


Challenges in Geometry



This page intentionally left blank 



Challenges in Geometry
for Mathematical Olympians
Past and Present

CHRISTOPHER J . BRADLEY

1



3
Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan South Korea Poland Portugal
Singapore Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

c© Oxford University Press, 2005

The moral rights of the author have been asserted

Database right Oxford University Press (maker)

First published 2005

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data

Data available

ISBN 0–19–856691–3 9780198566915
ISBN 0–19–856692–1 (pbk) 9780198566922

1 3 5 7 9 10 8 6 4 2

Typeset by Julie M. Harris

Printed in Great Britain
on acid-free paper by
Biddles Ltd., King’s Lynn, Norfolk



Preface

This book is written for students who are interested in geometry and number the-
ory, for those involved in Mathematical Olympiads, and for teachers in universities
and schools. It is more of a geometry book than a book about integers and contains,
among other things, a full account of the properties of triangles and circles normally
associated with an advanced course of Euclidean geometry. The restriction to con-
figurations in which various lengths are required to have integer values provides a
natural and appealing link between elementary geometry and interesting problems
involving Diophantine equations. Though the content is mostly elementary, some of
the results would appear to be new. The book is not designed for any particular course
of study, but is suitable as additional reading for undergraduates studying these topics,
for students preparing for competitions, and for other mathematically advanced high
school students.

During the last thirteen years I have been closely involved in the preparation of
the United Kingdom team for the International Mathematical Olympiad, of which I
was Deputy Leader for three years. The content, therefore, reflects interests developed
during these years.

Though few of the problems treated in the book could ever have been set in
an Olympiad competition (they are mostly too long and detailed), the techniques
involved are precisely those suitable for developing the problem-solving skills needed
for competitions. The book also includes a number of topics of a geometrical nature
in which integers appear, that are not normally included in a course primarily devoted
to Euclidean geometry; for example, there are chapters on polygonal numbers and on
methods for obtaining rational and integer points on curves.

I have had two most enjoyable careers. My first was as a lecturer at Oxford
University, where my research interests were also in algebra and geometry, and where
I had the good fortune to be associated with Professor Charles Coulson and Dr Simon
Altmann. The latter was my research supervisor when I was a graduate student and I
owe a great deal to his care and enthusiasm. During my years in Oxford I engaged in a
major project with my friend Arthur Cracknell, who later became a professor of Physics
at the University of Dundee. This project resulted in a book entitled The mathematical
theory of symmetry in solids, Clarendon Press, Oxford (1972), a classification of the
irreducible representations of the 230 space groups.

I left Oxford in 1977 to become a schoolteacher, first at Christ’s Hospital, Horsham
and later at Clifton College, Bristol. I am grateful to colleagues at both of these schools
for their help and encouragement. I retired from full-time work in 1998 and since then
there has been time for writing. Since 1990 I have had the privilege to be associated
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with a number of inspiring colleagues, who have encouraged and challenged me
intellectually in ways that I did not anticipate when I became a schoolteacher. These
include the various leaders of the UK International Mathematical Olympiad team,
Dr Tony Gardiner, Professor Adam McBride, Dr Imre Leader, and Dr Geoff Smith.
Perhaps the greatest geometrical influence, however, has been Dr David Monk, who
helped to train the UK team for over thirty years, and whose contributions have been
immense. Tony Gardiner has spent much time and effort in helping me prepare the
manuscript for this book, and I am grateful to him for numerous suggestions for
improvements in the style and for the removal of certain ambiguities and conceptual
errors. Any remaining errors are entirely my responsibility.

I should also like to thank Dr Kevin Buzzard of the Mathematics Department at
Imperial College, London for consultations and assistance with two of the problems
in number theory. Thanks are also due to my nephew, Dr Jeremy Bradley, of the
Department of Computing at Imperial College, London for help with some of the
computational problems in the book and with various pieces of technical help during
the course of preparing the manuscript.

I am indebted to readers of the Oxford University Press for invaluable comments
and suggestions. I am also extremely grateful to the staff of the Oxford University
Press for their unfailing help and encouragement during production, particularly to
Kate Pullen, the Assistant Commissioning Editor, whose help and courtesy smoothed
my path in the months prior to delivering the final manuscript.

Bristol C. J. B.
July 2004
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Glossary of symbols

The following symbols are repeatedly used in connection with a triangle ABC .

A, B, C The vertices of the triangle ABC.

∠BAC, ∠CBA,
∠ACB or


 The angles of the triangle ABC.

∠A, ∠B, ∠C

a, b, c a = BC, b = CA, and c = AB are the side lengths of the triangle
ABC.

L, M , N The midpoints of BC, CA, and AB, respectively.

D, E, F The feet of the altitudes from A, B, and C, respectively.

O The circumcentre of the triangle ABC.

G The centroid of the triangle ABC.

H The orthocentre of the triangle ABC.

I The incentre of the triangle ABC.

I1, I2, I3 The excentres opposite A, B, and C, respectively.

U , V , W The points where the internal angle bisectors meet BC, CA, and
AB, respectively.

X , Y , Z The points where the incircle touches BC, CA, and AB, respec-
tively.

T The nine-point centre.

S The symmedian point of the triangle ABC.

J The centre of mass of a uniform wire framework in the shape of
the triangle ABC.

R The radius of the circumcircle.

r The radius of the incircle.

s s = 1
2 (a + b + c) is the semi-perimeter of the triangle ABC.

r1, r2, r3 The radii of the excircles opposite A, B, and C, respectively.

[ABC], [PQR] The areas of the triangles ABC and PQR, respectively.

[X1X2 · · ·Xn] The area of the polygon X1X2 · · ·Xn.

Occasionally, we use some of these symbols to denote other points or quantities,
but when this happens it is always made clear in the text. For example, L, M , and N
are also used as the points on BC , CA, and AB where the Cevians through a general
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point P meet BC , CA, and AB, respectively. L, M , and N are also used to denote
the feet of the perpendiculars from an arbitrary point P onto the sides BC , CA, and
AB, respectively. U , V , and W are also used to denote the midpoints of AH , BH ,
and CH , respectively, where H is the orthocentre.



1 Integer-sided triangles

To say that a triangle has one side of integer length or that a circle has integer radius is
not mathematically significant, as the unit of length can always be adjusted so that this
is the case. To say that a triangle has all its sides of integer length is mathematically
significant. It means that, whatever the unit of length, the ratio of any pair of side
lengths is a rational number. However, even if significant, it is scarcely interesting.
This is because, if you are given three positive integers such that the greatest is smaller
than the sum of the other two, then you can always construct a triangle having sides
with these integer lengths. Integer-sided triangles become mathematically interesting
only when some further condition is imposed.

In this first chapter we treat a number of basic problems involving integer-sided
triangles, when an additional property is introduced.

A Babylonian tablet confirms that geometers of that era, about 3500 years ago, were
aware of the existence of right-angled triangles having integer sides, and may well
have had some method for constructing them based on the sexagesimal arithmetic they
used. Problems of all sorts involving integers have always been regarded as fascinating
and not only by professional mathematicians. Witness the general interest aroused by
the solution of Fermat’s last theorem.

As seems fitting, since it is such an ancient problem, we start with an account of
those integer-sided triangles that have an angle of 90◦. Next we show how to obtain
all integer-sided triangles with angles of either 60◦ or 120◦. It would be possible to
consider integer-sided triangles in which the angles have cosines that are equal to
rational numbers other than 1, 1

2 , or −1
2 . However, the angles 60◦, 90◦, and 120◦ are

special as they feature in the rectangular and hexagonal lattices.
We then consider triangles with integer sides and integer area, and towards the end

of the chapter we investigate geometrical figures in which the area and perimeter are
related. There is also a section on the rectangular box, which is appropriate to consider
at an early stage because of its connection with integer-sided right-angled triangles.

For the most part we deal with configurations in which lengths have integer values,
but occasionally we relax this condition and just require them to have rational values.
When this is done, it is done simply as a matter of convenience. It is not a restriction
because a figure with a finite number of lengths that are rational may always be
magnified so that they become integers, the enlargement factor being the least common
multiple of all the denominators.



2 Integer-sided triangles

1.1 Integer-sided right-angled triangles

Theorem 1.1.1 (Pythagoras) ABC is a triangle with ∠BCA = 90◦ if and only if
a2 + b2 = c2, where a = BC , b = CA, and c = AB. �

No proof is needed here.

Theorem 1.1.2 Suppose that a, b, and c are positive integers with no common factor,
that a2 + b2 = c2, and that a and b are coprime. Then a and b have opposite parity, so
b may be chosen to be even; and with this choice there exist coprime positive integers
u and v of opposite parity with u > v such that

a = u2 − v2 , b = 2uv , c = u2 + v2 . (1.1.1)

Proof The integers a and b cannot both be even, for then a, b, and c would have a
common factor of 2. The integers a and b cannot both be odd, since all odd squares
are equal to 1 (mod 4) and c2 = 2 (mod 4) is impossible. Suppose then that a is odd
and b is even. Then c is also odd. We have b2 = c2 − a2 = (c− a)(c + a). Now, since
a and c are both odd, c−a and c+a have a factor of 2 in common and cannot both be
divisible by 4. But a and c themselves have no factor in common, so c − a and c + a
have no factor other than 2 in common. Hence each must be twice a perfect square,
the squares having no factor in common. Writing c + a = 2u2 and c − a = 2v2, we
find b2 = 4u2v2 and b = 2uv, c = u2 + v2, and a = u2 − v2, where, since a and c
are odd and coprime, u and v must be of opposite parity and coprime. Also, u and v
may be chosen to be both positive, since b is positive and u > v, since a is positive.

Note that (u2 − v2)2 + (2uv)2 = (u2 + v2)2, so that condition (1.1.1) is sufficient
as well as necessary for such an integer triple (a, b, c) to exist. �

These integer triples (a, b, c) are called primitive Pythagorean triples. They are
Pythagorean because a, b, and c may then be chosen to be the integer sides of a
right-angled triangle and primitive because a, b, and c have no common factor. The
general solution of a2 + b2 = c2 in integers is then found by enlargement by a scale
factor k:

a = k(u2 − v2) , b = 2kuv , c = k(u2 + v2) , (1.1.2)

where k is a positive integer. The simplest example with k = 1, u = 2, and v = 1 is
illustrated in Fig. 1.1.
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3

45

A

B C

Fig. 1.1 Pythagoras’ theorem.

Exercises 1.1

1.1.1 Generalise the patterns appearing in Table 1.1 when (a) v = 1, and (b)
u = v + 1.

1.1.2 Prove that one member of a Pythagorean triple is always divisible by 5 and
that the area of an integer-sided right-angled triangle is always divisible by
6.

1.1.3 Find all integer-sided right-angled triangles with hypotenuse 145.

1.1.4 Prove that if c is the hypotenuse of a primitive integer-sided right-angled
triangle then c2 is also.

1.1.5 Let (a, b, c) be a primitive Pythagorean triple. Prove that there exists an
infinite number of sets of integers l, m, and n such that

a = −lb + mc , b = la − nc , c = ma − nb (1.1.3)

and
m2 + n2 = 1 + l2 . (1.1.4)

Conversely, prove that if l, m, and n are integers satisfying eqn (1.1.4) then
there exists a primitive Pythagorean triple (a, b, c) satisfying eqn (1.1.3).

1.1.6 Prove that there are an infinite number of primitive Pythagorean triples in
which |a − b| = 1. Explain how this result is related to finding rational
approximations of

√
2.

1.1.7 Is it possible to find an infinite set of points in the plane, not all on the same
straight line, such that the distance between every pair of points is rational?
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Table 1.1 Primitive Pythagorean triples with c < 100.

u v a = u2 − v2 b = 2uv c = u2 + v2

2 1 3 4 5
3 2 5 12 13
4 1 15 8 17
4 3 7 24 25
5 2 21 20 29
5 4 9 40 41
6 1 35 12 37
6 5 11 60 61
7 2 45 28 53
7 4 33 56 65
7 6 13 84 85
8 1 63 16 65
8 3 55 48 73
8 5 39 80 89

(8 7 15 112 113)
9 2 77 36 85
9 4 65 72 97

1.2 Integer-sided triangles with angles of 60◦ and 120◦

Suppose now that a, b, and c are the side lengths of an integer-sided triangle with
angles of either 60◦ or 120◦. Note that cos 60◦ = 1

2 and cos 120◦ = −1
2 . It follows

from the cosine rule that if angle C = 60◦ then c2 = a2 − ab + b2, and if angle
C = 120◦ then c2 = a2 + ab + b2.

We first show how to obtain all solutions in nonzero integers a, b, and c of the
equation

c2 = a2 − ab + b2 , (1.2.1)

without regard to the geometrical application. In the analysis that follows it turns out
that we can always ensure that c is positive. Then a solution of eqn (1.2.1) in which
precisely one of a or b turns out to be negative is a solution with positive a and b of
the equation

c2 = a2 + ab + b2 (1.2.2)

by a change of sign of a or b, as appropriate. If both of a and b turn out to be negative,
then a change of sign of both of them gives a solution of eqn (1.2.1) in which all of
a, b, and c are positive. In this way, the positive solutions of both equations may be
obtained simultaneously.

The method is to find a non-singular unimodular linear transformation from a, b,
and c to new integer variables u, v, and w to provide an equation that is linear in each
of the variables u, v, and w. The transformed equation can then be solved to find w in
terms of u and v. Finally, by eliminating w, the variables a, b, and c can be expressed
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in terms of the two-parameter system u and v. The method works with most of the
homogeneous quadratic Diophantine equations that I have encountered and it is one
that I use several times in this text. There are many non-singular linear transformations
that will do the job.

Here a suitable transformation is a = u − w, b = v − w, and c = u + v − w, and
then substitution into eqn (1.2.1) gives 3uv = w(u + v). Hence w = 3uv/(u + v).
Now, substituting back for w and multiplying up by u+v, we obtain the two-parameter
solution

a = u2 − 2uv ,

b = v2 − 2uv ,

c = u2 − uv + v2 .

(1.2.3)

Certain points need to be made about the method. Firstly, it does not always lead to a
solution in which a, b, and c are coprime. For example, u = 5 and v = 1 gives a = 15,
b = −9, and c = 21. This provides the primitive solution a = 5, b = 3, and c = 7 to
eqn (1.2.2). Secondly, solutions get repeated. For example, u = 3 and v = 1 leads to
the solution a = 3, b = 5, and c = 7 of eqn (1.2.2). To get all solutions one has to
multiply each of the expressions above for a, b, and c by any positive integer k. The
cases u = 2v and v = 2u give only trivial solutions and must be excluded. The case
u = 1 and v = 1 gives a = −1, b = −1, and c = 1, which on changing the signs of
both a and b gives the equilateral triangle solution a = b = c = 1 of eqn (1.2.1). The
case u = 1 and v = −1 gives the solution a = b = c = 3 of eqn (1.2.1).

The important question is whether all solutions arise using the method. The answer
is ‘yes’. To see this, note that the inverse transformation is u = c − b, v = c − a, and
w = c − a − b, so that for any a, b, and c (c > 0) satisfying eqn (1.2.1) values of u,
v, and w always exist. However, since we multiply up by u + v the solution for a, b,
and c may be a multiple of the specified solution. For example, consider the solution
a = 8, b = 15, and c = 13 of eqn (1.2.1). From the inverse transformation we have
u = −2, v = 5, and w = −10. Substituting back into our expressions for a, b, and
c in terms of u and v we get a = 24, b = 45, and c = 39. It is easy to see from the
transformation that a, b, and c are coprime provided that u and v are coprime and that
3 is not a factor of u + v. When 3 is a factor of u + v all that happens is that a, b, and
c have a common factor of 3, so the difficulty is a minor one. In Table 1.2 we give
the first few solutions to eqns (1.2.1) and (1.2.2) for triples {a, b, c} for triangles with
C = 60◦ and [a, b, c] for triangles with C = 120◦. See Figs 1.2 and 1.3 for examples
of each of these cases.
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Table 1.2 The following triangles have C = 60◦ or 120◦ and corresponding triples are
labelled {a, b, c} or [a, b, c], respectively.

{1, 1, 1};
{8, 5, 7}, {8, 3, 7}, {5, 8, 7}, [3, 5, 7];
{15, 7, 13}, {15, 8, 13}, {7, 15, 13}, [8, 7, 13];
{24, 9, 21}, {24, 15, 21}, {9, 24, 21}, [15, 9, 21];
{21, 16, 19}, {21, 5, 19}, {16, 21, 19}, [5, 16, 19];
{35, 11, 31}, {35, 24, 31}, {11, 35, 31}, [24, 11, 31];
{48, 13, 43}, {48, 35, 43}, {13, 48, 43}, [35, 13, 43];
{45, 24, 39}, {45, 21, 39}, {24, 45, 39}, [21, 24, 39];
{40, 33, 37}, {40, 7, 37}, {33, 40, 37}, [7, 33, 37]

87

5

A

B C

60

Fig. 1.2 A triangle with C = 60◦ and integer sides.

57

3

A

B C

120

Fig. 1.3 A triangle with C = 120◦ and integer sides.
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Exercises 1.2

1.2.1 Explain algebraically the repeats in the list of triangles with angle C = 60◦
in Table 1.2.

1.2.2 Explain geometrically why, if [a, b, c] is a triple with angle C = 120◦, then
{a + b, b, c} is a triple with angle C = 60◦.

1.2.3 Find all integer-sided triangles with angle C = 120◦ and c = 91.

1.2.4 Prove the statement in the text, that a, b, and c given by eqn (1.2.3) are
coprime provided that u and v are coprime and that 3 is not a factor of u+ v.

1.3 Heron triangles
A Heron triangle is often defined to be one with rational side lengths and rational area.
Clearly, a triangle similar to a Heron triangle is also a Heron triangle, provided that
the scale factor is rational, and indeed any Heron triangle is similar to a Heron triangle
with integer side lengths and area. We shall adopt this more restrictive definition and
insist that all of our Heron triangles have integer side lengths and integer area. Indeed,
since the altitudes of a Heron triangle must have rational length, we can, if needed, find
a Heron triangle similar to a given one, for which one (or even all) of the altitudes has
integer length. In what follows we insist that the altitude from A is of integer length.

It is our purpose, in this section, to give a parametric classification of Heron
triangles as defined above, by means of the theory of Section 1.1. In Section 7.5
we describe an alternative and more subtle approach to the classification of Heron
triangles.

An integer-sided right-angled triangle is trivially a Heron triangle and these have
already been dealt with in Section 1.1.

From the cosine rule, cos C = (a2+b2−c2)/2ab, etc., it follows that for an integer-
sided triangle the cosine of each angle is rational. From this observation alone, it is
evident that each acute-angled Heron triangle ABC is the union of two integer-sided
right-angled triangles ABD and ACD or, if angle B (or C) is obtuse, the difference
of two integer-sided right-angled triangles ACD and ABD. It would be possible to
dispense with Heron triangles that are the difference of two right-angled triangles if
we were to insist that any obtuse angle is placed at the vertex A, but we choose not to
do this.

The following formulae hold for the area [ABC] of triangle ABC:

[ABC] =
1
2
bc sin A =

1
2
ca sin B =

1
2
ab sin C

=
abc

4R
= {s(s − a)(s − b)(s − c)}1/2

=
1
2
ad =

1
2
be =

1
2
cf = rs .

(1.3.1)
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Here R is the circumradius, r is the inradius, s = 1
2(a + b + c) is the semi-perimeter,

and d, e, and f are the lengths of the altitudes AD, BE, and CF , respectively. It
follows, in particular, that for a Heron triangle the sine of each angle is rational.

As a first example, take AB = 13, AC = 15, BC = 14, AD = 12, BD = 5,
CD = 9, and [ABC] = 84. This is the union of a (5, 12, 13) triangle and a threefold
enlargement of a (3, 4, 5) triangle. The triangle with BC = 4, AB = 13, AC = 15,
and [ABC] = 24 is the difference of these triangles. These examples, illustrated in Fig.
1.4, involve a component right-angled triangle that is an enlargement of a primitive
right-angled triangle. However, Heron triangles exist that are the union or difference
of two primitive Pythagorean triangles, and we now obtain formulae for their side
lengths.

Theorem 1.3.1 (Heron triangles with even height and primitive components) Let
ABC be a Heron triangle, as defined above, with integer sides, integer area, and
integer altitude AD. If AD is even and the Heron triangle is built from two primitive
right-angled triangles, then positive integer parameters w, x, y, and z exist with
wx > yz and wy > xz such that AB = w2x2 + y2z2, AC = w2y2 + x2z2, and
either BC = (w2 − z2)(x2 + y2) and [ABC] = wxyz(x2 + y2)(w2 − z2) when
ABC is acute or BC = (w2 + z2)|x2 − y2| and [ABC] = wxyz(w2 + z2)|x2 − y2|
when ABC is obtuse.

Proof Take the altitude AD = 2uv = 2pq; then we have integers w, x, y, and z such
that u = wx, v = yz, p = wy, and q = xz, where u > v and p > q, u and v are

Area 84

5

A

B C9

13 15

14

Area 24

5

A

B C4

1312 15

9

(a) (b)

Fig. 1.4 (a) The acute-angled Heron triangle, and (b) the obtuse-angled Heron triangle, with
shortest side lengths.
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coprime and of opposite parity, and p and q are coprime and of opposite parity. Then
AB = u2 +v2, AC = p2 +q2, BD = u2−v2, CD = p2−q2, and BC = BD+CD
in the acute case, and BC = |BD − CD| in the obtuse case. �

As an example, take w = 2, x = 3, y = 5, and z = 1. Then u = 6, v = 5, p = 10,
and q = 3. So AB = 61, AC = 109, and BC = 11 + 91 = 102 in the acute case and
BC = 91 − 11 = 80 in the obtuse case. In both cases AD = 60. The acute case is
illustrated in Fig. 1.5.

Theorem 1.3.2 (Heron triangles with odd height and primitive components) With
the same hypotheses as Theorem 1.3.1, but with the altitude AD being an odd in-
teger, then positive integer parameters w, x, y, and z exist with wx > yz and
wy > xz such that AB = 1

2(w2x2 + y2z2), AC = 1
2(w2y2 + x2z2), and either

BC = 1
2(w2 − z2)(x2 + y2) and [ABC] = 1

4(w2 − z2)(x2 + y2)wxyz when ABC

is acute, or BC = 1
2(w2 + z2)|x2 − y2| and [ABC] = 1

4 (w2 + z2)|x2 − y2|wxyz
when ABC is obtuse.

Proof Taking the altitude AD = u2 − v2 = p2 − q2 with u > v, p > q, u and v
coprime and of opposite parity, and p and q coprime and of opposite parity, then we
have odd integers w, x, y, and z such that u = 1

2(wx + yz), v = 1
2(wx − yz), p =

1
2(wy + xz), and q = 1

2(wy −xz). Then AB = u2 + v2, AC = p2 + q2, BD = 2uv,
CD = 2pq, and BC = BD + CD in the acute case and BC = |BD − CD| in the
obtuse case. �

Area 3060

11

A

B C91

61 60 109

102

Fig. 1.5 A primitive Heron triangle.
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As an example, take w = 3, x = 5, y = 7, and z = 1. Then u = 11, v = 4,
p = 13, and q = 8. So AB = 137, AC = 233, and BC = 88 + 208 = 296 in the
acute case and BC = 208 − 88 = 120 in the obtuse case. In both cases AD = 105.

Heron triangles with component right-angled triangles that are not primitive are
even more common. They can be constructed in a similar manner by choosing integers
h, k, u, v, p, and q such that either 2huv = 2kpq or k(p2− q2) or h(u2 −v2) = 2kpq
or k(p2−q2). We give an example of a Heron triangle with non-primitive components
in which h = 3, u = 4, v = 1, k = 2, p = 3, and q = 2, so that 2huv = 2kpq. The
values of the parameters h and k show that one component triangle is an enlargement
by a factor of 3 of an (8, 15, 17) triangle, and that the other component triangle is an
enlargement by a factor of 2 of a (12, 5, 13) triangle. Hence AB = 51, AC = 26,
AD = 24, and BC = 55 when ABC is acute and BC = 35 when ABC is obtuse.

An alternative and instructive method of characterising Heron triangles is as fol-
lows. Suppose that AD = h, AB = c, AC = b, BD = n, and CD = m, where h, b,
c, m, and n are integers. We have h2 = c2 −n2 = b2 −m2, so c2 + m2 = b2 + n2. It
follows that integers p, q, r, and s exist so that

b =
1
2
(pr + qs) ,

c =
1
2
(pq + rs) ,

m =
1
2
(pr − qs) ,

n =
1
2
(pq − rs) .

(1.3.2)

Here, either p, q, r, and s are all odd, or p and s are both even, or q and r are both
even (or three of p, q, r, and s are even). Then h2 = c2 − n2 = pqrs. Now it is very
easy to choose four integers so that their product is a perfect square, and every such
choice leads to two Heron triangles, an acute one with BC = m + n or an obtuse
one with BC = |m − n|. As an example, let p = 6, q = 3, r = 4, and s = 2. Then
AB = 13, AC = 15, AD = 12, and BC = 14 or 4. More generally, one can choose
p = klmw2, q = ktux2, r = ltvy2, and s = muvz2.

Note from formulae (1.3.1) that [ABC] = abc/4R = rs, where R and r are the
circumradius and inradius of the triangle ABC , respectively, and it follows that in a
Heron triangle both R and r are rational.
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Exercises 1.3

1.3.1 Show that if cos B = n/c and cos C = m/b, where b, c, m, and n are defined
in terms of p, q, r, and s as in the penultimate paragraph of Section 1.3, then

cos A =
ps(q + r)2 − qr(p − s)2

(pq + rs)(pr + qs)
.

1.3.2 Prove that there are an infinite number of Heron triangles whose side lengths
are consecutive integers.

1.3.3 Find all Heron triangles with an altitude of 40.

1.3.4 Show that an infinite number of Heron triangles exist in which two side
lengths are perfect squares.

1.3.5 Prove that, in a Heron triangle in which the sides have no common factor,
two of the sides are odd and one is even.

1.4 The rectangular box

We consider three interesting possibilities that arise in connection with a rectangular
parallelepiped with integer side lengths a, b, and c.

The first problem, and one to which a complete answer can be given, is whether
a, b, and c can be chosen so that the main diagonals are integers. That is, for which
positive integers a, b, and c does an integer d exist such that a2 +b2 +c2 = d2? This is,
of course, nothing more than the three-dimensional generalisation of the right-angled
triangle problem, and its solution leads to Pythagorean quartets, such as (1, 2, 2, 3)
and (2, 3, 6, 7). See below for a complete solution to this problem.

The second problem is a more sophisticated one and asks whether a, b, and c can
be chosen so that all three face diagonals are integers. That is, for which integers a, b,
and c do three integers A, B, and C exist so that b2 + c2 = A2, c2 + a2 = B2, and
a2 + b2 = C2? One might imagine that cases would be rare or even non-existent, but
the surprising result is that a two-parameter system of solutions exists, which is in 1–1
correspondence with the primitive Pythagorean triples.

Evidence from similar problems (see Sections 2.4 and 6.4) indicates that other
parametric systems of solutions probably exist and that sporadic solutions may also
exist. The triple with least positive a, b, and c is (44, 117, 240). See below for further
details about these results.

The third problem is whether a, b, and c exist so that simultaneously all face
diagonals and leading diagonals are integers. This is an open question and it is a very
difficult problem, not only because of our incomplete knowledge of the solutions of
the second problem, but also because the existence of a fourth equation raises the
problem to a higher level of difficulty.
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Integer-sided main diagonal

Theorem 1.4.1 The general solution in positive integers of the equation a2+b2+c2 =
d2 is

a = k(p2 + q2 − u2 − v2) ,

b = 2k(pu − qv) ,

c = 2k(qu + pv) ,

d = k(p2 + q2 + u2 + v2) ,

(1.4.1)

where p, q, u, and v have no common factor, one or three of p, q, u, and v are odd,
p2 + q2 > u2 + v2, pu > qv, qu > −pv, and k is a positive integer.

Outline proof As the equation is homogeneous the factor k accounts for any common
factor, so we need only consider the case in which a, b, c, and d have no common
factor. This means that a, b, and c cannot all be even. Neither can two or three of them
be odd, since d2 cannot equal 2 or 3 (mod 4). Hence we may suppose that a is odd, b
and c are even, and d is odd.

Writing the equation as (b + ic)(b − ic) = (d − a)(d + a) and working over the
Gaussian integers, we may factorise into Gaussian primes and use the property of
unique factorisation to obtain b + ic = 2wz, b − ic = 2w∗z∗, d + a = 2zz∗, and
d− a = 2ww∗. Putting z = p + iq and w = u + iv we now obtain the solution given.
In order that a and d should be odd when k = 1, we must choose precisely one or
three of p, q, u, and v to be odd. The other conditions ensure that a and b are positive.
For those unfamiliar with the Gaussian integers I recommend Silverman (1997). In
chapters 33 and 34 he discusses the units and primes of the Gaussian integers and the
property of unique factorisation necessary for the above argument to be made fully
complete. �

When a, b, c, and d have no common factor we call the Pythagorean quartet
primitive. We note that, as every positive integer is the sum of four squares, there is a
primitive quartet for almost all odd values of d. Any exception results solely from the
fact that at least three of p, q, u, and v must be nonzero and one or three of them odd.

Sometimes a selection leads to a quartet that is not primitive. For example, p = 3,
q = 1, u = 2, and v = 1 leads to a = 5, b = 10, c = 10, and d = 15. (Cases such as
this may arise when p2 + q2 and u2 + v2 have a common factor, and it is more trouble
than it is worth to exclude these cases.) In Table 1.3 we list the primitive Pythagorean
quartets with d < 20 and in Fig. 1.6 we illustrate one case.

Integer-sided face diagonals

A two-parameter set of solutions is given below in eqn (1.4.2), in which a, b, c, A,
B, and C are integers satisfying the equations b2 + c2 = A2, c2 + a2 = B2, and
a2 + b2 = C2. A derivation is not possible since other solutions exist. It is left to the
reader to verify that the above three equations are satisfied.
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Table 1.3 Primitive Pythagorean quartets with d < 20.

a b c d

1 2 2 3
3 2 6 7
7 4 4 9
1 8 4 9
9 6 2 11
7 6 6 11
3 4 12 13

11 2 10 15
5 2 14 15
9 12 8 17
1 12 12 17

15 6 10 19
17 6 6 19
1 18 6 19

15

19
10

6

Fig. 1.6 Integer sides and integer diagonal.

The result, apart from a possible common multiplier, is given in terms of any
primitive Pythagorean triple (x, y, z) and is as follows:

a = y|3x2 − y2| , b = x|3y2 − x2| , c = 4xyz ,

A = x(5y2 + x2) , B = y(5x2 + y2) , C = z3 .
(1.4.2)

As noted earlier, these solutions are in 1–1 correspondence with the primitive Pythagor-
ean triples, which is an intriguing result. The triple (3, 4, 5) corresponds to a = 44,
b = 117, c = 240, A = 267, B = 244, and C = 125, see Fig. 1.7. An example of a
solution that does not belong to the above family of solutions is a = 1008, b = 1100,
c = 1155, A = 1595, B = 1533, and C = 1492. I do not know whether this is part
of a system of solutions or whether it is a sporadic solution.
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117125

267

240244

44

Fig. 1.7 Integer sides and integer face diagonals.

Exercises 1.4

1.4.1 Find all primitive Pythagorean quartets with d = 25.

1.4.2 Show that the equation

(u4 − v4) sin 2x + 2uv(u2 + v2) cos 2x = 4uv(u2 − v2)

has one solution given by tan x = v/u. What is the other solution? If u and
v are the parameters for a Pythagorean triple as defined in Section 1.1, show
that the second value of tan x gives the parameters for the Pythagorean triple
(a, b, C) as defined in the last paragraph of Section 1.4.

1.4.3 Show that primitive Pythagorean quartets exist with b = a+1 and d = c+1,
and that quartets also exist with b = a − 1 and d = c + 1.

1.4.4 Show that if r, s, t, and u are integers such that r2 = tu + us + st then
(a, b, c, d) is a Pythagorean quartet with a = r+ s, b = r+ t, c = r+u, and
d = r + s + t + u. (This result enables one to obtain Pythagorean quartets
very easily, as solutions of the equation r2 = tu (mod s) are very easy to
construct. See also Section 7.5, where a parametric solution of this equation
is given.)
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1.5 Integer-related triangles

An integer-related triangle is defined to be an integer-sided triangle in which the ratio
[ABC]/(a+ b+ c) is an integer. A triangle is said to be equable if this ratio is equal to
1. The problem of finding all equable triangles is a nice problem in integer geometry.
However, I disclaim responsibility for the use of the word ‘equable’, which I do not
like. Nor did I like a GCSE coursework task (for UK pupils, aged 15–16) which asked
pupils to study ‘equable shapes’. My reason for disliking the task was that, because the
ratio has the dimension of length, every shape is similar to an equable shape! As far as
I am aware, the problem about equable triangles first appeared in a USSR Olympiad,
see Shklarsky et al. (1993).

Equable triangles

Using Heron’s formula for the area, we find that the condition for a triangle to be
equable is

{(a + b + c)(b + c − a)(c + a − b)(a + b − c)}1/2 = 4(a + b + c) , (1.5.1)

where a, b, and c are positive integers satisfying b + c > a, c + a > b, and a + b > c.
Put b + c − a = l, c + a − b = m, and a + b − c = n, so that a = 1

2(m + n),
b = 1

2 (n + l), c = 1
2(l + m), and a + b + c = l + m + n. Note that the triangle

inequalities for a, b, and c are satisfied if and only if l, m, and n are positive. In terms
of l, m, and n, eqn (1.5.1) reduces to

lmn = 16(l + m + n) . (1.5.2)

Note that for a, b, and c to be integers l, m, and n have to be positive integers of the
same parity, and from eqn (1.5.2) it is evident that they must all be even. So, putting
l = 2p, m = 2q, and n = 2r, we have a = q + r, b = r + p, and c = p + q, where p,
q, and r satisfy pqr = 4(p + q + r) and p, q, and r are positive integers. Solving for
p we obtain

p =
4(q + r)
qr − 4

. (1.5.3)

Suppose, without loss of generality, that p, q, r is a descending sequence, with possible
equalities; then p is not less than 1

2(q + r). It now follows from eqn (1.5.3) that 4 < qr
and qr � 12. It is possible, therefore, to test all possible values of q and r to see from
eqn (1.5.3) which values make p integral and at least as great as q. The results and the
corresponding sides of the triangle are given in Table 1.4. Up to congruence, there are
only five equable triangles, two of them being right-angled and the other three obtuse.
These five triangles are shown in Fig. 1.8.
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Table 1.4 The five equable triangles.

p q r a b c

10 3 2 5 12 13
6 4 2 6 8 10

24 5 1 6 25 29
14 6 1 7 15 20

9 8 1 9 10 17

A

B C

13

30

12

5

A

B C

10

24

8

6

A

B C

20

42

15

7

A

B C

17

36

10

9

A

B C

29

60

25

6

Fig. 1.8 The five equable triangles.

Exercise 1.5

1.5.1 Show that if the triangle ABC is integer-related and [ABC]/(a+b+c) = 2
then integers p, q, and r exist such that p = 16(q + r)/(qr − 16), where
a = q + r, b = r + p, and c = p + q. Hence determine the sides of the
eighteen triangles that are integer-related with ratio 2.

1.6 Other integer-related figures

Equable parallelograms

I define an equable parallelogram to be a parallelogram with integer sides and integer
area, in which the distance between one pair of parallel sides is an integer and the ratio
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of the area to the perimeter is equal to 1.
Suppose that ABCD is a parallelogram with AB = CD = b and BC = DA = a.

Suppose further that the distance between the sides AB and CD is equal to h, where
a, b, and h are integers and h < a. The condition of equal magnitude for area and
perimeter is 2(a + b) = hb, which implies that (hb − 2a)(h − 2) = 4a. Writing
h = 2k, where k is an integer or half an odd integer, gives (kb − a)(k − 1) = a, so
we may take kb − a = p and k − 1 = q, and then (1 + q)b = p + pq. In terms of p
and k we therefore have a = p(k − 1), h = 2k, and b = p. If k is an integer then p is
an integer. If k is half an odd integer then p must be even. Also, we must have h < a,
which implies that 2k < p(k − 1) or p > 2k/(k − 1). As an example, we may take
k = 5/2, p = 4, h = 5, b = 4, and a = 6, and the acute angle of the parallelogram is
equal to arcsin(5/6), see Fig. 1.9.

Equable rectangular boxes

Equable rectangular boxes are defined to be such that their surface area is equal in
magnitude to their volume.

If the dimensions of the box are x, y, and z then the condition for an equable
rectangular box is

xyz = 2(yz + zx + xy) . (1.6.1)

This may be rewritten as

1 =
2
x

+
2
y

+
2
z

. (1.6.2)

Suppose that x is the least and z is the greatest dimension (equality being allowed);
then eqn (1.6.2) implies that x cannot be greater than 6. Nor can x = 1 or 2. So we
can solve the problem by trying x = 3, 4, 5, and 6 in turn.

When x = 3 we have yz = 6(y + z) or (y − 6)(z − 6) = 36 = 1 × 36 or 2 × 18
or 3 × 12 or 4 × 9 or 6 × 6. This leads to the five solutions (3, 7, 42), (3, 8, 24),
(3, 9, 18), (3, 10, 15), and (3, 12, 12). When x = 4 we find that (y − 4)(z − 4) = 16,
leading to three more solutions (4, 5, 20), (4, 6, 12), and (4, 8, 8). The case x = 5
gives (3x − 10)(3y − 10) = 100 = 2 × 50 or 5 × 20. Only the second of these leads
to a new solution, namely (5, 5, 10). The case x = 6 leads to (y − 3)(z − 3) = 9 and

Area = 20

b = 4

a = 6

h = 5

A B

CD

Fig. 1.9 An equable parallelogram with ∠ADC = arcsin(5/6).
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Volume = 288

z = 12
y = 6

x = 4

Fig. 1.10 An equable rectangular box.

this provides only one new solution (6, 6, 6). There are ten solutions altogether, one
of which is shown in Fig. 1.10.

Exercises 1.6

1.6.1 Show that an equable rhombus has height 4.

1.6.2 Find the dimensions of all equable rectangles.

1.6.3 If p is the perimeter and A is the area of an integer-sided rectangle, then what
is the maximum value of p/A.

1.6.4 Suppose that an equable parallelogram is defined to have integer sides a and
b and integer area, in which the ratio of the area to the perimeter is equal
to 1 (that is, without the condition that there should be an integer distance
between a pair of parallel sides). Show that one class of solutions is given
by a = u + v and b = u − v, where v2 � u(u − 4), and find another class
of solutions in which a + b is odd.



2 Circles and triangles

This chapter explores a variety of problems concerned with circles and triangles. A
triangle ABC has a number of circles associated with it.

• There is the circumcircle, which is the circle passing through A, B, and C . The
centre O is called the circumcentre; this is the point at which the perpendicular
bisectors of the sides BC , CA, and AB concur. The radius of the circumcircle is
denoted by R.

• There is the incircle, which is the circle touching the sides BC , CA, and AB, and
which lies wholly within the triangle. The centre I is called the incentre; this is
the point at which the three internal-angle bisectors meet. The radius of the incircle
is denoted by r. Formulae connecting R, r, and the sides and area of ABC have
already been given in eqns (1.3.1).

• The nine-point circle, passing through the feet of the altitudes, is not considered in
this chapter, but appears in Section 8.6.

• Then there are the escribed circles or excircles, as they are sometimes called. The
escribed circle opposite A touches BC , and the lines AB beyond B and AC beyond
C . Its centre is denoted by I1; this is the point where the internal bisector of angle
A meets the external bisectors of angles B and C . The radius of this excircle is
denoted by r1. The escribed circles opposite B and C are similarly defined, with
centres I2 and I3 and radii r2 and r3, respectively.

Some of the sections in this chapter are concerned with these circles that are
associated with a triangle. Fig. 2.1 shows a triangle with its circumcircle and its
incircle. There are also sections that are concerned with the special quadrilaterals
associated with a circle, such as a cyclic quadrilateral, which is inscribed in a circle,
so that the circle passes through its vertices, and an inscribable quadrilateral, which
circumscribes a circle, so that the circle touches its sides and lies wholly within the
quadrilateral. For problems concerning these circles a familiarity with the elementary
circle theorems, such as the intersecting chord theorem, is assumed.

One of the main problems in this chapter is concerned with the medians of a
triangle ABC . These are the lines AL, BM , and CN joining the vertices A, B, and
C to the midpoints L, M , and N , respectively, of the opposite sides, and these lines
concur at the centroid G. The question is whether an integer-sided triangle can have
medians all of integer length. There are certainly an infinite number of solutions, and
they appear to be relatively common, in the sense that there are about fifty solutions,
with side lengths of up to about 5000.
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A

B

R

O I
r

C

Fig. 2.1 The circumcircle and the incircle.

Finally, we present solutions to some problems concerning the existence of integer-
sided triangles when the angles of the triangle bear simple relationships with one
another, and concerning the number of integer-sided triangles with a given perimeter.

2.1 The circumradius R and the inradius r

R is the radius of the circumcircle of the integer-sided triangle ABC and r is the
radius of the incircle. We recall the formulae relating R and r to the area [ABC] and
the side lengths a, b, and c. These are R = abc/4[ABC] and r = 2[ABC]/(a+b+c).

We assume throughout that a, b, and c are integral. So if [ABC] is rational then
R and r are rational. In fact, we restrict discussion to when [ABC] is integral and
investigate more precisely conditions for r and R to be integral, even though any
Heron triangle may be enlarged to ensure that this happens.

Right-angled integer-sided triangles

R is half the length of the hypotenuse, since the circumcentre is at its midpoint. In
a primitive triangle, since c is always odd, R is never an integer. When the sides are
2k(u2 − v2), 4kuv, and 2k(u2 + v2), where k is any positive integer, then R is an
integer and equal to k(u2 + v2). Thus 5 is the smallest possible value of R for such
triangles.

On the other hand, if triangle ABC is primitive (see Section 1.1) then
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a + b + c = 2u(u + v) , (2.1.1)

[ABC] = uv(u2 − v2) , (2.1.2)

and, since 1
2r(a + b + c) = [ABC], we have r = v(u− v) and r is always an integer.

Also, r can be made to take on any positive integral value by a suitable choice for u
and v.

Integral r for integer-sided triangles with integer area

Writing a = 1
2(m + n), b = 1

2 (n + l), and c = 1
2(l + m), and using rs = [ABC] and

Heron’s formula for [ABC], we find that lmn = 4r2(l + m + n). Since l, m, and n
have to be of the same parity for a, b, and c to be integral, they must therefore be even.
Putting l = 2u, m = 2v, and n = 2w, we have a = v + w, b = w + u, c = u + v,
and uvw = r2(u + v + w). This means that

u =
r2(v + w)
vw − r2

. (2.1.3)

Supposing that u, v, and w are ordered with u greatest and w least, it follows that
u � 1

2(v + w), and hence that vw � 3r2. Also, vw > r2.
For r = 1 there is only one solution with v = 2, w = 1, and u = 3. Hence

the (3, 4, 5) triangle is the only triangle with integer sides and integer area for which
r = 1. Referring to Section 1.5 shows that, for triangles with integer sides and integer
area, r = 2 if and only if the triangle is equable.

By inspection, there exists at least one triangle with integer sides and integer area
for each integral value of r, given by

w = 1 , v = r2 + 1 , u = r2(r2 + 2) , (2.1.4)

a = r2 + 2 , b = r4 + 2r2 + 1 , c = r4 + 3r2 + 1 . (2.1.5)

Integral R for integer-sided triangles with integer area

Since [ABC] is an integer, R = abc/4[ABC], and a/ sin A = b/ sin B = c/ sin C =
2R, it follows that sin A, sin B, and sin C are all rational. From Section 1.1, integers
p, q, u, and v exist with sin A = 2uv/(u2 +v2) and sin B = 2pq/(p2 +q2). Choosing

R =
1
4
(u2 + v2)(p2 + q2) (2.1.6)

to remove denominators, we obtain the integer solution

a = uv(p2 + q2) , (2.1.7)

b = pq(u2 + v2) , (2.1.8)

Using sin C = sin(A + B), we find that
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c = uv(p2 − q2) + pq(u2 − v2) . (2.1.9)

For R to be integral, either all of u, v, p, and q must be odd, or at least one of the pairs
u and v or p and q must have both members even. It is possible that all of a, b, c, and
R have a common factor, which may be extracted. On the other hand, the figure can
be enlarged by multiplying all lengths by an integer scale factor. As an example, take
u = p = 3 and v = q = 1, then a = b = 30, c = 48, and R = 25. If p = q or u = v,
then the triangle has a right angle.

Exercises 2.1

2.1.1 If ABC is a right-angled integer-sided triangle with rational R and r, then
find the maximum value of h such that R > hr for all such triangles.

2.1.2 Find all triangles having integer sides and integer area with r = 3.

2.1.3 If ABC is an integer-sided triangle with rational R and r, then find the
maximum value of h such that R > hr for all such triangles.

2.1.4 Prove that in no integer-sided right-angled triangle is it possible for R = hr,
where h is an integer.

2.2 Intersecting chords and tangents

In this section we consider a circle and two chords AB and CD meeting at X. If X is
an external point then there is a tangent TX to the circle touching it at T . The problem
is to discover conditions so that AX, BX, CX, and DX are of integer length and
also that TX is of integer length, when X is external. To make the problem more
interesting we insist that the circle has radius R of integer length.

Intersection inside the circle

Let the chords AB and CD meet at X and let the diameter through X be EOF ,
where O is the centre of the circle and E and F lie on the circle. Write AX = a,
BX = b, CX = c, DX = d, OE = OF = R, and OX = h. Then the intersecting
chord theorem gives

ab = cd = (R + h)(R − h) . (2.2.1)

Solutions exist with integers p, q, r, and s such that a = pq, b = rs, c = pr, d = qs,
R + h = ps, and R − h = qr, from which R = 1

2(ps + qr) and h = 1
2(ps − qr).

Since R + h must be the greatest of the six factors, we must choose ps to be the
largest product. Also, ps and qr must be of the same parity. For example, if we choose
p = 5, s = 4, q = 2, and r = 3 then R = 13, h = 7, a = 10, b = 12, c = 15, and
d = 8, the common product being 120, see Fig. 2.2. In general, other solutions exist
by distributing the factors of pqrs in R + h and R − h differently.
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Fig. 2.2 The intersecting chord theorem.

Intersection outside the circle

Let XEOF be a diametral chord cutting the circle at E and F , where O is the
centre of the circle, and let XT be a tangent touching the circle at T . Let XO = h,
EO = OF = R, and XT = t. Then the secant and tangent theorem gives

(h + R)(h − R) = t2 = h2 − R2 . (2.2.2)

Now this is just the equation for a Pythagorean triple, so a parametric representation is
h = k(u2 +v2), R = 2kuv, and t = k(u2−v2), or h = k(u2 +v2), R = k(u2−v2),
and t = 2kuv, where u and v are positive coprime integers of opposite parity.

Suppose now that XAB is another chord through X meeting the circle at A and
B, and let M be the midpoint of AB. Let XA = a, XB = b, XM = s, and
AM = MB = r. Then the secant and tangent theorem gives

t2 = ab = s2 − r2 , where a = s − r and b = s + r . (2.2.3)

It follows that integers m, p, and q exist so that t = 2mpq, r = m(p2 − q2),
s = m(p2 + q2), a = 2mq2, and b = 2mp2, or t = m(p2 − q2), r = 2mpq,
s = m(p2 + q2), a = m(p− q)2, and b = m(p+ q)2. The constants k, u, v, m, p, and
q must be chosen so that the value of t is the same in eqns (2.2.2) and (2.2.3), and so
that r < R, since the length of the chord is less than the length of the diameter. The
condition on t is algebraically the same condition as in the matching of the altitudes
of the two component right-angled triangles forming a Heron triangle (see Section
1.3), so there is no need to give more than one example. We give the analogue of the
(13, 14, 15) triangle, where the altitude is 12, corresponding here to a value of t = 12.
This choice involves the parameters k = 3, u = 2, v = 1, p = 3, q = 2, and m = 1.
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Fig. 2.3 The secant and tangent theorem.

Then t = 2kuv = 2mpq = 12, h = 15, R = 9, r = 5, s = 13, a = 8, and b = 18,
see Fig. 2.3.

Exercise 2.2

2.2.1 The solution to Exercise 1.3.3 called for a list of all Heron triangles with
altitude 40. Use the analogy pointed out in the last paragraph of Section 2.2
to find the possible values of t, h, and R for the corresponding circle and
external point X, supposing that these lengths are integers.

2.3 Cyclic quadrilaterals and inscribable quadrilaterals

A cyclic quadrilateral is one that has a circle passing through all of its four vertices;
the circle circumscribes the quadrilateral. An inscribable quadrilateral is one that has a
circle touching all of its four sides; the circle is inscribed in the quadrilateral. A cyclic
inscribable quadrilateral possesses both a circumscribing circle and an inscribed circle.

In this section we consider the following problems.

(i) For the cyclic quadrilateral, under what conditions does the quadrilateral have
integer sides, integer diagonals, and a circumscribing circle of integer radius?

(ii) For the inscribable quadrilateral, under what conditions does the quadrilateral
have integer sides and an inscribed circle of integer radius?

(iii) For the cyclic inscribable quadrilateral, under what conditions does the quadri-
lateral have integer sides and four other specified distances in the configuration
also of integer length, but with no condition on the radius of either circle?
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Cyclic quadrilaterals

Cyclic quadrilaterals of a particular kind, with integer sides and integer radius, are com-
monplace. For example, two copies of an integer-sided right-angled triangle, joined
together with the common (even) hypotenuse as diameter, form a cyclic rectangle,
which has integer diagonals as well.

Taking our cue from this example, we limit our investigation to cyclic quadrilaterals
with integer sides and integer diagonals, and which lie in a circle of integer radius.

Let ABCD be such a cyclic quadrilateral and suppose that ∠ACB = ∠ADB = x,
∠ABD = ∠ACD = y, ∠CAB = ∠CDB = z, and ∠CAD = ∠CBD = w =
180◦ − x − y − z. The fact that triangles ADB and BCD have integer sides means
that the cosines of x, y, z, and w are rational. Also, the equations AB = 2R sin x,
AD = 2R sin y, BC = 2R sin z, and CD = 2R sin w imply that the sines of x, y,
z, and w are also rational. It follows from the theory of Section 1.1 that there exist
integers u, v, s, t, p, and q such that

sin x =
2uv

u2 + v2
, sin y =

2st
s2 + t2

, sin z =
2pq

p2 + q2
,

cos x =
u2 − v2

u2 + v2
, cos y =

s2 − t2

s2 + t2
, cos z =

p2 − q2

p2 + q2
.

