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Preface

Traditionally, mathematics has been separated into three main areas: algebra, anal-
ysis, and geometry. Of course, there is a great deal of overlap between these areas.
For example, topology, which is geometric in nature, owes its origins and problems
as much to analysis as to geometry. Furthermore, the basic techniques in studying
topology are predominantly algebraic. In general, algebraic methods and symbolism
pervade all of mathematics, and it is essential for anyone learning any advanced math-
ematics to be familiar with the concepts and methods in abstract algebra.

This is an introductory text on abstract algebra. It grew out of courses given to
advanced undergraduates and beginning graduate students in the United States, and
to mathematics students and teachers in Germany. We assume that the students are
familiar with calculus and with some linear algebra, primarily matrix algebra and the
basic concepts of vector spaces, bases, and dimensions. All other necessary material
is introduced and explained in the book. We assume, however, that the students have
some, but not a great deal, of mathematical sophistication. Our experience is that the
material in this text can be completed in a full years course. We presented the material
sequentially, so that polynomials and field extensions preceded an in-depth look at
group theory. We feel that a student who goes through the material in these notes
will attain a solid background in abstract algebra, and be able to move on to more
advanced topics.

The centerpiece of these notes is the development of Galois theory and its impor-
tant applications, especially the insolvability of the quintic polynomial. After intro-
ducing the basic algebraic structures, groups, rings, and fields, we begin the theory
of polynomials and polynomial equations over fields. We then develop the main ideas
of field extensions and adjoining elements to fields. After this, we present the nec-
essary material from group theory needed to complete both the insolvability of the
quintic polynomial and solvability by radicals in general. Hence, the middle part of
the book, Chapters 9 through 14, are concerned with group theory, including permu-
tation groups, solvable groups, abelian groups, and group actions. Chapter 14 is some-
what off to the side of the main theme of the book. Here, we give a brief introduction
to free groups, group presentations and combinatorial group theory. With the group
theory material, we return to Galois theory and study general normal and separable
extensions and the fundamental theorem of Galois theory. Using this approach, we
present several major applications of the theory, including solvability by radicals and
the insolvability of the quintic, the fundamental theorem of algebra, the construction
of regular n-gons and the famous impossibilities; squaring the circling, doubling the
cube, and trisecting an angle. We finish in a slightly different direction, giving an in-
troduction to algebraic and group-based cryptography.

https://doi.org/10.1515/9783110603996-201



VI —— Preface

October 2010 Celine Carstensen
Benjamin Fine
Gerhard Rosenberger



Preface to the second edition

We were very pleased with the response to the first edition of this book, and we were
very happy to do a second edition. In this second edition, we cleaned up various ty-
pos pointed out by readers, and have added some new material suggested by them.
Here, we have to give a special thank you to Ahmad Mirzay. Mentioning important
results is warranted: We added a new chapter, Chapter 22, on algebras and group rep-
resentations. This can be included in a year-long course. In Chapter 7, we added some
material on skew field extensions of C and Frobenius’s theorem, and, in Chapter 17, on
solvability of polynomial equations. In the bibliography we choose to mention some
interesting books and papers which are not used explicitely in our exposition but are
very much related to the topics of the present book and could be helpful for addi-
tional readings. As before, we would like to thank the many people who read or used
the first edition and made suggestions. We would also especially like to thank Anja
Rosenberger, who helped tremendously with editing and LATEX, and made some in-
valuable suggestions about contents. Also we would like to thank Annika Schiirenberg
and Leonard Wienke for the careful reading of the new edition.
Last but not least, we thank de Gruyter for publishing our book.

January 2019 Celine Carstensen-Opitz
Benjamin Fine

Anja Moldenhauer

Gerhard Rosenberger
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1 Groups, rings and fields

1.1 Abstract algebra

Abstract algebra or modern algebra can be best described as the theory of algebraic
structures. Briefly, an algebraic structure is a set S together with one or more binary
operations on it satisfying axioms governing the operations. There are many algebraic
structures, but the most commonly studied structures are groups, rings, fields, and
vector spaces. Also, widely used are modules and algebras. In this first chapter, we
will look at some basic preliminaries concerning groups, rings, and fields. We will
only briefly touch on groups here; a more extensive treatment will be done later in the
book.

Mathematics traditionally has been subdivided into three main areas—analysis,
algebra, and geometry. These areas overlap in many places so that it is often difficult,
for example, to determine whether a topic is one in geometry or in analysis. Algebra
and algebraic methods permeate all these disciplines and most of mathematics has
been algebraicized; that is, uses the methods and language of algebra. Groups, rings,
and fields play a major role in the modern study of analysis, topology, geometry, and
even applied mathematics. We will see these connections in examples throughout the
book.

Abstract algebra has its origins in two main areas and questions that arose in
these areas—the theory of numbers and the theory of equations. The theory of num-
bers deals with the properties of the basic number systems—integers, rationals, and
reals, whereas the theory of equations, as the name indicates, deals with solving equa-
tions, in particular, polynomial equations. Both are subjects that date back to classical
times. A whole section of Euclid’s elements is dedicated to number theory. The foun-
dations for the modern study of number theory were laid by Fermat in the 1600s, and
then by Gauss in the 1800s. In an attempt to prove Fermat’s big theorem, Gauss intro-
duced the complex integers a + bi, where a and b are integers and showed that this
set has unique factorization. These ideas were extended by Dedekind and Kronecker,
who developed a wide ranging theory of algebraic number fields and algebraic inte-
gers. A large portion of the terminology used in abstract algebra, such as rings, ideals,
and factorization, comes from the study of algebraic number fields. This has evolved
into the modern discipline of algebraic number theory.

The second origin of modern abstract algebra was the problem of trying to de-
termine a formula for finding the solutions in terms of radicals of a fifth degree poly-
nomial. It was proved first by Ruffini in 1800, and then by Abel that it is impossible
to find a formula in terms of radicals for such a solution. Galois in 1820 extended this
and showed that such a formula is impossible for any degree five or greater. In proving
this, he laid the groundwork for much of the development of modern abstract algebra,
especially field theory and finite group theory. Earlier, in 1800, Gauss proved the fun-

https://doi.org/10.1515/9783110603996-001
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2 =— 1 Groups, rings and fields

damental theorem of algebra, which says that any nonconstant complex polynomial
equation must have a solution. One of the goals of this book is to present a compre-
hensive treatment of Galois theory and a proof of the results mentioned above.

The locus of real points (x, y), which satisfy a polynomial equation f(x,y) = 0, is
called an algebraic plane curve. Algebraic geometry deals with the study of algebraic
plane curves and extensions to loci in a higher number of variables. Algebraic geom-
etry is intricately tied to abstract algebra and especially commutative algebra. We will
touch on this in the book also.

Finally linear algebra, although a part of abstract algebra, arose in a somewhat
different context. Historically, it grew out of the study of solution sets of systems of
linear equations and the study of the geometry of real n-dimensional spaces. It began
to be developed formally in the early 1800s with work of Jordan and Gauss, and then
later in the century by Cayley, Hamilton, and Sylvester.

1.2 Rings

The primary motivating examples for algebraic structures are the basic number sys-
tems: the integers Z, the rational numbers Q, the real numbers R, and the complex
numbers C. Each of these has two basic operations, addition and multiplication, and
form what is called a ring. We formally define this.

Definition 1.2.1. A ring is a set R with two binary operations defined on it: addition,

denoted by +, and multiplication, denoted by -, or just by juxtaposition, satisfying the

following six axioms:

(1) Addition is commutative: a + b = b + a for each pair a, b in R.

(2) Addition is associative: a + (b +c¢) = (a+b) + cfora,b,c € R.

(3) There exists an additive identity, denoted by 0, such that a + 0 = a for each a € R.

(4) For each a € R, there exists an additive inverse, denoted by —a, such that
a+(-a)=0.

(5) Multiplication is associative: a(bc) = (ab)c for a,b,c € R.

(6) Multiplication is left and right distributive over addition: a(b + c¢) = ab + ac, and
(b+c)a=ba+cafora,b,c €R.

If in addition
(7) Multiplication is commutative: ab = ba for each pair a, b in R,

then R is a commutative ring.
Further, if

(8) There exists a multiplicative identity denoted by 1such thata-1=aand1-a=a
foreach ainR,

then R is a ring with identity.
Brought to you by | Chalmers University of Technology
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1.3 Integral domains and fields =— 3

If R satisfies (1) through (8), then R is a commutative ring with an identity.

A set G with one operation, +, on it satisfying axioms (1) through (4) is called an
abelian group. We will discuss these further later in the chapter.

The numbers systems Z, Q, R, C are all commutative rings with identity.

A ring R with only one element is called trivial. A ring R with identity is trivial if
and only if 0 = 1.

A finite ring is a ring R with only finitely many elements in it. Otherwise, R is an
infinite ring. Z, Q, R, C are all infinite rings. Examples of finite rings are given by the
integers modulo n, Z,, with n > 1. The ring Z,, consists of the elements 0,1,2,...,n-1
with addition and multiplication done modulo n. That is, for example 4 -3 = 12 = 2
modulo 5. Hence, in Z;, we have 4 -3 = 2. The rings Z,, are all finite commutative rings
with identity.

To give examples of rings without an identity, consider the set nZ = {nz : z € 7}
consisting of all multiples of the fixed integer n. It is an easy verification (see exercises)
that this forms a ring under the same addition and multiplication as in Z, but that
there is no identity for multiplication. Hence, for each n € Z with n > 1, we get an
infinite commutative ring without an identity.

To obtain examples of noncommutative rings, we consider matrices. Let M,(Z) be
the set of 2 x 2 matrices with integral entries. Addition of matrices is done component-

wise; that is,
<a1 b1>+<a2 b2> B <a1+a2 b1+b2>
¢ d, ¢, dy) \ci+¢, dy+dy)’

whereas multiplication is matrix multiplication

(al b1> . <a2 b2> B (alaz +bic, aby + b1d2>
¢ d) \¢o d) \ciay,+dic, c¢;by+did,)’

Then again, it is an easy verification (see exercises) that M,(Z) forms a ring. Further,
since matrix multiplication is noncommutative, this forms a noncommutative ring.
However, the identity matrix does form a multiplicative identity for it. M,(nZ) with
n > 1 provides an example of an infinite noncommutative ring without an identity.
Finally, M,(Z,) for n > 1 will give an example of a finite noncommutative ring.

1.3 Integral domains and fields

Our basic number systems have the property that if ab = 0, then eithera = 0, or b = 0.
However, this is not necessarily true in the modular rings. For example, 2-3 = 0in Z;.

Definition 1.3.1. A zero divisor in a ring R is an element a € R with a # 0 such that
there exists an element b + 0 with ab = 0. A commutative ring with an identity 1 + 0
and with no zero divisors is called an integral domain.
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4 — 1 Groups, rings and fields

Notice that having no zero divisors is equivalent to the fact that if ab = 0in R, then
eithera=0,0rb =0.

Hence, Z, Q, R, C are all integral domains, but from the example above, Z; is not.
In general, we have the following:

Theorem 1.3.2. Z,, is an integral domain if and only if n is a prime.

Proof. First of all, notice that under multiplication modulo n, an element m is 0 if and
only if n divides m. We will make this precise shortly. Recall further Euclid’s lemma
(see Chapter 2), which says that if a prime p divides a product ab, then p divides a, or
p divides b.

Now suppose that n is a prime and ab = 0 in Z,,. Then n divides ab. From Euclid’s
lemma it follows that n divides a, or n divides b. In the first case, a = 0 in Z,,, whereas
in the second, b = 0 in Z,,. It follows that there are no zero divisors in Z,, and since
7., is a commutative ring with an identity, it is an integral domain.

Conversely, suppose Z,, is an integral domain. Suppose that n is not prime. Then
n=abwithl < a <n,1< b < n It follows that ab = 0 in Z, with neither a nor b
being zero. Therefore, they are zero divisors, which is a contradiction. Hence, n must
be prime. O

In Q, every nonzero element has a multiplicative inverse. This is not true in Z,
where only the elements —1, 1 have multiplicative inverses within Z.

Definition 1.3.3. A unit in a ring R with identity 1 # 0 is an element a € R, which has
a multiplicative inverse; that is, an element b € R such that ab = ba = 1. If a is a unit
in R, we denote its inverse by a'. We denote the set of units of R by R*.

Hence, every nonzero element of Q and of R and of C is a unit, but in Z, the
only units are +1. In M,(R), the units are precisely those matrices that have nonzero
determinant, whereas in M,(Z), the units are those integral matrices that have deter-
minant +1.

Definition 1.3.4. A field K is a commutative ring with an identity 1 # O, where every
nonzero element is a unit.

Hence, a field K always contains at least two elements, a zero element O and an
identity 1 # 0.

Therationals Q, thereals R, and the complexes C are all fields. If we relax the com-
mutativity requirement and just require that in the ring R with identity, each nonzero
element is a unit, then we get a skew field or division ring.

Lemma 1.3.5. IfK is a field, then K is an integral domain.

Proof. Since a field K is already a commutative ring with an identity, we must only
show that there are no zero divisors in K.
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1.3 Integral domains and fields =—— 5

Suppose that ab = 0 with a # 0. Since K is a field and a is nonzero, it has an
inverse a .. Hence,

a'(ab)=a'0=0 = (a'a)b=0 = b=0.

Therefore, K has no zero divisors and must be an integral domain. O

Recall that Z,, was an integral domain only when n was a prime. This turns out to
also be necessary and sufficient for Z,, to be a field.

Theorem 1.3.6. Z, is a field if and only if n is a prime.

Proof. First suppose that Z,, is a field. Then from Lemma 1.3.5, it is an integral domain.
Therefore, from Theorem 1.3.2, n must be a prime.

Conversely, suppose that n is a prime. We must show that Z,, is a field. Since we
already know that Z,, is an integral domain, we must only show that each nonzero
element of Z,, is a unit. Here, we need some elementary facts from number theory. If
a, b are integers, we use the notation a|b to indicate that a divides b.

Recall that given nonzero integers a, b, their greatest common divisor or GCD d > 0
is a positive integer, which is a common divisor; that is, d|a and d|b, and if d, is any
other common divisor, then d,|d. We denote the greatest common divisor of a, b by
either gcd(a, b) or (a, b). It can be proved that given nonzero integers a, b their GCD
exists, is unique and can be characterized as the least positive linear combination
of a and b. If the GCD of a and b is 1, then we say that a and b are relatively prime or
coprime. This is equivalent to being able to express 1as a linear combination of a and b
(see Chapter 3 for proofs and more details).

Now let a € Z, with n prime and a # 0. Since a # 0, we have that n does
not divide a. Since n is prime, it follows that a and n must be relatively prime,
(a,n) = 1. From the number theoretic remarks above, we then have that there ex-
ist x,y with

ax+ny=1.
However, in Z,, the element ny = 0. Therefore, in Z,, we have
ax =1.

Therefore, a has a multiplicative inverse in Z,, and is, hence, a unit. Since a was
an arbitrary nonzero element, we conclude that Z,, is a field. O

The theorem above is actually a special case of a more general result from which
Theorem 1.3.6 could also be obtained.

Theorem 1.3.7. Each finite integral domain is a field.
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6 —— 1 Groups, rings and fields

Proof. Let K be a finite integral domain. We must show that K is a field. It is clearly
sufficient to show that each nonzero element of K is a unit. Let

{0,L,r,....1)

be the elements of K. Let r; be a fixed nonzero element and multiply each element of
K by r; on the left. Now

ifryr; =rn thenr(r;—n) =0.

Since r; # O, it follows that r-rno=0orr =rn. Therefore, all the products rir; are
distinct. Hence,

R={0,L,r,....1} =1 R={0,13,1;1q, ..., 1iT )

Therefore, the identity element 1 must be in the right-hand list; that is, there is an

I such that rr = L Therefore, r; has a multiplicative inverse and is, hence, a unit.

Therefore, K is a field. O

1.4 Subrings and ideals

A very important concept in algebra is that of a substructure that is a subset having
the same structure as the superset.

Definition 1.4.1. A subring of a ring R is a nonempty subset S that is also a ring under
the same operations as R. If R is a field and S also a field, then it is a subfield.

If S ¢ R, then S satisfies the same basic axioms, associativity, and commutativity
of addition, for example. Therefore, S will be a subring if it is nonempty and closed un-
der the operations; that is, closed under addition, multiplication, and taking additive
inverses.

Lemma 1.4.2. A subset S of a ring R is a subring if and only if S is nonempty, and when-
evera,b € S, wehavea+b e S,a-beSandab € S.

Example 1.4.3. Show that if n > 1, the set nZ is a subring of Z. Here, clearly nZ is
nonempty. Suppose a = nz;, b = nz, are two elements of nZ. Then

a+b=nz +nz,=n(z; +2,) enZ
a-b=nz -nz,=n(z; - z,) € nZ

ab = nz, - nz, = n(nz,z,) € nZ.
Therefore, nZ is a subring.
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1.4 Subrings andideals =— 7

Example 1.4.4. Show that the set of real numbers of the form
S={u+vVv2:u,veQ

is a subring of R.
Here, 1 + V2 € S; therefore, S is nonempty. Suppose a = u; +v;V2, b = u, + v,V2
are two element of S. Then

a+b= +vV2) + U +v,V2) = U+ Uy + (v +v5)V2 €S
a—b:(u1+vl\/§)—(u2+v2\/§) =u1—u2+(vl—v2)\/§es
a-b=(u+v;V2) - (U +v,V2) = (U + 2vvy) + (Uyv5 + Vi) V2 € S.

Therefore, S is a subring.

In fact, S is a field because ﬁfz = ﬁ - u‘;—_sz if (u,v) # (0,0).
In the following, we are especially interested in special types of subrings called

ideals.

Definition 1.4.5. Let Rbearingand c R. ThenI is a (two-sided) ideal if the following
properties hold:

(1) Iisnonempty.

(2 Ifa,bel,thena+bcecl.

(3) Ifa € Iandrisany element of R, thenra € I, and ar € I.

We denote the fact that I forms an ideal in Rby I < R.

Notice that if a, b € I, then from (3), we have ab € I, and ba € I. Hence, I forms a
subring; that is, each ideal is also a subring. The set {0} and the whole ring R are trivial
ideals of R.

If we assume that in (3), only ra € I, then I is called a left ideal. Analogously, we
define a right ideal.

Lemma 1.4.6. Let R be a commutative ring and a € R. Then the set
(a) =aR ={ar :r € R}
is an ideal of R.

This ideal is called the principal ideal generated by a.

Proof. We must verify the three properties of the definition. Since a € R, we have that
ar is nonempty. If u = ar,, v = ar, are two elements of aR, then

utv=ar tar,=a(rtr,) € akR.
Therefore, (2) is satisfied.
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8 = 1 Groups, rings and fields

Finally, letu = ar; € aRand r € R. Then

ru=rar; = a(rry) € aR, and ur =aryr =a(ryr) € ak. O

Recall that a € (a) if R has an identity.

Notice that if n € Z, then the principal ideal generated by n is precisely the ring
nZ., which we have already examined. Hence, for each n > 1, the subring nZ is actually
an ideal. We can show more.

Theorem 1.4.7. Any subring of Z.is of the form nZ for some n. Hence, each subring of Z.
is actually a principal ideal.

Proof. Let S be a subring of Z. If S = {0}, then S = 0Z, so we may assume that S has
nonzero elements. Since S is a subring if it has nonzero elements, it must have positive
elements (since it has the additive inverse of any element in it).
Let S* be the set of positive elements in S. From the remarks above, this is a
nonempty set, and so, there must be a least positive element n. We claim that S = nZ.
Let m be a positive element in S. By the division algorithm

m=gqn+r,
where either r = 0, or O < r < n (see Chapter 3). Suppose that r # 0. Then
r=m-qn.

Now m € S, and n € S. Since S is a subring, it is closed under addition so that gn € S.
But S is a subring, therefore, m—qgn ¢ S. It follows that r € S. But this is a contradiction
since n was the least positive element in S. Therefore, r = 0, and m = gn. Hence, each
positive element in S is a multiple of n.

Now let m be a negative element of S. Then -m € S, and —-m is positive. Hence,
—m = gn, and thus, m = (-q)n. Therefore, every element of S is a multiple of n, and so,
S =nZ.

It follows that every subring of Z is of this form and, therefore, every subring of Z
is an ideal. O

We mention that this is true in Z, but not always true. For example, Z is a subring
of Q, but not an ideal.

An extension of the proof of Lemma 1.4.6 gives the following. We leave the proof
as an exercise.

Lemma 1.4.8. Let R be a commutative ring and a;, .. ., a, € R be a finite set of elements
in R. Then the set

(ay,...,ay) ={na;+ray+---+rya, :r, € R}
is an ideal of R.
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1.5 Factor rings and ring homomorphisms =—— 9

This ideal is called the ideal generated by a;, . .., a,.
Recall that a;, ..., a, arein {ay, ..., a,) if R has an identity.

Theorem 1.4.9. Let R be a commutative ring with an identity 1 # 0. Then R is a field if
and only if the only ideals in R are {0} and R.

Proof. Suppose that Ris afield and I <« Ris an ideal. We must show that either I = {0},
or I = R. Suppose that I # {0}, then we must show thatI = R.

Since I + {0}, there exists an element a € I with a # 0. Since R is a field, this
element a has an inverse a . Since I is an ideal, it follows that a 'a =1 € I. Let r € R,
then, since1 € I, wehaver-1=r € I. Hence, R c I and, therefore, R = 1.

Conversely, suppose that R is a commutative ring with an identity, whose only
ideals are {0} and R. We must show that R is a field, or equivalently, that every nonzero
element of R has a multiplicative inverse.

Let a € Rwith a # 0. Since R is a commutative ring, and a # 0, the principal ideal
aR is a nontrivial ideal in R. Hence, aR = R. Therefore, the multiplicative identity
1 € aR. It follows that there exists an r € R with ar = 1. Hence, a has a multiplicative
inverse, and R must be a field. O

1.5 Factor rings and ring homomorphisms

Given an ideal I in a ring R, we can build a new ring called the factor ring or quotient
ring of R modulo I. The special condition on the subring I, that rI c I and Ir c I for all
r € R, that makes it an ideal, is specifically to allow this construction to be a ring.

Definition 1.5.1. Let I be an ideal in a ring R. Then a coset of I is a subset of R of the
form

r+I={r+i:iel}
with r a fixed element of R.

Lemma 1.5.2. Let I be an ideal in a ring R. Then the cosets of I partition R; that is, any
two cosets are either coincide or disjoint.

We leave the proof to the exercises.
Now, on the set of all cosets of an ideal, we will build a new ring.

Theorem 1.5.3. LetI be anideal in aring R. Let R/I be the set of all cosets of I in R; that
is,

R/I={r+1:reR}
We define addition and multiplication on R/I in the following manner:

n+D+p+) = +r)+1

Brought to you by | Chalmers University of Technology
Authenticated
Download Date | 9/12/19 5:48 AM



10 —— 1 Groups, rings and fields

r+D) -+ =1+l

Then R/I forms a ring called the factor ring of R modulo I. The zero element of R/1is 0 +1
and the additive inverse of r + I is —r + I.

Further, if R is commutative, then R/I is commutative, and if R has an identity, then
R/I has an identity 1 + I.

Proof. The proofs that R/I satisfies the ring axioms under the definitions above is
straightforward. For example,

r+D+(m+D=m+nr)+I=0+r)+I1=+1)+(rp +1),

and so, addition is commutative.
What must be shown is that both addition and multiplication are well-defined.
That is, if

n+l=r+I, and r+I=ry+I
then

(m+D+ @+ D) =(r+1)+(ry+1),
and

(r+D -+ =(r]+1)-(r,+1I).

Nowifr, +I =1/ +I, thenr, € r] +1I,and so, r, = r| + i, for some i; € I. Similarly, if
r,+I=ry+I thenr, e r)+I,andso, r, = ry + i, for some i, € I. Then

m+D+m+D = +i+1)+(y+i+1)=(r;+1)+ (r;+1)
sincei; + I =T and i, + I = I. Similarly,
m+D)-(r+D=(r+i+1)-(ry+i+1)
=1 rhr oy rr Iy I+
= () +1
since all the other products are in the ideal I.

This shows that addition and multiplication are well-defined. It also shows why
the ideal property is necessary. O

As an example, let R be the integers Z. As we have seen, each subring is an ideal
and of the form nZ for some natural number n. The factor ring Z/nZ is called the
residue class ring modulo n, denoted Z,. Notice that we can take as cosets

0+nZ,1+n7Z, ..., (n-1)+nZ.
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1.5 Factor rings and ring homomorphisms =— 11

Addition and multiplication of cosets is then just addition and multiplication mod-
ulo n. As we can see, this is just a formalization of the ring Z,, which we have already
looked at. Recall that Z,, is an integral domain if and only if nis prime and Z,, is a field
for precisely the same n. If n = 0, then Z/nZ. is the same as Z.

We now show that ideals and factor rings are closely related to certain mappings
between rings.

Definition 1.5.4. Let R and S be rings. Then a mapping f : R — S is a ring homomor-
phism if

f(ri+1)=f(r)+f(r,) foranyr,r, € R
f(ry-r) =f(r)-f(r;) foranyr,r, €R.

In addition,
(1) fis an epimorphism if it is surjective.

(3) f is an isomorphism if it is bijective; that is, both surjective and injective. In this
case, R and S are said to be isomorphic rings, which we denote by R = S.

(4) fis an endomorphism if R = S; that is, a ring homomorphism from a ring to itself.

(5) fisan automorphismif R = S and f is an isomorphism.

Lemma 1.5.5. Let R and S berings, and let f : R — S be a ring homomorphism. Then

(1) f(0) = 0, where the first O is the zero element of R, and the second is the zero element
of S.

(2) f(-r)=—f(r)foranyr € R.

Proof. We obtain f(0) = 0 from the equation f(0) = f(0 + 0) = f(0) + f(0). Hence,
0=f(0)=f(r—r)=f(r+(-r)=f(r)+f(-r); thatis, f(-r) = -f(r). O

Definition 1.5.6. Let Rand S berings, andletf : R — S be aring homomorphism. Then
the kernel of f is

ker(f) = {r e R: f(r) = O}.
The image of f, denoted im(f), is the range of f within S. That is,
im(f) = {s € S : there exists r € R with f(r) = s}.
Theorem 1.5.7 (Ring isomorphism theorem). Let R and S be rings, and let
f:R—S
be a ring homomorphism. Then
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12 — 1 Groups, rings and fields

(1) ker(f) is an ideal in R, im(f) is a subring of S, and
R/ ker(f) = im(f).

(2) Conversely, suppose that I is an ideal in a ring R. Then the map f : R — R/I, given
by f(r) = r+I forr € R, is a ring homomorphism, whose kernel is I, and whose image
isR/I.

The theorem says that the concepts of ideal of a ring and kernel of a ring homo-
morphism coincide; thatis, each ideal is the kernel of a homomorphism and the kernel
of each ring homomorphism is an ideal.

Proof. Letf : R — S be a ring homomorphism. If s;,s, € im(f), then there are r;,r, €
R, such that f(r;) = s;, and f(r,) = s,. Then certainly, im(f) is a subring of S from
Definition 1.5.4 and Lemma 1.5.5. Now, let I = ker(f). We show first that I is an ideal. If
1,1, €I, then f(r;) = f(r,) = 0. It follows from the homomorphism property that

fnxr)=f(r)£f(r)=0+0=0
f(ry-r)=f@) f(r;)=0-0=0.

Therefore, I is a subring.
Now leti e I andr € R. Then

fr-))=f@)-f) =f(r)-0=0 and f@i-r)=f@ f(r)=0-f(r)=0

and, hence, I is an ideal.

Consider the factor ring R/I. Let f* : R/I — im(f) by f*(r +I) = f(r). We show that
f* is an isomorphism.

First, we show that it is well-defined. Suppose thatr; + I =r, + I, thenr, —r, € I =
ker(f). It follows that f(r, — r,) = 0, so f(r;) = f(r,). Hence, f*(r; +I) = f*(r, + I), and
the map f* is well-defined.

Now

f*((rl +I)+(r2+1)) =f*((r1 +1’2)+I) =f(r1 +r2)
=fr) +fr) =f"(n+D+f"(r,+ D),

and

f(r+D-(ry+D)=f*(r; - 1))+ 1) =f(r; - 1p)
=f(r) - f(r) =f (rn+D-f*(ry+D.

Hence, f* is a homomorphism. We must now show that it is injective and surjective.

Suppose that f*(r; + I) = f*(r, + I). Then f(r;) = f(r,) so that f(r; — r,) = 0. Hence,
r, —r, € ker(f) = I. Therefore, r; € r, + I, and thus, r; + I = r, + I, and the map f* is
injective.
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1.6 Fields of fractions = 13

Finally, let s € im(f). Then there exists r € R such that f(r) = s. Then f*(r + I) = s,
and the map f* is surjective and, hence, an isomorphism. This proves the first part of
the theorem.

To prove the second part, let I be an ideal in R and R/I the factor ring. Consider
themap f : R — R/I, given by f(r) = r + I. From the definition of addition and multi-
plication in the factor ring R/I, it is clear that this is a homomorphism. Consider the
kernel of f. If r € ker(f), then f(r) =r+I = 0 = 0+1. This implies that r € I and, hence,
the kernel of this map is exactly the ideal I, completing the theorem. O

Theorem 1.5.7 is called the ring isomorphism theorem or the first ring isomorphism
theorem. We mention that there is an analogous theorem for each algebraic structure,
in particular, for groups and vector spaces. We will mention the result for groups in
Section 1.8.

1.6 Fields of fractions

The integers are an integral domain, and the rationals Q are a field that contains the
integers. First, we show that Q is the smallest field containing Z.

Theorem 1.6.1. The rationals Q are the smallest field containing the integers Z. That is,
if Z c K c Qwith K a subfield of Q, then K = Q.

Proof. Since Z c K, we have m,n € K for any two integers m, n with n # 0. Since K is a
subfield, it is closed under taking division; that is, taking multiplicative inverses and,
hence, the fraction % € K. Since each element of Q is such a fraction, it follows that
Q c K. Since K c Q, it follows that K = Q. O

Notice that to construct the rationals from the integers, we form all the fractions
= w1th n # 0, and where m1 = ™ if myn, = n;m,. We then do the standard operations
on fractions. If we start w1th any integral domain D, we can mimic this construction
to build a field of fractions from D; that is, the smallest field containing D.

Theorem 1.6.2. Let D be an integral domain. Then there is a field K containing D, called
the field of fractions for D, such that each element of K is a fraction from D; that is, an
element of the form d,d, Y with d,,d, € D. Further, K is unique up to isomorphism and is
the smallest field containing D.

Proof. The proof is just the mimicking of the construction of the rationals from the
integers. Let

<’ = {(dl’ dz) : dl’ d2 :/: O, dl’ d2 € D}
Define on K’ the equivalence relation
(dy,dy) = (d),d}) ifdyd} = dyd,.
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14 — 1 Groups, rings and fields

Let K be the set of equivalence classes, and define addition and multiplication in the
usual manner as for fractions, where the result is the equivalence class:

(dl’ dz) + (d3, d4) = (d1d4 + d2d3, d2d4)
(dls dz) : (d3)d4) = (d1d3’d2d4)'

It is now straightforward to verify the ring axioms for K. The inverse of (d;,1) is (1,d,)
ford, #+ 0in D.

As with Z, we identify the elements of K as fractions %.

The proof that K is the smallest field containing D is the same as for Q from Z. O

As examples, we have that Q is the field of fractions for Z. A familiar, but less
common, example is the following:

Let R[x] be the set of polynomials over the real numbers R. It can be shown that
R[x] forms an integral domain (see Chapter 3). The field of fractions consists of all
formal functions %, where f(x), g(x) are real polynomials with g(x) # 0. The corre-
sponding field of fractions is called the field of rational functions over R and is denoted

R(x).

1.7 Characteristic and prime rings

We saw in the last section that Q is the smallest field containing the integers. Since
any subfield of Q must contain the identity, it follows that any nontrivial subfield of
Q must contain the integers and, hence, be all of Q. Therefore, Q has no nontrivial
subfields. We say that Q is a prime field.

Definition 1.7.1. A field K is a prime field if K contains no nontrivial subfields.
Lemma 1.7.2. Let K be any field. Then K contains a prime field K as a subfield.

Proof. Let K;, K, be subfields of K. If k;,k, € K; N K,, then k; + k, € K since K; is a
subfield, and k; + k, € K, since K, is a subfield. Therefore, k; + k, € K; n K,. Similarly,
ik, ¢ K, nK,. It follows that K; n K, is again a subfield.

Now, let K be the intersection of all subfields of K. From the argument above K is
a subfield, and the only nontrivial subfield of K is itself. Hence, K is a prime field. O

Definition 1.7.3. Let R be a commutative ring with an identity 1 # 0. The smallest
positive integer nsuch thatn-1=1+1+--- +1 = 0 is called the characteristic of R. If
there is no such n, then R has characteristic 0. We denote the characteristic by char(R).

First, notice that O is the characteristic of Z, Q, R. Further the characteristic of Z,
is n.

Theorem 1.7.4. Let R be an integral domain. Then the characteristic of R is either O or
a prime. In particular, the characteristic of a field is zero or a prime.
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1.7 Characteristic and prime rings = 15

Proof. Suppose that R is an integral domain and char(R) = n # 0. Suppose that n = mk
withl1<m<n,1<k <n.Thenn-1=0 = (m-1)(k-1). Since R is an integral domain, we
have no zero divisors and, hence, m-1 = 0, or k-1 = 0. However, this is a contradiction
since n s the least positive integer such that n-1 = 0. Therefore, n must be a prime. [

We have seen that every field contains a prime field. We extend this.

Definition 1.7.5. A commutative ring R with an identity 1 # 0 is a prime ring if the only
subring containing the identity is the whole ring.

Clearly both the integers Z and the modular integers Z,, are prime rings. In fact,
up to isomorphism, they are the only prime rings.

Theorem 1.7.6. Let R be a prime ring. If char(R) = O, then R = Z, whereas if char(R) =
n>0,thenR=7Z,.

Proof. Suppose that char(R) =0.LetS={r=m-1:r € R,m € Z}. Then S is a subring
of R containing the identity and, hence, S = R. However, the map m -1 — m gives an
isomorphism from S to Z. It follows that R is isomorphic to Z.

If char(R) = n > 0, the proofis identical. Since n-1 = 0, the subring S of R, defined
above, is all of R and isomorphic to Z,,. O

Theorem 1.7.6 can be extended to fields with Q, taking the place of Z and Z,, with
p a prime, taking the place of Z,,.

Theorem 1.7.7. Let K be a prime field. If K has characteristic O, then K = Q, whereas if
K has characteristic p, then K = z,.

Proof. The proofis identical to that of Theorem 1.7.6; however, we consider the small-
est subfield K; of K containing S. O

We mention that there can be infinite fields of characteristic p. Consider, for ex-
ample, the field of fractions of the polynomial ring Z,[x]. This is the field of rational
functions with coefficients in Z,,.

We give a theorem on fields of characteristic p that will be important much later
when we look at Galois theory.

Theorem 1.7.8. Let K be a field of characteristic p. Then the mapping ¢ : K — K, given
by ¢(k) = kP, is an injective endomorphism of K. In particular, (a + b)Y = a@® + b® for any
a,bek.

This mapping is called the Frobenius homomorphism of K.

Further, if K is finite, ¢ is an automorphism.

Proof. We first show that ¢ is a homomorphism. Now
¢(ab) = (ab)’ = a1V’ = p(a)p(b).
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16 —— 1 Groups, rings and fields

We need a little more work for addition:

¢pa+b)=(a+bP = i (I;)aib”*i =a’ +1§1(€) )aibp’i +bP

i=0

by the binomial expansion, which holds in any commutative ring. However,

>

()=

and it is clear thatpl(ll.’) for1 <i < p - 1. Hence, in K, we have (1:) -1 =0, and so, we
have

d(a+Db)=(a+bf =ad + b =da)+ pb).

Therefore, ¢ is a homomorphism.
Further, ¢ is always injective. To see this, suppose that ¢(x) = ¢(y). Then

px-y)=0 = (x-y) =0,

But K is a field, so there are no zero divisors. Therefore, we must have x —y = 0, or
xX=y.

If K is finite and ¢ is injective, it must also be surjective and, hence, an auto-
morphism of K. O

1.8 Groups

We close this first chapter by introducing some basic definitions and results from
group theory that mirror the results, which were presented for rings and fields. We
will look at group theory in more detail later in the book. Proofs will be given at that
point.

Definition 1.8.1. A group G is a set with one binary operation (which we will denote
by multiplication) such that

(1) The operation is associative.

(2) There exists an identity for this operation.

(3) Each g € G has an inverse for this operation.

If, in addition, the operation is commutative, the group G is called an abelian group.
The order of G is the number of elements in G, denoted by |G|. If |G| < o0, G is a finite
group; otherwise G is an infinite group.

Groups most often arise from invertible mappings of a set onto itself. Such map-
pings are called permutations.
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1.8 Groups =— 17

Theorem 1.8.2. The group of all permutations on a set A forms a group called the sym-
metric group on A, which we denote by S,. If A has more than 2 elements, then S, is
nonabelian.

Definition 1.8.3. Let G, and G, be groups. Then a mapping f : G; — G, is a (group)
homomorphism if

f(g18,) =f(g1)f(g,) foranyg;, g, € Gy.

As with rings, we have, in addition,
(1) fis an epimorphism if it is surjective.
(3) f is an isomorphism if it is bijective; that is, both surjective and injective. In this
case, G, and G, are said to be isomorphic groups, which we denote by G, = G,.
(4) f is an endomorphism if G, = G,; that is, a homomorphism from a group to itself.
(5) f isan automorphismif G, = G,, and f is an isomorphism.

Lemma 1.8.4. Let G, and G, be groups, and let f : G; — G, be a homomorphism. Then
1. f(1) = 1, where the first 1is the identity element of G, and the second is the identity
element of G,.

2. figH)=(fg) ' foranyg € G,.

If A is a set, |A| denotes the size of A.

Theorem 1.8.5. If A, and A, are sets with |A| = |A;|, then Sy = Sy,. If Al = nwithn
finite, we call S, the symmetric group on n elements, which we denote by S,. Further, we
have |S,| = nl.

Subgroups are defined in an analogous manner to subrings. Special types of sub-
groups, called normal subgroups, take the place in group theory that ideals play in
ring theory.

Definition 1.8.6. A subset H of a group G is a subgroup if H + ¢ and H forms a group
under the same operation as G. Equivalently, H is a subgroup if H # ¢, and H is closed
under the operation and inverses.

Definition 1.8.7. If H is a subgroup of a group G, then a left coset of H is a subset
of G of the form gH = {gh : h € H}. A right coset of H is a subset of G of the form
Hg = {hg :h e H}.

As with rings the cosets of a subgroup partition a group. We call the number of
right cosets of a subgroup H in a group G, then index of H in G, denoted |G : H|. One
can prove that the number of right cosets is equal to the number of left cosets. For
finite groups, we have the following beautiful result called Lagrange’s theorem.

Brought to you by | Chalmers University of Technology
Authenticated
Download Date | 9/12/19 5:48 AM



18 —— 1 Groups, rings and fields

Theorem 1.8.8 (Lagrange’s theorem). Let G be a finite group and H a subgroup. Then
the order of H divides the order of G. In particular,

|G| = [H||G : HI.
Normal subgroups take the place of ideals in group theory.

Definition 1.8.9. A subgroup H of a group G is a normal subgroup, denoted H « G, if
every left coset of H is also a right coset; that is, gH = Hg for each g € G. Note that this
does not say that g and H commute elementwise, just that the subsets gH and Hg are
the same. Equivalently, H is normal if g'Hg = H forany g € G.

Normal subgroups allow us to construct factor groups, just as ideals allowed us
to construct factor rings.

Theorem 1.8.10. Let H be a normal subgroup of a group G. Let G/H be the set of all
cosets of H in G; that is,

G/H = {gH : g € G}.
We define multiplication on G/H in the following manner:

(g1H)(g,H) = g18,H.

Then G/H forms a group called the factor group or quotient group of G modulo H.
The identity element of G/H is 1H, and the inverse of gH is g 'H.
Further, if G is abelian, then G/H is also abelian.

Finally, as with rings normal subgroups, factor groups are closely tied to homo-
morphisms.

Definition 1.8.11. Let G; and G, be groups, and let f : G; — G, be a homomorphism.
Then the kernel of f, denoted ker(f), is

ker(f) = {g € G, : f(g) = 1}.
The image of f, denoted im(f), is the range of f within G,. That is,
im(f) = {h € G, : there exists g € G, with f(g) = h}.

Theorem 1.8.12 (Group isomorphism theorem). Let G, and G, be groups, and let f :
G, — G, be a homomorphism. Then
(1) ker(f) is a normal subgroup in G,.im(f) is a subgroup of G,, and

G,/ ker(f) = im(f).

(2) Conversely, suppose that H is a normal subgroup of a group G. Then the map f :
G — G/H, given by f(g) = gH for g € G is a homomorphism, whose kernel is H and
whose image is G/H.
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1.9 Exercises

1.

™

Let¢ : K — Rbe ahomomorphism from a field K to a ring R. Show: Either ¢p(a) = 0
foralla € K, or ¢ is a monomorphism.

Let Rbearing and M # @ an arbitrary set. Show that the following are equivalent:
(i) The ring of all mappings from M to R is a field.

(ii) M contains only one element and R is a field.

Let 7 be a set of prime numbers. Define

Q, = {% : all prime divisors of b are in n]».

(i) Show that Q, is a subring of Q.

(ii) Let R be a subring of Q and let ;’—J € R with coprime integers a, b. Show that
% €R.

(iii) Determine all subrings R of Q. (Hint: Consider the set of all prime divisors of
denominators of reduced elements of R.)

Prove Lemma 1.5.2.

Let R be a commutative ring with an identity 1 € R. Let A, B and C be ideals in R.

A+B:={a+b:acA,beBland AB:= ({ab:a € A,b € B}). Show:

(i) A+B<R,A+B=(AUB)

(i) AB={a;h;+---+ayb,:neN,a; €A, b; e B}, ABCANB

(iii) ABB + C) = AB + AC, (A + B)C = AB + BC, (AB)C = A(BC)

(ivVA=Re AnR* +0

(V) a,beR= {(a)+(b) ={xa+yb:x,y € R}

(vi) a,b € R = {(a){b) = {(ab). Here, (a) = Ra = {xa : x € R}.

Solve the following congruence:

3x=5 mod?7.

Is this congruence also solvable mod 17?

Show that the set of 2 x 2 matrices over a ring R forms a ring.

Prove Lemma 1.4.8.

Prove that if R is a ring with identityand S = {r =m-1:r ¢ R,m € Z} then Sis a
subring of R containing the identity.
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2 Maximal and prime ideals

2.1 Maximal and prime ideals

In the first chapter, we defined ideals I in a ring R, and then the factor ring R/I of R
modulo the ideal I. We saw, furthermore, that if R is commutative, then R/I is also
commutative, and if R has an identity, then so does R/I. This raises further questions
concerning the structure of factor rings. In particular, we can ask under what con-
ditions does R/I form an integral domain, and under what conditions does R/I form
a field. These questions lead us to define certain special properties of ideals, called
prime ideals and maximal ideals.

Let us look back at the integers Z. Recall that each proper ideal in Z has the form
nZ for some n > 1, and the resulting factor ring Z/nZ is isomorphic to Z,,. We proved
the following result:

Theorem 2.1.1. Z, = Z/nZ is an integral domain if and only if n = p a prime. Further-
more, Z,, is a field again if and only if n = p is a prime.

Hence, for the integers Z, a factor ring is a field if and only if it is an integral
domain. We will see later that this is not true in general. However, what is clear is
that special ideals nZ lead to integral domains and fields when n is a prime. We look
at the ideals pZ with p a prime in two different ways, and then use these in subsequent
sections to give the general definitions. We first need a famous result, Euclid’s lemma,
from number theory. For integers a, b, the notation a|b means that a divides b.

Lemma 2.1.2 (Euclid). Ifp is a prime and plab, then p|a or p|b.

Proof. Recall that the greatest common divisor or GCD of two integers a, b is an integer
d > 0 such that d is a common divisor of both a and b, and if d; is another common
divisor of a and b, then d;|d. We express the GCD of a, b by d = (a, b). It is known that
for any two integers a, b, their GCD exists and is unique, and is the least positive linear
combination of @ and b; that is, the least positive integer of the form ax + by for integers
x,y. The integers a, b are relatively prime if their GCD is 1, (a, b) = 1. In this case, 1is a
linear combination of a and b (see Chapter 3 for proofs and more details).

Now suppose plab, where p is a prime. If p does not divide a, then since the only
positive divisors of p are 1 and p, it follows that (a,p) = 1. Hence, 1 is expressible as
a linear combination of a and p. That is, ax + py = 1 for some integers x, y. Multiply
through by b, so that

abx + pby = b.

