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PREFACE

While books and journals of high quality have proliferated in discrete and compu-
tational geometry during recent years, there has been to date no single reference
work fully accessible to the nonspecialist as well as to the specialist, covering all
the major aspects of both fields. The Handbook of Discrete and Computational
Geometry is intended to do exactly that: to make the most important results and
methods in these areas of geometry readily accessible to those who use them in
their everyday work, both in the academic world—as researchers in mathematics
and computer science—and in the professional world—as practitioners in fields as
diverse as operations research, molecular biology, and robotics.

A significant part of the growth that discrete mathematics as a whole has
experienced in recent years has consisted of a substantial development in discrete
geometry. This has been fueled partly by the advent of powerful computers and
by the recent explosion of activity in the relatively young field of computational
geometry. This synthesis between discrete and computational geometry, in which
the methods and insights of each field have stimulated new understanding of the
other, lies at the heart of this Handbook.

The phrase “discrete geometry,” which at one time stood mainly for the areas
of packing, covering, and tiling, has gradually grown to include in addition such
areas as combinatorial geometry, convex polytopes, and arrangements of points,
lines, planes, circles, and other geometric objects in the plane and in higher dimen-
sions. Similarly, “computational geometry,” which referred not long ago to simply
the design and analysis of geometric algorithms, has in recent years broadened its
scope, and now means the study of geometric problems from a computational point
of view, including also computational convexity, computational topology, and ques-
tions involving the combinatorial complexity of arrangements and polyhedra. It
is clear from this that there is now a significant overlap between these two fields,
and in fact this overlap has become one of practice as well, as mathematicians and
computer scientists have found themselves working on the same geometric problems
and have forged successful collaborations as a result.

At the same time, a growing list of areas in which the results of this work are
applicable has been developing. It includes areas as widely divergent as engineer-
ing, crystallography, computer-aided design, manufacturing, operations research,
geographic information systems, robotics, error-correcting codes, tomography, geo-
metric modeling, computer graphics, combinatorial optimization, computer vision,
pattern recognition, and solid modeling.

With this in mind, it has become clear that a handbook encompassing the most
important results of discrete and computational geometry would benefit not only
the workers in these two fields, or in related areas such as combinatorics, graph
theory, geometric probability, and real algebraic geometry, but also the wusers of
this body of results, both industrial and academic. This Handbook is designed
to fill that role. We believe it will prove an indispensable working tool both for
researchers in geometry and geometric computing and for professionals who use
geometric tools in their work.

The Handbook covers a broad range of topics in both discrete and computa-
tional geometry, as well as in a number of applied areas. These include geometric
data structures, polytopes and polyhedra, convex hull and triangulation algorithms,
packing and covering, Voronoi diagrams, combinatorial geometric questions, com-
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putational convexity, shortest paths and networks, computational real algebraic
geometry, geometric arrangements and their complexity, geometric reconstruction
problems, randomization and de-randomization techniques, ray shooting, parallel
computation in geometry, oriented matroids, computational topology, mathemat-
ical programming, motion planning, sphere packing, computer graphics, robotics,
crystallography, and many others. A final chapter is devoted to a list of available
software. Results are presented in the form of theorems, algorithms, and tables,
with every technical term carefully defined in a glossary that precedes the section in
which the term is first used. There are numerous examples and figures to illustrate
the ideas discussed, as well as a large number of unsolved problems.

The main body of the volume is divided into six parts. The first two, on
combinatorial and discrete geometry and on polytopes and polyhedra, deal with
fundamental geometric objects such as planar arrangements, lattices, and convex
polytopes. The next section, on algorithms and geometric complexity, discusses
these basic geometric objects from a computational point of view. The fourth and
fifth sections, on data structures and computational techniques, discuss various
computational methods that cut across the spectrum of geometric objects, such
as randomization and de-randomization, and parallel algorithms in geometry, as
well as efficient data structures for searching and for point location. The sixth
section, which is the longest in the volume, contains chapters on fourteen applica-
tions areas of both discrete and computational geometry, including low-dimensional
linear programming, combinatorial optimization, motion planning, robotics, com-
puter graphics, pattern recognition, graph drawing, splines, manufacturing, solid
modeling, rigidity of frameworks, scene analysis, error-correcting codes, and crys-
tallography. It concludes with a fifteenth chapter, an up-to-the-minute compilation
of available software relating to the various areas covered in the volume. A com-
prehensive index follows, which includes proper names as well as all of the terms
defined in the main body of the Handbook.

A word about references. Because it would have been prohibitive to provide
complete references to all of the many thousands of results included in the Hand-
book, we have to a large extent restricted ourselves to references for either the most
important results, or for those too recent to have been included in earlier survey
books or articles; for the rest we have provided annotated references to easily acces-
sible surveys of the individual subjects covered in the Handbook, which themselves
contain extensive bibliographies. In this way, the reader who wishes to pursue an
older result to its source will be able to do so.

On behalf of the sixty-one contributors and ourselves, we would like to express
our appreciation to all those whose comments were of great value to the authors of
the various chapters: Pankaj K. Agarwal, Boris Aronov, Noga Alon, Saugata Basu,
Margaret Bayer, Louis Billera, Martin Bliimlinger, Jiirgen Bokowski, B.F. Cavi-
ness, Bernard Chazelle, Danny Chen, Xiangping Chen, Yi-Jen Chiang, Edmund M.
Clarke, Kenneth Clarkson, Robert Connelly, Henry Crapo, Isabel Cruz, Mark de
Berg, Jests de Loera, Giuseppe Di Battista, Michael Drmota, Peter Eades, Jiirgen
Eckhoff, Noam D. Elkies, Eva Maria Feichtner, Ioannis Fudos, Branko Griinbaum,
Dan Halperin, Eszter Hargittai, Ulli Hund, Jiirg Hisler, Peter Johansson, Norman
Johnson, Amy Josefczyk, Gil Kalai, Gyula Kérolyi, Kevin Klenk, Wlodzimierz Ku-
perberg, Endre Makai, Jr., Jifi Matousek, Peter McMullen, Hans Melissen, Bengt
Nilsson, Michel Pocchiola, Richard Pollack, Jorg Rambau, Jirgen Richter-Gebert,
Allen D. Rogers, Marie-Francoise Roy, Egon Schulte, Dana Scott, Jiirgen Sellen,
Micha Sharir, Peter Shor, Maxim Michailovich Skriganov, Neil J.A. Sloane, Richard
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P. Stanley, Géza T6th, Ioannis Tollis, Laureen Treacy, Alexander Vardy, Gert Veg-
ter, Pamela Vermeer, Sinisa Vreéica, Kevin Weiler, Asia Ivi¢ Weiss, Neil White,
Chee-Keng Yap, and Giinter M. Ziegler.

In addition, we would like to convey our thanks to the editors of CRC Press
for having the vision to commission this Handbook as part of their Discrete Mathe-
matics and Its Applications series; to the CRC staff, for their help with the various
stages of the project; and in particular to Nora Konopka, with whom we found it
a pleasure to work from the inception of the volume.

Finally, we want to express our sincere gratitude to our families: Josy, Rachel,
and Naomi Goodman, and Marylynn Salmon and Nell and Russell O’Rourke, for
their patience and forbearance while we were in the throes of this project.

Jacob E. Goodman
Joseph O’Rourke
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1  FINITE POINT CONFIGURATIONS

Janos Pach

INTRODUCTION

The study of combinatorial properties of finite point configurations is a vast area of
research in geometry, whose origins go back at least to the ancient Greeks. Since it
includes virtually all problems starting with “consider a set of n points in space,”
space limitations impose the necessity of making choices. As a result, we will
restrict our attention to FEuclidean spaces and will discuss problems that we find
particularly important. The chapter is partitioned into incidence problems (Section
1.1), metric problems (Section 1.2), and coloring problems (Section 1.3).

1.1 INCIDENCE PROBLEMS

In this section we will be concerned mainly with the structure of incidences between
a finite point configuration P and a set of finitely many lines (or, more generally, k-
dimensional flats, spheres, etc.). Sometimes this set consists of all lines connecting
the elements of P. The prototype of such a question was raised by Sylvester more
than one hundred years ago: Is it true that for any configuration of finitely many
points in the plane, not all on a line, there is a line passing through exactly two
points? The atfirmative answer to this question was first given by Gallai. General-
izations for circles and conic sections in place of lines were established by Motzkin
and Wilson-Wiseman, respectively.

GLOSSARY

Incidence: A point of configuration P lies on an element of a given collection of
lines (k-flats, spheres, etc.).

Simple crossing: A point incident with exactly two elements of a given collection
of lines.

Ordinary line: A line passing through exactly two elements of a given point
configuration.

Ordinary hyperplane: A (d—1)-dimensional flat passing through exactly d
elements of a point configuration in Euclidean d-space.

Motzkin hyperplane: A hyperplane whose intersection with a given d-dimen-
sional point configuration lies—with the exception of exactly one point—in a
(d—2)-dimensional flat.

Regular family of curves: A family I' of curves in the zy-plane defined in
terms of D real parameters satisfying the following properties. There is an
integer s such that (a) the dependence of the curves on z,y, and the parameters
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is algebraic of degree at most s; (b) no two distinct curves of I intersect in more
than s points; (¢) for any D points of the plane, there are at most s curves in I’
passing through all of them.

Degrees of freedom: The smallest number D of real parameters defining a
regular family of curves.

Spanning tree: A tree whose vertex set is a given set of points and whose edges
are line segments.

Spanning path: A spanning tree that is a polygonal path.

Convex position: P forms the vertex set of a convex polygon or polytope.

k-set: A k-element subset of P that can be obtained by intersecting P with an
open halfspace.

Halving plane: A hyperplane with [|P|/2] points of P on each side.

SYLVESTER-TYPE RESULTS

1. Gallai theorem (dual version): Any set of lines in the plane, not all of which
pass through the same point, determines a simple crossing.

2. Motzkin-Hansen theorem: For any finite set of points in Euclidean d-space,
not all of which lie on a hyperplane, there exists a Motzkin hyperplane. We
obtain as a corollary that n points in d-space, not all of which lie on a hyper-
plane, determine at least n distinct hyperplanes. (A hyperplane is determined
by a point set P if its intersection with P is not contained in a (d—2)-tlat.)
Putting the points on two skew lines in 3-space shows that the existence of
an ordinary hyperplane cannot be guaranteed for d > 2.

If n > 8 is sufficiently large, then any set of n noncocircular points in the
plane determines at least (ngl] distinct circles, and this bound is best possible
[ELl67]. The number of ordinary circles determined by n noncocircular points
is known to be at least 11n(n —1)/247.

3. Csima-Sawyer theorem: Any set of n noncollinear points in the plane deter-
mines at least 6n/13 ordinary lines (n > 7). This bound is sharp for n = 13
and false for n = 7 (see Figure 1.1.1). In 3-space, any set of n noncoplanar
points determines at least 2n/5 Motzkin hyperplanes.

FIGURE 1.1.1 \ /
Eztremal examples for the (dual) Csima-Sawyer
theorem: \F/
(a) 13 lines (including the line al infinity) /\
determining only 6 simple points;
(b) 7 lines determining only 3 simple points. / \
(a) (b)

4. Orchard problem: What is the maximum number of collinear triples deter-
mined by n points in the plane, no four on a line? There are several construc-
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FIGURE 1.1.2

12 points and 19 lines, each passing through exactly 3 points.

5.

FIGURE 1.1.3

tions showing that this number is at least n?/6—0(n), which is asymptotically
best possible. (See Figure 1.1.2.)

Dirac’s problem: Is it true that—with six exceptions listed in [Gri72]—any
set of n points in the plane, not all on a line, has an element incident to at
least n/2 connecting lines? If true, this result is best possible, as is shown by
the example of n points distributed as evenly as possible on two intersecting
lines. It is known that there is a positive constant ¢ such that one can find a
point incident to at least cn connecting lines. A useful equivalent formulation
of this statement is that any set of n points in the plane, no more than n — k
of which are on the same line, determines at least ¢’kn distinct connecting
lines, for a suitable constant ¢’ > 0. Note that according to the d = 2 special
case of the Motzkin-Hansen theorem, due to Erdds (see No. 2 above), for
k = 1 the number of distinct connecting lines is at least n. For k = 2, the
corresponding bound is 2n — 4, (n > 10).

Ungar’s theorem: n noncollinear points in the plane always determine at
least 2|n/2] lines of different slopes (see Figure 1.1.3); this proves Scott’s
conjecture. Furthermore, any set of n points in the plane, not all on a line,
permits a spanning tree, all of whose n—1 edges have different slopes [Jam87].

7 points determining 6 distinct slopes.

UPPER BOUNDS ON THE NUMBER OF INCIDENCES

Given a set P of n points and a family I' of m curves or surfaces, the number of
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incidences between them can be obtained by summing over all p € P the number
of elements of I' passing through p. If the elements of I' are taken from a regular
family of curves with D degrees of freedom, the maximum number of incidences
between P and I' is Q(nP/(2P=1)y(2P=2)/(2D=1) 4 » 4 ). In the most important
applications, I' is a family of straight lines or unit circles in the plane (D = 2), or
it consists of circles of arbitrary radii (D = 3). The best upper bounds known for
the number of incidences are summarized in Table 1.1.1. It follows from the first
line of the table that for any set P of n points in the plane, the number of distinct
straight lines containing at least k elements of P is O(n?/k*+n/k), and this bound
cannot be improved (Szemerédi-Trotter). In the sixth line of the table, 5(n,m) is
an extremely slowly growing function, which is certainly o(n®m*) for every ¢ > 0.
A collection of spheres in 3-space is said to be in general position here if no three
of them pass through the same circle.

TABLE 1.1.1 Maximum number of incidences between n points of P and
m elements of I. [CEG™90]

POINT SET P | FAMILY T BOUND TIGHT
Planar lines On*3m2/3 n4m) yes
Planar pseudolines O(nz/ 3m3/% 4n + m) yes
Planar unit circles Om?PFm?/® £ n4+m) ?
Planar any circles O(nw 5md/5 o+ m) ?
Planar pseudocircles On33>mi/> £ n+m) ?
3-dimensional | spheres OmYTm2/7 3(n, m) + n?) ?
3-dimensional spheres in gen. position O(n®/ Am3/ pon m) ?

MIXED PROBLEMS

Many problems about finite point configurations involve some notions that cannot
be defined in terms of incidences: convex position, midpoint of a segment, etc.
Below we list a few questions of this type. They are discussed in this part of the
chapter, and not in Section 1.2 which deals with metric questions, because we can
disregard most aspects of the Euclidean metrics in their formulation. For example,
convex position can be defined by requiring that some sets should lie on one side
of certain hyperplanes. This is essentially equivalent to introducing an order along
each straight line.

1. Erdés-Klein-Szekeres problem: What is the maximum number of points that
can be chosen in the plane so that no three are on a line and no k are in
convex position (k > 3)7 Denoting this number by ¢(k), it is known that

2n—4
k-2 < <
2 _c(k)_(n_Q).

Let e(k) denote the maximum size of a planar point set P that has no three
elements on a line and no k elements that form the vertex set of an “empty”
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convex polygon, i.e., a convex k-gon whose interior is disjoint from P. We
have e(3) = 2, e(4) =4, e(5) = 9, and Horton showed that e(k) is infinite for
all k > 7. It is an outstanding open problem to decide whether e(6) is finite.

2. The number of empty k-gons: Let H(n) (n > k > d+1) denote the minimum
number of k-tuples that induce an empty convex polytope of k vertices in a
set of n points in d-space, no d + 1 of which lie on a hyperplane. Clearly,
Hi(n) =n—1and Hi(n) =0 for k > 2. For k = d + 1, we have

T p 2
@ = fm He(n)/n" < =y

[Val95]. For d = 2, the best estimates known for HZ = lim,_,o. HZ(n)/n? are
1< H} <168, 1/2< H} <242, 0 < H? < 1.46,
0<HZ<1/3, Hi=Hi=...=0.

3. The number of k-sets: Let N{(n) denote the maximum number of k-sets in
a set of n points in d-space, no d + 1 of which lie on the same hyperplane.
In other words, N¢(n) is the maximum number of different ways in which &
points of an n-element set can be separated from the others by a hyperplane.
It is known that

Qnlogk) < NE(n) < O (nvk/log" k),

where log™ k denotes the iterated logarithm of k. For the number of halving
planes, N¥ 5 (n) = O(n*/#), and

Q(n%logn) < Nfln/zj (n) = o(n?).

4. The number of midpoints: Let M (n) denote the minimum number of different
midpoints of the (g) line segments determined by n points in convex position
in the plane. One might guess that M(n) > (1 — o(1))(%), but it was shown
in [EFF91] that

<721> B Lfn(?H—l)(i—e—l/Z)J < M(n) < <Z> 3 an —§g+12j'

5. Midpoint-free subsets: As a partial answer to a question proposed in [MP],
it was proved by V. Bdlint et al. that if m(n) denotes the largest number m
such that every set of n points in the plane has a midpoint-free subset of size

m, then
[—1 +v8n+1
2

| <m(n) < o(n)

OPEN PROBLEMS

Here we give six problems from the multitude of interesting questions that remain
open.
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1. Motzkin-Dirac conjecture: Any set of n noncollinear points in the plane de-
termines at least n/2 ordinary lines (n > 13).

2. Generalized orchard problem (Erdés): What is the maximum number of
collinear k-tuples determined by n points in the plane, no k& + 1 of which
are on a line (k > 3)7 In particular, show that it is o(n?) for k = 4. The best
lower bound known is Q(n!*1/(k=2)).

3. Maximum independent subset problem (Erd8s): Determine the largest num-
ber a(n) such that any set of n points in the plane, no four on a line, has
an a(n)-element subset with no collinear triples. Fiiredi has shown that

Q(v/nlogn) < a(n) < o(n).

4. Slope problem (Jamison): Is it true that every set of n points in the plane, not
all on a line, permits a spanning path, all of whose n — 1 edges have different
slopes?

5. Empty triangle problem (Bardny): Is it true that every set of n points in the
plane, no three on a line, determines at least ¢(n) empty triangles that share
a side, where t(n) is a suitable function tending to infinity?

6. Balanced partition problem (Kupitz): Does there exist an integer k& with the
property that for every planar point set P, there is a connecting line such
that the difference between the number of elements of P on its left side and
right side does not exceed k7 Several examples show that this assertion is not
true with &k = 1.

1.2 METRIC PROBLEMS

The systematic study of the distribution of the (%) distances determined by n points
was initiated by Erdds in 1946. Given a point configuration P = {p1,p2,...,Pn},
let g(P) denote the number of distinct distances determined by P, and let f(P)
denote the number of times that the unit distance occurs between two elements of
P. That is, f(P) is the number of pairs p;p; (¢<j) such that |p;—p;| = 1. What
is the minimum of ¢g(P) and what is the maximum of f(P) over all n-element sub-
sets of Euclidean d-space? These questions have raised deep number-theoretic and
combinatorial problems, and have contributed richly to many recent developments
in these fields.

GLOSSARY

Unit distance graph: A graph whose vertex set is a given point configuration
P, in which two points are connected by an edge if and only if their distance is
one.

Diameter: The maximum distance between two points of P.

General position in the plane: No three points of P are on a line, and no
four on a circle.

Separated set: The distance between any two elements is at least one.
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Nearest neighbor of p € P: A point ¢ € P, whose distance from p is minimum.
Farthest neighbor of p € P: A point g € P, whose distance from p is maximum.
Homothetic sets: Similar sets in parallel position.

REPEATED DISTANCES

Extremal graph theory has played an important role in this area. For example, it is
easy to see that the unit distance graph assigned to an n-element planar point set P
cannot contain K 3, a complete bipartite graph with 2 and 3 vertices in its classes.
Thus, by a well-known graph-theoretic result, f(P), the number of edges in this
graph, is at most O(n*/?). This bound can be improved to O(n*/?) by using more
sophisticated combinatorial techniques (apply line 3 of Table 1.1.1 with m = n);
but we are still far from knowing what the best upper bound is.

In Table 1.2.1, we summarize the best currently known estimates on the max-
imum number of times the unit distance can occur among n points in the plane,
under various restrictions on their position. In the first line of the table—and
throughout this chapter—c denotes (unrelated) positive constants. The second and
third lines show how many times the minimum distance and the maximum dis-
tance, resp., can occur among n arbitrary points in the plane. Table 1.2.2 contains
some analogous results in higher dimensions. In the first line, 5(n) is an extremely
slowly growing function, closely related to the functional inverse of the Ackermann
function.

TABLE 1.2.1 Estimates for the maximum number of unit distances determined by
an n-element planar point set P.

POINT SET P LOWER BOUND UPPER BOUND | SOURCE

Arbitrary nlte/loglogn O(n‘” 3} Erdds, Spencer et al.
Separated [3n —+/12n — 3] [3n — +/12n — 3] | Reutter, Harborth

Of diameter 1 n n Hopf-Pannwitz

In convex position 2n—17 O(nlogn) Edelsbrunner-Hajnal, Fiiredi
No 3 collinear Q(nlogn) ot/ Kérteszi

Separated, no 3 coll. | (2+5/16 —o(1))n (2+3/Tn [T6t95]

SRRERER
| K KUK K >
FIGURE 1.2.1 <K PKPK
A separated point set with |3n — (12n — 3)"/2| unit distances (n = 69). ‘hgaﬂb

All such sets have been characterized by Kupitz.
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TABLE 1.2.2 Estimates for the maximum number of unit distances determined by an
n-element point set P in d-space.

POINT SET P LOWER BOUND UPPER BOUND SOURCE

d = 3, arbitrary n'/3loglogn) O(n®/23(n)) Clarkson et al.

d = 3, separated 6n — 0(112/3} 6n — Q(113/3) Newton

d = 3, diameter 1 2n—2 2n—2 Griinbaum, Heppes

d = 3, on sphere Q(n?/3) O(n/3) Erdés-Hickerson-Pach
(rad. 1/v2)

d = 3, on sphere Q(nlog* n) O(n?/3) Erdés-Hickerson-Pach
(rad. r # 1/V/3)

d > 3 even, arb. % (1—@)—{—?1—0((!) % (I—Ld}zj]—{—n—ﬂ(d) Erdds

d > 3 odd, arb. % (1—qhay) +2n*?) | % (1—zhsy ) +O(n?/3) | Erdés-Pach

FIGURE 1.2.2
n  points, among which the second-
smallest distance occurs (£ + o(1))n

times.

The second line of Table 1.2.2 can be extended by showing that the smallest
distance cannot, occur more than 3n—2k+4 times between points of an n-element set
in the plane whose convex hull has k vertices. The maximum number of occurrences
of the second-smallest and second-largest distance is (24/7 4 o(1))n and 3n/2 (if n
is even), respectively (Brass, Vesztergombi).

Given any point configuration P, let ®(P) denote the sum of the numbers
of farthest neighbors for every element p € P. Table 1.2.3 contains tight upper
bounds on ®(P) in the plane and in 3-space, and asymptotically tight ones for
higher dimensions [ES89], [Csi95], [EP90).
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TABLE 1.2.3 Upper bounds on ®(P), the total number of farthest
neighbors of all points of an n-element set P.

POINT SET P UPPER BOUND
Planar, n is even 3n—3
Planar, n is odd n—4
Planar, in convex position 2n
3-dimensional, n =0 (mod 2) n? /44 3n/2+3

3-dimensional, n =1 (mod 4) n?/d+3n/2+9/4
3-dimensional, n =3 (mod 4) n?/d4+3n/2+13/4
d-dimensional (d > 3) n?(1—1/|d/2] + o(1))

DISTINCT DISTANCES

It is obvious that if all distances between pairs of points of a d-dimensional set P
are the same, then |P| < d+ 1. If P determines at most g distinct distances, we
have that [P| < (%}9); see [BBS83]. This implies that if d is fixed and n tends to
infinity, then the minimum number of distinet distances determined by n points in
d-space is at least Q(n'/¢). Denoting this minimum by gq(n), for d > 3 we have
the following results:

Qn!/@=1) /225 (M)) < gy(n) < O(n¥/9),

where «(n) is the (extremely slowly growing) functional inverse of Ackermann’s
function. In Table 1.2.4, we list some lower and upper bounds on the minimum
number of distinct distances determined by an n-element point set P, under various
assumptions on its structure.

TABLE 1.2.4 Estimates for the minimum number of distinct distances
determined by an n-element point set P in the plane.

POINT SET P LOWER BOUND | UPPER BOUND | SOURCE

Arbitrary Qn/5) O(n/+/logn) Székely [Szé95]

In convex position [n/2] [n/2] Altman

No 3 collinear [(n—1)/3] [n/2] Szemerédi

In general position Q(n) O(nite/viogny | Erdés, Fiiredi et al.

RELATED RESULTS

1. Integer distances: There are arbitrarily large, noncollinear finite point sets in
the plane such that all distances determined by them are integers, but there
exists no infinite set with this property.
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2. Generic subsets: Any set of n points in the plane contains (n'/*) points
such that all distances between them are distinct. This bound could perhaps
be improved to about n'/?; see [LT95].

3. Borsuk’s problem: It was conjectured that every (finite) d-dimensional point
set P can be partitioned into d + 1 parts of smaller diameter. It follows from
the results quoted in the third lines of Tables 1.2.1 and 1.2.2 that this is
true for d = 2 and 3. Surprisingly, Kahn and Kalai proved that there exist
sets P that cannot be partitioned into fewer than (1.2‘)‘/‘I parts of smaller
diameter. In particular, the conjecture is false for d = 946. On the other
hand, it is known that for large d, every d-dimensional set can be partitioned
into (1/3/2 + o(1))? parts of smaller diameter [Sch8§].

4. Nearly equal distances: Two numbers are said to be nearly equal if their
difference is at most one. If n is sufficiently large, then the maximum number
of times that nearly the same distance occurs among n separated points in
the plane is [n%/4]. The maximum number of pairs in a separated set of n
points in the plane, whose distance is nearly equal to any one of k arbitrarily

chosen numbers, is %(1 - E% + 0(1)), as n tends to infinity [EMP93].

5. Repeated angles: In an n-element planar point set, the maximum number
of noncollinear triples that determine the same angle is O(n?logn), and this
bound is asymptotically tight (Pach-Sharir). The corresponding maximum
in 3-space is at most O(n®/%), but in 4-space the angle 7/2 can occur Q(n?)
times (Croft, Purdy).

6. Repeated triangles: Let t4(n) denote the maximum number of triples in an n-
element point set in d-space that induce a unit area triangle. It is known that
Un%loglogn) < ta(n) < O(n™/3), ts(n) = o(n?), and te(n) = O(n?) (Pach-
Sharir, Purdy). In the plane, the maximum number of triples that determine
a triangle of unit perimeter, or an isosceles triangle, is also O(n"/3).

7. Similar triangles: There exists a positive constant ¢ such that for any triangle
T and any n > 3, there is an n-element point set in the plane with at least
en? triples that induce triangles similar to 7. For most quadrilaterals Q, the
maximum number of 4-tuples of an n-element set that induce quadrilaterals
similar to Q is o(n?). The maximum number of pairwise homothetic triples
in a set of n points in the plane is O(ngf 2), and this bound is asymptotically
tight [EE94].

CONJECTURES OF ERDOS
1. The number of times the unit distance can occur among n points in the plane
does not exceed n!+¢/loglogn,

2. Any set of n points in the plane determines at least Q(n/\/logn) distinct
distances.

&

Any set of n points in convex position in the plane has a point from which
there are at least [n/2] distinct distances.
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4. There is an integer &k > 4 such that any finite set in convex position in the
plane has a point from which there are no &k points at the same distance.

5. Any set of n points in the plane, not all on a line, contains at least n — 2
triples that determine distinct angles (Corrddi, Erdés, Hajnal).

6. The diameter of any set of n points in the plane with the property that the
set of all distances determined by them is separated (on the line) is at least
Q(n). Perhaps it is at least n — 1, with equality when the points are collinear.

1.3 COLORING PROBLEMS

If we partition a space into a small number of parts (i.e., we color its points with a
small number of colors), at least one of these parts must contain certain “unavoid-
able” point configurations. In the simplest case, the configuration consists of a pair
of points at a given distance. The prototype of such a question is the Hadwiger-
Nelson problem: What is the minimum number of colors needed for coloring the
plane so that no two points at unit distance receive the same color? The answer is
known to be between 4 and 7.

FIGURE 1.3.1
The chromatic number of the plane is . .
(i) at most 7 and (ii) at least 4. ® (ii)

GLOSSARY

Chromatic number of a graph: The minimum number of colors, x(G), need-
ed to color all the vertices of G so that no two vertices of the same color are
adjacent.

List-chromatic number of a graph: The minimum number k such that for
any assignment of a list of k colors to every vertex of the graph, for each vertex
it is possible to choose a single color from its list so that no two vertices adjacent
to each other receive the same color.
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Chromatic number of a metric space: The chromatic number of the unit
distance graph of the space, i.e., the minimum number of colors needed to color
all points of the space so that no two points of the same color are at unit distance.

Polychromatic number of metric space: The minimum number of colors,
¥, needed to color all points of the space so that for each color class C;, there
is a distance d; such that no two points of C; are at distance d;. A sequence of
“forbidden” distances, (d;,...,dy), is called a type of the coloring. (The same
coloring may have several types.)

Girth of a graph: The length of the shortest cycle in the graph.

A point configuration P is k-Ramsey in d-space if, for any coloring of the points
of d-space with k colors, at least one of the color classes contains a congruent
copy of P.

A point configuration P is Ramsey if, for every k, there exists d(k) such that P
is k-Ramsey in d(k)-space.

Brick: The vertex set of a right parallepiped.

FORBIDDEN DISTANCES

Table 1.3.1 contains the best bounds we know for the chromatic numbers of various
spaces. All lower bounds can be established by showing that the corresponding unit
distance graphs have some finite subgraphs of large chromatic number. S§4-1(r)
denotes the sphere of radius r in d-space, where the distance between two points is
the length of the chord connecting them.

TABLE 1.3.1 Estimates for the chromatic numbers of metric spaces.

SPACE LOWER BOUND | UPPER BOUND | SOURCE
Line 2 2

Plane 4 7 Nelson, Isbell
Rational points of plane 2 2 Woodall
3-space 5 21 Raiskii
Rational points of 3-space 2 2 Benda, Perles

SZ(T},% <r< —“3;‘/5 3 4 Simmons
S3(r), @ <r< \%,5 3 5 Straus

2 i 2 .
S4(r),r > v 4 7 Simmons
52 (%) 4 4 Simmons
Rational points of 4-space 4 4 Benda, Perles
Rational points of 5-space 6 ? Chilakamarri
d-space (14 o(1))(1.2)% (3 +o(1)) Frankl-Wilson,

Larman-Rogers

§4=1(r),r > % d ? Lovasz

Next we list several problems and results strongly related to the Hadwiger-
Nelson problem (quoted in the introduction to this section).
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1. Polychromatic number: Stechkin and Woodall showed that the polychromatic
number of the plane is between 4 and 6. It is known that for any r € [\/5 —
1,1/+/5], there is a coloring of type (1,1,1,1,1,r) [S0i94]. However, the list-
chromatic number of the unit distance graph of the plane, which is at least
as large as its polychromatic number, is infinite.

2. Dense sets realizing no unit distance: The lower (resp. upper) density of
an unbounded set in the plane is the liminf (resp. limsup) of the ratio of
the Lebesgue measure of its intersection with a disk of radius r around the
origin to r27, as r — oco. If these two numbers coincide, their common value
is called the density of the set. Let 6% denote the maximum density of a
planar set, no pair of points of which is at unit distance. Croft showed that
0.2293 < §% < 0.2857.

3. The graph of large distances: Let G;(P) denote the graph whose vertex set
is a finite point set P, with two vertices connected by an edge if and only if
their distance is one of the ¢ largest distances determined by P. In the plane,
X(G1(P)) < 3 for every P; see Borsuk’s problem in the preceding section. It
is also known that for any finite planar set, G;(P) has a vertex with fewer
than 3¢ neighbors (Erdés-Lovasz-Vesztergombi). Thus, G;(P) has fewer than
3in edges, and its chromatic number is at most 3i. However, if n > ¢i? for a
suitable constant ¢ > 0, we have x(G;(P)) < 7.

EUCLIDEAN RAMSEY THEORY

According to an old result of Gallai, for any finite d-dimensional point configuration
P and for any coloring of d-space with finitely many colors, at least one of the color
classes will contain a homothetic copy of P. The corresponding statement is false
if, instead of a homothet, we want to find a translate, or even a congruent copy,
of P. Nevertheless, for some special configurations, one can establish interesting
positive results, provided that we color a sufficiently high-dimensional space with a
sufficiently small number of colors. The Hadwiger-Nelson-type results discussed in
the preceding subsection can also be regarded as very special cases of this problem,
in which P consists of only two points. The field, known as “Euclidean Ramsey the-
ory”, was started by a series of papers by Erdés, Graham, Montgomery, Rothschild,
Spencer, and Straus.
For details, see Chapter 8 of this Handbook.

OPEN PROBLEMS

1. (Erdés, Simmons) Is it true that the chromatic number of S%~1(r), the sphere
of radius r in d-space, is equal to d+ 1, for every r > 1/27 In particular, does
this hold for d =3 and r = 1/\/5'?

2. (Erd6s) Does there exist an integer g such that the chromatic number of any
unit distance graph in the plane whose girth is at least g does not exceed 37
It is known that if such an integer exists, it must be at least 5 [Wor79].
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3. (Sachs) What is the minimum number of colors, x(d), sufficient to color any
system of nonoverlapping unit balls in d-space so that no two balls that are
tangent to each other receive the same color? Equivalently, what is the max-
imum chromatic number of a unit distance graph induced by a d-dimensional
separated point set? It is easy to see that x(2) = 4, and we also know that
5<x(3) <.

4. (Ringel) Does there exist any finite upper bound on the number of colors
needed to color any system of (possibly overlapping) disks (of not necessarily
equal radii) in the plane so that no two disks that are tangent to each other
receive the same color, provided that no three disks touch one another at the
same point? If such a number exists, it must be at least 5.

1§

(Graham) Is it true that any 3-element point set P that does not induce
an equilateral triangle is 2-Ramsey in the plane? This is known to be false
for equilateral triangles, and correct for right triangles (Shader). Is every
3-element point set P 3-Ramsey in 3-space? The answer is again in the
affirmative for right triangles (Béna and Téth).

1.4 SOURCES AND RELATED MATERIAL

SURVEYS

All results not given an explicit reference above may be traced in these surveys.

[PA95]: A monograph devoted to combinatorial geometry.

[Pac93]: A collection of essays covering a large area of discrete and computational
geometry, mostly of some combinatorial Havor.

[HDK64]: A classical treatise of problems and exercises in combinatorial geometry,
complete with solutions.

[KW91]: A collection of beautiful open questions in geometry and number theory,
together with some partial answers organized into challenging exercises.

[EP95]: A survey full of original problems raised by the “founding father” of com-
binatorial geometry.

[JT95]: A collection of more than two hundred unsolved problems about graph
colorings, with an extensive list of refererences to related results.

[GriiT2]: A monograph containing many results and conjectures on configurations
and arrangements.

RELATED CHAPTERS

Chapter 4: Helly-type theorems and geometric transversals
Chapter 5: Pseudoline arrangements
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Chapter 8: Euclidean Ramsey theory

Chapter 10: Geometric discrepancy theory and uniform distribution
Chapter 11: Topological methods

Chapter 21: Arrangements
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2

PACKING AND COVERING
Gabor Fejes Téth

INTRODUCTION

The basic problems in the classical theory of packings and coverings, the develop-
ment of which was strongly influenced by the geometry of numbers and by crystal-
lography, are the determination of the densest packing and the thinnest covering
with congruent copies of a given body K. Roughly speaking, the density of an ar-
rangement is the ratio between the total volume of the members of the arrangement
and the volume of the whole space. In Section 2.1 we define this notion rigorously
and give an account of the known density bounds.

In Section 2.2 we consider packings in, and coverings of, bounded domains.
Section 2.3 is devoted to multiple arrangements and their decomposability. In Sec-
tion 2.4 we make a detour to spherical and hyperbolic spaces. In Section 2.5 we
discuss problems concerning the number of neighbors in a packing, while in Sec-
tion 2.6 we investigate some selected problems concerning lattice arrangements. We
close in Section 2.7 with problems concerning packing and covering with sequences
of convex sets.

2.1

DENSITY BOUNDS FOR ARRANGEMENTS IN Ed

GLOSSARY

Convexr body: A compact convex set with nonempty interior. A convex body
in the plane is called a convex disk. The collection of all convex bodies in
d-dimensional Euclidean space E* is denoted by K(E%). The subfamily of X(E%)
consisting of centrally symmetric bodies is denoted by K*(E%).

Operations on C(E%):  For a set A and a real number \ we set \A = {z | z =
Aa, a € A}. AA is called a homothetic copy of A. The Minkowski sum
A+ B of the sets A and B consists of all points ¢ +b, a € A, b € B. The set
A— A= A+ (—A) is called the difference body of A. B¢ denotes the unit ball
centered at the origin, and A + rB? is called the parallel body of A at distance
r (r > 0). If A C E%is a convex body with the origin in its interior, then the
polar body A* of Ais {& € E*| (x,a) <1 for all a € A}.

The Hausdorff distance between the sets A and B is defined by

d(A,B) =inf{o| AC B+ oB* BC A+ oB%}.

Lattice: The set of all integer linear combinations of a particular basis of E.
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Lattice arrangement: The set of translates of a given set in E¢ by all vectors
of a lattice.

Packing: A family of sets whose interiors are mutually disjoint.
Covering: A family of sets whose union is the whole space.

The volume (Lebesgue measure) of a measurable set A is denoted by V(A). In
the case of the plane we use the term area and the notation a(A).

Density of an arrangement relative to a set: Let A be an arrangement (a
family of sets each having finite volume) and D a set with finite volume. The
inner density di,(A|D), outer density d.,(A|D), and density d(A|D) of
A relative to D are defined by

(D) = —— 3 v(a),

V(D) AcAACD
1
dout (A|D) = m A€A§D¢® V(A)a
and
d(AID) = ﬁ S v(AnD).
AcA

(If one of the sums on the right side is divergent, then the corresponding density
is infinite.)
The lower density and upper density of an arrangement A are given by the
limits d_(A) = liminf dinn (AIABY), dy(A) = limsup dous (A|NB?). If d_(A) =
—00 A—00

d4 (A), then we call the common value the density of A and denote it by d(A).
It is easily seen that these quantities are independent of the choice of the origin.

The packing density 6(K) and covering density ¥(K) of a convex body (or
more generally of a measurable set) K are defined by

0(K) =sup {d,(P)| P is a packing of E* with congruent copies of K}
and
9(K) = inf {d_(C) | C is a covering of E¢ with congruent copies of K}.

The translational packing density dr(K), lattice packing density 61, (K),
translational covering density 97 (K), and lattice covering density ¥, (K)
are defined analogously, by taking the supremum and infimum over arrangements
consisting of translates of K and over lattice arrangements of K, respectively.
It is obvious that in the definitions of 7, (K) and ¥, (K) we can take maximum
and minimum instead of supremum and infimum. By a theorem of Groemer,
the same holds for the translational and for the general packing and covering
densities.

KNOWN VALUES OF PACKING AND COVERING DENSITIES

Apart from the obvious examples of space fillers, there are only a few specific bodies
for which the packing or covering densities have been determined. The bodies for
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TABLE 2.1.1 Bodies K for which §(K’) is known.

BODY AUTHOR SEE

Circle Thue [Fej72, p. 58]
Parallel body of a rectangle L. Fejes Téth [EGHZ9]
Intersection of two congruent circles L. Fejes Téth [EGHS9]
Centrally symmetric n-gon (algorithm in O(n) time) | Mount and Silverman | [FK93b]
Truncated rhombic dodecahedron A. Bezdek [Bez94]

which the packing density is known are given in Table 2.1.1. The circle is the only
body that is not a space filler for which the covering density is known.

We have §(B?) = m/y/12. For the rest of the bodies in Table 2.1.1, the packing
density can be given only by rather complicated formulas. We note that, with
appropriate modification of the definition, the packing density of a set with infinite
volume can also be defined. A. Bezdek and W. Kuperberg (see [FK93b]) showed
that the packing density of an infinite circular cylinder is 7 /v/12, that is, infinite
circular cylinders cannot be packed more densely than their base. It is conjectured
that the same statement holds for circular cylinders of any finite height.

A theorem of L. Fejes Téth (see [Fej64, p. 163]) states that

. a(K .
d(K) < % for K € K(E?), (2.1.1)
where H(K) denotes the minimum area of a hexagon containing K. This bound is
best possible for centrally symmetric disks, and it implies that

_ a(K)
~ H(K)
The packing densities of the convex disks in Table 2.1.1 have been determined
utilizing this relation.

It is conjectured that an inequality analogous to (2.1.1) holds for coverings, and
this is supported by the following weaker result (see [Fej64, p. 167]):

Let h(K') denote the maximum area of a hexagon contained in a convex disk
K. Let C be a covering of the plane with congruent copies of K such that no two
copies of K cross. Then

8(K) = 6r(K) = 0,(K) for K € K*(E?).

a(K)
-z 37y

The convex disks A and B cross if both A\ B and B\ A are disconnected. As
translates of a convex disk do not cross, it follows that

a(K)
h(K)
Again, this bound is best possible for centrally symmetric disks, and it implies that
_ a(K)
~ W(K)
Based on this, Mount and Silverman gave an algorithm that determines ¢1(K) for a

centrally symmetric n-gon in O(n) time. Also the classical result ¥(B?) = 2r/+/27
of Kershner (see [Fej72, p. 58]) follows from this relation.

Ip(K) > for K € K(E®).

I7(K) = ¥.(K) for K € K*(E?). (2.1.2)
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One could expect that the restriction to arrangements of translates of a set
means a considerable simplification. However, this apparent advantage has not
been exploited so far in dimensions greater than 2. On the other hand, the lattice
packing density of some special convex bodies in E* has been determined; see
Table 2.1.2.

TABLE 2.1.2 Bodies K ¢ E? for which d1,(K) is known.

BODY o (K) AUTHOR
Tetrahedron 18/49 Hoylman
{z] 2| <1, 23| <A} (A <) (3 - X%)1/%/6 Chalk
— A2
2 for0<A<i
9A(9 — A?)

for  <A<1 | Whitworth

{z| |zi] £1, |e1 +z2 + 23] <A} 4(_3,\3_3_{\2 F2ar—1)
oM 4am-3) " L
BNV — 90X+ 27)

{z| /(z1)? + (z2)% +|z3| < 1} m6/9 Whitworth

All results given in Table 2.1.2 can be traced in [EGH89]. We emphasize the
following two special cases: Gauss’s result that 6;,(B3) = m/1/18 is the special case
A = 1 of Chalk’s theorem concerning the frustrum of the ball, and Minkowski’s
result stating that the lattice packing density of the regular octahedron is 18/19 is
the case A = 1 of Whitworth’s theorem about the truncated cube.

The list in Table 2.1.2 can be augmented by additional bodies using the follow-
ing observations.

It has been noticed by Chalk and Rogers that the relation dr(K) = d5,(K)
(K € K(E?)) readily implies that for a cylinder C' in E* based on a convex disk K
we have §;,(C') = 61,(K). Thus, 8.,(C) is known if the lattice packing density of its
base is known.

