indeed, in the plane 
 consider a cubic � and a conic � , both tangent to three
lines a, b, and c in the same points A, B , and C respectively. Consider the
quadratic transformation ! W 
 ! 
 0 having A, B , C as fundamental points.
Let A0, B 0, and C 0 be the base points of the homaloidal net of conics †0 in

 0 defined by ! (cf. Section 9.1). The cubic � is transformed into a cubic � 0
passing through the points A0, B 0, and C 0. To the conic � there corresponds
a line � 0.
Since � and � are mutually tangent at A, the curves � 0 and � 0 both pass
through a point A1 belonging to the line a0 D hB 0; C 0i whose points are in
projective correspondence with the directions issuing from A.

Similarly � 0 and � 0 have in common a point B1 of the line b0 D hA0; C 0i and
a point of the line c0 D hA0; B 0i. Thus � 0 also passes through three vertices
of the complete quadrilateral a0b0c0� 0 which belong to � 0.
Thus we have established that the system of dimension 3 of cubics tangent to a
conic in three fixed points is equivalent under a Cremona transformation to the
system of cubics that pass through the six vertices of a complete quadrilateral.

10.2 Linearly normal surfaces and their projections

In the plane 
 of parameters we consider a complete linear system † D
C n.B

s1
1 ; : : : ; B

sq
q / of curves C n of order n passing through the points B1; : : : ; Bq

with the multiplicities s1; : : : ; sq (cf. §10.1.8). We will say that the projective image
F of the complete linear system† is a linearly normal surface in P r , or also that F is
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normal in P r , if r D dim†. If the conditions imposed on the curvesC n of the plane
by the base group are linearly independent we have (cf. Example–Definition 6.2.2)

r D n.nC 3/

2
�

qX
iD1

si .si C 1/

2
;

and † is regular. If on the contrary † is superabundant we have

r >
n.nC 3/

2
�

qX
iD1

si .si C 1/

2
:

It is important to note that

• every surface F which is not linearly normal is the projection of a linearly
normal surface F0 of the same order.

Indeed, a non-complete linear system† of curves of order n, having certain base
points with assigned multiplicities, is contained in the linear system †0 consisting
of all the curves of the same order and with the same multiplicities in the base
points. Moreover, the projective image F of † is the projection of the image F0
of †0. Since † and †0 have the same degree, the two surfaces F and F0 have the
same order, and therefore, if r0 D dim†0 and r D dim†, then F is the projection
of F0 from a linear space Sr0�r�1 that does not meet F0.

Therefore we focus our attention on linearly normal surfaces. By the foregoing
remarks, a surface F that is normal in P r may be defined as a surface that can not
be obtained as the projection of a surface F0, of the same order, and embedded in
a space of dimension > r .

Let†0 D C n.B
s1
1 ; : : : ; B

sq
q / be a linear system of degreeD0 and dimension r0,

complete with respect to the base group fBs11 ; : : : ; Bsqq g, and let F0 be the normal
surface in Sr0 represented by †0.

We impose a new base pointP of multiplicity s on the curves of†0, and consider
the linear system † D C n.B

s1
1 ; : : : ; B

sq
q ; P

s/ which is also complete with respect
to its base group.

The surface F, the projective image of †, is also linearly normal and is the
projection of F0 (since † � †0). But deg† D deg†0 � s2. Therefore we have

deg.F/ D deg.F0/ � s2;
and F is the projection of F0 from a linear space that meets F0 (cf. Example 10.2.3).

We also note that if F is the image surface of a linear system†, of dimension r ,
then every surface F0 that is obtained as a projection of F is the image of a linear
system †0 contained (perhaps only partially) in †, and †0 may be obtained from
† by imposing a certain number � of linear conditions on the curves of †, namely
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by requiring that the hyperplane sections of F should belong to the hyperplanes
that contain � points of Sr . If the � conditions are linearly independent, F0 is the
projection of F from a space of dimension � � 1 onto a linear space Sr�	.

For example, if†0 is obtained from† by imposing � new simple base points in
general position (that is, such that the curves of† are subjected to� new independent
linear conditions) then the surface F0 is the projection of F onto an Sr�	 from a
�-secant S	�1. Thus we have

deg.F0/ D deg.F/ � � D n2 �
qX
iD1

s2i � �: (10.7)

If F is normal in Sr , then F0 is normal in Sr�	.
The situation is not so simple when the new base points are not generic, or

not all non-singular, or also if at the original base points of † one imposes higher
multiplicities than those of the curves of †.

Here are some examples.

Example 10.2.1 (The Veronese surface [110]). A particularly remarkable surface
is the surface F, called the Veronese surface, which is the projective image of the
linear system

† W �0u20 C �1u
2
1 C �2u

2
2 C �3u0u1 C �4u0u2 C �5u1u2 D 0

of all the conics in the plane (see also Section 10.4). It is a complete linear system
of degree 4 and dimension 5 whence F is a surface of order 4 embedded in P5 with
parametric equations 8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

x0 D u20;

x1 D u21;

x2 D u22;

x3 D u0u1;

x4 D u0u2;

x5 D u1u2:

On it there are no curves of odd order (because if m is the order of a curve on
F and m0 that of the corresponding plane curve, one has m D 2m0 by (10.5)). In
particular the Veronese surface does not contain lines.

We impose two base points A and B on the conics of†, that is, we consider the
linear system†0 (it too complete with respect to its base group) of conics of† that
pass through A and B . Since deg†0 D 2 and dim†0 D 3, †0 represents a quadric
Q in S3: Q is the projection of the Veronese surface from one of its chords.

If A ¤ B there are on Q two exceptional lines a, b that correspond to the two
base points A and B of †0. They meet in the point O that corresponds to the line
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rAB , the unique fundamental curve of †0. On the line rAB the neighborhood of O
is expanded.

If A D B , that is, if †0 is the linear system of conics tangent at a given point to
a given line a, then Q is a quadric cone and may be obtained as the projection of the
Veronese surface from one of its tangent lines. In this case the given tangent a is
again the unique fundamental curve of †0; to it there corresponds the fundamental
point O 2 Q.

Note that the planar representation of a quadric Q by way of a linear system of
conics passing through two points is immediately acquired by projecting Q onto a
plane 
 from one of its simple points. This is precisely the stereographic projection
of the quadric studied in detail in §7.3.1, and used for the classification of the
algebraic curves traced on Q.

Example 10.2.2. Let † D C n.B
s1
1 ; : : : ; B

sq
q / be a complete linear system of

dimension r and let F be its projective image. Let †0 be the linear system of
curves of † that pass through n collinear points P1; : : : ; Pn all on a generic line
`. (Since ` is generic it does not contain base points of †.) Let 	 be the .n � 1/-
dimensional space in P r that joins the images under (10.1) of these points. Suppose
that r � nC 3.

If D is the degree of †, then, again by 10.7, the projective image F0 of †0 is
a surface of order deg.F0/ D D � n embedded in a subspace Sr�n. Indeed, if F

is the projective image of †, then F0 is the projection of F on our Sr�n from the
space 	 .

The surface F0 possesses a multiple point O , the image of the line `, which is
fundamental for the system †0. To calculate the multiplicity of F0 at O , we note
first that the curves of†0 that pass through an additional point of ` distinct from the
points P1; : : : ; Pn must contain ` as a component. The components distinct from `

of those curves constitute a linear system � D C n�1.Bs11 ; : : : ; B
sq
q / of curves of

order n � 1 having the same base group as the initial system †. By what we have
seen in §10.1.6, the multiplicity of the point O for F0 is s D deg.F0/ � deg.F0/,
where F0 is the projective image of the linear system�, the projection of F0 � P r�n
from the point O onto a hyperplane Sr�n�1 of Sr�n. Thus

s D D � n �
�
.n � 1/2 �

qX
iD1

s2i

�
D n � 1:

Since the new base points P1; : : : ; Pn (of the system †0) belong to `, their images
belong to the line L D '.`/ of F, the image of ` under the rational map ' defined
by †.

The curve L has order n (by equation (10.5)) and is a rational normal curve.
Indeed, it is contained in just as many hyperplane sections of Sr as there are curves
of † containing the line `; and the linear system of such curves has the same
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dimension as that of the linear system �. Hence L is contained in

dim�C 1 D .n � 1/.nC 2/

2
�

qX
iD1

si .si C 1/

2
C 1 D r � n

independent hyperplanes and thus in the linear space Sn which is their intersection.
Every generic Sn passing through 	 , and which meets F in a further point Q,

meets the Sr�n in a simple point of F0. Indeed, the space Sn D J.	;Q/ meets F

(away from 	 ) only in the pointQ in virtue of the hypothesis n � r � 3. The linear
space Sn that contains L is exceptional; it meets Sr�n in the point O , and O is the
projection of every point of L.

Example 10.2.3. Let† be a linear system of dimension r and degreeD, and let†0
be the linear system of curves of† having a further multiple pointP , of multiplicity
s, which implies s.sC1/

2
independent linear conditions for the curves of †. Let F,

F0 be the projective image surfaces of † and †0 respectively.
The surface F0 is the projection of F onto a space Sr 0 , where r 0 D r � s.sC1/

2
,

from a space of dimension s.sC1/
2

� 1.
The surface F0, which has order D � s2, acquires a new exceptional curve that

represents the neighborhood of P . This curve is a rational normal C s in P s .

Example 10.2.4. Let † be a linear system of dimension r and degree D. Let B
be one of the base points of †, s the corresponding multiplicity, and †0 the linear
system of the curves of † having multiplicity s C t at B (the preceding example
comes under this case if we allow t to assume the value zero). Let F, F0 be the
projective image surfaces of †, †0 respectively. If D D deg† and D0 D deg†0,
we have, by equation (10.3), that

D �D0 D .t C s/2 � t2 D s.2t C s/:

The number of independent conditions that it is necessary to impose on the curves
of† (which already have multiplicity s atB) in order that they pass throughB with
multiplicity s C t is

� D .s C 1/C � � � C .s C t / D ts C t .t C 1/

2
;

and so F0 is the projection of F from a space S	�1 onto a space Sr�	.

Example 10.2.5. Let † be a linear system of algebraic plane curves and let the
dimension r of† be at least 6. Let F be its projective image and let A be a generic
point of F, and ˛ the tangent plane to F atA. The hyperplane sections of the surface
F0 obtained by projecting F from ˛ onto a space Sr�3 are the projections on that
Sr�3 of the curves C arising as sections of F by hyperplanes through ˛, that is,
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sections by the hyperplanes tangent to F at A. The curves C are the hyperplane
sections of F having A as double point.

The surface F0 is therefore the projective image of the linear system †0 of the
curves of† having the pointA0 as a double point, whereA0 corresponds to the point
A. Hence we have deg†0 D deg† � 4.

10.3 Surfaces of minimal order

As a particular case of Proposition 4.5.6, one has that P r does not admit algebraic
surfaces (not contained in spaces of dimension < r) whose order is < r � 1. This
may also be easily seen as follows. For r � 1 generic points of a surface F there
passes a linear space Sr�2 that has at least r � 1 points in common with F; hence
deg.F/ � r � 1. On the other hand, there certainly exist surfaces of order r � 1

in P r : for example the cones that project a curve C r�1 in Sr�1 from an external
point.

Like the rational normal curves discussed in Section 7.4, so too the surfaces of
minimal order Fr�1 hold particular interest and enjoy remarkable properties. For
instance, one sees immediately that

• a surface Fr�1 of P r is rational.

Indeed, taking r � 2 generic points on the surface and then the space Sr�3 that they
span, one has that every generic Sr�2 passing through this Sr�3 has in common
with Fr�1 only one further point, and so the surface is rational (cf. Corollary 2.6.6).
In order to obtain a generically bijective representation of Fr�1 over a plane it then
suffices to project it from Sr�3 onto a generic plane.

For what follows it will be useful to place some general facts in evidence.

Lemma 10.3.1. An irreducible surfaceF that has a 2-dimensional system of conics
is embedded in a space of dimension at most 5.

Proof. Let � be a generic conic of F . For each point of � there pass 11 conics of
F and so the conics of F supported by � are 12, that is, they are all the conics of
F . Thus one sees that any two conics of F have non-empty intersection.

Fix three conics �1, �2, and �3 on F and let Pij be a point of �i \ �j . If Ai is a
further point of �i , every S5 that contains the six points P12, P23, P31, A1, A2, A3
contains the three conics �i since any such space S5 has three points in common
with each of them, and so contains every conic supported by �1, �2, �3. Therefore
every conic of F , and so the entire surface, is contained in any such space S5. �

Lemma 10.3.2. An irreducible surface F4 embedded in P5 and containing a 2-
dimensional system of conics is the projective image of the linear system of all the
conics of the plane (i.e., F4 is the Veronese surface).
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Proof. Indeed, let 	 be the plane of a conic � lying on F4. A generic S3 passing
through 	 meets F4 in a single further point. In fact, the common points of S3 and
F4 are the points common to curves that are sections of F4 by two hyperplanes
passing through S3. Each of these hyperplanes meets F4 along a curve of order 4
containing the conic � . Hence each of them contains another conic of F4 and these
two conics (which are two generic conics of the surface) have a single point in
common. In fact, if two generic conics had (at least) two points in common they
would be contained in a space S3 which would then contain all the conics of the
surface, and hence the surface itself.

Therefore the surface F4 is projected bijectively from 	 onto a plane 
 and one
sees immediately that the hyperplane sections of F4 have as projections the conics
of 
 . The section of F4 by a hyperplane H has in fact two points in common with
the center 	 of projection: they are the points in which the lineH \	 meets � . �

Lemma 10.3.3. A surface Fr�1 of order r � 1 embedded in P r that has no 2-
dimensional systems of conics and which is projected from its generic pointO onto
a ruled surface Fr�2 in Sr�1 is itself a ruled surface.

Proof. Let F0 be the projection of Fr�1 from one of its generic points O onto a
hyperplane Sr�1.

If r D 2k C 1, we take k generic generators of the ruled surface F0 and the
hyperplane S2k that joins these k lines withO . This S2k meets F2k along k curves,
all of order d , lying in k planes passing throughO . So we must have dk � 2k and
thus d � 2. On the other hand F2k does not possess 12 conics; hence d D 1 and
F2k is a ruled surface.

If r D 2k, we take k � 1 generic generators on F0 and then a point P 2 F2k�1.
The hyperplane S2k�1 in P r that joins these k�1 lines with P andO meets F2k�1
in k � 1 curves all of order d and lying in planes passing through O as well as in
another curve (whose projection contains P ). Thus d.k � 1/ < 2k � 1 and again
d � 2. As above we conclude that F2k�1 is a ruled surface. �

We can now prove the structure theorem for surfaces of minimal order.

Theorem 10.3.4. A surface F of order r � 1 embedded in P r is either ruled or else
is the Veronese surface.

Proof. If r D 3, then F is a quadric whence it is ruled and has 13 conics.
If r D 4 a tangent hyperplane to F at one of its generic points meets F in a

space cubic endowed with a double point and hence split into a line and a further
conic � (cf. §5.2.4). Each S3 passing through � contains a line of F and so F is
ruled. Moreover, it also has 12 conics as residual intersections with the spaces S3
passing through one of its lines `.

If r D 5 the surface F0 arising as the projection of F from one of its generic
chordsAB onto a subspace S3 is a quadric Q in S3. Moreover, the space S4 joining
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AB with a plane containing two generators of Q has two curves in common with
F, each contained in a space S3 passing through AB . If one of these two curves is
a line, the surface F is ruled. If neither of the two curves is a line they are conics
(because the sum of their orders can not be greater than 4) passing through A and
B . Since A and B are two generic points of F, if F is not ruled it contains 12

conics. Hence by Lemma 10.3.2 it is a Veronese surface.
If r D 6 the projection F0 of F from one of its generic points O onto S5 is a

surface of order r�2 D 4 containing a line (the trace on S5 of the tangent plane to F

at O) and so is not a Veronese surface. Thus, applying the preceding case r D 5 to
F0 � S5, we conclude that the surface F0 is ruled. By Lemma 10.3.3 it then follows
that the surface F (which does not contain 12 conics in view of Lemma 10.3.1) is
ruled.

If r � 7 we proceed by induction on r assuming the theorem to be true for the
surface Fr�2 in Sr�1. The projection of F from one of its generic points is then
a ruled surface. Moreover, by Lemma 10.3.1, the surface F can not contain 12

conics. Hence Lemma 10.3.3 shows that F is a ruled surface. �

Remark 10.3.5. We note explicitly that in P5 there do exist both ruled F4’s and
non-ruled F4’s. If r ¤ 5 then in P r there are only ruled Fr�1’s.

10.3.6 Planar representation of ruled surfaces Fr�1 � Pr . Let F be a ruled
surface of order r � 1 embedded in P r . Take r � 2 generic points P1; : : : ; Pr�2 on
F, and the space Sr�3 that joins them. If g is a generic generator of F, the space
Sr�1 which joins Sr�3 and g meets F in a curve C r�1 split into g and a curve C 0
of order r � 2 which is therefore contained in a space 	 of dimension r � 2. This
curve must pass through the points P1; : : : ; Pr�2.

For each of the points Pi there passes a generator pi of F, and a generic hyper-
planeH of P r has a pointQi in common with each of the linespi , i D 1; : : : ; r�2,
and r � 2 points in common with C 0. Let � be the curve which is the hyperplane
section of F by H .

Consider the projection of P r from the space Sr�3 onto a plane 
 skew to it,
and let  W � ! 
 be the restriction to � . Since Sr�3 does not meet � , the image
 .�/ is a curve � 0 of order r � 1. Note that the projecting space Sr�2 containing
the point Qi contains the line pi as well, so that the line pi is projected onto a
point Ai 2 � 0, the trace in 
 of the space Sr�2 joining Sr�3 with pi ; and so
 �1.Ai / D pi \� D Qi . ThusAi is a non-singular point for � 0, i D 1; : : : ; r�2.
Moreover, the trace on 
 of the projecting space 	 D Sr�2 containing the curve
C 0 is an .r � 2/-fold pointO for � 0 since its inverse image  �1.O/ consists of the
r � 2 points that the hyperplane H has in common with C 0 on � .

It follows that the surface F is the projective image of a linear system† (which,
a posteriori, turns out to be complete) of curves of order r � 1 with an .r � 2/-fold
base pointO and r � 2 non-singular base points A1; : : : ; Ar�2. Note in this regard
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that the complete linear system C r�1.Or�2; A1; : : : ; Ar�2/ contains † and has
dimension r and degree r �1; that is, the same dimension and degree as†, whence
† D C r�1.Or�2; A1; : : : ; Ar�2/.

Note further that this linear system is not of minimal order. Indeed, the same
surface can be represented via the linear system †0 of curves of order < r � 1

which is the image of † under a quadratic transformation (of type I, cf. §9.1.1
and Proposition–Definition 9.2.2) corresponding to the net of conics R D OAiAj
having as base points O and two of the points A1; : : : ; Ar�2.

Let ' W 
 ! Fr�1 be the rational map associated to the linear system †. The
image '.`/ of a (generic) line ` of 
 is a directrix of the ruled surface. Indeed, the
lines t of the pencil with center O (not passing through A1; : : : ; Ar�2) correspond
to lines gt of F because they meet the curves of † only in one point away from
O (cf. (10.5)). As t varies in the pencil, the lines gt cover F and constitute its
generators (the lines of the pencil with center O and passing through one of the
pointsA1; : : : ; Ar�2 are fundamental curves for†). Thus, since `meets the lines of
the pencil in a single point, the image curve '.`/ has a single point of F in common
with the generators and is therefore a directrix of F.

More generally, in order to have a directrix L of F it suffices to take a curve C
of ordermwith multiplicitym�1 at the pointO in the plane 
 . Since C meets the
lines of the pencil with centerO in only one point (away fromO), the image curve
L D '.C / has only one point in common with the generators of F and is thus a
directrix. Let x � 0 be the number of those among the points A1; : : : ; Ar�2 that
belong to C . Then by (10.5) the order of L, given by the number of intersections
of C with the curves of † away from the base points, will be

deg.L/ D .r � 1/m � .r � 2/.m � 1/ � x D mC r � x � 2:
So we have deg.L/ � m, with deg.L/ D m if C passes through all the points
A1; : : : ; Ar�2. Moreover, there do exist curves C of order m with O as an .m �
1/-fold point and passing simply through the points A1; : : : ; Ar�2 if, with 
 D
Cm.Om�1; A1; : : : ; Ar�2/, we have

dim
 � m.mC 3/

2
� .m � 1/m

2
� .r � 2/ D 2m � r C 2 � 0; (10.8)

that is, m � r�2
2

.
Note that the directrices Lm are embedded in linear spaces Sm since the curves

C of the system Cm.Om�1; A1; : : : ; Ar�2/ havem intersections with the curves of
† away from the base points, and so a curve of† contains C as component as soon
as it hasmC1 common points withC outside of the base points. Thus Lm D '.C /

is contained in
dim† � .mC 1/C 1 D r �m

independent hyperplanes and so too in the space Sm which is their intersection.
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Suppose that F is of general type, that is, that the base points of the system †

are in general position.

If r D 2k, then F2k�1 has a directrix Lk�1 of order k � 1 and 12 directrices
Lk of order k. Indeed, if r D 2k, then by (10.8) one has dim
 D 0 form D k� 1
and dim
 D 2 for m D k. The spaces in which Lk�1 and an arbitrary Lk are
embedded are spaces Sk�1 and Sk that are mutually skew: otherwise their join
J.Sk�1; Sk/ would have dimension � 2k � 1 < r and would contain the ruled
surface (because for each point of F there passes a generator that is supported by
Lk�1 and by Lk and which thus intersects the two spaces Sk and Sk�1, and so is
contained in their join).

For each directrix Lk , the correspondence obtained by associating to each
pointP of Lk�1 the pointP 0 of Lk at which the generator of F2k�1 passing through
P is supported, is algebraic and bijective and so is a projectivity between the two
rational normal curves Lk�1 and Lk (cf. §1.1.3). In conclusion, the surface F2k�1
is the locus of the lines that join the pairs of corresponding points under a projec-
tivity between two rational normal curves Lk�1 and Lk belonging to independent
spaces.

If r D 2k C 1, F2k possesses 11 directrices Lk (indeed, for r D 2k C 1

and m D k equation (10.8) gives us dim
 D 1). The spaces Sk in which the
directrices Lk are embedded are mutually skew, since otherwise their join would
have dimension � 2k < r . The surface F2k is the locus of the lines that join the
pairs of points corresponding under a projectivity between the two rational normal
curves of order k belonging to two independent spaces Sk .

We observe that for a ruled surface of general type Fr�1, the reduction process
of the system † to a system of lower order may be iterated until one finds linear
systems with at least three base points. The process will stop when we have a
linear system †0 D C k.Ok�1/ if r D 2k (and to the point O there corresponds
the directrix Lk�1, while the directrices Lk are images of the lines of 
), or when
†0 D C kC1.Ok; A1/ if r D 2k C 1 (and the 11 directrices Lk are the images of
the lines of the pencil with center A1).

If the points A1; : : : ; Ar�2 are in general position, the minimal order h of the
directrices is thus the integer part

	
r�1
2



of r�1

2
.

If the points A1; : : : ; Ar�2 are not in general position one has ruled surfaces
Fr�1 for which

	
r�1
2



is not the minimal order of the directrices, but there exists

one directrix of order h <
	
r�1
2



. This happens if among the r � 2 simple base

points Ai there are r � 1� h lying on a line `. The image of that line is the unique
directrix of order h. The other directrices of Fr�1 will all have order � r � h � 1.
Moreover, a directrix of order r � h� 1 is the image of a curve of order r � h� 1
in the plane 
 having O as an .r � h � 2/-fold point and passing through all the
points A1; : : : ; Ar�2.

Thus we have the following characterization of the ruled surfaces Fr�1 � P r .
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Theorem 10.3.7. Let h be the minimal order of the directrices of a ruled surface
Fr�1 � P r . Then the ruled surface is the locus of the lines joining pairs of
corresponding points under a projectivity between two rational normal curves C h

and C r�h�1 contained in independent linear spaces. In particular, if h D 0, then
Fr�1 is the cone which projects C r�1 from the center V .D C 0/.

10.3.8 Matricial representation of the ruled surfaces Fr�1 � Pr . The forego-
ing theorem allows us to give a simple analytic representation for the ruled surface
Fr�1 � P r .

Let h be the minimal order of the directrices. If one chooses a reference system
in P r in such a way as to ensure that two corresponding points under the projectivity
 W C h ! C r�h�1 are

P D Œth; th�1; : : : ; t; 1; 0; 0; : : : ; 0; 0�

and

P 0 D Œ0; 0; : : : ; 0; 0; t r�h�1; t r�h�2 : : : ; t; 1�;

then the generic point of the ruled surface has coordinates´
xi D th�i .i D 0; : : : ; h/;

xj D �t r�j .j D hC 1; : : : ; r/;
(10.9)

for some � 2 K�. The surface Fr�1 then appears as the locus of the points
Œx0; : : : ; xr � of P r that give rank one to the matrix�

x0 x1 : : : xh�1 xhC1 xhC2 : : : xr�1
x1 x2 : : : xh xhC2 xhC3 : : : xr

�
:

It is in fact known that the second order minors of this matrix provide a minimal
system of generators for the homogeneous ideal of polynomials in KŒx0; : : : ; xr �
that vanish on Fr�1 (cf. [11]).

If t and � are interpreted as non-homogeneous coordinates in P2, equations
(10.9) show that Fr�1 is the projective image of the linear system

† W Ph.t/C �Qr�h�1.t/ D 0;

where Ph.t/;Qr�h�1.t/ 2 KŒt� are polynomials of degrees h and r � h � 1

respectively and with indeterminate coefficients.
Introducing homogeneous coordinates, that is, setting t D u1

u0
, � D u2

u0
, we

have for † the equation

ur�2h
0 �h.u0; u1/C u2�

0
r�h�1.u0; u1/ D 0; (10.10)
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where �h.u0; u1/; � 0
r�h�1.u0; u1/ 2 KŒu0; u1� are binary forms of degrees h, r �

h � 1. The curves of † have order r � h and the multiple point A2 D Œ0; 0; 1� of
multiplicity r � h � 1.

If r D 2h C 1, equation (10.10) becomes u0�h.u0; u1/ C u2�
0
h
.u0; u1/ D 0

and so A1 is a (simple) base point, A2 is an h-fold base point, and one has the
system † D C hC1.Ah2; A1/. If r D 2h, equation (10.10) may be rewritten as
�h.u0; u1/C u2�

0
h�1.u0; u1/ D 0 and so in this case there is only the .h� 1/-fold

base point A2 and one obtains the system † D C h.Ah�1
2 /. This is in agreement

with §10.3.6.
The types of projectively distinct ruled surfaces Fr�1 in P r are obtained in

correspondence with the order h of the “minimal” directrices. In particular, if
h D 0 the minimal directrix is a point and Fr�1 is the cone projecting from that
point a curve C r�1 of Sr�1.

10.4 The conics of a plane as points of P5 and the Veronese
surface

The Veronese surface is a very important example of a rational surface. Here we
give a further description of it, and we study some of its remarkable properties.

Consider a plane 
 , with homogeneous coordinates x0, x1, x2, and a space
S5 with homogeneous coordinates X00, X01, X11, X02, X12, X22. Let †5 be
the 5-dimensional linear system of conics in 
 . We associate to the conic � with
equation

a00x
2
0 C 2a01x0x1 C a11x

2
1 C 2a02x0x2 C 2a12x1x2 C a22x

2
2 D 0

the point P D Œa00; a01; a11; a02; a12; a22� 2 S5.
To the conics � of a linear system of dimension h, 0 � h � 5, there correspond

the points of a subspace Sh of S5. In particular, pencils and nets of conics “are”
lines and planes of S5.

The degenerate conics are the points of the cubic hypersurfaceM 3
4 with equation

det.Xij / D det

0@X00 X01 X02
X10 X11 X12
X20 X21 X22

1A D 0 .Xij D Xj i /

and to the 12 doubly degenerate conics (i.e., double lines) there correspond the
points of the surface F which is the locus of points that give rank one to the matrix
.Xij /. One sees immediately that F is a Veronese surface. Indeed, a parametric
representation of F is obtained by observing that the coefficients aij of the equation
.u0x0 C u1x1 C u2x2/

2 D 0 for a double line are .u20; u0u1; u
2
1; u0u2; u1u2; u

2
2/.

Thus one rediscovers the parametric representation for F described in the exam-
ple 10.2.1.
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On M 3
4 there are two arrays of 12 of planes, but no linear spaces of dimen-

sion> 2. Indeed, each pointA of 
 is a double base point of a net†2.A/ of conics,
to which there corresponds a plane situated onM 3

4 . Thus one has a first 12 family
of planes, which we will call planes ŒA�. If a is a line of 
 , the net †2.a/ of the
pairs of lines one of which is the fixed line a leads to a plane, which we will call
the plane Œa�. Each such plane Œa� lies onM 3

4 and, as a varies, sweeps out a second
array of 12 planes. In M 3

4 there are no linear spaces of dimension � 3 because a
linear space Sh belonging to M 3

4 must come from a linear system of conics all of
which are degenerate. By Bertini’s first theorem (Theorem 6.3.11), such a linear
system consists of pairs of lines issuing from a fixed point, or of pairs of lines one
of which is fixed. Therefore h � 2.

The following properties hold.

(1) Two planes belonging to the same system have a point in common; that point
belongs to F if (and only if) the two planes are of type ŒA�.

Indeed, the two nets having A and B as centers have in common only the line rAB

counted twice, and so ŒA� \ ŒB� is a point of the Veronese surface F.

In analogous fashion one sees that Œa� \ Œb� is the point that represents the pair of
(distinct) lines a and b, and thus does not belong to F.

(2) Two planes ŒA� and Œa� not belonging to the same system are skew or otherwise
have a line in common according to whether A 62 a or A 2 a.

If A 62 a no pair of lines passing through A can contain a. If however A 2 a the two
nets have in common the pencil of conics split into the line a and a line of the pencil
with center A. This pencil contains a doubly degenerate conic (the line a counted
twice) and thus, ifA 2 a, the intersection ŒA�\ Œa� is a line that has a point in common
with the Veronese surface.

(3) Through a point of M 3
4 not belonging to F there pass a plane ŒA� and two

planes Œa�.

(4) Every point of F belongs to 11 planes ŒA� and to only one plane Œa�.

(5) The surface F does not contain lines.

Indeed, by taking linear combinations of two doubly degenerate conics one obtains a
pencil of conics which does not contain others that are doubly degenerate.

Proposition 10.4.1. The cubic hypersurface M 3
4 is the locus of the chords of the

Veronese surface F.

Proof. By taking linear combinations of two doubly degenerate conics ˛ and ˇ one
obtains a pencil of conics all of which are degenerate. Thus the chord of F that
joins the points which represent the two conics ˛, ˇ, and whose points represent
the conics of the pencil, is contained in M 3

4 . Hence the chords of F lie in M 3
4 .



362 Chapter 10. Rational Surfaces

To show that each point of M 3
4 belongs to some chord of F it suffices to show

that every degenerate conic L1L2 D 0 of the representative plane 
 (L1 and L2
linear polynomials in x0, x1, x2) is a linear combination of two doubly degenerate
conics. But this is true since

L1L2 D 1

4
.L1 C L2/

2 � 1

4
.L1 � L2/2: �

With regard to Proposition 10.4.1, note that the Veronese surface is the unique
surface embedded in Sr , r � 5, the locus of whose chords is a variety of dimension
< 5 (cf. [14] and also [96]).

Proposition 10.4.2. Let A and ` respectively be a point and a line of the plane 
 .
Then:

(1) The plane ŒA� contains a conic of the Veronese surface F .and thus F contains
12 conics). Furthermore, through two points of F there passes one and only
one of its conics, and two conics of F have in common only the point in which
their planes meet.

(2) The plane Œ`� is the tangent plane to F in the point that represents the line `
counted twice.

Proof. Consider a plane ŒA�. The corresponding net †2.A/ contains 11 double
lines and thus ŒA� contains 11 points of F. The locus LA of these points is a conic
because every line of the plane ŒA� represents a pencil of pairs of lines issuing from
A, and in this pencil there are two (and only two) double lines. Thus every line of
the plane ŒA� contains two points of LA.

Therefore F contains 12 conics LA and M 3
4 is the locus of the planes of those

conics. Furthermore, two conics of F have in common only the point in which their
planes meet, and so have in common a single point of F.

Now let ` be a line of 
 , � the doubly degenerate conic consisting of the line `
counted twice, and P the point of F that represents � in S5. Through P there pass
11 planes ŒA� (one for every point A 2 `) and thus 11 conics of F. The tangent
at P to each of these conics belongs to the plane of that same conic, and so toM 3

4 .
Thus the tangent plane to F at P is contained in M 3

4 ; and is the plane Œ`�. �

We remark that the following further properties (consequences of what has just
been said) characterize the Veronese surface.

(1) Any two tangent planes to F are incident. [And it is known that the only
surface (other than a cone) embedded in Sr , r � 5, for which any pair of
tangent planes are incident is the Veronese surface.]

This follows immediately from the previous property (1) and Proposition 10.4.2 (2).



10.4. The conics of a plane as points of P5 and the Veronese surface 363

(2) F is the only surface embedded in Sr , r � 5, whose generic projections in
S4 are non-singular.

By Proposition 10.4.1 the generic Sr�5 is skew to the variety of chords of F and so
the various projecting spaces Sr�4 (with such Sr�5 as center of the projection) do
not contain any chord.

(3) The Veronese surface is the locus of double points of M 3
4 .

Indeed, the first partial derivatives of the polynomial det.Xij / are linear combinations
of second order minors of the matrix .Xij /.

10.4.3 The Steiner surface. From a generic linepwe project theVeronese surface
F4 into a subspace S3 which we call…. Thus p has three distinct points in common
with M 3

4 . Let them be called L, M , and N . Through each of these points there
passes a plane containing a conic of F4. Let �, �, and � be the three conics and let
M0 be the common point of � and �. The line rLM0

(which belongs to the plane
of �) contains another point N0 of �. In analogous fashion, the line rNM0

(which
belongs to the plane of �) meets � in a second point L0.

�

�

�

p

L

M

N

L0

M0

N0

˛

�

L

M

N
L0

M0

N0

S3

T 0
1 O

T 0
2

Figure 10.1.

The three pointsL0,M0,N0 belong to the plane J.M;L;L0/, that is, to a plane
containing the two lines p and rL0N0

. Thus these two lines meet, and one sees
immediately that their common point is M . Indeed, the three lines rM0N0

, rL0N0
,
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rL0M0
, which are chords of F4, are contained in the varietyM 3

4 that meets F4 only
in L, M , and N .

The plane ˛ D J.L0;M0; N0/ is a trisecant plane of F containingp. Each of the
three conics �, �, � is contained in a space S3 passing through p (and containing ˛)
because the planes of the three conics meet p. Thus the three conics project onto
three lines of … each of which passes through the point O ´ … \ ˛. Thus one
finds three lines l ,m, and n in… all passing throughO and each of which is double
for the surface G obtained by projection. For example two points of � collinear with
L belong to a plane passing through p and thus are projected into the same point
of l : on l the surface G has two pinch-points, T 0

1, T 0
2, the traces in … of the planes

that join p with the tangents of � passing through L.
The projection G of F4 onto… is thus a surface of order 4 (sincep does not meet

F4) having three double lines that are concurrent in a triple point O (and having
on each of the three double lines two pinch-points, cf. 5.8.22). This surface was
discovered by Steiner in 1844 during a visit to Rome, and therefore has been called
Steiner’s Roman surface.

10.5 Complements and exercises

In this section we describe further properties of rational surfaces by means of exer-
cises and the study of some illuminating examples.

10.5.1. Show that the Veronese surface has class 3.

The class of a surface in P r is the number of tangent hyperplanes belonging
to a pencil. Hence we must count the hyperplane sections belonging to a pencil
and endowed with a double point. This is equivalent to seeking, in the represen-
tative plane, the conics of a pencil that have a double point, which means that are
degenerate, and this number is precisely three.

10.5.2. Show that every curve belonging to the Veronese surface F is a curve of
contact of F with a hypersurface in P5.

TheVeronese surface is the projective image of the linear system of all the conics
in the plane. On the other hand, the square of a homogeneous polynomial f 2
KŒu0; u1; u2� is a homogeneous polynomial g 2 KŒu20; u21; u22; u0u1; u0u2; u1u2�
(of degree equal to that of f in the new variables). Hence the curve L on F which is
the image of the plane curve with equation f D 0 is the set-theoretic intersection of
F with the hypersurface G of P5 having equation g D 0; and in fact, 2L D F \G is
the algebraic complete intersection of F and G. In this case the curve L is a contact
curve of F with G, in the sense that for every generic point P of L, the tangent
plane to F at P is contained in the tangent hyperplane to G at P .

In analogous fashion, if Vn;2 is the surface in P.
nC2

2 /�1 which is the projective
image of the linear system of all the plane curves of order n, one sees that the curve
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L of Vn;2 which is the image curve of the plane curve with equation f D 0 is the

set-theoretic intersection of Vn;2 with a hypersurface G in P.
nC2

2 /�1. Moreover, we
have nL D F \ G, that is, nL is the complete algebraic intersection of Vn;2 and G.
In this case L is the contact curve of order n � 1 of Vn;2 with G.

10.5.3. Use the planar representation in Example 10.2.1 to prove that the Veronese
surface belongs to six linearly independent quadrics.

It suffices to observe that the quadrics in P5 constitute a linear system of di-
mension 20, while the curves corresponding to the sections of the Veronese surface
by quadrics are the plane quartics and so constitute a linear system of dimen-
sion only 14. Thus there must be six linearly independent quadrics containing the
Veronese surface.