Now plab, so plabx and p|pby. Therefore, plabx + pby; that is, p|b. O
https://doi.org/10.1515/9783110603996-002
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22 —— 2 Maximal and prime ideals

We now recast this lemma in two different ways in terms of the ideal pZ. Notice
that pZ. consists precisely of all the multiples of p. Hence, p|ab is equivalent to ab ¢
pZ.

Lemma 2.1.3. Ifpisaprimeand ab € pZ, thena € pZ,or b € pZ.

This conclusion will be taken as a motivation for the definition of a prime ideal in
the next section.

Lemma 2.1.4. Ifpis a prime and pZ c nZ, thenn =1, or n = p. That is, every ideal in
Z, containing pZ. with p a prime is either all of Z. or pZ.

Proof. Suppose that pZ c nZ. Then p € nZ; therefore, p is a multiple of n. Since p is a
prime, it follows easily that either n = 1, orn = p. O

In Section 2.3, the conclusion of this lemma will be taken as a motivation for the
definition of a maximal ideal.

2.2 Prime ideals and integral domains

Motivated by Lemma 2.1.3, we make the following general definition for commutative
rings R with identity:

Definition 2.2.1. Let R be a commutative ring. An ideal P in R with P # R is a prime
ideal if whenever ab € P with a, b € R, then eithera € P,or b € P.

This property of an ideal is precisely what is necessary and sufficient to make the
factor ring R/I an integral domain.

Theorem 2.2.2. Let R be a commutative ring with an identity 1 # 0, and let P be a non-
trivial ideal in R. Then P is a prime ideal if and only if the factor ring R/P is an integral
domain.

Proof. Let R be a commutative ring with an identity 1 # 0, and let P be a prime ideal.
We show that R/P is an integral domain. From the results in the last chapter, we have
that R/P is again a commutative ring with an identity. Therefore, we must show that
there are no zero divisors in R/P. Suppose that (a+I)(b+I) = 0in R/P. The zero element
in R/Pis O + P and, hence,

(a+P)(b+P)=0=0+P = ab+P=0+P = abeP.

However, P is a prime ideal; therefore, we must have a € P,or b € P.If a € P, then
a+P=P=0+Psoa+P =0inR/P. The identical argument works if b € P. Therefore,
there are no zero divisors in R/P and, hence, R/P is an integral domain.

Conversely, suppose that R/P is an integral domain. We must show that P is a
prime ideal. Suppose that ab € P. Then (a + P)(b + P) = ab + P = 0 + P. Hence, in R/P,
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2.2 Prime ideals and integral domains =— 23

we have
(a+P)(b+P)=0.

However, R/P is an integral domain, so it has no zero divisors. It follows that either
a+P =0and, hence,a e Porb+P =0, and b € P. Therefore, eithera € P,or b € P.
Therefore, P is a prime ideal. O

In a commutative ring R, we can define a multiplication of ideals. We then obtain
an exact analog of Euclid’s lemma. Since R is commutative, each ideal is 2-sided.

Definition 2.2.3. Let R be a commutative ring with an identity 1 # 0, and let A and B
be ideals in R. Define

AB={a;b; +---+ayb, :a; € A,b; € B,n € N}.
That is, AB is the set of finite sums of products ab witha € Aand b € B.

Lemma 2.2.4. Let R be a commutative ring with an identity 1 + 0, and let A and B be
ideals in R. Then AB is an ideal.

Proof. We must verify that AB is a subring, and that it is closed under multiplication
fromR. Ler,,r, € AB. Then

rn=ab,+---+a,b, forsomeagq; €A, b; €B,
and
IAN ! ! ! !
ry=aby +---+ay,b, forsomeaq; €A, b; €B.
Then
ntrn=ab +--+ab, tab £---+a, b,
which is clearly in AB. Furthermore,
r,-r,=ababl +---+a,b,a b
112 = "1t n“n“m~m-
Consider, for example, the first term albla{b{. Since R is commutative, this is equal to
! !
(aay)(byb}).

Now a,a] € A since A is a subring, and b;b] € B since B is a subring. Hence, this term
is in AB. Similarly, for each of the other terms. Therefore, r;7, € AB and, hence, AB is
a subring.

Now let r € R, and consider rr;. This is then

rry =ra;b; +--- + rayb,,.

Now ra; € A for each i since A is an ideal. Hence, each summand is in AB, and then
rr; € AB. Therefore, AB is an ideal. O
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24 —— 2 Maximaland prime ideals

Lemma 2.2.5. Let R be a commutative ring with an identity 1 # 0, and let A and B be
ideals in R. If P is a prime ideal in R, then AB c P implies that A c P or B C P.

Proof. Suppose that AB c P with P a prime ideal, and suppose that B is not contained
in P. We show that A ¢ P. Since AB ¢ P, each product aib}- ¢ P. Choose a b € B with
b ¢ P, and let a be an arbitrary element of A. Then ab € P. Since P is a prime ideal,
this implies either a € P, or b € P. But by assumption b ¢ P, so a € P. Since a was
arbitrary, we have A c P. O

2.3 Maximal ideals and fields

Now, motivated by Lemma 2.1.4, we define a maximal ideal.

Definition 2.3.1. Let Rbe aringand I an ideal in R. Then I is a maximal ideal if I + R,
and if J is an ideal in R with I c J, thenI =], orJ = R.

If R is a commutative ring with an identity this property of an ideal I is precisely
what is necessary and sufficient, so that R/I is a field.

Theorem 2.3.2. Let R be a commutative ring with an identity 1 + 0, and let I be an ideal
in R. Then I is a maximal ideal if and only if the factor ring R/I is a field.

Proof. Suppose that R is a commutative ring with an identity 1 # 0, and let I be an
ideal in R. Suppose first that I is a maximal ideal, and we show that the factor ring R/I
is a field.

Since R is a commutative ring with an identity, the factor ring R/I is also a com-
mutative ring with an identity. We must show then that each nonzero element of R/I
has a multiplicative inverse. Suppose then that 7 = r + I € R/I is a nonzero element
of R/I. It follows that r ¢ I. Consider the set (r,I) = {rx +i: x € R,i € I}. This is also
an ideal (see exercises) called the ideal generated by r and I, denoted (r,I). Clearly,
I c (r,I),andsincer ¢ I,andr =r-1+0 € (r,I), it follows that (r,I) # I. Since I is
a maximal ideal, it follows that (r,I) = R the whole ring. Hence, the identity element
1 € (r,I), and so, there exist elements x € Rand i € I such that1 = rx + i. But then
le (r+I)(x+1I),andso,1+1 = (r +I)(x +1). Since 1 + I is the multiplicative identity of
R/I, it follows that x + I is the multiplicative inverse of r + I in R/I. Since r + I was an
arbitrary nonzero element of R/I, it follows that R/I is a field.

Now suppose that R/I is a field for an ideal I. We show that I must be maximal.
Suppose then that I; is an ideal with I c I; and I # I;. We must show that ; is all of R.
Since I # I, there exists an r € I; with r ¢ I. Therefore, the element r + I is nonzero in
the factor ring R/I, and since R/I is a field, it must have a multiplicative inverse x + I.
Hence, (r +I)(x+I) = rx +I = 1+1 and, therefore, thereis ani € I with 1 = rx +i. Since
r € I, and I, is an ideal, we get that rx € I;. In addition, since I c I, it follows that
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2.4 The existence of maximal ideals =—— 25

rx +1i € I}, and so, 1 € I,. If r; is an arbitrary element of R, then r, - 1 = r; € I,. Hence,
R c I}, and so, R = I;. Therefore, I is a maximal ideal. O

Recall that a field is already an integral domain. Combining this with the ideas of
prime and maximal ideals we obtain:

Theorem 2.3.3. Let R be a commutative ring with an identity 1 # 0. Then each maximal
ideal is a prime ideal.

Proof. Suppose that R is a commutative ring with an identity and I is a maximal ideal
in R. Then from Theorem 2.3.2, we have that the factor ring R/I is a field. But a field is
an integral domain, so R/I is an integral domain. Therefore, from Theorem 2.2.2, we
have that I must be a prime ideal. O

The converse is not true in general. That is, there are prime ideals that are not
maximal. Consider, for example, R = Z the integers and I = {0}. Then I is an ideal,
and R/I = Z/{0} = Z is an integral domain. Hence, {0} is a prime ideal. However, Z is
not a field, so {0} is not maximal. Note, however, that in the integers Z, a proper ideal
is maximal if and only if it is a prime ideal.

2.4 The existence of maximal ideals

In this section, we prove that in any ring R with an identity, there do exist maximal
ideals. Furthermore, given an ideal I # R, then there exists a maximal ideal I, such
that I c I,. To prove this, we need three important equivalent results from logic and
set theory.

First, recall that a partial order < on a set S is a reflexive, transitive relation on S.
Thatis,a < aforalla € S,andifa < b, b < ¢, then a < c. This is a “partial” order since
there may exist elements a € S, where neither a < b, nor b < a. If A is any set, then it
is clear that containment of subsets is a partial order on the power set P(A).

If < is a partial order on a set M, then a chain on M is a subset K ¢ M such that
a,b € K implies that a < b or b < a. A chain on M is bounded if there existsanm ¢ M
such thatk < mforall k € K. The element m is called an upper bound for K. An element
mg € M is maximal if whenever m € M with my, < m, then m = m,. We now state the
three important results from logic.

Zorn’s lemma. If each chain of M has an upper bound in M, then there is at least one
maximal element in M.

Axiom of well-ordering. Each set M can be well-ordered, such that each nonempty sub-
set of M contains a least element.

Axiom of choice. Let {M; : i € I} be a nonempty collection of nonempty sets. Then there
isamapping f : I — | J;; M; with f(i) € M; foralli € I.
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26 —— 2 Maximaland prime ideals

The following can be proved.

Theorem 2.4.1. Zorn’s lemma, the axiom of well-ordering and the axiom of choice are
all equivalent.

We now show the existence of maximal ideals in commutative rings with identity.

Theorem 2.4.2. Let R be a commutative ring with an identity 1 + 0, and let I be an ideal
inRwithI # R. Then there exists a maximal ideal I, in R with I c I,. In particular, a ring
with an identity contains maximal ideals.

Proof. Let I be an ideal in the commutative ring R. We must show that there exists a
maximal ideal I, in R with I c I,.
Let

M ={X:Xisanideal withl c X # R}.

Then M is partially ordered by containment. We want to show first that each chain in
M has a maximal element. If K = {X; : X; € M,j € J} is a chain, let

X' =Jx;.
jeJ

Ifa,b € X', then there exists an i,j € J witha € X, b e X]-. Since K is a chain, either
X; ¢ X; or X; ¢ X;. Without loss of generality, suppose that X; ¢ X; so thata,b € X;.
Thena+b ¢ X; c X',and ab ¢ X;c X', since X;isan ideal. Furthermore, if r € R, then
raeX;cX " since X; is an ideal. Therefore, X "is an ideal in R.

Since X; # R, it follows that 1 ¢ X; for all j € J. Therefore, 1 ¢ X',andso X' #R. It
follows that under the partial order of containment X’ is an upper bound for K.

We now use Zorn’s lemma. From the argument above, we have that each chain
has a maximal element. Hence, for an ideal I, the set M above has a maximal element.
This maximal element I, is then a maximal ideal containing I. O

2.5 Principalideals and principal ideal domains

Recall again that in the integers Z, each ideal I is of the form nZ for some integer n.
Hence, in Z, each ideal can be generated by a single element.

Lemma 2.5.1. Let R be a commutative ring and a, ... ., a, be elements of R. Then the set
(ay,....ay) ={na;+---+rya, :r; € R}

forms an ideal in R called the ideal generated by ay, ..., a,.

Proof. The proof is straightforward. Let

a=na +---+1,a,, b=sa,+ - +5s,a,
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2.5 Principal ideals and principal ideal domains =— 27

withr,...,r,, S5, ...,5, elements of R, be two elements of (a;, ..., a,). Then

atb=( ts)a +---+ I, £8,)a, €{ag,...,a,)

ab = (ns1ay)a; + (115,a1)ay + -+ + (1r,$p,ay)ay, € {(ay, ..., a),
so (ay,...,a,) forms a subring. Furthermore, if r € R, we have
ra=(rr)a; +---+ (mry)a, € (a,...,a,),

and so {(ay,...,a,) is an ideal. O

Definition 2.5.2. Let R be a commutative ring. An ideal I ¢ R is a principal ideal if it
has a single generator. That is,

I=(a) =aR forsomea €R.

We now restate Theorem 1.4.7 of Chapter 1.
Theorem 2.5.3. Every nonzero ideal in Z.is a principal ideal.

Proof. Every ideal I in Z is of the form nZ. This is the principal ideal generated
by n. O

Definition 2.5.4. A principalideal domain or PID is an integral domain, in which every
ideal is principal.

Corollary 2.5.5. The integers Z. are a principal ideal domain.

We mention that the set of polynomials K[x] with coefficients from a field K is also
a principal ideal domain. We will return to this in the next chapter.

Not every integral domain is a PID. Consider K[x, y] = (K[x])[y], the set of polyno-
mials over K in two variables x, y (see Chapter 4). Let I consist of all the polynomials
with zero constant term.

Lemma 2.5.6. ThesetIinK[x,y] as defined above is an ideal, but not a principal ideal.

Proof. We leave the proof that I forms an ideal to the exercises. To show that it is not
a principal ideal, suppose I = (p(x,y)). Now the polynomial g(x) = x has zero con-
stant term, so g(x) € I. Hence, p(x,y) cannot be a constant polynomial. In addition,
if p(x,y) had any terms with y in them, there would be no way to multiply p(x,y) by
a polynomial h(x,y) and obtain just x. Therefore, p(x,y) can contain no terms with y
in them. But the same argument, using s(y) = y, shows that p(x,y) cannot have any
terms with x in them. Therefore, there can be no such p(x, y) generating I, and so, I is
not principal, and K[x, y] is not a principal ideal domain. O
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2.6 Exercises

1.

Consider the set (r,I) = {rx +i: x € R,i € I}, where I is an ideal. Prove that this is
also an ideal called the ideal generated by r and I, denoted (r,I).
Let R and S be commutative rings, and let ¢ : R — S be a ring epimorphism. Let
M be a maximal ideal in R. Show:

¢(M) is a maximal ideal in S if and only if ker(¢p) c M. Is (M) always a prime

ideal of S?
Let A;,...,A; beideals of a commutative ring R. Let P be a prime ideal of R. Show:
(i) Ni;A; ¢ P = A; c P for at least one index j.
(ii) ﬂl!:lAi = P = A; = P for at least one index j.
Which of the following ideals A are prime ideals of R? Which are maximal ideals?
(i) A=),R=2zZ[x].
(i) A=(?%),R=2[x].
(iii) A = (1 + V5), R = Z[5].
(iv) A = (x,y), R=Qlxyl.
Let w %(1 + v=3). Show that (2) is a prime ideal and even a maximal ideal of
Z[w], but (2) is neither a prime ideal nor a maximal ideal of Z[i], i = V-1 € C.
LetR = {% :a,b € Z,bodd}. Show that R is a subring of Q, and that there is only
one maximal ideal M in R.
Let R be a commutative ring with an identity. Let x,y € R and x # O not be a
zero divisor. Furthermore, let (x) be a prime ideal with (x) c (y) # R. Show that
x) =y).
Consider K[x,y] the set of polynomials over K in two variables x, y. Let I consist of
all the polynomials with zero constant term. Prove that the set I is an ideal.
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3 Prime elements and unique factorization domains

3.1 The fundamental theorem of arithmetic

The integers Z have served as much of our motivation for properties of integral do-
mains. In the last chapter, we saw that Z is a principal ideal domain, and furthermore,
that prime ideals # {0} are maximal. From the viewpoint of the multiplicative structure
of Z and the viewpoint of classical number theory, the most important property of Z
is the fundamental theorem of arithmetic. This states that any integer n # 0 is uniquely
expressible as a product of primes, where uniqueness is up to ordering and the intro-
duction of +1; that is, units. In this chapter, we show that this property is not unique to
the integers, and there are many other integral domains, where this also holds. These
are called unique factorization domains, and we will present several examples. First,
we review the fundamental theorem of arithmetic, its proof and several other ideas
from classical number theory.

Theorem 3.1.1 (Fundamental theorem of arithmetic). Given any integer n + 0, there is
a factorization

n=cCcpip;- - Py

where ¢ = +1 and p, ..., p; are primes. Furthermore, this factorization is unique up to
the ordering of the factors.

There are two main ingredients that go into the proof: induction and Euclid’s
lemma. We presented this in the last chapter. In turn, however, Euclid’s lemma de-
pends upon the existence of greatest common divisors and their linear expressibility.
Therefore, to begin, we present several basic ideas from number theory.

The starting point for the theory of numbers is divisibility.

Definition 3.1.2. If a, b are integers, we say that a divides b, or that a is a factor or
divisor of b, if there exists an integer g such that b = aq. We denote this by a|b. b is
then a multiple of a. If b > 1 is an integer whose only factors are +1, +b, then b is a
prime, otherwise, b > 1is composite.

The following properties of divisibility are straightforward consequences of the
definition.

Lemma 3.1.3. The following properties hold:

(1) alb = albc for any integer c.

(2) alb and b|c implies a|c.

(3) alb and a|c implies that a|(bx + cy) for any integers x,y.
(4) alb and b|a implies that a = +b.

(5) Ifalbanda >0,b > 0, thena < b.
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30 —— 3 Prime elements and unique factorization domains

(6) alb if and only if ca|cb for any integer ¢ + 0.
(7) alO foralla € Z, and Ola only for a = 0.

(8) al+1onlyfora=+1.

(9) ay|b; and a,|b, implies that a,a,|b;b,.

If b, ¢, x,y are integers, then an integer bx + cy is called a linear combination of b, c.
Thus, part (3) of Lemma 3.1.3 says that if a is a common divisor of b, c, then a divides
any linear combination of b and c.

Furthermore, note that if b > 1is a composite, then there exists x > Oandy > 0
such that b = xy, and from part (5), we must havel1 < x < b,1<y < b.

In ordinary arithmetic, given a, b, we can always attempt to divide a into b. The
next result, called the division algorithm, says that if a > 0, either a will divide b, or
the remainder of the division of b by a will be less than a.

Theorem 3.1.4 (Division algorithm). Given integers a,b with a > O, then there exist
unique integers q and r such that b = qa + r, where eitherr =0or0 <r < a.

One may think of g and r as the quotient and remainder, respectively, when divid-
ing b by a.

Proof. Given a, b with a > 0, consider the set
S={b-qa>0:q¢7}.

If b > 0,then b + a > 0, and the sum is in S. If b < 0, then there exists a ¢ > 0 with
—qa < b.Then b+qa > 0 and is in S. Therefore, in either case, S is nonempty. Hence, S
is a nonempty subset of N U {0} and, therefore, has a least element r. If r # 0, we must
show that O < r < a. Supposer > a, thenr = a + x with x > 0, and x < r sincea > 0.
Thenb-qa =r =a+x = b-(q+1)a = x. This means that x € S. Since x < r, this
contradicts the minimality of r, which is a contradiction. Therefore, if r + 0, it follows
thatO <r<a.

The only thing left is to show the uniqueness of g and r. Suppose b = g;a +r; also.
By the construction above, r; must also be the minimal element of S. Hence, r; < r,
andr <r;sor=r;. Now

b-gqa=b-gqa = (g-qa=0,

but since a > 0, it follows that g; — g = 0 so that g = q;. O
The next idea that is necessary is the concept of greatest common divisor.

Definition 3.1.5. Given nonzero integers a, b, their greatest common divisor or GCD
d > 0is a positive integer such that it is their common divisor, that is, d|a and d|b, and
if d; is any other common divisor, then d,|d. We denote the greatest common divisor
of a, b by either gcd(a, b) or (a, b).
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3.1 The fundamental theorem of arithmetic = 31

Certainly, if a, b are nonzero integers with a > 0 and alb, then a = gcd(a, b).
The next result says that given any nonzero integers, they do have a greatest com-
mon divisor, and it is unique.

Theorem 3.1.6. Given nonzero integers a, b, their GCD exists, is unique, and can be char-
acterized as the least positive linear combination of a and b.

Proof. Given nonzero a, b, consider the set
S={ax+by >0:x,y€Z}

Now, a®> + b> > 0,s0S is a nonempty subset of N and, hence, has a least element,
d > 0. We show that d is the GCD.

First we must show that d is a common divisor. Now d = ax + by and is the least
such positive linear combination. By the division algorithm, a = gd + r withO < r < d.
Supposer # 0. Thenr = a-qd = a - g(ax + by) = (1- gx)a - gby > 0. Hence, ris a
positive linear combination of a and b, and therefore in S. But thenr < d, contradicting
the minimality of d in S. It follows that r = 0, and so, a = gd, and d|a. An identical
argument shows that d|b, and so, d is a common divisor of a and b. Let d; be any other
common divisor of a and b. Then d, divides any linear combination of a and b, and so
d,|d. Therefore, d is the GCD of a and b.

Finally, we must show that d is unique. Suppose d, is another GCD of a and b. Then
d, > 0, and d, is a common divisor of a, b. Then d,|d since d is a GCD. Identically, d|d,
since d, is a GCD. Therefore, d = +d,, and then d = d, since they are both positive. [

If (a, b) = 1, then we say that a, b are relatively prime. It follows that a and b are
relatively prime if and only if 1 is expressible as a linear combination of a and b. We
need the following three results:

Lemma 3.1.7. Ifd = (a,b), then a = a;d and b = b,d with (a;, b;) = 1.
Proof. If d = (a, b), then d|a, and d|b. Hence, a = a;d, and b = b;d. We have
d = ax + by = a;dx + b,dy.
Dividing both sides of the equation by d, we obtain
1=a;x + byy.
Therefore, (a;, b;) = 1. O
Lemma 3.1.8. For any integer c, we have that (a,b) = (a,b + ac).

Proof. Suppose (a,b) = dand (a,b + ac) = d;. Now d is the least positive linear com-
bination of @ and b. Suppose d = ax + by. d, is a linear combination of a,b + ac so
that

dy=ar+ (b+ac)s=a(cs+r)+ bs.
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32 —— 3 Prime elements and unique factorization domains

Hence, d, is also a linear combination of a and b; therefore, d; > d. On the other hand,
d,la, and d,|(b+ac), and so, d,|b. Therefore, d,|d, so d; < d. Combining these, we must
have d; =d. O

The next result, called the Euclidean algorithm, provides a technique for both find-
ing the GCD of two integers and expressing the GCD as a linear combination.

Theorem 3.1.9 (Euclidean algorithm). Givenintegers b and a > Owitha } b, the follow-
ing repeated divisions are formed:

b=qa+r, O0<r<a
a=qri+r, 0<r<n

Th2=qnin-1+Tp 0< T <Tpa

-1 = dn+1n-

The last nonzero remainder r,, is the GCD of a, b. Furthermore, r,, can be expressed as
a linear combination of a and b by successively eliminating the r;’s in the intermediate
equations.

Proof. In taking the successive divisions as outlined in the statement of the theorem,
each remainder r; gets strictly smaller and still nonnegative. Hence, it must finally end
with a zero remainder. Therefore, there is a last nonzero remainder r,,. We must show
that this is the GCD.

Now from Lemma 3.1.7, the gcd (a, b) = (a,b-qqa) = (a,1y) = (1, a—q,1p) = (11, 17)-
Continuing in this manner, we have then that (a,b) = (r,_;,1,,) = r,, since r,, divides
I'n_1. This shows that r,, is the GCD.

To express r, as a linear combination of a and b, first notice that

" =Th-2 = dnTp-1-
Substituting this in the immediately preceding division, we get
=Ty~ Qn(rn—B - qn—lrn—z) =1+ QnQn—l)rn—Z ~ qnTn-3-

Doing this successively, we ultimately express r, as a linear combination of a
and b. O

Example 3.1.10. Find the GCD of 270 and 2412, and express it as a linear combination
of 270 and 2412.
We apply the Euclidean algorithm

2412 =8-270 + 252
270 =1-252+18
252 =14-18.
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Therefore, the last nonzero remainder is 18, which is the GCD. We now must express
18 as a linear combination of 270 and 2412.
From the first equation

252 = 2412 -8 - 270,
which gives in the second equation
270 =2412-8-270+18 = 18 =-1:2412+9 270,

which is the desired linear combination.

The next result that we need is Euclid’s lemma. We stated and proved this in the
last chapter, but we restate it here.

Lemma 3.1.11 (Euclid’s lemma). If p is a prime and p|ab, then p|a, or p|b.

We can now prove the fundamental theorem of arithmetic. Induction suffices to
show that there always exists such a decomposition into prime factors.

Lemma 3.1.12. Any integer n > 1can be expressed as a product of primes, perhaps with
only one factor.

Proof. The proofis by induction. n = 2is prime. Therefore, it is true at the lowest level.
Suppose that any integer 2 < k < n can be decomposed into prime factors, we must
show that n then also has a prime factorization.

If nis prime, then we are done. Suppose then that n is composite. Hence, n = mym,
with1 < my < n,1 < m, < n. By the inductive hypothesis, both m; and m, can be
expressed as products of primes. Therefore, n can, also using the primes from m; and
m,, completing the proof. O

Before we continue to the fundamental theorem, we mention that the existence
of a prime decomposition, unique or otherwise, can be used to prove that the set of
primes is infinite. The proof we give goes back to Euclid and is quite straightforward.

Theorem 3.1.13. There are infinitely many primes.
Proof. Suppose that there are only finitely many primes p;,...,p,. Each of these is

positive, so we can form the positive integer

N=pp,---pp+1

From Lemma 3.1.12, N has a prime decomposition. In particular, there is a prime p,
which divides N. Then

pl(1py---pn +1).
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Since the only primes are assumed p;,p,,...,D,, it follows that p = p; for some i =
1,...,n.Butthenplpip,---p;---p, 50 p cannot divide p; - - - p,, + 1, which is a contradic-
tion. Therefore, p is not one of the given primes showing that the list of primes must
be endless. O

We can now prove the fundamental theorem of arithmetic.

Proof. We assume thatn > 1. If n < -1, we use ¢ = —n, and the proof is the same. The
statement certainly holds for n = 1 with k = 0. Now suppose n > 1. From Lemma 3.1.12,
n has a prime decomposition:

n=piby Pm

We must show that this is unique up to the ordering of the factors. Suppose then that
n has another such factorization n = g;q; - - - g, with the g; all prime. We must show
that m = k, and that, the primes are the same. Now we have

n=piPy  Pm =41 " gi-

Assume that k > m. From

n=pi\pr - Pm=4q1" di>

itfollows that p;|q;9; - - - ;. From Lemma 3.1.11 then, we must have that p; |g; for some .
But g; is prime, and p; > 1, so it follows that p; = g;. Therefore, we can eliminate p,
and g; from both sides of the factorization to obtain

b2 Pm=4q1 - GiaGi+1 " Gk
Continuing in this manner, we can eliminate all the p; from the left side of the factor-

ization to obtain

1=qm G

If 1> - - - » g Were primes, this would be impossible. Therefore, m = k, and each prime
p; was included in the primes q;, . . ., g,,- Therefore, the factorizations differ only in the
order of the factors, proving the theorem. O

3.2 Prime elements, units and irreducibles

We now let R be an arbitrary integral domain and attempt to mimic the divisibility
definitions and properties.

Definition 3.2.1. Let R be an integral domain.
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3.2 Prime elements, units and irreducibles =—— 35

(1) Suppose that a,b € R. Then a is a factor or divisor of b if there exists a ¢ € R with
b = ac. We denote this, as in the integers, by a|b. If a is a factor of b, then b is
called a multiple of a.

(2) Anelement a € R is a unit if a has a multiplicative inverse within R; that is, there
exists an element a ' € Rwithaa™ = 1.

(3) Aprime element of Ris an element p # 0 such that p is not a unit, and if p|ab, then
plaor p|b.

(4) An irreducible element in R is an element ¢ # O such that c is not a unit, and if
¢ = ab, then a or b must be a unit.

(5) aand b in R are associates if there exists a unit e € R with a = eb.

Notice that in the integers Z, the units are just +1. The set of prime elements co-
incides with the set of irreducible elements. In Z, these are precisely the set of prime
numbers. On the other hand, if K is a field, every nonzero element is a unit. Therefore,
in K, there are no prime elements and no irreducible elements.

Recall that the modular rings Z,, are fields (and integral domains) when n is a
prime. In general, if n is not a prime then Z,, is a commutative ring with an identity,
and a unit is still an invertible element. We can characterize the units within Z,,.

Lemma 3.2.2. a € Z, is a unit if and only if (a,n) = 1.

Proof. Suppose (a,n) = 1. Then there exist x,y € Z such that ax + ny = 1. This implies
that ax = 1 mod n, which in turn implies that ax = 1in Z, and, therefore, a is a unit.

Conversely, suppose a is a unit in Z,,. Then there is an x € Z, with ax = 1. In terms
of congruence then

ax=1 modn = n|(ax-1) = ax-1=ny = ax-ny=1
Therefore, 1is a linear combination of a and n and so (a,n) = 1. O
If R is an integral domain, then the set of units within R will form a group.

Lemma 3.2.3. IfRis a commutative ring with an identity, then the set of units in R form
an abelian group under ring multiplication. This is called the unit group of R, denoted
U(R).

Proof. The commutativity and associativity of U(R) follow from the ring properties.
The identity of U(R) is the multiplicative identity of R, whereas the ring multiplicative
inverse for each unit is the group inverse. We must show that U(R) is closed under
ring multiplication. If a € R is a unit, we denote its multiplicative inverse by a~*. Now
suppose a, b € U(R). Then a™!, b™! exist. It follows that

(ab)(b'a ") =a(bba =aa =1.

Hence, ab has an inverse, namely b 'a™! (= a 'b™" in a commutative ring) and, hence,
ab is also a unit. Therefore, U(R) is closed under ring multiplication. O
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In general, irreducible elements are not prime. Consider for example the subring
of the complex numbers (see exercises) given by

R=27[iV5] = {x +iyV5: x,y € Z}.

This is a subring of the complex numbers C and, hence, can have no zero divisors.
Therefore, R is an integral domain.
For an element x + iyv/5 € R, define its norm by

N(x +iyV5) = [x + iy V5| = x* + 5°.

Since x,y € Z, it is clear that the norm of an element in R is a nonnegative integer.
Furthermore, if a € R with N(a) = 0, then a = 0.
We have the following result concerning the norm:

Lemma 3.2.4. Let R and N be as above. Then
(1) N(ab) = N(a)N(b) for any elements a,b € R.
(2) The units of R are those a € R with N(a) = 1. In R, the only units are +1.

Proof. The fact that the norm is multiplicative is straightforward and left to the exer-
cises. If a € R is a unit, then there exists a multiplicative inverse b € R with ab = 1.
Then N(ab) = N(a)N(b) = 1. Since both N(a) and N(b) are nonnegative integers, we
must have N(a) = N(b) = 1.

Conversely, suppose that N(a) = 1. If a = x +iy+/5, then x>+ 5y = 1. Since x,y € Z,
we must havey = 0 and x> = 1. Then a = x = #1. O

Using this lemma we can show that R possesses irreducible elements that are not
prime.

Lemma 3.2.5. Let R be as above. Then 3 = 3 + i0+/5 is an irreducible element in R, but
3 is not prime.

Proof. Suppose that 3 = ab with a, b € R and a, b nonunits. Then N(3) = 9 = N(a)N(b)
with neither N(a) = 1, nor N(b) = 1. Hence, N(a) = 3, and N(b) = 3. Let a = x + iy /5.
It follows that x? + 5y* = 3. Since x,y € Z, this is impossible. Therefore, one of a or b
must be a unit, and 3 is an irreducible element.

We show that 3isnot primein R. Leta = 2+iv5and b = 2—i+/5. Then ab = 9 and,
hence, 3|ab. Suppose 3|a so that a = 3¢ for some ¢ € R. Then

9=N(a) =N@3)N(c) =9N(c) = N(c) =1

Therefore, c is a unit in R, and from Lemma 3.2.4, we get ¢ = +1. Hence, a = +3. This is
a contradiction, so 3 does not divide a. An identical argument shows that 3 does not
divide b. Therefore, 3 is not a prime element in R. O

We now examine the relationship between prime elements and irreducibles.
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3.2 Prime elements, units and irreducibles =——— 37

Theorem 3.2.6. Let R be an integral domain. Then

(1) Each prime element of R is irreducible.

(2) p € Ris a prime element if and only if p # 0, and {p) = pR is a prime ideal.

(3) p € Risirreducible if and only if p #+ 0, and {p) = pR is maximal in the set of all
principal ideals of R, which are not equal to R.

Proof. (1) Suppose that p € R is a prime element, and p = ab. We must show that
either a or b must be a unit. Now p|ab, so either p|a, or p|b. Without loss of generality,
we may assume that pla, so a = pr for some r € R. Hence, p = ab = (pr)b = p(rb).
However, R is an integral domain, so p — prb = p(1 — rb) = 0 implies that 1 -rb = 0
and, hence, rb = 1. Therefore, b is a unit and, hence, p is irreducible.

(2) Suppose that p is a prime element. Then p # 0. Consider the ideal pR, and
suppose that ab € pR. Then ab is a multiple of p and, hence, p|ab. Since p is prime, it
follows that pla or p|b. If p|a, then a € pR, whereas if p|b, then b € pR. Therefore, pR
is a prime ideal.

Conversely, suppose that pR is a prime ideal, and suppose that p = ab. Then ab €
PR,soa € pR,orb € pR.If a € pR, then pla, and if b € pR, then p|b. Therefore, p is
prime.

(3) Let p be irreducible, then p # 0. Suppose that pR ¢ aR, where a € R. Then
p = ra for some r € R. Since p is irreducible, it follows that either a is a unit, or r is a
unit. If r is a unit, we have pR = raR = aR # R since p is not a unit. If a is a unit, then
aR = R, and pR = 1R # R. Therefore, pR is maximal in the set of principal ideals not
equal to R.

Conversely, suppose p # 0 and pR is a maximal ideal in the set of principal ideals
# R. Let p = ab with a not a unit. We must show that b is a unit. Since aR # R, and
PR C aR, from the maximality we must have pR = aR. Hence, a = rp for somer € R.
Then p = ab = rpb and, as before, we must have rb = 1 and b a unit. O

Theorem 3.2.7. Let R be a principle ideal domain. Then we have the following:

(1) Anelement p € Ris irreducible if and only if it is a prime element.

(2) A nonzero ideal of R is a maximal ideal if and only if it is a prime ideal.

(3) The maximal ideals of R are precisely those ideals pR, where p is a prime element.

Proof. First note that {0} is a prime ideal, but not maximal.

(1) We already know that prime elements are irreducible. To show the converse,
suppose that p is irreducible. Since R is a principal ideal domain from Theorem 3.2.6,
we have that pR is a maximal ideal, and each maximal ideal is also a prime ideal.
Therefore, from Theorem 3.2.6, we have that p is a prime element.

(2) We already know that each maximal ideal is a prime ideal. To show the con-
verse, suppose that I # {0} is a prime ideal. Then I = pR, where p is a prime element
with p # 0. Therefore, p is irreducible from part (1) and, hence, pR is a maximal ideal
from Theorem 3.2.6.

(3) This follows directly from the proof in part (2) and Theorem 3.2.6. O
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This Theorem especially explains the following remark at the end of Section 2.3:
in the principal ideal domain Z, a proper ideal is maximal if and only if it is a prime
ideal.

3.3 Unique factorization domains

We now consider integral domains, where there is unique factorization into primes. If
R is an integral domain and a, b € R, then we say that a and b are associates if there
exists a unit € € R with a = eb.

Definition 3.3.1. An integral domain D is a unique factorization domain or UFD if for
each d € D either d = 0, d is a unit, or d has a factorization into primes, which is
unique up to ordering and unit factors. This means that if

r'=p1Pm=4q1 9
then m = k, and each p; is an associate of some g;.

There are several relationships in integral domains that are equivalent to unique
factorization.

Definition 3.3.2. Let R be an integral domain.

(1) R has property (A) if and only if for each nonunit a # 0 there are irreducible ele-
ments q;,...,q, € R, satisfyinga=¢q, ---q,.

(2) Rhas property (A') if and only if for each nonunit a # 0 there are prime elements
DP1>---»Dy € R, satisfyinga = p; - - p,.

(3) R has property (B) if and only if whenever ¢,,...,q, and g}, ..., q., are irreducible
elements of R with

G- dy =4y 4

Then r = s, and there is a permutation 7 € S, such that for eachi € {1,...,r} the
elements g; and qu(i) are associates (uniqueness up to ordering and unit factors).

(4) R has property (C) if and only if each irreducible element of R is a prime element.

Notice that properties (A) and (C) together are equivalent to what we defined as
unique factorization. Hence, an integral domain satisfying (A) and (C) is a UFD. Next,
we show that there are other equivalent formulations.

Theorem 3.3.3. In an integral domain R, the following are equivalent:
(1) Risa UFD.

(2) R satisfies properties (A) and (B).

(3) R satisfies properties (A) and (C).

(4) R satisfies property (A').
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Proof. As remarked before, the statement of the theorem by definition (A) and (C) are
equivalent to unique factorization. We show here that (2), (3), and (4) are equivalent.

First, we show that (2) implies (3).

Suppose that R satisfies properties (A) and (B). We must show that it also satisfies
(C); that is, we must show that if ¢ € R is irreducible, then g is prime. Suppose that
g € R is irreducible and g|ab with a, b € R. Then we have ab = cq for some c € R. If a
is a unit from ab = cq, we get that b = a 'cq, and g|b. The results are identical if b is a
unit. Therefore, we may assume that neither a nor b are units.

If ¢ = 0, then since R is an integral domain, either a = 0, or b = 0, and q|a, or g|b.
We may assume then that ¢ + 0.

If c is a unit, then g = ¢ lab, and since q is irreducible, either ¢ la, or b are units.
If ¢ '@ is a unit, then a is also a unit. Therefore, if ¢ is a unit, either a or b are units
contrary to our assumption.

Therefore, we may assume that ¢ # 0, and ¢ is not a unit. From property (A) we
have

a=q-q
C:q{’...q{”

whereqy,...q,.41,...,45 41 »...q; are all irreducibles. Hence,

From property (B), g is an associate of some g; or q]f . Hence, g|g; or qlq}-’ . It follows
that g|a, or g|b and, therefore, g is a prime element.

That (3) implies (4) is direct.

We show that (4) implies (2).

Suppose that R satisfies property (A’). We must show that it satisfies both (A)
and (B). We show first that (A) follows from (A’) by showing that irreducible elements
are prime.

Suppose that g is irreducible. Then from (A’), we have

q=p1 " Dr

with each p; prime. It follows, without loss of generality, that p, - - - p, is a unit, and p,
is a nonunit and, hence, p;|1fori = 2,...,r. Thus, g = p;, and q is prime. Therefore,
(A) holds.

We now show that (B) holds. Let

4 a4 =a;
where g;, q]f are all irreducibles; hence primes. Then

ala 4,
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and so, g} |g; for some i. Without loss of generality, suppose q;lg;. Then g, = aq;. Since
¢, is irreducible, it follows that a is a unit, and g, and g; are associates. It follows then
that

ag,---q, = 45 - 4,

since R has no zero divisors. Property (B) holds then by induction, and the theorem is
proved. O

Note that in our new terminology, Z is a UFD. In the next section, we will present
other examples of UFD’s. However, not every integral domain is a unique factorization
domain.

As we defined in the last section, let R be the following subring of C:

R=2Z[iV5] = {x +iyV5:x,y € Z}.

R is an integral domain, and we showed, using the norm, that 3 is an irreducible in R.
Analogously, we can show that the elements 2 +iv/5, 2 — iV/5 are also irreducibles in R,
and furthermore, 3 is not an associate of either 2 + i/5 or 2 — i4/5. Then

9=3.3=(2+iV5)(2-iV5)

give two different decompositions for an element in terms of irreducible elements. The
fact that Ris nota UFD also follows from the fact that 3 is an irreducible element, which
is not prime.

Unique factorization is tied to the famous solution of Fermat’s big theorem. Wiles
and Taylor in 1995 proved the following:

Theorem 3.3.4. The equation x¥ +y? = zP has no integral solutions with xyz # 0 for any
primep > 3.

Kummer tried to prove this theorem by attempting to factor x* = zP — y?. We call
2mi
the statement of Theorem 3.3.4 in an integral domain R property (F,). Lete = e » . Then

2y =[]e-én

View this equation in the ring:

Pl
R=12Ze] = {Zaje’ : ez}.

j=0

Kummer proved that if R is a UFD, then property (F,)) holds. However, independently,
from Uchida and Montgomery (1971), R is a UFD only if p < 19 (see [49]).
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3.4 Principal ideal domains and unique factorization

In this section, we prove that every principal ideal domain (PID) is a unique factoriza-
tion domain (UFD). We say that an ascending chain of ideals in R

Lchc---cl,c---

becomes stationary if there exists an m such that I, = I,,, forall r > m.

Theorem 3.4.1. Let R be an integral domain. If each ascending chain of principal ideals
in R becomes stationary, then R satisfies property (A).

Proof. Suppose that a # 0 is a not a unit in R. Suppose that a is not a product of
irreducible elements. Clearly then, a cannot itself be irreducible. Hence, a = a;b; with
a;,b; € R, and ay, b; are not units. If both a; or b; can be expressed as a product of
irreducible elements, then so can a. Without loss of generality then, suppose that a,
is not a product of irreducible elements.

Since a,|a, we have the inclusion of ideals aR ¢ a;R.If a;R = aR, then a; € aR, and
a, = ar = a;byr, which implies that b, is a unit contrary to our assumption. Therefore,
aR # a;R, and the inclusion is proper. By iteration then, we obtain a strictly increasing
chain of ideals

aRcaRc---ca,Rc---.

From our hypothesis on R, this must become stationary, contradicting the argument
above that the inclusion is proper. Therefore, a must be a product of irreducibles. O

Theorem 3.4.2. Each principal ideal domain R is a unique factorization domain.

Proof. Suppose that R is a principal ideal domain. R satisfies property (C) by Theo-
rem 3.2.7(1). Therefore, to show that it is a unique factorization domain, we must show
that it also satisfies property (A). From the previous theorem, it suffices to show that
each ascending chain of principal ideals becomes stationary. Consider such an as-
cending chain

aRca,Rc---ca,Rc---.

Now let

0
I= Ua,-R.

i=1

Now I is an ideal in R; hence a principal ideal. Therefore, I = aR for some a € R. Since
I'is a union, there exists an m such that a € a,,R. Therefore, I = aR c a,,R and, hence,
I = a,R, and a;R c ayR for all i > m. Therefore, the chain becomes stationary and,
from Theorem 3.4.1, R satisfies property (A). O
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42 —— 3 Prime elements and unique factorization domains

Since we showed that the integers Z are a PID, we can recover the fundamental
theorem of arithmetic from Theorem 3.4.2. We now present another important example
of a PID; hence a UFD. In the next chapter, we will look in detail at polynomials with
coefficients in an integral domain. Below, we consider polynomials with coefficients
in a field, and for the present leave out many of the details.

If K is a field and n is a nonnegative integer, then a polynomial of degree n over K
is a formal sum of the form

P(X) = g + a;x + -+ + a,x"

with a; € K fori = 0,...,n, a, # 0, and x an indeterminate. A polynomial P(x) over
K is either a polynomial of some degree or the expression P(x) = 0, which is called
the zero polynomial, and has degree —co. We denote the degree of P(x) by deg P(x). A
polynomial of zero degree has the form P(x) = a, and is called a constant polynomial,
and can be identified with the corresponding element of K. The elements a; € K are
called the coefficients of P(x); a, is the leading coefficient. If a,, = 1, P(x) is called
a monic polynomial. Two nonzero polynomials are equal if and only if they have the
same degree and exactly the same coefficients. A polynomial of degree 1 is called a
linear polynomial, whereas one of degree two is a quadratic polynomial.

We denote by K[x] the set of all polynomials over K, and we will show that K[x] be-
comes a principal ideal domain; hence a unique factorization domain. We first define
addition, subtraction, and multiplication on K[x] by algebraic manipulation. That is,
suppose P(x) = ay + a;x + -+ + X", Q(x) = by + byx + - -- + b,,x™, then

P(X)iQ(X):(aoib0)+(alib1)x+...;

that is, the coefficient of X' in P(x) + Q(x) is a; = b;, where a; = O fori > n, and b]- =0
for j > m. Multiplication is given by

P(X)Q(x) = (aghy) + (a;bg + aghy)x + (@ghy + ayby + aybo)x* + - - + (@yby)X™™,
that is, the coefficient of x' in P(x)Q(x) is (agh; + a1b;_1 + - - - + a;by).
Example 3.4.3. Let P(x) = 3x* + 4x — 6 and Q(x) = 2x + 7 be in Q[x]. Then
P(x) + Q(x) = 3%+ 6x +1
and

P(x)Q(x) = (3x2 +4X—6)(2x +7) = 6x> +29x° + 16x — 42.