Next, we recall the observation of Minkowski (see [Rog64, p. 69]) that an ar-
rangement A of translates of a convex body K is a packing if and only if the
arrangement of translates of the body %(K — K) by the same vectors is a packing.

This implies that, for K € K(E%),

V(K)

and 6.(K) = 2d6L(K—K)m

or(K) = 2d5T(K—K)VV(K) (2.1.3)

(K-K)
If K is a regular tetrahedron, then K — K is a cuboctahedron with volume 20V (K).
Hence we get that the lattice packing density of the cuboctahedron is 45/49.

Generally, K is not uniquely determined by K —K; e.g., we have K — K = B¢ for
every K C E? that is a body of constant width 1, and the determination of o, (K)
for such a body is reduced to the determination of &;,(B%), which is established
for d < 8. We give the known values of 67,(B?), together with those of ¥(B%), in
Table 2.1.3. All results given there can be traced in [CS93].
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TABLE 2.1.3 Known values of d;,(B%) and 9, (B%).

d | 6,(B%) | AUTHOR 91 (B%) AUTHOR
T 27
2 ——] Lagrange —— Kershner
2+/3 e 33
T 5v/57
3 R Gauss Bambah
V18 24
w2 272
4 e Korkin and Zolotarev —_— Delone and Rygkov
16 55
2 . AT 2
5 A Korkin and Zolotarev 2byohr Baranovskif and Ryskov
1542 38883
™ _ | Blichfeld
6 ichfeldt
48+/3
11.3
7 — Blichfeldt
105
4
8| Z_ | Blichfelat
384

EXISTENCE OF ECONOMICAL ARRANGEMENTS

Table 2.1.4 lists the known bounds establishing the existence of reasonably dense
packings and thin coverings. When ¢ appears in a bound without specification, it
means a suitable constant characteristic of the specific bound. The proofs of most
of these are nonconstructive. For constructive methods yielding slightly weaker
bounds, as well as improvements for special convex bodies, see Chapter 50.

Bound 1 for the packing density of general convex bodies follows by combining
Bound 6 with the relation (2.1.3) and the inequality V(K — K) < (gdd]V(K) of
Rogers and Shephard (see [Rog64, Theorem 2.4]). For d > 3 all methods establish-
ing the existence of dense packings rely on the theory of lattices, thus providing the
same lower bounds for §(K) and ép(K) as for ér,(K).

Gritzmann (see [PA95]) proved a bound similar to Bound 4 for a larger class
of convex bodies:

I1,(K) < cd(Ind)' 1082 ¢

holds for a suitable constant ¢ and for every convex body K in E? that has an affine
image symmetric about at least log, Ind + 4 coordinate hyperplanes.

UPPER BOUNDS FOR §(B%) AND LOWER BOUNDS FOR 9(B%)

The packing and covering density of B¢ is not known for d > 3. Asymptotically,
the best upper bound known for §(B%) is

5(Bd) < 2—0.599d+o(d) (as d —s 00), (2_1_,1)

given by Kabatjanskii and Levenstein (see [CS93]). For low dimensions, Rogers’s
simplex bound
§(BY < oy (2.1.5)

gives a better estimate (see [Rog64, Theorem 7.1]). Here, o4 is the ratio between
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TABLE 2.1.4 Bounds establishing the existence of dense packings and thin coverings.

No. | BOUND | AUTHOR | SEE
Bounds for general convex bodies in E¢
1 S (K) > cd3/2/4%  (dlarge) | Schmidt, Rogers, and Shephard [Rog64]
2 O7(K) <dlnd+ dnlnd + 5d | Rogers [Rog64, Theorem 3.2]
3 01 (K) < dlogaInd+e Rogers [Rog64]
4 91, (B%) < ed(In d)losz V2me Rogers [Rog64]
Bounds for centrally symmetric convex bodies in E¢
b 3 (K) > ¢(d) /241 Minkowski-Hlawka. [PAY5, Theorem 7.7]
6 | 8p(K)>cd/2¢ (dlarge) Schmidt [Rog64]
Bounds for general convex bodies in E*
7 3(K) > +/3/2 = 0.8660... G. Kuperberg and W. Kuperberg | [PA95, Theorem 4.5]
8 PK) < 1.2281771... Ismailescu [Ism]
9 | 8.(K)>2/3 Fary [FejT2, p. 100]
10 | 9L(K) <3/2 Fary [Fej72, p. 100]
Bounds for centrally symmetric convex bodies in E?
11 | 6,(K) > 0.892656. .. Tammela [PA95]
12 DL (K) < 2m/27 L. Fejes Téth [Fej72, p. 103]

the total volume of the sectors of d+ 1 unit balls centered at the vertices of a regular
simplex of edge 2 and the volume of the simplex.

A remark of Kepler can be interpreted in modern terminology as the conjecture
that §(B3) = w/v18 = 0.740480... . A packing of balls reaching this density is
obtained by placing the centers at the vertices and face-centers of a cubic lattice.
The best upper bound for §(B%) was given by Muder [Mud93]:

8(B%) <0.773055... .

Coxeter, Few, and Rogers (see [Rog64, Theorem 8.1]) proved a dual counterpart
to Rogers’s simplex bound:
9(B?) > 14,

where 74 is the ratio between the total volume of the intersections of d+ 1 unit balls
with the regular simplex of edge /2(d 4+ 1)/d if their centers lie at the vertices of
the simplex, and the volume of the simplex. Asymptotically,

T4~ dfe®?

In contrast to packings, where there is a sizable gap between bound (2.1.4) and
the bound from the other direction (Bound 6 in Table 2.1.4), this bound compares
quite favorably with the corresponding Bound 2 in Table 2.1.4.

According to a result of W. Schmidt (see [FK93b]), we have 6(K) < 1 and
Y(K) > 1 for every smooth convex body; but the method of proof does not allow
one to derive any explicit bound. There is a general upper bound for §(K) that is
nontrivial (smaller than 1) for a wide class of convex bodies [FK93a]. It is quite
reasonable for “longish” bodies. For cylinders in E?, the bound is asymptotically
equal to the Kabatjanskii and Levenstein bound for B? (as d — oo). We note that
no nontrivial bound is known for 9(K) for any K other than a ball.
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REGULARITY OF OPTIMAL ARRANGEMENTS

The packings and coverings attaining the packing and covering densities of a set
are, of course, not uniquely determined, but it is a natural question whether there
exist among the optimal arrangements some that satisfy certain regularity proper-
ties. Of particular interest are those bodies for which the densest packing and/or
thinnest covering with congruent copies can be realized by a lattice arrangement.
As mentioned above, §(K) = d.,(K) for K € K*(E?). A plausible interpretation
of this result is that the assumption of maximum density creates from a chaotic
structure a regular one. Unfortunately, certain results indicate that such bodies are
rather exceptional.

Let £, and L. be the classes of those convex disks K € K(E?) for which
0(K) = 0r(K) and ¥(K) = 91(K), respectively. Then, in the topology induced by
the Hausdorff metric on K(E?), the sets £, and £, are nowhere dense [FZ94, Fejos].
It is conjectured that an analogous statement holds also in higher dimensions.

Rogers [Rog64, p. 15] conjectures that for sufficiently large d we have §(B%) >
d,(B%). The following result of A. Bezdek and W. Kuperberg (see [FK93b]) sup-
ports this conjecture: For d > 3 there are ellipsoids E in E* for which §(E) >
0r.(E). An even more surprising result holds for coverings [FK95]: For d > 3 every
strictly convex body K in E¢ has an affine image K’ such that 9(K’) < ¥1(K’).
In particular, there is an ellipsoid E in E? for which

HE) < 1.394 < ?(3 arcsec 3 —m) =13 < Ir(E) < 9L (E).

We note that no example of a convex body K is known for which d;,(K) < ér(K)
or ﬁL(K) > r197"(I()

Schmitt [Sch88] constructed a star-shaped prototile for a monohedral tiling in
E? such that no tiling with its replicas is periodic. It is not known whether a convex
body with this property exists; however, with a slight modification of Schmitt’s
construction, Conway produced a convex prototile that admits only non-periodic
tilings if no mirror-image is allowed (see Section 3.4). Another result of Schmitt’s
[Sch91] is that there are star-shaped sets in the plane whose densest packing cannot
be realized in a periodic arrangement.

2.2

FINITE ARRANGEMENTS

PACKING IN AND COVERING OF A BODY WITH GIVEN SHAPE

What is the size of the smallest square tray that can hold n given glasses? Thue’s
result gives a bound that is asymptotically sharp as n — oo; however, for practical
reasons, small values of n are of interest.

Generally, for given sets K and C and a positive integer 1 one can ask for the
quantities

M,(K,C,n) = inf{\ | n congruent copies of C' can be packed in AK'}

and
M.(K,C,n) =sup{\ | n congruent copies of C' can cover AK}.

© 1997 by CRC Press LLC



Tables 2.2.1 and 2.2.2 contain the known results about the cases when C is a
circle and K is a circle, square, or regular triangle. In addition, economical circle
packings and circle coverings have been constructed for many special values of n.
All of these results can be traced in [HM, Mel93, Mel94, Mel97, Pei94]. Concerning
the thinnest covering of a circle with congruent circles, we mention the conjecture
that M.(K,B? n) = 1+ 2cos n2ﬂl
[Kro93] claims this as a theorem even for n < 11; however, his proof contains a
gap. In fact, Melissen and Schuur have found an example showing that the result
does not hold for n = 11.

Most of these results were obtained by ad hoc methods. Recently, however,
Peikert described a heuristic algorithm for the determination of M, (K, B? n) and
the corresponding optimal arrangements in the case where K is the unit square.
His algorithm consists of the following steps:

Step 1. Find a good upper bound m for M,(K,B?% n). This requires the
construction of a reasonably good arrangement, which can be established, e.g., by
the Monte Carlo method.

Step 2. Iterate an elimination process on a successively refined grid to restrict
possible locations for the centers of a packing of unit circles in mK.

Step 3. Based on the result of Step 2, guess the nerve graph of the packing,
then determine the optimal packing with the given graph.

Step 4. Verify that the arrangement obtained in Step 3 is indeed optimal.

Peikert does not prove that these steps always provide the optimal arrange-
ment in finite time, but he implemented the method successfully for n < 20. The
best arrangements are shown in Figure 2.2.1. Observe that quite often an optimal
arrangement can contain a freely movable circle.

for 8 < n < 10. The paper of Krotoszyriski

/ ~ FIYIYE A
A Srsy
\\/ . i ANATA K A
K6
b A ?% N A t??f
3
PR
h X ???
v 5 g
x
ﬂ—

FIGURE 2.2.1
Densest packing of n < 20 equal
circles in a square.

The sequence M, (K, B2 n) seems to be strictly increasing when K is a square
or when K is a circle and n > 7. In contrast to this, it is conjectured that in
the case where K is a triangle, we have M,(K,B? n) = M,(K,B? n — 1) for all
triangular numbers n = k(k +1)/2 (k> 1).
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TABLE 2.2.1 Packing of congruent circles in circles, squares, and equilateral triangles.

K n My (K, B% n) AUTHOR
B? 2 2 (elementary)
3 2.154700538 ... | (elementary)
4 2414213562 ... | (elementary)
5 2.701301617... | (elementary)
6 3 (elementary)
7 3 (elementary)
8 3.304764871 ... | Pirl
9 3.61312593. .. Pirl
10 3.813898249 ... [ Pirl
11 3.9238044. .. Melissen
Unit square 2 3.414213562... | (elementary)
3 3.931851653... | (elementary)
4 4 (elementary)
5 4.828427125... | (elementary)
6 5.328201177... | Graham, Melissen
7 5.732050807 ... | Schaer
8 5.863703305... | Schaer and Meir
9 6 Schaer
10 6.747441523 ... | Peikert
11 7.022509506 ... | Peikert
12 7.144957554 ... | Peikert
13 7.463047839... | Peikert
14 7.732050808 ... | Wengerodt
15 7.863703305... | Peikert
16 8 ‘Wengerodt
17 8.532660354 ... | Peikert
18 8.656402355... | Peikert
19 8.907460939 ... | Peikert
20 8.978083353 ... | Peikert
25 10 ‘Wengerodt
36 12 Kirchner and Wengerodt
Regular triangle of side 1 2 5.464101615... | (elementary)
3 5.464101615... | (elementary)
4 6.92820323. .. Melissen
5 7.464101615... | Melissen
6 7.464101615... | Ohler, Groemer
7 8.92820323. .. Melissen
8 9.203810046 ... | Melissen
9 9.464101615... | Melissen
10 9.464101615... | Ohler, Groemer
11 10.73008794 ... | Melissen
12 10.92820323 ... | Melissen
E(k+1)/2 | 2(k+v/3-1) Ohler, Groemer

The problem of finding the densest packing of n congruent circles in a circle
has been considered also in the Minkowski plane. In terms of Euclidean geometry,
this is the same as asking for the smallest number o(n, K) such that n mutually
disjoint translates of the centrally symmetric convex disk K (the unit circle in the
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TABLE 2.2.2 Covering circles, squares, and equilateral
triangles with congruent circles.

K n | M.(K,B%*n) | AUTHOR
B? 212 (elementary)
3| 2/v3 (elementary)
4 [ V2 (elementary)
5 | 1.64100446... | K. Bezdek
6 | 1.7988... K. Bezdek
T2 (elementary)
Unit square 2 | 4/5/5 (elementary)
3| 1.984555... Heppes and Melissen
4 | 22 Heppes and Melissen
5 | 3.065975... Heppes and Melissen
T | 3.6457524... Heppes and Melissen
Regular triangle of side 1 | 2 | 2 (elementary)
3| 23 Melissen
4| 243 Melissen
51 4 Melissen
6 27 Melissen

Minkowski metric) can be contained in g(n, K)K. Doyle, Lagarias, and Randell
[DLR92] solved the problem for all K € K*(E?) and n < 7. There is an n-gon
inscribed in K having equal sides in the Minkowski metric (generated by K) and
having a vertex at an arbitrary boundary point of K. Let a(n, K) be the maximum
Minkowski side-length of such an n-gon. Then we have g(n, K) = 1+ 2/a(n, K)
for 2 <n <6 and p(7,K) = o(6,K) = 3.

The densest packing of n congruent balls in a cube is known for n < 10 (see
[Sch94]). The problem of finding the densest packing of congruent balls in other
regular polytopes has been investigated by K. Bezdek (see [CFG91]).

SAUSAGE CONJECTURES

Intensive research on another type of finite packing and covering problem has been
generated by the sausage conjectures of L. Fejes Téth and Wills (see [GW93]):

What is the convex body of minimum volume in E? that can accommodate k
nonoverlapping unit balls?

What is the convex body of maximum volume in E? that can be covered by k
unit balls?

According to the conjectures mentioned above, for d > 5 the extreme bodies
are “sausages” and in the optimal arrangements the centers of the balls are equally
spaced on a line segment (Figure 2.2.2).

After several partial results supporting these conjectures (see [GW93]) the
breakthrough concerning the sausage conjecture for ball packings was achieved
by Betke, Henk, and Wills [BHW94]: they proved that the conjecture holds for
dimensions d > 13387. Later, Betke and Henk [BH] improved the bound on d to
d > 42.
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Sausage-like arrangements of circles.

THE COVERING PROBLEMS OF BORSUK AND HADWIGER-LEVI

In 1933, Borsuk formulated the conjecture that any bounded set in E? can be
partitioned into d + 1 subsets of smaller diameter. Borsuk verified the conjecture
for d = 2, and the three-dimensional case was settled independently by Eggleston,
Griinbaum, and Heppes. The conjecture is known to be true also for many special
cases: for smooth convex bodies (Hadwiger), for centrally symmetric sets (Riesling),
as well as for sets having the symmetry group of the regular simplex (Rogers). Quite
recently, however, Kahn and Kalai [KK93] showed that Borsuk’s conjecture is false
in the following very strong sense: Let b(d) denote the smallest integer such that
every bounded set in E* can be partitioned into b(d) subsets of smaller diameter.

Then b(d) > (1.2)\/3 for every sufficiently large value of d.

In the fifties, Hadwiger and Levi, independently of each other, asked for the
smallest integer h(K) such that the convex body K can be covered by h(K') smaller
positively homothetic copies of K. Hadwiger conjectured that h(K) < 2¢ for all
K € K(E%) and that equality holds only for parallelotopes. Levi verified the conjec-
ture for the plane, but it is open for d > 3. Lassak proved Hadwiger’s conjecture for
centrally symmetric convex bodies in IE3, and K. Bezdek extended Lassak’s result
to convex polytopes with any affine symmetry.

Boltjanskii observed that the Hadwiger-Levi covering problem for convex bodies
is equivalent to an illumination problem. We say that a boundary point x of the
convex body K is illuminated from the direction w if the ray issuing from z in
the direction w intersects the interior of K. Let i(K) be the minimum number of
directions from which the boundary of K can be illuminated. Then h(K) = i(K) for
every convex body. For literature and further results concerning the Hadwiger-Levi
problem, we refer to [Bez93].

2.3

MULTIPLE ARRANGEMENTS

GLOSSARY

k-fold packing: An arrangement A such that each point of the space belongs
to the interior of at most k members of A.

k-fold covering: An arrangement A such that each point of the space belongs
to at least k members of A.

Densities: In analogy to the packing and covering densities of a body K, we
define the quantities 6%(K), 65(K), 6% (K), 9*(K), 95 (K), and 9% (K) as the
suprema of the densities of all k-fold packings and the infima of the densities of
all k-fold coverings with congruent copies, translates, and lattice translates of
K, respectively.
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TABLE 2.3.1 Bounds for k-fold packing and covering densities.

BOUND AUTHOR
SE(K) > ck Ke K:(Ed) Erdés and Rogers
O (K) < (k+ 1)V 48d)¢ K e KEY Cohn
sk(K)>k—ck?5 K eKx(E? Bolle
O (K) < k+ck?®> K eK(E?) Bolle
§5(BY) > (2k/(k +1))4/25(B%) Few
&k (BY) > (2k/(k + 1))¥/26, (BY) Few
SF(BYH < (14+d~H)((d+1)* — D(k/(k+1)Y2 | Few
8(B%) < $(d+2)()V? Few
9% (Bd) > ck c=cg>1 G. Fejes T6th

k(B2) < L cot = . Fejes Téth
& ( )—(jcotfjk G. Fejes Tét
0%(B2) > L ese L Q. Fejes Téth

3 3k

The information known about the asymptotic behavior of k-fold packing and
covering densities is summarized in Table 2.3.1. There, in the various bounds,
different constants appear, all of which we denote by ¢. All results given in the
table can be traced in [EGH89] and [Fej’3].

The known values of 5 (B) and 9% (B?) (for k > 2) are given in Table 2.3.2
and can be traced in [EGHR9, Fej83, FK93b, Tem94a, Tem94b)].

Recently, general methods for the determination of the densest k-fold lattice
packings and the thinnest k-fold lattice coverings with circles have been developed
by Horvith, Temesvari, and Yakovlev and by Temesvari, respectively (see [FK93b]).

These methods reduce both problems to the determination of the optima of
finitely many well-defined functions of one variable. The proofs readily provide
algorithms for finding the optimal arrangements; however, the authors did not try
to implement them. Only the values of 6% (B?) and 93 (B?) have been added in this
way to the list of values of 05 (B2) and ¥% (B?) that had been determined previously
by ad hoc methods.

We note that we have 65 (B?) = ké.,(B?) for k < 4 and 9% (B?) = 29,(B?).
These are the only cases where the extreme multiple arrangements of circles are not
better than repeated simple arrangements. These relations have been extended to
arbitrary centrally symmetric convex disks by Dumir and Hans-Gill and by G. Fejes
Téth (see [FK93b]). There is a simple reason for the relations 63 (K) = 36 (K)
and 6% (K) = 48, (K) (K € K*(E?*)): Every 3-fold lattice packing of the plane with
a centrally symmetric disk is the union of 3 simple lattice packings and every 4-fold
packing is the union of two 2-fold packings.

This last observation brings us to the topic of decompositions of multiple ar-
rangements. Qur goal here is to find insight into the structure of multiple ar-
rangements by decomposing them into possibly few simple ones. Pach showed (see
[FK93b]) that any double packing with positively homothetic copies of a convex
disk can be decomposed into 4 simple packings. Further, if P is a k-fold packing
with convex disks such that for some integer L the inradius r(K) and the area a(K)
of each member K of P satisfy the inequality 972kr?(K)/a(K) < L, then P can
be decomposed into L simple packings.

Concerning the decomposition of multiple coverings Pach proved (see [FK93b])
that for any centrally symmetric polygon P and positive integer r there exists an
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TABLE 2.3.2 Known values of 6% (B%) and 9% (B%).

RESULT AUTHOR
52(B%) = % Heppes
3
82 (B?%) = 9 Heppes
2
54(B%) = 77% Heppes
53 (B%) = An Szirucsek, Blundon
¥
38 (B%) = 2o Blundon
(5% =
8
87(B?%) = —:-5 Blundon, Krejcarek, Bolle
5% (B2) = 3969 Bolle, Yakovlev
44/220 — 2¢/1931/449 + 32,/193
257
82 (B?) = Temesvari
£ (B%) 2,/21
8&m
§2(B¥ = — Few and Kanagasabapath;
L(B%) =3 73 gasabapathy
4
92 (B?) = % Blundon
A/ 27138 + 29104/97
93 (B?) = T 21—2 Blundon
25
93 (B%) = 1_87r Blundon
32
93 (B%) = 77; Subak, Temesvari
98
9§ (B%) = T\% Subak, Temesvari
YT (B2) =17672... Haas, Temesvari
32
9% (B%) = 3 \/;5 Temesvari
92 (B3) = 87 Few
v34/76v/6 — 159

integer k = k(P,r) such that every k-fold covering with translates of P can be de-
composed into r coverings. The attempt to extend this result by an approximation
argument to all centrally symmetric disks fails, since, for fixed r, k(P,r) approaches
infinity as the number of sides of P tends to infinity. For circle coverings, however,
Mani and Pach (see [FK93b]) were able to establish a decomposition theorem: Ev-
ery 33-fold covering with congruent circles can be decomposed into two coverings.
In 3-space, results analogous to the two theorems above do not hold.

2.4 PROBLEMS IN NON-EUCLIDEAN SPACES

Research on packing and covering in spherical and hyperbolic spaces has been
concentrated on arrangements of balls. In contrast to spherical geometry, where the
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finite, combinatorial nature of the problems, as well as applications, have inspired
research, investigations in hyperbolic geometry have been hampered by the lack of
a reasonable notion of density relative to the whole hyperbolic space.

SPHERICAL SPACE

Let M(d,¢) be the maximum number of caps of spherical diameter ¢ forming a
packing on the d-dimensional spherical space Sd, that is, on the boundary of B4*!,
and let m(d, ¢) be the minimum number of caps of spherical diameter ¢ covering s,
An upper bound for M(d, ¢), which is sharp for certain values of d and ¢ and yields
the best estimate known as d — 0, is the so-called linear programming bound
(see [CS93, pp. 257-266]). It establishes a surprising connection between M (d,¢)
and the expansion of real polynomials in terms of certain Jacobi polynomials. The
Jacobi polynomials, Pi(a’ﬁ) (),i=0,1... ,a> -1, 8 > —1, form a complete
system of orthogonal polynomials on [—1,1] with respect to the weight function
(1-2)*(1+2)P. Set a =8 =(d—1)/2 and let

k
F6) =" P ()
=0

be a real polynomial such that fo >0, f; >0 (i =1,2,...,k), and f(¢t) <0 for
—1 <t < cose. Then
M(d, ¢) < f(1)/ fo.

With the use of appropriate polynomials Kabatjanskii and Levenstein (see
[CS93]) obtained the asymptotic bound:
1—|—sin<pln 14 sing _ 1 —singoln 1 —sing

SnM(d,g) <

1).
2sin ¢ 2sin ¢ 2sin ¢ 2sin ¢ +o(1)

This implies the simpler bound
M(d,¢) < (1 — cosgp)~#/2270:099d+e(d) (45 s 00, p < ¢* = 62.9974...).

Bound (2.1.4) for §(B¢) follows in the limiting case when ¢ — 0.
The following is a list of some special values of d and ¢ for which the linear
programming bound turns out to be exact (see [CS93]).

2,arccos 1/v/5) = 12
6, arccos 1/3) = 56

20, arccos 1/7) = 162
21,arccos 1/4) =891

4,arccos1/5) =16
7,7/3) = 240
21,arccos 1/11) = 100
22,arccos 1/5) = 552
M(23,7/3) = 196560

5,arccos 1/4) = 27
20, arccos 1/9) = 112
21, arccos 1/6) = 275

M
M
M
M 22, arccos 1/3) = 4600

o r—

M M
M M
M M
M M(

For small values of d and specific values of ¢ the linear programming bound
is superseded by the “simplex bound” of Bérdczky (see [FK93b]), which is the
generalization of Rogers’s bound (2.1.5) for ball packings in S

The value of M(d, ) has been determined for all d and ¢ > 7/2 (see [CS93]).
‘We have

< <1 + in L =1 d
—7 + arcsin —, i=1,...,d,
ir1 o ¥=3 ;

1
M(d,¢)=i+1 for ST+ arcsin
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1 1
M(d,p)=d+2 for 37 <p< 37 + arcsin

5

d+1
and

ﬂf(d,%?‘r) =2(d+1).

Except for an upper bound on m(d, ) establishing the existence of reasonably
economic coverings of S? by equal balls due to Rogers (see [Fej83]), no results on
coverings in spherical spaces of high dimensions are known.

Extensive research has been done on circle packings and circle coverings on
S%. Traditionally, here the inverse functions of M (2, ) and m(2,¢) are considered.
Let a, be the maximum number such that n caps of spherical diameter a, can
form a packing and let A,, be the minimum number such that n caps of spherical
diameter A, can form a covering on S%. The known values of a,, and A,, are given
in Table 2.4.1. All the results mentioned in the table can be traced in [Fej72).
In addition, conjecturally best circle packings and circle coverings for n < 130, as
well as good arrangements with icosahedral symmetry for n < 55000, have been
constructed [HSS]. The ad hoc methods of the earlier constructions have recently
been replaced by different computer algorithms, but none of them has been shown
to give the optimum.

TABLE 2.4.1 Densest packing and thinnest covering with congruent circles on a sphere.

n | an AUTHOR An AUTHOR
2| 180° (elementary) 1807 (elementary)
3| 120° (elementary) 1807 (elementary)
4 | 109.471...° | L. Fejes Téth 141.047...°2 | L. Fejes Téth
5 | 90° Schiitte and van der Waerden | 126.869...° | Schiitte
6 | 90° L. Fejes Téth 109.471...7 | L. Fejes Té6th
T | 77.866...° Schiitte and van der Waerden | 102.053...° | Schiitte
8 | T4.869...° Schiitte and van der Waerden
9 | T0.528...° Schiitte and van der Waerden
10 | 66.316...° Dangzer, Hérs 84.615...° G. Fejes T6th
11 | 63.435...° Bérdezky, Danzer
12 | 63435...° L. Fejes Té6th T4.754...° L. Fejes Téth
14 69.875...° G. Fejes Taoth

24 | 43.667...° Robinson

Observe that as = ag and @17 = a12. Also, Ay = A3. It is conjectured that
Gy > Gpyr and A, > A, 4y in all other cases.

HYPERBOLIC SPACE

There is no sensible way to define the density of a general arrangement of sets in
the d-dimensional hyperbolic space H* (see [FK93b]). The main difficulty is that
in hyperbolic geometry the volume and the surface area of a ball of radius r are of
the same order of magnitude as r — oc. In the absence of a reasonable definition
of density with respect to the whole space, two natural problems arise:
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(i) Estimate the density of an arrangement relative to a bounded domain;
(ii) Find substitutes for the notions of densest packing and thinnest covering.

Concerning the first problem, we mention the following result of K. Bezdek (see
[FK93b]). Consider a packing of finitely many, but at least two, circles of radius
r in the hyperbolic plane H2. Then the density of the circles relative to the outer
parallel domain of radius r of the convex hull of their centers is at most / V12.

As a corollary it follows that if at least two congruent circles are packed in a
circular domain in ]HIQ, then the density of the packing relative to the domain is
at most 7/ v/12. We note that the density of such a finite packing relative to the
convex hull of the circles can be arbitrarily close to 1 as r — .

P is a solid packing if no finite subset of P can be rearranged so as to form,
together with the rest of P, a packing not congruent to P. Analogously, C is a solid
covering if no finite subset of C can be rearranged so as to form, together with
the rest of C, a covering not congruent to C. Obviously, in E? a solid packing with
congruent copies of a body K has density 6(K), and a solid covering with congruent
copies of K has density ¥(K). This justifies the use of solidity as a natural substitute
for “densest packing” and “thinnest covering” in hyperbolic space.

The tiling with Schlifli symbol {p, 3} (see Chapters 3, 16, or 18 of this Hand-
book) has regular p-gonal faces such that at each vertex of the tiling three faces
meet. There exists such a tiling for each p > 2: for p < 5 on the sphere, for p > 7
on the hyperbolic plane, while for p = 6 we have the well-known hexagonal tiling
on the Euclidean plane. The incircles of such a tiling form a solid packing and the
circumcircles form a solid covering. In addition, the incircles and the circumcir-
cles of certain trihedral Archimedean tilings have been confirmed to be solid (see
[FK93b]).

Another substitute for the notion of densest packing and thinnest covering is
complete saturation and complete reduction. A packing P with congruent copies
of a body K is completely saturated if no finite subset of P can be replaced by
a greater number of congruent copies of K that, together with the rest of P, form
a packing. Analogously, a covering C with congruent copies of K is completely
reduced if no finite subset of C can be replaced by a smaller number of congruent
copies of K that, together with the rest of C, form a covering. While there are
convex bodies that do not admit a solid packing or solid covering, it is conjectured
that each body in E? or HY admits a completely saturated packing and a completely
reduced covering. This has recently been established for convex bodies in E [FKK].

2.5

NEIGHBORS

GLOSSARY

Neighbors: Two members of a packing whose closures intersect.

Newton number N(K) of a convex body K: The maximum number of neighbors
of K in all packings with congruent copies of K.

Hadwiger number H(K) of a convex body K: The maximum number of neigh-
bors of K in all packings with translates of K.
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n-neighbor packing: A packing in which each member has exactly n neighbors.
nt -neighbor packing: A packing in which each member has at least n neigh-
bors.

Table 2.5.1 contains the results known about Newton numbers and Hadwiger
numbers (see [CS93] and [FK93b]).

TABLE 25.1 Newton and Hadwiger numbers.

BODY K RESULT AUTHOR
B® N(K) =12 Schiitte and van der Waerden
B® N(K) =240 Levenitein; Odlyzko and Sloane
B N(K) = 196560 Levenstein; Odlyzko and Sloane
Regular triangle N(K)=12 Boroczky
Square N(K)=28 Boroczky
Regular pentagon N(K)=6 Linhart
Regular n-gon for n > 6 N(K)=6 Boroczky
Isosceles triangle with base angle 7 /6 N(K)=21 Wegner
Convex disk of diameter d and width w N(K) < (4+2x)d/w | L. Fejes Téth
+w/d+2
Parallelotope in E* H(K)=3%-1 Hadwiger
Convex body in E* H(K) <3%-1 Hadwiger
Compact set in E? with int (K-—K)#0 | HK)>d* +d Smith

It seems that the maximum number of neighbors of one body in a lattice packing
with congruent copies of K is considerably smaller than H(K). While H(B?) is
of exponential order of magnitude, the highest known number of neighbors in a
lattice packing with B occurs in the Barnes Wall lattice and is ¢2Uo89) [CS93)].
Moreover, Gruber showed that, in the sense of Baire categories, most convex bodies
in E? have no more than 2d? neighbors in their densest lattice packing. Recently,
Alon [Al095] constructed a finite ball packing in E? in which each ball has ¢O(V®)
neighbors.

A problem related to the determination of the Hadwiger number concerns the
maximum number C'(K') of mutually nonoverlapping translates of a set K that have
a common point. No more than four nonoverlapping translates of a topological disk
in the plane can share a point [BKK95], while for d > 3 there are starlike bodies in
E? for which C(K) is arbitrarily large.

For a given convex body K, let M(K) denote the maximum natural number
with the property that an M (K)-neighbor packing with finitely many congruent
copies of K exists. For n < M(K), let L(n,K) denote the minimum cardinality,
and, for n > M(K), let A(n,K) denote the minimum density, of an n-neighbor
packing with congruent copies of K. The quantities M7 (K), M*(K), M (K),
Lr(n,K), L*(n,K), L}(n, K), Ar(n, K), A" (n, K), and \f:(n, K) are defined anal-
ogously.

Osterreicher and Linhart showed (see [FK93c]) that for a smooth convex disk
K we have L(2,K) >3, L(3,K) > 6, L(4,K) > 8, and L(5,K) > 16. All of these
inequalities are sharp. We have M7 (K) = 3 for all convex disks, and there exists a
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4-neighbor packing of density 0 with translates of any convex disk. There exists a 5-
neighbor packing of density 0 with translates of a parallelogram, but Makai proved
(see [FK93c]) that A\f:(5,K) > 3/7 and \h(6,K) > 1/2 for every K € K(E?) that
is not a parallelogram, and that A\(5,K) > 9/14 and \}:(6, K) > 3/4 for every
KeK* (Ez) that is not a parallelogram. The case of equality characterizes triangles
and affinely regular hexagons, respectively. According to a result of Chvétal (see
[FK93b]), \f(6, P) = 11/15 for a parallelogram P.

A construction of Wegner (see [FK93b] shows that M(B3) > 6 and L(6, B®) <
240, while Kertész [Ker94] proved that M (B?) < 8. It is an open problem whether
an n-neighbor or n*-neighbor packing of finitely many congruent balls exists for
n=7andn=_8.

For 61 -neighbor packings with (not necessarily equal) circles, the following nice
theorem of Bérdny, Fiiredi, and Pach (see [FK93c]) holds:

In a 6*-neighbor packing with circles, either all circles are congruent or arbi-
trarily small circles occur.

2.6 SELECTED PROBLEMS ON LATTICE ARRANGEMENTS
In this section we discuss, from the vast literature on lattices, some special prob-
lems concerning arrangements of convex bodies in which the restriction to lattice
arrangements is automatically imposed by the nature of the problem.

GLOSSARY

Point-trapping arrangement: An arrangement A such that every component
of the complement of the union of the members of A is bounded.

Connected arrangement: An arrangement A such that the union of the mem-
bers of A is connected.

j-impassable arrangement: An arrangement A such that every j-dimensional
flat intersects the interior of a member of A.

Obviously, a point-trapping arrangement of congruent copies of a body can be
arbitrarily thin. On the other hand, Bardny, Boroczky, Makai, and Pach showed
that the density of a point-trapping lattice arrangement of any convex body in
E? is greater than or equal to 1 /2. For d > 3, equality is attained only in the
“checkerboard” arrangement of parallelotopes (see [FK93b]).

Bleicher (see [FK93b]) showed that the minimum density of a point-trapping
lattice of unit balls in E* is equal to

32\/(7142 +1802V17)~1 = 0.265. ... .

The extreme lattice is generated by three vectors of length %\/ 7+ /17, any two of

which make an angle of arccos \/1_;_1 =67.021...°

For a convex body K, let ¢(K) denote the minimum density of a connected
lattice arrangement of congruent copies of K. According to a theorem of Groemer
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(see [FK93D)),
/2

1
— < ¢(K) < l for K € K¢

d! (K) < 291(1 4 d/2)

The lower bound is attained when K is a simplex or cross-polytope, and the upper
bound is attained for a ball.

For a given convex body K in E?, let 0;(K) denote the infimum of the densities

of all j-impassable lattice arrangements of copies of K. Obviously, go(K) = ¥ (K).

Let K = (K — K)* denote the polar body of the difference body of K. Between

-~

04—1(K) and 41, (K) Makai (see [FK93b]) found the following surprising connection:
0a-1(K)oL(K) = 2'V(K)V(K).

Little is known about g;(K) for 0 < j < d — 1. The value of g;1(B?*) has been
determined recently [BW94]. We have

01(B%) = 97/32 = 0.8835... .

An extreme lattice is generated by the vectors %(1, 1,0), %(0, 1,1), and %(1,0, 1).

2.7

PACKING AND COVERING WITH SEQUENCES OF
CONVEX BODIES

In this section we consider the following problem: Given a convex set K and a
sequence {C;} of convex bodies in E¢, is it possible to find rigid motions ¢; such
that {0;C;} covers K, or forms a packing in K7 If there are such motions o,
then we say that the sequence {C;} permits an isometric covering of K, or an
isometric packing in K, respectively. If there are not only rigid motions but even
translations 7; so that {r;C;} is a covering of K, or a packing in K, then we say
that {C;} permits a translative covering of K, or a translative packing in K,
respectively.

First we consider translative packings and coverings of cubes by sequences of
boxes. By a box we mean an orthogonal parallelotope whose sides are parallel to
the coordinate axes. We let I%(s) denote a cube of side s in E%.

Groemer (see [Gro85]) proved that a sequence {C;} of boxes whose edge lengths
are at most 1 permits a translative covering of I%(s) if

S V() = (s+1) -1,

and that it permits a translative packing in I%(s) if

— (-1 - ).

S V() < (s—1)* =2
Slightly stronger conditions (see [Las97]) guarantee even the existence of on-line
algorithms for the determination of the translations 7;. This means that the deter-
mination of 7; is based only on C; and the previously fixed sets 7;C;.

We recall (see [Las97]) that to any convex body K in E? there exist two boxes,
say Q1 and Q2, with V(Q1) > 2d~%V(K) and V(Q2) < d!'V(K), such that @ C
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K C Qq. Tt follows immediately that if {C;} is a sequence of convex bodies in E
whose diameters are at most 1 and

> V(C) > %dd((s +1)¢-1),

then {C;} permits an isometric covering of I%(s); and that if

Sovie) < g (-0 T -0t o),

then it permits an isometric packing in I¢(s).

The sequence {C;} of convex bodies is bounded if the set of the diameters of
the bodies is bounded. As further consequences of the results above we mention the
following. If {C;} is a bounded sequence of convex bodies such that > V(C;) = o0,
then it permits an isometric covering of E¢ with density %dd and an isometric
packing in E* with density %. Moreover, if all the sets C; are boxes, then {C;}
permits a translative covering of E% and a translative packing in E* with density 1.

In E?, any bounded sequence {C;} of convex disks with 3 a(C;) = oo permits
even a translative packing and covering with density % and 2, respectively. It is
an open problem whether for d > 2 any bounded sequence {C;} of convex bodies
in B with 3_ V(C;) = oo permits a translative covering. If the sequence {C;} is
unbounded, then the condition > V(C;) = oo no longer suffices for {C;} to permit
even an isometric covering of the space. For example, if C; is the rectangle of
side lengths ¢ and &%, then Y a(C;) = oo but {C;} does not permit an isometric
covering of E2. There is a simple reason for this, which brings us to one of the most
interesting topics of this subject, namely Tarski’s plank problem.

A plank is a region between two parallel hyperplanes. Tarski conjectured that
if a convex body of minimum width w is covered by a collection of planks in E?, then
the sum of the widths of the planks is at least w. Tarski’s conjecture was first proved
by Bang. Bang’s theorem immediately implies that the sequence of rectangles above
does not permit an isometric covering of E?, not even of (’17—; + €)B2.

There is a nice account of the history of Tarski’s plank problem and its gen-
eralizations in [Gro85]. In his paper, Bang asked whether his theorem can be
generalized so that the width of each plank is measured relative to the width of the
convex body being covered, in the direction normal to the plank. Bang’s problem
has been solved for centrally symmetric bodies by Ball [Bal91]. This case has a
particularly appealing formulation in terms of normed spaces:

If the unit ball in a Banach space is covered by a countable collection of planks,
then the total width of the planks is at least 2.

2.8

SOURCES AND RELATED MATERIAL

SURVEYS

The monographs [Fej72] and [Rogb64] are devoted solely to packing and covering;
also the books [CS93], [CFGI1], [EGHB8Y], [Fej64], [GL87], and [PA95] contain re-
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sults relevant to this chapter. Additional material and bibliography can be found in
the following surveys: [Bar69], [Fej83], [FK93c|, [FK93b], [Fej84], [Few67], [Flo87],

[GW93], [GroR5], [GruT9], [MP93], and [SAT5].

RELATED CHAPTERS
Chapter 3: Tilings

-

Chapter T7: Lattice points and lattice polytopes

Chapter 10: Geometric discrepancy theory and uniform distribution
Chapter 16: Symmetry of polytopes and polyhedra

Chapter 18: Polyhedral maps

Chapter 50: Sphere packing and coding theory

Chapter 51: Crystals and quasicrystals
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3

TILINGS

Doris Schattschneider and Marjorie Senechal

INTRODUCTION

Tilings of surfaces and packings of space have been of interest to artisans and manu-
facturers throughout history; they are a means of artistic expression and lend econ-
omy and strength to modular constructions. Today scientists and mathematicians
study tilings because they pose interesting mathematical questions and provide
mathematical models for such diverse structures as the molecular anatomy of crys-
tals, cell packings of viruses, n-dimensional algebraic codes, and “nearest neighbor”
regions for a set of discrete points. The basic questions are: What bodies can tile
space? In what ways do they tile? However, in this generality such questions are
intractable. The tiles and tilings that are studied must be subject to constraints.

Even with constraints the subject is unmanageably large. In this chapter we
restrict ourselves, for the most part, to tilings of unbounded spaces. In the next
section we present some general results that are fundamental to the subject as a
whole. Section 3.2 addresses tilings with congruent tiles. In Section 3.3 we discuss
the classical subject of periodic tilings, which continues to be enriched with new
results. Next, we briefly describe the newer theory of nonperiodic and aperiodic
tilings, both of which are discussed in more detail in Chapter 51. We conclude with
a very brief description of some kinds of tilings not considered here.

3.1

GENERAL CONSIDERATIONS

In this section we define terms that will be used throughout the chapter and state
some basic results. Taken together, these results state that although there is no
algorithm for deciding which bodies are tiles, there are criteria for deciding the
question in certain cases. We can obtain some quantitative information about the
tiling in particularly well-behaved cases.

Unless otherwise stated, we assume that S is an n-dimensional space, either
Euclidean (E™) or hyperbolic. We also assume that the tiles are bounded and the
tilings are locally finite (see the Glossary below). Throughout this chapter, n is the
dimension of the space in which we are working.

GLOSSARY

Body: A bounded region (of S) that is the closure of its (nonempty) interior.

Tiling (of S): A decomposition of S into a countable number of n-dimensional
bodies whose interiors are pairwise disjoint. In this context, the bodies are also
called n-cells and are the tiles of the tiling (see below). Synonyms: tessellation,
parquetry (when n = 2), honeycomb (for n > 2).
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Tile: A body that is an n-cell of one or more tilings of S. To say that a body
tiles a region R C S means that R can be covered exactly by copies of the body
without gaps or overlaps.

Locally-finite tiling: Every n-ball of finite radius in S meets only finitely many
tiles of the tiling.