(2.3.1)

We can now ensure that the sides and diagonals are integers by choosing

R =
1
4
(u2 + v2)(s2 + t2)(p2 + q2) . (2.3.2)

Note that the condition for R to be integral is that either both elements of two of the
pairs u and v, s and t, and p and q are odd or both elements of one of the pairs is
even. With the chosen value for R, all denominators disappear and, using the above
equations, we obtain, after using trigonometrical formulae for expressions such as
sin(y + z), the following integer values for the sides and diagonals:

AB = uv(s2 + t2)(p2 + q2) ,

AD = st(p2 + q2)(u2 + v2) ,

BC = pq(u2 + v2)(s2 + t2) ,

AC = uv(p2 − q2)(s2 + t2) + pq(u2 − v2)(s2 + t2) ,

BD = uv(s2 − t2)(p2 + q2) + st(u2 − v2)(p2 + q2) ,

CD = uv(s2 − t2)(p2 − q2) + pq(s2 − t2)(u2 − v2)
+ st(p2 − q2)(u2 − v2) − 4uvstpq .

(2.3.3)

For example, with u = 3, v = 1, s = 2, t = 1, p = 5, and q = 1 we find, after
cancelling a common factor of 5, that R = 65, AB = 78, BC = 50, CD = 120,
DA = 104, AC = 112, and BD = 130. As a second example, with u = 4, v = 2,
p = 3, q = 2, s = 4, and t = 1 we find that R = 1105, AB = 1768, BC = 2040,
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Fig. 2.4 A cyclic quadrilateral with integer sides, integer diagonals, and integer radius.

CD = 1152, DA = 1040, AC = 1904, and BD = 2184. The first of these examples
is shown in Fig. 2.4.

Results may always be checked with the aid of Ptolemy’s theorem, which states
that a quadrilateral ABCD is cyclic if and only if

AB · CD + BC · DA = AC · BD . (2.3.4)

Inscribable quadrilaterals

These are defined to be quadrilaterals that possess an incircle. ABCD is such a
quadrilateral if and only if AB + CD = BC + DA. Then AB = a + b, BC = b + c,
CD = c + d, and DA = d + a, where a, b, c, and d are the lengths of the tangents
from A, B, C , and D to the incircle, respectively. Given any integer values of a, b,
c, and d or half odd integer values of a, b, c, and d, it is always possible to draw
a quadrilateral with these tangent lengths having an incircle, but its radius is not
generally an integer. In order to create an interesting problem we therefore restrict our
attention to inscribable quadrilaterals, which not only have integer sides but whose
sides touch a circle of integer radius.

Let the centre of the incircle be O and suppose that AB, BC , CD, and DA
touch the incircle at P , Q, R, and S, respectively. Denote ∠AOP = x, ∠BOQ = y,
∠COR = z, and ∠DOS = w. Then tan x = a/r, tan y = b/r, tan z = c/r, and
tan w = d/r. Now x + y + z + w = 180◦, so tan(x + y) = − tan(z + w). Hence
r(a + b)/(r2 − ab) + r(c + d)/(r2 − cd) = 0, from which

r2 =
bcd + acd + abd + bcd

a + b + c + d
. (2.3.5)

This is a linear equation in d with solution
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d =
(a + b + c)r2 − abc

bc + ca + ab − r2
. (2.3.6)

Any integer choice of a, b, c, and r making d positive provides an inscribable quadri-
lateral, with integer sides and integer radius, when enlarged by a scale factor equal to
the denominator of d.

For example, with a = 3, b = 4, and c = 2 we obtain d = (9r2 − 24)/(26 − r2).
Possible solutions are when r = 2, 3, 4, and 5 with d = 6/11, 57/17, 12, and 201,
respectively. The four solutions are as follows:

(i) a = 33, b = 44, c = 22, d = 6, and r = 22;

(ii) a = 51, b = 68, c = 34, d = 57, and r = 51;

(iii) a = 3, b = 4, c = 2, d = 12, and r = 4; and

(iv) a = 3, b = 4, c = 2, d = 201, and r = 5.

The third of these cases is illustrated in Fig. 2.5.

Cyclic inscribable quadrilaterals

Let ABCD be a cyclic inscribable quadrilateral, that is, a cyclic quadrilateral which
also has an incircle. The problem we consider applies only to those cyclic inscribable
quadrilaterals in which both pairs of opposite sides meet.

Suppose then that AB and DC meet at Q, and DA and CB meet at P . The
problem we consider is how to ensure that all of the line segments PA, PB, AB,
BC , CD, DA, QB, and QC of the quadrilateral are integers. Note that we make
no requirement that either the radius of the circumcircle or the radius of the incircle
should be integers, or that the diagonals AC , BD, and PQ should be integers.

Let PA = s, PB = t, AB = x, BC = y, CD = z, DA = w, QB = u, and
QC = v, where these are all integers. It turns out that a solution can be obtained in
terms of four positive integer parameters l, m, n, and p, in which each of s, t, u, v, w,
x, y, and z are quartic expressions in terms of the parameters. A common multiplier
may be included as an enlargement factor, and sometimes a common factor appears
that may be divided out.

A
B
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I

C15

14

4

7

6

Fig. 2.5 An inscribable quadrilateral with integer sides and integer radius.
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Since we require that P A · P D = P B · P C, positive integers l, m, n, and p
must exist such that P A = lmi, P D = npi, P B = lnj, and P C = mpj, where i
and j are unit vectors. Since AB and CD are not parallel, we must choose m �= n.
Also, since PD > PA and PC > PB, we must choose p > l. Setting up oblique
co-ordinates in this way, with P as origin, ensures that we have a general solution of
the intersecting chord theorem

PA · PD = PB · PC , (2.3.7)

and so, by the converse of the theorem, ABCD is cyclic. Furthermore, the choices
made ensure that both pairs of opposite sides meet.

Now AB = l(nj −mi) and DC = p(mj −ni). Since |nj −mi| = |mj −ni|,
it follows that lz = px. Hence x = kl and z = kp, where k may be rational (rather
than integral). The condition that ABCD should be inscribable is

x + z = w + y . (2.3.8)

Now w = np − lm and y = mp − ln, so the condition (2.3.8) becomes k(p + l) =
(m + n)(p − l). Thus k = (m + n)(p − l)/(p + l), x = (m + n)(p − l)l/(p + l),
and z = (m + n)(p− l)p/(p + l). Now, by Menelaus’ theorem for triangle PCD, we
have ∣∣∣∣DQ

QC

CB

BP

PA

AD

∣∣∣∣ = 1 . (2.3.9)

After some algebra this gives v = m(p − l)(mp − ln)/(p + l)(n − m). Similarly,
Menelaus’ theorem for triangle PAB gives∣∣∣∣PD

DA

AQ

QB

BC

CP

∣∣∣∣ = 1 . (2.3.10)

After some more algebra this gives u = n(p − l)(mp − ln)/(n − m)(p + l). We
now enlarge the figure by the factor (n − m)(p + l) and (ignoring a further possible
enlargement factor) we have finally

s = lm(n − m)(p + l) ,

t = ln(n − m)(p + l) ,

x = l(m + n)(p − l)(n − m) ,

y = (mp − ln)(n − m)(p + l) ,

z = p(m + n)(p − l)(n − m) ,

w = (np − lm)(n − m)(p + l) ,

u = n(p − l)(mp − ln) ,

v = m(p − l)(mp − ln) ,

(2.3.11)

For example, with l = 1, m = 10, n = 11, and p = 2, after dividing out a common
factor of 3, we obtain s = 10, t = 11, x = 7, y = 9, z = 14, w = 12, u = 33, and
v = 30. As a second example, with l = 1, p = 2, m = 2, and n = 3 we obtain s = 6,
t = 9, x = 5, y = 3, z = 10, w = 12, u = 3, and v = 2, see Fig. 2.6.
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Fig. 2.6 A cyclic inscribable quadrilateral.

Exercises 2.3

2.3.1 Is it true or not that, if integers a, b, c, d, e, and f exist such that ab+cd = ef ,
then a cyclic quadrilateral necessarily exists with sides a, b, c, and d and
diagonals e and f?

2.3.2 Show that, in a cyclic quadrilateral with AB = a, BC = b, CD = c, DA =
d, BD = e, and AC = f , then e2 = [(a2 + d2)bc+(b2 + c2)ad]/(bc+ad),
with a similar expression for f2.

2.3.3 A quadrilateral has sides AB = 1, BC = 3, CD = 4, and DA = 2. What
is the radius of its incircle?

2.3.4 Is it possible to order the sides of a convex polygon of 2000 sides of lengths
1, 2, 3, . . . , 2000 in such a way that it possesses an incircle?

2.3.5 In the figure in which PDC is a triangle and ABQ is a transversal with A
on PD, B on PC , and Q on the extension of DC , find AB and BC given
that ABCD is a cyclic inscribable quadrangle and PA = 40, PB = 50,
AD = 35, DC = 27, and CQ = 8.

2.4 The medians of a triangle

The medians of a triangle ABC are the lines from the vertices A, B, and C to the
midpoints L, M , and N , respectively, of the opposite sides. If we write AL = l then,
by Apollonius’ theorem,

4l2 = 2b2 + 2c2 − a2 . (2.4.1)
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To prove this, complete the parallelogram ABXC and use the cosine rule on triangle
ABX, noting that AX = 2AL = 2l and ∠ABX = 180◦ − ∠BAC . In what follows
we write a = 2A, b = 2B, and c = 2C , and these symbols cannot be confused with
the angles of the triangle because of the context in which they are used.

We consider in this section the conditions under which one or more medians may
have integer length in an integer-sided triangle.

One integral median

It is very easy to choose a, b, and c so that l is an integer. We have 4l2 = 2b2+2c2−a2.
Clearly, a must be even, so writing a = 2A, b = 2B, and c = 2C we obtain

(B + C)2 + (B − C)2 = A2 + l2 .

The general solution of this derives from the famous identity

(ps + qr)2 + (pr − qs)2 = (pr + qs)2 + (ps − qr)2 (2.4.2)

and leads to the parametric representation

a = 2(pr + qs) , b = p(s + r) − q(s − r) ,

c = p(s − r) + q(s + r) , l = ps − qr .
(2.4.3)

Any integer values of p, q, r, and s that lead to positive a, b, c, and l will do provided
that the triangle inequalities are satisfied. For example, with p = 3, q = 2, r = 1, and
s = 4 we obtain a = 22, b = 9, c = 19, and l = 10.

Two integral medians

In an isosceles triangle it is possible for all three sides and two medians to be integral.
For example, AB = BC = 14, CA = 12, and AL = CN = 11. This is because,
when a = c, in order to make AL and CN integers, there is only one equation to be
satisfied. This is l2 = 2B2 + A2 and this equation can be solved parametrically, see
Exercise 2.4.1.

Three integral medians

The general analysis of the situation in which all three medians of an integer-sided
triangle have integer length is similar to the problem where all of the face diagonals
of an integer-sided rectangular parallelepiped have integer length. In both problems
there are three symmetric expressions in the squares of a, b, and c that have to be made
perfect squares. It is not surprising, therefore, that the situation is similar as regards
their solution. In both cases there is a known two-parameter system of solutions (see
eqns (1.4.2) and (2.4.9)), and there are further solutions, which may belong to other
parametric systems of solutions, and there are probably additional sporadic solutions.
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In the case of three integral medians the equations to be solved are

3A2 + l2 = 3B2 + m2 = 3C2 + n2 = 2(A2 + B2 + C2) . (2.4.4)

The example with lowest A, B, and C appears to be A = 68, B = 85, C = 87,
l = 158, m = 131, and n = 127, see Fig. 2.7. All solutions are involutional, in the
sense that the solution A, B, C , l, m, and n leads to a solution A′ = l, B′ = n,
C ′ = m, l′ = 3A, m′ = 3C , and n′ = 3B.

It is possible to express the solution of eqns (2.4.4) in terms of three rational
numbers k, h, and t = tan 1

2θ, together with a constraint. This solution is

A =
2[k(1 − t2) + 2th]

1 + t2
, B = h − k , C = h + k ,

l =
2[h(1 − t2) − 2tk]

1 + t2
, m = 3kh + 1 , n = 3kh − 1 ,

(2.4.5)

together with the constraint

9k2h2 + 1 = cos2 θ(9k2 + h2) + 16hk sin θ cos θ + sin2 θ(k2 + 9h2) . (2.4.6)

All this shows is that the three straightforward eqns (2.4.4) may be replaced by the
single much more complicated eqn (2.4.6).

In order to obtain integer values one simply multiplies up by the least common
multiple of the denominators. The solutions in Table 2.1 are the result of a computer
search and are exhaustive for low values of A, B, and C .

If integer parameters are preferred then, with k = y/e, h = x/d, and t = tan 1
2θ,

we have

A = 2(yd cos θ + xe sin θ) , B = xe − yd , C = xe + yd ,

l = 2(xe cos θ − yd sin θ) , m = 3xy + ed , n = 3xy − ed .
(2.4.7)
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Fig. 2.7 A triangle with integer sides and integer medians.
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Table 2.1 Integer-sided scalene triangles with a = 2A, b = 2B, and c = 2C and integer
medians l, m, and n.

k h t A B C l m n

1/2 43 1/5 68 85 87 158 131 127
2/3 43 1/3 158 127 131 204 261 255

31/33 16/3 7/13 328 145 207 142 529 463
11/31 16/3 1/26 142 463 529 984 621 435

5/6 89/39 4/15 290 113 243 244 523 367
2/5 89/39 1/20 244 367 523 870 729 339

11/12 61/3 35/58 442 233 255 208 683 659
4/11 61/3 2/29 208 659 683 1326 765 699

41/69 16/3 2/9 386 327 409 632 725 587
23/41 16/3 1/5 632 587 725 1158 1227 981
83/121 2 1/6 314 159 325 404 619 377

121/249 2 27/323 404 377 619 942 975 477
25/39 29/12 3/17 446 277 477 640 881 569
13/25 29/12 2/17 640 569 881 1338 1431 831
79/177 11/6 1/17 466 491 807 1252 1223 515
59/79 11/6 17/98 1252 515 1223 1398 2421 1473

163/279 8/3 4/25 774 581 907 1312 1583 1025
93/163 8/3 13/85 1312 1025 1583 2322 2721 1743
95/157 171/38 26/119 1524 1223 1603 2410 2879 2251

157/285 171/38 9/49 2410 2251 2879 4572 4809 3669
65/127 11/8 19/391 1306 877 1917 2680 3161 1129

127/195 11/8 3/38 2680 1129 3161 3918 5751 2631
143/241 7/2 9/47 1778 1401 1973 2924 3485 2521
241/429 7/2 14/81 2924 2521 3485 5334 5919 4203
11/12 229/111 17/59 1664 509 1323 1118 2963 2075

4/11 229/111 23/1003 1118 2075 2963 4992 3969 1527
109/173 8/5 11/105 1640 839 1929 2482 3481 1751
173/327 8/5 2/27 2482 1751 3481 4920 5787 2517
53/72 23/5 9/29 2312 1391 1921 2430 4017 3297
24/53 23/5 3/25 2430 3297 4017 6936 5763 4173
76/129 61/3 11/42 2704 2547 2699 4498 4765 4507
43/76 61/3 10/41 4498 4507 4765 8112 8097 7641
38/47 43 23/49 3158 1983 2059 2524 4949 4855
47/114 43 15/119 2524 4855 4949 9474 6177 5949

251/453 20/3 69/335 2848 2769 3271 5350 5473 4567
151/251 20/3 11/46 5350 4567 5473 8544 9813 8307
28/33 193/3 133/25 3514 2095 2151 2384 5437 5371
11/28 193/3 19/17 2384 5371 5437 10 542 6453 6285
11/12 389/123 20/49 2822 1105 2007 1592 4771 3787

4/11 389/123 1/28 1592 3787 4771 8466 6021 3315
67/183 47/30 11/714 1516 2197 3537 5690 4979 1319
61/67 47/30 35/187 5690 1319 4979 4548 10 611 6591
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Table 2.1 continued

k h t A B C l m n

34/63 179/51 4/25 3444 3181 4337 6782 7157 5015
21/34 179/51 20/97 6782 5015 7157 10 332 13 011 9543

209/303 26/9 17/75 3396 1999 3253 4198 6343 4525
101/209 26/9 85/752 4198 4525 6343 10 188 9759 5997
19/54 169/87 1/74 1266 2491 3593 6052 4777 1645
18/19 169/87 2/7 6052 1645 4777 3798 10 779 7473

223/227 10 13/18 4450 2047 2493 1004 6917 6463
227/669 10 5/243 1004 6463 6917 13 350 7479 6141

The constraint becomes

e2d2 + 9x2y2 − x2e2 − y2d2 = 8(xe sin θ + yd cos θ)2 . (2.4.8)

In all cases θ is an acute angle and parameters have to be chosen to ensure positive
values for A, B, C , l, m, and n.

Kevin Buzzard of Imperial College, London (private communication) informs me
that the equations define a so-called ‘elliptic surface of positive rank’ and that as a
consequence there will exist infinitely many parametric solutions, but almost certainly
infinitely many sporadic solutions that lie on none of these parametric solutions.

Euler gave one parameterisation, namely

A = 2u(9u4 − 10u2v2 − 3v4) ,

B = u(9u4 + 26u2v2 + v4) − v(9u4 − 6u2v2 + v4) ,

C = u(9u4 + 26u2v2 + v4) + v(9m4 − 6u2v2 + v4) .

(2.4.9)

But, whilst u = 2 and v = 1 gives the case A = 404, B = 377, and C = 619, higher
values of u and v give values of A, B, and C larger than any in our list. This illustrates
the difficulty in this problem of obtaining an efficient parameterisation.

It is not known whether a triangle exists with integer sides, integer medians, and
integer area. Adding one more equation to be satisfied produces a much more difficult
situation, so if solutions exist then they are likely to be sparse.

Exercise 2.4

2.4.1 Find the general solution for the case of two integer medians of an isosceles
integer-sided triangle.



34 Circles and triangles

2.5 The incircle and the excircles
In this section we show that a triangle with integer sides and integer inradius may be
enlarged so that its area and the radii of its three excircles are integers. We use the
notation that r is the radius of the incircle, s is the semi-perimeter of the triangle ABC ,
and r1, r2, and r3 are the radii of the excircles opposite A, B, and C , respectively.

Theorem 2.5.1 Suppose that ABC is a triangle with side lengths a, b, and c, s =
1
2(a + b + c) is its semi-perimeter, r is the inradius of the triangle ABC , and r1, r2,
and r3 are the radii of the excircles opposite A, B, and C , respectively. If r, a, b, and c
are rational, then r1, r2, and r3 are rational. In consequence, any triangle with integer
sides and integer inradius may be enlarged so that all of r1, r2, and r3 are integers.

Proof If I is the incentre then, from the area relationship

[ABC] = [IBC] + [ICA] + [IAB] , (2.5.1)

we have [ABC] = rs. Also, if I1 is the excentre opposite A then we have

[ABC] = [I1AB] + [I1AC] − [I1BC] = r1(s − a) . (2.5.2)

Similarly, [ABC] = r2(s − b) = r3(s − c).
If r, a, b, and c are rational then, from the above equations, so is [ABC], and hence

so are r1, r2, and r3. Multiplying by the lowest common multiple of the denominators
of these rational numbers produces an enlargement in which the area [ABC] and all
of r1, r2, and r3 are integers. �

We go further and deduce simple equations to determine r1, r2, and r3. From
Heron’s formula for [ABC] it is an immediate consequence that

r =
[
(s − a)(s − b)(s − c)

s

]1/2

(2.5.3)

and

r1 =
[
s(s − b)(s − c)

s − a

]1/2

, (2.5.4)

with similar equations for r2 and r3. It follows that rr1 = (s − b)(s − c) or, on using
the notation a = v + w, b = w + u, and c = u + v, we have rr1 = vw, rr2 = wu,
and rr3 = uv.

Recall from Section 2.1 that r = 2 for integer-sided triangles if and only if the
triangle ABC is equable. There are just three such triangles with all of r1, r2, and r3

integers. They are shown in Table 2.2. The second entry in the table is illustrated in
Fig. 2.8.

Exercise 2.5

2.5.1 Find r, r1, r2, and r3 when (i) a = 12, b = 50, and c = 58, and (ii) a = 18,
b = 20, and c = 34.
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Table 2.2 The three integer-sided triangles with r = 2 and r1, r2, and r3 integers.

a b c u v w r r1 r2 r3

5 12 13 10 3 2 2 3 10 15
6 8 10 6 4 2 2 4 6 12
7 15 20 14 6 1 2 3 7 42

A

I3

I1

I2

I

B C

12
10

4

2

6

8
6

Fig. 2.8 A triangle with integer sides, integer inradius, and integer exradii.

2.6 The number of integer-sided triangles of given
perimeter

We now consider a problem of a somewhat different kind, but still connected with
integer-sided triangles. It is to do with counting and, as such, is a combinatorial
problem. The problem is to determine the number of non-congruent integer-sided
triangles having a specified integer perimeter p. It is possible to give a complete
solution to this problem, though, since there are six different cases depending on the
value of a certain parameter modulo 6, we do not provide every detail.

It is important to appreciate the significance of the phrase ‘non-congruent’ as far
as the count is concerned, so we provide two illustrative examples. Suppose, as a
first example, that p = 12. Then an enumeration of cases shows that there are three
non-congruent triangles with sides a = 5, b = 5, and c = 2; a = 5, b = 4, and c = 3;
and a = 4, b = 4, and c = 4. Other possibilities found by permuting the values of
a, b, and c lead to triangles that are congruent to one or other of these three triangles
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and are therefore excluded from the count. Suppose, as a second example, that p = 9.
Then an enumeration of cases shows that again there are three non-congruent triangles
with sides a = 4, b = 4, and c = 1; a = 4, b = 3, and c = 2; and a = 3, b = 3, and
c = 3. In other words, we want to count all possible selections of positive integers a,
b, and c in which a + b + c = p, a � b � c, b + c > a, c + a > b, and a + b > c.

We suppose that a, b, and c are integers satisfying a � b � c and, as in Section
2.1, let a = 1

2 (m + n), b = 1
2(n + l), and c = 1

2(l + m), so that the perimeter
p = a + b + c = l + m + n. The condition that a, b, and c are integers implies that l,
m, and n are integers of the same parity—odd when p is odd and even when p is even.
The condition that a � b � c leads to the condition that n � m � l. The advantage
of using l, m, and n rather than a, b, and c is that it converts the triangle inequalities
b + c > a, c + a > b, and a + b > c into the simpler relations l,m, n > 0.

The problem now reduces to counting, when p is even, the number of selections
of positive even integers l, m, and n such that l + m + n = p, and, when p is odd, the
number of selections of positive odd integers l, m, and n such that l + m + n = p,
and where in both cases the choices of l, m, and n are limited by the condition that
n � m � l. A further simplification can be made when p is even. Then l, m, and n
are also even and we can write p = 2N , l = 2u, m = 2v, and n = 2w. Hence, for
even perimeter p = 2N the problem reduces to counting the number of selections of
positive integers u, v, and w such that u + v + w = N and w � v � u. The reader
should check that in the case p = 2N = 12 the three possible selections for u, v, and
w are u = 1, v = 1, and w = 4; u = 1, v = 2, and w = 3; and u = 2, v = 2, and
w = 2, and in the case p = 9 the three possible selections for l, m, and n are l = 1,
m = 1, and n = 7; l = 1, m = 3, and n = 5; and l = 3, m = 3, and n = 3.

Theorem 2.6.1 For each value of the integer N > 2, the number of integer-sided
triangles with perimeter 2N − 3 is the same as the number of integer-sided triangles
with perimeter 2N .

Proof If p is even, let p = 2N ; then, from the text above, the problem for even
perimeter reduces to counting the number of selections of positive integers u, v, and
w such that u + v + w = N and w � v � u. If p is odd and equal to 2N − 3, then we
require the number of selections of positive odd integers l, m, and n such that l+m+
n = 2N − 3 and n � m � l. We claim that there is an obvious 1–1 correspondence
between these counting problems defined by u = 1

2(l + 1), v = 1
2(m + 1), and

w = 1
2(n + 1). For, if l, m, and n are odd integers satisfying l + m + n = 2N − 3,

then u, v, and w are positive integers satisfying u+ v + w = 1
2(l + m + n)+ 3

2 = N .
And, if u, v, and w are positive integers satisfying u + v + w = N , then l, m, and n
given by l = 2u−1, m = 2v−1, and n = 2w−1 are odd positive integers satisfying
l + m + n = 2(u + v + w) − 3 = 2N − 3. Also, w � v � u ⇔ n � m � l. �

If three real numbers x, y, and z are elements of a set {x, y, z} then this set is
called a triple and it does not matter in which order you write down the elements. On
the other hand, if we define [x, y, z] = {{x}, {x, y}, {x, y, z}}, then [x, y, z] is called
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an ordered triple. Clearly, two ordered triples [x1, y1, z1] and [x2, y2, z2] are equal if
and only if x1 = x2, y1 = y2, and z1 = z2.

If {u, v, w} = {1, 2, 3} then there is only one triple, but from the same integers you
can form six ordered triples [1, 2, 3], [1, 3, 2], [2, 3, 1], [2, 1, 3], [3, 1, 2], and [3, 2, 1].
Similarly, from the triple {1, 1, 4} you can form three ordered triples [4, 1, 1], [1, 4, 1],
and [1, 1, 4], and from the triple {2, 2, 2} there is just one ordered triple [2, 2, 2]. If
you choose from the ordered triples those for which w � v � u then they are in
1–1 correspondence with the triples. In our counting problem, by virtue of Theorem
2.6.1, the problem reduces to counting triples {u, v, w}, where u, v, and w are positive
integers satisfying u + v + w = q, and where q is a positive integer. As we shall see
below, in order to count the number of triples, it is necessary to keep track of the total
number of ordered triples. Six separate cases need to be covered, as the working is
slightly different depending on the value of q (mod 6).

• Case 1, q = 6k
We are looking for the number q3 of partitions of q into three positive integers u, v,
and w, in which we insist that w � v � u. The reason for this, as explained above,
is that a choice such as u = 1, v = 2, and w = 3 leads to a triangle with the same
side lengths as choices such as u = 2, v = 1, and w = 3, so that we include in
q3 only one of the six possibilities with the integers 1, 2, and 3. However, as the
working below shows, in order to determine q3 we also have to keep a count of the
number Q3 of all sets of values of u, v, and w, so in Q3 all six possibilities with
the integers 1, 2, and 3 would be included. In other words, q3 counts triples and Q3

counts ordered triples.
When u = v = w there is only one possibility with the common value 2k. This
leads to a contribution of 1 to q3 and a contribution of 1 to Q3.
When u = v, with w different, then u can range from 1 to 3k − 1, except that we
have already counted u = 2k. So there are 3k − 2 possibilities of this kind. This
provides a contribution of 3k − 2 to q3 and a contribution of 9k − 6 to Q3.
Now,

Q3 = q−1C2 =
1
2
(6k − 1)(6k − 2) = 18k2 − 9k + 1 , (2.6.1)

so the contribution to Q3 of choices with distinct values of u, v, and w is (18k2 −
9k + 1) − (9k − 6) − 1 = 18k2 − 18k + 6. Thus the contribution to q3 of choices
with distinct values of u, v, and w is 3k2 − 3k + 1. It follows that

q3 = 1 + (3k − 2) + (3k2 − 3k + 1) = 3k2 =
q2

12
. (2.6.2)

• Case 2, q = 6k + 1
The contribution to q3 and Q3 when u = v = w is 0. The contribution to q3

when u = v and w is distinct is 3k, and the contribution to Q3 is 9k. Now,
Q3 = 1

2 [6k(6k − 1)] = 18k2 − 3k. The contribution to Q3 when u, v, and w are
distinct is 18k2 − 12k. So the contribution to q3 in this case is 3k2 − 2k. It follows
that q3 = 3k2 + k = (q2 − 1)/12.
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We leave the reader to supply details of the following results.

• Case 3, q = 6k + 2
Here q3 = (q2 − 4)/12.

• Case 4, q = 6k + 3
Here q3 = (q2 + 3)/12.

• Case 5, q = 6k + 4
Here q3 = (q2 − 4)/12.

• Case 6, q = 6k + 5
Here q3 = (q2 − 1)/12.

For example, when p = 2005, Theorem 2.6.1 tells us that the number of distinct
triangles is the same as for p = 2008. Then q = 1004 = 6k + 2, with k = 167. The
number of triangles is (q2 − 4)/12 = 84 001.

Exercise 2.6

2.6.1 Find the number of distinct integer-sided triangles with perimeter 1001.

2.7 Triangles with angles u, 2u, and 180◦ − 3u

In this section we consider triangles whose angles are u, 2u, and 180◦−3u, and obtain
formulae for the side lengths when these are integers. The problem is also treated in
Shklarsky et al. (1993). Each such triangle is similar to one in which the bisector of
the angle of size 2u is of integer length.

The general solution

Let ∠ABC = u and ∠BCA = 2u; then ∠CAB = 180◦ − 3u. From the sine rule we
have

a = 2R sin 3u = 2R(3 sin u − 4 sin3 u) ,

b = 2R sin u ,

c = 2R sin 2u = 4R sinu cos u .

(2.7.1)

It follows that c2 = b2 + ab = 16R2 sin2 u(1− sin2 u). Assuming that a, b, and c are
integers with highest common factor k, it follows that b and a + b are k times perfect
squares, and so coprime integers p and q exist, with p > q, such that

a = k(p2 − q2) , b = kq2 , c = kpq . (2.7.2)

For example, with p = 4, q = 3, and k = 1 we obtain a = 7, b = 9, and c = 12.
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A

B C

W

u u
u

48

21 21

28

27

36

Fig. 2.9 A triangle with an internal bisector of integer length.

Internal angle bisector

If the above triangle is magnified by a factor of 4 so that a = 28, b = 36, and
c = 48 and the internal bisector CW of angle BCA is drawn, then since AW/BW =
AC/BC = 9/7 (see Theorem A.6.1) it follows that AW = 27 and BW = 21. Now
triangle WBC is isosceles with CW = BW = 21. This example is illustrated in Fig.
2.9. In this way we can always construct a triangle in which an angle bisector is of
integer length. We do not, at present, consider the more difficult problem of when all
three internal bisectors are of integer length. This problem is considered in Section
2.8. It can be proved by applications of the cosine rule that

CW =
[ab(a + b − c)(a + b + c)]1/2

a + b
. (2.7.3)

It may be checked with the above values of a, b, and c that CW comes to 21.

Exercise 2.7

2.7.1 Use p = 5 and q = 2 with an appropriate value of k to find another triangle
with an internal bisector of ∠BCA that is of integral length.

2.8 Integer r and integer internal bisectors

Given the triangle ABC , let U , V , and W be the intersections of the internal bisectors
with BC , CA, and AB, respectively. We now show how to find integer-sided triangles
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in which the inradius r and the lengths of all three internal angle bisectors AU , BV ,
and CW are integers.

The clue to the possibility of r and the lengths of all internal bisectors being
integers arises from the formulae

AI = r cosec
1
2
A , BI = r cosec

1
2
B , CI = r cosec

1
2
C . (2.8.1)

It follows that, if we can find triangles in which r and all of sin 1
2A, sin 1

2B, and sin 1
2C

are rational, then AI , BI , and CI are all rational. Now, if AU , BV , and CW are the
internal bisectors then we have

AU =
(a + b + c)AI

b + c
, BV =

(a + b + c)BI

c + a
, CW =

(a + b + c)CI

a + b
,

(2.8.2)
and hence these lengths are also rational. Finally, an enlargement of the triangle by the
least common multiple of the denominators of r, AU , BV , and CW produces integer
values for all of them.

We do not attempt to obtain general formulae for a, b, c, r, AU , BV , and CW in
terms of parameters, as the variety of possibilities and the difficulty of the equations
involved makes any such attempt unreasonable, if not impossible. However, the way
to construct all triangles with the required properties is not difficult, and we explain
why this is so and give an example to illustrate the method.

In a Heron triangle ABC the cosines and sines of A, B, and C are rational.
However, if we wish to ensure that the cosines and sines of 1

2A, 1
2B, and 1

2C are
rational, then we can only ensure this if we choose the component triangles of the
Heron triangle in a particular way. They must both arise from Pythagorean triples
whose parameters u and v are themselves the short legs of a Pythagorean triple, and
then the triangles have to be matched up suitably. An example is the best way of
illustrating what happens.

The values of u and v chosen are the short legs 4 and 3, and 12 and 5. Take
u = 4 and v = 3; then from Table 1.1 we get the triple (7, 24, 25). Take u = 12
and v = 5; then we get the triple (119, 120, 169). We can match these by enlarging
the first by a factor of 5 so that the altitude from A has length 120. We then have
a Heron triangle in which c = AB = 125, b = AC = 169, and a = BC =
35 + 119 = 154. Now, cos B = 7/25, so that sin 1

2B = 3/5 and cos 1
2B = 4/5.

Likewise, sin 1
2C = 5/13 and cos 1

2C = 12/13. Then sin 1
2A = cos 1

2 (B + C) =
48/65 − 15/65 = 33/65, so that cos 1

2A = 56/65. Now the semi-perimeter s =
(169 + 125 + 154)/2 = 448/2 = 224 and [ABC] = 60 × 154 = 9240. It follows,
from rs = [ABC], that r = 9240/224 = 165/4. Hence AI = r cosec 1

2A = 325/4,
BI = r cosec 1

2B = 275/4, and CI = r cosec 1
2C = 429/4. Then, from eqns (2.8.2),

AU = 448/294 × 325/4 = 2600/21, BV = 448/279 × 275/4 = 30800/279, and
CW = 448/323 × 429/4 = 48048/323, see Fig. 2.10. With an enlargement by a
factor of 4 × 21 × 323 × 93 = 2523 276 we obtain a Heron triangle with integer r
and integer internal bisectors.



Circles and triangles 41

r = 165/4

A

B CU

V

W

48048/323

30800/279

2600/21

125

154

169

Fig. 2.10 A triangle with integer sides and rational angle bisectors.

Exercises 2.8

2.8.1 In the example given above, are the external bisectors of the angles also of
rational length?

2.8.2 What goes wrong with the calculation of the internal angle bisectors if we
match up the (119, 120, 169) and (119, 408, 425) triangles to form a Heron
triangle?

2.9 Triangles with angles u, nu, and 180◦ − (n + 1)u

The case n = 2 was analysed in Section 2.7. In this section we generalise those results.
We write ∠A = u, ∠B = nu, and ∠C = 180◦− (n+1)u. For integer-sided triangles
with these angles, for which the sides have no common factor, it is possible to express
the sides in terms of two parameters. The reason for this is easy to see. By the sine
rule we have b/a = sinnu/ sin u and c/a = sin(n + 1)u/ sin u.

Now, in an integer-sided triangle, the cosine of each angle is rational, so we may
take 2 cos u = p/q, where p and q are coprime integers. Next observe that, for any
integer value of n, sinnu/ sin u is expressible as a polynomial in cos u of degree n−1
(by De Moivre’s theorem). A parameterisation in terms of p and q may therefore be
obtained as follows: from above, b/a is a homogenous polynomial of degree n − 1
in p/q, and c/a is a homogeneous polynomial of degree n in p/q. We may therefore
set a = qn and both b and c then become homogeneous polynomials of degree n in p
and q. We now give the results for n = 3 and n = 4 and leave the reader to fill in the
details of the calculation.
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A A

B BC C

10
31

105

81

3

8

(a) (b)

Fig. 2.11 An integer-sided triangle with (a) ∠B = 3∠A, and (b) ∠B = 4∠A.

Degree n = 3

We have sin 3u/ sin u = 4cos2 u − 1 and sin 4u/ sin u = 4cos u(2 cos2 u − 1). The
required parameterisation is therefore

a = q3 , b = q(p2 − q2) , c = p(p2 − 2q2) . (2.9.1)

Since 0◦ < u < 45◦, we must have 2q > p > q
√

2. The triangle with these angles
having least perimeter comes from the values p = 3 and q = 2, and has sides a = 8,
b = 10, and c = 3, see Fig. 2.11(a).

Degree n = 4

We have sin 4u/ sin u = 4cos u(2 cos2 u − 1) and sin 5u/ sin u = 16 cos4 u −
12 cos2 u + 1. The required parameterisation is therefore

a = q4 , b = pq(p2 − 2q2) , c = p4 − 3p2q2 + q4 . (2.9.2)

Since 0◦ < u < 36◦, we have 2q > p > 1
2q(1 +

√
5). The triangle with these angles

having least perimeter comes from the values p = 5 and q = 3, and has sides a = 81,
b = 105, and c = 31, see Fig. 2.11(b).

Exercises 2.9

2.9.1 Find two triangles with angles u, 3u, and 180◦ − 4u that have one side equal
to 48.

2.9.2 Find the parametric representation for the sides in the cases n = 5 and n = 6,
and the triangles of least perimeter corresponding to these cases.
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In number theory work on lattices is of fundamental importance, and has been ap-
plied to problems as diverse as the rational approximation of real numbers and the
representation of integers as the sum of four squares. In this chapter we do little more
than scratch the surface. In Section 3.1 we give some basic definitions and theorems
about two-dimensional lattices. Section 3.2 is devoted to an account of Pick’s theorem,
concerning the number of lattice points within or on the boundary of a polygon whose
vertices are at lattice points. Finally, in Section 3.3 we show how to solve the problem
of determining which lattice points lie on straight lines with equations of the form
lx+ my = n, where l, m, and n are integers, and then when l, m, and n are restricted
to be positive integers.

3.1 Lattices and the square lattice
We consider lattices in the vector space R

2, endowed with the usual scalar product.
This is such that, if a and b are vectors with rectangular Cartesian components (a1, a2)
and (b1, b2), respectively, then a · b = a1b1 + a2b2.

A lattice in R
2 is defined to be a set

Λ = {n1e1 + n2e2 |n1, n2 ∈ Z} , (3.1.1)

where (e1,e2) forms a basis for R
2.

The members of the set determine the lattice points.
We give two examples.

Example 3.1.1 Let e1 = i and e2 = j, where i and j are unit vectors in the
positive x- and y-directions, respectively. Then Λ is the fundamental square lattice
and the lattice points are the elements of Z

2, which may be represented by rectangular
Cartesian co-ordinates (n1, n2), where n1 and n2 are integers. In what follows we
denote the fundamental square lattice by L.

Example 3.1.2 Let e1 = (1, 0) and e2 = (1
2 , 1

2

√
3). Then Λ is the hexagonal lattice.

In crystallography, given a lattice it is possible to define a reciprocal lattice.
This is the set ΛR = {n1g1 + n2g2 |n1, n2 ∈ Z}, where the vectors g1 and g2 satisfy
gi ·ej = δij . In Example 3.1.2, g1 = (1,−1/

√
3) and g2 = (0, 2/

√
3). The reciprocal

lattice is a hexagonal lattice, but the basis vectors are of a different length to those in
Λ. In the square lattice of Example 3.1.1, the reciprocal lattice vectors are of the same
length and in the same direction as those in Λ.
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It is important to appreciate that a change of basis in the definition of Λ may
produce a lattice that determines the same lattice points. Obviously, the lattices in
Examples 3.1.1 and 3.1.2 lead to distinct sets of lattice points. Let us consider some
more examples.

Consider the lattice Λ = {n1f1 + n2f2 |n1, n2 ∈ Z}, where f1 = 2i and f2 = j.
This is clearly not the same as the fundamental square lattice because the lattice points
with an odd x co-ordinate are missing. It is, in fact, a rectangular lattice with one side
twice the length of the other.

On the other hand, consider the lattice Λ = {n1f1 + n2f2 |n1, n2 ∈ Z}, where
f1 = 2i + j and f2 = i + j. We claim that this is the same as the fundamental
square lattice. The reason for this is, firstly, that every lattice point of Λ has integer
co-ordinates of the form (2n1 + n2, n1 + n2) and so they are also lattice points of the
fundamental square lattice. Secondly, if (N1, N2) are the integer co-ordinates of any
lattice point of the fundamental square lattice, then it is the same as the lattice point of
Λ with n1 = N1 − N2 and n2 = 2N2 − N1. It seems appropriate to say that lattices
defined with respect to different bases, but which determine the same set of lattice
points, are equivalent.

Note that any lattice point may be chosen as the origin and properties of the lattice
are independent of this choice. This is because the environment of each lattice point
is the same.

The set F = {α1e1 + α2e2 | 0 � α1, α2 < 1} is called a fundamental region of
Λ (or in crystallography a primitive unit cell of Λ) and, in general, it has the shape of
a parallelogram. In the fundamental square lattice of Example 3.1.1 the fundamental
region has, of course, the shape of a square. In the hexagonal lattice of Example
3.1.2 the fundamental region has the shape of a rhombus with an acute angle of
60◦. Since lattices defined with different bases sometimes determine identical sets
of lattice points, it is clear that equivalent lattices may have different fundamental
regions. However, the fundamental regions of equivalent lattices have one thing in
common, they all have the same area.

We state without proof the fact that every vector v ∈ R
2 is such that there is a

unique vector u ∈ F such that v−u ∈ Λ. This means that the sets F + λ, for λ ∈ Λ,
tessellate R

2.

Theorem 3.1.3 Two lattices are equivalent (determine the same lattice points) if and
only if the bases to which they are referred are related by a 2 × 2 unimodular matrix
(an integer matrix with determinant equal to ±1).

Proof Suppose that Λ = {n1e1 + n2e2 |n1, n2 ∈ Z} and Λ′ = {m1f1 + m2f2 |
m1,m2 ∈ Z}, and that

f1 = ae1 + be2 ,

f2 = ce1 + de2 ,
(3.1.2)

where a, b, c, and d are integers satisfying the unimodular condition D = ad−bc = ±1.
It is clear that any lattice point (m1,m2) of Λ′ is the same as the lattice point
(am1 + cm2, bm1 + dm2) of Λ. The inverse transformation is
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e1 =
1
D

(df1 − bf2) ,

e2 =
1
D

(−cf1 + af2) ,

(3.1.3)

and, since D = ±1, it is clear that any lattice point (n1, n2) of Λ is the same as
the lattice point ((dn1 − cn2)/D, (−bn1 + an2)/D) of Λ′. It follows that Λ and Λ′
are equivalent. Conversely, if Λ and Λ′ are equivalent then, since (n1, n2) = (0, 1)
corresponds to the lattice point (−c/D, a/D) in Λ′, it must be the case that D|a and
D|c. Similarly, D|b and D|d, and hence D2|(ad − bc), that is, D2|D. Thus D = ±1
and the transformation is unimodular. �

Theorem 3.1.4 The areas of fundamental regions of two equivalent lattices Λ and Λ′
are equal.

Proof If Λ is given by eqn (3.1.1) then the area of the fundamental region F is given by
|e1×e2|. If the bases (e1,e2) and (f1,f2) are related by eqns (3.1.2), where a, b, c, and
d are integers such that |ad− bc| = 1, then the area of the fundamental region F ′ of Λ′
is given by |f1×f2| = |(ae1+be2)×(ce1+de2)| = |(ad−bc)(e1×e2)| = |e1×e2|.

�

In the remainder of this section we consider only the fundamental square lattice
L. From Example 3.1.1 we have L = {n1i + n2j |n1, n2 ∈ Z}, and we suppose
that A and B are lattice points of L with (n1, n2) = (a, b) and (c, d), respectively.
Now consider the lattice L′ defined by L′ = {m1OA + m2OB |m1,m2 ∈ Z}. By
Theorems 3.1.3 and 3.1.4, L and L′ are equivalent if and only if the area of the triangle
OAB is equal to one-half of the area of the unit square, that is, [OAB] = 1

2 |ad−bc| =
1
2 . We have proved the following theorem.

Theorem 3.1.5 Let OA and OB belong to the fundamental square lattice L. A
necessary and sufficient condition that the lattice L′ based on OA and OB should
be equivalent to L is that the area of the triangle OAB is 1

2 . �

A point A of L is visible (from O) if there is no point of L on OA between O and
A. Clearly, in order for (x, y) to be visible, it is necessary and sufficient for x and y to
be coprime. If the highest common factor of x and y is h, then the number of lattice
points between O and A (not counting O or A) is h − 1.

Theorem 3.1.6 Suppose that A and B are points of L visible from O, and let [OAB]
be the area of the triangle T defined by OA and OB. If [OAB] = 1

2 then there is no
point of L inside T ; and if [OAB] > 1

2 then there is at least one point of L inside T
or lying on AB. �

Theorem 3.1.6 follows immediately from Theorem 3.1.5.
The following three simple examples illustrate Theorem 3.1.6. Firstly, define the

points A(1, 1) and B(1, 2). Then OA and OB form a basis for a lattice equivalent
to L, since ad − bc = 1 and [OAB] = 1

2 . Secondly, define the points A(1,−1) and
B(1, 1); then ad − bc = 2 and [OAB] = 1, and a lattice point (1, 0) lies on AB.
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Thirdly, define the points A(2, 1) and B(1, 2); then ad − bc = 3 and [OAB] = 3/2,
and a lattice point (1, 1) lies internal to T .

In this book we do not develop the theory of lattices beyond this point. However, it
is worth mentioning Minkowski’s theorem because it has important consequences in
number theory. For example, it may be used to prove the famous theorem that every
prime of the form 1 (mod 4) may be expressed uniquely as the sum of two perfect
squares. Minkowski’s theorem, as stated below, may of course be generalised to higher
dimensions.

Theorem 3.1.7 (Minkowski) Let S be a centrally-symmetric convex set in R
2 such

that the area of S is greater than four times that of the fundamental unit square. Then
S contains within it at least one lattice point of the fundamental square lattice L. �

Exercises 3.1

3.1.1 Determine the number of internal points, the number of boundary points,
and the area of the triangle OAB when A has co-ordinates (6, 0) and B has
co-ordinates (6, 4).

3.1.2 Determine the number of internal points, the number of boundary points,
and the area of the triangle OAB when A has co-ordinates (6, 0) and B has
co-ordinates (3, 4).

3.1.3 Determine the number of internal points, the number of boundary points,
and the area of the triangle OAB when A has co-ordinates (6, 3) and B has
co-ordinates (6, 4).

3.1.4 Determine the number of internal points, the number of boundary points,
and the area of the triangle OAB when A has co-ordinates (6, 1) and B has
co-ordinates (4, 4).

3.1.5 Determine the number of internal points, the number of boundary points,
and the area of the triangle OAB when A has co-ordinates (4, 2) and B has
co-ordinates (6, 4).

3.1.6 Estimate the number of lattice points lying inside the circle with equation
x2 + y2 = 20000.

3.2 Pick’s theorem

In this section we give a proof of a theorem, called Pick’s theorem, which provides
a formula for the area of a polygon whose vertices are situated at the points of the
fundamental square lattice. The simplicity of the statement of the theorem means that
it is understood and enjoyed (but seldom proved) by students at quite an early age. The
proof we give is rather elaborate, but has the merit of being elementary. It treats the
triangle in great detail, and then uses an obvious induction from triangles to polygons
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with four or more sides. Preferably, the reader should complete Exercises 3.1 before
studying the proof of the theorem.

Theorem 3.2.1 (Pick) The area F of a polygon, whose vertices are situated at lattice
points of the fundamental square lattice, whose sides do not cross, and which has I
internal lattice points and B boundary lattice points, including vertices, is given by
F = I + 1

2B − 1. (The fundamental squares are of area 1.)

Before embarking on a proof of Pick’s theorem we produce some evidence for
supposing that such a result is valid.

Firstly, check the results of Exercises 3.1. The five triangles covered in Exercises
3.1.1 to 3.1 5 are representative of all possible shapes of triangle that can be drawn on
the square lattice. Secondly, the formula is certainly correct for a triangle of area 1

2 ,
by Theorem 3.1.5, since then I = 0 and B = 3. Thirdly, if there is a formula at all
then we should expect it to be linear in I and B, since each lattice point is, loosely
speaking, surrounded by a fixed amount of area. Fourthly, if the formula is true for a
given triangle, then it has to be true when that triangle is enlarged by an integer factor
k; that is, the formula for the area must give k2 times the initial amount. So let us
consider a triangle in which, apart from the vertices, there are x, y, and z lattice points
on the sides and i internal lattice points. Then the proposed formula for the area gives

F1 = i +
1
2
(x + y + z + 3) − 1 = i +

1
2
(x + y + z) +

1
2

. (3.2.1)

After enlargement by a factor of k about any vertex, we find that

I = k2i +
1
2
k(k − 1)(x + y + z) +

1
2
(k − 1)(k − 2) , (3.2.2)

B =
1
2
(kx + ky + kz + 3k) − 1 . (3.2.3)

The derivation of these formulae for I and B is left as an exercise. It is now easily
checked that the formula Fk = I + 1

2B − 1 gives Fk = k2F1, as hoped.
We now give a proof of Theorem 3.2.1.

Proof of Theorem 3.2.1 In this proof, when we refer to the number of boundary
points on a line segment, this number is always stated exclusive of the end-points.
We use the notation [OABC] for the area of OABC and [XY Z] for the area of the
triangle XY Z .

We establish the result for the five types of triangle that can exist on a lattice, by
inscribing them inside a rectangle, for which the formula is first proved to be correct.
Larson (1983) covers the first two comparatively simple cases. For completeness, we
give a proof for all six cases, see Fig. 3.1.

• Case 1
A rectangle OABC has a boundary points on OA and b boundary points on AB.
We have F = ab+ 1

2(2a+2b+4)−1 = ab+a+b+1 = (a+1)(b+1) = [OABC].
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Fig. 3.1 Pick’s theorem: F = I+ 1
2B−1.

(a) Case 1, a rectangle OABC: I = ab = 3, B = 2a + 2b + 4 = 12, and F = 8.

(b) Case 2, a right-angled triangle OAB: c = 1, j = 1, I = 1, B = 8, and F = 4.

(c) Case 3, a triangle OAD: c = 2, i = 2, k = 1, I = 2, B = 6, and F = 4.

(d) Case 4, a triangle OEB: y = 2, v = 1, i = 4, j = 1, m = 2, p = 0, q = 1, I = 1, B = 6,
and F = 3.

(e) Case 5, a triangle OED: c = 3, d = 1, p = 0, q = 1, x = u = l = 0, v = 1, k = 3,
i = 4, m = 2, I = 4, B = 4, and F = 5.

(f) Case 6, a triangle OGB: y = 2, r = s = t = 0, i = 4, j = 3, k = 4, l = 2, I = 3, B = 5,
and F = 9/2.

• Case 2
With the notation as in Case 1, consider a right-angled triangle OAB with short
legs parallel to the axes. Suppose that there are c points on the line OB and j points
internal to OAB. Then, by symmetry, we have 2j + c = ab.
The formula gives F = j + 1

2(a + b + c + 3) − 1 = 1
2(ab + a + b + 1) =

1
2(a + 1)(b + 1) = [OAB].

• Case 3
Again, with the notation as in Case 1, consider the triangle OAD, where D lies
on BC . This is a triangle whose base is one of the sides of the rectangle. Suppose
that there are c points on CD, d points on DB, x points on OD, y points on
AD, i points inside OAD, j points inside ABD, and k points inside OCD. Then
i+j+k+x+y = ab and c+d = a−1. From Case 1 we have [OABC] = ab+a+
b+1 = i+j+k+x+y+a+b+1. From Case 2 we have [OCD] = k+ 1

2(b+c+x+1)
and [ABD] = j + 1

2(b + d + y + 1).
By subtraction, we have [OAD] = i + 1

2(x + y + 2a − c − d) = F = i + 1
2(x +

y + a + 3) − 1, since a = c + d + 1.