From the definitions, the following degree relationships are clear. The proofs are
in the exercises.

Lemma 3.4.4. Let O # P(x), 0 # Q(x) in K[x]. Then the following hold:
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3.4 Principal ideal domains and unique factorization =—— 43

(1) degP(x)Q(x) = deg P(x) + deg Q(x).
(2) deg(P(x) + Q(x)) < max(deg P(x),deg Q(x)) if P(x) + Q(x) # O.

We next obtain the following:

Theorem 3.4.5. If K is a field, then K[x] forms an integral domain. K can be naturally
embedded into K[x] by identifying each element of K with the corresponding constant
polynomial. The only units in K[x] are the nonzero elements of K.

Proof. Verification of the basic ring properties is solely computational and is left to the
exercises. Since deg P(x)Q(x) = deg P(x) + deg Q(x), it follows that if neither P(x) # O,
nor Q(x) # 0, then P(x)Q(x) # 0 and, therefore, K[x] is an integral domain.

If G(x) is a unit in K[x], then there exists an H(x) € K[x] with G(x)H(x) = 1. From
the degrees, we have deg G(x) + deg H(x) = 0, and since deg G(x) > 0, deg H(x) > 0.
This is possible only if deg G(x) = deg H(x) = 0. Therefore, G(x) € K. O

Now that we have K[x] as an integral domain, we proceed to show that K[x] is a
principal ideal domain and, hence, there is unique factorization into primes. We first
repeat the definition of a prime in K[x]. If 0 # f(x) has no nontrivial, nonunit factors
(it cannot be factorized into polynomials of lower degree), then f(x) is a prime in K[x]
or a prime polynomial. A prime polynomial is also called an irreducible polynomial.
Clearly, if deg g(x) = 1, then g(x) is irreducible.

The fact that K[x] is a principal ideal domain follows from the division algorithm
for polynomials, which is entirely analogous to the division algorithm for integers.

Lemma 3.4.6 (Division algorithm in K[x]). If0 # f(x), 0 # g(x) € K[x], then there exist
unique polynomials q(x),r(x) € K[x] such that f(x) = q(x)g(x) + r(x), where r(x) = O or
degr(x) < degg(x). (The polynomials q(x) and r(x) are called, respectively, the quotient
and remainder.)

We give a formal proof in Chapter 4 on polynomials and polynomial rings, but
content ourselves here with doing two examples from Q[x]:

Example 3.4.7.
(1) Letf(x) =3x"—6x*+8x -6, g(x) = 2x> + 4. Then

4 ;2 _
% = %xz — 6 with remainder 8x + 18.
+

Thus, here, g(x) = %xz -6,r(x) =8x+18.
(2) Letf(x) =2x> +2x* + 6x° + 10x? + 4x, g(x) = x> + x. Then

2 + 2¢* + 6x% + 10x% + 4x

5 =2 +6x + 4.
X+ X

Thus, here, g(x) = 2X°> + 6x + 4, and r(x) = 0.
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44 — 3 Prime elements and unique factorization domains

Theorem 3.4.8. Let K be a field. Then the polynomial ring K|[x] is a principal ideal do-
main; hence a unique factorization domain.

Proof. The proof is essentially analogous to the proof in the integers. Let I be an ideal
in K[x] with I # K[x]. Let f(x) be a polynomial in I of minimal degree. We claim that
I = {f(x)), the principal ideal generated by f(x). Let g(x) € I. We must show that g(x)
is a multiple of f(x). By the division algorithm in K[x], we have

g(x) = q0Of (1) +r(x),

where r(x) = 0, or deg(r(x)) < deg(f(x)). If r(x) # 0, then deg(r(x)) < deg(f(x)). How-
ever, r(x) = g(x) — gq(x)f(x) € I since I is an ideal, and g(x),f(x) € I. This is a contra-
diction since f(x) was assumed to be a polynomial in I of minimal degree. Therefore,
r(x) = 0 and, hence, g(x) = g(x)f (x) is a multiple of f(x). Therefore, each element of I
is a multiple of f(x) and, hence, I = (f(x)).

Therefore, K[x] is a principal ideal domain and, from Theorem 3.4.2, a unique fac-
torization domain. O

We proved that in a principal ideal domain, every ascending chain of ideals be-
comes stationary. In general, a ring R (commutative or not) satisfies the ascending
chain condition or ACC if every ascending chain of left (or right) ideals in R becomes
stationary. A ring satisfying the ACC is called a Noetherian ring.

3.5 Euclidean domains

In analyzing the proof of unique factorization in both Z and K[x], it is clear that it
depends primarily on the division algorithm. In Z, the division algorithm depended
on the fact that the positive integers could be ordered, and in K[x], on the fact that
the degrees of nonzero polynomials are nonnegative integers and, hence, could be
ordered. This basic idea can be generalized in the following way:

Definition 3.5.1. Anintegral domain D is a Euclidean domain if there exists a function
N from D* = D\ {0} to the nonnegative integers such that

(1) N(r;) <N(rjr,) foranyry,r, € D*.

(2) Forallry,r, € Dwithr, # 0, there exist g,r € D such that

r,=qr +r,
where eitherr = 0, or N(r) < N(ry).

The function N is called a Euclidean norm on D.

Therefore, Euclidean domains are precisely those integral domains, which allow
division algorithms. In the integers Z, define N(z) = |z|. Then N is a Euclidean norm
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3.5 Euclidean domains = 45

on Z and, hence, Z is a Euclidean domain. On K[x], define N(p(x)) = deg(p(x)) if
p(x) # 0. Then N is also a Euclidean norm on K[x] so that K[x] is also a Euclidean
domain. In any Euclidean domain, we can mimic the proofs of unique factorization in
both Z and K[x] to obtain the following:

Theorem 3.5.2. Every Euclidean domain is a principal ideal domain; hence a unique
factorization domain.

Before proving this theorem, we must develop some results on the number theory
of general Euclidean domains. First, some properties of the norm.

Lemma 3.5.3. IfR is a Euclidean domain then the following hold:
(a) N(Q1)is minimal among {N(r) : r € R*}.
(b) N(u) = N(1) if and only if u is a unit.
(c) N(a) = N(b) fora,b € R* if a, b are associates.
(d) N(a) < N(ab) unless b is a unit.
Proof. (a) From property (1) of Euclidean norms, we have
N(@)<N@-r)=N(r) foranyreR".
(b) Suppose u is a unit. Then there exists u™! with u - u™! = 1. Then

N@) <N(u-u™)=NQ).

From the minimality of N(1), it follows that N(u) = N(1).
Conversely, suppose N(u) = N(1). Apply the division algorithm to get

l=qu+r.
If r # 0, then N(r) < N(u) = N(1), contradicting the minimality of N(1). Therefore,
r = 0, and 1 = qu. Then u has a multiplicative inverse and, hence, is a unit.
(c) Suppose a, b € R* are associates. Then a = ub with u a unit. Then
N(b) < N(ub) = N(a).
On the other hand, b = u™'a. Therefore,

N(a) < N(u'a) = N(b).

Since N(a) < N(b), and N(b) < N(a), it follows that N(a) = N(b).
(d) Suppose N(a) = N(ab). Apply the division algorithm

a=q(ab)+r,
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46 —— 3 Prime elements and unique factorization domains

wherer = 0, or N(r) < N(ab). Ifr # 0, then
r=a-qab=a(l-gb) = N(ab) = N(a) < N(a(1-gb)) = N(r),
contradicting that N(r) < N(ab). Hence, r = 0, and a = g(ab) = (gb)a. Then
a=(gh)a=1-a = gh=1

since there are no zero divisors in an integral domain. Hence, b is a unit. Since N(a) <
N(ab), it follows that if b is not a unit, we must have N(a) < N(ab). O

We can now prove Theorem 3.5.2.

Proof. Let D be a Euclidean domain. We show that each ideal I # D in D is principal.
LetI # Dbe anideal in D. If I = {0}, then I = (0), and I is principal. Therefore, we
may assume that there are nonzero elements in I. Hence, there are elements x € I with
strictly positive norm. Let a be an element of I of minimal norm. We claim that I = {a).
Let b € I. We must show that b is a multiple of a. Now by the division algorithm

b=qa+r,

where either r = 0, or N(r) < N(a). As in Z and K[x], we have a contradiction if r # O.
In this case, N(r) < N(a), butr = b — ga € I since I is an ideal, contradicting the
minimality of N(a). Therefore, r = 0, and b = ga and, hence, I = (a). O

As a final example of a Euclidean domain, we consider the Gaussian integers
Zlil]={a+bi:a,becZ}.

It was first observed by Gauss that this set permits unique factorization. To show this,
we need a Euclidean norm on Z][i].

Definition 3.5.4. If z = a + bi € Z[i], then its norm N(z) is defined by
N(a + bi) = a* + b

The basic properties of this norm follow directly from the definition (see exer-
cises).

Lemma 3.5.5. Ifa, B € Z][i] then we have the following:
(1) N(a) is an integer for all a € Z]i].

(2) N(a) =0 foralla € ZJi].

(3) N(a) =0ifandonlyifa = 0.

(4) N(a)=1foralla + 0.

(5) N(aB) = N(a)N(B); that is, the norm is multiplicative.
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3.5 Euclidean domains = 47

From the multiplicativity of the norm, we have the following concerning primes
and units in Z[i].

Lemma 3.5.6.

(1) u € Z[i] is a unit if and only if N(u) = 1.

(2) If m € ZJi] and N(rt) = p, where p is an ordinary prime in Z, then 7 is a prime in
VALIR

Proof. Certainly u is a unit if and only if N(u) = N(1). But in Z[i], we have N(1) = 1.
Therefore, the first part follows.

Suppose next that 77 € Z[i] with N(r1) = p for some p € Z. Suppose that 7 = m;7,.
From the multiplicativity of the norm, we have

N(m) = p = N(m)N(mmy).

Since each norm is a positive ordinary integer, and p is a prime, it follows that either
N(m) = 1, or N(m,) = 1. Hence, either m; or m, is a unit. Therefore, 7 is a prime in
Zli]. O

Armed with this norm, we can show that Z[i] is a Euclidean domain.
Theorem 3.5.7. The Gaussian integers Z[i] form a Euclidean domain.

Proof. That Z[i] forms a commutative ring with an identity can be verified directly
and easily. If af = 0, then N(a)N(B) = 0, and since there are no zero divisors in Z, we
must have N(a) = 0, or N(8) = 0. But then either a = 0, or § = 0 and, hence, Z][i] is
an integral domain. To complete the proof, we show that the norm N is a Euclidean
norm.

From the multiplicativity of the norm, we have, ifa, § # 0

N(af) = N(a)N(B) > N(a) since N(B) = 1.

Therefore, property (1) of Euclidean norms is satisfied. We must now show that the
division algorithm holds.

Leta = a + bi and = c + di be Gaussian integers. Recall that the inverse for a
nonzero complex number z = x + iy is

1_z _x-iy
z  z2 x2+y?
Therefore, as a complex number
B . c—di
- =a—— =(a+bi)——
ﬁ |B|2 ( + )Cz+d2
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48 —— 3 Prime elements and unique factorization domains

Now since a, b, ¢, d are integers u, v must be rationals. The set
fu+iv:uve@Q}

is called the set of the Gaussian rationals.

Ifu,v e Z, thenu +iv € Z[i], a = g with g = u + iv, and we are done. Otherwise,
choose ordinary integers m, n satisfying |[u — m| < % and |v-n| < %, andletg =m+in.
Then q € Z[i]. Let r = a — gB. We must show that N(r) < N(f).

Working with complex absolute value, we get

Il = la— Bl = IBII% ~q|

Now
1\ /1y
%—q‘ =|u-m)+ilv-n)| = \/(u—m)2+(v—n)2 < <§> +<§> <l
Therefore,
Irl <18l = Ir> <> = N(r) <N(@),
completing the proof. O

Since Z[i] forms a Euclidean domain, it follows from our previous results that Z[i]
must be a principal ideal domain; hence a unique factorization domain.

Corollary 3.5.8. The Gaussian integers are a UFD.

Since we will now be dealing with many kinds of integers, we will refer to the
ordinary integers Z as the rational integers and the ordinary primes p as the rational
primes. It is clear that Z can be embedded into Z[i]. However, not every rational prime
is also prime in Z[i]. The primes in Z[i] are called the Gaussian primes. For example,
we can show that both 1 + i and 1 — i are Gaussian primes; that is, primes in Z[i].
However, (1 +i)(1 - i) = 2. Therefore, the rational prime 2 is not a prime in Z[i]. Using
the multiplicativity of the Euclidean norm in Z[i], we can describe all the units and
primes in Z[i].

Theorem 3.5.9.

(1) The only units in Z[i] are +1, +i.

(2) Suppose m is a Gaussian prime. Then m is one of the following:
(@) a positive rational prime p = 3 mod 4, or an associate of such a rational prime.
(b) 1+1, oranassociate of 1 +1i.
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3.5 Euclidean domains =—— 49

(¢c) a+ bi,ora-bi,wherea >0,b > 0, ais even, and N(r1) = a’ + b? =pwithpa
rational prime congruent to 1 mod 4, or an associate of a + bi, or a — bi.

Proof. (1) Suppose u = x + iy € Z[i] is a unit. Then, from Lemma 3.5.6, we have N(u) =
x>+ y2 =1, implying that (x,y) = (0, +1) or (x,y) = (+1,0). Hence, u = +1 or u = +i.

(2) Now suppose that 7 is a Gaussian prime. Since N(1) = n7t, and 1 € Z[i], it
follows that m|N(mr). N(mr) is a rational integer, so N(r) = p; - - - py, Where the p;’s are
rational primes. By Euclid’s lemma 7z|p; for some p; and, hence, a Gaussian prime must
divide at least one rational prime. On the other hand, suppose 7|p and m|q, where
D, q are different primes. Then (p,q) = 1 and, hence, there exist x,y € Z such that
1 = px + qy. It follows that 7|1 is a contradiction. Therefore, a Gaussian prime divides
one and only one rational prime.

Let p be the rational prime that 7 divides. Then N(71)|N(p) = p?. Since N(x) is a
rational integer, it follows that N(rr) = p, or N(7r) = pz. If 7 = a+ bi, then a® + b* = D,
ora’ + b? = p*.

If p = 2, then a*+b* =2, ora®+b* = 4.1t follows that 71 = +2, +2i, or 7 = 1+1, oran
associate of 1 + i. Since (1 + i)(1 — i) = 2, and neither 1 + i, nor 1 — i are units, it follows
that neither 2, nor any of its associates are primes. Then 7 = 1 + i, or an associate of
1+ 1i. To see that 1 + i is prime supposes 1 +i = aff. Then N(1 +i) = 2 = N(a)N(B). It
follows that either N(a) = 1, or N(8) = 1, and either a or 8 is a unit.

If p # 2, then either p = 3 mod 4, or p = 1 mod 4. Suppose first that p = 3 mod 4.
Then a® + b* = p would imply, from Fermat’s two-square theorem (see [43]), that p =
1 mod 4. Therefore, from the remarks above a? + b? = p?, and N(r) = N(p). Since 7|p,
we have 1 = ap with a € Z[i]. From N(71) = N(p), we get that N(a) = 1, and a is a unit.
Therefore, m and p are associates. Hence, in this case, m is an associate of a rational
prime congruent to 3 mod 4.

Finally, suppose p = 1 mod 4. From the remarks above, either N(rr) = p, or N(71) =
p’. If N(m) = p?, then a® + b* = p. Since p = 1mod 4, from Fermat’s two square
theorem, there exist m, n € Z with m?> + n® = p. Letu = m+in, then the norm N(u) = p.
Since p is arational prime, it follows that u is a Gaussian prime. Similarly, its conjugate
u is also a Gaussian prime. Now uu | p2 = N(m). Since m|N(m), it follows that |uu,
and from Euclid’s lemma, either rt|u, or z|u. If |u, they are associates since both are
primes. But this is a contradiction since N(71) # N(u). The same is true if 77|u.

It follows that if p = 1 mod 4, then N(7) # p*. Therefore, in this case, N() =
p= a* + b%. An associate of 7 has both a,b > 0 (see exercises). Furthermore, since
a’+ b = p, one of a or b must be even. If a is odd, then b is even; then imr is an
associate of 71 with a even, completing the proof. O

Finally, we mention that the methods used in Z[i] cannot be applied to all
quadratic integers. For example, we have seen that there is not unique factorization

in Z[V-5].
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3.6 Overview of integral domains

Here we present some additional definitions for special types of integral domains.

Definition 3.6.1.
(1) A Dedekind domain D is an integral domain such that each nonzero proper ideal
A ({0} # A # R) can be written uniquely as a product of prime ideals

A=P,---P,

with each P; being a prime ideal and the factorization being unique up to ordering.
(2) A Priifer ring R is an integral domain such that

A-(BnC)=ABnAC

for all ideals A,B, Cin R.

Dedekind domains arise naturally in algebraic number theory. It can be proved
that the rings of algebraic integers in any algebraic number field are Dedekind do-
mains (see [43]).

If Ris a Dedekind domain, it is also a Priifer Ring. If R is a Priifer ring and a unique
factorization domain, then R is a principal ideal domain.

In the next chapter, we will prove a Gaussian theorem which states that if R is a
UFD, then the polynomial ring R[x] is also a UFD. If K is a field, we have already seen
that K[x] is a UFD. Hence, the polynomial ring in several variables K[x;, ..., x,] is also
a UFD. This fact plays an important role in algebraic geometry.

3.7 Exercises

1. Let R be an integral domain, and let 7 € R\ (U(R) U {0}). Show the following:

(i) Iffor each a € Rwith 7 } a, there exist A, € R with A + pa = 1, then m is a
prime element of R.

(if) Give an example for a prime element 77 in an UFD R, which does not satisfy
the conditions of (i).

2. Let Rbea UFD, and let a, ..., a; be pairwise coprime elements of R. If a; - - - a; is
an m-th power (m € ), then all factors g; are an associate of an m-th power. Is
each g; necessarily an m-th power?

3. Decide if the unit group of Z[V3], Z[ V5], and Z[ V7] is finite or infinite. For which
a € Z are (1 - +/5) and (a + V/5) associates in Z[+/5]?

4, Letk ezZandk+ x*forallx € Z.Leta = a+ bvk and § = c + dVk be elements of
Z[Vk], and N(a) = a® - kb?, N(B) = ¢ — kd®. Show the following:

(i) The equality of the absolute values of N(a) and N(B) is necessary for the as-
sociation of a and 8 in Z[Vk). Is this constraint also sufficient?
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(ii) Sufficient for the irreducibility of @ in Z[Vk] is the irreducibility of N(a) in Z.
Is this also necessary?

In general irreducible elements are not prime. Consider the set of complex number

given by

R=27[iV5] = {x +iyV5:x,y € Z}.

Show that they form a subring of C.
For an element x + iy V5 € R define its norm by

N(x +iyV5) = |x +iyV5| = x* + 5%

Prove that the norm is multiplicative, that is N(ab) = N(a)N(b).

Prove Lemma 3.4.4.

Prove that the set of polynomials R[x] with coefficients in a ring R forms a ring.
Prove the basic properties of the norm of the Gaussian integers. If a, 8 € Z][i] then:
(i) N(a)is an integer for all a € Z[i].

(ii) N(a) = Oforall a € Z[i].

(iii) N(a) = 0 if and only if « = 0.

(iv) N(a) > 1 forall a # O.

(v) N(aB) = N(a)N(B), that is the norm is multiplicative.
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4 Polynomials and polynomial rings

4.1 Polynomials and polynomial rings

In the last chapter, we saw that if K is a field, then the set of polynomials with co-
efficients in K, which we denoted K[x], forms a unique factorization domain. In this
chapter, we take a more detailed look at polynomials over a general ring R. We then
prove that if R is a UFD, then the polynomial ring R[x] is also a UFD. We first take a
formal look at polynomials.

Let R be a commutative ring with an identity. Consider the set R of functions f
from the nonnegative integers N = N U {0} into R with only a finite number of values
nonzero. That is,

R={f:N — R: f(n) # 0 for only finitely many n}.
On R, we define the following addition and multiplication:

(f +8)n) = f(n) + g(n)
F-9m=Y figh.

i+j=n
If weletx = (0,1,0,...) and identify (r,0,...) with r € R, then
0 i+1 i
x =(1,0,..)=1, and x =x-x.

Now if f = (ry, 1,15, ...), then f can be written as

for some m > O since r; # O for only finitely many i. Furthermore, this presentation is
unique.

We now call x an indeterminate over R, and write each element of R as f(x) =
Z;’io r,-xi with f(x) = O or r,,, # 0. We also now write R[x] for R. Each element of R[x]
is called a polynomial over R. The elements r, ..., r,, are called the coefficients of f (x)
with r,, the leading coefficient. If r,, + 0, the non-negative integer m is called the de-
gree of f(x), which we denote by deg f(x). We say that f(x) = 0 has degree —co. The
uniqueness of the representation of a polynomial implies that two nonzero polynomi-
als are equal if and only if they have the same degree and exactly the same coefficients.
A polynomial of degree 1 is called a linear polynomial, whereas one of degree two is a
quadratic polynomial. The set of polynomials of degree 0, together with 0, form a ring
isomorphic to R and, hence, can be identified with R, the constant polynomials. Thus,
the ring R embeds in the set of polynomials R[x]. The following results are straightfor-
ward concerning degree:

https://doi.org/10.1515/9783110603996-004
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54 —— 4 Polynomials and polynomial rings

Lemma 4.1.1. Let f(x) # 0,g(x) # O € R[x]. Then the following hold:
(@) degf(x)g(x) < degf(x)+ degg(x).
(b) deg(f(x) + g(x)) < max(degf(x),deg g(x)).

If R is an integral domain, then we have equality in (a).

Theorem 4.1.2. Let R be a commutative ring with an identity. Then the set of polynomi-
als R[x] forms a ring called the ring of polynomials over R. The ring R identified with O
and the polynomials of degree 0 naturally embeds into R[x]. R[x] is commutative. Fur-
thermore, R[x] is uniquely determined by R and x.

Proof. Setf(x) = Y1, rl-xi and g(x) = Zj"io ijj . The ring properties follow directly by
computation. The identification of r € R with the polynomial r(x) = r provides the
embedding of R into R[x]. From the definition of multiplication in R[x], if R is commu-
tative, then R[x] is commutative. Note that if R has a multiplicative identity 1 # 0, then
this is also the multiplicative identity of R[x].

Finally, if S is a ring that contains R and a € S, then

Rla] = ‘{Z ra :r; € R, and r; # O for only a finite number of i}

i>0

is a homomorphic image of R[x] via the map

z rixi — Z riai.

i=0 i=0

Hence, R[x] is uniquely determined by R and x. We remark that R[a] must be commu-
tative. O

If Ris an integral domain, then irreducible polynomials are defined as irreducibles
in the ring R[x]. If R is a field, then f(x) is an irreducible polynomial if there is no fac-
torization f(x) = g(x)h(x), where g(x) and h(x) are polynomials of lower degree than
f(x). Otherwise, f(x) is called reducible. In elementary mathematics, polynomials are
considered as functions. We recover that idea via the concept of evaluation.

Definition 4.1.3. Let f(x) = ry + ;X + - - + I,,x" be a polynomial over a commutative
ring R with an identity, and let c € R. Then the element

(©) =ry+rc+---+r,c" €R
0 1 n

is called the evaluation of f(x) at c.

Definition 4.1.4. If f(x) € R[x] and f(c) = O for c € R, then c is called a zero or a root
of f(x)inR.
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4.2 Polynomialrings over fields

We now restate some of the result of the last chapter for K[x], where K is a field. We
then consider some consequences of these results to zeros of polynomials.

Theorem 4.2.1. If K is a field, then K[x] forms an integral domain. K can be naturally
embedded into K[x] by identifying each element of K with the corresponding constant
polynomial. The only units in K[x] are the nonzero elements of K.

Proof. Verification of the basic ring properties is solely computational and is left to the
exercises. Since deg P(x)Q(x) = deg P(x) + deg Q(x), it follows that if neither P(x) + O,
nor Q(x) # 0, then P(x)Q(x) # 0. Therefore, K[x] is an integral domain.

If G(x) is a unit in K[x], then there exists an H(x) € K[x] with G(x)H(x) = 1.

From the degrees, we have deg G(x) + deg H(x) = 0, and since deg G(x) > O,
deg H(x) > 0. This is possible only if deg G(x) = deg H(x) = 0. Therefore, G(x) ¢ K. O

Now that we have K[x] as an integral domain, we proceed to show that K[x] is a
principal ideal domain and, hence, there is unique factorization into primes. We first
repeat the definition of a prime in K[x]. If O # f(x) has no nontrivial, nonunit factors (it
cannot be factorized into polynomials of lower degree), then f(x) is a prime in K[x] ora
prime polynomial. A prime polynomial is also called an irreducible polynomial over K.
Clearly, if deg g(x) = 1, then g(x) is irreducible.

The fact that K[x] is a principal ideal domain follows from the division algorithm
for polynomials, which is entirely analogous to the division algorithm for integers.

Theorem 4.2.2 (Division algorithm in K[x]). If0 # f(x),0 # g(x) € K[x], then there ex-
ist unique polynomials q(x),r(x) € K[x] such that f(x) = q(x)g(x) + r(x), where r(x) = O,
or degr(x) < degg(x). (The polynomials q(x) and r(x) are called respectively the quo-
tient and remainder.)

Proof. Ifdegf(x) = 0 and degg(x) > 1, then we just choose g(x) = 0, and r(x) = f(x).
If degf(x) = 0 = degg(x), then f(x) = f € K, and g(x) = g € K, and we choose
qix) = é and r(x) = 0. Hence, Theorem 4.2.2 is proved for deg f(x) = 0, also certainly
the uniqueness statement.

Now, let n > 0 and Theorem 4.2.2 be proved for all f(x) € K[x] with degf(x) < n.
Now, given

fOO) = apx +a, X" '+ +ax +a, witha,+0, and

g(X) = byX™ + by X"+ + bx + by, withb,, #0,m>0.

If m > n, then just choose g(x) = 0 and r(x) = f(x).
Now, finally, let 0 < m < n. We define

h(x) = f(x) - g—"x"‘mg<x).

m
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56 —— 4 Polynomials and polynomial rings

We have deg h(x) < n. Hence, by induction assumption, there are g;(x) and r(x) with
h(x) = ¢;(x)g(x) + r(x) and deg r(x) < deg g(x). Then

£O0 = hix) + Z—"x"*"’g(x)

= <Z—"X"_"’ + ql(X)>g(X) +1r(x)
= q(0g(x) +r(x) with g(x) = Z—"x""" +q,00,

which proves the existence.
We now show the uniqueness. Let

F(x) = q,00g(x) +ry(x)
= gr(X)g(x) + ry(),

with
degr,(x) < degg(x), and degr,(x) < degg(x).
Assume ry(x) # r,(x). Let degr;(x) > deg r,(x). We get
(22(0) = ¢1(0)g(x) = 11 (x) = 1,00,

which gives a contradiction because deg(r; (x) —r,(x)) < deg g(x), and g,(x) —g;(x) # O
if r;(x) # r5(x). Therefore, r;(x) = r,(x), and furthermore g;(x) = q,(x) because K[x] is
an integral domain. O

Example 4.2.3. Letf(x) = 2 +x* - 5x+3, g(x) = x* + x + 1. Then

23 +x*-5x+3

=2x -1 with remainder - 6x + 4.
X+x+1

Hence, q(x) = 2x -1, r(x) = —6x + 4, and
20+ X% =5x+3= (2 - 1)(X* +x+1) + (=6x + 4).

Theorem 4.2.4. Let K be a field. Then the polynomial ring K[x] is a principal ideal do-
main, and hence a unique factorization domain.

We now give some consequences relative to zeros of polynomials in K[x].

Theorem 4.2.5. Iff(x) € K[x] and c € K with f(c) = 0, then
f00 = (x=c)h(x),
where deg h(x) < degf(x).
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4.3 Polynomial rings over integral domains = 57

Proof. Divide f(x) by x — c. Then by the division algorithm, we have
fO0 = (x = )h(x) +r(x),

where r(x) = 0, or deg r(x) < deg(x—c) = 1. Hence, if r(x) # 0, then r(x) is a polynomial
of degree 0, that is, a constant polynomial, and thus r(x) = r for r € K. Hence, we have

f(x)=(x-c)h(x) +r.
This implies that
0=f(x)=0h(c)+r=r

and, therefore, r = 0, and f(x) = (x — ¢)h(x). Since deg(x — ¢) = 1, we must have that
deg h(x) < degf(x). O

Iff(x) = (x — ¢)*h(x) for some k > 1 with h(c) # 0, then c is called a zero of order k.

Theorem 4.2.6. Let f(x) € K[x] with degree 2 or 3. Then f is irreducible if and only if
f(x) does not have a zero in K.

Proof. Suppose that f(x) is irreducible of degree 2 or 3. If f(x) has a zero c, then from
Theorem 4.2.5, we have f(x) = (x — ¢)h(x) with h(x) of degree 1 or 2. Therefore, f(x) is
reducible a contradiction and, hence, f(x) cannot have a zero.

From Theorem 4.2.5, if f(x) has a zero and is of degree greater than 1, then f(x) is
reducible.

If f(x) is reducible, then f(x) = g(x)h(x) with deg g(x) = 1 and, hence, f(x) has a
zero in K. O

4.3 Polynomial rings over integral domains

Here we consider R[x] where R is an integral domain.

Definition 4.3.1. Let R be an integral domain. Then a;,a,, ..., a, € R are coprime if the
set of all common divisors of a;, a,, . .., a,, consists only of units.

Notice, for example, that this concept depends on the ring R. For example, 6 and
9 are not coprime over the integers Z since 3|6 and 3|9 and 3 is not a unit. However,
6 and 9 are coprime over the rationals Q. Here, 3 is a unit.

Definition 4.3.2. Let f(x) = Z?:o rl-x" € R[x], where R is an integral domain. Then f(x)
is a primitive polynomial or just primitive if ry,1,, ..., r, are coprime in R.

Theorem 4.3.3. Let R be an integral domain. Then the following hold:
(a) The units of R[x] are the units of R.
(b) Ifpis a prime element of R, then p is a prime element of R[x].
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58 —— 4 Polynomials and polynomial rings

Proof. If r € R is a unit, then since R embeds into R[x], it follows that r is also a unit
in R[x]. Conversely, suppose that h(x) € R[x] is a unit. Then there is a g(x) such that
h(x)g(x) = 1. Hence, degf(x) + degg(x) = deg1 = 0. Since degrees are nonnegative
integers, it follows that deg f(x) = deg g(x) = 0 and, hence, f(x) € R.

Now suppose that p is a prime element of R. Then p # 0, and pR is a prime ideal
in R. We must show that pR[x] is a prime ideal in R[x]. Consider the map

T:R[x] - (R/pR)[x] given by

T(Zn: rixi> = i(r,- +pR)xi.
i=0

i=0

Then 7 is an epimorphism with kernel pR[x]. Since pR is a prime ideal, we know that
R/pRis anintegral domain. It follows that (R/pR)[x] is also an integral domain. Hence,
PR[x] must be a prime ideal in R[x], and therefore p is also a prime element of R[x]. [

Recall that each integral domain R can be embedded into a unique field of frac-
tions K. We can use results on K[x] to deduce some results in R[x].

Lemma 4.3.4. IfK is a field, then each nonzero f(x) € K[x] is a primitive.

Proof. SinceK is a field, each nonzero element of K is a unit. Therefore, the only com-
mon divisors of the coefficients of f(x) are units and, hence, f(x) € K[x] is primi-
tive. O

Theorem 4.3.5. Let R be anintegral domain. Then eachirreducible f(x) € R[x] of degree
> 0 is primitive.

Proof. Let f(x) be an irreducible polynomial in R[x], and let r € R be a common divi-
sor of the coefficients of f(x). Then f(x) = rg(x), where g(x) € R[x]. Then degf(x) =
degg(x) > 0, so g(x) ¢ R. Since the units of R[x] are the units of R, it follows that g(x)
is not a unit in R[x]. Since f(x) is irreducible, it follows that r must be a unit in R[x]
and, hence, r is a unit in R. Therefore, f(x) is primitive. O

Theorem 4.3.6. Let R be an integral domain and K its field of fractions. If f (x) € R[x] is
primitive and irreducible in K[x], then f (x) is irreducible in R[x].

Proof. Suppose that f(x) € R[x] is primitive and irreducible in K[x], and suppose that
f(x) = g(x)h(x), where g(x), h(x) € R[x] c K[x]. Since f(x) is irreducible in K[x], either
g(x) or h(x) must be a unit in K[x]. Without loss of generality, suppose that g(x) is a
unit in K[x]. Then g(x) = g € K. But g(x) € R[x], and K N R[x] = R.

Hence, g € R. Then g is a divisor of the coefficients of f(x), and as f (x) is primitive,
g(x) must be a unit in R and, therefore, also a unit in R[x]. Therefore, f(x) is irreducible
in R[x]. O
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4.4 Polynomial rings over unique factorization domains

In this section, we prove that if R is a UFD, then the polynomial ring R[x] is also a UFD.
We first need the following due to Gauss:

Theorem 4.4.1 (Gauss’ lemma). Let R be a UFD and f(x), g(x) primitive polynomials in
R(x]. Then their product f (x)g(x) is also primitive.

Proof. Let R be a UFD and f(x), g(x) primitive polynomials in R[x]. Suppose that
f(x)g(x) is not primitive. Then there is a prime element p € R that divides each of
the coefficients of f(x)g(x). Then p|f (x)g(x). Since prime elements of R are also prime
elements of R[x], it follows that p is also a prime element of R[x] and, hence, p|f(x),
or p|g(x). Therefore, either f(x) or g(x) is not primitive, giving a contradiction. O

Theorem 4.4.2. Let R be a UFD and K its field of fractions.

(@) Ifg(x) € K[x] is nonzero, then there is a nonzero a € K such that ag(x) € R[x] is
primitive.

(b) Letf(x),g(x) € R[x] with g(x) primitive and f (x) = ag(x) forsome a € K. Thena € R.

(c) Iff(x) € R[x] is nonzero, then there is a b € R and a primitive g(x) € R[x] such that
f@) = bg(x).

Proof. (a) Suppose that g(x) = Y, a;x' with a; = ;—l, 1;,S; € R.Sets = 5451 S,
Then sg(x) is a nonzero element of R[x]. Let d be a greatest common divisor of the
coefficients of sg(x). If we set a = 5—1, then ag(x) is primitive.

(b) For a € K, there are coprime r,s € R satisfying a = g Suppose that a ¢ R.
Then there is a prime element p € R dividing s. Since g(x) is primitive, p does not
divide all the coefficients of g(x). However, we also have f(x) = ag(x) = g g(x). Hence,
sf(x) = rg(x), where p|s and p does not divide r. Therefore, p divides all the coefficients
of g(x) and, hence, a € R.

(c) From part (a), there is a nonzero a € K such that af (x) is primitive in R[x].
Then f(x) = a ‘(af(x)). From part (b), we must have a™! € R. Set g(x) = af(x) and
b=al. O

Theorem 4.4.3. Let R be a UFD and K its field of fractions. Let f (x) € R[x] be a polyno-

mial of degree > 1.

(@) Iff(x)is primitive and f (x)|g(x) in K[x], then f (x) divides g(x) also in R[x].

(b) Iff(x) is irreducible in R[x], then it is also irreducible in K[x].

(c) Iff(x)is primitive and a prime element of K[x], then f(x) is also a prime element of
R[x].

Proof. (a) Suppose that g(x) = f(x)h(x) with h(x) € K[x]. From Theorem 4.4.2 part
(@), there is a nonzero a € K such that h;(x) = ah(x) is primitive in R[x]. Hence,
gx) = %(f (¥)h;(x)). From Gauss’ lemma f (x)h; (x) is primitive in R[x]. Therefore, from
Theorem 4.4.2 part (b), we have % € R. It follows that f(x)|g(x) in R[x].
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(b) Suppose that g(x) € K[x] is a factor of f(x). From Theorem 4.4.2 part (a), there
is a nonzero a € K with g;(x) = ag(x) primitive in R[x]. Since a is a unit in K, it follows
that

g)If(x) inK[x] implies g)|f(x) inKI[x]
and, hence, since g;(x) is primitive

g f(x) inR[x].

However, by assumption, f(x) is irreducible in R[x]. This implies that either g;(x) is a
unit in R, or g;(x) is an associate of f(x).

If g,(x) is a unit, then g; € K, and g; = ga. Hence, g € K; that is, g = g(x) is a unit.

If g,(x) is an associate of f(x), then f(x) = bg(x), where b € K since g;(x) = ag(x)
with a € K. Combining these, it follows that f(x) has only trivial factors in K[x], and
since—by assumption—f(x) is nonconstant, it follows that f(x) is irreducible in K[x].

(c) Suppose that f(x)|g(x)h(x) with g(x), h(x) € R[x]. Since f(x) is a prime element
in K[x], we have that f(x)|g(x) or f(x)|h(x) in K[x]. From part (a), we have f(x)|g(x) or
f(x)|h(x) in R[x] implying that f(x) is a prime element in R[x]. O

We can now state and prove our main result.
Theorem 4.4.4 (Gauss). Let R be a UFD. Then the polynomial ring R[x] is also a UFD.

Proof. By induction, on degree, we show that each nonunit f(x) € R[x], f(x) # 0, is
a product of prime elements. Since R is an integral domain, so is R[x]. Therefore, the
fact that R[x] is a UFD then follows from Theorem 3.3.3.

If degf(x) = 0, then f(x) = f is a nonunit in R. Since R is a UFD, f is a product
of prime elements in R. However, from Theorem 4.3.3, each prime factor is then also
prime in R[x]. Therefore, f(x) is a product of prime elements.

Now suppose n > 0 and that the claim is true for all polynomials f(x) of degree
< n. Let f(x) be a polynomial of degree n > 0. From Theorem 4.4.2 (c), thereisana € R
and a primitive h(x) € R[x] satisfying f(x) = ah(x). Since R is a UFD, the element a is a
product of prime elements in R, or a is a unit in R. Since the units in R[x] are the units
in R, and a prime element in R is also a prime element in R[x], it follows that a is a
product of prime elements in R[x], or a is a unit in R[x]. Let K be the field of fractions
of R. Then K[x] is a UFD. Hence, h(x) is a product of prime elements of K[x]. Let p(x) €
K[x] be a prime divisor of h(x). From Theorem 4.4.2, we can assume by multiplication
of field elements that p(x) € R[x], and p(x) is primitive. From Theorem 4.4.2 (c), it
follows that p(x) is a prime element of R[x]. Furthermore, from Theorem 4.4.3 (a), p(x)
is a divisor of h(x) in R[x]. Therefore,

f(x) = ah(x) = ap(x)g(x) € R[x],

where the following hold:
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(1) ais a product of prime elements of R[x], or a is a unit in R[x],
(2) degp(x) > 0, since p(x) is a prime element in K[x],

(3) p(x)is a prime element in R[x], and

(4) degg(x) < degf(x) since deg p(x) > O.

By our inductive hypothesis, we have then that g(x) is a product of prime elements in
R[x], or g(x) is a unit in R[x]. Therefore, the claim holds for f(x), and therefore holds
for all f(x) by induction. O

If R[x] is a polynomial ring over R, we can form a polynomial ring in a new inde-
terminate y over this ring to form (R[x])[y]. It is straightforward that (R[x])[y] is iso-
morphic to (R[y])[x]. We denote both of these rings by R[x, y] and consider this as the
ring of polynomials in two commuting variables x, y with coefficients in R.

If R is a UFD, then from Theorem 4.4.4, R[x] is also a UFD. Hence, R[x,y] is
also a UFD. Inductively then, the ring of polynomials in n commuting variables
R[x1,%5,...,x,] is also a UFD. Here, R[x;,...,X,] is inductively given by R[x;,...,x,] =
(RIxq, . s Xpq DXyl ifn > 2.

Corollary 4.4.5. If R is a UFD, then the polynomial ring in n commuting variables
R[xy,...,x,] is also a UFD.

We now give a condition for a polynomial in R[x] to have a zero in K[x], where K
is the field of fractions of R.

Theorem 4.4.6. Let R be a UFD and K its field of fractions. Let f (x) = X" +71,,_;x" 1+ .+
1o € R[x]. Suppose that § € K is a zero of f(x). Then B is in R and is a divisor of r,.

Proof. Letf = g, where s # 0,and r,s € Rand r, s are coprime. Now

r " rl

f(;) =0= p +r""1F +e 1.

Hence, it follows that s must divide r". Since r and s are coprime, s must be a unit, and
then, without loss of generality, we may assume that s = 1. Then 8 € R, and

n-1

r(r" ) = 1o,

and so r|a. O

Note that since Z is a UFD, Gauss’ theorem implies that Z[x] is also a UFD. How-
ever, Z[x] is not a principal ideal domain. For example, the set of integral polynomials
with even constant term is an ideal, but not principal. We leave the verification to the
exercises. On the other hand, we saw that if K is a field, K[x] is a PID. The question
arises as to when R[x] actually is a principal ideal domain. It turns out to be precisely
when R is a field.
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Theorem 4.4.7. Let R be a commutative ring with an identity. Then the following are
equivalent:

(a) Risafield.

(b) R[x]is Euclidean.

(c) R[x]is a principal ideal domain.

Proof. From Section 4.2, we know that (a) implies (b), which in turn implies (c). There-
fore, we must show that (c) implies (a). Assume then that R[x] is a principal ideal do-
main. Define the map

T:R[x] > R
by
7(f(0) = f(0).

It is easy to see that 7 is a ring homomorphism with R[x]/ker(r) = R. Therefore,
ker(t) # R[x]. Since R[x] is a principal ideal domain, it is an integral domain. It follows
that ker(r) must be a prime ideal since the quotient ring is an integral domain. How-
ever, since R[x] is a principal ideal domain, prime ideals are maximal ideals; hence,
ker(t) is a maximal ideal by Theorem 3.2.7. Therefore, R = R[x]/ ker(r) is a field. [

We now consider the relationship between irreducibles in R[x] for a general inte-
gral domain and irreducibles in K[x], where K is its field of fractions. This is handled
by the next result called Eisenstein’s criterion.

Theorem 4.4.8 (Eisenstein’s criterion). Let R be an integral domain and K its field of
fractions. Let f(x) = Z?:o a,-xi € R[x] of degree n > 0. Let p be a prime element of R
satisfying the following:

(1) pla;fori=0,...,n-1.

(2) p does not divide a,,.

(3) p? does not divide aj,.

Then the following hold:
(@) Iff(x)is primitive, then f(x) is irreducible in R[x].
(b) Suppose that R is a UFD. Then f(x) is also irreducible in K[x].

Proof. (a) Suppose that f(x) = g(x)h(x) with g(x), h(x) € R[x]. Suppose that

Koo L
g) =) bx, b#0 and h(x)=) c¢x, ¢#0.
=0 j=0

Then a, = b,yc,. Now pla,, but p* does not divide a,. This implies that either p does
not divide by, or p doesn’t divide c,. Without loss of generality, assume that p|b, and
p does not divide c,,.
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Since a,, = by}, and p does not divide a,, it follows that p does not divide by. Let
b; be the first coefficient of g(x), which is not divisible by p. Consider

a; = bjco + -+ + byg;,

where everything after the first term is divisible by p. Since p does not divide both b;
and c, it follows that p does not divide bjco. Therefore, p does not divide aj, which
implies that j = n. Then from j < k < n, it follows that k = n. Therefore, deg g(x) =
degf(x) and, hence, deg h(x) = 0. Thus, h(x) = h € R. Then from f(x) = hg(x) with f
primitive, it follows that & is a unit and, therefore, f(x) is irreducible.

(b) Suppose that f(x) = g(x)h(x) with g(x), h(x) € R[x]. The fact that f(x) was
primitive was only used in the final part of part (a). Therefore, by the same arguments
as in part (a), we may assume—without loss of generality—that h € R ¢ K. Therefore,
f(x) is irreducible in K[x]. O

Following are some examples:

Example 4.4.9. Let R = Z and p a prime number. Suppose that n, m are integers such

that n > 1 and p does not divide m. Then x™ + pm is irreducible in Z[x] and Q[x]. In
1

particular, (pm)~ is irrational.

Example 4.4.10. Let R = Z and p a prime number. Consider the polynomial

D
X 1 _ —
p-1 p-2 . 1.