10.5.4. Study the surface F represented in a plane 
 by the linear system of conics
that pass through a point A, and prove that it is the residual intersection of two
quadrics of S4 containing a common plane.

A0

A1

A2 A3

A4

Figure 10.2

Bearing in mind (10.7), we have thatF is the cubic inS4which is the projection of
theVeronese surface from one of its pointsO . By what we have seen in Section 10.3,
the surface F3 � S4 is ruled and the generators are images of the lines of 
 that
pass throughA. The ruled cubic F3 � S4 has a linear directrix (the exceptional line
corresponding to the point O , cf. §10.1.7) and 12 conic directrices, namely the
images of the (generic) lines of the plane. Moreover, the surface F3 is the locus of
the lines that join the pairs of points corresponding under a projectivity ! between
the rectilinear directrix and any one of these conics.

The sections of the surface F3 with the quadric hypersurfaces of S4 are repre-
sented by the plane quartics havingA as double point. Since these make up a linear
system of dimension r D 11, while the quadrics inS4 form a space of dimension 14,
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the surface F3 belongs to three linearly independent quadrics. The intersection of
two of these quadrics is the union of the surface F3 with a plane.

We can choose the projective reference system in S4 in such a way that the recti-
linear directrix is the line hA0; A1i, that x0 D x1 D x2x4�x23 D 0 (Figure 10.2) is
a conic directrix, and that the two points Œ1; t; 0; 0; 0� and Œ0; 0; 1; t; t2� correspond
under the projectivity !.

Therefore, as seen in §10.3.8, the surface F3 appears as the locus of points that
give rank one to the matrix �

x0 x2 x3
x1 x3 x4

�
:

10.5.5. Let F be the surface which is the image of a 4-dimensional linear system
† of conics without base points. What special properties does F have if † is the
linear system of conics that meet a line r in pairs of points belonging to a given
involution ! W r ! r?

Since† has both dimension and degree 4, the surface F is of order 4 inS4 D P4,
and is obtained as the projection of the Veronese surface from a point P of P5. If
the conics of † intersect the line r in pairs of points belonging to the involution !,
two points M and M 0 D !.M/ of r have the same image under the morphism '

associated to † because every conic of † that passes through one of them also
contains the other.

The image '.r/ is a line. Indeed, it meets every hyperplane of S4 in the unique
point that corresponds to the two intersections of a conic of † with r . In fact, '.r/
is a double line for F. Indeed, if A is a point of '.r/ and 
 is a generic plane
containingA, two of the four intersections of F with 
 are absorbed byA inasmuch
as to two hyperplane sections passing through A there correspond two conics of †
that cut out the same pair of points '�1.A/ on r , and which consequently have only
two points in common away from r .

The fact that F has double points means that it is the projection of the Veronese
surface V2;2 from a point of the variety W locus of the chords of V2;2. The double
points of F are all the points of a line, which is in agreement with the fact that for
each point P of W that does not belong to V2;2 there passes the plane of a conic �
of V2;2 and r is the trace of the plane of � in S4. [Recall that W is the locus of the
planes of the conics of V2;2, cf. Proposition 10.4.2.] The traces of the two tangents
to � that pass through P are the two pinch-points that F has on '.r/ (cf. 5.8.22).
They are the images of the fixed points of !.

We note in passing that a surface of order 4 in P4 that is the projection of a
Veronese surface is either non-singular or has a double line.

10.5.6 (The Steiner surface). Study the surface F which is the projective image of
the most general 3-dimensional linear system † of conics without base points.

By what we have seen in Section 10.2 it follows that F is a surface of order 4
(not linearly normal) and is the projection of the Veronese surface V2;2 from a line `
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of P5 to a subspace S3, with ` chosen to meet the variety of the chordsM 3
4 of V2;2

in three distinct points. Hence ` does not meet V2;2 since the latter is the locus of
the double points for M 3

4 , cf. Section 10.4.
Represent the conics of the plane 
 of parameters with the points of P5 by

associating to the conic with equation

a00u
2
0 C 2a01u0u1 C 2a02u0u2 C a11u

2
1 C 2a12u1u2 C a22u

2
2 D 0

the point Œa00; a01; a02; a11; a12; a22�. We choose as the line ` the line that intersects
the hypersurface M 3

4 with equationˇ̌̌̌
ˇ̌x0 x1 x2
x1 x3 x4
x2 x4 x5

ˇ̌̌̌
ˇ̌ D 0

in the three distinct points

L D Œ1; 0; 0;�1; 0; 0�; M D Œ1; 0; 0; 0; 0;�1�; N D M�L D Œ0; 0; 0; 1; 0;�1�;
and as the space S3 that having equations x3 D x5 D 0.

The plane that joins ` with the point P D Œu20; u0u1; u0u2; u
2
1; u1u2; u

2
2� is the

locus of the pointPC�LC�M D Œu20C�C�; u0u1; u0u2; u21��; u1u2; u22���
which belongs to our S3 if � D u21, � D u22. The projection of P from ` into our
S3 is thus the point

Œu20 C u21 C u22; u0u1; u0u2; 0; u1u2; 0�:

The surface F is then the projective image of the linear system

† W �0.u20 C u21 C u22/C �1u0u1 C �2u0u2 C �3u1u2 D 0:

Moreover†will then contain the homaloidal net �1u0u1C�2u0u2C�3u1u2 D 0

having the points A D Œ1; 0; 0�, B D Œ0; 1; 0�, and C D Œ0; 0; 1� as its base points.
To the lines rBC , rAC , and rAB there correspond three lines a, b, and c which are

double for F. Indeed, the conics of † meet each of the sides of the triangle ABC
in pairs of points belonging to an involution. If, for example, ! is the involution
induced by † on the line rAB , the conics of † that pass through a point P of rAB
also pass through the point !.P /, and the two points P , !.P / represent the same
point of F (belonging to the double line c that corresponds to rAB ). To the three
points A, B , C there corresponds the same pointO , which is triple for the surface,
and through which the three double lines pass. Thus we find the Steiner surface.
The two fixed points of ! are Œ1; 1; 0� and Œ1;�1; 0�. They correspond to the two
pinch-points that F has along c. Naturally we have the analogous facts for the lines
a and b.
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One sees immediately that the four conics with equations2ri W .u0˙u1˙u2/2 D
0, i D 1; 2; 3; 4, all belong to†. Using the description of theVeronese surface as the
locus of the points corresponding to the 12 doubly degenerate conics of the plane
(as we have seen in Section 10.4) one immediately sees that † contains no other
doubly degenerate conics, because a generic S3 of S5 has four points in common
with a Veronese surface. By equation (10.5) to the lines ri W u0˙u1˙u2 D 0 there
correspond conics �i on F. Thus to the four doubly degenerate conics 2ri there
correspond four curves 2�i on F, which are the contact locus of F with four double
tangent hyperplanes (that is tangent along the conics �i ). The class of F is three
(as is the class of the Veronese surface, cf. Exercise 10.5.1) because to the curves
that are sections of F by tangent planes belonging to a pencil there correspond in
the representative plane the three conics of a pencil endowed with a double point.
Thus one sees that the Steiner surface is the dual surface of a cubic surface with
four double points, inasmuch as it has the projective characteristic dual to those of
the latter (the double tangent plane is dual to the double point, and the class is dual
to the order).

10.5.7 (Del Pezzo surfaces). Study the surfaces that are the projective images of
complete linear systems of cubics of genus 1.

The linear system † of all plane curves of third order has dimension 9 and
order 9 and so the projective image of † is a non-singular F9 in P9, called a Del
Pezzo surface. If we require the curves of† to pass through d � 6 points in general
position (that is, d distinct points, no three of which are collinear, and no six of
which lie on a conic) we find a non-singular surface F9�d in P9�d . This F9�d is
the projection of F9 from d of its generic points, and is the projective image of the
linear system†0 consisting of the curves of† that pass through the d points. While
F9 does not contain any line, the surface F9�d possesses at least the exceptional
lines that correspond to the base points imposed on † (cf. §10.1.7). Using (10.5)
one sees that if d > 1 then F9�d also contains the lines corresponding to the lines
of the plane that contain two of these points; if d � 5 there are also the lines
corresponding to the conics that contain five of them.

If three of the base points belong to a line `, the line ` is a fundamental curve
and hence to ` there corresponds a single point P (cf. §10.1.6) which is a double
point for the surface F9�d . Indeed, two hyperplane sections that pass through P
are represented in the plane 
 by two cubics split into the line ` and a conic that
contains the other d � 3 base points. Therefore, besides their intersection at P ,
they meet in only 4 � .d � 3/ other points. This means that the point P absorbs
.9 � d/ � .7 � d/ D 2 of the intersections of F9�d with a generic S7�d passing
through P .

Similarly one sees that if†0 has six base points belonging to a conic, that conic
is a fundamental curve and to it there corresponds a double pointO on F9�d (which
is a cubic surface in S3). Note that in this case the representation of F3 on a plane by
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way of the system of conics through six points is immediately obtained by projecting
F3 from its double point O onto a plane not passing through O .

Among the Del Pezzo surfaces (projections of the surface F9 of P9) a particularly
interesting one is the surface F4 called C. Segre’s surface which arises when d D 5.
It contains sixteen lines (the five exceptional lines, the ten lines that correspond
to the lines that join in pairs the five base points, and the line that corresponds
to the conic containing the five points) and is the complete intersection of two
quadric hypersurfaces of S4. To see this, observe that the quadrics of S4 are in
number 114, while the sections of F4 (the projective image of the linear system
†0 D C 3.B1; : : : ; B5/) with quadric hypersurfaces are represented in the plane
by the curves of order 6 having double points in the five base points (cf. §10.1.8),
and these constitute a linear system of dimension 6.6C3/

2
� 5 � 3 D 12. On the

other hand, we know that a linear system L of hypersurfaces intersects F4 in a
linear system L0 whose dimension is dimL0 D dimL � t , where t is the number
of linearly independent hypersurfaces passing through F4. Thus, t D 2.

We note explicitly that, in agreement with what we have seen in Section 10.2,
the surfaces that are projective images of non-complete linear systems of cubics of
genus 1 are surfaces which are (not linearly normal) projections of the Del Pezzo
hypersurfaces described above from points not belonging to them.

10.5.8. Write the equation of a Steiner surface F having a triple point at A0 D
Œ1; 0; 0; 0� and double lines rA0A1

, rA0A2
, rA0A3

.

The conic which splits into the lines rA0A2
and rA0A3

belongs to the planex1 D 0

and therein has the equation x2x3 D 0. Therefore, if f D 0 is the equation of F,
on setting x1 D 0 in f one must find x22x

2
3 D 0. In analogous fashion, for x2 D 0

one must find x23x
2
1 D 0, and similarly x21x

2
2 D 0 for x3 D 0. Thus

f D ax22x
2
3 Cbx23x

2
1 Ccx21x

2
2 Cx1x2x3.lx0Cmx1Cnx2Cpx3/ D 0; (10.11)

for suitable coefficients a; b; c; l; m; n; p 2 C. With the change of coordinates
expressed by the relations

X0 W X1 W X2 W X3 D lx0 Cmx1 C nx2 C px3 W x1 W x2 W x3;
equation (10.11) becomes

aX22X
2
3 C bX23X

2
1 C cX21X

2
2 CX0X1X2X3 D 0:

Finally, if we put X0 D Y0
p
abc, X1 D Y1

p
a, X2 D Y2

p
b, X3 D Y3

p
c (wherep

� denotes either choice of the complex square root of �), we find the following
simple equation for the Steiner surface:

Y 22 Y
2
3 C Y 23 Y

2
1 C Y 21 Y

2
2 C Y0Y1Y2Y3 D 0:
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10.5.9. Consider the Del Pezzo surface F9 in P9, two of its pointsA andP , and the
plane ˛ tangent to F9 at A. What does one obtain by projecting F9 onto a linear
space S5 from the space S3 that joins P with ˛?

The projection of the Del Pezzo surface F9 from the space S3 that joins ˛ with
P may be realized via two successive projections: the projection from ˛ to S6 and
(in that S6) the projection from the point P 0 that is the projection into S6 of P
from ˛. The first projection leads to a ruled surface F5 in S6; the second projection
gives a ruled surface F4 in S5 with 11 conic directrices (cf. Example 10.2.5 and
Section 10.3).

10.5.10. A generic cubic surface F inS3 is the projection of the Del Pezzo surface F9

from the space S5 that joins six of its generic points. Use its planar representation
to verify that F is non-singular, has twenty-seven lines, and forty-five tritangent
planes (cf. Exercise 5.8.13).

If F had a double point O the linear system 12 of the planes passing through
O would cut out a linear system of (rational) cubics on F, any two of which
would have in common, besides O , also a single point. That point is the fur-
ther point of intersection of F with the line common to the planes of the cubics.
The curves (rational and of order � 3) that correspond to these 12 plane sec-
tions would then form a homaloidal net 	 partially contained in the linear system
† D C 3.B1; B2; B3; B4; B5; B6/ that represents the surface. Note that the curves
of 	 can not be irreducible cubics since otherwise they would all have a double point
(which can not be fixed). The locus of this point would be, in virtue of Bertini’s
first theorem (Theorem 6.3.11), a line ı which when adjoined to all the curves of 	
would furnish curves of †. Then ı would be a fundamental curve of † and would
represent a double point.

A detailed analysis of all the possible cases shows that † can partially contain
the homaloidal net 	 only if three of its base points are collinear (and 	 is the net
of the conics passing through the other three base points) or if the six points belong
to a conic (and 	 is the net of the lines). This contradicts the hypothesis that the
base points B1; : : : ; B6 be in general position.

Besides the six exceptional lines bi that correspond to the six base points Bi
(i D 1; : : : ; 6), the surface F also contains the fifteen lines `ij represented by the
lines rBiBj

that contain two of the base points, and the six lines ri represented by
the conics that contain the five points different from Bi .

Note that the surface F does not contain other lines. To see this, it suffices to
observe that (besides the fifteen lines and the six conics) there do not exist other plane
curves C n of given order n that satisfy the condition 1 D 3n�P6

jD1 hj expressed
by equation (10.5), where hj � 0 is the multiplicity of C n at Bj , j D 1; : : : ; 6.
[There is an analogous argument for the case of C. Segre’s quartic F4 � P4 as in
Problem 10.5.7.]

A tritangent plane contains three lines of F (those that make up the cubic with
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three double points which is the section of F by the tritangent plane). To seek the
tritangent planes, that is, the planes that intersect F in three lines, is equivalent to
seeking the cubics of† that are split into three lines. It is easy to see that every line
of F belongs to five tritangent planes. We count, for example, the triples of lines
on F corresponding to the cubics of † split into the line rB1B2

and two other lines.
There are five of them, and more specifically they are:

`12 [ `34 [ `56; `12 [ `35 [ `46; `12 [ `36 [ `45;
`12 [ r1 [ b2; `12 [ r2 [ b1:

Since every tritangent plane contains three lines, the number of tritangent planes is
27�5
3

D 45.

10.5.11. Study the surfaces F represented in the plane 
 by linear systems † of
rational cubics with distinct base points.

If all the cubics of an irreducible linear system† have a double point that point
will be a base pointO by Bertini’s first theorem. It follows that all the lines passing
through O meet the cubics C 3 of † only in one point away from the base points,
and so F is covered by at least 11 lines and is thus a ruled surface.

If there are no other base points,† D C 3.O2/ and F is a ruled surface of order
five in S6. To the base point of † there corresponds a conic and this is the only
conic belonging to F (cf. §10.1.7).

If† D C 3.O2; B1; : : : ; Bd / also possesses d � 3 (simple) distinct base points,
we have deg† D 5� d , dim† D 6� d and so F is a ruled surface of order 5� d
belonging to a space S6�d (note that this is a planar representation different from
that described by the equations (10.1)). We note that for d D 3 the conics of
the representative plane passing through the four base points meet the cubics of †
away from the base points in a single point and so F has infinitely many rectilinear
directrices; therefore F is a quadric of S3. On the other hand, the quadratic transfor-
mation having as its fundamental points the double point and two of the three base
points transforms † into the linear system of conics passing through two points
(cf. Proposition–Definition 9.2.2), and we know that two linear systems which are
transformed into each other by a Cremona transformation represent surfaces that
are projectively identical.

If d D 1, one has a surface F4 in S5. The lines containing the simple base
point represent conic directrices and F4 is the locus of the lines that join pairs
of corresponding points under a projectivity between any two of these conics (cf.
Section 10.1).

We choose our reference system so that the two conic directrices �1 and �2 are
defined respectively by the equations x3 D x4 D x5 D x21 � x0x2 D 0 and x0 D
x1 D x2 D x3x5 � x24 D 0, and moreover so that the two points Œ1; t; t2; 0; 0; 0�
and Œ0; 0; 0; 1; t; t2� are in correspondence with each other (Figure 10.3). Then one
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A0

A1

A2

A3A4

A5

�1

�2

Figure 10.3

sees that F4 is the locus of points for which the matrix�
x0 x1 x3 x4
x1 x2 x4 x5

�
has rank one.

In paragraph 10.5.15 we will study another F4 in S5.
Finally, if d D 2 one has a ruled cubic in S4 which is the projection of the

Veronese surface from one of its points. Indeed, the system † can be reduced via
a quadratic transformation to the system †0 (of dimension 4 and degree 3) of the
conics that pass through a point (cf. Proposition–Definition 9.2.2).

10.5.12. Study the surface F represented by the linear system † of the cubics with
a node O and with a given tangent in a given point P .

The system† D C 3.O2; P; P / can be transformed via a quadratic transforma-
tion (with only two fundamental points) into the system of conics passing through
a point. The surface F is then the ruled cubic of S4. If the cubics of † have as
a double point the point Œ0; 0; 1� and are tangent at the point Œ0; 1; 0� to the line
u0 D 0, so that

† W �0u32 C �1u
2
1u0 C �2u

2
2u0 C �3u

2
2u1 C �4u0u1u2 D 0;

the quadratic transformation that transforms † into a system of conics with a base
point is that defined by Œu0; u1; u2� 7! Œy22 ; y0y1; y0y2�.

10.5.13. Study the surface which is the projective image of the linear system of
cubics having a double point O and a flex B with given tangent.
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If the system of coordinates in the representative plane 
 is chosen so thatO is
the point Œ1; 0; 0�, and u0 D 0 is the equation of the tangent at the flexB D Œ0; 1; 0�,
we then have for † the equation, cf. Section 5.7,

�0u
3
2 C �1u

2
1u0 C �2u

2
2u0 C �3u0u1u2 D 0:

The quadratic transformation defined by Œu0; u1; u2� 7! Œy22 ; y0y1; y0y2� changes
† into the linear system †0 of conics having a point in common as well as the
tangent at that point. Thus †0 represents a quadric cone in S3 (cf. Remark 7.3.3).

10.5.14. Describe the surface F represented in the plane 
 by a linear system †

of cubics having a cusp at a given point P .

The curves of†must all have the same tangent at P because by taking a linear
combination of the equations of two curves with a cusp at P and different cuspidal
tangents one finds a pencil of curves whose generic member hasP as a non-cuspidal
double point.

P

Q

R

q

r

t

P 0

Q0
R0

p0

q0

r 0

T 0

Figure 10.4

To the cuspidal tangent (which is a fundamental line of †) there is associated a
pointO that is a triple point for F. This may be seen more clearly by transforming†
via a quadratic transformation! W 
 ! 
 0 having one of its base points atP and the
other two base pointsQ andR chosen arbitrarily. Ifp0, q0 and r 0 are the exceptional
lines corresponding toP ,Q andR respectively, the curves of†0 are quartics having
as triple point the point P 0 D q0 \ r 0 and passing simply throughQ0 D r 0 \p0 and
R0 D p0 \ q0. Moreover they are all tangent to the line p0 at the point T 0 which
corresponds to the cuspidal tangent (cf. Proposition–Definition 9.2.2). The line p0
is therefore fundamental for †0 and the point O of F corresponding to it is triple
for F because the curves of †0 that contain it have as residual component a triple
of lines issuing from P 0 (Figure 10.4).
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The lines of 
 passing through P (and which ! changes into the lines of 
 0
passing through P 0) represent lines of the surface passing through O . Thus F is a
cubic cone or a quadric cone with vertex at O according to whether or not † has
another base point distinct from P .

Moreover, one can arrive at the same conclusion immediately by analytic argu-
ments. If P D Œ1; 0; 0� and if the cuspidal tangent is u1 D 0, one finds that † has
the equation

�0u0u
2
1 C �1u

3
1 C �2u

2
1u2 C �3u1u

2
2 C �4u

3
2 D 0:

Hence we get for F the parametric representation

x0 W x1 W x2 W x3 W x4 D u0u
2
1 W u31 W u21u2 W u1u22 W u32;

or also, on setting t D u1

u2
and v D u0u

2
1

u3
2

,

x0 W x1 W x2 W x3 W x4 D v W t3 W t2 W t W 1:
Then F appears as a cone that projects the cubic C from the point Œ1; 0; 0; 0; 0�
where C is the locus of the point Œ0; t3; t2; t; 1�.

If† has no other base points (and thus has dimension 4 and degree 3) an arbitrary
line r not passing through P represents a rational normal cubic C belonging to the
space S3 associated to the cubic of † that splits into r and the cuspidal tangent
counted twice. Moreover, F is the cubic cone in S4 that projects C from O . Three
arbitrary lines issuing from P give three coplanar generators since † contains the
cubic split into the three lines.

Bearing in mind Bézout’s theorem and the fact that two cubics of † have inter-
section multiplicity 6 at P (cf. Exercise 5.7.1), the system † can have, besides P ,
at most three other base points.

If † has a second base point P2 (at which two generic curves of † have inter-
section multiplicity 1, and thus † has dimension 3 and degree 2) the surface F is a
quadric cone in S3.

If† has a third base point P3 (of the same type as P2), the system† is a net of
degree 1, that is, a homaloidal net defining a Cremona transformation of degree 3
between two planes (the plane of † and F).

A possible fourth base point would imply that the projective image of † was a
curve.

10.5.15. Examine the surface F represented in the plane 
 by the linear system †

of cubics having a common double pointO with one of the two tangents there being
fixed.

The system † has the same degree and dimension as the system C 3.O2; A/ of
cubics having O as a double point and passing through an additional point A, and
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so deg† D 4, dim† D 5. Therefore it represents a ruled surface of order 4 in S5.
A quadratic transformation that has a fundamental point at the double point and the
other two in generic position transforms † into a linear system †0 of quartics with
a triple base point and three collinear simple base points (cf. Proposition–Defini-
tion 9.2.2). The degree and dimension of†0 are respectively 4 and 5. Let F4 � S5
be the projective image surface of †0. The triple base point of †0 gives a cubic
directrix L on F4. (Note that the three simple base points of †0 are not in general
position, cf. §10.3.6). Moreover, the line that contains the three simple base points
gives a rectilinear directrix r skew to the S3 containing L, and F4 is the locus of
the lines that join the pairs of points corresponding under a projectivity between
L .Š P1/ and r .

One can choose the coordinate system in S5 so that this ruled surface is the
locus of the points that endow the matrix�

x0 x2 x3 x4
x1 x3 x4 x5

�
with rank one (cf. 10.3.8).

10.5.16. Study the surface F represented in the plane 
 by the linear system † of
conics passing through a given pointP and meeting a given line r in pairs of points
that correspond under an involution !.

The systemC 2.P / of conics through the pointP has degree 3 and dimension 4.
The hypothesis on the involution ! imposes a linear condition and thus the system
(non-complete) † has dimension 3. Therefore F is a ruled cubic in S3.

The exceptional curve L � F corresponding to the base point P is a simple
directrix. Indeed, the lines of the plane 
 passing through P meet the curves of †
only in one point away fromP and thus have as images on F lines that are supported
by L. The line r represents a double directrix; indeed, two points A and A0 of r
corresponding to each other under ! give the same point of F through which there
pass the two generators that correspond to the lines rPA and rPA0 . The double points
of ! lead to the two pinch-points of F.

If we take P to be the point Œ1; 0; 0� in a projective reference system for 
 , and
take the double points of ! to be the points Œ0; 1; 0�, Œ0; 0; 1�, one finds that † has
equation

�0u0u1 C �1u0u2 C �2u
2
1 C �3u

2
2 D 0;

and F has the parametric representation

x0 D u0u1; x1 D u0u2; x2 D u21; x3 D u22:

Eliminating the parameters one finds that our ruled cubic in S3 has the equation

x20x3 � x21x2 D 0: (10.12)
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Conversely, letR be a ruled cubic in S3, not a cone. If g is a generator and if the
tangent plane to F along g is not fixed (that is, if g is a non-singular generator of F,
cf. Section 5.8) the correspondence between the points of g and the corresponding
tangent planes is a projectivity by Chasles’ theorem (see 5.8.18 (2)). On the other
hand, every plane ˛ passing through g intersects the ruled surface in an additional
conic, and thus its section byR is a cubic with two double points. IfR is of general
type (i.e., if the base points of the linear system that represents it are in general
position) and if ˛ is a generic plane passing through g, these two points are distinct.
Since only one of such points is a point of contact ofR with a tangent plane passing
through g (inasmuch as g is a non-singular generator), over every generator there
is a double point of the ruled surface; this point (which can not be fixed) describes
a line. Every ruled cubic thus possesses a double line. From each point of this line,
there issue two generators s and s0 ofR and the plane 	 that contains them meets the
ruled surface in a third line d , skew to the double line. The intersection of another
arbitrary generator ofR with 	 will belong to the line d which is therefore a simple
directrix for the ruled surface. Each plane passing through d also intersectsR in two
generators (issuing from the point in which the plane meets the double line) which
are supported by d in two points that correspond to each other via an involution
!. For each of the two double points of ! there issues a singular generator of R,
namely a generator along which the tangent plane toR is fixed. Moreover, the point
in which this line is supported by the double directrix is one of the pinch-points.

Now let O be a point of the double line a, and let b and c be the generators
of R passing through O . Let 
 be a plane not passing through O , and finally let
A, B , and C be the traces on 
 of a, b, and c. We project the section L of R by
a generic plane ˇ from O onto 
 . In 
 we obtain a cubic L0 passing through A,
B , and C and having A as double point with tangents the traces in 
 of the two
tangent planes to R in the point a \ ˇ. The projections of the plane sections of
R are thus the curves of the linear system †0 of cubics passing doubly through A
and simply through B and C , and such that the pairs of tangent lines at A belong
to an involution (Figure 10.5). Since R is embedded in S3, the system †0 has
dimension 3. The quadratic transformation having A, B and C as fundamental
points changes†0 into the linear system† of conics passing through a point P and
cutting out an involution ! on a fixed line (see also Proposition–Definition 9.2.2).

To find the equation (10.12) for R it suffices to choose the projective reference
system in S3 in such a way that Œ1; 0; 0; 0� and Œ0; 1; 0; 0� are the double points of
!, Œ0; 0; 1; 0� and Œ0; 0; 0; 1� are the pinch-points and U D Œ1; 1; 1; 1� belongs to R.

10.5.17. In the plane 
 consider a point P and a line r containing P , and let !
be a projectivity between the line r and the pencil of lines with center P . Consider
the conics of 
 passing through P and satisfying the property that under ! there
correspond the tangent at P and the other intersection of the conic with r . Then
such conics constitute a linear system † that represents a ruled cubic in S3. Study
this ruled surface (known as Cayley’s ruled cubic, cf. §5.8.23).
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Let a system of projective coordinates be given in the plane with P as the point
Œ1; 0; 0� and r as the line u2 D 0, and suppose that the conics of† that pass through
the point Œ1; a; 0� are tangent at P to the line u2 C au1 D 0 (that is, we suppose
that to the generic point Œ1; a; 0� of r there corresponds in ! the line u2 C au1 D 0

of the pencil with center P ). One finds that † has the equation

† W �0.u0u2 C u21/C �1u0u1 C �2u1u2 C �3u
2
2 D 0;

and thus that the projective image F has the parametric representation

x0 W x1 W x2 W x3 D u0u2 C u21 W u0u1 W u1u2 W u22
and the cartesian equation

x32 C x1x
2
3 � x0x2x3 D 0:

A generic plane that passes through the double line (which has equations x2 D
x3 D 0) intersects this surface in three lines, two of which coincide with the double
line; the only exception is the plane x3 D 0 for which also the third line coincides
with the double directrix (cf. Exercise 5.8.21).
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10.5.18. Let† be the linear system of curves of order 4with two double base points.
Show that its projective image is a surface G8 in S8 projectively distinct from the
surface F8 obtained in S8 as the projection of the Del Pezzo F9 � P9 from one of
its generic points.

The two base points of † (which has degree and dimension 8) represent two
exceptional conics on G8 and are the centers of two pencils of lines whose images
are two pencils of conics lying on G8. By contrast, the projection of the Del Pezzo
surface F9 � S9 from one of its pointsO is a surface that contains only one pencil
of conics that are the projections of the space cubics of F9 passing throughO . Thus
the two surfaces are projectively distinct. From this one has that the linear system
† and the system of cubics with a base point are not mutually related by a Cremona
transformation. In fact, Del Pezzo [73] proved that linearly normal surfaces of order
n exist in Sn only for n � 9, and they are the surfaces F9 � S9, their projections
F9�d � S9�d , and also the surface G8.

Note that projecting G8 from one its points onto a spaceS7 one finds the same sur-
face that is obtained by projecting F9 � S9 from two of its points: indeed, the linear
system of quartics with three base points, two double and one simple, is changed by
the quadratic transformation having these three points as its fundamental points into
the linear system of cubics with two base points (cf. Proposition–Definition 9.2.2).

If we use “ �� ” to indicate the projection from a point of a surface onto a
hyperplane, we have the following situation for linearly normal surfaces Fn in Sn:

F9 �� F8 �� F7 �� : : : �� F3

G8



�������

10.5.19. Show that the surface F of order 4 in S3 represented by a linear system†

of cubics with five base points contains a double conic.

The complete linear system†0 of cubics passing through five points represents
C. Segre’s surface G4 � S4. The system† is not complete, inasmuch as the surface
F is embedded in S3, and† is contained in†0. The surface F is thus the projection
of the surface G4 in S4 from an external point O onto a hyperplane …. As we
have seen in Problem 10.5.7, the G4 is the complete intersection of two quadric
hypersurfaces of S4. In the pencil ˆ of quadric hypersurfaces passing through G4

there is a quadric Q that passes throughO . The space S3 tangent atO to Q meets Q

in a quadric cone whose generators are chords of G4 since they have two points in
common with another quadric of ˆ. The trace of this cone in … is a double conic
of the surface F.

10.5.20. Study the cubic surface F in S3 represented on the plane 
 by the linear
system of cubics that pass through the six vertices of a complete quadrilateral.
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Let r1, r2, r3, r4 be four lines in the plane 
 no three of which are concurrent in
a point. These lines are fundamental lines for the linear system of cubics passing
through the six points Pij ´ ri \ rj . To each of the lines there corresponds a point
of F, so that on F there are four fundamental points Oi (cf. §10.1.6). One sees
immediately that these points are double for the surface. Indeed, two plane sections
of F passing, for example, through the pointO1 corresponding to r1 are represented
on 
 by two cubics both of which contain the line r1. The residual components are
two conics that have in common a single point in addition to the three base points
P23, P34, P42. Hence, a generic line of S3 passing throughO1 meets F, away from
O1, in a single point; that is, O1 is a double point for F (Figure 10.6).

rψ

P34

P12

P13

P14

P23
P24

r1

r2

r3 r4

Figure 10.6

The diagonal trilateral of the quadrilateral r1r2r3r4 represents the unique tritan-
gent plane of F. The lines composing the three sides of the diagonal trilateral (each
having only one point in common with the curves of † away from the base points)
are transformed into three lines of F contained in the tritangent plane; in addition
to these lines, F also contains the six lines rOiOj

.
Taking as fundamental points of a projective reference system in S3 the four

double points, one finds for F the equation

�0x1x2x3 C �1x2x3x0 C �2x3x0x1 C �3x0x1x2 D 0 .�0�1�2�3 ¤ 0/;

which can be reduced to the form

x1x2x3 C x2x3x0 C x3x0x1 C x0x1x2 D 0:

Note that this F3 can also be represented by way of the system †0 of conics
tangent to three given lines in three given points. In fact we have seen in Exam-
ple 10.1.10 (3) that † and †0 are equivalent via a Cremona transformation.
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10.5.21. Describe the planar representation of a monoid (that is, a surface of order
n with an .n � 1/-fold point).

We first observe that a monoid M of order n is embedded in S3. If in fact M
were embedded in a space Sr with r � 4, the space Sr�2 joining the .n � 1/-fold
point with r�2 other generic points would have n�1Cr�2 � nC1 intersections
with M .

Let O be the .n � 1/-fold point of the monoid M . A planar representation of
M is obtained by projecting M from O onto a plane 
 . Since M contains the
n.n�1/ lines that it has in common with the tangent cone atO , the linear system of
plane sections ofM is projected into a linear system†, of dimension 3 (sinceM is
embedded in S3), of curves of order n passing through the n.n�1/ points common
to two curves of order n � 1 and n. We may in fact suppose that O D Œ1; 0; 0; 0�

and thus that M has equation

x0'n�1.x1; x2; x3/C 'n.x1; x2; x3/ D 0;

where'n�1, 'n are forms of ordern�1 andn respectively. If
 has equationx0 D 0,
then † is the system of curves of order n through the n.n � 1/ points common to
the two curves of orders n � 1 and n with equations 'n�1.x1; x2; x3/ D x0 D 0

and 'n.x1; x2; x3/ D x0 D 0 respectively.
We note that the dimension of the (complete) linear system ˆ of all curves of

order n that pass through these points is 3 (and hence ˆ D †). Indeed, let f D 0

and g D 0 be the equations of the curves of orders n and n� 1 whose intersections
are the base points of ˆ. Let h D 0 be the equation of a generic curve of ˆ and
let P be a point of the curve C with equation g D 0, distinct from the base points.
The curve of the pencil h � �f D 0, � 2 K, that passes through P splits into the
curve C and a line r , and thus there is a value �0 of the parameter � such that

h � �0f D g.�0u0 C �1u1 C �2u2/;

where �0u0 C �1u1 C �2u2 D 0 is the equation of the line r . This means that
every curve of ˆ has equation of the form

h D �0f C g.�0u0 C �1u1 C �2u2/ D 0

and thus depends on three essential parameters �0, �1, �2.
Hence the system† is complete with respect to the base group and therefore the

monoid is a linearly normal surface. Note that † is not regular if n > 3 (because
3 > n.nC3/

2
� n.n � 1/ for n > 3).

10.5.22 (Clebsch’s diagonal surface). LetF be the cubic surface (known as Clebsch’s
diagonal surface) which is the projective image of the linear system† of curves of
order 3 that pass through the vertices and the center of a regular pentagon. Recall
that an Eckardt point on a cubic surface F is a point at which the tangent plane to
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F has three lines of a pencil in common with the surface (cf. §10.1.5). Verify that
F has ten Eckardt points.

It suffices to note that ifP is the point of the representative plane
 to which there
corresponds an Eckardt point, then through P there must pass three lines which
together constitute a cubic of †. By observing the Figure 10.7 (where there is the
pentagon ABCDE with center the point indicated by “�”) one sees immediately
that the ten points signed with the symbol “�” are Eckardt points.

A

B

C

DE

Figure 10.7

For another remarkable cubic surface endowed with Eckardt points see Exer-
cise 13.1.36.

10.5.23. Consider three planes passing through the three lines constituting the
intersection of a general cubic F in P3 with a tritangent plane. Show that the
resulting residual intersections (of the planes with F) are three conics lying on a
quadric.

A tritangent plane intersects F in a cubic with three double points, and thus a
cubic split into three lines. We represent F in a plane 
 via the complete linear
system † D C 3.P1; P2; P3; P4; P5; P6/, and we consider the lines r12 D P1P2,
r34 D P3P4, r56 D P5P6 in 
 . Then to the cubic of † which splits into the lines
r12, r34, r56 there corresponds on F the cubic (split into lines) which is a section of
F by a tritangent plane (cf. §10.1.8).

Let �12, �34, and �56 be three conics in 
 such that rij [ �ij corresponds to a
plane section of F (that is, to the section of F by a plane through the line `ij which
is the image of rij ). Then the conic �12 must pass through P3, P4, P5, P6, while
�34 must pass through P1, P2, P5, P6, and �56 must pass through P1, P2, P3, P4.
The sextic �12[ �34[ �56 passes doubly through the six points Pi and hence is the
image of the section of F with a quadric.

In this way one finds all the quadric sections of F that are split into three lines.
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10.5.24. Prove that on a Veronese surface F there is a 9-dimensional linear system
of non-singular elliptic curves.

It suffices to observe that the non-singular elliptic curves on F are the images,
under the plane representation of F, of the non-singular elliptic curves of P2, namely
the non-singular plane cubics. These form a linear system of dimension 9.

10.5.25 The Cremona birational transformations between projective spaces
of dimension 3. We now give a brief discussion of a method, first suggested by
L. Cremona [29], [30], for determining (if they exist) all the homaloidal systems of
surfaces in P3 that contain a given (rational) surface F0 having a known representa-
tion over a plane 
 . Such systems furnish birational transformations � W P3 ! P3.