• Case 4
Again, with the notation as in Case 1, consider the triangle OEB with E on AB.
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This is a triangle having a side which is part of one of the sides of the rectangle.
Suppose that there are y points on OB, v points on OE, p points on BE, q points
on EA, i points inside OBC , j points inside OEB, and m points inside OAE.
We have ab = i + j + v + y + m and b = p + q + 1. From Case 1 we have
[OABC] = ab + a + b + 1 = i + j + v + y + m + a + p + q + 2. From Case 2
we have [OAE] = m + 1

2(v + q + a + 1) and [OBC] = i + 1
2(a + b + y + 1) =

i + 1
2(a + p + q + y + 2).

By subtraction, we find that [OEB] = F = j + 1
2(v + p + y + 3) − 1.

• Case 5
Again, with the notation as in Case 1, consider a triangle OED with vertices E and
D on the sides AB and BC , respectively. Suppose that CD has c points, DB has d
points, BE has p points, EA has q points, OD has x points, DE has u points, and
OE has v points. Also suppose that there are k internal points in OCD, i internal
points in ODE, l internal points in DBE, and m internal points in OAE. We have
a = c+ d+ 1, b = p + q + 1, and ab = i+ k + l + m + u+ v+ x. Then from Case
1 we have [OABC] = i+ k + l + m + u+ v + x+ c+ d+ p + q+ 3. From Case 2
we have [OCD] = k + 1

2 (p + q + x + c + 2), [OAE] = m + 1
2 (v + q + c + d + 2),

and [EBD] = l + 1
2(u + p + d + 1).

By subtraction, we have [OED] = F = i + 1
2(u + v + x + 1).

• Case 6
Again, with the notation as in Case 1, consider a triangle OGB that has vertices at
opposite corners of the rectangle and an internal vertex at G. We suppose, without
loss of generality, that G lies within the triangle OBC . Suppose that OB has y points,
GB has r points, GA has t points, and OG has s points. Also suppose that there are
i points in OBC , j points in OGB, k points in AGB other than any in OGB, and
l points in OGA other than any in OGB. Then ab = i + k + l + t. From Case 1 we
have [OABC] = i + k + l + t + a + b + 1. From Cases 2 and 3 we have [OBC] =
i+ 1

2(a+b+y+1) and [OGA]+[AGB] = l+ 1
2(a+s+t+1)+j+k+ 1

2(b+r+t+1).
From the equation [AGB] + [OGA] + [OBC] = [OABC] + [OGB] we find that
[OGB] = F = j + 1

2(y + r + s + 1).

We have now shown that the formula is true for all triangles, and the final stage,
in moving from triangles to all polygons, is an induction on the number of sides of
the polygon, supposing that the result is true for all polygons having sides up to and
including k sides, where k � 3. First note that a polygon, even if re-entrant, has an
interior diagonal. This diagonal cuts the polygon of k+1 sides into two polygons with
no more than k sides, for each of which the theorem is true. It is now a simple exercise,
which we leave to the reader, to complete the induction. You have to suppose that there
are d lattice points on the diagonal, excluding the end-points, but d eventually cancels
out. The proof is given in Larson (1983). �



50 Lattices

Exercise 3.2

3.2.1 Find the area of the polygon with vertices at the following points: (−3, 4),
(−1, 4), (1, 3), (3, 3), (4, 1), (3,−1), (1,−2), (−2,−3), (−4,−2), (−5, 0),
and (−4, 3).

3.3 Integer points on straight lines
An integer point on a straight line or curve is a point whose rectangular Cartesian
co-ordinates are integers. A rational point on a straight line or curve is a point whose
rectangular Cartesian co-ordinates are rational numbers. Sometimes integer points are
called lattice points, the presumption being that one is working with a square lattice,
the sides of the square being of unit length.

The following theorem is given in all good undergraduate algebra textbooks.

Theorem 3.3.1 If a and b are positive coprime integers then there exist integers x
and y such that xa + yb = 1. �

If one of a or b is negative then the theorem still holds, by changing the sign of
x or y, as appropriate. The proof of this theorem is constructive, using the Euclidean
algorithm, so we restrict ourselves to an example.

We find integers x and y that lie on the line with equation

74x + 51y = 1 . (3.3.1)

We have, from the Euclidean algorithm,

74 = 1 × 51 + 23 ,

51 = 2 × 23 + 5 ,

23 = 4 × 5 + 3 ,

5 = 1 × 3 + 2 ,

3 = 1 × 2 + 1 .

Now, working backwards, we find that 1 = 3 − 1 × 2 = 3 − 1 × (5 − 1 × 3) =
2×3−1×5 = 2×(23−4×5)−1×5 = 2×23−9×5 = 2×23−9×(51−2×23) =
20 × 23 − 9 × 51 = 20 × (74 − 1 × 51) − 9 × 51 = 20 × 74 − 29 × 51. From this
we see that the point with co-ordinates x = 20 and y = −29 lies on the line given in
eqn (3.3.1). Now, if (x, y) and (x′, y′) are two integer points lying on the line, then
by subtraction 74(x − x′) + 51(y − y′) = 0, so there exists an integer k such that
x′ − x = −51k and y′ − y = 74k. The general solution is therefore

x′ = 20 − 51k , y′ = −29 + 74k . (3.3.2)

As k runs through all integers, positive, zero, and negative, we obtain all integer points
on the line.
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If we want the integer points on the line with equation 74x + 51y = z, where z is
an integer, then the general solution is x′ = 20z − 51k and y′ = −29z + 74k, where
k is an integer.

Note that some lines with rational slope do not contain any integer points at all.
For example, the line 2x + 6y = 3 has no integer points on it because if x and y are
integers then the left-hand side is even and the right-hand side is odd.

A considerably more difficult problem is to find those lines of negative slope that
have non-negative integer solutions for x and y. The following theorem by Sylvester
covers all possibilities. The proof is an abbreviation of the argument in the lengthy
investigation entitled ‘The postage stamp problem’ by Gardiner (1987). The postage
stamp problem is as follows: if you have an unlimited amount of stamps worth a pence
and b pence, then which amounts can be made and which cannot be made using these
stamps alone?

Theorem 3.3.2 If a and b are positive coprime integers then the largest positive
integer N which cannot be expressed in the form N = xa + yb, where x and y are
both non-negative integers, is given by N = ab − a − b.

Proof Without loss of generality we may take a > b > 0.

Lemma 3.3.3 If m is a non-negative integer lying between 0 and ab−a−b inclusive,
and n = ab−a− b−m, then not both of m and n are expressible in the form xa+yb,
where x and y are non-negative integers.

Proof Suppose, in fact, that m = xa + yb and n = pa + qb, where x, y, p, and q are
non-negative integers. Clearly, we may take x and p to lie between 0 and b−1 inclusive,
since 0 � m,n < ab. Adding these two equations gives m + n = ab − a − b =
(x + p)a + (y + q)b. That is,

ab = (x + p + 1)a + (y + q + 1)b . (3.3.3)

Since a and b are coprime it follows that b divides x + p + 1. However, we know that
this is less than or equal to 2b− 1. Hence b = x+ p + 1, and dividing eqn (3.3.3) by b
one obtains y +q +1 = 0. Thus one of y or q is negative and the other is non-negative.
This proves the lemma and shows that at most one of m and n is expressible in the
required form. �

Lemma 3.3.4 If m is a non-negative integer lying between 0 and ab inclusive, then
the number of values of m that are expressible in the form xa+ yb, where x and y are
non-negative integers, is M = 1

2(a + 1)(b + 1).

Proof On the fundamental square lattice draw the co-ordinate axes and the line with
equation ax + by = ab meeting the x-axis at B(b, 0) and the y-axis at A(0, a).
First note that, for fixed m in the interval 0 � m < ab that is expressible in the
form xa + yb = m, with x and y non-negative integers, this can be done in exactly
one way. For, if m = x′a + y′b as well, with x′ and y′ non-negative integers, then
(x − x′)a + (y − y′)b = 0. Now a and b are coprime, so a|(y − y′). However,
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0 � y, y′ � a− 1 and so a cannot divide y − y′. The contradiction shows that y = y′
and x = x′. On the other hand, m = ab is expressible in two ways represented by
the lattice points A and B (but not by more, because, as a and b are coprime, the
line AB passes through no other lattice point). By counting lattice points inside and
on the boundary of the triangle OAB (but not counting both A and B), we have
M = 1

2(a + 1)(b + 1). �

We are now in a position to prove Theorem 3.3.2.

Proof of Theorem 3.3.2 continued First, by Lemma 3.3.3, when m lies between 0
and ab − a − b inclusive there are no more than 1

2(ab − a − b + 1) values of m that
are expressible in the form xa + yb = m, with x and y non-negative integers. So, by
Lemma 3.3.4, no less than 1

2(a + 1)(b + 1) − 1
2(ab − a − b + 1) = a + b values of

m between ab − a − b + 1 and ab inclusive are expressible. However, that is all of
them. So, in fact, the number expressible between 0 and N = ab − a − b inclusive is
precisely half of them. By Lemma 3.3.3, we now see that, if 0 � m � N and m is
expressible then N −m is not expressible, and if m is not expressible then N −m is
expressible.

Now 1, 2, 3, . . . , b−1 are clearly not expressible, so N−1, N −2, N −3, . . . , N−
b + 1 are expressible. Adding 1 to the value of y means that N + b − 1, N + b −
2, N + b − 3, . . . , N + 1 are expressible. So also is N + b = ab − a, with x = b − 1
and y = 0. Starting with N + 1, we now have a sequence of b integers that are all
expressible, and by increasing the value of y by 1 we see that the next b integers are
expressible, and so on. The conclusion is that N = ab − a − b is the largest integer
that is not expressible. �

As an example of Theorem 3.3.2, if a = 5 and b = 4, then 0 is expressible and 11
is not, 1 is not but 10 is, 2 is not but 9 is, 3 is not but 8 is, 4 is and 7 is not, 5 is and 6
is not, and all positive integers greater than 11 are expressible.

Exercises 3.3

3.3.1 Find all pairs of integers x and y such that 35x + 12y = 1.

3.3.2 Explain why it is not possible to find integers x and y such that 133x+84y =
1.

3.3.3 What is the smallest positive integer h for which integers x and y can be
found such that 133x + 84y = h?

3.3.4 For which values of N does the equation 7x + 4y = N have solutions for
which x and y are non-negative integers?



4 Rational points on curves

This chapter is concerned with the identification of integer points and rational points
on curves of degree two and three. Elliptic curves have been studied extensively
throughout the twentieth century and they are at the centre of a deep and profound
theory. My intention is to provide a reader new to such ideas with a readable account
of the elementary theory, and at the same time to give enough examples to give a
student a working knowledge of the subject. It is necessary, therefore, to explain how
to classify singularities on curves, and to explain why it is necessary to embed curves
in the projective plane.

4.1 Integer points on a planar curve of degree two

A rational point is defined to be a point on a curve whose rectangular Cartesian
co-ordinates are both rational. There is a standard method of determining all rational
points on a curve of second degree given one such point. Sometimes it is possible to
determine the points on the curve with integer co-ordinates directly from the rational
points, but there are cases in which alternative methods are required. We first consider
the method of obtaining rational points by giving a number of illustrative examples.

Example 4.1.1 Consider the ellipse E : x2 + 2y2 = 1.
We use the fact that the point (1, 0) lies on E. If (x, y) is another rational point on

E then the gradient of the chord joining (1, 0) to (x, y) is rational. Conversely, if m is
rational then the line with equation y = m(x − 1) passes through (1, 0) and meets E
where x2 + 2m2(x − 1)2 = 1. Since this quadratic equation has one root x = 1, the
other root is easily calculated to be x = (2m2 − 1)/(2m2 + 1). This is rational and
(x, y) lies on E, where y = −2m/(2m2 + 1), a value which is also rational. Putting
m = −u/v, where u and v are coprime integers, we obtain the rational points

(x, y) =
(

2u2 − v2

2u2 + v2
,

2uv

2u2 + v2

)
. (4.1.1)

As the above argument implies, these are all the rational points on E.
Furthermore, if (x, y) is an integer point on the curve x2 + 2y2 = z2, for some

integer value of z, then (x, y, z) is proportional to the triple (2u2−v2, 2uv, 2u2 +v2).
The only integer points on the curve E with equation x2 + 2y2 = 1 are obviously
(1, 0) and (−1, 0), see Fig. 4.1.
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x2 + 2y2 = 1

O

P

m = −1/2
A

(−1, 0)

(−1/3, 2/3)

B
(1, 0)

Fig. 4.1 A rational point on an ellipse.

Example 4.1.2 Consider the hyperbola H : x2 − 2y2 = 1.
We use the fact that (1, 0) lies on H and consider the intersection of the line with

equation y = m(x−1) and H , where m is rational. This happens for values of x given
by x2 − 2m2(x − 1)2 = 1. This quadratic equation has roots x = 1, corresponding
to y = 0, and x = (2m2 + 1)/(2m2 − 1), corresponding to y = 2m/(2m2 − 1).
Putting m = u/v, where u and v are coprime integers, we find the rational points on
the hyperbola to be (1, 0) and

(x, y) =
(

2u2 + v2

2u2 − v2
,

2uv

2u2 − v2

)
. (4.1.2)

An attempt to find the integer points on the hyperbola from the rational points fails,
as the denominators in eqn (4.1.2) are equal to ±1 only if we can find integers u and
v such that 2u2 − v2 = ±1, which is essentially the same problem that we started
with. We can make some progress by inspection. For example, u = 1 and v = 1 gives
(x, y) = (3, 2). Figure 4.2 shows this integer point and the others obtained from it
by symmetry. We can then put u = 2 and v = 3 to obtain (x, y) = (17, 12), but
finding a few low-valued solutions is not going to help unless they form the basis of
an induction argument.

In fact, the equation x2 − 2y2 = 1 belongs to the class of equations

x2 − Ny2 = 1 , (4.1.3)

where N is a positive integer but not a perfect square, which carries the name of Pell.
It turns out that there is a method of obtaining all integer solutions for x and y for
any such value of N . In fact, it was Lagrange who first proved that eqn (4.1.3) has
infinitely many solutions, and the class of equations bears Pell’s name by mistake. We
illustrate the method for the case N = 2.

The method starts with the observation that 3 + 2
√

2 is the smallest number of the
form x + y

√
2, with x and y being positive integers, such that

x2 − 2y2 = 1 . (4.1.4)
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x2 − 2y2 = 1

OA
(−1, 0)

P (−3, 2)

S (−3, −2) R (3, −2)

Q (3, 2)

B
(1, 0)

Fig. 4.2 Integer points on a hyperbola.

Now form (3+ 2
√

2)(x+ y
√

2) for any integer solution (x, y) of eqn (4.1.4), starting
with (3, 2). It equals (3x + 4y) + (2x + 3y)

√
2. If we now write

x′ = 3x + 4y ,

y′ = 2x + 3y ,
(4.1.5)

then we find that x′2−2y′2 = 9x2+24xy+16y2−8x2−24xy−18y2 = x2−2y2 = 1.
In this way, from one solution (x, y) we have generated another solution (x′, y′).

Theorem 4.1.3 (x, y) is a solution of the equation x2 − 2y2 = 1 in positive integers
x and y if and only if x + y

√
2 = (3 + 2

√
2)k for some positive integer k.

Proof We have already shown that any (x, y) obtained from the above equation with
a positive integer value of k provides a solution. It is a matter, therefore, of showing
that there are no other solutions. Suppose, in fact, that there is a positive solution (c, d),
not in the above sequence of solutions; then there must exist a value of k such that
(3+2

√
2)k < c+d

√
2 < (3+2

√
2)k+1. Multiplying by (3+2

√
2)−k = (3−2

√
2)k

we obtain 1 < (c + d
√

2)(3 − 2
√

2)k < 3 + 2
√

2. Defining integers x and y by
x + y

√
2 = (c + d

√
2)(3 − 2

√
2)k, it is easy to check (by a similar analysis to that

following eqn (4.1.5)) that x2 − 2y2 = 1. Also, 1 < x + y
√

2 < 3 + 2
√

2. It follows
that 0 < 1/(x + y

√
2) < 1, that is, 0 < x − y

√
2 < 1. Hence 2x > 1, so x, being an

integer, is greater than or equal to 1. However, x−y
√

2 < 1, so y > 0. Hence x+y
√

2
is a positive solution of eqn (4.1.4) which is less than 3 + 2

√
2. This is a contradiction

to the fact that (3, 2) is the least such solution. Hence the suggested solution (c, d)
does not exist. �
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A discussion of the Pell equation and how to obtain all solutions of eqn (4.1.3) is
found in most books on number theory, see, for example, Silverman (1997). The proof
that there is always one positive solution for any given non-square value of N is more
difficult than showing that all solutions come from iteration. Some authors, such as
Niven et al. (1991), treat the Pell equation as part of the theory of continued fractions,
which provides an interesting, but less elementary, approach.

Example 4.1.4 Consider the hyperbola H : 2x2 − 7xy + 4y2 = 4.
For the rational points, start from the integer point (0, 1) and find where the lines

x = 0 and y = 1 + mx, where m is rational, meet the hyperbola again. Putting
m = u/v, where u and v are coprime integers, we find the rational points to be (0, 1),
(0,−1) from the line x = 0, and

(x, y) =
(

7v2 − 8uv

2v2 − 7uv + 4u2
,

2(v2 − 2u2)
2v2 − 7uv + 4u2

)
, (4.1.6)

from the line y = 1 + mx.
To find the integer points is a much more complicated task. The first thing to do

is to transform the equation, by completing the square, into the more manageable
form w2 − 17y2 = 32, where w = |4x − 7y|. At this point, one might hope that a
theorem such as Theorem 4.1.3 would enable us to find all positive integer solutions
by means of an iteration of some basic solution. However, when the right-hand side of
the equation is not 1, although sequences of solutions may exist, there is often more
than one such sequence. There are, in this case, four basic solutions, basic in the sense
that they cannot be obtained from each other by iteration. These are y = 1, w = 7,
and x = 0; y = 2, w = 10, and x = 6 or 1; y = 14, w = 58, and x = 10 or 39; and
y = 23, w = 95, and x = 64. Some of these integer points are shown in Fig. 4.3.

In order to generate the four sequences of solutions from these basic solutions
we need to have the smallest solution of the auxiliary equation w2 − 17y2 = 1.
This is w = 33 and y = 8. We then form the matrix A with first row (33, 8) and
second row (136, 33). Here the entry 136 is chosen so that detA = 1. Then, if
(w0, y0) is one of the basic solutions, then the sequence that derives from it is found
from the equations (wm, ym) = (w0, y0)Am, m = 0, 1, 2, . . .. The four solutions are
(w1, y1) = (367, 89), (602, 146), (3818, 926), and (6263, 1519). These provide the
integer points (x, y) = (64, 89), (105, 146), (406, 146), (2575, 926), (666, 926), and
(4224, 1519) on H . The reader may check that these are indeed solutions, but no proof
is given that all solutions are obtained by this method.

Example 4.1.5 (Introducing singular points) Consider the conic C : f(x, y) =
y2 − 2x2 + xy + 7x − 4y − 5 = 0.

This example gives an opportunity to introduce the concept of a singular point.
Pictorially, a singular point is where a curve crosses over itself. For curves f(x, y) = 0
of the second degree, the only possibility is when the conic degenerates into a pair of
straight lines, their point of intersection being the singular point.
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2x2 − 7xy + 4y2 = 4

O
x

y

A

B

Q

(0, −1)

(−1, −2)S (−6, −2)

R (6, 2)P (1, 2)

(0, 1)

Fig. 4.3 Integer points on a hyperbola.

Here f(x, y) = (y − x + 1)(y + 2x − 5) and the point where both of these terms
vanish is (x, y) = (2, 1). We see this clearly if we write

f(x, y) = [(y − 1) − (x − 2)][(y − 1) + 2(x − 2)]

= (y − 1)2 + (x − 2)(y − 1) − 2(x − 2)2 . (4.1.7)

In other words, if we express f(x, y) as a two-variable Taylor series about a singular
point then the absolute term and the terms of first degree in that expansion vanish.
This observation gives the clue as to how to find a singular point, and provides an
analytic definition. This is to work out the partial derivatives ∂f/∂x and ∂f/∂y, and
solve the simultaneous equations ∂f/∂x = 0 and ∂f/∂y = 0. Any points (x, y)
which emerge that also satisfy f(x, y) = 0 are the singular points. Points that are not
singular are called simple. If one has a singular point but the second partial derivatives
do not vanish then the singular point is called a double point. If a curve contains no
singular points (even at infinity when the curve is embedded in the projective plane)
then the curve is termed non-singular. In higher-order curves a triple point may be
defined where the second-order derivatives vanish, and so on.
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Exercises 4.1

4.1.1 Starting from the point (8, 1), find all rational points on the curve with
equation x2 + y2 = 65. Also find all of the integer points.

4.1.2 Find expressions for all rational points and all integer points on the hyperbola
with equation x2 − 7y2 = 1. Are there any integer points on the hyperbola
7x2 − y2 = 1?

4.1.3 Find the least positive integer solution of the equation x2 − 18y2 = 1. Is
there any integer solution of the equation x2 − 18y2 = −1?

4.1.4 Find any integer points on the hyperbola with equation x2 − 4y2 = 13.

4.1.5 Show that, for certain values of m and c, the line y = mx + c meets the
conic with equation y2 − 4x2 + 6x = 9 in more than two points.

4.2 Rational points on cubic curves with a singular
point

The projective plane

Before proceeding with examples, we first show how to embed curves defined in R
2

so that they become defined in the real projective plane P
2. This is necessary if we are

to have a proper classification of cubic curves, and in particular of elliptic curves.
If f(x, y) is a polynomial of degree three, then we define the function F (X,Y,Z) =

f(X/Z, Y/Z)Z3. In this way, the cubic curve f(x, y) = 0 is transformed into a
homogeneous cubic F (X,Y,Z) = 0 in R

3. For example, x3 + y3 = 7 becomes
X3 + Y 3 = 7Z3. We now define an equivalence class on the points of R

3\{(0, 0, 0)}
by saying that (X,Y,Z) and (kX, kY, kZ) are equivalent for all nonzero real numbers
k. The reason that this is fruitful is because of the homogeneous nature of F , whereby
if (X,Y,Z) lies on F (X,Y,Z) = 0 then so does (kX, kY, kZ). We now identify
the lines through the origin in which X : Y : Z are in fixed ratio as points of the
projective plane P

2. Points (x, y) on f(x, y) = 0 may be identified on F (X,Y,Z) = 0
by X : Y : Z = x : y : 1, but there are now points at infinity on f(x, y) = 0,
which may be identified by lines on which Z = 0. For example, 1 : −1 : 0 lies on
X3+Y 3 = 7Z3, but does not correspond to any finite point of the curve in the original
real plane.

In the remainder of this section we consider curves that possess a singularity either
at a finite point or at infinity. In Example 4.2.1 there is a double point at infinity, in
Example 4.2.2 there are two double points, and in Example 4.2.3 there is one double
point. Methods of finding rational and integer points differ depending on the nature of
the singularities.
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Example 4.2.1 Consider the curve C : y = x3.
Trivial as this example is, it serves to illustrate the use of singular points in obtaining

parameters for rational points on a cubic curve. There are no finite singular points, but
in the projective plane the curve becomes Y Z2 = X3. For singular points we have
3X2 = 0, Z2 = 0, and 2Y Z = 0, providing a double point X : Y : Z = 0 : 1 : 0.
Lines through the double point are of the form X = cZ , for real c. Back in the real
plane these correspond to the lines x = c parallel to the y-axis. When x = c, we have
y = c3, and this parameterisation provides rational (integer) points on the curve for
rational (integer) c.

Example 4.2.2 Consider the curve C : f(x, y) = y3−2x3+yx2−2xy2−5y+10x =
0.

For singular points,
3y2 + x2 − 4xy − 5 = 0 (4.2.1)

and
−6x2 + 2xy − 2y2 + 10 = 0 . (4.2.2)

Eliminating x2 we find that x = (8y2 − 10)/11y. Substituting back and solving we
obtain y = (1/3)

√
3 and x = (2/3)

√
3, y = −(1/3)

√
3 and x = (2/3)

√
3, y = 2

and x = 1, and y = −2 and x = −1. Of these four points, only (1, 2) and (−1,−2)
lie on the curve, and hence we have two finite double points. It seems clear that the
line joining them, which has equation y = 2x, since it encompasses four intersections
with a curve of degree three, must be part of the curve itself, which is therefore the
union of a line and a conic. In fact, f(x, y) = (y − 2x)(x2 + y2 − 5). The integer
points on the curve are therefore x = c and y = 2c, for any integer c, and (2, 1),
(2,−1), (−2, 1), (−2,−1), (1, 2), (1,−2), (−1, 2), and (−1,−2). For the rational
points, x = c and y = 2c, for c rational, together with

x =
2(u2 + uv − v2)

u2 + v2
, (4.2.3)

y =
u2 − 4uv − v2

u2 + v2
, (4.2.4)

where u and v are coprime integers, and also those points with one or both of the
co-ordinates being the negative of these. The methods of Section 4.1 were used to
obtain the rational points on the circle x2 + y2 = 5, see Fig. 4.4.

Example 4.2.3 Consider the curve C : y2 = x3 − x2 − 5x − 3.
For singular points, y = 0 and 3x2 − 2x − 5 = 0. The two possibilities are

(5/3, 0) and (−1, 0). Of these, only the second one lies on the curve, and hence we
have one double point. The method of obtaining a parameterisation is now to consider
lines through the double point with rational slope, and then their intersections with the
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x2 + y2 = 5

y = 2x

O

A

B

(−1, −2)

(1, 2)

Fig. 4.4 A cubic with two double points.

curve give all of the rational points on it. These lines are of the form y = m(x + 1),
where m is rational. They meet the curve again at the points with co-ordinates

x = m2 + 3 ,

y = m(m2 + 4) .
(4.2.5)

These equations, by varying m, together with x = −1 and y = 0, give the co-ordinates
of all of the rational and integer points.

Exercises 4.2

4.2.1 Find all integer points lying on the curve with equation x3 + y3 = (x + y)2.

4.2.2 Prove that, if the curve with equation y2 = p(x), where p(x) is a cubic
polynomial with integer coefficients, has a double point, then the equation
p(x) = 0 has a double root, and that this root has a rational value.

4.2.3 Find the integer points on the curve with equation y2 = x3 + 3x2.

4.3 Elliptic curves

An elliptic curve over the field of real numbers is a curve of degree three with equation
f(x, y) = 0 such that f(x, y) is irreducible over the real numbers and has no singular
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point in the real projective plane P
2. Elliptic curves may be defined over other fields

in the same way.
If a cubic curve has an equation that factors over the real field, then one of the factors

must be linear, and so the curve contains a line, see Example 4.2.2. Furthermore, if
a cubic curve has a singularity then it is impossible to determine a unique tangent at
that point. Consider, for example, the curve with equation x3 + y3 = 3axy, where a
is a real constant. This curve has a singularity at (0, 0), where the curve crosses itself.
Both branches of the curve are smooth at the origin, but there is no unique tangent
there. Elliptic curves are defined to exclude both of these eventualities.

The definition of an elliptic curve imposes the requirement that it should have the
following property. If you join two distinct points of an elliptic curve or draw the
tangent at a given point, then the line must intersect the curve at a unique well-defined
point. Thus, if P and Q are two points on the curve, then the line through P and Q
must meet the curve again at a unique point R and we may write R = P ∗Q = Q∗P .
This property cannot hold if the curve contains a line, which is why the requirement
is made on f(x, y) that it should be irreducible. Nor can the property hold if there
is a singular point P , because we cannot then decide what is meant by P ∗ P . On a
non-singular curve, P ∗P is defined as the unique point on the curve other than P lying
on the tangent at P . An elliptic curve is embedded in the projective plane because we
require the same properties to hold whether the points involved are at infinity or not.

It is, of course, possible that P ∗ Q = P , when PQ is tangent at P ; it is also
possible that P ∗ Q = Q, when PQ is tangent at Q.

Before embarking on the algebra of the ∗ operation, we give two numerical exam-
ples, the first of which is a classic exercise. These examples also provide numerical
material to illustrate the general theory.

Example 4.3.1 Consider the curve C : x3 + y3 = 7.
In the projective plane this becomes X3 + Y 3 = 7Z3. For singular points we have

X = Y = Z = 0, and as this point does not belong to P
2 we deduce that there are

no singular points. There is a point at infinity on the curve, which we denote by J ; its
co-ordinates are 1 : −1 : 0. There are also two obvious integer points P (2,−1) and
Q(−1, 2). In P

2 the line PQ has equation X +Y = Z , and this meets the curve again
at J and at no other point, since X2 −XY + Y 2 = 7(X + Y )2 merely reproduces P
and Q.

We now show how to find an infinite sequence of rational points on the curve. This
is done by starting at P0 = P and finding the point P1 where the tangent at P0 meets
the curve again. We then do the same for P1 to find a new rational point P2, and so
on. Finally, we show that Pk, k = 0, 1, 2, . . ., are distinct. We proceed by induction.
Straightforward calculus shows that the equation of the tangent at Pn(xn, yn) has
equation

y2
ny + x2

nx = 7 . (4.3.1)

Since x3
n + y3

n = 7, this meets the curve again where

(7 − x2
nx)3 = (7 − x3)(7 − x3

n)2 , (4.3.2)
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that is, where x = xn (a double root) and

x = xn+1 =
(14 − x3

n)xn

2x3
n − 7

=
xn(2y3

n + x3
n)

x3
n − y3

n

, (4.3.3)

with a similar expression for yn+1 with xn and yn interchanged. In the projective
plane this provides the recurrence relations

Xn+1 = Xn(2Y 3
n + X3

n) ,

Yn+1 = −Yn(2X3
n + Y 3

n ) ,

Zn+1 = Zn(X3
n − Y 3

n ) .

(4.3.4)

The start of the induction is P0 with co-ordinates 2 : −1 : 1, which certainly lies
on the curve. Hence all of the points Pk lie on the curve. Since X0 is even and
Y0 and Z0 are odd, it follows by induction that Xn is even and Yn and Zn are
odd. Evidently, Xn|Xn+1 and, since 2Y 3

n + X3
n = 2 (mod 4), Xn+1 has one more

power of 2 than Xn. It follows that the Pk, k = 0, 1, 2, . . ., are distinct. We give
the co-ordinates of P1, P2, and P3. These are 4 : 5 : 3, 1256 : −1265 : −183, and
−2 596 383 146 704 : 2 452 184 545 855 : −733 037 580 903. Figure 4.5 illustrates
the construction of P1 from P . A similar sequence arises if we start with Q rather than
P . It is worth noting that there are other rational points on the curve. For example,
if we join Q to P1 then we have the line with equation 7Y + X = 13Z , and this
meets the curve again at R1,0, whose co-ordinates are −17 : 73 : 38. Note also that
the tangent at the point J in the projective plane (the asymptote in the real plane)
has triple point contact. Points such as these are called inflection points. Note that
the line joining P1(4 : 5 : 3) and Q1(5 : 4 : 3) has equation X + Y = 3Z and
meets the curve again at J , so with an obvious notation R1,1 = J . In terms of the ∗
operation, we have Pk ∗Qk = J , J ∗ J = J , Pk ∗Pk = Pk+1, Qk ∗Qk = Qk+1, and
Pk ∗ Ql(k �= l) = Rk,l.

Example 4.3.2 Consider the curve C : y2 = x3 + 4x + 9.
It is easily checked that this is an elliptic curve. There are six easily recognised inte-

ger points, namely A(−1, 2), B(0, 3), C(2, 5), D(−1,−2), E(0,−3), and F (2,−5).
In the projective plane the point J(0 : 1 : 0) is an inflection point. Lines parallel to the
y-axis all pass through J . So, for example, A ∗ D = J , B ∗ E = J , and C ∗ F = J .
The line BF has equation y + 4x = 3 and meets the curve again at G(14,−53). This
means that H(14, 53) also lies on the curve, and we have B ∗ F = G. The line BD
has equation y = 5x + 3 and this meets the curve again at K(26, 133). This means
that L(26,−133) also lies on the curve, and we have B ∗ D = K .

The ∗ and + operations on an elliptic curve

We have already introduced the ∗ operation, which on an elliptic curve is a closed
binary operation. It is also commutative since it is obvious that PQ and QP , being the
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x3 + y3 = 7

x + y = 1

P ∗ P = P1

x

y

P (2, −1)

Q

(−1, 2) P1 (4/3, 5/3)

Fig. 4.5 An elliptic curve showing P ∗ P = P1.

same line, cut the curve again at one and the same third point, and hence P ∗Q = Q∗P .
It is also the case that P ∗ (P ∗ Q) = Q since, if PQ meets the curve at R, then PR
meets the curve at Q. However, there is no point E on the curve such that P ∗E = P
for all P on the curve. Indeed, P ∗ E = P if and only if PE is tangent at P . That
is, if and only if E = P ∗ P , and this point is dependent on P . Also, Q is a point of
inflection if and only if Q ∗ Q = Q.

It is possible, however, to define a binary operation + that is closed, associative,
commutative, and which possesses both an identity and inverses. Then, with respect to
+, the points on the elliptic curve form an Abelian group. In order to define +, choose
any point E on the curve and, given any two points P and Q on the curve, define
P +Q = E∗(P ∗Q). Closure is obvious. Also, + is commutative since P ∗Q = Q∗P .
E is an identity since P + E = E + P = E ∗ (E ∗ P ) = P . The inverse of P is
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P ∗(E ∗E) since P +P ∗(E ∗E) = E ∗(P ∗(P ∗(E ∗E))) = E ∗(E ∗E) = E; the
inverse is unique since, if P +Q = E, then E∗(P ∗Q) = E and hence P ∗Q = E∗E,
that is, Q = P ∗ (E ∗ E).

The symbol − is used in an obvious way. Thus P − Q = R means the same as
P = R + Q. Multiplication by an integer also has an obvious meaning. For example,
2P means P + P . Evidently, by changing the choice of E, the binary operation + is
also changed. However, see Theorem 4.3.4 below, the Abelian groups obtained with
different choices of E are isomorphic to one another. Without this property the concept
of the group would not be important.

As an example of the above, let us return to Example 4.3.2 with E(0,−3). The
tangent at E has equation 3y + 2x + 9 = 0 and this meets the curve again at
(4/9,−89/27), and this is the point E ∗ E. Now B ∗ G = F and hence B + G =
E ∗ (B ∗G) = E ∗F . Now the equation of the line joining E and F is y + x + 3 = 0
and this meets the curve again at D(−1,−2). Hence B + G = D. We now work
out the inverse of B. According to the above, this is the point B ∗ (E ∗ E). The
equation of the line joining (0, 3) and (4/9,−89/27) is 6y + 85x = 18 and this
meets the curve again at B0(801/4,−22 671/8), the inverse of B. We next find
that B0 ∗ D = (−61/49, 496/343). The line joining E and B0 ∗ D has equation
7y + 25x + 21 = 0 and this meets the curve again at (14,−53), which is the point G.
We have shown that

B0 + (B + G) = B0 + D = G = (B0 + B) + G. (4.3.5)

This illustrates the associative law.

The associative law

Theorem 4.3.3 Let C(f) : f(x, y) = 0 be an elliptic curve over the real field, E
be an arbitrary origin on C(f), and P , Q, and R be any three points on C(f).
Then, with the operation + defined by P + Q = E ∗ (P ∗ Q), the associative law
P + (Q + R) = (P + Q) + R holds. �

For the proof we refer to Niven et al. (1991).
The group G defined for C(f) with respect to an origin E is isomorphic to the

group H defined for C(f) with respect to a different origin F .

Theorem 4.3.4 Let E and F denote two points on C(f). For A and B in C(f), let
A + B denote the addition with E as origin and A ∧ B denote the addition using F
as origin. Then A∧B = A+B −F and, furthermore, the group G(f) = {C(f),+}
is isomorphic to the group H(f) = {C(f),∧}.

Proof We have A∧B+F = F ∗(A∗B)+F = E∗(F ∗(F ∗(A∗B))) = E∗(A∗B) =
A + B. The mapping t from G(f) to H(f) defined by t(A) = A + F satisfies
t(A+B) = A+B+F = (A+F )+(B+F )−F = (A+F )∧(B+F ) = t(A)∧t(B), so
t is a homomorphism. However, t is clearly 1–1 and onto, and is hence an isomorphism.

�
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If C(f) has any rational points, then E may be chosen to be such a point, and,
if we restrict attention only to rational points of C(f), then the group involved is a
subgroup of G(f).

It may be shown, by a famous theorem of Mordell, that the group of rational points
on an elliptic curve is a finitely-generated Abelian group.

Exercises 4.3

4.3.1 In Example 4.3.2 show that E ∗ D = F and B ∗ C = A.

4.3.2 In Example 4.3.2 show that B0 ∗ D = (−61/49, 496/343).

4.3.3 In Example 4.3.1 take the point at infinity to be the origin E (labelled as
J previously), and show that P1 = −2P0 = −Q1, and more generally that
Pk = (−2)kP0. Find 3P0 and show how to obtain nP0.

4.3.4 Consider the elliptic curve with equation 2x(x2 − 4) = y(y2 − 1). Let (0, 0)
be the origin E. Define the points A(0, 1), B(2, 0), and C(2, 1). Show that
A + B has co-ordinates (28/17,−31/17) and that B + C has co-ordinates
(−2, 1). Find the common co-ordinates of (A + B) + C and A + (B + C).

4.3.5 If A, B, and C are three distinct points of C(f) then prove that A, B, and C
are collinear if and only if A + B + C = E ∗ E.

4.3.6 If A and B are two distinct points of C(f) and AB is tangent at B then
prove that A + 2B = E ∗ E.

4.3.7 Find all integer points on the elliptic curve x3 + y3 = 1, and explain why
the chord and tangent method yields no further rational points.

4.3.8 For what values of k is the curve x(x2 − 4) = ky(y2 − 1) an elliptic curve?

4.4 Elliptic curves of the form y2 = x3 − ax − b

In this section we consider curves of the form y2 = x3 − ax − b, where a and b
are integers. The importance of curves of this form lies in the fact that, if C(f) is an
elliptic curve with a rational point and f(u, v) has rational coefficients, then it may
be transformed by what is called a birational transformation (the variables u and v
being the quotient of two polynomials in x and y with rational coefficients, and the
transformation having an inverse) into an equation of the above form. This form is
called the Weierstrass normal form.

In the projective plane this curve has equation

F (X,Y,Z) = X3 − aXZ2 − bZ3 − Y 2Z = 0 . (4.4.1)

For singular points the partial derivatives vanish, that is,
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3X2 − aZ2 = 0 ,

−2Y Z = 0 ,

2aXZ + 3bZ2 + Y 2 = 0 .

(4.4.2)

If Z = 0 then X = Y = 0, and this is not a point of the projective plane. If Y = 0
then X = −3bZ/2a and 3X2 = aZ2, so that 4a3 − 27b2 = 0. Those familiar with
cubic equations will recognise D = 4a3 − 27b2 as the discriminant, and its vanishing
is the condition for the equation p(x) = x3 − ax − b = 0 to have a repeated root.
Further, if D > 0 then the equation p(x) = 0 has three real roots, and if D < 0 then
p(x) = 0 has only one real root. It follows that if D > 0 then we have an elliptic
curve with two connected components, one a closed oval and the other extending to
the point (0 : 1 : 0) at infinity. If D = 0 then we do not have an elliptic curve, and if
D < 0 then we have an elliptic curve with one connected component. Connectedness
depends on the field one is working with, and we are supposing here that our curves
are defined over the real field.

We now consider a number of special cases.

Example 4.4.1 Let C1 : y2 = x3 + 4x and C2 : y2 = x3 − x.
We prove that on C1 the only finite points with rational co-ordinates are A(0, 0),

B(2, 4), and C(2,−4), and that on C2 the only finite points with rational co-ordinates
are P (0, 0), Q(1, 0), and R(−1, 0). In both cases there is the point at infinity
E(0 : 1 : 0). On C1 we have the group structure on rational points defined by 4B =
4C = 2A = E, A + B = C , and A + C = B, the cyclic group of order four. On
C2 we have the group structure on rational points defined by P + Q + R = E and
2P = 2Q = 2R = E, the direct sum of two copies of the cyclic group of order two.

In order to show that the above points are the only rational points, we note that
(0, 0) lies on each curve. Then, since x = 0 is the tangent line in each case, if there
is any other rational point on either curve then it must lie on a line with equation
y = mx, for some rational value of m. On C1 the line y = mx has intersection points
x = 0 or x2 − m2x + 4 = 0, and this leads to rational points if and only if m4 − 16
is the square of a rational; that is, if and only if m = 2 or m = −2 (leading to the
rational points B and C), or nonzero integers x, y, and z exist such that

x2 + 16y4 = z4 . (4.4.3)

On C2 the line y = mx has intersection points x = 0 (leading to the rational points Q
and R) or x2 −m2x− 1 = 0, and this leads to rational points if and only if m4 + 4 is
the square of a rational; that is, if and only if m = 0 or nonzero integers u, v, and w
exist such that

u4 + 4v4 = w2 . (4.4.4)

The curves C1 and C2, together with their rational points, are shown in Figs 4.6 and
4.7, respectively.
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          y + 2x = 0
showing C ∗ C = A

y = 2x
showing B ∗ B = A                         

C (2, −4)

A

B (2, 4)

x

y

so B + B = E ∗ (B ∗ B) = E ∗ A = A
and A + A = E ∗ (A ∗ A) = E ∗ E = E

E  is  (0 :1 :0)

Fig. 4.6 The elliptic curve with equation y2 = x3 + 4x and with one connected component.

Method of infinite descent

To complete Example 4.4.1 we prove that neither of the Diophantine equations u4 +
4v4 = w2 nor x2 + 16y4 = z4 have solutions in which all of u, v, w, x, y, and z are
positive integers. It is a good example of an argument called the method of infinite
descent. The method supposes that such solutions exist and, if they do, then there must
be a solution in each case in which w and z have least positive values. We then show
that any solution leads to another solution in which u, v, w, x, y, and z are positive, but
in which w and z are smaller than before. This leads to a contradiction, establishing
the non-existence of such solutions.

Following this plan, suppose that u, v, and w are positive integers satisfying
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Q (1, 0)PR (−1, 0) x

y

E is (0 :1 :0)
and since the tangents

at P, Q, and R are
parallel to the y-axis
2P = 2Q = 2R = E

P + Q + R = E

Fig. 4.7 The elliptic curve with equation y2 = x3 − x and with two connected components.

u4 + 4v4 = w2, where we may suppose that any common factor has been removed.
Then (u2, 2v2, w) forms a primitive Pythagorean triple, and so from Theorem 1.1.2
coprime integers r and s of opposite parity exist such that

u2 = r2 − s2 , 2v2 = 2rs , w = r2 + s2 . (4.4.5)

The first of these shows that (u, s, r) is also a primitive Pythagorean triple, so r is odd
and s is even. Since rs = v2, then, as r and s are coprime, positive integers y and z
exist such that

r = z2 , s = 4y2 , v = 2yz . (4.4.6)

Writing u = x the equation u2 + s2 = r2 leads to positive integers x, y, and z
satisfying x2 + 16y4 = z4. Furthermore, z � z4 = r2 < r2 + s2 = w, so z < w.
Now suppose that x, y, and z are positive integers satisfying eqn (4.4.3), where we
may suppose that any common factor has been removed. Then (x, 4y2, z2) forms a
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primitive Pythagorean triple, and so from Theorem 1.1.2 coprime integers h and k of
opposite parity exist such that

x = h2 − k2 , 4y2 = 2hk , z2 = h2 + k2 . (4.4.7)

It does not matter which of h or k is even, so, since hk = 2y2, we suppose without loss
of generality that h = u′2 and k = 2v′2; then, setting z = w′, we have u′4 + 4v′4 =
w′2. Moreover, w′ = z < w. Continuing this process, we find another positive solution
x′, y′, and z′ with 0 < z′ < w′ � z < w. This infinite descent leads to a contradiction
to the fact that there must be a solution with least positive w and z.

Example 4.4.2 Consider the curve C : y2 = x3 − 9.
We prove that there are no integer points on the curve C . If x is even then the

right-hand side is 3 (mod 4) and so cannot be a perfect square. So, if there is a
solution, then x must be odd and y even. From this we see that x = 1 (mod 4). Now,
y2 + 1 = x3 − 8 = (x − 2)(x2 + 2x + 4). However, if y is even then every factor of
y2 + 1 must be 1 (mod 4). But x − 2 = 3 (mod 4). This contradiction establishes the
result.

Exercises 4.4

4.4.1 Find all rational points on the curve with equation y2 = x3 + x.

4.4.2 Find all rational points on the curve with equation y2 = x3 − 4x.

4.4.3 Prove that there are no integer points on the curve with equation y2 = x3+23.

4.4.4 Let P (r, s) be a point on the elliptic curve with equation y2 = x3 − ax− b,
where a and b are integers. If r and s are integers, then find the condition
that 2P should have integer co-ordinates.
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5 Shapes and numbers

The ‘numbers’ in the title of this chapter are actually integers, but the title is determined
by the fact that well-known names for what we consider here are such things as
triangular numbers, polygonal numbers, and polyhedral numbers. In this chapter we
try to provide material that is either new or less well known, rather than provide what
tends to be given in books on recreational mathematics.

We start by considering the triangular numbers in some detail, highlighting their
connection with the squares, and in particular dealing with the representation of
positive integers as the sum of triangular numbers. In doing this we draw attention
to the connections that exist between theorems on triangular numbers and square
numbers. We point out that any primitive Pythagorean triplet also has its analogue
amongst the triangular numbers. We then describe other shapes and the numbers
associated with them. Next we consider the problem of determining which polygonal
numbers are also square numbers or triangular numbers. For some polygonal numbers
only a finite number of them are squares, but for others there are an infinite number.
The Pell equation once again features in this problem. Finally, we give a brief account
of the Catalan numbers.

5.1 Triangular numbers
The triangular numbers are the integers Tn that may be described pictorially by n
rows of dots in the shape of a triangle. T6 is illustrated in Fig. 5.1. The definition of
Tn is that it is equal to the number of dots in a triangle made up of n rows of dots,
with one dot in the first row, two dots in the second row, and so on, with finally n dots
in the nth row. Hence

Tn = 1 + 2 + . . . + n =
1
2
n(n + 1) . (5.1.1)

We may extend the definition of Tn algebraically to negative integers by noting that
T−n−1 = Tn, since 1

2 (−n − 1)(−n) = 1
2n(n + 1).

Triangular numbers are closely related to square numbers by virtue of the equation

8Tn + 1 = (2n + 1)2 . (5.1.2)

This means that the equation x2 = 2N + 1 is solvable for integral x and N if and
only if N = 4Tn for some integer n. From this, we see that the equation x2 = M
is solvable for integral x and M if and only if M = 22k(8Tn + 1) for some positive
integers k and n.



72 Shapes and numbers

Fig. 5.1 The triangular number T6 = 21.

Theorem 5.1.1 The equation Tn = A is solvable for integers n and A if and only if
there exists a positive integer x such that x2 = 8A+1, and when this is so n = 1

2(x−1)
or −1

2(x + 1). �

The proof is left to the reader
In other words, the representation of an integer by a triangular number is in

correspondence with the representation of a related integer as a perfect square. We
now show that the same consideration applies in relation to the problem of which
integers can be represented as the sum of two triangular numbers.

Theorem 5.1.2 The equation Tl + Tm = B is solvable for integers l, m, and B if
and only if integers x and y exist such that x2 + y2 = 4B + 1, and when this is so we
may choose l = 1

2(x + y − 1) and m = 1
2(x − y − 1).

Proof If
Tl + Tm = B , (5.1.3)

then
4B + 1 = 2l(l + 1) + 2m(m + 1) + 1

= (l + m + 1)2 + (l − m)2 = x2 + y2 ,
(5.1.4)

where x = l + m + 1 and y = l − m. Conversely, if x2 + y2 = 4B + 1, then
necessarily one of x and y must be even and the other odd. Then l = 1

2(x + y − 1)
and m = 1

2(x − y − 1) are integers such that Tl + Tm = B. �

It should be noted that, for certain values of B in Theorem 5.1.2, there may be
several sets of values of l and m that can be found to satisfy eqn (5.1.3). For example,
when B = 16 we could have (x, y) = (8, 1) or (7, 4), with corresponding values of
(l,m) = (4, 3) or (5, 1), respectively.

Note that, with Tn defined for negative integers, as at the start of this section,
Theorem 5.1.2 is true whether the integers l and m appearing are positive, zero, or
negative. For example, when B = 16, if we take (x, y) = (1, 8) then we find that
(l,m) = (4,−4).

We now introduce a binary operation ∗ on the integers and prove that the operation
is closed on integers that can be expressed as the sum of two triangular numbers.
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Theorem 5.1.3 Define the binary operation ∗ on the integers by the rule

B ∗ C = 4BC + B + C . (5.1.5)

Then
(Tl + Tm) ∗ (Tp + Tq) = TL + TM , (5.1.6)

where

L = lp + mq− lq + mp + p + m and M = lp + mq + lq−mp + l+ q . (5.1.7)

Proof Suppose that Tl + Tm = B and Tp + Tq = C . Now define x = l + m + 1,
y = l − m, u = p + q + 1, and v = p − q. Then, by Theorem 5.1.2, we have
x2 + y2 = 4B + 1 and u2 + v2 = 4C + 1. Then (xu + yv)2 + (xv − yu)2 =
(x2 + y2)(u2 + v2) = (4B + 1)(4C + 1) = 4E + 1, where E = B ∗ C . It follows
from Theorem 5.1.2 that E = TL + TM , where L = 1

2(xu + yv + xv − yu − 1) and
M = 1

2(xu+ yv−xv + yu− 1), which reduce to the expressions (5.1.7) when x and
y are eliminated in favour of l and m. �

Numbers that may be represented as the sum of two triangular
numbers

A theorem that is worth stating, but which we do not prove, is Theorem 5.1.4 below,
which is concerned with finding those integers that may be represented as the sum of
two triangular numbers. Readers familiar with the problem of finding those integers
that may be represented as the sum of two squares will appreciate the connection
between the two problems; it is a consequence of Theorem 5.1.2 and the closure
properties made explicit in Theorem 5.1.3.

Theorem 5.1.4 The equation Tl + Tm = B has solutions for l and m if and only if
the prime factorisation of 4B + 1 is of the form p1p2 · · · ptq

2
1q

2
2 · · · q2

s , where each of
the pj is a prime of the form 4k + 1 and each of the qj is a prime of the form 4k + 3.
(The pjs are not necessarily distinct, nor are the qjs.) �

Pythagoras’ theorem using triangular numbers

Suppose that N is any number of the form 4k + 1 that is representable as the sum of
two squares. Then we know from Theorem 5.1.2 that there exist integers l and m such
that 4(Tl + Tm) + 1 = N , and hence that Tl + Tm = k. Then

(Tl + Tm) ∗ (Tl + Tm) = 4k2 + 2k = 2T2k , (5.1.8)

where k = 1
2 l(l + 1) + 1

2m(m + 1).
Moreover, 8T2k + 1 = 16k2 + 8k + 1 = N2. However, the left-hand side of eqn

(5.1.8) is also equal to (Tm + Tl) ∗ (Tl + Tm) = TL + TM , where, by Theorem 5.1.3,
L = l2 − m2 + 2lm + 2l and M = m2 − l2 + 2lm + 2m.
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We now have the equivalent relations

(L + M + 1)2 + (L − M)2 = N2 (5.1.9)

and
TL + TM = 2T2k . (5.1.10)

It is clear, since L+M+1 and L−M are of opposite parity, that, for every Pythagorean
triple with one short leg even and the other short leg odd, there exists a relationship
between triangular numbers in the form of eqn (5.1.10).