D,(x) = —
Since all the coefficients of @, (x) are equal to 1, Eisenstein’s criterion is not directly
applicable. However, the fact that @, (x) is irreducible implies that for any integer q,
the polynomial O,(x+a)is also irreducible in Z[x]. It follows that

(1P -1 _xp+(Il’)xp_1+---+(p{1)x+1p—1

T o(x+1)-1 X

:xp_1+(p)xp_2+~--+( P )
1 p-1

Now pl(ll.’) for1 < i < p -1 (see exercises) and, moreover, (p{l) = p is not divis-
ible by p?. Therefore, we can apply the Eisenstein criterion to conclude that D, (x) is
irreducible in Z[x] and Q[x].

D (x +

L0 +1)

Theorem 4.4.11. Let R be a UFD and K its field of fractions. Let f(x) = Y1, a,-xi € R[x]
be a polynomial of degree > 1. Let P be a prime ideal in R with a,, ¢ P. Let R = R/P, and
let a : R[x] — R[x] be defined by

a(i rixi> = i(ri +P)xi.
i=0 i=0

a is an epimorphism. Then if a(f (x)) is irreducible in R[x], then f (x) is irreducible in K [x].
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64 —— 4 Polynomials and polynomial rings

Proof. By Theorem 4.4.3, there is an a € R and a primitive g(x) € R[x] satisfying f(x) =
ag(x). Since a,, ¢ P, we have that a(a) # 0. Furthermore, the highest coefficient of
g(x) is also not an element of P. If a(g(x)) is reducible, then a(f(x)) is also reducible.
Thus, a(g(x)) is irreducible. However, from Theorem 4.4.4, g(x) is irreducible in K[x].
Therefore, f(x) = ag(x) is also irreducible in K[x]. Therefore, to prove the theorem, it
suffices to consider the case where f(x) is primitive in R[x].

Now suppose that f(x) is primitive. We show that f(x) is irreducible in R[x].

Suppose that f(x) = g(x)h(x), g(x), h(x) € R[x] with h(x), g(x) nonunits in R[x].
Since f(x) is primitive, g, h ¢ R. Therefore, deg g(x) < deg f(x), and deg h(x) < deg f(x).

Now we have a(f(x)) = a(g(x))a(h(x)). Since P is a prime ideal, R/P is an integral
domain. Therefore, in R[x] we have

dega(g(x)) + dega(h(x)) = dega(f(x)) = degf(x)
since a,, ¢ P. Since R is a UFD, it has no zero divisors. Therefore,
degf(x) = degg(x) + deg h(x).
Now

dega(g(x)) < degg(x)
dega(h(x)) < degh(x).

Therefore, deg a(g(x)) = degg(x), and dega(h(x)) = degh(x). Therefore, a(f(x)) is
reducible, and we have a contradiction. O

It is important to note that a(f(x)), being reducible, does not imply that f(x) is
reducible. For example, f(x) = x* +1is irreducible in Z[x]. However, in Z,[x], we have

X +1= (x+ 1)2
and, hence, f(x) is reducible in Z,[x].
Example 4.4.12. Let f(x) = x° = x* +1 € Z[x]. Choose P = 2Z so that
a(f(x)) = X +x>+1¢ Z,[x].

Suppose that in Z,[x], we have a(f (x)) = g(x)h(x). Without loss of generality, we may
assume that g(x) is of degree 1 or 2.

If degg(x) = 1, then a(f(x)) has a zero c in Z,[x]. The two possibilities for c are
¢ = 0, or ¢ = 1. Then the following hold;

Ifc=0, thenO+0+1=1+0.
Ifc=1, thenl+1+1=1%#0.

Hence, the degree of g(x) cannot be 1.
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Suppose deg g(x) = 2. The polynomials of degree 2 over Z,[x] have the form

x2+x+1, x2+x, x2+1, X2

The last three, x> + x, x> + 1, x? all have zeros in Z,[x]. Therefore, they cannot divide
a(f(x)). Therefore, g(x) must be Xrx+1. Applying the division algorithm, we obtain

alfx) = (C +x) (P +x+1) +1

and, therefore, x* + x + 1 does not divide a(f(x)). It follows that a(f(x)) is irreducible,
and from the previous theorem, f(x) must be irreducible in Q[x].

4.5 Exercises

1. Forwhich a, b € Z does the polynomial x? + 3x + 1 divide the polynomial x> + x> +

ax + b?
2. Leta+ bi € Che azero of f(x) € R[x]. Show that also a - ib is a zero of f(x).
Determine all quadratic irreducible polynomials over R.
Let R be an integral domain, I < R an ideal, and f € R[x] a monic polynomial.
Define (R/I)[x] by the mapping R[x] — (R/I)[x], f = Zaixi - f = Zd,-xi, where
a := a + I. Show, if (R/I)[x] is irreducible, then f € R[x] is also irreducible.
5. Decide if the following polynomials f € R[x] are irreducible:
@D fo)=x>+2%+3,R=2.
(i) fo)=x>-2x+1,R=Q.
(i) fO0) =3x* + 7x* + 14x+7,R = Q.
(V) fOO) =x" + B=Dx* + 3+ 4i)x + 4 + 2i, R = Z[i).
W) f)=x*+3+2*+3x+4,R=Q.
i) f(x) =8 —4x*> +2x -1, R = Z.
6. Let R be an integral domain with characteristic O, let k > 1 and a € R. In R[x],
define the derivatives f (k)(x), k=0,1,2,..., of a polynomial f(x) € R[x] by

L

o) = 0,
FO0) = FEV ().

Show that a is a zero of order k of the polynomial f(x) € R[x], if f (’H)(a) =0, but
f®@) # 0.

7. Prove that the set of integral polynomials with even constant term is an ideal, but
not principal.

8. Provethatp|(®)forl<i<p-1.
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5 Field extensions

5.1 Extension fields and finite extensions

Much of algebra in general arose from the theory of equations, specifically polynomial
equations. As discovered by Galois and Abel, the solutions of polynomial equations
over fields is intimately tied to the theory of field extensions. This theory eventually
blossoms into Galois Theory. In this chapter, we discuss the basic material concerning
field extensions.

Recall that if L is a field and K ¢ L is also a field under the same operations as L,
then K is called a subfield of L. If we view this situation from the viewpoint of K, we
say that L is an extension field or field extension of K. If K, L are fields with K c L, we
always assume that K is a subfield of L.

Definition 5.1.1. If K, L are fields with K ¢ L, then we say that L is a field extension or
extension field of K. We denote this by L|K.
Note that this is equivalent to having a field monomorphism

i:K—-L
and then identifying K and i(K).

As examples, we have that R is an extension field of Q, and C is an extension
field of both C and Q. If K is any field then the ring of polynomials K[x] over K is an
integral domain. Let K(x) be the field of fractions of K[x]. This is called the field of
rational functions over K. Since K can be considered as part of K[x], it follows that
K c K(x) and, hence, K(x) is an extension field of K.

A crucial concept is that of the degree of a field extension. Recall that a vector
space V over a field K consists of an abelian group V together with scalar multiplica-
tion from K satisfying the following:

(1) freViffeK,veV.

2 fwu+v)=fu+fvforfeK,uvel.
3) f+gv=fv+gvforf,geK,veV.
4) (feyv=f(gv)forf,geK,velV.

(5) ww=vforveV.

Notice that if K is a subfield of L, then products of elements of L with elements of K are
still in L. Since L is an abelian group under addition, L can be considered as a vector
space over K. Thus, any extension field is a vector space over any of its subfields. Using
this, we define the degree |L : K| of an extension K ¢ L as the dimension dimg(L) of L
as a vector space over K. We call L a finite extension of K if |L : K| < co.

Definition 5.1.2. If L is an extension field of K, then the degree of the extension L|IK
is defined as the dimension, dimg(L), of L, as a vector space over K. We denote the

https://doi.org/10.1515/9783110603996-005
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68 —— 5 Field extensions

degree by |L : K|. The field extension L|K is a finite extension if the degree |L : K] is
finite.

Lemma5.1.3. |[C: R| =2, but |R : Q| = co.

Proof. Every complex number can be written uniquely as a+ib, where a, b € R. Hence,
the elements 1, i constitute a basis for C over R and, therefore, the dimension is 2. That
is, |[C:R| = 2.

The fact that |R : Q| = oo depends on the existence of transcendental numbers.
An element r € R is algebraic (over Q) if it satisfies some nonzero polynomial with
coefficients from Q. That is, P(r) = 0, where

0#PX)=ay+ax+--+ax" witha; € Q.

Any g € Q is algebraic since if P(x) = x — g, then P(q) = 0. However, many irrationals
are also algebraic. For example, V2 is algebraic since x*> - 2 = 0 has V2 as a zero. An
element r € R is transcendental if it is not algebraic.

In general, it is very difficult to show that a particular element is transcendental.
However, there are uncountably many transcendental elements (see exercises). Spe-
cific examples are e and 7. We will give a proof of their transcendence in Chapter 20.

Since e is transcendental, for any natural number n, the set of vectors {1,e,
e%,...,€e"} must be independent over Q, for otherwise there would be a polynomial
that e would satisfy. Therefore, we have infinitely many independent vectors in R
over Q, which would be impossible if R had finite degree over Q. O

Lemma 5.1.4. IfK is any field, then |K(x) : K| = co.

Proof. For any n, the elements 1,x,x%, ..., x" are independent over K. Therefore, as in
the proof of Lemma 5.1.3, K(x) must be infinite dimensional over K. O

If LIK and L, |K; are field extensions, then they are isomorphic field extensions if
there exists a field isomorphism f : L — L, such that f, is an isomorphism from K to
K.

Suppose that K ¢ L ¢ M are fields. Below we show that the degrees multiply. In
this situation, where K ¢ L ¢ M, we call L an intermediate field.

Theorem 5.1.5. Let K, L, M be fields with K c L ¢ M. Then
IM:K|=|M:L|L:K|.
Note that |M : K| = co if and only if either M : L| = oo, or |L : K| = co.

Proof. Let {x; : i € I} be a basis for L as a vector space over K, and let yj:jelt be a
basis for M as a vector space over L. To prove the result, it is sufficient to show that the
set

B:{Xiyj:iel,jel}
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5.1 Extension fields and finite extensions =—— 69

is a basis for M as a vector space over K. To show this, we must show that Bis a linearly
independent set over K, and that B spans M.
Suppose that

Zhﬁh=0 where k;; € K
ij

We can then write this sum as

Z<Zl: kijxi>yj =0.

J

But }; kx; € L. Since {y; : j € J} is a basis for M over L, the y; are independent over
L; hence, for each j, we get }; k;;x; = 0. Now since {x; : i € I} is a basis for L over K, it
follows that the x; are linearly independent, and since for each j we have }; k;x; = 0,
it must be that k;; = O for all i and for all j. Therefore, the set B is linearly independent
over K.

Now suppose that m € M. Then since {y; : j € J} spans M over L, we have

m= z Gy; withg e L.
j

However, {x; : i € I} spans L over K, and so for each cj, we have

¢ =Y kjx; withk; € K.
i

Combining these two sums, we have

m= Z kix;y;
ij

and, hence, B spans M over K. Therefore, B is a basis for M over K, and the result is
proved. O

Corollary 5.1.6.

(@) IfIL : K| is a prime number, then there exists no proper intermediate field between
LandK.

(b) IfK cLand|L:K|=1,thenL =K.

Let L|K be a field extension, and suppose that A c L. Then certainly there are sub-
rings of L containing both A and K, for example L. We denote by K[A] the intersection
of all subrings of L containing both K and A. Since the intersection of subrings is a
subring, it follows that K[A] is a subring containing both K and A and the smallest
such subring. We call K[A] the ring adjunction of A to K.

Brought to you by | Chalmers University of Technology
Authenticated
Download Date | 9/12/19 6:13 AM



70 —— 5 Field extensions

In an analogous manner, we let K(A) be the intersection of all subfields of L con-
taining both K and A. This is then a subfield of L, and the smallest subfield of L con-
taining both K and A. The subfield K(A) is called the field adjunction of A to K.

Clearly, K[A] c K(A).IfA = {ay, ..., a,}, then we write

KAl =Kla,,...,a,] and K(A)=K(ay,...,ay).

Definition 5.1.7. The field extension L|K is finitely generated if there exist ay,...,
a, € LsuchthatL = K(ay,...,a,). The extension L|K is a simple extension if there
isan a € L with L = K(a). In this case, a is called a primitive element of L|K.

In Chapter 7, we will look at an alternative way to view the adjunction construc-
tions in terms of polynomials.

5.2 Finite and algebraic extensions

We now turn to the relationship between field extensions and the solution of polyno-
mial equations.

Definition 5.2.1. Let L|K be a field extension. An element a € L is algebraic over K if
there exists a polynomial p(x) € K[x] with p(a) = 0. L is an algebraic extension of K
if each element of L is algebraic over K. An element a € L that is not algebraic over
K is called transcendental. L is a transcendental extension if there are transcendental
elements; that is, they are not algebraic over K.

For the remainder of this section, we assume that L|K is a field extension.
Lemma 5.2.2. Each element of K is algebraic over K.
Proof. Letk € K. Then k is a zero of the polynomial p(x) = x — k € K[x]. O
We tie now algebraic extensions to finite extensions.
Theorem 5.2.3. IfL|K is a finite extension, then L|K is an algebraic extension.

Proof. Suppose that L|K is a finite extension and a € L. We must show that a is alge-
braic over K. Suppose that |L : K| = n < co, then dimg(L) = n. It follows that any n + 1
elements of L are linearly dependent over K.

Now consider the elements 1,a,a?,...,a" in L. These are n + 1 distinct elements
in L, so they are dependent over K. Hence, there exist cy,.. ., c, € K not all zero such
that

Co+Cla+--+cpa =0.

Let p(x) = ¢y + ¢y x +- -+ +¢,x". Then p(x) € K[x], and p(a) = 0. Therefore, a is algebraic
over K. Since a was arbitrary, it follows that L is an algebraic extension of K. O
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From the previous theorem, it follows that every finite extension is algebraic. The
converse is not true; that is, there are algebraic extensions that are not finite. We will
give examples in Section 5.4.

The following lemma gives some examples of algebraic and transcendental exten-
sions.

Lemma 5.2.4. C|R is algebraic, but R|Q and C|Q are transcendental. If K is any field,
then K(x)|K is transcendental.

Proof. Since 1,i constitute a basis for C over R, we have |C : R| = 2. Hence, C is a finite
extension of R; therefore, from Theorem 5.2.3, an algebraic extension. More directly,
ifa=a+ib e C, then a is a zero of x* — 2ax + (a* + b*) € Rx].

The existence of transcendental numbers (we will discuss these more fully in Sec-
tion 5.5) shows that both R|Q and C|Q are transcendental extensions.

Finally, the element x € K(x) is not a zero of any polynomial in K[x]. Therefore,
x is a transcendental element, so the extension K(x)|K is transcendental. O

5.3 Minimal polynomials and simple extensions

If L|K is a field extension and a ¢ L is algebraic over K, then p(a) = 0 for some poly-
nomial p(x) € K[x]. In this section, we consider the smallest such polynomial and tie
it to a simple extension of K.

Definition 5.3.1. Suppose that L|K is a field extension and a € L is algebraic over K.
The polynomial m,(x) € K[x] is the minimal polynomial of a over K if the following
hold:

(1) mg(x) has leading coefficient 1; that is, it is a monic polynomial.

(2) my(a) = 0.

(3) Iff(x) € K[x] with f(a) = 0, then m,(x)|f (x).

Hence, m,(x) is the monic polynomial of minimal degree that has a as a zero.
We prove next that every algebraic element has such a minimal polynomial.

Theorem 5.3.2. Suppose that L|K is a field extension and a € L is algebraic over K. Then

we have:

(1) The minimal polynomial m,(x) € K[x] exists and is irreducible over K.

(2) Kla] = K(a) = K[x]/(m,(x)), where (m,(x)) is the principal ideal in K[x] generated
by m,(x).

(3) |K(a) : K| = deg(m,(x)). Therefore, K(a)|K is a finite extension.

Proof. (1) Suppose that a € L is algebraic over K. Let
I={f(x) e K[x] :f(a) = 0}.
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Since a is algebraic, I # 0. It is straightforward to show (see exercises) that I is an
ideal in K[x]. Since K is a field, we have that K[x] is a principal ideal domain. Hence,
there exists g(x) € K[x] with I = (g(x)). Let b be the leading coefficient of g(x). Then
m,(x) = b~ g(x) is a monic polynomial. We claim that m,(x) is the minimal polynomial
of a and that m,(x) is irreducible.

First, it is clear that I = (g(x)) = (m,(x)). If f(x) € K[x] with f(a) = O, then f(x) =
h(x)m,(x) for some h(x). Therefore, m,(x) divides any polynomial that has a as a zero.
It follows that m,(x) is the minimal polynomial.

Suppose that m,(x) = g;(x)g,(x). Then since m,(a) = 0, it follows that either
g1(a) = 0 or g,(a) = 0. Suppose g;(a) = 0. Then from above, m,(x)|g;(x), and since
g1(x)Im,(x), we must then have that g,(x) is a unit. Therefore, m,(x) is irreducible.

(2) Consider the map 7 : K[x] — K[a] given by

T(Z kl-xi> = Z kiai.
i i
Then 7 is a ring epimorphism (see exercises), and
ker(t) = {f(x) € K[x] : f(a) = 0} = (m,(x))
from the argument in the proof of part (1). It follows that
K[x]/(my(x)) = K[a].

Since m,(x) is irreducible, we have K[x]/(m,(x)) is a field and, therefore, K[a] = K(a).
(3) Let n = deg(m,(x)). We claim that the elements 1,q,..., a™ ! are a basis for
K[a] = K(a) over K. First suppose that

n-1

with not all ¢; = 0 and ¢; € K. Then h(a) = 0, where h(x) = ?:‘(} cixi. But this contra-
dicts the fact that m,(x) has minimal degree over all polynomials in K[x] that have a
as a zero. Therefore, the set 1, a, ..., a" ! is linearly independent over K.

Now let b € K[a] = K[x]/(m,(x)). Then there is a g(x) € K[x] with b = g(a). By the
division algorithm

g(x) = h(x)my(x) +r(x),
where r(x) = 0 or deg(r(x)) < deg(m,(x)). Now
r(a) = g(a) - h(a)m,(a) = g(a) = b.
If r(x) = 0, then b = 0. If r(x) # 0, then since deg(r(x)) < n, we have

F(X) = Co+ CiX + -+ + Cpy X
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with ¢; € K and some c;, but not all might be zero. This implies that
b=r(@) =cy+Ca+-+cpqa" "

and, hence, b is a linear combination over K of 1,a,....,a" !. Hence, 1,q, ..., a" ! spans
K[a] over K and, hence, forms a basis. O

Theorem 5.3.3. Suppose that L|K is a field extension and a € L is algebraic over K.
Suppose that f(x) € K[x] is a monic polynomial with f(a) = 0. Then f(x) is the minimal
polynomial if and only if f (x) is irreducible in K [x].

Proof. Suppose that f(x) is the minimal polynomial of a. Then f(x) is irreducible from
the previous theorem.

Conversely, suppose that f(x) is monic, irreducible and f(a) = 0. From the previ-

ous theorem m,(x)|f (x). Since f(x) is irreducible, we have f(x) = cm,(x) with c € K.

However, since both f(x) and m,(x) are monic, we must have ¢ = 1, and f(x) = m,(x).

O

We now show that a finite extension of K is actually finitely generated over K. In
addition, it is generated by finitely many algebraic elements.

Theorem 5.3.4. Let L|K be a field extension. Then the following are equivalent:

(1) LIK is a finite extension.

(2) LIK is an algebraic extension, and there exist elements a,, ...,a, € L such that L =
K(ay,...,ay).

(3) There exist algebraic elements a,, .. .,a, € Lsuch that L = K(a;, ..., ay).

Proof. (1) = (2). We have seen in Theorem 5.2.3 that a finite extension is algebraic.
Suppose that a,, ..., a, are a basis for L over K. Then clearly L = K(a;, ..., a,).

(2) = (3). If LIK is an algebraic extension and L = K(ay,...,a,), then each q; is
algebraic over K.

(3) = (1). Suppose that there exist algebraic elements a;,...,a, € L such that
L =K(ay,...,a,). We show that L|K is a finite extension. We do this by induction on n.
If n = 1, then L = K(a) for some algebraic element a, and the result follows from The-
orem 5.3.2. Suppose now that n > 2. We assume then that an extension K(a;, ..., a,_;)
with a;, ..., a,_; algebraic elements is a finite extension. Now suppose that we have
L =K(a,,...,a,) with ay, ..., a, algebraic elements.

Then

|K(ay,...,ay) : K|
= |K(ay, ...,an_1)(ay) : K(ay,...,a, 1)||K(ay, ..., a,1) : K|.

The second term |K(ay, ..., a,_;) : K| is finite from the inductive hypothesis. The first
term |K(ay,...,a,_1)(a,) : K(a;,...,a,_,)| is also finite from Theorem 5.3.2 since it is
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a simple extension of the field K(a;, ..., a,_;) by the algebraic element a,,. Therefore,
|K(ay,...,a,) : K| is finite. O

Theorem 5.3.5. Suppose that K is a field and R is an integral domain with K c R. Then
R can be viewed as a vector space over K. If dimg(R) < oo, then R is a field.

Proof. Letr, € Rwithry # 0. Define the map from R to R given by
T(r) = 1719.

It is easy to show (see exercises) that this is a linear transformation from R to R, con-
sidered as a vector space over K.

Suppose that 7(r) = 0. Then rr, = 0 and, hence, r = O sincer, # 0 and R is an
integral domain. It follows that 7 is an injective map. Since R is a finite dimensional
vector space over K, and 7 is an injective linear transformation, it follows that T must
also be surjective. This implies that there exists an r; with 7(r;) = 1. Then r;r, = 1 and,
hence, r, has an inverse within R. Since r, was an arbitrary nonzero element of R, it
follows that R is a field. O

Theorem 5.3.6. Suppose that K ¢ L ¢ M is a chain of field extensions. Then M|K is
algebraic if and only if M|L is algebraic, and L|K is algebraic.

Proof. If MIK is algebraic, then certainly M|L and L|K are algebraic.
Now suppose that M|L and L|K are algebraic. We show that M|K is algebraic. Let
a € M. Then since a is algebraic over L, there exist by, b, ..., b, € L with

by +bja+---+b,a" =0.

Each b; is algebraic over K and, hence, K(b,,...,b,) is finite dimensional over K.
Therefore, K(by, ...,b,)(a) = K(by, ..., by, a) is also finite dimensional over K. There-
fore, K(by,...,b,,a) is a finite extension of K and, hence, an algebraic extension K.
Since a € K(by,...,by,,a), it follows that a is algebraic over K and, therefore, M is
algebraic over K. O

5.4 Algebraic closures

As before, suppose that L|K is a field extension. Since each element of K is algebraic
over K, there are certainly algebraic elements over K within L. Let Ay denote the set
of all elements of L that are algebraic over K. We prove that .4y is actually a subfield
of L. It is called the algebraic closure of K within L.

Theorem 5.4.1. Suppose that L|K is a field extension, and let Ay denote the set of all
elements of L that are algebraic over K. Then Ay is a subfield of L. Ay is called the
algebraic closure of K in L.
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5.5 Algebraic and transcendental numbers =——— 75

Proof. Since K ¢ Ag, we have that Ag # 0. Let a, b € Ag. Since a, b are both algebraic
over K from Theorem 5.3.4, we have that K(a, b) is a finite extension of K. Therefore,
K(a, b) is an algebraic extension of K and, hence, each element of K(a, b) is algebraic
over K.Now a,b € K(a,b) if b + 0, and K(a, b) is a field. Therefore, a + b, ab, and a/b
are all in K(a, b) and, hence, all algebraic over K. Therefore, a + b, ab, a/b, if b # 0, are
all in Ag. It follows that Ay is a subfield of L. O

In Section 5.2, we showed that every finite extension is an algebraic extension.
We mentioned that the converse is not necessarily true; that is, there are algebraic
extensions that are not finite. Here we give an example.

Theorem 5.4.2. Let A be the algebraic closure of the rational numbers Q within the
complex numbers C. Then A is an algebraic extension of Q, but | A : Q| = co.

Proof. From the previous theorem, A is an algebraic extension of Q. We show that it
cannot be a finite extension. By Eisenstein’s criterion, the rational polynomial f(x) =
xP + p is irreducible over Q for any prime p. Let a be a zero in C of f(x). Then a € A,
and |Q(a) : Q| = p. Therefore, | A : Q| > p for all primes p. Since there are infinitely
many primes, this implies that |4 : Q| = co. O

5.5 Algebraic and transcendental numbers

In this section, we consider the string of field extensions Q c R c C.

Definition 5.5.1. An algebraic number « is an element of C, which is algebraic over Q.
Hence, an algebraic number is an a € C such that f(a) = 0 for some f(x) € Q[x]. If
a € C is not algebraic, it is transcendental.

We will let A denote the totality of algebraic numbers within the complex num-
bers C, and 7 the set of transcendentals so that C = AU 7. In the language of the last
subsection, A is the algebraic closure of Q within C. As in the general case, ifa € Cis
algebraic, we will let m,(x) denote the minimal polynomial of a over Q.

We now examine the sets .4 and 7 more closely. Since A is precisely the algebraic
closure of Q in C, we have from our general result that .4 actually forms a subfield
of C. Furthermore, since the intersection of subfields is again a subfield, it follows
that A' = AN R, the real algebraic numbers form a subfield of the reals.

Theorem 5.5.2. The set A of algebraic numbers forms a subfield of C. The subset A' =
A N R of real algebraic numbers forms a subfield of R.

Since each rational is algebraic, it is clear that there are algebraic numbers. Fur-
thermore, there are irrational algebraic numbers, V2 for example, since it satisfies the
irreducible polynomial x? -2 = 0 over Q. On the other hand, we have not examined
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the question of whether transcendental numbers really exist. To show that any par-
ticular complex number is transcendental is, in general, quite difficult. However, it is
relatively easy to show that there are uncountably infinitely many transcendentals.

Theorem 5.5.3. The set A of algebraic numbers is countably infinite. Therefore, T, the
set of transcendental numbers, and T' = T N R, the real transcendental numbers, are
uncountably infinite.

Proof. Let
Py = {f(0) € Qlx] : deg(f(x)) < n}.

Since if f(x) € P, f(X) = g, + gy x +- - + q,x" with g; € Q, we can identify a polynomial
of degree < n with an (n + 1)-tuple (g, gy, - - - > gy,) of rational numbers. Therefore, the
set P, has the same size as the (n + 1)-fold Cartesian product of Q:

Q" =QxQx-xQ

Since a finite Cartesian product of countable sets is still countable, it follows that P,
is a countable set.
Now let

B, = U {zeros of p(x)};
PX)EP,

that is, B, is the union of all zeros in C of all rational polynomials of degree < n. Since
each such p(x) has a maximum of n zeros, and since P, is countable, it follows that 3,
is a countable union of finite sets and, hence, is still countable. Now

o0
A=]B,
n=1

so A is a countable union of countable sets and is, therefore, countable.

Since both R and C are uncountably infinite, the second assertions follow directly
from the countability of A. If say 7 were countable, then C = A U 7 would also be
countable, which is a contradiction. O

From Theorem 5.5.3, we know that there exist infinitely many transcendental num-
bers. Liouville, in 1851, gave the first proof of the existence of transcendentals by ex-
hibiting a few. He gave the following as one example:

Theorem 5.5.4. The real number

1

c= ,
107

Mg

-,
Il
—_

is transcendental.
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Proof. First of all, since 10,‘ < 10,, and Z] 1 10, is a convergent geometric series, it fol-
lows from the comparison test that the infinite series defining c converges and defines
a real number. Furthermore, since Y% % = %, it follows that ¢ < % <L

Suppose that c is algebraic so that g(c) = 0 for some rational nonzero polynomial
g(x). Multiplying through by the least common multiple of all the denominators in
g(x), we may suppose that f(c) = 0 for some integral polynomial f(x) = Z}Lo mjxj .
Then c satisfies

for some integers m, ..., m,.
If 0 < x < 1, then by the triangle inequality

K1
;X <

I 0ol =
j=1

j=1

where B is a real constant depending only on the coefficients of f(x)
Now let

be the k-th partial sum for c. Then
< 1 1
lc—cl = Z — <2 —
it 10! 10k+D)!

Apply the mean value theorem to f(x) at ¢ and ¢, to obtain

If(©) = fcp)| = lc = cillf' (O]

for some { with ¢, < { < ¢ < 1. Now since 0 < { < 1, we have

lc = cllf' )] < 2B—— 0("“)'

On the other hand, since f(x) can have at most n zeros, it follows that for all k large
enough, we would have f(c;) # 0. Since f(c) = 0, we have

If(c) - f(c)| = If(cp)| = Zm >

1o"k'

since for each j, mjc;( is a rational number with denominator 10/, However, if k is
chosen sufficiently large and n is fixed, we have

1 2B
107k! > 10(k+1)!’
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78 =—— 5 Field extensions

contradicting the equality from the mean value theorem. Therefore, c is transcenden-
tal. O

In 1873, Hermite proved that e is transcendental, whereas, in 1882, Lindemann
showed that 77 is transcendental. Schneider, in 1934, showed that a? is transcendental
if a # 0, a, and b are algebraic and b is irrational. In Chapter 20, we will prove that
both e and m are transcendental. An interesting open question is the following:

Is  transcendental over Q(e)?

To close this section, we show that in general if a € L is transcendental over K,
then K(a)|K is isomorphic to the field of rational functions over K.

Theorem 5.5.5. Suppose that L|K is a field extension and a € L is transcendental over K.
Then K(a)|K is isomorphic to K(x)|K. Here the isomorphism pu : K(x) — K(a) can be
chosen such that u(x) = a.

Proof. Define the map y : K(x) — K(a) by
<@> _f@
gx)/ gla)

for f(x),g(x) € K[x] with g(x) + O. Then y is a homomorphism, and u(x) = a. Since
U # 0, it follows that y is an isomorphism. O

5.6 Exercises

1. Leta e Cwitha®-2a+2=0andb = & - a. Compute the minimal polynomial
my,(x) of b over Q and compute the inverse of b in Q(a).

2. Determine the algebraic closure of R in C(x).

3. Leta,:= A2 e R,n=1,23,... and A := {a, : n € N} and E := Q(A). Show the

following:
i) 1Q(a,) : QI =2"
(i) |E: Q]| = oco.

(iii) E = Up2; Qay).
(iv) E is algebraic over Q.
4, Determine |E : Q| for
(i) E=Q(V2V-2.
(i) E = Q(V3, V3 +V3).
(iii) E = (45, =2).
5. Showthat Q(v2, V3) = {a+bV2+cV3+dV6 : a,b,c,d € Q}. Determine the degree
of Q(+2, V3) over Q. Further show that Q(+v2, v3) = Q(v2 + V3).
6. LetK, E be fields and a € E be transcendental over K. Show the following:
(i) Each element of K(a)|K, which is not in K, is transcendental over K.

(ii) a"is transcendental over K for eachn > 1.
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(i) IfL .= K (:Tsl), then a is algebraic over L. Determine the minimal polynomial
m,(x) of a over L.

Let K be a field and a € K(x) \ K. Show the following:

(i) xis algebraic over K(a).

(i) If Lisafield withK c L € K(x) and if a € L, then |K(x) : L| < oo.

(iii) a is transcendental over K.

Suppose that a € L is algebraic over K. Let

I={f(x) eK[x]:f(a) = O}.

Since a is algebraic I # 0. Prove that I is an ideal in K[x].

Prove that there are uncountably many transcendental numbers. To do this show

that the set A of algebraic numbers is countable. To do this:

(i) Show that Q,[x], the set of rational polynomials of degree < n, is countable
(finite Cartesian product of countable sets).

(i) Let B, = {Zeros of polynomials in Q,}. Show that B is countable.

(iii) Show that A = |, B, and conclude that A is countable.

(iv) Show that the transcendental numbers are uncountable.

Consider the map 7 : K[x] — K[a] given by

T<Z kl-x"> = ;kiai.

Show that 7 is a ring epimorphism.

Suppose that K is a field and R is an integral domain with K ¢ R. Then R can be
viewed as a vector space over K. Let r, € R with ry, # 0. Define the map from R to
R given by

T(r) = 179.

Show that this is a linear transformation from R to R, considered as a vector space
over K.
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6 Field extensions and compass and straightedge
constructions

6.1 Geometric constructions

Greek mathematicians in the classical period posed the problem of constructing cer-
tain geometric figures in the Euclidean plane using only a straightedge and a compass.
These are known as geometric construction problems.

Recall from elementary geometry that using a straightedge and compass, it is pos-
sible to draw a line parallel to a given line segment through a given point, to extend a
given line segment, and to erect a perpendicular to a given line at a given point on that
line. There were other geometric construction problems that the Greeks could not de-
termine straightedge and compass solutions but, on the other hand, were never able to
prove that such constructions were impossible. In particular, there were four famous
insolvable (to the Greeks) construction problems. The first is the squaring of the circle.
This problem is, given a circle, to construct using straightedge and compass a square
having an area equal to that of the given circle. The second is the doubling of the cube.
This problem is, given a cube of given side length, to construct using a straightedge
and compass, a side of a cube having double the volume of the original cube. The third
problem is the trisection of an angle. This problem is to trisect a given angle using only
a straightedge and compass. The final problem is the construction of a regular n-gon.
This problems asks which regular n-gons could be constructed using only straightedge
and compass.

By translating each of these problems into the language of field extensions, we
can show that each of the first three problems are insolvable in general, and we can
give the complete solution to the construction of the regular n-gons.

6.2 Constructible numbers and field extensions
We now translate the geometric construction problems into the language of field ex-
tensions. As a first step, we define a constructible number.

Definition 6.2.1. Suppose we are given a line segment of unit length. An a € R is
constructible if we can construct a line segment of length |a|, in a finite number of
steps, from the unit segment using a straightedge and compass.

Our first result is that the set of all constructible numbers forms a subfield of R.

Theorem 6.2.2. The set C of all constructible numbers forms a subfield of R. Further-
more, Q c C.

https://doi.org/10.1515/9783110603996-006
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82 —— 6 Field extensions and compass and straightedge constructions

Proof. Let C be the set of all constructible numbers. Since the given unit length seg-
ment is constructible, we have 1 € C. Therefore, C # 0. Thus, to show that it is a field,
we must show that it is closed under the field operations.

Suppose a, B are constructible. We must show then that a+j, a8, and a/S for § # 0
are constructible. If a, 8 > 0, construct a line segment of length |a|. At one end of this
line segment, extend it by a segment of length |B|. This will construct a segment of
length a + . Similarly, if « > B, lay off a segment of length || at the beginning of a
segment of length |a|. The remaining piece will be a — . By considering cases, we can
do this in the same manner if either a or §, or both, are negative. These constructions
are pictured in Figure 6.1. Therefore, a +  are constructible.

a N £
a+f B a—f

Figure 6.1: Addition of constructible numbers.

In Figure 6.2, we show how to construct ap. Let the line segment OA have length |a.
Consider a line L through O not coincident with OA. Let OB have length |f] as in the
diagram. Let P be on ray OB so that OP has length 1. Draw AP and then find Q on ray
0A such that BQ is parallel to AP. From similar triangles, we then have

|OP| _|0A] _ 1

10P1 1 _ lal

0B| [0Q I8l |oql

Then |0Q| = |a||B|, and so ap is constructible.

181

0 |a| A Q

Figure 6.2: Multiplication of constructible numbers.

A similar construction, pictured in Figure 6.3, shows that a/f for 8 + 0is constructible.
Find OA, OB, OP as above. Now, connect A to B, and let PQ be parallel to AB. From
similar triangles again, we have

1 |0Q] |a|

B g o

Hence, a/f is constructible.
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6.2 Constructible numbers and field extensions =——— 83

Figure 6.3: Inversion of constructible numbers.

Therefore, C is a subfield of R. Since char C = 0, it follows that Q ¢ C. O

Let us now consider how a constructible number is found in the plane. Starting
at the origin and using the unit length and the constructions above, we can locate
any point in the plane with rational coordinates. That is, we can construct the point
P = (g,, q,) with q;, ¢, € Q. Using only straightedge and compass, any further point in
the plane can be determined in one of the following three ways:

1. The intersection point of two lines, each of which passes through two known
points each having rational coordinates.

2. Theintersection point of a line passing through two known points having rational
coordinates and a circle, whose center has rational coordinates, and whose radius
squared is rational.

3. The intersection point of two circles, each of whose centers has rational coordi-
nates, and each of whose radii is the square root of a rational number.

Analytically, the first case involves the solution of a pair of linear equations, each with
rational coefficients and, thus, only leads to other rational numbers. In cases two and
three, we must solve equations of the form x>+y?+ax+by+c = 0, witha, b, ¢ € Q. These
will then be quadratic equations over Q and, thus, the solutions will either be in Q, or
in a quadratic extension Q(+/a) of Q. Once a real quadratic extension of Q is found, the
process can be iterated. Conversely, using the altitude theorem, if a is constructible,
sois va. A much more detailed description of the constructible numbers can be found
in [42]. We thus can prove the following theorem:

Theorem 6.2.3. Ify is constructible with y ¢ Q, then there exists a finite number of
elements ay,...,a, € Rwitha, = y such that fori=1,...,r, Q(ay,...,q;) is a quadratic
extension of Q(ay, ..., a;_;). In particular, |Q(y) : Q| = 2" for somen > 1.

Therefore, the constructible numbers are precisely those real numbers that
are contained in repeated quadratic extensions of Q. In the next section, we use
this idea to show the impossibility of the first three mentioned construction prob-
lems.
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84 —— 6 Field extensions and compass and straightedge constructions

6.3 Four classical construction problems

We now consider the aforementioned construction problems. Our main technique will
be to use Theorem 6.2.3. From this result, we have that if y is constructible with y ¢ Q,
then |Q(y) : Q| = 2" for some n > 1.

6.3.1 Squaring the circle

Theorem 6.3.1. It is impossible to square the circle. That is, it is impossible in general,
given a circle, to construct using straightedge and compass a square having area equal
to that of the given circle.

Proof. Suppose the given circle has radius 1. It is then constructible and would have
an area of 1. A corresponding square would then have to have a side of length +/7t. To
be constructible a number, a must have |Q(a) : Q| = 2™ < oo and, hence, a must be al-
gebraic. However, 7 is transcendental, so v/ is also transcendental (see Section 20.4);
therefore not constructible. O

6.3.2 The doubling of the cube

Theorem 6.3.2. It is impossible to double the cube. This means that it is impossible in
general, given a cube of given side length, to construct using a straightedge and compass,
a side of a cube having double the volume of the original cube.

Proof. Let the given side length be 1, so that the original volume is also 1. To double
this, we would have to construct a side of length 23 However, I(Q(Zl/ 3): Q| = 3 since
the minimal polynomial over Q is m,i;3(x) = x> — 2. This is not a power of 2, so 2'/% is
not constructible. O

6.3.3 The trisection of an angle

Theorem 6.3.3. It is impossible to trisect an angle. This means that it is impossible, in
general, to trisect a given angle using only a straightedge and compass.

Proof. An angle 6 is constructible if and only if a segment of length | cos 6] is con-
structible. Since cos(71/3) = 1/2, therefore, 71/3 is constructible. We show that it cannot
be trisected by straightedge and compass.

The following trigonometric identity holds:

c0s(30) = 4 cos>(0) — 3 cos(0).

Let a = cos(1/9). From the above identity, we have 4o® - 3a - % = 0. The polynomial
4x> -3x - % isirreducible over Q and, hence, the minimal polynomial over Q is m,(x) =
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6.3 Four classical construction problems =— 85

x> - %x - %. It follows that |Q(a) : Q| = 3; hence, a is not constructible. Therefore, the

corresponding angle 71/9 is not constructible. Therefore, 71/3 is constructible, but it
cannot be trisected. O

6.3.4 Construction of a regular n-gon

The final construction problem we consider is the construction of regular n-gons. The
algebraic study of the constructibility of regular n-gons was initiated by Gauss in the
early part of the nineteenth century.

Notice first that a regular n-gon will be constructible for n > 3 if and only if the
angle 27” is constructible, which is the case if and only if the length cos 27” is a con-
structible number. From our techniques, if cos 27" is a constructible number, then nec-
essarily I(Q(cos(%”)) : Q| = 2™ for some m. After we discuss Galois theory, we see that
this condition is also sufficient. Therefore, cos 2%1 is a constructible number if and only
if IQ(COS(%)) : Q| = 2™ for some m.

The solution of this problem, that is, the determination of when
|Q(COS(27n)) : Q| = 2™, involves two concepts from number theory: the Euler phi-

function and Fermat primes.
Definition 6.3.4. For any natural number n, the Euler phi-function is defined by

¢(n) = number of integers less than or equal to n, and relatively prime to n.

Example 6.3.5. ¢(6) = 2since among 1,2,3, 4,5, 6 only 1,5 are relatively prime to 6.

It is fairly straightforward to develop a formula for ¢p(n). A formula is first deter-
mined for primes and for prime powers, and then pasted back together via the funda-
mental theorem of arithmetic.

Lemma 6.3.6. For any prime p and m > 0,

p(™) =p" -p" = p’"(l - 1>.
p
Proof. 1f1 < a < p, then either a = p, or (a, p) = 1. It follows that the positive integers
less than or equal to p™, which are not relatively prime to p™ are precisely the multiples
of p; that is, p,2p,3p,...,p™ ' - p. All other positive a < p™ are relatively prime to p™.
Hence, the number relatively prime to p™ is
pm _pm—l. N

Lemma 6.3.7. If (a,b) = 1, then ¢(ab) = ¢p(a)p(b).

Proof. Given a natural number n a reduced residue system modulo n is a set of integers
Xy, ., X such that each x; is relatively prime to n, x; # x; mod n unless i = j, and if
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(x,n) = 1 for some integer x, then x = x; mod n for some i. Clearly, ¢(n) is the size of a
reduced residue system modulo n.

Let R, = {xy,...,X¢(o} be a reduced residue system modulo a, Ry, = {y1,....Ygm)}
be a reduced residue system modulo b, and let

S={ay;+bx;:i=1,....¢(b),j=1,....p(a)}.

We claim that S is a reduced residue system modulo ab. Since S has ¢(a)¢(b) elements,
it will follow that ¢p(ab) = ¢p(a)p(b).

To show that S is a reduced residue system modulo ab, we must show three things:
first that each x € S is relatively prime to ab; second that the elements of S are distinct;
and, finally, that given any integer n with (n, ab) = 1, then n = s mod ab for somes € S.

Letx = ay; + bxl-. Then since (x5,a) =1 and (a, b) = 1, it follows that (x,a) = 1.
Analogously, (x, b) = 1. Since x is relatively prime to both a and b, we have (x, ab) = 1.
This shows that each element of S is relatively prime to ab.

Next suppose that

ay; + bx; = ay; + bx; mod ab.
Then
abl(ay; + bx;) - (ayy + bx) = ay; = ay, mod b.

Since (a, b) = 1, it follows that y; = y;, mod b. But then y; = y, since R, is a reduced
residue system. Similarly, x; = x;. This shows that the elements of S are distinct modulo
ab.

Finally, suppose (n, ab) = 1. Since (a, b) = 1, there exist x, y with ax + by = 1. Then

anx + bny = n.

Since (x,b) = 1, and (n, b) = 1, it follows that (nx, b) = 1. Therefore, there is an s; with
nx = s; + tb. In the same manner, (ny,a) = 1, and so there is an r with ny = 1 + ua.
Then

a(s; +th) + b(r; +ua) =n = n=as; + brj + (t + u)ab
= n=ar;+bs; mod ab,
and we are done. 0
We now give the general formula for ¢(n).

Theorem 6.3.8. Supposen =p{"---p;*, then

b = (3 -7 T - P (0§ - PP ).
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Proof. From the previous lemma, we have

$(n) = P(7)P(P3) - Doy
= (0 - % - (- P
=py'(1=1/p) Pt =1p) =pi' -t - (1=1py)--- (1= 1/py)
= nH(l - 1/p)). O

Example 6.3.9. Determine ¢(126). Now
126=2-3".7 = $(126) = p(2)p(3)P(7) = (1)(3* - 3)(6) = 36.

Hence, there are 36 units in Z.
An interesting result with many generalizations in number theory is the following:

Theorem 6.3.10. Forn > 1and ford > 1

Y ¢(d) =n.

din

Proof. We first prove the theorem for prime powers and then paste together via the
fundamental theorem of arithmetic.
Suppose that n = p® for p a prime. Then the divisors of n are 1, p, p?, ..., p®, so

Y b = p) + p) + () + - + (p°)

din

=1+(@-D+@ -p)+-+ @ -p°).

Notice that this sum telescopes; thatis, 1+ (p — 1) = p, p + (p*> - p) = p*> and so on.
Hence, the sum is just p®, and the result is proved for n a prime power.