Let F0 � P3 be a rational surface, with equation F0 D 0, represented over a
plane 
 (in which u1, u2, u3 are homogeneous projective coordinates) by way of
the linear system † (simple and without fixed part) consisting of curves of a given
order n:

�0f0.u1; u2; u3/C�1f1.u1; u2; u3/C�2f2.u1; u2; u3/C�3f3.u1; u2; u3/ D 0:

We know that the curves which are sections of F0 by surfaces of order N are
precisely those represented over 
 by the curves of the system N†, that is, by
curves whose equation may be written in the form

F.f0; f1; f2; f3/ D 0; (10.13)

with F.t0; t1; t2; t3/ a homogeneous polynomial of degree N .
We assume that there exists a homaloidal system � of surfaces containing F0,

in such a way thatF0 is generic in�. The section curves ofF0 by the other surfaces
of � form a net (of curves of F0) to which there corresponds in 
 a net of curves
of order n2 each of which contains as a component a curve which comes from the
base locus of � in 
 . The variable components (namely, the characteristic curves
of F0) form a homaloidal net of curves of order � n2.

Given these premises, let there be given in 
 an arbitrary homaloidal net

R W �1g1.u1; u2; u3/C �2g2.u1; u2; u3/C �3g3.u1; u2; u3/ D 0 (10.14)

of curves of order � n2 as well as a curve h of equation h.u1; u2; u3/ D 0 such
that the three polynomials h.u1; u2; u3/gi .u1; u2; u3/ may be written in the form
(10.13). The curves of F0 represented in 
 by the curves

h.u1; u2; u3/gi .u1; u2; u3/ D Fi .f0; f1; f2; f3/ D 0; i D 1; 2; 3;

are the sections of F0 by the three surfaces Fi .x0; x1; x2; x3/ D 0, and

�0F0 C �1F1 C �2F2 C �3F3 D 0
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is a homaloidal system containing the given surface F0.

In the special case n D 2, let us see how to construct the homaloidal systems of
non-singular quadrics of P3 described in Section 9.4.

We represent a quadric F0 in the plane 
 by the 3-dimensional system † D
C 2.A;B/ of conics with two base pointsA, B (infinitely near or distinct according
to whetherF0 is or is not a cone, cf. Section 7.3), and let	 W 
 ! F0 be the birational
map defined by †. Note that the line ` D hA;Bi is the fundamental curve of †,
to which there corresponds on F0 the fundamental point O (see §10.1.6). The
homaloidal nets R, of curves of degree � 4, which together with a fixed curve give
quartics belonging to 2† (i.e., having A, B as two-fold points) are the following:

i) the net of lines;

ii) the net C 2.A;B; P / of the conics throughA, B , and through a third point P ;

iii) the net C 2.A; P;Q/ of the conics passing through A and two points P , Q
different from B;

iv) the net C 2.P;Q;R/ of the conics with three base points P , Q, R different
from A and B;

v) the netC 3.A2; B; P;Q;R/ of the cubics passing throughAwith multiplicity
two and simply through the points B , P , Q, R;

vi) the net C 4.A2; B2;H 2; P;Q;R/ of the quartics with three two-fold base
points A, B , H and three simple base points P , Q, R.

In view of Proposition–Definition 9.2.2, one sees that via a quadratic transfor-
mation the cases ii), v), vi) can be reduced to the cases i), iii), iv) respectively.
Therefore we need only consider the cases i), iii), iv).

Let us consider case i). If to the net R of lines of
 we add, as fixed components,
the line ` D hA;Bi and a conic � through A and B , we obtain a net of quartics
belonging to 2† (with the notation as above, h.u1; u2; u3/ D 0 is the defining
equation of the cubic h D `[ � ). To the curves of hR there correspond the curves
of a net cut out on F0 by a net

�0 W �1F1 C �2F2 C �3F3 D 0

of quadrics. Then we get the homaloidal system � W �0F0 C �0 having as base
locus the fundamental point O D 	.`/ and the conic 	.�/ (cf. (10.5)). Thus �
defines a Cremona transformation of type .2; 2/.

In case iii), the net C 2.A; P;Q/, completed with the line ` D hA;Bi and a
further line r through B , gives a net of quartics belonging to 2†. The procedure
described above now leads to a homaloidal system� of quadrics whose base variety
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is constituted by the three points 	.A/, 	.P /, 	.Q/, and the line 	.r/. Thus �
defines a Cremona transformation of type .2; 3/.

In case iv), the net C 2.P;Q;R/ completed with the line ` D hA;Bi counted
twice, leads to a homaloidal system � of quadrics passing through the four points
	.P /, 	.Q/, 	.R/, O , and having at O the fixed tangent plane joining the lines
a, b corresponding to the two base points A, B (cf. §10.1.7). Thus � defines a
Cremona transformation of type .2; 4/.

Example 10.5.26. In order to give a better illustration of Cremona’s procedure, we
show how one can effectively obtain the equations of a birational transformation
starting from a surface F0 of the corresponding homaloidal system.

With the preceding notations we consider the quadric F0 D x0x3 � x1x2 D 0,
having parametric equations xi D fi .u1; u2; u3/, i D 1; 2; 3, where

f0 D u1u2; f1 D u1u3; f2 D u2u3; f3 D u23;

so that the quadric is represented over the plane 
 D P2Œu1;u2;u3� by the linear
system

† W �0u1u2 C �1u1u3 C �2u2u3 C �3u
2
3 D 0:

As our homaloidal net in 
 we take the net of lines

R W �1u1 C �2u2 C �3u3 D 0:

If we wish to adjoin a common curve h to all the lines of R so as to obtain curves
contained in 2†, that is, quartics passing doubly through A and B , we must choose
h to be a cubic passing doubly through bothA andB , and thus splitting into the line
` D hA;Bi (which has equation u3 D 0) and a conic � passing through A and B
but otherwise arbitrary. The possible choices of � lead to the possible projectively
distinct types of linear systems� of quadrics passing through a point and containing
a conic.

For example, suppose that � is the line hA;Bi counted twice, so that the curve
h D ` [ � has equation u33 D 0. One obtains the net

hR W �1u1u33 C �2u2u
3
3 C �3u

4
3 D 0

(of quartics belonging to 2†) which may be written in the form

hR W �1f1f3 C �2f2f3 C �3f
2
3 D 0:

To it there corresponds the net cut out on F0 by the net of quadrics

�0 W �1x1x3 C �2x2x3 C �3x
2
3 D 0:

Thus we have the homaloidal system

�0F0 C�0 D �0.x0x3 � x1x2/C �1x1x3 C �2x2x3 C �3x
2
3 D 0; (10.15)
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which defines the Cremona transformation � W S3 ! S 0
3 of type (2,2) expressed

analytically by 8̂̂̂<̂
ˆ̂:
y0 D x0x3 � x1x2;
y1 D x1x3;

y2 D x2x3;

y3 D x23 :

These formulas may be inverted as follows:8̂̂̂<̂
ˆ̂:
x0 D y0y3 C y1y2;

x1 D y1y3;

x2 D y2y3;

x3 D y23 :

We note that the homaloidal system (10.15) obtained with this choice of the
conic � is that of the quadrics tangent at A0 D Œ1; 0; 0; 0� to the plane x3 D 0 and
having as common component the degenerate conic x3 D x1x2 D 0.



Chapter 11

Segre Varieties

IfSp; Sq; : : : arek linear spaces, it is useful to consider thek-tuples .P1; P2; : : : ;Pk/
of points taken respectively in Sp , Sq; : : : (that is, the elements of Sp � Sq � � � � )
as points of a variety W of dimension p C q C � � � . In this chapter we shall study
a simple projective model for W called the Segre variety to honor C. Segre, who
introduced it in [85].

In Section 11.1 we study the case of two lines, which gives rise to W which is
a quadric in P3. Then, in Sections 11.2 and 11.3 we consider the product of two
projective spaces of arbitrary dimensions. The variety which arises is a special case
of a determinantal variety. Indeed, its associated ideal is generated by second order
minors of a suitable matrix. The extension to the case of several spaces, sketched
in § 11.3.1, does not present new conceptual difficulties.

The chapter ends with some applications of the theory and, in Section 11.4, with
some examples and illustrative exercises.

11.1 The product of two projective lines

Let r and s be two projective lines and on each of them let a homogeneous coordinate
system be given: x0, x1 on r and y0, y1 on s. To the pair of pointsA D Œx0; x1� 2 r ,
B D Œy0; y1� 2 s we associate the point P of P3 having coordinates

X00 D x0y0; X01 D x0y1; X10 D x1y0; X11 D x1y1: (11.1)

This point does not depend on the choice of coordinates of A and B: indeed, if x0,
x1 are multiplied by a non-zero factor � and y0, y1 by a non-zero factor �0, the
coordinates Xij are modified by the non-zero factor ��0. The equations

x1

x0
D X10

X00
D X11

X01
;

y1

y0
D X11

X10
D X01

X00
;

which follow from equations (11.1), show that the point P determines the pair of
points .A;B/.

The locus described by P when A and B run over the line r and the line s
respectively is the quadric Q with equation

X00X11 �X01X10 D 0;

the points of which correspond bijectively to the elements .A;B/ 2 P1 � P1. Thus
the quadric Q is a convenient projective model for the product of two projective
lines. It has a parametric representation given by the equations (11.1).
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Putting x0 D y0 D z0 and y1 D z1, x1 D z2 in equations (11.1), one finds the
representation

X00 D z20 ; X01 D z0z1; X10 D z0z2; X11 D z1z2

of Q over a plane 
 (of equation aX00 C bX01 C cX10 C dX11 D 0) where z0,
z1, z2 are homogeneous projective coordinates (cf. Example 2.6.4). To the plane
sections of Q there correspond on 
 the conics with equations

az20 C bz0z1 C cz0z2 C dz1z2 D 0; a; b; c; d 2 K;
that pass through the points Œ0; 0; 1�, and Œ0; 1; 0�.

To the pairs .A;B/ with A fixed there correspond the points of the line rx with
equations

x1

x0
D X10

X00
D X11

X01
;

which describes one of the rulings of Q as A varies. We denote that ruling by frxg,
and similarly to the pairs .A;B/ with fixed B there correspond the points of the
line with equations

y1

y0
D X11

X10
D X01

X00
;

which describes the other ruling fryg as B varies. A line in frxg is represented on
Q by an equation of the form ax0 C bx1 D 0; a line of fryg is represented on Q by
an equation of the form cy0 C dy1 D 0, with a; b; c; d 2 K.

More generally, a bihomogeneous equation of bidegree .ˇ, ˛/, that is, homo-
geneous of degree ˇ with respect to x0, x1 and of degree ˛ with respect to y0, y1,

G.x0; x1Iy0; y1/ D 0;

represents a curve L of type .˛; ˇ/ on Q. This curve has ˛ points in common with
a generic line rx and ˇ points in common with a generic line ry .

Suppose that ˇ D ˛ C q (q � 0). To prove that L is an algebraic curve of P3

it is enough to find a homogeneous ideal a in KŒX00; X01; X10; X11� such that L

is the locus of zeros of a. To this end, consider the q C 1 polynomials

Gh.x0; x1Iy0; y1/ D yh0y
q�h
1 G.x0; x1Iy0; y1/; h D 0; 1; : : : ; q;

bihomogeneous of the same degree ˇ with respect to both pairs of variables. They
do not have common zeros other than zeros ofG, and may be written as polynomials
in the four variables xiyj . If we set

Gh.x0; x1Iy0; y1/ D Fh.x0y0; x0y1; x1y0; x1y1/; h D 0; 1; : : : ; q;

we see that L is the locus of the points that annul the q C 2 polynomials

X00X11 �X01X10; Fh.X00; X01; X10; X11/; h D 0; 1; : : : ; q;
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which means that L D V.a/ where a D .X00X11 �X01X10; F0; : : : ; Fq/. A geo-
metric argument shows that L is the set-theoretic complete intersection of the three
surfaces with equations (cf., for the case q D 2, the last remark in Example 11.1.2)

X00X11 �X01X10 D 0; F0.X00; X01; X10; X11/ D 0;

Fq.X00; X01; X10; X11/ D 0;

that is, L is the locus of the points common to the three surfaces.
Note that if q D 1 these are all the generators of a; and we have that only when

ˇ D ˛ C 1 the ideal a is generated by three polynomials (and not less).
If q D 0, i.e., ˛ D ˇ, L is the complete intersection of the quadric with another

surface and thus a is generated by two polynomials.

Example 11.1.1. With the preceding notations, suppose that the equation of L on
Q is G D x20y1 � x21y0 D 0. One then has ˛ D q D 1, ˇ D 2 and

G1 D y0G D y0x
2
0y1 � y0x21y0 D .x0y0/.x0y1/ � .x1y0/2;

G0 D y1G D y1x
2
0y1 � y1x21y0 D .x0y1/

2 � .x1y0/.x1y1/:

Therefore L is the curve of P3 which is the locus of the zeros of the ideal a generated
by the three polynomials

X00X11 �X01X10; X00X01 �X210; X201 �X10X11;

that is, by the second order minors of the matrix�
X00 X10 X01
X10 X01 X11

�
:

The ideal a is the kernel of the homomorphism f W KŒX00; X01; X10; X11� !
KŒt; u� defined by X00 7! t3, X01 7! tu2, X10 7! t2u, X11 7! u3 (the inclusion
a � ker.f / is obvious; the converse inclusion is seen via a standard argument of
polynomial algebra which we have already used in Exercise 3.4.11 (2)). It follows
that a D I.L/ is a prime ideal and the curve L is irreducible. The curve L is the
twisted cubic, the locus of the points8̂̂̂̂

<̂
ˆ̂̂:
X00 D t3;

X01 D tu2;

X10 D t2u;

X11 D u3:
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Example 11.1.2. Let L be the curve represented on Q by the equationG D x30y1�
x31y0 D 0. We have .˛; ˇ/ D .1; 3/, q D 2 and

G0 D y21.x
3
0y1 � x31y0/ D .x0y1/

3 � .x1y1/2.x1y0/;
G1 D y0y1.x

3
0y1 � x31y0/ D .x0y0/.x0y1/

2 � .x1y1/.x1y0/2;
G2 D y20.x

3
0y1 � x31y0/ D .x0y0/

2.x0y1/ � .x1y0/3:
Therefore, if

a WD .X00X11 �X01X10; X301 �X211X10; X00X201 �X11X210; X200X01 �X310/;
one has L D V.a/. But to obtain L as a complete intersection of three surfaces it
suffices to take

f WD X00X11 �X01X10; g WD X301 �X211X10; h WD X200X01 �X310;
since

ghC hX211X10 � gX310 � 2fX210X201 D .X00X
2
01 �X11X210/2:

And we have L D V.b/ with b D .f; g; h/.
Note that the polynomialF D X00X

2
01�X11X210 although belonging to I.L/ Dp

b does not belong to b.
Observe that the surface X301 � X211X10 D 0 passes doubly through the line r

with equations X01 D X11 D 0 whence it intersects Q in a curve that splits into
L and the line r counted two times. Similarly, the surface X200X01 � X310 D 0

intersects Q outside of L in the line r 0 with equations X00 D X10 D 0 counted
twice. The two lines r and r 0 are generators of the same ruling of Q and thus are
skew; therefore the zeros of b are precisely the points of L (and only those). This
provides a geometric version of the proof that L D V.b/.

Finally, a parametric representation of L is given by

X00 W X01 W X10 W X11 D t4 W tu3 W t3u W u4:

11.2 Segre morphism and Segre varieties

What has been seen in Section 11.1 was generalized by C. Segre who introduced
the varieties, called Segre varieties, that represent h-tuples of points taken from h

projective spaces.
Let Pn and Pm be two projective spaces, with homogeneous coordinatesX0; X1;

: : : ; Xn in Pn and Y0; Y1; : : : ; Ym in Pm. Together with them consider the projective
space PN of dimension

N D .mC 1/.nC 1/ � 1 D mnCmC n;
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in which we fix a homogeneous coordinate systemZij , i D 0; : : : ; n, j D 0; : : : ; m.
We will call the map

' W Pn � Pm ! PN

under which the pair of points x D Œx0; x1; : : : ; xn�, y D Œy0; y1; : : : ; ym� is
mapped to the point with coordinates

zij D xiyj (11.2)

the Segre morphism. The morphism ' is well defined (and it is clearly injective).
Indeed, on altering all the xi by a common factor � ¤ 0 and altering all the yi by
a common factor �0 ¤ 0, the zij are all changed by the common factor ��0 ¤ 0.

In PN we consider the Zariski topology, and on Pn�Pm (instead of the product
topology with respect to the Zariski topology of Pn and Pm, cf. §2.1.3), we con-
sider the coarsest topology that renders the Segre morphism ' W Pn � Pm ! PN

continuous. We call this topology the Zariski topology on the product. The closed
subsets of Pn � Pm are thus the inverse images of the closed sets in PN . They are
defined by bihomogeneous equations, that is, equations homogeneous with respect
to each series of variables.

The image of ' is the intersection of the quadrics with equations

ZijZkl �ZkjZil D 0: (11.3)

In fact it is clear that every point z 2 '.Pn � Pm/ satisfies these equations. Con-
versely, if the point z D Œ: : : ; zij ; : : : � satisfies equations (11.3) and if, for ex-
ample, z00 ¤ 0, from the relations zij z00 � z0j zi0 D 0 it is evident that the
points x D Œz00; z10; : : : ; zn0� 2 Pn and y D Œz00; z01; : : : ; z0m� 2 Pm are deter-
mined by z and are such that '.x; y/ D z (indeed, '.x; y/ D Œ: : : ; zi0z0j ; : : : � D
Œ: : : ; zij z00; : : : � D z).

From this it follows thatW ´ '.Pn�Pm/ is an algebraic variety of PN ; we say
thatW is the Segre variety of the product of the two projective spaces Pn�Pm. The
varietyW is a projective model for the product space Pn � Pm. It has a parametric
representation

Zij D uivj ; i D 0; : : : ; n; j D 0; : : : ; m: (11.4)

Since the products uivj (with ui , vj indeterminates) are linearly independent over
the base fieldK, the varietyW does not belong to any hyperplane of PN , that is, it
has PN as its embedding space.

If in equations (11.4) we fix the ui (or better, their ratios, which means a point
x D Œu0; u1; : : : ; un� in Pn) we find the parametric representation of a linear space
Lm D '.x � Pm/ of dimension m. This is the space that joins the points

P0 D Œu0; u1; : : : ; un; 0; 0; : : : ; 0; : : : ; 0; 0; : : : ; 0�;

P1 D Œ0; 0; : : : ; 0; u0; u1; : : : ; un; : : : ; 0; 0; : : : ; 0�;
:::

Pm D Œ0; 0; : : : ; 0; 0; 0; : : : ; 0; : : : ; u0; u1; : : : ; un�:
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ThereforeW possesses anm-dimensional system ofn-dimensional linear projective
spaces Ln, and similarly it also has an n-dimensional system of m-dimensional
spaces Lm. For each point '.x � y/ of W there passes a unique space of each of
the two systems: the space Lm D '.x � Pm/ and the space Ln D '.Pn � y/. Two
spaces of the same system are skew; however, a space Lm and a space Ln have a
point in common.

The morphisms p1 W W ! Pn and p2 W W ! Pm defined by

p1.z/ D Œx0; x1; : : : ; xn�; p2.z/ D Œy0; y1; : : : ; ym�;

are called the projections of W respectively on the first and second factors of the
product. The fibers of p1 and p2 are the spaces Lm and Ln respectively.

If
G.xIy/ D G.x0; x1; : : : ; xnIy0; y1; : : : ; ym/

is a bihomogeneous polynomial of bidegree .ˇ; ˛/, which means homogeneous of
degree ˇ in the xi and degree ˛ in the yj , then the equation G.xIy/ D 0 defines a
subvariety� ofW which has codimension 1, and which intersects the generic linear
projective space Lm in a hypersurface of order ˛, and the generic linear projective
spaceLn in a hypersurface of orderˇ. Letˇ D ˛Cqwith q � 0. To obtain a system
of equations for � as algebraic subvariety of PN , it suffices first to write themC 1

polynomials yq
h
G.xIy/, h D 0; 1; : : : ; m (which are bihomogeneous of degree ˇ

with respect to both series of variables), as polynomials Fh.: : : ; xiyj ; : : : / in the
indeterminates xiyj and then to adjoin the mC 1 equations Fh.: : : ; Zij ; : : : / D 0

to the equationsZijZkl �ZkjZil D 0 ofW . The system of equations so obtained
for the mC n � 1 dimensional subvariety � is not necessarily minimal.

Consider two principal affine charts in Pn and Pm, for example U n0 � Pn

defined by X0 ¤ 0 and Um0 � Pm defined by Y0 ¤ 0; and also the chart U00 in
PN defined by Z00 ¤ 0. We have

W00 ´ '.U n0 � Um0 / D U00 \ '.Pn � Pm/;

whence '.U n0 � Um0 / is an open subset of W .

On introducing affine coordinates Ti D Xi

X0
in U n0 and T 0

j D Yj

Y0
in Um0 together

with Z0
ij D Zij

Z00
in U00, we see that the morphism � W An � Am ! W00 defined by

setting

�.t1; t2; : : : ; tn; t
0
1; t

0
2; : : : ; t

0
m/

´ .1; t 01; t 02; : : : ; t 0m; t1; t1t 01; t1t 02; : : : ; t1t 0m; : : : ; tn; tnt 01; tnt 02; : : : ; tnt 0m/

is an isomorphism AnCm Š An � Am Š W00. Hence W is an irreducible variety
of dimension mC n. It is not difficult to show that (cf. for example [48, 18.15])

deg.W / D .mC n/Š

mŠ nŠ
:
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Note thatW can also be defined as the locus of points of PN that give rank 1 to the
matrix

.Zij / D

0BBB@
Z00 Z01 Z02 : : : Z0m
Z10 Z11 Z12 : : : Z1m
:::

:::
:::

:::

Zn0 Zn1 Zn2 : : : Znm

1CCCA
and one can show that the homogeneous ideal I.W / is generated by the second
order minors of this matrix (see, for instance, [48, Lecture 2]). The ideal I.W / is
prime, in agreement with the fact that W is irreducible.

11.2.1 Diagonal subvariety. In the particular case of the product Pn�Pn (n D m)
we can consider the diagonal subvariety of the Segre variety W � PN (where
N D n.nC2/), namely the locus
 of the points of the type '.x; x/. The diagonal
is the intersection of W with the subspace, of dimension

�
nC2
2

� � 1, which is the
intersection of the

�
nC1
2

�
independent hyperplanes with equations

Zij �Zj i D 0 (11.5)

(note thatn.nC2/��nC1
2

� D �
nC2
2

��1). Eliminating the coordinates that are located
beneath the principal diagonal in the square matrix .Zij / from the equations forW
and from (11.5), we obtain the projection 
0 of 
 onto a space Sr of dimension
r D �

nC2
2

��1 from a space of dual dimension and skew toSr . InSr we can interpret
Zij with i ¤ j as coordinates, and we see that 
0 is the Veronese variety which
is the locus of the points of P r which give rank 1 to the symmetric matrix .Zij /
(see Section 6.7 and also Example 10.2.1 as well as Section 10.4 for definitions and
further details on Veronese varieties). For example, if n D 2 so that r D 5,
0 (and
thus also 
) is a Veronese surface.

11.3 Segre product of varieties

If V � Pn and V 0 � Pm are two projective varieties and ' W Pn � Pm ! PN is
the Segre morphism, then '.V � V 0/ is a projective variety that is called the Segre
product of the two varieties.

Let I.V / D .f1; f2; : : : / in KŒX0; : : : ; Xn� and I.V 0/ D .g1; g2; : : : / in
KŒY0; : : : ; Ym� be the homogeneous ideals of the polynomials vanishing respec-
tively on V and V 0.

A (not necessarily minimal) system of equations for '.V � V 0/ as a subvariety
of PN is obtained by taking the second order minors of the matrix .Zij / together
with the homogeneous polynomials from which the polynomials

f .j /s D Y
deg.fs/
j fs; g

.i/
t D X

deg.gt /
i gt ; i D 0; : : : ; n; j D 0; : : : ; m;
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arise by way of replacement of the indeterminates Zij with the products XiYj .
Note that these polynomials are bihomogeneous of the same degree with respect

to both series of variables.

11.3.1 The Segre variety Pn1 � Pn2 � � � � � Pnr . The preceding considerations
may be extended to the case of several projective spaces Pn1 ;Pn2 ; : : : ;Pnr .

Let X .h/0 ; X
.h/
1 ; : : : ; X

.h/
nh

be homogeneous projective coordinates in Pnh , h D
1; : : : ; r . Set

N D .n1 C 1/.n2 C 1/ : : : .nr C 1/ � 1;
and consider the projective space PN with coordinates Xi1i2:::ir (ih 2 f0; : : : ; nhg,
h D 1; : : : ; r) and the map

' W Pn1 � Pn2 � � � � � Pnr ! PN

defined by

'.x.1/; x.2/; : : : ; x.r// D Œ: : : ; xi1i2:::ir ; : : : � with xi1i2:::ir D x
.1/
i1
x
.2/
i2
: : : x

.r/
ir

,

where x.h/ D .x
.h/
0 ; x

.h/
1 ; : : : ; x

.h/
nh
/, h D 1; : : : ; r . An argument similar to that

used in the case of the product of two projective spaces shows that '.Pn1 � Pn2 �
� � � � Pnr / is an algebraic variety in PN . It is called the Segre variety of the product
Pn1 � Pn2 � � � � � Pnr , for which it is a convenient projective model.

As in the case r D 2, this variety is the locus of linear spaces; more precisely, if
d D n1 C n2 C � � � C nr , it has r systems, of dimensions d � nh, of linear spaces
Lnh

, h D 1; : : : ; r . We have

d D dim.X/ D
rX
hD1

nh; deg.X/ D .n1 C n2 C � � � C nr/Š

n1Š n2Š : : : nr Š
:

Example 11.3.2. In the case of the product of two projective planes with coordinates
respectively x0; x1; x2 and y0, y1, y2, the Segre morphism is given by

'.Œx0; x1; x2�; Œy0; y1; y2�/

D Œx0y0; x0y1; x0y2; x1y0; x1y1; x1y2; x2y0; x2y1; x2y2�;

and '.P2 � P2/ is a variety of dimension 4 and order 6 embedded in P8.
In the case of the product P2 � P2 � P1, with respective coordinates x0; x1; x2,

y0, y1, y2 and z0, z1, we have

'.Œx0; x1; x2�; Œy0; y1; y2�; Œz0; z1�/

D Œx0y0z0; x0y1z0; : : : ; xiyj zk; : : : ; x2y1z1; x2y2z1�

for i; j D 0; 1; 2, k D 0; 1, and '.P2 � P2 � P1/ is a variety of dimension 5 and
order 30 embedded in P17.
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When n1 D n2 D � � � D nr D n, that is, if the Segre variety is the projective
model of the product of r copies of Pn, we can consider the diagonal 
, the locus
of the points of the type '.x; x; : : : ; x/.

One sees easily that
 is a Veronese variety of indices .n; r/. It is embedded in
a subspace of dimension

�
nCr
r

� � 1 in P .nC1/r �1 (cf. Section 6.7).

11.3.3 Graph of a rational transformation. Let  W Pn ! Pm be a rational
transformation defined on an open set U of Pn by the equations

Y0 W Y1 W � � � W Ym D F0 W F1 W � � � W Fm;
with Fj D Fj .X0; : : : ; Xn/ 2 KŒX0; : : : ; Xn� homogeneous polynomials of the
same degree (cf. Section 2.6).

In Pn � Pm consider the set � of the pairs .x;  .x//, with x 2 U . The
projective closure of '.� / in PmnCmCn, where ' W Pn � Pm ! PmnCmCn is the
Segre morphism, is called the graph of  . It has a parametric representation given
by

Zij D uiFj .u0; u1; : : : ; um/; i D 0; : : : ; n; j D 0; : : : ; m;

where Œu0; : : : ; un� varies in the open set U .
Similarly, one defines the graph of a rational transformation  W V ! V 0, if

V � Pn and V 0 � Pm are two arbitrary projective varieties.

11.3.4 (Blowing up). Let V D V.a/ � Pn and let a D .f0; f1; : : : ; fr/ be its
homogeneous ideal in CŒx0; : : : ; xn�. We may assume that the homogeneous poly-
nomials f0; f1; : : : ; fr are all of the same degree d . If such were not the case, after
putting d D max degfj , j D 0; : : : ; r , it would suffice to take (for each index j )
rather than the single polynomialfj , all the polynomials of the formxi00 x

i1
1 : : : x

in
n fj

with
P
˛D0;:::;n i˛ D d � degfj .

Assuming this, we consider the morphism Pn n V ! P r with equations

Xj D fj .x0; x1; : : : ; xn/; j D 0; : : : ; r; (11.6)

and its graph � � Pn � P r , which is the locus of the point

Œx0; : : : ; xnIf0.x/; : : : ; fr.x/�;
x D .x0; : : : ; xn/. If Pn � P r is represented by the Segre variety (with equations
Xij D XiYj , i D 0; : : : ; n, j D 0; : : : ; r) one finds the following parametric
representation for the closure W of �:

Xij D xifj .x0; x1; : : : ; xn/; i D 0; : : : ; n; j D 0; : : : ; r: (11.7)

The projection 	 of � onto the first factor, that is, the map defined by

Œx0; : : : ; xnIf0.x/; : : : ; fr.x/� 7! Œx0; : : : ; xn�;
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is clearly an isomorphism � Š Pn n V . From equations (11.7) it is clear that W is
the projective image of the linear systemX

ij

�ijxifj .x0; x1; : : : ; xn/ D 0

of hypersurfaces of order d C 1 passing through V . Hence W is a blowing up of
Pn with center V (cf. Section 6.8).

As we have seen in Section 6.8, if V is non-singular, then to each point P of V
there corresponds a linear spaceLP andE ´ S

P2V LP is the exceptional divisor
of the blowing up.

11.3.5 Algebraic correspondences between varieties. Let V � Pn and V 0 �
Pm be two projective varieties. An algebraic correspondence between V and V 0
is an arbitrary closed subset � of the Segre product '.V � V 0/ � '.Pn � Pm/. If
x� 2 V and '.x�; y/ 2 � we will say that y is one of the (points) corresponding
to x�, or, briefly, one of the correspondents of x�. The correspondents of x� 2 V
constitute the closed set�\'.x��V 0/, and similarly the correspondents ofy� 2 V 0
are the points of�\'.V �y�/. Observe that'.x��V 0/ and'.V �y�/ are contained
in the two linear spaces Lm D '.x� � Pm/ and Ln D '.Pn � y�/.

A simple example of a correspondence between the space Pn and its dual Pn�
is the incidence relation between point and hyperplane; it is a hyperplane section
of the Segre variety which is a projective model for the product Pn � Pn�.

11.4 Examples and exercises

For definitions and further details regarding Veronese varieties we refer the reader
to Section 6.7.

11.4.1. Study the projective correspondences between two copies of P1 as a curve
on a non-specialized quadric Q D '.P1 � P1/ � P3, where ' is the Segre embed-
ding.

The points of Q that belong to the plane with equation

aZ00 C bZ01 C cZ10 C dZ11 D 0; a; b; c; d 2 K;
correspond to the pairs of points A D Œx0; x1�, B D Œy0; y1� of P1 � P1 which are
related by the equation

ax0y0 C bx0y1 C cx1y0 C dx1y1 D 0;

namely, to the pairs of points that correspond under a projectivity between the two
lines (cf. §1.1.3). If the plane is not tangent to Q that projectivity is non-degenerate.
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Hence the plane sections of Q “are” the projectivities between the two lines. In
particular (if the two lines are superposed) the identity projectivity defined by the
bilinear equation x0y1 � x1y0 D 0 corresponds to the plane 
 with equation
Z01 � Z10 D 0, whose pole with respect to Q is the center Œ0; 1; 1; 0� of the star
aZ00Cb.Z01�Z10/CdZ11 D 0 of planes that represent involutory projectivities
between the two (coinciding) lines.

The non-degenerate parabolic projectivities between the two lines “are” the
tangent planes to the conic which is a section of Q by the plane 
 (that is, planes
passing through a tangent line to the conic, but not tangent to Q).

11.4.2. Let ! W Pn ! Pn be a projectivity given by the equations

Yj D aj0X0 C aj1X1 C � � � C ajnXn; j D 0; : : : ; n;

and '.Pn � Pn/ ! Pn.nC2/ the Segre morphism. On '.Pn � Pn/ consider the
graph G of !, the locus of the point

Zij D ui .aj0u0 C aj1u1 C � � � C ajnun/; i; j D 0; : : : ; n:

If ! is not degenerate, G is the image of the Veronese variety Vn;2 � P.
nC2

2 /�1
under a projectivity � W Pn.nC2/ ! Pn.nC2/ (subordinated by !/.

Examine the details in the case n D 2.

Consider the case n D 2. The graph G of ! is the subvariety of P8 with
parametric equations

Zij D ui .aj0u0 C aj1u1 C aj2u2/; i; j D 0; 1; 2:

If A D .aij / is the matrix associated to the projectivity !, consider the projectivity
� W P8 ! P8 defined by the matrix0@A 0 0

0 A 0

0 0 A

1A :
Let F be the surface in P8 with parametric equations

Zij D uiuj ; i; j D 0; 1; 2:

One sees immediately that G D �.F / is contained in the linear subspace S5 � P8

defined by the equations Z01 � Z10 D Z02 � Z20 D Z12 � Z21 D 0 (where we
may interpret theZij with i ¤ j as coordinates). In fact, G is the Veronese surface
which is the image of the immersion

v W P2 ! S5

defined by
Œu0; u1; u2� 7! Œu20; u0u1; u0u2; u

2
1; u1u2; u

2
2�:
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11.4.3. Consider a reciprocity! between two superposed spaces Sn and S 0
n. It may

be regarded as a correspondence between two Pn where one says that a point of
one of the two spaces corresponds to every point of the hyperplane that corresponds
to it under ! (cf. Theorem 5.4.6). Such a correspondence ! is represented by a
bilinear equation

nX
i;jD0

aijxixj D 0:

The reciprocity is non-degenerate if det.aij / ¤ 0.
After noting that the reciprocities between two Pn are the hyperplane sections

of the Segre variety '.Pn � Pn/ � Pn.nC2/, study the remarkable special cases in
which the matrix .aij / is symmetric (polarity with respect to a quadric) or antisym-
metric (null polarity).

11.4.4. Study the Segre variety of the product of a line by a plane.

The Segre variety '.P1 � P2/ � P5 has order and dimension 3 (it is known as
C. Segre’sX33 ). It contains a 1-dimensional system of planesL and a 2-dimensional
system of lines not contained in the planes L. It is easy to see that Segre’s X33 is
the locus of the lines that join pairs of points corresponding under a non-degenerate
projectivity ! between two mutually skew planes 
 and 
 0. Furthermore, it is the
locus of the 11 planes that are supported by three independent lines r1, r2, r3 in
triples of points P1, P2, P3 such that there exist two projectivities

'12 W r1 ! r2; '23 W r2 ! r3

with
'12.P1/ D P2; '23.P2/ D P3:

One usually expresses this fact by saying that Segre’s X33 is the locus of the planes
that join the triples of corresponding points of three projectively referred lines.

In the space P5 that joins 
 and 
 0 we assume the reference system to be such
that 
 D J.A0; A1; A2/ and 
 0 D J.A3; A4; A5/ with A3 D !.A0/, A4 D !.A1/,
and A5 D !.A2/. We consider a projectivity � W P5 ! P5 whose restriction to

 coincides with ! and that satisfies the further condition �.Œ1; 1; 1; 0; 0; 0�/ D
Œ0; 0; 0; 1; 1; 1�.

For each point P D Œx0; x1; x2� of 
 we then have

!.P / D �.Œx0; x1; x2; 0; 0; 0�/ D Œ0; 0; 0; x0; x1; x2�:

Moreover, the variable point on the line hP;!.P /i has coordinates

.y0x0; y0x1; y0x2; y1x0; y1x1; y1x2/;

where y0, y1 are homogeneous parameters that can be taken as projective coordi-
nates in P1. Thus the locus of the lines hP;!.P /i is the Segre variety '.P1 � P2/.
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The equations of '.P1 � P2/ � P5 are obtained by annihilating the minors of
the matrix �

T0 T1 T2
T3 T4 T5

�
I

and '.P1 � P2/ is the three dimensional cubic variety arising as the residual inter-
section of two quadric hypersurfaces in P5 (T0T4 � T1T3 D T0T5 � T2T3 D 0)
which also have in common a linear space S3 (T0 D T3 D 0).

It is a useful exercise to extend these results to the case P1 � Pn.



Chapter 12

Grassmann Varieties

In this chapter we introduce the Grassmann varieties (Grassmannians) that describe
the geometry of the linear subspaces of a given projective space, and we study their
basic properties.

Section 12.1 is dedicated to the simplest case of a Grassmann variety that is not
a projective space: we introduce homogeneous Plücker line coordinates and study
the Grassmann variety G.1; 3/ parameterizing the lines in P3. It is a quadric in P5,
called Klein’s quadric.

In Sections 12.2, 12.3 and 12.4 we consider the complexes and the congruences
of lines in P3 and ruled surfaces, with particular attention to the linear case; we
study some of their geometric properties expressed in terms of the Klein quadric.
We mention in particular the characterization of developable ruled surfaces given
in Proposition 12.4.1.

In Section 12.5 we introduce the Grassmann coordinates of a linear space Sh in
Pn (of which the homogeneous Plücker line coordinates are the particular case
n D 3, h D 1). We then define Grassmann varieties and describe some of their
noteworthy properties. In particular in Proposition–Definition 12.5.7 we prove that
Grassmann varieties are always defined by quadratic forms. Further properties of
Grassmannians are illustrated in Section 12.6, in the form of complete resolved
exercises.