Prototile set (for a tiling T of S): A minimal subset of tiles in 7 such that
each tile in the tiling 7 is the congruent image of one of those in the prototile
set. The tiles in the set are called prototiles and the prototile set is said to admit
T.

k-face (of a tiling): An intersection of at least n — k + 1 tiles of the tiling that
is not contained in a j-face for j < k. (The O-faces are the vertices and 1-faces
the edges; the (n—1)-faces are simply called the faces of the tiling.)

Patch (in a tiling): A set of tiles whose union is homeomorphic to an n-ball.
See Figure 3.1.1. A spherical patch P(r, s) is the set of tiles whose intersection
with the ball of radius r centered at s is nonempty, together with any additional
tiles needed to complete the patch (that is, to make it homeomorphic to an
n-ball).

FIGURE 3.1.1
Three patches in o tiling of the plane by squares.

Normal tiling: A tiling in which (i) each prototile is homeomorphic to an n-ball,
and (ii) the prototiles are uniformly bounded (there exist r > 0 and R > 0 such
that each prototile contains a ball of radius r and is contained in a ball of radius
R). It is technically convenient to include a third condition: (iii) the intersection
of every pair of tiles is a connected set. (A normal tiling is necessarily locally
finite.)

Face-to-face tiling (by polytopes): A tiling in which the faces of the tiling
are also the (n—1)-dimensional faces of the polytopes. (A face-to-face tiling by
convex polytopes is also k-face-to-k-face for 0 < k < n—1.) In dimension 2, this
is an edge-to-edge tiling by polygons, and in dimension 3, a face-to-face tiling
by polyhedra.

Dual tiling: Two tilings 7 and 7 are dual if there is an incidence-reversing
bijection between the k-faces of 7 and the (n—k)-faces of T* (see Figure 3.1.2).

Voronoi (Dirichlet) tiling: A tiling whose tiles are the Voronoi cells of a dis-
crete set A of points in S. The Voronoi cell of a point p € A is the set of all points
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in S that are at least as close to p as to any other point in A (see Chapter 20).

FIGURE 3.1.2
A Voronoi tiling (solid lines) and its Delaunay
dual (dashed lines).

Delaunay (or Delone) tiling: A face-to-face tiling by convex circumscribable
polytopes (i.e., the vertices of each polytope lie on a sphere).

Isometry: A distance-preserving self-map of S.

Symmetry group (of a tiling): The set of isometries of S that map the tiling
to itself.

MAIN RESULTS

1. The Undecidability Theorem. There is no algorithm for deciding whether
or not an arbitrary body or set of bodies admits a tiling of S.

2. The Extension Theorem (for E"). Let A be any finite set of bodies, each
homeomorphic to a closed n-ball. If A tiles regions that contain arbitrarily
large n-balls, then A admits a tiling of E”. (These regions need not be nested,
nor need any of the tilings of the regions be extendable!)

3. The Normality Lemma (for E"). In a normal tiling, the ratio of the
number of tiles that meet the boundary of a spherical patch to the number of
tiles in the patch tends to zero as the radius of the patch tends to infinity. In
fact, a stronger statement can be made: For s € S let t(r, s) be the number of
tiles in the spherical patch P(r,s). Then, in a normal tiling, for every z > 0,

lim t(r +x,5) — t(r, s) _o
r—o0 t(r, s)

4. Buler’s Theorem for tilings of E2. Let 7 be a normal tiling of E?,
and let t(r,s), e(r,s), and v(r,s) be the numbers of tiles, edges, and ver-
tices, respectively, in the circular patch P(r,s). Then if one of the limits

© 1997 by CRC Press LLC



e(T) = limy oo e(r, 8)/t(r,s) or v(T) = lim, o v(r, 8)/t(r, s) exists, so does
the other, and v(7) — e(7) + 1 = 0. Like Euler’s Theorem for Planar Maps,
on which the proof of this theorem is based, this result can be extended in
various ways.

(w4

Voronoi Dual. Every Voronoi tiling has a Delaunay dual, and conversely
(see Figure 3.1.2).

3.2 TILINGS BY ONE TILE

To say that a body tiles E" usually means that there is a tiling all of whose tiles
are copies of this body. The artist M.C. Escher has demonstrated how intricate
such tiles can be even when n = 2. But in higher dimensions the simplest tiles—for
example, cubes—can produce surprises, as the recent counterexample to Keller’s
conjecture attests (see below).

GLOSSARY

Monohedral tiling: A tiling with a single prototile.

r-morphic tile: A prototile that admits exactly r distinct monohedral tilings.
Figure 3.2.1 shows a 5-morphic tile and all its tilings, and Figure 3.2.3 shows a

I-morphic tile and its tilings.
L[]
LT
L&
1
1 ]

k-rep tile: A body for which & copies can be assembled into a larger, similar
body. (Or, equivalently, a body that can be partitioned into k congruent bodies,
each similar to the original.) More formally, a k-rep tile is a closed set A; in §
with nonempty interior such that there are sets As,..., Ay congruent to A; that
satisfy

FIGURE 3.2.1
A pentamorphic tile

IntA; NInt4; =0

for all i # jandA; U....U Ax = g(A1), where g is a similarity mapping. (Fig-
ure 3.2.2 shows a 3-dimensional chair rep tile and the second-level chair. An
n-dimensional chair rep tile can be formed in a similar manner.)
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FIGURE 3.2.2
A 3-dimensional chair rep tile and a second-
level chair in which seven copies surround the

first.

Transitive action: A group G is said to act transitively on a set {A;, As,...} if
the set is an orbit for G. (That is, for every pair A;, A; of elements of the set,
there is a g;; € G such that g;;4; = A;.)

Regular system of points: A discrete set of points on which an infinite group
of isometries acts transitively.

Isohedral (tiling): A tiling whose symmetry group acts transitively on its tiles.

Anisohedral tile: A prototile that admits monohedral tilings but no isohedral
tilings. In Figure 3.2.3, the prototile admits a unique nonisohedral tiling; the
shaded tiles are each surrounded differently.

FIGURE 3.2.3
An anisohedral tile (due to R. Penrose) and its unique tiling in which tiles are surrounded in two
different ways.
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Corona (of a tile P in a tiling T): Define C°(P) = P. Then C*(P), the kt"
corona of P, is the set of all tiles Q € T for which there exists a path of tiles
P=Py,P,...,P,=Q withm <k in which P,NP;;; #0,i=0,1,...,m—1.

Lattice: The group of integral linear combinations of n linearly independent vec-
tors in S. A point orbit of a lattice, often called a point lattice, is a particular
case of a regular system of points.

Translation tiling: A monohedral tiling of S in which every tile is a translate
of a fixed prototile. See Figure 3.2.4.

Lattice tiling: A monohedral tiling on whose tiles a lattice acts transitively.
Figure 3.2.4 is not a lattice tiling since it is invariant by multiples of just one
vector.

FIGURE 3.2.4
A translation nonlattice tiling.

n-parallelotope: A convex n-polytope that tiles E® by translation.

Belt (of an n-parallelotope): A maximal subset of parallel (n—2)-faces of a
parallelotope in E". The number of (n—2)-faces in a belt is its length.

Center of symmetry (for a set A in E"): A point a € A such that 4 is in-
variant under the mapping @ — 2a—a; the mapping is called central inversion
and an object that has a center of symmetry is said to be centrosymmetric.

Stereohedron: A convex polytope that is the prototile of an isohedral tiling. A
Voronoi cell of a regular system of points is a sterechedron.

Linear expansive map: A linear transformation all of whose eigenvalues have
modulus greater than one.

MAIN RESULTS

1. The Local Theorem. Let 7 be a monohedral tiling of S with prototile
P, and let S;(P) be the subgroup of the symmetry group of P that leaves
invariant C*(P), the i** corona of P. T is isohedral if and only if there
exists an integer k > 0 for which the following two conditions hold: (a)
Sk—1(P) = Sk(P) and (b) For every pair of tiles P, P’ in T, there exists an
isometry 7 such that y(P) = P’ and y(C*(P)) = C*(P’). In particular, if P
is asymmetric, then 7T is isohedral if and only if condition (b) holds for k = 1.
See [DS97).

2. A convex polytope is a parallelotope if and only if it is centrosymmetric, its
faces are centrosymmetric, and its belts have lengths four or six. First proved
by Venkov, this theorem was rediscovered independently by McMullen.
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The number |F| of faces of a convex parallelotope in E" satisfies Minkowski’s
inequality, 2n < |F'| < 2(2" — 1). Both upper and lower bounds are realized
in every dimension.

The number of faces of an n-dimensional stereohedron in E" is bounded. In
fact, if @ is the number of translation classes of the stereohedron in an isohedral
tiling, then the number of faces is at most the Delaunay bound 27(1 + a) — 2.

Using a classification system that takes into account the symmetry groups of
the tilings and their tiles, the combinatorial structure of the tiling, and the
ways in which the tiles are related to adjacent tiles, Griinbaum and Shephard
proved that there are 81 classes of isohedral tilings of E2, 93 classes if the tiles
are marked (that is, they have decorative markings to express symmetry in
addition to the tile shape). There is an infinite number of classes of isohedral
tilings of E*, n > 2.

Anisohedral tiles exist in E" for every n > 2. (The first example, given for
n = 3 by Reinhardt, was the solution to part of Hilbert’s 18th problem.)

Every n-parallelotope admits a lattice tiling. However, for n > 3, nonconvex
tiles have been found that tile by translation but do not admit lattice tilings
[SS94].

In a lattice tiling of E™ by unit cubes there must be a pair of cubes that share
a whole face. However, a famous conjecture of Keller, which stated that for
every n, any tiling of E" by congruent cubes must contain at least one pair
of cubes that share a whole face, is false: for n > 10, there exist translation
tilings by unit cubes in which no two cubes share a whole face [LS92].

Every linear expansive map that transforms the lattice Z" of integer vectors
into itself defines a family of k-rep tiles; these tiles, which usually have fractal
boundaries, admit lattice tilings [Ban91].

OPEN PROBLEMS

1.

&

Which convex n-polytopes in E" are prototiles for monohedral tilings of E*7
This is unsolved for all n > 2 (see [GS87] for the case n = 2; the list of convex
pentagons that tile has not been proved complete). For higher dimensions,
little is known; it is not even known which tetrahedra tile E>.

Heesch’s Problem. Is there an integer k,,, depending only on the dimension
n of the space S, such that if a body A can be completely surrounded k,, times
by tiles congruent to A, then A is a prototile for a monohedral tiling of S7
(A is completely surrounded if A, together with congruent copies that have
nonempty intersection with A, tile a region R that is homeomorphic to an
n-ball and A is in the interior of R.) When S = E*, ky > 3 (the body shown
in Figure 3.2.5 can be completely surrounded three times but not four). This
problem is unsolved for all n.

Keller’s conjecture is true for n < 6 and false for n > 10 (see above). The
cases n = 7,8, and 9 are still open.

& 1997 by CRC Press LLC



FIGURE 3.2.5
Robert Ammann’s 3-corona tile.

4. Do r-morphic tiles exist for every positive integer r7 Fontaine and Martin
have shown the answer is yes in E? for r < 10.

(w4

Find a good upper bound for the number of faces of an n-dimensional stere-
ohedron. Delaunay’s bound, stated above, is evidently much too high (for
example, it gives 390 as the bound in E3, while the maximal known number
of faces of a three-dimensional sterechedron (found by P. Engel) is 38).

6. For monohedral (face-to-face) tilings by convex polytopes there is an integer
ky, depending only on the dimension n of S, that is an upper bound for the
constant & in the Local Theorem. Find the value of this k,,. For the Euclidean
plane E? it is known that ko = 1 (convexity of the tiles is not necessary), but
for the hyperbolic plane, ks > 2. For E2, it is known that 2 < ks < 5.

3.3 PERIODIC TILINGS

Periodic tilings have been studied intensely, in part because their applications range
from ornamental design to crystallography, and in part because many techniques
(algebraic, geometric, and combinatorial) are available for studying them.

GLOSSARY

Periodic tiling of E": A tiling, not necessarily monohedral, whose symmetry
group contains an n-dimensional lattice. This definition can be adapted to in-
clude “subperiodic” tilings (those whose symmetry groups contain 1 < k < n
linearly independent vectors) and tilings of other spaces (for example, cylinders).
Tilings in Figures 3.2.1, 3.2.3, 3.3.1, and 3.3.4 are periodic.

Fundamental domain (generating region) for a periodic tiling: A minimal
subset of S whose orbit under the symmetry group of the tiling is the whole
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tiling. A fundamental domain may be a tile (Figure 3.2.1), a subset of a single
tile (Figure 3.3.4), or a subset of patches of tiles (two shaded tiles in Figure 3.2.3).

Orbifold (of a tiling of S): The manifold obtained by identifying points of S
that are in the same orbit under the action of the symmetry group of the tiling.

Free tiling: A tiling whose symmetry group acts freely and transitively on the
tiles.

k-isohedral (tiling): A tiling whose tiles belong to k transitivity classes under
the action of its symmetry group. Isohedral means l-isohedral (Figures 3.3.1
and 3.3.4). The tiling in Figure 3.2.3 is 2-isohedral.

Equitransitive (tiling by polytopes): A tiling in which each combinatorial class
of tiles forms a single transitivity class under the action of the symmetry group
of the tiling.

k-isogonal (tiling): A tiling whose vertices belong to k transitivity classes under
the action of its symmetry group. Isogonal means l-isogonal.

k-uniform (tiling of a 2-dimensional surface): A k-isogonal tiling by regular
polygons.

Uniform (tiling for n > 2): An isogonal tiling with congruent edges and uni-
form faces.

Flag of a tiling (of S): An ordered (n+1)-tuple (Xy, Xq,...,X,), with X, a
tile and Xy a k-face for 0 < k <n—1, in which X; ; C X; forit=1,...,n.

Regular tiling (of 8): A tiling 7 whose symmetry group is transitive on the flags
of 7. (For n > 2, these are also called regular honeycombs.) See Figure 3.3.4.

k-colored tiling: A tiling in which each tile has a single color, and k different
colors are used. Unlike the case of map colorings, in a colored tiling adjacent
tiles may have the same color.

Perfectly k-colored tiling: A k-colored tiling for which each element of the
symmetry group G of the uncolored tiling effects a permutation of the colors.
The ordered pair (G,II), where II is the corresponding permutation group, is
called a k-color symmetry group.

CLASSIFICATION OF PERIODIC TILINGS

The mathematical study of tilings has (like most mathematical investigations) been
accompanied by the development and use of a variety of notations for classification
of different “types” of tilings and tiles. Far from being merely names by which to
distinguish types, these notations tell us the investigators’ point of view and the
questions they ask. Notation may tell us the global symmetries of the tiling, or how
each tile is surrounded, or the topology of its orbifold. Notation makes possible the
computer implementation of investigations of combinatorial questions about tilings.

Periodic tilings are classified by symmetry groups and, sometimes, by their
skeletons (of vertices, edges, ..., (n—1)-faces). The groups are known as erystallo-
graphic groups; up to isomorphism, there are 17 in E? and 219 in E3. For E? and
E?, the most common notation for the groups has been that of the International
Union of Crystallography (IUCr). This is cross-referenced to earlier notations in
[Sch78]. Two recently developed notations are Delaney-Dress symbols [Dre87] and
Conway’s orbifold notation [Con92].
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GLOSSARY

International symbol (for periodic tilings of E? and E® ):  Encodes lattice
type and particular symmetries of the tiling. In Figure 3.3.1, the lattice unit di-
agram encodes the symmetries of the tiling and the IUCr symbol p31lm indicates
that the highest order rotation symmetry in the tiling is 3-fold, that there is no
mirror normal to the edge of the lattice unit, and that there is a mirror at 60° to
the edge of the lattice unit. These symbols are augmented to denote symmetry
groups of perfectly 2-colored tilings.

FIGURE 3.3.1

An isohedral tiling with standard TUCr
latlice unit shaded; a half-leaf s a fun-
damental domain. The classification
symbols are for the symmetry group of
the tiling.

Delaney-Dress symbol (for tilings of Euclidean, hyperbolic, or spherical
space of any dimension): Associates an edge-colored and vertex-labeled
graph derived from a chamber system (a formal barycentric subdivision) of
the tiling. In Figure 3.3.2, the nodes of the graph represent distinct triangles
A, B,C,D in the chamber system, and colored edges (dashed, thick, or thin)
indicate their adjacency relations. Numbers on the nodes of the graph show the
degree of the tile that contains that triangle and the degree of the vertex of the
tiling that is also a vertex of that triangle.

FIGURE 3.3.2

A chamber system of the tiling in Fig-
ure 3.3.1 determines the graph that is
its Delaney-Dress symbol.

Orbifold notation (for symmetry groups of tilings of 2-dimensional sur-
faces of constant curvature): Encodes properties of the orbifold induced
by the symmetry group of a periodic tiling of the Euclidean plane or hyperbolic
plane, or a fnite tiling of the surface of a sphere; introduced by Conway. In
Figure 3.3.1, the first 3 in the orbifold symbol 3*3 for the symmetry group of the
tiling indicates there is a 3-fold rotation center (gyration point) that becomes a
cone point in the orbifold, while *3 indicates that the boundary of the orbifold
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is a mirror with a corner where three mirrors intersect.

b b

a a
FIGURE 3.3.3
Labeling and orienting the edges of
the isohedral tiling in Figure 3.3.1 Cptinbaum-Shephard l[8+3_b+b_; b_ﬂ_]|

determines its Grimmbaum-Shephard in-
cidence symbol.

See Table 3.3.1 for the IUCr and orbifold notations for EZ.

TABLE 3.3.1 IUCr and orbifold notations for the 17 sym-
metry groups of periodic tilings of E.

1UCr ORBIFOLD | IUCr | ORBIFOLD
pl o or ol p3 333

pg xX or 1xx | p3lm 3*3

cm *x or 1¥x p3ml *333
pm ** or I** pd 442

p2 2222 pdg 4%
pee 22x% pdm *442
pmg 22% p6 632
cmm 2%22 pbm *632
pmm *2222

Isohedral tilings of E? fall into 11 combinatorial classes, typified by the Laves
nets (Figure 3.3.4). The Laves net for the tiling in Figure 3.3.1 is [3.6.3.6]; this
gives the vertex degree sequence for each tile. In an isohedral tiling, every tile is
surrounded in the same way. Griinbaum and Shephard provide an incidence symbol
for each isohedral type by labeling and orienting the edges of each tile [GS79).
Figure 3.3.3 gives the incidence symbol for the tiling in Figure 3.3.1. The tile symbol
ata~b*b~ records the cycle of edges of a tile and their orientations with respect to
the (arrowed) first edge (+ indicates the same, — indicates opposite orientation).
The adjacency symbol b~a~ records for each different letter edge of a single tile,
beginning with the first, the edge it abuts in the adjacent tile and their relative
orientations (now — indicates same, + opposite). These symbols can be augmented
to adjacency symbols to denote k-color symmetry groups. Earlier, Heesch devised
signatures for the 28 types of tiles that could be fundamental domains of isohedral
tilings [HK63].
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FIGURE 3.3.4
The 11 Laves nets. The three regular tilings of E? are at the top of the illustration.
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MAIN RESULTS

1. Griinbaum and Shephard have shown that if a finite prototile set of polytopes
admits a face-to-face tiling of E" that has translational symmetry, then the
prototile set also admits a periodic tiling.
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2. The number of symmetry groups of periodic tilings in E" is finite (this is a
famous theorem of Bieberbach: see also Chapter 51); the number of symmetry
groups of corresponding tilings in hyperbolic n-space is infinite.

3. Every k-isohedral tiling of the Euclidean plane, hyperbolic plane, or sphere
can be obtained from a (k—1)-isohedral tiling by a process of splitting (split-
ting an asymmetric prototile) and gluing (amalgamating two or more equiv-
alent asymmetric tiles adjacent in the tiling into one new tile); Huson has
shown that there are 1270 classes of 2-isohedral tilings and 48,231 classes of
3-isohedral tilings of E2.

4. Classifying isogonal tilings in a manner analogous to isohedral ones, Griinbaum
and Shephard have shown that there are 91 classes of isogonal tilings of E?
(93 classes if the tiles are marked). Similarly, there are 26 classes of normal
tilings of E? for which the symmetry group acts transitively on the edges (30
if the tiles are marked); these tilings are called isotozal.

5. Dress, Molnar, and Huson [DHM93] have shown that there are 88 combi-
natorial classes of periodic tilings of E? for which the symmetry group acts
transitively on the faces of the tiling.

6. For every k, the number of k-uniform tilings of E? is finite. There are 11
uniform tilings of EZ (also called Archimedean, or semiregular), of which
3 are regular. The Laves nets in Figure 3.3.4 are duals of these 11 uniform
tilings. There are 28 uniform tilings of E* and 20 2-uniform tilings of EZ.

7. Danzer, Griinbaum, and Shephard have shown that in any equitransitive
tiling of E* by convex polygons, the maximum number of edges of any tile is
66 [DGSRT].

8. There is a finite number of regular tilings of E" (three for n = 2, one for
n = 3, three for n = 4, and one for each n > 4). There is an infinite
number of normal regular tilings of the hyperbolic plane, four regular tilings
of hyperbolic 3-space, five regular tilings of hyperbolic 4-space, and no regular
tilings of hyperbolic space for dimensions n > 4.

9. Balke and Huson have shown that if two orbifold symbols for a tiling of the
Euclidean or hyperbolic plane look exactly the same except for the numerical
values of their digits, which may differ by a permutation of the natural num-
bers (such as *632 and *532), then the number of k-isohedral tilings for each
of these orbifold types is the same [BHI6].

10. There is a one-one correspondence between perfect k-colorings of a free tiling
and the subgroups of index & of its symmetry group.

OPEN PROBLEMS

1. Does every convex pentagon that tiles E? admit a k-isohedral tiling, and if so,
is there an upper bound on k7 (All pentagons known to tile the plane admit
k-isohedral tilings, with & < 3.)
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2. Classification of uniform tilings of the hyperbolic plane is complete only for
the cases of vertex valences of 3 and 4; beyond that, little is known.

3. Enumerate the uniform tilings of E" for n > 3.

4. Delaney-Dress symbols and orbifold notations have made progress possible
on the classification of k-isohedral tilings in all three 2-dimensional spaces of
constant curvature; extend this work to higher-dimensional spaces.

3.4

NONPERIODIC AND APERIODIC TILINGS

Nonperiodic tilings are found everywhere in nature, from cracked glazes to biological
tissues to real crystals. In a remarkable number of cases, such tilings exhibit strong
regularities. For example, many such tilings have simplicial Delaunay duals. Others
repeat on increasingly larger scales. An even larger class of tilings are those now
called repetitive, in which every bounded configuration appearing anywhere in the
tiling is repeated infinitely many times throughout it. Aperiodic tilings—those
whose prototile sets admit only nonperiodic tilings—are particularly interesting.
They were first introduced to prove the Undecidability Theorem (Section 3.1).
Later, after Penrose found pairs of aperiodic prototiles (see Figure 3.4.1), they
became popular in recreational mathematical circles. Their deep mathematical

FIGURE 3.4.1
Portions of Penrose tilings of the plane
(a) by rhombs; (b) by kiles and darts.
Matching rules are not shown (see
Chapter 51).

properties were first studied by Penrose, Conway, de Bruijn, and others. After the
discovery of “quasicrystals” in 1984, aperiodic tilings became the focus of intense
research. The basic ideas of this rapidly-developing subject are only introduced
here; they are discussed in more detail in Chapter 51.

GLOSSARY

Nonperiodic tiling: A tiling with no translation symmetry.

Hierarchical tiling: A tiling whose tiles can be composed into larger tiles, called
level-one tiles, whose level-one tiles can be composed into level-two tiles, and
so on ad infinitum. Usually one assumes that the prototile sets at each level are
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the same up to a similarity or a rigid motion. In some cases it is necessary to
partition the original tiles before composition.

Self-similar tiling: A hierarchical tiling for which the larger tiles are copies of
the prototiles (all enlarged by a constant expansion factor A). k-rep tiles are the
special case when there is just one prototile (Figure 3.2.2).

Uniquely hierarchical tiling: A tiling whose j-level tiles can be composed into
(j+1)-level tiles in only one way (7 =0,1,...).

Composition rule (for a hierarchical tiling): The equations T = m; Ty U
oo UmgTy, i = 1,..., k, that describe the numbers m;; of each prototile T} in
the next higher level prototile T]. These equations define a linear map whose
matrix has 4, j entry mg;.

Relatively dense configuration: A configuration C of tiles in a tiling for which
there exists a radius r¢ such that every ball of radius r¢ in the tiling contains a
copy of C.

Repetitive: A tiling in which every bounded configuration of tiles is relatively
dense in the tiling.

Local isomorphism class: A family of tilings such that every bounded config-
uration of tiles that appears in any of them appears in all of the others. (For
example, the uncountably many Penrose tilings with the same prototile set form
a single local isomorphism class.)

Projected tiling: A tiling obtained by the canonical projection method (see
Chapter 51).

Aperiodic prototile set: A prototile set that admits only nonperiodic tilings
(see Figure 3.4.1).

Aperiodic tiling: A tiling with an aperiodic prototile set.

Matching rules: A list of rules for fitting together the prototiles of a given
prototile set.

Mutually locally derivable tilings: Two tilings are mutually locally derivable
if the tiles in either tiling can, through a process of decomposition into smaller
tiles, or regrouping with adjacent tiles, or a combination of both processes, form
the tiles of the other (see Figure 3.4.2).

Complex Perron number: An algebraic integer which is strictly larger in mod-
ulus than its Galois conjugates (except for its complex conjugate).

MAIN RESULTS

1. Self-similar and projected tilings are repetitive.
2. Uniquely hierarchical tilings are nonperiodic.

3. For each complex Perron number A there is a self-similar tiling with expansion
A [Ken95].

4. “Irrational” projected tilings are nonperiodic (see Chapter 51).
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FIGURE 3.4.2
The Penrose tilings by kiles and darts and by rhombs are mutually locally derivable.
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5. The prototile sets of certain irrational projected tilings can be equipped with
matching rules so that all tilings admitted by the prototile set belong to a
single local isomorphism class (see Chapter 51).

6. Mutual local derivability is an equivalence relation on the set of all tilings.
The existence or nonexistence of hierarchical structure and matching rules is
a class property.

7. Certain convex biprisms admit only nonperiodic monohedral tilings of E? if
no mirror-image copies of the tiles are allowed (see Figure 3.4.3). These tiles
can be altered to produce nonconvex aperiodic prototiles for E* [Dan95].

OPEN PROBLEMS

1. Can the prototile set of every uniquely hierarchical tiling be equipped with
matching rules that force the hierarchical structure? (Matching rules exist for
some well-known hierarchical tilings—the Penrose tilings and the chair tiling
in E?, for instance.)

2. Does there exist a prototile in E? that is aperiodic? Does there exist a convex
prototile for E? that is aperiodic without restriction?

3.5 OTHER TILINGS

There is a vast literature on tilings (or dissections) of bounded regions (such as rect-
angles and boxes, polygons, and polytopes) by tiles to satisfy particular conditions.
This and much of the recreational literature focuses on tilings by tiles of a particular
type, such as tilings by rectangles, tilings by clusters of n-cubes (polyominoes—see
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FIGURE 3.4.3

Conway’s biprism consists of two prisms fused at a common rhombus face. Small angle of rhombus
s acos(3/4) ~ 41.4°; diagonal of prism = 2.87. When assembled, the vertices of the rhombus that
18 @ common face of the two prisms are the poles of two 2-fold rotation azxes.
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Chapter 12—and polycubes) or n-simplices (polyiamonds in Ez), or tilings by rec-
ognizable animate figures. In the search for new ways to produce tiles and tilings,
both mathematicians (such as P.A. MacMahon) and amateurs (such as M.C. Es-
cher) have contributed to the subject. Recently the search for new shapes that
tile S has produced knotted tiles, toroidal tiles, and twisted tiles. Kuperberg and
Adams have shown that for any given knot K, there is a monohedral tiling of E? (or
of hyperbolic 3-space, or of spherical 3-space) whose prototile is a solid torus that is
knotted as K. Also, Adams has shown that, given any polyhedral submanifold M
with one boundary component in E*, a monohedral tiling of E* can be constructed
whose prototile has the same topological type as M.

Other directions of research seek to broaden the definition of prototile set:
in new contexts, the tiles in a tiling may be homothetic (rather than congruent)
images of tiles in a prototile set, or be topological images of tiles in a prototile
set. For example, a tiling of E™ by polytopes in which every tile is combinatorially
isomorphic to a fixed convex n-polytope (the combinatorial prototile) is said to be
monotypic. It has been shown that in E2, there exist monotypic face-to-face tilings
by convex n-gons for all n > 3; in E3, every convex 3-polytope is the combinatorial
prototile of a monotypic tiling. Many (but not all) classes of convex 3-polytopes
admit monotypic face-to-face tilings.
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3.6 SOURCES AND RELATED MATERIALS

SURVEYS

All results not given an explicit reference above may be traced in the following
surveys.

[GS87]: The definitive, comprehensive treatise on tilings of [E?, state-of-the-art as
of the mid-1980’s. All subsequent work (in any dimension) has taken this as its
starting point for terminology, notation, and basic results. The Main Results of
our Section 3.1 can be found here.

[Joh96]: A comprehensive and detailed account of uniform polytopes and honey-
combs in Euclidean and non-Euclidean spaces of n dimensions.

[MP96]: The proceedings of the NATO Advanced Study Institute on the Mathe-
matics of Aperiodic Order, held in Waterloo, Canada in August 1995. This book
is state-of-the art for the theory of aperiodic tilings.

[Sch93): A contemporary survey of tiling theory, especially useful for its accounts
of monotypic and other kinds of tilings more general than those discussed in this
chapter.

[Sen95]: Chapters 5-8 form an introduction to the emerging theory of aperiodic
tilings.

[SS94]: This book is especially useful for its account of tilings in E™ by clusters of
cubes.

RELATED CHAPTERS

Chapter 12: Polyominoes
Chapter 20: Voronoi diagrams and Delaunay triangulations
Chapter 51: Crystals and quasicrystals
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4  HELLY-TYPE THEOREMS AND GEOMETRIC
TRANSVERSALS

Rephael Wenger

INTRODUCTION

A geometric transversal is an affine subspace of ]Rd, such as a point, line, plane, or
hyperplane, that intersects every member of a family of convex sets. Eduard Helly’s
celebrated theorem gives conditions for the members of a family of convex sets to
have a point in common, i.e., a point transversal. In Section 4.1 we highlight some
of the more notable theorems related to Helly’s theorem and point transversals.
Section 4.2 is devoted to geometric transversal theory.

4.1 HELLY-TYPE THEOREMS

In 1913, Eduard Helly proved the following theorem:

THEOREM 4.1.1 Helly’s Theorem

Let A be a finite family of at least d + 1 convex sets in RY. If every d+ 1 members
of A have a point in common, then there is a point common to all members of A.

The theorem also holds for infinite families of compact convex sets.

Helly’s theorem spawned numerous generalizations and variants. These theo-
rems usually have the form: If every m members of a family of objects have property
P then the entire family has property Q. When P equals Q, theorems of this form
are sometimes referred to as Helly-type theorems. In Helly’s theorem the objects
are convex sets in ]Rd, properties P and Q are the properties of having a point in
common, and m equals d + 1. Most generalizations of Helly’s theorem take four
forms: replacing convex sets by other objects in R%, strengthening properties P
and Q, replacing m = d + 1 by some other number or condition, and replacing R¢
by the d-dimensional sphere, S%.

The first five parts of this section discuss various generalizations of Helly’s
theorem. The sixth and seventh part discuss some theorems and algorithms related
to Helly’s theorem. The last part contains some open problems. The theorems
will all be stated for finite families of convex sets. As with Helly’s theorem, many
of them extend to infinite families of compact convex sets by standard topological
arguments.

GLOSSARY

Convex: A set a CR? is convex if #,y € ¢ implies that line segment zy C a.
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Convex hull: The convex hull of a set of points X C R? is the smallest (inclu-
sionwise) convex set containing X.

Homology cell: Metric space a is a homology cell if it is nonempty and homo-
logically trivial (acyclic) in all dimensions.

Translate: Set a CR? is a translate of set b C R if a = {v +x | € b} for some
vector v € R%

Homothet: Set a C R%is a (positive) homothet of set b C R% if o = {v +tz |z €
b} for some vector v € R and scalar t > 0.

Flat: An affine subspace of dimension k.

Support: Hyperplane h supports convex set a if a intersects h and is contained
in one of the closed halfspaces bounded by h. k-flat f supports convex set a if a
intersects f and f is contained in some supporting hyperplane of «.

Diameter: The diameter of a point set a is the supremum of the distances be-
tween pairs of points in a.

Width: The width of a closed convex set ¢ is the smallest distance between par-
allel supporting hyperplanes of a.

Piercing number: The piercing number of a family A of convex sets in R? is
the minimum number of points needed to intersect every member of A.

NOTATION

conv(X): The convex hull of point set X.

fi(A):  The number of subfamilies A’ of size i 4+ 1 of a family A of point sets such
that ﬂaGA/ a 7é @

C;‘: The family of all sets of R? that are the unions of j or fewer convex sets.

IC;-I: The family of all sets of R? that are the unions of j or fewer pairwise disjoint
closed convex sets.

4.1.1

GENERALIZATIONS TO NONCONVEX SETS

In 1930, Helly himself gave the following topological generalization of his theorem:

THEOREM 4.1.2

Let A be a finite family of closed homology cells in R®. If the intersection of every
d+ 1 or fewer members of A is a homology cell, then the intersection of all the
members of A is a homology cell.

Since the intersection of convex sets is a convex set and nonempty convex sets
are homology cells, Theorem 4.1.2 implies Helly’s theorem.

Helly’s theorem can also be generalized to objects that are the unions of convex
sets. Let C;‘ be the family of all sets of R? that are the unions of j or fewer
convex sets. The intersection of members of C;-l is not necessarily in CJC-‘. Alon and
Kalai [AK95] and independently Matousek [Mat] proved:
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THEOREM 4.1.3

For every j,d > 1 there exists an integer c(j,d) < oo such that: If A is a finite
subfamily of C;l of size at least c(j,d), such that the intersection of every subfamily
of A is also in C;l and such that every c(j,d) members of A have a point in common,
then there is a point common to all the members of A.

A tight version of Theorem 4.1.3 is known for objects that are the unions of
pairwise disjoint closed convex sets. Let IC;-‘ be the family of all sets of R? that are
the unions of j or fewer pairwise disjoint closed convex sets.

THEOREM 4.1.4

Let A be a finite subfamily of IC;-‘ of size at least j(d 4 1) such that the intersection
of every 7 members of A is also in IC;‘. If every j(d+1) members of A have a point
in comanon, then there is a point common to all the members of A.

The value j(d + 1) cannot be reduced. A recent elegant proof of this theorem
appears in [Ame96].

4.1.2

INTERSECTIONS IN MORE THAN A POINT

The following generalizations of Helly’s theorem apply to families of convex sets
but strengthen both the hypothesis and the conclusion of the theorem, usually by
assuming that the sets intersect in more than a single point.

THEOREM 4.1.5

Let A be a finite family of convex sets in R:. If every d—k+1 or fewer members of
A contain a k-flat in common, then there is a k-flat contained in all the members

of A.

THEOREM 4.1.6

Let A be a finite family of convex sets in RY. Let 1(0,d) = d + 1 and v(k,d) =
max(d+1,2(d —k+1)) for 1 <k < d. If the intersection of every ¥(k, d) or fewer
members of A has dimension at least k, then the intersection of all the members of
A is a set of dimension at least k.

The values of (k, d) are tight and cannot be reduced.

THEOREM 4.1.7

Let A be a finite family of at least d+ 1 convex sets in R and let b be some convex
set in RY. If every d + 1 members of A contain [intersect;are contained in] some
translate of b, then some translate of b is contained in [intersects;contains] all the
members of A.

THEOREM 4.1.8

Let A be a finite family of at least d+1 closed convez sets in R?. If the intersection
of every d + 1 members of A has width at least w, then the intersection of all the
members of A has width at least w.
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THEOREM 4.1.9

Let A be a finite family of at least 2d convex sets in R%. If the intersection of every
2d members of A has diameter at least 1, then the intersection of all the members
of A has diameter at least d=2%/2.

THEOREM 4.1.10

Let A be a finite family of at least 2d conver sets in R¢. If the intersection of every
2d members of A has volume at least 1, then the intersection of all the members of
A has volume at least d=2%".

The value 2d in Theorems 4.1.9 and 4.1.10 is tight and cannot be reduced. The
values d=2¢/2 and d=24" are not tight and can be increased. Bérany, Katchalski,
and Pach conjecture that the correct values are approximately ¢;d~'/2and d—¢¢
for some ¢; and cs.

4.1.3

REDUCING d+1

Reducing the number of intersecting convex sets in the hypothesis of Helly’s theorem
gives:

THEOREM 4.1.11

Let A be a finite family of convex sets in R®. For any m < d + 1, if every m or
fewer members of A have a point in common, then every (d—m+1)-flat in R? has
some translate that intersects every member of A and every (d—m)-flat in R is
contained in a (d—m+1)-flat that intersects every member of A.

It is also true that if every (d—m+1)-Hat in R? has some translate that intersects
every member of A or every (d—m)-Hat in R? is contained in a (d—m-+1)-flat that
intersects every member of 4, then every m members of A have a point in common.

For a family A of n convex sets, let f;(A) be the number of subfamilies A" of
A of size i 4+ 1 such that the i + 1 members of A’ have a point in common. (f;(A)
is the number of faces of dimension ¢ in the nerve of A.) Helly’s theorem states
that if f4(A) equals ( dil), then there is a point common to all the members of A.

What if f4(A) is some value less than ()7

THEOREM 4.1.12

Let A be a finite family of n > d+ 1 conver sets in R%. For any v where 0 < r <
n—d—1, if f4(A) > (dil) — (ZH), then some d+r+ 1 members of A have a point
in common.

THEOREM 4.1.13

Let A be a finite family of n > d+ 1 convex sets in R%. For any p where 0 < p <1,
if fa(A) > (1— (1= p)®) (1), then some |pn| + 1 members of A have a point
mn CoMmmon.

The values given in Theorems 4.1.12 and 4.1.13 are tight and cannot be reduced.
Tight versions of these theorems are also known when f4(A) is replaced by f;(A)
for any ¢ > d. Theorem 4.1.13 is sometimes called a fractional Helly theorem.

The hypothesis that every d + 1 members of 4 have a point in common can
also be replaced by the hypothesis that out of every p members of A some ¢ have
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a point in common, where p > q > d + 1. For certain values of p and ¢, Hadwiger
and Debrunner proved the following result on their so-called (p, ¢)-problem:

THEOREM 4.1.14

Let A be a finite family of at least p convex sets in R%. If out of every p members
of A some q have a point in common, where p > q > d+1 and p(d—1) < (¢—1)d,
then some set of p — q + 1 points intersects every member of A.

The value of p — ¢ + 1 is tight and cannot be reduced.

For general values of p and ¢ Alon and Kleitman [AK92] proved:

THEOREM 4.1.15

For every p > q > d+ 1, there exists a positive integer c(p, q,d) < oo such that: If
A is a finite family of at least p convex sets in R and out of every p members of A
some q have a point in common, then some set of c(p,q,d) points intersects every
member of A.

For the special case of homothets, the intersection of every two members of A
suffices.

THEOREM 4.1.16

For every d there exists a positive integer c(d) < oo such that: If A is a finite
family of homothets of a convex set in R? and every two members of A intersect,
then some set of c¢(d) points intersects every member of A.

Tight bounds are known for circular disks in R,

THEOREM 4.1.17

Let A be a finite family of circular disks in R?. If every two members of A intersect,
then some set of four points intersects every member of A.

THEOREM 4.1.18
Let A be a finite family of circular unit disks in R®. If every two members of A
intersect, then some set of three points intersects every member of A.

Danzer proved Theorem 4.1.17, settling a question by Gallai on the minimum
number of points needed to intersect all the members of any family of pairwise
intersecting circular disks in R?. Such problems are often called Gallai-type prob-
lems.

Theorem 4.1.13 generalizes to objects that are unions of convex sets. Let C;-l
be as above.

THEOREM 4.1.19

For every a, 0 < o < 1, and every j,d > 0, there exists a constant c(j, o, d) > 0
such that: If A is a finite subfamily of C;l of sizen > d+1 and fq(A) > a(dzl),
then some c(j, a, d)n members of A have a point in common.

Similarly, Theorem 4.1.15 generalizes to subfamilies of C§ [AK95]:

THEOREM 4.1.20

For every p > q > d+1 and every j > 0, there exists a positive integer ¢(j, p,q, d) <
oo such that: If A is a finite subfamily of C;-l of size at least p and out of every p
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members of A some q have a point in common, then some set of ¢(j, v, q, d) points
intersects every member of A.

41.4

SPHERICAL HELLY-TYPE THEOREMS

Various generalizations of convexity to a convexity structure on the d-sphere, Sd,
give rise to various Helly-type theorems.

GLOSSARY

Robinson-convex: A set a C S? is Robinson-convex if for every z,y € a where
x and y are not antipodal points, the small arc of the great circle joining z and
y is contained in a.

Strongly convex: A set a C S? is strongly convex if a is Robinson-convex and
does not contain any antipodal points.

Convez cone: A set a C R? is a convex cone centered at the origin if z,y € a
implies t,x 4 t,y € a for any scalars ¢,,t, > 0.

NOTATION

—a: The set of points antipodal to the points in ¢ C S%.

dim(a): The dimension of a manifold a with boundary. (By convention, the di-
mension of the empty set is —1.)

RESULTS

THEOREM 4.1.21

Let A be a finite family of at least d + 2 strongly convex sets in S®. If every d + 2
members of A have a point in common, then there is a point common to all the
members of A.

THEOREM 4.1.22

Let A be a finite family of at least 2d+ 2 Robinson-conver sets in s, If every 2d+2
members of A have a point in common, then there is a point common to all the
members of A.

Theorems 4.1.21 and 4.1.22 generalize to:

THEOREM 4.1.23

Let A be a finite family of Robinson-convez sets in S*. Let m equal minge Aldim(a)+
dim(a N —a)]. If every m+ 3 or fewer members of A have a point in common, then
there is a point common to all the members of A.

The values d+2, 2d+2, and m+3 in Theorems 4.1.21, 4.1.22, and 4.1.23 can be
reduced by one under certain suitable circumstances. A subset of S% is Robinson-
convex if and only if it is the intersection of S* with some convex cone centered at
the origin. Thus Theorems 4.1.22 and 4.1.23 can be formulated in terms of convex
cones.
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Weakening the hypothesis of Theorem 4.1.22 by replacing 2d+ 2 by d+ 1 gives
the following theorem:

THEOREM 4.1.24

Let A be a finite family of at least d + n + 1 Robinson-convez sets in S%, n > 0.
If every d + 1 members of A have a point in common, then some d + |n/2] +1
members of A have a point in common.

A spherical variant of the topological Helly theorem (Theorem 4.1.2) generalizes
Theorem 4.1.21.

THEOREM 4.1.25

Let A be o finite family of closed homology cells in S. If the intersection of every
d + 2 or fewer members of A is a homology cell, then the intersection of all the
members of A is a homology cell.