As an example, take N = 585, so that k = 146. Since 55 + 91 = 146, we
can take l = 10 and m = 13, leading to L = 211 and M = 355. We then have
5672 +1442 = 5852 and the equivalent relation T211 +T355 = 2T292. In Table 5.1 we
show the solutions of eqn (5.1.10) corresponding to the primitive Pythagorean triples
in Table 1.1.

Table 5.1 The triangular form of Pythagoras’ theorem.

a b c L M 2k TL TM T2k

3 4 5 3 0 2 6 0 3
5 12 13 8 3 6 36 6 21

15 8 17 11 3 8 66 6 36
7 24 25 15 8 12 120 36 78

21 20 29 20 0 14 210 0 105
9 40 41 24 15 20 300 120 210

35 12 37 23 11 18 276 66 171
11 60 61 35 24 30 630 300 465
45 28 53 36 8 26 666 36 351
33 56 65 44 11 32 990 66 528
13 84 85 48 35 42 1176 630 903
63 16 65 39 23 32 780 276 528
55 48 73 51 3 36 1326 6 666
39 80 89 59 20 44 1770 210 990
77 36 85 56 20 42 1596 210 903
65 72 97 68 3 48 2346 6 1176
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Exercises 5.1

5.1.1 It is known that, if p is an odd prime of the form 4k + 1, then there exists an
integer x such that x2 = −1 (mod p). What is the corresponding result for
triangular numbers?

5.1.2 If the binary operation ∗ is defined by A ∗ B = 8AB + A + B (rather than
by eqn (5.1.5)) then prove that Tl ∗ Tm = T2lm+l+m. If x2 = 8Tl + 1 and
y2 = 8Tm +1 then find, in terms of Tl and Tm, expressions for x2y2 and x4.

5.1.3 Prove that (T1 + T4) ∗ (T2 + T3) = T25 + T13, where the binary operation
∗ is given by eqn (5.1.5). What does this correspond to in terms of squares?

5.1.4 Find Tl and Tm such that 4(Tl + Tm) + 1 = (4k + 3)2.

5.1.5 Find a value of l such that 4Tl + 1 = 0 (mod 53).

5.1.6 Find the triangular form of the Pythagorean triple (15, 112, 113).

5.2 More on triangular numbers

In this section we establish a number of theorems concerning the representation
of integers as the sum of three or four triangular numbers. We use, without proof,
Lagrange’s famous theorem that every positive integer may be represented as the sum
of no more than four perfect squares, and the theorem that all integers 3 (mod 8) are
expressible as the sum of three odd perfect squares. Lagrange’s theorem is proved in
most books on number theory, such as Niven et al. (1991) and Jones and Jones (1998).
An account of Gauss’ work on integers expressible as the sum of three squares may be
found in Rose (1988). An extended account of the work in this section is to be found
in Bradley (1988).

Lagrange’s four-square theorem asserts (among other things) that the equation

x2 + y2 + z2 + w2 = 2N + 1 (5.2.1)

is solvable for integers x, y, z, and w for all positive integers N . The corresponding
result for triangular numbers arises from the following theorem.

Theorem 5.2.1 We have x2 + y2 + z2 + w2 = 2N + 1 if and only if N = Tm +
Tn + Tp + Tq for some (possibly negative) integers m, n, p, and q, where one or three
of m, n, p, and q are odd.

Proof It may be verified that the identity stated in the theorem holds when x, y, z,
and w and m, n, p, and q are related by the transformation
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m =
1
2
(−x + y + z + w − 1) ,

n =
1
2
(x − y + z + w − 1) ,

p =
1
2
(x + y − z + w − 1) ,

q =
1
2
(x + y + z − w − 1) .

(5.2.2)

Note that, for x2 + y2 + z2 +w2 to be odd, one or three of x, y, z, and w must be odd,
and hence, since m + n + p + q = x + y + z + w − 2, one or three of m, n, p, and q
must also be odd. �

From this theorem it follows that all positive integers are expressible as the sum of
four triangular numbers.

The inverse transformation is

x =
1
2
(−m + n + p + q + 1) ,

y =
1
2
(m − n + p + q + 1) ,

z =
1
2
(m + n − p + q + 1) ,

w =
1
2
(m + n + p − q + 1) .

(5.2.3)

Note that negative values for x, y, z, and w and m, n, p, and q cannot be avoided, but,
as (−x)2 = x2 and T−n−1 = Tn, the algebra takes care of this without any difficulty.

Note also the dual relationship that allows an inversion of the roles of x, y, z, and
w and m, n, p, and q; thus if

x2 + y2 + z2 + w2 = 2(Tm + Tn + Tp + Tq) + 1 (5.2.4)

then

m2 + n2 + p2 + q2 = 2(Tx−1 + Ty−1 + Tz−1 + Tw−1) + 1 . (5.2.5)

Verification of eqn (5.2.5) is left to the reader.
It is well known that four squares are sufficient to express any positive integer as

the sum of perfect squares. They are also necessary since no positive integer of the
form M = 4L(8N + 7), where L and N are integers, can be expressed as the sum of
three perfect squares, though all other positive integers can be expressed in this way. It
might be thought, in view of this, that some analogous result would hold in expressing
a positive integer as the sum of triangular numbers; i.e., that there might be some class
of integers for which four triangular numbers would be strictly necessary. However,
the surprise is that one can always make do with three. That is, every positive integer
N can be expressed as the sum of at most three triangular numbers. This result, due to



Shapes and numbers 77

Gauss, is equivalent to the fact that three perfect squares are sufficient for representing
integers of the form 8N + 3. Thus, the equation x2 + y2 + z2 = 8N + 3 possesses
nonzero integer solutions x, y, and z for all integers N . Since the right-hand side is 3
(mod 4), it follows that each of x, y, and z is odd, and so there exist integers a, b, and
c such that

(2a + 1)2 + (2b + 1)2 + (2c + 1)2 = 8N + 3 , (5.2.6)

from which it follows that
N = Ta + Tb + Tc . (5.2.7)

For example, 115 = 92 + 52 + 32, corresponding to 14 = T4 + T2 + T1.
This has the following interesting consequence. Given the four-square representa-

tion of any odd number:

x2 + y2 + z2 + w2 = 2(Tm + Tn + Tp + Tq) + 1 , (5.2.8)

we now know that three triangular numbers will do, and so one of m, n, p, and q can
be chosen to be zero. It follows from the equations of the transformation that in that
representation either y + z +w = x+1, or z +w +x = y +1, or w +x+ y = z +1,
or x + y + z = w + 1. Given any one of these possibilities, one may then reverse
the sign of one of x, y, z, and w, as appropriate, to obtain a representation in which
x + y + z + w = 1. We have now proved the following theorem.

Theorem 5.2.2 Out of all possible solutions in integers of the equation x2 + y2 +
z2 + w2 = 2N + 1, for any fixed positive integer N , it is always possible to find at
least one solution satisfying the following additional requirement: x+y + z +w = 1.

�

The corresponding theorem on triangular numbers is as follows.

Theorem 5.2.3 Out of all possible solutions in integers m, n, p, and q of the equation
Tm+Tn+Tp+Tq = N , for any fixed positive integer N , it is always possible to find at
least one solution satisfying the following additional requirement: m+n+p+q = −1.

�

Referring back to eqns (5.2.2), we see that in these special cases x = −m, y = −n,
z = −p, and w = −q, and hence we have the surprising dual relationship

2N + 1 = m2 + n2 + p2 + q2 = 2(Tm + Tn + Tp + Tq) + 1 , (5.2.9)

which holds for all positive integers N . For example, with N = 23, we have m = −6,
n = 3, p = 1, and q = 1.
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Exercises 5.2

5.2.1 In the transformation of Theorem 5.2.1, find x, y, z, and w when m = 3,
n = 2, p = 4, and q = 6, and verify the theorem in this case.

5.2.2 Express 87 as the sum of four perfect squares in four different ways, and
hence express 43 as the sum of four triangular numbers in three different
ways, and as the sum of three triangular numbers in one way.

5.2.3 Find the dual representation of 87.

5.3 Pentagonal and N -gonal numbers

In Sections 5.1 and 5.2 we dealt at some length with triangular numbers. For positive
n these numbers can be visualised as consisting of n rows, the top row containing
one dot, the second two dots, the third three dots, and so on. For n = k, where
k = 2, 3, . . ., the array of dots forms a triangle. Square numbers, Sn = n2, can be
formed by square arrays of dots, and, given the n × n array, a border of 2n + 1 dots
around two sides converts it into the (n+1)× (n+1) square array. This is, of course,
because n2 + (2n + 1) = (n + 1)2. S5 is illustrated in Fig. 5.2. It also shows that a
square number is the sum of two consecutive triangular numbers.

The pentagonal numbers

Pentagonal numbers are defined by the equation

Pn =
1
2
n(3n − 1) , (5.3.1)

from which P1 = 1, P2 = 5, P3 = 12, P4 = 22, P5 = 35, etc. P2 can be visualised
by five dots in the shape of a pentagon. To visualise P3, take the pentagon from the P2

diagram and extend two of its sides so that they have three dots, rather than two. Then
complete the new pentagon so that it has three dots on each side. The resulting figure
has an outer pentagon with ten dots, but it has two dots from the original pentagon
internal to it. This building process is then continued to form an outer pentagon that has

Fig. 5.2 The square number S5 = T4 + T5 = 10 + 15 = 25.
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Fig. 5.3 The pentagonal number P5 = 35.

four dots on each side, and so on, see Fig. 5.3. To go from Pn to Pn+1 we have to add a
border of 3n + 1 dots, so the formula for Pn, given by eqn (5.3.1), may be established
by induction, since 1

2n(3n − 1) + 3n + 1 = 1
2 (n + 1)(3n + 2). Every pentagonal

number is one-third of a triangular number. To be precise, Pn = (1/3)T3n−1.

N -gonal numbers for N > 5

It may be observed that one moves from Tn to Tn+1 by adding a border of n + 1 dots,
that one moves from Sn to Sn+1 by adding a border of 2n+1 dots, and that one moves
from Pn to Pn+1 by adding a border of 3n + 1 dots.

Generalising, we may define N -gonal numbers by the recurrence relation N1 = 1
and

Nn+1 = Nn + (N − 2)n + 1 . (5.3.2)

It may now be shown, by induction, that

Nn =
1
2
n [(N − 2)n + (4 − N)] . (5.3.3)

Note, as a check, that this agrees with Tn, Sn, and Pn for N = 3, 4, and 5, respectively.
The case N = 6, n = 5 is shown in Fig. 5.4.

Fig. 5.4 The hexagonal number H5 = 45.



80 Shapes and numbers

N -gonal numbers that are square for N > 2

For an N -gonal number to be a square number there must be a positive integer x such
that

(N − 2)n2 − (N − 4)n = 2x2 , (5.3.4)

which, on multiplying by 4(N − 2) and completing the square, reduces to

[2(N − 2)n − (N − 4)]2 − 8(N − 2)x2 = (N − 4)2 . (5.3.5)

(For N = 4, this reduces, as it must, to x = n, since all 4-gonal numbers are square
numbers, by definition.) We are assured of one solution of eqn (5.3.5) for each N .
This is because x = 1 when n = 1, whatever the value of N .

We consider first the case when 8(N − 2) is a perfect square, that is, when
N = 2 + 2k2 for some integer k. Equation (5.3.5) then becomes

[2k2n − (k2 − 1)]2 − 4k2x2 = (k2 − 1)2 . (5.3.6)

For example, when N = 20, we have k = 3 and eqn (5.3.6) becomes (9n + 3x −
4)(9n − 3x − 4) = 16. This equation has only one positive integral solution n = 1
and x = 1. So, when N = 20, only N1 is square. When N = 34, we have k = 4
and eqn (5.3.6) becomes (32n − 15 + 8x)(32n − 15 − 8x) = 225, and this equation
has the two positive integral solutions n = 1 and x = 1, and n = 4 and x = 14. In
general, when N = 2k2 + 2 and k > 1, then, since (k2 − 1)2 has only a finite number
of pairs of factors in positive integers, only a finite number of such numbers can be
square numbers. We have proved the following theorem.

Theorem 5.3.1 When N = 2k2 + 2 (k > 1), where k is an integer, only a finite
number of N -gonal numbers are perfect squares. �

The case N = 7

We consider whether there are any heptagonal numbers, other than 1, that are perfect
squares. If there are, then, by putting N = 7 in eqn (5.3.5), there must be solutions
other than y = 7, n = 1, and x = 1 of the Pell-like equation

y2 − 40x2 = 9 , (5.3.7)

where y = 10n − 3.
The basic solutions (those that cannot be derived from one another by iteration)

are y = 7 and x = 1 corresponding to n = 1, y = 57 and x = 9 corresponding to
n = 6, and y = 487 and x = 77 corresponding to n = 49. In order to generate other
solutions we require the basic solution of the auxiliary equation y2 − 40x2 = 1, in
which y = 1 (mod 10). This is y = 721 and x = 114. (The smaller solution with
y = 19 and x = 3 will not do, as it has y = −1 (mod 10) and it would not then
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produce solutions of the original equation that are equal to 7 (mod 10).) The equations
for generating solutions are given by

yn+1 = 721yn + 4560xn , xn+1 = 114yn + 721xn , (5.3.8)

with the first sequence starting with y1 = 7 and x1 = 1. This gives y2 = 9607 and
x2 = 1519. There are an infinite number of heptagonal numbers that are squares,
generated by the above recurrence relations. The first four are n = 1 and N1 = 1,
n = 6 and N6 = 81 = 92, n = 49 and N49 = 5929 = 772, and n = 961 and
N961 = 2307 361 = 15192.

The case N = 8

We consider whether there are any octagonal numbers, other than 1, that are perfect
squares. If there are, then, by putting N = 8 in eqn (5.3.5), there must be solutions
other than y = 4, n = 1, and x = 1 of the Pell-like equation

y2 − 12x2 = 4 , (5.3.9)

where y = 6n − 2.
The basic solution is y = 4 and x = 1 corresponding to n = 1. In order to

generate other solutions we determine the smallest solution of the auxiliary equation
y2−12x2 = 1 in which y = 1 (mod 6). This is y = 7 and x = 2, and so the recurrence
relations for providing solutions are

yn+1 = 7yn + 24xn , xn+1 = 2yn + 7xn . (5.3.10)

With y1 = 4 and x1 = 1 we find that y2 = 52 and x2 = 15, corresponding to n = 9.
Thus the ninth octagonal number is the perfect square 225 = 152. The next octagonal
number to be a perfect square has n = 121 and has the value 43 681 = 2092.

N -gonal numbers that are also triangular numbers

The equation Nn = Tm becomes, after completing the square,

y2 − (N − 2)x2 = (N − 6)(N − 3) , (5.3.11)

where y = 2(N − 2)n − (N − 4) and x = 2m + 1. This verifies that N = 3 and
N = 6 are special cases in which all the N -gonal numbers are triangular, see Exercise
5.3.2. Only a finite number of N -gonal numbers are triangular when N = k2 + 2,
k > 2, and eqn (5.3.11) becomes

y2 − k2x2 = (k2 − 4)(k2 − 1) , (5.3.12)

where y = 2k2n − (k2 − 2). This is because the term on the right-hand side of eqn
(5.3.12) has only a finite number of factors.
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For example, when N = 18, we have k = 4 and eqn (5.3.12) becomes

(y − 4x)(y + 4x) = 180 , (5.3.13)

with y = 32n − 14 and x = 2m + 1; this is satisfied for positive m and n by y = 18
and x = 3 only, showing that only the trivial solution with n = 1 exists.

For N = 5 eqn (5.3.11) becomes

y2 − 3x2 = −2 , (5.3.14)

where y = 6n − 1 and x = 2m + 1.
The basic solution is y = 5, x = 3, n = 1, and m = 1, and the next smallest

solution is y = 71, x = 41, n = 12, and m = 20, the common value being 210.
Successive solutions are given by y′ = 7y + 12x and x′ = 4y + 7x, where we note,
with satisfaction, that if x is odd then so is x′, and if y = −1 (mod 6) then so is y′.

Hexagonal close-packed numbers
These are the numbers Hexn represented by circles in close-packed hexagon form,
which therefore satisfy the relations Hex1 = 1 and Hexn+1 = Hexn + 6n. The
formula for them in terms of n is

Hexn = 3n2 − 3n + 1 . (5.3.15)

The first four are 1, 7, 19, and 37. The first, eighth, and 105th Hex numbers are
the perfect squares 1, 169, and 32 761, respectively. Note that n3 − (n − 1)3 =
3n2 − 3n + 1 = Hexn, so that

Hex1 + Hex2 + Hex3 + . . . + Hexn = n3 . (5.3.16)

Hex3 is shown in Fig. 5.5.

Centred square numbers
These are the numbers Cn represented by circles in close-packed square form, which
therefore satisfy the relations C1 = 1 and Cn+1 = Cn + 4n. The formula for them in
terms of n is

Cn = 2n2 − 2n + 1 . (5.3.17)

The first four are 1, 5, 13, and 25. The first, fourth, and twenty-first centred square
numbers are the perfect squares 1, 25, and 841, respectively.

Fig. 5.5 The hexagonal close-packed number Hex3 = 19.
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Exercises 5.3

5.3.1 Find the smallest n, n > 1, for which the pentagonal number Pn is a square
number.

5.3.2 Show that all hexagonal numbers (N = 6) are triangular numbers.

5.3.3 Find all 74-gonal numbers that are perfect squares.

5.3.4 Prove that (N + 1)n − Nn = Tn−1.

5.3.5 Find the smallest non-trivial nonagonal number (N = 9) that is a perfect
square.

5.3.6 Prove that, if Nn is an octagonal number that is also a perfect square, then n
is a perfect square.

5.3.7 Find the smallest hexagonal close-packed number after 32 761 that is a
perfect square.

5.3.8 Find the smallest centred square number after 841 that is a perfect square.

5.4 Polyhedral numbers

Cubes

In Section 5.3 we showed that the sum of the first n Hex numbers is the cube n3.
Another remarkable and well-known property of the cubes is that

13 + 23 + 33 + . . . + n3 = (1 + 2 + 3 + . . . + n)2 = T 2
n . (5.4.1)

We write Cubn = n3, and such numbers are illustrated in Fig. 5.6.

Tetrahedral numbers

Tetrahedral numbers arise when the triangular numbers are thought of as spheres in
triangular arrays that are placed in layers on top of one another in the shape of a
pyramid. Thus

Fig. 5.6 The cubes Cub3 = 27.
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Tetn = T1 + T2 + T3 + . . . + Tn =
1
6
n(n + 1)(n + 2) . (5.4.2)

The first four are 1, 4, 10, and 20. The elliptic curve with equation

6y2 = x(x + 1)(x + 2) (5.4.3)

has integer points (−2, 0), (−1, 0), (0, 0), (1, 1), (1,−1), (2, 2), (2,−2), (48, 140),
and (48,−140), and, as confirmed by Kevin Buzzard (private communication), these
are the only integer points. Hence only the first, second, and forty-eighth tetrahedral
numbers are perfect squares. Tet4 is shown in Fig. 5.7.

Square pyramid numbers
Square pyramid numbers arise when the square numbers are thought of as spheres in
square arrays that are placed in layers on top of one another in the shape of a pyramid.
Thus

Pyrn = 12 + 22 + 32 + . . . + n2 =
1
6
n(n + 1)(2n + 1) . (5.4.4)

The first four are 1, 5, 14, and 30. Only the first and twenty-fourth square pyramid
numbers are perfect squares. Pyr3 is shown in Fig. 5.8.

Octahedral numbers
Octahedral numbers arise when a square pyramid of n layers is stuck to an inverted
square pyramid of n − 1 layers. Thus

Fig. 5.7 The tetrahedral number Tet4 = 20.

Fig. 5.8 The square pyramid number Pyr3 = 14.
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Octn = Pyrn + Pyrn−1

=
1
6
n(n + 1)(2n + 1) +

1
6
n(n − 1)(2n − 1)

=
1
3
n(2n2 + 1) .

(5.4.5)

The first four are 1, 6, 19, and 44, see Fig. 5.9.

Body-centred cubic numbers

Body-centred cubic numbers arise when two cubes occupy alternate layers with their
vertices at the centres of the alternate cube. Thus

Bccn = (n − 1)3 + n3 = (2n − 1)(n2 − n + 1) . (5.4.6)

The first four are 1, 9, 35, and 91. The only positive integers for which Bccn is a
perfect square are n = 1 and 2. There are only trivial solutions (n = 1 and n = 2) to
the problem of whether the sum of two consecutive cubes is a perfect square, see Fig.
5.10.

Rhombic dodecahedral numbers

Rhombic dodecahedral numbers are the analogue in three dimensions of the hexagonal
close-packed numbers. These were given by Hexn = (n + 1)3 − n3, and so

Rhon = (n + 1)4 − n4 . (5.4.7)

Fig. 5.9 The octahedral number Oct2 = 6.

Fig. 5.10 The body-centred cubic number Bcc2 = 9.
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Fig. 5.11 The rhombic dodecahedral number Rho2 = 15.

The first four are 1, 15, 65, and 175, see Fig. 5.11.

Exercise 5.4

5.4.1 Is the difference between two consecutive cubes ever a perfect square?

5.5 Catalan numbers

The nth Catalan number is

Catn =
(

1
n + 1

)
2nCn =

(2n)!
(n + 1)!n!

. (5.5.1)

The first few are Cat0 = 1, Cat1 = 1, Cat2 = 2, Cat3 = 5, Cat4 = 14, and
Cat5 = 42. From the formula for Catn it is not even clear that it is an integer for all
non-negative n. This will become clear at the end of this section. It turns out that the
Catalan number is the solution to several counting problems of a geometrical nature.

Non-crossing segments joining pairs of points of a regular
2n-gon

The problem chosen to illustrate the Catalan numbers is concerned with line segments
in a regular 2n-gon. The vertices are labelled consecutively in a clockwise (or anti-
clockwise) order around the polygon. The counting rules are (i) that every vertex must
be joined by a line segment to another vertex, and (ii) that no two line segments should
cross one another. The problem is to count the number Vn of such configurations. To be
clear, we need to stipulate when two configurations are to be classified as distinct, see
Fig. 5.12. You will observe from the figure that we count two configurations as being
distinct when one may be rotated into another. So, in the case n = 3, the configuration
1, 2; 3, 4; 5, 6 is distinct from the configuration 2, 3; 4, 5; 6, 1. In other words, the
labelling matters.

Suppose that we have such a 2n-gon. It is clear that vertex 1 must be joined to a
vertex with an even label. We count the number of figures in which vertex 1 is joined
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Fig. 5.12 The Catalan number Cat3 = 5.

to vertex 2m by a line segment (1 � m � n). This line divides the figure up into two
parts. On one side there are the vertices 2, 3, . . . , 2m − 1 and on the other side there
are the vertices 2m + 1, 2m + 2, . . . , 2n. The number of vertices in the first part is
2m − 2, and the number of vertices in the second part is 2n − 2m. So the number of
ways that these figures can be filled up with line segments is Vm−1 for the first part
and Vn−m for the second part. The number of configurations with vertex 1 joined to
vertex 2m is therefore Vm−1Vn−m. It follows, by varying the vertex 2m, that

Vn = V0Vn−1 + V1Vn−2 + . . . + Vm−1Vn−m + . . . + Vn−1V0 , (5.5.2)

where, for consistency, we define V0 = 1.
In order to solve the recurrence relation (5.5.2), we define the generating function

F (x) = V0x + V1x
2 + V2x

3 + . . . + Vnxn+1 + . . . . (5.5.3)
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Then

[F (x)]2 = V0V0x
2 + (V0V1 + V1V0)x3 + (V0V2 + V1V1 + V2V0)x4 + . . . , (5.5.4)

and by eqn (5.5.2) this is equal to F (x) − x. Solving for F (x), we obtain

F (x) =
1
2

(
1 −√

1 − 4x
)
, (5.5.5)

where the minus sign has been chosen since F (0) = 0. The coefficient of xn+1 in the
binomial expansion of this is 1

2(1/2)(1/2)(3/2) · · · ((2n− 1)/2)(1/(n + 1)!)(4n+1),
since all of the minus signs cancel. This expression is equal to 1

2 [1×3×5×· · ·×(2n−
1)× 2n+1]/(n + 1)! = 2n!/(n + 1)!n! = Catn. Since Vn is an integer, it follows that
Catn is an integer. Catn is also the answer to other geometrical counting problems,
see the exercise below and the entertaining book by Conway and Guy (1996).

Exercise 5.5

5.5.1 Prove that Catn is also the number of distinct ways that an (n + 2)-gon can
be split up by diagonals into n non-overlapping triangles, with the rule that
the vertices are labelled, so that figures that are obtained by rotation from
one another are counted as distinct.



6 Quadrilaterals and triangles

The first problem that we consider in this chapter is the analogue for parallelograms of
the Heron triangle. That is, we consider when a parallelogram has integer sides, integer
diagonals, and integer area. Since such parallelograms are the union of two triangles
with integer sides and integer or half odd integer area, the difficulty lies in making
the second diagonal an integer. Solutions in particular cases are given below, but a
general solution seems unlikely. Since the problem is trivial when the parallelogram
is a rectangle, we exclude this case from consideration.

We then look, once again, at the cyclic quadrilateral and consider the problem of
how to choose the sides of a cyclic quadrilateral so that it has both integer sides and
integer area. There is the more general problem of finding those cyclic quadrilaterals
that have integer diagonals as well, but the solution to that problem has recently been
given by Sastry (2003) and is not repeated here.

The next problem is concerned with a triangle ABC having integer sides, together
with a point P in the plane of the triangle, not on the sides. From P , perpendiculars
to the sides are drawn, meeting BC , CA, and AB at L, M , and N , respectively. It is
shown how to choose P and the side lengths of ABC so that the six line segments
BL, LC , CM , MA, AN , and NB are all of integer length. It is also shown how to
locate P when the six line segments have given integer lengths.

The final arithmetical problem in this chapter turns out to have two equivalent
geometrical presentations. The first is the problem of whether, given an integer-sided
equilateral triangle, there are points in the plane of the triangle that are at a rational
distance from each vertex. This problem is solved in that we establish that there an
infinite number of points having this property which are (i) on the sides of the triangle,
(ii) on the circumcircle of the triangle, and (iii) internal to the triangle. Moreover, it is
evident that all of the points lie on certain lines through the vertices of the triangle. The
second problem is concerned with an integer-sided triangle ABC , all of whose angles
are less than 120◦, and its Fermat point F . The problem is to find those integer-sided
triangles for which all three distances AF , BF , and CF are of integer length. These
two problems turn out to be the same in the sense that the two solutions both involve
the same three quadratic forms, all of which have to be made perfect squares.

6.1 Integer parallelograms

We define an integer parallelogram ABCD to be one with integer sides, integer
diagonals, and integer area. We exclude rectangles and therefore insist that the paral-
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lelogram possesses an acute angle. We first provide an account of the problem from an
algebraic point of view. Then we consider two ways that are sufficient to ensure that a
parallelogram is an integer parallelogram, and list a number of special cases. However,
as the general solution depends on making a polynomial of the eighth degree in four
variables a perfect square, it is highly unlikely that a general solution can be written
down.

If the sides are of length a and b, with a � b, the acute angle between them
is θ, and the diagonals are of length c and d, with d > c, then by the cosine rule
a2 + b2 − 2ab cos θ = c2 and a2 + b2 + 2ab cos θ = d2, so that

2(a2 + b2) = c2 + d2 (6.1.1)

and

cos θ =
d2 − c2

4ab
. (6.1.2)

The problem of finding a general solution in integers of eqn (6.1.1) is easy enough,
but for the area [ABCD] to be integral we have to ensure that [ABCD] = ab sin θ is
an integer. This means that the parameters p, q, r, and s, defined below, from which a,
b, c, and d are obtained, have to be carefully chosen so that when cos θ is found from
eqn (6.1.2) then the corresponding value of sin θ =

√
1 − cos2 θ is rational. A general

method for achieving this is unlikely; but it is possible, in certain cases, to make sin θ
rational, and we show, by example, two ways of proceeding.

From eqn (6.1.1) we have (a + b)2 + (a− b)2 = c2 + d2, so there exist integers p,
q, r, and s such that a+ b = pq + rs, a− b = pr− qs, c = pq− rs, and d = pr + qs.
Note that if a and b are both even then c2 + d2 = 0 (mod 4), and hence c and d are
both even. It is then possible to divide all of them by 2. If we insist that a, b, c, and
d have no common factor 2, then either we must choose a and b to be of opposite
parity, in which case c and d must both be odd, or we must choose a and b to both be
odd, in which case c and d must both be even. These parity considerations limit the
choices that may be made for the parameters p, q, r, and s. Note also that for a � b
and d > c > 0 we need to have pr � qs, pq > rs, and pr+qs+rs > pq. Substituting
the values for a, b, c, and d in terms of the parameters p, q, r, and s into eqn (6.1.2),
we find that

cos θ =
A − B

A + B
, (6.1.3)

where A = 4pqrs and B = (p2 − s2)(q2 − r2). In order for sin θ to be rational it is
necessary, since

sin2 θ =
4AB

(A + B)2
, (6.1.4)

for
4AB = 16pqrs(p2 − s2)(q2 − r2) (6.1.5)

to be a perfect square.
Since 0 � cos θ < 1, we must choose p > s and q > r, as well as having pr � qs

and pr + qs + rs > pq.
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Example 6.1.1 The first and most obvious method for ensuring that pqrs(p2 −
s2)(q2−r2) is a perfect square is to find values of the parameters so that ps(p2−s2) =
qr(q2 − r2). For example, p = 7, s = 3, q = 7, and r = 5; this gives a = 39, b = 25,
c = 34, and d = 56, and cos θ = 33/65 and sin θ = 56/65, see Fig. 6.1. We leave it
as an exercise for the reader to show that there are an infinite number of possibilities
of this type, see Section 1.2.

There are also an infinite number of possibilities to be found by putting p = q and
then either r = s or r2 + rs + s2 = p2.

When pr = qs the parallelogram is a rhombus. The expression pqrs(p2−s2)(q2−
r2) is then automatically a perfect square and a corresponding solution always exists.
Integer solutions of the equation r2 + rs + s2 = p2 are those studied in Section 1.2 in
connection with integer-sided triangles having an angle of 120◦. From Table 1.2 the
four lowest possible values of p are 7, 13, 19, and 21.

Example 6.1.2 We now give another method for ensuring that pqrs(p2−s2)(q2−r2)
is a perfect square. This can be achieved by setting p = u2+v2, s = 2uv, q = h2+k2,
and r = 2hk, where u and v, and h and k are coprime and of opposite parity.
Then p2 − s2 = (u2 − v2)2 and q2 − r2 = (h2 − k2)2, and it remains to make
uvhk(u2 + v2)(h2 + k2) a perfect square. This may be arranged by choosing u and
v, and h and k to be the first two members of a pair of Pythagorean triples in which
uv = hk. Such pairs of triples certainly exist. For example, u = 35, v = 12, h = 21,
and k = 20 has uv = hk = 420, u2 + v2 = 372, and h2 + k2 = 292. To satisfy parity
conditions we actually have to double p and s, giving p = 2738, q = 841, s = 1680,
and r = 840. This gives an integer parallelogram with a = 2300 449, b = 1413 409,
c = 891 458, d = 3712 800, cos θ = 3247 546 618 559/3 251 475 320 641, and
sin θ = 159 789 614 880/3 251 475 320 641. Finally, [ABCD] = 159 789 614 880.
Solutions having such large values for a, b, c, and d are less satisfactory, but the
method shows that solutions exist other than the special cases and those similar to the
one described in Example 6.1.1.

Area = 840

25
56

39

34

A B

CD

Fig. 6.1 An integer parallelogram.
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Exercises 6.1

6.1.1 Repeat Example 6.1.1 with p = q = 37 and r2 + rs + s2 = 1369.

6.1.2 Repeat Example 6.1.2 with u = 140, v = 1221, h = 660, and k = 259.

6.2 Area of a cyclic quadrilateral

The aim of this section is to show how to choose a cyclic quadrilateral so that it has
integer sides and integer area. Since the problem is trivial for rectangles, we do not
consider them further. Nor do we consider cases, except for the isosceles trapezium,
in which the diagonals are of integer length and the circumscribing circle has integer
radius.

A cyclic quadrilateral with integer sides, integer diagonals, and integer area was
called by Sastry (2003) a Brahmagupta quadrilateral, and these are characterised in
Sastry (2003), where reference is made to a previous, more complex characterisation
by Dickson (1971). I had intended to address the more complicated problem, but the
article by Sastry (2003) leaves no room for improvement.

The reason Sastry chose the name Brahmagupta quadrilateral was because of
the famous formula Brahmagupta established for the area of a cyclic quadrilateral
ABCD in terms of its side lengths, a formula similar to Heron’s formula for the area
of a triangle. This formula is

[ABCD] =
1
4

√
(b + c + d − a)(c + d + a − b)(d + a + b − c)(a + b + c − d) ,

(6.2.1)
where AB = a, BC = b, CD = c, and DA = d. We now give a derivation of this
formula.

If a = c and b = d, then ABCD, being cyclic, must be a rectangle, and Brah-
magupta’s formula gives the correct value ab for [ABCD]. Provided that ABCD is
not a rectangle, we may assume without loss of generality, since the formula to be
obtained is symmetric in a, b, c, and d, that BA meets CD at P and that P lies on the
extension of BA beyond A and on the extension of CD beyond D.

Let PB = x and PC = y, so that PA = x − a and PD = y − c. Now, since
ABCD is cyclic, ∠PAD = ∠PCB. It follows that the triangles PAD and PCB
are similar. By Heron’s formula for the triangle PCB, we have

[PCB] =
1
4

√
(x + y + b)(y + b − x)(b + x − y)(x + y − b) (6.2.2)

and, because of their similarity, [PAD] = (d2/b2)[PCB]. Now

[ABCD] = [PCB]− [PAD] =
b2 − d2

b2
[PCB] . (6.2.3)
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Since PAD and PCB are similar, we have (y − c)/d = x/b and (x − a)/d = y/b.
By addition and subtraction, we obtain x + y = b(a + c)/(b − d) and x − y =
b(a − c)/(b + d). It follows that

x + y + b =
b(a + b + c − d)

b − d
,

x + y − b =
b(c + d + a − b)

b − d
,

b + x − y =
b(d + a + b − c)

b + d
,

y + b − x =
b(b + c + d − a)

b + d
.

(6.2.4)

Substituting these expressions back into Heron’s formula for [PCB], and using the
relation (6.2.3) between [ABCD] and [PCB], we obtain Brahmagupta’s formula.

In order to find a quadrilateral with integer sides and integer area we choose
fourteen integer parameters and set

b + c + d − a = x2m2n2p2qrs = f ,

c + d + a − b = y2l2n2p2qtu = g ,
(6.2.5)

d + a + b − c = z2l2m2p2rtv = h ,

a + b + c − d = w2l2m2n2suv = k .

Then

a =
1
4
(g + h + k − f) ,

b =
1
4
(h + k + f − g) ,

c =
1
4
(k + f + g − h) ,

d =
1
4
(f + g + h − k) ,

(6.2.6)

and

[ABCD] =
1
4
l3m3n3p3xyzwqrstuv . (6.2.7)

The sides may need to be multiplied by 2 or 4 to ensure that they are integers.
As a first example, with x = y = z = l = p = r = v = s = u = 1,

w = m = n = t = 2, and q = 3, we obtain f = 48, g = 24, h = 8, k = 64, a = 12,
b = 24, c = 32, d = 4, and [ABCD] = 192. Reducing the sides by a factor of 4 gives
a = 3, b = 6, c = 8, d = 1, and [ABC] = 12, see Fig. 6.2.

As a second example, with w = l = p = q = r = s = m = n = t = 1, x = 6,
y = 3, z = 2, u = 2, and v = 13, we obtain f = 36, g = 18, h = 52, k = 26,
a = 15, b = 24, c = 7, d = 20, and [ABCD] = 234.
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Area = 12
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Fig. 6.2 A cyclic quadrilateral with integer sides and integer area.

It must be appreciated that Brahmagupta’s formula for the area in terms of the sides
is valid only for a cyclic quadrilateral, and not for a general convex quadrilateral. In
general, if four loosely-jointed rods of lengths a, b, c, and d satisfying b + c + d > a,
c + d + a > b, d + a + b > c, and a + b + c > d are given, then there is only
one configuration in which they will settle into that of a cyclic quadrilateral; see
Exercise 2.3.2, where you are required to show that the diagonals e and f of a cyclic
quadrilateral are uniquely determined by its side lengths.

Isosceles trapezium
An isosceles trapezium is a trapezium in which there is a line of symmetry perpen-
dicular to the two parallel lines. Such a figure is always cyclic. We denote the length
of the smaller of the two parallel lines by a, the length of the longer one by c, and the
length of the equal legs by b. Then the formula for the area is

[ABCD] =
1
2
(a + c)

√
b2 − 1

4
(c − a)2 . (6.2.8)

The term under the square root sign is the square of the distance between the parallel
lines. It is an easy problem to choose integer side lengths so that the area is also an
integer. Every Pythagorean triple provides a solution. The example that follows comes
from the triple (8, 15, 17) in an obvious way. Thus, if a = 5, b = 17, and c = 35 then
we have [ABCD] = 20 × 8 = 160, see Fig. 6.3.

Isosceles trapezium with rational circumradius
We use the notation that the parallel lines have lengths a and c, with c > a, and the
equal legs have length b. The radius of the circumscribing circle is denoted by R.
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Area = 160

17

35

17

5A B

CD

Fig. 6.3 An isosceles trapezium with integer sides and integer area.

Writing the distance between the two parallel lines in two different ways, we have√
R2 − 1

4
a2 ±

√
R2 − 1

4
c2 =

√
b2 − 1

4
(c − a)2 . (6.2.9)

The plus sign is when the two parallel sides have a parallel diameter between them
and the minus sign is when the parallel lines are both on the same side of a parallel
diameter. Squaring both sides, simplifying, and squaring again, we find that

R2 =
b2(b2 + ac)

4b2 − (c − a)2
. (6.2.10)

We can make R rational by choosing integers x and y such that

4b2 = y2 + (c − a)2 (6.2.11)

and
4x2 = y2 + (c + a)2 , (6.2.12)

for then ac = x2 − b2 and R = bx/y.
Working modulo 4, we see that all of c − a, c + a, and y must be even, so putting

c − a = 2l, c + a = 2m, and y = 2n we find that b2 = l2 + n2 and x2 = m2 + n2.
Observe now that the problem of making R rational is identical to the problem of
manufacturing a Heron triangle: two different Pythagorean triples have to be matched
with equal short legs. As this is covered in Section 1.3 we do not give the details again.
Instead, we give an illustrative example. Let n = 8, l = 6, and m = 15; then x = 17
and b = 10. It follows that c = 21 and a = 9. We find that R2 = 100 × 289/256,
so that R = 85/8. Since the value of R2 has been obtained by squaring twice, the
question of whether the plus sign or minus sign holds in eqn (6.2.9) is one that has to
be settled afterwards by substituting back. In the numerical example given above the
minus sign holds, since 9.625− 1.625 = 8. From the preceding paragraph we see that

[ABCD] =
1
2
(a + c)

√
b2 − 1

4
(c − a)2 = mn = 120 .

Enlarging the figure by a factor of eight gives a figure with integer circumradius. By
Ptolemy’s theorem, x is the diagonal of the trapezium, which is thus also an integer.
This example is illustrated in Fig. 6.4.
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Area = 7680

72

168

136

85

80 80

A B

CD
O

P

Fig. 6.4 An isosceles trapezium with integer sides, integer diagonals, integer area, and integer
circumradius.

We have succeeded in showing that cyclic quadrilaterals, other than rectangles,
exist in which the sides, the diagonals, the area, and the radius of the circumscribing
circle are all integers.

Exercises 6.2

6.2.1 Use the parameters r = 5, s = 4, t = 8, u = 10, and all others equal to 1 in
eqns (6.2.5) to find a cyclic quadrilateral with integer sides and integer area.

6.2.2 Match up the Pythagorean triples (5, 12, 13) and (12, 35, 37) to find an
isosceles trapezium with integer sides, integer area, integer diagonals, and
integer circumradius.

6.3 Equal sums of squares on the sides of a triangle
In this section we consider two problems associated with an integer-sided triangle
ABC , and a point P in the plane of the triangle (not on its sides and not necessarily
interior to the triangle). Let the feet of the perpendiculars from P onto the sides BC ,
CA, and AB be denoted by L, M , and N , respectively. We show how to determine
the side lengths of ABC and the position of the point P such that the lengths of all of
the line segments BL, LC , CM , MA, AN , and NB are integers. We also show how
to locate P when these six line segments have given integer length.

In the configuration just described the following theorem holds.

Theorem 6.3.1 Let L, M , and N be points on the sides BC , CA, and AB, respec-
tively, of the triangle ABC . Then L, M , and N are the feet of the perpendiculars from
a point P onto the sides of the triangle if and only if

BL2 + CM2 + AN2 = LC2 + MA2 + NB2 . (6.3.1)

�
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The proof of the necessity of the condition depends only on multiple applications
of Pythagoras’ theorem. For the sufficiency, let the perpendiculars from L and M meet
at P ; then drop the perpendicular from P onto AB to meet it at N ′; then use the given
relation and the similar necessary relation with N ′ replacing N to show that N and
N ′ coincide. A full proof is given in Durell (1946).

If the areal co-ordinates of P are (l,m, n), normalised so that l +m+n = 1, then
it may be shown, see Example A.9.2 in the appendix, that the lengths in the theorem
are given by the following expressions:

BL = an +
l

2a
(c2 + a2 − b2) , CM = bl +

m

2b
(a2 + b2 − c2) ,

AN = cm +
n

2c
(b2 + c2 − a2) , LC = am +

l

2a
(a2 + b2 − c2) ,

MA = bn +
m

2b
(b2 + c2 − a2) , NB = cl +

n

2c
(c2 + a2 − b2) .

(6.3.2)

From eqns (6.3.2) we see that if a, b, and c are integers and if l, m, and n are
rational then the lengths of the six line segments are rational. The sides of the triangle
may then be enlarged by a positive integral scale factor so that the line segments all
have integer length. As an example, if a = 96, b = 144, c = 192, l = 1/2, m = 1/3,
and n = 1/6 then BL = 82, CM = 64, AN = 85, LC = 14, MA = 80, and
NB = 107, see Fig. 6.5.

The parametric solution of the equation BL2+CM2+AN2 = LC2+MA2+NB2

is given in terms of seven integer parameters by

107

85
80

64

1482

A

B CL

M

P
N

Fig. 6.5 Equal sums of squares on the sides of a triangle: 822+642+852 = 142+802+1072.
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BL = mf + vg − uh ,

CM = −vf + mg + th ,

AN = uf − tg + mh ,

LC = mf − vg + uh ,

MA = vf + mg − th ,

NB = −uf + tg + mh .

(6.3.3)

For a derivation of this parameter system see Bradley (1998). For example, when
m = 5, f = 1, g = 3, h = 3, t = 2, u = 2, and v = 3 we obtain 82 + 182 + 112 =
22 + 122 + 192. Given a set of integer values satisfying eqn (6.3.1), it is possible to
locate the co-ordinates of the point P where the perpendiculars through L, M , and
N to BC , CA, and AB, respectively, meet. In the example with BL = 8, LC = 19,
CM = 18, MA = 2, AN = 11, and NB = 12 we have a = 27, b = 20, and c = 23,
and using eqns (6.3.2) we find that l = 603/1120, m = 27/56, and n = −23/1120.
Since l, m, and n arise as the solution of linear equations over the rational field, they
must be rational. The negative value for n means that the perpendiculars meet outside
the triangle on the other side of AB from C .

Exercise 6.3

6.3.1 Given BL = 12, LC = 2, CM = 7, MA = 9, AN = 6, and NB = 12,
find the areal co-ordinates of the point P where the perpendiculars through
L, M , and N to BC , CA, and AB, respectively, meet.

6.4 The integer-sided equilateral triangle

Two problems are now considered, which turn out to be equivalent algebraically, so
that the solution to one problem provides a solution to the other.

The first problem is to find integer-sided equilateral triangles ABC and points
P , not at the vertices, such that AP , BP , and CP are all integers. This is the same
problem (by reducing the figure) as finding points P in the plane of an equilateral
triangle of unit side, not at the vertices, that are at a rational distance from all three
vertices. Solutions are easy to find when P lies on a side of the triangle, or when P
lies on the circumcircle of ABC . The general problem of finding such points turns
out to be considerably more difficult, but we are able to show that there are an infinite
number of points P internal to the triangle with the required property.

This general problem of the internal point turns out to be equivalent algebraically
to the problem of finding integer-sided triangles ABC for which the distances AF ,
BF , and CF from the vertices to the Fermat point F are all integers. For a triangle
with angles all less than 120◦, the Fermat (or Steiner) point F is the point P internal
to ABC which minimises the sum AP + BP + CP . The point F has the property
that ∠BFC = ∠CFA = ∠AFB = 120◦.
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The equilateral triangle

Let ABC be an equilateral triangle of integer side d and suppose that the point P has
(unnormalised) areal co-ordinates (l,m, n). Then we have

AP 2 =
d2(m2 + mn + n2)

(l + m + n)2
, (6.4.1)

with similar expressions by cyclic change of l, m, and n for BP 2 and CP 2. See
Section A.8 of the appendix for details of how to obtain these formulae. The problem
of finding a single triangle ABC and a single point P is therefore solved if we can find
integers l, m, and n (with not more than one of them zero) so that all of m2+mn+n2,
n2 +nl+ l2, and l2 + lm+m2 are perfect squares. We can then choose the side length
d = l + m + n to make each of AP , BP , and CP an integer.

The general problem of finding an infinite number of internal points P , that are
a rational distance from the vertices of an equilateral triangle of unit side, depends
on finding an infinite number of sets of positive integers l, m, and n such that all of
m2 + mn + n2, n2 + nl + l2, and l2 + lm + m2 are perfect squares. The required
points P then have areal co-ordinates (l,m, n)/(l + m + n). This is because the
normalised areal co-ordinates of a point P internal to ABC satisfy 0 < l,m, n < 1
and l + m + n = 1.

Points on the sides of the triangle

One solution, which may be thought of as the trivial solution, is when P lies on a side
of the equilateral triangle. For example, if P lies on BC and has areal co-ordinates
(0, 5/8, 3/8), then BP/PC = 3/5 and, from eqn (6.4.1), AP = 7d/8. Hence, if we
take d = 8 then AP = 7, BP = 3, and CP = 5, see Fig. 6.6. Observe that AP , BP ,
and CP form the sides of an integer-sided triangle with the angle between BP and
CP equal to 120◦. Such integer-sided triangles are documented in Section 1.2. Every
solution to that problem may be used to create points on each side of an equilateral
triangle with the required properties. Hence (reducing the size of the triangles by a
scale factor of d) we have the following theorem.

Theorem 6.4.1 Given an equilateral triangle ABC of unit side, there exist an infinity
of points P on each side of the triangle such that all of AP , BP , and CP are rational.
For each such point P on the side BC the triangle with sides AP , BP , and CP has
an angle of 120◦ between the segments BP and CP . �

Points on the circumcircle of the triangle

We consider a point P on the minor arc BC so that ABPC is a cyclic quadrilateral.
Then ∠BPC = 120◦, since this angle supplements ∠BAC . Furthermore, ∠BPA =
∠BCA = 60◦ and similarly ∠CPA = 60◦. By Ptolemy’s theorem, AP = BP +CP .
So when BP and CP are made rational it follows immediately that AP is rational. In
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3 5

7

88

A

B CP

Fig. 6.6 An equilateral triangle with integer side and a point P on BC with AP , BP , and
CP integers.

fact, a study of Table 1.2 shows that, for each integer-sided triangle with an angle of
120◦, there exist two integer-sided triangles with an angle of 60◦ sharing a common
shorter side and a common longer side.

For example, the integer-sided triangle having an angle of 120◦ with sides 3, 5, and
7 is complemented by two integer-sided triangles having an angle of 60◦, namely the
(3, 8, 7) and the (5, 8, 7) triangles. It follows, in this example, that if we choose d = 7
then a point P lies on the minor arc BC such that BP = 3, CP = 5, and AP = 8,
see Fig. 6.7. Also, for every integer-sided triangle having an angle of 120◦, there is a
corresponding point P .

Hence (reducing the size of the triangles by a scale factor of d) we have the
following theorem.

Theorem 6.4.2 Given an equilateral triangle ABC of unit side, there exist an infinity
of points P on each of the minor arcs BC , CA, and AB of the circumcircle such that
all of AP , BP , and CP are rational. �

Another way of looking at this result is as follows. Whenever P lies on the

3 5

7

7 7
8

A

B C

P

Fig. 6.7 An equilateral triangle with integer side and a point P on the circumcircle with AP ,
BP , and CP integers.
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minor arc BC and so has its first areal co-ordinate negative (see Section A.4 of the
appendix), there is a corresponding set of positive integers l, m, and n such that all of
m2 + mn + n2, n2 − nl + l2, and l2 − lm + m2 are simultaneously perfect squares.

As pointed out earlier, it is an interesting question as to whether it is possible to
find strictly positive integers l, m, and n, so that all of m2 + mn + n2, n2 + nl + l2,
and l2 + lm + m2 are simultaneously perfect squares. For each set l, m, and n there
exists a corresponding point P internal to an equilateral triangle ABC of unit side
such that all of AP , BP , and CP are rational. Later in this section we prove that there
are an infinite number of such points.

The Fermat point

As stated earlier, the same question arises in another geometrical context. Is it possible
to find an integer-sided triangle ABC with angles less than 120◦ such that, if F is the
Fermat point of ABC , then AF , BF , and CF are all of integer length? We now find
a condition on the sides a, b, and c for a solution to exist.

Let AF = l, BF = m, and CF = n. Then, since the Fermat point F has the
property that ∠BFC = ∠CFA = ∠AFB = 120◦, we have

m2 + mn + n2 = a2 , n2 + nl + l2 = b2 , l2 + lm + m2 = c2 . (6.4.2)

From the first two equations we have

(m − l)(l + m + n) = a2 − b2 . (6.4.3)

Writing d = l+m+n we have m−l = (a2−b2)/d, and similarly n−m = (b2−c2)/d
and l − n = (c2 − a2)/d. It follows that 3l = d + (b2 + c2 − 2a2)/d, with similar
equations for 3m and 3n by cyclic change of a, b, and c. Substituting for m and n in
the first of eqns (6.4.2) we find, after some algebra, that

d4 − (a2 + b2 + c2)d2 + (a4 + b4 + c4 − b2c2 − c2a2 − a2b2) = 0 . (6.4.4)

Solving this for d2 we obtain

d2 =
1
2

{
(a2 + b2 + c2) + 4

√
3 [ABC]

}
, (6.4.5)

where we have used Heron’s formula for the area [ABC].
The condition on a, b, and c for rational l, m, and n to exist resolves into the single

condition that the right-hand side of eqn (6.4.5) should be a perfect square. Solving the
three equations (6.4.2) is thus reduced to finding integer solutions d of eqn (6.4.5). A
computer search by J. T. Bradley (private communication) for solutions of eqn (6.4.5)
with 1000 � a � b � c has revealed a number of solutions. The results are shown in
Table 6.1. Since the two problems being treated are in correspondence, the tabulated
values serve two purposes.