For further information we refer the reader to the texts [52, Vol. 2], [48, Lec-
ture 6], [46, Chapter 1, §5] and to the memoir [98]. An excellent (albeit very concise)
treatment of the properties of Grassmann coordinates and Grassmann varieties is
found in [80].

12.1 The lines of P3 as points of a quadric in P5

In the projective space P3 D P3.K/, with a fixed homogeneous projective co-
ordinate system t0, t1, t2, t3, we consider a line r and two distinct points x D
Œx0; x1; x2; x3�, y D Œy0; y1; y2; y3� on r . We use pik to denote the second order
minors

pik D xiyk � xkyi
extracted from the matrix �

x0 x1 x2 x3
y0 y1 y2 y3

�
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formed with the coordinates of these two points. Since

pik D �pki ; (12.1)

we have essentially six distinct numbers which are not all zero.
One sees immediately that they (or better their ratios) depend only on the line

r and not on the pair of points x, y taken on r . Indeed, if x and y are replaced by
two other distinct points of r , say x0 D Œx0

i � and y0 D Œy0
i �, where

x0
i D �xi C �yi ; y0

i D �0xi C �0yi ; i D 0; 1; 2; 3; ��0 � �0� ¤ 0;

rather than the numbers pik we find the numbers

p0
ik D

ˇ̌̌̌
�xi C �yi �xk C �yk
�0xi C �0yi �0xk C �0yk

ˇ̌̌̌
D .��0 � �0�/pik

which are proportional to the preceding six. We then haveˇ̌̌̌
ˇ̌̌̌x0 x1 x2 x3
y0 y1 y2 y3
x0 x1 x2 x3
y0 y1 y2 y3

ˇ̌̌̌
ˇ̌̌̌ D 2.p01p23 C p02p31 C p03p12/ D 0

and therefore, no matter how r is chosen, the pik satisfy the quadratic relation

ˆ.pik/ D p01p23 C p02p31 C p03p12 D 0: (12.2)

Thus to each line of P3 there are associated six numbers pik not all zero and
defined up to a non-zero factor of proportionality and satisfying the equation of
degree two (12.2).

We seek the points Hi at which the line r intersects the four coordinate planes
ti D 0. We find

H0 D Œ�x0 C �y0; �x1 C �y1; �x2 C �y2; �x3 C �y3�

with �x0 C �y0 D 0, that is, ��=� D y0=x0. Therefore

H0 D Œ0; p10; p20; p30� .D Œ0; p01; p02; p03�/:

Similarly we find the points H1, H2, H3. With the coordinates of these points we
form the matrix 0BB@

0 p01 p02 p03
p10 0 p12 p13
p20 p21 0 p23
p30 p31 p32 0

1CCA : (12.3)
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It is antisymmetric and has rank two because the four points are collinear, and
among them there certainly are at least two that are distinct.

To fix ideas, suppose that p01 ¤ 0 and thus that H0 ¤ H1. The second order
minors p0

ik
of the matrix �

0 p01 p02 p03
p10 0 p12 p13

�
formed with the coordinates of H0 and H1 are proportional to the same numbers
pik . In fact, bearing in mind (12.1) and (12.2), we have

p0
01 D �p01p10 D p201;

p0
02 D �p10p02 D p01p02;

p0
03 D �p10p03 D p01p03;

p0
12 D p01p12;

p0
13 D p01p13;

p0
23 D p02p13 � p03p12 D p02p13 C p03p21 D p01p23:

(12.4)

This shows that the line r D rH0H1
is determined by the numbers pik . Thus we

have proved the following:

• There exists a bijective correspondence (without exceptions) between the
lines of P3 and the homogeneous sextuples .pik/, i; k D 0; 1; 2; 3, i ¤ k,
that satisfy equations (12.1), (12.2).

Therefore the numbers pik may be taken to be homogeneous coordinates for the
lines in P3: one says that they are the Plückerian homogeneous line coordinates,
or, more briefly, the Plücker line coordinates.

In a space P5 in which p01, p02, p03, p12, p13, p23 (in the order indicated)
are homogeneous projective coordinates, the equation (12.2) represents a non-
degenerate quadric Q called the Klein quadric. Bearing in mind the relationˇ̌̌̌

ˇ̌̌̌ 0 p01 p02 p03
p10 0 p12 p13
p20 p21 0 p23
p30 p31 p32 0

ˇ̌̌̌
ˇ̌̌̌ D .p01p23 C p02p31 C p03p12/

2;

and the fact that the antisymmetric matrix (12.3) has even rank, one thus has that
(cf. Exercise 12.6.4 for the extension to the case Pn)

• the Klein quadric is the locus of the points of P5 that give rank 2 to the matrix
(12.3).

In virtue of the bijection that we have thus established between the points of this
quadric and the lines of P3, every proposition regarding geometric properties of the
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ordinary ruled space can be interpreted in P5 and becomes a proposition regarding
the non-singular quadrics in P5; and conversely properties of a non-singular quadric
in P5 can be read as properties of the lines in ordinary space.

In this regard, we have the following fundamental fact.

Proposition 12.1.1. Let Q be the Klein quadric. A necessary and sufficient con-
dition for two lines r and r 0 in P3 to be incident is that the two points R and R0 of
Q corresponding to them be reciprocals with respect to Q (cf. Section 5.4).

Proof. We consider two lines r D rXY and r 0 D rZW where X D Œx0; x1; x2; x3�,
Y D Œy0; y1; y2; y3�, Z D Œz0; z1; z2; z3�, and W D Œw0; w1; w2; w3�. They are
incident if and only if X , Y , Z, W are four coplanar points, which meansˇ̌̌̌

ˇ̌̌̌x0 x1 x2 x3
y0 y1 y2 y3
z0 z1 z2 z3
w0 w1 w2 w3

ˇ̌̌̌
ˇ̌̌̌ D 0

that is, letting pik and p0
ik

be the Plücker coordinates of r and r 0:

p01p
0
23 C p02p

0
31 C p03p

0
12 C p12p

0
03 C p13p

0
20 C p23p

0
01 D 0: (12.5)

This is indeed the condition in order for the two points R D Œpik�, R0 D Œp0
ik
� of

P5 to be reciprocals with respect to Q. �

12.1.2 (Lines and planes of a quadric in P5). We will now see how one can deduce
properties of the lines and planes of a quadric in P5 from simple properties of the
lines and planes in P3 and how, conversely, one can deduce results concerning lines
and planes in P3 from properties of the lines and planes of a quadric in P5.

If a and b are two incident lines of P3, to them there correspond in P5 two points
A and B on Q which are mutually reciprocal and thus joined by a line belonging
to Q (cf. §5.5.4, c)). Therefore, every point C of this line is the reciprocal of
every point reciprocal to both A and B . Thus each such point C represents a line c
incident with the 12 lines of the star containing a and b, as well as with the 12

lines of the ruled plane ha; bi. To the points C collinear with A and B there thus
correspond the lines c of the pencil that contains a and b.

Every pencil of lines in P3 gives a line of Q (whose points “are” the lines of
the pencil). Thus, the lines of Q form a 5-dimensional family because the number
of pencils of lines in P3 is 15 (12 in each of the 13 planes).

We remark explicitly that the necessary and sufficient condition for the linear
combination �pik C �p0

ik
of the Plücker coordinates pik and p0

ik
of two lines a

and b to be the Plücker coordinates of a line r is that a and b be incident; and then
r sweeps out, as � and � vary, the pencil defined by a and b.

A system 12 of pairwise incident lines in P3 can only be a ruled plane or a
star of lines. To such a system there corresponds in P5 an 12 set of points on Q
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that are pairwise reciprocal with respect to Q, namely the set of points of a plane
contained in Q.

Thus we rediscover the two systems 13 of planes on Q: the system f˛g asso-
ciated to the ruled planes in P3 and the system fˇg of planes that represent the stars
of lines in P3 (cf. §5.5.9).

Two stars of lines, or two ruled planes, have in common a single line, and thus
two planes of Q belonging to the same system have in common a single point.
However, a ruled plane and a star of lines do not have any line in common, or else
they have in common a pencil of lines according to whether the center of the star
does not belong or does belong to the plane; and then two planes of Q belonging
to different systems are either skew or have a line in common.

Since a pencil of lines of P3 belongs to a single ruled plane and to a single star
of lines, a line of Q belongs to only one plane ˛ and to only one plane ˇ.

For each point of Q there pass 11 planes of each system, because a line in P3

belongs to 11 ruled planes and to 11 stars of lines.

12.2 Complexes of lines in P3

With the notation of Section 12.1, consider a homogeneous projective coordinate
system t0; t1; t2; t3 in P3 and the projective space P5 in which the Plücker line
coordinates p01; p02; p03; p12; p13; p23 are (in the order indicated) homogeneous
coordinates.

Consider then Klein’s quadric Q in P5, with equation (12.2), whose points are
in bijective correspondence with the lines of P3.

The lines in P3 whose coordinates pik satisfy an equation

f .pik/ D 0; (12.6)

with f a homogeneous polynomial of degree n, constitute an algebraic complex K

(of lines in P3) of degree n. It is represented in P5 by the variety V 2n3 of order 2n
and dimension 3, the section of Q by the hypersurface of equation (12.6). Note the
following characterization of the degree of an algebraic complex:

• The degree n of the algebraic complex K coincides with the number of lines
of K that belong to a generic pencil.

The n intersections of the hypersurface having equation (12.6) with a line `
of Q represent, in fact, the lines of the complex belonging to the pencil of lines
represented by `.

We observe that the same complex K may be defined via an arbitrary equation
of the form

f .pik/C g.pik/ˆ.pik/ D 0;
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where g is a form of degree n � 2. Therefore an algebraic complex of degree n
depends on  

nC 5

5

!
�
 
nC 3

5

!
� 1

constants and can be determined with the same number of generic lines.
An algebraic complex of degree n D 1 is called a linear complex. A linear

complex K is thus represented by a hyperplane section of Q. If the hyperplane K�
whose intersection with Q represents K is not tangent to Q, we also say that K is
a general linear complex. If on the contrary K� is tangent to Q, we then say that
K is a special linear complex.

Bearing in mind Proposition 12.1.1, we have that if K is special the point A of
contact of K� with Q represents a line a belonging to K and incident with all the
lines of K; conversely, every line of P3 incident with a is represented by a reciprocal
point of A which is therefore contained in the S4 tangent to Q at A. The lines of a
special linear complex are thus all those and only those lines of P3 supported by a
fixed line, called the axis of the complex.

In any case, a linear complex K consists of 13 pencils of lines, represented by
the lines of a quadric in P4, which are precisely 13 (cf. §5.5.9).

In the sequel we will identify the linear complex K, that is the section of Q by
the hyperplane K� having equation

a23p01 C a31p02 C a12p03 C a03p12 C a20p13 C a01p23 D 0; (12.7)

where aik D �aki , with the point A D Œa01; a02; a03; a12; a13; a23� in P5. It is
easily seen that K� is the polar hyperplane of A with respect to the quadric Q,
which means that A is the pole of K� with respect to Q. We will also say that the
point A represents the complex K.

With these preliminaries in hand, the principal properties of a linear complex
can be gathered into the following proposition.

Proposition 12.2.1. Let K be a linear complex. Then:

(1) The lines of the complex K passing through a point x in P3 are contained in
a plane and constitute a pencil (with center x).

(2) The lines of K that lie in a plane 
 pass through a point and constitute a
pencil.

(3) The correspondence that associates to each point x in P3 the plane of the
pencil of lines of the complex K passing through x is a null polarity ' W P3 !
P3

�
.

(4) The complex K is special if and only if the point A of P5 that represents it
belongs to the quadric Q; and also if and only if' is a degenerate projectivity.
In this case each line of K meets the line represented by the point A.
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Proof. To prove (1) and (2) it suffices to recall that the lines of P3 that pass through
a point P (and similarly the lines of P3 that belong to a plane ˛) are represented by
the points of a plane 
 lying in Q. To the points of the line in which 
 intersects the
hyperplane K� that represents the complex there correspond the lines of K passing
through P (or the lines of K belonging to ˛). Thus these lines form a pencil.

Let r be a line of P3 passing through the point x D Œx0; x1; x2; x3�. If y D
Œy0; y1; y2; y3� is another point of r , the Plücker coordinates of r are pik D xiyk �
xkyi . The necessary and sufficient condition for r to belong to K is that the numbers
pik satisfy equations (12.7), namely that the point y satisfies the equation (linear
in y0, y1, y2, y3):

a23.x0y1 � x1y0/C a31.x0y2 � x2y0/C a12.x0y3 � x3y0/
C a01.x2y3 � x3y2/C a20.x1y3 � x3y1/C a03.x1y2 � x2y1/ D 0:

(12.8)

Then those and only those points y which when joined to x give lines of K are the
points of the plane 
x with equation (12.8). Thus one again finds that the lines of
K that pass through a point belong to a plane.

Ordering the summands of (12.8) with respect to y0, y1, y2, y3 we obtain

.�a23x1 � a31x2 � a12x3/y0 C .a23x0 � a03x2 � a20x3/y1
C .a31x0 C a03x1 � a01x3/y2 C .a12x0 C a20x1 C a01x2/y3 D 0:

(12.9)

Hence the coordinates of 
x , that is, the coefficients of (12.9), are the numbers8̂̂̂<̂
ˆ̂:
u0 D �a23x1 � a31x2 � a12x3;
u1 D a23x0 � a03x2 � a20x3;
u2 D a31x0 C a03x1 � a01x3;
u3 D a12x0 C a20x1 C a01x2:

(12.10)

From this it is evident that 
x is the plane that corresponds to x under a null
polarity '. The matrix of coefficients of (12.10) is in fact antisymmetric (cf. 1.1.13).
Since the determinant of this matrix isˇ̌̌̌

ˇ̌̌̌ 0 �a23 �a31 �a12
a23 0 �a03 �a20
a31 a03 0 �a01
a12 a20 a01 0

ˇ̌̌̌
ˇ̌̌̌ D .a01a23 C a02a31 C a03a12/

2;

the polarity' is degenerate if and only if the pointA D Œa01; a02; a03; a12; a13; a23�

belongs to the quadric Q. Since A is the pole of the hyperplane K�, the polarity
degenerates if and only if the hyperplane K� with equation (12.7) is tangent at
A to the quadric Q. In that case, the complex K is special and all the points
of the hyperplane K� .D Q1.A// are reciprocals of A (with respect to Q) and
thus the lines of K are all supported by the line represented by the point A (cf.
Proposition 12.1.1). �
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Exercise 12.2.2. Prove that the lines of an algebraic complex of order n that pass
through a point x 2 P3 form an algebraic cone of order n having vertex at x.

The proof is analogous to that of Proposition 12.2.1 and is left to the reader.

12.2.3 Pencils of linear complexes. A pencil of linear complexes of lines of P3

is a line in P5 and so the pencils of linear complexes can be classified in relation
to the various positions that a line r can assume in P5 with respect to Q: generic
line, that is, line having two distinct points in common with Q, tangent line to Q,
line situated on Q.

If the line r has two distinct points A and B in common with Q, the pencil
of linear complexes contains two special complexes corresponding to the points A
and B of Q and having skew axes. Indeed, by what we have seen in §12.1.2, the
points A and B are not reciprocal with respect to Q (inasmuch as they are joined
by a line not contained in Q) and thus the two lines of P3 which correspond to A
and B (the axes of the two complexes) are skew.

If r is tangent to Q at a point A, the pencil of linear complexes contains only
one special complex, corresponding to the point A, and with axis represented by
the point A.

If r lies on Q we have a pencil of linear complexes all of which are special (and
whose axes are the lines of a pencil).

12.2.4 (The reduced equation of a linear complex). One can immediately write the
equation of the special complex of lines that has as its axis one of the edges of the
fundamental tetrahedron.

For example, the linear complex of the lines supported by the line rA0A1
has

equation p23 D 0. Indeed, the line rA0A1
has Plücker coordinates Œ1; 0; 0; 0; 0; 0�

since p01 D ˇ̌
1 0
0 1

ˇ̌
is the only non-zero second order minor of the matrix�

1 0 0 0

0 1 0 0

�
:

If p0
01; : : : ; p

0
23 are the Plücker coordinates of a line supported by rA0A1

, equations
(12.5) yield p01p0

23 D 0 and so p0
23 D 0.

One shows in analogous fashion that the special linear complex of lines with
axis rA3A4

has equation p01 D 0, and so on.
It is then easily seen that given a linear complex K of general type one can

choose the reference system in P3 in such a way that K has equation of the type

�p01 C �p23 D 0:

Indeed, if A is the point of P5 that represents K, then a generic line through A
represents a pencil † of linear complexes (containing K) and we can write K as
a linear combination of the two special complexes of †. It then suffices to take
the axes of these two complexes as the edges A3A4 and A0A1 of the fundamental
tetrahedron in P3.
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12.3 Congruences of lines in P3

An algebraic surface S contained in the Klein quadric Q represents a totality, say � ,
of 12 lines of P3 that is called an algebraic congruence of lines in P3.

In particular, the collection � of all lines in P3 that belong to two algebraic
complexes without common components is an algebraic congruence of lines: the
surface S � Q that represents the congruence is the intersection of Q with the two
hypersurfaces that represent the two complexes.

If the surface S that represents the congruence is a section of Q by a linear space
… D S3, the congruence is called linear. If ˛ and ˇ are two hyperplanes whose
intersection is …, the linear congruence � is the collection of the lines in P3 that
belong to the two linear complexes represented by the hyperplanes ˛ and ˇ. We
will also say, for simplicity, that � is represented by the space… D ˛\ˇ, and thus
that � belongs to all the linear complexes of the pencil † that they define.

Moreover, we will have three types of linear congruences of lines according
to whether the polar line p of … with respect to Q (cf. §5.5.4) is skew to …
(general linear congruence), or meets… in a point (special linear congruence), or
is contained in … (degenerate linear congruence).

12.3.1 (General linear congruence). If � is a general linear congruence, the line p
polar to … meets Q in two distinct points A and B . The hyperplanes tangent to
Q at A and B represent the two special complexes of † (which can be taken to
be the two linear complexes that define †, cf. §12.2.4). In this case � consists of
all the lines in P3 which meet the two skew lines of P3 that correspond to the two
pointsA andB . Two such skew lines are the axes of the two special complexes that
define†, and are called directrices (or axes). The two arrays of lines of the quadric
Q D Q \ … represent two arrays of pencils of lines of � , that is, the pencils of
lines having centers on one of the two directrices and contained in planes passing
through the other.

12.3.2 (Special linear congruence). We now suppose that p and … have a single
point A in common. This point will belong to Q, cf. §5.5.4. The space … and
the polar line p are contained in the space S4 tangent at A to Q (because … is the
intersection of the polar hyperplanes of the points of p, and p passes through A).
Thereforep and… are both tangent atA to Q. In this case we may take as the linear
complexes that define the pencil † the special linear complex K cut out on Q by
the tangent hyperplane ˛ D Q1.A/ (which corresponds to the unique intersection
A of p with Q) and a linear complex H (not special) obtained as the intersection
of Q with an arbitrary hyperplane ˇ passing through the space S3 polar to p (and
distinct from Q1.A/).

The quadric Q D Q \ … in this case is a quadric cone of P3. Note that the
cone Q is irreducible. Indeed, if Q split into two distinct planes, then they would
be planes of different systems having a line in common: that is, a plane ˛ that
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represents a ruled plane of P3 and a plane ˇ that represents a star of lines in P3 (cf.
§12.1.2). The ruled plane and the star of lines have in common a pencil of lines
(corresponding to the line of intersection of the two planes ˛ and ˇ) and therefore
the ruled plane would contain the center of the star. The points of the polar line p
would then be represented by the lines of this pencil and so p would be contained
in Q, in contradiction to the present hypothesis. Moreover, Q can not be a double
plane because Q is not specialized (cf. Exercise 5.5.10).

The pencil† contains the only special linear complex K, while the only directrix
of � is the axis r of K. The congruence � consists of the lines that are supported
by r and belong to the linear complex H, which is not special, and which contains
r because r is a line of � (inasmuch as r is the line represented in P5 by the vertex
of the cone Q, section of Q).

If x is a point of r , the lines of � passing through x are those of the pencil of
lines that has center x and which is contained in the plane 
 corresponding to x
under the null polarity ! associated to H (cf. Proposition 12.2.1). Indeed, the plane

 passes through r because r is a line of � passing through x. Associating to x
the plane 
 thus yields a correspondence !0 W r ! F (defined by x 7! 
 D !.x/)
between the (pointed) line r traced by x and the pencil F of planes with axis r . The
correspondence !0 is a projectivity because it is induced by !.

Therefore the congruence � of the type under examination (i.e., with polar line
p tangent to Q) is the set of pencils of lines whose centers and whose planes are
corresponding elements under a projectivity between a projective line r and a pencil
of planes with axis r (that is, the line and the pencil have the same support r).

An example of a special linear congruence is the collection of lines that are
tangent to a non-degenerate quadric Q in P3 at a point of a given line of Q. A
further example is given by the collection of lines that are tangent to a ruled surface
(non-developable) at the points of one of its non-singular generators.

12.3.3 (Degenerate linear congruence). If the polar linep is contained in the quadric
Q, the space … polar to p passes through p and meets Q in a doubly specialized
quadric Q, that is, in a pair of distinct planes passing through p. The two planes do
not belong to the same system of planes of Q since two planes of the same system
have only a point in common (cf. §12.1.2). The congruence thus degenerates into
a ruled plane and a star of lines having in common the pencil of lines represented
by p (and thus the center of the star belongs to the plane).

12.4 Ruled surfaces in P3

An algebraic curve C contained in the Klein quadric Q represents an algebraic
totality 11 of lines of P3, which is called an algebraic ruled surface. This totality
of lines is a ruled surface R in P3. One immediately sees that
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• the order of the algebraic ruled surface R coincides with the order of the
algebraic curve C that represents it.

Indeed, the order of the ruled surface R coincides with the number of generators
that are supported by a generic line, that is, with the number d of the lines that
belong to a generic special linear complex K. The hyperplane K� that represents
K is thus a hyperplane which is tangent to the quadric Q and intersects the curve
C in d points. By the genericity of K, the hyperplane K� is a generic hyperplane
tangent to Q; this suffices to conclude that d is the order of C.

Furthermore, the following general fact holds, for which we give an elementary
proof based on the criterion for developability of a (not necessarily algebraic) ruled
surface, cf. §5.8.14 (see also [79]).

Proposition 12.4.1. A necessary and sufficient condition for an algebraic ruled
surface R to be developable is that the tangents of the curve C that represents it in
P5 should all be contained in the Klein quadric Q.

Proof. In an affine coordinate system in P3 we represent the ruled surface R in the
form 8̂<̂

:
x D ˛.u/C t l.u/;

y D ˇ.u/C tm.u/;

z D t;

(12.11)

where ˛.u/, l.u/, ˇ.u/, m.u/ are algebraic (or, more generally, differentiable)
functions and we suppose that the generator g.u/ that corresponds to the value u
of the parameter is singular, which means that the tangent plane at R along g.u/ is
fixed (cf. §5.8.14).

The Plücker coordinates of the generic generator of the ruled surface R with
equation (12.11) are the minors extracted from the matrix�

˛.u/ ˇ.u/ 0 1

l.u/ m.u/ 1 0

�
:

The curve C that represents R is thus the locus of the point (for convenience, the
Plücker coordinates of P5 are here taken to be in the order p01, p23, p02, p31, p03,
p12)

p01 W p23 W p02 W p31 W p03 W p12
D ˛.u/m.u/ � ˇ.u/l.u/ W �1 W ˛.u/ W m.u/ W �l.u/ W ˇ.u/:

Since C is contained in Q, the tangent of C at one of its generic points is tangent
there to the quadric Q; it is contained in Q if and only if another one of its points
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belongs to Q. Another point of that tangent line is

p01 W p23 W p02 W p31 W p03 W p12
D ˛0.u/m.u/C ˛.u/m0.u/ � ˇ0.u/l.u/ � ˇ.u/l 0.u/ W 0

W ˛0.u/ W m0.u/ W �l 0.u/ W ˇ0.u/;

where ˛0.u/, ˇ0.u/, l 0.u/,m0.u/ are the derivatives with respect tou. The necessary
and sufficient condition in order that this point belong to Q (namely, that it satisfies
(12.2)) is

˛0.u/m0.u/ � ˇ0.u/l 0.u/ D 0:

This is the same condition that is necessary and sufficient in order for the ruled
surface to be developable (cf. §5.8.14). �

12.4.2 Linear ruled surfaces. A linear ruled surface is a ruled surface R repre-
sented by a section C of Q with a plane 
 not lying in Q, that is, by a conic C not
contained in a plane of Q. The order of a linear ruled surface is thus d D 2. [The
fact that the curve representing R in P5 is a plane section of Q justifies the name
“linear ruled surface”. Note also that to a line of Q there corresponds a pencil of
lines of P3 and the ruled surface R is the plane of that pencil.]

The plane 
 is the intersection of three hyperplanes in P5, whose sections with
the quadric Q represent three linear complexes. Thus a linear ruled surface R is the
set of lines common to three linear complexes, that is, the base variety of a net †
of linear complexes. Observe that in the net of hyperplanes of P5 that pass through
the plane 
 there are 11 hyperplanes tangent to Q and thus the net† contains 11

special linear complexes, whose axes constitute a linear ruled surface (represented
by the section of Q with the polar plane of 
).

Remark 12.4.3. A quadric cone or a plane envelope of the second class (the set of
tangents to a conic, cf. Section 5.3) are not linear ruled surfaces but do always have
as image in P5 a conic belonging to the quadric Q, and contained in a plane of Q.

Indeed, if x is the vertex of the cone, consider the star of lines with center x
and the plane ˇ of Q represented by the star. To the generators of the cone there
correspond the points of a curve C contained in the plane ˇ. Since every generic
pencil contained in the star contains two generators of the cone, every line of ˇ
has two points in common with C which is therefore a conic. However, C is not
obtained as a plane section of Q (inasmuch as it belongs to the plane ˇ contained
in Q) and thus the quadric cone is not a linear ruled surface.

More generally, an algebraic cone of order n is represented by an algebraic curve
of order n contained in a plane ˇ.

To the linear ruled surface R there is naturally associated another linear ruled
surface R0 represented by the polar plane 
 0 of 
 with respect to Q. We must
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distinguish three cases according to whether 
 and 
 0 are generic (and so mutually
skew), or have a single point in common, or intersect in a line. We denote by � and
� 0 the conics which are the sections of Q by the planes 
 and 
 0 respectively.

We start with the most interesting case, namely that in which 
 and 
 0 are in
generic position, hence mutually skew. In this case the two conic sections � and
� 0 are non-degenerate. Each point of � (respectively, of � 0) is the reciprocal with
respect to Q of every point of � 0 (respectively, of � ) whence, by Proposition 12.1.1,
the 11 lines of each of the two ruled surfaces are supported by the 11 lines of
the other. The lines of R0 are thus the axes of the 11 special linear complexes
contained in †. Every line of the surface S 0, which is the locus of the lines of R0,
thus has infinitely many points in common with the surface S which is the locus of
the lines of R, and therefore the surface S 0 is contained in S . Analogous reasoning
shows that S 0 contains S , whence the surfaces S and S 0 coincide (but are to be
considered as two different ruled surfaces). Thus we have a doubly ruled surface
in P3, that is, a quadric, and R and R0 are its two arrays of lines. A linear ruled
surface of general type .i.e., such that the plane 
 that represents it is in general
position with respect to its polar plane 
 0) is thus an array of lines of a quadric
in P3.

Now suppose that 
 and 
 0 have only one point in common, so that their join
is an S4. This S4 will be tangent to Q at the point A D 
 \ 
 0 (because that point
is the reciprocal with respect to Q of every point of S4). The point A belongs to Q
and thus represents a line a common to the two rulings R and R0. The two conics �
and � 0, the sections of Q by the two planes
 and
 0 respectively (which in this case
are tangent to Q at A), both split into two lines issuing from A, and thus both the
ruled surfaces consist of a pair of pencils of lines that are supported by a. Therefore
each of these pencils has its center on a, and lie in planes passing through a.

Now letm and n be the two lines that compose � . They represent the pencils of
lines in P3 which are generators of R. LetM andN be the centers of these pencils
and � and � their planes. Every line of Q belongs to a plane of the first array and
also to a plane of the second array. Thusm belongs to the planes that represent the
ruled plane � and the star of lines with centerM , while n belongs to the planes that
represent the ruled plane � and the star of lines with center N . The two planes �
and � meet in a; the two stars of lines have in common the line a that supports M
and N .

The two linesm0 and n0 that compose � 0 represent two pencils of lines that must
be incident with all the lines of the two pencils represented by m and n. Thus the
pencils represented by m0 and n0 are the two pencils with centers M and N and
lying in � and � respectively.

The two rulings appear as in the Figure 12.1, where the lines of one of them are
solid, while those of the other are dotted.

If 
 and 
 0 have a line ` in common, it is the locus of self-reciprocal points and
thus is contained in Q. The line ` represents a pencil of lines in P3. The two conics
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� and � 0 are doubly degenerate and consist of the line ` counted twice. Each of the
two rulings R and R0 is the pencil of lines represented by ` counted twice.

a

�

�

M

N

Figure 12.1

12.4.4 Ruled cubics in P3. Let R3 be a ruled cubic in P3, represented on Q by
an algebraic curve C of order 3.

The cubic C can be planar; the plane 
 that contains it then lies on Q and so the
generators of R3 (which do not all lie in one plane) pass through a point and R3 is
a cubic cone.

If C is not planar, it belongs to an S3 in P5. If this S3 is not tangent to Q, its
section with Q is a non-degenerate quadric Q and on Q the curve C is of type .2; 1/.
The polar line s of S3 with respect to Q meets Q in two distinct points A and B
which are not reciprocals with respect to Q. Thus they are images of two distinct
lines a and b which are mutually skew and incident with all the generators of R3

(because A and B are reciprocals of every point of C). Thus R3 has two rectilinear
directrices a and b. In other words, R3 belongs to the non-special linear congruence
represented by the quadric section Q. One of the two directrices is certainly simple,
because otherwise all the lines of the congruence would belong to R.

Let a be the simple generator of R3 (cf. Section 5.8). A generic plane 	 passing
through a meets R3 (outside of a) in a conic � . For each point of � there passes
a generator g of R3 supported by a (and thus lying on 	 ) and also supported by b
(in the point S where b meets 	 ). Thus � consists of a pair of lines issuing from a
point of b (Figure 12.2), and b is a double generator for R3 (cf. Exercise 5.8.21).

Let frg, fsg be the two systems of lines on Q, and let, for example, fsg be the
ruling of chords of C.

Every line s 2 fsg represents a pencil of lines of S3 containing two generators
g1, g2 of R3. These generators are generally distinct and have a double point of R3



12.4. Ruled surfaces in P3 413

in common. The locus of these double points (which vary with s, since R3 is not a
cone) is the double directrix b of the ruled surface.

Since the straight lines g1, g2 meet a (generally in distinct points), the planes
hg1; g2i all pass through a. In fsg there are two tangent lines of C. The points of
contact, which are double points of the linear series g12 cut out on C by fsg, represent
two singular generators of R3 (that is, straight lines along which the tangent plane
to R3 is fixed); they meet b in cuspidal points of the ruled surface.

Every line r 2 frg represents a pencil of straight lines in S3 containing only
one generator of R3. The plane of this pencil describes the pencil with axis b.

The ruled surface R3 in this case is a general ruled cubic (cf. 5.8.22).

a

b

	

S

g

Figure 12.2

Now suppose that the space S3 containing C is tangent to Q at a point A. The
polar line of S3 with respect to Q is now tangent to Q at A, and the quadric Q is a
cone with vertex A. Here R3 belongs to a special congruence with axis a.

The cubic C will pass through the point A, which is thus the image of a line a
that is a rectilinear directrix of R3, but also a generator. Let g be a simple generator
of R3 andG the corresponding point in P5. Since g and a are incident, the line rAG
is contained in Q and through it there pass two planes of Q (one for each system,
cf. Section 12.1) which represent the ruled plane ha; gi and the star of lines with
center a \ g (Figure 12.3).

The space S3 joining the two planes is contained in the space S4 tangent at A
to Q (such an S4 necessarily contains C). Thus it is tangent to C at A. Therefore
this S3 does not meet the cubic C outside of A andG. Hence the ruled plane ha; gi
does not contain other lines of R3. Similarly, the star of lines with center a \ g
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A

G

a

g

Figure 12.3

contain no lines of R3 except a and g. On the other hand, the section of R3 by the
plane ha; gi, containing a and g, must contain another line; this other line of R3

must therefore coincide with a (not with g because g is a generic line of R3). Thus
every plane passing through a meets R3 in three lines, two of which coincide with
a, whence the line a is double for R3. So each plane passing through a contains a
generator of R3 (besides a) and in particular there is a plane for which this generator
is the line a, and which therefore osculates R3 along a. In this case the surface R3

is a Cayley ruled cubic surface (cf. Exercise 5.8.23).
In conclusion, the ruled cubics in P3 are the following: cubic cones (elliptic or

rational), ruled surfaces with two directrices, one simple and one double (general
ruled cubics, whose equation may be written in the form x0x

2
1 C x2x

2
3 D 0), and

Cayley ruled cubics (whose equation is usually written in the form x32 �2x1x2x3C
x0x

2
3 D 0).

12.5 Grassmann coordinates and Grassmann varieties

In analogy with what we have done in Section 12.1 for the lines in P3, it is also
possible to define coordinates, called Grassmann coordinates, for the subspaces Sh
of a given dimension h > 1 in a projective space Pn. The Plückerian coordinates
for the lines in P3 are the simplest special case. Let t0; t1; : : : ; tn be homogeneous
projective coordinates in Pn.

We consider a matrix P of type .h C 1; n C 1/ with entries from the field K.
We suppose that h � n and denote the minor of order hC 1 formed by the columns
in positions i0; i1; : : : ; ih (i0 < i1 < � � � < ih) by .i0i1 : : : ih/P .

If P has rank hC 1, one obtains in this way
�
nC1
hC1

�
elements of K, and not all

of them are zero.
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If 
 is a square matrix of order h C 1, the matrix Q D 
P is again of type
.hC 1; nC 1/ and we have

.i0i1 : : : ih/Q D det.
/.i0i1 : : : ih/P :

Assuming this, letPj D Œz
.j /
0 ; z

.j /
1 ; : : : ; z

.j /
n �, for j D 0; : : : ; h, behC1 linearly

independent points of Pn and suppose that P is the matrix (of type .hC 1; nC 1/)
whose rows consist of the coordinates of the points P0; : : : ; Ph.

In the space Sh defined by the points P0; : : : ; Ph consider other hC 1 linearly
independent points

Qi D
h hX
jD0

�ij z
.j /
0 ;

hX
jD0

�ij z
.j /
1 ; : : : ;

hX
jD0

�ij z
.j /
n

i
; i D 0; : : : ; h:

The matrix 
 D .�ij / 2 MhC1.K/ has non-zero determinant and if we let Q be
the matrix that has as its rows the coordinates of the pointsQi , we haveQ D 
P .
Therefore, the minors of order hC1 of the two matrices P andQ are proportional.

One is then naturally led to take as the homogeneous coordinates of Sh D
J.P0; : : : ; Ph/ the numbers .i0i1 : : : ih/P : indeed, they are not all zero, and their
mutual ratios are determined by Sh and not by the particular choice of h C 1

independent points that define it, nor by the choice of the coordinates of these
points. We will say that .i0i1 : : : ih/P are the Grassmann coordinates of Sh. They
can be interpreted as homogeneous projective coordinates Xi0i1:::ih in a projective
space PN , N D �

nC1
hC1

� � 1 (in the case h D 1, n D 3 we rediscover in this fashion
the Plücker line coordinates, cf. Section 12.1).

Remark 12.5.1. Note that, in agreement with equations (12.1), the Grassmann
coordinate .i0i1 : : : ih/P of Sh D J.P0; : : : ; Ph/ is obtained by substituting the co-
ordinates of the pointsP0; : : : ; Ph into the minorpi0i1:::ih consisting of the columns
in positions i0; i1; : : : ; ih of the matrix0BBBBBBB@

t
.0/
0 t

.0/
1 : : : t

.0/
n

t
.1/
0 t

.1/
1 : : : t

.1/
n

:::
:::

:::

t
.h/
0 t

.h/
1 : : : t

.h/
n

1CCCCCCCA
;

where t .j /0 ; t
.j /
1 ; : : : ; t

.j /
n are to be considered as hC 1 distinct copies of the series

of variables t0; t1; : : : ; tn consisting of the homogeneous coordinates of the initial
space Pn.
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Example 12.5.2. Let us consider the pointsP0 D Œ1; 0; 1; 0; 0�,P1 D Œ2; 1; 0;�1; 1�
and P2 D Œ0; 2; 1; 3; 0; � in P4. The coordinates of the space S2 D J.P0; P1; P2/ in

P9 are given by the third order minors .012/P D
ˇ̌̌
1 0 1
2 1 0
0 2 1

ˇ̌̌
, .013/P , .014/P , .023/P ,

.024/P , .034/P , .123/P , .124/P , .134/P , .234/P extracted from the matrix

P D
0@1 0 1 0 0

2 1 0 �1 1

0 2 1 3 0

1A :
Note too that the plane S2 that joins the three fundamental points Ai , Aj , Ak

of Pn has .ijk/P as its only non-zero coordinate, where P is the matrix, of type
.3; nC 1/, whose rows consist of the coordinates of the points Ai , Aj , Ak .

Here are some properties of Grassmann coordinates.