4.1.5 OTHER GENERALIZATIONS
Helly’s theorem generalizes to multiple families of convex sets:
THEOREM 4.1.26
Let Ay, As, ..., Aap1 be nonempty finite families of convex sets in R®. If ﬂf:ll a; #
O for each choice of a; € A;, then MNaca, @ 7 0 for some A;.
Setting A; = Ay = --- = Agy1 gives Helly’s original theorem.
Dol’nikov gave a variation of Theorem 4.1.11 for multiple families of convex
sets:
THEOREM 4.1.27
Let A1, Ao, ..., Ag—ma2 be d —m+2 finite families of convex sets in Rd, 2<m<
d+1. If every m or fewer members of each family A; have a point in common, then
there is some (d—m~+1)-flat in R? that intersects every member of A = U?:_1m+2 A;.
Theorem 4.1.27 is a special case of a much more general theorem by Dol’nikov
that gives conditions for an algebraic surface of dimension d — m + 1 to intersect
every member of A = [Ji=" 1 A,.
4.1.6 RELATED THEOREMS

Helly’s theorem implies and /or is implied by some notable theorems.

THEOREM 4.1.28 Carathéodory’s Theorem

Each point of conv(X), X C RY, is a convex combination of d+ 1 or fewer points
of X.

THEOREM 4.1.29 Radon’s Theorem

Each set of d + 2 or more points in R? can be partitioned into two disjoint sets
whose convex hulls have a point in common.
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THEOREM 4.1.30 Kirchberger’s Theorem

For point sets X,Y C R%, conv(X) Nconv(Y) # O if and only if conv(X’) N
conv(Y') £ @ for some X’ C X and Y’ CY where | X|+ Y| <d+2.

A theorem similar to Carathéodory’s theorem gives conditions for a point to
lie in the interior of the convex hull of a set of points.

THEOREM 4.1.31 Steinitz’s Theorem

Each point in the interior of conv(X), X CR?, is in the interior of conv(X') for
some X' C X and |X'| < 2d.

Theorem 4.1.26 is a generalization of Helly’s theorem to multiple families of
convex sets. Carathéodory’s theorem has a similar, related generalization:

THEOREM 4.1.32

Let X1,X2,...,Xay1 be subsets of RY. If ¢ € conv(X;) for each X;, then there
exist points x; € X; such that x € conv({z1,...,Zgr1})-

Finally, Radon’s theorem has the following generalization:

THEOREM 4.1.33 Twerberg’s Theorem

Each set of (r—1)(d+1) +1 or more points in R can be partitioned into r subsets
whose convex hulls have a point in common.

The theorem is tight and the number (r —1)(d +1) 4+ 1 cannot be reduced. For
more details, see Chapter 11.

4.1.7

RELATED ALGORITHMS

Helly’s theorem provokes the following algorithmic problem: Given a family A of n
convex sets, find a point common to all the sets or, if there is no such point, find d+1
members of A that have no point in common. When A is a family of n halfspaces,
this problem is simply a specialized version of linear programming. Sharir and Welzl
have generalized linear programming to a more abstract framework that they call
generalized linear programming. The problem of finding a point common to n convex
sets can be formulated and solved as a generalized linear programming problem. In
addition, other Helly-type theorems have related algorithmic questions that can be
formulated and solved as generalized linear programming problems [Ame94]. For
more on linear programming and generalized linear programming, see Chapters 38
and 39.

4.1.8

OPEN PROBLEMS

PROBLEM 4.1.34

Prove or disprove that there exists some constant ¢ such that: If the intersection of
every 2d members of a family A of at least 2d convex sets in R has diameter at
least 1, then the intersection of all the members of A has diameter at least cd—/2.
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PROBLEM 4.1.35

Prove or disprove that there exists some constant ¢ such that: If the intersection
of every 2d members of a family A of at least 2d conver sets in R has volume at
least 1, then the intersection of all the members of A has volume at least d—°.

PROBLEM 4.1.36

Let A be a finite family of translates of a conver set in R?. Prove or disprove that
if every two members of A intersect, then some set of three points intersects every
member of A.

4.2

GEOMETRIC TRANSVERSALS

Much research on geometric transversals focuses on necessary and sufficient condi-
tions for the existence of line, plane, or hyperplane transversals to a family A of
convex sets. This research includes conditions on the existence of transversals to
special families of convex sets, such as translates or homothets. Most of the results
apply either to line transversals in R? or to hyperplane transversals in R%. The
“order” in which a transversal intersects A plays an important role in stating and
proving such theorems. Given a family A of convex sets, in how many different
orders can A be intersected by transversals?

The set of transversals to a family A of convex sets forms a topological space
with the usual topology associated with affine subspaces in RY, i.e., the topology
inherited from the Grassmannian. What is the combinatorial structure and com-
plexity of this space? What are efficient algorithms for constructing this space?
Under what conditions does a set of k-flats form the space of transversals to some
family of convex sets?

GLOSSARY

Transversal: An affine subspace f C R? of dimension k is a k-transversal to a
family A of convex sets if f intersects every member of A.

Line transversal: A 1-tranversal to a family of convex sets in R%,
Hyperplane transversal: A (d—1)-tranversal to a family of convex sets in R%.

Separated: A family A of convex sets is k-separated if no k + 2 members of A
have a k-transversal.

Ordering: A k-ordering of a family A = {a,...,a,} of convex sets is a family
of orientations of (k+1)-tuples of A defined by a mapping x : A¥*! — {-1,0,1}
corresponding to the orientations of some family of points X = {x1,...,2,} in
R*. The orientation of (a,,ds,,...,as,) is the orientation of the corresponding
points (@i, Ty, - -, Tip ), L€,

Loz - zk
sgn det : :
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Nontrivial ordering: A k-ordering is nontrivial if at least one of its orientations
is nonzero.

Acyclic oriented matroid: A rank r acyclic oriented matroid on a set A is a
family of orientations of r-tuples of A defined by a mapping x : A" — {-1,0,1}
satisfying certain “chirotope” axioms and a condition of “acyclicity”; for more
details, see Chapter 6.

Realizable acyclic oriented matroid: An acyclic oriented matroid of rank r is
realizable if it can be represented as the family of orientations of a set of points
in R™'.

Geometric permutation: A geometric permutation of a (k—1)-separated family
A of convex sets in R is the pair of k-orderings induced by some k-transversal

of A.

Ackermann function: The extremely rapidly growing function defined recur-
sively by A(n) = Ap(n), where A;(n) = 2n and Ax(n) = A (1), k > 2.

Davenport-Schinzel sequence: An (n,s) Davenport-Schinzel sequence is a se-
quence of integers, (u1,...,uy), where 1 < u; < n and u; # w11, which does
not contain any alternating subsequence (u;,, Uiy, - - ., Ui, ., ) of length s+2 such
that u;, = wy, = us, = -+ and w;, = w;, = Uy, = -+ and u;, F# Yy,; for more
details, see Section 40.4 of this Handbook.

Constant description complexity: A convex set has constant description com-
plexity if it is defined by a constant number of algebraic equalities and inequalities
of constant maximum degree.

Strictly convex: A compact convex set a is strictly convex if its boundary con-
tains no line segments.

Stubby: Convex set a is p-stubby, p > 1, if it is contained in a ball of radius p
and contains a ball of radius one.

NOTATION

T3(A): The space of k-transversals to a family A of convex sets in RY.

gf(n): The maximum number of geometric permutations induced by k-transver-
sals of (k—1)-separated families of n compact convex sets in R?.

a(n): The inverse of the Ackermann function.

As(n):  The maximum length of an (n,s) Davenport-Schinzel sequence.

4.2.1

HADWIGER'S TRANSVERSAL THEOREM

In 1935, Vincensini asked if there is a Helly-type theorem for line transversals to
a family A of convex sets in R?. In other words, is there a number m such that if
every m members of A are simultaneously intersected by a line then there exists
a single line intersecting all the members of A7 As Figure 4.2.1 illustrates when
m equals four, there is no such m, even for line transversals to families of pairwise
disjoint line segments.

However, in 1957 Hadwiger added a condition about the order in which every
m members of A are intersected by a line to give the following theorem:
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FIGURE 4.2.1

A counterexample to o Helly-type theorem for line transver-
sals to families of convex sets in R?: Five convez sets, four
line segments and a point, where every four sets have a line
transversal but all five do not.

THEOREM 4.2.1 Hadwiger’s Transversal Theorem

Let A be a finite family of pairwise disjoint convex sets in R?. If there exists a linear
ordering of A such that every three members of A are intersected by a directed line
in the given order, then A has a line transversal.

As with Helly’s theorem, Hadwiger’s transversal theorem and most of the sim-
ilar theorems in this section also apply to infinite families of compact convex sets.

Hadwiger’s transversal theorem generalizes to hyperplane transversals in R? as
follows:

THEOREM 4.2.2

Let A be a finite family of connected sets in R, If, for some k, 0 < k < d,
there exists a nontrivial k-ordering of A such that every k + 2 members of A are
intersected by an oriented k-flat consistently with that k-ordering, then A has a
hyperplane transversal.

An oriented k-flat f meets A" C A consistently with a given k-ordering of
A if one can choose a point y; from the intersection of each set a; € A’ and
f such that the orientation of every (k+1)-tuple, (yi,,Yiys .-, ¥:,), of points in
f matches the orientation of the corresponding (k+1)-tuple, (as,, as,,...,aq, ), of
the k-ordering. Note that Theorem 4.2.2 eliminates the assumption of pairwise
disjointness in Theorem 4.2.1.

Hadwiger’s transversal theorem can be generalized even further in the language
of oriented matroid theory [AW96):

THEOREM 4.2.3

Let A be a finite family of connected sets in R%. If, for some k, 0 < k < d, there
exists an acyclic oriented matroid of rank k+1 on A such that every k+2 members
of A are intersected by an oriented k-flat consistently with that oriented matroid,
then A has a hyperplane transversal.

An oriented k-flat f meets A" C A consistently with a given acyclic oriented
matroid on A if one can choose a point y; from the intersection of each set a; € A’
and f such that the orientation of every (k+1)-tuple, (yiy, iy, - - -» Yir ), Of points in
f matches the orientation of the corresponding (k+1)-tuple, (a;,, as,,...,a;, ), of
the oriented matroid. Theorem 4.2.2 is a restriction of Theorem 4.2.3 to realizable
oriented matroids.
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Hadwiger’s theorem does not generalize to line transversals in R®. For each
m > 2, there is a finite family A of pairwise disjoint convex sets in R? and a linear
ordering of A such that any m — 2 members of A are met by a directed line in the
given order, but A4 has no line transversal.

4.2.2

GALLAI-TYPE PROBLEMS

Under certain conditions a family .4 may not have a k-transversal but there may
be some small set of k-flats whose union intersects every member of A.

Alon and Kalai gave a variant of Theorem 4.1.15 for hyperplane transver-
sals [AK95]:

THEOREM 4.2.4

For every p > q > d+ 1 there exists a positive integer c(p,q,d) < oo such that: If
A is a finite family of at least p convex sets in R% and out of every p members of
A some q have a hyperplane transversal, then there are c¢(p, q,d) hyperplanes whose
union intersects every member of A.

In R? almost exact minimal values of c(p,p,2) are known.

THEOREM 4.2.5

Let A be a finite family of convex sets in R2. If every four members of A have
a line transversal, then there are two lines whose union intersects every member

of A.
THEOREM 4.2.6

Let A be a finite family of convex sets in R2. If every three members of A have
a line transversal, then there are four lines whose union intersects every member
of A.

It is conjectured, but not proven, that the number four in the conclusion of
Theorem 4.2.6 can be reduced to three. It cannot be reduced to two.

Theorem 4.2.4 generalizes to subfamilies of C;l, i.e., families whose members are
the unions of convex sets [AK95]:

THEOREM 4.2.7

For every p > q > d+ 1 and every j there exists a positive integer c(j,p,q,d) < oo
such that: If A is a finite subfamily of C;-l of size at least p and out of every p
members of A some q have a hyperplane transversal, then there are c(4,p,q,d)
hyperplanes whose union intersects every member of A.

4.2.3

TRANSLATES

Many special theorems apply to transversals of families of translates. Most note-
worthy is the following Helly-type theorem conjectured by Griinbaum in 1958 and
proved by Tverberg in 1989:
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THEOREM 4.2.8

Let A be a family of at least five pairwise disjoint translates of a compact convex
set in R%. If every five members of A have a line transversal, then A has a line
transversal.

The number five cannot be reduced.
Under the weaker condition that every three members of A4 have a line transver-
sal, the following theorem holds:

THEOREM 4.2.9

Let A be a family of pairwise disjoint translates of a compact conver set in R2.
If every three members of A have a line transversal, then some subfamily A’ C A
containing all but 108 members of A has a line transversal.

The number 108 is not known to be tight and can possibly be reduced. Katchal-
ski and Lewis conjectured that the true value in the theorem should be two.

Versions of Theorems 4.2.8 and 4.2.9 exist for families of pairwise disjoint p-
stubby convex sets where the constants are replaced by functions of p.

The condition that the members of A are pairwise disjoint can also be weak-
ened [Rob].

THEOREM 4.2.10

For every j > 0 there exists a number c(j) such that: If A is a family of at least c(3)
translates of a compact convex set in R? such that the intersection of any j members
of A is empty and such that every c(j) members of A have a line transversal, then
A has a line transversal.

Special Helly-type theorems are known for hyperplane transversals of families
of translates of convex polytopes:

THEOREM 4.2.11

Let A be a family of translates of a convex polytope in R with n vertices. If every
(g) (d+ 1) or fewer members of A have a hyperplane transversal, then A has a
hyperplane transversal.

THEOREM 4.2.12

Let A be a family of translates of a centrally symmetric convex polytope in R? with
n vertices. If every | %] (d+1) or fewer members of A have a hyperplane transversal,
then A has a hyperplane transversal.

The number |2 ](d + 1) is tight and cannot be reduced.

424

GALLAI-TYPE PROBLEMS ON TRANSLATES

Eckhoff established Gallai-type results for line transversals of translates in R*:

THEOREM 4.2.13

Let A be a finite family of translates of a convex set in R?. If every three members
of A have a line transversal, then there are two parallel lines whose union intersects
every member of A.
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In higher dimensions, Eckhoff showed:

THEOREM 4.2.14

For every k > 0 there exists a number c(k) such that: If A is a finite family of
translates of a convex set in R? and every k+2 members of A have a k-transversal,
then there are c(k) parallel k-flats whose union intersects every member of A.

4.2.5

SPACE OF TRANSVERSALS

Given a family A of convex sets in R?, let T,2(A) be the space of all k-transversals
of A. If the members of A are closed, then the boundary of T,%(A) consists of
k-flats that support one or more members of A. This boundary can be partitioned
into subspaces of k-flats that support the same subfamily of 4. Each of these
subspaces can be further partitioned into connected components. The combinatorial
complexity of 7,.9(A) is the number of such connected components.

Even in R? the boundaries of two convex sets can intersect in an arbitrarily
large number of points and have an arbitrarily large number of common supporting
lines. Thus the space of line transversals to two convex sets in R? can have arbi-
trarily large combinatorial complexity. However, if A consists of pairwise disjoint
convex sets in R? or, more generally, suitably separated convex sets in R¢, then the
complexity is bounded:

THEOREM 4.2.15
Let A be a (d—2)-separated family of n compact and strictly convex sets in R%. The
combinatorial complexity of T2 (A) is O(n?~1).

For certain types of convex sets, 7 , (A) can be bounded without any assump-
tions about pairwise disjointness or separability.

THEOREM 4.2.16
Let A be a family of n (d—1)-balls in R®. The combinatorial complexity of T | (A)
is O(nl%/21),

It is not known whether the bounds in Theorems 4.2.15 and 4.2.16 are asymp-
totically tight.

THEOREM 4.2.17
Let A be a family of convex polytopes in R with a total of ny faces. The combina-
torial complexity of T |(A) is O(n}l_la(n)).

a(n) is the very slowly growing inverse of the Ackermann function.

THEOREM 4.2.18

Let A be a family of n line segments in RY. The combinatorial complexity of
T\ (A) is O(n?~).

The asymptotic bounds in Theorems 4.2.17 and 4.2.18 are tight.

If A is a family of polytopes, the boundary of 7,.(A) can also be partitioned
into subspaces of k-flats that support the same polytope faces. Each of these
subspaces can be further partitioned into connected components. The asymptotic

© 1997 by CRC Press LLC



bounds in Theorems 4.2.17 and 4.2.18 also apply to the number of such connected
components.

In R? the pairwise disjointness condition of Theorem 4.2.15 can be relaxed
to permit pairs of convex sets to have at most s common supporting lines. Let
As(n) be the maximum length of an (n,s) Davenport-Schinzel sequence. Then
As(n) = na(n)2@m ™),

THEOREM 4.2.19

Let A be a family of n compact connected sets in R? such that any two members
of A have at most s common supporting lines. The combinatorial complexity of

T (A) is O(Xs(n)).
In R? bounds on 73 (A) can be given for families of sets that have algebraically
simple descriptions [ASS95].

THEOREM 4.2.20

Let A be a family of n compact convex sets with constant description complexity in
R3. The combinatorial complexity of T3 (A) is O(n**+€) for any e > 0.

Finally, near tight asymptotic bounds are known for the complexity of the space
of line transversals to convex polytopes in R3.

THEOREM 4.2.21

Let A be a family of convex polytopes in R* with a total of ny faces. The combina-
torial complezity of T2(A) is O(n?rf) for any € > 0.

There are examples of families A of convex polytopes where the complexity of
T2(A) is Q(n?)

4.2.6

GEOMETRIC PERMUTATIONS

A directed line intersects a family A of pairwise disjoint convex sets in a well-
defined order. Thus an undirected line transversal to A induces a pair of linear
orderings or “permutations” on A consisting of the two orders in which oriented
versions of the line intersect A. Similarly an oriented k-transversal f intersects a

(k—1)-separated family A = {a1,...,an} of convex sets in a well-defined k-ordering.
The orientation of (a,, @4,, .- -, a;, ) is the orientation in f of any corresponding set
of points (x;,, %4, .., %;,), where T;; € ag; N f. An unoriented k-transversal to

a (k—1)-separated family A of convex sets induces a pair of k-orderings on A,
consisting of the two k-orderings in which oriented versions of the k-transversal
intersect A. Each such pair of k-orderings is called a geometric permutation of A.

If Ais (k—1)-separated, then two k-transversals that induce different geometric
permutations on A must lie in different connected components of 7,.9(A). The
converse also holds for hyperplane transversals.

THEOREM 4.2.22

Let A be a (d—2)-separated family of compact convex sets in RY. Two hyperplane
transversals induce the same geometric permutation on A if and only if they lie in
the same connected component of T2 | (A).

© 1997 by CRC Press LLC



FIGURE 4.2.2

An example of n conver sels, lwo quarter circ-
les and n — 2 line segments, that have 2n — 2
geometric permutations. (From [GPW93],
with permission.)

Consider geometric permutations induced by k-transversals of (k—1)-separated
families of compact convex sets in RY. Let gi(n) be the maximum number of such
geometric permutations over all such families A of size n. The following is known
about g(n):

THEOREM 4.2.23
1. g¥(n)=2n—2. (See Figure 4.2.2.)

2. gi(n) = Qnt).
3. giy(n) = O(ni™).
P k(d—k
4. gi(n) = O(k‘)d)‘ ((2 k_g) kil]) = (or gil(n) = O(n**k+VE=R)) for fized k

and d) [GPW96].
For families of pairwise disjoint translates, special bounds hold. Note that such
families also have a special Helly-type transversal theorem (Theorem 4.2.8).

THEOREM 4.2.24
A family of pairwise disjoint translates of a compact convex set in R> has at most
three geometric permutations.

A family of pairwise disjoint p-stubby compact convex sets in R? has at most
¢, geometric permutations, where the constant ¢, depends upon p.

4.2.7

TRANSVERSAL ALGORITHMS

Let A be a family of convex polytopes in R? with a total of ng vertices. Table 4.2.1
gives known bounds on the worst case time to construct a representation of the
space T,%(A) for various values of k and d.

The model of computation used in the lower bound for the time to construct
T2(A) is an algebraic decision tree. In the worst case, 73 (.A) may have Q(n3a(ng))
complexity, which gives the lower bound on constructing 733(A). Similarly, 7;3(A)
may have Q(n3) complexity, giving an Q(n3) lower bound on the time to construct
T3(A).

Algorithms have also been proposed for constructing a representation of 7,%(A)
for families of convex sets with algebraically simple descriptions.
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TABLE 4.2.1 Algorithms to construct T,2(A).

TRANSVERSAL SPACE | TIME COMPLEXITY
T2(A) O(ng logno)
T3 (A) O(nga(no))
T¢  (A) Oomnd), d>3
T2 (A) O(ng+e) for any € > 0

THEOREM 4.2.25

Let A be a family of n compact convex sets with constant description complexity in
R? such that any two members of A have at most s common supporting lines. A
representation of T{2(n) can be constructed in O(\s(n)logn) time. In particular, if
A is a family of convex translates or conwvex homothets with constant description
complexity in R*, then T2(n) can be constructed in O(nlogn) time.

THEOREM 4.2.26

Let A be a family of n compact convex sets with constant description complexity in
R3. A representation of T3 (A) can be constructed in O(n**¢) time for any € > 0.

THEOREM 4.2.27

Let A be a (d—2)-separated family of n compact and strictly convex sets with con-
stant description complezity in RY. A representation of ’Z;ld_l(.A) can be constructed

in O(n%log®n) time.

THEOREM 4.2.28
Let A be a family of n d-balls in R:. A representation of T2 ,(A) can be constructed
in O(nl¥2+1) time.

As noted in Section 4.1, algorithmic problems related to Helly-type theorems

can be formulated and solved using generalized linear programming. In particular,
Theorem 4.2.8 has the following algorithmic analogue:

THEOREM 4.2.29

Let A be a family of n pairwise disjoint translates of a compact conver set in RZ.
A line transversal for A, if one exists, can be found in O(n) time.

4.2.8

CONVEXITY ON THE AFFINE GRASSMANNIAN

Goodman and Pollack in [GP95] extend the notion of point set convexity to con-
vexity of a set of k-flats in R%, giving several alternate and equivalent formulations
of this convexity structure. In one such formulation, a set F of k-flats is conver if
F is the transversal space of some family of convex point sets. They explore the
conditions for F to be such a transversal space.
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GLOSSARY

Conver (set of k-flats): A set F of k-flats is convex if F is the space of k-
transversals to some (possibly infinite) family of convex sets in RY.

Surround: A set F of k-flats surrounds a k-flat f if there is some j-flat g con-
taining f such that every (j—1)-flat containing f and lying in g strictly separates
two members of F also lying in g.

Convex hull (of a set of k-flats): The convex hull of a set F of k-Hlats in R
is the set of all k-flats surrounded by F in R%.

THEOREM 4.2.30

A set F of k-flats in R? is the space of k-transversals to some (possibly infinite)
family of convex point sets in R if and only if every k-flat surrounded by F is in

F.

There is no Helly-type theorem for convex sets of k-flats in R¢ since such a
theorem would be equivalent to a Helly-type theorem for k-transversals in R%. Such
convex sets may have many connected components and may even have arbitrarily
complex homology. Under suitable conditions in R3, however, each such connected
component is itself convex [GPW95].

THEOREM 4.2.31

Let F be the space of all line transversals to a finite family of pairwise disjoint
compact convez sets in R®. Each connected component of F cam itself be represented
as the space of line transversals to some finite family of pairwise disjoint compact
convez sets in R3.

The theorem does not hold for line transversals to infinite families of noncom-
pact convex sets.

4.2.9

OPEN PROBLEMS

PROBLEM 4.2.32

Let A be a finite family of convexr sets in R?. Prove or disprove that if every
three members of A have a line transversal, then there are three lines whose union
intersects every member of A.

PROBLEM 4.2.33

Let A be a family of pairwise disjoint translates of a compact conver set in R2.
Prove or disprove that if every three members of A have a line transversal, then
some subfamily A’ C A containing all but two members of A has a line transversal.

PROBLEM 4.2.34

Prove or disprove that there exists some constant m such that: If every m members
of a family A of at least m pairwise disjoint unit balls in R® have a line transver-
sal, then A has a line transversal. Do the same for families of pairwise disjoint
translates.
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PROBLEM 4.2.35

Prove or disprove that there exist some m and r such that: If every m members of
a finite family A of at least m convex sets in R? have a line transversal, then there
are v lines whose union intersects every member of A. Prove a similar result under
the conditions that out of every p members of A some q have a line transversal, for
suitably large p and q. Generalize to k-transversals in R%.

PROBLEM 4.2.36

Let F be the space of all k-transversals to a finite (k—1)-separated family of compact
convex sets in R%. Prove or disprove that each connected component of F can itself
be represented as the space of k-transversals to some family of convex sets in RY.

4.3

SOURCES AND RELATED MATERIAL

SURVEYS

The following surveys contain references for any results not given an explicit cita-
tion.

[DGK63]: The classical survey of Helly’s theorem and related results.

[Eck93]: A recent survey of Helly’s theorem and related results, updating the ma-
terial in [DGK63].

[GPW93]: A survey of geometric transversal theory.

RELATED CHAPTERS

Chapter 2: Packing and covering

Chapter 3: Tilings

Chapter 6: Oriented matroids

Chapter 11: Topological methods

Chapter 15: Face numbers of polytopes and complexes
Chapter 21: Arrangements

Chapter 38: Linear programming in low dimensions
Chapter 39: Mathematical programming

Chapter 40: Algorithmic motion planning
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5

PSEUDOLINE ARRANGEMENTS

Jacob E. Goodman

INTRODUCTION

Pseudoline arrangements generalize in a natural way arrangements of straight lines,
discarding the straightness aspect, but preserving their basic topological and com-
binatorial properties. Elementary and intuitive in nature, at the same time, by
the Folkman-Lawrence topological representation theorem (see Chapter 6), they
provide a concrete geometric model for oriented matroids of rank 3.

After their explicit description by Levi in the 1920’s, and the subsequent devel-
opment of the theory by Ringel in the 1950’s, the major impetus was given in the
1970’s by Griinbaum’s monograph Arrangements and Spreads, in which a number
of results were collected and a great many problems and conjectures posed about
arrangements of both lines and pseudolines. The connection with oriented matroids
discovered several years later led to further work. The theory is by now very well
developed, with many combinatorial and topological results and relations to other
areas, as well as an increasing number of applications in computational geometry.

Section 5.1 is devoted to the basic properties of pseudoline arrangements, and
Section 5.2 to related structures, such as arrangements of straight lines, configura-
tions (and generalized configurations) of points, and allowable sequences of permu-
tations. (We do not discuss the connection with oriented matroids, however; that is
included in Chapter 6.) In Section 5.3 we discuss the stretchability problem and in
Section 5.4 summarize some of the (many) combinatorial results known about line
and pseudoline arrangements. Section 5.5 deals with results of a topological nature,
Section 5.6 with issues of combinatorial and computational complexity, and Sec-
tion 5.7 with several applications, including sweeping arrangements and visibility
graphs.

Unless otherwise noted, we work in the real projective plane P2.

5.1

BASIC PROPERTIES

GLOSSARY

Arrangement of lines: A labeled set of lines not all passing through the same
point (the latter is called a pencil).

Pseudoline: A simple closed curve whose removal does not disconnect P2.

Arrangement of pseudolines: A labeled set of pseudolines not a pencil, every
pair meeting no more than once (hence exactly once and crossing).

Isomorphic arrangements: Two arrangements such that the mapping induced
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by their labelings is an isomorphism of the cell complexes into which they parti-
tion P?. (Isomorphism classes of pseudoline arrangements correspond to reori-
entation classes of oriented matroids of rank 3; see Chapter 6.)

Stretchable: A pseudoline arrangement isomorphic to an arrangement of straight
lines. Figure 5.1.1 illustrates what was once believed to be an arrangement of
straight lines, but which was later proven not to be stretchable. We will see in
Section 5.6 that most pseudoline arrangements, in fact, are not stretchable.

~\ N

FIGURE 5.1.1
An arrangement of 10 pseudolines,
each containing 3 triple points; \ h\

the arrangement is nonstretchable.

Vertex: The intersection of two or more pseudolines in an arrangement.

Ordinary vertex: A vertex at which only two pseudolines meet.

Simple arrangement: An arrangement (of lines or pseudolines) in which each
vertex is ordinary.

Wiring diagram: An (alfine) arrangement of pseudolines consisting of piecewise
linear “wires,” each horizontal except for a short segment where it crosses another
wire; see Figure 5.1.2, which shows a wiring diagram labeled 1,...,n in upward
order on the left and in downward order on the right.

X X
NF

FIGURE 5.1.2
A wiring diagram.

—_ M W Bt
L P N

7K
X X

p-convex hull: If A is an arrangement of pseudolines and p is a point not con-
tained in any member of A, L € A is in the p-convex hull of B C A if every path
from p to a point of L meets some member of 5.

A fundamental tool in working with arrangements of pseudolines, which takes
the place of the fact that two points determine a line, is the following.

THEOREM 5.1.1 Levi Enlargement Lemma [Lev26)

IfA={Lx,...,L,} is an arrangement of pseudolines and p, q € P* are two distinct
points not on the same member of A, there is a pseudoline L passing through p and
q such that AU {L} is an arrangement.

Theorem 5.1.1 has been shown by Goodman and Pollack (see [BLS93]) not
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to extend to arrangements of pseudohyperplanes. It has, however, been extended
by Snoeyink and Hershberger to the case of “2-intersecting curves” (where three
points are given) [SH91], and shown by them not to extend to k-intersecting curves
and k + 1 points for k > 2.

The Levi Enlargement Lemma is used to prove extensions to pseudoline ar-
rangements of a number of convexity results on arrangements of straight lines,
duals of statements perhaps better known in the setting of configurations of points:
Helly’s theorem, Radon’s theorem, Carathéodory’s theorem, Kirchberger’s theorem,
the Hahn-Banach theorem, the Krein-Milman theorem, and Tverberg’s generaliza-
tion of Radon’s theorem (cf. Chapter 4). We state two of these.

THEOREM 5.1.2 Helly’s theorem for pseudoline arrangements [GP82]

If Ay, ..., Ay are subsets of an arrangement A of pseudolines, and p is a point not
on any pseudoline of A such that, for any i,j,k, A contains a pseudoline in the
p-convex hull of each of A;, Aj, Ak, then there is an extension A of A containing
a pseudoline lying in the p-convex hull of each of A1, ..., Ay,.

THEOREM 5.1.3 Twerberg’s theorem for pseudoline arrangements [Rou88]

If A ={Ly,...,L,} is a pseudoline arrangement with n > 3m — 2, and p is a
point not on any member of A, then A can be partitioned into subarrangements
A, ..., A and extended to an arrangement A containing o pseudoline lying in
the p-convex hull of A; for everyi=1,...,m.

Some of these convexity theorems, but not all, extend to higher dimensional
arrangements; see [BLST93], as well as Section 11.3 of this Handbook.

It is not difficult to see that the pseudolines in an arrangement may be drawn as
polygonal lines, with bends only at vertices [Grii72]. Related to this is the following
representation, which will be discussed further in Section 5.3.

THEOREM 5.1.4  [Goo80]

Every arrangement of pseudolines is isomorphic to a wiring diagram.

Theorem 5.1.4 is used in proving the following duality theorem, which extends
to the setting of pseudolines the fundamental duality theorem between lines and
points in the projective plane.

THEOREM 5.1.5 [Goo80]

If A is a pseudoline arrangement and S a point set in P2, and if I is the set of all
true statements of the form “p EAS is incident to L € A,” then there is a pseudoline
arrangement S and a point set A such that the set of all incidences holding between
members of./l and members ofS is precisely the dual I of 1.

5.2

RELATED STRUCTURES

GLOSSARY

Circular sequence of permutations: A doubly infinite sequence of permuta-
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FIGURE 5.2.1
A generalized configuration of 5 points.

tions of 1,...,n associated with an arrangement A of lines Ly, ..., L, by sweep-

ing a directed line across A; see Figure 5.2.3 and the corresponding sequence
below.

Local equivalence: Two circular sequences of permutations are locally equiv-
alent if, for each index ¢, the order in which it switches with the remaining

indices is either the same or opposite in the two sequences; see Figure 5.2.4 and
Theorem 5.2.2 below.

Configuration of points: A (labeled) family S = {p,,...,p,} of points, not all
collinear, in P2,

Order type of a configuration S: The mapping that assigns to each ordered triple
1, J,k in {1,...,n} the orientation of the triple (p;, p;, pk).

Combinatorial equivalence: Configurations S and 8’ are combinatorially equiv-
alent if the set of permutations of 1,...,n obtained by projecting S onto every
line in general position agrees with the corresponding set for &'.

Generalized configuration: A finite set of points in P2, together with a pseu-
doline joining each pair, the pseudolines forming an arrangement. (Several con-
necting pseudolines may coincide.) This is sometimes called a pseudoconfigu-
ration. An example is shown in Figure 5.2.1.

Allowable sequence of permutations: A doubly infinite sequence of permuta-
tions of 1,...,n satisfying the three conditions of Theorem 5.2.1. It follows from
those conditions that the sequence is periodic of length < n(n — 1), and that its
period has length n(n — 1) if and only if the sequence is simple, i.e., each move
consists of the switch of a single pair of indices.

ARRANGEMENTS OF STRAIGHT LINES

Much of the work on pseudoline arrangements has been motivated by problems
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involving straight-line arrangements. In some cases the question has been whether
known results in the case of lines really depended on the straightness of the lines;
for many (but not all) combinatorial results the answer has turned out to be nega-
tive. In other cases, generalization to pseudolines (or, equivalently, reformulations
in terms of allowable sequences of permutations—see below) has permitted the so-
lution of a more general problem where none was known previously in the straight
case. Finally, pseudolines have turned out to be more useful than lines for certain
algorithmic applications; this will be discussed in Section 5.7.

For arrangements of straight lines, there is a rich history of combinatorial re-
sults, some of which will be summarized in Section 5.4. Much of this is discussed
in [Grii72].

Line arrangements are often classified by isomorphism type. For (unlabeled)
arrangements of five lines, for example, Figure 5.2.2 illustrates the four possible
isomorphism types, only one of which is simple.

FIGURE 5.2.2
The 4 isomorphism lypes

of arrangements of 5 lines.

There is a second classification of (numbered) line arrangements, which has
proven quite useful for certain problems. If a distinguished point not on any line
of the arrangement is chosen to play the part of the “vertical point at infinity,”
we can think of the arrangement A as an arrangement of nonvertical lines in the
affine plane, and of P, as the “upward direction.” Rotating a directed line through
P, then amounts to sweeping a directed vertical line through A from left to right
(say). We can then note the order in which this directed line cuts the lines of A,
and we arrive at a periodic sequence of permutations of 1,...,n, known as the
circular sequence of permutations belonging to A (depending on the choice of
P, and the direction of rotation). This sequence is actually doubly infinite, since
the rotation of the directed line through P, can be continued in both directions.
For the arrangement in Figure 5.2.3, for example, the circular sequence is

A ...12345 1245 91354 135 95314 25:14 59347 234 54391 . .

Notice how the “moves” between permutations are indicated.

5 1
4
2
3 3
4
FIGURE 5.2.3 X

An arrangement of 5 lines.
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THEOREM 5.2.1 [GP&4]
A circular sequence of permutations arising from a line arrangement has the fol-
lowing properties:
(i) The move from each permutation to the next consists of the reversal of one
or more nonoverlapping adjacent substrings;
(ii) After a move in which i and j switch, they do not switch again until every
other pair has switched;
(iii) 1,...,n do not all switch simultaneously with each other.

If two line arrangements are isomorphic, they may have different circular se-
quences, depending on the choice of P, (and the direction of rotation). We do
have, however,

THEOREM 5.2.2 [GP84]

If A and A’ are arrangements of lines in P?, and & and ¥’ are any circular se-
quences of permutations corresponding to A and A, then A and A’ are isomorphic
if and only if £ and ¥ are locally equivalent.

FIGURE 5.2.4
Another arrangement of 5 lines.

Theorem 5.2.2 is illustrated in Figure 5.2.4. Here, the circular sequence of the
arrangement A’, which (as an arrangement in P?) is isomorphic to arrangement A
of Figure 5.2.3, is

A’ .. .35124 12 35214 5214 395471 34 32451 324 49351 351 49153 . ..

Reading off the local sequences of unordered switches of each, we get:

1: 2 3 4: 5:
Az sivpdsdibrdeces seapleBrdedeiy ianliDn2idiias  abiledidiiiy  wanndi L8 2
A .032;433,5;... ...31;5:3,4;... ...32,4;1,5;... ...;1;5;2,3;... ...;2;4;1,3;...

‘We see that the 2-, 3-, and 5-sequences agree, while the 1- and 4-sequences are
reversed.
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CONFIGURATIONS OF POINTS

Under projective duality, arrangements of lines in P? correspond to configurations
of points. Some questions seem more natural in this setting of points, however,
such as the Sylvester-Erdés problem about the existence of an ordinary line in
a noncollinear configuration of points, and Scott’s conjecture that the minimum
number of directions determined by n noncollinear points is 2|n/2|.
Corresponding to the classification of line arrangements by isomorphism type,
it turns out that the “dual” classification of point configurations is by order type.

THEOREM 5.2.3

If A and A’ are arrangements of lines in P? and S and 8’ the point sets dual to
them, then A and A’ are isomorphic if and only if S and &' have the same (or
opposite) order types.

From a configuration of points one also derives a circular sequence of permuta-
tions in a natural way, by projecting the points onto a rotating line; this gives a finer
classification than order type. The sequence for the arrangement in Figure 5.2.3
comes from the configuration in Figure 5.2.5 in this way.

FIGURE 5.2.5 R )
A configuralion of 5 points.

In fact, it follows from projective duality that

THEOREM 5.2.4 [BLS*93]
A sequence of permutations is realizable by points if and only if it is realizable by
lines.

The circular sequence of a point configuration can be reconstructed from the
set of permutations obtained by projecting it onto all lines in general position.

THEOREM 5.2.5 [GP&4]
Two configurations have the same circular sequences if and only if they are combi-
natorially equivalent.

This becomes useful in higher dimensions (where the circular sequence gener-
alizes to a somewhat unwieldy cell decomposition of a sphere with a permutation
associated with every cell), since it means that all one really needs to know is the
set of permutations; how they fit together can then be determined.
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See Chapter 1 of this Handbook for some recent results and some unsolved
problems on point configurations.

GENERALIZED CONFIGURATIONS

Just as pseudoline arrangements generalize arrangements of straight lines, gener-
alized configurations provide the corresponding generalization of configurations of
points.

The two classifications described above for point configurations, by order type
and by circular sequence of permutations, extend in a natural way to generalized
configurations. For example, a circular sequence for the generalized configuration in
Figure 5.2.1, which is determined by the cyclic order in which the connecting pseu-
dolines meet a distinguished pseudoline (in this case the “pseudoline at infinity”), is

... 12345%412435122143514241352224153122451322 1251322 4521312 4523128 453214554321 . . .

ALLOWABLE SEQUENCES

An allowable sequence of permutations is a combinatorial abstraction of the circular
sequence of permutations associated with an arrangement of lines or a configuration
of points. We can define, in a natural way, a number of geometric concepts for allow-
able sequences, such as collinearity, betweenness, orientation, extreme point, convex
hull, semispace, conver n-gon, parallel, etc [GP80]. Not all allowable sequences are
realizable, however, the smallest example being the sequence corresponding to Fig-
ure 5.2.1. A realization of this sequence would have to be a drawing of Figure 5.2.1
with straight lines, and it is not hard to prove that this is impossible.
More generally, we have

THEOREM 5.2.6 [GPS0]

Suppose ¥ is an allowable sequence with extreme points 1,...n in counterclockwise
order such that, for every i, side 1,1+ 1 extended past vertexr i + 1 meets diagonal
i — 1,7+ 2 extended past vertex i + 2 (the nwmbering is modulo n). Then ¥ is not
realizable by a configuration of points.

Allowable sequences provide a means of rephrasing many geometric problems
about point configurations or line arrangements in combinatorial terms. For exam-
ple, Scott’s conjecture on the minimum number of directions determined by n lines
has the simple statement: “Every allowable sequence of permutations of 1,...,n
has at least 2|n/2| moves in a half-period.” It was proved in this more general
form by Ungar [BLS93], and the proof of the original Scott conjecture follows as
a corollary; see also [Jam85].

The Erdés-Szekeres problem (see Chapter 1 of this Handbook) looks as follows
in this more general combinatorial formulation:

PROBLEM 5.2.7 Generalized Erdds-Szekeres Problem

What is the minimum n such that for every simple allowable sequence £ on1,...,n,
there are k indices with the property that each occurs before the other k— 1 in some
term of 7
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Allowable sequences arise from pseudoline arrangements by way of wiring dia-
grams (see Theorem 5.1.4 above), from which they can be read off by sweeping a
line across from left to right, just as with an arrangement of straight lines, and they
arise as well from generalized configurations just as from configurations of points.
In fact, the following theorem is just a restatement of Theorem 5.1.5.

THEOREM 5.2.8 [GPs4]

Every allowable sequence of permutations can be realized both by an arrangement
of pseudolines and by a generalized configuration of points.

WIRING DIAGRAMS

Wiring diagrams provide the simplest “geometric” realizations of allowable se-
quences. To realize the sequence

A: ...12345 1245 91354 135 95314 2514 59347 24 54397 . |

for example, simply start with horizontal “wires” labeled 1, ..., n in (say) increasing
order from bottom to top, and, for each move in the sequence, let the corresponding
wires cross. This gives the wiring diagram of Figure 5.1.2, and at the end the wires
have all reversed order. (It is then easy to extend the curves in both directions to
the “line at infinity,” thereby arriving at a pseudoline arrangement in P2.)

We have the following isotopy theorem for wiring diagrams.

THEOREM 5.2.9 [GPS5]

If two wiring diagrams numbered 1, ...,n in order are isomorphic as labeled pseu-
doline arrangements, then one can be deformed continuously to the other (or to its
reflection) through wiring diagrams isomorphic as pseudoline arrangements.

HIGHER DIMENSIONS

Just as isomorphism classes of pseudoline arrangements correspond to oriented ma-
troids of rank 3, the corresponding fact holds for higher-dimensional arrangements,
known as arrangements of pseudohyperplanes: they correspond to oriented ma-
troids of rank d + 1 (see Theorem 6.2.4 in Chapter 6 of this Handbook).

It turns out, however, that in dimensions > 2, generalized configurations of
points are (surprisingly) more restrictive than such oriented matroids; thus it is
only in the plane that “projective duality” works fully in this generalized setting;
see [BLS193, Section 5.3].

5.3 STRETCHABILITY

STRETCHABLE AND NONSTRETCHABLE ARRANGEMENTS

Stretchability can be described in either combinatorial or topological terms:
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THEOREM 5.3.1
Given an arrangement A or pseudolines in P*, the following are equivalent.

(i) The cell decomposition induced by A is combinatorially isomorphic to that
induced by some arrangement of sraight lines;

(ii) Seme homeomorphism of P? to itself maps every L; € A to a straight line.

FIGURE 5.3.1
An arrangement that violates
the theorem of Pappus.