Firstly, they provide equilateral triangles of side d with a point P internal to triangle
ABC such that AP = a, BP = b, and CP = c. Note that the smallest side length for
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Table 6.1 Equilateral triangles with integer side d and a point P at integer distance from its
vertices.

AP = a BP = b CP = c Side d

73 65 57 112
95 88 73 147

152 147 43 185
205 168 127 283
208 185 97 273
280 221 111 331
296 285 49 331
343 312 95 403
361 315 296 559
387 343 152 485
407 392 323 645
437 377 147 520
469 464 285 691
473 343 255 592
485 408 247 637

such an equilateral triangle is 112. Secondly, they provide triangles of sides BC = a,
CA = b, and AB = c such that the Fermat distances AF , BF , and CF are rational
and d = AF + BF + CF is an integer.

A separate search to provide the least positive integer values of l, m, and n such
that all of m2 + mn + n2, n2 + nl + l2, and l2 + lm + m2 are perfect squares has
also been carried out and reveals eight solutions with 0 < l < m < n � 5016. The
results are shown in Table 6.2. This table provides integer-sided triangles with sides a,
b, and c which possess integer Fermat distances AF = l, BF = m, and CF = n. It
also provides equilateral triangles of side d in which there is an internal point P with
AP = a, BP = b, and CP = c. Tables 6.1 and 6.2 are not independent, since the
problems they solve are in correspondence. However, Table 6.2 gives solutions with

Table 6.2 Integer-sided triangles with integer Fermat distances AF , BF , and CF .

AF = l BF = m CF = n a b c d

195 264 325 511 455 399 784
264 325 440 665 616 511 1029
384 805 1520 2045 1744 1051 2709
455 1824 2145 3441 2405 2089 4424
360 1015 3864 4459 4056 1235 5239
435 1656 4669 5681 4901 1911 6760

1272 2065 4928 6223 5672 2917 8265
765 1064 5016 5624 5439 1591 6845
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least integer values of l, m, and n, and Table 6.1 gives solutions with least integer
values of a, b, and c (which correspond to rational l, m, and n that are not integers).

In Table 6.2, d = AP + BP + CP is a minimum when P is at F . This is the
minimum as the point P varies inside a triangle ABC with sides a, b, and c and with
angles less than 120◦. It provides cases in which the distances AF , BF , and CF are
integral. In both Tables 6.1 and 6.2 an equilateral triangle of side d has an internal
point P such that AP = a, BP = b, and CP = c. Illustrative examples are provided
by Figs 6.8 and 6.9.

The question arises as to whether there are an infinite number of points internal to
an equilateral triangle of unit side that are a rational distance from all three vertices.
The problem is similar to that of the rectangular box with integer sides and integer
face diagonals, and to that of the triangle with integer sides and integer medians. I am
indebted to Kevin Buzzard (private communication) for an analysis of the problem. In
the language of number theory, what one has is a K3 surface, and the first observation
is that there are lots of degenerate solutions. For example, if one puts m = 0, then

511

325

399 455

195

264

A

B C

F

Fig. 6.8 A triangle with integer sides and integer Fermat distances.

112
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112112

65

A

B C

P

Fig. 6.9 An equilateral triangle with integer side and an internal point P with AP , BP , and
CP integers.
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l =
2s + 1

s2 + s + 1
,

n =
s2 − 1

s2 + s + 1
,

(6.4.6)

for any rational number s, gives rational values of l and n such that n2 + nl + l2 is
a rational square. Such degenerate solutions correspond to points on the sides of the
triangle that are a rational distance from all three vertices. If we now start from these
values of l and n for fixed s then we must solve the equations

m2 + ml + l2 = (m + e)2 ,

m2 + mn + n2 = (m + f)2 ,
(6.4.7)

for m, e, and f . Solving for m we obtain m = (e2−l2)/(l−2e) = (f2−n2)/(n−2f).
This is a cubic curve in the two variables e and f , and from the degenerate solution
e = 1

2 l and f = 1
2n (corresponding to m = ∞) one can obtain another by drawing

the tangent line at this point to meet the cubic again. The result is

e =
1
2
l − l2

l + n
, f =

1
2
n − n2

l + n
. (6.4.8)

Substituting back, clearing denominators, and expressing l, m, and n in terms of s,
we obtain the parametric solution

l = 8s(s + 2)(2s + 1) ,

m = (s2 + 6s + 2)(2 − 2s − 3s2) ,

n = 8s(s − 1)(s + 1)(s + 2) .

(6.4.9)

Unfortunately, this parametric solution never has l, m, and n all positive, so it cor-
responds to points in the exterior of the triangle that are rational distances from the
vertices, showing that there are an infinite number of such points. However, if one
performs the trick again, drawing the tangent line from the point given by eqn (6.4.9)
then one obtains the following parametric solution (after changing the signs of all of
l, m, and n):
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l = 336s11 + 2760s10 + 10768s9 + 23936s8 + 30976s7 + 24256s6

+ 13952s5 + 8704s4 + 4864s3 + 1664s2 + 256s

= 8s(s + 2)(2s + 1)(21s8 + 120s7 + 352s6 + 496s5 + 344s4

+ 160s3 + 128s2 + 64s + 16) ,

m = 27s12 + 156s11 − 256s10 − 1944s9 − 1516s8 + 5600s7 + 12032s6

+ 8000s5 + 656s4 − 1600s3 − 1024s2 − 384s − 64

= (s2 − 2s − 2)2(s2 + 6s + 2)(3s2 + 2s − 2)(9s4 + 28s3 + 32s2 + 8s + 4) ,

n = 168s12 + 1296s11 + 4568s10 + 8304s9 + 5952s8 − 2816s7 − 7104s6

− 4224s5 − 2432s4 − 2304s3 − 1152s2 − 256s

= 8s(s − 1)(s + 1)(s + 2)(21s8 + 120s7 + 352s6 + 496s5 + 344s4

+ 160s3 + 128s2 + 64s + 16) .
(6.4.10)

The corresponding values of a, b, and c are

a = 183s12 + 1380s11 + 4380s10 + 7200s9 + 6076s8 + 416s7 − 4256s6

− 2816s5 + 1424s4 + 3136s3 + 1984s2 + 512s + 64 ,

b = 8s(21s11 + 183s10 + 775s9 + 1954s8 + 3128s7 + 3384s6 + 2632s5

+ 1616s4 + 912s3 + 496s2 + 176s + 32) ,

c = 27s12 + 324s11 + 2692s10 + 10384s9 + 22620s8 + 31904s7 + 31136s6

+ 21120s5 + 9680s4 + 2624s3 + 576s2 + 256s + 64 .
(6.4.11)

Observe that, for sufficiently large values of s, all of l, m, and n are positive. We have
therefore proved the following theorem.

Theorem 6.4.3 Given an equilateral triangle ABC with unit side, there exist an
infinite number of points P internal to ABC such that all of AP , BP , and CP are
rational. �

The following theorem, which we state without proof, is also true.

Theorem 6.4.4 For each point P satisfying Theorem 6.4.3 there are three lines
through P each passing through a vertex and each containing an infinite number of
points Q such that all of AQ, BQ, and CQ are rational. �

There is, of course, no intention to suggest that the above parameterisation is either
the best or most efficient possible. It is not the numbers, but the idea that counts.
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Exercises 6.4

6.4.1 Find strictly positive integers l, m, and n (not in the above tables) such that
l2 + lm + m2 and l2 + ln + n2 are both perfect squares, and interpret the
result geometrically.

6.4.2 Find the side of an equilateral triangle if a point P lies within it and AP = 42,
BP = 42, and CP = 12.



7 Touching circles and spheres

It has been known for a long time, see Pedoe (1970), that the curvatures of four
mutually touching circles are related by a single straightforward equation. The result
was first obtained by Descartes (1901). In this chapter we show that infinite chains
of touching circles, all with integer curvatures, can be formed. This means that the
circles involved all have rational radii. Furthermore, we show how to obtain all such
chains.

In the first section we deal with the singular case when one of the circles degen-
erates into a line. In the next section we deal with the case of sequences of mutually
touching circles in two dimensions. We then go on to show how to generalise to
sequences of mutually touching spheres in three dimensions, and finally to mutually
touching hyperspheres in four dimensions. Infinite chains exist in all of these cases,
and recurrence relations are established to show how they are formed.

The final section of this chapter employs the idea of the curvature of mutually
touching circles to develop a three-parameter system for the sides of any Heron triangle
up to similarity. The sides a, b, and c are obtained as homogeneous polynomials of the
fourth degree in terms of the three integer parameters. In these expressions, common
factors may have to be removed or enlargement factors introduced, which accounts
for why the method only gives all Heron triangles up to similarity.

7.1 Three circles touching each other and all touching
a line

We first consider a special case, when one of four circles in a plane degenerates into a
line, so that we have a configuration of three circles which touch each other and which
all touch a given line. The situation is a straightforward one, and the algebra involved
is sometimes used in schools as an advanced exercise on Pythagoras’ theorem. We
are interested in cases in which the radii of the circles are rational numbers. Since
the curvature of a circle is defined as the reciprocal of its radius, we can restrict
consideration to curvatures that are positive integers. (When the curvatures of a finite
number of circles are rational, the configuration can be reduced in size by a rational
scale factor so that the curvatures of all the circles become integers.)

Suppose that the circles have radii a, b, and c, with a � b > c, and that their
centres are respectively at the points with co-ordinates (h, a), (k, b), and (0, c), so that
the line that touches all the circles has equation y = 0. Since the circles touch, the three
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equations relating the squares of the distances between the centres of the three circles
are

h2 + (a − c)2 = (a + c)2 ,

k2 + (b − c)2 = (b + c)2 ,

(h − k)2 + (a − b)2 = (a + b)2 .

(7.1.1)

Hence
h2 = 4ac , k2 = 4bc , h2 − 2hk + k2 = 4ab . (7.1.2)

It follows that hk = 2(ac + bc − ab), and squaring and eliminating h2k2 we obtain
(ab − ac − bc)2 = 4abc2. On multiplying out and simplifying, we obtain

1
a2

+
1
b2

+
1
c2

=
2
bc

+
2
ca

+
2
ab

. (7.1.3)

Hence, if we define the curvatures κ = 1/a, λ = 1/b, and µ = 1/c, then we have

κ2 + λ2 + µ2 = 2(λµ + µκ + κλ) , (7.1.4)

where µ > λ � κ. Since eqn (7.1.4) is homogeneous, we can choose κ, λ, and µ to be
integers, as multiplying each of them by the same amount simply produces a similar
figure to the first. Solving for µ we obtain µ = (

√
λ +

√
κ)2, where the plus sign

is chosen since the circle of radius c is assumed to lie between the circles of radii a
and b, and hence has a larger curvature. In order to obtain rational radii for all three
circles we must choose µ = z2, λ = y2, and κ = x2, where x, y, and z are positive
integers, and then z = x + y. Transferring back to the original variables, we find that
a = 1/x2, b = 1/y2, and c = 1/z2 (z > y � x). Also, the positions of the centres
are (−2/zx, 1/x2), (2/zy, 1/y2), and (0, 1/z2). So, for example, if we start with two
circles of radius 1 and put a circle between them then its radius is 1/4. If we then put

CR = 1/9

AP = 1

BQ = 1/4

A

B

P

QR C

Fig. 7.1 Three touching circles, all touching a line.
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a circle between the first and third circles its radius is 1/9, and so on. In this way we
obtain a chain of touching circles, all with rational radii, see Fig. 7.1.

Exercise 7.1

7.1.1 Starting with two circles C1 and C2 of radii 1 and 1/4, respectively, touching
each other externally and both touching a line, insert circles Cn, n � 3,
between Cn−1 and Cn−2, touching them both externally and touching the
same line. Find the radii of C3 and C4, and find a formula for the radius of
Cn.

7.2 Four circles touching one another externally

We now consider the general case in which there are four mutually touching circles
in a plane. In this section we show how to find configurations in which all four circles
have integer radius. The analysis is presented for the case in which all of the circles
touch each other externally. However, we point out what happens when the fourth
circle has internal contact with the other three, or when there are two circles that touch
the other three externally.

Suppose that the three outside circles have radii a, b, and c and centres A, B,
and C , respectively. Let the circle that touches them externally and that lies in the
space between them have radius r and centre X. Then AB = a + b, BC = b + c,
CA = c + a, XA = a + r, XB = b + r, and XC = c + r. (Note that in this section
a, b, and c are not the sides of the triangle ABC .) Using Heron’s formula (1.3.1) for
the area of a triangle, we have [ABC] =

√
abc(a + b + c), with similar expressions

for [XBC], [XCA], and [XAB]. Equating the areas, it follows that√
bcr(b + c + r) +

√
car(c + a + r) +

√
abr(a + b + r) =

√
abc(a + b + c) .

(7.2.1)
If we make the substitutions a = 1/α, b = 1/β, c = 1/γ, and r = 1/ρ, so that α,

β, γ, and ρ are the curvatures of the four circles, then eqn (7.2.1) becomes

α
√

βγ + γρ + ρβ +β
√

γα + αρ + ργ +γ
√

αβ + βρ + ρα = ρ
√

αβ + βγ + γα .
(7.2.2)

If we can find solutions to eqn (7.2.2) in which all of α, β, γ, and ρ are integers,
then by enlargement we obtain solutions of eqn (7.2.1) in which all of a, b, c, and r
are integers; conversely, if the circles have integer radii then a similar figure exists in
which the curvatures are all integers.

Suppose now that α, β, and γ are integers and√
αβ + βγ + γα = u . (7.2.3)

Then we claim that ρ = α + β + γ + 2u. In fact, given this value of ρ, we have
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βγ + γρ + ρβ = (β + γ)(α + β + γ + 2u) + βγ

= β2 + 2βγ + γ2 + αβ + βγ + γα + 2u(β + γ)

= (u + β + γ)2 .

Hence
√

βγ + γρ + ρβ = u + β + γ, and similarly for the other square roots. The
left-hand side of eqn (7.2.2) is now

α(u + β + γ) + β(u + γ + α) + γ(u + α + β) = (α + β + γ)u + 2(αβ + βγ + γα)

and the right-hand side of eqn (7.2.2) is u(α + β + γ + 2u) = (α + β + γ)u + 2u2,
which is equal to the left-hand side by virtue of eqn (7.2.3). Note that, with this value
of ρ, we have (ρ − α − β − γ)2 = 4u2 = 4(αβ + βγ + γα), and hence

2(α2 + β2 + γ2 + ρ2) = (α + β + γ + ρ)2 . (7.2.4)

Furthermore, ρ is an integer if and only if u is an integer, so we definitely require
αβ + βγ + γα to be a perfect square for all of the curvatures to be integers.

Equation (7.2.4), due to Descartes (1901), is a quadratic in each variable, so it
allows two possibilities for each variable given values of the others. This corresponds
to the fact that, given any three touching circles, it is possible, in general, to draw two
circles touching the other three. If the product of the two curvatures is positive then
they touch externally, and if the product of the two curvatures is negative then they
touch internally. See Pedoe (1970) for proofs of these remarks. Given positive values
of α, β, and γ, the second value of ρ from eqn (7.2.4) is given by ρ = α+β + γ− 2u.
If positive, it corresponds to the fact that there is a second circle of much larger radius
touching the three given circles externally; if negative, it corresponds to the fact that
the second circle surrounds the three given circles, thereby touching them internally.
The second value of ρ obtained from Descartes’ equation corresponds to eqn (7.2.2)
only when some of the square roots are made negative. This corresponds to the fact
that X now lies outside the triangle ABC . The larger value of ρ corresponds to the
case which we are considering, since it corresponds to a circle of smaller radius than
the three given circles, and lies in the space between them.

It is a strange fact that, if integers α, β, and γ are chosen so that αβ + βγ +
γα is a perfect square, then we can always find two partners ρ = α + β + γ ±
2
√

αβ + βγ + γα, one with the plus sign and one with the minus sign, so that all of
αβ + βρ + ρα, βγ + γρ + ρβ, and γα + αρ + ργ are perfect squares. For example,
with α = 3, β = 7, and γ = 10 we have ρ = 42 or −2. With the choice ρ = 42, the
four squares are 121, 441, 784, and 576. To obtain integer radii we must multiply up
by the least common multiple of their denominators. In geometrical terms, this means
that, if we are given three circles touching externally of radii 70, 30, and 21, then the
circle in the space between them and touching them has radius 5. The root ρ = −2
means that there is a large circle surrounding them of radius 105, touching the other
three internally, see Fig. 7.2.

It is possible to continue the process, replacing one of the first three circles by the
fourth and then obtaining another circle of integer curvature touching the second set
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A
B

C

X2

X1

70

30

5

21

105

Fig. 7.2 Four touching circles.

of three circles. Continuing in this way we may obtain a chain of circles, and if there
are a finite number of them then the configuration can be enlarged so that all of these
circles have integer radius.

A parametric representation

It is possible to solve the equation αβ + βγ + γα = u2 parametrically and hence to
obtain sequences of four integer curvatures corresponding to four touching circles. It
is shown how to obtain the parametric solution in Section 7.5, where the theory of this
section is applied to a further study of Heron triangles. Taking the reciprocals of the
curvatures and then multiplying up by the least common multiple of their denominators
gives integer solutions for the radii in the problem of four touching circles.

The parametric solution is
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α = f2 + 4d2 + 3ed + fd ,

β = e2 + 4d2 + 3fd + ed ,

γ = e2 + f2 + 2ef − 2d2 − ed − fd ,

u = e2 + f2 + ef + 3ed + 3fd .

(7.2.5)

The two possible values of ρ are given by 4e2 + 4f2 + 4ef + 6d2 + 9ed + 9fd and
6d2 − 3ed − 3fd.

For example, with d = 3, e = −2, and f = −3 we obtain α = 18, β = 7, γ = 22,
u = 26, and ρ = 99 or ρ = −5. Geometrically, this means that if we have three large
circles of radii 63, 198, and 77 then the circle in the space between them and touching
them has radius 14. By letting d, e, and f run through all sets of integers, we can
obtain (by enlargement) all configurations in which four touching circles have integer
radii.

Exercises 7.2

7.2.1 Given that α = 1, β = 4, and γ = 12, find the two possible values of ρ, the
variables having the meaning in the text. Interpret your result geometrically.

7.2.2 Put e = 5, f = 4, and d = 1 in the parametric representation (7.2.5)
and find the corresponding values of α, β, γ, and ρ. Interpret your result
geometrically.

7.3 Five spheres touching each other externally

We now consider the analogue in three dimensions of the theory in Section 7.2.
What happens in three dimensions is that it is possible to find five mutually touching
spheres, and we show how to obtain configurations in which these spheres all have
integer radius. We start with a piece of algebra, which is later associated with the
curvatures of the spheres.

For integers a, b, c, and d we define

[a, b, c, d] =
√

3(2ab + 2bc + 2ca + 2ad + 2bd + 2cd − a2 − b2 − c2 − d2) .
(7.3.1)

Clearly, [a, b, c, d] is either a non-negative integer, or irrational, or complex. It cannot
be a rational unless it is an integer. Also, since a2 + b2 + c2 + d2 has the same parity
as a + b + c + d, it follows that when [a, b, c, d] is an integer it has the same parity as
a + b + c + d, and hence e = 1

2(a + b + c + d + [a, b, c, d]) is an integer also.
Five non-negative integers a, b, c, d, and e are said to form a touching set if

(i) a � b � c � d � e;

(ii) only a, if any, is zero;

(iii) e = 1
2(a + b + c + d + [a, b, c, d]), where [a, b, c, d] is given by eqn (7.3.1); and
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(iv) [a, b, c, d] is an integer.

Theorem 7.3.1 If a, b, c, d, and e form a touching set, then all of [b, c, d, e], [a, c, d, e],
[a, b, d, e], and [a, b, c, e], as well as [a, b, c, d], are integers.

Proof We already know, by definition, that m = [a, b, c, d] is an integer. So, by
symmetry, it is sufficient to show that [b, c, d, e] is an integer. We have [b, c, d, e]2 =
6(bc + cd + db + be + ce + de)− 3(b2 + c2 + d2 + e2), which, on inserting the value
of e and simplifying, is equal to

21
2

(bc + cd + db) +
3
2
(ab + ac + ad)

+
3m
2

(b + c + d − a) − 3
4
(a2 + b2 + c2 + d2 + m2)

=
1
4
m2 +

3m
2

(b + c + d − a) +
9
2
(bc + cd + db − ab − ac − ad)

+
9
4
(a2 + b2 + c2 + d2)

=
1
4
[m + 3(b + c + d − a)]2 .

Hence [b, c, d, e] = 1
2(m + 3b + 3c + 3d − 3a), which is an integer. Similarly,

[a, c, d, e] = 1
2(m + 3a + 3c + 3d− 3b), [a, b, d, e] = 1

2(m + 3a+ 3b + 3d− 3c), and
[a, b, c, e] = 1

2 (m + 3a + 3b + 3c − 3d). �

Theorem 7.3.2 Let a, b, c, d, and e be a touching set, as defined prior to Theorem
7.3.1. Then the sequence (un) defined by u1 = a, u2 = b, u3 = c, u4 = d, u5 = e,
and un+5 = un+4 + un+3 + un+2 + un+1 − un, for all n = 1, 2, 3, . . ., is such that
un, un+1, un+2, un+3, and un+4 is a touching set for all n = 1, 2, 3, . . ..

Proof The proof is by induction. The case n = 1 is given. As the induction hypothesis,
suppose that un, un+1, un+2, un+3, and un+4 is a touching set and that

un+4 =
1
2
(un + un+1 + un+2 + un+3 + vn) , (7.3.2)

where vn = [un, un+1, un+2, un+3]. Since [un+1, un+2, un+3, un+4] = vn+1 is an
integer, we know from Theorem 7.3.1 that

2vn+1 = vn + 3un+3 + 3un+2 + 3un+1 − 3un . (7.3.3)

Also, from the recurrence relation,

un+5 = un+4 + un+3 + un+2 + un+1 − un . (7.3.4)

Eliminating vn from eqns (7.3.2) and (7.3.3), we obtain

vn+1 = un+4 + un+3 + un+2 + un+1 − 2un . (7.3.5)
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Eliminating un from eqns (7.3.4) and (7.3.5), we obtain

un+5 =
1
2
(un+1 + un+2 + un+3 + un+4 + vn+1) , (7.3.6)

and hence, by Theorem 7.3.1, the induction is complete. �

Now suppose that the radii of the five spheres that touch each other externally are
k, l, m, n, and p, and define their curvatures by the equations κ = 1/k, λ = 1/l,
µ = 1/m, ν = 1/n, and ρ = 1/p. Then the generalisation of Descartes’ relation for
the curvatures of the five touching spheres is

3(κ2 + λ2 + µ2 + ν2 + ρ2) = (κ + λ + µ + ν + ρ)2 . (7.3.7)

Solving this for ρ we obtain a solution

ρ =
1
2
(κ + λ + µ + ν + [κ, λ, µ, ν]) . (7.3.8)

When κ � λ � µ � ν � ρ and all are positive integers, except possibly κ, which
may be zero (corresponding to a plane), and [κ, λ, µ, ν] is an integer, then κ, λ, µ, ν,
and ρ form a touching set. For example, see Exercise 7.3.2, spheres of radii 6, 6, 6,
2, and 1 can be arranged to touch one another externally. Also, see Exercise 7.3.1,
spheres of radii 12, 12, 4, and 3 can be arranged to touch each other externally, whilst
all touching a plane. Given a set of five spheres touching each other externally, which
have integer radii k, l, m, n, and p, then lmnp, kmnp, klnp, klmp, and klmn must
form a touching set. It follows that the touching sets are in correspondence with sets
of five spheres touching each other externally and having integer radii.

There is a second value of ρ, which is a solution of eqn (7.3.7), given by

ρ =
1
2
(κ + λ + µ + ν − [κ, λ, µ, ν]) , (7.3.9)

which, if negative, gives a fifth sphere having internal contact with the first four
spheres.

A two-parameter system for a touching set, which can be used to start a sequence,
as in Theorem 7.3.2, is given by

a = m2 + mn , b = n2 + mn , c = m2 + mn + n2 ,

d = 3m2 + 5mn + 3n2 , e = 4m2 + 7mn + 4n2 ,

where m and n are non-negative integers. However, this is not a general solution.
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Exercises 7.3

7.3.1 Show that 0, 1, 1, 3, and 4 is a touching set, and find the next three terms of
the sequence defined in Theorem 7.3.2.

7.3.2 Show that 1, 1, 1, 3, and 6 is a touching set, and find the next five terms of
the sequence defined in Theorem 7.3.2.

7.3.3 Given that 4, 9, 19, 25, and 57 forms a touching set, state the geometrical
interpretation of this in terms of touching spheres.

7.3.4 Four touching spheres of radii 350, 175, 150, and 150 are all touched by a
fifth sphere. Find possible values of its radius.

7.3.5 Prove that, if a, b, c, d, and e is a touching set, then

e[a, b, c, d] = a[b, c, d, e] + b[a, c, d, e] + c[a, b, d, e] + d[a, b, c, e] .

7.4 Six touching hyperspheres in four-dimensional
space

We next investigate how the theory of the previous two sections generalises into
four dimensions, when we expect to find six mutually touching hyperspheres and
configurations in which their radii are all integers. This excursion into the abstract is
prompted by the indicative properties of touching circles and spheres dealt with in the
last two sections. The requirement that the curvatures should be integers led to four
quadratic expressions of the form lm+mn+nl being simultaneously perfect squares
in the case of four touching circles. It also led to five quadratic expressions of the form
3(2ab+2bc+2ca+2ad+2bd+2cd−a2−b2−c2−d2) being simultaneously perfect
squares in the case of five touching spheres. Furthermore, there is the curious property
in each case that chains of such expressions can be formed. These have the geometrical
interpretation that there are chains of circles and spheres, such that any four circles in
a chain or any five spheres in a chain are mutually touching and by enlargement can
be made to have integer radius. We show in this section how these results generalise
further, though the curvatures sometimes turn out to be rational numbers that are not
necessarily integers. This is no problem, however, as one finds that they can all be
multiplied, at any given stage, by a factor of three to make them integral.

The equation to be satisfied by the curvatures of six mutually touching hyperspheres
is

4(κ2 + λ2 + µ2 + ν2 + ρ2 + σ2) = (κ + λ + µ + ν + ρ + σ)2 . (7.4.1)

We now define
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[a, b, c, d, e] =√
2(ab + ac + ad + ae + bc + bd + be + cd + ce + de − a2 − b2 − c2 − d2 − e2) .

(7.4.2)
Then the solutions of eqn (7.4.1), given suitable values of λ, µ, ν, ρ, and σ, are

κ =
1
3
(λ + µ + ν + ρ + σ ± 2[λ, µ, ν, ρ, σ]) . (7.4.3)

Observe that, when [λ, µ, ν, ρ, σ] is an integer, κ may not be an integer but may be a
rational with a denominator of 3. This does not matter as eqn (7.4.1) is homogeneous of
degree two in the variables, so all of the curvatures may be multiplied by 3 afterwards
to provide integer solutions.

We call non-negative integers a, b, c, d, e, and f a touching set if

(i) 0 � a � b � c � d � e � f ;

(ii) only a, if any, is zero;

(iii) [a, b, c, d, e] is an integer, where [a, b, c, d, e] is defined by eqn (7.4.2); and

(iv) f = (1/3)(a + b + c + d + e + 2[a, b, c, d, e]).
These integers correspond to the curvatures of six mutually touching hyperspheres

in four-dimensional space, touching externally, with the hypersphere of smallest radius
corresponding to the curvature f .

For example, if a = 0, b = 1, c = 1, d = 1, and e = 2, then f = 3. This
corresponds to four mutually touching hyperspheres of radii 6, 6, 6, and 3 lying on
a hyperplane, with a hypersphere of radius 2 touching the hyperplane and all of the
other hyperspheres. As a second example, if a = 1, b = 1, c = 1, d = 2, and e = 3,
then f = 16/3. We then produce a touching set by multiplying up by 3 to give a = 3,
b = 3, c = 3, d = 6, e = 9, and f = 16. The geometrical interpretation of this is that
hyperspheres of radii 48, 48, 48, 24, 12, and 9 can be arranged so that they touch each
other. Analogues of Theorems 7.3.1 and 7.3.2 exist, and these hold for touching sets
in four dimensions, as explained above.

Theorem 7.4.1 If a, b, c, d, e, and f form a touching set, then all of [b, c, d, e, f ],
[a, c, d, e, f ], [a, b, d, e, f ], [a, b, c, e, f ], and [a, b, c, d, f ], as well as [a, b, c, d, e], are
integers. �

The proof is similar to that of Theorem 7.3.1 and is omitted.

Theorem 7.4.2 If a, b, c, d, e, and f form a touching set and if we define the
sequence (un) by u1 = a, u2 = b, u3 = c, u4 = d, u5 = e, u6 = f , and un+6 =
(2/3)(un+5 + un+4 + un+3 + un+2 + un+1) − un, n = 1, 2, 3, . . ., then any six
consecutive terms of the sequence, when multiplied, if necessary, by an appropriate
power of 3, form a touching set. �

Again, the proof is similar to that of Theorem 7.3.2 and is omitted.
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Exercise 7.4

7.4.1 Show that 4, 12, 13, 45, 45, and 61 is a touching set for six hyperspheres in
four dimensions. Find the next term in the sequence given by the recurrence
relation defined in Theorem 7.4.2.

7.5 Heron triangles revisited
In Section 1.3 we defined a Heron triangle ABC to be a triangle with integer sides,
integer area, and one in which the altitude from A is of integer length. In this section
we drop the last of these conditions and call a triangle a Heron triangle if it has
integer sides and integer area. With this definition, every Heron triangle is similar
to one with the definition used in Section 1.3.

An application of the theory given in Section 7.2 enables us to derive formulae,
in terms of four parameters, for all integer-sided triangles having integer area. One
of these parameters is simply an enlargement factor, so we may regard the solution
as one that depends essentially only on three parameters. The formulae for the side
lengths are homogeneous expressions of degree four in terms of the parameters, or of
degree five if you include the enlargement factor. In Section 1.3 it was shown how
to construct Heron triangles that are the sum or difference of two integer-sided right-
angled triangles. This gives geometrical insight into what Heron triangles are, but leads
to increasingly complicated formulae for their side lengths, as a result of the different
ways that the right-angled triangles can be fitted together. The theory of this section
shows instead how Heron triangles arise from configurations of touching circles with
integer radii, and because of this link it shows how chains of Heron triangles can be
formed, provided that they are suitably enlarged.

Conversion of Heron’s formula

We suppose that ABC is a Heron triangle. We start from Heron’s formula

[ABC] =
1
4

√
(a + b + c)(b + c − a)(c + a − b)(a + b − c) , (7.5.1)

where a, b, and c are integers. Now put a = m + n, b = n + l, and c = l + m, where
l, m, and n are the radii of three mutually touching circles, centred at A, B, and C ,
respectively. From Exercise 1.3.5, in any Heron triangle either a, b, and c are all even
or two of a, b, and c are odd and one is even. Thus l, m, and n are positive integers.
The change of variable produces the more manageable formula

[ABC] =
√

lmn(l + m + n) . (7.5.2)

We now write l = 1/u, m = 1/v, and n = 1/w, where u, v, and w are the curvatures
of the three touching circles. This now produces the formula
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[ABC] =
1

uvw

√
vw + wu + uv . (7.5.3)

For example, if we start with the Heron triangle having a = 14, b = 13, and c = 15,
then we obtain l = 7, m = 8, n = 6, u = 1/7, v = 1/8, w = 1/6, and [ABC] = 84.
The formula in terms of u, v, and w is easy to handle, for, as we saw in Section 7.2, it is
possible to find integer u, v, and w such that

√
vw + wu + uv is an integer. However,

u, v, and w are not integers, but are the reciprocals of integers. As an example shows,
the matter is easily resolved. Suppose that we start with u = 48, v = 42, and w = 56
(by putting u = mn, v = nl, and w = mn); then uv + vw + wu = 3362, a perfect
square. This time l = 1/48, m = 1/42, and n = 1/56 are not integers. However, if
we multiply them by the least common multiple of their denominators we get back to
l = 7, m = 8, n = 6, a = 14, b = 13, and c = 15. It follows that Heron triangles are
in 1–1 correspondence with positive integer solutions of the Diophantine equation

uv + vw + wu = x2 . (7.5.4)

Solution in positive integers of the equation uv + vw + wu = x2

In Section 7.2 we saw how to construct chains of solutions of eqn (7.5.4). If we start
from any solution of [u, v, w] = uv + vw + wu = x2 then [v,w, u + v + w + 2x] is
a perfect square.

In fact,

[v,w, u + v + w + 2x] = vw + vu + v2 + vw + 2vx + wu + vw + w2 + 2wx

= v2 + 2vw + x2 + 2vx + 2wx + w2

= (v + w + x)2 .

For example, [−3, 4, 12] = 48 − 36 − 12 = 0. So the next term in the sequence is
−3 + 4 + 12 + 0 = 13. Then [4, 12, 13] = 48 + 52 + 156 = 162 and the next term in
the sequence is 4 + 12 + 13 + 2 × 16 = 61 and [12, 13, 61] = 412.

One can also reverse the procedure. That is, if [u, v, w] = x2, then

[u, v, u + v + w − 2x] = uv + u2 + uv + uw − 2ux + uv + v2 + vw − 2vx

= x2 − 2ux − 2vx + u2 + 2uv + v2

= (u + v − x)2

is a perfect square. In the above example the chain started with x = 0, but not all
chains of solutions of [u, v, w] = x2 start with a trio satisfying [u, v, w] = 0. For
example, [−3, 5, 8] = 1, but u+ v + w− 2x = 8, so the chain based on this trio starts
with x = 1 and not x = 0. Chains of solutions of eqn (7.5.4) are very intriguing, but
they do not provide a general solution.

In Section 7.2 we gave a three-parameter solution of the equation [u, v, w] = x2,
without derivation. We now give the derivation. The method is similar to that used in
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Section 1.2. It is to produce a non-singular linear change of variable that transforms
the given equation to one that is linear in each variable. There are many possibilities.
One such transformation is

u = e + f + d ,

v = g + f − 2d ,

w = g + e − 2d ,

x = g + e + f .

(7.5.5)

Substituting into [u, v, w] = x2, we obtain g = (5ed + 5fd − ef)/(e + f − 2d). If
we now substitute this value for g into the expressions for u, v, w, and x and multiply
up to clear denominators then we obtain

u = e2 + 2ef + f2 − de − df − 2d2 ,

v = 3ed + fd + f2 + 4d2 ,

w = 3fd + ed + e2 + 4d2 ,

x = 3ed + 3fd + e2 + f2 + ef .

(7.5.6)

With this parameterisation, u, v, w, and x may have a common factor that needs
removing. Also, care must be taken not to choose parameters with e + f = 2d or
−d, for that would make u = 0, which is not allowed. For a non-degenerate triangle
none of the variables is allowed to be zero, so other choices of parameters must be
excluded. Also, from the geometry of the problem, the parameters must be chosen so
that u, v, w, and x are positive integers.

Although the transformation (7.5.5) is not unimodular, this does not mean, by
restricting d, e, and f to have integer values, that any solution is missing. This is
because eqn (7.5.4) is homogeneous of degree 2, so when d, e, and f are rational with
denominator 3 (the determinant of transformation (7.5.5)) they can each be multiplied
by 3 and then all that happens is that u, v, w, and x have a common factor of 9. As no
attempt has been made to provide parameters in which u, v, w, and x have no common
factor and many of the solutions do have a common factor anyway, this is not an extra
problem. Since eqn (7.5.4) is homogeneous, the solutions (7.5.6) are made complete
by including a possible integer enlargement factor.

Examples using the parameters d, e, and f

Choose d = 1, e = 2, and f = 3. Then u = 18, v = 22, w = 19, and x = 34. This
corresponds to l = 1/18, m = 1/22, and n = 1/19. We now multiply up by 3762 to
get integral values l = 209, m = 171, and n = 198. From this we obtain a triangle
with sides a = m + n = 369, b = n + l = 407, and c = l + m = 380. Finally,
[ABC] = 63 954.

As a second example, choose d = 11, e = 83, and f = 41. Then u = 13370,
v = 5355, and w = 9639 and, cancelling a common factor of 153, we obtain u = 90,
v = 35, and w = 63. Hence l = 1/90, m = 1/35, and n = 1/63. Multiplying up by
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630, we obtain l = 7, m = 18, and n = 10. From this we obtain the triangle with
sides a = m + n = 28, b = n + l = 17, and c = l + m = 25. Finally, [ABC] = 210.
We see that this corresponds to the union of two right-angled triangles with sides 8,
15, and 17, and 20, 15, and 25. The second example is chosen deliberately to illustrate
the fact that u, v, and w sometimes have a large common factor, so that relatively large
values of d, e, and f may lead to triangles with short side lengths.

Parametric representation of the sides of a Heron triangle

Given u, v, and w for which uv + vw + wu is a perfect square, we now know that
a triangle with sides a = u(v + w), b = v(w + u), and c = w(u + v) is a Heron
triangle. With u, v, and w given in terms of d, e, and f , as defined above, we find a
parametric representation for the sides of a Heron triangle.

This is

a = −16d4 − 16d3e − 16d3f + 2d2e2 + 8d2ef + 2d2f2 + 3de3

+ 11de2f + 11def2 + 3df3 + e4 + 2e3f + 2e2f2 + 2ef3 + f4 ,

b = 8d4 + 6d3e + 10d3f + 8d2e2 + 14d2ef + 8d2f2 + 6de3

+ 8de2f + 5def2 + 3df3 + 2e2f2 + 2ef3 + f4 ,

c = 8d4 + 10d3e + 6d3f + 8d2e2 + 14d2ef + 8d2f2 + 3de3

+ 5de2f + 8def2 + 6df3 + e4 + 2e3f + 2e2f2 .
(7.5.7)

Parameters must, of course, be chosen so that u, v, and w, and hence a, b, and c, are
positive. The method ensures that the triangle inequalities are automatically satisfied.

With these values,

[ABC] = |uvwx| = |e2 + 2ef + f2 − de − df − 2d2||3ed + fd + f2 + 4d2|
× |3fd + ed + e2 + 4d2||3ed + 3fd + e2 + f2 + ef | .

(7.5.8)
The circumradius of triangle ABC is given by

R =
(v + w)(w + u)(u + v)

4x
. (7.5.9)

In eqns (7.5.7) the values of a, b, and c may be multiplied by an additional enlargement
factor k. Then the area is multiplied by k2. As can be seen from one of the numerical
examples above, although eqns (7.5.7) always give the sides of a Heron triangle, it
may be one in which a common factor can be removed. In fact, the equations scarcely
look as if a, b, and c have any low values whatsoever. In other words, these equations
give all Heron triangles, but only up to similarity.
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Exercises 7.5

7.5.1 Use the parameters d = 2, e = 1, and f = 5 in eqns (7.5.7) to find a Heron
triangle and enlarge it so that an altitude is an integer. Hence show how the
Heron triangle arises as the union of two integer-sided right-angled triangles
with a common side.

7.5.2 Repeat Exercise 7.5.1 with d = 1, e = 16, and f = 25.
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8 More on triangles

We now embark on an analysis of some more advanced properties of integer-sided
triangles. Though there are a large number of problems that could be treated, it is
hoped that the selection covered in this chapter is representative of the different types
of problem that exist and includes an account of the most significant ones.

There are nine sections in this chapter, each covering a different problem. They
include problems involving transversals, Cevians, the pedal triangles of a point, the
pivot theorem, and the symmedians. An account is given of the Euler line and another
line in the triangle in which the ratio 2 : 1 also appears. Finally, we consider whether
certain distances between key points in the triangle can be made integers by choosing
the sides of the triangle suitably.

Areal co-ordinates are used in most of the problems, and an account and derivation
of their main properties is given in the appendix. A reader not acquainted with these co-
ordinates is advised to study the appendix before reading this chapter. My experience
is that areal co-ordinates form a useful tool in dealing with all sorts of geometrical
problems, and, as no comprehensive account of them, including how to calculate
distances, appears in any modern text, I hope that the appendix proves useful.

8.1 Transversals of integer-sided triangles

In this section we consider the problem of an integer-sided triangle with given side
lengths a, b, and c and ask whether it is possible to choose a transversal DEF , with
D on BC , E on CA, and F on AB with the following property.

All of the segments DE, EF , FD, BD, CD, CE, AE, AF , and BF are of
rational length, so that, by enlargement, all line segments in the figure are of integer
length.

It turns out that, for any given triangle with integer sides, there are an infinite
number of transversals with this property.

We use areal co-ordinates, as in Section A.7 of the appendix. Suppose that the
transversal has equation lx + my + nz = 0, where l, m, and n are integers. In order
that DEF should not be parallel to any of the sides, no two of l, m, and n may be equal.
Also, without loss of generality, we may assume that m > n > 0 > l, so that E and F
are internal points of CA and AB, respectively, and D lies on BC extended beyond C .
The transversal meets BC , with equation x = 0, at D(0,−n,m)/(m−n). Similarly,
E has co-ordinates (n, 0,−l)/(n − l) and F has co-ordinates (m,−l, 0)/(m − l).
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It follows, from the discussion in Section A.2, that

BD =
ma

m − n
, DC =

na

m − n
, CE =

nb

n − l
,

EA = − lb

n − l
, AF = − lc

m − l
, FB =

mc

m − l

(8.1.1)

are all (positive) rational numbers.
We now compute the lengths of the segments FD, DE, and EF by using the areal

metric. For those not familiar with the areal metric, it is given by

(ds)2 = −a2 dy dz − b2 dz dx − c2 dxdy , (8.1.2)

where dr = (dx,dy,dz) is a vector displacement in the plane of the triangle, and
so satisfies dx + dy + dz = 0. This formula is not only true for an infinitesimal arc
length, but also when dr is a finite straight-line displacement. Note that the formula
is true only for displacements, which is why the sum of the components of dr is zero.
See Section A.8 of the appendix for a derivation of the metric.

Now a short piece of algebra shows that

F D =
m

(m − l)(m − n)
(−m + n,−n + l,−l + m) .

It follows from eqn (8.1.2) that

(m − l)2(m − n)2
FD2

m2
= a2l2 + b2m2 + c2n2 − lm(a2 + b2 − c2)

− mn(b2 + c2 − a2) − nl(c2 + a2 − b2) .
(8.1.3)

By symmetry, this is also equal to

(n − m)2(n − l)2
DE2

n2
= (l − n)2(l − m)2

EF 2

l2
.

If, for the moment, we put the term on the right-hand side of eqn (8.1.3) equal to d2,
where d is positive, then, in our figure, in which FD = EF + DE, we have

FD =
md

(m − l)(m − n)
,

EF = − ld

(n − l)(m − l)
,

DE =
nd

(m − n)(n − l)
.

(8.1.4)

Essentially, this means that, if any one of the segments FD, EF , and DE is rational,
then so are the other two.

Suppose now that we are given an integer-sided triangle ABC . Then, provided
that we can choose l, m, and n so that d is an integer for any integers a, b, and c, it
follows that all nine line segments in the configuration of the triangle will be rational.
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Theorem 8.1.1 If a, b, and c are the integer sides of a triangle, then there exist an
infinite number of sets of integers l, m, n, and d (depending on a, b, and c) such that

a2l2 + b2m2 + c2n2−mn(b2 + c2−a2)−nl(c2 +a2− b2)− lm(a2 + b2− c2) = d2 .
(8.1.5)

Hence, by virtue of eqns (8.1.1) and (8.1.4), there are an infinite number of transversals
DEF of the triangle ABC , with equations lx + my + nz = 0 in areal co-ordinates,
such that the line segments BD, CD, CE, AE, AF , BF , DE, EF , and FD are all
of rational length.

Proof The method of solving eqn (8.1.5) is the same as in Sections 1.2 and 7.5; that
is, we find a non-singular linear change of variable between l, m, n, and d, and u, v,
w, and e such that eqn (8.1.5) becomes linear in each variable. A suitable change of
variable is

l = u + e , m = v + e , n = w + e , d = au + bv + cw . (8.1.6)

Substituting into eqn (8.1.5), it turns out that this equation is satisfied provided that
we choose

w = − (a + b − c)uv

(c + a − b)u + (b + c − a)v
. (8.1.7)

Substituting back into eqn (8.1.6) and multiplying up by the denominator of w, we
find the following three-parameter solution for l, m, n, and d in terms of e, u, and v:

l = (u + e)[(c + a − b)u + (b + c − a)v] ,
m = (v + e)[(c + a − b)u + (b + c − a)v] ,
n = −(a + b − c)uv + e[(c + a − b)u + (b + c − a)v] ,

d = a(c + a − b)u2 + (c + a − b)(c + b − a)uv + b(c + b − a)v2 .

(8.1.8)

Since e, u, and v may have any integer values such that m > n > 0 > l, the theorem
is proved. �

For example, with a = 3, b = 4, c = 5, u = −3, e = 2, and v = 4, then after
cancelling common factors we obtain l = −1, m = 6, n = 4, and d = 17. We now
obtain BD = 9, DC = 6, CE = 16/5, EA = 4/5, AF = 5/7, FB = 30/7,
FD = 51/7, FE = 17/35, and ED = 34/5. Enlargement by a factor of 35 makes
all nine line segments integer in length, see Fig. 8.1.
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A

E
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B DC

150
112

238

210105

17

25
28

Fig. 8.1 An integer-sided triangle with integer segments on a transversal.

Exercises 8.1

8.1.1 Use the parameters u = −3, e = 1, and v = 3 in eqns (8.1.8) for the triangle
with a = 2, b = 3, and c = 4 to find a transversal such that all of the line
segments in the configuration are rational.

8.1.2 Repeat Exercise 8.1.1 with u = −1, e = 0, and v = 1 for the triangle with
a = 2, b = 3, and c = 4.

8.1.3 Simplify eqns (8.1.8) for an equilateral triangle of side a and construct an
example of the theory.

8.2 The pedal triangle of three Cevians

Suppose that ABC is an integer-sided triangle and P is a point in the plane of the
triangle, not lying on any of the sides. Let AP meet BC at L, BP meet CA at M ,
and CP meet AB at N . The three lines AL, BM , and CN have become known as
Cevians.

This is because of Ceva’s theorem, which states that under these circumstances

BL

LC

CM

MA

AN

NB
= 1 . (8.2.1)

In eqn (8.2.1) the lengths are signed, so that, for example, if L is on the extension of
BC beyond C then BL is positive but LC is negative. Ceva’s theorem is proved in
Section A.7 of the appendix. The triangle LMN is called the pedal triangle of the
three Cevians. There are three problems. Firstly, we consider whether it is possible
to find points P such that, in suitably chosen integer-sided triangles, the sides of the
pedal triangle are also integers. There is also the question of whether there are points
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P for which LMN is integer-sided for all or most integer-sided triangles. The third
problem is to find the points P for which LMN is integer-sided when the sides of the
triangle are specified integers.

Most of these problems are very difficult, but answers are known for certain points
P . One case can be solved straight away. When P is at G, the centroid, the triangle
LMN is the median triangle, whose sides are parallel to those of ABC and half their
length. So LMN is integer-sided if and only if ABC has even integer sides.

For other cases it is necessary to work out LM , MN , and NL for a triangle of
integer side lengths a, b, and c for a point P with areal co-ordinates (l,m, n). We
restrict our discussion to cases in which P is internal to the triangle ABC .

Let the areal co-ordinates of P be (l,m, n), where l, m, and n are rational numbers
lying strictly between 0 and 1, such that l + m + n = 1. Then L, M , and N have
co-ordinates

L
(0,m, n)
m + n

, M
(l, 0, n)
n + l

, N
(l,m, 0)
l + m

.

It follows that

LM =
(l(m + n),−m(n + l), n(m − l))

(n + l)(m + n)
.

Using the areal metric, given by eqn (8.1.2) and established in Section A.8 of the
appendix, we obtain

(n + l)2(n + m)2LM2 = a2mn(n + l)(m − l) − b2nl(m + n)(m − l)

+ c2lm(m + n)(n + l) .

Putting l = 1/u, m = 1/v, and n = 1/w, where u, v, and w are rational numbers
strictly greater than 1 and which, since l + m + n = 1, satisfy

uv + vw + wu = uvw , (8.2.2)

we obtain

(w + u)2(w + v)2
LM2

w2
= a2u2 + b2v2 + c2w2 + vw(b2 + c2 − a2)

+ wu(c2 + a2 − b2) − uv(a2 + b2 − c2) .
(8.2.3)

Similarly,

(u + v)2(u + w)2
MN2

u2
= a2u2 + b2v2 + c2w2 − vw(b2 + c2 − a2)

+ wu(c2 + a2 − b2) + uv(a2 + b2 − c2)
(8.2.4)

and

(v + w)2(v + u)2
NL2

v2
= a2u2 + b2v2 + c2w2 + vw(b2 + c2 − a2)

− wu(c2 + a2 − b2) + uv(a2 + b2 − c2) .
(8.2.5)
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Since the three expressions for LM2, MN2, and NL2 are homogeneous of degree 0
in u, v, and w, we may take u, v, and w to be integers and discard the normalisation
equation (8.2.2). For, given any rational solution of eqn (8.2.2), we can multiply each
of u, v, and w by the least common multiple of their denominators to obtain integer
u, v, and w, and the values of LM , MN , and NL are unaltered. Conversely, any set
of integers u, v, and w can be scaled to provide a rational solution of eqn (8.2.2).

If we refer back to Section 8.1, then we see that the expression for NL2 is the same
as that for FD2 under the correspondence v → −m, u → l, and w → n. This means
that it is very easy to make one or other of LM , MN , and NL rational by using a
correspondingly modified parameter system. The problem of making all of LM , MN ,
and NL rational for any given triangle requires making three homogeneous quadratic
forms simultaneously perfect squares, a problem analogous to that of finding integer-
sided triangles with three integer medians. We now consider a number of special
cases.

• Case 1
For any triangle there is the trivial solution with u = v = w = 3, which gives the
median triangle in which MN = 1

2a, NL = 1
2b, and LM = 1

2c. So, whenever a,
b, and c are even, LMN has integer sides. This corresponds to l = m = n = 1/3
and P is the centroid G. This case has already been mentioned above.

• Case 2
Suppose that the triangle ABC is equilateral with side a. Then eqns (8.2.3)–(8.2.5)
become

(w + u)2(w + v)2LM2 = a2w2(u2 + v2 + w2 + vw + wu − uv) , (8.2.6)

(u + v)2(u + w)2MN2 = a2u2(u2 + v2 + w2 − vw + wu + uv) , (8.2.7)

(v + w)2(v + u)2NL2 = a2v2(u2 + v2 + w2 + vw − wu + uv) . (8.2.8)

This illustrates what was stated above, that searching for points P for any particu-
lar triangle, in general, requires making three homogeneous quadratic expressions
simultaneously perfect squares. It is certain that an infinite number of sets of values
of u, v, and w exist such that each of LM , MN , and NL is rational. For example,
there are an infinite number of solutions for an isosceles triangle when P lies on the
line of symmetry, see Case 6 below.