We now do an induction on the number of distinct prime factors of n. The above
argument shows that the result is true if n has only one distinct prime factor. Assume
that the result is true whenever an integer has less than k distinct prime factors, and
suppose n = pfl . pik has k distinct prime factors. Then n = p°c, wherep = p;, e = e,,
and c has fewer than k distinct prime factors. By the inductive hypothesis

Y o) =c.

d|c

Since (c,p) = 1, the divisors of n are all of the form p®d;, where d,|c, and
a=0,1,...,e. It follows that

Yo =) P+ Y ppdy) +-+ ) p(p°dy).

din dilc dilc di|c
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Since (d;, p*) = 1, for any divisor of ¢, this sum equals

Y d) + ) p@IP(dy) +---+ Y p(p°)P(dy)

dilc di|c dlc

=Y Pd)+ (-1 Y ¢pld)+---+(p°-p) Y p(dy)

dilc di|c d,lc
2 e e-1
=c+(p-Dc+(p -p)c+---+®°-p)c.

As in the case of prime powers, this sum telescopes, giving a final result

Z ¢(d) =p°c=n. O
dln
Example 6.3.11. Consider n = 10. The divisors are 1,2,5,10. Then ¢(1) = 1, ¢(2) = 1,
¢(5) = 4, $(10) = 4. Then

o)+ P(2) + p(5) + Pp(10) =1+ 1+ 4 + 4 =10.

We will see later in the book that the Euler phi-function plays an important role
in the structure theory of abelian groups.
We now turn to Fermat primes.

Definition 6.3.12. The Fermat numbers are the sequence (F,) of positive integers de-
fined by

F,=22 +1, n=0,1,23,....

If a particular F,, is prime, it is called a Fermat prime.

Fermat believed that all the numbers in this sequence were primes. In fact, F,, F;,
F,,F3,F, are all primes, but F; is composite and divisible by 641 (see exercises). It is
still an open question whether or not there are infinitely many Fermat primes. It has
been conjectured that there are only finitely many. On the other hand, if a number of
the form 2" + 1is a prime for some integer n, then it must be a Fermat prime.

Theorem 6.3.13. Ifa > 2 and a" +1is a prime for some n > 1, then a is even, and n = 2™
for some nonnegative integer m. In particular, if p = X +1isa prime for some k > 1, then
k = 2" for some n, and p is a Fermat prime.

Proof. If ais odd then a" + 1is even and, hence, not a prime. Suppose then that a is
even and n = kl with k odd and k > 3. Then

Kl
a +1 _ _
—— =gtV _gk=2l

a +1
Therefore, a +1divides a + 1if k > 3. Hence, if a" + 1 is a prime, we must have

n=2" O
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6.4 Exercises =—— 89

We can now state the solution to the constructibility of regular n-gons.

Theorem 6.3.14. A regular n-gon is constructible with a straightedge and compass if
and only ifn = 2™p; - -- py, where p,, ..., py, are distinct Fermat primes.

For example, before proving the theorem, notice that a regular 20-gon is con-
structible since 20 = 22 - 5, and 5 is a Fermat prime. On the other hand, a regular
11-gon is not constructible.

Proof. Letu = eMTi be a primitive n-th root of unity. Since

2 (2:1) . . <2n>
en =cos| — | +isin[ —
n n

is easy to compute that (see exercises)
1 < 2 >
U+ —=2cos| — |.
U n

Therefore, Q(u + I%) = (Q(cos(%”)). After we discuss Galois theory in more detail, we
will prove that

1), gl = ™
o) el- 5%

where ¢(n) is the Euler phi-function. Therefore, cos(%") is constructible if and only if

W] and, hence, ¢(n) is a power of 2.

2
m..e;

Suppose thatn = 2"p,* - -- pik , all p; odd primes. Then from Theorem 6.3.8,
¢(n) — Zm—l . (pel _pel—l) e, _pez—l) . (pek _pek—l)
1 1 2 2 k k :
If this was a power of 2 each factor must also be a power of 2. Now
; —1 —1
P =P =P (pi - D).

If this is to be a power of 2, we must havee; =landp; -1 = 2% for some k;. Therefore,
each prime is distinct to the first power, and p; = 2% +1is a Fermat prime, proving the
theorem. O

6.4 Exercises

1. Let ¢ be a given angle. In which of the following cases is the angle 1 constructible
from the angle ¢ by compass and straightedge?
@ ¢=5.9=15%.
(b ¢=Z, =1
© ¢=7.9=5.
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90 —— 6 Field extensions and compass and straightedge constructions

2. (The golden section) In the plane, let AB be a given segment from A to B with
length a. The segment AB should be divided such that the proportion of AB to the
length of the bigger subsegment is equal to the proportion of the length of the
bigger subsegment to the length of the smaller subsegment:

a_ b
b a-b

where b is the length of the bigger subsegment. Such a division is called division

by the golden section. If we write b = ax, 0 < x < 1, then == thatis, x* = 1-x.

Do the following:

(a) Show that )1( = % =a.

(b) Construct the division of AB by the golden section with compass and straight-
edge.

(c) If we divide the radius r > 0 of a circle by the golden section, then the bigger
part of the so divided radius is the side of the regular 10-gon with its 10 vertices
on the circle.

3. Given aregular 10-gon such that the 10 vertices are on the circle with radius R > 0.
Show that the length of each side is equal to the bigger part of the radius divided
by the golden section. Describe the procedure of the construction of the regular
10-gon and 5-gon.

4,  Construct the regular 17-gon with compass and stralghtedge Hint: We have to con-
struct the number 2(w+w 1) = cos Z 17 ,Wherew = e 7 . First, construct the positive
zero w, of the polynomial x? + x — 4; we get

lx’

1 - - _ -
—E(Vﬁ—l)zw+w olrot vt ot 0t ot

Then, construct the positive zero w, of the polynomial x* - wyx —1; we get

=%(\/1_7—1+ V34 -2VI7) = w+w ' + 0 + w™.

From w,; and w,, construct f = (a)2 w; +w2 4). Then w; =2 cos - is the biggest
of the two positive zeros of the polynomlal x> — wyx + .

5. TheFibonacci numbersf,, n € NU{O}aredefined by f, = 0, f; = 1and f,,, = fui1+fn
forne N U {0} Show the following:

@ fn= =5 g 15

(b) (f}“ e converges and lim,,_, f}ﬂ = “T‘@ —a
n w1 Ja

© (9" =5 [ )nen,

d fitfih+ - +fr=fua—-1n=1
(e) fn—lfn+l _fr% = (_l)n’ ne N.
6 fR+f5++f2 =fufpssn €N,
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Show: The Fermat numbers F, F;, F, F5, F, are all prime but F; is composite and
divisible by 641.

2mi
Let u = en be a primitive n-th root of unity. Using

2 (271) . . <2rr>
en =cos| — |+isin[ — ),
n n

+l —2cos<2—ﬂ>
1 }1_ n)

show that
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7 Kronecker’s theorem and algebraic closures

7.1 Kronecker’s theorem

In the last chapter, we proved that if L|K is a field extension, then there exists an inter-
mediate field K ¢ A c L such that A is algebraic over K, and contains all the elements
of L that are algebraic over K. We call A the algebraic closure of K within L. In this
chapter, we prove that starting with any field K, we can construct an extension field
K that is algebraic over K and is algebraically closed. By this, we mean that there are
no algebraic extensions of K or, equivalently, that there are no irreducible nonlinear
polynomials in K[x]. In the final section of this chapter, we will give a proof of the fa-
mous fundamental theorem of algebra, which in the language of this chapter says that
the field C of complex numbers is algebraically closed. We will present another proof
of this important result later in the book after we discuss Galois theory.

First, we need the following crucial result of Kronecker, which says that given a
polynomial f(x) in K[x], where K is a field, we can construct an extension field L of K,
in which f(x) has a zero a. We say that L has been constructed by adjoining a to K.
Recall that if f(x) € K[x] is irreducible, then f(x) can have no zeros in K. We first need
the following concept:

Definition 7.1.1. Let L|K and L' |K be field extensions. Then a K-isomorphism is an iso-
morphism 7 : L — L', that is, the identity map on K; thus, it fixes each element of K.

Theorem 7.1.2 (Kronecker’s theorem). Let K be a field and f(x) € K[x]. Then there ex-
ists a finite extension K' of K, where f(x) has a zero.

Proof. Suppose that f(x) € K[x]. We know that f(x) factors into irreducible polynomi-
als. Let p(x) be an irreducible factor of f(x). From the material in Chapter 4, we know
that since p(x) is irreducible, the principal ideal (p(x)) in K[x] is a maximal ideal. To
see this, suppose that g(x) ¢ (p(x)), so that g(x) is not a multiple of p(x). Since p(x) is
irreducible, it follows that (p(x), g(x)) = 1. Thus, there exist h(x), k(x) € K[x] with

h(COp(x) + k(x)g(x) = 1.

The element on the left is in the ideal (g(x), p(x)), so the identity, 1, is in this ideal.
Therefore, the whole ring K[x] is in this ideal. Since g(x) was arbitrary, this implies
that the principal ideal (p(x)) is maximal.

Now let K' = K[x]/{p(x)). Since (p(x)) is a maximal ideal, it follows that K’ is a
field. We show that K can be embedded in K’, and that p(x) has a zero in K'.

First, consider the map a : K[x] — K’ by a(f(x)) = f(x) + {p(x)). This is a homo-
morphism. Since the identity element 1 € K is not in (p(x)), it follows that a restricted
to K is nontrivial. Therefore, a restricted to K is a monomorphism since if ker(a|K) +K
then ker(aqK) = {0}. Therefore, K can be embedded into a(K), which is contained in
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94 — 7 Kronecker’s theorem and algebraic closures

K'. Therefore, K' can be considered as an extension field of K. Consider the element
a=x+ (p(x)) € K'. Then p(a) = px) + (p(x)) = 0 + (p(x)) since p(x) € (p(x)). But
0+ (p(x)) is the zero element O of the factor ring K[x]/{p(x)}). Therefore, in K', we have
p(a) = 0; hence, p(x) has a zero in K’. Since p(x) divides f(x), we must have f(a) = 0
in K’ also. Therefore, we have constructed an extension field of K, in which f(x) has a
Zero. O

In conformity to Chapter 5, we write K(a) for the field adjunction of a = x + {(p(x)))
to K. We now outline an intuitive construction. From this, we say that the field K is
constructed by adjoining the zero (a) to K. We remark that this construction is not a
formally correct proof as that given for Theorem 7.1.2.

We can assume that f(x) is irreducible. Suppose that f(x) = ay + a;x + --- + a,x
with a,, # 0. Define a to satisfy

n

g+ @+ +a,a” = 0.
Now, define K’ = K(a) in the following manner. We let
K(@) = {co+ @+ -+ cpq@" " i ¢ € K}

Then on K(a), define addition and subtraction componentwise, and define multipli-

cation by algebraic manipulation, replacing powers of a higher than a" by using
-1
o = —Ay — @@ — - = ap A" .
an

We claim that K’ = K(a), then forms a field of finite degree over K. The basic
ring properties follow easily by computation (see exercises) using the definitions. We
must show then that every nonzero element of K(a) has a multiplicative inverse. Let
g(a) € K(a). Then the corresponding polynomial g(x) € K[x] is a polynomial of degree
< n - 1. Since f(x) is irreducible of degree n, it follows that f(x) and g(x) must be
relatively prime; that is, (f(x), g(x)) = 1. Hence, there exist a(x), b(x) € K[x] with

a(of (x) + b(x)g(x) = 1.
Evaluate these polynomials at a to get
a(a)f (a) + b(a)g(a) = 1.
Since by definition we have f(a) = 0, this becomes
b(a)g(a) = 1.

Now b(a) might have degree higher than n — 1 in a. However, using the relation that
f(a) = 0, we can rewrite b(a) as b(a), where b(a) now has degree < n — 1in a and,
hence, is in K(a). Therefore,

b(a)g(a) = 1;
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7.1 Kronecker’s theorem =— 95

hence, g(a) has amultiplicative inverse. It follows that K(a) is a field and, by definition,
f(a) = 0. The elements 1, a, ... , & form a basis for K(a) over K and, hence,
|K(a) : K| = n.

Example 7.1.3. Let f(x) = x* + 1 € R[x]. This is irreducible over R. We construct the
field, in which this has a zero. Let K’ = K[x]/{x* + 1), and let a € K’ with f(a) = 0. The
extension field R(a) then has the form

K' =R@) = {x+ay: x,y € R,a’ = -1}.
It is clear that this field is R-isomorphic to the complex numbers C; that is, R(a) =
R(i) = C.

Theorem 7.1.4. Let p(x) € K[x] be an irreducible polynomial, and let K' = K(a) be the
extension field of K constructed in Kronecker’s theorem, in which p(x) has a zero a. Let L
be an extension field of K, and suppose that a € L is algebraic with minimal polynomial
mgy(x) = p(x). Then K(a) is K-isomorphic to K(a).

Proof. If L|K is a field extension and a € L with p(a) = 0 and if deg(p(x)) = n, then the
elements 1, q,...,a" ! constitute a basis for K(a) over K, and the elements 1, a, ..., a"
constitute a basis for K(a) over K. The mapping

T:K(a) - K(a)

defined by 7(k) = kif k € K and 1(a) = a, and then extended by linearity, is easily
shown to be a K-isomorphism. O

Theorem 7.1.5. Let K be a field. Then the following are equivalent:

(1) Each nonconstant polynomial in K[x] has a zero in K.

(2) Each nonconstant polynomial in K[x] factors into linear factors over K. That is, for
each f(x) € K[x], there exist elements a;, ..., a,, b € K with

fX) =b(x—ay) - (x - ay).

(3) Anelement of K[x] is irreducible if and only if it is of degree one.
(4) IfLIK is an algebraic extension, then L = K.

Proof. Suppose that each nonconstant polynomial in K[x] has a zero in K. Let f(x) €
K[x] with deg(f (x)) = n. Suppose that q; is a zero of f(x), then

f0) = (x = aphx),
where the degree of h(x) is n — 1. Now h(x) has a zero a, in K so that

f) = (x - ay)(x - ay)g(x)
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96 —— 7 Kronecker’s theorem and algebraic closures

with deg(g(x)) = n-2. Continue in this manner, and f(x) factors completely into linear
factors. Hence, (1) implies (2).

Now suppose (2); that is, that each nonconstant polynomial in K[x] factors into
linear factors over K. Suppose that f(x) is irreducible. If deg(f (x)) > 1, then f(x) factors
into linear factors and, hence, is not irreducible. Therefore, f(x) must be of degree 1,
and (2) implies (3).

Now suppose that an element of K[x] is irreducible if and only if it is of degree one,
and suppose that L|K is an algebraic extension. Let a € L. Then a is algebraic over K.
Its minimal polynomial m,(x) is monic and irreducible over K and, hence, from (3),
is linear. Therefore, m,(x) = x — a € K[x]. It follows that a € K and, hence, K = L.
Therefore, (3) implies (4).

Finally, suppose that whenever L|K is an algebraic extension, then L = K. Suppose
that f(x) is a nonconstant polynomial in K[x]. From Kronecker’s theorem, there exists
a field extension L, and a € L with f(a) = 0. However, L is an algebraic extension.
Therefore, by supposition, K = L. Therefore, a € K, and f(x) has a zero in K. Therefore,
(4) implies (1), completing the proof. O

In the next section, we will prove that given a field K, we can always find an ex-
tension field K with the properties of the last theorem.

7.2 Algebraic closures and algebraically closed fields

A field K is termed algebraically closed if K has no algebraic extensions other than K
itself. This is equivalent to any one of the conditions of Theorem 7.1.5.

Definition 7.2.1. A field K is algebraically closed if every nonconstant polynomial
f(x) € K[x] has a zeroin K.

The following theorem is just a restatement of Theorem 7.1.5.

Theorem 7.2.2. A field K is algebraically closed if and only it satisfies any one of the

following conditions:

(1) Each nonconstant polynomial in K[x] has a zero in K.

(2) Each nonconstant polynomial in K[x] factors into linear factors over K. That is, for
each f(x) € K[x], there exist elements a,, ..., a,, b € K with

fO) =b(x—ay) - (x - ay).

(3) Anelement of K[x] is irreducible if and only if it is of degree one.
(4) IfLIK is an algebraic extension, then L = K.

The prime example of an algebraically closed field is the field C of complex num-
bers. The fundamental theorem of algebra says that any nonconstant complex poly-
nomial has a complex zero.
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7.2 Algebraic closures and algebraically closed fields =—— 97

We now show that the algebraic closure of one field within an algebraically closed
field is algebraically closed. First, we define a general algebraic closure.

Definition 7.2.3. An extension field K of a field K is an algebraic closure of K if K is
algebraically closed and K|K is algebraic.

Theorem 7.2.4. Let K be a field and L|K an extension of K with L algebraically closed.
Let K = Ay be the algebraic closure of K within L. Then K is an algebraic closure of K.

Proof. Let K = Ay be the algebraic closure of K within L. We know that K|K is alge-
braic. Therefore, we must show that K is algebraically closed.

Let f(x) be a nonconstant polynomial in K[x]. Then f(x) € L[x]. Since L is alge-
braically closed, f(x) has a zero a in L. Since f(a) = 0 and f(x) € K[x], it follows that a
is algebraic over K. However, K is algebraic over K. Therefore, a is also algebraic over K.
Hence, a € K, and f(x) has a zero in K. Therefore, K is algebraically closed. O

We want to note the distinction between being algebraically closed and being an
algebraic closure.

Lemma 7.2.5. The complex numbers C are an algebraic closure of R, but not an alge-
braic closure of Q. An algebraic closure of Q is A the field of algebraic numbers within C.

Proof. C is algebraically closed (the fundamental theorem of algebra), and since
|C : R| = 2, it is algebraic over R. Therefore, C is an algebraic closure of R. Although
C is algebraically closed and contains the rational numbers Q, it is not an algebraic
closure of Q since it is not algebraic over Q as there exist transcendental elements.
On the other hand, A, the field of algebraic numbers within Q, is an algebraic
closure of Q from Theorem 7.2.4. O

We now show that every field has an algebraic closure. To do this, we first show
that any field can be embedded into an algebraically closed field.

Theorem 7.2.6. Let K be a field. Then K can be embedded into an algebraically closed
field.

Proof. We show first that there is an extension field L of K, in which each nonconstant
polynomial f(x) € K[x] has a zero in L.
Assign to each nonconstant f(x) € K[x] the symbol y;, and consider

R=Kl[ys : f(x) € K[x]],

the polynomial ring over K in the variables y;. Let

I= {Zf}-(yfl_)rj 1 € Rfi(x) € K[x]}.
j=1
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98 —— 7 Kronecker’s theorem and algebraic closures

It is straightforward that I is an ideal in R. Suppose that I = R. Then 1 € I. Hence, there
is a linear combination

1= glfl()’fl) +ee +gnfn()/f")>

whereg; €I =R.
In the n polynomials g;, . . ., 8,, there are only a finite number of variables, say for
example,

yfl,...,yfn,...,yfm.

Hence,
n
1= gWps -V iVp). (*)
i1

Successive applications of Kronecker’s theorem lead us to construct an extension field
P of K, in which each f; has a zero g;. Substituting g; for y in () above, we get that
1 = 0 a contradiction. Therefore, I # R.

Since I is a ideal not equal to the whole ring R, it follows that I is contained in a
maximal ideal M of R. Set L = R/M. Since M is maximal L is a field. Now K n M = {0}.
If not, suppose that a € K n M with a # 0. Then a 'a = 1 € M, and then M = R. Now
definet : K — L by 7(k) = k + M. Since K n M = {0}, it follows that ker(r) = {0}.
Therefore, T is a monomorphism. This allows us to identify K and 7(K), and shows
that K embeds into L.

Now suppose that f(x) is a nonconstant polynomial in K[x]. Then

fr +M) =f(yp) + M.
However, by the construction f (yf) € M, so that
f (yp+M)=M= the zero element of L.

Therefore, Yf + M is a zero of f(x).

Therefore, we have constructed a field L, in which every nonconstant polynomial
in K[x] has a zero in L.

We now iterate this procedure to form a chain of fields

KcKi((=L)cK,c---

such that each nonconstant polynomial of K;[x] has a zero in K;,;.

Now let K = |J; K;. It is easy to show (see exercises) that K is a field. If f(x) is a
nonconstant polynomial in K[x], then there is some i with f (x) € K;[x]. Therefore, f(x)
has a zeroin K;,;[x] c K. Hence, f(x) has a zero in K, and K is algebraically closed. [J
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Theorem 7.2.7. Let K be a field. Then K has an algebraic closure.

Proof. Let K be an algebraically closed field containing K, which exists from Theo-
rem 7.2.6.

Now letK = A be the set of elements of K that are algebraic over K. From Theo-
rem 7.2.4, K is an algebraic closure of K. O

The following lemma is straightforward. We leave the proof to the exercises.

Lemma 7.2.8. Let K,K' be fields and ¢ : K — K' a homomorphism. Then

¢ :K[x] - K'[x], givenby

q’b(ikix") = S (@)X,

i=0

is also a homomorphism. By convention, we identify ¢ and ¢ and write ¢ = ¢. If ¢ is an
isomorphism, then so is ¢.

Lemma 7.2.9. Let K,K' be fields and ¢ : K — K' an isomorphism. Let f(x) € K[x] be
irreducible. Let K c K(a) and K' c K'(a'), where a is a zero of f(x) and a’ is a zero of
@(f(x)). Then there is an isomorphism ¥ : K(a) — K'(a') with = ¢ and P(a) = d'.
Furthermore, Y is uniquely determined.

Proof. This is a generalized version of Theorem 7.1.4. If b € K(a), then from the con-
struction of K(a), there is a polynomial g(x) € K[x] with b = g(a). Define a map

Y:K(a) - K'(d)
by
Y(b) = p(g(0))(a").

We show that  is an isomorphism.

First, i is well-defined. Suppose that b = g(a) = h(a) with h(x) € K[x]. Then
(g — h)(a) = 0. Since f(x) is irreducible, this implies that f(x) = cm,(x), and since a is
a zero of (g — h)(x), then f(x)|(g — h)(x). Then

P(f))I($(8(0) - p(h(x))).

Since ¢(f(x))(a') = 0, this implies that ¢(g(x))(a’) = p(h(x))(a'); hence, the map ) is
well-defined.

It is easy to show that i is a homomorphism. Let b; = g;(a), b, = g,(a). Then
b,b; = g18>(a). Hence,

Y(b,b,) = ((;b(glgz))(a') = (;l)(gl)(a')(l)(gz)(a') = P(b)Y(b,).

In the same manner, we have (b, + b,) = P(b;) + P(b,).
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Now suppose that k € K so that k € K[x] is a constant polynomial. Then (k) =
(k) (a') = p(k). Therefore, i restricted to K is precisely ¢.

As 1 is not the zero mapping, it follows that 1 is a monomorphism.

Finally, since K(a) is generated from K and a, and i restricted to K is ¢, it follows
that 1 is uniquely determined by ¢ and (a) = a'. Hence,  is unique. O

Theorem 7.2.10. Let L|K be an algebraic extension. Suppose that L, is an algebraically
closed field and ¢ is an isomorphism from K to K; c L,. Then there exists a monomor-
phism from L to L, with ;= ¢.
Before we give the proof, we note that the theorem gives the following diagram:
L e L — algebraicatly
clused

algebruic

K———"—" K= ¢k

In particular, the theorem can be applied to monomorphisms of a field K within
an algebraic closure K of K. Specifically, suppose that K c K, where K is an algebraic
closure of K, and let a : K — K be a monomorphism with a(K) = K. Then there exists
an automorphism a* of K with al’; =a.

Proof of Theorem 7.2.10. Consider the set

M={M,71):MisafieldwithK c M c L,
where there exists a monomorphism 7 : M — L; with 7, = ¢}

Now the set M is nonempty since (K, ¢) € M. Order M by (M;,1;) < (M,, T,) if
M; ¢ M, and (r2)|M1 = 1. Let

K= {(Mi’Ti) (i€ I}
be a chain in M. Let (M, T) be defined by

M= UMi with 7(a) = 1;(a) for all a € M;.
iel
It is clear that M is an upper bound for the chain K. Since each chain has an upper
bound it follows from Zorn’s lemma that M has a maximal element (N, p). We show
that N = L.

Suppose that N ¢ L. Leta € L\ N. Then a is algebraic over N and further algebraic
over K, since L|K is algebraic. Let m,(x) € N[x] be the minimal polynomial of a relative
to N. Since L, is algebraically closed, p(m,(x)) has a zero a’ € L,. Therefore, there is a
monomorphism p' : N(a) — L, with p’ restricted to N, the same as p. It follows that
(N,p) < (N(a),p") since a ¢ N. This contradicts the maximality of N. Therefore, N = L,
completing the proof. O
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Combining the previous two theorems, we can now prove that any two algebraic
closures of a field K are unique up to K-isomorphism; that is, up to an isomorphism,
thus, is the identity on K.

Theorem 7.2.11. Let L, and L, be algebraic closures of the field K. Then there is a
K-isomorphism T : L — L,. Again by K-isomorphism, we mean that 7 is the identity
onk.

Proof. From Theorem 7.2.7, there is a monomorphism 7 : L; — L, with 7 the identity
on K. However, since L, is algebraically closed, so is 7(L,). Then L,|t(L,) is an alge-
braic extension. Therefore, since L, is algebraically closed, we must have L, = 7(L,).
Therefore, T is also surjective and, hence, an isomorphism. O

The following corollary is immediate.

Corollary 7.2.12. Let LIK and L'|K be field extensions witha < L and a' € L' algebraic
elements over K. Then K(a) is K-isomorphic to K(a') if and only if |[K(a) : K| = |[K(a') : K|,
and there is an element a" € K(a') with my(x) = mg (x).

7.3 The fundamental theorem of algebra

In this section, we give a proof of the fact that the complex numbers form an alge-
braically closed field. This is known as the fundamental theorem of algebra. First, we
need the concept of a splitting field for a polynomial. In the next chapter, we will ex-
amine this concept more deeply.

7.3.1 Splitting fields

We have just seen that given an irreducible polynomial over a field K, we could always
find a field extension, in which this polynomial has a zero. We now push this further
to obtain field extensions, where a given polynomial has all its zeros.

Definition 7.3.1. If K is a field and O # f(x) € K[x], and K’ is an extension field of K,
then f(x) splits in K' (K' may be K), if f (x) factors into linear factors in K’ [x]. Equiva-
lently, this means that all the zeros of f(x) are in K'.

K' is a splitting field for f(x) over K if K’ is the smallest extension field of K, in
which f(x) splits. (A splitting field for f(x) is the smallest extension field, in which f(x)
has all its possible zeros.)

K' is a splitting field over K if it is the splitting field for some finite set of polyno-
mials over K.

Theorem 7.3.2. IfK is a field and O # f(x) € K[x], then there exists a splitting field for
f(x) over K.
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102 — 7 Kronecker’s theorem and algebraic closures

Proof. The splitting field is constructed by repeated adjoining of zeros. Suppose, with-
out loss of generality, that f(x) is irreducible of degree n over K. From Theorem 7.1.2,
there exists a field K’ containing a with f(a) = 0. Then f(x) = (x — a)g(x) € K'[x] with
deg g(x) = n—1. By an inductive argument, g(x) has a splitting field; therefore, so does

F). O

In the next chapter, we will further characterize splitting fields.

7.3.2 Permutations and symmetric polynomials

To obtain a proof of the fundamental theorem of algebra, we need to go a bit outside
of our main discussions of rings and fields and introduce symmetric polynomials. To
introduce this concept, we first review some basic ideas from elementary group theory,
which we will look at in detail later in the book.

Definition 7.3.3. A group G is a set with one binary operation, which we will denote

by multiplication, such that the following hold:

(1) The operation is associative; that is, (g,8,)83 = 81(g»83) for all g, 8,85 € G.

(2) There exists an identity for this operation; that is, an element 1 such that 1g = g
foreach g € G.

(3) Each g € G has an inverse for this operation; that is, for each g, there exists a g‘1
with the property that gg ™! = 1.

If in addition the operation is commutative (g8, = g,g; for all g;,g, € G), the group
G is called an abelian group. The order of G is the number of elements in G, denoted
|G|. If |G| < o0, G is a finite group. H C G is a subgroup if H is also a group under the
same operation as G. Equivalently, H is a subgroup if H + 0, and H is closed under the
operation and inverses.

Groups most often arise from invertible mappings of a set onto itself. Such map-
pings are called permutations.

Definition 7.3.4. If T is a set, a permutation on T is a one-to-one mapping of T onto
itself. We denote the set of all permutations on T by St.

Theorem 7.3.5. Foranyset T, Sy forms a group under composition called the symmetric
group on T.If T, Ty have the same cardinality (size), then St = Sy, If T is a finite set with
|T| = n, then Sy is a finite group, and |St| = n!.

Proof. 1f Sy is the set of all permutations on the set T, we must show that composition
is an operation on Sy that is associative and has an identity and inverses.

Letf,g € Sr. Then f, g are one-to-one mappings of T onto itself. Consider f o g :
T — T.1ffog(t) = f - 8(t), then f(g(t)) = f(g(ty), and g(t;) = g(t,), since f is
one-to-one. But then ¢, = ¢, since g is one-to-one.
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7.3 The fundamental theorem of algebra =— 103

Ift € T, there exists t; € T with f(¢;) = t since f is onto. Then there exists t, € T
with g(t,) = t; since g is onto. Putting these together, f(g(t,)) = t; therefore, f og is onto.
Therefore, f o g is also a permutation, and composition gives a valid binary operation
on St.

The identity function 1(t) = t for all ¢ € T will serve as the identity for S, whereas
the inverse function for each permutation will be the inverse. Such unique inverse
functions exist since each permutation is a bijection.

Finally, composition of functions is always associative; therefore, S; forms a
group.

If T, T, have the same cardinality, then there exists a bijection o : T — T. Definea
map F : S¢ — Sr, in the following manner: if f € Sr, let F(f) be the permutation on T;
given by F(f)(t;) = o(f (0’1(t1))). It is straightforward to verify that F is an isomorphism
(see the exercises).

Finally, suppose |[T| =n < oco.Then T = {t;, ..., t,}. Each f € Sy can be pictured as

f= ( R > '
flt) ... fty)
For ¢, there are n choices for f(¢;). For t,, there are only n — 1 choices since f is one-to-

one. This continues down to only one choice for ¢,. Using the multiplication principle,
the number of choices for f and, therefore, the size of St is

nn-1)---1=nl O
For a set with n elements, we denote Sy by S,, called the symmetric group on n

symbols.

Example 7.3.6. Write down the six elements of S;, and give the multiplication table
for the group.
Name the three elements 1,2, 3 of T. The six elements of S; are then:

1:<1 2 3>, a=<1 3>’ b:(l 3)

1 2 3 2 1 3 2
<1 2 3> <1 3> <1 3)

c= , d= , e= .
2 1 3 3 1 1 2

The multiplication table for S; can be written down directly by doing the required
composition. For example,

<1 2 3> <1 2 3> (1 2 3>
ac = = =d.
2 3 1)\2 1 3 3 2 1

To see this, note thata : 1 —» 2,2 - 3,3 > 1;¢:1 — 2,2 - 1,3 — 3, and so
ac:1-3,2—-23—>1.

NN w N
W N = N
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104 — 7 Kronecker’s theorem and algebraic closures

It is somewhat easier to construct the multiplication table if we make some obser-
vations. First, a> = b, and @® = 1. Next, ¢* = 1, d = ac, e = a’c and, finally, ac = cd.
From these relations, the following multiplication table can be constructed:

1 a a’ c ac a’c
1 1 a a’ c ac d’c
a a a’ 1 ac da’c ¢
2 2 2
a a 1 a ac ¢ ac -
c ¢ dc ac 1 a’ a
ac ac c dc a 1 a?
a’c a’c ac c a? a 1

To see this, consider, for example, (ac)a® = a(ca®) = a(ac) = a’c.
More generally, we can say that S; has a presentation given by

S;={a,c;a = ¢* =1,ac = ca®).

By this, we mean that S; is generated by a, c, or that S; has generators a, c. Thus,
the whole group and its multiplication table can be generated by using the relations

ad=c= 1, ac = ca’.

An important result, the form of which we will see later in our work on extension
fields, is the following:

Lemma7.3.7. Let T be a set and T; c T a subset. Let H be the subset of Sy that fixes
each element of Ty; that is, f € Hiff(t) =t for allt € T,. Then H is a subgroup.

Proof. H + ¢ sincel € H. Now suppose h;, h, € H. Lett; € T}, and consider h; o h,(t;) =
h;(hy(t))). Now h,(t;) = t; since h, € H, but then h;(¢;) = t; since h; € H. Therefore,
hioh, € H, and H is closed under composition. If h; fixes t;, then h; Lalso fixes t;. Thus,
H is also closed under inverses and is, therefore, a subgroup. O

We now apply these ideas of permutations to certain polynomial rings in indepen-
dent indeterminates over a field. We will look at these in detail in Chapter 11.

Definition 7.3.8. Lety,,...,y, be (independent) indeterminates over a field K. A poly-
nomial f(yy,...,¥,) € Ky .- .,¥,] is a symmetric polynomialiny;, ...,y iff(y1,....¥n)
is unchanged by any permutation o of {y;,...,y,}; thatis, f(y;,...,yn) = f(@(),...,

a(Yn))-

IfK c K' are fields and a;, ..., a, are in K, then we call a polynomial f(a, ..., ;)
with coefficients in K symmetric in a, ..., a, if f(a,...,a,) is unchanged by any per-
mutation o of {a;, ..., a,}.

Example 7.3.9. Let K be a field and ky, k; € K. Let h(y;,y,) = ko(y; +¥2) + ki(y1y2)-

There are two permutations on {y;,y,}, namely, oy : y; — y;, ¥, — ¥, and 0, :
Y1 — Y2, V> — Y1 Applying either one of these two to {y;, y,} leaves h(y;,y,) invariant.
Therefore, h(y;,y,) is a symmetric polynomial.
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7.3 The fundamental theorem of algebra =— 105

Definition 7.3.10. Let x,y;,...,y, be indeterminates over a field K (or elements of an
extension field K’ of K). Form the polynomial

POGY s Yn) = (X =Y - (X =)

Thei-th elementary symmetric polynomial s;iny;,...,y,fori =1,...,n,is (—l)iai, where
a; is the coefficient of X" in p(x, y;, ..., ¥p)-

Example 7.3.11. Consider y;,y,,y;. Then

PGV, Y2,Y3) = X =y (X = y)(x —y3)
=X~ + Y2 + V30X + (V1Y2 + VY3 + VaY3)X — V1YoV

Therefore, the three elementary symmetric polynomials in y;,y,, y; over any field
are
D si=y;+y2+ys
) s;=y1y2+y1y3 + Va3
(B3) s3=y1y2y3.

In general, the pattern of the last example holds for y,, ..., y,. That s,

S1=Y1tY2t ot Vn
SH =YY+t Y1Y3t -+ YnVn

S3=YIoY3 +Y1YVa o+ Yn2Yn-1Vn

Sp=Y1""Vn-

The importance of the elementary symmetric polynomials is that any symmetric
polynomial can be built up from the elementary symmetric polynomials. We make this
precise in the next theorem called the fundamental theorem of symmetric polynomials.
We will use this important result several times, and we will give a complete proof in
Section 7.5.

Theorem 7.3.12 (Fundamental theorem of symmetric polynomials). IfPisasymmetric
polynomial in the indeterminates y,, ...,y, over a field K; that is, P € K[y;,...,y,] and
P is symmetric, then there exists a unique g € Kly,,...,y,] such that f(y;,....y,) =
g(sy, ..., Sy). That is, any symmetric polynomial iny,, ...,y, is a polynomial expression
in the elementary symmetric polynomials iny;, ..., y,.

From this theorem, we obtain the following two lemmas, which will be crucial in
our proof of the fundamental theorem of algebra.

Lemma 7.3.13. Let p(x) € K[x], and suppose p(x) has the zeros ay, .. ., a,, in the splitting
field K'. Then the elementary symmetric polynomials in ay,...,a, arein K.
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106 —— 7 Kronecker's theorem and algebraic closures

Proof. Suppose p(x) = ¢y + X ++--+ ¢, X" € K[x]. Since p(x) splits in K "[x], with zeros
ay,...,a,, we have that, in K'[x],

PX) = cx —ay) -+ (x — ay).

The coefficients are then cn(—l)isi(al, ..., @&,), where the s;(ay, ..., a,) are the ele-
mentary symmetric polynomialsina;, ..., a,. However, p(x) € K[x], so each coefficient
is in K. It follows then that for each i, c,(-1)'s;(a;, ..., a,) € K; hence, s;(a;,...,a,) € K
since ¢, € K. O

Lemma 7.3.14. Let p(x) € K|[x], and suppose p(x) has the zeros ay, ..., a, in the split-
ting field K'. Suppose further that g(x) = g(x, a3, ..., a,) € K'[x]. If g(x) is a symmetric
polynomialin ay, ..., a,, then g(x) € K[x].

Proof. If g(x) = g(x,ay,...,a,) is symmetric in a;, ..., a,, then from Theorem 7.3.12,
it is a symmetric polynomial in the elementary symmetric polynomials in a;, ..., ay,.
From Lemma 7.3.13, these are in the ground field K, so the coefficients of g(x) are in K.
Therefore, g(x) € K[x]. O

7.4 The fundamental theorem of algebra

We now present a proof of the fundamental theorem of algebra.

Theorem 7.4.1 (Fundamental theorem of algebra). Any nonconstant complex polyno-
mial has a complex zero. In other words, the complex number field C is algebraically
closed.

The proof depends on the following sequence of lemmas. The crucial one now is
the last, which says that any real polynomial must have a complex zero.

Lemma 7.4.2. Any odd-degree real polynomial must have a real zero.

Proof. This is a consequence of the intermediate value theorem from analysis.
Suppose P(x) € R[x] with deg P(x) = n = 2k + 1, and suppose the leading coeffi-
cient a, > O (the proof is almost identical if a,, < 0). Then

P(x) = a,x" + (lower terms),
and n is odd. Then,

(1) lim,_ ., P(x) = lim,_,,
(2) lim,_,_., P(x) =1lim

a,x" = oo since a,, > 0.
oo X" = —00 since a,, > 0 and n is odd.

From (1), P(x) gets arbitrarily large positively, so there exists an x; with P(x;) > 0.
Similarly, from (2) there exists an x, with P(x,) < 0.
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7.4 The fundamental theorem of algebra =— 107

A real polynomial is a continuous real-valued function for all x € R. Since
P(x;)P(x;) < O, it follows from the intermediate value theorem that there exists an
X3, between x; and x,, such that P(x3) = 0. O

Lemma 7.4.3. Any degree-two complex polynomial must have a complex zero.

Proof. Thisis a consequence of the quadratic formula and of the fact that any complex
number has a square root.
If P(x) = ax® + bx + ¢, a # 0, then the zeros formally are

L Vb? - 4ac i Vb? - 4ac

1 2a R 2a '
From DeMoivre’s theorem, every complex number has a square root; hence, x;, x;, exist
in C. They of course are the same if b* - 4ac = 0. O

To go further, we need the concept of the conjugate of a polynomial and some
straightforward consequences of this idea.

Definition 7.4.4. If P(x) = a, +--- +a,x" is a complex polynomial then its conjugate is
the polynomial P(x) = @, + --- + @,x". That is, the conjugate is the polynomial whose
coefficients are the complex conjugates of those of P(x).

Lemma 7.4.5. For any P(x) € C[x], we have the following:
(1) P(z)=P@Z)ifz € C.

(2) P(x)is a real polynomial if and only if P(x) = P(x).

(3) IfP()Q(x) = H(x), then H(x) = (P(x))(Q(x)).

Proof. (1) Suppose z € Cand P(z) = ag + - + a,z". Then
P(z)=ay+ -+ z" = Qg + GZ + -+ + Ayz" = P(Z).

(2) Suppose P(x) is real, then a; = @ for all its coefficients; hence, P(x) = P(x).
Conversely, suppose P(x) = P(x). Then g; = @; for all its coefficients; hence, a; € R for
each q;; therefore, P(x) is a real polynomial.

(3) The proof is a computation and left to the exercises. O

Lemma 7.4.6. Suppose G(x) € C[x]. Then H(x) = G(x)G(x) € R[x].

Proof. H(x) = GOOG(X) = G)G(X) = GX)G(x) = G)G(x) = H(x). Therefore, H(x) is a
real polynomial. O

Lemma 7.4.7. Ifevery nonconstant real polynomial has a complex zero, then every non-
constant complex polynomial has a complex zero.

Proof. Let P(x) € C|x], and suppose that every nonconstant real polynomial has at
least one complex zero. Let H(x) = P(x)P(x). From Lemma 7.4.6, H(x) € R[x]. By sup-
position there exists a z, € C with H(zy;) = 0. Then P(zo)ﬁ(zo) = 0, and since C
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108 —— 7 Kronecker’s theorem and algebraic closures

is a field it has no zero divisors. Hence, either P(zy) = O, or 1_3(20) = 0. In the first
case, z, is a zero of P(x). In the second case, 1_9(20) = 0. Then from Lemma 74.5,

P(z,) = P(Zo) = P(zg) = 0. Therefore, Z; is a zero of P(x). O
Now we come to the crucial lemma.
Lemma 7.4.8. Any nonconstant real polynomial has a complex zero.

Proof. Letf(x) = ag+a;x+---+a,x" € R[x]withn > 1, a, # 0. The proofis an induction
on the degree n of f(x).

Suppose n = 2™q, where g is odd. We do the induction on m. If m = 0, then f(x) has
odd degree, and the theorem is true from Lemma 7.4.2. Assume then that the theorem
is true for all degrees d = 2%q’, where k < mand ¢’ is odd. Now assume that the degree
of f(x)isn =2"q.

Suppose K’ is the splitting field for f(x) over R, in which the zeros are a;, ..., q,.
We show that at least one of these zeros must be in C. (In fact, all are in C, but to prove
the lemma, we need only show at least one.)

Let h € Z, and form the polynomial

H(x) = H(x —(a;+a; + htxl-aj)).
i<j
This is in K'[x]. In forming H(x), we chose pairs of zeros {a;, a;}, SO the number of

such pairs is the number of ways of choosing two elements out of n = 2™q elements.
This is given by

@"PR"g-1) _

> q(2"q-1)=2""¢

with ¢’ odd. Therefore, the degree of H(x) is 2" 'q’.

H(x) is a symmetric polynomial in the zeros a;, . .., a,. Since ay, . . ., &, are the zeros
of a real polynomial, from Lemma 7.3.14, any polynomial in the splitting field symmet-
ric in these zeros must be a real polynomial.

Therefore, H(x) € R[x] with degree 2™ !q’. By the inductive hypothesis, then, H(x)
must have a complex zero. This implies that there exists a pair {a;, a;} with

a; + a; + haya; € C.

Since h was an arbitrary integer, for any integer h;, there must exist such a pair
{ai, a]} with

a; + a; + hyaya; € C.

Now let h; vary over the integers. Since there are only finitely many such pairs
{a;, aj}, it follows that there must be at least two different integers h;, h, such that

zy = a;+ 0 + hhayo; € C, and  z, = a; + a; + hyoya; € C.
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7.5 The fundamental theorem of symmetric polynomials = 109

Then z; - z, = (hy - hy)a;a; € C, and since hy, h, € Z ¢ C, it follows that a;a; € C.
But then h;a;a; € C, from which it follows that a; + a; € C. Then,

p) =(x-a)x-aq;) = X - (a; + a))x + oy € C[x].

However, p(x) is then a degree-two complex polynomial, and so from Lemma 7.4.3, its
zeros are complex. Therefore, a;, a; € G thus, f(x) has a complex zero. O

It is now easy to give a proof of the fundamental theorem of algebra. From Lem-
ma 7.4.8, every nonconstant real polynomial has a complex zero. From Lemma 7.4.7, if
every nonconstant real polynomial has a complex zero, then every nonconstant com-
plex polynomial has a complex zero, proving the fundamental theorem.

Theorem 7.4.9. IfE is a finite dimensional field extension of C, then E = C.

Proof. Leta ¢ E. Regard the elements 1,a,a’, .. .. These elements become linearly de-
pendent over C, and we get a nonconstant polynomial over C with zero a. By the fun-
damental theorem of algebra, we know that a € C. O

Corollary 7.4.10. IfE is a finite dimensional field extension of R, then E = R, or E = C.

7.5 The fundamental theorem of symmetric polynomials

In the proof of the fundamental theorem of algebra that was given in the previous
section, we used the fact that any symmetric polynomial in n indeterminates is a poly-
nomial in the elementary symmetric polynomials in these indeterminates. In this sec-
tion, we give a proof of this theorem.

Let R be an integral domain with x;,...,x,, (independent) indeterminates over R,
and let R[x;,...,x,] be the polynomial ring in these indeterminates. Any polynomial
f(x,....x,) € R[xq,...,x,] is composed of a sum of pieces of the form axi1 x;;' with
a € R. We first put an order on these pieces of a polynomial.