Among the first examples observed of a nonstretchable arrangement of pseu-
dolines was the non-Pappus arrangement of 9 pseudolines constructed by Levi: see
Figure 5.3.1. Since Pappus’s theorem says that points p, ¢, and r must be collinear
if the pseudolines are straight, the arrangement in Figure 5.3.1 is clearly nonstretch-
able. A second example, involving 10 pseudolines, can be constructed similarly by
violating Desargues’s theorem.

Ringel showed how to convert the non-Pappus arrangement into a simple ar-
rangement that was still nonstretchable. A symmetric drawing of it is shown in
Figure 5.3.2.

FIGURE 5.3.2
A simple nonstretchable arrangement
of 9 pseudolines.

Using allowable sequences, Goodman and Pollack proved the conjecture of
Griinbaum that the non-Pappus arrangement has the smallest size possible for
a nonstretchable arrangement:

THEOREM 5.3.2 [BLS*93]
Every arrangement of 8 or fewer pseudolines is stretchable.

In addition, Richter-Gebert proved that the non-Pappus arrangement is unique
among simple arrangements of the same size.
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THEOREM 5.3.3 [BLS+93]

Every simple arrangement of 9 pseudolines is stretchable, with the exception of the
simple non-Pappus arrangement.

The “bad pentagon,” with extra points inserted to “pin down” the intersections
of the sides and corresponding diagonals, provides another example of a nonstretch-
able arrangement; and Theorem 5.2.6, with extra points, provides, after dualizing,
an infinite family of nonstretchable arrangements that were proved, by Bokowski
and Sturmfels, to be “minor-minimal.” This shows that stretchability of simple
arrangements cannot be guaranteed by the exclusion of a finite number of “forbid-
den” subarrangements. A similar example was found by Haiman and Kahn. See
[BLS*93, Section 8.3].

As for arrangements of more than 8 pseudolines, we have

THEOREM 5.3.4 [GPWZ94]

Let A be an arrangement of n pseudolines. If some face of A is bounded by at least
n — 1 pseudolines, then A is stretchable.

Finally, Shor shows in [Sho91] that even if a stretchable pseudoline arrangement
has a symmetry, it may be impossible to realize this symmetry in any stretching.

THEOREM 5.3.5 [Sho91]

There exists a stretchable, simple pseudoline arrangement with a combinatorial sym-
metry such that no isomorphic arrangement of straight lines has the same combi-
natorial symmetry.

GENERALIZATIONS OF STRETCHABILITY

‘While not every pseudoline arrangement is isomorphic to an arrangement of straight
lines, every pseudoline arrangement is d-stretchable, i.e., realizable by an arrange-
ment of graphs of polynomial functions of sufficiently high degree d. The following
result gives the best bounds known on this degree.

THEOREM 5.3.6 Goodman and Pollack [BLS'93]

Let d,, be the smallest number d such that every simple arrangement of n pseudolines
18 d-stretchable. Then, for appropriate c1,co > 0, we have c1/n < d, < com?.

In several recent papers, Pocchiola and Vegter explore another kind of realiz-
ability of pseudoline arrangements, by what they call arrangements of pseudotrian-
gles. A pseudotriangle is a simply connected, bounded subset T' of R?, bounded
by 3 convex arcs pairwise tangent at their endpoints, such that T is contained in
the triangle formed by these endpoints. The set T of directed tangent lines to the
boundary of T’ can be identified by duality with a pseudoline in P2. Because two
disjoint pseudotriangles share exactly one common tangent, if 7 = {T7,...,T,} is
an arrangement of pairwise disjoint pseudotriangles, the curves 17, ..., T form an
arrangement of pseudolines which is “realized” by the arrangement 7. They prove

THEOREM 5.3.7 [PV94]

(i) Bvery arrangement of straight lines is isomorphic to one realizable by an ar-
rangement of disjoint pseudotriangles.
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(ii) Every arrangement of pseudolines is isomorphic to one realizable by an ar-
rangement of pseudotriangles.

CONJECTURE 5.3.8 [PV94]

Every arrangement of pseudolines is isomorphic to one realizable by disjoint pseu-
dotriangles.

5.4 COMBINATORIAL RESULTS
Although there are exceptions (see below), most combinatorial results known for
line arrangements hold for pseudoline arrangements as well. We survey these in
this section, including a number of results that update Griinbaum’s comprehensive
1972 survey [Gri72]. For a discussion of levels in arrangements (dually, k-sets),
see Chapters 21 and 1, respectively.

GLOSSARY

Simplicial arrangement: An arrangement of lines or pseudolines in which every
cell is a triangle.

Near-pencil: An arrangement with all but one line (or pseudoline) concurrent.

Projectively unique: A line arrangement A with the property that every iso-
morphic line arrangement is the image of A under a projective transformation.

x-monotone path: In an arrangement of lines in R?, or in a wiring diagram, a
path monotonic in the first coordinate, each step following a line (or wire) from
one vertex to another.

SYLVESTER-TYPE RESULTS

CONJECTURE 5.4.1 [Grii69]
Every arrangement of n pseudolines has at least |n/2| ordinary vertices.
The strongest result to date on Conjecture 5.4.1 is the following theorem of

Csima and Sawyer (cf. Chapter 1), which uses previous work of Hansen and im-
proves a long-standing result of Kelly and Moser.

THEOREM 5.4.2 [CS93]

Every arrangement of n pseudolines, with the exception of the one shown in Fig-
ure 1.1.1(b), has at least 6n/13 ordinary vertices.

The arrangement shown in Figure 1.1.1(a) shows that this result is sharp (see
Chapter 1 of this Handbook for more details).

Using (complex) algebraic-geometric methods, Hirzebruch was able to prove
the following result about the number #; of vertices of multiplicity exactly 7 in an
arrangement of straight lines.
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THEOREM 5.4.3 [Hirs3]

If an arrangement of n lines is not a near-pencil, then

3
t2+1t32n+t5+2t6+3t7+....

RELATIONS AMONG NUMBERS OF VERTICES, EDGES, AND FACES

THEOREM 5.4.4 FEuler

If fi(A) is the number of faces of dimension i in the cell decomposition of P2

induced by an arrangement A, then fo(A) — f1(A) + f2(A) = 1.

In addition to FEuler’s formula, the following inequalities are satisfied for
arbitrary pseudoline arrangements (here, n(A) is the number of pseudolines in the

arrangement A).

THEOREM 5.4.5 [Grii72, SESS]

() 14 fo(A) < fa(A) < 2fo(A) —2, with equality on the left for precisely the sim-
ple arrangements, and on the right for precisely the simplicial arrangements;

(i) n(A) < fo(A) < (" ZA)), with equality on the left for precisely the near-pencils,

and on the right for precisely the simple arrangements;

(ili) Forn >> 0, every fy satisfying n®? < fo < (%), with the ezceptions of (3)—3
and (g) — 1, is the number of vertices of some arrangement of n pseudolines

(in fact, of straight lines);

(iv) 2n(A) — 2 < fo(A) < ("(QA)) + 1, with equality on the left for precisely the

near-pencils, and on the right for precisely the simple arrangements;

(v) fa(A) > 3n(A) — 6 if A is not a near-pencil.

There are gaps in the possible values for f2(A), as shown by Theorem 5.4.6,
which proves a conjecture posed by Griinbaum and generalized by Purdy, refining

Theorem 5.4.5(iv).

THEOREM 5.4.6 Martinov [Mar93]

There exists an arrangement A of n pseudolines with fo(A) = f if and only if, for
some integer k with 1 < k < n—2, we have (n—k)(k+1)+ (£) —min (n -k, (£))
f<n-kKk+1+ (’2“) Moreover, if A exists, it can be chosen to consist of

straight lines.

THE NUMBER OF CELLS OF DIFFERENT SIZES

It is easy to see by induction that a simple arrangement of more than 3 pseudo-
lines must have at least one nontriangular cell. This observation leads to many
questions about numbers of cells of different types in both simple and nonsimple

arrangements, some of which have not yet been answered satisfactorily.
The best result on the maximum number of triangles is the following.
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THEOREM 5.4.7 [Grii72, Har85, Rou96]

The mazimum number of triangles in an arrangement of n pseudolines is bounded
above by [n(n — 1)/3], with this bound achieved by infinitely many values of n.

PROBLEM 5.4.8 [Grii72]

Are there infinitely many arrangements of straight lines with n(n—1)/3 triangles?

PROBLEM 5.4.9 [Grii72]

What is the mazimum number of k-sided cells in an arrangement of n pseudolines,
fork > 3¢

On the minimum number of triangles, we have

THEOREM 5.4.10 [Lev26]

In any arrangement of pseudolines, every pseudoline borders at least 3 triangles.
Hence every arrangement of n pseudolines determines at least n triangles.

This minimum is achieved by the “cyclic arrangements” of lines generated by
regular polygons, as in Figure 5.4.1.

FIGURE 5.4.1
A cyclic arrangement of 9 lines.

The following result distinguishes line from pseudoline arrangements.

THEOREM 5.4.11 Roudneff [BLST93]
An arrangement of n lines with only n triangles is simple. However, there exist
nonsimple arrangements of n pseudolines with only n triangles.

An example of the second assertion of Theorem 5.4.11 is obtained by “collaps-
ing” the central triangle in Figure 5.3.2.
A similar result for quadrilaterals is the following.

THEOREM 5.4.12 Grinbaum [Grii72], Roudneff [BLS*93]

(i) Every arrangement of > 5 pseudolines contains at most n(n — 3)/2 gquadri-
laterals. For straight-line arrangements, this bound is achieved by a unique
simple arrangement.

(ii) A pseudoline arrangement containing n(n—3)/2 guadrilaterals must be simple.

There are infinitely many simple pseudoline arrangements with no quadrilater-
als, contrary to what was once believed. The following result implies, in fact, that
there must be many quadrilaterals or pentagons in every simple arrangement.
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THEOREM 5.4.13 Roudneff [BLS*93]

Every pseudoline in a simple arrangement of n > 3 pseudolines borders at least 3
quadrilaterals or pentagons. Hence, if ps is the number of quadrilaterals and ps the
number of pentagons, we must have 4ps + 5ps > 3n.

The following result was proved after the opposite had been conjectured.

THEOREM 5.4.14 Ljubié, Roudneff, and Sturmfels [BLS'93]
There is a simple arrangement of straight lines containing no two adjacent triangles.

The proof involved finding a pseudoline arrangement with this property, then
showing (algebraically, using Bokowski’s “inequality reduction method”—see Sec-
tion 5.6) that the arrangement, which consists of 12 pseudolines, is stretchable.

SIMPLICIAL ARRANGEMENTS

In addition to 90 “sporadic” examples of simplicial arrangements of straight lines,
the following infinite families are known.

THEOREM 5.4.15 [GriiT2]

Each of the following arrangements is simplicial:

(i) the near-pencil of n lines;

(i) the sides of a reqular n-gon, together with its n axves of symmetry;
(iii) the arrangement in (ii), together with the line at infinity, for n even.

On the other hand, additional infinite families of (nonstretchable) simplicial ar-
rangements of pseudolines are known, which are constructible from regular polygons
by extending sides, diagonals, and axes of symmetry and modifying the resulting
arrangement appropriately. For example, Figure 5.4.2 shows a member of such a
family having 31 pseudolines, constructed from a decagon in this way.

One of the most important problems on arrangements is the following.

PROBLEM 5.4.16 [Grii72]

Classify oll simplicial arrangements of pseudolines. Which of these are stretchable?
In particular, are there any infinite families of simplicial line arrangements besides
the three of Theorem 5.4.147

It has apparently not been disproved that every (pseudo)line arrangement is a
subarrangement of a simplicial (pseudo)line arrangement.

CONJECTURE 5.4.17 Grinbaum [Grii72]

Except for near-pencils, every simplicial arrangement of straight lines is projectively
unique.

Finally, putting together results of Strommer [BLS*93] and of Csima and
Sawyer [CS93], we get the following theorem; part (ii) is only a slight improve-
ment over the corresponding result for nonsimplicial arrangements.

THEOREM 5.4.18

(i) For every even n, there is a simplicial arrangement of n lines with a total of
(n® + 10n — 8) /8 cells;
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FIGURE 5.4.2

A simplicial arrangement of
31 pseudolines. (The line at
infinity, where “parallel” lines
meet, is shown as a circle.)

(ii) Except for the arrangement of Figure 1.1.1(b), the number of cells in a sim-
plicial arrangement of n pseudolines is < n(n—1)/3+4 — 4n/13.

PATHS IN PSEUDOLINE ARRANGEMENTS

The following result is most easily stated in terms of wiring diagrams.

THEOREM 5.4.19 [Mat91]
The mazimum number of steps in an x-monotone path in o wiring diagram of size
n is Q(n?/logn), and in an arrangement of n lines is Q(n5/3).

The only upper bound known for the lengths of such paths is the trivial one,
0O(n?), but Matousek conjectures that the bound for lines is tight. (If so, this would
distinguish line from pseudoline arrangements.)

COMPLEXITY OF SETS OF CELLS IN AN ARRANGEMENT

For cells that “line up” in an arrangement, the best result is

THEOREM 5.4.20 Zone Theorem [BEPY91]

The sum of the numbers of sides in all the cells of an arrangement of n + 1 pseu-
dolines that are supported by one of the pseudolines is < 19n/20 — 1.

For general sets of faces, on the other hand, Canham proved

THEOREM 5.4.21 Canham [Grii72]

If Fi,...,Fy are any k distinct faces of an arrangement of n pseudolines, then
Z,Ll p(F;) < n+ 2k(k — 1), where p(F) is the number of sides of a face F'. This
is tight for 2k(k — 1) < n.
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For 2k(k —1) > n, this was improved by Clarkson et al. to the following result;
the tightness follows from a result of Szemerédi and Trotter, proved independently
by Edelsbrunner and Welzl.

THEOREM 5.4.22 [CEG*90]

The total number of sides in any k distinct cells of an arrangement of n pseudolines
is O(k*/*n?/3 4+ n). This bound is (asymptotically) tight in the worst case.

There are a number of results of this kind for arrangements of objects in the
plane and in higher dimensions; see Chapter 21, as well as [CEGT90].

5.5

TOPOLOGICAL PROPERTIES

GLOSSARY

Spread: Given the projective plane P? with a distinguished line Lo, a spread of
pseudolines is a family £ = {L;},c1., of pseudolines varying continuously with
x = L, N Ly, any two of which meet at a single point (at finite distance).

Topological projective plane: P?, with a distinguished family £ of pseudolines
(its “lines”), is a topological projective plane if, for each p, ¢ € P2, exactly one
L, , € L passes through p and ¢, with L, , varying continuously with p and gq.
P.q P.q

(There are other notions of both “spread” and “projective plane” [Grii72], but
the ones defined here have the closest connection with pseudoline arrangements.)

Isomorphism of topological projective planes: A homeomorphism that maps
“lines” to “lines.”

Universal topological projective plane: One containing an isomorphic copy
of every pseudoline arrangement.

Topological sweep: If A is a pseudoline arrangement in the affine plane and
L € A, a topological sweep of A “starting at L” is a continuous family of
pseudolines including L, each compatible with A, which forms a partition of the
plane.

Basic semialgebraic set: The set of solutions to a finite number of equations
and strict inequalities in R, (This term is sometimes used even if the inequalities
are not necessarily strict.)

Stable equivalence: A relation on semialgebraic sets that preserves homotopy
type. A precise definition appears in [Ric96].

EMBEDDING IN LARGER STRUCTURES

In [Grii72], Grinbaum asked a number of questions about extending pseudoline
arrangements to more elaborate structures, in particular to spreads and topological
planes. The strongest result known about such extendibility is the following, which
extends results of Goodman, Pollack, Wenger, and Zamfirescu [GPWZ94].
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THEOREM 5.5.1 [GPW96]

There exist uncountably many pairwise nonisomorphic universal topological projec-
tive planes.

In particular, this implies the following statements, together with the corre-
sponding statements about spreads, all of which had been conjectured in [Grii72].

(i) Every pseudoline arrangement can be extended to a topological projective
plane.

(ii) There exists a universal topological projective plane.

(iii) There are nonisomorphic topological projective planes such that every ar-
rangement in each is isomorphic to some arrangement in the other.

Theorem 5.5.1 also implies the following result, established earlier by Snoeyink
and Hershberger (and implicitly by Edmonds, Fukuda, and Mandel—see [BLS193]).

THEOREM 5.5.2 Sweeping Theorem [SH91]

A pseudoline arrangement A in the affine plane can be swept by a pseudoline,
starting ot any L € A.

PROBLEM 5.5.3 [Grii72]

Which arrangements are present (up to isomorphism) in every topological projective
plane?

MOVING FROM ONE ARRANGEMENT TO ANOTHER

In [Rin56], Ringel asked whether an arrangement A of straight lines could always
be moved continuously to a given isomorphic arrangement A’ (or to its reflection)
so that all intermediate arrangements remained isomorphic. This question, which
became known as the “isotopy problem” for arrangements, was eventually solved
by Mnév in [Mné85], and (independently, since news of Mnév’s results had not yet
reached the West) by White in the nonsimple case, then by Jaggi and Mani-Levitska
in the simple case [BLS*93]. Mnév’s results are, however, by far stronger.

THEOREM 5.5.4 Mnév’s Universality Theorem

If V is any basic semialgebraic set defined over Q, there is a configuration S of
points in the plane such that the space of all configurations of the same order type
as S is stably equivalent to V. If V is open in some R"™, then there is a simple
configuration S with this property.

From this it follows that the space of line arrangements isomorphic to a given
one may have the homotopy type of any semialgebraic variety, and in particular
may be disconnected, which gives a (very strongly) negative answer to the isotopy
question. For a further generalization of Theorem 5.5.4, see [Ric96].

The line arrangement of smallest size known for which the isotopy conjecture
fails consists of 14 lines in general position and was found by Suvorov [BLST93].

Special cases where the isotopy conjecture does hold include:
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(i) every arrangement of 9 or fewer lines in general position [Ric89], and
(ii) an arrangement of n lines containing a cell bounded by at least n— 1 of them.

There are also results of a more combinatorial nature about the possibility of
transforming one pseudoline arrangement to another. In [Rin56, Rin57], Ringel
proved

THEOREM 5.5.5 Ringel’s Homotopy Theorem

If A and A’ are simple arrangements of pseudolines, then A can be transformed to
A’ by a finite sequence of steps each consisting of moving one pseudoline continu-
ously across the intersection of two others. If A and A’ are simple arrangements
of lines, this can be done within the space of line arrangements.

The second part of Theorem 5.5.5 has been generalized by Roudneff and Sturm-
fels [BLS93] to arrangements of planes; the first half is still open in higher dimen-
sions.

Ringel also observed that the isotopy property does hold for pseudoline ar-
rangements.

THEOREM 5.5.6 [Rin56]

If A and A’ are isomorphic arrangements of pseudolines, then A can be deformed
continuously to A’ through isomorphic arrangements.

Ringel did not provide a proof of this observation, but one method of proving
it is via Theorem 5.2.9, together with the following isotopy result.

THEOREM 5.5.7 Goodman and Pollack [BLS*93]

Every arrangement of pseudolines can be continuously deformed (through isomor-
phic arrangements) to a wiring diagram.

5.6

COMPLEXITY ISSUES

GLOSSARY

A-matriz: The matrix with entries \;; = the number of points of the (general-

ized) configuration {pi,...,pn} to the left of the directed (pseudo)line p;p;. (M
is undefined.)

THE NUMBER OF ARRANGEMENTS

Various exact values, as well as bounds, are known for the number of equivalence
classes of the structures discussed in this chapter. For low values of n, some of
these are given in Table 5.6.1 [BKLR, BLS*93, Fel, GP80, Grii72, Knu92, Ric89).

The only exact formula known for arbitrary n follows from Stanley’s formula:

& 1997 by CRC Press LLC



TABLE 5.6.1 Exact numbers known for low n.

EQUIVALENCE CLASS 3 4 5 6 7 8 9 10 11 12 13 14 15
Isom classes of arr’s of n lines 1 2 4 17
oo Y gimple? 77 Y 1 1 1 4 11 135 4381 312114
22 P gmplicial ? ¥ 20 1 1 1 2 2 2 2 4 2 4 5 5 6
""" arr’s of n pseudolines 1 2 4 17
oor Y gimple” 7YY 1 1 1 4 11 135 4382 312356
" " gimplicial m " " Y 1 1 1 2 2 2
Isom classes of simple gen’d config’s | 1 2 3 16 135 3315 158830
Comb’l equiv classes of allow seq’s 1 2 20
»oom " 7 realizable ¥ 7 1 2 19
Simple allow seq’s cont’ing 123...n | 2 16 768 [see Theorem 5.6.1]
Simple allow seq’s 2 32 4608 [see Corollary 5.6.2)
THEOREM 5.6.1 [BLS*93]

The number of simple allowable sequences on 1,...
123...n is
(5)!

1'n—13n—25n—3 (R (2?1 o

,n containing the permutation

3
COROLLARY 5.6.2

The total number of simple allowable sequences on 1,...,n is

(n—2)!(3)!
1n—13n-25n-3 ... (2?‘1 - 3)1 :

For n arbitrary, Table 5.6.2 indicates the known asymptotic bounds [BLS*93,
Fel, GP91, GP93, Knu92].

TABLE 5.6.2 Asymptotic bounds for large n (all logarithms are base 2).

EQUIVALENCE CLASS

LOWER BOUND

UPPER BOUND

Isom classes of (labeled) arr’s of n pseudolines

» 1] 1] » » " " »

simple
Order types of (labeled) n pt configs (simple or not)
Isotopy classes of (labeled) n pt configs

Comb’l equiv classes of (labeled) n pt configs

271'2 /6=5n/2
»
gdn log nt+82(n)
»

97n log n

91.0850n%
9.6974n?
gdn log n+O(n)

i

g8nlogn

CONJECTURE 5.6.3 [Knu92

The number of isomorphism classes of simple pseudoline arrangements is < 2(;).

HOW MUCH SPACE IS NEEDED TO SPECIFY AN ARRANGEMENT?

A configuration or generalized configuration § is described, up to isomorphism, by
the set of points lying to the left (say) of each line or pseudoline joining a pair of
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points. The following theorem, which extends to higher dimensions, allows one to
encode the order type of S in essentially one order of magnitude less space.

THEOREM 5.6.4 Goodman and Pollack, Cordovil [BLST93]

If § is a configuration or generalized configuration in the plane, the order type of
S is determined by its \-matriz.

COROLLARY 5.6.5

The order type of an arrangement of pseudolines can be encoded in space O(n?logn).

A modification by Felsner of the A-matrix encoding for planar arrangements
improves this, giving an encoding of wiring diagrams in space O(n?):

THEOREM 5.6.6 [Fel

Given a wiring diagram A = {L1,..., Ly}, let t; = 1 if the jth crossing along L;
is with Ly for k > i, 0 otherwise. Then the mapping that associates to each wiring
diagram A the binary n x (n — 1) matriz (t}) is injective.

The number of stretchable pseudoline arrangements is much smaller than the
total number, which suggests that it should be possible to encode these more com-
pactly. The following result (stated here for the dual case of point configurations)
shows, however, that the “naive” encoding, by coordinates of an integral represen-
tative, is doomed to be inefficient.

THEOREM 5.6.7 Goodman, Pollack, and Sturmfels [BLST93]
For each configuration S of points (x;,y;) in the integer grid 72, let

V(S) = minmax{|x1|,. LR |$n|a |y1|a LR} |yn|}a

the minimum being taken over all configurations 8’ of the same order type as S, and
let v*(n) = maxv(S) over all n-point configurations. Then, for some c1,c3 > 0,

22" < wr(n) < 2%,
It is conceivable, however, that a reasonably small integral representative may
still be used to “approximate” an order type, perhaps in the following sense.

PROBLEM 5.6.8 Goodman, Pollack, and Sturmfels

Viewing a simple order type of n points as a binary (g) -vector, and measuring the

distance between two order types by the Hamming metric, let S(n) be the set of
simple planar order types of n points that can be represented on an n X n grid.
Find the smallest integer r = r(n) such that every simple order type of n points has
Hamming distance at most r from some order type in S(n).

REALIZABILITY

Along with the Universality Theorem of Section 5.5, Mnév proved that the problem
of determining whether a given pseudoline arrangement is stretchable is NP-hard,
in fact as hard as the problem of solving general systems of polynomial equations
and inequalities over R (cf. Chapter 29 of this Handbook):
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THEOREM 5.6.9 [Mnés5, Mnéss]

The stretchability problem for pseudoline arrangements is polynomially equivalent
to the “existential theory of the reals” decision problem.

Shor [Sho91] presents a more compact proof of the NP-hardness result, by
encoding a so-called “monotone 3-SAT” formula in a family of suitably modified
Pappus and Desargues configurations that turn out to be stretchable if and only if
the corresponding formula is satisfiable. (See also [Ric96].)

The following result provides an upper bound for the realizability problem.

THEOREM 5.6.10 [BLS*93]

The stretchability problem for pseudoline arrangements can be decided in singly
exponential time and polynomial space in the Turing machine model of complexity.
The number of arithmetic operations needed is bounded above by 247 1ogn+0(n)

The NP-hardness does not mean, however, that it is pointless to look for algo-
rithms to determine stretchability, particularly in special cases. Indeed, a good deal
of work has been done on this problem by Bokowski, in collaboration with Guedes
de Oliveira, Pock, Richter-Gebert, and Sturmfels. Four main algorithmic methods
have been developed to test for the realizability (or nonrealizability) of an oriented
matroid, i.e., in the rank 3 case, the stretchability (respectively nonstretchability)
of a pseudoline arrangement:

(i) The inequality reduction method: this attempts to find a relatively small
system of inequalities that still carries all the information about a given ori-
ented matroid;

(ii) The solvability sequence method: this attempts to find an elimination
order with special properties for the coordinates in a potential realization of
an order type;

(iif) The final polynomial method: this attempts to find a bracket polynomial
(cf. Chapter 48) whose existence will imply the nonrealizability of an order

type;

(iv) Pock’s rubber-band method: an elementary heuristic that has proven sur-
prisingly effective in finding realizations [Poc91].

Not every realizable order type has a solvability sequence, but it turns out
that every nonrealizable one does have a final polynomial, and an algorithm due to
Lombardi can be used to find one [BLS*93].

All of these methods extend to higher dimensions. For details about the first
three, see [BS89].

CONSTRUCTING ARRANGEMENTS

An O(n?) algorithm is given in [EOS86, ESS93] to “construct” an arrangement A of
lines (hyperplanes, in general, in time O(n%)), i.e., to construct its face lattice. This
algorithm is used as a subroutine in a number of other algorithms in computational
geometry (see [Ede87]). From this one can find the A\-matrix of A in time O(n?),
which is optimal.
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SORTING INTERSECTIONS OF LINES OR PSEUDOLINES

Steiger and Streinu consider the problem of z-sorting line or pseudoline intersec-
tions, i.e., determining the order of the z-coordinates of the intersections of the
lines in an arrangement or of the pseudolines in a wiring diagram. They prove:

THEOREM 5.6.11 [$S94]

(i) There is a decision tree of depth O(n?) to x-sort the vertices of a simple
arrangement of n lines;

(i) Q(n?logn) comparisons are necessary to x-sort the vertices of a simple ar-
rangement of n pseudolines.

(The second statement is a corollary of Theorem 5.6.1.)

Even though this is only a “pseudo-algorithmic” distinction, since it holds in
the decision-tree model of computation, nevertheless this result is one of the few
known instances where there is a clear computational difference between lines and
pseudolines.

5.7 APPLICATIONS
Planar arrangements of lines and pseudolines, as well as point configurations, arise
in many problems of computational geometry. Here we describe several such appli-
cations involving pseudolines in particular.

GLOSSARY

Tangent wvisibility graph of a set of pairwise disjoint convex objects: The graph
formed by the tangents to pairs of objects, cut off at their points of tangency
(provided these segments do not meet any other objects) and by the arcs into
which they divide the boundaries of the objects.

TOPOLOGICAL SWEEP

The original idea behind what has come to be known as topologically sweeping an
arrangement was applied, by Edelsbrunner and Guibas, to the case of an arrange-
ment of straight lines. In order to construct the arrangement, rather than using a
line to sweep it, they used a pseudoline, and achieved a saving of a factor of logn
in the time required, while keeping the storage linear.

THEOREM 5.7.1 [Edes?]

The cell complex of an arrangement of n lines in the plane can be computed in
O(n?) time and O(n) space by sweeping a pseudoline across it.

This result can be applied to a number of problems, and results in an improve-
ment of known bounds on each: minimum area triangle spanned by points, visibility
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graph of segments, and (in higher dimensions) enumerating faces of a hyperplane
arrangement and testing for degeneracies in a point configuration.

The idea of a topological sweep was then generalized, by Snoeyink and Hersh-
berger, to sweeping a pseudoline across an arrangement of pseudolines; they prove
the possibility of such a sweep (Theorem 5.5.2), and show that it can be performed
in the same time and space as in Theorem 5.7.1. They also apply this result to
finding a short Boolean formula for a polygon with curved edges.

The topological sweep method was also used by Chazelle and Edelsbrunner
[CE92] to report all k-segment intersections in an arrangement of n line segments
in (optimal) O(nlogn + k) time, and has been generalized to higher dimensions.

PSEUDO-TRIANGULATIONS

Pocchiola and Vegter introduced the concept of a pseudo-triangulation (see Sec-
tion 5.3 above) in order to compute the visibility graph of a collection of pairwise
disjoint convex obstacles. Then they showed that a collection of disjoint pseudotri-
angles dualizes to a pseudoline arrangement, and that certain pseudoline arrange-
ments could be realized in this way by collections of pseudotriangles. This enables
them to generalize certain algorithms for configurations of points to configurations
of more general convex objects.
Their results include the following.

THEOREM 5.7.2 [PV94]

Given a collection of n disjoint convex objects in the plane, a pseudo-triangulation
can be computed in O(nlogn) time, the dual arrangement in O(n?) time and space,
and the tangent visibility graph in O(n?) time and linear space.

PSEUDO-VISIBILITY

In a series of recent papers, O’Rourke and Streinu introduce what they call the
“vertex-edge visibility graph” of a polygon, which encodes more information than
the standard vertex visibility graph, and use it to study the visibility problem in the
polygon. They then generalize this concept to pseudopolygons, whose vertices and
edges come from generalized configurations of points (see Section 5.2), and show
that the reconstruction problem for vertex-edge visibility graphs can be solved
provided pseudopolygons are permitted. They prove

THEOREM 5.7.3 [0S96]

There is a polynomial-time algorithm for the problem of deciding whether a graph
is the vertex-edge pseudo-visibility graph of a pseudopolygon.

COROLLARY 5.7.4 [0S96]

The decision problem for vertex visibility graphs of pseudopolygons is in NP.

(This last result is in contrast to the fact that the same problem with straight-
edge visibility is only known to be in PSPACE.)
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5.8 SOURCES AND RELATED MATERIAL

FURTHER READING

[BLS“'QI?-]: A comprehensive account of oriented matroid theory, including a great
many references; most references not given explicitly in this chapter can be traced
through this book.

[Ede87): An introduction to computational geometry, focusing on arrangements
and their algorithms.

) : Two surveys on allowable sequences and order types an eir
GP91, GP93): T llowabl d order t d thei
complexity.

[GriiT2]: A monograph on planar arrangements and their generalizations, with ex-
cellent problems (many still unsolved) and a very complete bibliography up to 1972.

RELATED CHAPTERS

Chapter 1: Finite point configurations

Chapter 4: Helly-type theorems and geometric transversals
Chapter 6: Oriented matroids

Chapter 21: Arrangements

Chapter 29: Computational real algebraic geometry
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6

ORIENTED MATROIDS
Jurgen Richter-Gebert and Giinter M. Ziegler

INTRODUCTION

The theory of oriented matroids provides a broad setting in which to model, de-
scribe, and analyze combinatorial properties of geometric configurations. Mathe-
matical objects that are apparently totally distinct, such as point and vector config-
urations, arrangements of hyperplanes, convex polytopes, directed graphs, and linear
programs find a common generalization in the language of oriented matroids.

The oriented matroid of a finite set of points P extracts “relative position” and
“orientation” information from the configuration; for example, it can be given by
a list of signs that encodes the orientations of all the bases of P. In the passage
from a concrete point configuration to its oriented matroid, metrical information is
lost, but many structural properties of P have their counterparts at the—purely
combinatorial—level of the oriented matroid.

We first introduce oriented matroids in the context of several models and mo-
tivations (Section 6.1). Then we present some equivalent axiomatizations (Sec-
tion 6.2). Finally, we discuss concepts that play central roles in the theory of
oriented matroids (Section 6.3), among them duality, realizability, the study of
simplicial cells, and the treatment of converity.

6.1

MODELS AND MOTIVATIONS

This section discusses geometric examples that are usually treated on the level of
concrete coordinates, but where an “oriented matroid point of view” gives deeper
insight. We also present these examples as standard models that provide intuition
for the behavior of general oriented matroids.

6.1.1

ORIENTED BASES OF VECTOR CONFIGURATIONS

GLOSSARY

Vector configuration: A matrix X = (z1,...,2,) € (]Rd)", usually assumed to
have full rank d.

Matroid of X: The pair M, = (E,B, ), where F := {1,2,...,n} and B, is
the set of all (column indices) of bases of X.

Matroid: A pair M = (E,B), where E is a finite set, and B C 2F is a nonempty
collection of subsets of E (the bases of M) that satisfies the Steinitz exchange
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azxiom: For all By, By € BB and e € By\ By, there exists an f € B2\ B; such that
(Bl\e) U f S B.

Signs: Elements of the set {—,0,+}, used as a shorthand for the corresponding
elements of {—1,0,+1}.

Chirotope of X: The map

Xx+ Bt — {_a0a+}
(M, Aq) + —sign(det(zr,, ..., zx,))-

Ordinary (unoriented) matroids, as introduced in 1935 by Whitney (see Oxley
[0x192]), can be considered as an abstraction of vector configurations in finite di-
mensional vector spaces over arbitrary fields. All the bases of a matroid M have the
same cardinality d, which is called the rank of the matroid. Equivalently, we can
identify M with the characteristic function of the bases By: E4 — {0,1}, where
By (M) =1 if and only if {A\1,..., g} € B.

One can obtain examples of matroids as follows: take a finite set of vectors

X ={z,29,...,2,} C K¢

of rank d in a finite-dimensional vector space K¢ and consider the set of bases of
K formed by subsets of the points in X. In other words, the pair

My = (B,By) = ({1,...,n}, {{h, -, Aa} | det(an,, ., 20,) #0} )

forms a matroid.

The basic information about the incidence structure of the points in X is con-
tained in the underlying matroid M, . However, the matroid alone presents only
a weak model of a geometric configuration; for example, all configurations of n
points in general position in the plane (i.e., no three points on a line) have the
same matroid M = Us; ,: here no information beyond the dimension and size of the
configuration, and the fact that it is in general position, is retained for the matroid.

In contrast to matroids, the theory of oriented matroids considers the struc-
ture of dependencies in vector spaces over ordered fields. Roughly speaking, an
oriented matroid is a matroid where in addition every basis is equipped with an
orientation. These oriented bases have to satisfy an oriented version of the Steinitz
exchange axiom (to be described later). In other words, oriented matroids not
only describe the incidence structure between the points of X and the hyperplanes
spanned by points of X (this is the matroid information); they also encode the po-
sitions of the points relative to the hyperplanes: “Which points lie on the positive
side of a hyperplane, which points lie on the negative side, and which lie on the
hyperplane?” If X € (K%)™ is a configuration of n points in a d-dimensional vec-
tor space K¢ over an ordered field K, we can describe the corresponding oriented
matroid x, by the function:

Xx* Bt — {_a0a+}
(A, ., Ag) v —sign(det(zy,, ..., zx,))-

This map X, is called the chirotope of X and is very closely related to the
oriented matroid of X. It encodes much more information than the correspond-
ing matroid, including information about the topology and the convexity of the
underlying configurations.
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6.1.2 ARRANGEMENTS OF POINTS

GLOSSARY

Affine point configuration: A matrix (p1,...,p,) € (Rd_l)", usually assumed
to have full rank d — 1.

Associated vector configuration: The matrix X € (R%)" obtained from a
point configuration by adding a row of ones. This corresponds to the embedding

of the affine space R%"! into the linear vector space R? via p1 —a = (ﬁ’)

Oriented matroid of a point configuration: The oriented matroid of the
associated vector configuration.

Cowvector of a vector configuration X : Partition of X = (z4,...,2,) induced
by a linear hyperplane, into points on the hyperplane, on the positive side, and
on the negative side.

Oriented matroid of X: The collection £ C {—,0,4}" of all covectors of X.
Let X := (1,...,%,) € (RY)™ be an n x d matrix and let E := {1,...,n}. We

interpret the columns of X as n vectors in the d-dimensional real vector space R,
For a linear functional y7 € (R%)* we set

Cyly)= (sign(yTx1),...,sign(y’ zn)).

Such a sign vector is called a covector of X. We denote the collection of all
covectors of X by

ﬁx = {Cx(y) ly € Rd}'
The pair M, = (E,L,) is called the oriented matroid of X. Here each sign

vector C, (y) € L, describes the positions of the vectors y,. ..,z relative to the
linear hyperplane H, = {z € R% | yT2 = 0}: the sets

CX (y)O = {e S | CX (y)a = 0}

CX (y)+ = {e S | CX (y)a > 0}

CX (y)_ = {e S | CX (y)a < 0}

describe how H,, partitions the set of points X. Here C, (y)° contains the points
on Hy, while C, (y)* and C, (y)~ contain the points on the positive and on the
negative side of Hy, respectively. In particular, if C', (y)~ = @, then all points not
on H, lie on the positive side of Hy. In other words, in this case H, determines a
face of the positive cone

pos(1, ..., %n) ::{A1x1+)\2x2+...+>\nxn ] OS)\iE]RforlgiSn}

of all points of X. The face lattice of the cone pos(X) can be recovered from L .
It is simply the set £, N {+, 0}, partially ordered by the order induced from the
relation “0 < 4.7

If in the configuration X we have ©; 4 = 1 for all 1 < ¢ < n, then we can consider
X as representing homogeneous coordinates of an affine point set X' in R4
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Here the affine points correspond to the original points x; after removal of the
d-th coordinate. The face lattice of the convex polytope conv(X’) C R%™! is then
identical to the face lattice of pos(X). Hence, M, can be used to recover the
conwez hull of X'.

X

Thus oriented matroids are generalizations of point configurations in linear or
atfine spaces. For general oriented matroids we weaken the assumption that the
hyperplanes spanned by points of the configuration are really flat to the assumption
that they only satisfy certain topological incidence properties. Nonetheless, this
kind of picture is sometimes misleading since not all oriented matroids have this type
of representation (compare the “T'ype Il representations” of [BLS*93, Section 5.3]).

6.1.3 ARRANGEMENTS OF HYPERPLANES AND OF HYPERSPHERES

GLOSSARY

Hyperplane arrangement H: Collection of (oriented) linear hyperplanes in RY,
given by normal vectors z1,...,Zn.

Hypersphere arrangement induced by H: Intersection of H with the unit
sphere 41,

Covectors of H: Sign vectors of the cells in H; equivalently, 0 together with
the sign vectors of the cells in H N .S%1.

We obtain a different picture if we polarize the situation and consider hy-
perplane arrangements rather than arrangements of points. For a real matrix
X :=(21,...,2n) € (R)™ consider the system of hyperplanes Hy = (Hy,. .., Hp)
with

H; = {y e R* | yTa; = 0}.

Each vector z; induces an orientation on H; by defining
HY = {y eR*|yTa; >0}

to be the positive side of H;. We define H; analogously to be the negative side
of H;. To avoid degenerate cases we assume that X contains at least one proper
basis (i.e., the matrix X has rank d). The hyperplane arrangement H . subdivides
R? into polyhedral cones. Without loss of information we can intersect with the
unit sphere S9! and consider the sphere system

Sy == (HinS“ ', ... H,n8"") = H, nsL

X

Our assumption that X contains at least one proper basis translates to the fact
that the intersection of all H; N...N H,, N S% 1 is empty. HX induces a cell
decomposition I'(S, ) on S4~. Each face of I'(S,,) corresponds to a sign vector in
{—,0,+}F that indicates the position of the cell with respect to the (d—2)-spheres
H; N S9! (and therefore with respect to the hyperplanes H;) of the arrangement.
The list of all these sign vectors is exactly the set £, of covectors of H,,.

While the visualization of oriented matroids by sets of points in R™ does not
fully generalize to the case of nonrepresentable oriented matroids, the picture of
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FIGURE 6.1.1
An  arrangement of nine great circles

on S%. The arrangement corresponds to a
Pappus configuration.

hyperplane arrangements has a well-defined analogue that also covers all the non-
realizable cases. We will see that as a consequence of the topological representation
theorem of Folkman and Lawrence (Section 6.2.4) every rank d oriented matroid
can be represented as an arrangement of oriented pseudospheres (or pseudohyper-
planes) embedded in the S%~! (resp. in ]Rd). Arrangements of pseudospheres are
systems of topological (d—2)-spheres embedded in $4~1 that satisfy certain inter-
section properties that clearly hold in the case of “straight” arrangements.

6.1.4

ARRANGEMENTS OF PSEUDOLINES

GLOSSARY

Pseudoline:  Simple closed curve p in the projective plane RP? that is topologi-
cally equivalent to a line (i.e., there is a self-homeomorphism of RP? mapping p
to a straight line).

Arrangement of pseudolines: Collection of pseudolines P := (py,...,p,) in
the projective plane, where any two of them intersect exactly once.

Simple arrangement: No three pseudolines meet in a common point. (Equiv-
alently, the associated oriented matroid is uniform.)

Equivalent arrangements: Arrangements P; and P that generate isomorphic

cell decompositions of RP?. (In this case there exists a self-homeomorphism
of RP? mapping P; to Ps.)

Stretchable arrangement of pseudolines: An arrangement that is equivalent
to an arrangement of projective lines.

An arrangement of pseudolines in the projective plane is a collection of pseu-
dolines such that any two pseudolines intersect in exactly one point, where they
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cross. (See Griinbaum [Grii72] and Richter [Ric89].) We will always assume that
P is essential, i.e., that the intersection of all the pseudolines p; is empty.

An arrangement of pseudolines behaves in many respects just like an arrange-
ment of n lines in the projective plane. (In fact, there are only very few combi-
natorial theorems known that are true for straight arrangements, but not true in
general for pseudoarrangements.)

Figure 6.1.2 shows a small example of a nonstretchable arrangement of pseudo-
lines. (It is left as a challenging exercise to the reader to prove the nonstretchability.)
Up to isomorphism this is the only simple nonstretchable arrangement of 9 pseudo-
lines [Ric89] [Knu92]; every arrangement of 8 (or fewer) pseudolines is stretchable.

FIGURE 6.1.2
A nonstretchable arrangement of nine pseudolines. It was obtained
by Ringel [Rin56] as a perturbation of the Pappus configuration.

To associate with a projective arrangement 7 an oriented matroid we represent
the projective plane (as customary) by the 2-sphere on which antipodal points are
identified. With this every arrangement of pseudolines gives rise to an arrangement
of great pseudocircles on S*. For each great pseudocircle on S? we choose a positive
side. Each cell induced by P on S? now corresponds to a unique sign vector. The
collection of all these sign vectors again forms a set of covectors Lp\0 of an oriented
matroid of rank 3. Conversely, as a special case of the topological representation
theorem, every oriented matroid of rank 3 has a representation by an oriented
pseudoline arrangement.