• Case 3
For an acute integer-sided triangle, it is always possible to find an internal point
other than the centroid such that the pedal triangle of the Cevians has rational sides.
This is when the internal point P is the orthocentre H . Then (l,m, n) is proportional
to (tan A, tan B, tan C). It is known, in this case, that

MN = a cos A , NL = b cos B , LN = c cos C . (8.2.9)

These lengths are rational for any acute integer-sided triangle. Note that l, m, and n
are rational only when the triangle is a Heron triangle, showing that a case certainly
exists in which the sides of the pedal triangle are rational and l, m, and n are not.
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In eqns (8.2.3)–(8.2.5) the following terms are equal:

vw(b2 + c2 − a2) = wu(c2 + a2 − b2) = uv(a2 + b2 − c2) , (8.2.10)

since each is proportional to cos A cos B cos C . So, as soon as one of the expressions
(8.2.3), (8.2.4), or (8.2.5) is a perfect square, then so are the other two expressions.
As an example, take a = 14, b = 13, c = 15, tan A = 56/33, tan B = 4/3,
and tan C = 12/5. The normalised areal co-ordinates of H are (cot B cot C,
cot C cot A, cot A cot B). It follows that u = 16/5, v = 224/55, and w = 224/99.
The expression on the right-hand side of each of eqns (8.2.3)–(8.2.5) is then
(2912/33)2 . It follows that MN = 462/65, NL = 39/5, and LM = 75/13.
The total perimeter is 1344/65, see Fig. 8.2. The pedal triangle of the orthocentre
of an acute-angled triangle is of interest geometrically because its boundary is the
shortest path that a light ray can traverse a closed path reflecting off the sides of the
triangle as if they are mirrors. This is because the normals at L, M , and N bisect
the angles of the triangle LMN , which are 180◦ − 2A, 180◦ − 2B, and 180◦ − 2C .

• Case 4
Another example of a pedal triangle with rational sides is when the sines and
cosines of all of the angles 1

2A, 1
2B, and 1

2C are rational, and the internal point P
is Gergonne’s point. If X, Y , and Z are the points where the incircle touches the
sides BC , CA, and AB, respectively, then AX, BY , and CZ are concurrent at
Gergonne’s point, with unnormalised areal co-ordinates (1/(s−a), 1/(s−b), 1/(s−
c)), see Section A.7 of the appendix for a derivation. The values of u, v, and w may
therefore be taken as s − a, s − b, and s − c, respectively. However, it is known
from the geometrical configuration, without any need to use eqns (8.2.3)–(8.2.5), that
Y Z = (b+c−a) sin 1

2A, ZX = (c+a−b) sin 1
2B, and XY = (a+b−c) sin 1

2C ,
see Exercise 8.2.1.

• Case 5
An open question is whether, given a point with fixed rational areal co-ordinates,
there is always a triangle with a pedal triangle, with respect to that point, having

A

B L

M

N

H

C

975
462

507

845

375

910

Fig. 8.2 An integer-sided triangle with a pedal triangle having integer sides.
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rational side lengths. For example, when u = 2, v = 3, and w = 1, this amounts to
finding integer a, b, and c such that all of −3a2 + 4b2 + 12c2, 15a2 + 10b2 − 6c2,
and 5a2 + 20b2 − 4c2 are perfect squares. For each set of values of u, v, and w this
presents a problem similar to that of finding integer-sided triangles in which all of
the medians are of integer length. Experience with that problem leads me to suspect
that such triangles may exist for some choices of u, v, and w, but, unless it can be
proved (or disproved) that such is the case for all choices of u, v, and w, the matter
is not very interesting.

• Case 6
When the triangle is integer-sided and isosceles it turns out that there are an infinite
number of points on the line of symmetry, with rational areal co-ordinates, leading
to pedal triangles with rational sides.
To see this, let us put c = b and w = v in expressions (8.2.3)–(8.2.5). We find that
LM = NL, and from eqn (8.2.3) their lengths are given by

4(u + v)2LM2 = a2u2 + (4b2 − a2)v2 . (8.2.11)

From eqn (8.2.4) we have

(u + v)4
MN2

u2
= a2(u + v)2 , (8.2.12)

that is, MN = au/(u+ v). In other words, provided that u and v are rational, MN
is automatically rational. This, of course, is because the triangles ANM and ABC
are similar. We now show that, whatever values a and b have, it is always possible
to find infinitely many pairs of integers u and v such that

a2u2 + (4b2 − a2)v2 = x2 , (8.2.13)

where x is integral. We make a non-singular linear change of variable so that, in
terms of the new variables, eqn (8.2.13) becomes linear in each variable. A suitable
change of variable is

u = p + q + r , v = p − r , x = 2b(p + r) + aq . (8.2.14)

Then eqn (8.2.13) gives q = −2(a + 2b)pr/a(p + r). Substituting this value back
into eqns (8.2.14) and multiplying up by a(p + r), we obtain

u = a(p2+r2)−4bpr , v = a(p2−r2) , x = 2ab(p2 +r2)−2a2pr . (8.2.15)

In eqn (8.2.15) p and r may have any integer values such that u, v, and w are
positive. Any common factors may be extracted. As an example, let a = 7, b = 5,
p = 3, and r = 1. Then u = 5, v = 28, and x = 203. It follows that MN = 35/33
and NL = LM = 203/66.
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Exercises 8.2

8.2.1 Find the sides of the pedal triangle formed by the feet of the Cevians through
Gergonne’s point in the triangle with a = 154, b = 169, and c = 125.

8.2.2 Show that, if u, v, and w are fixed positive integers and v = w, then there
exist infinitely many isosceles triangles with b = c, such that the pedal
triangle LMN has rational side lengths.

8.3 The pedal triangle of a point
If P is a point in the plane of a triangle ABC not lying on any of its sides and the feet
of the perpendiculars from P onto the sides BC , CA, and AB are denoted by L, M ,
and N , respectively, then the triangle LMN is called the pedal triangle of the point
P .

Similar problems exist as those detailed in Section 8.2 for the pedal triangle of
the Cevians. We may ask whether it is possible to find points P such that, in suitably
chosen integer-sided triangles, the sides of the pedal triangle of P are also integers.
There is also the question of whether there are points P for which LMN is an integer-
sided triangle for all or most integer-sided triangles. The third problem is to find points
P for which LMN is an integer-sided triangle when the sides of the triangle ABC
are specified.

In what follows we restrict P to be an internal point and suppose that it has areal
co-ordinates (l,m, n), where l, m, and n are rational numbers lying strictly between
0 and 1 and are such that l + m + n = 1.

Three lines through P are drawn perpendicular to the sides BC , CA, and AB
and meet them at L, M , and N , respectively. Then, as shown in Section A.9 of the
appendix,

BL = an + cl cos B , (8.3.1)

NB = cl + an cos B . (8.3.2)

So, by the cosine rule for the triangle NBL, we have

NL2 = BL2 + NB2 − 2BL NB cos B = sin2 B(a2n2 + c2l2 + 2canl cos B) .
(8.3.3)

Similarly,
LM2 = sin2 C(b2l2 + a2m2 + 2ablm cos C) (8.3.4)

and
MN2 = sin2 A(c2m2 + b2n2 + 2bcmn cos A) . (8.3.5)

• Case 1
Let P be the circumcentre O; then L, M , and N are the midpoints of the sides.
The above formulae are not needed. LMN is the median triangle and MN = 1

2a,
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NL = 1
2b, and LM = 1

2c, and so LMN is integer-sided if and only if ABC has
sides that are even integers.

• Case 2
Suppose now that the triangle ABC is equilateral with side a. Then sin2 A =
sin2 B = sin2 C = 3/4 and cos A = cos B = cos C = 1/2. It follows from eqns
(8.3.3)–(8.3.5) that we have

NL2 =
3
4
a2(n2 + nl + l2) ,

LM2 =
3
4
a2(l2 + lm + m2) ,

MN2 =
3
4
a2(m2 + mn + n2) .

(8.3.6)

Hence NL, LM , and MN are rational whenever rational numbers l, m, and n
are found so that l + m + n = 1 and each of n2 + nl + l2, l2 + lm + m2, and
m2 +mn+n2 are 3 times a rational square. Then a can be chosen so that NL, LM ,
and MN are integers. This problem is very similar to the problem of the equilateral
triangle treated in detail in Section 6.4. A computer search has been carried out by
J. T. Bradley (private communication) for finding integer values of l, m, and n such
that all of n2+nl+ l2, l2+ lm+m2, and m2+mn+n2 are 3 times a perfect square,
and for which 10 000 > l > m > n > 0. The strict inequalities here mean that the
corresponding solutions do not lie on any of the medians, as solutions for points on
the medians may be obtained for the case of the isosceles triangle, see Case 6 below.
The results of the computer search are given in Table 8.1. Solutions are few and far
between as compared with medians of integer length for integer-sided triangles.

• Case 3
For any acute integer-sided triangle, NL, LM , and MN are rational when P is the
orthocentre H . Then l = cot B cot C , m = cot C cot A, and n = cot A cot B (see
Section A.6 of the appendix). Putting a = 2R sinA, etc., we have

Table 8.1 Integer values of l, m, and n such that each of n2 + nl + l2, l2 + lm + m2, and
m2 + mn + n2 are 3 times a perfect square.

l m n

611 338 83
1261 598 253
2522 1067 506
2714 1898 803
3674 2714 803
6578 2783 386
6887 5522 3266
8327 5447 1514
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NL2 = 4R2 cos2 B(cos2 A + cos2 C + 2cos A cos B cos C)

= 4R2 cos2 B(1 − cos2 B) ,

and hence NL = 2R cos B sinB = b cos B. Similarly, LM = c cos C and MN =
a cos A. This is, of course, the same result as in Section 8.2, since for the orthocentre
the perpendiculars through H coincide with the altitudes AD, BE, and CF , which
are the Cevians of the point H .

• Case 4
When P is the incentre I , the feet of the perpendicular are the points X, Y , and Z
where the incentre touches the sides BC , CA, and AB, respectively. So the pedal
triangle XY Z coincides with the pedal triangle of the Cevians of Gergonne’s point.
Hence there are rational sides when the sines and cosines of 1

2A, 1
2B, and 1

2C are
all rational.

• Case 5
We now consider the case of an isosceles triangle. When c = b and n = m the
formulae (8.3.3)–(8.3.5) become

NL2 = LM2 = sin2 B(a2m2 + b2l2 + 2ablm cos B) (8.3.7)

and

MN2 = 2b2m2 sin2 A(1 + cos A) = 4b2m2 sin2 A cos2 1
2
A . (8.3.8)

Hence MN = 2bm sin A cos 1
2A, which is rational provided that cos 1

2A is rational.
(Since a = 2b sin 1

2A, we already know that sin 1
2A is rational.) All of the sides of

the pedal triangle will then be rational provided that we can choose l and m so that

a2m2 + b2l2 + 2ablm cos B (8.3.9)

is the square of a rational number and sin B is rational. Now cos B = a/2b, so
expression (8.3.9) becomes a2m2 + b2l2 + a2lm.

A two-parameter solution of the Diophantine equation a2m2 + b2l2 + a2lm = x2

is
l = 4apr ,

m = (r − p)[(2b − a)p + (2b + a)r] ,

x = a(2b − a)p2 + a(2b + a)r2 .

(8.3.10)

In eqn (8.3.10) p and r are any integers such that l and m are positive. It is worth
seeing how to use the solution, as integral values for l and m, once obtained, have
then to be normalised so that l + 2m = 1, and it is also necessary that sin B should
be made rational.

As an example, let us take the isosceles triangle with a = 10 and b = c = 13.
Then sin 1

2A = cos B = 5/13 and cos 1
2A = sin B = 12/13. Let us choose r = 5

and p = 2 in eqns (8.3.10). Then l = 400, m = 636, and x = 9640. Now the
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expressions that we are dealing with are all homogeneous quadratics in l and m, so
we may normalise by dividing all of l, m, and x by l + 2m = 1672. This means
that their actual values are l = 50/209, m = n = 159/418, and x = 1205/209. We
can now finish the calculation to obtain NL = LM = x sin B = 14460/2717 and
MN = 2bm sin A cos 1

2A = 228 960/35 321.

Exercise 8.3

8.3.1 Take the isosceles triangle with a = 6 and b = c = 5, and the parameters r =
3 and p = 1 in eqns (8.3.10), and find the side lengths of the corresponding
pedal triangle.

8.4 The pivot theorem
Firstly, we define the pivot point P . We then show that the areal co-ordinates of P
are rational provided that the points L, M , and N that create the pivot point also have
rational areal co-ordinates.

Theorem 8.4.1 If ABC is a triangle and the points L, M , and N are chosen on the
lines BC , CA, and AB, respectively, but not at the vertices, then the circles AMN ,
BNL, and CLM meet at a point P , called the pivot point.

Proof We give the proof only for the case when P lies inside the triangle ABC , but
the proof is much the same when P lies outside the triangle ABC . Let the circles
BNL and CLM meet at P . Since BNPL is cyclic we have ∠NPL = 180◦ − B,
and since CMPL is cyclic we have ∠MPL = 180◦ − C . It follows that ∠MPN =
360◦ − (180◦ − B)− (180◦ −C) = 180◦ − A. Hence AMPN is cyclic; that is, the
circle AMN passes through P . �

As stated above, the problem which we solve in this section is to find the ratios
[BCP ] : [CAP ] : [ABP ] : [ABC] = x : y : z : x + y + z, given the points
L, M , and N . Suppose that BL/LC = (1 − l)/l, CM/MA = (1 − m)/m, and
AN/NB = (1 − n)/n. We determine the values of x, y, and z, which are the
unnormalised areal co-ordinates of P , in terms of the six parameters a, b, c, l, m, and
n, showing them to be rational, provided that the parameters l, m, and n are rational
and ABC is an integer-sided triangle.

The areal co-ordinates of L, M , and N are (0, l, 1 − l), (1 − m, 0,m), and
(n, 1 − n, 0), respectively. We also use the fact that the conic with equation

ux2 + vy2 + wz2 + 2pyz + 2qzx + 2rxy = 0 (8.4.1)

is a circle if and only if

v + w − 2p
a2

=
w + u − 2q

b2
=

u + v − 2r
c2

. (8.4.2)
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See Section A.10 of the appendix for the proof. In view of the homogeneity of eqn
(8.4.1), we may as well take the common value in eqn (8.4.2) to be 1. We now put in
the conditions that the circle (8.4.1) passes through A, M , and N . These conditions
are

u = 0 ,

wm + 2qm(1 − m) = 0 ,

v(1 − n) + 2rn = 0 .

(8.4.3)

Solving these equations we find the circle AMN to have equation

c2ny2+b2(1−m)z2+[c2n+b2(1−m)−a2]yz−b2mzx−c2(1−n)xy = 0 . (8.4.4)

Similarly, the circles BNL and CLM have equations

a2lz2 + c2(1−n)x2 +[a2l + c2(1−n)− b2]zx− c2nxy−a2(1− l)yz = 0 (8.4.5)

and

b2mx2+a2(1− l)y2+[b2m+a2(1− l)−c2]xy−a2lyz−b2(1−m)zx = 0 , (8.4.6)

respectively.
If x, y, and z are normalised areal co-ordinates of P then x + y + z = 1 and eqns

(8.4.5) and (8.4.6) simplify to

a2lz − c2nx + c2x2 + c2zx − b2zx − a2yz = 0 (8.4.7)

and
b2mx − a2ly + a2y2 + a2xy − c2xy − b2zx = 0 , (8.4.8)

respectively. We next subtract these equations and use x + y + z = 1 again to obtain

[b2m − c2(1 − n)]x + a2(1 − l)y − a2lz = 0 . (8.4.9)

A cyclic change of a, b, and c; l, m, and n; and x, y, and z gives a second linear
equation

−b2mx + [c2n − a2(1 − l)]y + b2(1 − m)z = 0 . (8.4.10)

Since we are only interested in ratios, we can now relax the condition x + y + z = 1
and use these two equations to derive (unnormalised) values for x, y, and z. These are

x = a2
[
(1 − l)(1 − m)b2 + nlc2 − l(1 − l)a2

]
,

y = b2
[
(1 − m)(1 − n)c2 + lma2 − m(1 − m)b2

]
,

z = c2
[
(1 − n)(1 − l)a2 + mnb2 − n(1 − n)c2

]
.

(8.4.11)
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Exercises 8.4

8.4.1 Where is the pivot point when L, M , and N are (a) the feet of the medians,
and (b) the feet of the altitudes?

8.4.2 Find [BCP ] : [CAP ] : [ABP ], where P is the pivot point and L, M , and
N are the feet of the internal bisectors.

8.4.3 Invert the pivot theorem about any point to establish the six-circle theorem.
This states that, if C1, C2, C3, and C4 are four circles, and if the intersections
of Cj and Ck are denoted by Pjk and Qjk (j, k = 1, 2; 2, 3; 3, 4; 4, 1), then
the four points Qjk are concyclic if and only if the four points Pjk are
concyclic.

8.5 The symmedians and other Cevians
We now prove a general theorem linking the length of the Cevians of a point X with
the length of the Cevians of a point Y , where Y is the isogonal conjugate of X. For the
definition of the isogonal conjugate of a point see Section A.10 of the appendix. The
theorem tells us that, if the triangle ABC is integer-sided and if one set of Cevians
are rational in length, then the other set of Cevians are rational in length. In fact, the
lengths are related so that, if the Cevian AXL is rational, then so is the Cevian AY P ,
where L and P lie on BC . We begin by looking at the particular case when X is the
centroid and Y is the symmedian or Lemoine point.

The symmedian point S in the triangle ABC has areal co-ordinates (a2, b2, c2)/
(a2 + b2 + c2). It is the isogonal conjugate of the centroid G, and has the following
interesting properties.

(i) If AL, BM , and CN are the medians, AU , BV , and CW are the internal bisectors,
and AP , BQ, and CR are the symmedians, then the angles LAP , MBQ, and
NCR are bisected by the internal bisectors AU , BV , and CW , respectively.

(ii) If the tangents to the circumcircle ABC at B and C meet at D, and E and F are
similarly defined, then AD, BE, and CF are concurrent at S.

Proof of part (i) is not given here, but appears in Bradley (2005). Part (ii) is proved
in Section A.10 of the appendix.

Using the areal metric, defined by eqn (8.1.2), we have

AP 2 =
b2c2(2b2 + 2c2 − a2)

(b2 + c2)2
. (8.5.1)

It follows that

AP =
2bcAL

b2 + c2
. (8.5.2)

Hence, in a triangle that is not isosceles, a symmedian is shorter than the corresponding
median. Also, for an integer-sided triangle, the length of a symmedian is rational if and
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only if the length of the corresponding median is rational. A list of many integer-sided
triangles in which all three medians are integers is given in Section 2.4, so the results
of that section apply here also, to the case when all three symmedians are of rational
length. The above property is a particular case of a more general theorem.

Theorem 8.5.1 Suppose that X is a point in the plane of an integer-sided triangle
ABC with rational areal co-ordinates (l,m, n). Let AL, BM , and CN be the Cevians
through X. Suppose that Y is the isogonal conjugate of X, with areal co-ordinates
(a2/l, b2/m, c2/n). Also, let AP , BQ, and CR be the Cevians through Y . Then AP
is rational in length if and only if AL is rational in length, and similarly for the pairs
BQ and BM , and CR and CN .

Proof Using the areal metric, given by eqn (8.1.2), we have

AL2 =
(b2 + c2 − a2)mn + b2n2 + c2m2

(m + n)2
. (8.5.3)

Also,

AP 2 =
b2c2[(b2 + c2 − a2)mn + b2n2 + c2m2]

(b2n + c2m)2
, (8.5.4)

and hence

AP =
bc(m + n)AL

b2n + c2m
. (8.5.5)

The rest of the proof follows by cyclic changes of letters. �

Exercises 8.5

8.5.1 Find the lengths of the symmedians in the triangle with a = 136, b = 170,
and c = 174.

8.5.2 In the triangle with a = 14, b = 13, and c = 15, calculate the length of the
line AOP , where O is the circumcentre and P lies on BC . (Use the fact that
O is the isogonal conjugate of H , the orthocentre.)

8.6 The Euler line and ratios 2 : 1 in a triangle

In this section we give a proof of the fact that OGTH is a straight line, where O is the
circumcentre, G is the centroid, T is the centre of the nine-point circle, and H is the
orthocentre of the triangle ABC , and establish the relations OG = (1/3)OH and
OT = (1/2)OH. The line OGTH is called the Euler line. We also identify another
line in the triangle with four points on it, which has similar properties as regards the
ratios of the distances between the points.
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The Euler line

In the triangle ABC denote the feet of the altitudes by D, E, and F and the midpoints of
the sides by L, M , and N . If O is the circumcentre, then OL = 1

2(OB+OC). Define
the point H by the equation AH = 2OL. Since OL is perpendicular to BC , AH is
also perpendicular to BC , and hence H lies on the altitude AD. The vector position of
H is given by OH = OA+AH = OA+OB +OC. By symmetry, H also lies on
the altitudes BE and CF . H is therefore the point where the three altitudes meet. It is
therefore the orthocentre of ABC . The point G on AL such that AG : GL = 2 : 1 has
the vector position OG = OA + (2/3)(OL − OA) = (1/3)(OA + OB + OC).
Hence G lies on OH and GH : OG = 2 : 1. Since ∠AGH = ∠LGO, it follows that
the triangles AGH and LGO are similar, with a scale factor of 2.

The nine-point circle

Let T be the midpoint of OH , so that OT = 1
2(OA + OB + OC). Denote the

midpoints of AH , BH , and CH by U , V , and W , respectively. We have OU =
OA+ 1

2(OB+OC), OV = OB+ 1
2(OC+OA), and OW = OC+ 1

2(OA+OB).
Also, OL = 1

2(OB + OC), OM = 1
2(OC + OA), and ON = 1

2(OA + OB).
Clearly, T is equidistant from U , V , W , L, M , and N , since its vector position is
OT = 1

2(OA + OB + OC), and so |T U | = |T V | = |T W | = |T L| = |T M | =
|T N | = 1

2R, where R is the circumradius. Now HOLD is a right-angled trapezium,
and, since T is the midpoint of OH , it follows that TD = TL. Similarly, TE = TM
and TF = TN . Hence T is the centre of a circle of radius 1

2R passing through L,
M , N , U , V , W , D, E, and F . This circle is called the nine-point circle. Note also
that OG : GT = 2 : 1. Since the ratio of the radius of the circumcircle to the radius
of the nine-point circle is 2 : 1, it follows that H is the external centre of similitude
of the two circles and G is the internal centre of similitude of the two circles. This
means, for example, that HX = 2HD, where X is the point at which HD meets the
circumcircle. See Fig. 8.3 for a diagram of this configuration.

Another line with 2 : 1 ratios

In this section we again use areal co-ordinates. The incentre I has co-ordinates
(a, b, c)/(a + b + c), see Section A.6 of the appendix, and G has co-ordinates
(1/3, 1/3, 1/3). The centre of mass J of a framework of uniform wires of equal
density forming the sides of the triangle ABC has co-ordinates

a(0, 1
2 , 1

2) + b(1
2 , 0, 1

2) + c(1
2 , 1

2 , 0)
a + b + c

=
1
2

(b + c, c + a, a + b)
a + b + c

.

It follows that IG = (b + c − 2a, c + a − 2b, a + b − 2c)/3(a + b + c) and GJ =
(b + c − 2a, c + a − 2b, a + b − 2c)/6(a + b + c). Hence G lies on IJ and satisfies
IG : GJ = 2 : 1.
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A

B D

E

C

F

G

H

L

MN

O
V

T

U

W

X

Fig. 8.3 The Euler line and the nine-point circle DLV NFUEMW .

Consider the escribed circle opposite A, and suppose that it touches BC at P .
Then c + BP = b + CP and BP + CP = a. It follows that BP = 1

2(a + b− c) and
CP = 1

2 (a−b+c). Hence the areal co-ordinates of P are (0, a−b+c, a+b−c)/2a.
It follows that AP passes through the point W with co-ordinates (b+ c−a, c+a− b,
a + b − c)/(a + b + c). By symmetry, BQ and CR also pass through W , where Q
is the point at which the escribed circle opposite B touches CA and R is the point
at which the escribed circle opposite C touches AB. W is called Nagel’s point. Now
IW = (b+c−2a, c+a−2b, a+b−2c)/(a+ b+c). Hence W lies on the extension
of IGJ and GW : IG = 2 : 1. There is an exact correspondence between the points
O, G, T , and H on the Euler line, and the points I , G, J , and W on the second line.
The Euler line is concerned with the circumscribed circles of the triangles ABC and
LMN , and the second line is concerned with their inscribed circles. This is because
I and J are the incentres of ABC and LMN , respectively. Also, W and G are the
external and internal centres of similitude of the two incircles. This configuration is
shown in Fig. 8.4.
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A

B C

G

MN
Q

J
W

R

P L

I

Fig. 8.4 The analogue of the Euler line for the two incircles.

Exercises 8.6

8.6.1 Show that the lines through L, M , and N parallel to the internal angle
bisectors are concurrent at J , where J is the centre of mass of a uniform
wire framework in the shape of the triangle ABC and L, M , and N are the
midpoints of the sides.

8.6.2 Prove that the triangles IGH and JGO are similar, where the points are as
defined in Section 8.6.

8.6.3 Prove, with the same notation as in Exercise 8.6.1, that J is the incentre of
the triangle LMN .

8.6.4 Calculate IW 2, where I is the incentre and W is Nagel’s point.
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8.7 The triangle of excentres

We now consider the excircles and the triangle of excentres I1I2I3. It turns out that,
when the triangle ABC is integer-sided, all of the distances AI , BI , CI , AI1, BI2,
CI3, I2I3, I3I1, and I1I2 are rational whenever the internal bisectors are rational. It is
shown in Section 2.8 how to arrange for this to happen, and the same method applies
here.

The excircle opposite A touches the sides of ABC on the other side of BC from
A. Its centre is denoted by I1 and its radius by r1. The excircles opposite B and C
are similarly defined, having centres I2 and I3, and radii r2 and r3, respectively. See
Section 2.6, where formulae for r1, r2, and r3 are given, and it is shown that for a
Heron triangle all of r, r1, r2, and r3 are rational. The triangle I1I2I3 is the triangle
of excentres. The point I is the orthocentre of the triangle I1I2I3, so ABC is its pedal
triangle. The angles of I1I2I3 are therefore 90◦ − 1

2A, 90◦ − 1
2B, and 90◦ − 1

2C , and
its circumradius is 2R. The circumcircle of the triangle ABC is the nine-point circle
of the triangle I1I2I3, and so passes through the midpoints of its sides.

We now give, without further proof, a catalogue of values for r, r1, r2, r3, AI ,
AI1, and I2I3 in terms of a, b, and c. The values are obtained from equations such
as 1

2r1(b + c − a) = [ABC], AI = r cosec 1
2A, and AI1 = r1 cosec 1

2A, and I2I3 is
found from the areal metric, see Section A.9 of the appendix. We have

r =
1
2

√
(b + c − a)(c + a − b)(a + b − c)

a + b + c
, (8.7.1)

r1 =
1
2

√
(a + b + c)(c + a − b)(a + b − c)

b + c − a
, (8.7.2)

with similar formulae for r2 and r3 by cyclic changes of letters. Also,

AI =

√
bc(b + c − a)

a + b + c
, (8.7.3)

with similar formulae for BI and CI by cyclic changes of letters, and

I2I3 = 2a

√
bc

(c + a − b)(a + b − c)
= a cosec

1
2
A = 4R cos

1
2
A , (8.7.4)

with similar expressions for I3I1 and I1I2 by cyclic changes of letters. It follows that,
if sin 1

2A, sin 1
2B, sin 1

2C , cos 1
2A, cos 1

2B, and cos 1
2C are rational, then AI , BI , CI ,

AI1, BI2, CI3, I2I3, I3I1, and I1I2 are rational. See Section 2.8 for details of how to
make the three internal angle bisectors rational. When these are made rational, then
all of these other line segments have rational length, and by a suitable enlargement
factor all can be made to have integer length.
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Exercise 8.7

8.7.1 In the triangle in which a = 154, b = 169, and c = 125, find the lengths of
AI1, BI2, CI3, I2I3, I3I1, and I1I2, where I1, I2, and I3 are the excentres
opposite A, B, and C , respectively.

8.8 The lengths of OI and OH

We now turn our attention to the distances between the circumcentre O and the incentre
I , and between O and the orthocentre H . We limit discussion to these cases, as they
are representative of a vast number of distances in a triangle that might be studied,
though in Section 8.9 we introduce a special set of distances that are rational for any
Heron triangle. As we shall see below, the problem of making OI or OH rational for
an integer-sided triangle is not at all easy and we have no solution to offer except in
the case of an isosceles triangle.

The length of OI

In the triangle ABC let us draw the internal bisector of angle A. This passes through
I and I1, and we denote by P the point where it meets the circumcircle of the triangle
ABC . The point I lies on the internal bisector of angle B and I1 lies on the external
bisector of angle B. It follows that ∠IBI1 = 90◦. Now ∠I1BP = ∠BI1P = 1

2C , so
PB = PI1. Hence P is the centre of the circle IBI1, so IP = BP = 1

2a sec 1
2A =

2R sin 1
2A. Now, by the intersecting chord theorem, AI · IP = R2 − OI2. However,

AI = r cosec 1
2A and IP = BP = 2R sin 1

2A, and hence R2 −OI2 = 2Rr. That is,

OI2 = R2 − 2Rr . (8.8.1)

Now

R =
abc

4[ABC]
and r =

2[ABC]
a + b + c

. (8.8.2)

Since

[ABC] =
1
4

√
(a + b + c)(b + c − a)(c + a − b)(a + b − c) (8.8.3)

and cos A = 1 − 2 sin2 1
2A = (b2 + c2 − a2)/2bc, etc., it follows that

sin
1
2
A sin

1
2
B sin

1
2
C =

(b + c − a)(c + a − b)(a + b − c)
8abc

,

and hence

r = 4R sin
1
2
A sin

1
2
B sin

1
2
C . (8.8.4)
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Thus

OI2 = R2 − 2Rr

= R2

[
1 − (b + c − a)(c + a − b)(a + b − c)

abc

]

=
R2(a3 + b3 + c3 − a2b − b2c − c2a − b2a − c2b − a2c + 3abc)

abc
.

(8.8.5)

As can be seen from eqns (8.8.2) and (8.8.3), R also depends on a, b, and c in quite
a complicated way, so the general problem of finding integer a, b, and c to make OI
rational is very difficult. When ABC is a Heron triangle we know that R is rational,
so the problem when ABC is a Heron triangle is marginally less difficult.

However, there is one case that can be dealt with. The length of OI is rational
when ABC is an isosceles Heron triangle. For example, when a = 6 and b = c = 5
we have [ABC] = 12, so R = 25/8. Then OI = R|a − b|/b = 5/8.

There are many cases when OI is a rational multiple of R, but unless R is rational,
for example when ABC is a Heron triangle, these cases do not lead to a rational value
of OI . For example, when a = 52, b = 20, and c = 45, then OI = 13R/20, but
[ABC] = (117/4)

√
231, so R is irrational. As a second example, see Fig. 8.5, when

a = 7, b = 8, and c = 6, then OI = (1/4)R, but [ABC] = (21/4)
√

15, and again R
is irrational.

A

B C

R

O
I

P

I1

6

8

7

Fig. 8.5 In a triangle with side lengths 6, 7, and 8, we have OI = (1/4)R.
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The length of OH

In the triangle ABC we have ∠BOC = 2A, etc., so

OH2 = (OA + OB + OC) · (OA + OB + OC)

= 3R2 + 2R2(cos 2A + cos 2B + cos 2C)

= R2(1 − cos A cos B cos C)

=
R2(a6 + b6 + c6 − a4b2 − b4c2 − c4a2 − b4a2 − c4b2 − a4c2 + 3a2b2c2)

a2b2c2
.

(8.8.6)

The general problem of finding an integer-sided triangle in which OH is rational is
very difficult, but, as with OI , the length of OH is rational when ABC is an isosceles
Heron triangle. For example, when a = 6 and b = c = 5 we have R = 25/8. Then
OH = R|a2 − b2|/b2 = 11/8. There are many cases when OH is a rational multiple
of R, but again unless R is rational, for example when ABC is a Heron triangle, these
cases do not lead to a rational value of OH . For example, when a = 2 and b = c = 3,
which is isosceles but not a Heron triangle, we have OH = 5R/9, but [ABC] = 2

√
2,

so R is not rational.

Exercises 8.8

8.8.1 Find OI in the isosceles Heron triangle with sides a = 10 and b = c = 13.

8.8.2 Find OH in the isosceles Heron triangle with sides a = 10 and b = c = 13.

8.9 Feuerbach’s theorem

Theorem 8.9.1 (Feuerbach) The nine-point circle touches the incircle and each of
the excircles. �

For a proof of this theorem we refer to Hahn (1994), where three proofs are
given, two using complex numbers and one, the standard proof, using inversion.
Feuerbach originally gave a trigonometrical proof, which is a straightforward but
laborious method.

The theorem implies that IT = 1
2R − r, I1T = 1

2R + r1, I2T = 1
2R + r2, and

I3T = 1
2R + r3. Hence all of these distances are rational for any Heron triangle.

Exercises 8.9

8.9.1 Find IT , I1T , I2T , and I3T for the triangle with a = 7, b = 15, and c = 20.

8.9.2 Prove that OW = R − 2r, where W is Nagel’s point.



9 Solids

In this chapter we consider, rather briefly, some problems associated with solids.
The first of these is the analogue in three dimensions of the problem of the Heron

triangle in the plane. If we are given a tetrahedron with integer edge lengths, can these
lengths be chosen so that the tetrahedron has integer volume? The answer, as one might
guess, is that there are an infinite number, but none that are regular or semi-regular.

We then look at the various types of tetrahedra with integer edges and ask for
which of them is it possible for the circumscribing sphere to have integer radius. In
the course of Section 9.2 we prove two curious and little-known theorems.

Finally, in Section 9.3 we give a brief review of the regular solids and hypersolids in
three and four dimensions, respectively. There is a long exercise on the thirteen semi-
regular solids in three dimensions for the reader who is interested in their classification.

9.1 Tetrahedrons with integer edges and integer
volume

We next consider various different types of tetrahedra, all of which have integer edge
lengths, and we investigate for each type whether there are choices of edge lengths for
which the volume is also an integer.

The tetrahedron V ABC in which BC = a, CA = b, AB = c, V A = d, V B = e,
and V C = f has volume [V ABC] given by

144[V ABC]2 = −a2b2c2 + (a2d2 + e2f2)(b2 + c2 − a2)

+ (b2e2 + f2d2)(c2 + a2 − b2) + (c2f2 + d2e2)(a2 + b2 − c2)

− a2d4 − b2e4 − c2f4 .
(9.1.1)

Methods for deriving this formula, first obtained by Euler, are given in Salmon (1912).

The regular tetrahedron

A regular tetrahedron is one in which all the edges are equal. If all of the edges are
equal to a, then from eqn (9.1.1) we have

[V ABC]2 =
a6

72
, (9.1.2)

and so a and [V ABC] cannot both have integer values.
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The semi-regular tetrahedron

A semi-regular tetrahedron is one in which a = b = c and d = e = f , and then from
eqn (9.1.1) we have

[V ABC]2 =
a4(3d2 − a2)

144
. (9.1.3)

If a and d are integers then, as can be seen by working modulo 4, there is no integer n
such that a2 +n2 = 3d2, so, once more, if the sides are integers then [V ABC] cannot
have an integer value.

The balloon tetrahedron

A balloon tetrahedron PQRS is defined to be one in which the vertices P , Q, R, and
S are the centres of four mutually touching spheres, of radii p, q, r, and s, respectively.
A balloon tetrahedron is a type of tetrahedron that depends on four, rather than six,
parameters.

Putting a = r + s, b = s + q, c = q + r, d = p + q, e = p + r, and f = p + s in
eqn (9.1.1), we obtain

144[PQRS]2 =

16p2q2r2s2

[
2
(

1
pq

+
1
pr

+
1
ps

+
1
qr

+
1
qs

+
1
sr

)
−

(
1
p2

+
1
q2

+
1
r2

+
1
s2

)]
.

(9.1.4)
Writing p = 1/w, q = 1/x, r = 1/y, and s = 1/z, where w, x, y, and z are the
curvatures of the spheres, we obtain

3[PQRS]wxyz =
√

2(wx + wy + wz + xy + xz + yz) − (w2 + x2 + y2 + z2) .
(9.1.5)

In Section 7.3 we have seen how to make the right-hand side equal to an integer
divided by

√
3. If we add a fifth sphere, inside the tetrahedron, of radius t, curvature

v = 1/t, and centre T , so that it touches the other four spheres externally, then the
equation

[TPQR] + [TPQS] + [TPRS] + [TQRS] = [PQRS] (9.1.6)

becomes

v[w, x, y, z] = w[v, x, y, z] + x[v,w, y, z] + y[v,w, x, z] + z[v,w, x, y] , (9.1.7)

so that w, x, y, z, and v form a touching set (since we can introduce
√

3 in each term
of eqn (9.1.6)), see Exercise 7.3.5. However, in order to make [PQRS] integral we
have a slightly different expression to deal with (without the factor 3 under the square
root). However, it is not difficult to make the expression

2(wx + wy + wz + xy + xz + yz)− (w2 + x2 + y2 + z2) = {w, x, y, z}2 (9.1.8)

a perfect square.
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Theorem 9.1.1 If we choose positive integers B, C , and D such that

4(BC + CD + DB) = h2 + k2 , (9.1.9)

where h and k are positive integers, and if A = B+C+D+k, then {A,B,C,D} = h,
where {A,B,C,D} is given by eqn (9.1.8).

Proof We have

{A,B,C,D}2 = 2(BC + CD + DB) + 2(B + C + D)A

− (A2 + B2 + C2 + D2)

= 2(BC + CD + DB) + 2(B + C + D)(B + C + D + k)

− [
(B + C + D + k)2 + B2 + C2 + D2

]
= 4(BC + CD + DB) − k2

= h2 ,

where terms involving k(B + C + D), B2, C2, and D2 all cancel. �

For example, when B = 1, C = 2, and D = 5 then 4(BC + CD + DB) = 68 =
82 + 22. So, if we choose A = 10 then we obtain {10, 1, 2, 5} = 8. The geometrical
significance is that with w = 10, x = 1, y = 2, and z = 5 we obtain 210[PQRS] = 8
or [PQRS] = 4/105. This corresponds to p = 1/10, q = 1, r = 1/2, and s = 1/5.
Multiplying up by 10, we obtain p = 1, q = 10, r = 5, s = 2, and [PQRS] = 800/21.
So the tetrahedron with sides 11, 6, 3, 15, 12, and 7 has rational volume 800/21, see
Fig. 9.1. With the edges a, b, c, d, e, and f given in terms of as many as four parameters,
there are an infinite number of solutions of this type.

The isosceles tetrahedron

An isosceles tetrahedron is a tetrahedron in which a = d, b = e, and c = f , and eqn
(9.1.1) now gives

72[V ABC]2 = (b2 + c2 − a2)(c2 + a2 − b2)(a2 + b2 − c2) . (9.1.10)

A B

V

C

12

15

11

7

3
6

Fig. 9.1 A balloon tetrahedron with integer edges and rational volume 800/21.
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It is possible to find integers a, b, and c so that the right-hand side is twice a perfect
square. This can be done, for example, by using the results of Section 1.4, though
perhaps there are easier ways. We look for x, y, and z such that

b2 + c2 − a2 = 2y2z2 ,

c2 + a2 − b2 = 2z2x2 ,

a2 + b2 − c2 = 2x2y2 .

(9.1.11)

Then
a2 = x2(y2 + z2) ,

b2 = y2(z2 + x2) ,

c2 = z2(x2 + y2) .

(9.1.12)

If x, y, and z are the sides of a rectangular box with integer face diagonals then
we have a solution. For example, with x = 44, y = 117, and z = 240 we have
a = 44 × 267 = 11 748, b = 117 × 244 = 28 548, and c = 240 × 125 = 30 000.
Then 72[V ABC]2 = 8x4y4z4 and [V ABC] = x2y2z2/3 = 508 836 556 800. The
sides can all be divided by 4 to give the solution a = 2937, b = 7137, c = 7500, and
[V ABC] = 7 950 571 200, see Fig. 9.2.

The orthogonal tetrahedron
An orthogonal tetrahedron is a tetrahedron in which a2+d2 = b2+e2 = c2+f2 = k2,
for some constant k. From eqn (9.1.1) we have

[V ABC]2 =
1

144
[
k2(2b2c2 + 2c2a2 + 2a2b2 − a4 − b4 − c4) − 4a2b2c2

]
=

1
144

{
(16k2 − 64R2)[ABC]2

}
=

1
9
(k2 − 4R2)[ABC]2 , (9.1.13)

where R is the circumradius of the triangle ABC . Since this is positive, it follows that
for an orthogonal tetrahedron k > 2R.

A

B

V

C

7500

7500

7137

7137
2937

2937

Fig. 9.2 An isosceles tetrahedron with integer edges and integer volume 7 950 571 200.
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It is possible to find an orthogonal tetrahedron with integer sides and integer
volume, by once again using the data from the rectangular box in Section 1.4. For
example, if we take d = 44, e = 117, f = 240, a = 267, b = 244, and c = 125, then
a2 + d2 = b2 + e2 = c2 + f2 = k2 = 73225, and, though k is irrational, we still have
a tetrahedron of integer volume. This is because V A, V B, and V C form a right triad
of axes, and so [V ABC] = (1/6) × 44 × 117 × 240 = 205 920.

Exercises 9.1

9.1.1 Choose B = 2, C = 3, and D = 4 in Theorem 9.1.1 and hence determine a
balloon tetrahedron with integer edges and rational volume.

9.1.2 Find the volume of a tetrahedron with edge lengths a = 11, b = 10, c = 9,
d = 8, e = 7, and f = 6.

9.2 The circumradius of a tetrahedron

Tetrahedral co-ordinates

One of the main algebraic resources for solving problems about the tetrahedron is
the use of tetrahedral (or volumetric) co-ordinates. These are the analogue in three
dimensions of areal (or barycentric) co-ordinates in two dimensions, and we now give
a brief introduction to the use of these co-ordinates. A full account of areal co-ordinates
is given in the appendix.

In tetrahedral co-ordinates a point P is given four co-ordinates (w, x, y, z), where

w =
[PABC]
[V ABC]

, x =
[V PBC]
[V ABC]

, y =
[V APC]
[V ABC]

, z =
[V ABP ]
[V ABC]

(9.2.1)

and all co-ordinates are signed. For example, w is signed so that it is positive if P is
on the same side of the plane ABC as V , and negative if P is on the opposite side of
ABC as V .

By definition, for any point P , w+x+y+z = 1. However, co-ordinates are often
given in unnormalised form to avoid cumbersome expressions, and because, for many
purposes, only the ratios of the co-ordinates are needed.

If we have P (k, l,m, n) and Q(w, x, y, z) then P Q = (w−k, x− l, y−m, z−n)
is a vector displacement and provides both the direction of the displacement and its
magnitude. If ds = (dw,dx,dy,dz) is a displacement then dw + dx + dy + dz = 0
and the square of its magnitude is given by the formula

(ds)2 = −a2 dy dz−b2 dz dx−c2 dxdy−d2 dw dx−e2 dw dy−f2 dw dz . (9.2.2)

In eqn (9.2.2) the edge lengths a, b, c, d, e, and f are as defined in Section 9.1. Note
that eqn (9.2.2) is valid, not only for an infinitesimal arc length, but also when ds is a
finite straight-line displacement.
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Given P and Q with co-ordinates as above, then the point R with co-ordinates
[p(k, l,m, n)+ q(w, x, y, z)]/(p + q) lies on the line PQ and is such that PR/RP =
q/p, where the line segments are signed. If P , Q, and R are any three points then the
equation of the plane containing them is the 4 × 4 determinant with (w, x, y, z) as its
first row and the co-ordinates of P , Q, and R as the second, third, and fourth rows,
respectively. Four points P , Q, R, and S are therefore coplanar if the determinant with
their co-ordinates as rows vanishes.

We do not give proofs of any of the above results, but rely on the natural generali-
sation of the theory of areal co-ordinates, given in the appendix.

The circumradius of the general tetrahedron

In this section we use the formula (9.1.1) for the volume of V ABC , given at the
beginning of Section 9.1. We also use the equation of the circumsphere in tetrahedral
co-ordinates, which is

a2yz + b2zx + c2xy + d2wx + e2wy + f2wz = 0 . (9.2.3)

Consider the diameter V W of the circumsphere passing through its midpoint O. We
have V W 2 = 4R2, where R is the circumradius. Now V has co-ordinates (1, 0, 0, 0)
and suppose that W has co-ordinates (2w0, 2x, 2y, 2z), so that O has co-ordinates
(1
2 + w0, x, y, z) and w0 + x + y + z = 1

2 . We next determine V W 2 using the metric
(9.2.2). Since V W = (2w0 − 1, 2x, 2y, 2z), we have

4R2 = V W 2

= −a2(4yz) − b2(4zx) − c2(4xy) − d2(2x)(2w0 − 1)

− e2(2y)(2w0 − 1) − f2(2z)(2w0 − 1)

= 2xd2 + 2ye2 + 2zf2 , (9.2.4)

where we have used the fact that W lies on the circumsphere with equation (9.2.3).
Writing 4R2 = 2s, we have

d2x + e2y + f2z − s = 0 , (9.2.5)

where x, y, and z are three of the co-ordinates of the circumcentre. It follows by
similar arguments that, if w is the other co-ordinate, then

c2y + b2z + d2w − s = 0 , (9.2.6)

c2x + a2z + e2w − s = 0 , (9.2.7)

b2x + a2y + f2w − s = 0 . (9.2.8)

Equations (9.2.5)–(9.2.8), together with the equation x + y + z + w = 1, may be
solved to determine s = 2R2 (and w, x, y, and z if required). This calculation has
been checked using DERIVE, as developed by Texas Instruments Inc. and the authors
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of the software at Soft Warehouse Inc., Honolulu, Hawaii, and, using the formula for
[V ABC], we find the result to be

576R2[V ABC]2 = (ad + be + cf)(−ad + be + cf)(ad− be + cf)(ad + be− cf) .
(9.2.9)

These results may be summarised in the following two remarkable and curious theo-
rems.

Theorem 9.2.1 If V ABC is a tetrahedron with BC = a, CA = b, AB = c, V A = d,
V B = e, V C = f , volume [V ABC], and circumradius R, then 6R[V ABC] = ∆,
where ∆ is the area of a triangle with sides ad, be, and cf (regarded as lengths with
these magnitudes). �

Theorem 9.2.2 If V ABC and KLMN are two tetrahedra with sides BC = KL,
CA = KM , AB = KN , V A = MN , V B = NL, and V C = LM , and if R and S
are their respective circumradii, then R[V ABC] = S[KLMN ]. �

The complexity of the formula for [V ABC] (see Section 9.1) makes it imprac-
tical to treat the problem of finding general integer-sided tetrahedra with rational
circumradius, but there are solutions in certain special cases.

The circumradius of the isosceles tetrahedron

In an isosceles tetrahedron, in which d = a, e = b, and f = c, we have

576R2[V ABC]2 = (a2+b2+c2)(b2+c2−a2)(c2+a2−b2)(a2+b2−c2) , (9.2.10)

but from Section 9.1 we know that

72[V ABC]2 = (b2 + c2 − a2)(c2 + a2 − b2)(a2 + b2 − c2) ,

and hence

R2 =
1
8
(a2 + b2 + c2) . (9.2.11)

The formula for R2 in this case may be more easily obtained by using the fact that the
circumcentre O of an isosceles tetrahedron coincides with its centroid G at the point
with co-ordinates (1/4, 1/4, 1/4, 1/4).

In order to find a three-parameter system for integer values of R in terms of integer
values of a, b, and c, we follow the usual procedure of finding a non-singular linear
change of variables, so that eqn (9.2.11) becomes linear in each variable. One such
change of variables is

a = 2v + 2w + 8x ,

b = 2u + 2w − 2x ,

c = 2u + 2v − 2x ,

R = u + v + w + 3x .

(9.2.12)
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Equation (9.2.11) now gives u = (−vw − 3vx − 3wx)/(v + w + 8x). Substituting
back the value of u into eqns (9.2.12) and multiplying up by v + w + 8x, we obtain

a = 2(v + w + 4x)(v + w + 8x) ,

b = 2(w2 + 4wx − 8x2 − 4vx) ,

c = 2(v2 + 4vx − 8x2 − 4wx) ,

R = v2 + w2 + vw + 8vx + 8wx + 24x2 .

(9.2.13)

It is possible that common factors may have to be extracted from a, b, c, and R to
obtain a primitive set of values with highest common factor 1. Also, some of the
variables a, b, c, and R may have to be changed in sign, but that is no problem since
each variable appears only as a squared quantity.

As an example, x = 1, v = −5, and w = −7 gives a = 64, b = 66, c = 50, and
R = 37. As a second example, x = 1, v = −4, and w = −7 gives a = 42, b = 58,
c = 40, and R = 29. The second example is shown in Fig. 9.3.

The circumradius of a regular tetrahedron

The formula (9.2.9) gives R = (3/4)a
√

2, since [V ABC] = a6/72. It follows that R
is never an integer when a is an integer.

The circumradius of a semi-regular tetrahedron

The formula (9.2.9) gives

576R2[V ABC]2 = 3a4d4 , (9.2.14)

where a is the side of the base and d is the length of the sloping edges. By eqn (9.1.3),
[V ABC]2 = a4(3d2 − a2)/144, and hence

A
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V
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40

40

29

58

58

42

42

Fig. 9.3 An isosceles tetrahedron with integer edges and integer circumradius.
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R2 =
3d4

4(3d2 − a2)
. (9.2.15)

Although [V ABC] is not rational for integral a and d, there is a two-parameter set of
values of a and d for which R is rational. All we have to do is to solve the equation

3d2 − a2 = 3x2 (9.2.16)

in integers, and then R = d2/2x. The general two-parameter solution of eqn (9.2.16)
is

d = 2(v2 + vw + w2) ,

a = 3w(2v + w) ,

x = |w2 − 2vw − 2v2| ,
(9.2.17)

where common factors may be introduced or extracted. For example, when v = 1 and
w = 1 we obtain d = 2, x = 1, a = 3, and R = 2. As a second example, when v = 1
and w = 3 we obtain d = 26, x = 1, a = 45, and R = 338.

Exercises 9.2

9.2.1 Find the sides and circumradius of the isosceles tetrahedron that results from
the parameters x = 2, v = −7, and w = 5 in eqns (9.2.12).

9.2.2 Find the sides and circumradius of the semi-regular tetrahedron that results
from the parameters v = 3 and w = 2 in eqns (9.2.17).

9.3 The five regular solids and six regular hypersolids
In this section we give a brief survey of the five regular solids in three dimensions
and the six regular hypersolids in four dimensions. In Exercises 9.3 the reader is
encouraged to consider the thirteen semi-regular solids.