12.5.3 (Incidence condition for dual dimensional subspaces). We consider two
subspaces Sh D J.P0; P1; : : : ; Ph/ and Sn�h�1 D J.Q0;Q1; : : : ;Qn�h�1/ of Pn

having dual dimensions. If P and Q are the matrices whose rows are formed with
the coordinates of the points Pj and Qi respectively, the matrix

�
P
Q

�
is a square

matrix of order nC1. The necessary and sufficient condition for the two spaces Sh
and Sn�h�1 to be incident is obtained by writing the condition for P0; P1; : : : ; Ph,
Q0;Q1; : : : ;Qn�h�1 not to benC1 linearly independent points, namely det

�
P
Q

� D
0. Using Laplace’s rule to develop this determinant via minors extracted from the
matrix P , one finds a bilinear relation between the Grassmann coordinates of Sh
and those of Sn�h�1. More precisely we haveX

.i0i1 : : : ih/P .i0i1 : : : ih/
�
Q D 0; (12.12)

where .i0i1 : : : ih/�Q denotes the cofactor in
�
P
Q

�
of the minor .i0i1 : : : ih/P .

12.5.4. Let J.P0; : : : ; Ph/ D Sh be the space defined by the h C 1 independent
points Pj D Œz

.j /
0 ; z

.j /
1 ; : : : ; z

.j /
n �, j D 0; : : : ; h, and let Y D Œy0; y1; : : : ; yn� be

the point at which Sh meets the Sn�h with equations

ti0 D ti1 D � � � D tih�1
D 0:

Further suppose that

.y0; y1; : : : ; yn/ D .�0; �1; : : : ; �h/P;

that is,

yi D �0z
.0/
i C �1z

.1/
i C � � � C �hz

.h/
i ; i D 0; : : : ; n:
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The fact that yi0 D yi1 D � � � D yih�1
D 0 means that .�0; �1; : : : ; �h/ is a

non-trivial solution of the system of h linear homogeneous equations8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�0z
.0/
i0

C �1z
.1/
i0

C � � � C �hz
.h/
i0

D 0;

�0z
.0/
i1

C �1z
.1/
i1

C � � � C �hz
.h/
i1

D 0;

:::

�0z
.0/
ih�1

C �1z
.1/
ih�1

C � � � C �hz
.h/
ih�1

D 0;

and thus one can suppose that �0; �1; : : : ; �h are the minors of order h extracted
from the matrix of coefficients of that system (taken with alternating signs). So the
coordinates of the point Y are

yi D .i0i1 : : : ihi/P ; i D 0; : : : ; n:

The non-zero coordinates are those whose index i is any one of the numbers
ihC1; ihC2; : : : ; in.

12.5.5. The space Sh that joins the fundamental points Ai0 ; Ai1 ; : : : ; Aih has only
one non-zero coordinate. It is the coordinate .i0i1 : : : ih/P (cf. Example 12.5.2). It
follows that there is no (non-zero) linear homogeneous polynomial in the indeter-
minates Xi0i1:::ih that vanishes when the same indeterminates are replaced by the
coordinates of an arbitrary space Sh. In fact, if

P
i0i1:::ih

�i0i1:::ihXi0i1:::ih is a lin-
ear homogeneous polynomial in the indeterminatesXi0i1:::ih that vanishes when the
indeterminates are replaced by the coordinates of Sh then the coefficient �i0i1:::ih
must be zero.

12.5.6. One can also arrive at the Grassmann coordinates of a space Sh via a dual
procedure.

Namely, we define Sh as the intersection of n � h linearly independent hyper-
planes: 8̂̂<̂

:̂
a00t0 C a01t1 C � � � C a0ntn D 0;

:::

an�h�1 0t0 C an�h�1 1t1 C � � � C an�h�1 ntn D 0:

Let A D .aij / be the matrix (of type .n � h; n C 1/) of coefficients. If one uses
other hyperplanes to define Sh, one obtains a second system whose matrix B of
coefficients isB D 
A, where
 is a non-degenerate square matrix of order n�h.
One can then define new homogeneous coordinates for Sh by taking the minors of
order n � h of A. Not all such minors are zero, and they have mutual ratios which
are determined by our Sh. Note that the number of minors of order n� h extracted
from A is  

nC 1

n � h

!
D
 
nC 1

hC 1

!
:
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One can prove (cf. [80, pp. 132–134]) that these new coordinates (taken in suitable
order and with suitable signs) are proportional to those derived above.

Proposition–Definition 12.5.7. The Grassmann coordinates .i0i1 : : : ih/P of a
space Sh in Pn annul a system of quadratic forms ˆ˛ in the

�
nC1
hC1

�
indetermi-

nates Xi0i1:::ih . Moreover, the homogeneous ideal p generated by those quadratic
forms is prime. The ideal p is called the ideal of the Plücker relations. .In the
case n D 3, h D 1, that is, in the case of the lines in ordinary space, one finds only
the quadratic form (12.2)./

Proof. Let t0; : : : ; tn be homogeneous coordinates in the projective space Pn. We
consider h C 1 linearly independent points P0; : : : ; Ph in Pn such that Sh D
J.P0; : : : ; Ph/ and let P be the matrix whose rows consist of the coordinates of
the points P0; : : : ; Ph.

If a point A D Œa0; : : : ; an� belongs to Sh, the matrix, of type .hC 2; nC 1/,

P 0 D
�
a0 a1 : : : an�1 an

P

�
;

has rankhC1 and thus all of its minors of rankhC2 are zero. Therefore, developing
these minors with respect to the first row, one sees that in order for A to belong to
Sh it is necessary and sufficient that suitable linear combinations of the Grassmann
coordinates .i0i1 : : : ih/P of Sh should be zero. Moreover, the coefficients of these
linear combinations are h C 2 elements of K suitably chosen among a0; : : : ; an.
Note that these linear combinations are bilinear forms

ˆ˛.t0; : : : ; tn; Xi0i1:::ih/ D 0

(linear in the nC 1 indeterminates t0; : : : ; tn and linear in the
�
nC1
hC1

�
indeterminates

Xi0i1:::ih) evaluated at the pointA and at the spaceSh D J.P0; : : : ; Ph/ respectively.
We have seen in 12.5.5 that the points where a space Sh meets the .n � h/-

dimensional faces of the fundamental .n C 1/-hedron A0A1 : : : An (namely the
spaces Sn�h that one obtains by joining n � h C 1 of the points Aj ) have as
non-zero coordinates suitable Grassmann coordinates of Sh. Therefore, if in the
preceding discussion we take as the point A each of the points in which Sh meets
the .n � h/-dimensional faces of the fundamental .n C 1/-hedron, we obtain the
quadratic equations

ˆ˛.Xi0i1:::ih/ D 0

in only the
�
nC1
hC1

�
indeterminates Xi0i1:::ih , which are satisfied by the Grassmann

coordinates .i0i1 : : : ih/P of Sh.
Consider the homogeneous ideal p � KŒ: : : ; Xi0i1:::ih ; : : : � generated by those

quadratic forms. To prove that p is prime consider the morphism

' W KŒ: : : ; Xi0i1:::ih ; : : : � ! KŒ: : : ; t
.j /
0 ; : : : ; t .j /n ; : : : �
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defined by Xi0i1:::ih 7! pi0i1:::ih , where pi0i1:::ih is the minor that, evaluated in
the points P0; : : : Ph, furnishes the Grassmann coordinates .i0i1 : : : ih/P of Sh (cf.
Remark 12.5.1). We have

KŒ: : : ; Xi0i1:::ih ; : : : �=ker.'/ Š KŒ: : : ; pi0i1:::ih ; : : : � � KŒ: : : ; t
.j /
0 ; : : : ; t .j /n ; : : : �:

Since the ring of polynomials KŒ: : : ; t .j /0 ; : : : ; t
.j /
n ; : : : � is an integral domain, it

follows that the kernel ker.'/ is a prime ideal.
We conclude by noting that p D ker.'/. The inclusion p � ker.'/ is obvi-

ous; the converse is easily obtained via a standard argument from the theory of
polynomials (already discussed in Exercise 3.4.11 (2)).

We also observe that techniques of computational algebra permit the explicit
calculation of a set of generators of the ideal p (see [76, Tutorial 35]). �

12.5.8 Grassmann varieties. With the preceding notations, we putN D �
nC1
hC1

��1
and consider the projective space PN where Xi0i1:::ih are homogeneous projective
coordinates.

In PN consider the irreducible variety G.h; n/, associated to the homoge-
neous prime ideal generated by the quadratic forms ˆ˛ defined in Proposition–
Definition 12.5.7. With an argument similar to that used in the case n D 3, h D 1,
it is not difficult to prove the following assertion:

• There exists a bijective correspondence without exceptions between the sub-
spaces Sh of PN and the homogeneous .N C 1/-uples Xi0i1:::ih that annihi-
late the quadratic forms ˆ˛; that is, between the Sh � PN and the points of
G.h; n/.

Observation 12.5.5 ensures, moreover, that G.h; n/ has PN as its embedding
space.

Thus we have constructed an irreducible projective variety, G.h; n/, whose
points are in bijective correspondence without exceptions with the subspaces Sh in
Pn: this variety is called the Grassmann variety (or Grassmannian) with indices n
and h.

The dimension of G.h; n/ coincides with the number d.n; h/ of parameters on
which the determination of a space Sh in Pn depends. We have

dim.G.h; n// D .n � h/.hC 1/: (12.13)

Indeed, since a linear space Sh in Pn is determined by the choices of hC 1 linearly
independent points of Pn, the number d.n; h/ of parameters on which the determi-
nation of a space Sh in Pn depends can not be more than

�
nC1
hC1

� � 1. To calculate

d.n; h/ we observe that the system 1d.n;h/ of Sh in Pn intersects a hyperplane
Pn�1 in the system of Sh�1 of Pn�1. On the other hand, every Sh in Pn passing
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through a given Sh�1 of Pn�1 may be obtained by joining Sh�1 with the points of
a space Sn�h skew to Sh�1. Thus one has the relations

d.n; h/ D d.n � 1; h � 1/C n � h;
d.n � 1; h � 1/ D d.n � 2; h � 2/C n � h;

:::

d.n � h; 0/ D n � h;
from which one deduces that

d.n; h/ D .n � h/.hC 1/;

that is, equation (12.13).
In Pn we consider a non-degenerate projectivity ! defined by8̂̂̂̂

<̂
ˆ̂̂:
t 00 D a00t0 C a01t1 C � � � C a0ntn;

t 01 D a10t0 C a11t1 C � � � C a1ntn;

:::

t 0n D an0t0 C an1t1 C � � � C anntn;

with A D .aij / a non-degenerate matrix. Consider the points P0; P1; : : : ; Ph and
their imagesQ0;Q1; : : : ;Qh under !. If we set Pj D Œxj0; xj1; : : : ; xjn�, then we
have

Qj D !.Pj /

D Œa00xj0 C � � � C a0nxjn; a10xj0 C � � � C a1nxjn; : : : ; an0xj0 C � � � C annxjn�;

and one sees easily that the numbers .i0i1 : : : ih/Q are linear combinations of the
numbers .i0i1 : : : ih/P . Therefore the projectivity ! induces a projectivity� in PN

which one shows to be non-degenerate. To ! there thus corresponds a projectivity
� of PN that maps the Grassmann variety G.h; n/ into itself. In fact, since there
are certainly projectivities ! of Pn that transform any given Sh of Pn into any other
Sh, we have that given two points of G.h; n/ there exist projectivities � of PN

which send one into the other. This means that the restrictions of the projectivities
� to G.h; n/ form a transitive group G; equivalently, the action of the group G

G � G.h; n/ ! G.h; n/

defined by .�; x/ 7! �.x/ is transitive. In conclusion, the variety G.h; n/ is
a variety on which there acts a transitive group of projectivities. It then follows
that G.h; n/ is non-singular (this conclusion is almost obvious since G in our
case is a group of projectivities; for a general statement see for example [104,
Theorem (4.3.7)]).
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The “dual” Grassmann coordinates (cf. 12.5.6) are essentially obtained by con-
sidering, instead of the space Sh of Pn, its dual space †n�h�1 (of dimension
n � h � 1). Indeed, Sh is the center of a star 1n�h�1 of hyperplanes of Pn.
Thus we see that, interchanging the roles of Sh and †n�h�1, there is a natural
identification

G.h; n/ D G.n � h � 1; n/
between Grassmann varieties.

Remark 12.5.9. Note that the variety G.1; 3/ studied in Section 12.1 is the simplest
example of a Grassmann variety which is different from a projective space. The
variety G.1; 2/ is the dual projective plane P2

�
, and, in general, G.n�1; n/ D Pn�.

Moreover, obviously G.0; n/ D Pn.

We limit ourselves here to stating the following properties; for the proofs, further
developments, and complementary material we refer the reader to [48], [52, Vol. 2,
pp. 309–387] and to [98].

(1) The Grassmann variety G.h; n/ is a rational variety. This means that there
exists a birational isomorphism G.h; n/ ! Pd , where d D d.n; h/ D
.n� h/.hC 1/. Note, however, that if one excludes the extreme cases h D 0

and h D n�1, for which d.n; h/ D n and G.h; n/ D Pn, it is not possible to
represent the variety G.h; n/ birationally and without exceptions onto a linear
space Pd , that is, there is no surjective birational morphism G.h; n/ ! Pd .

(2) If one excludes the cases G.0; n/ D Pn and G.n � 1; n/ D Pn� and the
case n D 3, h D 1 (in which G.1; 3/ is a non-specialized quadric in P5), the
Grassmann variety G.h; n/ is not a complete intersection, that is, it can not
be realized as the intersection (not even in the set-theoretic sense) of N � d

hypersurfaces of PN (d D d.n; h/).

(3) The Grassmann variety G.h; n/ is a factorial variety. This means that each of
its irreducible subvarieties V of codimension 1 is the complete intersection of
G.h; n/with a hypersurfaceF of PN . In other words, if p is the homogeneous
prime ideal associated to G.h; n/, generated by the quadratic forms ˆ˛ (cf.
Proposition–Definition12.5.7), the homogeneous ideal of V is of the type
I.V / D p C .f /, with f a homogeneous polynomial; and f D 0 is the
equation of the hypersurface F .

(4) The hyperplane sections of G.h; n/ are also rational and factorial.

The hyperplane section of a Grassmann variety is a “Fano variety” (for ex-
ample the quadric Q in P4 is a hyperplane section of G.1; 3/ in P5). Observe
also that (except in the trivial cases G.0; n/ D G.n � 1; n/ D Pn) a Grass-
mann variety G.h; n/ can not be obtained as a hyperplane section of a given
non-singular variety X , with the unique exception of the variety G.1; 3/, in
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which case X is a quadric in P6 (for this see [40]). We refer the reader to
[41] and [12] for definitions, references, and a complete development of the
“theory of hyperplane sections”.

(5) On G.h; n/ there are two systems of linear spaces:

i) a first system, parameterized by G.hC1; n/, consists of the spaces ShC1
each of which is the Grassmann variety of the subspaces Sh of a given
ShC1 in Pn;

ii) a second system, parameterized by G.h � 1; n/, consists of the spaces
Sn�h each of which is the Grassmannian variety of the spaces Sh that
contain a given Sh�1 in Pn.

We note that in the case n D 3, h D 1, studied in Section 12.1, the first
system, parameterized by G.2; 3/ D P3, consists of 13 ruled planes; while
the second system, parameterized by G.0; 3/ D P3, consists of 13 planes
that represent the stars of lines of P3 (cf. §12.1.2).

(6) The order of G.h; n/ coincides with the number ofSh in Pn that are supported
by d.n; h/ generic linear spaces Sn�h�1. Indeed, the order of G.h; n/ is the
number of points that G.h; n/ has in common with a generic linear subspace
of dimension N � d.n; h/ in PN , N D �

nC1
hC1

� � 1. Such a linear subspace
is given by the intersection of d.n; h/ generic hyperplanes of PN . The inci-
dence relation (12.12) between a space Sh and a space Sn�h�1 in Pn may be
interpreted as the equation of a hyperplane in PN . We then have (cf. [78])

deg.G.h; n// D 1Š 2Š : : : hŠ Œ.hC 1/.n � h/�Š
.n � h/Š .n � hC 1/Š : : : nŠ

:

12.6 Further properties of G.1; n/ and applications

Here we offer a few exercises which furnish interesting additions to the theory
developed in this chapter. The notations are those of Section 12.5.

12.6.1. Show that four lines of P3 have two common transversals (that is, two lines
that are supported by the four given lines).

A line r that meets four lines `i of P3 is represented in P5 by a pointR belonging
to the Klein quadric Q, which is reciprocal of the four pointsLi 2 Q that represent
the lines `i , i D 1; 2; 3; 4. The points Li define a subspace S3 in P5 whose polar
line p meets Q in two points, A and B . The lines a and b of P3 that correspond
to the points A and B are the required common transversals. It is hardly necessary
to note that what has been said refers to the case in which the lines `i are generic,
that is, each of them does not belong to the quadric of the lines that are supported
by the other three.
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12.6.2. Let K be a linear complex of lines in P3. Prove that the lines of K that are
supported by a line r1 all meet a second line r2.

It suffices to observe that the lines of K that are supported by r1 form a special
linear complex K1, and in the pencil of complexes determined by K and K1 there
is another special complex K2 (cf. §12.2.4). The lines of K that are supported by
r1 are thus contained in the two special complexes K1 and K2 and therefore are
supported by the two axes r1 and r2 of K1 and K2.

12.6.3. (Curves in P3 whose tangents belong to a linear complex K/. The curves
in P3 whose tangents belong to a linear complex K are called curves of the linear
complex.

An example is the twisted cubic. We know that a twisted cubic C determines a
null polarity of P3 under which a point ofC and its osculating plane are homologous.
This null polarity defines a linear complex to which the tangents of C belong (cf.
Theorem–Definition 7.4.9 and Proposition 12.2.1 (2)).

Returning to the general case, we write the equation of K in the reduced form

p01 C kp23 D 0 (k D 0 if and only if K is special); (12.14)

and suppose that all the tangents of the curve

L W x D '.z/; y D �.z/

belong to K. The tangent line to L at the point P with homogeneous coordinates
.'.z/; �.z/; z; 1/ contains the point Œ'0.z/; � 0.z/; 1; 0�, where the primed symbols
denote derivatives with respect to z. Therefore, its Plücker coordinates p01 and p23
are p01 D '.z/� 0.z/ � '0.z/�.z/ and p23 D �1, so that L belongs to K if and
only if, for some k 2 C,

'.z/� 0.z/ � '0.z/�.z/ D k: (12.15)

If k D 0 (and if L does not belong to the plane x D 0) equation (12.15)
gives d

dz

�
�.z/
'.z/

� D 0 and so �.z/ D �'.z/ for some non-zero constant �, and L is

contained in the plane y D �x. Hence a curve L of a special linear complex is either
planar or it decomposes into plane curves (contained in planes passing through the
axis of the complex). Thus we see that a non-planar curve can not belong to two
linear complexes because in the pencil of two linear complexes there is at least one
special complex.

If k ¤ 0 equation (12.15) can be written in the form

d

dz

�
�.z/

'.z/

�
D k

'2
:

If H is a primitive of k
'2 , we have�

�.z/

'.z/

�0
D H 0

�
D k

'2

�
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and therefore we obtain (where
p
� denotes either choice of the complex square

root of �)
�.z/

'.z/
D H; '.z/ D

r
k

H 0 :

Hence the space curves L of K are precisely the following:8̂̂<̂
:̂
x D

r
k

H 0 ;

y D H

r
k

H 0 ;

with H an arbitrary differentiable function of z.
For example, if H D z3 we have x D a

z
, y D az2 .a D p

k=3) and L is a
twisted cubic.

Another remarkable example is obtained by taking H D tan z. Then x Dp
k cos z, y D p

k sin z; hence among the curves of a linear complex there are the
circular helices.

12.6.4. The Grassmann variety G.1; n/ of lines in Pn is a variety having dimension
2n � 2 and order .2n�2/Š

.n�1/ŠnŠ embedded in PN , N D �
nC1
2

� � 1.

Show that it is the locus of the points in PN whose coordinates Xij give rank 2
to the antisymmetric matrix M D .Xij / of order n C 1 (where Xij D �Xj i ,
i; j D 0; : : : ; n, Xij D 0 if i D j ).

The case n D 3 was discussed in Section 12.1.
Let A D Œa0; a1; : : : ; an� and B D Œb0; b1; : : : ; bn� be two points of Pn and

consider the matrix

P D
�
a0 a1 : : : an
b0 b1 : : : bn

�
:

Recall that the line r of Pn that joins A and B meets the hyperplane with equation
tj D 0 in the point Yj with coordinates (cf. observation 12.5.4)

.0j /P D
ˇ̌̌̌
a0 aj
b0 bj

ˇ̌̌̌
; .1j /P D

ˇ̌̌̌
a1 aj
b1 bj

ˇ̌̌̌
; : : : ; .nj /P D

ˇ̌̌̌
an aj
bn bj

ˇ̌̌̌
;

where .ij /P D �.j i/P , i; j D 0; : : : ; n. Thus the matrix .xij / D ..ij /P / has
rank 2 because it has in each row the coordinates of a point of the line r .

We now show that, conversely, every point Œxij � of PN such that the matrix .xij /
has rank 2 belongs to G.1; n/. If .xij / has rank two, then for every choice of indices
˛, ˇ, � , ı (0 � ˛ < ˇ < � < ı � n) the determinant of the antisymmetric matrix
of order 4 formed with the rows and columns of positions ˛, ˇ, � , ı of .xij /,

det.xij / D

ˇ̌̌̌
ˇ̌̌̌ 0 x˛ˇ x˛� x˛ı
�x˛ˇ 0 xˇ� xˇı
�x˛� �xˇ� 0 x�ı
�x˛ı �xˇı �x�ı 0

ˇ̌̌̌
ˇ̌̌̌ D .x˛ˇx�ı � x˛�xˇı C x˛ıxˇ� /

2;
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is zero. Therefore we have the following relations:

x˛ˇx�ı C x˛�xıˇ C x˛ıxˇ� D 0: (12.16)

To reach the conclusion, it now suffices to calculate the minors of the matrix P of
type .2; nC 1/ formed with the two rows of index ˛, ˇ in .xij /,

P D
�
x˛0 : : : x˛˛ : : : x˛ˇ : : : x˛i : : : x˛� : : : x˛ı : : : x˛n
xˇ0 : : : xˇ˛ : : : xˇˇ : : : xˇi : : : xˇ� : : : xˇı : : : xˇn

�
:

Keeping in mind (12.16) we have

. j̨ /P D
ˇ̌̌̌
0 x j̨

xˇ˛ xˇj

ˇ̌̌̌
D x j̨x˛ˇ

.�ı/P D
ˇ̌̌̌
x˛� x˛ı
xˇ� xˇı

ˇ̌̌̌
D x˛�xˇı � x˛ıxˇ� D x˛ˇx�ı :

It follows that in PN the points Œ.ij /P � and Œxij � coincide; and therefore the points
Œxij �, at which the antisymmetric matrixM D .Xij / has rank 2, belong to G.1; n/.

Thus we have proved that G.1; n/ is indeed the locus of points in PN that give
rank two to the matrix M D .Xij /.

The foregoing discussion shows that the cases n even and n odd turn out to
be very different. In fact we know that the rank of an antisymmetric matrix is
always even. Hence if n is even the matrix M (of order nC 1) is degenerate. By
contrast, when n is odd det.M/ is the square of a homogeneous polynomial of
degree 1

2
.nC 1/ in the Xij .

Note. Let x D Œx0; : : : ; xn�; y D Œy0; : : : ; yn� 2 Pn. One can also obtain the
relations (12.16) by writing the Plücker coordinates of the projection of the line rxy
onto S3 D J.A˛; Aˇ ; A� ; Aı/ (from the opposite face of the fundamental .nC 1/-
hedron). One finds that the minors of the matrix�

x˛ xˇ x� xı
y˛ yˇ y� yı

�
satisfy the equation of the Klein quadric that represents the lines of S3, namely
equation (12.16).

12.6.5. Prove that, for odd n, the variety G.1; n/ is the locus of 1
2
.n � 1/-fold

points of a hypersurface F of order 1
2
.n C 1/ in P.

nC1
2 /�1. (In particular the

variety G.1; 3/ is a quadric in P5.)

By Exercise 12.6.4, we know that G.1; n/ is the locus of the points that give
rank two to the antisymmetric matrixM D .Xij / of order nC1, and thus G.1; n/ is
the locus of the points that annihilate all the minors ofM of order 3. Furthermore,
det.M/ D f 2 is the square of a form f of degree 1

2
.nC 1/ in the variables Xij .
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In P.
nC1

2 /�1 we consider the hypersurface F with equation f D 0, of order
1
2
.nC 1/. Since the .n � 2/nd derivatives of det.M/ belong to the ideal generated

by the third order minors of M , we have that the .n � 2/nd derivatives of det.M/

vanish in every point of G.1; n/. Hence the points of G.1; n/ are all .n � 1/-fold
for the hypersurface with equation det.M/ D f 2 D 0 and so 1

2
.n� 1/-fold for F .

To prove that, conversely, every 1
2
.n � 1/-fold point for F belongs to G.1; n/

one can proceed by induction on n, bearing in mind that for n D 3 the hypothesis
holds.

First we examine the case n D 5. Together with the matrix P whose rows
consist of the coordinates of two distinct points x D Œx0; : : : ; xn�, y D Œy0; : : : ; yn�

in P5, we also consider the matrix

�
P

P

�
D

0BB@
x0 x1 x2 x3 x4 x5
y0 y1 y2 y3 y4 y5
x0 x1 x2 x3 x4 x5
y0 y1 y2 y3 y4 y5

1CCA :
It is clearly of rank two, and putting Xij D xiyj � xjyi , one sees that the minor
of order 4 obtained by cancelling the columns in positions i0, i1 may be written in
the form

Qi0i1 D
X

Xi2i3Xi4i5 ;

where .i0; i1; i2; i3; i4; i5/ is an even permutation of the numbers 0, 1, 2, 3, 4, 5. It
is not difficult to prove that the fifteen quadratic forms Qij are generators of the
ideal of G.1; 5/ (see also [76, Tutorial 35]). Since

f D
X

Xi0i1Xi2i3Xi4i5 ;

we have @f
@Xi0i1

D Qi0i1 , and that means that every double point of the hypersurface

F belongs to G.1; 5/.
Now let n � 7 and proceed by induction on n, assuming the result known for

every n0 � n � 2. That is, we suppose that if 
 D det.M 0/ is an antisymmetric
determinant of order .n�2/C1 D n�1, every .n�3/-fold point of the hypersurface
with equation 
 D 0 is a point of G.1; n � 2/ and thus it is a point at which the
matrix M 0 has rank two.

We note first that every second derivative of det.M/ is, except for a numerical
factor ˙2, a principal minor (and thus antisymmetric) of order n � 1 of M . More
precisely,

@2 det.M/

@Xi0@Xi1
(12.17)

is the determinant of the matrix Mi0i1 that one obtains from M by suppressing the
rows and columns in the places i0 and i1.
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Assuming this, let x be an .n � 1/-fold point of the hypersurface det.M/ D 0.
At the point x, which annihilates all the .n � 2/nd order derivatives of det.M/,
all the .n � 4/th order derivatives of every second order derivative of det.M/

are zero. Therefore x is an .n � 3/-fold point of the hypersurface with equation
det.Mi0i1/ D 0 (and so, putting det.Mi0i1/ ´ f 2i0i1 , x is an 1

2
.n� 3/-fold point of

the hypersurface fi0i1 D 0). Then, by the inductive hypothesis, x gives rank two
to the matrix Mi0i1 .

Thus, at x all the third order minors contained in some principal minor of M
(of order n� 1) are zero. But if n � 7 every minor of order 3 is contained in some
principal minor of M of order n � 1 that is, a minor of the type (12.17). Hence at
x all minors of third order of M are zero (i.e., M has rank two at x). Recalling
Exercise 12.6.4, we may thus conclude that x 2 G.1; n/.

Other interesting results may be obtained by considering together with the matrix

P D
�
x0 x1 : : : xn
y0 y1 : : : yn

�
formed by the coordinates of two distinct points x D Œx0; : : : ; xn�, y D Œy0; : : : ; yn�

in Pn, the 1
2
.nC 1/ matrices

P;

�
P

P

�
;

0@PP
P

1A ; : : : ;
0BBBBB@
P

P
:::

P

P

1CCCCCA ; (12.18)

the last of which is a square matrix of order n C 1 and all of which are of rank
two. The minors of maximal order of the first matrix are the coordinates xij of the
line rxy . A minor of maximal order of the sth of these matrices (which is a matrix
of type .2s; nC 1// may be written in the form

P
xi0i1xi2i3 : : : xi2s�2i2s�1

and is
zero. Hence it provides a hypersurface of order s in PN having equationX

Xi0i1Xi2i3 : : : Xi2s�2i2s�1
D 0;

which has multiplicity s�1 at every point of G.1; n/. In particular, the determinant
of the last matrix in (12.18) is the square of a form of degree 1

2
.nC1/ in the variables

Xij of which G.1; n/ is the locus of 1
2
.n � 1/-fold points.

12.6.6 (Linear complexes of lines in P4). A linear complex K of lines in P4 is the
5-dimensional family of lines of P4 whose Grassmann coordinates pik satisfy a
linear equation

a34p01 C � � � C a01p34 D 0: (12.19)

It is represented in P9 by a hyperplane section of V 56 D G.1; 4/. The lines of
K that pass through a generic point x of P4 are contained in the S3 corresponding
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to x under the null polarity ' W P4 ! P4
�

given by the antisymmetric matrix
M D .aij /. The singular points of ' are exceptional: all the lines of P4 that pass
through a singular point of ' belong to K (cf. [52, Vol. 1, Chapter IX]).

Since the rank %.M/ ofM is even, in P4 there are two types of linear complexes
of lines. If %.M/ D 4, K is a general linear complex and there is only one singular
point (the center of the complex, cf. Problem 12.6.8). If %.M/ D 2, K is a special
linear complex and all the points of a plane 	 (called the center-plane) are singular;
in this case K consists of all the lines in P4 supported by 	 .

12.6.7. Let K be a linear complex of lines in P4. Prove that K is special if and only
if the coefficients aij of its equation, taken in suitable order, are the coordinates of
a line (cf. (12.19)).

If u D Œu0; : : : ; u4�, v D Œv0; : : : ; v4�, and w D Œw0; : : : ; w4� are three inde-
pendent points of the center-plane 	 of K, in order for two points Œx0; : : : ; x4� and
Œy0; : : : ; y4� to be joined by a line of K it is necessary and sufficient thatˇ̌̌̌

ˇ̌̌̌
ˇ̌
u0 u1 : : : u4
v0 v1 : : : v4
w0 w1 : : : w4
x0 x1 : : : x4
y0 y1 : : : y4

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ D 0:

Using Laplace’s rule to develop the minors extracted from the first three rows
we have the equation a34p01 C � � � C a01p34 D 0 for the complex. Moreover, the
numbers aij (given by the third order determinant extracted from the first three rows
by eliminating the columns in positions i and j ) are the Grassmann coordinates of
	 and thus also of a line r in P4 since G.1; 4/ D G.2; 4/.

12.6.8 (Linear complexes of lines in Pn). A linear complex of lines in Pn is the set
K of the lines of Pn whose Grassmann coordinates in PN , N D �

nC1
2

�� 1, satisfy

a linear equation,
PN
i;jD0 aijXij D 0. In other words, K is a hyperplane section

of the variety G.1; n/ (where Xij D �Xj i , i; j D 0; : : : ; n, Xij D 0 if i D j ).
Let K be a linear complex of lines in Pn. After having proved that the lines of K

that pass through a point x of Pn belong to a hyperplane, study the correspondence
Pn ! Pn� that associates to each point x of Pn the hyperplane of Pn that contains
the lines of K passing through x.

The case n D 3 is treated in Proposition 12.2.1.
Suppose then that n � 4 and consider all the lines of K that contain the point

x D Œx0; : : : ; xn�. If r is one of these lines and y D Œy0; : : : ; yn� is another point
of r , the Grassmann coordinates of r are .ij /P D xiyj � xjyi . Hence the points
y that when joined with x give lines of K belong to the hyperplane in Pn with
equation

nX
i;jD0

aij .tixj � tjxi / D 0: (12.20)
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We put aj i D �aij . Then equation (12.20) can be written in the formX
aijxj ti D 0; (12.21)

with the sum extended over the pairs .i; j / of the numbers 0; 1; 2; : : : ; n such that
i ¤ j .

Ordering the summands of (12.21) with respect to the ti one sees that the locus
of the points y that when joined with x give lines of K is the hyperplane u with
equation

u W
nX
iD0

ui ti D 0; where ui D
nX

jD0
aijxj .

Thus one finds a projectivity ' W Pn ! Pn�, defined by the matrix .aij /, under
which a point x 2 Pn corresponds to the hyperplane u 2 Pn� that contains the line
of K passing through x.

The matrix .aij / of coefficients is antisymmetric and thus, when n is odd, the
projectivity ' is in general non-degenerate and is therefore a non-degenerate null
polarity. [It is interesting to examine the particular cases in which the determinant
of .aij / is zero. To study them it is convenient to regard .aij / as a point of PN .
Examine the various positions that it assumes with respect to G.1; n/, bearing in
mind that G.h; n/ D G.n � h � 1; n/.]

If n is even, we have det.aij / D 0. Thus, for each index j , the hyperplanesPn
iD0 aij ti D 0 of Pn, and hence all the hyperplanes with equation (12.21) which

are linear combinations of these (indeed
P
i;j aijxj ti D P

j xj
P
i aij ti ) pass

through a fixed space O , center of the complex K.
If, for example, the rank of .aij / is n, that is the maximum possible rank, then

the space O consists of a single point. Under the hypothesis that O D An D
Œ0; 0; : : : ; 0; 1� we have ain D 0, i D 0; : : : ; n� 1, and the equation of the complex
K thus has the form, cf. (12.19),

n�1X
i;jD0

aijXij D 0: (12.22)

If n is even, the lines of Pn that belong to a general linear complex K are thus
all those and only those that are contained in the planes that project the lines of a
linear complex of lines of Pn�1 with equation (12.22) from the center O . Hence
one deduces the properties of linear complexes of lines in even-dimensional spaces
from properties of linear complexes of lines in odd-dimensional spaces.

12.6.9. Study the surface F that represents the congruence of the chords of a space
cubic C in P3 on the Klein quadric Q.

We note first that the chords of C can not all be contained in the same linear
complex. Indeed, if A is a point of C , the generators of the quadric cone that
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projects C from A are chords of C that issue from a point but do not belong to a
plane. Thus F is embedded in P5. Furthermore:

(1) The lines of a pencil can not all be chords of C , so that F does not possess
lines.

(2) C belongs to 12 quadrics and the lines of one of the two rulings of each of
these quadrics are chords of C ; therefore F possesses 12 conics.

Thus F, being a non-ruled surface that possesses 12 conics, is the Veronese surface
(cf. Lemma 10.3.2).

This fact may be seen analytically as follows. Let U D Œu3; u2; u; 1�, V D
Œv3; v2; v; 1� be two points of the curve C (cf. Exercise 7.5.3). The minors pik of
the matrix �

u3 u2 u 1

v3 v2 v 1

�
furnish the Plücker coordinates of the line rUV that joins the two points. More
precisely, p01 D u2v2.u � v/, p02 D uv.u C v/.u � v/, p03 D .u � v/.u2 C
uv C v2/, p12 D uv.u � v/, p13 D .uC v/.u � v/, p23 D u � v. Thus rUV is
represented in P5 by the point

R D Œu2v2; uv.uC v/; u2 C uv C v2; uv; uC v; 1�:

Putting uv D �, u C v D �, the point R may be rewritten in the form R D
Œ�2; ��;�2 � �; �; �; 1� and then, setting � D x1

x0
, � D x2

x0
,

R D Œx21 ; x1x2; x
2
2 � x1x0; x1x0; x2x0; x20 �:

Hence, applying the projectivity of P5 defined by

Œp01; p02; p03; p12; p13; p23� 7! Œp01; p02; p03 C p12; p12; p13; p23�;

we see that the point R describes a Veronese surface (cf. Example 10.2.1).
From properties of the Veronese surface F one can deduce properties of the

space cubic C , and conversely.
For example, the fact that the order of C is three implies that F is met in three

points by the planes of one of the two arrays of planes of Q. More precisely, the
three chords of C that connect in pairs the three points where C meets a (ruled)
plane 
 give rise to the three points common to F and the plane ˛ of Q associated
to 
 (cf. §12.1.2).

A generic plane ˇ of the other array has a single point in common with F.
Indeed, the plane ˇ is associated to a star of lines of P3 and for a generic point of
P3 there passes one and only one chord ofC , for otherwise the cubicC would have
four intersections with the plane defined by two concurrent chords. This chord
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represents the point of intersection of F and ˇ. But there are 11 planes in this
second array fˇg that contain a conic of F. To see this it suffices to consider a star
of lines having center in a point x 2 C and the plane ˇx contained in the quadric
Q which is represented by the star. The chords of C issuing from x represent the
points of a conic contained in ˇx (the cone projecting C from one of its points is a
quadratic cone).

Again, the fact that the Veronese surface has order 4 implies that there are four
chords of C that are supported by two generic lines, that is, belonging to a linear
congruence � . The chords of C that belong to � are in fact the lines represented by
the four intersections of F with the space S3 that intersects the Klein quadric in � .

12.6.10. Let C be a rational normal curve in Pn, that is, the image of the Veronese
morphism '1;n W P1 ! Pn. The chords of C are in number 12 and thus they are
represented by the points of a surface F lying on the Grassmann variety G.1; n/.
Study the surface F.