In this way we can use pseudoline arrangements as a standard picture to rep-
resent rank 3 oriented matroids. The easiest picture is obtained when we restrict
ourselves to the upper hemisphere of 5% and assume w.l.o.g. that each pseudo-
line crosses the equator exactly once, and that the crossings are distinet (i.e., no
intersection of the great pseudocircles lies on the equator). Then we can repre-
sent this upper hemisphere by an arrangement of mutually crossing, oriented atfine
pseudolines in the plane R?. (We did this implicitly while drawing Figure 6.1.2.)

By means of this equivalence, all problems concerning pseudoline arrangements
can be translated to the language of oriented matroids. For instance, the problem
of stretchability is equivalent to the realizability problem for oriented matroids.

6.2 AXIOMS AND REPRESENTATIONS

In this section we define oriented matroids formally. It is one of the main features
of oriented matroid theory that the same object can be viewed under quite dif-
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ferent aspects. This results in the fact that there are many different equivalent
axiomatizations, and it is sometimes very useful to “jump” from one point of view
to another. Statements that are difficult to prove in one language may be easy
in another. For this reason we present here several different axiomatizations. We
also give a (partial) dictionary of how to translate among them. For a complete
version of the basic equivalence proofs—which are highly nontrivial—see [BLS93,
Chapters 3 and 5].

We will give axiomatizations of oriented matroids for the following four types
of representations:

Collections of covectors,
Collections of cocircuits,
Signed bases,

Arrangements of pseudospheres.

In the last part of this section these concepts are illustrated by an example.

GLOSSARY

Sign vector: Vector C in {—,0,+}7, where E is a finite index set, usually
{L,...,n}. For e € E, the e-component of C is denoted by C..

Positive, negative, and zero part of C:

O+ = {e€E|C.=+},
C- = {e€cE|C.=-},
0 = {ecE|C, =0}

Support of C: C:={ec E|C, # 0}

Zero vector: 0:=(0,...,0) € {—,0,+}.

Negative of a sign vector: —C, defined by (—C)* :=C~, (-C)™ :=C* and
(-C)°0 = C°.

Composition of C and D: (CoD), = {Ca it Ce #0,

D, otherwise.
Separation set of C and D: S(C,D):={ec E|C,=—-D, #0}.

We partially order the set of sign vectors by “0 < +” and “0 < —.” The
partial order on sign vectors, denoted by C' < D, is understood componentwise;
equivalently, we have

C<D [C+gD+andc—gD—]

For instance, if C := (+,+,—,0,—,4,0,0) and D := (0,0,—,+,+,—,0,—), then
we have:

ct=1{1,2,6}, C-={3,5}, C°={4,7,8), C=1{1,2,3,56},

COD:(+a+a_a+a_a+a0a_)a CODZC, S(CaD):{5a6}

Furthermore, for € R", we denote by o(z) € {—,0,+}¥ the image of  under the
componentwise sign function ¢ that maps R" to {—,0,+}Z.
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6.2.1

COVECTOR AXIOMS

Definition: An oriented matroid given in terms of its covectors is a pair M :=
(E, L), where £ € {—,0,+}F satisfies

CV0) 0 € L,

CVl) Celf = —CeL
CV2) C,De L= CoDecL
CV3) C,DeL,ec S(C,D) =

thereisa Z € £ with Z, = 0 and with Z; = (CoD); for f € E\S(C, D).

(
(
(
(

It is not difficult to check that these covector axioms are satisfied by the sign
vector system L, of the cells in a hyperplane arrangement M, , as defined in
the last section. The first two axioms are satisfied trivially. For (CV2) assume
that zc and ap are points in R? with o(z5 - X) = C ¢ L, and o(z], - X) =
D ¢ L. Then (CV2) is implied by the fact that for sufficiently small ¢ > 0 we
have o((z¢c + exp)T - X) = C o D. The geometric content of (CV3) is that if
H, := {y € R* | yTa, = 0} is a hyperplane separating zc and x> then there exists
a point zz on H, with the property that xz is on the same side as z¢ and zp for
all hyperplanes not separating ¢ and xp. We can find such a point by intersecting
H, with the line segment that connects z¢o and zp.

As we will see later the partially ordered set (£, <) describes the face lattice of
a cell decomposition of the sphere S%~1 by pseudohyperspheres. Each sign vector
corresponds to a face of the cell decomposition. We define the rank d of M = (E, L)
to be the (unique) length of the maximal chains in (£, <) minus one. In the case
of realizable arrangements S, of hyperspheres, the lattice (£, , <) equals the face
lattice of ['(S, ).

6.2.2

COCIRCUITS

The covectors of (inclusion) minimal support in £\0 correspond to the 0-faces
(=vertices) of the cell decomposition. We call the set C*(M) of all such minimal
covectors the cocircuits of M. Oriented matroids can be described by their set of
cocircuits, as shown by the following theorem.

THEOREM 6.2.1 Cocircuit Characterization

A collection C* € {—,0,+}Z is the set of cocircuits of an oriented matroid M if
and only if it satisfies

there is a Z € C* with Z+ C (CTUDT)\{e} and Z= C (C~UD™)\{e}.
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THEOREM 6.2.2 Covector/Cocircuit Translation

For every oriented matroid M, one can uniquely determine the set C* of cocircuits
from the set L of covectors of M, and conversely, as follows:

(i) C* is the set of vectors with minimal support in L\0:
C={Cel\{0} | <C=C"€{0,C}}
(il) L is the set of all sign vectors obtained by successive composition of a finite

nwmber of cocircuits from C*:
L={Ci0...0C | k>0, Cq,...,Cr €C*}.

6.2.3 CHIROTOPES

GLOSSARY

Alternating sign map: A map x: E¢ — {—,0,+} such that any transposition
of two components changes the sign: x(7;;(\)) = —x(A).

Chirotope: An alternating sign map x that encodes the basis orientations of an
oriented matroid M of rank d.

‘We now present an axiom system for chirotopes, which characterizes oriented
matroids in terms of basis orientations. Here an algebraic connection to deter-
minant identities becomes obvious. Chirotopes are the main tool for translating
problems in oriented matroid theory to an algebraic setting [BSt89]. They also
form a description of oriented matroids that is very practical for many algorithmic
purposes (for instance in computational geometry, see Knuth [Knu92]).

Definition: Let £ := {1,...,n} and 0 < d < n. A chirotope of rank d is an
alternating sign map x: B¢ — {—,0,+} that satisfies

(CHI1) The map [x|: E¢ — {0,1} that maps X to |x(\)] is a matroid, and
(CHI2) For every A € E4~% and a,b,c,d € E\\ the set

{ X()\a a, b) : X()\a ¢, d)a _X(Aa a, C) : X()\a ba d)a X()\a a, d) : X()\a ba C) }
either contains {—1,+1}, or it equals {0}.

Where does the motivation of this axiomatization come from? If we again
consider a configuration X := (a1,...,2,) of vectors in R% we can observe the
following identity among the d x d submatrices of X:

det(@xy, s Bry_ns Tay Tp) - dEE(Tay, -+, Tay_oy Tey Bd)
— det(Tay, -+ Tay_s, Ta, Te) - det(Try, - o, Tay_q, T, Ld)
+ det(zr,, .-, Tayss Ta, d) - det(Tr,, .-, Bry_y, Tp, L) = 0

for all A\ € E%2 and a,b,c,d € E\A. Such a relation is called a three-term
Grassmann-Pliicker identity. If we compare this identity to our axiomatization,
we see that (CHI2) implies that

Xx* Bt — {_a0a+}
(M, Aq) + —sign(det(zy,,...,zx,))
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is consistent with these identities. More precisely, if we consider x, as defined
above for a vector configuration X, the above Grassmann-Pliicker identities imply
that (CHI2) is satisfied. (CHIL) is also satisfied since for the vectors of X the
Steinitz exchange axiom holds. (In fact the exchange axiom is a consequence of
higher order Grassmann-Pliicker identities.)

Consequently, x  is a chirotope for every X € (]Rd)". Thus chirotopes can be
considered as a combinatorial model of the determinant values on vector configu-
rations. The following is not easy to prove, but essential.

THEOREM 6.2.3 Chirotope/Cocircuit Translation
For each chirotope x of rank d on E :={1,... ,n} the set

() = {1, x(2),- - x(m) [ A e B

forms the set of cocircuits of an oriented matroid. Conversely, for every oriented
matroid M with cocircuits C* there exists a unique pair of chirotopes {x, —x} such
that C*(x) = C*(—x) = C*.

The retranslation of cocircuits into signs of bases is straightforward but needs
extra notation. It is omitted here.

6.2.4 ARRANGEMENTS OF PSEUDOSPHERES

GLOSSARY

The (d—1)-sphere: The standard unit sphere S := {z € R | ||z|| = 1}, or
any homeomorphic image of it.

Pseudosphere: The image s C S9! of the equator {z € §471 | 24 = 0} in the
unit sphere under a self homeomorphism ¢: $4~! — §94-1. (This definition de-
scribes topologically tame embeddings of a (d—2)-sphere in S9~1. Pseudospheres
behave “nicely” in the sense that they divide S9! into two sides homeomorphic
to open (d—1)-balls.)

Oriented pseudosphere: A pseudosphere together with a choice of a positive
side st and a negative side s™.

Arrangement of pseudospheres: A set of n pseudospheres in S%~1 with the
extra condition that any subset of d 4+ 2 or fewer pseudospheres is realizable:
it defines a cell decomposition of S%~1 that is isomorphic to a decomposition by
an arrangement of d + 2 linear hyperplanes.

FEssential arrangement: Arrangement such that the intersection of all the
pseudospheres is empty.

Rank: The codimension in S9! of the intersection of all the pseudospheres. For
an essential arrangement in S%1, the rank is d.

Topological representation of M = (E,L): An essential arrangement of ori-
ented pseudospheres such that £ is the collection of sign vectors associated with
the cells of the arrangement.

One of the most important interpretations of oriented matroids is given by
the topological representation theorem of Folkman and Lawrence [FL78] [BLS*93,
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Chapters 4 and 5]. It states that oriented matroids are in bijection to (combinato-
rial equivalence classes of) arrangements of oriented pseudospheres. Arrangements
of pseudospheres are a topological generalization of hyperplane arrangements, in
the same way in which arrangements of pseudolines generalize line arrangements.
Thus every rank d oriented matroid describes a certain cell decomposition of the
(d—1)-sphere. Arrangements of pseudospheres are collections of pseudospheres that
have intersection properties just like those satisfied by arrangements of proper sub-

spheres.

Definition: A finite collection P = (s1,$3,...,5,) of pseudospheres in S9! is
an arrangement of pseudospheres if the following conditions hold (we set E :=
{1,...,n}):

(PS1) For all A C E the set Sq = (1,24

(PS2) If S4 /G, for AC E e € E, then S4N s, is a pseudosphere in S4 with
sides S4 Nst and S4Ns;.

s, is a topological sphere.

Notice that this definition permits two pseudospheres of the arrangement to be
identical. An entirely different, but equivalent, definition is given in the Glossary.

We see that every essential arrangement of pseudospheres P partitions the
(d—1)-sphere into a regular cell complex I'(P). Each cell of I'(P) is uniquely de-
termined by a sign vector in {—,0,+}® encoding the relative position with re-
spect to each pseudosphere s;. Conversely, I'(P) characterizes P up to homeomor-
phism. P is realizable if there exists an arrangement of proper spheres S, with
L(P) =T(S,).

The translation of arrangements of pseudospheres to oriented matroids is given
by the topological representation theorem of Folkman and Lawrence [FL78]. (For
the definition of “loop,” see Section 6.3.1.)

THEOREM 6.2.4 Topological Representation Theorem (pseudosphere-co-
vector translation)

If P is an essential arrangement of pseudospheres on S! then I'(P)U0 forms the
set of covectors of an oriented matroid of rank d. Conversely, for every oriented
matroid (E, L) of rank d (without loops) there exists an essential arrangement of
pseudospheres P on S~ with T'(P) = L£\0.

6.2.5 DUALITY

GLOSSARY

Orthogonality: Two sign vectors C,D € {—,0,+}¥ are orthogonal if the set
{Ca : Da | €c E}

either equals {0} or contains {4, —}. We then write C' L D.

Vector of M: Sign vector that is orthogonal to all covectors of M; covector of
the dual oriented matroid M*.
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Circuit of M: Vector of minimal nonempty support; cocircuit of the dual ori-
ented matroid M*.

There is a natural duality structure relating oriented matroids of rank d on n
elements to oriented matroids of rank n—d on n elements. It is an amazing fact that
the existence of such a duality relation can be used to give another axiomatization
of oriented matroids (see [BLST93, Section 3.4]). Here we restrict ourselves to the
definition of the dual of an oriented matroid M.

THEOREM 6.2.5 Duality

For every oriented matroid M = (E, L) of rank d there is a unique oriented matroid
M* = (E, L") of rank |E| — d given by

LY = {D € {—,0,+}7 | C L D for every C € E}.

M?* is called the dual of M. In particular, (M*)* = M.

In particular, the cocircuits of the dual oriented matroid M*, which we call
the circuits of M, also determine M. Hence the collection C(M) of all circuits of
an oriented matroid M, given by

CM) = C*(M™),

is characterized by the the same cocircuit axioms. Analogously, the vectors of M
are obtained as the covectors of M™*; they are characterized by the covector axioms.

An oriented matroid M is realizable if and only if its dual AM* is realizable.
The reason for this is that a matrix (I4]A) represents M if and only if (—AT |I,_4)
represents M*. (Here I denotes a d x d identity matrix, A € R¥*"=9  and
AT ¢ R™=9*4 denotes the transpose of A.)

Thus for a realizable oriented matroid M, the vectors represent the linear
dependencies among the columns of X, while the circuits represent minimal linear
dependencies. Similarly, in the pseudoarrangements picture, circuits correspond
to minimal systems of closed hemispheres that cover the whole sphere, while vec-
tors correspond to consistent unions of such covers that never require the use of
both hemispheres determined by a pseudosphere. This provides a direct geometric
interpretation of circuits and vectors.

6.2.6

AN EXAMPLE

We close this section with an example that demonstrates the different representa-
tions of an oriented matroid. Consider the planar point configuration X given in
Figure 6.2.1(a).

Homogeneous coordinates for X are given by

0 3 1
=8 91 3

-2 =2 1

L= 2 -2 1
3 1 1

0 0 1
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FIGURE 6.2.1
An example of an oriented matroid on 6 elements.

[ 'y 4
1 l
4 [
3
5 4 3
L ] L ] L ]
6 6
» =) 5
.,3 .4 .2 .5
2
6 l
(a) (b) (c)
The chirotope x , of M is given by the orientations:
x(1,2,3) =+ x(1,2,4) =+ x(1.2'5)=+ x(1,2,6) =+ x(1,3,4) =+
x(2,3,4) =+ x(2,3,5) =+ .x(2.3,b) =+ x(2,4,5)=+ x(2,4,6) =+
x(2,5,6) = - x(3,4,5) =+ x(3,4,6) =+ x(3,5,6) =+ x(4,5,6) =+

Half of the cocircuits of M are given in the table below (the other half is obtained
by negating the data):

(0,0,+, 4+, +,+)
(0,—— —=0,=)
(5

0,-,0,+,+,+) (0,—,—,0,+,-)
(
—0,+,4+) (
(
(

0,—,—,+,+,0) (+,0,0,4,+,+)
+;0,—=,—0,=) (+,0,—;—;+;0)
+,+,0,—,0,+) (+,+,0,—,—,0)
—+,+,0,—,0) (—,—,+,+,0,0)

(+ ,+,0'0,+'+)
(+5 +! +!0!07 +)

Observe that the cocircuits correspond to the point partitions produced by hyper-
planes spanned by points. Half of the circuits of M are given in the next table.
The circuits correspond to sign patterns induced by minimal linear dependencies
on the rows of the matrix X. It is easy to check that every pair consisting of a
circuit and a cocircuit fulfills the orthogonality condition.

(+,—+,—0,0) (+,—,+,0,—,0) (+,— +0,0} -)
(+,— ,0,+, ,0) (+,+0+0, ) (+,— —,+)
(+,0,—,+,—,0) (+,U++,0, ) (+ ,0+0+ -)
(+,0,0,+,—,—-) (0,+,—,+,—,0) (0,+ +,0, -)
(0++,0,+. ) (0,+0++ -) (00+ -)

An affine picture of a realization of the dual oriented matroid is given in Fig-
ure 6.2.1(b). The minus-sign at point 6 indicates that a reorientation at point 6
has taken place. It is easy to check that the circuits and the cocircuits interchange
their roles when dualizing the oriented matroid.

Figure 6.2.1(c) shows the corresponding arrangement of pseudolines. The circle
bounding the configuration represents the projective line at infinity representing
line 6.
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6.3

IMPORTANT CONCEPTS

In this section we briefly introduce some very basic concepts in the theory of oriented
matroids. The list of topics treated here is tailored toward some areas of oriented
matroid theory that are particularly relevant for applications. Thus many other
topics of great importance are left out. In particular, see [BLS193, Section 3.3] for
minors of oriented matroids, and [BLST93, Chapter 7] for basic constructions.

6.3.1

SOME BASIC CONCEPTS

In the following glossary, we list some fundamental concepts of oriented matroid
theory. Each of them can be expressed in terms of any one of the representations
of oriented matroids that we have introduced (covectors, cocircuits, chirotopes,
pseudoarrangements), but for each of these concepts some representations are much
more convenient than others. Also, each of these concepts has some interesting
properties with respect to the duality operator—which may be more or less obvious,
depending on the representation that one uses.

GLOSSARY

Direct sum: An oriented matroid M = (E, £) has a direct sum decomposi-
tion, denoted by M = M(E;) DM (E3), if E has a partition into nonempty sub-
sets By and Eg such that £ = £y x £y for two oriented matroids My = (Eq, £1)
and My = (E3,L2). If M has no direct sum decomposition, then it is érre-
ducible.

Loops and coloops: A loop of M = (E, L) is an element e € E that satisfies
Ce=0for all C € £. A coloop satisfies £ = £’ x {—,0,+}, where L’ is obtained
by deleting the e-components from the vectors in £. If M has a direct sum
decomposition with E; = {e}, then ¢ is either a loop or a coloop.

Acyclic oriented matroid: An oriented matroid M = (E, £) for which (+,...,
+) € L is a covector; equivalently, the union of the supports of all nonnegative
cocircuits is E.

Totally cyclic oriented matroid: An oriented matroid without nonnegative
cocircuits; equivalently, £ N {0, +}F = {0}.

Uniform: An oriented matroid M of rank d on E is uniform if all of its
cocircuits have size |E| — d + 1. Equivalently, M is uniform if it has a chirotope
with values in {4, -}.

M is realizable:  There is a vector configuration X with M, = M.
Realization of M: A vector configuration X with M, = M.

THEOREM 6.3.1 Duality I
Let M be an oriented matroid on the ground set E, and M* its dual.

o M is acyclic if and only if M* is totally cyclic. (However, “most” oriented
matroids are neither acyclic nor totally cyclic!)
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e e € E is a loop of M if and only if it is a coloop of M*.

o M is uniform if and only if M* is uniform.

o M is a direct sum M(E) = M(Eq) ® M(E2) if and only if M* is a direct
sum M*(E) = M*(Ey) @ M*(E3).

Duality of oriented matroids captures, among other things, the concepts of
linear programming duality [BK92] [BLS'93, Chapter 10] and the concept of Gale
diagrams for polytopes [Zie95, Lect. 6]. For the latter, we note here that the vertex
set of a d-dimensional convex polytope P with d+k vertices yields a configuration of
d+k vectors in R, and thus an oriented matroid of rank d+1 on d+k points. Its
dual is a realizable oriented matroid of rank k — 1, the Gale diagram of P. It can
be modeled by an affine point configuration of dimension k — 2, called an affine
Gale diagram of P. Hence, for “small” k, we can represent a (possibly high-
dimensional) polytope with “few vertices” by a low-dimensional point configuration.
In particular, this is beneficial in the case k = 4, where polytopes with “universal”
behavior can be analyzed in terms of their 2-dimensional atfine Gale diagrams. For
further details, see Chapter 13 of this Handbook.

6.3.2 REALIZABILITY AND REALIZATION SPACES

GLOSSARY

Realization space: Let xy: E — {— 0,4} be a chirotope with x(1,...,d) = +.
The realization space R(x) is the set of all matrices X € R%™ with y + = x and
x; = e; fori=1,...,d, where ¢; is the i-th unit vector. If M is the corresponding
oriented matroid, we write R(M) = R(x).

Rational realization: A realization X € Q*™; that is, a point in R(x)N Qem,

Basic primary semialgebraic set: The (real) solution set of an arbitrary finite
system of polynomial equations and strict inequalities with integer coefficients.

Erxistential theory of the reals: The problem of solving arbitrary systems of
polynomial equations and inequalities with integer coefficients.

Stable equivalence: A strong type of arithmetic and homotopy equivalence.
Two semialgebraic sets are stably equivalent if they can be connected by a se-
quence of rational coordinate changes, together with certain projections with
contractible fibers. (See [Ric96] for details.) In particular, two stably equivalent
semialgebraic sets have the same number of components, they are homotopy-
equivalent, and either both or neither of them have rational points.

It is one of the most exciting problems in oriented matroid theory to design
algorithms that find a realization of a given oriented matroid if it exists. However,
for oriented matroids with large numbers of points, one cannot be too optimistic,
since the realizability problem for oriented matroids is NP-hard. This is one of
the consequences of Mnév’s universality theorem below. An upper bound for the
worst case complexity of the realizability problem is given by the following the-
orem. It follows from general complexity bounds for algorithmic problems about
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semialgebraic sets by Basu, Pollack, and Roy [BPR97] (see also Chapter 29 of this
Handbook).

THEOREM 6.3.2 Complezity of the Best General Algorithm Known

The realizability of a rank d oriented matroid on n points can be decided by solving
a system of S = (2) real polynomial equations and strict inequalities of degree at
most D=d—1in K= (n—d—1)(d—1) variables. Thus, with the algorithms of
[BPRIT| the number of bit operations needed to decide realizability is (in the Turing
machine model of complexity) bounded by (S/K)¥ - S . DOK),

THE UNIVERSALITY THEOREM

A basic observation is that all oriented matroids of rank 2 are realizable. In partic-
ular, up to change of orientations and permuting the elements in E there is only one
uniform oriented matroid of rank 2. The realization space of an oriented matroid
of rank 2 is always stably equivalent to {0}; in particular, if M is uniform of rank 2
on n elements, then R(M) is isomorphic to an open subset of R*"*™*,

In contrast to the rank 2 case, Mnév’s universality theorem states that for
oriented matroids of rank 3, the realization space can be “arbitrarily complicated.”
Here is the first glimpse of this:

o The realization spaces of all realizable uniform oriented matroids of rank 3
and at most 9 elements are contractible (Richter [Ric89]).

e There is a realizable rank 3 oriented matroid on 9 elements that has no real-
ization with rational coordinates (Perles).

e There is a realizable rank 3 oriented matroid on 14 elements with disconnected
realization space (Suvorov).

The universality theorem is a fundamental statement with various implications for
the configuration spaces of various types of combinatorial objects.

THEOREM 6.3.3 Mnév’s Universality Theorem [Mnégs|

For every basic primary semialgebraic set V' defined over Z there is a chirotope x
of rank 3 such that V and R(x) are stably equivalent.

Although some of the facts in the following list were proved earlier than Mnév’s
universality theorem, they all can be considered as consequences of the construction
techniques used by Mnév.

CONSEQUENCES OF THE UNIVERSALITY THEOREM

1. The full field of algebraic numbers is needed to realize all oriented matroids
of rank 3.

2. The realizability problem for oriented matroids is NP-hard (Mnév, Shor).

3. The realizability problem for oriented matroids is (polynomial time) equiva-
lent to the “Existential Theory of the Reals” (Mnév).

4. For every finite simplicial complex A, there is an oriented matroid whose
realization space is homotopy-equivalent to A.
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5. Realizability of rank 3 oriented matroids cannot be characterized by excluding
a finite set of “forbidden minors” (Bokowski and Sturmfels).

6. In order to realize all combinatorial types of integral rank 3 oriented ma-
troids on n elements, even uniform ones, in the integer grid {1,2,..., f(n)}3,
the “coordinate size” function f(n) has to grow doubly exponentially in n
(Goodman, Pollack, and Sturmfels).

7. The isotopy problem for oriented matroids (Can one given realization of M
be continuously deformed, through realizations, to another given one?) has a
negative solution in general, even for uniform oriented matroids of rank 3.

6.3.3

TRIANGLES AND SIMPLICIAL CELLS

There is a long tradition of studying triangles in arrangements of pseudolines. In
his 1926 paper [Lev26], Levi already considered them to be important structures.
There are good reasons for this. On the one hand, they form the simplest possible
cells of full dimension, and are therefore of basic interest. On the other hand, if
the arrangement is simple, triangles locate the regions where a “smallest” local
change of the combinatorial type of the arrangement is possible. Such a change
can be performed by taking one side of the triangle and “pushing” it over the
vertex formed by the other two sides. It was observed by Ringel [Rin56] that
any two simple arrangements of pseudolines can be deformed into one another by
performing a sequence of such “triangle tlips.”

Moreover, the realizability of a pseudoline arrangement may depend on the
situation at the triangles. For instance, if any one of the triangles in the nonre-
alizable example of Figure 6.1.2 other than the central one is flipped, the whole
configuration becomes realizable.

TRIANGLES IN ARRANGEMENTS OF PSEUDOLINES

Let P be any arrangement of n pseudolines.

1. For any pseudoline £ in P there are at least 3 triangles adjacent to £.
Either the n— 1 pseudolines different from £ intersect in one point (i.e., P is a
near-pencil), or there are at least n — 3 triangles that are not adjacent to £.
Thus P contains at least n triangles (Levi).

2. P is simplicial if all its regions are bounded by exactly 3 (pseudo)lines.
Except for the near-pencils, there are two infinite classes of simplicial line
arrangements and 91 additional “sporadic” simplicial line arrangements (and
many more simplicial pseudoarrangements) known (Griinbaum).

n{n—1)
3

3. If P is simple, then it contains at most triangles.

For infinitely many values of n, there exists a simple arrangement with n(nT_])
triangles (Roudneff, Harborth).
4. Any two simple arrangements P; and P can be deformed into one another
by a sequence of simplicial lips (Ringel [Rin56]).
Every arrangement of pseudospheres in S%~! has a centrally symmetric repre-
sentation. Thus we can always derive an arrangement of projective pseudohyper-
planes (pseudo (d—2)-planes in RP?~') by identifying antipodal points. The proper
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FIGURE 6.3.1
A simple arrangement of 28 pseudolines
with a mazxtmal number of 252 triangles.

analogue for the triangles in rank 3 are the (d—1)-simplices in projective arrange-
ments of pseudohyperplanes in rank d, i.e., the regions bounded by the minimal
number of d pseudohyperplanes. We call an arrangement simple if no more than
d — 1 planes meet in a point.

It was conjectured by Las Vergnas in 1980 [L80] that (as in the rank 3 case)
any two simple arrangements can be transformed into each other by a sequence of
flips of simplicial regions. In particular this requires that every simple arrangement
contains at least one simplicial region (which was also conjectured by Las Vergnas).
If we consider the case of realizable arrangements only, it is not difficult to prove
that any two members in this subclass can be connected by a sequence of flips of
simplicial regions and that each realizable arrangement contains at least one sim-
plicial cell. In fact, Shannon proved that every arrangement (even the nonsimple)
of n projective hyperplanes in rank d contains at least n simplicial regions. More
precisely, for every hyperplane h there are at least d simplices adjacent to h and
at least n — d simplices not adjacent to h. The contrast between the Las Vergnas
conjecture and the results known for the nonrealizable case is dramatic:

SIMPLICIAL CELLS IN PSEUDOARRANGEMENTS

1. There is an arrangement of 8 pseudoplanes in rank 4 having only 7 simplicial
regions (Roudneff and Sturmfels, Altshuler and Bokowski).

2. Every rank 4 arrangement with n < 13 pseudoplanes has at least one simpli-
cial region (Bokowski).

3. For every k > 2 there is a rank 4 arrangement of 4k pseudoplanes having only
3k + 1 simplicial regions (Richter-Gebert).

4. There is a rank 4 arrangement consisting of 20 pseudoplanes for which one
plane is not adjacent to any simplicial region (Richter-Gebert).

© 1997 by CRC Press LLC



OPEN PROBLEMS

The topic of simplicial cells is interesting and rich in structure even in rank 3. The
case of higher dimensions is full of unsolved problems and challenging conjectures.
These problems are relevant for various problems of great geometric and topological
interest, such as the structure of spaces of triangulations. Three key problems are:

1. Classify simplical arrangements. Is it true, at least, that there are only
finitely many types of simplicial arrangements of straight lines outside the
three known infinite families?

2. Does every arrangement of pseudohyperplanes contain at least one simplicial
region?

3. Is it true that any two simple arrangements can be transformed into one
another by a sequence of triangle flips?

6.3.4

MATROID POLYTOPES

The convexity properties of a point configuration X are modeled superbly by the
oriented matroid M,.. The combinatorial versions of many theorems concern-
ing convexity also hold on the level of general (including nonrealizable) oriented
matroids. For instance, there are purely combinatorial versions of Carathedory’s,
Radon’s, and Helly’s theorems [BLS93, Section 9.2].

In particular, oriented matroid theory provides us with an entirely combina-
torial model of convex polytopes, known as “matroid polytopes.” The following
definition provides this context in terms of face lattices.

Definition:  The face lattice of an acyclic oriented matroid M = (E, £) is the set
FL(M) :={C° |C € Ln{0,+}"},

partially ordered by inclusion. The elements of FL(AM) are the faces of M. M is
a matroid polytope if {e} is a face for every e € E.

Every polytope gives rise to a matroid polytope: if P C R? is a d-polytope with
n vertices, then the canonical embedding z ~(>91”) creates a vector configuration
Xp of rank d + 1 from the vertex set of P. The oriented matroid of Xp is a
matroid polytope M p, whose face lattice FL(M) is canonically isomorphic to the
face lattice of P.

Matroid polytopes provide a very precise model of (the combinatorial structure
of) convex polytopes. In particular, the topological representation theorem implies
that every matroid polytope of rank d is the face lattice of a regular piecewise
linear (PL) cell decomposition of a (d—2)-sphere. Thus matroid polytopes form an
excellent combinatorial model for convex polytopes: in fact, much better than the
model of PL spheres (which does not have an entirely combinatorial definition).

However, the construction of a polar fails in general for matroid polytopes.
The cellular spheres that represent matroid polytopes have dual cell decomposi-
tions (because they are piecewise linear), but this dual cell decomposition is not
in general a matroid polytope, even in rank 4 (Billera and Munson; Bokowski and
Schuchert [BSc93]). In other words, the order dual of the face lattice of a matroid
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polytope (as an abstract lattice) is not in general the face lattice of a matroid
polytope. (Matroid polytopes form an important tool for polytope theory, not only
because of the parts of polytope theory that work for them, but also because of
those that fail.)

For every matroid polytope one has the dual oriented matroid (which is totally
cyclic, hence not a matroid polytope). In particular, the set-up for Gale diagrams
generalizes to the framework of matroid polytopes; this makes it possible to also
include nonpolytopal spheres in a discussion of the realizability properties of poly-
topes. This amounts to perhaps the most powerful single tool ever developed for
polytope theory. It leads to, among other things, the classification of d-dimensional
polytopes with at most d + 3 vertices, the proof that all matroid polytopes of rank
d + 1 with at most d + 3 vertices are realizable, the construction of nonrational
polytopes, as well as of nonpolytopal spheres with d + 4 vertices, etc.

ALGORITHMIC APPROACH TO POLYTOPE CLASSIFICATION

A powerful approach, via matroid polytopes, to the problem of classifying all convex
polytopes with given parameters is largely due to Bokowski and Sturmfels [BSt89].
Here we restrict our attention to the simplicial case—there are additional technical
problems to deal with in the nonsimplicial case, and very little work has been
done there as yet. However, the program has been successfully completed for the
classification of all simplicial 3-spheres with 9 vertices (Altshuler, Bokowski, and
Steinberg) and of all neighborly 5-spheres with 10 vertices (Bokowski and Shemer)
into polytopes and nonpolytopes. At the core of the matroidal approach lies the
following hierarchy:

simplicial uniform convex
— . — .
spheres matroid polytopes polytopes
The plan of attack is the following. First, one enumerates all isomorphism types
of simplicial spheres with given parameters. Then, for each sphere, one computes
all (uniform) matroid polytopes that have the given sphere as their face lattices.
Finally, for each matroid polytope, one tries to decide realizability.

At both of the steps of this hierarchy there are considerable subtleties involved
that lead to important insights. For a given simplicial sphere, there may be

e no matroid polytope that supports it. In this case the sphere is called non-
matroidal. The Barnette sphere [BLST93, Proposition 9.5.3] is an example.

e ezactly one matroid polytope. In this (important) case the sphere is called
rigid. That is, a matroid polytope M is rigid if FL(M’) = FL(M) already
implies M’ = M. For rigid matroid polytopes the face lattice uniquely defines
the oriented matroid, and thus every statement about the matroid polytope
yields a statement about the sphere. In particular, the matroid polytope and
the sphere have the same realization space.

Rigid matroid polytopes are a priori rare; however, the Lawrence construc-
tion [BLS*93, Section 9.3] [Zie95, Section 6.6] associates with every oriented
matroid M on n elements in rank d a rigid matroid polytope A(M) with 2n
vertices of rank n 4+ d. The realizations of A(M) can be retranslated into
realizations of M.

e or many matroid polytopes.
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The situation is similarly complex for the second step, from matroid polytopes to
convex polytopes. In fact, for each matroid polytope there may be

e no convex polytope—this is the case for a nonrealizable matroid polytope.
These exist already with relatively few vertices; namely in rank 5 with 9 ver-
tices [BSc93], and in rank 4 with 10 vertices [BLS* 93, Proposition 9.4.5].

e essentially only one—this is the rare case where the matroid polytope is “pro-
jectively unique.”

e or many convex polytopes—the space of all polytopes for a given matroid
polytope is the realization space of the oriented matroid, and this may be ar-
bitrarily complicated. In fact, a combination of Mnév’s universality theorem,
the Lawrence construction, and a scattering technique [BSt89, Thm 6.2] (in
order to obtain the simplicial case) yields the following amazing universality
theorem.

THEOREM 6.3.4 Mnév’s Universality Theorem for Polytopes [Mnégsg|
For every [open] basic primary semialgebraic set V defined over Z there is an integer
d and a [simplicial] d-dimensional polytope P on d+4 vertices such that V' and the
realization space of P are stably equivalent.

6.4 SOURCES AND RELATED MATERIAL

FURTHER READING

The basic theory of oriented matroids was introduced in two fundamental papers,
Bland and Las Vergnas [BL78] and Folkman and Lawrence [FL78]. We refer to the
monograph by Bjérner, Las Vergnas, Sturmfels, White, and Ziegler [BLS193] for
a broad introduction, and for an extensive development of the theory of oriented
matroids. An up-to-date bibliography is given in [Zie96+4]. Other introductions and
basic sources of information include Bachem and Kern [BK92], Bokowski [Bok93],
Bokowski and Sturmfels [BSt89], and Ziegler [Zie95, Lect. 6 and 7).
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7

LATTICE POINTS AND LATTICE POLYTOPES

Alexander Barvinok

INTRODUCTION

Lattice polytopes arise naturally in number theory, algebraic geometry, optimiza-
tion, combinatorics, and analysis. They possess a very rich structure arising from
the interaction of algebraic, convex, and combinatorial properties. In this chapter
we concentrate on the theory of lattice polytopes and only sketch their numerous
applications. We briefly discuss their role in optimization and polyhedral combina-
torics (Section 7.1). In Section 7.2 we discuss the decision problem, the problem of
finding whether a given polytope contains a lattice point. In Section 7.3 we address
the counting problem, the problem of counting all lattice points in a given poly-
tope. The asymptotic problem (Section 7.4) explores the behavior of the number of
lattice points in a varying polytope (for example, if a dilatation is applied to the
polytope). Finally, in Section 7.5 we discuss problems with quantifiers. These prob-
lems are natural generalizations of the decision problem, which may be interpreted
as a problem with existential quantifiers only. Whenever appropriate we address
algorithmic issues. For general references in the area of computational complex-
ity /algorithms see [AHU74]. We summarize the computational complexity status
of our problems in Table 7.0.1.

TABLE 7.0.1 Computational complexity of basic problems.

PROBLEM NAME BOUNDED DIMENSION UNBOUNDED DIMENSION
Decision problem polynomial NP-hard

Counting problem polynomial #P-hard

Asymptotic problem polynomial #P-hard*

Problems with quantifiers | unknown; polynomial for ¥3 | NP-hard

*

in bounded codimension this reduces polynomially to volume computation

7.1

INTEGRAL POLYTOPES IN POLYHEDRAL
COMBINATORICS

We describe some combinatorial and computational properties of integral polytopes.
General references are [GK94], [GLS88], [GW93], [Sch8&6], and [Lag95].

GLOSSARY

R%: Euclidean d-dimensional space with scalar product (,y) = x191 + - . . + Tayd,
where & = (#1,...,24) and y = (y1,-..,¥d)-
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Z%: The subset of R consisting of the points with integral coordinates.

Polytope: The convex hull of finitely many points in R,

Face of a polytope P: The intersection of P and the boundary hyperplane of a
halfspace containing P.

Facet: A face of codimension 1.

Vertex: A face of dimension 0; the set of vertices of P is denoted by Vert P.

‘H-description of a polytope (H-polytope): A representation of the polytope
as the set of solutions of finitely many linear inequalities.

V-description of a polytope (V-polytope): The representation of the polytope
by the set of its vertices.

Integral polytope or lattice polytope: A polytope with all of its vertices in ze.

(0,1)-polytope: A polytope P such that each coordinate of any vertex of P is
either 0 or 1.

An integral polytope P C R? can be given either by its H-description or by
its V-description or (somewhat implicitly) as the convex hull of integral points in
some other polytope Q: P = conv{Q ﬁZd}. In most cases it is difficult to translate
one description into another. The following examples illustrate some typical kinds
of behavior.

INTEGRALITY OF 'H-POLYTOPES

It is an NP-hard problem to decide whether an H-polytope P C R? is integral.
However, if the dimension d is fixed then the straightforward procedure of gen-
erating all the vertices of P and checking their integrality has polynomial time
complexity. A rare case where an H-polytope P is a priori integral is known under
the general name of “total unimodularity.” Let A be an n x d integral matrix such
that every minor of A is either 0 or 1 or —1. Such a matrix A is called totally
unimodular. If b € Z" is an integral vector then the set of solutions to the system
of linear inequalities Az < b is an integral polytope in R?, provided this set is
bounded. Examples of totally unimodular matrices include matrices of vertex-edge
incidences of oriented graphs and of bipartite graphs. A complete characterization
of totally unimodular matrices and a polynomial time algorithm for recognizing a
totally unimodular matrix is provided by a theorem of P. Seymour (see [Sch8&6]).
A family of integral polytopes, called transportation polytopes, were intensively
studied in the literature (see [EKK84]). The most famous of them is the Birkhoff
polytope By, which is given in the space of n X n matrices = (z;;) by the system

of equations Y 7y 45 =1, j=1,...,n, 3> 7 @5 =1, i=1,...,n and inequalities
x5 > 0, and alternatively may be described as the convex hull of the n! permutation
matrices 7(0);; = d,,(;) for all permutations o of the set {1,...,n}.

The notion of total unimodularity has been generalized in various directions,
thus leading to new classes of integral polytopes (see [CCK™94]).

V-POLYTOPES WITH MANY VERTICES

There are several important situations where the explicit V-description of an inte-
gral polytope is too long and a shorter description is desirable although not always
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available. For example, a (0,1)-polytope may be given as the convex hull of the
characteristic vectors
. 1 ifie s,
xs(i) = {

0 otherwise

for some combinatorially interesting family S of subsets S C {1,...,d} (see [GLS88]
for various examples). The most famous example is the traveling salesman poly-
tope, the convex hull TSP, of the (n — 1)! permutation matrices w(o) where o is
a permutation of the set {1,...,n} containing precisely one cycle (cf. the Birkhoff
polytope B,, above). The problem of the H-description of the traveling salesman
polytope has attracted a lot of attention (see [GW93] and [EKK84] for some refer-
ences) because of its relevance to combinatorial optimization. As negative results in
this direction we mention that it is an NP-complete problem to establish whether
two given vertices of TSP,, are adjacent, i.e., connected by an edge. L. Billera
and A. Sarangarajan proved that every (0, 1)-polytope can be realized as a face of
TSP,, for sufficiently large n (see [BS96]). Thus the combinatorics of TSP,, con-
trasts with the combinatorics of the Birkhoff polytope B,. On the other hand, the
author has shown recently that the support functions hp(c) = max{{c,z) |z € P}
for P = TSP,, and P = B,, “almost coincide” as n — oc.

Another important polytope arising in this way is the cut polytope, the famous
counterexample to the Borsuk conjecture (see [Zie94]).

CONVEX HULL OF INTEGRAL POINTS

Let P C R? be a polytope. Then the convex hull P; of the set P NZ%, if nonempty,
is an integral polytope. Generally, the number of facets or vertices of P; depends
not only on the number of facets or vertices of P but also on the actual numerical
size of the description of P (see [CHKM92]). Furthermore, it is an NP-complete
problem to check whether a given point belongs to P, where P is given by its H-
description. If, however, the dimension d is fixed then the complexity of the facial
description of the polytope Py is polynomial in the complexity of the description
of P. In particular, the number of vertices of P; is bounded by a polynomial of
degree d — 1 in the input size of P (see [CHKM92]).

Integrality imposes some restrictions on the combinatorial structure of a poly-
tope. It is known that the combinatorial type of any 2- or 3-dimensional polytope
can be realized by an integral polytope. On the other hand, there are examples
of higher-dimensional polytopes whose combinatorial type can not be realized by
an integral polytope [Zie94]. Existence of a 4-dimensional polytope with a nonin-
tegral (and, therefore, nonrational) combinatorial type was recently reported by J.
Richter-Gebert; the smallest dimension in which an example was previously known
was 8. On the other hand, it was known that for sufficiently large d there exist non-
rational d-polytopes with d + 4 vertices. The number Ny(V) of classes of integral
d-polytopes having volume V' and nonisomorphic with respect to affine transforma-
tions of R preserving the integral lattice Z% has logarithmic order [BV92]

c(d)VF < log Ny(V) < cad)V T,

for some nonzero constants ¢1(d), ca(d).
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7.2

DECISION PROBLEM

We consider the following general decision problem: Given a polytope P C R% and
a lattice A C R?, decide whether PNA = § and, if the intersection is nonempty, find
a point in P N A. We describe the main structural and algorithmic results for this
problem. General references are [GL87], [GLS88], [GW93], [Sch86], and [Lag95].

GLOSSARY

Lattice: A discrete additive subgroup A of R%, ie., & —y € A for any z,y € A
and A does not contain limit points.