The five regular solids

Suppose that a regular solid has F regular n-gons and that at every vertex of such an
n-gon m edges (faces) come together. The angles of a regular polygon with n = 3, 4,
5, and 6 are 60◦, 90◦, 108◦, and 120◦, respectively. The sum of the angles at any vertex
must be less than 360◦, and there must be at least three polygons at each vertex. Hence
the only possibilities are n = 3 and m = 3, 4, or 5, or n = 4 and m = 3, or n = 5 and
m = 3. The number of vertices is V = nF/m and the number of edges is E = nF/2.
Now Euler’s relation is F + V = E + 2, so we have F + nF/m = nF/2 + 2, and
2/n + 2/m = 1 + 4/nF . All five possibilities give integer values for F , V , and E,
and they are shown in Table 9.1.

Note the duality between the octahedron and the cube, and between the icosahedron
and the dodecahedron. These solids are sometimes referred to as the Platonic solids.
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Table 9.1 The five regular solids.

n m F V E

Tetrahedron 3 3 4 4 6
Octahedron 3 4 8 6 12
Icosahedron 3 5 20 12 30
Cube 4 3 6 8 12
Dodecahedron 5 3 12 20 30

The six regular hypersolids

If you start with a line, which has one edge and two vertices, and move it at right
angles to its direction the correct distance, then one gets a square. The two vertices
are replicated by two more at the end position of the movement, making four vertices
for the square. The two vertices, as they are drawn along, produce two lines, and there
are the starting and finishing positions of the original line, making four edges for the
square. The line, as it moves, creates the face of the square. In an obvious notation,
where the subscript denotes the dimension, V2 = 2V1 = 4, E2 = V1 + 2E1 = 4, and
F2 = E1 = 1.

If you now take the square and move it the correct distance perpendicular to its
face, then you create the cube, and by a similar argument to before V3 = 2V2 = 8,
E3 = V2 + 2E2 = 12, F3 = E2 + 2F2 = 6, and C3 = F2 = 1 (cube). It is clear
that this process may be continued into a fourth and higher dimension, so that if we
move the cube perpendicular to itself within the fourth dimension then we obtain a
hypercube with V4 = 2V3 = 16, E4 = V3 + 2E3 = 32, F4 = E3 + 2F3 = 24,
C4 = F3 + 2C3 = 8, and H4 = C3 = 1 (hypercube). So a hypercube has 8 cubical
cells, 24 faces, 32 edges, and 16 vertices.

The relation in four dimensions corresponding to Euler’s relation is V +F = E+C ,
where C is the number of solid cells bounding the hypersolid. There are six convex
regular hypersolids, including the hypercube. They are summarised in Table 9.2.

The simplex is the generalisation of the triangle and the tetrahedron; its cells are
tetrahedral, and its faces are triangular. It is self-dual. The 16-cell hypersolid is the

Table 9.2 The six regular hypersolids.

V F E C

Simplex 5 10 10 5
Hypercube 16 24 32 8
16-cell hypersolid 8 32 24 16
24-cell hypersolid 24 96 96 24
120-cell hypersolid 600 720 1200 120
600-cell hypersolid 120 1200 720 600
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dual of the hypercube. The 24-cell hypersolid is self-dual, and the other pair are duals
of one another. If one moves into yet higher dimensions then only the generalisations
of the simplex, the hypercube, and its dual exist, and they are the only three regular
convex polytopes.

Exercises 9.3

9.3.1 There are thirteen Archimedean convex polyhedra, whose faces are all reg-
ular polygons, but of two or more kinds, and whose vertices are identical.
They are listed below together with the type and number of polygons at each
vertex. Complete the classification by enumerating in each case the values
of F , V , and E.

(i) Truncated tetrahedron: 2 hexagons and 1 triangle.

(ii) Truncated cube: 2 octagons and 1 triangle.

(iii) Cuboctahedron: 2 squares and 2 triangles.

(iv) Truncated octahedron: 2 hexagons and 1 square.

(v) Small rhombicuboctahedron: 3 squares and 1 triangle.

(vi) Great rhombicuboctahedron: 1 octahedron, 1 hexagon, and 1 square.

(vii) Snub cube: 1 square and 4 triangles.

(viii) Icosidodecahedron: 2 pentagons and 2 triangles.

(ix) Truncated dodecahedron: 2 decagons and 1 triangle.

(x) Truncated icosahedron: 2 hexagons and 1 pentagon.

(xi) Small rhombicosidodecahedron: 1 pentagon, 2 squares, and 1 triangle.

(xii) Great rhombicosidodecahedron: 1 decagon, 1 hexagon, and 1 square.

(xiii) Snub dodecahedron: 1 pentagon and 4 triangles.

9.3.2 Find the number of vertices, edges, faces, three-dimensional cells, and
four-dimensional hypersolids in a five-dimensional simplex, and in a five-
dimensional cubic polytope.
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10 Circles and conics

This chapter deals with some infinite sets of circles and conics. The infinite sequence
of circles featured in Section 10.1 all have the same unit radius, and have intersection
properties that may be seen in Fig. 10.1, where the start of such a sequence is shown.
For further reading on infinite sets of circles see the book Hahn (1994).

The infinite set of conics are those that circumscribe a triangle. In Section 10.2
we show how to generalise the Simson line property, normally associated with the
circumcircle. It turns out that there is a circumscribing conic associated with each
point Q in the plane of a triangle, not lying on its sides, and that each point on the
conic has its own associated line. Given the point Q, if G is the centroid, then the point
Q0 such that GQ = 2Q0G is the centre of the circumscribing conic, so that, as with
points on the Euler line, the ratio 2 : 1 appears. When the circumscribing conic is the
circumcircle, the point Q is the orthocentre H , and the point Q0 is the circumcentre
O.

A more detailed account of these conics and the lines associated with points on
them may be found in Bradley and Bradley (1996) and an extension of the work may
be found in Bradley (2002). Just as there is the nine-point circle that has a radius
one-half that of the circumcircle, there is associated with each of these conics another
conic, passing through the midpoints of the sides of the triangle and the midpoints of
AQ, BQ, and CQ, which is called the nine-point conic. This is described in Section
10.3.

10.1 Sequences of intersecting circles of unit radius

Let (zk) be any sequence of complex numbers satisfying |zk| = 1 for all k. Consider
the circles Ck with equation |z − zk| = 1, centre zk, and radius 1. Since |zk| = 1, it
follows that all of these circles pass through O, the origin of the Argand diagram. Take
any pair of these circles, say C1 and C2. Since |z1+z2−z1| = 1 and |z1+z2−z2| = 1,
C1 and C2 meet at the point z1 + z2, as well as at O. Hence all of these circles meet
in pairs at points zj + zk (j �= k).

Consider now any three of the circles, say C1, C2, and C3. They all pass through
O and their other points of intersection are z2 + z3, z3 + z1, and z1 + z2. The circle
C123, centre z1 + z2 + z3, and radius 1, passes through all three points of intersection,
since |z1| = |z2| = |z3| = 1. There is an infinite sequence of such circles Cjkl (j �= k,
k �= l, l �= j). Consider now the four circles C234, C134, C124, and C123 with centres
z2 +z3 +z4, z1 +z3 +z4, z1 +z2 +z4, and z1 +z2 +z3, respectively. The circle C1234,
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centre z1 + z2 + z3 + z4, and radius 1, evidently passes through the centres of the
four circles C234, C134, C124, and C123. There is an infinite sequence of such circles
Cjklm, no two of the subscripts being equal. Now consider the five circles C2345,
C1345, C1245, C1235, and C1234. Then there is a circle C12345 that passes through the
centres of the five circles. The result just goes on and on, with sequences of circles
passing through the centres of the previous sequence. Figure 10.1 shows the start of
the sequence.

There are other chains of theorems involving sequences of circles, which depend
for their proof on the pivot theorem and the six-circle theorem, see Section 8.4 and
Exercises 10.1.

Exercises 10.1

10.1.1 Four lines in general position in a plane determine four triangles, when the
lines are taken in threes. Show, using the pivot theorem (see Section 8.4),
that the circumcircles of the four triangles pass through a point, often called
the Clifford point of the four lines.

10.1.2 Consider five lines in a plane, no two of which are parallel and no three of
which are concurrent. From Exercise 10.1.1, if we take any four of them
it leads to four circles passing through a point. In all, there are five such
Clifford points. Use the six-circle theorem to show that these five points lie
on a circle, often called the Clifford circle of the five lines. What happens
if you start with six lines in general position?

O
C3

C1

C2

C123
O3

O1

O2

O123

Fig. 10.1 Three unit circles passing through O and the unit circle through their other points
of intersection.
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10.2 Simson lines and Simson conics

Theorem 10.2.1 (The Simson line) If ABC is a triangle and P is a point on its
circumcircle, other than at the vertices, and if the feet of the perpendiculars from P
onto the sides BC , CA, and AB are denoted by L, M , and N , respectively, then L,
M , and N are collinear. �

Theorem 10.2.1 is proved in any good textbook on geometry, for example, Durell
(1946). In this section we show how to generalise this result.

Firstly, we provide some definitions. Given a triangle ABC and points P and Q
in the plane of the triangle, let lines through P parallel to AQ, BQ, and CQ meet the
sides BC , CA, and AB, respectively, at L, M , and N . We shall establish shortly that
L, M , and N are collinear if and only if P lies on a certain circumscribing conic of
ABC . This conic is called the Simson conic of Q with respect to ABC , and LMN
is called the Simson line of P with respect to Q. When Q is at H , the orthocentre,
the Simson conic is the circumscribing circle, centre O, and the perpendiculars from
P onto the sides are lines through P parallel to AH , BH , and CH . Furthermore, as
is shown in Section 8.6, GH : OG = 2 : 1. It is these properties that generalise as
follows.

Theorem 10.2.2 Let Q be a general point in the plane of the triangle ABC . Then
the Simson conic of Q is the (unique) conic passing through A, B, and C with
centre Q0, where Q0 lies on GQ, G is the centroid of ABC , and Q0 is such that
GQ : Q0G = 2 : 1. This conic has the property that, if P lies on it and the lines
parallel to AQ, BQ, and CQ are drawn through P to meet the sides BC , CA, and
AB at L, M , and N , respectively, then L, M , and N are collinear.

We also prove the following theorem.

Theorem 10.2.3 If P lies on the Simson conic of Q, then Q lies on the Simson conic
of P . The Simson line of P with respect to Q, the Simson line of Q with respect to P ,
and PQ are concurrent at the midpoint of PQ.

It is also well documented in the literature that, if P lies on the circumcircle, then
the Simson line of P with respect to H bisects PH (and therefore lies on the nine-
point circle). Theorems 10.2.2 and 10.2.3 generalise what is already known about the
original Simson line. (Note that the name of Simson is another misattribution. The
result should be attributed to the Scottish mathematician Wallace.)

Proof of Theorems 10.2.2 and 10.2.3 We use areal co-ordinates. Let Q have co-
ordinates (u, v, w) and let P be the general point with co-ordinates (x, y, z). Then
AQ = (u−1, v, w) = (−(v+w), v, w). Points on the line through P parallel to AQ
have co-ordinates of the form (x− k(v +w), y + kv, z + kw). The point L where this
line meets BC has unnormalised co-ordinates (0, y(v + w) + xv, z(v + w) + xw).
Similarly, M and N have unnormalised co-ordinates (x(w+u)+yu, 0, z(w+u)+yw)
and (x(u + v) + zu, y(u + v) + zv, 0), respectively. The condition for LMN to be
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a straight line is that the determinant with these co-ordinates as its three rows should
vanish. Using x + y + z = u + v + w = 1 this condition reduces to

u(v + w)yz + v(w + u)zx + w(u + v)xy = 0 , (10.2.1)

showing that the locus of P is a conic through A, B, and C . This is the Simson
conic of Q with respect to ABC . The centre of this conic is the point Q0 with co-
ordinates 1

2(1− u, 1− v, 1−w). The reason for this is that the points A0, B0, and C0

with co-ordinates (−u, 1 − v, 1 − w), (1 − u,−v, 1 − w), and (1 − u, 1 − v,−w),
respectively, lie on the conic with equation (10.2.1), and Q0 is the midpoint of AA0,
BB0, and CC0. Also, it is easily checked, since G has co-ordinates (1/3, 1/3, 1/3),
that GQ = 2Q0G. This establishes Theorem 10.2.2, see Fig. 10.2. Next, since eqn
(10.2.1) may be rewritten as

x(y + z)vw + y(z + x)wu + z(x + y)uv = 0 , (10.2.2)

it follows that, if P lies on the Simson conic of Q, then Q lies on the Simson
conic of P . Finally, if one adds the co-ordinates of L, M , and N together then
one obtains (u + x, v + y,w + z), and this means that the point with co-ordinates
1
2(u+x, v+y,w+z) lies on the line LMN . That is, the Simson line of P with respect
to Q, and the Simson line of Q with respect to P both pass through the midpoint of
PQ. This establishes Theorem 10.2.3. �

A0

B0C0

Q0

A

B

N

C

P

M

Q

G

L

Fig. 10.2 The Simson conic of Q and the Simson line of P with respect to Q.
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Exercise 10.2

10.2.1 If P lies on SQ, the Simson conic of Q, then it is shown above that the
midpoint X of PQ lies on the Simson line of P with respect to Q. Prove
that the locus of X as P varies on SQ is a conic ΣQ. Find its equation in
terms of the co-ordinates of Q, and prove the following.

(i) ΣQ passes through L, M , and N , the midpoints of BC , CA, and AB,
respectively.

(ii) ΣQ passes through the midpoints of AQ, BQ, and CQ.

(iii) ΣQ passes through the points D, E, and F on BC , CA, and AB,
respectively, such that BD/DC = w/v, CE/EA = u/w, and
AF/FB = v/u. Show also that its centre is the midpoint of QQ0.
Here (u, v, w) are the co-ordinates of Q.

10.3 The nine-point conic

This is the name of the conic ΣQ, which is the subject of Exercise 10.2.1. The nine
points are listed in that exercise. When Q is the orthocentre H , the nine-point conic
becomes the nine-point circle.

From Exercise 10.2.1 the equation of ΣQ is

vwx2 + wuy2 + uvz2 − u(v + w)yz − v(w + u)zx − w(u + v)xy = 0 . (10.3.1)

When u, v, and w are rational we can find all points (x, y, z) on this conic with
rational co-ordinates. Since eqn (10.3.1) is homogeneous, we can use unnormalised
co-ordinates and suppose, therefore, that they are integral. In terms of two integer
parameters p and q the solution is

x = q(p + q)uv − q(p − q)wu ,

y = p(p + q)uv − p(q − p)vw ,

z = (p + q) [(p + q)uv + pvw + qwu] .
(10.3.2)

For example, if we choose (u, v, w) = (1/3, 1/2, 1/6) and p = 3 and q = 2 then we
find the rational point (x, y, z) = (28/185, 99/370, 43/74).

If Q is the centroid, then ΣQ is the ellipse that touches the sides of ABC at its
midpoints, with equation

x2 + y2 + z2 − 2yz − 2zx − 2xy = 0 . (10.3.3)

The solution of this equation in terms of two parameters is x = q2, y = p2, and
z = (p + q)2. Here p and q may be taken to be any pair of integers, not both zero.
This leads to the following rather curious theorem.
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Theorem 10.3.1 If P (x, y, z) is a rational point on the ellipse touching the triangle
ABC at its midpoints, then the ratios [BCP ] : [CAP ] : [ABP ] are rational squares.

�

Exercise 10.3

10.3.1 Let ABC be the right-angled triangle with a = 3, b = 4, and c = 5. Find
the equations of SQ and ΣQ when Q is the incentre. In both cases find all
points on these conics with rational co-ordinates.



11 Finite geometries

In a book devoted to the appearance of integers in geometry it seems fitting that a
chapter should be devoted to a brief description of finite projective and finite affine
geometries, since these produce configurations with finite numbers of points and lines.

11.1 Finite projective and affine geometries

In Section 4.2 it was shown how to embed R
2 into the projective plane P

2 by writing
x = X/Z and y = Y/Z , and making the equations of lines and curves homogeneous
in X, Y , and Z . The points (x, y, z) and (kx, ky, kz) (k �= 0) are identified as
the same point. In this way Z = 0 is regarded as the line at infinity, and the line
lX +mY +nZ = 0 meets Z = 0 at a point P at infinity with co-ordinates (m,−l, 0).
Likewise, two lines which are parallel in R

2, with equations lx + my + n = 0 and
lx + my + p = 0 (p �= n) meet in P

2 at P . This procedure served the purpose it was
needed for in the sections on cubic curves and elliptic curves. The disadvantage of
proceeding in this way is that points with Z = 0 are singled out as being something
special, and one might rightly ask the question why X, Y , and Z are not on an equal
footing.

In order to achieve the required generality it is best to start again, and produce an
abstract projective plane, which subsequently may be associated with an affine plane
by identifying any line in the projective plane with the line at infinity. The starting-
point is a three-dimensional vector space V 3 defined over a commutative field F . The
field F is sometimes taken to be the complex field, sometimes the real field, and for
finite projective geometries it is a finite field, such as Zp, the field of residues modulo
p, where p is prime. For the moment we shall leave the field unspecified. The points
of P

2 are taken to be the rays of V 3, that is, the lines through the origin. So the points
(x, y, z) and (kx, ky, kz), where k is a nonzero element of F , are the same point. The
point (0, 0, 0) is deleted. There is no origin in P

2. We use capital letters for variables.
Planes through the origin in V 3, with equations of the form lX + mY + nZ = 0,
become the lines {l,m, n} of P

2, signifying the points that lie on this line. The point
(x, y, z) lies on lX + mY + nZ = 0 if and only if lx+ my + nz = 0. This condition
may also be thought of as the condition that the line with co-ordinates {l,m, n}
passes through the point (x, y, z). The lines, strictly speaking, are rays of the dual
space V 3∗, and {l,m, n} and {kl, km, kn} represent the same line, where k is any
nonzero element of F . The equation xL + yM + zN = 0 may be thought of as the
equation of the point (x, y, z), signifying the lines that pass through this point. In this



164 Finite geometries

way there is a dual relationship in projective geometry between lines and points. For
example, a quadrangle consists of four points and the six lines joining pairs of those
points. A quadrilateral consists of four lines and the six points that are the intersections
of pairs of those lines. Any theorem in projective geometry about a quadrangle will
have its counterpart about a quadrilateral, and vice versa. In projective geometry there
are no such things as parallel lines.

Theorem 11.1.1 Every pair of distinct lines meet at a point, and a line joins every
distinct pair of points.

Proof The lines with equations lX + mY + nZ = 0 and l′X + m′Y + n′Z = 0
meet at the point with co-ordinates (mn′ − nm′, nl′ − ln′, lm′ − ml′), and not all of
these co-ordinates vanish simultaneously, the lines being distinct, so that {l′,m′, n′} �=
{kl, km, kn} for any nonzero k. Likewise, the points with equations xL+yM+zN =
0 and x′L+y′M +z′N = 0 are joined by the line with co-ordinates {yz′−zy′, zx′−
xz′, xy′ − yx′}, and not all of these co-ordinates vanish simultaneously, the points
being distinct, so that (x′, y′, z′) �= (kx, ky, kz) for any nonzero k. �

We use the notation A to denote the co-ordinates (a1, a2, a3) of the point A. The
points A, B, and C are said to be linearly independent if the equation aA+bB+cC =
0 implies that a = b = c = 0. Otherwise, when a, b, and c, not all zero, exist so that
this equation holds, then A, B, and C are said to be linearly dependent. Analogous
definitions hold for the dependency of lines. The points with co-ordinates (1, 0, 0),
(0, 1, 0), and (0, 0, 1) are clearly linearly independent and are often called the vertices
of the triangle of reference. It has sides with equations X = 0, Y = 0, and Z = 0.
The projective plane contains at least four points, no three of which are collinear, the
vertices of the triangle of reference, and the point with co-ordinates (1, 1, 1), since
this point clearly does not lie on the sides of the triangle of reference. The maximum
number of linearly independent points amongst any set of points in P

2 is clearly three.
We now turn to the topic of finite projective geometries, that is, those geometries

in which the number field has only a finite number of elements, and consequently
there are just a finite number of points and lines. Firstly, we give in full detail the
points and lines of P

2(2), where the field is Z2, with arithmetic modulo 2. There are
seven points with co-ordinates A(1, 0, 0), B(0, 1, 0), C(0, 0, 1), D(0, 1, 1), E(1, 0, 1),
F (1, 1, 0), and G(1, 1, 1). Dually, there are seven lines: a{1, 0, 0} containing B, C ,
and D, b{0, 1, 0} containing A, C , and E, c{0, 0, 1} containing A, B, and F , d{0, 1, 1}
containing A, D, and G, e{1, 0, 1} containing B, E, and G, f{1, 1, 0} containing C ,
F , and G, and g{1, 1, 1} containing D, E, and F . Likewise, b, c, and d are concurrent
at A, since A has equation L = 0. Similarly, d, e, and f are concurrent at G, since G
has equation L + M + N = 0. Further consideration shows that there are three lines
through each point, as well as three points on each line. If we delete, for example, the
line g with equation x + y + z = 0, then we are left with an affine geometry A2(2)
consisting of the four points A, B, C , and G and the six lines a, b, c, d, e, and f . Their
equations are x = 0, y = 0, z = 0, y = z, z = x, and x = y, respectively. The lines
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x = 0 and y = z are parallel, since in P
2(2) they meet at D(0, 1, 1), which is on the

deleted line. Similarly, y = 0 and z = x are parallel, as are z = 0 and x = y.
An inability to draw convincing diagrams in these cases does not show that these

geometries are in any sense invalid; it is simply that they contain generalisations of
familiar concepts applied in (what nowadays are) unfamiliar contexts.

We next turn to the case of P
2(p), where the field is Zp, the field of integers modulo

p, where p is prime. Each point has three co-ordinates, which can range from 0 to
p − 1. However, not all of them can be zero. Also, each point is represented by p − 1
multiples of a given triple. Hence the number of points is (p3−1)/(p−1) = p2+p+1.
Dually, there are p2 + p + 1 lines. In order to determine how many points there are
on each line, we consider the line AB. It consists of all points of the form aA + bB.
Apart from the point B, when a = 0, these may all be expressed in the form A+ kB,
where k = a−1b, and distinct points arise when k = 0, 1, . . . , p − 1. It follows that
there are p+1 points on each line and, dually, there are p+1 lines through each point.

Exercises 11.1

11.1.1 Prove that the equation of the line joining the points with co-ordinates
P1(x1, y1, z1) and P2(x2, y2, z2) may be written as the vanishing of the
determinant whose first row is (x, y, z) and whose second and third rows
are the co-ordinates of P1 and P2.

11.1.2 Prove that in the finite affine geometry A2(p) there are p2 points and p2 +p
lines. Show further that these p2 +p lines form p+1 sets of p parallel lines.

11.1.3 List the points and lines of P
2(3). Delete the line z = 0, and hence list the

points and lines of A2(3), indicating the four sets of three parallel lines.

11.1.4 A difference-set of integers mod n2 +n+1 is a set of n+1 distinct integers
such that the n(n + 1) signed differences between pairs of the set yield
every integer mod n2 + n + 1 except zero.
(a) Find difference-sets mod 7, mod 13, and mod 21.

(b) Show that, if x1, x2, . . . , xn+1 is a difference-set mod n2 + n + 1, then
one can construct a projective plane P

2(n) by labelling the points Pj ,
j = 0, . . . , n2 + n, and the lines pk, k = 0, . . . , n2 + n, with the rule
that Pj and pk are incident if and only if j + k = xt (mod n2 + n + 1),
for some t = 1, . . . , n + 1. Hence investigate P

2(4).
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Appendix A Areal co-ordinates

Several sections on the triangle, in particular, Sections 6.3 and 6.4, the whole of
Chapter 8, and Sections 10.2 and 10.3, rely on a knowledge of areal (or barycentric)
co-ordinates. As far as I am aware, there is no recent textbook that gives a compre-
hensive account of what they are and how useful they are in dealing with a variety of
geometrical problems involving a triangle and the circles connected with a triangle.
Some books give a short treatment of them, but do not go into much detail. For ex-
ample, Coxeter (1989) and Silvester (2001) define areal co-ordinates and use them in
dealing with the theorems of Ceva and Menelaus. However, as far as I am aware, there
is no indication in any modern text of how they can be used to calculate distances
between key points in a triangle or how they can be used to solve complicated prob-
lems involving the interaction between a triangle and certain lines, circles, and conic
sections.

I shall therefore give a fairly full account of areal co-ordinates, both to give
the reader the necessary background for the above-mentioned sections and to fill
what appears to be a gap in the literature. Some readers may be well acquainted
with areal co-ordinates or with trilinear co-ordinates, which are their closest relation.
Their application to problems concerning incidence, such as whether three points
are collinear or not, is similar to the use of homogeneous co-ordinates in projective
geometry. However, it may not be so widely known that a metric exists, which renders
them useful in many problems in Euclidean geometry.

A.1 Preliminaries

We assume a basic knowledge of vectors, including the scalar and vector product. If
O is the origin and P is any other point then we usually denote the position vector
OP by p. The exceptions are in dealing with the vertices A, B, and C of a triangle
ABC when we write OA = x, OB = y, and OC = z. The reason for this is that
we reserve the symbols a, b, and c for the side lengths BC , CA, and AB, respectively,
and we wish to avoid any confusion between the shortened form of the symbol |OA|
and the side BC . Note that O is not usually the circumcentre of the triangle ABC ,
but is an arbitrary origin, unless we happen to say otherwise and give its location.
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A.2 The co-ordinates of a line

We start by revising some ideas about points on a line. If P and Q are two points on a
line L, then, using vectors, the equation of the line PQ is given by

r = p + t(q − p) = (1 − t)p + tq . (A.2.1)

Here t is a parameter such that −∞ < t < ∞, its value depending on where R lies
on PQ. For example, when t = 0 the point R coincides with P , and when t = 1 the
point R coincides with Q. Points with 0 < t < 1 lie on the line segment PQ; points
with t < 0 lie on the extension of QP beyond P ; and points with t > 1 lie on the
extension of PQ beyond Q. If we put t = m/(l + m), where l + m �= 0, then the
equation of L becomes

(l + m)r = lp + mq . (A.2.2)

For example, when l = 1 and m = 2, then r = (1/3)(p + 2q) and R lies on the line
segment PQ and is such that P R = 2RQ. When l = 1 and m = 0 the point R lies
at P , and when l = 0 and m = 1 the point R lies at Q.

From now on we shall always insist that l + m = 1; the equation of PQ then
becomes

r = lp + mq , (A.2.3)

and we may say that every point R on the line has a pair of co-ordinates (l,m) subject
to the condition l +m = 1, where (1, 0) represents P , (0, 1) represents Q, and a point
such as (1/3, 2/3) represents a point R such that PR/RQ = 2. More generally, if
l > 0 and m > 0, then R lies on the line segment between P and Q and is such that
PR/RQ = m/l. Points on the extension of PQ beyond Q have co-ordinates (l,m)
such that m > 1 and l < 0. If we now give lengths a sign, so that those lengths in
the direction from P to Q are positive, and those in the direction from Q to P are
negative, then the equation PR/RQ = m/l still holds, since PR is positive and RQ
is negative. The same sort of argument holds for points on the extension of QP beyond
P . For example, when R has co-ordinates (2,−1) we have PR/RQ = −1

2 , with PR
negative and RQ positive. The point R with co-ordinates (1/3, 2/3) is said to divide
PQ internally in the ratio 2 : 1, whereas the point R with co-ordinates (2,−1) is said
to divide PQ externally in the ratio 1 : 2.

Theorem A.2.1 The points P , Q, and R are collinear if and only if there exist
constants k, l, and m, not all zero, such that kr + lp + mq = 0 and k + l + m = 0.

Proof If R lies on PQ then, by eqn (A.2.3), we can choose k = −1 and l and m
such that l + m = 1.

Conversely, if kr + lp + mq = 0 and k + l + m = 0, then, since not all of k, l,
and m are zero, one of them is certainly not zero, and we may suppose, without loss
of generality, that k �= 0. By scaling, we may ensure that k = −1. Then r = lp + mq
and, by eqn (A.2.3), R lies on PQ. �
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Theorem A.2.2 The co-ordinate system (l,m) for the line L, given by eqn (A.2.3),
is independent of the position of the origin O.

Proof Suppose that a second origin O′ is taken with OO′ = d. Then, using an
obvious notation, with primed quantities denoting vector positions with respect to O′,
we have p = d + p′, q = d + q′, and r = d + r′, and eqn (A.2.3) transforms into

d + r′ = l(d + p′) + m(d + q′) . (A.2.4)

However, l + m = 1 and so eqn (A.2.4) becomes

r′ = lp′ + mq′ . (A.2.5)

The co-ordinates (l,m) are therefore unlike rectangular Cartesian co-ordinates, which
alter when the origin is translated. �

So far, we have an algebraic representation of points on a line in which we have
signed ratios. To summarise, if R has line co-ordinates (l,m), where l + m = 1, and
lies on the line PQ, where P has co-ordinates (1, 0) and Q has co-ordinates (0, 1),
then PR/RQ = m/l, where line segments are signed, as described above.

We now show how to introduce a metric on the line. It may seem at first sight to
be contrived and more elaborate than necessary, but it turns out to be the correct form
for generalisation into higher dimensions. Let the length of PQ be c. We now suppose
that R and S are two points on the line PQ with line co-ordinates R(l,m) and S(r, s),
where l+m = 1 and r+s = 1. Then RS = (r− l, s−m) = (u, v), where u = r− l
and v = s − m, and hence u + v = 0. Note that, for any displacement such as RS
along the line PQ, the sum of the co-ordinates is zero. Now P Q = (−1, 1) and we
know, by definition, that the length of PQ is c. This is at least consistent with the
possibility that the required metric is given by the equation

RS2 = −c2uv . (A.2.6)

In fact, this is easily confirmed, since RS = (u, v) = (−v, v) = v(−1, 1) = vP Q,
and hence RS2 = v2P Q2 = −c2uv. This may at first appear contrived; but it is the
form that generalises when we come to deal with areal co-ordinates and distances in
the plane of a triangle.

A.3 The vector treatment of a triangle
Let ABC be a triangle in the plane Π. Let O be an arbitrary origin and suppose that
OA = x, OB = y, and OC = z. We quote, without proof, that the signed area of
the triangle ABC is given by

[ABC]k =
1
2
(y × z + z × x + x × y) , (A.3.1)

where k is a fixed unit normal perpendicular to Π. The choice of the direction of k
dictates the sign of [ABC]. This now creates a sign convention for areas in the plane
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Π. Thus, if [ABC] is positive and P lies on the same side of BC as A then [PBC] is
positive, but if P lies on the other side of BC from A then [PBC] is negative.

Suppose now that O lies external to Π. It is well known that x, y, and z are
linearly independent and that x · (y × z) �= 0, since it is the signed volume V of the
parallelepiped based on OA, OB, and OC as base vectors. (In fact, the vanishing of
V , when none of x, y, or z is the zero vector, is a necessary and sufficient condition
for A to lie in the plane OBC , which would mean that ABC is a degenerate triangle.)
Note that, together with eqn (A.3.1), this implies that

[ABC]k · x = [ABC]k · y = [ABC]k · z =
1
2
V . (A.3.2)

Theorem A.3.1 If O does not lie in the plane Π of a triangle ABC , then, for any
point P ∈ Π, there exist unique constants l, m, and n such that the position vector of
P is given by

p = lx + my + nz and l + m + n = 1 . (A.3.3)

Proof Using oblique axes AB and AC in Π, we have OP = OA + αAB + βAC,
that is,

p = x + α(y − x) + β(z − x) . (A.3.4)

Now take l = 1 − α − β, m = α, n = β, and l + m + n = 1, and we obtain
eqn (A.3.3). Uniqueness follows from the linear independence of x, y, and z. For,
if p = l′x + m′y + n′z, with l′ + m′ + n′ = 1 and (l′,m′, n′) �= (l,m, n), then
ux + vy + wz = 0, where u = l − l′, v = m − m′, and w = n − n′, and not all of
u, v, and w are zero. This would contradict the linear independence of x, y, and z.
Hence the representation (A.3.3) is unique. �

However, we do not wish to restrict the position of O, and the nice thing is that we
need not do so.

Theorem A.3.2 Even if O lies in the plane Π of the triangle ABC , then, for any
point P ∈ Π, there exist unique constants l, m, and n such that l + m + n = 1 and
the position vector of P is given by eqn (A.3.3).

Proof In this case, since x, y, and z are not now independent, there exist constants
r, s, and t, not all zero, such that rx + sy + tz = 0, and, since A, B, and C are not
collinear, by Theorem A.2.1, we have r+s+t = d �= 0. Now let p = l0x+m0y+n0z,
where l0 + m0 + n0 = c. Such expansions exist and, with c allowed to vary, they are
not unique. Now define k such that c − kd = 1. Then

p = l0x + m0y + n0z − k(rx + sy + tz) = lx + my + nz , (A.3.5)

where l + m + n = (l0 + m0 + n0) − k(r + s + t) = c − kd = 1. Suppose now
that there is a second representation p = l′x + m′y + n′z, where l′ + m′ + n′ = 1
and (l′,m′, n′) �= (l,m, n). Then, writing u = l − l′, v = m − m′, and w = n − n′,
we have ux + vy + wz = 0 and u + v + w = 0. However, by Theorem A.2.1, this
means that A, B, and C are collinear. Since this is not so, the representation (A.3.5)
is unique. �
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Theorem A.3.3 The co-ordinate system (l,m, n) for the plane Π, defined by eqns
(A.3.3) and (A.3.5), is independent of the position of the origin O. �

The proof is left to the reader, as it is identical, apart from the dimension, to the
proof of Theorem A.2.2.

A.4 Why the co-ordinates (l,m,n) are called areal
co-ordinates

The co-ordinates (l,m, n) of points P in the plane of Π, given by p = lx+my +nz,
with l + m + n = 1, are called areal co-ordinates, for reasons which we now explain.
First note, however, that (1, 0, 0) represents A, with p = x, (0, 1, 0) represents B,
with p = y, and (0, 0, 1) represents C , with p = z. For this reason ABC is often
called the triangle of reference.

Next, recall eqn (A.3.1) which states that [ABC]k = 1
2(y × z + z ×x + x× y).

Let us now calculate [PBC]k, where p = lx + my + nz. We have

[PBC]k =
1
2
(BC × BP )

=
1
2
(z − y) × [lx + (m − 1)y + nz]

=
1
2
l(y × z + z × x + x × y)

= l[ABC]k . (A.4.1)

Hence

l =
[PBC]
[ABC]

. (A.4.2)

Similarly,

m =
[APC]
[ABC]

(A.4.3)

and

n =
[ABP ]
[ABC]

. (A.4.4)

The sign convention, explained in Section A.3, means that wherever P is situated
we have [PBC] + [APC] + [ABP ] = [ABC], which is the geometrical expression,
in terms of areas, of the condition l + m + n = 1. This is why the co-ordinates are
called areal co-ordinates, since, by virtue of the uniqueness, there are no other sets of
co-ordinates having the property that l + m + n = 1.

When l = 0 the point P lies on BC , and, since m + n = 1, (m,n) are the line
co-ordinates for points on BC . Similarly, the co-ordinates (n, l) and (l,m) are the
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line co-ordinates for points on CA and AB, respectively. See Fig. A.1 for a diagram
showing the regions where l, m, and n are positive or negative. The notation in Fig.
A.1 means that + − −, for example, indicates a region in which l is positive and m
and n are negative. There are seven regions formed by the sides of a triangle and their
extensions, and all selections are represented except −−−.

Note that, in working out an area in Π, the area appears equally as the coefficient
of y×z, z×x, and x×y, which means that, in practice, only one of the coefficients
needs to be calculated.

After such a thorough explanation of what areal co-ordinates are, you might imag-
ine that we are ready to do some useful geometry. Unfortunately, we are not quite
there yet, since we do not even know how to write down the equation of a line, nor
even that it is linear in the co-ordinates of a variable point on the line. We use as
the co-ordinates of a variable point the triple (x, y, z), and use other triples such as
(l,m, n) for the co-ordinates of fixed points. Note that in this context x, y, and z are
nothing to do with the lengths of x, y, and z. An account is therefore necessary of
how to obtain the equation of a line, and, as the account provides a formula for the
area of an arbitrary triangle in the plane of ABC , there is a bonus in proceeding in
this way.

A

B C

+ − −

+ + −

+ + +

+ − +

− + − − + + − − +

Fig. A.1 The signs of l, m, and n in the various regions.
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A.5 The area of a triangle PQR and the equation of
the line PQ

Suppose that P , Q, and R have areal co-ordinates (d, e, f), (g, h, k), and (l,m, n),
respectively. As remarked above, in working out an area in Π, since it appears equally
as the coefficient of y × z, z × x, and x × y, only one of these coefficients needs to
be calculated. It follows that

[PQR]
[ABC]

= the first co-ordinate in the vector product

(l − g,m − h, n − k) × (d − g, e − h, f − k)

= (m − h)(f − k) − (n − k)(e − h)
= mf − mk − hf − ne + nh + ke

= (hn − mk) + (mf − en) + (ek − hf)
= (1 − e − f)(hn − mk)

+ (1 − h − k)(mf − en) + (1 − m − n)(ek − hf)
= d(hn − mk) + g(mf − en) + l(ek − hf)

= det

∣∣∣∣∣∣
d g l
e h m
f k n

∣∣∣∣∣∣ . (A.5.1)

In other words, the ratio of the signed areas of the triangles PQR and ABC is the
determinant of the matrix whose columns are, respectively, the co-ordinates of the
points P , Q, and R.

The line PQ is the locus of points R such that [PQR]/[ABC] = 0, and therefore
has equation

x(ek − fh) + y(fg − dk) + z(dh − eg) = 0 . (A.5.2)

This is, of course, exactly what you would expect if you are familiar with the equa-
tion of a line using homogeneous co-ordinates in projective geometry. It is linear,
homogeneous of degree 1 in x, y, and z, and clearly contains the points P and Q.

There are some immediate consequences of eqn (A.5.2). Firstly, note that
ek − fh, fg − dk, and dh − eg are equal to [APQ]/[ABC], [BPQ]/[ABC], and
[CPQ]/[ABC], respectively, and, since the triangles APQ, BPQ, and CPQ have a
common side PQ, we have the following theorem.

Theorem A.5.1 Given a line with equation px+qy+rz = 0, the signed perpendicular
distances from A, B, and C onto the line are proportional to p, q, and r, respectively.

�

If an arbitrary point R has co-ordinates (l,m, n) and p, q, and r are the actual
perpendicular distances from A, B, and C , respectively, onto the line, then it follows
immediately from eqn (A.5.1) that |pl + qm + rn| is the perpendicular distance from
R onto the line PQ.
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Theorem A.5.2 The condition for the two (non-identical) lines with equations p1x+
q1y + r1z = 0 and p2x + q2y + r2z = 0 to be parallel is

q1r2 − q2r1 + r1p2 − r2p1 + p1q2 − p2q1 = 0 . (A.5.3)

Proof The two lines are parallel if they do not meet at a real point. Now real points
correspond to those triples (x, y, z) that can be normalised so that x + y + z = 1.
Hence the lines are parallel if their equations, together with the equation x+y+z = 0,
have a solution in which x, y, and z are not all zero. (Such points may be thought of
as lying on the line at infinity.) This is so if and only if

det

∣∣∣∣∣∣
1 1 1
p1 q1 r1

p2 q2 r2

∣∣∣∣∣∣ = 0 . (A.5.4)

Equation (A.5.3) is the expansion of the condition (A.5.4). �

We are now in a position to do some geometry, provided that actual distances
are not involved. We postpone the derivation of the areal metric until after examples
illustrating the theory so far. Without a metric we are limited to results involving
points and lines, and incidence properties, such as collinearity and concurrence. Metric
properties, including conditions for lines to be at right angles, are given in Section
A.8.

A.6 The areal co-ordinates of key points in the triangle

The centroid G

We have already seen that A, B, and C have co-ordinates A(1, 0, 0), B(0, 1, 0),
and C(0, 0, 1). The equations of the lines BC , CA, and AB are therefore x = 0,
y = 0, and z = 0, respectively. Therefore the midpoints L, M , and N of the
sides BC , CA, and AB, respectively, have co-ordinates L(0, 1

2 , 1
2), M(1

2 , 0, 1
2), and

N(1
2 , 1

2 , 0). It follows that the equations of the medians AL, BM , and CN are
y = z, z = x, and x = y, respectively. These are concurrent at the centroid G, where
x = y = z = 1/3. Its co-ordinates are G(1/3, 1/3, 1/3). This implies the well-known
fact that [GBC] = [AGC] = [ABG] = (1/3)[ABC].

The incentre I

The incentre I has the property that the perpendicular distances from I to all three
sides are equal to the inradius. It follows that [IBC] : [AIC] : [ABI] = a : b : c.
Hence the co-ordinates of the incentre are I(a, b, c)/(a + b + c). The equations of the
lines AI , BI , and CI are therefore cy = bz, az = cx, and bx = ay, respectively.

Theorem A.6.1 The internal bisector of ∠BAC meets BC at a point U such that
BU/UC = AB/CA.
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Proof AI has equation cy = bz and meets BC with equation x = 0 at the point
U with co-ordinates (0, b, c)/(b + c). From our knowledge of the properties of line
co-ordinates, this means that BU/UC = c/b = AB/CA. �

The circumcentre O

Let R be the circumradius; then BC = a = 2R sin A and OL = R cos A. It follows
that [OBC] = R2 sin A cos A = 1

2R2 sin 2A. Hence

[OBC] : [AOC] : [ABO] = sin 2A : sin 2B : sin 2C . (A.6.1)

Since sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C , the normalised co-ordinates
of the circumcentre O are O(sin 2A, sin 2B, sin 2C)/4 sin A sin B sinC . Thus AO
meets BC at a point P such that BP/PC = sin 2C/ sin 2B.

The orthocentre H

Let R be the circumradius, and let AH , BH , and CH meet the sides BC , CA, and
AB at D, E, and F , respectively. It is easily calculated that HD = 2R cos B cos C
and BC = 2R sin A. Hence [HBC] = 2R2 sin A cos B cos C . Since [ABC] =
2R2 sinA sin B sin C , it follows that the co-ordinates of H are

H(cot B cot C, cot C cot A, cot A cot B) .

This is a geometrical proof of the trigonometrical identity that when A+B+C = 180◦,

cot B cot C + cot C cot A + cot A cot B = 1 . (A.6.2)

It is often preferable to leave these co-ordinates in their unnormalised form H(tan A,
tan B, tan C).

The more complicated forms for the co-ordinates of O and H make the use of
areal co-ordinates for problems involving these points less attractive.

It is left as an exercise for the reader to prove that the excentres I1, I2, and I3 of
the excircles opposite A, B, and C , respectively, have co-ordinates

I1
(−a, b, c)
b + c − a

, I2
(a,−b, c)
c + a − b

, I3
(a, b,−c)
a + b − c

.

A.7 Some examples

Example A.7.1 (Menelaus’ theorem) Suppose that the transversal LMN , with L,
M , and N on BC , CA, and AB, respectively, has equation px+ qy + rx = 0, where
x, y, and z are current co-ordinates on the line and p, q, and r are constants. The line
meets BC , whose equation is x = 0, at L with co-ordinates (0,−r, q)/(q − r). (If
q = r then the transversal is parallel to BC and L does not exist.) Since these are
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now the line co-ordinates of L on BC , we have BL/LC = −q/r. Similarly, we have
CM/MA = −r/p and AN/NB = −p/q. It follows that

BL

LC

CM

MA

AN

NB
= −1 , (A.7.1)

which is Menelaus’ theorem for transversals of a triangle.
For the converse, if eqn (A.7.1) holds, let LM meet AB at N ′. Then, by Menelaus’

theorem, we have (BL/LC)(CM/MA)(AN ′/N ′B) = −1, so that AN/NB =
AN ′/N ′B and hence N and N ′ coincide.

Example A.7.2 (Ceva’s theorem) Suppose that P (l,m, n) is a point in the plane of
the triangle ABC . Then the equation of the Cevian AP is ny = mz, and this meets BC
at a point L with unnormalised co-ordinates (0,m, n), and we have BL/LC = n/m.
If the other two Cevians BP and CP meet CA and AB, respectively, at M and N ,
then, by a similar argument, CM/MA = l/n and AN/NB = m/l. Hence

BL

LC

CM

MA

AN

NB
= +1 , (A.7.2)

which is Ceva’s theorem for the intercepts on the sides of a triangle by the Cevians.
Note that P does not have to be internal to the triangle ABC , as the signed lengths in
eqn (A.7.2) take care of any negative quantities amongst l, m, and n.

For the converse, it is possible for eqn (A.7.2) to hold with L, M , and N on BC ,
CA, and AB, respectively, but for AL, BM , and CN to be parallel. Excluding this
case, we may suppose, without loss of generality, that AL and BM meet at P . Now
let CP meet AB at N ′. Then, by Ceva’s theorem, we have

BL

LC

CM

MA

AN ′

N ′B
= +1 ,

and so AN ′/N ′B = AN/NB and N ′ coincides with N ; thus AL, BM , and CN are
concurrent at P .

Example A.7.3 (Gergonne’s point) Suppose that the incircle touches BC , CA, and
AB at X, Y , and Z , respectively. Then we know from elementary considerations
that BX = s − b and XC = s − c, where s = 1

2(a + b + c). It follows that the
unnormalised co-ordinates of X are (0, s− c, s− b). The equation of AX is therefore
(s − c)z = (s − b)y. It is evident that the point P with unnormalised co-ordinates
P (1/(s − a), 1/(s − b), 1/(s − c)) lies on this line. By symmetry, it is clear that P
also lies on BY and CZ . It follows that AX, BY , and CZ are concurrent at P . This
point is called Gergonne’s point.

Note that, in dealing with the equations of lines, because those equations are
homogeneous of degree 1 in x, y, and z, it is possible to use the unnormalised co-
ordinates of points. This shortens and simplifies an argument such as the one above.
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A.8 The areal metric
Although I was somewhat surprised when I discovered that a metric exists, perhaps
I should not have been. There is, after all, something about an area that is suggestive
of measurement. Areas themselves appear to be measured relative to the area of the
triangle ABC; so surely distances ought somehow to be measured relative to the side
lengths a, b, and c of the triangle? This, in fact, turns out to be the case. However,
the derivation is not easy, and the argument has to be broken down into three cases,
namely, when triangle ABC is acute, when it is right-angled, and when it is obtuse.
Of course, the same formula emerges in all three cases.

• Case 1, ABC is an acute-angled triangle
Since areal co-ordinates are independent of the choice of origin, we may choose any
suitable origin. For an acute-angled triangle there exists a suitable origin O above
the plane of the triangle such that OA, OB, and OC form a right triad of vectors. If
we take OA, OB, and OC to be in the x-, y-, and z-directions, respectively, then the
plane Π in which the triangle ABC lies has the equation in Cartesian co-ordinates
given by x+y+z = 1. Since areal co-ordinates are unique, they therefore coincide
with Cartesian co-ordinates which are set up in this way.
Why, you may ask, do we set up areal co-ordinates with all the elaborate machinery
involving ratios if they are only Cartesian co-ordinates in disguise? The answer to
this is that such a disguise is only possible for acute-angled triangles. No origin
with OA, OB, and OC being a right triad of vectors exists for a right-angled or
an obtuse-angled triangle. For these triangles it is true that the co-ordinates satisfy
x + y + z = 1, but, although it is possible to treat the right-angled triangle as a
limiting case of an acute-angled triangle, it is not possible, given an obtuse-angled
triangle, to choose any rectangular Cartesian co-ordinate system in which x, y, and
z are the co-ordinates.
Firstly, we must prove the existence of the point O with the required property.
In an acute-angled triangle, by the cosine rule, all of the quantities b2 + c2 − a2,
c2 + a2 − b2, and a2 + b2 − c2 are positive. We may therefore set these quantities
equal to 2d2, 2e2, and 2f2, respectively. Then

e2 + f2 = a2 ,

f2 + d2 = b2 ,

d2 + e2 = c2 ,

(A.8.1)

and, by the converse of Pythagoras’ theorem, a point O exists in which OA, OB,
and OC are mutually at right angles and OA = d, OB = e, and OC = f . This
construction only works for an acute-angled triangle. Since OA = x, OB = y,
and OZ = z, we have

|x| = d , |y| = e , |z| = f , y · z = z · x = x · y = 0 . (A.8.2)

Suppose now that we have two points P and Q in the plane Π with areal co-ordinates
P (l,m, n) and Q(r, s, t). Then P Q = (r − l, s − m, t − n) = (u, v, w), where
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u = r− l, v = s−m, w = t−n, and u+v+w = 0. Note that, for any displacement
vector, the sum of the co-ordinates is zero. Now, since P Q = ux + vy + wz, we
may use eqns (A.8.2) to give

PQ2 = u2d2 + v2e2 + w2f2

=
1
2
(b2 + c2 − a2)u2 +

1
2
(c2 + a2 − b2)v2 +

1
2
(a2 + b2 − c2)w2

=
1
2

[
a2(v2 + w2 − u2) + b2(w2 + u2 − v2) + c2(u2 + v2 − w2)

]
= −a2vw − b2wu − c2uv , (A.8.3)

since u+v+w = 0. The formula (A.8.3) is the long-awaited metric for a straight-line
displacement P Q = (u, v, w), with u + v + w = 0.
A number of points need to be made. Firstly, eqn (A.8.3) generalises eqn (A.2.6) for
the metric in line co-ordinates. Secondly, although it looks negative, it is in fact a
positive-definite quadratic form (because of the condition u + v + w = 0). Thirdly,
if ds = (du,dv,dw) is an infinitesimal displacement then

ds2 = −a2 dv dw − b2 dw du − c2 dudv . (A.8.4)

• Case 2, ABC is a right-angled triangle
Without loss of generality, suppose that the right angle is at A. The suitable choice
of origin is now at A itself. Although OA = 0, OB = AB = y, and OC =
AC = z, we may take this case to be a limiting form of Case 1. We now have
|x|2 = d2 = 1

2 (b2 + c2 − a2) = 0. If the rectangular Cartesian co-ordinates of
a point in Π, with respect to the axes OB and OC , are (y, z), then we can set
x = 1 − y − z, and (by uniqueness) we have areal co-ordinates of the point. The
working for Case 1 may now be carried over word for word and symbol for symbol.
Thus formulae (A.8.3) and (A.8.4) still hold.

• Case 3, ABC is an obtuse-angled triangle
Suppose, without loss of generality, that the obtuse angle is at A. Now a2 > b2 +c2,
so we make the following substitutions: d2 = 1

2(a2−b2−c2), e2 = 1
2(c2 +a2−b2),

and f2 = 1
2(a2 + b2 − c2). Then

e2 + f2 = a2 ,

d2 + b2 = f2 ,

d2 + c2 = e2 .

(A.8.5)

These equations mean that a suitable origin O exists, which is on the normal to Π
through A such that ∠BOC = ∠OAB = ∠OAC = 90◦. We do not have a right
triad of vectors, but we do have a tetrahedron OABC with three right angles, one
at the vertex O and two at the vertex A. Such a construction is always possible for
an obtuse-angled triangle. Writing OA = x, OB = y, and OC = z, as usual, we
now have |x|2 = d2, |y|2 = e2, |z|2 = f2, y · z = 0, and z · x = x · y = d2.
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Now, with P and Q having areal co-ordinates as defined in Case 1, so that P Q =
ux + vy + wz, with u + v + w = 0, we have

PQ2 = u2d2 + v2e2 + w2f2 + 2(uv + uw)d2

= (uv + uw)d2 + v2e2 + w2f2

=
1
2

[
(uv + uw)(a2 − b2 − c2) + v2(c2 + a2 − b2) + w2(a2 + b2 − c2)

]
=

1
2

[
a2(uv + uw + v2 + w2) + b2(w2 − v2 − uv − uw)

+c2(v2 − w2 − uv − uw)
]

= −a2vw − b2wu − c2uv , (A.8.6)

which is the same as formula (A.8.3) found in Cases 1 and 2.
An alternative form, which may be useful if arc lengths of curves are to be calculated,
is very easily deduced:

PQ2 = u2bc cos A + v2ca cos B + w2ab cos C . (A.8.7)

However, the form (A.8.6) is more useful in geometrical applications.