The same analytic procedure used in Exercise 12.6.9 to prove that the surface
F is the Veronese surface when n D 3 may be applied whenever n � 2 to show
that F is the projective image of the linear system of all curves of order n � 1 in a
plane. (Remember that a symmetric polynomial f .u; v/ 2 CŒu; v� may be written
as a polynomial of the ring CŒuC v; uv�.)

12.6.11 (Algebraic complexes of Sk in Pn). An algebraic complex of subspaces Sk
in Pn is a family of linear subspaces Sk in Pn whose image under the embedding
of G.k; n/ in PN , N D �

nC1
kC1

� � 1, is an algebraic subvariety of codimension 1 in
G.k; n/, that is, the intersection of G.k; n/ with an algebraic hypersurface F of
PN (cf. §12.5.8, Property (3)). We define the degree of the complex to be that of
the hypersurface F .

A linear complex of subspaces Sk in Pn is a hyperplane section of G.k; n/. For
example, the collection of all subspaces Sk meeting a given subspace Sn�k�1 is
a linear complex. Indeed, it is a special linear complex in the sense that it has an
equation of type (12.12).

12.6.12. Fix a group G of 2n� 2 distinct points in P1. How many linear series g1n
have G as Jacobian group?

We replace the line with a rational normal curve C n of Pn, the projective image
of the series gnn on P1 (cf. Section 8.4).

A group of n points is a hyperplane section of C n, and a series g1n is cut out on
C n by a pencil of hyperplanes, that is, by the hyperplanes passing through some
fixed subspace Sn�2. A double point P of this g1n is a point of contact of C n with a
hyperplane of the pencil, that is, with a hyperplane containing the given subspace
Sn�2 and also the tangent line p to C n at P .

Since the line p and the subspace Sn�2 belong to a hyperplane they must meet.
Conversely, if p and the subspace Sn�2 meet, the hyperplane joining them passes
through the Sn�2 and is tangent to C n in P .
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Thus the number required is merely the number of subspaces Sn�2 of Pn which
meet 2n � 2 pairwise skew lines. [If two tangents of C n were incident, the hy-
perplane defined by these two lines and n � 3 arbitrary further points of the curve
would have at least nC 1 intersections with the curve C n.]

Consider the Grassmannian variety G.n�2; n/ŒD G.1; n/�whose points are the
subspaces Sn�2 of Pn. Recall that G.n�2; n/ belongs to a space PN of dimension
N D �

nC1
2

�� 1. The subspaces Sn�2 meeting a line form a linear complex, which
means that they are the points common to the Grassmannian variety and a hyperplane
of PN . Thus we need only count the points of G.n� 2; n/ which belong to 2n� 2
hyperplanes of PN . Note that 2n � 2 hyperplanes meet in a space of dimension 

nC 1

2

!
� 1 � .2n � 2/ D codPN G.n � 2; n/;

since dim G.n � 2; n/ D dim G.1; n/ D 2n � 2. Thus the requested number of
linear series g1n is, see §12.5.8, Property (6),

deg G.1; n/ D .2n � 2/Š
nŠ .n � 1/Š :



Chapter 13

Supplementary Exercises

As an adjunct to the theory developed earlier in this text, and with particular refer-
ence to the subjects discussed in Chapters 5, 6, 7, 8, 9, 10, we here propose some
exercises to summarize and review that material.

The exercises in Section 13.1 present greater difficulty and are completely
solved; those proposed in Section 13.2 are simpler and their solutions are left to
the reader. The argument sketched in §13.1.42 could inspire a research project or
senior thesis.

The exercises in Section 13.3 have been added for the English edition of the text.
Most of them constitute results on linear series on curves which, although known,
are not easy to find in the literature. They are placed in this chapter rather than
in Chapter 8 since their solution makes use of the planar representation of rational
surfaces as described in Chapter 10.

13.1 Miscellaneous exercises

13.1.1. Prove that the rational transformation P2 ! P2 with equations yi D
x2i , i D 0; 1; 2, induces a birational isomorphism between the line with equation
a0x0 C a1x1 C a2x2 D 0 and its image.

Consider two projective planes S2 and S 0
2 and let x0, x1, x2 be homogeneous

coordinates in S2 and y0, y1, y2 homogeneous coordinates in S 0
2. Let X � S2 be

the line with equation a0x0Ca1x1Ca2x2 D 0with a0a1a2 ¤ 0. Let Œ'� W X ! S 0
2

be the rational transformation for which a representative ' W S2 ! S 0
2 is given by

the equations (cf. §2.6.7)

yi D x2i ; i D 0; 1; 2:

LetE' be the exceptional locus of '. Since I.E'/ D .y0; y1; y2/, we haveE' D ;
and so Œ'� is a morphism S2 ! S 0

2, that is, it is defined on all of P2. But clearly
' is not a birational isomorphism because almost all the fibers are quadruples of
points.

We show however that Œ'� W X ! Y ´ '.X/ is a birational isomorphism. To
that end, consider the system of equations8̂̂̂̂

<̂
ˆ̂̂:
y0 D x20 ;

y1 D x21 ;

y2 D x22 ;

a0x0 C a1x1 C a2x2 D 0;
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from which one deduces the formulas8̂̂̂̂
<̂̂
ˆ̂̂̂:

y0 D �x0
a0
.a1x1 C a2x2/;

y1 D �x1
a1
.a2x2 C a0x0/;

y2 D �x2
a2
.a0x0 C a1x1/

(13.1)

that give another rational map � W X ! Y with � 2 Œ'�. Since � is a birational
isomorphism between the two planes (that is, a Cremona transformation), Œ'� is a
birational isomorphism since it is the restriction of that Cremona transformation. It
is easy to verify the following facts.

(1) � is an isomorphism between the open set of S2 which is the locus of the
points Œx0; x1; x2� such that x0x1x2 ¤ 0 and the open set in S 0

2 defined by

.a20y0�a21y1�a22y2/.�a20y0Ca21y1�a22y2/.�a20y0�a21y1Ca22y2/ D 0:

(2) The inverse formulas for (13.1) are the following:8̂̂<̂
:̂
x0 D a1a2Œa

4
0y
2
0 � .a21y1 � a22y2/2�;

x1 D a2a0Œa
4
1y
2
1 � .a22y2 � a20y0/2�;

x2 D a0a1Œa
4
2y
2
2 � .a20y0 � a21y1/2�:

(13.2)

To derive them, one can resolve the system (13.1); however, it may be more
convenient to consider the Cremona transformation ! W S2 ! S 00

2 (where S 00
2

is another plane, with coordinates z0, z1, z2) given by the formulas8̂<̂
:
z0 D x1x2;

z1 D x2x0;

z2 D x0x1

and

8̂<̂
:
x0 D z1z2;

x1 D z2z0;

x2 D z0z1:

Observe, moreover, that � is the product of ! with the non-degenerate pro-
jectivity � W S 00

2 ! S 0
2, given by the equations

� D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

y0 D �a2
a0
z1 � a1

a0
z2;

y1 D �a2
a1
z0 � a0

a1
z2;

y2 D �a1
a2
z0 � a0

a2
z1I

��1 D

8̂<̂
:
z0 D a0.a

2
0y0 � a21y1 � a22y2/;

z1 D a1.�a20y0 C a21y1 � a22y2/;
z2 D a2.�a20y0 � a21y1 C a22y2/:
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(3) The image Y of Œ'� coincides with the image ofX under � ; and it is the conic
Y defined by the circumscribed trilateral y0y1y2 D 0 and its Brianchon point
B D 	

1

a2
0

; 1
a2

1

; 1
a2

2



, cf. [13, Vol. II, Chapter 16].

Replacing the (13.2) in the equation a0x0 C a1x1 C a2x2 D 0 (and dividing
by a0a1a2) one obtains the equation of the conic

a40y
2
0 C a41y

2
1 C a42y

2
2 � 2a20a21y0y1 � 2a21a22y1y2 � 2a22a20y2y0 D 0;

tangent to the lines y0 D 0, y1 D 0, y2 D 0 at the points Œ0; a22; a
2
1�,

Œa22; 0; a
2
0�, Œa

2
1; a

2
2; 0�.

13.1.2. If a conic � and a cubic C have the same tangents in three pointsA, B , and
C , the three tangents have a further intersection with C in three collinear points.

Indeed, six of the nine base points of the pencil of cubics defined by C and the
trilateral of the three tangents are A, A, B , B , C , C and they belong to the conic � .
Therefore, the other three base points are collinear, cf. Exercise 5.7.15.

Note that, conversely, if through three collinear points of C one draws three
tangents of C , the three points of contact are points of contact of C with a tritangent
conic. All the tritangent conics are obtained in this way.

13.1.3. Show that an irreducible quartic surface F in P3 that passes doubly through
a curve C of order 3 is a Steiner surface or a rational ruled surface.

It follows from Bézout’s theorem that, since F is irreducible, the curve C is
not a plane cubic (every line of the plane of C would have six intersections with
F and so would be contained it F), is not split into a conic and a line r without
common points (for each point P belonging to the plane 
 of the conic, the line
` D 
 \ J.P; r/ would have six intersections with F) nor is it a triple of lines that
are skew in pairs (every line that is supported by the three lines would still have six
intersections with F).

Hence C can only be either a triple of lines issuing from a point P (and then
F is a Steiner surface, cf. Exercise 10.5.6), or a space cubic (possibly split into an
irreducible conic � and a line r that meets � in a point A but is not contained in the
plane of � ).

The existence of quartic surfaces F passing doubly through a space cubic C is
proved by writing their equation. Indeed, C is the base curve of a net of quadrics
with equation �0'0 C �1'1 C �2'2 D 0 (cf. Exercise 7.5.3), and each surface of
order 4 with equation

2X
i;jD0

aij'i'j D 0; aij 2 K;

passes doubly through C . One sees immediately that if F is not a Steiner surface,
so that C is a space cubic, then F is ruled. Indeed, through any one of its points



436 Chapter 13. Supplementary Exercises

P there passes a chord of C (cf. Exercise 7.5.2). Such a chord, having at least
five intersections with F (one at P and two in each of the points at which C is
supported) must be contained in F (if C D � [ r is split into the conic � and the
line r , then the chord of C passing through P is the line that joins P with the point
B ¤ A common to � and the plane J.P; r/).

A generally bijective correspondence between a quartic surface F containing a
double space cubic C and a plane 	 is obtained immediately by associating to each
point P of F the intersection of 	 with the chord of C issuing from P .

13.1.4. Determine the order of the ruled surface R that is the locus of the tangents
of a space cubic C in P3.

The order of R is the number of tangents of C that are supported by a generic
line r , that is, the rank of C , which is exactly 4 (cf. Exercise 7.5.2).

Alternatively, one could also proceed as follows. If one projects the cubic C
from a point P of r onto a plane 
 one obtains therein a cubic C 0 with a double
point (the trace of the chord of C issuing from P ). The tangents of C that meet r
have as their projections the tangents of C 0 issuing from the trace of r in 
 . Since
the class of C 0 is 4, the surface R is a ruled surface of order 4.

13.1.5. Let x, y, and z be affine coordinates in A3. Write the equation of the
ruled surface R of the tangents to the cubic C which is the locus of the point
P.t/ D .t3; t2; t /.

The equation of R is obtained by eliminating t from the equations of the tangent
to C at the point P.t/. One can also arrive at the same equation by recalling that
the ruled surface of the tangents to a space cubicC is the envelope of the osculating
planes of C (cf. Exercise 7.5.2).

One finds that R has the equation x2 C 4y3 � 3y2z2 C 4xz3 � 6xyz D 0 (cf.
(7.24)).

13.1.6. Let† be the linear system of quadrics in P3 that pass both through a conic
� and a point P (not belonging to the plane of � ). Show that the Jacobian surface
of † decomposes into the cone that projects � from P and the plane of � counted
twice.

We may suppose that � has equation x0 D '.x1; x2; x3/ D 0 and that P is the
point Œ1; 0; 0; 0�. Then † has equation

�0'.x1; x2; x3/C x0.�1x1 C �2x2 C �3x3/ D 0:

Applying the theory expounded in Section 6.4 one obtains the desired result.

13.1.7. Let † be the linear system of conics in P2 with respect to which a given
point P and a given line p are pole and polar. Describe the projective image of†.

The system †, which does not have base points and has degree 4, is composed
with the harmonic homology ! having P and p as center and axis (this means that
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† is composed with the involution of the pairs of points corresponding under !).
Thus the projective image of † is a quadric Q (cf. §10.1.8).

The only lines of this quadric are the images of the lines of the pencil with
center P . Therefore Q is a quadric cone.

This may be seen immediately in analytic fashion by choosing P as the origin
O of an affine coordinate system u, v and p as the improper line (at infinity). Then
† is the system of the conics havingO as center: �0u2 C�1uvC�2v

2 C�3 D 0.
Furthermore, the projective image of † is the locus of the point with Cartesian
coordinates .u2; uv; v2/, namely the surface with equation y2 � xz D 0.

13.1.8. LetQbe a non-specialized quadric in P3,
 a plane, andP a point belonging
to neither Q nor
 . Projecting Q fromP onto
 one obtains a morphism ' W Q ! 
 .

Study the algebraic system of the conics in 
 that correspond to the plane
sections of Q, and that of the lines in 
 that correspond to the lines of Q.

The fibers of ' are pairs of points that are, in general, distinct. The branch
curve, that is the curve in 
 which is the locus of the points A such that the fiber
'�1.A/ is a pair of coinciding points is the trace � of the cone that has its vertex at
P and is circumscribed to Q. In other words, the branch curve is the conic which
is the projection of the curve � obtained as the section of Q by the polar plane of P
with respect to Q.

Every curve traced on Q and having a point M in common with � is projected
into 
 from P onto a curve tangent to � at the point M 0, the projection of M .
Therefore, the plane sections of Q (which have two points of intersection with � )
have projections that are the conics bitangent to the conic � (the condition of
tangency is quadratic, and thus one obtains a non-linear algebraic system). To the
lines of Q there correspond the tangents of � .

13.1.9. Prove the existence of algebraic plane curves of order 6 with nine cusps,
and examine the configuration of their cuspidal tangents.

A sextic L with nine cusps has class 3 (cf. (5.34)) and is the dual curve of
a non-singular plane cubic C , which has class 6 and possesses nine inflectional
tangents (cf. Remark 5.3.2 and Example 5.3.3). Under duality, to these nine lines
there correspond the nine cusps of L and to the points of contact (that is, to the
flexes) there correspond the nine cuspidal tangents of L.

The configuration of the cuspidal tangents has properties dual to those of the
flexes of a cubic: for example, for the point of intersection of two of the nine
cuspidal tangents there passes a third cuspidal tangent.

13.1.10. The algebraic plane curves of order n passing through n.nC3/
2

� 1 points

P in general position, all pass through .n�1/.n�2/
2

further points.

The points P define a pencil of curves of order n that has

n2 � n.nC 3/

2
C 1 D n.n � 3/

2
C 1 D .n � 1/.n � 2/

2



438 Chapter 13. Supplementary Exercises

further base points.

13.1.11. Determine the double points of the surface F in P3 with equation

L1L2 : : : L2n CM 2 D 0;

where M is a generic homogeneous polynomial of degree n and L1; : : : ; L2n are
linear forms.

The n
�
2n
2

�
points Pij given by Li D Lj D M D 0 are double points for F, and

for a generic choice of the polynomials L1; : : : ; L2n, M there are no other double
points.

13.1.12. Let P , Q be two arbitrary points of an irreducible space cubic C in P3.
Choose the reference system for the projective coordinates x0, x1, x2, x3 in such a
way as to have

(1) P D A0 D Œ1; 0; 0; 0�, Q D A3 D Œ0; 0; 0; 1�;

(2) J.A0; A1; A2/ and J.A1; A2; A3/ are the osculating planes of C at P andQ;

(3) rA0A1
and rA2A3

are the tangent lines at P and Q;

(4) the unit point U D Œ1; 1; 1; 1� belongs to C .

How can C be represented analytically?

Let u, v be projective homogeneous coordinates in P1 and let

Œu; v� 7! Œx0; x1; x2; x3�

be the isomorphism ' W P1 ! C defined as follows (cf. (7.14)):

xi D ai0u
3 C ai1u

2v C ai2uv
2 C ai3v

3; i D 0; 1; 2; 3:

We may suppose that the system of coordinates u, v in P1 is given in such manner
that '�1.P / D Œ1; 0�, '�1.Q/ D Œ0; 1�, '�1.U / D Œ1; 1� (Figure 13.1).

The fact that C passes through P and Q implies that a10 D a20 D a30 D
a03 D a13 D a23 D 0. Since x3 D 0 is the osculating plane at A0 we must have
a31 D a32 D 0 (because the equation giving the intersections of C with the plane
x3 D 0 must be v3 D 0, cf. §7.1.1); similarly we find a01 D a02 D 0. Thus C has
parametric equations 8̂̂̂̂

<̂
ˆ̂̂:
x0 D a00u

3;

x1 D a11u
2v C a12uv

2;

x2 D a21u
2v C a22uv

2;

x3 D a33v
3:
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Since the tangent at P is the line rA0A1
W x2 D x3 D 0 we must have a21 D 0

(so that the equation giving the intersections of C with the line x2 D x3 D 0 is
v2 D 0); similarly a12 D 0.

Finally, the hypothesis that U belongs to C implies that a00 D a11 D a22 D
a33.

In conclusion C is the locus of the point Œu3; u2v; uv2; v3�.

A3 D Q

A1

A2

U

C
P D A0

Figure 13.1.

13.1.13. Prove that if two quadric conesF andG have a space cubicC in common
(and thus also a chord of C/ then there are no other cones in the pencil that they
define.

We may suppose that C is the locus of the point Œu3; u2v; uv2; v3� and that the
two cones have vertices Œ1; 0; 0; 0� and Œ0; 0; 0; 1� (see Exercise 13.1.12). The two
cones then have respectively the equations x1x3 � x22 D 0 and x0x2 � x21 D 0.

One sees immediately that the singular quadrics of the pencil �.x1x3 � x22/C
�.x0x2�x21/ D 0 are obtained for values of the ratio � W � that resolve the equation
�2�2 D 0.

13.1.14. Determine the possible types of pencils of quadric cones in P3.

A first type of pencil† of quadric cones is obtained by projecting the conics of
a pencil contained in a plane from a pointP not belonging to the plane. In this case,
the cones of the pencil all have the same vertex. If however† is a pencil of quadric
cones with variable vertex, the locus of the vertices is a curve C that is a base curve
for † by Bertini’s first theorem (Theorem 6.3.11). In particular, it follows that C
has order � 4.
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The curve C can not be a space cubic because, as seen in Exercise 13.1.13,
taking linear combinations of (the equations for) two quadric cones passing through
a space cubic one obtains a pencil of quadrics which does not contain other cones.
The curve C can not be a space quartic either since in that case the cones of the
pencil (which are obtained by projecting C from one of its points) would all be
cubics. It is then obvious that C can not be a plane curve of order � 2. Thus C is
a common generator of all the cones of †.

LetA andB be two arbitrary points ofC . The pencil† can be obtained by taking
linear combinations of the two cones ˛ and ˇ with vertices A and B respectively.
Since A is a simple point for ˇ, the tangent plane at A to the generic cone of †
coincides with the tangent plane at A to ˇ (cf. Remark 6.3.9); and therefore the
cones of † are tangent along the line C to a fixed plane 
 . Intersecting † with a
plane 	 not passing through C we obtain a pencil ˆ of conics tangent to the line
	\
 at the point where it meetsC . Moreover, the correspondence which to a point
P of C associates the trace in 	 of the cone of† that has vertex P is a projectivity
C ! ˆ (because it is algebraic and bijective).

Conversely, let F and G be two quadric cones with distinct vertices A and B ,
and suppose that they have a line ` in common and the same tangent plane 
 along
this line. At an arbitrary point P of ` the tangent planes of F and G coincide, and
so, again by Remark 6.3.9,P is a double point for a quadric of the pencil determined
by F and G. This pencil then has 11 cones, and is therefore a pencil of quadric
cones.

The conclusion is that in P3 there are only two types of pencils of quadric cones,
namely

a) the pencils † obtained by projecting a pencil of conics of a plane 	 from a
point P and having base curve a quadruple of lines issuing from P ;

b) the pencils † of cones tangent to a plane 
 along a line `, and having base
curve composed of the line ` counted twice together with a conic � meeting
` at a point where � is tangent to 
 .

This last statement is easily verified analytically. Suppose that ` has equations
x1 D x2 D 0 and that one of the cones of the pencil is x22 � x1x3 D 0 (so that its
vertex is Œ1; 0; 0; 0�) and suppose further that 
 is the plane x1 D 0. A second cone
of the pencil that has as vertex the point Œ0; 0; 0; 1� will have equation of the form
x1.ax0 C bx1 C cx2/ C x22 D 0 since it must be tangent to the plane 
 along `.
Then the cone of the pencil

x1.ax0 C bx1 C cx2/C x22 C �.x22 � x1x3/ D 0

that is obtained when � D �1 decomposes into the plane x1 D 0 and the plane
ax0Cbx1C cx2Cx3 D 0. The latter plane intersects the generic cone of† along
the conic with equation ax0 C bx1 C cx2 C x3 D x22 � x1x3 D 0 which is tangent
to 
 at the point Œ1; 0; 0;�a�.
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13.1.15. Prove that the spaces S3 that project the points of a Veronese surface from
a plane tangent to it at an arbitrary point onto a plane do not exhaust all of P5,
but rather only a quadric cone.

Let F be the locus of the point Œx0; x1; x2; x3; x4; x5�where, cf. Example 10.2.1,

x0 W x1 W x2 W x3 W x4 W x5 D u2 W 2uv W v2 W 2uw W 2vw W w2

and P D Œ0; 0; 0; 0; 0; 1� (that is, P is given by u D v D 0). Then the space S3 that
joins the generic point of F with the three points Œ0; 0; 0; 1; 0; 0�, Œ0; 0; 0; 0; 1; 0�,
Œ0; 0; 0; 0; 0; 1� that define the tangent plane atP (cf. §3.2.1) is the locus of the point
Œu2; 2uv; v2; �; �; ��, �;�; � 2 K, and is therefore contained in the quadric cone
with equation x21 � 4x0x2 D 0.

13.1.16. Let X be a variety in Pn and let F0; : : : ; Fs be linearly independent
forms in the coordinate ring KŒx0; : : : ; xn� all having the same degree d and with
no common zeros on X . Then the map ' W X ! '.X/ � P s , defined by x 7!
ŒF0.x/; : : : ; Fs.x/�, is a finite morphism.

Consider the Veronese immersion of degree d , vd W X ! PN ,N D �
nCd
d

�� 1,
and let L0; : : : ; Ls be the linear forms that correspond to F0; : : : ; Fs (cf. Sec-
tion 6.7). Let p W PN ! P s be the projection of PN from the linear space with
equations L0 D � � � D Ls D 0. The morphism ' is the composition p B vd . Since
the restriction of p to vd .X/ is a finite morphism (cf. Exercise 2.7.37), so too is '.

13.1.17. Consider a cubic surface F in P3 having four nodes. Show that every
point P of F is the vertex of two quadric cones each of which is tangent to F along
a cubic.

By the Reciprocity Theorem 5.4.6 (see also Proposition 5.4.9), we know that if
A is a simple point of F belonging to the quadric Q polar of P with respect to F,
the tangent plane to F at A passes through P . Conversely, the points of contact of
F with tangent planes passing through P belong to the curve L, the section of F

by the quadric Q. Therefore the cone � that projects L from P is tangent to F at
every point of L.

We now prove that the curve L, which is of type .3; 3/, splits into two cubics.
By Lemma 5.6.1, the polar quadric of P with respect to F passes through P and
has the same tangent plane as F there. Then P is a double point for the curve L,
the section of F by the quadric Q and which has order 6; cf. 5.8.3. Hence � is a
cone of order 4.

Moreover, the curve L has as double points the four nodes of F, through which
Q passes simply (cf. Lemma 5.6.2).

On the other hand, the cubics of type .2; 1/ on a quadric are in number 15 and
thus for the five double points of L there passes a cubic C D .2; 1/ contained in
Q. This cubic has (at least) ten intersections with L, which contradicts (7.7) unless
C is contained in L. In that case the curve L of type .3; 3/ is a pair of cubics: one
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.1; 2/ and one .2; 1/ whose five intersections are the double points of L. It follows
that the cone � (of order 4) decomposes into two quadric cones each of which is
tangent to F along a cubic.

13.1.18. Show that if a quadric Q in P3 is tangent to a cubic surface F along a
cubicC , then Q is a cone with vertex onC and F has four double points (in general
distinct) on C .

On a non-specialized quadric a curve of type .3; 3/ can not be a cubic counted
twice (since 2.2; 1/ D .4; 2/ and 2.1; 2/ D .2; 4/). Therefore, if Q and F are
tangent along a cubicC , then Q is a cone andC passes through its vertex and meets
every generator in a further point.

Consider a point P in P3. We seek the points of C for which F has a tangent
plane passing through P . Since F and the quadric cone Q have the same tangent
plane at every point of C , this is equivalent to seeking the tangent planes of Q that
pass through P . (Those planes are tangent to Q along a generator, and so also at
the point of C that lies on that generator.) The number of these planes is two since
through a generic point of P3 there pass two tangent planes to a quadric cone.

On the other hand, the points of C that are simple for F and at which F has
tangent plane passing through P lie (by the reciprocity theorem) on the first polar
F1.P / of P with respect to F. Hence there are two simple points of F common to
the cubic C and the quadric F1.P /.

But C and F1.P / have six points in common; therefore, the four missing in-
tersections are absorbed by the double points of F. The quadric F1.P / passes
simply through each of the double points of F with tangent plane distinct from the
tangent plane to F, cf. Lemma 5.6.2 and Exercise 5.8.2. Therefore every double
point corresponds to a single intersection. Thus in general F has four double points
on C .

13.1.19. Let C be a space curve of order n and genus p in P3. Represent the lines
of P3 as points of a quadric hypersurface Q � P5 (cf. Section 12.1). Determine
the order of the surface F � Q whose points “are” the chords of C .

Each plane in P3 contains
�
n
2

�
chords ofC . Moreover, every star of lines contains�

n�1
2

��p chords ofC , since on projectingC from the center of the star one obtains
a plane curve, of genus p, having

�
n�1
2

��p nodes that correspond to the chords of
C , cf. 7.2.9.

It follows that the surface F meets every plane 
1 of one of the two systems of
planes of Q in

�
n
2

�
points, while meeting every plane 
2 of the other system of Q in�

n�1
2

��p points (cf. §5.5.9 and §12.1.2). In particular, if ˛ is a generic plane of P3

and A is a generic point of ˛, to them there correspond on Q a plane 
1 and a plane

2 having a common line (the image of the pencil of lines of ˛ passing through A),
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and so belonging to a space S3. The order of F is thus 
n

2

!
C
 
n � 1
2

!
� p:

13.1.20. Show that the surface F, the projective image of the linear system of all
algebraic curves of order n in the plane 
 , does not have trisecants.

The surface F is embedded in a projective space P
n.nC3/

2 . If A, B , and C were

three collinear points of F, all the hyperplanes of P
n.nC3/

2 passing through A and
B would also pass through C . Consequently, in the representing plane 
 , all the
algebraic curves of order n passing through two pointsA0 andB0 corresponding to
A and B would also pass through the point C0 whose image is C . This, however,
is absurd (if n > 1).

13.1.21. A reduced, irreducible algebraic curve has non-singular models in P3 and
plane models which are either non-singular or whose only singularities are nodes
(cf. §8.1.2).

Let C � P r be a reduced and irreducible algebraic curve. If it is not planar
we can replace it with the plane curve birationally isomorphic to C (which we will
again call C ) obtained via projection on a plane 
 from a subspace Sr�3 chosen so
that the projection is simple (cf. §7.1.1).

If d is the order of C its Veronese immersion C � D 'n.C / taken via the curves
of order n in 
 has order nd and belongs to the surface Fn

2 D 'n.
/ � PN , where
N D �

nC2
2

� � 1 (cf. Section 6.7).

Since in the plane we have
�
nC2�d
2

�
linearly independent curves of order n that

contain C as component, the curve C � belongs to
�
nC2�d
2

�
linearly independent

hyperplanes of PN and so is immersed in a space PN
0

with

N 0 D
 
nC 2

2

!
� 1 �

 
nC 2 � d

2

!
D nd � 1

2
.d � 1/.d � 2/:

Since the Veronese immersion is an isomorphism,C � has singularities if and only if
C does too. Let P � be an s-fold point of C � (s > 1). Projecting C � from P � onto
a hyperplane one finds there a curve � of order � nd � 2 in a space of dimension
N 0 � 1.

By Exercise 13.1.20 we know that Fn
2

does not have trisecants and so the
projection is simple (and the multiple points of � come only from the multiple
points of C �).

Hence every projection from a multiple point produces a reduction by 1 of the
dimension of the ambient space and by at least 2 in the order of the curve. With
a finite number of projections one arrives at a non-singular curve � 0, because the
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order of a curve is never inferior to the dimension of the minimal space that contains
it (cf. Proposition 4.5.6).

If � 0 is embedded in Ph, its projection on S3 from a space Sh�4 that does not
meet the V3 of its chords (for the study of the variety of chords of a curve, see for
example [48, (11.24), (11.25)]) is a non-singular curve C 0 of S3 that is birationally
isomorphic to C . Thus a plane model with only nodes is obtained by projecting C 0
from a generic O in S3 (O should not belong to the ruled surface of the tangents,
the ruled surface of trisecants, and the ruled surface of the lines that join pairs of
contact points of bitangent planes).

13.1.22. How many copies of corresponding points can one assign arbitrarily in
order to determine a quadratic transformation between two planes 
 and 
 0 ?

Represent the pairs of points .P; P 0/ with P 2 
 and P 0 2 
 0 by the points
of the Segre variety V 64 � P8 which is the image of P2 � P2 (cf. Section 11.2).
The pairs of corresponding points under a reciprocity between two planes are the
points of a hyperplane section of V 64 . Since the pairs of corresponding points under
a quadratic transformation are corresponding points for two distinct reciprocities,
they are the points in which V 64 is intersected by two hyperplanes, and thus by the
space S6 which is their intersection (cf. 9.5.10).

Thus one may arbitrarily assign seven pairs of corresponding points (since this
is the number of points needed to generate S6) in order to define a quadratic trans-
formation.

13.1.23. How many common pairs of corresponding points are there for two
quadratic transformations between two planes 
 and 
 0?

By Exercise 13.1.22 we know that to the pairs of pointsP andP 0 that correspond
under two quadratic transformations there correspond on the Segre varietyV 64 � P8

(the Segre product of the two planes 
 and 
 0) the points that belong to two spaces
S6, and thus to the space S4 in which they intersect.

Hence the number of these pairs of points is the order of V 64 , namely 6.

13.1.24. Describe the hyperplane representation of a monoid (that is, of a variety
V nr�1 in P r having an .n � 1/-fold point, cf. 10.5.21).

If x0; : : : ; xr are projective coordinates in P r , the equation of a monoid F of
order n having as an .n � 1/-fold point the point A0 D Œ1; 0; : : : ; 0� is

x0'n�1.x1; : : : ; xr/ � 'n.x1; : : : ; xr/ D 0;

where'n�1 and'n are homogeneous polynomials of degreesn�1 andn respectively
in the variables x1; : : : ; xr . Therefore the monoid has a parametric representation
of the form 8<: x0 D 'n.u1; : : : ; ur/

'n�1.u1; : : : ; ur/
;

xi D ui ; i D 1; : : : ; r;
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or also, for i D 1; : : : ; r , ´
x0 D 'n.u1; : : : ; ur/;

xi D ui'n�1.u1; : : : ; ur/:

Thus the monoid appears as the projective image of the linear system

† W �0'n.u1; : : : ; ur/C 'n�1.u1; : : : ; ur/.�1u1 C �2u2 C � � � C �rur/ D 0

of hypersurfaces inSr�1 with order n and passing through the complete intersection
of two hypersurfaces with equations 'n�1 D 0 and 'n D 0.

13.1.25. Let F be a cubic surface with four nodes in P3. Represent it in a plane

 by projection from one of the four nodes. Study in particular the space cubics
belonging to F and passing through the four nodes, and show that each of them is
a contact curve of F with a quadric cone.

Suppose that the projective reference system is taken so that F has equation

x0.x1x2 C x2x3 C x1x3/ D x1x2x3;

whence its four nodes are the fundamental points of the reference tetrahedron. We
project F from the point A0 D Œ1; 0; 0; 0� onto the plane 
 D J.A1; A2; A3/ with
equation x0 D 0.

The projection on 
 of the section of F by a generic plane �0x0 C �1x1 C
�2x2 C �3x3 D 0 is the curve with equations´

x0 D 0;

�0x1x2x3 C .x1x2 C x2x3 C x1x3/.�1x1 C �2x2 C �3x3/ D 0;

which describes in 
 the linear system † of which F is the projective image.
The system † consists of the cubics passing through A1 with tangent b1 (x0 D

x2 C x3 D 0), through A2 with tangent b2 (x0 D x1 C x3 D 0), and through A3
with tangent b3 (x0 D x1 C x2 D 0).

The three lines b1, b2, and b3 represent three lines a1, a2, a3 in F. Each of
them is in fact tangent to the curves of† at one of the base points and so meets the
curves of † in only a single point away from the base points.

Since the trilateral b1b2b3 is a curve of†, the trilateral a1a2a3 is a plane section
of F. The plane 	 that contains a1, a2, a3 is tritangent to F. One checks easily that

a1 W
´
x0 C x1 D 0;

x2 C x3 D 0;
a2 W

´
x0 C x2 D 0;

x1 C x3 D 0;
a3 W

´
x0 C x3 D 0;

x1 C x2 D 0;

and
	 W x0 C x1 C x2 C x3 D 0:
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The points B1, B2 and B3 where a1, a2 and a3 meet the plane x0 D 0 (and which
coincide with their projections on 
) thus all lie on the line r D 	 \ 
 (with
equations x0 D x1 C x2 C x3 D 0).

They are points of F and belong to the section of F by 
 , that is, to the trilateral
x1x2x3 D 0, whose vertices A1, A2, and A3 are three of the four nodes of F. The
fourth node is A0 (B1 is the point defined by x0 D x1 D x2 C x3 D 0, so that
B1 2 b1; analogously B2 2 b2 and B3 2 b3. Moreover, for i D 1; 2; 3, the point
Bi is contained in the plane xi D 0).

Thus we have shown that the three fixed tangents of the cubics of† cut the sides
of the triangle A1A2A3 in three collinear points along the line r . Note that r is the
Pascal line of the simple hexagon A1A1A2A2A3A3 inscribed in the conic � which
is the section of 
 with the tangent cone to F at A0 (cf. [13, Vol. II, Chapter 16]
and Figure 13.2). The equations of � are x0 D x1x2 C x2x3 C x1x3 D 0 and � is
tangent to bi at Ai , i D 1; 2; 3.

The contact points of the plane 	 with F are the diagonal points of the quadri-
lateral determined by the lines A1A2, A2A3, A1A3, r (Figure 13.2).

The projection from A0 of Ai is the same point Ai : to Ai there corresponds on
F the line A0Ai , i D 1; 2; 3 (cf. §10.1.7).

The net of plane sections passing through A0 and thus having A0 as double
point, projects into the net of cubics in 
 that split into � and another line c. In
particular, to a line c there corresponds on F a cubic C passing through A0 (cf.
expression (10.5)).

The linesA1A2,A2A3,A1A3, which are contained in F, each coincides with its
own projection (for example,A1A2 is the image of the cubic split into the three lines
A0A1, A0A2, A1A2 and similarly for the lines A1A3 and A2A3). The point A1 is
the projection from A0 of all the points of the line A0A1 and thus is an exceptional
point to which there corresponds the line A0A1; the analogous facts hold for A2
and A3.

The conic � is fundamental for †. It is the trace on 
 of the tangent cone
to F at A0 and hence is the image of the double point A0. (On � the first order
neighborhood of A0 on F is opened up.)

The space cubics L passing through the four nodes of the surface are represented
by the plane quartics split into the conic � (which, being a fundamental curve,
corresponds to a point of F) and a conic L0 which is the projection of L from A0
onto the plane J.A1; A2; A3/. The conic L0 passes through the base points A1, A2,
and A3.

The sections of F with the quadrics are the images of the curves of the linear
system ˆ of curves of order 6 having A1, A2, and A3 as tacnodes and the lines a1,
a2, and a3 as tacnodal tangents.

If L is a cubic lying on F and passing through the four nodes and L0 is the conic
of 
 that (taken together with � ) represents it, the system ˆ contains the sextic
which is split into the conic L0 counted twice and � . Thus there is a quadric tangent
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to F along L.

B1

A1

A2
B3

A3

B2

b2

r

b1

� b3

Figure 13.2

13.1.26. After having confirmed that the plane quartic C with equation x20x
2
2 D

x20x
2
1Cx21x22 is rational, determine a rational parametric representation for it using

a suitable quadratic transformation.

The curve C is rational since it has three double points Œ1; 0; 0�, Œ0; 1; 0�, and
Œ0; 0; 1�. The quadratic transformation8̂<̂

:
y0 D x1x2;

y1 D x0x2;

y2 D x0x1

transforms it into the conic with equation y21 D y20 C y22 , the locus of the point
Œ2t; 1 C t2; 1 � t2�. Bearing in mind that Œx0; x1; x2� D Œy1y2; y0y2; y0y1�, we
then have the following parametric representation for C :8̂<̂

:
x0 D 1 � t4;
x1 D 2t.1 � t2/;
x2 D 2t.1C t2/:

13.1.27. Repeat the preceding exercise for the curves C1 and C2 in the affine plane
having equations respectively y2 � x4 C x5 D 0 and .y � x2/2 D x5.