Basis of a lattice: A set of linearly independent vectors uq,...,ug such that
every vector y € A can be (uniquely) represented in the form y = mqus + ... +
myuy for some integers mq, ..., mg.

Rank of a lattice: The cardinality of any basis of the lattice. If A C R? has
rank d, A is said to be of full rank.

Determinant of a lattice: For a lattice of rank k the k-volume of the paral-
lelopiped spanned by any basis of the lattice.

Polyhedron: An intersection of finitely many halfspaces in R%.
Convex body: A compact convex set in R with nonempty interior.

Applying a suitable linear transformation one can reduce the decision problem
to the particular case in which A = Z* and P C R¥ is a full-dimensional polytope,
k = rank A.

The decision problem is known to be NP-complete for H-polytopes as well as
for V-polytopes, although some special cases admit a polynomial time algorithm.
In particular, if one fixes the dimension d then the decision problem becomes poly-
nomially solvable. The main tool is provided by the so-called “Hatness results.”

FLATNESS THEOREM

THEOREM 7.2.1

There exists a function f : N — R such that for every convex body P C R? such
that P NZ% = () there exists a nonzero vector | € Z2 for which

max{(l,z) |z € P} — min{(l,z) | = € P} < f(d).

There are two types of results relating to the flatness theorem. First, one may
be interested in making f(d) as small as possible. It is known that one can choose
f(d) = O(d?) [KL88] and it is conjectured that one can choose f(d) as small as
O(d). If P is centrally symmetric it is proven that one can choose f(d) = O(dlogd)
[Ban95]. Second, one may be interested in the smallest possible f(d) for which
the actual vector [ € Z% can be computed in polynomial time. The best bound
known for such f is f(d) = 20(@) where the corresponding vector [ is polynomially
computable even if the dimension d varies. For some small values of d the best
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possible bound for d may be found. For example, one can choose f(3) = 1 (see
[Sca85]).

ALGORITHMS FOR THE DECISION PROBLEMS

The Hlatness theorem allows one to reduce the dimension in the decision problem:
Assuming that the body P does not contain an integral point, one constructs a
vector | € Z% by Theorem 7.2.1 and reduces the d-dimensional decision problem to
at most f(d) + 1 instances of the (d—1)-dimensional decision problem P; = {z €
P | (l,z) =i}, where i ranges between min{(l,z) | € P} and max{(l,z) | # € P}.
This reduction is the main idea of polynomial time algorithms in fixed dimension.

The best complexity known for the decision problem in terms of the dimension d is
dO(d)'

MINKOWSKI'S CONVEX BODY THEOREM

The following classical result, known as “Minkowski’s convex body theorem,” pro-
vides a very useful criterion.

THEOREM 7.2.2

Suppose B C R? is a convex body, centrally symmetric about the origin 0, and
A C R? is a lattice of full rank. If vol B > 2%det A then B contains a nonzero
point of A.

For the proof and various generalizations see, for example, [GL87]. An impor-
tant generalization concerns the existence of i linearly independent lattice points in

a convex body. Namely, if \; = inf {)\ >0 ] AB N A contains ¢ linearly independent

points} is the “ith successive minimum,” then A1 ...\g < (2¢det A)/(volB).

If B is a convex body such that vol B = 2¢det A but B does not contain a
nonzero lattice point in its interior, then B is called extremal. Every extremal body
is necessarily a polytope. Moreover, this polytope contains at most 2(2% — 1) facets,
and therefore, for every dimension d, there exist only finitely many combinatorially
different extremal polytopes. The contracted polytope P = {z/2 | € B} has
the property that its lattice translates P+ x | ¢ € A tile the space R¢. Such a
tiling polytope is called a parallelohedron. Similarly, for every dimension d there
exist only finitely many combinatorially different parallelohedra. Parallelohedra
can be characterized intrinsically: a polytope is a parallelohedron if and only if
it is centrally symmetric, every facet of it is centrally symmetric, and every class
of parallel ridges ((d—2)-dimensional facets) consists of four or six ridges. If ¢ :
R? — R is a positive definite quadratic form, then the Dirichlet- Voronoi cell
P, = {z | q(z) < g(z — \) for any A\ € A} is a parallelohedron. The problem
of finding whether a centrally symmetric polyhedron P contains a nonzero lattice
point is known to be NP-complete even in the case of the standard cube P =
{(#1,...,24) | =1 < z; <1}. For fixed dimension d there exists a polynomial time
algorithm since the problem obviously reduces to the decision problem (one can
add the extra inequality 1 + ... + x4 > 1).
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VOLUME BOUNDS

An integral simplex in R¢ containing no lattice points other than its vertices has
volume 1/2 if d = 2 but already for d = 3 can have an arbitrarily large volume
(the smallest possible volume of such a simplex is 1/d!). On the other hand, if
an integral polytope P contains precisely & > 0 integral points then its volume is
bounded by a function of k¥ and d. The best bound known, vol P < k(7(k+ 1))2d+1,
is due to J. Lagarias and G.M. Ziegler (see [Lag95]).

7.3 COUNTING PROBLEM

We consider the following problem: Given a polytope P C R? and a lattice A ¢ R?,
compute the number of lattice points #(P N A) in P.

For counting in general convex bodies see [CHKM92]. For some applications
in the combinatorics of generating functions and representation theory see, for
example, [BZ88] and [Sta86]. For general information see the surveys [GK94] and
[GW93].

GLOSSARY

Edge of a polytope: A face of dimension 1.

Polyhedral cone: A set K C R? of the form K = {3F  Nu; | \i >0, i =
1,...,k} for some vectors uq,...,u; € R% The vectors uq,...u; are called
generators of K.

Cone of feasible directions at a point: The cone
K,={z|v+ex € Pfor all sufficiently small ¢ >0}

for a point v of a polytope P. If v is a vertex, then the cone K, is generated by
the vectors u; = v; — v, where [v;,v] is an edge of P.

Rational cone: A polyhedral cone having a set of generators belonging to Z.
Simple cone: A polyhedral cone generated by linearly independent vectors.
Fundamental parallelopiped of a simple cone: The set

HZ{)\1U1+—|—)\kUk|OS)\@<1, izl,...,k},

where uq, ..., u; are linearly independent generators of the cone.

Unimodular cone: A rational simple cone K C R?® whose fundamental paral-
lelopiped does not contain points of Z% other than 0.

Simple polytope: A polytope P such that the cone K, of feasible directions is
simple for every vertex v of P.

Totally unimodular polytope: An integral polytope P such that the cone K,
of feasible directions is unimodular for any vertex v of P.

Changing the coordinates, one can always assume that A = Z% and that the
polytope P is full-dimensional.
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GENERAL INFORMATION

The counting problem is known to be #P-hard even for an integral H- or V-
polytope. Moreover, for an H-polytope P C R%, it is an NP-hard problem to
compute the number of integral points in P even within the factor exp{p(d)},
where p(d) is a polynomial.

However, if the dimension d is fixed, one can solve the counting problem in
polynomial time [Bar94b).

SOME EXPLICIT FORMULAS IN LOW DIMENSIONS

The classical Pick formula expresses the number of integral points in a convex
integral polygon P C R? in terms of its area and the number of integral points on
the boundary OP:

#(PNZ* = area(P) + % SH#OPNZAH +1

(see, for example, [Mor93a], [GW93]). This formula almost immediately gives rise
to a polynomial time algorithm for counting integral points in integral polygons.

An important explicit formula for the number of integral points in a lattice
tetrahedron of a special kind was proven by L. Mordell (see [Pom93]). Let a,b,¢
be pairwise coprime positive integers and A(a,b,c) C R? be the tetrahedron with
vertices (0,0,0), (a,0,0), (0,b,0), and (0,0, ¢). Then

abc ab+ac+bct+a+b+c
—+ . +

4 (A(a, b,¢) N Z3) -

1 sac  bc ab 1
B (? + " + - + %) — s(bec, a) — s(ac,b) — s(ab, c) + 2. (7.3.1)

Here

00 =2 (()((F), where (@) =w—05(1s] + ),

q q

is the Dedekind sum. A similar formula was found in dimension 4 (see [Pom93]).
The famous reciprocity relation s(p, ¢)+s(g, p) = (p/¢+4¢/p+1/pg—3)/12 allows one
to compute the Dedekind sum s(p, ¢) in polynomial time (see [Dye91]). A version
of formula (7.3.1) was used in [Dye91], where polynomial time algorithms for the
counting problem for d = 3,4 are constructed. Formula (7.3.1) was generalized to
an arbitrary tetrahedron in [Pom93]. Later a generalization to higher dimensions
was suggested in [CS94].

A powerful tool for solving the counting problem is provided by exponential
sums, which may be regarded as generating functions for sets of integral points.

EXPONENTIAL SUMS

Let P C R% be a polytope and ¢ € R? be a vector. We consider the exponential sum
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Z exp{{c,x)}. If ¢ = 0 we get the number of integral points in P. The reason

zePNzd
for introducing the parameter c is that for a “generic” ¢ the exponential sums

reveal some nontrivial algebraic properties that become less visible when ¢ = 0.
To describe these properties we need to consider exponential sums over polyhedral
cones.

EXPONENTIAL SUMS OVER RATIONAL CONES

Let K C R% be a rational cone without straight lines generated by vectors w1, . . . , uk
in Z%. Then the series Z exp{{c, z)} converges for any ¢ such that {c,u;) <0

z€KNZ?
for all ¢ = 1,...,k and defines a meromorphic function of ¢ which we denote by

ok (c). For a simple rational cone K C R? with linearly independent generators
Uul,...,ur we have

O’K(C)Z( Z exp{{c,z) )

zellnzd

k
};[1 1- exp{ ¢, uq)}’
where I is the fundamental parallelopiped of K. In particular, if K is a unimodular

then
d

};[1 1- exp{ ¢, uq)}’

since the corresponding sum is just the multiple geometric series. Generally speak-
ing, the farther a given cone is from being unimodular, the more complicated the
formula for o (c) will be.

These results are known in many different forms (see, for example, Section 4.6
of [Sta86]). Furthermore, the function o (¢) can be extended to a finitely additive
measure, defined on rational polyhedra in R and taking its values in the space of
meromorphic functions in d variables, so that the measure of a rational polyhedron
with a straight line is equal to 0 [Law91].

The following crucial theorem relates the exponential sum over an integral
polytope and the exponential sums over cones K, of feasible directions for the
vertices v of P.

THEOREM 7.3.1 Brion’s Theorem
Let P c R? be an integral polytope. Then

Y ew{len)= Y ep{{ev)} o, (o).

zePNZd veVert p

For example, if d =1 and P = [0,n] is an interval, we get the formula

exp{e(n+1)} —1
exp{c} -1

Z exp{cz} = exp{c-0} Z exp{cx}+exp{cn}- Z exp{cz} =

=0 r=—00

For different proofs see [Bri92], [Law91].
Brion’s formula allows one to reduce the counting of integral points in poly-
topes to the counting of points in polyhedral cones, a much easier problem. Below
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we discuss two instances where the application of exponential sums and Brion’s
identities leads to an efficient computational solution of the counting problem.

COUNTING IN FIXED DIMENSION
The following result is proven in [Bar94b).

THEOREM 7.3.2

Let us fix the dimension d. Then there exists a polynomial time algorithm that, for
any given rational polytope P C Rd, computes the number #(P N Zd) of integral
points in P.

THE IDEA OF THE ALGORITHM

We assume that the polytope is given by its V-description. Furthermore, we may
assume that the polytope is integral since the convex hull P; of integral points of
P (see Section 7.1) can be computed in polynomial time provided the dimension is
fixed. Let us choose a “generic” ¢ € Q%. We can compute the number #(P N Z%)
as the limit of the exponential sum

lim0 Z exp{{tc,z)},

t—s

zePNZE

where t is a real parameter. Using Brion’s Theorem 7.3.1, we reduce the problem to
the computation of the constant term in the Laurent expansion of the meromorphic
function f,(t) = exp{{tc,v)} - oK, (tc), where v is a vertex of P and K, is the cone
of feasible directions at v. If K, is a unimodular cone, we have an explicit formula
for ok, (c) (see above) and thus can easily compute the desired term. However, for
d > 1 the cone K, does not have to be unimodular. It turns out, nevertheless, that
for any given rational cone K one can construct in polynomial time a decomposition
K= Z €K, € € {—1,1}, of the “inclusion-exclusion” type, where the cones K;
iel

are unimodular (see below). Thus one can get an explicit expression ok, (¢) =
Z € - 0k, (c) and then compute the constant term of the Laurent expansion of
iel
fo(t).

The fastest known algorithm for counting integral points in an integral simplex
is described in [Bar94a)]. Its complexity in terms of the dimension d is d°(@).

COUNTING IN TOTALLY UNIMODULAR POLYTOPES

One can efficiently count the number of integral points in a totally unimodular
polytope given by its vertex description even in varying dimension.

THEOREM 7.3.3

There exists an algorithm that, for any d and any given integral vertices vy, ..., Um
€ Z% such that the polytope P = conv{vy,...,vm} is totally unimodular, computes
the number of integral points of P in time linear in the number m of vertices.

© 1997 by CRC Press LLC



The algorithm uses Brion’s formulas (Theorem 7.3.1) and the explicit formula
above for the exponential sum over a unimodular cone.

EXAMPLE

Suppose A is an n x d totally unimodular matrix (see Section 7.1). Let us choose
b € Z" such that the set P, of solutions to the system Ax < b of linear inequalities
is a simple polytope. Then P, is totally unimodular.

For example, if we know all the vertices of a simple transportation polytope P,
we can compute the number of integral points of PP in time linear in the number of
vertices of P.

‘We discuss totally unimodular polytopes also in Section 7.4.

One can construct an efficient algorithm for counting integral points in a poly-
tope that is somewhat “close” to totally unimodular and for which the explicit
formulas for o, (c) are therefore not too long.

CONNECTIONS WITH TORIC VARIETIES

It was first observed by A. Khovanskii in the 1970’s, and has since then become
widely known, that the number of integral points in an integral polytope is related
to some algebro-geometric invariants of the associated toric variety (see [Oda88]).
Naturally, for smooth toric varieties (they correspond to totally unimodular poly-
topes) computation is much easier. Various formulas for the number of integral
points in polytopes were first obtained for totally unimodular polytopes and then,
by the use of resolution of singularities, generalized to arbitrary integral polytopes
(see, for example, [Pom93]). Resolution of singularities of toric varieties reduces to
dissection of a polyhedral cone into unimodular cones. However, as one can see, it
is impossible to subdivide a rational cone into polynomially (in the input) many
unimodular cones even in dimension d = 2. For example (see Figure 7.3.1), the
plane cone K generated by the points (1,0) and (1,n) cannot be subdivided into
fewer than 2n — 1 unimodular cones, whereas a polynomial time subdivision would
give a polynomial in logn cones. On the other hand, if we allow a signed linear
combination of the inclusion-exclusion type, then one can easily represent this cone
as a combination of 3 primitive cones: K = K — Ko+ K3, where K is generated by
the basis (1,0) and (0, 1), K3 is generated by (0,1) and (1,n), and K3 is generated
by (1,n). As we have mentioned above, once we allow “signed” combinations, any
rational polyhedral cone can be decomposed into unimodular cones in polynomial
time, provided the dimension is fixed [Bar94b].

H (1.n) (L.n)

1
FIGURE 7.3.1 [ 0
9 Dissection Signed decomposition
Pecomp.osmon of a cone requires ¢ r\‘:quire}:
into unimodular cones. O(n) cones only 3 cones
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CONNECTIONS WITH VALUATIONS

The number of integral points v(P) = #(P ﬁZd) in an integral polytope P C R% is
a valuation, i.e., it satisfies the inclusion-exclusion principle v(Py U Py) = v(Py) +
v(P2) — v(P N Py); and it is lattice-translation-invariant, i.e., v(P + 1) = v(P) for
any | € Z%. General properties of valuations and the related notion of the “polytope
algebra” have been intensively studied (see, for example, [McM78], [McM93], and
[Mor93b]). Various identities discovered in this area might prove useful in dealing
with particular counting problems. Specifically, we mention the following result.
Let {K; | i = 0,...,m} be a finite family of convex polyhedral cones in R* and
{e; | i=1,...,m} afamily of real numbers such that Ko = €1 - K1 + ...+ €y - Ky,
where the identity is understood as an identity for the indicator functions of the
sets Ko,..., K. Then the same identity Kj = €1 - K7 + ... + €, - K}, holds for
the dual cones K} = {z € R? | (z,y) <0 for all y € K, }.

For example, if the polytope P, of the example above is not simple, we can
use the above formula to represent the cone of feasible directions at its vertex as
a combination of unimodular cones in the following way. First, triangulating the
normal cone at the vertex, we represent it as a combination of unimodular cones.
Then, passing to the dual cones, we get the desired representation of the cone of
feasible directions.

ANALYTICAL METHODS

The number #(P N A) of lattice points of A in the polytope P can be interpreted
as the integral over P of the periodic delta-function

Z §y(z) = (det A)~* Z exp{2mi(l,z)}

yEA leA*

where A* = {l € R% | (I,y) € Z for all y € A} is the dual lattice. Depending on
the interpretation of this integral one can get various formulas. For example, if the
above series is approximated as t — oo by the theta-series

6:(a) = tY2 3" exp{—trllz - y[*} = (det A)™" 3" exp{ ||l /t} exp{2mill,a)},

yEA leA*

then as the limit lim;_,o [, 0¢(z)de one gets the number of lattice points in P,
each lattice point y counted with weight equal to the spherical measure of the cone
K, of feasible directions at y normalized in such a way that the spherical measure
of R% is equal to 1 (see [GL8&7] for some information about this weighted counting).
To evaluate the integral one can repeatedly apply Stokes’s formula to the faces of
a polytope.

Applying Parseval’s theorem one can get the famous Siegel identity (see [GL87])

1 2
2% det A — vol B = — Z ’ / exp{—mi(l,x)}dz| ,
leax\o VB

where B is a 0-symmetric convex body not containing nonzero lattice points (cf.
Theorem 7.2.2).
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Quite a few useful inequalities for the number of lattice points can be found
n [GW93], [Lag95], and [GL87]. Blichfeldt’s inequality states that #(B N A) <
1

AVol B + d, where B is a convex body containing at least d + 1 affinely inde-

pendent lattice points. Davenport’s inequality implies that
4 /d
#mnz <3 (7)re),
=

where the V; are the intrinsic volumes. A conjectured stronger inequality, #(B N
Z% < Vo(K) + ... 4 Vy4(K), was shown to be false in dimensions d > 207 although
it is correct for d = 2,3. Furthermore, H. Hadwiger proved that #(B N Zd) >

Z (=1)4"*V;(B), provided B C R? is a convex body having a nonempty interior
(=

d
(see [Lag9)).

7.4 ASYMPTOTIC PROBLEMS
If P ¢ R? is an integral polytope then the number of integral points in the di-
lated polytope nP = {nz | x € P} for a natural number n is a polynomial in
n, known as the Ehrhart polynomial. We review several results concerning the
Ehrhart polynomial and its generalizations.

GLOSSARY

Todd polynomial: The homogeneous polynomial tdy(x1,...,2Tm) of degree k
defined as the coefﬁcient of t* in the expansion

tx; > E
t¥-td e .
H 1 — exp{—tz;} kZ:O K@, Tm)

Tangent cone at a face of a polytope: The cone Kr of feasible directions at
any point in the relative interior of the face F' C P.

Apex of a cone: The largest linear subspace contained in the cone.

Dual cone: The cone K* = {xz € R? | (x,y) <0 for all y € K}, where K C R¢
is a given cone.

vol,: The normalized k-volume of a k-dimensional rational polytope P C R
computed as follows. Let L C R be the k-dimensional linear subspace parallel
to the affine span of P. Then volg(P) is the Euclidean k-dimensional volume of
P in the affine span of P divided by the determinant of the lattice A = Z¢ N L.

Ridge: A (d—2)-dimensional face of a d-dimensional polytope.

EHRHART POLYNOMIALS

The following fundamental result was suggested by Ehrhart (see, for example,
[Sta86] and [Stal3]).
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THEOREM 7.4.1

Let P C R? be an integral polytope. For a natural number n we denote by nP =
{nz | = € P} the n-fold dilatation of P. Then the number of integral points in nP
is a polynomial in n:

#(nPNZ% = Ep(n) for some polynomial Ep(z)= Zei(P) at.

Moreover, for positive integers n the value of (—1)98EP Ep(—n) is equal to the
number of integral points in the relative interior of the polytope nP (the “reciprocity
law” ).

The polynomial Ep is called the Fhrhart polynomzial and its coefficients
e;(P) are called Ehrhart coefficients. For various proofs of Theorem 7.4.1 see, for
example, [McM78], [Sta86], and [Sta83]. The existence of the Ehrhart polynomials
and the reciprocity law can be derived from the single fact that the number of in-
tegral points in a polytope is a lattice-translation-invariant valuation (see [McM93]
and Section 7.3).

If P is a rational polytope, we define ex(P) = n~*e,(P;), where n is a positive
integer such that P, = nP is an integral polytope. For an integral polytope P C RY,
one has #(PNZ%) = eg(P) + e1(P) + ... + e4(P). (This formula is no longer true,
however, if P is a general rational polytope.) The Ehrhart coefficients constitute a
basis of all additive functions (valuations) v on rational polytopes that are invariant
under unimodular transformations (see [McM93] and [GW93]).

GENERAL PROPERTIES
It is known that eg(P) = 1, eq(P) = vola(P), and eq_1(P) = %Z volg_1 F', where

F
the sum is taken over all the facets of P. Thus, computation of the two highest
coefficients reduces to computation of the volume. In fact, the computation of
any fixed number of the highest Ehrhart coefficients of an H-polytope reduces in
polynomial time to the computation of the volumes of faces [Bar94al; see also below.

EXISTENCE OF LOCAL FORMULAS

The Ehrhart coefficients can be decomposed into a sum of “local” summands.
The following theorem was proven by P. McMullen (see [McM78], [McM93], and
[Mor93b]).

THEOREM 7.4.2

For any natural numbers k and d there exists a real valued function py g4, defined
on the set of all rational polyhedral cones K C RY, such that for every rational
full-dimensional polytope P C R? we have

ex(P) = pra(Kr) - volgF,
F

where the sum is taken over all k-dimensional faces F of P and Kg is the tangent
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cone at the face F'. Moreover, one can choose py g to be an additive measure on
polyhedral cones.

The function pg g that satisfies the conditions of Theorem 7.4.2 is not unique
and it is a difficult problem to choose a computationally efficient px g (see also
Morelli’s formulas, below). However, for some specific values of k& and d a “canoni-
cal” choice of py 4 has long been known.

EXAMPLE
For a polyhedral cone K C R? let

u(K) = /K exp{ ]| }da,

where da is the Euclidean measure in R and || - || is the Euclidean norm. Thus
w(K) =1if K = R and u(K) = 0.5 if K is a halfspace. One can choose g4 =
td—1,4 = & because of the formulas for eq(P) and eq_1(P) (see above).

On the other hand, one can choose pg q4(K) = p(K*), where K* is the dual
cone, since it is known that eg(P) = 1. We note that if 4(K) is an additive measure
on polyhedral cones then v(K) = p(K*) is also an additive measure on polyhedral
cones (see Section 7.3).

TOTALLY UNIMODULAR POLYTOPES

Let P C R be a full-dimensional totally unimodular polytope. Let {l; | i =
1,....m} be the set of integral outer normals to the facets of P. We assume that
the I; are primitive, i.e., al; ¢ Z* for any i and any 0 < o < 1. Say P = {z e RY |
(li,x) <b;fori =1,...,m} for some by,..., by € Z. Let h = (h1,...,hm) € R™
be a vector. If ||| is small enough, then the “perturbed” polytope P, = {x e R* |
(I;, @) < b; + h;} has the same “shape” as P and the volume of P, is a polynomial
function of A.

The following expression for the Ehrhart coefficient e (P) was found in [KP92]:

ea—k(P) = tdk(aihl, R %)Vold(]:’h)’hzo~

Thus tdg = 1, tdi(z1,...,%m) = (@1 + ... + @m) /2, etc.

A FORMULA FOR e _,(P).

Let P C R? be a full-dimensional simple integral polytope. As above, we can
formally define some coefficients

0 0 )
Ohy’" " Ohm,
However, by_j(P) are no longer Ehrhart coefficients if P is not totally unimodular.
To get e4_2(P) one should introduce a correction term for every ridge of P.

Let F be a ridge of P. There exist exactly two facets, G; and Gq, that contain
F. Let Iy,ly € Z* be primitive outer normals to Gy, Gy respectively (see above).

VOld (Ph

bi_k(P) = tdk( )’h:O.

© 1997 by CRC Press LLC



Finally, let A = 7N L, where L is a two-dimensional linear subspace orthogonal
to F. Choosing an appropriate basis in A we may write I; = (1,0) and Iz = (p, q)
for coprime 0 < p < ¢. Let us define a function 7(Kg) on the tangent cone at the
ridge F"

1 1
7(Kr) = s(p,q) + 1710 where s(p, ¢) is the Dedekind sum (see Section 7.3).

Then eq_o(P) = bg—2(P) + Z 7(KF) - volg_2(F'), where the summation is taken

F
over all ridges F' of P. This formula was found in [KK93] (see also [Pom93]). The
appearance of the Dedekind sums arises from an explicit procedure for the resolution
of singularities of toric varieties in codimension 2 [Oda88]; see also Section 7.3.

MORELLI'S FORMULAS

General formulas for ex(P) were obtained in [Mor93a]. Morelli constructed an
explicit measure i, 4(K) as in Theorem 7.4.2, which, however, is not a real number
but a real-valued rational function on the Grassmanian Gyiq(R?) of all (k+1)-
dimensional subspaces in R Let K be a full-dimensional cone whose apex is a
k-dimensional subspace (if K is not such a cone then py 4(K) = 0). There is
an explicit formula for pg ¢(K) : Gk+1(]Rd) — R when the dual k-dimensional
cone K* ¢ R? is unimodular. If K* is not unimodular, then we define . 4(K)
using the additivity of p 4 (cf. the discussion in Section 7.3 about decomposing
a polyhedral cone into unimodular cones). The cone K contains d — &k (k+1)-
dimensional halfspaces (“edges”) whose intersection is the k-dimensional apex V' of
K. Let E;, s=1,...,d— k, be the linear spans of these edges. For every s we
choose an oriented basis (b7,...,b7 ) of the (k41)-dimensional lattice (£, N 7%,
so that all these orientations are coherent with some fixed orientation of the apex
V. Let A € Gii1(R?) be a (k+1)-dimensional subspace. We define the value of
bk d(K) on A as follows: Choose any basis u1, ..., ug4+1 of A. Define a (k+1)x (k+1)
matrix M* by the formula M} = (b7, u;). Let f; = det M* and define ux,q(K) on
A to be equal to
tda—k(f1,- .-, fak)
fooofaok

If d — k is fixed then the function u 4(K) : Gii1(R?) — R is polynomially
computable [Bar94a]. Therefore, computation of any fixed number of the highest
Ehrhart coefficients reduces in polynomial time to computation of the volumes of
faces for a an H-polytope [Bar94a).

THE h*-VECTOR

General properties of generating functions (see [Sta86]) imply that for every integral
d-dimensional polytope P there exist integers h§(P),. .., h5(P) such that

= hy(P) + ki (P)z + ...+ hi(P)z?
T;)EP(?’L)ZI?": 0( )+ El)_::)_d_ﬂ_'_ d( ) )
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The (d+1)-vector B*(P) = (h§(P),...,h5(P)) is called the h*-vector of P. It is
clear that h*(P) is a (vector-valued) valuation on the set of integral polytopes and
that h*(P) is invariant under a unimodular transformation of VA Moreover, the
functions hj, (P) constitute a basis of all valuations on integral polytopes that are in-
variant under unimodular transformations. Unlike the Ehrhart coefficients ey (P),
the numbers hj(P) are not homogeneous. However, hy(P) are monotone (and,
therefore, nonnegative): if ) C P are two integral polytopes then A} (P) > h3(Q)
([Sta93]). This property follows from the fact that polytopes admit triangula-
tions that are Cohen-Macaulay complexes (see Chapter 15). If these complexes are
Gorenstein then one gets the Dehn-Sommerville equations hi(P) = h}_,(P).
For example, the h*-vector of the Birkhoff polytope B,, (see Section 7.1) satisfies
the Dehn-Sommerville equations (see [Sta83]).

In principle, there is a combinatorial way to calculate h*(P). Namely, let A be
a triangulation of P such that every d-dimensional simplex of A is integral and has
volume 1/d! (see Section 7.2). Let fi(A) be the number of k-dimensional faces of
the triangulation A. Then

k .
) = 1)) (o),

=

where we let f_;(A) = 1. Such a triangulation may not exist for the polytope P but
it exists for mP, where m is a sufficiently large integer (see [Mor93a]). Generally,
this triangulation A would be too big, but for some special polytopes with nice
structure (for example, for the so-called poset polytopes) it may provide a very
good way to compute 2*(P) and hence the Ehrhart polynomial Ep.

Since the number of integral points in a polytope is a valuation, we get the
following result (see [McM93]).

THEOREM 7.4.3

Let Py, ..., P, be integral polytopes in RY. For an m-tuple of natural numbers
n=(ny,...,Nm), let us define the polytope

Pn)={mz1+...+ nm&m |21 € P1, ... Tm € Pp}

(using “+” for Minkowski addition one can also write P(n) = n1Pi+.. .+ Ny Py, ).
Then there exists o polynomial p(x1,...,zm) of degree at most d such that

#(P(n) ﬂZd) =pni,...,Nm).

An interpretation of the values p(nq,...,n,,) for nonpositive integer values of
n1,...,MNm can be obtained by using the polytope algebra identities (see [McM93]).

More generally, the existence of local formulas for the Ehrhart coefficients im-
plies that the number of integral points in an integral polytope P, = {z € R |
Az < b+ h} is a polynomial in h provided Py is an integral polytope combinatori-
ally isomorphic to the integral polytope Py. In other words, if we move the facets of
an integral polytope so that it remains integral and has the same facial structure,
then the number of integral points varies polynomially.
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INTEGRAL POINTS IN RATIONAL POLYTOPES

If P is a rational (not necessarily integral) polytope then #(nP N Z%) is not a
polynomial but a quasi-polynomial (a function of n whose value cycles through
the values of a finite list of polynomials). The following result was independently
proven by P. McMullen and R. Stanley (see [McM78] and [McM93)).

THEOREM 7.4.4

Let P C R be a rational polytope. For everyr, 0<r <d, let ind, be the smallest
natural number k such that all r-dimensional faces of kP are integral polytopes.
Then, for every n € N,

d
#(nPNZH = Z er(P,n(mod ind,)) -n"
r=0

for suitable rational numbers e, (P,k), 0 <k < ind,.

A generalization of the “reciprocity law” also appears in [McM78].

7.5 PROBLEMS WITH QUANTIFIERS

A natural generalization of the decision problem (see Section 7.2) is a problem with
quantifiers. We describe some known results and formulate open questions for this
class of problems.

FROBENIUS PROBLEM

The most famous problem from this class is the Frobenius problem:

Given k positive integers a4, .. ., a; with greatest common divisor 1, find the largest
integer m that cannot be represented as an integer combination a1n1 + ...+ arng,

The problem is known to be NP-hard in general, but a polynomial time algo-
rithm is known for fixed & [Kan92].

PROBLEM WITH QUANTIFIERS

A general problem with quantifiers can be formulated as follows. Suppose that
P is a Boolean combination of convex polyhedra: we start with some polyhedra
Py,...,P. C R% given by their facet descriptions and construct P by using the
set-theoretical operations of union, intersection, and complement. We want to find
out if the formula

1 Veodes .. Vam : (21,...,8m) € P (7.5.1)

is true. Here z; is an integral vector from Zd", and, naturally, dy + ... + dp, =
d, d; > 0. The parameters that characterize the size of (7.5.1) can be divided
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into two classes. The first class consists of the parameters characterizing the com-
binatorial size of the formula. These are the dimension d, the number m — 1 of
quantifier alternations, the number of linear inequalities and Boolean operations
that define the polyhedral set P. The parameters from the other class characterize
the nwmerical size of the formula. Those are the bit sizes of the numbers involved
in the inequalities that define P.

The following fundamental question remains open.

PROBLEM 7.5.1

Let us fix all the combinatorial parameters of the formula (7.5.1). Does there exist
a polynomial time algorithm that checks whether this formula is true?

Naturally, “polynomial time” means that the running time of the algorithm is
bounded by a polynomial in the numerical size of the formula. The answer to this
question is unknown although it is widely believed that such an algorithm indeed
exists. A polynomial time algorithm is known if the formula contains not more
than 1 quantifier alternation, i.e., if m < 2 ([Kan90]). A related problem, whose
solution is not known even for the simplest formulas with quantifiers, is to compute
the number of solutions for quantifier-free variables in a formula with quantifiers.

Problems with quantifiers have some apparent connections with parametric in-
teger programming and test sets for integer programs (see [Kan90]). Geometrically,
we are seeking to describe sets of points obtained from the set of integral points in
a polyhedron by using iterated operations consisting of (rational) projection and
taking the complement in some lattice. An equivalent formulation: we are seek-
ing to describe the class of sets obtained from a polyhedron by using the iterated
operations of taking the union of lattice shifts and taking complements. In partic-
ular, a problem with at most one quantifier alternation reduces to testing whether
P+ A =0, where P ¢ R? is a polyhedron, A C R? is a lattice, and the overbar
denotes complementation (see [KL88] and [Kan92]).

7.6 SOURCES AND RELATED MATERIAL

RELATED CHAPTERS

Chapter 3: Tilings

Chapter 13: Basic properties of convex polytopes
Chapter 15: Face numbers of polytopes and complexes
Chapter 27: Computational convexity

Chapter 39: Mathematical programming
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8

EUCLIDEAN RAMSEY THEORY
R.L. Graham

INTRODUCTION

Ramsey theory typically deals with problems of the following type. We are given
a set S, a family F of subsets of S, and a positive integer r. We would like to
decide whether or not for every partition of § = C; U --- U (. into r subsets, it
is always true that some C; contains some F' € F. If so, we abbreviate this by

r
writing S —— F (and we say S is -Ramsey). If not, we write S —/~ F. (For a
comprehensive treatment of Ramsey theory, see [GRS90].)

In Euclidean Ramsey theory, S is usually taken to be the set of points in
some Euclidean space EV, and the sets in F are determined by various geometric
considerations. The case most studied is the one in which F = Cong(X) consists
of all congruent copies of a fixed finite configuration X  § = EV. In other words,
Cong(X) = IégX | g € SO(N)}, where SO(N) denotes the special orthogonal group
acting on E.

Further, we say that X is Ramsey if, for all r, ENY Cong(X) holds provided
N is sufficiently large (depending on X and r). This we indicate by writing ENY —
X.

Another important case we will discuss (in Section 8.4) is that in which F =
Hom(X) consists of all homothetic copies aX + ¢ of X, where a is a positive real
and € EVY. Thus, in this case F is just the set of all images of X under the group
of positive homotheties acting on EV.

It is easy to see that any Ramsey (or 7-Ramsey) set must be finite. A standard
compactness argument shows that if EY — X then there is always a finite set
Y C EY such that Y - X. Also, if X is Ramsey (or r-Ramsey) then so is any
homothetic copy aX + ¢ of X.

GLOSSARY

EYN -5 Cong (X): For any partition EN = Cy U---UC,, some C; contains a set
Y
congruent to X. We say that X is r-Ramsey. When Cong(X) is understood
we will usually write BV - X.
EYN — X: For ever T, EN L Cong(X) holds, provided N is sufficiently large.
y
We say in this case that X is Ramsey.

8.1

r-RAMSEY SETS

In this section we focus on low-dimensional r-Ramsey results. We begin by stating
three conjectures.
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CONJECTURE 8.1.1

For any nonequilateral triangle T (i.e., the set of 3 vertices of T'),

E2 2, T

CONJECTURE 8.1.2 (stronger)
For any partition B2 = Cy U Ca, every triangle occurs (up to congruence) in Cq,
or else the same holds for Co, with the possible exception of a single equilateral
triangle.
The partition E? = ¢} U Oy with

Ci = {z,y)|—-o<zs<o2m<y<2m+1m=0,+1,4+2 ...}

C; = E\G
into alternating half-open strips of width 1 prevents the equilateral triangle of side
V/3 from occurring in a single C;. In fact, it is conjectured that except for some

freedom in assigning the boundary points (z,m), m an integer, this is the only way
of avoiding any triangle.

CONJECTURE 8.1.3

For any triangle T,
3
E? —/-T.

In the positive direction, we have [EGM™75b]:

THEOREM 8.1.4

(a) E2 27 if T is a triangle satisfying:

(i) T has a ratio between two sides equal to 2sin 8/2 with # = 30°, 72°, 90°,
or 120°

(if) T has a 30°, 90°, or 150° angle [Sha76]
(iif) T has angles (o, 2, 180° — 3¢) with 0 < o < 60°
(iv) T has angles (180° — o, 180° — 2a, 3o — 180°) with 60° < o < 90°
(v) T is the degenerate triangle (a,2a,3a)
(vi) T has sides (a,b, c) satisfying
a® — 2a*b? + a?b* — 3a*b?c? + b7 =0
or
a*c® +b*a® + c*? — 5% =0
(vii) T has sides (a,b,c) satisfying

¢ =a® 4+ 2% with a<2b [Sha76]

(viii) T has sides (a,b, ) satisfying

a® + ¢ = 4b? with 3b* < 2a® <56  [ShaT6]
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(ix) T has sides equal in length to the sides and circumradius of an isosceles
triangle;

(b) R for any nondegenerate triangle T

(c) E? 2 for any nondegenerate right triangle T [BT96)
.12
(d) E? —-T, a triangle with angles (30°,60°,90°) [B6n93]
2
(e) E? —/—»Q3 (4 points forming a square)

(f) E* —:;Ler [Can96]

(g) E® 25 R?, any rectangle [T6t96]

4
(h) E™ -~ for any n (a degenerate (1,1,2) triangle)
16
(i) E" for any n (a degenerate (a,b,a +b) triangle).

It is not known whether the 4 in (h) or the 16 in (i) can be replaced by
smaller values. Other results of this type can be found in [EGM™*73], [EGM™*75a],
[EGM*75b], [Sha76], [CFGI1].

The 2-point set X2 consisting of two points a unit distance apart is the simplest
set about which such questions can be asked, and has a particularly interesting
history (see [Soi91] for details). It is clear that

2
E' /X, and E? -2 X,.

To see that E2 25 Xo, consider the T-point Moser graph shown in Figure 8.1.1.

i
All edges have length 1. On the other hand, E? —f~+ X5, which can be seen by an
appropriate periodic 7-coloring (= partition into 7 parts) of a tiling of E? by regular
hexagons of diameter 0.9 (see Figure 1.3.1).

FIGURE 8.1.1
The Moser graph.

Definition: The chromatic number of E", denoted by x(E™), is the least m

m
such that E" —~ X,.

By the above remarks,
4< x(E*) <.

These bounds have remained unchanged for over 45 years.
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PROBLEM 8.1.5
Determine the exact value of x(E?).
The best bounds currently known for E™ are:

(6/5+0(1))" < x(E") < (3+0(1))"

(see [FW81], [CFGO1)).

A “near miss” for showing x(E*) < 7 was recently found Soifer [Soi92]. He
shows that there exists a partition E? = C; U---UC5 where C; contains no pair of
points a distance 1 for 1 < 4 < 6, while C; has no pair with distance 1/v/5.

See Section 1.3 for more details.

8.2 RAMSEY SETS
Recall that X is Ramsey (written EY — X) if, for all r, if EY = CyU---UC, then
some C; must contain a congruent copy of X, provided only that N > No(X, ).
GLOSSARY

Spherical: X is spherical if it lies on the surface of some sphere.

Rectangular: X is rectangular if it is a subset of the vertices of a rectangular
parallelepiped.

Simplex: X is a simplex if it spans EXI-1

THEOREM 8.2.1 [EGM™73]
If X andY are Ramsey then so is X xX Y.

Thus, since any 2-point set is Ramsey (for any r, consider the unit simplex Sa,11 in
E*" scaled appropriately), then so is any rectangular parallelepiped. This implies:

THEOREM 8.2.2

Any rectangular set is Ramsey.
Frankl and R&dl strengthen this significantly in the following way.

Definition: A set A C E" is called super-Ramsey if there exist positive con-
stants ¢ and € and subsets X = X (N) C EV for every N > Ny(X) such that:

1) X<y

(ii) |Y] < |X|/(14 €)™ holds for all subsets ¥ C X containing no congruent copy
of A.

THEOREM 8.2.3  [FRY(]

(1) All two-element sets are super-Ramsey.

(ii) If A and B are super-Ramsey then so is A X B.
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COROLLARY 8.2.4
If X is rectangular then X is super-Ramsey.
In the other direction we have

THEOREM 8.2.5
Any Ramsey set is spherical.

The simplest nonspherical set is the degenerate (1,1,2) triangle.
Concerning simplices, we have the result of Frankl and Radl:

THEOREM 8.2.6 [FRY0]

FEvery simplex is Ramsey.

In fact, they show that for any simplex X, there is a constant ¢ = ¢(X) such that
for all r,
EclogT L} X

¥

which follows from their result:

THEOREM 8.2.7

FEvery simplex is super-Ramsey.

It was an open problem for more than 20 years as to whether the set of vertices
of a regular pentagon was Ramsey. This was finally settled by Kfiz [Kfi91] who
proved the following two fundamental results:

THEOREM 8.2.8  [Kii91]

Suppose X CEN has a transitive solvable group of isometries. Then X is Ramsey.

COROLLARY 8.2.9

Any set of vertices of a regular polygon is Ramsey.

THEOREM 8.2.10  [Kii91]

Suppose X CEN has a transitive group of isometries that has a solvable subgroup
with at most two orbits. Then X is Ramsey.

COROLLARY 8.2.11

The vertex sets of the Platonic solids are Ramsey.

CONJECTURE 8.2.12

Any 4-point subset of a circle is Ramsey.

Kiiz [KFi92] has shown this holds if a pair of opposite sides of the 4-point set
are parallel (i.e., form a trapezoid).

Certainly, the outstanding open problem in Euclidean Ramsey theory is to
determine the Ramsey sets. The author (bravely?) makes the following:

CONJECTURE 8.2.13
Any spherical set is Ramsey.

If true then this would imply that the Ramsey sets are exactly the spherical sets.
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8.3 SPHERE-RAMSEY SETS

Since spherical sets play a special role in Euclidean Ramsey theory, it is natural
that the following concept arises.

GLOSSARY

SN(p): A sphere in EV with radius p.
Sphere- Ramsey: X is sphere-Ramsey if, for all r, there exist N = N(X,r) and
p = p(X,r) such that
SN(p) — X.
In this case we write S™(p) — X.
For a spherical set X, let p(X) denote its circumradius, i.e., the radius of the

smallest sphere containing X as a subset.

Remark. If X and Y are sphere-Ramsey then so is X x Y.

THEOREM 8.3.1 [Gra83]
If X is rectangular then X is sphere-Ramsey.

In [Gra83], it was conjectured that in fact if X is rectangular and p(X) =1
then SV (1 +¢) — X should hold. This was proved by Frankl and Rédl [FR90] in
a much stronger “super-Ramsey” form.