We now give a worked example to illustrate the above.

Example A.8.1 We compute I1I2, the distance between the excentres of the excircles
opposite A and B. The co-ordinates of these points are I1(−a, b, c)/(b + c − a) and
I2(a,−b, c)/(c + a − b). Hence I1I2 = [2c/(c + a − b)(b + c − a)] (a,−b, b − a).
Using eqn (A.8.6) for the displacement P Q = (a,−b, b − a), we obtain

PQ2 = a2b(b − a) − b2a(b − a) + c2ab

= ab(c + a − b)(c + b − a) . (A.8.8)

Hence

I1I2 = 2c

√
ab

(c + a − b)(b + c − a)
. (A.8.9)

A.9 The condition for perpendicular displacements

Let P Q = (u, v, w) and RS = P T = (f, g, h) be two displacements in the plane
Π, so that u + v + w = f + g + h = 0. The condition that P Q and RS should be
perpendicular is

PQ2 + PT 2 = QT 2 , (A.9.1)

where QT = (f − u, g − v, h − w). Using eqn (A.8.6) three times, the condition
(A.9.1) becomes
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−a2vw − b2wu − c2uv − a2gh − b2hf − c2fg

= −a2(g − v)(h − w) − b2(h − w)(f − u) − c2(f − u)(g − v) ,

and this reduces to

a2(gw + hv) + b2(hu + fw) + c2(fv + gu) = 0 . (A.9.2)

The left-hand side of eqn (A.9.2) may be thought of as twice the negative of the scalar
product of the two displacements (u, v, w) and (f, g, h), and then the right-hand side
of eqn (A.8.6) is the scalar product of (u, v, w) with itself.

Example A.9.1 We show how to calculate the condition that the two lines with
equations px+ qy +rz = 0 and lx+my +nz = 0 are perpendicular. A displacement
along the first line has co-ordinates (u, v, w) = (q−r, r−p, p−q), and a displacement
along the second line has co-ordinates (f, g, h) = (m−n, n− l, l−m). The vanishing
of the scalar product of these two displacements (with the scalar product defined as in
the previous paragraph) now gives the required result.

Example A.9.2 Let P (l,m, n) be a point in the plane Π, not at the vertices of the
triangle ABC and not lying on BC , so that l �= 0. Let the foot of the perpendicular
from P onto BC be L(0, q, r). We work out the distances BL and LC . We have
BC = (0,−1, 1) and P L = (−l, q − m, r − n). Using eqn (A.9.2), with u = 0,
v = −1, and w = 1, and f = −l, g = q − m, and h = r − n, we obtain

a2(q − m − r + n) + b2(−l) + c2l = 0 . (A.9.3)

Hence q − r = m − n + (b2 − c2)l/a2. However, q + r = 1 and l + m + n = 1, and
so

q = m +
(a2 + b2 − c2)l

2a2
,

r = n +
(c2 + a2 − b2)l

2a2
,

(A.9.4)

that is, q = m + (bl/a) cos C and r = n + (cl/a) cos B. It follows that

BL = an + cl cos B ,

LC = am + bl cos C .
(A.9.5)

These equations are used in Section 8.3.

A.10 The equation of a circle

Now that we can measure distances we can obtain the equation of a circle. We suppose
that the centre of the circle is the point P (l,m, n) and that (x, y, z) is any point on the
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circumference. Let the radius of the circle be R. Then, using eqn (A.8.6), the equation
of the circle is

−a2(y − m)(z − n) − b2(z − n)(x − l) − c2(x − l)(y − m) = R2 . (A.10.1)

However, this is not the appropriate form of the equation, as we need to make it a
homogeneous equation of degree 2 in x, y, and z.

This is done by using the condition x + y + z = 1. Then eqn (A.10.1) becomes

−a2 [(n + l)y − m(z + x)] [(l + m)z − n(x + y)]

−b2 [(l + m)z − n(x + y)] [(m + n)x − l(y + z)]

−c2 [(m + n)x − l(y + z)] [(n + l)y − m(z + x)] = R2(x + y + z)2 .
(A.10.2)

Equation (A.10.2) reduces to

ux2 + vy2 + wz2 + 2pyz + 2qzx + 2rxy = 0 , (A.10.3)

where
u = −R2 + b2n2 + c2m2 + (b2 + c2 − a2)mn , (A.10.4)

with similar expressions for v and w by cyclic changes of l, m, and n, and a, b, and c,
and where

2p = −2R2 − a2l2 − a2lm − a2nl − 2a2mn
(A.10.5)

+ b2l2 + b2lm − b2nl + c2l2 − c2lm + c2nl

= −2R2 + (b2 + c2 − a2)l2 − 2a2mn − (a2 + b2 − c2)nl − (c2 + a2 − b2)lm ,
(A.10.6)

with similar expressions for 2q and 2r by cyclic changes of letters.
Now,

v + w − 2p
a2

= l2 + m2 + n2 + 2mn + 2nl + 2lm

= (l + m + n)2 = 1 ,

and hence it follows, by symmetry, that

v + w − 2p
a2

=
w + u − 2q

b2
=

u + v − 2r
c2

. (A.10.7)

What we have proved is that every circle in areal co-ordinates has an equation of the
form (A.10.3) subject to the side conditions (A.10.7). The converse is true, that, if an
equation homogeneous of degree 2 in x, y, and z is of the form (A.10.3), subject to
the side conditions (A.10.7), then it represents a circle. The proof is left to the reader.
Equation (A.10.3), in general, represents a conic.
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Theorem A.10.1 The equation of the tangent at (x0, y0, z0) to the conic with equation
(A.10.3) is

(ux0 + ry0 + qz0)x + (rx0 + vy0 + pz0)y + (qx0 + py0 + wz0)z = 0 . (A.10.8)

�

This result is proved by the usual calculus methods and is left to the reader.
We now obtain the equations of the key circles associated with a triangle.

The circumcircle

The circumcircle passes through A(1, 0, 0), B(0, 1, 0), and C(0, 0, 1). Hence u =
v = w = 0. From eqns (A.10.7) we may put 2p = a2, 2q = b2, and 2r = c2, so that
the equation of the circumcircle is

a2yz + b2zx + c2xy = 0 . (A.10.9)

Assume now that the triangle ABC is not isosceles. The equation of the tangent at
A, by eqn (A.10.8), is c2y + b2z = 0, and this meets BC at the point L with co-
ordinates L(0, b2,−c2)/(b2 − c2). If M and N are similarly defined in terms of the
tangents at B and C , then clearly L, M , and N are collinear on the line with equation
x/a2 + y/b2 + z/c2 = 0. If the harmonic conjugates of L, M , and N are denoted by
L′, M ′, and N ′, respectively, then L′ has co-ordinates L′(0, b2, c2)/(b2 + c2), with
similar expressions for M ′ and N ′. It is now evident that AL′, BM ′, and CN ′ are
concurrent at the point S(a2, b2, c2)/(a2 + b2 + c2). S is the symmedian point, which
appears in Section 8.5 as the isogonal conjugate of the centroid G.

Assume now that the triangle ABC does not have a right angle. If the tangents at
B and C to the circumcircle meet at L′′, with M ′′ and N ′′ similarly defined, then it is
easy to show that L′′ has co-ordinates (−a2, b2, c2), with similar expressions by cyclic
changes for M ′′ and N ′′. Then AL′′, BM ′′, and CN ′′ are concurrent at S, which is
yet another way of defining the symmedian point.

If a point P has areal co-ordinates (l,m, n) then its isogonal conjugate Q has un-
normalised areal co-ordinates (a2/l, b2/m, c2/n). Obviously, the isogonal conjugate
of Q is P .

The incircle

We claim that the equation of the incircle is

(s − a)2x2 + (s − b)2y2 + (s − c)2z2

− 2(s − b)(s − c)yz − 2(s − c)(s − a)zx − 2(s − a)(s − b)xy = 0 ,
(A.10.10)

where s = 1
2 (a + b + c).
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In fact,

v + w − 2p
a2

=
(s − b)2 + (s − c)2 + 2(s − b)(s − c)

a2
= 1

=
w + u − 2q

b2
=

u + v − 2r
c2

,

so eqn (A.10.10) represents a circle. Also, it touches the line x = 0 at the point with
co-ordinates (0, s − c, s − b)/a, and similarly it touches the lines y = 0 and z = 0.
The only circle with these properties is the incircle.

The excircle opposite A

We leave it as an exercise for the reader to show that the equation of the excircle
opposite A is

s2x2 +(s−c)2y2 +(s−b)2z2−2(s−b)(s−c)yz +2s(s−b)zx+2s(s−c)xy = 0 .
(A.10.11)

The nine-point circle

Incorporating the conditions (A.10.7) and the fact that the nine-point circle passes
through the midpoints of the sides L(0, 1

2 , 1
2), M(1

2 , 0, 1
2), and N(1

2 , 1
2 , 0), we find its

equation to be

(b2 +c2−a2)x2 +(c2 +a2−b2)y2 +(a2 +b2−c2)z2−2a2yz−2b2zx−2c2xy = 0 .
(A.10.12)

The polar circle

The polar circle is the circle with respect to which A is the pole of BC , B is the pole
of CA, and C is the pole of AB. Its equation is

cot Ax2 + cot B y2 + cot C z2 = 0 . (A.10.13)

Exercises A

A.1 Show that the equation of the circle which is tangent to AB at B and which
passes through C is c2x2 − a2yz + (c2 − b2)zx = 0. Show that the circle
which is tangent to BC at C and which passes through A meets the first
circle at the Brocard point Ω, whose unnormalised areal co-ordinates are
Ω(1/c2, 1/a2, 1/b2). What is the isogonal conjugate of Ω?

A.2 In the triangle ABC let P have areal co-ordinates (l,m, n). Prove that

AP 2 = c2m2 + b2n2 + 2mnbc cos A .
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A.3 Let L, M , and N be the feet of the perpendiculars from a point P onto the sides
BC , CA, and AB, respectively. Prove that AL, BM , and CN are concurrent
or parallel if and only if P lies on a cubic curve passing through O, H , I , A,
B, C , I1, I2, and I3.

A.4 Let P have areal co-ordinates (l,m, n) and suppose that L, M , and N are the
feet of the perpendiculars from P onto the sides BC , CA, and AB, respec-
tively. Prove that the lines through A, B, and C perpendicular to the sides
MN , NL, and LM , respectively, of the pedal triangle LMN are concur-
rent at the isogonal conjugate Q, whose unnormalised areal co-ordinates are
(a2/l, b2/m, c2/n).

A.5 Show that the equation of the circle I1I2I3 is

bcx2 + cay2 + abz2 + (a + b + c)(ayz + bzx + cxy) = 0 .

A.6 Prove Feuerbach’s theorem (see Section 8.9) that the nine-point circle touches
the inscribed and escribed circles at the points P , P1, P2, and P3, and that the
tangents at these points have equations

x

b − c
+

y

c − a
+

z

a − b
= 0

together with the three equations formed from this by changing a into −a, b
into −b, and c into −c. See also Exercise A.9.

A.7 Within a triangle ABC we take two points U and V . The lines AU , BU ,
and CU meet the opposite sides at L, M , and N , respectively. The points of
intersection of V A and MN , V B and NL, and V C and LM are denoted by
D, E, and F , respectively. Prove that LD, ME, and NF are concurrent at a
point P which remains the same if U and V are interchanged.

A.8 Let AL, BM , and CN , and AD, BE, and CF be two sets of Cevians in the
triangle ABC . Prove that a conic passes through L, M , N , D, E, and F .

A.9 With the notation of Section A.10, prove that the equation of any circle may be
expressed in the form a2yz + b2zx+ c2xy− (x+y+ z)(ux+ vy +wz) = 0,
where u, v, and w are the powers of A, B, and C , respectively, with respect
to the circle. Hence show that the common chord of two circles, one with
powers u, v, and w and the other with powers u′, v′, and w′, has equation
(u − u′)x + (v − v′)y + (w − w′)z = 0.



Answers to exercises

Exercises 1.1

1.1.1 (a) When v = 1, we have c = a + 2 and b2 = 4(a + 1).

(b) When u = v + 1, we have a = 2v + 1, b = 2v2 + 2v, c = 2v2 + 2v + 1,
c = b + 1, and b + c = a2.

1.1.2 One of u and v must be even. One of u, v, u + v, and u − v must be divisible
by 3. One of u, v, u + v, u − v, and u2 + v2 must be divisible by 5.

1.1.3 (87, 116, 145), (105, 100, 145), (143, 24, 145), and (17, 144, 145).

1.1.4 If c = u2 + v2 then c2 = (u2 − v2)2 + (2uv)2. So u2 − v2 is odd and 2uv is
even, and they are coprime.

1.1.5 See an article in the July 1996 issue of Mathematical Gazette (Bradley, 1996).

1.1.6 The solutions of |a− b| = 1 arise from x2 − 2y2 = +1 or −1, where x = u− v
and y = v. These are x0 = 1 and y0 = 1, and xn+1 = xn + 2yn and
yn+1 = xn + yn, for non-negative integers n. This leads to u0 = 2 and v0 = 1
and the triple (3, 4, 5), u1 = 5 and v1 = 2 and the triple (21, 20, 29), and
u2 = 12 and v2 = 5 and the triple (119, 120, 169). There is clearly an infinite
sequence of such triangles. Since we obtain triangles that are closer and closer to
being isosceles right-angled triangles, we obtain rational approximations closer
and closer to

√
2, such as 10/7, 58/41, and 338/239, the last of these already

being correct to four decimal places.

1.1.7 Yes. Put one point at (1, 0); then where must the rest be?

Exercises 1.2

1.2.1 The pair (u, v) and (v, u) have the same value for c, and the values of a and b
are interchanged.

1.2.2 Consider a triangle with given a, b, and c, and C = 120◦. At the vertex C extend
BC by a distance b to a point C ′. Now join AC ′. Since the triangle ACC ′ is
equilateral of side b, it follows that in the triangle ABC ′ the angle C ′ = 60◦
and, whereas b and c are unchanged, the length of BC ′ is a + b.

1.2.3 [39, 65, 91], [56, 49, 91], [11, 85, 91], and [80, 19, 91].

Exercises 1.3

1.3.1 One method is to use cos A = − cos(B + C) and sin B sinC = h2/mn.
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1.3.2 If the sides are N − 1, N , and N + 1 then Heron’s formula gives

[ABC] =

√(
1
4
N2 − 1

)
3
4
N2 .

Clearly, N must be even. So putting N = 2M we obtain

[ABC] = M
√

3(M2 − 1) .

It follows that an integer P must exist so that M2 − 3P 2 = 1. This is Pell’s
equation and there are an infinite number of solutions, given by M0 = 2 and
P0 = 1, and Mn+1 = 2Mn + 3Pn and Pn+1 = Mn + 2Pn. The first three such
triangles have sides (3, 4, 5), (13, 14, 15), and (51, 52, 53).

1.3.3 There are twenty-five Heron triangles with height 40 formed from five Pythagor-
ean triangles. Listing the base last, these are as follows:

(50, 50, 60) , (104, 104, 192) , (85, 85, 150) , (58, 58, 84) ,

(41, 41, 18) , (104, 50, 126) , (104, 50, 66) , (85, 50, 105) ,

(85, 50, 45) , (58, 50, 72) , (58, 50, 12) , (41, 50, 39) ,

(41, 50, 21) , (85, 104, 171) , (85, 104, 21) , (58, 104, 138) ,

(58, 104, 54) , (41, 104, 105) , (41, 104, 87) , (58, 85, 117) ,

(58, 85, 33) , (41, 85, 84) , (41, 85, 66) , (58, 41, 51) , (58, 41, 33) .

1.3.4 For example, (289, 784, 975) and (841, 1369, 1122). A construction that gives
an infinite number of such triples arises from solutions of the Diophantine
equation u4 − v4 = p4 − q4, whose common value may be taken as the altitude
of a Heron triangle, two of whose sides are (u2 + v2)2 and (p2 + q2)2, the third
side being 2uv(u2 + v2) + 2pq(p2 + q2). It is known that u = 158, v = 133,
p = 134, and q = 59 is the solution with the lowest values of u, v, p, and q.

1.3.5 Consider the component right-angled triangles from which the Heron triangle
is composed. There are several cases.

Exercises 1.4

1.4.1 (15, 12, 16, 25) and (9, 12, 20, 25).
1.4.2 The other value of tan x = v′/u′, where v′ = u(u2−3v2) and u′ = v(3u2−v2),

and it follows that u′2 − v′2 = x(3y2 − x2) and 2u′v′ = y(3x2 − y2). Also,
u′2 + v′2 = (u2 + v2)3.

1.4.3 We have a = 2x + 1, b = 2x, c = 4x2 + 2x, and d = 4x2 + 2x + 1, and
a = 2x − 1, b = 2x, c = 4x2 − 2x, and d = 4x2 − 2x + 1, where x is any
positive integer.

1.4.4 This provides an efficient, but not systematic, method of finding Pythagorean
quartets. See Section 7.5 for a parametric solution of this equation.
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Exercise 1.5

1.5.1 The eighteen triangles are as follows:

(305, 289, 18) , (170, 153, 19) , (104, 85, 21) , (74, 51, 25) ,

(65, 34, 33) , (97, 90, 11) , (58, 50, 12) , (40, 30, 14) , (37, 26, 15) ,

(34, 20, 18) , (78, 75, 9) , (39, 35, 10) , (30, 25, 11) , (24, 15, 15) ,

(41, 40, 9) , (26, 24, 10) , (20, 16, 12) , (15, 14, 13) .

Exercises 1.6

1.6.1 In an equable parallelogram we have a = p(k − 1), b = p, and h = 2k, and
a = b implies that k = 2 and h = 4.

1.6.2 In an equable rectangle h = a, so ab = 2(a + b) or (a − 2)(b − 2) = 4, and so
the only possibilities are a = b = 4, or a = 6 and b = 3, or a = 3 and b = 6.

1.6.3 4.

1.6.4 Try a = u + v + 1 and b = u − v. What extra condition has to be imposed?

Exercises 2.1

2.1.1 The maximum value of v(u−v) subject to fixed u2+v2 is when u = v(1+
√

2),
and this leads to h = 1 +

√
2, and this is the best possible since rational u and

v exist so that u/v can be made arbitrarily close to 1 +
√

2.

2.1.2 There are thirteen Heron triangles with r = 3. These have sides

(11, 100, 109) , (7, 65, 68) , (12, 55, 65) , (13, 40, 51) ,

(8, 26, 30) , (7, 24, 25) , (15, 28, 41) , (16, 25, 39) , (8, 15, 17) ,

(19, 20, 37) , (11, 13, 20) , (9, 12, 15) , (10, 10, 12) .

2.1.3 The maximum value is h = 2. This is because R = 2r for an equilateral triangle
and integer-sided triangles exist that are as close to being equilateral as one
desires. For example, it was shown in Exercise 1.3.2 that there are indefinitely
large integer values of N for which (N − 1, N,N + 1) is a Heron triangle.

2.1.4 This would require that u2 + v2 = 2hv(u − v), where u and v are coprime and
of opposite parity.

Exercise 2.2

2.2.1 There are, in fact, five possibilities. These are t = 40, h = 104, and R = 96.
Then there are four possible chords C1, C2, C3, and C4, with a1 = 32 and
b1 = 50, a2 = 20 and b2 = 80, a3 = 16 and b3 = 100, and a4 = 10 and
b4 = 160. It is also possible that C4 is a diameter and then t = 40, h = 85,
and R = 75, so then C1, C2, and C3 are possible chords. It is also possible that
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C3 is a diameter and then t = 40, h = 58, and R = 42, so then C3 and C4 are
possible chords. It is also possible that C2 is a diameter with t = 40, h = 50,
and R = 30, so then C1 is a possible chord. If C1 is a diameter with t = 40,
h = 41, and R = 9 then there is just a tangent and a diameter and no other
chord.

Exercises 2.3

2.3.1 No. A quadrilateral may not exist with these values for its sides and diagonals.
For a start, one must have a + b + c > d, e > a + d, etc. However, even if the
eight conditions of this type are satisfied, a quadrilateral only has eight degrees
of freedom; two of these are translational and one rotational, leaving five internal
degrees of freedom only. Hence six lengths cannot be chosen arbitrarily to form
the sides and diagonals of a quadrilateral.

2.3.2 This comes from the cosine rules for the triangles ABD and BCD and the fact
that cos C = − cos A.

2.3.3 Using the formulae in the text, we have r2 = 19/4.

2.3.4 Yes. We have

A1A2 = 1 ,

A2A3 = 3 ,

A3A4 = 5 ,

...

A1000A1001 = 1999 ,

A1001A1002 = 2000 ,

...

A2000A1 = 2 .

2.3.5 AB = 18 and BC = 10. BQ is also 10.

Exercise 2.4

2.4.1 a = c = 2k|2q2 − p2|, b = 4kpq, and n = l = k(p2 + 2q2).

Exercise 2.5

2.5.1 (i) r = 4, r1 = 5, r2 = 24, and r3 = 120.

(ii) r = 4, r1 = 8, r2 = 9, and r3 = 72.



Answers to exercises 189

Exercise 2.6

2.6.1 q = 502 = 6k+4, where k = 83. So the number of triangles is (5022−4)/12 =
21 000.

Exercise 2.7

2.7.1 k = 5 and CW = 80.

Exercises 2.8

2.8.1 Yes, the external bisectors are rational. The formula for the length of the external
bisector of angle A is AU ′2 = bc(a−b+c)(a+b−c)/|b−c|2, and in the triangle
with sides 125, 169, and 154 the lengths are AU ′ = 975/2, BV ′ = 23100/29,
and CW ′ = 4004/3.

2.8.2 The sines of the half-angles are not rational. The component right-angled tri-
angles can only be fitted together in one way to give rational sines. The wrong
way round, you get an annoying

√
2 appearing in the analysis.

Exercises 2.9

2.9.1 p = 5 and q = 3 gives a = 27, b = 48, and c = 35. Another possibility is
p = 3 and q = 2 when enlarged by a factor of 6. This gives a = 48, b = 60, and
c = 18.

2.9.2 For n = 5 we have

a = q5 , b = q(p4 − 3p2q2 + q4) , c = p(p2 − q2)(p2 − 3q2) .

Then p = 7 and q = 4 gives a = 1024, b = 1220, and c = 231. For n = 6 we
have

a = q6 , b = pq(p2 − q2)(p2 − 3q2) , c = p2(p2 − 2q2)(p2 − 3q2) − q6 .

Then p = 11 and q = 6 gives a = 46656, b = 72930, and c = 30421.

Exercises 3.1

3.1.1 [OAB] = 12, B = 12, and I = 7.

3.1.2 [OAB] = 12, B = 8, and I = 9.

3.1.3 [OAB] = 3, B = 6, and I = 1.

3.1.4 [OAB] = 10, B = 6, and I = 8.

3.1.5 [OAB] = 2, B = 6, and I = 0.

3.1.6 The number of internal lattice points is approximately equal to the area, so this
number is 62 800 to three significant figures.
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Exercise 3.2

3.2.1 I = 39 and B = 11, so the area is 43.5.

Exercises 3.3

3.3.1 x = −1 + 12k and y = 3 − 12k.

3.3.2 7 divides 133 and 84, but 7 does not divide 1.

3.3.3 h must be a multiple of 7. That h = 7 follows from the solution x = −5 and
y = 8.

3.3.4 Solutions exist when N = 0, 4, 7, 8, 11, 12, 14, 15, and 16, and for all N > 17.

Exercises 4.1

4.1.1 x = 8 − 2(m + 8)/(m2 + 1) and y = −1 + 2(1 − 8m)/(m2 + 1), where m
is any rational. m = 0 gives (−8, 1), m tends to infinity gives (8,−1), m = 1
gives (−1,−8), m = −1 gives (1, 8), m = 2 gives (4,−7), m = 5 gives
(7,−4), m = −3 gives (7, 4), m = −8 gives (8, 1) (this line is tangent at
(8, 1)), m = 1/3 gives (−7,−4), and m = −1/5 gives (−7, 4).

4.1.2 The rational points are given by

(x, y) =
(

7u2 + v2

7u2 − v2
,

2uv

7u2 − v2

)

and the integer points are given by (xm, ym) = (8, 3)Am, where A is the matrix
with first row (8, 3) and second row (21, 8), and m = 0, 1, 2, . . ., together with
(1, 0) and all of their negative counterparts. There are no integer solutions to the
equation 7x2 − y2 = 1 since the left-hand side is 0, 2, or 3 (mod 4) and cannot
therefore equal 1.

4.1.3 x = 17 and y = 4. No, there is no solution of x2 −18y2 = −1 because it would
have to have y = 1, 2, or 3, and it is easily checked that none of these work.

4.1.4 (7, 3), (7,−3), (−7, 3), and (−7,−3).
4.1.5 The conic degenerates into the two straight lines y = 2x+3 and y+2x+3 = 0.

Exercises 4.2

4.2.1 Any integer points on the line x + y = 0, and (1, 2), (2, 1), (1, 0), (0, 1), and
(2, 2).

4.2.2 The equations for the singular point produce a quadratic in x with integer
coefficients. Since real roots occur in conjugate pairs, it is not possible for an
irrational root to be a double point. It follows that the double point is rational,
and p(x) = 0 has this double root.

4.2.3 x = m2 − 3 and y = m(m2 − 3), where m is an integer, and x = 0 and y = 0.
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Exercises 4.3

4.3.1 The line joining E(0,−3) and D(−1,−2) has equation y + x + 3 = 0, and
this meets the curve again at F (2,−5). The line joining B(0, 3) to C(2, 5) has
equation y = x + 3, and this meets the curve again at A(−1, 2).

4.3.2 The equation of the line joining B0(801/4,−22 671/8) and D(−1,−2) is
given by 14y + 197x + 225 = 0, and this meets the curve again at the point
(−61/49, 496/343).

4.3.3 We have
P0 + P0 = E ∗ (P0 ∗ P0) = E ∗ P1 = Q1 .

Now
Q1 + P1 = E ∗ (P1 ∗ Q1) = E ∗ E = E ,

and hence Q1 = −P1. Similarly, Qk = −Pk. Now

3P0 = P0 + 2P0 = E ∗ (P0 ∗ 2P0) = (−17 : 73 : 38) .

More generally, by induction, we can find nP0 = E ∗ (P0 ∗ Pn−1).
4.3.4 The common co-ordinates are (−2,−1).
4.3.5 If C is collinear with A and B, then C = A ∗ B and

A + B + A ∗ B = A + E ∗ (B ∗ (A ∗ B))
= A + E ∗ A

= E ∗ (A ∗ (E ∗ A))
= E ∗ E .

Uniqueness ensures the converse.

4.3.6 If A = B ∗ B then

A + 2B = B ∗ B + E ∗ (B ∗ B)
= E ∗ ((B ∗ B) ∗ (E ∗ (B ∗ B)))
= E ∗ E .

4.3.7 In the projective plane, X3 + Y 3 = Z3 contains the integer points A(1 : 0 : 1),
B(0 : 1 : 1), and J(1,−1, 0), and no other integer points, by Fermat’s last
theorem for n = 3. We have A ∗ B = J , A ∗ A = A, B ∗ B = B, and
J ∗ J = J . With J as the origin, we have A + A = B, A + B = J , and
B + B = A, so the group of rational points is finite, the cyclic group of order 3.

4.3.8 For all k other than k = 0, 8, or −8.

Exercises 4.4

4.4.1 (0, 0).
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4.4.2 (0, 0), (2, 0), and (−2, 0).
4.4.3 As in Example 4.4.2 of the text, x = 1 (mod 4) and y is even. Now y2 + 4 =

(x + 3)(x2 − 3x + 9) and the quadratic is 3 (mod 4), and must therefore have a
prime factor that is 3 (mod 4). However, y2 + 4 can have no such factor. Here
we are using the result that, if a2 + b2 has a factor k = 3 (mod 4), then k|a and
k|b.

4.4.4 From the text, the condition is 2s|(3r2 + a).

Exercises 5.1

5.1.1 If p is an odd prime of the form 4k + 1 then there exists an integer n such that
4Tn + 1 = 0 (mod p).

5.1.2 2x2y2 = 8(Tl ∗ Tm) + 1 and x4 = 8T2l(l+1) + 1.

5.1.3 (62 + 32)(62 + 12) = 392 + 122.

5.1.4 l = m = 2k + 1 will serve.

5.1.5 l = 11, then 4Tl + 1 = 265 = 5 × 53.

5.1.6 L = 63, M = 48, and 2k = 56; 2016 + 1176 = 2 × 1596.

Exercises 5.2

5.2.1 x = 5, y = 6, z = 4, and w = 2, and

x2 + y2 + z2 + w2 = 2(Tm + Tn + Tp + Tq) + 1 = 81 .

5.2.2 We have

87 = 92 + 22 + 12 + 12

= 72 + 62 + 12 + 12

= 72 + 52 + 32 + 22

= 62 + 52 + 52 + 12 .

So

43 = T−3 + T4 + T5 + T5

= T1 + T6 + T6

= T1 + T3 + T5 + T6

= T2 + T3 + T3 + T7 .

5.2.3 m = 7, n = −6, p = −1, and q = −1.
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Exercises 5.3

5.3.1 We require (6n − 1)2 − 24x2 = 1. The first n > 1 satisfying this equation
may be found by the method explained in Example 4.2.1 and is n = 81. Then
x = 99.

5.3.2 The hexagonal numbers are

Hn =
1
2
n(4n − 2) = n(2n − 1) =

1
2
(2n − 1)(2n) = T2n−1 .

5.3.3 The equation to be satisfied is (72n− 35+ 12x)(72n− 35− 12x) = 1225, and
this has two solutions n = 1 and x = 1, and n = 9 and x = 51.

5.3.4 By definition, (N + 1)n − Nn = 1
2n(n − 1) = Tn−1.

5.3.5 N18 = 332.

5.3.6 The octagonal numbers are of the form n(3n− 2). Now n and 3n− 2 are either
coprime or they have highest common factor 2. If coprime, then both n and
3n− 2 are perfect squares. If they have highest common factor 2, and n is not a
perfect square, then n is of the form 2b2 for some integer b. This would require
3b2 − 1 to be a perfect square also, which is not possible.

5.3.7 The next smallest is the 1456th Hex number equal to 6 355 441.

5.3.8 The next smallest is the 120th centred square number equal to 28 561.

Exercise 5.4

5.4.1 There are an infinite number of such cases. The first two non-trivial cases are
83 − 73 = 132 and 1053 − 1043 = 1812.

Exercise 5.5

5.5.1 The method is to split the figure into two parts on either side of the triangle
whose vertices are the labels 1, 2, m (3 � m � n + 2). You then get the same
recurrence relation as the one in the text for the problem of the 2n-gon.

Exercises 6.1

6.1.1 We have p = q = 37, r = 33, and s = 7. Then a = 1281, b = 319,
c = 1138, and d = 1480. Also, cos θ = 969/1769, sin θ = 1480/1769, and
[ABCD] = 341 880.

6.1.2 With u = 140, v = 1221, h = 660, and k = 259, then doubling p and s for
parity considerations we obtain p = 3020 882, q = 502 681, r = 34188, and
s = 683 760. Then
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a = 1220 684 915 521 ,

b = 531 618 937 921 ,

c = 1284 776 115 842 ,

d = 1376 492 298 720 ,

and
[ABCD] = 646 063 949 279 568 100 622 880 .

Exercises 6.2

6.2.1 a = 35, b = 5, c = 25, d = 25, and [ABCD] = 400.

6.2.2 a = 720, b = 312, c = 960, R = 481, and [ABCD] = 241 920.

Exercise 6.3

6.3.1 l = 7/16, m = 0, and n = 9/16. This means that P lies on CA and coincides
with M .

Exercises 6.4

6.4.1 l = 15, m = 161, and n = 9. Geometrically, this means that there is a point P
internal to an equilateral triangle that is at distance 7/8 from B and at distance
169/176 from C . (This is, of course, obvious as such a point can be constructed
using a measuring rod and compass.)

6.4.2 a2 = 2700.

Exercise 7.1

7.1.1 The radius of C3 is 1/9, and the radius of C4 is 1/25. The radius of Cn is 1/F 2
n ,

where Fn is the nth Fibonacci number in the sequence 1, 2, 3, 5, 8, . . ..

Exercises 7.2

7.2.1 ρ = 33 or 1. This means that, if we start with three circles of radii 528, 132,
and 44 touching externally, then the circle in the small space between them will
have radius 16. The smaller value of ρ indicates that the second circle also has a
radius of 528 and touches the other three externally, with the circle of radius 44
in the space between those of radii 528 and 132. In the latter situation one can
reduce the radii by a factor of 44 to give two circles of radius 12, one of radius
3, and the one between of radius 1.

7.2.2 α = 1, β = 12, γ = 88, and ρ = 169 or 33. The second value of ρ means that
three touching circles of radii 264, 22, and 8 have a small space between them
into which a fourth circle of radius 3 can fit and touch them all.
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Exercises 7.3
7.3.1 [0, 1, 1, 3] = 3, [0, 1, 1, 4] = 0, [0, 1, 3, 4] = 6 (repeated), and [1, 1, 3, 4] = 9.

Also, 4 = 1
2(0+ 1+ 1+ 3+ [0, 1, 1, 3]). The next three terms are 9, 16, and 31.

7.3.2 [1, 1, 1, 3] = 6, [1, 1, 1, 6] = 3, [1, 1, 3, 6] = 9, and 6 = 1
2(1 + 1 + 1 + 3 +

[1, 1, 1, 3]). The next five terms are 10, 19, 37, 69, and 129.

7.3.3 Spheres of radii 4275, 1900, 900, 684, and 300 may be arranged to form a set
of five mutually touching spheres.

7.3.4 If the spheres touch externally then its radius is 41. If the fifth sphere surrounds
the other four then its radius is 725.

7.3.5 Use the formulae in the text involving m.

Exercise 7.4
7.4.1 The next term is 340/3, so that 36, 39, 135, 135, 183, and 340 form a touching

set.

Exercises 7.5
7.5.1 u = 16, v = 57, w = 49, x = 67, l = 1/16, m = 1/57, and n = 1/49.

Multiplying up by 44 688, we obtain l = 2793, m = 784, and n = 912. This
gives a = m+n = 1696, b = n+ l = 3705, c = l +m = 3577, and [ABC] =
2 994 096. The height, with a as base, is 187 131/53. So, multiplying up by 53,
we obtain a = 89888, b = 196 365, and c = 189 581; then h = 187 131. The
two right-angled triangles have sides 30 380, 187 131, and 189 581, and 59 508,
187 131, and 196 365.

7.5.2 u = 1638, v = 702, and w = 351. Removing the common factor 117, we obtain
u = 14, v = 6, w = 3, l = 1/14, m = 1/6, and n = 1/3. Multiplying up by
42, we obtain l = 3, m = 7, n = 14, a = 21, b = 17, c = 10, and [ABC] = 84.
With a as base, the height is 8.

Exercises 8.1
8.1.1 BD = 16/3, DC = 10/3, CE = 5/3, EA = 4/3, AF = 4/3, FB = 8/3,

FD = 4, FE = 2/3, and ED = 10/3.

8.1.2 BD = 4, DC = 2, CE = 1, EA = 2, AF = 2, FB = 2, FD = 3, FE = 1,
and ED = 2.

8.1.3 The simplified equations are

l = (u + x)(u + v) ,

m = (v + x)(u + v) ,

n = x(u + v) − uv ,

y = a(u2 + uv + v2) .
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Exercises 8.2
8.2.1 u = 70, v = 55, and w = 90. XY = 990/13, Y Z = 924/13, and ZX = 66.

8.2.2 A two-parameter solution is a = 4pqv, b = |(p2 − q2)u − (p2 + q2)v|, and
y = |2(p2 + q2)uv − 2v2(p2 − q2)|. So, given rational u and v, we can find an
infinite number of a and b such that all of LM , MN , and NL are rational.

Exercise 8.3
8.3.1 l = 9/35, m = 13/35, x = 111/35, NL = LM = 444/175, and MN =

2496/875.

Exercises 8.4
8.4.1 The pivot point is (a) the circumcentre, and (b) the orthocentre.

8.4.2 The ratios are

[BCP ] : [CAP ] : [ABP ] =

(a + b)(a + c)a2
[
(b + c)(b2 + c2) + a(b2 + bc + c2) − a2(b + c) − a3

]
:

(b + c)(b + a)b2
[
(c + a)(c2 + a2) + b(c2 + ca + a2) − b2(c + a) − b3

]
:

(c + a)(c + b)c2
[
(a + b)(a2 + b2) + c(a2 + ab + b2) − c2(a + b) − c3

]
.

8.4.3 Another proof of the six-circle theorem is given in Hahn (1994). It uses cross-
ratios in the complex plane.

Exercises 8.5
8.5.1 1 168 410/7397, 1 549 992/12 193, and 5080/41.

8.5.2 260/21.

Exercises 8.6
8.6.1 Hint: Write down vectors parallel to the internal bisectors of the angles B and

C .

8.6.2 GH = 2GO, IG = 2JG, and ∠IGH = ∠JGO (opposite).

8.6.3 Use the result of Exercise 8.6.1.

8.6.4 We obtain
1

a + b + c

(−a3 − b3 − c3 + 2a2b + 2b2a + 2b2c

+ 2c2b + 2c2a + 2a2c − 9abc
)
.

Exercise 8.7
8.7.1 r1 = 132, r2 = 168, r3 = 280/3, AI1 = 260, BI2 = 280, CI3 = 728/3,

I2I3 = 910/3, I3I1 = 845/3, and I1I2 = 325.
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Exercises 8.8

8.8.1 OI = 13/8.

8.8.2 OH = 23/8.

Exercises 8.9

8.9.1 17/4, 37/4, 53/4, and 193/4.

8.9.2 The triangles IGT and WGO are similar.

Exercises 9.1

9.1.1 a = 11. The tetrahedron with sides 110, 99, 79, 77, 57, and 46 has rational
volume.

9.1.2 48.

Exercises 9.2

9.2.1 a = 168, b = 178, c = 158, and R = 103.

9.2.2 d = 38, a = 48, x = 26, and R = 361/13.

Exercises 9.3

9.3.1 (i) Truncated tetrahedron: 4 hexagons, 4 triangles, 12 vertices, and 18 edges.

(ii) Truncated cube: 6 octagons, 8 triangles, 24 vertices, and 36 edges.

(iii) Cuboctahedron: 6 squares, 8 triangles, 12 vertices, and 24 edges.

(iv) Truncated octahedron: 8 hexagons, 6 squares, 24 vertices, and 36 edges.

(v) Small rhombicuboctahedron: 16 squares, 8 triangles, 22 vertices, and 44
edges.

(vi) Great rhombicuboctahedron: 6 octagons, 12 squares, 40 vertices, and 60
edges.

(vii) Snub cube: 6 squares, 32 triangles, 24 vertices, and 60 edges.

(viii) Icosidodecahedron: 12 pentagons, 20 triangles, 30 vertices, and 60 edges.

(ix) Truncated dodecahedron: 12 decagons, 20 triangles, 60 vertices, and 90
edges.

(x) Truncated icosahedron: 12 pentagons, 20 hexagons, 60 vertices, and 90
edges.

(xi) Small rhombicosidodecahedron: 12 pentagons, 30 squares, 20 triangles,
60 vertices, and 120 edges.

(xii) Great rhombicosidodecahedron: 12 decagons, 30 squares, 20 hexagons,
120 vertices, and 180 edges.
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(xiii) Snub dodecahedron: 12 pentagons, 80 triangles, 60 vertices, and 150
edges.

9.3.2 The five-dimensional simplex has 6 vertices, 15 edges, 20 faces, 15 tetrahedra,
and 6 four-dimensional simplexes. The five-dimensional cubic polytope has 32
vertices, 80 edges, 80 faces, 40 cubes, and 10 hypercubes. Its dual has 10 vertices
40 edges, 80 faces, 80 three-dimensional cells, and 32 four-dimensional cells.

Exercises 10.1

10.1.1 Let the fourth line meet the sides of the triangle ABC at L, M , and N . The pivot
theorem establishes that the circles AMN , BNL, and CLM pass through a
point P . Now take CLM as a second triangle for the pivot theorem, with N
on LM , B on CL, and A on CM .

10.1.2 With six lines in general position there are six Clifford circles, and these circles
have a common point, the Clifford point of six lines. Then with seven lines
there are seven Clifford points of six lines, and they are concyclic, and so on.

Exercise 10.2

10.2.1 ΣQ has equation

x2vw + y2wu + z2uv − yzu(v + w) − zxv(w + u) − xyw(u + v) = 0 .

Exercise 10.3

10.3.1 SQ has equation 27yz + 32zx+ 35xy = 0. Any integer values of x and y lead
to a rational value of z, given by z = −35xy/(32x + 27y). ΣQ has equation

20x2 + 15y2 + 12z2 − 27yz − 32zx − 35xy = 0 .

A two-parameter solution is

x = 12q(p + q) − 15q(p − q) = 27q2 − 3pq ,

y = 12p(p + q) − 20p(q − p) = 32p2 − 8pq ,

z = 12(p + q)2 + 20p(p + q) + 15q(p + q) = 32p2 + 59pq + 27q2 .

Exercises 11.1

11.1.1 Verify this using the expressions from Theorem 11.1.1.

11.1.2 From P
2(p) one line is removed, leaving p2 + p lines. Then p + 1 points are

removed, leaving p2 points. Through each point on the deleted line there pass
p+1 lines, including the deleted line. This means that there are p parallel lines
in A2(p) (meeting at each point on the deleted line). Hence there are p+1 sets
of parallel lines, each set containing p lines.
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11.1.3 In P
2(3) there are thirteen points and thirteen lines. The co-ordinates of the

points may be taken as follows: A(1, 0, 0), B(0, 1, 0), C(0, 0, 1), D(0, 1, 1),
E(1, 0, 1), F (1, 1, 0), G(0, 1, 2), H(2, 0, 1), I(1, 2, 0), J(2, 1, 1), K(1, 2, 1),
L(1, 1, 2), and M(1, 1, 1). The lines, together with their equations, and the
points lying on them are as follows: a, x = 0, and BCDG; b, y = 0, and
ACEH; c, z = 0, and ABFI; d, y + z = 0, and AGKL; e, z + x = 0, and
BHJL; f , x+y = 0, and CIJK; g, y +2z = 0, and ADJM ; h, 2x+z = 0,
and BEKM ; i, x + 2y = 0, and CFLM ; j, 2x + y + z = 0, and EFGJ ;
k, x + 2y + z = 0, and DFHK; l, x + y + 2z = 0, and DEIL; and m,
x + y + z = 0, and GHIM . The labelling has the pleasing dual property that,
for example, a contains B, C , D, and G, and A lies on b, c, d, and g. When
the line c, with equation z = 0, is deleted we obtain the affine plane A2(3). It
consists of all lines except c, making twelve lines in all. The points A, B, F ,
and I now lie on the line at infinity. The nine remaining points may have their z
co-ordinates normalised equal to 1, and then we need only tabulate their x and
y co-ordinates, which are C(0, 0), D(0, 1), E(1, 0), G(0, 2), H(2, 0), J(2, 1),
K(1, 2), L(2, 2), and M(1, 1). The lines b, d, and g are now parallel, as are
the sets a, e, and h; i, j, and k; and f , l, and m. The equations of the lines are
as follows: a, x = 0; b, y = 0; d, y = 2; e, x = 2; f , x + y = 0; g, y = 1; h,
x = 1; i, y = x; j, y = x + 2; k, y = x + 1; l, x + y = 1; and m, x + y = 2.

11.1.4 (a) The difference-sets are 0, 1, and 3 (mod 7), 0, 1, 3, and 9 (mod 13), and 0,
1, 6, 8, and 18 (mod 21).

(b) It is sufficient to show that two points are joined by a unique line. Suppose
that the points are Pj and Pk; then we have to show that there is a unique
line pl joining them. That is, we must have a unique solution in l, xt, and
xs of the equations l + j = xt and l + k = xs (mod n2 + n + 1) for
fixed j and k, i.e., of the equations j − k = xt − xs and l = xt − j (mod
n2 + n + 1). Since j − k is fixed, the values of xt and xs are uniquely
determined by the first of these equations, as this is the property of a
difference-set. Once xt is known, the value of l follows uniquely from the
second equation. The structure of P

2(4) now follows from the fact that the
line pl (l = 0, . . . , 20) contains the points P21−l, P22−l, P27−l, P29−l, and
P39−l, where the subscripts are mod 21, so that they lie between 0 and 20
inclusive. So, for example, p11 contains P10, P11, P16, P18, and P7.
The field for P

2(4) is a finite complex field consisting of 0, 1, ω, and
ω2, where ω3 = 1 and 1 + ω + ω2 = 0, and the working is mod 2, so
that 1 + ω = ω2, ω + ω2 = 1, and ω2 + 1 = ω. The twenty-one points
have co-ordinates A(1, 0, 0), B(0, 1, 0), C(0, 0, 1), D(1, 1, 0), E(1, 0, 1),
F (0, 1, 1), G(1, 1, 1), H(1, ω, 0), I(0, 1, ω), J(ω, 0, 1), K(ω, 1, 0),
L(0, ω, 1), M(1, 0, ω), N(ω, ω, 1), P (ω2, ω2, 1), Q(1, ω, 1), R(ω, 1, 1),
S(ω2, 1, 1), T (1, ω2, 1), U(ω2, ω, 1), and V (ω, ω2, 1). The lines are
BCFIL, ACEJM , ABDHK, CDGNP , BEGQT , AFGRS,
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DEFUV , CKRTU , ALNQU , BMPSU , CHQSV , AIPTV ,
BJNRV , DIQRM , DJLST , EIKNS, FHMNT , FJKPQ,
EHLPR, GHIJU , and GKLMV .
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Abelian group, see elliptic curve
affine geometry

finite 163
angle bisectors

internal 39–41
Apollonius’ theorem 29
Archimedean convex polyhedra 155
areal co-ordinates 171–2

equation of circle 181, 184
equation of conic 182
equation of line 173
equation of tangent 182
parallel lines 174
perpendicular lines 179–80
scalar product 180

areal metric 177–9
Argand diagram 157

barycentric co-ordinates, see areal
co-ordinates

basis 43
change of 44–5

birational transformation 65
Brahmagupta quadrilateral 92
Brahmagupta’s formula 92
Brocard points 183

centroid 19, 137, 174
Ceva’s theorem 126, 176
Cevians 126

pedal triangle of 126
circumcentre 19, 137, 142
circumcircle 19, 182
circumradius 20
circumsphere 150
Clifford circle 158
Clifford point 158
connected components 66

continued fractions 56
cosine rule 7
curvature 108
curves

cubic 58
elliptic, see elliptic curve
of degree two 53

cyclic inscribable quadrilateral 27
cyclic quadrilateral 19, 24

de Moivre’s theorem 41
DERIVE 150
Descartes’ formula

for touching circles 110
for touching hyperspheres 115
for touching spheres 114

difference-set 165
Diophantine equations 5
discriminant 66

elliptic curve 60, 65
Abelian group on 63
associative law on 64
binary operations on 62–3

equable parallelogram 16
equable rectangle 18
equable rectangular box 17
equable rhombus 18
equable triangles, see triangles
escribed circles, see excircles
Euclidean algorithm 50
Euler 33, 145
Euler line 137–8
excentres 19, 179

triangle of 141
excircles 19, 34, 183

Fermat distances 102
Fermat point 101
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Fermat’s last theorem 1
Feuerbach’s theorem 144, 184
fundamental region 44–5

Gauss 75
Gaussian primes 12
generating function 87
Gergonne’s point 129, 133, 176

Heron’s formula 7, 92
Heron triangles, see triangles
hypercube 154
hypersolids

regular 154
semi-regular 155

incentre 19, 142, 174
incircle 19, 34, 182
infinite descent 67
inradius 20
inscribable quadrilateral 19, 24
intersecting chord theorem 22, 28
isogonal conjugate 136–7, 182

K3 surface 103

Lagrange’s theorem 75
lattice 43

equivalent 44–5
fundamental square 43, 45
hexagonal 43
point 43
reciprocal 43

Lemoine point, see symmedian point
line co-ordinates 168
linearly-dependent points 164
linearly-independent points 164

medians 29
one integral 30
three integral 30–3
two integral 30

Menelaus’ theorem 28, 175
Mordell’s theorem 65

Nagel’s point 139
nine-point circle 19, 138, 183
nine-point conic 161

numbers
body-centred cubic 85
Catalan 86
centred square 82
cubes 83
heptagonal 80
hexagonal close-packed 82
N -gonal 78
octagonal 81
octahedral 84
pentagonal 78
rhombic dodecahedral 85
square 78
square pyramid 84
tetrahedral 83
triangular 71

orthocentre 137–8, 142, 175

parallelogram
integer 89

partial derivatives 57
partitions 37
pedal triangle of a point 131
Pell equation 54, 81
Pick’s theorem 46
pivot point 134
pivot theorem 134, 158
points

at infinity 58
boundary 46–9
double 57
inflection 62
integer 50, 53
internal 46–9
rational 50, 53
simple 57
singular 57
triple 57

polar circle 183
postage stamp problem 51
primitive unit cell 44
projective geometry

finite 163
projective plane 58, 61, 163
Ptolemy’s theorem 26, 95
Pythagoras’ theorem 2, 73–4
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quartets
primitive Pythagorean 12–14
Pythagorean 11

rectangular box 1, 11

scalar product 43, 180
secant and tangent theorem 23
semi-perimeter 8
signed ratios 169
simplex 154
Simson conic 159
Simson line 159
sine rule 7
six-circle theorem 136, 158
solids

regular 153
semi-regular 155

solutions
involutional 31

Steiner point, see Fermat point
Sylvester’s theorem 51
symmedian point 136, 182

Taylor series 57
tetrahedral co-ordinates 149
tetrahedron

balloon 146
isosceles 147, 151
orthogonal 148
regular 145, 152
semi-regular 146, 152

touching set 112, 116, 146
transformation

non-singular unimodular linear 4
transversals, see triangle
trapezium

isosceles 94–5
triangle inequalities 15
triangle of reference 164, 171
triangles

equable 15–16
Heron 7, 117, 120
integer-related 15–16
integer-sided 1, 35
right-angled 1–2, 7
transversals in 123
with angles of 60◦ and 120◦ 1, 4,

99–100
with integer area 7

trilinear co-ordinates 167
triples 36

60◦ and 120◦ 6
ordered 37
primitive Pythagorean 2–4, 13, 68

unimodular
matrix 44
transformation 4

unique factorisation 12

vector space
three-dimensional 163

volumetric co-ordinates, see tetrahedral
co-ordinates

Wallace 159
Weierstrass normal form 65
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