448 Chapter 13. Supplementary Exercises

Making use of the quadratic transformation x D x0, y D x0y0, we find rational
parametric representations

C1 W
´
x D 1 � t2;
y D t .1 � t2/2 and C2 W

´
x D .t � 1/2;
y D t .t � 1/4:

13.1.28 (G. Salmon’s theorem). For i D 1; 2; 3, let Li be three algebraic curves in
P3 of orders `i with L1\L2\L3 D ;. Suppose that Li and Lj have rij pointsPij
in common. Show that the algebraic ruled surface R of the lines in P3 supported
by L1, L2, L3 has order (excluding the cones that project the curves Lk from Pij )

2`1`2`3 � `1r23 � `2r13 � `3r12:
The multiplicity of L1 for R is `2`3 � r23, that of L2 is `1`3 � r13, and that of L3
is `1`2 � r12.

We first assume that r12 D r23 D r31 D 0. The order of R is the number of
points thatR has in common with a generic line r , that is, the number of lines incident
with L1, L2, L3, and r , or, again, the number of points that L1 has in common with
the ruled surface of the lines supported by L2, L3, and r . Let ŒA;B;C� denote the
order of the ruled surface that is the locus of the lines supported by three algebraic
curves A, B, and C. One thus has

ŒL1;L2;L3� D `1ŒL2;L3; r� D `1`2ŒL3; r; r
0� D `1`2`3Œr; r

0; r 00�;

where r , r 0, and r 00 are three generic lines in P3; that is, ŒL1;L2;L3� D 2`1`2`3.
Now suppose that the numbers rij are not all zero. If P is a point common

to L1 and L2, the ruled surface R of the lines supported by L1, L2, L3 contains
as component the cone of order `3 which projects L3 from P . We conclude in
analogous fashion if there exist common points to L1 and L3 or to L2 and L3.

The residual component of the set of these cones in R is thus a ruled surface R
of order 2`1`2`3 � `1r23 � `2r13 � `3r12.

The multiplicity of L1 forR is the number of generators issuing from a generic
pointP of L1. The two cones with vertexP that project L2 and L3 have in common
`2`3 lines; but one must discard the lines that project the r23 points of L2 \ L3
from P . There remain `2`3 � r23 lines. Similarly, one calculates the multiplicities
of L2 and L3 for R.

13.1.29. Use Salmon’s theorem, 13.1.28, to prove that a general cubic surface F

contains twenty-seven lines .cf. Exercises 5.8.13 and 10.5.10/.

The ruled surface R of the lines supported by three plane sections Li of the
cubic F has order 2� 3� 3� 3� 3� 3� 3 D 27 and contains three plane sections
Li as 6-fold curves (`1 D `2 D `3 D rij D 3 in the notation of Exercise 13.1.28).
Thus the surfacesR and F intersect in a curve of order 81which has as components
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the three curves Li each counted six times. There remains a curve L of order
81 � 3 � 3 � 6 D 27.

If P is a generic point of L the generator of R passing through P has at least
four points in common with F (the point P and the three points at which it meets
the sections Li ). Hence it is contained in F and is therefore a component of L. The
curve L is thus split into twenty-seven lines.

13.1.30. Let F be a general cubic surface in P3. We know that it can be represented
over the plane
 by way of the linear system† of cubics that pass through six generic
points B1; : : : ; B6 (cf. Problem 10.5.7). If a, b are two skew lines of F, there are
five lines on F which are supported by a and b.

For example, we verify this fact for the two exceptional lines corresponding to
two of the six base points of †, say B1 and B2. The lines incident with them are
the image line of the line r that joins B1 and B2 and the four lines that are images
of the four conics each of which contains B1, B2, together with three of the other
base points. The line r and the four conics in question meet the curves of † in a
single point away from the base points, and thus are transformed into lines.

13.1.31. Let a and b be two lines on a general cubic surface F3 in P3, and let a0,
a1, a2, a3, and a4 be the five lines of F3 supported by a and b (cf. 13.1.30). Let 

be a plane passing through a0.

A point P 2 F3 and a point P 0 2 
 are said to correspond if the line rPP 0 is
supported by a and b. In this way we obtain a planar representation of F3. Examine
the linear system † of the curves in 
 that correspond to the plane sections of F3.

Let L be a plane section of F3. The line a has in common with L the point at
which it intersects the plane of L. Similarly for the line b. The lines a and b are
skew. By 13.1.28, the ruled surface of the lines supported by a, b, and L then has
order .2 � 3 � 1 � 1/ � .3 � 0/ � .1 � 1/ � .1 � 1/ D 4. It meets the plane 
 in a
curve of order 4, one of whose components is the line a0. The residual cubic passes
through the traces on 
 of the lines a, b, a1, a2, a3, and a4. Hence, † is the linear
system of the cubics passing through six points.

13.1.32 (Surfaces that represent Laplace equations). Consider the map ! W P2 !
Pn defined by

xi D !i .u; v/; i D 0; : : : ; n;

with !i .u; v/ continuous functions having first and second derivatives continuous
in an open set U of P2, at each point of which the Jacobian matrix of the !i .u; v/
with respect to u and v has rank 2. Let F be the image surface (since the function
!i is not necessarily algebraic, we consider here a much wider class of surfaces
than those studied up to now).

IfP0 D Œu0; v0� 2 U andP D !.P0/, we define the h-osculating space of F at
P0 to be the minimal space that contains together with the point P0 all the “derived
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points of P ” up to order h inclusive, that is, the points Pu, Pv , Puv; : : : defined as
follows:

Pu D
�
: : : ;

@!i

@u
; : : :

�
; Pv D

�
: : : ;

@!i

@v
; : : :

�
; Puu D

�
: : : ;

@2!i

@u@u
; : : :

�
; : : : :

We know that the 1-osculating space (i.e., the tangent plane of F at P ) is the locus
of the tangent lines at P to the curves lying on F, passing through P and having a
tangent line there.

If h D 2 (and n � 5) one finds, in general, a space S5 (the 2-osculating space
of F at P ). This S5 contains the osculating planes at P to the curves of F passing
through P (and having an osculating plane there). The points of these planes do
not exhaust S5 but fill out a quadric cone (called the Del Pezzo cone).

An important class of surfaces of Pn for n � 5, studied by C. Segre in his
memoir [90], consists of the surfaces for which it happens that at every point the
2-osculating space is S4. For such a surface F the six points P , Pu, Pv , Puu, Puv ,
and Pvv are not independent, but rather the six functions !i .u; v/ are six integrals
of a partial differential equation

A.u; v/
@2f

@u2
C B.u; v/

@2f

@u@v
C C.u; v/

@2f

@v2

CD.u; v/
@f

@u
CE.u; v/

@f

@v
C F.u; v/ D 0:

(13.3)

We say that F represents the Laplace equation (13.3). The study of surfaces of this
type encounters notable difficulty.

All ruled surfaces are of this type. Moreover, Togliatti [106] determined all the
non-ruled algebraic surfaces in Pn, n � 5, and of order � 6, that represent Laplace
equations. There are four of them, all embedded in P5 and all of order 6. Three are
rational surfaces with sectional curves of genus 1, and Togliatti found their planar
representations. They are the projective images of linear systems of cubics, whence
they are projections of a Del Pezzo surface G6, cf. Section 10.2 and Problem 10.5.7.
The fourth surface, with sectional curves of genus 2, is the intersection of the cone
V 33 that projects a twisted cubic of P3 from a line r with a quadric not passing
through r .

Among these there is the particularly remarkable surface F6, called the Togliatti
surface, which is the locus of the point Œu; v; u2; v2; u2v; uv2� that represents the
Laplace equation

u2
@2f

@u2
C v2

@2f

@v2
C uv

@2f

@u@v
� 2u@f

@u
� 2v @f

@v
C f D 0:

It is the projection from the point O D Œ0; 0; 0; 0; 0; 0; 1� of the Del Pezzo surface
G6 which is the locus of the point Œu; v; u2; v2; u2v; uv2; uv�. The fact that the 2-
osculating spaces of F6 areS4’s depends on the very remarkable fact (discovered by
Togliatti) that the 2-osculating spaces of G6 all pass through O (see also [63, §4]).
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Note. The surface F6 which is the locus of Œu; v; u2; v2; u2v; uv2� should not
be confused with the more famous “Togliatti surface”, F5 in P3 with thirty-one
double points, that is, having the maximum number of isolated double points (cf.
Section 5.8).

13.1.33. A cubic hypersurface F in P4 with a double plane 
 is the locus of 11

planes that intersect 
 in the tangents to a conic � . The tangent cone to F at each
point of � is a double hyperplane passing through 
 .

If 
 is the plane x0 D x1 D 0 we may suppose that F has equation

x20x2 � 2x0x1x3 C x21x4 D 0;

and thus F is the locus of the 11 planes that meet 
 in the tangent lines of the
conic � W x0 D x1 D x23 � x2x4 D 0. Indeed, the tangent to � at its generic point
Œ0; 0; �2; ��;�2� is the line with equations x0 D x1 D �2x2�2��x3C�2x4 D 0.

The tangent cone to F at the generic point Œ0; 0; �2; ��;�2� of � is, cf. §5.8.6,

�2x20 � 2x0x1��C �2x21 D .�x0 � �x1/2 D 0;

that is, a pair of two coinciding hyperplanes.

13.1.34. In P4 consider the cubic hypersurface F with equation

x0x
2
2 C x1x

2
3 C '3.x2; x3; x4/ D 0:

Examine the singularities of F along the line r that joins the pointsA0D Œ1; 0; 0; 0; 0�
and A1 D Œ0; 1; 0; 0; 0� (cf. §5.8.7).

The line r W x2 D x3 D x4 D 0 is double for F. At the generic point
Œ�; �; 0; 0; 0� of r the tangent cone is �x22 C �x23 D 0 (cf. §5.8.6).

One can also argue as follows. The equation x0x22 C x1x
2
3 D 0 is that of the

cone � projecting a ruled cubic surface R (of general type) contained in the S3
defined by x4 D 0 from the point A4 D Œ0; 0; 0; 0; 1�. The cone � passes doubly
through the plane x2 D x3 D 0 and thus also through r .

The equation '3.x2; x3; x4/ D 0 defines a cubic cone with vertex r and so
passing triply through r . It follows that the tangent cone to F at a point P of r is
the tangent cone at P to � (cf. Remark 6.3.9). Hence it is composed of the two
hyperplanes that project the two tangent planes to R at P from A4.

13.1.35. After having observed that for a generic pointP of a cubic hypersurface F

in P4 there pass six lines belonging to F, prove that if F has a double pointQ.¤ P /

belonging to the hyperplane tangent at P then two of the six lines coincide with the
line rPQ.

If P D A0 D Œ1; 0; 0; 0; 0�, then the equation of F is of the type

x20'1 C 2x0'2 C '3 D 0;
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with 'j 2 CŒx1; x2; x3; x4� forms of degree j and 'j .1; 0; 0; 0/ D 0. Moreover,
the six lines '1 D '2 D '3 D 0 pass through P .

If Q D A1 D Œ0; 1; 0; 0; 0� is the double point of F, the forms '2, '3 are of
degree one with respect to x1 and thus the three surfaces with equations 'j D 0,
j D 1; 2; 3, contain the line rPQ W x2 D x3 D x4 D 0with respective multiplicities
1, 1, and 2. Thus rPQ counts doubly in the group of the six lines.

13.1.36. Prove that the cubic surface F � P3 with equation
P3
iD0 x3i D 0 has

eighteen Eckardt points.

Let Li D 0 be three planes of a pencil, and Mi D 0 three planes of another
pencil. Let the axes of the two pencils be skew. One sees immediately that on each
of the two axes there are three Eckardt points of the (non-singular) surface F with
equation

L1L2L3 CM1M2M3 D 0 (13.4)

(for example the plane L1 D 0 intersects F in the three lines L1 D Mi D 0 that
belong to a pencil).

It then suffices to note that x30 Cx31 Cx32 Cx33 D 0 can be written in three ways
in the form (13.4) [.x30 C x31/ C .x32 C x33/ D 0, : : : ]. Each of the edges of the
fundamental tetrahedron contains three Eckardt points (cf. Exercise 10.5.22).

13.1.37. Determine all the homaloidal nets of plane curves of given order n and
not having base points of multiplicity > 2.

If h1 and h2 are respectively the number of double base points and the number
of simple base points, the two Cremona equations (9.12) give

4h1 C h2 D n2 � 1I 2h1 C h2 D 3n � 3:
Hence 2h1 D .n�1/.n�2/ and h2 D 3n�3� .n�1/.n�2/ D �.n�1/.n�5/.
Therefore n � 5, and one then concludes the exercise easily. Note, however, that
the relation 2h1 D .n � 1/.n � 2/ also follows immediately from the fact that the
curves C n of a homaloidal net are rational.

13.1.38. In P2nC1 consider three pairwise disjoint subspaces ˛, ˇ, and � of di-
mension n. Determine the dimension and the order of the variety V swept out by
the lines supported by the subspaces.

For each point P in ˛ there passes one (and only one) line r supported also by
ˇ and � . It is the intersection of the two spaces SnC1 that join P with ˇ and � .
Therefore dim.V / D dim.˛/C 1 D nC 1.

Let ı be a fourth space Sn, in general position with respect to ˛, ˇ, � . For each
point P of ˛ consider the two .nC 1/-dimensional spaces J.P; ˇ/ and J.P; �/ and
the two points Q and Q0 that they have in common with ı. If Q D Q0, then Q
belongs to V .
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The common points of ı and V are thus the fixed points of the correspondence
! W ı ! ı by which two points likeQ andQ0 correspond. We see immediately that
! is a projectivity (of general type by the genericity of the spaces Sn, ˛, ˇ, and � ,
cf. 1.1.14). Therefore deg.V / D nC 1.

13.1.39. Let ˛, ˇ, � be three n-dimensional varieties in P2nC1, of orders a, b, and
c respectively. If these varieties have pairwise only a finite number of points in
common, then the locus of the lines supported by ˛, ˇ, and � is a variety V NnC1,
where N D .n C 1/abc � ap � bq � cr , and p, q, and r are respectively the
number of points of ˇ \ � , of � \ ˛, and of ˛ \ ˇ.

Bear in mind Exercise 13.1.38 and imitate the reasoning of Exercise 13.1.28.

13.1.40. Study the rational surface that is the projective image of the linear system
of curves of type .˛; ˇ/ of a quadric Q � P3, which is not a cone.

Use the representation of the curves on a quadric described in Section 11.1.
Equivalently, using the stereographic projection described in Section 7.3, study

the rational surface that is the projective image of the linear system of plane curves
of order ˛ C ˇ having both an ˛-fold point and a ˇ-fold point.

13.1.41. Consider two skewSn’s, say˛ andˇ, in P2nC1, and a projectivity! W ˛ !
ˇ. Prove that the locus of the lines that join pairs of corresponding points is a variety
V nC1
nC1 which is the locus of 11 linear spaces Sn. In fact, V nC1

nC1 may be defined as
the locus of the lines incident with three of these Sn (and thus is the same variety
as that described in 13.1.38).

Try assuming that the two Sn are the joins

J.A0; A1; : : : ; An/ and J.AnC1; AnC2; : : : ; A2nC1/

respectively, where,A0; : : : ; A2nC1 are the fundamental points. If, as is permissible,
one supposes that two corresponding points are

P D Œ�0; : : : ; �n; 0; : : : ; 0� and P 0 D Œ0; : : : ; 0; �0; : : : ; �n�;

one sees that the locus of the lines that join the points P and P 0 is the locus of the
points that give rank one to the matrix�

x0 x1 : : : xn
xnC1 xnC2 : : : x2nC1

�
:

For any choice of k 2 C [ f1g, the subspace Sn with equations8̂̂̂̂
<̂
ˆ̂̂:
x0 D kxnC1;
x1 D kxnC2;

:::

xn D kx2nC1
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belongs to V nC1
nC1 . Thus one obtains the 11 spaces Sn lying on V nC1

nC1 . In particular,
for k D 1 and k D 0 one recovers the spaces ˛ and ˇ.

13.1.42 Birational transformations between quadrics. We conclude this sec-
tion by suggesting a possible topic for further study.

Let Q and Q0 be two non-specialized quadrics in P3, and let S1 and S2 be the
two systems of lines of Q while S 0

1 and S 0
2 are those of Q0.

On Q consider two pencils †1 and †2 of rational curves of type .˛1; ˇ1/ and
.˛2; ˇ2/. Suppose that two curves of †1 (or else two curves of †2) do not meet
outside the base points (which, without loss of generality, we may assume to be
the same for the two pencils, admitting the possibility that the multiplicity of the
base points can also be zero). Suppose further that a curve of†1 and a curve of†2
have only one point in common away from the base points. The numbers ˛i , ˇi ,
i D 1; 2, and the multiplicities of the base points of†1 and†2 must satisfy suitable
relations, analogous to the Cremona equations for a homaloidal net of plane curves
(cf. Section 9.3).

A birational transformation between Q and Q0 can be obtained by setting up two
projectivities !1 W S 0

1 ! †1, !2 W S 0
2 ! †2; more precisely, to the common point

of the two lines r 2 S 0
1 and s 2 S 0

2 we associate the common point (away from the
base points) of the two rational curves !1.r/ and !2.s/.

We propose the question of extending the Cremona theory discussed in Chap-
ter 9, to the case of Cremona transformations between quadrics. [On Q0 there will
be two pencils †0

1 and †0
2 consisting of rational curves and analogous to †1 and

†2 seen before; there will also be exceptional curves on the two quadrics, and so
on.]

13.2 Further problems

13.2.1. Study the singularities at O D .0; 0/ of the following affine plane curves:

x C 2x2 C y3 D 0I 2x C 2x2 C y4 D 0I x � y D y3I
3xy D x3 C y3I xy � y2 D x3I xy D x4 C xy3 C y3I
2xy C x4 C y4 D 0I 8xy D .x2 C y2/2I x2 � y3 D 0I
x2 � yx2 C y4 D 0I xy2 D x4 C y4:

13.2.2. Find the intersections of the two curves in the affine plane having equations

y2 � x2 D x3 and y2 � 2x2 D x3:

13.2.3. Determine the Jacobian curve of the net of conics with equation �x0x1 C
�x1x2 C �x2x0 D 0 in P2.



13.2. Further problems 455

13.2.4. Study the singularities at the pointO D .0; 0; 0/ of the following algebraic
surfaces in A3:

z D xy C x3I xy � z2 C x3 � y3 D 0I xy C z3 D 0I
y2 C x3 C z2 D 0I xyz C x3 C y3 D 0I xyz D x2y2 C y2z2 C z2x2I
x3 C xy2 C z3 D 0I x2 C xy2 C z3 D 0I z.x2 C y2/ D xyI
z2 D x.x2 C y2/I x C y2 C z3 D 0I xyz D .x C y C z/3I
xyz D 1:

13.2.5. Write the equation of a plane quartic with three nodes.

13.2.6. Write the equation of a plane quartic with three cusps. What can be said
about the three cuspidal tangents?

13.2.7. Determine the multiple points of the algebraic plane curve with equation
y2 D p.x/, where p.x/ is a polynomial.

13.2.8. Determine the cubics in P2 tangent to three lines in three collinear points.

13.2.9. Let F be a cubic surface in P3 with two double points A and B . Determine
the tangent plane at a point P of the line rAB .

13.2.10. Study the singularity atA0 D Œ1; 0; 0; 0� of the surface in P3 with equation
x0x

2
1 C x32 C x1x

2
2 D 0.

13.2.11. Prove that if a plane intersects a cubic surface in P3 in a line counted
twice, then the plane is a component of the Hessian surface.

13.2.12. Use quadratic transformations to desingularize a curve C 5 in P2 having
six or five double points on a conic or a cubic respectively.

13.2.13. Consider the pencil† of cubics with equation x30Cx31Cx32C6�x0x1x2 D
0. The Hessian curve of the generic curve of the pencil † again belongs to †.
Therefore, the curves of† all have the same flexes (since the Hessian belongs to the
pencil it has in common with the curves of† the nine base points; on the other hand,
the flexes of the generic curve C of † are the non-singular points of C through
which the Hessian passes).

Write the coordinates of these nine flexes and verify the properties of their
configurations (see the exercises on plane cubics in Section 5.7).

13.2.14. Let Fn be a surface of order n in P3 that is tangent to a plane along a
curve Cm of order m. How many double points does Fn have on Cm?

13.2.15. Write the equation of a surface of order 4 in P3 with a double conic.
Determine the pinch-points (cf. §5.8.4).
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13.2.16. Determine the possible types of linear systems of plane quartics all of
whose members split.

13.2.17. Prove that the linear system of plane curves of third order passing through
seven points in general position is composed with an involution.

13.2.18. Prove that in P3 there exists only one quadric passing through an irre-
ducible conic � , having a given point P as pole of the plane of � , and passing
through a given point A.

13.2.19. Let! be a Cremona transformation of ordern � 4 between planes. Deter-
mine its factorization as a product of quadratic transformations and projectivities.

13.2.20. Prove that the section of a Steiner surface by a quadric is a curve of
genus 3.

13.2.21. Determine the hypersurface of order n in Pn having as s-fold points the
points of the space Sk D J.A0; A1; : : : :Ak/.

13.2.22. LetC be an algebraic plane curve and let 	 be a quadratic transformation
having one of its fundamental points at a flex of C . What can be said about the
image of the curve C under the quadratic transformation?

13.2.23. Let † be a net of algebraic plane curves tangent at a given fixed point P
to a given line p. Show that the Jacobian curve of † has P as a triple point.

13.2.24. Find the singular points and the flexes of the plane cubic with parametric
representation

x0 W x1 W x2 D 1 W t3 � a2t W t2 C a; a 2 C; t 2 C [ 1:

[Solution. A double point, Œ1; 0; a C a2�, and three flexes: Œ0; 1; 0�, and the points
Pt with t D ˙ia=p3]

13.2.25. Find the singular points and the flexes of the plane cubic with parametric
representation

x0 W x1 W x2 D t W t3 C a2t W t2 C at; a 2 C�; t 2 C [ 1:

[Solution. A double point, Œ0; 1; 0�, and three flexes corresponding to the cubic roots
of t31 C a2t30 D 0, where t D t0=t1]

13.2.26. How many quadric cones contain an elliptic quartic curve C � P3?

13.2.27. Prove that a developable surface F � P3, which is not a cone, is of
degree � 4.

13.2.28. Let C be an algebraic curve belonging to a quadric cone F � P3. Prove
that there exist surfaces G in P3 such that F \G D 2C .
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13.2.29. Write the equation of the algebraic complex of the tangent lines of the
quadric in P3 of equation x20 C x21 C x22 C x23 D 0.

13.2.30. Consider in P3 the quadric Q W x0x3 � x1x2 D 0 and the line r W x1 D
x3 D 0. Write the equation of the linear congruence of the lines tangent to Q at
points of r .

13.2.31. Find the special linear complexes belonging to the pencil

3p01 C 2p03 C �.2p01 C 3p23/ D 0;

where the numbers pik’s are the Plücker line coordinates (cf. Section 12.1).

13.2.32. Prove that the Jacobian curve J of the net of conics

�.x20 C 2x1x2/C �.x21 C x0x2/C �.x22 C x0x1/ D 0

is a trilateral, that is, J consists of three lines.

[Hint: consider the Hessian curve H of J : : : ]

13.2.33. Let F and G be two ruled surfaces and let g be a common non-singular
generator. At how many points of g are F and G tangent?

13.2.34. Prove that the algebraic system of the conics � � P2 tangent to a given
line r is represented in P5 by the quadric cone projecting the Veronese surface F4

from a plane ˛. Notice that ˛ is tangent to F4 and represents the net of conics
having r as component.

13.3 Exercises on linear series on curves

The following result expresses the index of speciality of a linear series on a plane
algebraic curve in terms of the superabundance of adjoint linear systems.

13.3.1. Let C be an irreducible algebraic plane curve of order d , having as singular
points only d ordinary double points, and let A be a divisor of C consisting of
k non-singular points. Let L be an adjoint curve of sufficiently large order N
that contains the divisor A and that cuts C not only in the double points but also
in a further divisor H . Let us suppose that in the double points of C the curves
L and C have intersection multiplicity exactly 2. Then the divisor H consists of
h D Nd � 2d � k points. Thus prove that the index of speciality, i.A/, of A
coincides with the superabundance 	 of the linear system AN of adjoints of order
N passing through H .

In fact, one has (cf. Example–Definition 6.2.2),

	 D dim AN � N.N C 3/

2
C d C h;
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whence

dim AN D N.N C 3/

2
�Nd C d C k C 	:

We know that AN cuts out on C , away from the nodes and the divisor H , the
complete series jAj (see the argument as in 8.6.5 and Remark 8.6.7). On the other
hand, the dimension of the series jAj D gr

k
coincides with the dimension of the

linear series D of the divisors cut out on C by the curves of AN , and is (see §6.3.7)

dim D D dim AN � dim†0 � 1;
where †0 is the linear system of the curves of AN containing C as component.
Since dim†0 D .N�d/.N�dC3/

2
, a simple calculation shows that

dim jAj D N.N C 3/

2
�Nd C d C k C 	 � .N � d/.N � d C 3/

2
� 1

D k �
�
.d � 1/.d � 2/

2
� d

�
C 	 D k � p C 	:

But by the Riemann–Roch theorem we have dim jAj D k � p C i.A/, and so
i.A/ D 	 .

13.3.2. Study the linear series gr
d

on an irreducible planar quintic C with a nodeO .

The genus of C is p D 5. The canonical series is cut out by the conics passing
through O , so that jKC j D g48 . Thus a divisor D belonging to a special series has
degree � 8, the special series being contained in the canonical series.

We note first that C is linearly normal; indeed, there are no curves of order 5
and genus > 2 in P3 (see §8.10.17). On the other hand, the series L cut out by the
straight lines has degree 5 and index of speciality 2, because five collinear points
belong to a pencil of canonical adjoints (split into the straight line of the five points
and another line of the pencil with center O). This means that dim jKC � Lj D 1,
and hence i.L/ D 2 by the Riemann–Roch theorem. The dimension of the complete
series defined by a rectilinear section is thus 2 .D 5�pC 2/, as it is the dimension
of the net of lines in the plane.

One sees immediately that the series cut out on C by the linear system †n of
curves of order n � 2 is non-complete (but rather has defect of completeness equal
to 1). Indeed, if n � 2, the 5n intersections of C with a generic curve of order n
form a divisor of degree > 2p � 2 which is therefore non-special. On the other
hand, cf. §6.3.7,

r D dim†n � dim†0 � 1 D n.nC 3/

2
� .n � 5/.n � 2/

2
� 1 D 5n � 6;

where †0 is the system of curves of order n that contain the curve C , while the
complete series that contains it has dimension 5n � 5 and may be constructed by
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use of sufficiently high order adjoints that contain the 5n intersections of C with a
generic curve of order n (cf. Remark 8.6.7).

By definition of the genus (see Definition 8.5.1), a divisor D consisting of
d � 5 generic points of C is isolated. On the other hand, the complete series
jKC � Dj, cut out on C by the adjoint conics passing through O and containing
D, has dimension 4 � d . Therefore, by the Riemann–Roch theorem, D has index
of speciality i.D/ D 5 � d , so that the complete linear series defined by D has
dimension d � p C i.D/ D 0.

The complete series defined by a divisor of degree d � 9 has index of speciality
i D 0 inasmuch as it has degree d > 2p � 2 D 8, and thus has dimension
r D d � p D d � 5 (see Theorem 8.5.4). The same holds for a generic (and
so non-special) divisor of degree d D 5; 6; 7; 8. For a special divisor, which,
by the above remarks we know must be of degree d D 5; 6; 7; 8, one has rather
r D d � p C 1 D d � 4 because the index of speciality can only be i D 1 (for a
divisor D of degree d � 5 either jKC �Dj D ; or else dim jKC �Dj D 0/.

On the curve C there are no infinite series gr
d

of degree d < 3. Indeed, there
are no g22’s (and thus neither are there g11’s) inasmuch as C is not rational. Nor
are there g12’s. Indeed, otherwise, since the adjoint canonical conics are the conics
passing through O , a divisor D 2 g12 would have index of speciality i.D/ D
dim jKC �g12j C1 D 3. This, however, would lead to the contradiction dim jDj D
d �pC i.D/ D 2� 5C 3 D 0. In particular the canonical series is not composite
and the curve C is not hyperelliptic (cf. Section 8.7).

There thus remain to examine only the series gr
d

of degree d D 3 and d D 4.
Suppose that d D 3. We note immediately that there are no g33’s or g23’s,

inasmuch as the residual divisors of a single point would constitute a (complete)
series g22 or g12 (cf. Proposition 8.3.3).

If D is a triple of points not belonging to a line issuing from O , then D is an
isolated divisor. Indeed, in this case D belongs to a pencil of canonical adjoints
(the conics that contain it and which also pass through O). The same holds if D is
a triple of collinear points, in which case the canonical adjoints that contain D are
split into the line containingD and a line passing throughO . By the Riemann–Roch
theorem it follows that i.D/ D 2 and so dim jDj D d �pC i.D/ D 3�5C2 D 0.

If however D is a triple of points collinear with O , then D belongs to 12

canonical adjoints, composed of the line hO;Di and an arbitrary line. In this case
it follows that dim jDj D 3 � 5C 3 D 1, and so jDj D g13 is the linear series cut
out on C by the lines passing through O .

From these observations it follows that the quintic C is a trigonal curve (see
Example 8.7.5).

Finally, we consider the case d D 4. If D is a quadruple of points in general
position, D belongs to one and only one conic passing through O and therefore its
index of speciality is i.D/ D 1 and dim jDj D 4 � 5 C 1 D 0. Hence D is an
isolated divisor. The non-isolated divisors of degree d D 4 are the quadruples of
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points three of which are collinear with O and the quadruples of points belonging
to a line (not passing through O).

If three, say A1, A2, A3, of the points of D are collinear with O , the divisor
D belongs to 11 canonical adjoints (split into the line a joining O with the three
pointsAi and a line passing through the fourth point P ofD). Therefore i.D/ D 2

and dim jDj D 4 � 5C 2 D 1.
For this series g14 D jDj the point P is fixed. Indeed, the divisor G D A1 C

A2 C A3 is clearly contained in some canonical divisor, but not every canonical
divisor that contains G also contains the point P . To see this, it suffices to take a
canonical divisor cut out on C by any conic through O which splits into the line
a and a line not belonging to the pencil of center P . Then by Noether’s reduction
theorem, as reformulated after Proposition 8.6.10, we conclude that P is a fixed
point of the series jG C P j D jDj.

On the other hand, to construct the series g14 we take an adjoint of the second
order passing through D; it is composed of the line hO;Di and of a line passing
through P , and cuts the quintic in four other points which are collinear with P .
Thus all the conical adjoints passing through these four points pass through P as
well. The residual series of P with respect to the series g14 D jDj is the series g13
cut out on C , away from O , by the pencil of lines having center O .

If the four points belong to a line ` not passing throughO , the divisorD belongs
to 11 canonical adjoints, since the conics split into the line ` and a line throughO .
Then the series jDj has dimension dim jDj D d �pC i.D/ D 4� 5C 2 D 1 and
is cut out on C by the pencil of lines having as center the fifth point of intersection
of C with the line `.

13.3.3. Let C be an elliptic irreducible planar quintic. Prove that it is the projection
from a line of a linearly normal quintic � � P4. The curve � is non-singular, and
has neither trisecant lines nor quadrisecant planes. The locus of the 12 chords
of � is a hypersurface of order 5. A generic line r of P4 does not belong to any
trisecant plane; rather, through it there pass five bisecant planes. The quintic C

possesses a triple point and two double points, or else five double points according
to whether or not r belongs to a trisecant plane .a line can not belong to two
trisecant planes/. Study the projections of � into a subspace S3.

The lines of the plane cut out a non-special linear series g25 on C which is
contained in a complete series of dimension r D 5 � 1 D 4. Hence C is the
projection of an elliptic quintic� of P4 on which the hyperplanes cut out a complete
series g45 . Thus, � is linearly normal.

The curve � does not have any quadrisecant planes (and so has neither trise-
cant lines nor singular points) because the pencil of hyperplanes passing through a
quadrisecant plane would cut out a g11 on � .

The locus of the chords of � is a hypersurface of order 5. Indeed, if d is the
number of chords supported by a generic line `, then d is also the number of planes
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passing through ` and containing two further points of � , so that d is the number of
double points of the projection of � from ` onto a plane 
 . Thus d D 5 because 5
is the number of double points of a planar elliptic quintic without any triple points.

For special positions of the straight line ` three (but not more than three) of the
above mentioned five planes can coincide in a trisecant plane. From such a straight
line `, that is, from a line ` lying over a trisecant plane of � , the curve � is projected
into the plane as a quintic curve with one triple point and two double points. It is
clear that a straight line can not belong to two trisecant planes.

The quadrics of P4 cut out on � a linear series gr10 which is non-special (10 >
2p � 2), and of dimension r D 14 � h, where h � 1 is the dimension of the linear
system † of quadrics containing � (cf. §6.3.7). Thus, 14 � h � 10 � p D 9, so
that h � 5. Therefore there exist 13 quadric cones belonging to †.

Let � 0 be the projection of � from a pointO not belonging to � into a subspace
S3 of P4.

If O is not the vertex of a cone of †, then � 0 does not belong to any quadric
surface and is the residual intersection of two cubics surfaces passing through a
rational normal quartic C. Let us represent one of the two cubic surfaces with the
linear systemC 3.B1; : : : ; B6/. Thus the projection� 0 is represented in the plane by
a cubic passing through four of the six base points, while the quartic C is represented
in the plane by a curve of order 6 passing doubly through those four base points Bj
and with multiplicity 3 at the remaining two.

IfO is the vertex of a quadric cone Q of†, the planes of one of the two systems of
planes lying over Q are trisecant planes of � . Moreover, � 0 is a curve of type .2; 3/
with a double point (since p D 1) on the intersection of Q with this hyperplane.

The projection of � from any one of its points into a hyperplane S3 is the base
curve of a pencil of quadrics.

The following exercises make use of the planar representation of rational sur-
faces developed in Chapter 10.

13.3.4. Let C be an irreducible planar quintic of genus p D 2. It is the projection
of a non-singular quintic � � P3. The curve � belongs to a quadric Q and is of
type .2; 3/. If C has a triple point, the center O of projection is a point of Q. If
instead C has no triple point, the center of projection is a double point common to
the cubic surfaces of a pencil whose base curve consists of � and four chords of �
issuing from O .

For a planar quintic C of genus p D 2 two cases are possible:

(1) C has a triple point O and an ordinary double point A;

(2) C has four not necessarily distinct ordinary double pointsA,B , C ,D (which
are three by three non-collinear).
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The canonical series jKC j D g12 is cut out in the first case by the lines through
O (since the canonical adjoints are the conics split into the line hO;Ai and another
line through O). In the second case it is cut out by the conics passing through A,
B , C , D.

The linear series HC cut out by the lines has dimension 2 and is non-special
(cf. Theorem 8.5.4). The dimension of the complete series that contains the series
of rectilinear sections is thus r D 5 � p D 3. Therefore the series HC is not
complete, that is, C is not linearly normal, and so there exists a quintic curve � in
S3 which has C as its projection (see Section 8.4). The curve � is linearly normal.
In fact, one should note that an irreducible curve of order 5 belonging to S4 has
genus 1 (see 8.10.13), and irreducible quintics in S5 are rational. Moreover, if
n � 6, irreducible quintics in Sn do not exist.

A quintic � in S3 having genus 2 is non-singular and belongs to one (and only
one) quadric Q. Indeed, 2 is the maximum genus for a space curve in P3 and the
curves of maximum genus belong to quadrics (see §8.10.17).

Moreover, on� the quadrics of P3 cut out a linear seriesgr10 which is non-special
(since 10 > 2p� 2) and whose dimension is r D 9�h if h� 1 is the dimension of
the linear system of quadrics containing � (cf. §6.3.7). Thus 9� h � 10� p D 8,
and so h � 1; in fact, h D 1 because a quintic in S3 can not belong to two quadrics.

From §8.10.17 we know that, if Q is non-singular, � is a curve of type .2; 3/;
if Q is a cone, � passes through the vertex and meets each generator in two other
points.

If C has a triple point, the center, say P , of projection belongs to Q and con-
versely. Indeed, if P 2 Q, the curve � meets the line a of type .1; 0/ passing
through P in three points, and thus a intersects the plane in the triple pointO of C .
The converse is clear.

Suppose now that C has no triple point, so that it is the planar projection of the
curve � from a point P not belonging to Q. The curve � certainly belongs to cubic
surfaces (because the cubic surfaces are 119 in number and the cubic surfaces that
pass through sixteen points of � must contain �). The linear series gr15 cut out on
� by the cubic surfaces has dimension r D 19�h, where h� 1 is the dimension of
the linear system† of cubic surfaces that contain � . Since the series is non-special,
it follows that 19 � h � 15 � p D 13 and so h � 6. Hence dim† � 5.

The system † contains at least a pencil ˆ of surfaces having P as a double
point (inasmuch as imposing on the cubics of P3 to pass doubly through the point
P constitutes a linear condition of dimension

�
3C1
3

� D 4, cf. Section 6.2).
The four chords of � issuing from P , whose traces in the plane projection are

the four nodes of C , belong to all the surfaces of the pencil. Hence the base curve
of the pencil consists of � and these four chords (which constitute the base curve
of the pencil of cones tangent at P to the surfaces of ˆ).