The piece axi1 “e xi? with a # 0O is called higher than the piece bx{1 fe x’,"; with b # 0,
if the first one of the differences

U—Jul =] ln~n

that differs from zero is in fact positive. The highest piece of a polynomial f(x;,.. ., x;)
is denoted by HG(f).

Lemma 7.5.1. For f(xy,...,X,),8(Xy,...,X,) € R[Xy,...,X,], we have

HG(fg) = HG(f) HG(g).
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110 —— 7 Kronecker’s theorem and algebraic closures

Proof. We use an induction on n, the number of indeterminates. It is clearly true for
n = 1, and now assume that the statement holds for all polynomials in k indetermi-
nates with k < nand n > 2. Order the polynomials via exponents on the first indeter-
minate x; so that

r r-1
FOx X)) =30, (0, . X)) + X7 Py (X5 Xy)

ot PoXgs .. Xy)

s s-1
(X X)) = X P, LX) + X P 1060, Xy)

+"'+l/}0(X2,...,Xn).

Then HG(fg) = x{** HG(¢b,;). By the inductive hypothesis

HG(¢rlps) = HG(¢r) HG(l/)s)-

Hence,

HG(fg) = x{™* HG(¢,) HG(s)
= (x] HG(¢,))(x; HG(,)) = HG(f) HG(g). O

The elementary symmetric polynomials in n indeterminates x;, ..., x,, are as fol-
lows:

Sl :X1+X2+"'+Xn
Sz :X1X2 +X1X3 + e +Xn_1Xn

33 = X1X2X3 + X1X2X4 +e0t anzxnflxn

sn:XI"'Xn~

These were found by forming the polynomial p(x, x5, ..., X,) = (X —=x7) -+ - (X — X;)-
The i-th elementary symmetric polynomial s; in x,,...,X, is then (-1)'a;, where a; is
the coefficient of ™ in p(x, x;, ..., X,).

In general,

Sk = Z Xiy Xy Xy
1) <iy<-<iy,1<k<n
where the sum is taken over all the (}) different systems of indices i,..., i with
I <)<+ <.
Furthermore, a polynomial s(x;,...,x,) is a symmetric polynomial if s(xy,...,X,)
is unchanged by any permutation o of {x,...,x,}; that is, s(x,...,x,) = s(od(xy),...,
o(xp))-
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7.5 The fundamental theorem of symmetric polynomials =— 111

Lemma 7.5.2. In the highest piece axi‘1 . ~x,l§", a # 0, of a symmetric polynomial s(x, . . .,

X,), we have k; > k, > --- > k,.

Proof. Assume that k; < k; for some i < j. As a symmetric polynomial, s(x;, ..., X,) also

must then contain the piece axf“--xi’-.-x{"-nxf;", which is higher than

j
k; k; K, .. .
bk - X", giving a contradiction. O

ax, ; f

Lemma 7.5.3. The product s’fl_kzsl;fk3 . -sﬁ"_*{k"s’,i" withk; > k, > --- > k, has the high-

. ky k k
est piece X}'x,% -+ - xp".

Proof. From the definition of the elementary symmetric polynomials, we have that
HG(sk) = (- x)', 1<ks<n t>1.
From Lemma 74.2,

k=l ks kna—ky K
HG(s)' sy 2 ---8,"1"s,")

ke —k K-k K1k ky
:)(11 2(X1X2) 2 3...(X1...Xn_11 )(Xl...xn)
=Xf1x§2-~-xﬁ". O
Theorem 7.5.4. Let s(xy,...,X,) € RI[xq,...,x,] be a symmetric polynomial. Then
s(Xy,...,X,) can be uniquely expressed as a polynomial f(sy,...,s,) in the elementary
symmetric polynomials sy, ... ., s, with coefficients from R.

Proof. We prove the existence of the polynomial f by induction on the size of the high-
est pieces. If in the highest piece of a symmetric polynomial all exponents are zero,
then it is constant, that is, an element of R. Therefore, there is nothing to prove.

Now we assume that each symmetric polynomial with highest piece smaller than
that of s(x;, ..., x,) can be written as a polynomial in the elementary symmetric poly-
nomials. Let axi<1 .. -x’,f", a #+ 0, be the highest piece of s(x;, ..., x,). Let

l=k; |

Kok, k
t(Xg5 ... Xn) = S(Xy5.. ., Xp) — AS;) S s

o
Clearly, t(xq,...,x,) is another symmetric polynomial, and from Lemma 74.5, the
highest piece of t(x;, ..., x,,) is smaller than that of s(x;, ..., x,,). Therefore, t(x, ..., x,).
Hence, s(xq,...,X,) = t(xg, ..., X,) + as’fl_k2 e s’;’f{k"s’,;" can be written as a polynomial
insy,...,S,-

To prove the uniqueness of this expression, assume that s(x;,...,x,) = f(sy,...,
Sp) = 8(S1,---,S,). Then f(sq,...,5,) — 8(S15...,Sy) = h(Sy,...,S,) = Xy, ..., X,) is the
zero polynomial in x;,.. ., x,,. Hence, if we write h(s,,...,s,) as a sum of products of
powers of the s;,...,s,, all coefficients disappear because two different products of
powers in the sy, ...,s, have different highest pieces. This follows from the previous
set of lemmas. Therefore, f and g are the same, proving the theorem. O
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112 —— 7 Kronecker’s theorem and algebraic closures

7.6 Skew field extensions of C and Frobenius’s theorem

Let V be a R-vector space with dimy (V) = n < co.

We have already seen that as a consequence of the Fundamental theorem of al-
gebra that only for n = 1 and n = 2, we may provide V with a multiplication such
that V becomes a field with respect to the addition in V and this multiplication. Up to
isomorphisms, weget V = Rifn=1and V =Cifn=2.

If we want a suitable multiplication for n > 3, we have to give up some of the rules
of a field. If all the axioms of a field hold except for the commutativity of multiplication,
then we have a skew field or division ring. Hence, a division ring is a noncommuta-
tive ring with identity, in which every nonzero element has a multiplicative inverse.

Hamilton described for n = 4 a multiplication in V in such a way that V becomes
a skew field. In his honor, we talk about the Hamiltonian skew field. This skew field
is denoted by H and is called the quaternions.

In this section, we want first to describe the skew field H of Hamilton’s quater-
nions and then to prove that if n > 3, only for n = 4 can we provide V with a multipli-
cation such that V becomes a skew field.

We start with the construction and description of H. Let {1,i,, k} be a basis of V.
The addition will be the usual addition in the vector space. We also take scalar mul-
tiplication by R. The basis element 1 shall be the unit element for the multiplication
(as already mentioned in the case of the complex numbers, this is not a restriction be-
cause any nonzero vector in V is a member of a basis). The basis element 1 then should
generate the embedding of R.

For i,j, k, we define a multiplication by the following rules of Hamilton:

2=kt =1,
ij=k jk=i, ki=j,
ji=-k, kji=-i, ik=-j.
For
X=Xg+xi+xj+x3k and y =y +yi+yy+x3k,

we determine the addition and multiplication in V by following basic algebraic ma-
nipulation:

X+y = (Xg +Yo) + (X +y)i+ (g +y2)j + (55 +y3)k,
Xy = (XoYo — X1¥1 — Xa¥2 — X3Y3) + (Xo¥1 + X1Yo + Xa)/3 — X3))l
+(XoY2 — X1¥3 + X2V + X3¥1)i + (Xo¥3 + X1¥2 — Xo¥1 + X3Yo)k.

Together with this addition and multiplication, V becomes a noncommutative ring
with unit element 1. For each quaternion

X =X + X1 + X5f + x3k,
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7.6 Skew field extensions of C and Frobenius’s theorem =— 113

we define the conjugate quaternion by

We have the rules
X=X, Xt+y=x+y, M=A%x, AeR, and xy=X-y.

With help of the conjugation, we may now define the norm and the length of a quater-
nion

X = Xg + X1 + Xof + X3k
by

YT — Ty — ¥ o x2 w2 o 2 a2 o x2 w2 42
nx)=xx=xx=xy+x;+x;+x; and |x|= Xg +X] + X5 + X5,

respectively, in analogy to the complex numbers. If x # 0, then we get the multiplica-
tive inverse x' by x™' = £, because

_ X _
xxlzx—_:lzx

XX

&l =

Hence, together with the addition and multiplication, V becomes a skew field, in
which R can be embedded viar — r-1forr € R.

Theorem 7.6.1. The set of quaternions H is a skew field, which contains both the reals
and the complexes as subfields. It has dimension 4 as a vector space over R. Further-
more, rx = xr for all x € H, and all r € R (considered as elements of H).

In H, there is an important multiplicative rule for the norm and the length:

n(xy) =nn(y) and |xy| = |x|ly| forx,y e H.

This can be shown by an easy calculation.
This result on norms in the quaternions provides the general equation in R on
sums of four squares:

(Xé + Xf + X% + X%)(Y(Z) + Yf + )’5 + Jé) = (XoYo = X1V1 = X5 — X3Y3)
+ (oY1 + X1Yo + XpY3 — X3¥3)°
+ (Xo¥2 — X1Y3 + XpVo + X3¥1)°

2
+ (XoY3 + X1¥2 = Xo¥1 + X3Y)"
This equation is one of the bases for the Theorem of Lagrange.
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114 — 7 Kronecker’s theorem and algebraic closures

Theorem 7.6.2 (Theorem of Lagrange). Each natural number n can be written as a sum
n=a®+b*+c*+d
of four squares with a, b, c,d € Z.

Hint: We have only to show that (see [43, Chapter 3.2]) if p is a prime number with
p =3 mod 4, then p = a* + b* + ¢* + d* for some a, b, c,d € Z.

A proof of this can be found for instance in the book [43].

We remark that the skew field H of the quaternions can be embedded into M(2, C)

via
(1 O) <i O)
1 , - .
0 1 0 -i
j»—)(o 1>, k»—><0 l).
-1 0 i 0

Using this map, a quaternion x = X, + X;i + X,j + x3k can be considered as a matrix

Xo+x1 Xp+x31\ (w z
<—x2 +x31 X —xli> - <—E W)
withw =xy+xi e Candz = x, + x31 € C.

We have shown that the quaternions form a skew field of degree 4 over the real
numbers. We ask whether there can be other finite degree skew field extensions of R.
Let V be a R-vector space of dimy (V) = n < co. For which n, we may provide V with a
multiplication such that ¥V with the vector addition and this multiplication becomes a
field, or a skew field.

We remark that some nonzero vector in V has to be the unit element 1; therefore,
we automatically have an embedding R — V.

Let n > 2. Since the irreducible polynomials from R[x] have degree 1 or 2, then
under the existence of such a multiplication, each element a € V, which is not in R
(considered as a subset of V), must be a zero of a quadratic polynomial from R[x].

We now assume that we have in V' a multiplication such that V, together with the
addition in V and this multiplication, is a field or a skew field.

If n = 2, we get the field C of the complex numbers.

Now, letn = 3.

Using analogous thoughts as for the implementation of C, we may construct in
two steps a basis {1,1,j} of V such that 1 is the unit element of V, and i* = j* = -1.
Recall that a two-dimensional subspace of V has to be isomorphic to C as a subfield
of V.

Let k = ij. Since dimy(V) = 3, we must have k = a; + byi + ¢;j with a;, by, ¢ € R.
Multiplication from the left with i results in

_j = ali - bl + Clk = ali - bl + Cl(al + bli + Clj)’

Brought to you by | Chalmers University of Technology
Authenticated
Download Date | 9/12/19 6:27 AM



7.6 Skew field extensions of C and Frobenius’s theorem = 115

and since 1,1, j are linearly independent, therefore, we get cf = -1, which is impossible
in R. Therefore, the case n = 3 is not possible.

If n = 4, we may construct in V three linearly independent elements 1, i, j such that
1is the unit element of V, and i* = j? = —1. Certainly ij is linearly independent from 1, i
and j, because otherwise, we get a contradiction as in the case n = 3. Alsoji is linearly
independent from 1, i and j. Now i +j and i — j are both zeros of quadratic polynomials
over R; that is, there exists 1y, s;,7,,5, € Rwith

(+j)°+nGi+j)+s,=0 and (i—j)?+r(i—j)+s,=0.

If we add these equations, we see that r; = r, = 0; therefore, we get from the first
equation that ij + ji = ¢ € R. Here, we used that 1,i and j are linearly independent.
Now, we may replace j by j + %i, which gives

i(j + §l> + <j+ gi>i - 0.

Since the subspace of V generated by 1and j + gi must, as a field, be isomorphic to C,
we may normalize j + gi to j; with jf =-1.
We now define k = ij;. Then automatically

k=ij,=-ji and k*=-1

So altogether, we may construct a basis {1, 1,j, k} of V such that 1 is the unit element
of V, and i = j* = k* = -1, k = ij = —ji. Thereby, V is isomorphic to the skew field H of
the quaternions.

Finally, let n > 5.

Analogously as for the case n = 4 and the general observation for the subfield
isomorphic to C, we may construct a basis {1,1,j, k, [, ...} such that

?=7=k=-1, k=ij=—-ji and P=-1.
Analogously, as in the case n = 4, we have that i+ and i — [ are both zeros of quadratic
polynomials over R.
Therefore, as in the case n = 4,
il=li=a, eR
In the same manner, we get
jl+li=b,e R and kl+lk=c,eR.
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116 —— 7 Kronecker’s theorem and algebraic closures

We calculate

Ik = I(ij) = ayj — ilj = ayj — i(b, —jl)
= ayj — byl +ijl = ayj — byi + ki
=a,j — byi + ¢, - lk.

From this, we get

2lk = ayj — byi + C,.

Multiplication with k from the right gives

=2l = ayi + byj + 5k,

because jk =i, and ik = —j.

This means that [ is linearly dependent of {1,1,j, k}, which is not the case. This

contradiction shows that n > 5 is not possible.

Altogether, we have proven the following theorem:

Theorem 7.6.3 (Theorem of Frobenius). Let V be a R-vector space with dimp(V) = n <
0. Let V be provided in addition with a multiplication, such that V together with the
vector addition and the multiplication is a field or a skew field.

Thenn=1,2o0r4.

Ifn =1, then V is isomorphic to R.
Ifn = 2, then V is isomorphic to C.
Ifn = 4, then V is isomorphic to H.

7.7 Exercises

1.

Let f,g € K[x] be irreducible polynomials of degree 2 over the field K. Let a;, a,

(respectively, B;, 8,) be zeros of f and g. For 1 < i, j < 2, let v; = a; + f3;. Show the

following:

(@) IK(vy): Kl € {1,234}

(b) For fixed f, g, there are at most two different degrees in (a).

(c) Decide which sets of combinations of degrees in (b) (with f, g variable) are
possible, and give an example in each case.

Let L|K be a field extension; let v € L and f(x) € L[x], a polynomial of degree > 1.

Let all coefficients of f (x) be algebraic over K. If f(v) = O, then v is algebraic over K.

Let L|K be a field extension, and let M be an intermediate field. The extension M|K

is algebraic. For v € L, the following are equivalent:

(a) visalgebraic over M.

(b) vis algebraic over K.
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Let LIK be a field extension and v;,v, € L. Then the following are equivalent:

(@) v; and v, are algebraic over K.

(b) v; +v, and vv, are algebraic over K.

Let L|K be a simple field extension. Then there is an extension field L' of L of the
form L' = K(v;,v,) with the following:

(@) v; and v, are transcendental over K.

(b) The set of all over K algebraic elements of L' is L.

In the proof of Theorem 7.1.4, show that the mapping

7:K(a) — K(a),

defined by 7(k) = kif k € K and 7(a) = a, and then extended by linearity, is a
K-isomorphism.

Prove Lemma 7.2.8.

If T, T, are sets with the same cardinality, then there exists a bijectiono : T — T;.
Define amap F : Sy — Sy, in the following manner: if f € Sy, let F(f) be the per-
mutation on T; given by F(f)(t;) = o(f (ofl(tl))). Prove that F is an isomorphism.
Prove that if P(X),Q(x),H(x) € C, then if P(x)Q(x) = H(x), then H(x) =
(PO))(QW)).

. Show the multiplicative rule for the norm and the length for the quaternions:
n(xy) =n(x)n(y) and |xy|=Ix|ly] forx,yeH.

. Determine all irreducible polynomials over R. Factorize f(x) € R[x] in irreducible
polynomials.
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8 Splitting fields and normal extensions

8.1 Splitting fields

In the last chapter, we introduced splitting fields and used this idea to present a proof
of the fundamental theorem of algebra. The concept of a splitting field is essential to
the Galois theory of equations. Therefore, in this chapter, we look more deeply at this
idea.

Definition 8.1.1. Let K be a field and f(x) a nonconstant polynomial in K[x]. An exten-
sion field L of K is a splitting field for f(x) over K if the following hold:

(a) f(x) splits into linear factors in L[x].

(b) K <M c Land M # L, resulting in f(x) not splitting into linear factors in M[x].

From part (b) in the definition, the following is clear:

Lemma 8.1.2. L is a splitting field for f(x) € K|[x] if and only if f(x) splits into linear
factorsin L[x], and if f(x) = b(x — a;) --- (x — a,) with b € K, then L = K(ay, ..., a,).

Example 8.1.3. The field C of complex numbers is a splitting field for the polynomial
p(x) = x> + 1in R[x]. In fact, since C is algebraically closed, it is a splitting field for
any real polynomial f(x) € R[x], which has at least one nonreal zero.

The field Q(i) adjoining i to Q is a splitting field for x*> + 1 over Q[x].

The next result was used in the previous chapter. We restate and reprove it here.

Theorem 8.1.4. Let K be a field. Then each nonconstant polynomial in K[x] has a split-
ting field.

Proof. Let K be an algebraic closure of K. Then f(x) splits in K[x]; that is, f(x) = b(x —
a,)---(x —a,) withb € Kand a; € K. LetL = K(ay, ..., a,). Then L is the splitting field
for f(x) over K. O

We next show that the splitting field over K of a given polynomial is unique up to
K-isomorphism.

Theorem 8.1.5. Let K, K’ be fields and ¢ : K — K' an isomorphism. Let f(x) be a non-
constant polynomial in K[x] and f' (x) = ¢(f(x)) its image in K’ [x]. Suppose that L is a
splitting field for f(x) over K, and L' is a splitting field for f' (x) over K'.

() Supposethat L' c L". Then, if : L — L" is a monomorphism with, = ¢, then
Y is an isomorphism from L onto L'. Moreover, i maps the set of zeros of f (x) in L
onto the set of zeros of f'(x) in L'. The map  is uniquely determined by the values
of the zeros of f (x).

https://doi.org/10.1515/9783110603996-008
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120 — 8 Splitting fields and normal extensions

(b) Ifg(x)is anirreducible factor of f(x) in K[x], a is a zero of g(x) in L, and a' is a zero
of g'(x) = ¢p(g(x)) in L', then there is an isomorphism i from L to L' with Y, =@
and (a) = P(a’).

Before giving the proof of this theorem, we note that the following important result
is a direct consequence of it:

Theorem 8.1.6. A splitting field for f (x) € K[x] is unique up to K-isomorphism.

Proof of Theorem 8.1.5. Suppose that f(x) = b(x—a;)--- (x —a,) € L[x] and that ' (x) =
b'(x-ay)--- (x —a)) € L'[x]. Then

100 = p(f () = Y(f(0)) = (P(B))(x — (@) -+~ (x - (ay))-

We have proved that polynomials have unique factorization over fields. Since L' ¢ L",
it follows that the set of zeros (Y(a;),...,Y(a,)) is a permutation of the set of zeros
(aj,...,a)). In particular, this implies that y(q;) € L'; thus,
im@) =L =K'(a,...,a)).
Since theimage of pisK'(a;, ..., a)) = K'(P(a)), ..., P(a,)), itis clear that i is uniquely
determined by the images (a;). This proves part (a).
For part (b), embed L' in an algebraic closure L. Hence, there is a monomorphism

¢ :K(a) - L"

with ¢| = ¢ and ¢'(a) = a'. Hence, there is a monomorphism ¢ : L — L" with
Y|, = ¢'- Then from part (a), it follows that ) : L — L' is an isomorphism. O

Example 8.1.7. Let f(x) = X -7c¢ Q[x]. This has no zeros in Q, and since it is of
degree 3, it follows that it must be irreducible in Q[x].

Letw = —% + \/;i ¢ C. Then it is easy to show by computation that w? = —
and @’ = 1. Therefore, the three zeros of f(x) in C are as follows:

1_ V3

272 b

a1:71/3
c12=a)-71/3
a3:w2-71/3.

Hence, L = Q(a;, a,, a3), the splitting field of f(x). Since the minimal polynomial
of all three zeros over Q is the same f(x), it follows that

Q(ay) = Q(a,) = Q(a3).
Since Q(a;) ¢ R and a,, a; are nonreal, it is clear that a,, a; ¢ Q(a;).
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8.2 Normal extensions = 121

Suppose that Q(a,) = Q(az). Then w = a3a£1 € Q(ay), and so 713 = afla2 €
Q(a,). Hence, Q(a;) ¢ Q(a,); therefore, Q(a;) = Q(a,) since they have the same degree
over Q. This contradiction shows that Q(a,) and Q(a;) are distinct.

By computation, we have a; = a;'a3; hence,

L = Q(ay, a5 a3) = Q(ay, a)) = Q(7"°, w).
Now the degree of L over Q is
IL: Q=107 ) : Qw)||Qw) : Q|-

Now |Q(w) : Q| = 2since the minimal polynomial of w over Q is x%+x+1. Since no zero

of f(x) lies in Q(w), and the degree of f(x) is 3, it follows that f(x) is irreducible over

Q(w). Therefore, we have that the degree of L over Q(w) is 3. Hence, |L : Q| = (2)(3) = 6.
We now have the following lattice diagram of fields and subfields:

Q(ay) Q(az) Q{asz) Q(w)
\K //
3 2
Q

We do not know however if there are any more intermediate fields. There could,
for example, be infinitely many. However, as we will see when we do the Galois theory,
there are no others.

8.2 Normal extensions

We now consider algebraic field extensions L of K, which have the property that if
f(x) € K[x] has a zero in L, then f(x) must split in L. In particular, we show that if L is
a splitting field of finite degree for some g(x) € K[x], then L has this property.

Definition 8.2.1. A field extension L of a field K is a normal extension if the following

hold:

(a) LIK is algebraic.

(b) Each irreducible polynomial f(x) € K[x] that has a zero in L splits into linear fac-
tors in L[x].

Note, in Example 8.1.7, the extension fields Q(a;)|Q are not normal extensions.
Although f(x) has a zero in Q(g;), the polynomial f(x) does not split into linear factors
in Q(ay)[x].
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122 — 8 Splitting fields and normal extensions

We now show that L|K is a finite normal extension if and only if L is the splitting
field for some f(x) € K[x].

Theorem 8.2.2. Let L|K be a finite extension. Then the following are equivalent:

(a) L|K is a normal extension.

(b) LIK is a splitting field for some f(x) € K[x].

(c) IfLcL'andy : L — L' is a monomorphism with ), the identity map on K, then
is an automorphism of L; that is, Y(L) = L.

Proof. Suppose that L|K is a finite normal extension. Since L|K is a finite extension, L is
algebraic over K, and since of finite degree, we have L = K(ay, . . ., a,) with g; algebraic
over K.

Let f;(x) € K[x] be the minimal polynomial of ;. Since L|K is a normal extension,
fi(x) splitsin L[x]. Thisis true foreachi = 1,...,n.Letf(x) = f0)f,(x) - - - f,(x). Then f (x)
splits into linear factors in L[x]. Since K = K(ay, ..., a,), the polynomial f(x) cannot
have all its zeros in any intermediate extension between K and L. Therefore, L is the
splitting field for f(x). Hence, (a) implies (b).

Now suppose that L ¢ L' and % : L — L' is a monomorphism with i, the identity
map on K. Then the extension field (L) of K is also a splitting field for f(x) since l/}|K
is the identity on K. Hence, i) maps the zeros of f(x) in L ¢ L' onto the zeros of f(x) in
(L) ¢ L', and thus it follows that (L) = L. Hence, (b) implies (c).

Finally, suppose (c). Hence, we assume that if L ¢ L' and Y:L—> L' is a monomor-
phism with l,b|K, the identity map on K, then ¥ is an automorphism of L; that is,
Y(L) = L.

As before LIK is algebraic since L|K is finite. Suppose that f(x) € K|[x] is irre-
ducible and that a € L is a zero of f(x). There are algebraic elements a,,...,a, € L
with L = K(a,...,a,) since L|K is finite. Fori = 1,...,n, let f;(x) € K[x] be the minimal
polynomial of a;, and let g(x) = f(x)f;(x)---f,(x). Let L’ be the splitting field of g(X).
Clearly, L c L'. Let b € L' be a zero of f(x). From Theorem 8.1.5, there is an automor-
phism ¥ of L’ with 1)(a) = b and ¥, the identity on K. Hence, by our assumption, i,
is an automorphism of L. It follows that b € L; hence, f(x) splits in L[x]. Therefore, (c)
implies (a), completing the proof. O

To give simple examples of normal extensions, we have the following:

Lemma 8.2.3. If L is an extension of K with |L : K| = 2, then L is a normal extension
of K.

Proof. Suppose that |[L : K| = 2. Then L|K is algebraic since it is finite. Let f(x) €
K[x] be irreducible with leading coefficient 1, and which has a zero in L. Let a be
one zero. Then f(x) must be the minimal polynomial of a. However, deg(m,(x)) <
IL : K| = 2; hence, f(x) is of degree 1 or 2. Since f(x) has a zero in L, it follows that
it must split into linear factors in L[x]; therefore, L is a normal extension. O
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Later, we will tie this result to group theory when we prove that a subgroup of
index 2 must be a normal subgroup.

Example 8.2.4. As a first example of the lemma, consider the polynomial f (x) = x*-2.
In R, this splits as (x — V2)(x + V2); hence, the field Q(V2) is the splitting field of
foo) = x? — 2 over Q. Therefore, Q(v?2) is a normal extension of Q.

Example 8.2.5. Asasecond example, consider the polynomial x*~2in Q[x]. The zeros
in C are

21/4, 21/41.) 21/41-2, S4B
Hence,
I- Q(21/4 /45 91412 21/41-3)

is the splitting field of x* — 2 over Q.
Now

I= Q(21/4 Sl 9142 21/41.3) _ Q(Zl/l* i),
Therefore, we have
IL:Ql=|L: Q")) : Q).

Since x* — 2 is irreducible over Q, we have I(Q(Zl/ 4): Q| = 4. Since i has degree 2 over
any real field, we have |L : Q(2%)| = 2. Therefore, L is a normal extension of Q(2"/*),
and x* - V2 € Q(+2)[x] has the splitting field Q(2"/*).

Altogether, we have that L|Q(21/ M, Q(Zl/ 4)|Q(21/ 2), Q(Zl/ 2)I(Q, and L|Q are normal
extensions. However, (Q(21/ #)|Q is not normal since 2% is a zero of x* - 2, but (Q(21/ )
does not contain all the zeros of x* — 2.

Hence, we get the following Figure 8.1.

~ LA

nermat

Q(V2) <

normal | normal

Q (\/E) = not normal

| normal

e Q p
Figure 8.1: Normal extensions.
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8.3 Exercises

1.

Determine the splitting field of f(x) € Q[x] and its degree over Q in the following

cases:

(@) f(x)=x"—p, where pis a prime.

(b) f(x) = x* -2, where p is a prime.

Determine the degree of the splitting field of the polynomial x* + 4 over Q. Deter-

mine the splitting field of x® + 4x* + 4x? + 3 over Q.

Foreacha € Z, let f,(x) = x> —ax® + (a-3)x +1 € Q[x] be given:

(@) f,isirreducible over Q for each a € Z.

(b) Ifb € Risa zero of f,, then also (1 - b) ' and (b - 1)b ! are zeros of f,.

(c) Determine the splitting field L of f,(x) over Q and its degree |L : Q.

Let K be a field and f(x) € K[x] a polynomial of degree n. Let L be a splitting field

of f(x). Show the following:

(@) Ifay,...,a, € Lare the zeros of f, then |[K(ay,...,a;) : K| <n-(n-1)--- (n—t+1)
foreachtwithl1 <t <n.

(b) L overK is of degree at most n!.

(c) Iff(x)isirreducible over K, then n divides |L : K|.

Brought to you by | Chalmers University of Technology
Authenticated
Download Date | 9/12/19 6:27 AM



9 Groups, subgroups, and examples

9.1 Groups, subgroups, and isomorphisms

Recall from Chapter 1 that the three most commonly studied algebraic structures are
groups, rings and fields. We have now looked rather extensively at rings and fields.
In this chapter, we consider the basic concepts of group theory. Groups arise in many
different areas of mathematics. For example they arise in geometry as groups of con-
gruence motions, and in topology as groups of various types of continuous functions.
Later in this book, they will appear in Galois theory as groups of automorphisms of
fields. First, we recall the definition of a group given previously in Chapter 1.

Definition 9.1.1. A group G is a set with one binary operation, which we will denote

by multiplication, such that

(1) The operation is associative; that is, (g,2,)83 =81(8,83) for all g, 5,85 €G.

(2) There exists an identity for this operation; that is, an element 1 such that 1g = g
and g1 =g foreach g € G.

(3) Each g € G has an inverse for this operation; that is, for each g, there exists a g‘1
with the property that gg™ = 1, and g "!g = 1.

If, in addition, the operation is commutative; that is, g;8, = g,8; for all g;, g, € G, the
group G is called an abelian group.

The order of G, denoted |G|, is the number of elements in the group G. If |G| < co,
G is a finite group, otherwise, it is an infinite group.

It follows easily from the definition that the identity is unique, and that each ele-
ment has a unique inverse.

Lemma 9.1.2. If G is a group, then there is a unique identity. Furthermore, if g € G, its
inverse is unique. Finally, if g;,8, € G, then (glgz)"l = gz_lgl"l.

Proof. Suppose that 1and e are both identities for G. Then 1e = e since 1is an identity,
and 1e = 1since e is an identity. Therefore, 1 = e, and there is only one identity.
Next suppose that g € G, g;, and g, are inverses for g. Then

8185, = (818)8: =18 =%

since g;g = 1. On the other hand,

8188, = 81(88) = &1 =8
since gg, = 1. It follows that g; = g,, and g has a unique inverse.
Finally, consider
©182)(8:'81) = &1(8:8, )81 =&lg; = g8y =1
https://doi.org/10.1515/9783110603996-009
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126 —— 9 Groups, subgroups, and examples

Therefore, g, lg{ !is an inverse for g,g,, and since inverses are unique, it is the inverse

of the product. O

Groups most often arise as permutations on a set. We will see this, as well as other
specific examples of groups, in the next sections.

Finite groups can be completely described by their group tables or multiplication
tables. These are sometimes called Cayley tables. In general, let G = {g;,...,8,} be a
group, then the multiplication table of G is

8§ 8 - 8§ - &
gl cee
5]
gl. cee P P gigj
8n

The entry in the row of g; € G and column of g; € G is the product (in that order)
88 inG.
Groups satisfy the cancellation law for multiplication.

Lemma 9.1.3. IfGisagroup and a,b,c € G withab = ac or ba = ca, then b = c.

1

Proof. Suppose that ab = ac. Then a has an inverse a , so we have

a_l(ab) = a"l(ac).

From the associativity of the group operation, we then have

(@'a)b=(a'a)c = 1-b=1.-c = b=c. O

A consequence of Lemma 9.1.3 is that each row and each column in a group table is
just a permutation of the group elements. That is, each group element appears exactly
once in each row and each column.

A subset H c G is a subgroup of G if H is also a group under the same operation
as G. As for rings and fields, a subset of a group is a subgroup if it is nonempty and
closed under both the group operation and inverses.

Lemma 9.1.4.

1. Asubset H c Gis asubgroup if H # 0, and H is closed under the operation and
inverses. That is, ifa,b € H, thenab € H,and a ', b € H.

2. A nonempty subset H of a group G is a subgroup if and only if ab™' € H for all
a,b € H. In addition, if G is finite, then H is a subgroup if and only if ab € H for all
a,beH.
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9.2 Examples of groups =— 127

We leave the proof of this to the exercises.

Let G be a group and g € G; we denote by g", n € IN, as with numbers, the product
of g taken n times. A negative exponent will indicate the inverse of the positive expo-
nent. As usual, let g° = 1. Clearly, group exponentiation will satisfy the standard laws
of exponents. Now consider the set

H={1= go,g,g’l,gz,gfz,...}

of all powers of g. We will denote this by (g).

Lemma 9.1.5. IfGisagroup and g € G, then (g) forms a subgroup of G called the cyclic
subgroup generated by g. (g) is abelian, even if G is not.

Proof. Ifg € G, theng ¢ (g); hence, (g) is nonempty. Suppose then thata = g", b = g™
are elements of (g). Then ab = g"g™ = g™ € (g), so (g) is closed under the group
operation. Furthermore, al = (g")‘1 = g™ € (g) so (g) is closed under inverses.
Therefore, (g) is a subgroup.

Finally, ab = g"g™ = g™ = g™ = g™g" = ba; hence, (g) is abelian. O

Suppose thatg € Gand g™ = 1for some positive integer m. Then let n be the small-
est positive integer such that g" = 1. It follows that the set of elements {1,g,g%...,g" !}
are all distinct, but for any other power gk , we have gk =g'forsomek =0,1,...,n—1
(see exercises). The cyclic subgroup generated by g then has order n, and we say thatg
has order n, which we denote by o(g) = n. If no such n exists, we say that g has infinite
order. We will look more deeply at cyclic groups and subgroups in Section 9.5.

We introduce one more concept before looking at examples.

Definition 9.1.6. If G and H are groups, then a mapping f : G — H is a (group) homo-
morphism if f(g,8,) = f(81)f (g,) for any g;,8, € G. If f is also a bijection, then it is an
isomorphism.

As with rings and fields, we say that two groups G and H are isomorphic, denoted
by G = H, if there exists an isomorphism f : G — H. This means that, abstractly, G
and H have exactly the same algebraic structure.

9.2 Examples of groups

As already mentioned, groups arise in many diverse areas of mathematics. In this sec-
tion and the next, we present specific examples of groups.

First of all, any ring or field under addition forms an abelian group. Hence, for
example, (Z, +), (Q, +), (R, +), (C, +), where Z, Q, R, C are respectively the integers, the
rationals, the reals, and the complex numbers; all are infinite abelian groups. If Z,, is
the modular ring Z/nZ, then for any natural number n, (Z,,, +) forms a finite abelian
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128 —— 9 Groups, subgroups, and examples

group. In abelian groups, the group operation is often denoted by + and the identity
element by O (zero).

In a field K, the nonzero elements are all invertible and form a group under multi-
plication. This is called the multiplicative group of the field K and is usually denoted by
K*. Since multiplication in a field is commutative, the multiplicative group of a field
is an abelian group. Hence, Q*,R*, C* are all infinite abelian groups, whereas if p is
a prime, Z; forms a finite abelian group. Recall that if p is a prime, then the modular
ring Z,, is a field.

Within Q*, R*, C*, there are certain multiplicative subgroups. Since the positive
rationals Q, and the positive reals R, are closed under multiplication and inverse,
they form subgroups of Q* and R”*, respectively. In C, if we consider the set of all
complex numbers z with |z| = 1, these form a multiplicative subgroup. Further within
this subgroup, if we consider the set of n-th roots of unity z (that is z" = 1) for a fixed n,
this forms a subgroup, this time of finite order.

The multiplicative group of a field is a special case of the unit group of a ring. If R
is aring with identity, recall that a unit is an element of R with a multiplicative inverse.
Hence, in Z, the only units are +1, whereas in any field every nonzero element is a unit.

Lemma 9.2.1. If R is a ring with identity, then the set of units in R forms a group under
multiplication called the unit group of R, and is denoted by U(R). If R is a field, then
UR) =R".

Proof. Let R be a ring with identity. Then the identity 1 itself is a unit, so 1 € U(R);
hence, U(R) is nonempty. If e € R is a unit, then it has a multiplicative inverse ..
Clearly then, the multiplicative inverse has an inverse, namely, e so e”! € U(R) if e is.
Hence, to show U(R) is a group, we must show that it is closed under product.

Let e, e, € U(R). Then there exist e;*, e;". It follows that e,'e;” is an inverse for
e,e,. Hence, e;e, is also a unit, and U(R) is closed under product. Therefore, for any
ring R with identity U(R) forms a multiplicative group. O

To present examples of nonabelian groups, we turn to matrices. If K is a field, we
let

GL(n,K) = {n x n matrices over K with nonzero determinant}
and
SL(n,K) = {n x n matrices over K with determinant one}.
Lemma 9.2.2. IfK is a field, then for n > 2, GL(n,K) forms a nonabelian group under
matrix multiplication, and SL(n, K) forms a subgroup.

GL(n, K) is called the n-dimensional general linear group over K, whereas SL(n, K)
is called the n-dimensional special linear group over K.
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9.2 Examples of groups = 129

Proof. Recall that for two n x n matrices A, B with n > 2 over a field, we have
det(AB) = det(A) det(B),

where det is the determinant.

Now for any field, the nxn identity matrix I has determinant 1; hence, I € GL(n, K).
Since the determinant is multiplicative, the product of two matrices with nonzero de-
terminant has nonzero determinant, so GL(n, K) is closed under product. Furthermore,
over a field K, if A is an invertible matrix, then

1
= Tota’
Therefore, if A has nonzero determinant, so does its inverse. It follows that GL(n, K) has
the inverse of any of its elements. Since matrix multiplication is associative, it follows
that GL(n, K) forms a group. It is nonabelian since in general matrix multiplication is
noncommutative.

SL(n, K) forms a subgroup of GL(n, K) because det(A™!) = 1if det(4) = 1. O

det(A™)

Groups play an important role in geometry. In any metric geometry, an isometry is
a mapping that preserves distance. To understand a geometry, one must understand
the group of isometries. We look briefly at the Euclidean geometry of the plane £2.

An isometry or congruence motion of £ is a transformation or bijection T of £? that
preserves distance; that is, d(a, b) = d(T(a), T(b)) for all points a, b € &2

Theorem 9.2.3. The set of congruence motions of £ forms a group called the Euclidean
group. We denote the Euclidean group by £.

Proof. The identity map I is clearly an isometry, and since composition of mappings
is associative, we need only to show that the product of isometries is an isometry, and
that the inverse of an isometry is an isometry.

Let T,U be isometries. Then d(a,b) = d(T(a),T(b)) and d(a,b) = d(U(a),
U(b)) for any points a, b. Now consider

d(TU(a), TU(D)) = d(T(U(a)), T(U(D))) = d(U(a), U(b))
since T is an isometry. However,
d(U(a), U(b)) = d(a,b)

since U is an isometry. Combining these, we have that TU is also an isometry.
Consider T™! and points a, b. Then

d(T™(@), T™(b)) = d(TT""(a), TT"\(D))
since T is an isometry. But TT =1 ; hence,
d(T™X(a), T\ (b)) = d(TT "(a), TT"\(b)) = d(a, b).

Therefore, T~ is also an isometry; hence, £ is a group. O
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130 —— 9 Groups, subgroups, and examples

One of the major results concerning € is the following. We refer to [32], [33], [23],
and [29] for a more thorough treatment.

Theorem 9.2.4. If T € &, then T is either a translation, rotation, reflection, or glide re-
flection. The set of translations and rotations forms a subgroup.

Proof. We outline a brief proof. If T is an isometry and T fixes the origin (0, 0), then T
is a linear mapping. It follows that T is a rotation or a reflection. If T does not fix the
origin, then there is a translation T, such that T, T fixes the origin. This gives transla-
tions and glide reflections. In the exercises, we expand out more of the proof. O

If D is a geometric figure in £2, such as a triangle or square, then a symmetry of
D is a congruence motion T : £2 — &£ that leaves D in place. However, it may move
the individual elements of D. For example, a rotation about the center of a circle is a
symmetry of the circle.

Lemma 9.2.5. If D is a geometric figure in £, then the set of symmetries of D forms a
subgroup of £ called the symmetry group of D, denoted by Sym(D).

Proof. We show that Sym(D) is a subgroup of £. The identity map I fixes D, so I €
Sym(D), and thus Sym(D) is nonempty. Let T, U € Sym(D). Then T maps D to D, and
so does U. It follows directly that so does the composition TU; hence, TU € Sym(D).
If T maps D to D, then certainly the inverse does. Therefore, Sym(D) is a subgroup
of £. O

Example 9.2.6. Let T be an equilateral triangle. Then there are exactly six symmetries
of T (see exercises). These are as follows:
I = the identity,
r = a rotation of 120° around the center of T,
r? = a rotation of 240° around the center of T,
f = areflection over the perpendicular bisector of one of the sides,
fr = the composition of f and r,
fr* = the composition of f and r°.

Sym(T) is called the dihedral group Ds. In the next section, we will see that it is
isomorphic to S;, the symmetric group on 3 symbols.

9.3 Permutation groups

Groups most often appear as groups of transformations or permutations on a set. In
this section, we will take a short look at permutation groups, and then examine them
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9.3 Permutation groups = 131

more deeply in Chapter 11. We recall some ideas, first introduced in Chapter 7, in rela-
tion to the proof of the fundamental theorem of algebra.

Definition 9.3.1. If A is a set, a permutation on A is a one-to-one mapping of A onto
itself. We denote the set of all permutations on A by S,.

Theorem 9.3.2. For any set A, S, forms a group under composition, called the symmet-
ric group on A. If |A| > 2, then S, is nonabelian. Furthermore, if A, B have the same
cardinality, then S, = Sg.

Proof. 1f S, is the set of all permutations on the set A, we must show that composition
is an operation on S, that is associative, and has an identity and inverses.

Letf,g € S,. Then f, g are one-to-one mappings of A onto itself. Consider f o g :
A — A Iff o g(a)) = f - g(a,), then f(g(ay) = f(g(a,)), and g(ay) = g(ay), since f is
one-to-one. But then a; = a, since g is one-to-one.

If a € A, there exists a; € A with f(a;) = a since f is onto. Then there exists a, € A
with g(a,) = a, since g is onto. Putting these together, f(g(a,)) = a; therefore, f o g
is onto. Therefore, f - g is also a permutation, and composition gives a valid binary
operationon Sy,.

The identity function 1(a) = a for all a € A will serve as the identity for S4, whereas
the inverse function for each permutation will be the inverse. Such unique inverse
functions exist since each permutation is a bijection.

Finally, composition of functions is always associative; therefore, S, forms a
group.

Suppose that |A| > 2. Then A has at least 3 elements. Call them a, a,, a,. Consider
the 2 permutations f and g, which fix (leave unchanged) all of A, except a;, a,, a; and
on these three elements:

flay) = a5, f(ay) =a3, fla3)=q
gla) =a,, glay) =a;, glas) = as.

Then under composition

f(gla)) =as, f(gay))=ay, f(glas)=ay,

whereas

g(fla)) =a;, g(f(ay))=as g(f(as)) =a,.

Therefore, f o g + g o f; hence, S, is not abelian.

If A, B have the same cardinality, then there exists a bijection 0 : A — B. Define a
map F : S, — Sp in the following manner: if f € Sy, let F(f) be the permutation on B,
given by F(f)(b) = o(f (a7 Y(b))). Itis straightforward to verify that F is an isomorphism
(see the exercises). O
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132 — 9 Groups, subgroups, and examples

If A; c A, then those permutations on A that map A, to A, form a subgroup of S,
called the stabilizer of A,, denoted as stab(4,). We leave the proof to the exercises.

Lemma 9.3.3. IfA; c A, thenstab(4;) ={f € S4 : f : A} — A} forms a subgroup of S,.

A permutation group is any subgroup of S, for some set A.
We now look at finite permutation groups. Let A be a finite set, say A = {a;,
a,,...,ay}. Then each f € S, can be pictured as

fo ( a ... ay )
fla) ... flay)
For a, there are n choices for f(a,). For a,, there are only n-1 choices since f is one-to-

one. This continues down to only one choice for a,,. Using the multiplication principle,
the number of choices for f; therefore, the size of S, is

nn-1)---1=nl

We have thus proved the following theorem.
Theorem 9.3.4. If|A| = nthen |S,| = n!.

For a set A with n elements, we denote S, by S,,, called the symmetric group on n
symbols.

Example 9.3.5. Write down the six elements of S; and give the multiplication table for
the group.
Name the three elements 1, 2, 3. The six elements of S; are then as follows:

1) 03D (1)
(1) el )

The multiplication table for S; can be written down directly by doing the required
composition. For example,

<1 2 3) <1 2 3) <1 2 3)
ac = = =d.
2 3 1)\2 1 3 3 2 1

To see this, note thata : 1 — 2,2 - 3,3 - 1;¢:1— 2,2 —- 1,3 — 3, and so
ac:1—-3,2—-2,3-1.