Concerning simplices, Matousék and R6dl proved the following spherical ana-
logue of simplices being Ramsey:

THEOREM 8.3.2 [MR95]

For any simplex X with p(X) =1, any r, and any € > 0, there exists N = N(X,r,¢€)
such that
SN1+e) X

The proof uses an interesting mix of techniques from combinatorics, linear
algebra, and Banach space theory.
The following results show that the “blowup factor” of 1 + € is really needed.

THEOREM 8.3.3 [Gra83]
Let X = {x1,...,%m} CEN such that:

(i) for some nonempty I C {1,2,...,m}, there exist nonzero a;, © € I, with
Z a;x; =0 € EN
il

(i) for all nonempty J C I,

Zaj;é(l

jeJ

Then X is not sphere-Ramsey.
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This implies that X C S™(1) is not sphere-Ramsey if the convex hull of X
contains the center of SV (1).

Definition: A simplex X C EV is called exceptional if there is a subset A C X,
|A| > 2, such that the affine hull of A translated to the origin has a nontrivial
intersection with the linear span of the points of X \ A regarded as vectors.

THEOREM 8.3.4 |[MR95]
If X is a simplex with p(X) =1 and SN (1) — X then X must be exceptional.

It is not known whether it is true for exceptional X that SV(1) — X. The
simplest nontrivial case is for the set of three points {a,b, ¢} lying on some great
circle of SV (1) (with center o) so that the line joining a and b is parallel to the line
joining o and c.

We close with a fundamental conjecture:

CONJECTURE 8.3.5
If X is Ramsey, then X is sphere-Ramsey.

8.4

HOMOTHETIC RAMSEY SETS AND DENSITY
THEOREMS

In this section we will survey various results of the type EY —— Hom(X), the set
of positive homothetic images aX + 7 of a given set X. Thus, we are allowed to
dilate and translate X but we cannot rotate it. The classic result of this type is
van der Waerden’s theorem, which asserts the following:

THEOREM 8.4.1 [van27]
IfX ={1,2,...,m} then E " Hom(X).
(Note that Hom(X) is just the set of m-term arithmetic progressions.)

By the compactness theorem mentioned in the Introduction there exists for
each m a minimum value W (m) such that

{1,2,...,W(m)} = Hom(X).

The determination or even estimation of W(m) seems to be extremely ditficult.
The known values are:

m |1]2]3]4] 5
W(m) | 13935178

The best general result from below (due to Berlekamp—see [GRS90)) is
W(p+1)>p-2°, pprime.

The best upper bound is given by a result of Shelah [She8&8]:
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m levels

22,
22%

The following conjecture of the author has been open for more than 25 years:

CONJECTURE 8.4.2

For all m,

Wim) < e } (m 2s)

The generalization to EV is due independently to Gallai and Witt (see [GRS90]).

THEOREM 8.4.3
For any finite set X C E",
EY — Hom(X).

We remark here that a number of results in (Euclidean) Ramsey theory have
stronger so-called density versions. As an example, we state the well-known theorem
of Szemerédi.

GLOSSARY

N: The set of natural numbers {1,2,3,...}.
8(A): The upper density of a set A C N is defined by:

0(A) = limsup [AN{L2,... n} .

n—sco n
THEOREM 8.4.4  (Szemerédi [Sze75))
If ACN has S(A) > 0 then A contains arbitrarily long arithmetic progressions.
That is, ANHom{1,2,...,m} # ( for all m. This clearly implies van der Waerden’s
theorem since N=C; U .- U, = max §(C;) > 1/r.
T

Furstenberg [Fur77] has given a quite different proof of Szemerédi’s theorem, us-
ing tools from ergodic theory and topological dynamics. This approach has proved
to be very powerful, allowing Furstenberg, Katznelson, and others to prove density
versions of the Hales-Jewett theorem (see [FK91]), the Gallai-Witt theorem, and
many others.

© 1997 by CRC Press LLC



There are other ways of expressing the fact that A is relatively dense in N
besides the condition that §(4) > 0. One would expect that these could also be
used as a basis for a density version of van der Waerden or Gallai-Witt. Very little
is currently known in this direction, however. We conclude this section with several
conjectures of this type.

CONJECTURE 8.4.5 (Erdés)

If A C N satisfies > 1/a = oo then A contains arbitrarily long arithmetic progres-
acA
S1OMS.

CONJECTURE 8.4.6 (Graham)
If ACNxNwith Y. 1/(z?+ y?) = oo then A contains the 4 vertices of an
(z,y)€EA

azes-parallel square.

More generally, 1 expect that A will always contain a homothetic image of
{1,2,...,m} x {1,2,...,m} for all m.

Finally, we mention a direction in which the group SO(n) is enlarged to allow
dilatations as well.

Definition:  For a set W C E¥, define the upper density (W) of W by

- — lim su m(B(o, R)NW)
(W) = IR_>O£) —m(B(o, )

2

where B(o, R) denotes the k-ball {(xl, .,xp) € EF

3
x? < R? } centered at the
=1

origin, and m denotes Lebesgue measure.

THEOREM 8.4.7 (Bourgain [Bou86])

Let X C E* be a simplex. If W C E* with §(W) > 0 then there exists to such that
for all t > tg, W contains a congruent copy of tX.

Some restrictions on X are necessary as the following result shows.

THEOREM 8.4.8 (Graham [Gra94])

Let X C E* be nonspherical. Then for any N there exist o set W C EN with
(W) >0 and a set T C R with §(T) > 0 such that W contains no congruent copy
of tX foranyt € T.

Here § denotes lower density, defined similarly to ¢ but with lim inf replacing
limsup.

It is clear that much remains to be done here.

8.5

VARIATIONS

There are quite a few variants of the preceding topics that have received attention
in the literature (e.g., see [Sch93]). We mention some of the more interesting ones.
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ASYMMETRIC RAMSEY THEOREMS

Typical results of this type assert that for given sets X; and X (for example), for
every partition of E¥ = €} U Cy, either €} contains a congruent copy of X7, or Cs
contains a congruent, copy of Xs. We can denote this by

EV 25 (X1, Xo).

Here is a sampling of results of this type (more of which can be found in [EGM*73],
[EGM™*75a], [EGM*75b]).

(i) E* -2 (Ty,Ts) where T} is any subset of E? with i points, i = 2, 3.

(ii) E 2 (P», Py) where Ps is a set of two points at a distance 1, and Py is a
set of four collinear points with distance 1 between consecutive points.

(iit) B 2, (T, Q%) where T is an isoceles right triangle and Q2 is a square.
(iv) E? 2, (P, T4) where P is as in (ii) and Ty is any set of four points [Juh79].
(v) There is a set Tz of 8 points such that

E? 72@(132, Tg) [CT94).

This strengthens an earlier result of Juhdsz [Juh79], which proved this for a
certain set of 12 points.

POLYCHROMATIC RAMSEY THEOREMS

Here, instead of asking for a copy of the target set X in a single C;, we require only
that it be contained in the union of a small number of C;, say at most m of the C;.
Let us indicate this by writing EY — X.
m

(i) ¥EY — X then X must be embeddable on the union of m concentric spheres
m
[EGM*73].
(ii) Suppose X; is finite and EN — X;, 1 <i<t. Then
mi

EY —— X;xXox---xX; [ERS83].

mimo---Mmy

(iit) If X, is the 6-point set formed by taking the four vertices of a square together
with the midpoints of two adjacent sides then E* /—X§g but E? - Xe.

(iv) If X is the set of vertices of a regular simplex in E" together with the trisection
points of each of its edges then

E? /=X but E2 — Xe.

It is not known if E2 - Xg. Many other results of this type can be found
in [ERS83].
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PARTITIONS OF E” WITH ARBITRARILY MANY PARTS

7
Since E? —f Py, where P» is a set of two points with unit distance, one might ask
whether there is any nontrivial result of the type E* - F when m is allowed to
go to infinity. Of course, if F is sufficiently large, then there certainly are. There
are some interesting geometric examples for which F is not too large.

THEOREM 8.5.1 [Gra80a]

For any partition of E™ into finitely many parts, some part contains, for all o >0
and all sets of lines Lq,. .., L, that span E", o simplex having volume o and edges
through one vertex parallel to the L.

Many other theorems of this type are possible (see [Gra80a]).

PARTITIONS WITH INFINITELY MANY PARTS
Results of this type tend to have a strong set-theoretic flavor. For example:

Ry
E? —/ T3 where T3 is an equilateral triangle [Ced69]. In other words, E? can
be partitioned into countably many parts so that no part contains the vertices of

an equilateral triangle. In fact, this was very recently strengthened by Schmerl
[Sch94b] who showed that for all N,

N Mo
ENY LT,

In fact, this result holds for any fixed triangle T in place of T3 [Sch94b]. Schmerl
also has shown [Sch94a] that there is a partition of E” into countably many parts
such that no part contains the vertices of any isoceles triangle.

Another result of this type is this:

THEOREM 8.5.2 [Kun]

Assuming the Continuum Hypothesis, it is possible to partition B2 into countably
many parts, none of which contains the vertices of a triangle with rational areq.

COMPLEXITY ISSUES

S. Burr [Bur82] has shown that the algorithmic question of deciding if a given set
X C NxN can be partitioned X = C1UC2UC3 so that z,y € C; = distance(z, y) >
6,1 =1,2,3, is NP-complete. (Also, he shows that a certain infinite version of this
is undecidable.)

Finally, we make a few remarks about the celebrated problem of Esther Klein
(who became Mrs. Szekeres), which, in some sense, initiated this whole area (see
[Sze73] for a charming history).

THEOREM 8.5.3 [ES35]

There is ¢ minimum function f : N — N such that any set of f(n) points in E?
i general position contains the vertices of a convex n-gon.
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This result of Erdds and George Szekeres actually spawned an independent

genesis of Ramsey theory.

The best bounds currently known for f(n) are:

2n —4
Mm-241< < 8
+ _f(n)_(n_z)—i—

CONJECTURE 8.5.4
Prove (or disprove) that f(n) =2""2+1, n > 3.

(See Chapter 1 of this Handbook for more details.)

8.6

SOURCES AND RELATED MATERIAL

SURVEYS

The principal surveys for results in Euclidean Ramsey theory are [GRS90], [Gra80b],
[Gra85], and [Gra94]. The first of these is a monograph on Ramsey theory in
general, with a section devoted to Euclidean Ramsey theory, while the last three
are specifically about the topics discussed in the present chapter.

RELATED CHAPTERS

Chapter 1: Finite point configurations
Chapter 10: Geometric discrepancy theory and uniform distribution
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9

DISCRETE ASPECTS OF STOCHASTIC
GEOMETRY

Rolf Schneider

INTRODUCTION

Stochastic geometry studies randomly generated geometric objects. The present
chapter is restricted to discrete aspects of stochastic geometry. We describe work
that has been done on familiar objects of discrete geometry, in particular finite
or discrete point sets, but also arrangements of flats, random congruent bodies,
or tessellations, under various assumptions of randomness. The emphasis will be
on finite point sets. Most of the results to be mentioned concern expectations of
geometrically defined random variables or probabilities of events defined by random
geometric configurations. The determination of whole probability distributions of
geometric random variables is mostly out of reach, and the few cases where this
can be achieved may be of only peripheral interest from the viewpoint of discrete
geometry.

9.1 RANDOM POINTS
The setup for most of this section is a finite number of random points in a topological
space S. Often the space S is R?, the d-dimensional Euclidean space, with scalar
product {-,-) and norm || - ||. Other spaces that occur are the sphere $¢~! := {x €
R |[|#]| = 1} or more general submanifolds of R¢. By B¢ := {z € R? [zl < 1}
we denote the unit ball of R%. The volume of B? is denoted by kq.
GLOSSARY
Random point in S: A Borel measurable mapping from some probability space
into S.
Distribution of a random point X in S: The probability measure p on S such
that u(B), for a Borel set B C S, is the probability that X € B.
i.i.d. random points: Stochastically independent random points (on the same
probability space) with the same distribution.
9.1.1 NATURAL DISTRIBUTIONS

In geometric problems about random points, a few distributions have been consid-
ered as particularly natural, for different reasons. Such reasons may be invariance
properties, or relations to measures of geometric significance, but there are also
more subtle viewpoints, as explained, for example, in Section 9.1.5 or in Ruben
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and Miles [RM80]. The distributions of a random point in R? shown in Table 9.1.1
underlie many investigations.

TABLE 9.1.1 Natural distributions of a random point in R%.

NAME OF DISTRIBUTION | PROBABILITY DENSITY AT z € R*

Uniform in K o< indicator function of K

Standard normal oC exp ( -1 ||x||2)

Beta type 1 o (1 = ||z||?)¢ x indicator function of B4, ¢ > —1
Beta type 2 o ||lzl|®= (1 + ||lz|) =+ @, 8 > 0

Spherically symmetric function of ||z||

Here K ¢ R% is a given closed set of positive, finite volume, often a convex
body. Usually the name of the distribution of a random point is also associated
with the random point itself. General rotationally symmetric distributions have
mostly been considered under additional tail assumptions. If F' is a smooth compact
hypersurface in R?, a random point is uniform on F if its distribution is proportional
to the area measure on F. This distribution is particularly natural for the unit
sphere S9=1, since it is the unique rotation-invariant probability measure on S4~1,

For combinatorial problems about n-tuples of random points in R?, the follow-
ing approach leads to a natural distribution. Every configuration of n numbered
points in general position in RY is affinely equivalent to the orthogonal projection
of the set of numbered vertices of a fixed regular simplex 7"~! ¢ R"! onto a
unique d-dimensional linear subspace of R®~'. This establishes a one-to-one cor-
respondence between the (orientation-preserving) atfine equivalence classes of such
configurations and an open dense subset of the Grassmannian G(n—1,d) of oriented
d-spaces in R"~!. The unique rotation-invariant probability measure on G(n— 1, d)
thus leads to a probability distribution on the set of affine equivalence classes of
n-tuples of points in general position in R%. References for this Grassmann ap-
proach, which was proposed by Vershik and by Goodman and Pollack, are given in
Affentranger and Schneider [AS92]. Baryshnikov and Vitale [BV94] proved that an
affine-invariant functional of n-tuples with this distribution is stochastically equiv-
alenifi to the same functional taken at an i.i.d. n-tuple of standard normal points
in R®.

9.1.2 CONVEX HULLS OF UNIFORM RANDOM POINTS

A great deal of work has been done on convex hulls of a finite number of i.i.d. random
points in R?. We consider this topic first for the case of uniform distributions.

NOTATION
X1,...,X, iid. random points in R?
i the common probability distribution of X;
%) a measurable real function defined on polytopes in R?
o(p,n) the random variable ¢(conv{Xi,..., X,})
w(K,n) = p(u,n), if p is the uniform distribution in K
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E  expectation of a random variable

fx  number of k-faces

1; 1 on polytopes with j vertices, 0 otherwise

V;  jth intrinsic volume (see Chapter 13); in particular:

V4 d-dimensional volume

S surface area

For a convex body K C R, some of the expectations of ©(K,n) for different

functions ¢ listed above are connected by identities. For n > d + 1 it is easy to see

that
Etpgy1(K,n) = <di 1) Va(K) BV~ YK, d + 1), (9.1.1)

and
Efo(K,n) = %(Vd(K) — EVy(K,n — 1)) (9.1.2)

(Efron 1965, see [Sch88], [WW93]). The latter equation is one reason for considering
combinatorial and metric invariants simultaneously in this section. For arbitrary
distributions p on R%, Buchta [Buc90] showed that

il By (d+ 2m
EVy(u,d+2m) = (2% — 1)%<2k o

)]EVd(u,d+ 2m — 2k + 1)
k=1

for m € N, where the constants Bs, are the Bernoulli numbers.

About the random variables ¢ (K, n), we first mention the rare instances where
information on the whole distribution is available. Some special results for d = 2
due to Alagar, Reed, and Henze are quoted in [Sch88, Section 4]. For example,
Henze showed that the distribution function Fg of V(K 3) for a convex body
K C R? satisfies Fr < Fx < F, 'w, where T is a triangle and F is an ellipse, provided
that K,T, E have the same area. Results on the distribution of V,.(B¢,r + 1) for
r=1,...,d are listed in a more general context in Section 9.1.3. In the plane, a few
remarkable central limit type theorems have been obtained. For a convex polygon
P c R? with k vertices, Groeneboom (1988, see [WW93]) proved that

fo(P,n) — (2/3)klogn D
(10/27)klogn

N(0,1)

for n — oo, where 2 denotes convergence in distribution and A (0,1) is the stan-
dard normal distribution. For the circular disk, Groeneboom showed

fo(B%,n) — 2ra;n'/?

v/ 2magnt/3

with explicitly given constants aq, ao. Similar results are known for the remaining
area A(K,n) := Vo(K) — Va(K,n). For a polygon P with k vertices, Cabo and
Groeneboom [CG94] obtained

logn
LS g

1001.logn
V 189k n

For the circular disk, Hsing [Hsi94] proved that the variance of A(B? n) satisfies
var (A(B2%,n)) ~ 6®n=%3 for n — oo with a number ¢ < co and that

Z N(0,1)

n®%(A(B% n) —EA(B*n)) > N(0,0%).
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Kiifer [Kiif94] investigated the asymptotic behavior of Vy(B%) — V4(B4%,n), in par-
ticular the second moment.

Most of the known results about the random variables (K, n) concern their
expectations. Explicit formulas for E (K, n) for convex bodies K C R and arbi-
trary n > d + 1 are known in the cases listed in Table 9.1.2 (for references, see
[Sch88, WW93)).

TABLE 9.1.2 Expected value of p(K,n).

DIMENSION d | CONVEX BODY K | FUNCTIONAL ¢ SOURCES
2 polygon Va Buchta
2 ellipse Va Buchta
3 ellipsoid Va Buchta
>2 ball S, mean width, f;_q1 | Buchta and Miiller
>2 ball Vi Affentranger

Affentranger’s result is given in the form of an integral, which can be evaluated
for given d and n; it implies the corresponding result for ellipsoids.

A well-known problem, popularized by Klee, is the explicit determination of
EVy(T?,d + 1) for a d-simplex T%. Klee’s opinion that EV3(7%,4) “might yield to
brute force” was justified. The result

13 m?
720 15015
was announced by Buchta and Reitzner [BR93], as well as a more general formula
for EV3(173,n). Independently, (9.1.3) was established by Mannion [Man94], who
made heavy use of computer algebra.

If explicit formulas for E@(K,n) are not available, one can try to obtain in-
equalities or asymptotic results for increasing n. For EVy(K, n), the following es-
timates are known. The quotient EVy(K, n)/Vy(K), for n > d + 1, is minimal for
ellipsoids. The conjecture that it is maximal for simplices is only proved for d = 2.
If the convex body K C R? is not a simplex, then the quotient EVy(K,n)/Va(K)
is strictly less than its value for a simplex, for all n > ng(K) (references for these
and related results are given in the survey part of [BS95]).

We turn to asymptotic results. Buchta (1984, see [Sch88]) proved for plane
polygons P and the perimeter 2V that

EV3(T3,4) = = 0.0173982. .. (9.1.3)

—1/2
n
Vi(P)—EVi(P,n) =¢(P) | ——= e
(P - BH(Pin) = o(P) (70 ) +oln )
for any fixed € > 0, where the constant ¢(P) is given explicitly in terms of the angles
of P. Work of Rényi and Sulanke for the plane is described in [Sch88, Section 5,
as well as some particular results for R?, in part superseded by the following ones.
For d-dimensional polytopes P, Barany and Buchta [BB93] were able to show that

T'(P) d—1 d—2
Efo(P,n) = T D @=1) log” " n+ O(log" “nloglogn), (9.1.4)
where T'(P) denotes the number of chains Fy C £y C ... C Fq_1 where F; is an

i-dimensional face of P. They establish a corresponding relation for the volume,
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from which (9.1.4) follows by (9.1.2). This work was the culmination of a series of
papers by other authors, among them Affentranger and Wieacker, who settled the
case of simple polytopes, which is applied in [BB93]. Bardny and Buchta mention
that their methods permit one to extend (9.1.4) to Efy(P,n) for k =0,...,d—1,
with the denominator replaced by a constant depending on d and k.

For convex bodies K ¢ R? with a boundary of class C3 and positive Gauss-
Kronecker curvature s, Bardny [Bar92] established

Va(K) — EVy(K,n)

n
= c(d)//fl/(dﬂ) ds <Vd(K)
oK

with a constant ¢(d), and for the intrinsic volumes the relation

+ O(n~3/ @D [og? n) (9.1.5)

)—2/(d+1)

Vi(K) - EV;(K,n)

— (d)) / @)/ @=L/ +D)] g g <L

Va(K)

~2/(d+1)
) (1+0(1).  (9.16)

0K

Relation (9.1.5) was extended (as a limit without an O-term) by Schiitt [Sch94]
to arbitrary convex bodies, with the Gauss-Kronecker curvature generalized accord-
ingly. For general convex bodies K, the asymptotic behavior of EV;( K, n) was also
investigated by Bérdny and Larman (see [WW93]). Similar results for EV; (X, n)
and Efi (K, n) were obtained by Bardny [Bar89]. The principal idea of Bardny and
Larman was to compare the volume of the convex hull, say P, of n independent
uniform random points in K, with the volume of a certain kind of floating body, K,
derived from K. Bérdny and Vitale [BV93] show that the set-valued expectation
of the random polytope P, itself is close to K.

Of combinatorial interest is the expectation E;(x,n), which is the probability
that the convex hull of n i.i.d. random points with distribution p has exactly i
vertices. Sylvester’s classical problem asked for Es(K,4) (or the complemen-
tary probability) for a convex body K C R2. More generally, one may ask for
Etpg41(K,n) for a convex body K € R% and n > d + 1, the probability that the
convex hull of n uniform i.i.d. points in K is a simplex. By (9.1.1), this is related
to the moments of V4(K,d 4+ 1) and hence, in particular, explicitly known if K is
a ball (by Miles 1971, see [Sch88], [SW93], [WW93]). At the other end, Et, (K, n)
is of interest, the probability that n uniform i.i.d. points in K are “in convex posi-
tion.” Valtr [Val95] proved by purely combinatorial means that, for a parallelogram

P CR?,
(2n—2) 2
Ewn(Pv ?’L) = ( n—l ) s

n!

and in [Val96] he obtained a similar result for triangles. Generalizing earlier work
of Buchta, it was proved by Bardny and Fiiredi (1988, see [WW93]) that

Etpna)(BY,n(d)) — 1 it n(d) =242,
Etfin(ay(B%, m(d)) — 0 if  m(d) = 24/24B3/9+e

when d — oo, for every fixed € > 0. The authors also investigated k-neighborliness
of the convex hull.
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In order to obtain the convex hull of n i.i.d. uniform points in a circular disk,
only the points in a narrow strip about the boundary are needed, with high prob-
ability, if n is large. This was made precise by Carnal and Hiisler [CH91].

OPEN

PROBLEMS

PROBLEM 9.1.1

For a convezx body K C R® with a boundary of class C* and positive Gauss-
Kronecker curvature k, and for the numbers of k-faces one expects that

Va(K)

(d—1)/(d+1)
) 1+0(1)  (9.1.7)

Ef, (K, n) = b(d, k) / /D) dS<
oK

with a constant b(d, k). For k = 0, this follows from (9.1.6); for k = d — 1 (which
implies the case k = d — 2) the result goes back to Raynaud and Wieacker; see
[Bar92] and [Sch88, p. 222] for references.

PROBLEM 9.1.2 (I Barény)

Is it true for a general convex body K C R? that the surface area S satisfies
(K2 < 8(K) —ES(K,n) < co(K)n~2/(¢+D)
with positive constants ¢1(K), c2(K)?

PROBLEM 9.1.3 (P. Valtr [Valo6])

Is it true, for a convex body K C R? and forn > 4, that By, (K, n), the probability
that n uniform i.i.d. points in K are in convex position, is minimal if K is a triangle
and mazimal if K is an ellipse?

9.1.3

CONVEX HULLS FOR OTHER DISTRIBUTIONS

Convex hulls of nonuniform i.i.d. random points have been investigated for each
of the distributions mentioned in Section 9.1.1, and occasionally for more general
ones. The following setup has been studied repeatedly. For 0 <p<r+1<d—1,
one considers r + 1 independent random points, of which the first p are uniform in
the ball B¢ and the last 7+ 1 — p are uniform on the boundary sphere $¢~!. Precise
information on the moments and the distribution of the r-dimensional volume of
the convex hull is available; see the references in [Sch88, pp. 219, 224] and the work
of Affentranger (1988, see [WWO3]).

Among spherically symmetric distributions, the beta distributions are partic-
ularly tractable. For these, again, the r-dimensional volume of the convex hull of
r 4+ 1 i.i.d. random points has frequently been studied. We refer to the references
given in [Sch88] and Chu [Chu93]. Affentranger (1991, see [WW93]) determined
the asymptotic behavior, for n — oo, of the expectation EV;(u,n), where p is ei-
ther the beta type-1 distribution, the uniform distribution in B¢, or the standard
normal distribution in R%. Also the asymptotic behavior of Efy_; (1, n) was found
for these cases.

For normally distributed points in the plane, Hueter [Hue94] obtained central
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limit type results. Let pq denote the standard normal distribution in R, Then

— 2271
fo(:u27n) i O'g172 2) N(O, 1)
(2v/2rlogn(l + c2))
as n — o0, with some constant ¢o, and similar results hold for the perimeter and

the area of the convex hull. In higher dimensions, one has asymptotic results for
expectations, for example for any given integers 0 < k < d < n — 1 the relation

d
Efx(pa,n) ~ % <k i 1) Br,a—1(mwlogn) =1/
as n — 00, where f; g1 is the interior angle of the regular (d—1)-dimensional
simplex at one of its k-dimensional faces. This follows from [AS92], where the
Grassmann approach was used, due to the equivalence of [BV94] mentioned in
Section 9.1.1. For the Grassmann approach, Vershik and Sporyshev [VS92] made
a careful study of the asymptotic behavior of the number of k-faces, if k& and the
dimension d grow linearly with the number n.

For more general spherically symmetric distributions u, the asymptotic behav-
ior of the random variables ¢(u,n) will essentially depend on the tail behavior of
the distribution. Extending work of Carnal (1970, see [Sch88]), Dwyer [Dwy91]
obtained asymptotic estimates for Efy(u,n), Efg_1(p, n), EV,, (1, n), and ES(p, n).
Aldous et al. [AFGP91] considered an i.i.d. sequence (X )ken in R? with a spher-
ically symmetric (or more general) distribution. Under an assumption of slowly
varying tail, they determined a limiting distribution for fo(p,n).

As a generalization of, or counterpart to, uniform random points in a convex
body K, one may consider random points in K with a given density, or points on
the boundary 0K with a given density. The approximation of K by the convex
hull of n i.i.d. points on 0K is of particular interest. Some references are given
in [Sch88, p. 224]. Affentranger (1991, see [WW93]) determined the asymptotic
behavior of V;(B%) — EV;(u,n), where y is the uniform distribution on 8B¢. For
a convex body K C R? with a boundary of class C3 and positive Gauss-Kronecker
curvature k, the following approximation result in terms of the Hausdorff metric ¢
was proved by Glasauer and Schneider [GS94]. Let (Xj)ren be an i.i.d. sequence of
random points in 9K, whose distribution has a continuous positive density kA with
respect to the surface area measure. Then

' 2/(d-1) 1
];"1-_!})1.}1 <logn> d(K,conv{Xq,...,Xp,}) = 3 <

Kd—1

2/(d—1)
1
max )

where P-lim denotes stochastic convergence. For d = 2, similar results hold with
almost sure in place of stochastic convergence, and also with the Hausdorff distance
replaced by area or perimeter difference; see [Sch88§].

OPEN PROBLEM
PROBLEM 9.1.4

For a convezx body K C R® with a boundary of class C* and positive Gauss-
Kronecker curvature, determine the exact asymptotic behavior, for n — oo, of
Efi(p, n) and EV;(u,n), where p is a distribution on 0K with a positive continu-
ous density. For EV;(u,n), this was done by Miiller (1989, see [WW93]).
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9.1.4 GEOMETRIC CONFIGURATIONS

For a finite set of points, the relative position of its elements may be viewed under
various geometric and combinatorial aspects. For randomly generated point sets,
the probabilities of particular configurations may be of interest, but are in general
hard to obtain. We list some contributions to problems of this type.

Bokowski et al. [BRS92] made a simulation study to estimate the probabilities
of certain order types, using the Grassmann approach.

Related to k-sets (see Chapter 1 of this Handbook) is the following investigation
of Bardny and Steiger [BS94]. If X is a set of n points in general position in R¢,
a subset S C X of d points is called a k-simplex if X has exactly k points on
one side of the affine hull of S. The authors study Eq(k,n), the expected number
of k-simplices for n i.i.d. random points. For continuous spherically symmetric
distributions they show that

E4(k,n) < c(d)nt.

Further results concern the uniform distribution in a convex body in R?.

For a given distribution x on RZ, let Py, ..., P;,@Q1,...,Qr be iid. points
distributed according to p. Let p;x(u) be the probability that the convex hull of
Py, ..., P; is disjoint from the convex hull of @1,..., Q. Continuing earlier work
of L.C.C. Rogers, Buchta [Buc94] investigated p;x(p). For example, he obtained
estimates for the case where y is the uniform distribution in a circular disk, and
deduced that

lim S L — é

n—oo 2/mn3/24=m 3
in this case. An explicit formula for p;; is obtained for the uniform distribution in
a triangle.

The following result of Wendel on random points on the unit sphere S%~! has
proved useful on several occasions; for a proof we refer to Mycielski [Myc87]. Let
i be an even probability measure on S9! such that every great subsphere has
measure zero. Let X1, ..., X, be i.i.d. random points on S%~1 with distribution .
Then the probability p that {X,...,X;} can be separated from {X;y1,...,Xn}
by a hyperplane through 0 does not depend on ¢ and is given by

d—1
1 n—1
p= on—1 Z( k )
k=0

Various elementary geometric questions can be asked, even about a small num-
ber of random points. For example, if three uniform i.i.d. points in a convex body
K are given, what is the probability that the triangle formed by them is obtuse, or
what is the probability that the circle (almost surely) determined by these points is
contained in K7 Known results on probabilities of these types are listed in [BS95].
The following result is due to Affentranger. The probability that the sphere spanned
(almost surely) by d+1 i.i.d. uniform random points in a convex body K is entirely
contained in K attains its maximum precisely if K is a ball. In [BS95] it is shown
that the probability that the circumball of m > 2 i.i.d. uniform points in K is
contained in K is maximal if and only if K is a ball. The value of this maximum
is m/(2m — 1) if d = 2, but is unknown for d > 2.
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9.1.5

SHAPE

Two subsets of R may be said to have the same shape if they differ only by a
similarity. D.G. Kendall’s theory of shape yields natural probability distributions
on shapes of labeled n-tuples of points in R%. The possible shapes of such n-tuples of
points (not all coincident) can canonically be put in one-to-one correspondence with
points of a certain topological space, and the resulting “shape spaces” carry natural
probability measures. For this extensive theory and its statistical applications, we
refer to the survey given by Kendall [Ken89].

A different approach to more general notions of shape and probability distri-
butions for them is followed by Ambartzumian [Amb90]. He uses factorization of
products of invariant measures to obtain corresponding probability densities, for
example, for the atfine shape of a tetrad of points in the plane.

9.1.6 POINT PROCESSES
The investigations described so far concerned finite systems of random points. For
randomly generated infinite discrete point sets, suitable models are provided by
stochastic point processes.

GLOSSARY

Locally finite: M C R is locally finite if card (M N B) < oo for every compact
set B C R,

M: The set of all locally finite subsets of R,

M: The smallest o-algebra on M for which every function M 1 —eard (M N B) is
measurable, where B C R? is a Borel set.

(Simple) point process X on R% A measurable map X from some probability
space (£, A, P) into (M, M).

Distribution of X: The image measure Px of P under X.

Intensity measure A of X: A(B) = Ecard (X N B), for Borel sets B ¢ R%.

Stationary (or homogeneous): X is a stationary point process if the distribu-
tion Px is invariant under translations.

The point process X on R?, with intensity measure A (assumed to be finite
on compact sets), is a Poisson process if, for any finitely many pairwise disjoint
Borel sets By,. .., By, the random variables card (X N By),...,card (X N By) are
independent and Poisson distributed. Thus, a Poisson point process X satisfies

k

Prob{card (X NB) = k} = e_A(B)%

for k € Ny. If it is stationary, then the intensity measure A is a constant multiple of

Lebesgue measure. Let X be a stationary Poisson process and C C R a compact

set, and let k£ € Ny. Under the condition that exactly k points of the process fall

into C, these points are equivalent to k i.i.d. uniform points in C. This fact clearly

illustrates the geometric significance of stationary Poisson point processes, as does

the following. Consider n i.i.d. uniform points in the ball rB¢. The Poisson process

with intensity measure the Lebesgue measure can be considered as the limit process
if n and r tend to infinity in such a way that n/Vy(rB%) — 1.
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A detailed study of geometric properties of stationary Poisson processes in the
plane was made by Miles [Mil70].

For much of the theory of point processes, the underlying space R® can be
replaced by a locally compact topological space S with a countable base. Of im-
portance for stochastic geometry are, in particular, the cases where S is the space
of r-tlats in R? (see Section 9.2.3) or the space of convex bodies in R?.

9.2 RANDOM FLATS

Next to random points, randomly generated r-dimensional flats in R? are the most
common object of study in stochastic geometry. Like convex hulls of random points,
intersections of random halfspaces yield random polytopes in a natural way. Ran-
dom flats through convex bodies as well as infinite arrangements of random hyper-
planes give rise to a variety of questions.

9.2.1 RANDOM HYPERPLANES AND HALFSPACES

Intersections of random halfspaces appear as solution sets of systems of linear in-
equalities with random coefficients. Therefore, such random polyhedra play a role
in the average case analysis of linear programming algorithms (see the book by
Borgwardt [Bor87] and its bibliography). Under various assumptions on the distri-
bution of the coefficients, one has information on the expected number of vertices
of the solution sets (see [Sch88] for references). Extending earlier work of Prékopa,
Buchta obtained several estimates, of which the following is an example.

Let E(v) be the expected number of vertices of the polyhedron given by the
inequalities > . | ajz; <b(i=1,...,m), z; >0(j =1,...,n). If the coefficients
a;; are nonnegative and distributed independently, continuously, and symmetrically
with respect to the same number ¢ > 0, then

E(v) = 2ml—_1 <:1> + oo <m71 1) O(n™?)

for n — oo. Buchta also has formulas and estimates for E(v) in the case of the poly-
hedron given by Z?Zl ai;2; <1 (¢ =1,...,m), where the points (a;1,...,0:) (1 =
1,...,m) are i.i.d. uniform on the sphere S¢~1.

In a certain duality to convex hulls of random points in a convex body, one
may consider intersections of halfspaces containing a convex body. Let K C R be
a convex body with a boundary of class C® and with positive Gauss curvature k;
suppose that 0 € int K and let r > 0. Call a random closed halfspace H, , := {z €
R? | (z,u) <t} withu € S " and t > 0 “(K,r)-adapted” if the unit normal vector
u is uniform on S%~! and the distance t is independent of u and is, for given wu,
uniform in the interval for which H, contains K but not rB%. Let EVy(K,n) be
the expected volume of the intersection of rB? with n i.i.d. (K,r)-adapted random
halfspaces. Then Kaltenbach [Kal90] proved that

EVd(Kv n) — Va(K) =

1/(d+1) n
&1(d) / K@) gg (m T
oK

—2/(d+1)
) + O(?’L_3/(d+1)) + O(?“d(l _ 6)")
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for n — oo, where 0 < e < 1 is fixed. This relation is very similar to (9.1.5), but
not strictly dual to it.

Other results of Kaltenbach [Kal90] concern the intersection of n 1.i.d. halfspaces
of the form H_,, with u uniform on S%°! and ¢ distributed according to some
distribution function F. The behavior of F' for t — oo strongly influences the

behavior of the intersection of the halfspaces for n — oo.

9.2.2 RANDOM FLATS THROUGH CONVEX BODIES

The notion of uniform points in a convex body K in R? is extended by that of
a uniform random r-lat through K. Let £¢ be the space of r-dimensional affine
subspaces of R* with the usual topology and Borel structure (r € {0,...,d — 1}).
A random r-flat is a measurable map from some probability space into £2. It is a
uniform (isotropic uniform) random r-flat through K if its distribution can be
obtained from a translation-invariant (resp. rigid-motion-invariant) measure on £¢,
by restricting it to the r-flats meeting K and normalizing to a probability measure.
(For details, see [SW93, Example 6.2]; see also [WW93, Section 2].)

A random r-flat E (uniform or not) through K generates the random secant
E N K, which has often been studied, particularly for » = 1. References are in
[SW92, Chapter 6] and [SW93, Section 7]. Finitely many i.i.d. random flats through
K lead to combinatorial questions. Associated random variables, such as numbers
of intersection points inside K if d = 2 and r = 1, are hard to attack; for work
of Sulanke (1965) and Gates (1984) see [SW93]. Of special interest is the case of
i < d i.i.d. uniform hyperplanes Hy, ..., H; through a convex body K C R%. Let p;
denote the probability that the intersection Hy N ... N H; also meets K. In some
special cases, the maximum of this probability (which depends on K and on the
distribution of the hyperplanes) is known, but not in general. References for this
and related problems and a conjecture are found in [BS95]. If N > d ii.d. uniform
hyperplanes through K are given, they give rise to a random cell decomposition of
int K. For k € {0,...,d}, the expected number, Evy, of k-dimensional cells of this
decomposition is given by

d )
1 N
Evi = Y < ) < .)pu
oraiy d—k i
with p; as defined above (Schneider, see [SW93]). If the hyperplanes are isotropic

uniform, then
d ) .
i N\ i Vi(K)
Evy, = E — Ky .
- <d— k) <z ) 2 VL (K

OPEN PROBLEM

PROBLEM 9.2.1

For i < d i.i.d. uniform random hyperplanes through a conwex body K, find the
sharp upper bound for the probability p; that their intersection also intersects K.
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9.2.3 POISSON FLATS

A suitable model for infinite discrete random arrangements of r-flats in R? is pro-
vided by a point process in the space €. Stationary Poisson processes are the
simplest and geometrically most interesting examples. Basic work was done by
Miles [Mil71] and Matheron [Mat75]. In the case r = d — 1, one speaks of a sta-
tionary Poisson hyperplane network. For such a hyperplane process, an ith
intersection density D; can be defined, in such a way that, for a Borel set A C Rd,
the expectation of the total i-dimensional volume inside A, of the intersections of
any d—i hyperplanes of the process, is given by D;\4(A4). Given the intensity Dy_,
the maximal ith intersection density D; (for an i € {0,...,d—2}) is achieved if the
process is isotropic (its distribution is rigid-motion-invariant); this result is due to
Thomas (1984, see [WW93]). Similar questions can be asked for stationary Poisson
r-flats with r < d — 1, for example for 2r > d and intersections of any two r-flats.
Here nonisotropic extremal cases occur, such as in the case r = 2, d = 4 solved by
Mecke [Mec88]. Various other cases have been treated; see Mecke [Mec91], Keutel
[Keu91], and the references given there.

9.3 RANDOM SETS

For defining a random closed set in Rd, one considers the set F of all closed
subsets of R% and equips it with the topology of closed convergence and the induced
o-algebra of Borel sets. A random closed set in R? is then a measurable map from
some probability space into F. For this important model of stochastic geometry we
refer to Matheron [Mat75] and to Stoyan, Kendall, and Mecke [SKM87]. Random
closed sets are sometimes of use in describing certain discrete structures, such as
random mosaics. However, random sets appearing in discrete geometry are mostly
of a very restricted type, such as random congruent or similar copies of a fixed
convex body.

9.3.1 RANDOM CONGRUENT COPIES

The following is a typical question on random congruent copies. Let Ko, K C R?
be given convex bodies. An isotropic random congruent copy of K meeting Ky is of
the form gk, where g is a random element of the motion group G4 of R%, and the
distribution of ¢ is obtained from the Haar measure on (G4 by restricting it to the
set {g € G4 | KoNgK # 0} and normalizing. Let K4, ..., K, be convex bodies, let
¢:K; be an isotropic random copy of K; meeting Ky, and suppose that g1,...,9n
are stochastically independent. What is the probability that the random bodies
g1 K1,...,9,K, have a common point inside K47 This question and similar ones
can be given explicit answers by means of integral geometry. We refer to the books
of Santalé [San76] and of Schneider and Weil [SW92].

9.3.2 BALLS AND SEGMENTS

More in the spirit of discrete geometry are random sets depending only on finitely
many parameters, such as balls or segments.
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Generalizing convex hulls of random points, Affentranger and Dwyer [AD93]
considered convex hulls of i.i.d. random balls. A facet of such a convex hull is,
by definition, a (d—1)-dimensional intersection with a supporting hyperplane. The
authors obtained asymptotic estimates for the expected number of facets of the
convex hull of n i.i.d. random balls, for different natural distributions. One of their
ways of generating a random ball is to take the ball bounded by the sphere through
d + 1 independent uniform random points in B%; another is to take the ball for
which two independent uniform points in B¢ determine a diameter. In a third
model, the center of a random ball is uniform in B¢ and its radius is independently
and uniformly chosen in [0, 1].

For these models, Dwyer [Dwy93] also investigated the expected numbers of
maximal and minimal balls in a set of n i.i.d. random balls.

Motivated by the fact that computing and counting intersections of a set of
line segments in the plane are fundamental problems in computational geometry,
Devroye and Zhu [DZ94] considered finite collections of i.i.d. random segments in
the plane and studied the expected behavior of the number of intersections. In their
model, center, direction, and length of a random line segment are independently
chosen according to given distributions; the directions are uniform.

9.3.3 BUFFON TYPE PROBLEMS

Buffon type problems ask for geometric probabilities of the following kind. A plane
convex body K is tossed at random onto a plane that carries a regular mosaic.
What is the probability that the random rigid copy of K meets none, or a given
finite number, of the lines or segments defining the mosaic? In Buffon’s classical
needle problem, K is a segment of length L and the mosaic is a grid of parallel
lines at equal distances D > L. One usually makes uniformity and independence
assumptions. For example, in the needle problem one assumes that the distance of
the center of the needle from the nearest line is uniformly distributed in the interval
[0, D/2] and that the angle between needle and lines is uniformly distributed and
independent of the center. The probability that the needle hits a line is then given
by 2L/nD. For discussions of older investigations on Buffon’s needle problem and
its extensions we refer to Kendall and Moran [KM63] and to Solomon [Sol78].

Buffon type problems in various versions are still under investigation. Besides
hitting probabilities, topics such as independence of different hitting events or hit-
ting numbers and their asymptotic distributions have also been studied. Mostly
the results depend on lengthy calculations, whereas general principles do not seem
to play a major role. Investigations concern higher-dimensional or non-Euclidean
spaces, balls and ellipsoids in lattices of parallelepipeds, general convex bodies,
polygons in a triangular lattice, needles with nonuniformly distributed directions,
nonregular lattices, and needles replaced by “noodles.” A few typical papers are
Ren and Zhang [RZ91], 