Conversely, we take a pencil ˆ of cubic surfaces having a common double
point P such that the four base lines bi of the pencil ‰ of cones tangent at P to
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the surfaces of ˆ belong to all the surfaces of ˆ. The base curve of ˆ consists of
the four lines bi and a quintic � of genus two whose projection from P into the
plane 
 is a quintic C having nodes at the four points where the lines bi meet 
 .
Indeed, the ten intersections of � with an arbitrary cone of‰ are distributed on the
six lines of intersection of that cone with the corresponding cubic surface: eight of
these points lie in pairs on the lines bi ; the other two belong to the remaining two
lines (one on each of them).

Over the plane 
 let us represent an arbitrary cubic surface F of the pencilˆ via
projection from the point P . The system of plane sections of F has as its projection
on 
 the linear system†0 of cubics passing through six points of a conic � . Indeed,
� is cut out on 
 by the tangent cone to F at P and the six points are the traces of
the six lines of F passing through P . Four of these six lines are the chords bi of �
issuing from P , while the other two meet � in a (single) point (away from P ). In
the plane 
 one has the quintic C whose four nodes A, B , C , D are four of the six
base points of †0; the other two base points M , N are a pair of the linear series g12
cut out on C (away from the points A, B , C , D) by the conics through A, B , C ,
D. To g12 there corresponds on the curve � the linear series 	12 cut out (away from
the eight intersections of � with the chords bi ) by the pencil of cones tangent at P
to the surfaces of ˆ.

13.3.5. Describe all the irreducible curves of order 6 and genus p D 3 having
ordinary singularities.

In the first place we observe that a curve of genus 3 and order 6 is either planar or
else it lies in P3. Indeed, letX be a curve of order 6 contained in Pn and belonging
to � independent hyperplanes. On X the hyperplanes of Pn cut out a non-special
linear series gn�	

6 (because 6 > 2p � 2 D 4). Hence n � � � 6 � p D 3, which
gives � � n � 3, and therefore X belongs to the intersection of at least n � 3

hyperplanes, a projective space of dimension � 3.
If the curve X is planar, then one has only four possibilities for its singular

points:

(1) seven double points;

(2) a triple point and four double points;

(3) two triple points and a double point;

(4) a quadruple point and a double point.

The (planar) curveX is not linearly normal. Indeed, the linear series cut out on
it by the lines is a non-special g26 (6 > 2p � 2 D 4) and is not complete inasmuch
as it is contained in a series gr6 with r D 6 � p D 3.

Let us then consider a space curve X � P3 of order 6 and genus 3. We note
first, that, by the preceding remarks, X is linearly normal.
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If h � 1 is the dimension of the linear system of quadrics containing X , the
series gr12 cut out onX by all quadrics has dimension r D 9�h, and is non-special
(12 > 2p� 2). Then 9�h � 12�p D 9 and so h � 0. SinceX can not belong to
two quadrics, one has only two cases: h D 0 (if gr12 D g912 is complete) and h D 1

(if gr12 D g812 is not complete).

If h D 1 and the quadric Q that contains X is non-singular, then on Q the curve
X is of type .4; 2/ and non-singular, or else it is a curve of type .3; 3/with a double
point. Its projection from a point of Q into a plane 
 possesses, respectively, a
quadruple point and a node, or two triple points and a node. Since for a point not
belonging to Q there do not pass any trisecants of X , the projection of X from a
generic point of the space is a sextic with seven nodes.

On a quadric cone Q with vertex a given point O a curve of order 6 and of
genus 3 is the complete intersection of the cone with a cubic surface F. There are
two possible cases: either the cubic F passes through O , or F does not contain O
and is tangent to the cone at a point of X . A projection with ordinary singularities
is obtained only by projecting X from a point not belonging to the cone, and it is a
sextic with seven nodes.

Now let us consider the case h D 0. LetX be a sextic of genus 3 not belonging
to a quadric. If t�1 is the dimension of the linear system† of cubic surfaces passing
through X , the series g19�t

18 cut out on it by the linear system, of dimension 19, of
the cubic surfaces of P3 is non-special (18 > 2p�2) and so 19� t � 18�p D 15,
giving t � 4. Hence dim† � 3 andX is a base curve of†. Moreover, two surfaces
of † also meet along a further (variable) space cubic.

Let F be a non-singular surface of † represented over a plane via the linear
system C 3.B1; : : : ; B6/ of cubics passing through the six points Bi in general
position (and so not belonging to a conic). One sexticX of genus 3 belonging to F

is, for example, that having as image in the plane a non-singular quartic C4 passing
through the points Bi , i D 1; : : : ; 6.

Such a sextic X does not belong to a quadric, because the sections of F by
quadrics are represented in the plane by the curves of order 6 passing doubly through
the points Bi . Thus, to obtain such a sextic, it would be necessary to adjoin to C4

a conic passing through the six points Bi .
The cubic curves of P3 which are residual intersections (away from X ) of the

sections of F with the other cubic surfaces containingX have as image the quintics
for which the points Bi are double points. Indeed, adjoining such a quintic to C4

one obtains a curve of order 9 having the Bi as triple points. On F this new curve
corresponds to the intersection curve with another surface of the system †.

We note that the plane curves of order 5with the six pointsBi as double points are

rational curves and thus form a regular linear system of dimension 5.5C3/
2

�6�3 D 2

(cf. Example–Definition 6.2.2 and Lemma 7.2.14). This system represents the linear
system cut out on the cubic surface F by the surfaces of †. On the other hand, the
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only surface of † passing through the sextic X is F itself. From this it follows in
particular that dim† D 3 (cf. §6.3.7).

In conclusion, the sextic X is the residual intersection of two cubic surfaces
passing through a cubic space curve. The projection of X into a plane from a point
P is either a sextic with a triple point and four double points or a sextic with seven
double points, depending on whether or not P belongs to the ruled surface formed
by the trisecants of X .
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quadric (or hyperquadric), 16, 32
singular locus, 54
unirational, 46

algebraic system, 168, 437
dimension, 168
index, 172
irreducible, 168
linearity condition, 172
non-linear, 437
pure, 168
reduced, 168

algebraic variety, 51
affine, 18
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projective, 32
rational transform, 40

section by tangent hyperplanes,
113

apparent boundary (of a surface from
a point), 156

carried over a plane, 156
theorem of the apparent

boundary, 156
arithmetic Cremona group, 308
automorphism

group of automorphisms
of A1, 45

of a curve of genus � 2, 284
of an affine algebraic set, 45

base point, 170
s-fold base point, 170
isolated base point, 171
ordinary, 171
simple base point, 170
tangent cones at a base point, 174

base variety, 170
isolated, 171
multiple, 171
ordinary, 171

Bertini’s first theorem, 70, 175
Bertini’s second theorem, 184
Bézout’s theorem, 89, 102

for plane curves, 90
strong form, 103
weak form, 103

bihyperplanar double line, 155
bihyperplanar double point, 155
birational automorphisms of a

non-hyperelliptic curve,
277, 283

birational correspondence between
curves, 255, 285

birational equivalence
of algebraic affine sets, 28
of algebraic projective sets, 38

of an algebraic set with
a hypersurface, 29, 42, 79

of hyperelliptic curves, 281
birational isomorphism (or birational

transformation), 187
between curves, 255
of algebraic affine sets, 28
of algebraic projective sets, 38

birational model in P5 of an algebraic
surface, 151

bitangent line, 118, 158
bitangent plane, 158

to a space curve in P3, 200
blow-up, 194, 395

as projection of the graph of the
Segre morphism, 395

center, 194
exceptional divisor, 194, 395
exceptional variety

as linear space, 196
as locus ofVeronese varieties, 196

of Pn along a line, 195
of Pn along a linear space, 196
of Pn at a point, 194
of the plane at a point, 304

proper transform, 304
total transform, 305

branch curve, 437
Brianchon’s theorem, 332

canonical curve of given genus, 271
of genera p D 3; 4; 5, 272

canonical divisor, 264, 269
degree, 269

canonical model of a curve, 270, 271
canonical series

canonical divisor, 264, 269
canonical model, 270
dimension, 269
is a birational invariant, 269
of a curve on a quadric, 286
of a non-singular curve in Pn, 269
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of a plane model, 264
of a singular curve, 273
order, 264, 269
Weierstrass point, 276

Cartier divisor on a curve, 244
effective, 244
group of Cartier divisors, 244

Castelnuovo’s theorem, 187
Cayley–Brill correspondence principle,

275
Chasles’ correspondence principle,

4, 205
Chasles’ theorem, 162
circular helix, 424
circular points, 210
class, 138, 277

of a (non-developable) ruled
surface, 163

of a curve in P2, 205, 208
of a curve in P3, 199
of a hypersurface with only isolated

singularities, 140
of a non-singular hypersurface, 139
of an algebraic envelope, 115

Clebsch’s diagonal surface, 380
Clifford quadric, 225
Clifford’s theorem, 270
Clifford’s theorem (polarity associated

to a curve C n in Pn), 225
closed mapping, 14, 49
codimension, 69
compact space, 14
complete linear series, 248, 251
complex projective space, 4
condition imposed on a linear system,

168
algebraic condition, 170
algebraic condition of dimensiond ,

168
linear condition, 168
linear condition of dimensiond , 168

conical hypersurface (or cone) with given
vertex, 111

connected space, 14
connected component, 14

continuous mapping, 14
at a point, 14

contracted ideal, 20
coordinate ring, 18, 32
coordinates, 1

projective coordinates on Sn, 4
projective coordinates on the line,

1, 3
transformation formula, 1

coresidual divisors, 264
correspondences V , I

affine case, 15–17
projective case, 31–33

Cremona equations, 308
Cremona transformation, 292

between planes, 309, 341
analytic determination of the

exceptional lines, 312
correspondent of an infinitely near

point in a given direction, 312
exceptional curve corresponding

to a point, 312
exceptional curve of the second

net, 312
inversion formulas, 310
order, 309
the associated homaloidal nets

have the same number of base
points, 315

between projective spaces of
dimension 3, 318

by way of a planar representation
of a rational surface, 382

of type .2; 2/ (or quadratic
transformations), 319

of type .2; 3/, 320
of type .2; 4/, 321
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of type .n; n0/ between
r-dimensional projective
spaces, 317

proper transform of a line, 318
cross ratio, 2
cubic surface in P3

configuration of the lines, 449
contains twenty-seven lines, 158,

370, 448
has forty-five tritangent planes, 370
planar representation, 449
tangent planes, 158
with four nodes, 161, 441, 442

planar representation, 445
curve, 68

as (set-theoretic) intersection of
three surfaces, 236

birational automorphisms of a
non-hyperelliptic curve, 277

birational classification, 278, 281
canonical curve of given genus, 271
canonical model, 271
complete intersection, 198, 199, 388
contact, 364

of higher order, 365
containing two linear seriesg1

d
,g1
d 0 ,

286
dual curve, 117, 437
elliptic, 261, 270, 286

birational plane model, 278
modulus, 278
projection of an elliptic normal

curve, 287
elliptic normal, 287
embedded, 197
genus, 205, 256, 260
group of Cartier divisors, 244
group of Weil divisors, 243
hyperelliptic, 270, 271

birational plane model, 279
linearly normal, 254, 460, 462
locally complete intersection, 200

maximum number of double points,
210

non-complete intersection, 153
ideal not of principal class, 153

non-degenerate, 197
not complete intersection, 82
on a quadric cone, 218
order, 198, 199
ordinary model, 242
osculating hyperplane, 198
osculating plane, 198
osculating space, 198
Picard group, 251
rational, 206, 256
rational is algebraic, 220
rational normal, 221

associated ideal, 235
associated polarity, 225
through nC 3 points in Pn, 224

set theoretic complete intersection,
82

surface of the trisecants, 200, 259
trigonal, 273, 459
with general moduli, 283

curve (of type) .˛; ˇ/ on a quadric of P3,
214, 387

curve on a quadric cone, 218
cuspidal double curve, 151, 153
cuspidal point, 153

deficiency of an algebraic curve, 206,
300

De Jonquières transformation
(or monoidal transformation),
310

Del Pezzo cone, 450
Del Pezzo surface, 192, 368, 370
derived point, 66
developable ruled surface

regression edge, 160
diagonal, 44, 45
dilatation (or blow-up), 194
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dimension
invariant for birationally equivalent

varieties, 58
of a hypersurface, 56
of a projective variety, 68, 69
of an algebraic affine set, 56
of the intersection of a projective

variety with a hypersurface, 70
of the intersection of two varieties

affine case, 71
projective case, 71

of the product of varieties, 60
pure, 70

direct similitude (or rotohomothety),
327

discrete valuation ring, 96
divisor, 69

coresidual, 264
isolated, 256
linear system of divisors

on a variety, 174
of a linear series on a curve, 246
on a curve, 243

Cartier divisor, 244
degree, 244
effective, 243
support, 244
Weil divisor, 243

zero divisor, 251
double biplanar point, 150
double nodal curve, 150
dual character of cusp and flex,

118, 437
duality principle, 8

dual property, 8

Eckardt point, 345, 380, 452
elimination of more variables,

20, 100
geometric meaning, 100

elimination of one variable, 84
Kronecker’s procedure, 101

the homogeneous case, 86
elliptic cubic cone, 335
equianharmonic quadruple, 2
essential parameters, 63
Euler’s formula, 60
Euler–Sylvester resultant of two

polynomials, 84, 91, 309
isobaric of given weight, 86

exceptional curve
associated to a base point of a linear

system in P2, 346
is rational normal, 346

of a Cremona transformation
between planes, 312

of a quadratic transformation
between planes, 295

exceptional line
of a quadratic transformation

between planes, 295
of the blowing up of the plane at a

point, 304
extended ideal, 20

factorial ring, 83
irreducible element, 83

family of curves .˛; ˇ/, 214
fiber, 40

of a morphism (or regular map), 40,
41

of a rational map (or rational
transformation), 40

field of fractions, 24, 36
first order (or linear) part of the Taylor

series development of
a polynomial, 53

first order neighborhood, 218, 301
of a point on a quadric, 214

flex of a curve in P3, 199
flex of an elliptic curve, 276
form of the first type, 4
Fréchet space, 19
Frobenius morphism, 44
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fundamental .nC 1/-hedron
(or pyramid), 5

fundamental curve (of a linear system
in P2), 345

fundamental point (of a rational surface),
345

Fundamental Theorem for Projectivities,
9

Geiser’s involution, 183
generators of the ideal of curves in P3,

388
of the cubic, 388
of the quartic, 389

generic (or general) object, 34
generic conic, 35
generic linear space, 35, 80
generic point, 35

genus
of a cone, 285
of a curve on a quadric cone, 218
of a linear system of plane curves,

341
of a variety locus of 11 linear

spaces, 285
of an involution on an algebraic

curve, 275
of the envelope of tangents, 209

genus of an algebraic curve, 205, 256
according to Riemann, 212, 260
according to Weierstrass, 256, 260
Halphen–Castelnuovo’s bound,

290
is a birational invariant, 205, 256
plane curve with only ordinary

singularities, 209, 261
the complete intersection case, 291

geometric Cremona group, 308
graded ring, 30

associated to a ring with respect to
an ideal, 74

homogeneous elements of given
degree, 30

graph, 49, 394
of a morphism, 49
of a rational transformation, 394

Grassmann variety (or Grassmannian),
419

defined by quadratic forms, 418
dimension, 331, 419
dual Grassmann coordinates, 417,

421
embedding space, 419
Grassmann coordinates, 415
hyperplane section, 422
ideal of the Plücker relations, 418
indices, 419
is a factorial variety, 421
is a rational variety, 421
is not complete intersection, 421
of the lines in Pn, 424, 425
order, 422
systems of linear spaces on, 422

Grassmann’s formula, 7
group of Cartier divisors, 244
group of divisor classes of a curve, 251
group of projectivities, 3, 420

product, 3

Halphen–Castelnuovo’s theorem (maxi-
mum genus of a curve),
290

harmonic group, 2
harmonic polar, 149
harmonic quadruple, 2
harmonic set, 2
Hausdorff space, 19
Hessian hypersurface, 137

as the locus of double points for
some first polar, 136

equation, 136
multiplicty at a singular point, 137
of a plane curve, 143
order, 137
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Hilbert Nullstellensatz
affine case, 17
projective case, 32, 307

homaloidal net, 307
Jacobian curve, 332
of conics, 293, 318

base points, 293
of cubics, 318
of plane curves of order n, 307
of quartics, 319

homaloidal system, 317
homeomorphism, 14
homogeneous ideal, 30
homography (or collineation) (see also

projectivity), 8
hyperosculating plane (to a space curve),

233
hyperplane, 16, 32

affine, 16
double tangent hyperplane, 368
projective, 32
section of varieties by tangent

hyperplanes, 113
tangent to a hypersurface, 113
tangent to a variety, 113
tangent to the hypersurface

of a pencil at a base point,
175, 451

hypersurface, 16, 32, 51, 68, 106
s-fold point, 109
bihyperplanar double line, 155
bihyperplanar double point, 155
class, 138
cone with given vertex, 111
dual hypersurface, 117
in P4 with a double line, 155
intersection with its Hessian, 138
irreducible, 107
irreducible components, 107
node, 139
non-singular (or regular, or simple)

point , 52

open subset of non-singular points,
53

order, 106
parabolic point, 138
principal tangent, 111, 156
projective tangent cone, 109
reduced, 107
reducible (or split), 107
section by tangent hyperplanes, 113
sections by linear spaces, 107
singular point, 52, 61, 62
tangent cone in a point of a double

line, 451
tangent cone in a point of a double

curve, 451
tangent cone in a point of an s-fold

variety, 153, 154
tangent to a hypersurface, 113
tangent to a variety, 113
unihyperplanar double point, 155

locus of the unihyperplanar dou-
ble points, 155

ideal of principal class, 153
ideal of the denominators (of a rational

function), 26
ideal of the Plücker relations, 418
incidence condition for dual dimensional

subspaces, 416
independent polynomials, 62
index of speciality of a linear series, 257,

457
of a divisor, 257

infinitesimal line (of a quadric), 214
inflectional line, 118
intersection multiplicity, 103

of a curve with a linear branch, 244
of a surface with a linear branch,

245
of two curves at a point: the simple

case, 90, 303
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of two plane curves at a point, 90,
96, 103, 303

independent of the system of
projective coordinates, 98

inversion (or transformation by
reciprocal radius vectors), 322

involution of given genus, 275, 285
involution of given order on a line, 4, 178

double points, 4, 178
irreducible polynomial, 16
irrelevant ideal, 32
isomorphism

of affine algebraic sets, 22
isomorphism (or birational

transformation)
between curves, 285

Jacobian criterion, 55, 114
Jacobian group of a g1

d
, 178, 276, 431

on P1, 178
on a curve C , 203
order, 205, 276

Jacobian matrix, 45, 52, 63, 177, 186,
341, 449

Jacobian variety, 177, 436
dimension and order, 178

Jordan canonical form, 9, 10

Klein group, 283
Klein quadric, 401
Klein quartic curve, 283
Kummer surface, 162

Laplace equation (represented by
a surface), 449

lemniscate of Bernoulli, 210
linear branch (of a plane curve), 241

intersection multiplicity with
a curve, 244

origin, 241
tangent, 242

linear branch (of a space curve), 245

intersection multiplicity with
a surface, 245

linear complex, 404
curve of a linear complex, 423
general, 404
of Sk in Pn, 431
of lines in P4, 427, 428

center-plane, 428
general, 428
special, 428

of lines in Pn, 428
center, 428, 429

pencil of, 406
point of P5 that represents it, 404
reduced equation, 406
special, 404

axis, 404
linear congruence, 407

degenerate, 407, 408
directrix (or axis), 407
general, 407
special, 407, 408

of the tangent lines to a quadric at
the points of a given line, 408

linear ruled surface, 410
general, 411

as array of lines of a quadric in
P3, 411

linear series, 167, 203, 246
s-fold point of a g1

d
, 178, 203, 206

birational invariance, 202
canonical series, 264, 273
complete, 254

defined by a divisor, 248, 251
of given order, 248

completeness of the residual series,
250

composed with an involution, 253,
347

non-rational, 285
corresponding points, 204
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cut out by a linear system of
hypersurfaces, 246

dimension, 247
fixed divisor, 174, 202
fixed point, 246
index of speciality, 257
neutral divisor, 253
non-special, 257
number of .r C 1/-fold points of a

series gr
d

, 276, 281
on a curve, 202, 246

dimension, 202, 246
order, 202, 246
partially contained in another, 202

on a planar quintic with a node, 458
projective image, 252
residual series of a divisor, 250
residual series of a generic point,

247
simple, 253
special, 257
sum and difference of complete

linear series, 250, 251
zero series, 251

linear system, 167
base point, 170
base variety, 170
birational invariants, 341
complete with respect to a

base group, 347
composed with a congruence,

182, 187, 189
composed with a pencil, 183
composed with an involution,

182, 187, 348, 437
curves having multiple points

that are not base points, 344
degree, 171, 188, 211, 341, 348
dimension, 167
exceptional curve associated

to a base point, 346

fixed component, 183, 345
fundamental curve, 345
genus, 341
homaloidal, 317
irreducible, 183
Jacobian variety, 184
net, 167
of divisors on a variety, 174
of the plane cubics tangent to a conic

in 3 fixed points, 349
order, 167
partially contained in a given linear

system, 345
pencil, 167
projective image, 186, 341

of a composite linear system, 189
order, 188

reducible, 183
regular, 169
section by a subspace, 173
section by a subvariety

dimension, 174
simple, 182, 187, 341
superabundant, 169
with fixed component, 183

linear system of divisors on a variety
dimension, 174

local parameters, 52, 58
local ring (of an algebraic set at a point),

36
Lüroth’s theorem, 47, 187, 218, 275

minimal order of a projective variety, 104
of a curve in P r , 104

Möbius transformation
of the first kind, 327
of the second kind, 327

model of a plane curve with only
ordinary singularities, 301

moduli space of curves, 277
dimension, 278

modulus of an elliptic curve, 278
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of a plane cubic, 147, 149
monoid, 380, 444

hyperplane representation, 444
linearly normal, 380

morphism (or regular map)
fiber, 41
from an open set of an affine

variety, 28
graph, 49
graph morphism, 49
of affine algebraic sets, 21, 22

associated homomorphism
of coordinate rings, 23

bijective but not isomorphism,
22

dominant, 27
finite, 41
isomorphism, 22

of projective algebraic sets, 38
finite, 42

multiplicity
of a hypersurface in a fundamental

point, 111
of a hypersurface in a point, 73, 109
of a hypersurface in a singular point

of a hyperplane section, 115
of a linear section of a hypersurface

in a singular point, 110
of a projective variety in a point, 80

net, 167, 310
irreducible, 307

nodal double curve, 153
node, 73, 259
Noether’s Af C B' theorem, 305
Noether’s reduction theorem, 266, 460
Noether–Castelnuovo theorem, 316
Noether–Rosanes inequality, 315
non-degenerate projective

correspondence, 5
non-singular point, 54, 61

non-singular spatial model and plane
model with only nodes for an
algebraic curve,
259, 261, 443

normal lines (number of), 277
normal singularities (for a surface in P3),

150
null system (or null polarity), 10

open mapping, 14
order

of a curve on a rational surface, 347
of a hypersurface, 72
of a projective variety, 79
of a proper intersection of

projective varieties, 104
ordinary model (of a curve), 242
osculating hyperplane (to a curve), 198,

224
osculating space (of given order)

to a surface, 449
2-osculating space, 450

osculating space (to a curve), 198
oxnode, 302

parabola of order � 2, 240
parabolic curve, 138
parabolic point, 138

locus of the parabolic points, 138
of a plane algebraic curve, 138
of a surface of P3, 138

parametric representation, 190
of a rational curve, 220
of a rational normal curve, 235
of a rational surface, 341, 382
of a twisted cubic, 228
of a unirational variety, 186
of the Veronese variety, 191

Pascal’s theorem, 147
pencil, 167

of linear complexes, 406
of projectively referred hyperplanes,

222
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of quadric cones, 439
pencils of projectively

referred hyperplanes, 222
permutability theorem for polars, 122
Picard group of a curve, 251
pinch-point (or cuspidal point), 150, 153,

156, 164, 364, 366, 367, 375
planar projection of a curve in P3, 200
plane cubic, 140

equianharmonic, 148
harmonic, 148
modulus, 147, 149
tritangent to a conic, 349, 435

plane curve
adjoint, 261
approximating parabola, 240, 241
as set of linear branches, 242
contact of given order with

a curve, 240
linear branch, 241

tangent, 242
neighborhood of an s-fold point, 242
node, 259

plane curve (see also structure
of a singular point of a
plane curve)

s-fold ordinary point, 140
condition for being a projection, 288
cubic, 140, 146, 147, 149

abelian group structure, 149
tangential of a point, 146, 276

flex, 140, 143, 276
of first kind, 140
of given type, 140
point of undulation, 140

Hessian, 143
ordinary cusp, 73, 141, 142
ordinary flex, 144
ordinary point

node, 73, 140
quartic, 145

sextatic points of an elliptic cubic,
276

plane projection of a curve in P3

bitangent, 200
cusp, 201
double point, 200
flex, 200
tacnode, 201
triple point, 201

Plückerian homogeneous (line)
coordinates, 401

Plücker’s formulas, 145, 158
Plückerian singularities

(for plane curves), 144
point of contact, 240

between two hypersurfaces, 113
of a hypersurface with a variety, 113
order, 240

polar (see also polar hypersurface), 119
polar hypersurface

0th polar, 121
double method for reading the

equation of a polar, 125
first polar, 119

projective meaning, 120
local behavior of the first polar of a

surface in P3, 151
multiplicity of two successive

polars at generic points, 136
polar groups, 121
polar hyperplane, 121
polar quadric, 121
second mixed polar, 121
second pure polar, 121
self-conjugate point, 122
singularity and indeterminacy of the

polars, 126
tangent cone, 126

successive polar, 121, 135
equation, 124
multiplicity and tangent cone in

an s-fold point, 135
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of an s-fold point, 135
passes through a singular point,

135
tangent hyperplane as polar of

maximal order, 126
polarity (see also reciprocity of

Pn D Pn.K/), 10
associated to a rational normal curve,

225
polynomial function, 21
primary decomposition (of an ideal), 44,

76
principal closed, 18
principal (or basic) open, 18, 33

isomorphic to an affine algebraic set,
28

of X � An, 20
principal ideal domain, 93
projection

of a variety from a point, 42
of a surface, 350
of a variety from a linear space,

77, 190
projection from a linear space,

8, 42, 49, 77
center, 8
multiple, 78
projecting cone, 77

generator, 77
vertex, 77

projecting space, 8
simple, 78

projective coordinate, 1
projective generation of a curve C n

in Pn, 222, 224
projective image of a linear series, 252
projective image of a linear system, 186,

341
of a composite linear system, 189
order, 188

Projective Restsatz, 265
projective scheme, 72

projective space
complementary subspaces, 7
condition of incidence

point-hyperplane, 8
dual

reference system, 8
duality principle, 8
intersection of subspaces, 6
join of subspaces, 7
linear subspace, 6

dual, 7
hyperplane, 6, 7
line, 6
plane, 6
point, 6

linearly independent points, 6
projecting space, 8
projective homogeneous

coordinates, 4
skew subspaces, 7
sum of points, 5

projectively referred lines, 397
projectivity, 5

between lines, 1
biaxial homography, 11

axis, 11
characteristic, 11
induced projectivity on a

fixed line, 11
fundamental theorem for

projectivities, 9
harmonic biaxial homography, 11
harmonic homology, 11
homography (or collineation), 8

fixed point, 8
subspace of fixed points, 9

homology, 11
axis, 11
center, 11

involutory reciprocity (or involutory
correlation), 10

non-degenerate, 5
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of a line into itself, 3
characteristic, 3
fixed points, 3

of general type, 11
reciprocity (or correlation), 8

projectivity of Pn D Pn.K/
singular (or degenerate) of a given

type, 428
singular space, 428

proper intersection, 102

quadrangle (or quadrangular set), 5
complete, 5
diagonal points, 5
diagonal triangle, 5
sides, 5

opposite, 5
vertices, 5

quadratic transformation between
planes, 294, 295

exceptional lines, 295
fundamental points, 295
of type I, 296
of type II, 297
of type III, 297
pairs of corresponding points

that determine it, 444
proper transform of a curve,

298, 299
order, 300
singularity, 300

total transform of a curve, 299
quadric (or hyperquadric) in An, 16
quadric (or hyperquadric) in Pn,

32, 126
S��1-quadric cone, 127
� times specialized, 127–129
associated matrix, 127
associated polarity, 128
canonical form, 131
diagonal form, 131

maximal dimension of linear
spaces contained in, 132, 133

the case n even, 134
the case n odd, 133

non-degenerate
(or non-specialized), 127

polar hyperplane, 128
as locus of the conjugate harmonic

points, 129
polar space of a given subspace, 129
pole (of the polar hyperplane), 129
reciprocal (or conjugate)

hyperplanes, 129
reciprocal (or conjugate) points, 129
self-polar .nC 1/-hedron, 130
singular point, 127
singular space, 127
tangent hyperplane, 129
tangential equation, 119

quadric in P3

pencil of quadric cones, 439
projection from one of its points, 38
stereographic projection, 212, 437
tangent to a cubic surface, 442

quadric in P5, 402, 442
lines and planes, 402
system of planes, 403

quadrilateral (or quadrilateral set), 5
quasi-projective variety, 48

radical (of an ideal), 16
radical ideal, 16
rank of a curve in P3, 199
rank of a space cubic, 227
rational function, 24, 35

domain of definition, 25, 26, 36
local representation, 25
regular in a point, 24, 36

as element of the local ring of the
point, 36, 46

regular on a neighborhood, 24
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regular on an algebraic set is a
polynomial function, 26

rational map (or rational transformation),
26, 37, 185, 341

composition of, 26
domain of definition, 26, 37, 38
equivalence relation with respect

to a variety, 40
exceptional set, 40
fiber, 40, 186
graph, 394
local representation, 40
of affine algebraic sets, 26

domain, 26
dominant, 26–28

of projective algebraic sets, 38, 40
dominant, 38

regular, 37
regular at the points of the domain,

26
representative of, 40

rational surface, 341
curves on a rational surface, 347
embedded, 342
fundamental point, 345
linearly normal, 349, 378

projection, 350
multiple points under the planar

representation, 348
normal, 350
normal in P r , 350
of general type, 358

rational variety, 39, 187
parametric representation, 43

reciprocity (or correlation)
of Pn D Pn.K/, 8

as linear section of the Segre variety
'.Pn � Pn/, 330, 337, 397

associated to a curve C n in Pn, 225
involutory reciprocity, 10
null polarity (or null system), 10

associated to a twisted cubic, 423

polarity, 10
polar hyperplane, 128
pole (of the polar hyperplane), 129

reciprocal points, 10
represented by a bilinear equation,

10
reciprocity theorem for polars, 123
reference system, 3, 5

associated reference system (in the
dual space), 8

fundamental points, 3, 5
projective coordinates on the line, 3
unit point, 3, 5

regular pair (of a correspondence), 64
induces projectivity, 65

regular parameter, 96
residual divisor with respect to the

adjoints of given order, 264
coresidual divisor, 264

Restsatz, 251
resultant ideal, 85

of a given ideal, 100, 236
of two polynomials, 85

resultant system, 102
Riemann–Roch theorem, 268, 269
ruled space, 402
ruled surface, 159, 162, 355, 408

Cayley’s cubic, 164, 376, 414
criterion for developability, 159
developable, 159, 409
directrix, 159, 357
general cubic (or cubic of general

type), 164, 413
generator, 159

condition for singularity, 159
multiple, 159, 412
simple, 412
singular, 159, 161

non-developable, 163
double directrix, 163

of minimal order, 356
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of the lines supported by three
curves in P3, 448

of the tangents to a curve in P3, 199,
232

singular point of the singular
generator, 162

Salmon’s theorem (on elliptic curves),
147

Salmon’s theorem (on ruled surfaces),
448

scheme (projective)
reduced (or reduced variety), 72
support, 72

section theorem for polars, 123
sectional genus, 285
Segre morphism, 390

graph (as image of the Veronese
variety), 396

Segre product, 392
of projective spaces, 393

Segre variety, 390
as determinantal variety, 392
diagonal subvariety of, 392
dimension, 393
order, 391, 393
projections on the product

factors, 391
Segre’s surface, 369, 378
Segre’s three dimensional cubic, 397
sextatic point (of an elliptic cubic),

276
singular point, 52, 54, 61

s-fold point (for a hypersurface),
109

skew-symmetric matrix, 10
space cubic, 226, 435, 438

locus of the tangents, 436
spatial model of an algebraic curve

having only ordinary
singularities with
coplanar tangents, 242

star, 7
center (or axis), 7
dimension, 7

stationary point of a curve in P3, 199,
233, 276

Steiner surface, 364, 366, 369, 435, 456
has a reducible nodal double curve,

151
stereographic projection

exceptional line, 213
fundamental point, 213

structure of a singular point of a plane
curve, 302

actual point, 302
cusp of the second kind, 302
cusp of the third kind, 302
dual character of cusps and flexes,

118
flex, 140
neighborhood of successive order,

283, 301, 302
node, 73, 302
ordinary cusp, 73, 302
oxnode, 302
plane curve

first order neighborhood, 301
tacnode, 201, 302, 446

superabundance, 169, 457
superposed projective spaces, 8
support

of a divisor (on a curve), 244
of a projective scheme, 72

surface, 68
containing 12 conics, 354
cuspidal double curve, 151, 155
cuspidal double line, 155
double biplanar point, 150
double nodal curve, 150
maximum number of isolated

double points, 161, 162, 451
normal (or ordinary) singularities,

150
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of minimal order, 354, 355
pinch-point (or cuspidal point), 150,

161
tangent cone in a point of a double

curve, 152
tangent cone in a point of a double

line, 156
that represents a Laplace equation,

449, 450
triplanar triple point, 150
uniplanar double point, 150

symbolic power of an ideal, 153

tacnode, 201, 302, 446
tangent cone

intrinsic nature, 74
projective tangent cone, 76, 80, 109

order, 80
to a hypersurface, 73, 126
to a hypersurface in a point of a

double line, 155, 451
to a hypersurface in a point of an

s-fold variety, 154
to a hypersurface in an s-fold point

of a variety, 153
to a surface in a point of a double

curve, 152
to an affine algebraic set, 74
to hypersurface in a point of a

double curve, 451
tangent line

corresponding to a tangent vector,
65

principal tangent, 111, 156
to an affine hypersurface, 51, 52

tangent vector, 52
tangent space

as span of the derived points, 63
dimension, 54
intrinsic nature, 58
tangent hyperplane, 113

to a projective algebraic set, 62
to a projective hypersurface, 62
to an affine algebraic set, 53, 54, 57
to an affine hypersurface, 51

tangent vector, 66
Togliatti surface (quintic surface in P3

with 31 nodes), 162, 451
Togliatti surface (that represents a

Laplace equation), 450
topological product, 14
topology, 12

axioms for closed subsets, 13
axioms for open subsets, 12
base of open subsets, 13
closed subsets, 13
closure, 13

adherent points, 13
dense subset, 13
fineness relation, 13
interior, 13

interior points, 13
less fine (or coarser) topology, 13
neighborhood, 13
open subsets, 12
product topology, 14
quotient topology, 15
relative topology, 13
subspace, 13
topological space, 12

transcendence basis, 56
transcendence degree, 55, 70
transitive group, 420
transversal intersection, 102

along a component of the
intersection, 102

at a point, 102
of divisors in a point, 59
of hypersurfaces along a curve, 198

trigonal curve, 459
triplanar triple point, 150
tritangent conic to a cubic, 349, 435
tritangent line, 118



Index 491

twisted cubic, 388
locus of the tangents, 436

uniformising parameter, 96
unihyperplanar double point, 155

locus of the unihyperplanar double
points, 155

uniplanar double point (or cuspidal point,
or pinch-point), 150

unirational variety, 46, 186
parametric representation, 43, 186

upper semi-continuous function, 54

valence of an algebraic correspondence,
275

Valentiner group, 284
Valentiner sextic curve, 284
variety of minimal degree, 105
variety of the chords of an algebraic

curve, 259, 431, 442, 444
of C 4 in P4, 232
of a curve C 3 in P3, 226
of a curve C n in Pn, 431

Veronese morphism (or embedding), 191
Veronese image, 191

Veronese surface, 67, 192, 351, 354, 355,
364, 365, 382, 441

as locus of points corresponding to
12 doubly degenerate conics,
360

as variety of the chords of a curve
C 3 in P3, 430

contains 12 conics, 362
does not contain lines, 351, 361
homaloidal system of the quadrics

that contain it, 338
parametric representation, 351

variety of the chords, 361, 366, 367
contains two 12 families

of planes, 361
Veronese variety, 190

as diagonal of the Segre morphism,
394

as locus of the zeros of quadratic
forms, 191

embedding space, 191
order, 191
parametric representation, 191
projection of, 190

Weierstrass point, 276
Weil divisor on a curve, 243

group of Weil divisors, 243

Zariski topology, 18, 33
affine neighborhood, 48
base for the open subsets, 20, 33
closure, 21
finer than the product topology, 21
on An, 18
on Pn, 33
on X � An, 19
on X � Pn, 34

standard affine charts, 34
on Pn

standard affine charts, 33
on a product, 20, 21
on the product Pn � Pm, 390
principal closed, 18
principal open, 18, 33
projective closure, 41
standard affine charts, 5

Zeuthen’s formula, 275
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