It is somewhat easier to construct the multiplication table if we make some obser-
vations. First, a*> = band @’ = 1. Next, ¢’ = 1, d = ac, e = a’c and, finally, ac = ca’.

- N NN

NN W
—_
w
—_

_- W
N——
(3>}
I
/
—_ =
w N
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From these relations, the following multiplication table can be constructed:

1 a a’ c ac d’c

1 1 a a’ c ac a’c
a a a’ 1 ac ad*c ¢
a’ a’ 1 a dc c ac
c c d*c ac 1 a’ a
ac ac c dc a 1 a’
a’c a’c ac c a’ a 1

To see this, consider, for example, (ac)a® = a(ca?) = a(ac) = d’c.
More generally, we can say that S; has a presentation given by

S;={a,c;a = = 1,ac = ca®).

By this, we mean that S; is generated by a, c, or that S; has generators a, c, and
the whole group and its multiplication table can be generated by using the relations

ad=c= 1, ac = cd’.

A theorem of Cayley actually shows that every group is a permutation group.
A group G is a permutation group on the group G itself considered as a set. This
result, however, does not give much information about the group.

Theorem 9.3.6 (Cayley’s theorem). Let G be a group. Consider the set of elements of G.
Then the group G is a permutation group on the set G; that is, G is a subgroup of S;.

Proof. We show that to each g € G, we can associate a permutation of the set G. If
8 € G, let 71, be the map given by
My : 8 — 88, foreachg €G.

It is straightforward to show that each 7, is a permutation on G. O

9.4 Cosets and Lagrange’s theorem

In this section, given a group G and a subgroup H, we define an equivalence relation
on G. The equivalence classes all have the same size and are called the (left) or (right)
cosets of H in G.

Definition 9.4.1. Let G be a group and H ¢ G a subgroup. For a, b € G, define a ~ b if
-1
a beH.

Lemma 9.4.2. Let G be agroup and H c G a subgroup. Then the relation defined above
is an equivalence relation on G. The equivalence classes all have the form aH for a € G
and are called the left cosets of H in G. Clearly, G is a disjoint union of its left cosets.
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Proof. Let us show, first of all, that this is an equivalence relation. Now a ~ a since
a‘a = e € H. Therefore, the relation is reflexive. Furthermore, a ~ b implies a'beH,
but since H is a subgroup of G, we have b™'a = (a”'b)™! € H. Thus, b ~ a. Therefore,
the relation is symmetric. Finally, suppose thata ~ band b ~ c¢. Then a ‘b € H, and
b~lc € H. Since H is a subgroup a b - b™'c = a”'c € H; hence, a ~ c. Therefore, the
relation is transitive and, hence, is an equivalence relation.

For a € G, the equivalence class is

[a]:{geG:a~g}:{aeG:a71geH}.

But then, clearly, g € aH. It follows that the equivalence class for a € G is precisely
the set

aH ={g € G:g =ahforsomeh € H}.

These classes, aH, are called left cosets of H, and since they are equivalence classes,
they partition G. This means that every element of g is in one and only one left coset.
In particular, bH = H = eH if and only if b € H. O

If aH is a left coset, then we call the element a a coset representative. A complete
collection

{a € G : {aH} is the set of all distinct left cosets of H}

is called a (left) transversal of H in G.

One could define another equivalence relation by defining a ~ b if and only if
ba™! € H. Again, this can be shown to be an equivalence relation on G, and the equiv-
alence classes here are sets of the form

Ha = {g € G : g = ha for some h € H},

called right cosets of H. Also, of course, G is the (disjoint) union of distinct right cosets.

It is easy to see that any two left (right) cosets have the same order (number of
elements). To demonstrate this, consider the mapping aH — bH via ah — bh, where
h € H.Itis not hard to show that this mapping is 1-1 and onto (see exercises). Thus, we
have |aH| = |bH|. (This is also true for right cosets and can be established in a similar
manner.) Letting b € H in the above discussion, we see |aH| = |H|, for any a € G. That
is, the size of each left or right coset is exactly the same as the subgroup H.

One can also see that the collection {aH} of all distinct left cosets has the same
number of elements as the collection {Ha} of all distinct right cosets. In other words,
the number of left cosets equals the number of right cosets (this number may be infi-
nite). For example, consider the map

f:aH — Ha .
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This mapping is well-defined; for if aH = bH, then b = ah, where h € H. Thus, f(bH) =
Hb'=Hh'al= f(aH). It is not hard to show that this mapping is 1-1 and onto (see
exercises). Hence, the number of left cosets equals the number of right cosets.

Definition 9.4.3. Let G be a group and H ¢ G a subgroup. The number of distinct left
cosets, which is the same as the number of distinct right cosets, is called the index of
H in G, denoted by [G : H].

Now let us consider the case where the group G is finite. Each left coset has the
same size as the subgroup H; here, both are finite. Hence, |aH| = |H| for each coset.
In addition, the group G is a disjoint union of the left cosets; that is,

G=HugHU---Ug,H.
Since this is a disjoint union, we have
|Gl = |H| + |g1H| +--- + |g,H| = |H| + [H| + --- + |H| = |[H|[G : H].
This establishes the following extremely important theorem:

Theorem 9.4.4 (Lagrange’s theorem). Let G be a group and H c G a subgroup. Then
|G| = |H|[G : H].

If G is a finite group, this implies that both the order of a subgroup and the index of a
subgroup are divisors of the order of the group.

This theorem plays a crucial role in the structure theory of finite groups since it
greatly restricts the size of subgroups. For example, in a group of order 10, there can
be proper subgroups only of orders 1, 2, and 5.

As an immediate corollary, we have the following result:

Corollary 9.4.5. The order of any element g € G, where G is a finite group, divides the
order of the group. In particular, if |G| = nand g € G, then o(g)|n, and g" = 1.

Proof. Let g € G and o(g) = m. Then m is the size of the cyclic subgroup generated
by g; hence divides n from Lagrange’s theorem. Then n = mk, and so

gh=g"=(g" =1"=1 O

Before leaving this section, we consider some results concerning general subsets
of a group.

Suppose that G is a group and S is an arbitrary nonempty subset of G, S ¢ G, and
S # 0. Such a set S is usually called a complex of G.

If U and V are two complexes of G, the product UV is defined as follows:

UV={g18,€¢G:uecl,veVl}
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Now suppose that U, V are subgroups of G. When is the complex UV again a sub-
group of G?

Theorem 9.4.6. The product UV of two subgroups U, V of a group G is itself a subgroup
ifand only if U and V commute; that is, if and only if UV = VU.

Proof. We note first that when we say U and V commute, we do not demand that this
is so elementwise. In other words, it is not required that uv = vu for all u € U and all
v € V. All that is required is that for any u € U and v € V uv = v;u, for some elements
uyeUandv, e V.

Assume that UV is a subgroup of G. Letu e Uandv € V.Thenu € U-1 c UV and
v € 1.V c UV. But since UV is assumed itself to be a subgroup, it follows that vu € UV.
Hence, each product vu € UV, and so VU c UV. In an identical manner, UV c VU,
and so UV = VU.

Conversely, suppose that UV = VU. Let g; = wyv; € UV, g, = u,v, € UV. Then

glgl = (ulvl)(uZVZ) = ul(vluz)VZ = u1u3V3V2 = (u1u3)(v3vz) € UV

since vju, = usv; for some u; € U and v5 € V. Furthermore,

-1 -1_ -1 -1
g =W =viu = uv,.

It follows that UV is a subgroup. O

Theorem 9.4.7 (product formula). Let U,V be subgroups of G, and let R be a left
transversal of the intersection U N V in U. Then

UV:Lﬁm
reR

where this is a disjoint union.
In particular, if U, V are finite, then

UiV

uv| = .
v [unvV|

Proof. Since R c U, we have that

U rV c Uv.
reR

In the other direction, let uv € UV. Then

U:UMUOW.

reR

It follows that u = rv' withr € R, and v' € U n V. Hence,

w=n'verV.
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9.4 Cosets and Lagrange’s theorem =— 137

The union of cosets of V is disjoint, so

uv € U rv.

reR

Therefore, UV c |,z rV, proving the equality.
Now suppose that |U| and |V| are finite. Then we have

U ul|v
Uy _ 101V

UVI=IR|IV|=|U:UnV||V| = = .
UV = IRIIV] = | V1= gavV = Ta 7

We now show that index is multiplicative. Later, we will see how this fact is related
to the multiplicativity of the degree of field extensions.

Theorem 9.4.8. Suppose G is a group and U and V are subgroups withU c V c G. Then
if G is the disjoint union

G:UrV,

reR

R a left transversal of V in G, and V is the disjoint union

V=U5U,

seS

S a left transversal of U in V, then we get a disjoint union for G as

G= U rsU.

reR,seS

In particular, if (G : V] and [V : U] are finite, then
[G:U]=[G: V][V U]

Proof. Now

G=UrV= U<U5U>: U rsU.

reR reR ‘seS reR,seS

Suppose that r;s;U = r,s,U. Then r;5;UV = r,s,UV. But 5;UV = V, and s,UV = V so
rV = r,V, which implies that r; = r,. Then s;U = s,U, which implies that s; = s,.
Therefore, the union is disjoint.

The index formula now follows directly. O

The next result says that the intersection of subgroups of finite index must again
be of finite index.
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138 — 9 Groups, subgroups, and examples

Theorem 9.4.9 (Poincaré). Suppose that U,V are subgroups of finite index in G. Then
U n V is also of finite index. Furthermore,

[G:UNnV]<[G:U]G: V]

If[G : U], [G : V] are relatively prime then equality holds.

Proof. Let r be the number of left cosets of U in G that are contained in UV. r is finite
since the index [G : U] is finite. From Theorem 9.4.7, we then have

[V:UnV|=r<[G:U].
Then from Theorem 9.4.8,
[G:UnV]=[G:V][V:UnV]<[G:V][G:U].

Since both [G : U] and [G : V] are finite, sois [G: U N V].
Now [G: U)|I[G:UNnV], [G: V]|][G:UnV]If[G: U], and [G : V] are relatively
prime, then

[G:UG:V]][G:UNV] = [G:U][G:V]<[G:UnV]
Therefore, we must have equality. O

Corollary 9.4.10. Suppose that [G : U] and [G : V] are finite and relatively prime. Then
G=UV.

Proof. From Theorem 9.4.9, we have
[G:UnV]=[G:UJG:V].
From Theorem 9.4.8
G:UnV]=[G:V][V:UnV].
Combing these, we have
[(V:UnV]=[G:Ul]

The number of left cosets of U in G that are contained in VU is equal to the number of
all left cosets of U in G. It follows then that we must have G = UV. O

9.5 Generators and cyclic groups

We saw that if G is any group and g € G, then the powers of g generate a subgroup
of G, called the cyclic subgroup generated by g. Here, we explore more fully the idea
of generating a group or subgroup. We first need the following:
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9.5 Generators and cyclic groups = 139

Lemma 9.5.1. If U and V are subgroups of a group G, then their intersection U N V is
also a subgroup.

Proof. Since the identity of G is in both U and V, we have that U n V is nonempty.
Suppose that g;,8, € UN V. Then g;,8, € U; hence, g; lg, € U since U is a subgroup.
Analogously, g lg, € V. Hence, g7'g, € U n V; therefore, U n V is a subgroup. O

Now let S be a subset of a group G. The subset S is certainly contained in at least
one subgroup of G, namely G itself. Let {U,} be the collection of all subgroups of G
containing S. Then (), U, is again a subgroup of G from Lemma 9.5.1. Furthermore,
it is the smallest subgroup of G containing S (see the exercises). We call [, U, the
subgroup of G generated by S, and denote it by (S), or grp(S). We call the set S a set of
generators for (S).

Definition 9.5.2. A subset M of a group G is a set of generators for G if G = (M); that
is, the smallest subgroup of G containing M is all of G. We say that G is generated by
M, and that M is a set of generators for G.

Notice that any group G has at least one set of generators, namely G itself. If G =
(M) and M is a finite set, then we say that G is finitely generated. Clearly, any finite
group is finitely generated. Shortly, we will give an example of a finitely generated
infinite group.

Example 9.5.3. The set of all reflections forms a set of generators for the Euclidean
group £. Recall thatany T ¢ £ is either a translation, a rotation, a reflection, or a glide
reflection. It can be shown (see exercises) that any one of these can be expressed as a
product of 3, or fewer reflections.

We now consider the case, where a group G has a single generator.
Definition 9.5.4. A group G is cyclic if there exists a g € G such that G = (g).

In this case, G = {g" : n € Z}; that s, G consists of all the powers of the element g.
If there exists an integer m such that g™ = 1, then there exists a smallest such positive
integer say n. It follows that gk = gl if and only if k = I mod n. In this situation, the
distinct powers of g are precisely

1=g%g2g%....g" "}

It follows that |G| = n. We then call G a finite cyclic group. If no such power exists, then
all the powers of G are distinct and G is an infinite cyclic group.
We show next that any two cyclic groups of the same order are isomorphic.

Theorem 9.5.5.
(@) If G = (g) is an infinite cyclic group, then G = (Z,+); that is, the integers under
addition.
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140 —— 9 Groups, subgroups, and examples

(b) If G = (g) is a finite cyclic group of order n, then G = (Z,,+); that is, the integers
modulo n under addition.

It follows that for a given order there is only one cyclic group up to isomorphism.

Proof. Let G be an infinite cyclic group with generator g. Map g onto 1 € (Z, +). Since
g generates G and 1 generates Z under addition, this can be extended to a homomor-
phism. It is straightforward to show that this defines an isomorphism.

Now let G be a finite cyclic group of order n with generator g. As above, map g to
1 € Z, and extend to a homomorphism. Again it is straightforward to show that this
defines an isomorphism.

Now let G and H be two cyclic groups of the same order. If both are infinite, then
both are isomorphic to (Z, +) and, hence, isomorphic to each other. If both are finite of
order n, then both are isomorphic to (Z,, +) and, hence, isomorphic to each other. O

Theorem 9.5.6. Let G = (g) be a finite cyclic group of order n. Then every subgroup of
G is also cyclic. Furthermore, if d|n, there exists a unique subgroup of G of order d.

Proof. Let G = (g) be a finite cyclic group of order n, and suppose that H is a subgroup
of G. Notice thatif g™ ¢ H, then g™™ is also in H since H is a subgroup. Hence, H must
contain positive powers of the generator g. Let t be the smallest positive power of g
such that g € H. We claim that H = (g'), the cyclic subgroup of G generated by g’. Let
h € H, then h = g™ for some positive integer m > t. Divide m by ¢ to get

m=gqt+r, wherer=0o0r0O<r<t.

Ifr #+ 0,thenr = m—-qt > 0.Nowg™ ¢ H, g' € Hsog % ¢ H for any q since H is a
subgroup. It follows that g™g ™4 = g™ 9 ¢ H. This implies that g" ¢ H. However, this
is a contradiction since r < t and t is the least positive power in H. It follows thatr = 0
som = qt. This implies that g™ = g% = (g")7; that is, g™ is a multiple of g’. Therefore,
every element of H is a multiple of gt; thus, gt generates H and, hence, H is cyclic.

Now suppose that d|n so that n = kd. Let H = (g*); that is, the subgroup of G
generated by gk. We claim that H has order d and that any other subgroup H; of G
with order d coincides with H. Now (gk)d = gkd = g" =1, so the order of gk divides d,
hence is < d. Suppose that (gk)d1 = gkd1 = 1with d; < d. Then since the order of g is n,
we have n = kd|kd, with d; < d, which is impossible. Therefore, the order of gk is d,
and h = (g%) is a subgroup of G of order d.

Now let H; be a subgroup of G of order d. We must show that H; = H. Let h € H;,
so h = g'; hence, g™ = 1. It follows that n|td, and so kd|td; hence k|t. That is, t = gk for
some positive integer g. Therefore, g = (gk)q € H. Therefore, H; c H, and since they
are of the same size, H = H;. O

Theorem 9.5.7. Let G = (g) be an infinite cyclic group. Then a subgroup H is of the form
H = (g") for a positive integer t. Furthermore, if t,, t, are positive integers with t; # t,,
then (g) and (g™) are distinct.
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9.5 Generators and cyclic groups =— 141

Proof. Let G = (g) be an infinite cyclic group and H a subgroup of G. As in the proof of
Theorem 9.5.6, H must contain positive powers of the generator g. Let ¢ be the smallest
positive power of g such that g* € H. We claim that H = (g%), the cyclic subgroup of G
generated by g'. Let h € H, then h = g™ for some positive integer m > t. Divide m by ¢
to get

m=gqt+r wherer=00r0O<r«<t.

Ifr #0,thenr =m—qt >0.Nowg™ ¢ H,g' ¢ Hsog % ¢ H for any q since H is a
subgroup. It follows that g™g 9 = g™ 4 ¢ H. This implies that g ¢ H. However, this
is a contradiction sincer < t and t is the least positive power in H. It follows that r = 0O,
som = gt. This implies that g™ = g% = (g")7; that is, g™ is a multiple of g’. Therefore,
every element of H is a multiple of g and, therefore, g’ generates H; hence, H = (g").

From the proof above in the subgroup (g'), the integer ¢ is the smallest positive
power of g in (g'). Therefore, if t,, t, are positive integers with ¢, # t,, then (g") and
(g") are distinct. O

Theorem 9.5.8. Let G = (g) be a cyclic group. Then the following hold:

(@) If G=(g) is finite of order n, then gk is also a generator if and only if (k,n)=1. That
is, the generators of G are precisely those powers gX, where k is relatively prime to n.

(b) IfG = (g) is infinite, then the only generators are g,g ™.

Proof. (a) Let G = (g) be a finite cyclic group of order n, and suppose that (k,n) = 1.
Then there exist integers x, y with kx + ny = 1. It follows that

g= gkx+ny _ (gk)x(gn)y _ (gk)x

since g" = 1. Hence, g is a power of gk, that implies every element of G is also a power
of gk. Therefore, gk is also a generator.

Conversely, suppose that g* is also a generator. Then g is a power of g¥, so there
exists an x such that g = g®. It follows that kx = 1 modulo n, and so there exists a y
such that

kx+ny=1.

This then implies that (k,n) = 1.

(b) If G = (g) is infinite, then any power of g other than g~! generates a proper
subgroup. If g is a power of g" for some n so that g = g™, it follows that g™! = 1,
thus, g has finite order, contradicting that G is infinite cyclic. O

Recall that for positive integers n, the Euler phi-function is defined as follows:

Definition 9.5.9. For anyn > 0, let
¢(n) = number of integers less than or equal to n, and relatively prime to n.
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142 —— 9 Groups, subgroups, and examples

Example 9.5.10. ¢(6) = 2 since among 1,2, 3,4,5,6 only 1,5 are relatively prime to 6.

Corollary 9.5.11. If G = (g) is finite of order n, then there are ¢(n) generators for G,
where ¢ is the Euler phi-function.

Proof. From Theorem 9.5.8, the generators of G are precisely the powers gk, where
(k,n) = 1. The numbers relatively prime to n are counted by the Euler phi-function. O

Recall that in an arbitrary group G, if g € G, then the order of g, denoted o(g),
is the order of the cyclic subgroup generated by g. Given two elements g,h € G, in
general, there is no relationship between o(g), o(h) and the order of the product gh.
However, if they commute, there is a very direct relationship.

Lemma 9.5.12. Let G be an arbitrary group and g, h € G both of finite order o(g), o(h). If
g and h commute; that is, gh = hg, then o(gh) divides lcm(o(g), o(h)). In particular, if G is
an abelian group, then o(gh)| lcm(o(g), o(h)) for all g, h € G of finite order. Furthermore,
if (g) n (h) = {1}, then o(gh) = lcm(o(g), o(h)).

Proof. Suppose o(g) = nand o(h) = m are finite. If g, h commute, then for any k, we
have (gh)k = gkhk. Let t = lcm(n, m), then t = kym, t = k,n. Hence,

(gh) = g'n = (¢")“(h"* = 1.

Therefore, the order of gh is finite and divides t. Suppose that (g)n(h) = {1}; that is, the
cyclic subgroup generated by g intersects trivially with the cyclic subgroup generated
by h. Let k = o(gh), which we know is finite from the first part of the lemma. Let t =
Icm(n, m). We then have (gh)" = gkh" =1, which implies that gk = h™*. Since the cyclic
subgroups have only trivial intersection, this implies that gk =1and K* = 1. But then
n|k and m|k; hence t|k. Since k|t it follows that k = t. O

Recall that if m and n are relatively prime, then lcm(m,n) = mn. Furthermore,
if the orders of g and h are relatively prime, it follows from Lagrange’s theorem that
(g) n (h) = {1}. We then get the following:

Corollary 9.5.13. If g, h commute and o(g) and o(h) are finite and relatively prime, then
o(gh) = o(g)o(h).

Definition 9.5.14. If G is a finite abelian group, then the exponent of G is the lcm of
the orders of all elements of G. That is,

exp(G) = lem{o(g) : g € G}.

As a consequence of Lemma 9.5.12, we obtain

Lemma 9.5.15. Let G be a finite abelian group. Then G contains an element of order
exp(G).
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9.5 Generators and cyclic groups =— 143

Proof. Suppose that exp(G) = pfl pzk with p; distinct primes. By the definition of
exp(G), there is a g; € G with o(g;) = pf"r,- with p; and r; relatively prime. Let h; = gir".
Then from Lemma 9.5.12, we get o(h;) = pl.e". Now let g = hyh, - - - h.. From the corollary
to Lemma 9.5.12, we have o(g) = p* --- p;* = exp(G). O

If K is a field then the multiplicative subgroup of nonzero elements of K is an
abelian group K*. The above results lead to the fact that a finite subgroup of K* must
actually be cyclic.

Theorem 9.5.16. Let K be a field. Then any finite subgroup of K* is cyclic.

Proof. Let A ¢ K* with |A| = n. Suppose that m = exp(4). Consider the polynomial
f(x) = x™ -1 e K[x]. Since the order of each element in A divides m, it follows that
a™ = 1forall a € A; hence, each a € A is a zero of the polynomial f(x). Hence, f(x) has
at least n zeros. Since a polynomial of degree m over a field can have at most m zeros, it
follows that n < m. From Lemma 9.5.15, there is an element a € A with o(a) = m. Since
|A| = n, it follows that m|n; hence, m < n. Therefore, m = n; hence, A = (a) showing
that A is cyclic. O

We close this section with two other results concerning cyclic groups. The first
proves, using group theory, a very interesting number theoretic result concerning the
Euler phi-function.

Theorem 9.5.17. Forn > 1and ford > 1

Y ¢(d) =n.

din

Proof. Consider a cyclic group G of order n. For each d|n, d > 1, there is a unique
cyclic subgroup H of order d. H then has ¢(d) generators. Each element in G generates
its own cyclic subgroup Hj, say of order d and, hence, must be included in the ¢(d)
generators of H;. Therefore,

Z ¢(d) = sum of the numbers of generators of the cyclic subgroups of G.
dln

But this must be the whole group; hence, this sum is n. O
We shall make use of the above theorem directly in the following theorem.

Theorem 9.5.18. If |G| = n and if for each positive d such that d\n, G has at most one
cyclic subgroup of order d, then G is cyclic (and, consequently, has exactly one cyclic
subgroup of order d).

Proof. For eachd|n, d > 0, let (d) = the number of elements of G of order d. Then

Y p(d) =n.

dln
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144 — 9 Groups, subgroups, and examples

Now suppose that i(d) # O for a given d|n. Then there exists an a € G of order d,
which generates a cyclic subgroup, {(a), of order d of G. We claim that all elements of
G of order d are in {(a). Indeed, if b € G with o(b) = dand b ¢ (a), then (b) is a second
cyclic subgroup of order d, distinct from (a). This contradicts the hypothesis, so the
claim is proved. Thus, if (d) # 0, then Y(d) = ¢(d). In general, we have Y(d) < ¢(d),
for all positive d|n. But n = Zdln Y < de ¢(d), by the previous theorem. It follows,
clearly, from this that Y(d) = ¢(d) for all d|n. In particular, Y(n) = ¢(n) > 1. Hence,
there exists at least one element of G of order n; hence, G is cyclic. This completes the
proof. O

Corollary 9.5.19. Ifin a group G of order n, for each d|n, the equation x? = 1 has at most
d solutions in G, then G is cyclic.

Proof. The hypothesis clearly implies that G can have at most one cyclic subgroup of
order d since all elements of such a subgroup satisfy the equation. So Theorem 9.5.18
applies to give our result. O

If H is a subgroup of a group G then G operates as a group of permutations on the
set {aH : a € R} of left cosets of H in G where R is a left transversal of H in G. This we
can use to show that a finitely generated group has only finitely many subgroups of a
given finite index.

Theorem 9.5.20. Let G be a finitely generated group. The number of subgroups of index
n < oo is finite.

Proof. Let H beasubgroup ofindex n. We choose a left transversal {c;, ..., c,} for Hin G
where ¢; = 1represents H. G permutes the set of cosets c;H by multiplication from the
left. This induces a homomorphism i from G to S,, as follows. Foreach g € Glet y(g)
be the permutation which maps i to j if gc;H = ¢;H. Yy(g) fixes the number 1 if and
only if g € H because c;H = H. Now, let H and L be two different subgroups of index n
in G. Then there exists g € H with g ¢ L and Yy (g) # Y;(g), and hence Py and y; are
different. Since G is finitely generated there are only finitely many homomorphisms
from G to S,,. Therefore the number of subgroups of index n < oo is finite. O

9.6 Exercises

1. Prove Lemma 9.1.4.

Let G be a group and H a nonempty subset. H is a subgroup of G if and only if
ableHforalla,b € H.

3. Suppose thatg € G and g™ = 1 for some positive integer m. Let n be the small-
est positive integer such that g" = 1. Show the set of elements {1,g,g% ...,
g™} are all distinct but for any other power gk we have gk = g' for some
k=0,1,...,n-1.
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Let G be a group and Uj, U, be finite subgroups of G. If |U;| and |U,| are relatively

prime, then U; n U, = {e}.

Let A, B be subgroups of a finite group G. If |A| - |B| > |G| then A n B # {e}.

Let G be the set of all real matrices of the form (¢ 7?), where a® + b* # 0. Show:

(a) Gisagroup.

(b) For each n € N there is at least one element of order nin G.

Let p be a prime, and let G = SL(2,p) = SL(2,Z,). Show: G has at least 2p - 2

elements of order p.

Let p be a prime and a € Z. Show that @’ = a mod p.

Here we outline a proof that every planar Euclidean congruence motion is either

a rotation, translation, reflection or glide reflection. An isometry in this problem

is a planar Euclidean congruence motion. Show:

(a) IfTisanisometry then itis completely determined by its action on a triangle —
equivalent to showing that if T fixes three noncollinear points then it must be
the identity.

(b) If an isometry T has exactly one fixed point then it must be a rotation with
that point as center.

(c) Ifanisometry T has two fixed points then it fixes the line joining them. Then
show that if T is not the identity it must be a reflection through this line.

(d) If an isometry T has no fixed point but preserves orientation then it must be
a translation.

(e) Ifanisometry T has no fixed point but reverses orientation then it must be a
glide reflection.

Let P, be a regular n-gon and D,, its group of symmetries. Show that |D,| = 2n.

(Hint: First show that |D, | < 2n and then exhibit 2n distinct symmetries.)

If A, B have the same cardinality, then there exists a bijection ¢ : A — B. Define a

map F : S; — Sp in the following manner: if f € Sy, let F(f) be the permutation

on B given by F(f)(b) = o(f(o"1(b))). Show that F is an isomorphism.

Prove Lemma 9.3.3.
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10 Normal subgroups, factor groups, and direct
products

10.1 Normal subgroups and factor groups

In rings, we saw that there were certain special types of subrings, called ideals, which
allowed us to define factor rings. The analogous object for groups is called a normal
subgroup, which we will define and investigate in this section.

Definition 10.1.1. Let G be an arbitrary group and suppose that H; and H, are sub-
groups of G. We say that H, is conjugate to H; if there exists an element a € G such that
H, = a 'H,a. H,, H, are the called conjugate subgroups of G.

Lemma 10.1.2. Let G be an arbitrary group. Then the relation of conjugacy is an equiv-
alence relation on the set of subgroups of G.

Proof. We must show that conjugacy is reflexive, symmetric, and transitive. If H is a
subgroup of G, then 17'H1 = H; hence, H is conjugate to itself and, therefore, the
relation is reflexive.

Suppose that H; is conjugate to H,. Then there exists a g € G with g"'H,g = H,.
This implies that gH,g ™' = H,. However, (g7!)! = g; hence, letting g~! = g;, we have
g legl = H;. Therefore, H, is conjugate to H; and conjugacy is symmetric.

Finally, suppose that H, is conjugate to H, and H, is conjugate to H;. Then there
exist g;,8, € G with H, = g;'H,g; and H; = g 'H,g,. Then

H; = gz_lgl_lngng = (glgz)_lHl(&gz)-

Therefore, H; is conjugate to H; and conjugacy is transitive. O

Lemma 10.1.3. Let G be an arbitrary group. Then forg € G, themap g : a — g 'ag is
an automorphism on G.

Proof. Forafixed g € G, define themap f : G — G by f(a) = g 'ag for a € G. We must
show that this is a homomorphism, and that it is one-to-one and onto.
Let a;,a, € G. Then

flaya;) = g_lalazg = (g_lalg)(g_lazg) = f(a))f (ay).

Hence, f is a homomorphism.

If f(a,) = f(a,), then g"'a,g = g 'a,g. Clearly, by the cancellation law, we then
have a; = a,; hence, f is one-to-one.

Finally, let a € G, and let a, = gag™'. Then a = g"'a,g; hence, f(a,) = a. It follows
that f is onto; therefore, f is an automorphism on G. O
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148 —— 10 Normal subgroups, factor groups, and direct products

In general, a subgroup H of a group G may have many different conjugates. How-
ever, in certain situations, the only conjugate of a subgroup H is H itself. If this is the
case, we say that H is a normal subgroup. We will see shortly that this is precisely the
analog for groups of the concept of an ideal in rings.

Definition 10.1.4. Let G be an arbitrary group. A subgroup H is a normal subgroup of G,
which we denote by H « G, if g 'Hg = H forall g € G.

Since the conjugation map is an isomorphism, it follows that if g”'Hg c H, then
g 'Hg = H. Hence, in order to show that a subgroup is normal, we need only show
inclusion.

Lemma 10.1.5. Let N be a subgroup of a group G. Thenif a 'Na c N for all a € G, then
a 'Na = N. In particular, a*Na c N for all a € G implies that N is a normal subgroup.

Notice that if g'Hg = H, then Hg = gH. That is as sets the left coset, gH, is equal
to the right coset, Hg. Hence, for each h; € H, there is an h, € H with gh; = h,g. If
H < G, this is true for all g € G. Furthermore, if H is normal, then for the product of
two cosets g;H and g,H, we have

(g1H)(g,H) = g1(Hg,)H = g,8,(HH) = g,8,H.

If (g,H)(g,H) = (g,,)H forall g;,g, € G, we necessarily have g 'Hg = H for all g € G.
Hence, we have proved the following:

Lemma 10.1.6. Let H be a subgroup of a group G. Then the following are equivalent:
(1) H is a normal subgroup of G.

(2 g'Hg=Hforallg € G.

(3) gH=Hg forallg € G.

(4) (8:H)(8,H) = (8182)H for all gy, 8, € G.

This is precisely the condition needed to construct factor groups. First we give
some examples of normal subgroups.

Lemma 10.1.7. Every subgroup of an abelian group is normal.

Proof. Let G be abelian and H a subgroup of G. Suppose g € G, then gh = hg for all
h € H since G is abelian. It follows that gH = Hg. Since this is true for every g € G, it
follows that H is normal. O

Lemma 10.1.8. Let H ¢ G be a subgroup of index 2; thatis, [G : H] = 2. Then H is normal
in G.

Proof. Suppose that [G : H] = 2. We must show that gH = Hg forallg € G.If g € H,
clearly then, H = gH = Hg. Therefore, we may assume that g is not in H. Then there
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10.1 Normal subgroups and factor groups = 149

are only 2 left cosets and 2 right cosets. That is,
G=HuUgH =H UHg.

Since the union is a disjoint union, we must have gH = Hg; hence, H is normal. O

Lemma 10.1.9. Let K be any field. Then the group SL(n,K) is a normal subgroup of
GL(n, K) for any positive integer n.

Proof. Recall that GL(n, K) is the group of n x n matrices over the field K with nonzero
determinant, whereas SL(n, K) is the subgroup of n x n matrices over the field K with
determinant equal to 1. Let U € SL(n,K) and T € GL(n, K). Consider T~'UT. Then

det(T™'UT) = det(T") det(U) det(T) = det(U) det(T~'T)
= det(U) det(I) = det(U) = 1.

Hence, T"'UT ¢ SL(n,K) for any U € SL(n,K), and any T € GL(n, K). It follows that
T 'SL(n,K)T < SL(n, K); therefore, SL(n, K) is normal in GL(n, K). O

The intersection of normal subgroups is again normal, and the product of normal
subgroups is normal.

Lemma 10.1.10. Let N;, N, be normal subgroups of the group G. Then the following hold:
(1) N; NN, is a normal subgroup of G.

(2) N;N, is a normal subgroup of G.

(3) IfH is any subgroup of G, then N; n H is a normal subgroup of H, and N;H = HN;.

Proof. (a) Letn € N;n N, and g € G. Then glng € N, since N; is normal. Similarly,
g 'ng € N, since N, is normal. Hence, g"'ng € N, n N,. It follows that g (N, N N,)g ¢
N; N N,; therefore, N; N N, is normal.

(b) Let n; € Ny, n, € N,. Since Ny, N, are both normal N;N, = N,N; as sets, and the
complex N; N, forms a subgroup of G. Let g € G and nyn, € N;N,. Then

g_l(nlnz)g = (g_lnlg)(g_lnzg) € NiN,

since g'n,g € N, and g"'n,g € N,. Therefore, NN, is normal in G.

(c)Leth € Hand n € N nH. Then as in part (), h_'nh € N n H; therefore, N n H is
a normal subgroup of H.

Ifnh € NjH,n € N;, h € H, then nh = hn' with some n' ¢ N,. Hence, NH =
HN,. O

We now construct factor groups or quotient groups of a group modulo a normal
subgroup.
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150 —— 10 Normal subgroups, factor groups, and direct products

Definition 10.1.11. Let G be an arbitrary group and H a normal subgroup of G. Let G/H
denote the set of distinct left (and hence also right) cosets of H in G. On G/H, define
the multiplication

(g1H)(g,H) = g18,H

for any elements g;H, g,H in G/H.

Theorem 10.1.12. Let G be a group and H a normal subgroup of G. Then G/H under the
operation defined above forms a group. This group is called the factor group or quotient
group of G modulo H. The identity element is the coset 1H = H, and the inverse of a coset
gHisg 'H.

Proof. We first show that the operation on G/N is well-defined. Suppose thata’N = aN
and b'N = bN, then b’ € bN, and so b’ = bn,. Similarly a' = an,, where n;,n, € N.
Therefore,

a'b'N = an,bn;N = an,bN

since n; € N. But b™'n,b = n5 € N, since N is normal. Therefore, the right-hand side of
the equation can be written as

an,bN = abN.

Thus, we have shown that if N < G, then a’b’N = abN, and the operation on G/N is
indeed well-defined.

The associative law is true, because coset multiplication as defined above uses the
ordinary group operation, which is by definition associative.

The coset N serves as the identity element of G/N. Notice that

aN -N = aN’ = aN,
and
N-aN = aN’ = aN.
The inverse of aN is a N since
aNa'N = aa”'N* = N. O
We emphasize that the elements of G/N are cosets; thus, subsets of G. If |G| < co,
then |G/N| = [G : N], the number of cosets of N in G. It is also to be emphasized that

for G/N to be a group, N must be a normal subgroup of G.
In some cases, properties of G are preserved in factor groups.
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Lemma 10.1.13. If G is abelian, then any factor group of G is also abelian. If G is cyclic,
then any factor group of G is also cyclic.

Proof. Suppose that G is abelian and H is a subgroup of G. H is necessarily normal
from Lemma 10.1.7 so that we can form the factor group G/H. Let g,H,8,H € G/H.
Since G is abelian, we have g;8, = g,8;- Then in G/H,

(g1H)(g,H) = (8182)H = (8,81)H = (g,H)(gH).

Therefore, G/H is abelian.
We leave the proof of the second part to the exercises. O

An extremely important concept has to do with when a group contains no proper
normal subgroups other than the identity subgroup {1}.

Definition 10.1.14. A group G + {1} is simple, provided that N < G implies N = G or
N = {1}

One of the most outstanding problems in group theory has been to give a complete
classification of all finite simple groups. In other words, this is the program to discover
all finite simple groups, and to prove that there are no more to be found. This was ac-
complished through the efforts of many mathematicians. The proof of this magnificent
result took thousands of pages. We refer the reader to [25] for a complete discussion of
this. We give one elementary example:

Lemma 10.1.15. Any finite group of prime order is simple and cyclic.

Proof. Suppose that G is a finite group and |G| = p, where p is a prime. Let g € G with
g +# 1. Then (g) is a nontrivial subgroup of G, so its order divides the order of G by
Lagrange’s theorem. Since g # 1, and p is a prime, we must have |{g)| = p. Therefore,
(g) is all of G; that is, G = (g); hence, G is cyclic.

The argument above shows that G has no nontrivial proper subgroups and, there-
fore, no nontrivial normal subgroups. Therefore, G is simple. O

In the next chapter, we will examine certain other finite simple groups.

10.2 The group isomorphism theorems

In Chapter 1, we saw that there was a close relationship between ring homomorphisms
and factor rings. In particular to each ideal, and consequently to each factor ring, there
is a ring homomorphism that has that ideal as its kernel. Conversely, to each ring ho-
momorphism, its kernel is an ideal, and the corresponding factor ring is isomorphic
to the image of the homomorphism. This was formalized in Theorem 1.5.7, which we
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152 —— 10 Normal subgroups, factor groups, and direct products

called the ring isomorphism theorem. We now look at the group theoretical analog of
this result, called the group isomorphism theorem. We will then examine some conse-
quences of this result that will be crucial in the Galois theory of fields.

Definition 10.2.1. If G; and G, be groups and f : G; — G, is a group homomorphism,
then the kernel of f, denoted ker(f), is defined as

ker(f) = {g € G, : f(g) = 1}.

That is the kernel, the set of the elements of G; that map onto the identity of G,. The
image of f, denoted im(f), is the set of elements of G, mapped onto by f from elements
of G;. That is,

im(f) = {g € G, : f(g) = g, for some g; € G}.

Note that if f is a surjection, then im(f) = G,.

As with ring homomorphisms the kernel measures how far a homomorphism is
from being an injection, that is, a one-to-one mapping.

Lemma 10.2.2. Let G, and G, be groups and f : G; — G, a group homomorphism. Then
f is injective if and only if ker(f) = {1}.

Proof. Suppose that f is injective. Since f(1) = 1, we always have 1 € ker(f). Suppose
that g € ker(f). Then f(g) = f(1). Since f is injective, this implies that g = 1; hence,
ker(f) = {1}.

Conversely, suppose that ker(f) = {1} and f(g;) = f(8,). Then

-1 _ _
@) =1 = f(a15,') =1 = g8 €ker(f).
Then since ker(f) = {1}, we have g2, ! = 1; hence, 81 = 8- Therefore, f is injective. O

We now state the group isomorphism theorem. This is entirely analogous to the
ring isomorphism theorem replacing ideals by normal subgroups. We note that this
theorem is sometimes called the first group isomorphism theorem.

Theorem 10.2.3 (Group isomorphism theorem).
(@) Let G, and G, be groups and f : G; — G, a group homomorphism. Then ket (f) is a
normal subgroup of Gy, im(f) is a subgroup of G,, and

G/ ker(f) = im(f).

(b) Conversely, suppose that N is a normal subgroup of a group G. Then there exists a
group H and a homomorphism f : G — H such that ker(f) = N, and im(f) = H.
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Proof. (a) Since 1 € ker(f), the kernel is nonempty. Suppose that g;,g, € ker(f). Then

f(g1) = f(gy) = 1.1t follows that f(g,8;") = f(g,)(f(g,))”" = 1. Hence, g,g;" € ker(f);
therefore, ker(f) is a subgroup of G;. Furthermore, for any g € G;, we have

fegg) = (F@) Flenf(e)
=(f@) " 1-f@ =f(g'g) =f1) = 1.

Hence, g"'g,g € ker(f) and ker(f) is a normal subgroup.
It is straightforward to show that im(f) is a subgroup of G,.
Consider the map f: G/ ker(f) — im(f) defined by

f(gker(f)) = f(g).

We show that this is an isomorphism.
Suppose that g; ker(f) = g, ker(f), then g;g;" € ker(f) so that f(g;g;") = 1. This
implies that f(g;) = f(g5); hence, the map f is well-defined. Now,

f(g1 ker(f)g, kex(f)) = f(g18; ker(f)) = f(g18,)

= f(81)f (82) = f (81 ker(f))f (g, ker(f));

therefore, f is a homomorphism.

Suppose that f(gl k(j,r(f)) = f(g2 ker(f)), then f(g;) = f(g,); hence, g; ker(f) =
g, ker(f). It follows that f is injective.

Finally, suppose that h € im(f). Then there exists a g € G; with f(g) = h. Then
f(gker(f)) = h, and f is a surjection onto im(f). Therefore, f is an isomorphism com-
pleting the proof of part (a).

(b) Conversely, suppose that N is a normal subgroup of G. Define themapf : G —
G/N by f(g) = gN for g € G. By the definition of the product in the quotient group G/N,
itis clear that f is a homomorphism with im(f) = G/N.Ifg € ker(f), thenf(g) =gN =N
since N is the identity in G/N. However, this implies that g € N; hence, it follows that
ker(f) = N, completing the proof. O

There are two related theorems that are called the second isomorphism theorem
and the third isomorphism theorem.

Theorem 10.2.4 (Second isomorphism theorem). Let N be a normal subgroup of a
group G and U a subgroup of G. Then U n N is normal in U, and

(UN)/N =U/(UnNN).
Proof. From Lemma 10.1.10, we know that U N N is normal in U. Define the map
a:UN ->U/UNN
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154 — 10 Normal subgroups, factor groups, and direct products

by aun) = u(U N N). Ifun = u'n’, then u’ 'u = n'n"! € U n N. Therefore, u'(U N N) =
u(U n N); hence, the map a is well-defined.

Suppose that un,u’'n’ € UN. Since N is normal in G, we have that unu'n’ € uu'N.
Hence, unu'n’ = uu'n" withn” € N. Then

a(unu'n’) = a(uu'n) = ' (UNN).
However, U N N is normal in U, so
ud' (UnN) =uUn N (UnN) = a@n)a(u'n").

Therefore, a is a homomorphism.

We have im(a) = U/(U n N) by definition. Suppose that un € ker(a). Then a(un) =
UnNN c N, which implies u € N. Therefore, ker(f) = N. From the group isomorphism
theorem, we then have

UN/N = U/(UnN),
proving the theorem. O

Theorem 10.2.5 (Third isomorphism theorem). Let N and M be normal subgroups of a
group G with N a subgroup of M. Then M /N is a normal subgroup in G/N, and

(G/N)/(M/N) = G/M.
Proof. Define the map 8: G/N — G/M by
B(gN) = gM.

It is straightforward that f is well-defined and a homomorphism. If gN € ker(f), then
B(gN) = gM = M; hence, g € M. It follows that ker(8) = M/N. In particular, this shows
that M/N is normal in G/N. From the group isomorphism theorem then,

(G/N)/(M/N) = G/M. O

For a normal subgroup N in G, the homomorphism f : G — G/N provides a one-
to-one correspondence between subgroups of G containing N and the subgroups of
G/N. This correspondence will play a fundamental role in the study of subfields of a
field.

Theorem 10.2.6 (Correspondence Theorem). Let N be a normal subgroup of a group G,
and let f be the corresponding homomorphism f : G — G/N. Then the mapping

¢:H— f(H),

where H is a subgroup of G containing N provides a one-to-one correspondence between
all the subgroups of G/N and the subgroups of G containing N.
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10.3 Direct products of groups = 155

Proof. We first show that the mapping ¢ is surjective. Let H; be a subgroup of G/N,
and let

H={geG:f(g) e H}

We show that H is a subgroup of G, and that N ¢ H.

If g,,8, € H, then f(g;) € Hy, and f(g,) € H;. Therefore, f(g,)f(g,) € H;; hence,
f(g18,) € H;. Therefore, g8, € H. In an identical fashion, g; ! ¢ H. Therefore, H is a
subgroup of G. If n € N, then f(n) = 1 € H;; hence, n € H. Therefore, N ¢ H, showing
that the map ¢ is surjective.

Suppose that ¢(H,;) = ¢(H,), where H; and H, are subgroups of G containing N.
This implies that f(H;) = f(H,). Let g; € H;. Then f(g;) = f(g,) for some g, € H,. Then
glgz‘1 € ker(f) = N c H,. It follows that glgz‘1 € H,sothatg; € H,. Hence, H; c H,.Ina
similar fashion, H, c Hy; therefore, H; = H,. It follows that ¢ is injective. O

10.3 Direct products of groups

In this section, we look at a very important construction, the direct product, which
allows us to build new groups out of existing groups. This construction is the analog
for groups of the direct sum of rings. As an application of this construction, in the
next section, we present a theorem, which completely describes the structure of finite
abelian groups.

Let Gy, G, be groups and let G be the Cartesian product of G; and G,. That is,

G=G,xGy={(ab):aeG,beG}
On G, define
(ay, by) - (ay, by) = (ajay, byb,).
With this operation, it is direct to verify the groups axioms for G; hence, G becomes a

group.

Theorem 10.3.1. Let G, G, be groups and G the Cartesian product G, x G, with the op-
eration defined above. Then G forms a group called the direct product of G, and G,. The
identity element is (1,1), and (g,h) ™ = (g"L, h™Y).

This construction can be iterated to any finite number of groups (also to an infinite
number, but we will not consider that here) G;,..., G, to form the direct product G; x
Gy x -+ x Gy

Theorem 10.3.2. For groups G, and G,, we have G, x G, = G, x G;, and G; x G, is abelian
if and only if each G;, i = 1,2, is abelian.
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156 —— 10 Normal subgroups, factor groups, and direct products

Proof. The map (a,b) — (b,a), where a € G;, b € G, provides an isomorphism from
GIXGZ—>G2XGl.
Suppose that both G;, G, are abelian. Then if a;, a, € Gy, by, b, € G,, we have

(ay, by)(ay, by) = (aya;, b1b,) = (ayay, byby) = (ay, by)(ay, by);

hence, G, x G, is abelian.
Conversely, suppose G; x G, is abelian, and suppose that a;, a, € G;. Then for the
identity 1 € G,, we have

(q1a3,1) = (ay, 1)(ay, 1) = (a5, 1)(ay, 1) = (apay,1).
Therefore, a,a, = a,a,, and G, is abelian. Similarly, G, is abelian. O

We show next that in G; x G,, there are normal subgroups H,, H, with H; = G; and
H2 = Gz.

Theorem 10.3.3. Let G = G; X G,. Let H; = {(a,1) : a € Gy} and H, = {(1,b) : b € G,}.
Then both H; and H, are normal subgroups of G with G = H;H, and H; n H, = {1}.
Furthermore, H, = Gy, H, = G,, G/H, = G,, and G/H, = G;.

Proof. Map G, x G, onto G, by (a,b) — b. Itis clear that this map is a homomorphism,
and that the kernel is H; = {(a,1) : a € G;}. This establishes that H; is a normal sub-
group of G, and that G/H; = G,. In an identical fashion, we get that G/H, = G;. The
map (a,1) — a provides the isomorphism from H, onto G;. O

If the factors are finite, it is easy to find the order of G; xG,. The size of the Cartesian
product is just the product of the sizes of the factors.

Lemma 10.3.4. If|G;| and |G,| are finite, then |G, x G,| = |G;]|G;].

Now suppose that G is a group with normal subgroups G;, G, such that G = G;G,
and G; N G, = {1}. Then we will show that G is isomorphic to the direct product G, x G,.
In this case, we say that G is the internal direct product of its subgroups, and that G;, G,
are direct factors of G.

Theorem 10.3.5. Suppose that G is a group with normal subgroups G,, G, such that G =
G,G,, and G, N G, = {1}. Then G is isomorphic to the direct product G; x G,.

Proof. Since G = G,G,, each element of G has the form ab with a € G;, b € G,. This
representation as ab is unique, because G; N G, = {1}. We first show that each a €
G, commutes with each b € G,. Consider the element aba 'b. Since G, is normal
ba'b™! € G,, which implies that abab™ € G,. Since G, is normal, aba™' € G,, which
implies that aba b7 ¢ G,. Therefore, aba b ¢ G, NG, = {1}; hence, aba'b' =1, so
that ab = ba.

Brought to you by | Chalmers University of Technology
Authenticated
Download Date | 9/12/19 6:31 AM



10.4 Finite Abelian groups =— 157

Now map G onto G; x G, by f(ab) — (a, b). We claim that this is an isomorphism.
It is clearly onto. Now

f((aby)(ayby)) = f(ayayb,by) = (aya;, bib,)
= (a1, by)(ay, by) = f((ay, by))(f(ay, b)),

so that f is a homomorphism. The kernel is G; N G, = {1}, and so f is an isomor-
phism. O

Although the end resulting groups are isomorphic, we call G; x G, an external
direct product if we started with the groups G;, G, and constructed G, xG,, and call G; x
G, an internal direct product if we started with a group G having normal subgroups,
as in the theorem.

10.4 Finite Abelian groups

We now use the results of the last section to present a theorem that completely pro-
vides the structure of finite abelian groups. This theorem is a special case of a general
result on modules that we will examine in detail in Chapter 19.

Theorem 10.4.1 (Basis theorem for finite abelian groups). Let G be a finite abelian
group. Then G is a direct product of cyclic groups of prime power order.

Before giving the proof, we give two examples showing how this theorem leads to
the classification of finite abelian groups.

Since all cyclic groups of order n are isomorphic to (Z,, +), we will denote a cyclic
group of order nby Z,,.

Example 10.4.2. Classify all abelian groups of order 60. Let G be an abelian group of
order 60. From Theorem 10.4.1, G must be a direct product of cyclic groups of prime
power order. Now 60 = 22.3.5, so the only primes involved are 2, 3, and 5. Hence, the
cyclic group involved in the direct product decomposition of G have order either 2, 4,
3, or 5 (by Lagrange’s theorem, they must be divisors of 60). Therefore, G must be of
the form

G=7Z,xZ3xZs
G=7yx7Zyx 23X Zs.

Hence, up to isomorphism, there are only two abelian groups of order 60.

Example 10.4.3. Classify all abelian groups of order 180. Now 180 = 2 - 3. 5, so the
only primes involved are 2, 3, and 5. Hence, the cyclic group involved in the direct
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product decomposition of G have order either 2, 4, 3, 9, or 5 (by Lagrange’s theorem,
they must be divisors of 180). Therefore, G must be of the form

G=7Z,%xZqyxZs

G=7,x2ZyxZgxZs

G=Z,xZ3x 23 %X Zs

G=7ZyxXZyx 23X 2ZsyxZs.

Hence, up to isomorphism, there are four abelian groups of order 180.
The proof of Theorem 10.4.1 involves the following lemmas:

Lemma 10.4.4. Let G be a finite abelian group, and let p||G|, where p is a prime. Then
all the elements of G, whose orders are a power of p, form a normal subgroup of G. This
subgroup is called the p-primary component of G, which we will denote by G,,.

Proof. Let p be a prime with p||G|, and let a and b be two elements of G of order a power
of p. Since G is abelian, the order of ab is the Icm of the orders, which is again a power
of p. Therefore, ab € G,,. The order of a™" is the same as the order of a, s0 a™' € Gy;
therefore, Gp is a subgroup. O

Lemma 10.4.5. Let G be a finite abelian group of order n. Suppose that n = pfl p pzk
with py, ..., py distinct primes. Then

GEGplx---prk,

where G, is the p;-primary component of G.

Proof. Each G,, is normal since G is abelian, and since distinct primes are relatively
prime, the intersection of the G, is the identity. Therefore, Lemma 10.4.5 will follow
by showing that each element of G is a product of elements in the G, .

Let g € G. Then the order of g is p{l p’,zk We write this as p{"m with (m,p;) = 1.
Then g™ has order plf and, hence, is in G,,. Now since py,..., p; are relatively prime,
there exists my, ..., my with

mlp{l+-~-+mkp£k =1

hence,
1 Ji
g=(g")™ ... (g")™.
Therefore, g is a product of elements in the G,, . O

We next need the concept of a basis. Let G be any finitely generated abelian group
(finite or infinite), and let g;, . .., g, be a set of generators for G. The generators g, ..., g,
form a basis if

G =(g1) X+ x{(gy)s
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that is, G is the direct product of the cyclic subgroups generated by the g;. The basis
theorem for finite abelian groups says that any finite abelian group has a basis.

Suppose that G is a finite abelian group with a basis g, ...,8; so that G = (g;) x
---x{gy)- Since G is finite, each g; has finite order, say m;. It follows then, from the fact
that G is a direct product, that each g € G can be expressed as

g=8"""8&"

and, furthermore, the integers ny,...,n; are unique modulo the order of g;. Hence,
each integer n; can be chosen in the range 0, 1, ..., m; — 1, and within this range for the
element g, the integer n; is unique.

From the previous lemma, each finite abelian group splits into a direct product of
its p-primary components for different primes p. Hence, to complete the proof of the
basis theorem, we must show that any finite abelian group of order p™ for some prime
p has a basis. We call an abelian group of order p™ an abelian p-group.

Consider an abelian group G of order p™ for a prime p. It is somewhat easier to
complete the proof if we consider the group using additive notation. That is, the oper-
ation is considered +, the identity as 0, and powers are given by multiples. Hence, if
an element g € G has order pk, then in additive notation, pkg = 0. A set of elements
81>--->8 is then a basis for G if each g € G can be expressed uniquely as g = m;g; +
-+ + my gy, where the m; are unique modulo the order of g;. We say that the g;,...,8;
are independent, and this is equivalent to the fact that whenever m;g; +---+mg; = 0,
then m; = 0 modulo the order of g;. We now prove that any abelian p-group has a basis.

Lemma 10.4.6. Let G be a finite abelian group of prime power order p" for some prime p.
Then G is a direct product of cyclic groups.

Notice that in the group G, we have p"g = 0 for all g ¢ G as a consequence of
Lagrange’s theorem. Furthermore, every element has as its order a power of p. The
smallest power of p, say p” such that p'g = 0 for all g € G, is called the exponent of G.
Any finite abelian p-group must have some exponent p’.

Proof. The proof of this lemma is by induction on the exponent.

The lowest possible exponent is p. So, first, suppose that pg = 0 forall g € G.
Since G is finite it has a finite system of generators. Let S = {g,...,8;} be a minimal
set of generators for G. We claim that this is a basis. Since this is a set of generators, to
show that it is a basis, we must show that they are independent. Hence, suppose that
we have

mgy+ -+ Mg = 0 (10.1)

for some set of integers m;. Since the order of each g; is p, as explained above, we may
assume that 0 < m; < pfori = 1,...,k. Suppose that one m; # 0. Then (m;,p) = 1;
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160 —— 10 Normal subgroups, factor groups, and direct products

hence, there exists an x; with m;x; = 1 mod p (see Chapter 4). Multiplying the equa-
tion (10.1) by x;, we get modulo p,

Mgy + -+ g+ + MyXigy = 0,
and rearranging

8i = —MyX;8y — - — My X 8.

But then g; can be expressed in terms of the other 8 therefore, the set {gy,...,8;} is
not minimal. It follows that g3, ..., g constitute a basis, and the lemma is true for the
exponent p.

Now suppose that any finite abelian group of exponent p™ ! has a basis, and as-
sume that G has exponent p". Consider the set G = pG = {pg : g € G}. It is straight-
forward that this forms a subgroup (see exercises). Since p"g = O forall g € G, it
follows that p"'g = 0 for all g € G, and so the exponent of G < p" . By the inductive
hypothesis, G has a basis

S=1{pg-...p8i}-

Consider the set {g, ..., g}, and adjoin to this set the set of all elements h € G, satis-
fying ph = 0. Call this set S;, so that we have

Sl = {gl,...,gk,hl,...,ht}.

We claim that S; is a set of generators for G. Let g € G. Then pg ¢ G, which has the
basis pg,. .., pgy, so that

bg =mpg, + -+ M pPg.

This implies that
p(g—-mgy - —mg) =0,
so that g; - myg; — - -- — m g, must be one of the h;. Hence,
g§-mg - —mge=h, sothatg=mg +---+mgc+h;

proving the claim.
Now §; is finite, so there is a minimal subset of S; that is still a generating system
for G. Call this Sy, and suppose that S,, renumbering if necessary, is

So=181>----8~hy,..., hs} withph; =0fori=1,...,s.

The subgroup generated by h;, ..., hs has exponent p. Therefore, by inductive hypoth-
esis, has a basis. We may assume then that h, ..., h is a basis for this subgroup and,
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10.5 Some properties of finite groups —— 161

hence, is independent. We claim now that g,...,8,, h;,..., hs are independent and,
hence, form a basis for G.
Suppose that

mg; +---+m,g, +nh; +---+nshg =0 (10.2)

for some integers my, ..., m,, hy, ..., h;. Each m;, n; must be divisible by p. Suppose, for
example, that an m; is not. Then (m;, p) = 1, and then (m;,p") = 1. This implies that
there exists an x; with m;x; = 1 mod p". Multiplying through by x; and rearranging, we
then obtain

8i = —myx;g; — -+ — ngx;hg.

Therefore, g; can be expressed in terms of the remaining elements of S, contradict-
ing the minimality of S,. An identical argument works if an n; is not divisible by p.
Therefore, the relation (10.2) takes the form

apgy + -+ a,pg, + biphy + -+ byphg = 0. (10.3)
Each of the terms ph; = 0, so that (10.3) becomes

apg; +-+-+a,pg, = 0.

Theg,,...,g, are independent and, hence, a;p = 0 for each i; hence, a; = 0. Now (10.2)
becomes

nhy + -+ nghg = 0.

However, hy, ..., hg are independent, so each n; = 0, completing the claim.
Therefore, the whole group G has a basis proving the lemma by induction. O

For more details see the proof of the general result on modules over principal ideal
domains later in the book. There is also an additional elementary proof for the basis
theorem for finitely generated abelian groups.

10.5 Some properties of finite groups

Classification is an extremely important concept in algebra. A large part of the theory
is devoted to classifying all structures of a given type, for example all UFD’s. In most
cases, this is not possible. Since for a given finite n, there are only finitely many group
tables, it is theoretically possible to classify all groups of order n. However, even for
small n, this becomes impractical. We close the chapter by looking at some further
results on finite groups, and then using these to classify all the finite groups up to
order 10.

Before stating the classification, we give some further examples of groups that are
needed.
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162 —— 10 Normal subgroups, factor groups, and direct products

Example 10.5.1. In Example 9.2.6, we saw that the symmetry group of an equilateral
triangle had 6 elements, and is generated by elements r and f, which satisfy the re-
lations r° = f2 =1, f‘lrf = !, where r is a rotation of 120° about the center of the
triangle, and f is a reflection through an altitude. This was called the dihedral group
D; of order 6.

This can be generalized to any regular n-gon, n > 2. If D is a regular n-gon, then
the symmetry group D,, has 2n elements, and is called the dihedral group of order 2n.
It is generated by elements r and f, which satisfy the relations " = f? = 1, f 'rf = r'"’1,
where r is a rotation of %’ about the center of the n-gon, and f is a reflection.

Hence, D,, the symmetries of a square, has order 8 and D5, the symmetries of a
regular pentagon, has order 10.

Example 10.5.2. Let i,j, k be the generators of the quaternions. Then we have

?=p=k=-1, (-1)>’=1, and ijk=1
These elements then form a group of order 8 called the quaternion group denoted by Q.
Since ijk = 1, we have ij = —ji, and the generators i and j satisfy the relations i* = j* = 1,
b By BTy IT
i© =j%, ij = iji.

We now state the main classification, and then prove it in a series of lemmas.

Theorem 10.5.3. Let G be a finite group.

(@) IfIG| =2, then G = Z,.

(b) IfIG| =3, then G = Zs.

(c) IfIGl=4,thenG=2Z,,0rG =7y X Z,.

(d) IfIG| =5, then G = Zs.

(e) IfIG| = 6, then G = Z¢ = Z, x Z5, or G = Ds, the dihedral group with 6 elements.
(Note D; = S; the symmetric group on 3 symbols.)

() IfIGl =7, thenG = Z,.

(g) IfIGl =8,then G = Zg,0r G = Z, x Z,, 01 G = Zy X Zy X Z,, or G = D,, the dihedral
group of order 8, or G = Q, the quaternion group.

(h) IfIGl =9, then G = Zy, 0r G = Z3 X Zs.

(i) IfIG| =10, then G = Zyq = Z, X Zs, or G = Ds, the dihedral group with 10 elements.

Recall from Section 10.1, that a finite group of prime order must be cyclic. Hence,
in the theorem, the cases |G| = 2,3, 5, 7 are handled. We next consider the case, where
G has order p?, and where p is a prime.

Definition 10.5.4. If G is a group, then its center denoted Z(G), is the set of elements
in G, which commute with everything in G. That is,

Z(G)=1{g € G:gh=hgforanyh € G}.
Lemma 10.5.5. For any group G the following hold:
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10.5 Some properties of finite groups —— 163

(@) The center Z(G) is a normal subgroup.
(b) G = Z(G) if and only if G is abelian.
(c) IfG/Z(G) is cyclic, then G is abelian.

Proof. (a) and (b) are direct, and we leave them to the exercises. Consider the case,
where G/Z(G) is cyclic. Then each coset of Z(G) has the form g™ Z(G), where g € G. Let
a,b € G. Then since a, b are in cosets of the center, we have a = g"u and b = g"v with
u,v € Z(G). Then

ab = (g™u)(g"v) = (g"g")(wv) = (g"g™)(vu) = (g"v)(g™u) = ba

since u, v commute with everything. Therefore, G is abelian. O

A p-group is any finite group of prime power order p*. We need the following: The
proof of this is based on what is called the class equation, which we will prove in Chap-
ter 13.

Lemma 10.5.6. A finite p-group has a nontrivial center of order at least p.

Lemma 10.5.7. If |G| = p2 with p a prime, then G is abelian; hence, G = sz, orG =
Zp X Zp.

Proof. Suppose that |G| = p?. Then from the previous lemma, G has a nontrivial center;
hence, |Z(G)| = p, or |Z(G)| = pz. If |Z(G)| = pz, then G = Z(G), and G is abelian. If
|Z(G)| = p, then |G/Z(G)| = p. Since p is a prime this implies that G/Z(G) is cyclic;
hence, from Lemma 10.5.5, G is abelian. O

Lemma 10.5.7 handles the cases n = 4 and n = 9. Therefore, if |G| = 4, we must
have G = Z,, or G = Z, x Z,, and if |G| = 9, we must have G = Zy, or G = Z3 x Z5.
This leaves n = 6, 8,10. We next handle the cases 6 and 10.

Lemma 10.5.8. If G is any group, where every nontrivial element has order 2, then G is
abelian.

Proof. Suppose that g = 1forall g € G. This implies that g = g "' forallg € G. Leta, b
be arbitrary elements of G. Then

(@b’ =1 = abab=1 — ab=b"'a ' = ba.

Therefore, a, b commute, and G is abelian. O
Lemma 10.5.9. If|G| = 6, then G = Z¢, or G = D;.

Proof. Since 6 = 2 -3, if G was abelian, then G = Z, x Z3. Notice that if an abelian
group has an element of order m and an element of order n with (n, m) = 1, then it has
an element of order mn. Therefore, for 6 if G is abelian, there is an element of order 6;
hence, G = Z, x Z5 = Z;.
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164 —— 10 Normal subgroups, factor groups, and direct products

Now suppose that G is nonabelian. The nontrivial elements of G have orders 2, 3,
or 6. If there is an element of order 6, then G is cyclic, and hence abelian. If every ele-
ment has order 2, then G is abelian. Therefore, there is an element of order 3, say g € G.
The cyclic subgroup (g) = {1,g, g%} then has index 2 in G and is, therefore, normal. Let
h € G with h ¢ (g). Since g, g2 both generate (g), we must have (g) n (h) = {1}. If h
also had order 3, then |(g, h)| = l'g; !%'l = 9, which is impossible. Therefore, h must
have order 2. Since (g) is normal, we have h™gh = g' fort =1,2. If h 'gh = g, then g, h
commute, and the group G is abelian. Therefore, h™gh = g = g7%. It follows that g, h
generate a subgroup of G, satisfying

g£=n=1 h'gh=g"

This defines a subgroup of order 6 isomorphic to D; and, hence, must beallof G. O
Lemma 10.5.10. If|G| = 10, then G = Z,, or G = Ds.

Proof. The proofis almost identical to that for n = 6. Since 10 = 2.5, if G were abelian,
G=7ZyXZs="2y.

Now suppose that G is nonabelian. As for n = 6, G must contain a normal cyclic
subgroup of order 5, say (g) = {1,g,g8°.g°,g"}. If h ¢ (g), then exactly as for n = 6, it
follows that h must have order 2, and h 'gh = g‘ fort = 1,2,3,4. If h 'gh = g, then g, h
commute, and G is abelian. Notice that k™! = h. Suppose that h'gh = hgh = g*. Then

(hgh) = (82 =g =g — g=hgh’=hg’h=g" = g=1,

which is a contradiction. Similarly, hgh = g leads to a contradiction. Therefore,
h'gh = g* = g1, and g, h generate a subgroup of order 10, satisfying

g = w =1 h_lgh = g_l.

Therefore, this is all of G, and is isomorphic to Ds. O

This leaves the case n = 8, the most difficult. If |G| = 8, and G is abelian, then
clearly, G = Zg,0r G = Z,, x Z,, ot G = Z, x Z, x Z,. The proof of Theorem 10.5.3 is
then completed with the following:

Lemma 10.5.11. If G is a nonabelian group of order 8, then G = D,, or G = Q.

Proof. The nontrivial elements of G have orders 2, 4, or 8. If there is an element of
order 8, then G is cyclic, and hence abelian, whereas if every element has order 2, then
G is abelian. Hence, we may assume that G has an element of order 4, say g. Then (g)
has index 2 and is a normal subgroup. First, suppose that G has an element h ¢ (g) of
order 2. Then

h"lgh =g' forsomet=1,23.
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10.6 Automorphismsofagroup —— 165

Ifh~'gh = g, then asin the cases 6 and 10, (g, h) defines an abelian subgroup of order 8;
hence, G is abelian. If h‘lgh = g2, then

(h'gh)’ = (') =g" =1 = g=h7gh’=h"'gh=g" = g’ =1,

contradicting the fact that g has order 4. Therefore, h'gh = g> = g. It follows that
g, h define a subgroup of order 8, isomorphic to D,,. Since |G| = 8, this must be all of G
and G = D,.

Therefore, we may now assume that every element h € G with h ¢ (g) has or-
der 4. Let h be such an element. Then h? has order 2, so h* € (g), which implies that
h? = g%. This further implies that g* is central; that is, commutes with everything. Iden-
tifying g with i, h with j, and g2 with —1, we get that G is isomorphic to Q, completing
Lemma 10.5.11 and the proof of Theorem 10.5.3. O

In principle, this type of analysis can be used to determine the structure of any fi-
nite group, although it quickly becomes impractical. A major tool in this classification
is the following important result known as the Sylow theorem, which we just state. We
will prove this theorem in Chapter 13. If |G| = p™n with p a prime and (n, p) = 1, then
a subgroup of G of order p™ is called a p-Sylow subgroup. It is not clear at first that a
group will contain p-Sylow subgroups.

Theorem 10.5.12 (Sylow theorem). Let |G| = p™n with p a prime and (n,p) = 1.
(a) G contains a p-Sylow subgroup.

(b) All p-Sylow subgroups of G are conjugate.

(c) Any p-subgroup of G is contained in a p-Sylow subgroup.

(d) The number of p-Sylow subgroups of G is of the form 1 + pk and divides n.

10.6 Automorphisms of a group

Let G be a group. A homomorphism f : G — G is called an automorphism of G if f is
bijective. Let Aut(G) be the set of all automorphisms of G.

Theorem 10.6.1. Aut(G) is a group.

Proof. The identity map 1 is the identity of Aut(G).
Let f,g € Aut(G).
Then certainly fg € Aut(g). Now

fab) = F(ffF@ff (b))
= @f b))
=f N a)f\(b)

fora,b € G, because f € Aut(G).
Hence, f! € Aut(G). O
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166 —— 10 Normal subgroups, factor groups, and direct products

A special automorphism of G is as follows: Let a € G, and
i,:G— G, i,(x)=axa.

By Lemma 10.1.3, we have that i, € Aut(G).

Definition 10.6.2. i, is called an inner automorphism of G by a.
Let Inn(G) be the set of all inner automorphisms of G.

Theorem 10.6.3. The map ¢ : G — Aut(G), a — i, is an epimorphism; that is, a sur-
jective homomorphism.

Proof. Certainly ¢(G) = Inn(G). We have the following:
@(@@(b)(x) = iy(ip(x)) = iy(bxb™")
=abxblal= (ab)x(ab)_1
=lgp(x) = @(ab)(x),
that is, ¢(ab) = p(a)p(b). O
Theorem 10.6.4. Inn(G) is a normal subgroup of Aut(G); that is, Inn(G) < Aut(G).

Proof. From Theorem 10.6.3, Inn(G) is a homomorphic image ¢(G) of G. Therefore,
Inn(G) < Aut(G). Let f € Aut(G). Then

fif 100 =flaf '0a) = f@ff of(at)
= f@x(F@)™" = iy (0,
that is, fi,f ' = i@ € Inn(G). O

We now consider the kernel ker(¢) of the map ¢ : G — Aut(G), a — i,.
We have

ker(p) = {a € G :i,(x) = x for all x € G}

={aeG:axa" = xforallx € G}.

Hence, ker(¢) = Z(G), the center of G. Now, from Theorem 10.2.3, we get the following:

Theorem 10.6.5.
Inn(G) = G/Z(G) O
Let G be a group and f € Aut(G). If a € G has order n, then f(a) also has order n; if

a € G has infinite order then f(a) also has infinite order.
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Example 10.6.6. Let V = 7Z, x Z,; that is, V has four elements 1,a, b and ab with
a’ =b = (ab)’ = 1.

V is often called the Klein four group. An automorphism of V permutes the three
elements a, b and ab of order 2, and each permutation of {a, b, ab} defines an automor-
phism of V. Hence, Aut(V) = S;.

Example 10.6.7.
S; = Inn(S;) = Aut(S;).

By Theorem 10.6.5, we have S; = Inn(S;), because Z(S;) = {1}. Now, let f € Aut(S;).
Analogously, as in Example 10.6.6, the automorphism f permutes the three transposi-
tions (1,2), (1,3), and (2, 3). This gives | Aut(S3)| < |S;] = 6, because S; is generated by
these transpositions. From S5 = Inn(S;) < Aut(S;), we have | Aut(S;)| > 6.

Hence, Aut(S;) = Inn(S;) = S;.

Example 10.6.8. Let G, = (g) = (Z,,+), n € N, be a cyclic group of order n. If f
Aut(G,), then G, = (f(g)) = (gk), and (k,n) = 1 by Theorem 9.5.8. Hence, Aut(G,,)
Z},, the group of units of the ring Z,, = Z/nZ. In particular, | Aut(G,)| = ¢(n). Ifn=p
a prime number, then Aut(G,) = Z; is cyclic by Theorem 9.5.16.

In general, Aut(G,) is not cyclic. If, for instance, n = 8, then ¢(8) = 4. The four
automorphisms of Gg are given by fi(g) = g, f5(g) = g, f3(8) = g°,and fa(g) = g.

We have f(g) = g fori = 1,2, 3, 4. Hence, Aut(Gg) = Z, x Z,.

We remark that certainly Aut(Z,+) = Z,, because f(1) = 1or f(1) = -1for f €
Aut(z, +).

n m

10.7 Exercises

1. Prove that if G is cyclic, then any factor group of G is also cyclic.
2. Prove that for any group G, the center Z(G) is a normal subgroup, and G = Z(G) if
and only if G is abelian.
3. Let U; and U, be subgroups of a group G. Let x,y € G. Show the following:
(i) IfxU, = yU,, then U, = U,.
(ii) An example that xU; = U,x does not imply U, = U,.
4, LetU,V besubgroupsofagroup G.Letx,y € G.If UxVnUyV + @, then UxV = UyV.
5. Let N be a cyclic normal subgroup of the group G. Then all subgroups of N are
normal subgroups of G. Give an example to show that the statement is not correct
if N is not cyclic.
6. Let N; and N, be normal subgroups of G. Show the following:
(i) If all elements in N; and N, have finite order, then also the elements of N;N,.
(i) Letej, e, € N.Ifn' = 1foralln; € N; (i = 1,2), then x* = 1 for all x € N;N,.
7. Find groups N;, N, and G with N; < N, < G, but N; is not a normal subgroup of G.
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10.

11.

12.

Let G be a group generated by a and b and let bab™! = a" and a" = 1 for suitable

r € Z, n € N. Show the following:

(i) The subgroup A := {(a) is a normal subgroup of G.

(i) G/A = (bA).

(iii) G = {Pd' : i,j € Z)}.

Prove that any group of order 24 cannot be simple.

Let G be a group with subgroups G;, G,. Then the following are equivalent:

(i) G=G;xGy;

(i) G;«G,G,<G,G=0G,Gy,and G; NG, ={1};

(iii) Every g € G has a unique expression g = g;8,, where g; € Gy, 8, € G5, and
818, = 88 foreach g, € Gy, 8, € G,.

Suppose that G is a finite group with normal subgroups G;,G, such that

(IG4],1G,1) = 1.If |G| = |G4]|G,l, then G = G; x G,.

Let G be a group with normal subgroups G; and G, such that G = G;G,. Then

G/(G,N G,) = G,/(G, N G,) x G,/(G, N Gy).
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11 Symmetric and alternating groups

11.1 Symmetric groups and cycle decomposition

Groups most often appear as groups of transformations or permutations on a set. In
Galois Theory, groups will appear as permutation groups on the zeros of a polynomial.
In Section 9.3, we introduced permutation groups and the symmetric group S,,. In this
chapter, we look more carefully at the structure of S,,, and for each n introduce a very
important normal subgroup, 4,, of S,,, called the alternating group on n symbols.

Recall that if A is a set, a permutation on A is a one-to-one mapping of A onto
itself. The set S, of all permutations on A forms a group under composition called the
symmetric group on A. If |A| > 2, then S, is nonabelian. Furthermore, if A, B have the
same cardinality, then S, = S;.

If |A| = n, then |S4| = n! and, in this case, we denote S, by S,,, called the symmetric
group on n symbols. For example, |S3| = 6. In Example 9.3.5, we showed that the six
elements of S5 can be given by the following:

1:<1 2 3>’ a:<1 2 3>’ b:<1
1 2 3 2 31 3
C:<1 2 3>) d:<1 2

2 1 3 3 2

In addition, we saw that S5 has a presentation given by

- W
N~

(4

Il
—
)
W N = N
N W

S;={a,c;a = = 1,ac = ca®).

By this, we mean that S; is generated by a, c, or that S; has generators a, c, and
the whole group and its multiplication table can be generated by using the relations
ad=c= 1, ac = cd’.

In general, a permutation group is any subgroup of S, for a set A.

For the remainder of this chapter, we will only consider finite symmetric groups

S, and always consider theset Aas A = {1,2,3,...,n}.

Definition 11.1.1. Suppose that f is a permutation of A = {1,2,...,n}, which has the
following effect on the elements of A: There exists an element a; € A such that f(a;) =
ay, f(ay) = as,....flax_y) = ay, f(ay) = a;, and f leaves all other elements (if there are
any) of A fixed; that is, f(a;) = g; for q; # a;,1 = 1,2,..., k. Such a permutation f is
called a cycle or a k-cycle.

We use the following notation for a k-cycle, f, as given above:

f = (al, az, ceey ak).
https://doi.org/10.1515/9783110603996-011
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170 —— 11 Symmetric and alternating groups

The cycle notation is read from left to right. It says f takes a; into a,, a, into as, et
cetera, and finally a;, the last symbol, into a;, the first symbol. Moreover, f leaves all
the other elements not appearing in the representation above fixed.

Note that one can write the same cycle in many ways using this type of notation;
for example, f = (a,,as,...,a;, a;). In fact, any cyclic rearrangement of the symbols
gives the same cycle. The integer k is the length of the cycle. Note we allow a cycle
to have length 1, that is, f = (a;), for instance. This is just the identity map. For this
reason, we will usually designate the identity of S, by (1), or just 1. (Of course, it also
could be written as (a;), where g; € A.)

If f and g are two cycles, they are called disjoint cycles if the elements moved by
one are left fixed by the other; that is, their representations contain different elements
of the set A (their representations are disjoint as sets).

Lemma 11.1.2. Iff and g are disjoint cycles, then they must commute; that is, fg = gf .

Proof. Since the cycles f and g are disjoint, each element moved by f is fixed by g, and
vice versa. First, suppose f(a;) # a;. This implies that g(a;) = g;, and fz(al-) # f(a).
But since f*(a;) # f(a;), g(f(a;)) = f(a;). Thus, (f&)(@;) = f(g(ay)) = f(a;), whereas
(8f)(a) = g(f(ay) = f(ay). Similarly, if g(a;) # a;, then (fg)(q;) = (gf)(a;). Finally, if
f(ay) = a, and g(ay) = ay, clearly then, (fg)(ay) = a, = (gf)(ay). Thus, gf = fg. O

Before proceeding further with the theory, let us consider a specific example. Let
A=1{1,2,...,8},and let
f_<12345678>
\2 46 517 3 8)

We pick an arbitrary number from the set A, say 1. Then f(1) = 2, f(2) = 4,f(4) =5,
f(5) = 1. Now select an element from A not in the set {1, 2, 4,5}, say 3. Then f(3) = 6,
f(6) =7, f(7) = 3. Next select any element of A not occurring in the set {1,2,4,5} U
{3,6,7}. The only element left is 8, and f(8) = 8. It is clear that we can now write the
permutation f as a product of cycles:

f=01,24,5)3,6,7)(8),

where the order of the cycles is immaterial since they are disjoint and, therefore, com-
mute. It is customary to omit such cycles as (8) and write f simply as

f=(1,2,4,5)3,6,7)

with the understanding that the elements of A not appearing are left fixed by f.

It is not difficult to generalize what was done here for a specific example, and
show that any permutation f can be written uniquely, except for order, as a product of
disjoint cycles. Thus, let f be a permutation on the set A = {1,2,...,n}, and let a; € A.
Letf(a;) = ay, fz(al) = f(a,) = a3, et cetera, and continue until a repetition is obtained.
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11.1 Symmetric groups and cycle decomposition =— 171

We claim that this first occurs for a;; that is, the first repetition is, say fk (a)) =f(ay) =
a;,1 = a;. For suppose the first repetition occurs at the k-th iterate of f and

@) = fap) = ag

and ay,, = a;, where j < k. Then

@) = 7 ay),
andsof k’“l(al) = a;. However, k—j+1 < kifj # 1, and we assumed that the first repeti-
tion occurred for k. Thus, j = 1, and so f does cyclically permute the set {a;, a,, ..., a;}.
If k < n, then there exists b; € A such that b; ¢ {a;,a,,...,a;}, and we may proceed
similarly with b;. We continue in this manner until all the elements of A are accounted
for. It is then seen that f can be written in the form

f: (al,...,ak)(bl,...,bg)(cl,...,Cm)"'(hl,...,ht).

Note that all powersfi(al) belong to the set {a; =f0(a1) =fk(a1), a, =f1(a1),...,ak =
£*(a,)}; all powers f(b,) belong to the set {b; = fO(b,) = fé(b,), b, = fX(by),..., b,
fe‘l(bl)}; .... Here, by definition, b, is the smallest element in {1,2,..., n}, which does
not belong to {a; = fo(al) = fk(al), a, = fl(al),...,ak = fk‘l(al)}; ¢, is the smallest
element in {1,2, ..., n}, which does not belong to

{a; = fa) = (@), @ = fl @), ... @ = F (@)}
U{b; = fO(by) = F(by), by = fl(by), ..., by = F(By)).

Therefore, by construction, all the cycles are disjoint. From this, it follows that k + £ +
m+ .-+t = n. Itis clear that this factorization is unique, except for the order of the
factors, since it tells explicitly what effect f has on each element of A.

In summary, we have proven the following result.

Theorem 11.1.3. Every permutation of S,, can be written uniquely as a product of disjoint
cycles (up to order).

Example 11.1.4. The elements of S; can be written in cycle notation as 1 = (1),
(1,2),(1,3),(2,3),(1,2,3),(1,3,2). This is the largest symmetric group, which consists
entirely of cycles.

In S,, for example, the element (1,2)(3,4) is not a cycle, but a product of cycles..

Suppose we multiply two elements of S3, say (1, 2) and (1, 3). In forming the product
or composition here, we read from right to left. Thus, to compute (1, 2)(1, 3): We note
the permutation (1, 3) takes 1 into 3, and then the permutation (1,2) takes 3 into 3.
Therefore, the composite (1,2)(1,3) takes 1 into 3. Continuing the permutation, (1, 3)
takes 3 into 1, and then the permutation (1, 2) takes 1 into 2. Therefore, the composite
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172 —— 11 Symmetric and alternating groups

(1,2)(1, 3) takes 3 into 2. Finally, (1, 3) takes 2 into 2, and then (1, 2) takes 2 into 1. So
(1,2)(1, 3) takes 2 into 1. Thus, we see

(1,2)(1,3) = (1,3,2).
As another example of this cycle multiplication consider the product in Ss,
(1,2)(2,4,5)(1,3)(1,2,5).

Reading from righttoleft1 —» 2 —2+— 4+ 4s01— 4. Now4 —» 4 — 4 — 55
S04 +— 5. Next5—»1—~3—3~3s05~3.Then3—»3 112503 2.
Finally,2 —» 5 +— 5+ 2 — 1, s0 2 — 1. Since all the elements of A = {1, 2,3, 4,5} have
been accounted for, we have

(1,2)(2,4,5)(1,3)(1,2,5) = (1,4,5,3,2).

Letf € S,. If f is a cycle of length 2, that is, f = (a;,a,), where a;,a, € A, thenf is
called a transposition. Any cycle can be written as a product of transpositions, namely,

(ag,....ay) = (a, qp)(ay, ag_q) -+~ (a1, ay).

From Theorem 11.1.3, any permutation can be written in terms of cycles, but from the
above, any cycle can be written as a product of transpositions. Thus, we have the fol-
lowing result:

Theorem 11.1.5. Let f € S, be any permutation. Then f can be written as a product of
transpositions.

11.2 Parity and the alternating groups

If f is a permutation with a cycle decomposition
(al,...,ak)(bl,...,b)-)n-(ml,...,mt),

then f can be written as a product of
WEH)=k-D+FG-D+---+(t-1)

transpositions. The number W (f) is uniquely associated with the permutation f since
f is uniquely represented (up to order) as a product of disjoint cycles. However, there
is nothing unique about the number of transpositions occurring in an arbitrary repre-
sentation of f as a product of transpositions. For example, in S;,

(1,3,2) =(1,2)(1,3) = (1,2)(1,3)(1,2)(1, 2),

since (1,2)(1,2) = (1), the identity permutation of S;.
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11.2 Parity and the alternating groups =— 173

Although the number of transpositions is not unique in the representation of a
permutation f as a product of transpositions, we will show that the parity (evenness
or oddness) of that number is unique. Moreover, this depends solely on the number
W (f) uniquely associated with the representation of f. More explicitly, we have the
following result:

Theorem 11.2.1. Iff is a permutation written as a product of disjoint cycles, and if W(f)
is the associated integer given above, then if W(f) is even (odd), any representation of
f, as a product of transpositions, must contain an even (odd) number of transpositions.

Proof. We first observe the following:

(a,b)(b,cy,...,ci)a, by,....b) =(a,by,....,b,b,cy, ..., Cp)s
(a,b)(@a,by,...,bg,b,cy,....¢c)) =(a,by,....b)b,cy, ..., Cp).

Suppose now that f is represented as a product of disjoint cycles, where we include all
the 1-cycles of elements of A, which f fixes, if any. If a and b occur in the same cycle in
this representation for f,

f=-(aby....bb,cp,....¢c) -,

then, in the computation of W(f), this cycle contributes k + t + 1. Now consider (a, b)f.
Since the cycles are disjoint and disjoint cycles commute,

(a,b)f =---(a,b)(a,by,...., by, b,Cy5...,¢p) -+

since neither a nor b can occur in any factor of f other than (a,b,,...,b;.b,cy,
...,Cp). So that (a,b) cancels out, and we find that (a,b)f = ---(b,cy,...,c)(a, by,
...,b)---. Since W((b,cy,...,c)a,by,.... b)) = k + t, but W(a,by,...,b, b,
Cp-..,¢) =k+t+1,wehave W((a,b)f) = W(f) - 1.

A similar analysis shows that in the case, where a and b occur in different cycles
in the representation of f, then W((a, b)f) = W(f) + 1. Combining both cases, we have

W((a, b)f) = W(f) + 1.

Now let f be written as a product of m transpositions, say

f =(ay, by)(@y by) -+ (A byy)-
Then

(Am> bpy) -+ (a3, by)(ay, by)f = 1.
Iterating this, together with the fact that W(1) = 0, shows that

WEHEDED(ED -+ (£1) = 0,
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174 —— 11 Symmetric and alternating groups

where there are m terms of the form +1. Thus,
W(f) = E)(1) - - (1),

m times. Note, if exactly p are + and ¢ = m — p are —, then m = p + g, and W(f) =
p — q. Hence, m = W(f) (mod 2). Thus, W(f) is even if and only if m is even, and this
completes the proof. O

It now makes sense to state the following definition since we know that the parity
is indeed unique:

Definition 11.2.2. A permutation f € S, is said to be even if it can be written as a prod-
uct of an even number of transpositions. Similarly, f is called odd if it can be written
as a product of an odd number of transpositions.

Definition 11.2.3. On the group S,,, for n > 2, we define the sign function: S, — (Z,,+)
by sgn(mr) = 0 if 71 is an even permutation, and sgn(rr) = 1if 7 is an odd permutation.

We note that if f and g are even permutations, then so are fg and f ! and also the
identity permutation is even. Furthermore, if f is even and g is odd, it is clear that fg
is odd. From this it is straightforward to establish the following:

Lemma 11.2.4. sgn is a homomorphism from S,, for n > 2, onto (Z,, +).

We now let
A, ={m €S, :sgn(m) =0}
That is, A,, is precisely the set of even permutations in S,,.

Theorem 11.2.5. For eachn € N, n > 2, the set A, forms a normal subgroup of index 2
in S, called the alternating group on n symbols. Furthermore, |A,| = "3'

Proof. By Lemma 11.2.4 sgn : S,, — (Z,, +) is a homomorphism. Then ker(sgn) = A,;
therefore, A, is a normal subgroup of S,,. Since im(sgn) = Z,, we have |im(sgn)| = 2,
hence, |S,,/A,| = 2. Therefore, [S, : A,] = 2. Since |S,| = n!, then |4, | = "7' follows from
Lagrange’s theorem. O

11.3 Conjugationin§,

Recall that in a group G, two elements x,y € G are conjugates if there existsa g € G
with g7'xg = y. Conjugacy is an equivalence relation on G. In the symmetric groups S,,,
it is easy to determine if two elements are conjugates. We say that two permutations
in S, have the same cycle structure if they have the same number of cycles and the
lengths are the same. Hence, for example in Sg the permutations

m=(1,367)25 and m=(2356)18)
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11.4 The simplicity of A, =— 175

have the same cycle structure. In particular, if 7, 7, are two permutations in S, then
m, 1T, are conjugates if and only if they have the same cycle structure. Therefore, in Sg,
the permutations

m=(1,3,6,7)2,5) and m,=(2,3,56)(18)

are conjugates.

Lemma 11.3.1. Let

= (A, Agps - > Ayg) +*+ (Agp> Ay - - > Ay )

be the cycle decomposition of it € S,.. Let T € S, and denote the image of a;; under T by
T
a;. Then

-1 T T T T T T
T :(au,alz,...,alkl)~~~(a51,a52,...,asks).
Proof. (a) Consider ay; then operating on the left like functions, we have
1, T T
it (ay) = (ay) = 1(ayy) = ag,.

The same computation then follows for all the symbols a;;, proving the lemma. O

ijs
Theorem 11.3.2. Two permutations my, 7, € S, are conjugates if and only if they are of
the same cycle structure.

Proof. Suppose that 71, = Trrl‘r‘l. Then, from Lemma 11.3.1, we have that 77; and r, are
of the same cycle structure.
Conversely, suppose that 77; and 7, are of the same cycle structure. Let

m = (Ayy, Ay, - - Ayg) -+~ (Agp Ags - -+ A )

1y = (byy bigs s b)) -+ (Bsy, b, ., By )

where we place the cycles of the same length under each other. Let T be the per-
mutation in S, that maps each symbol in m; to the digit below it in 77,. Then, from
Lemma 11.3.1, we have ;7" = 71,; hence, m, and 7, are conjugate. O

11.4 The simplicity of A,

A simple group is a group G with no nontrivial proper normal subgroups. Up to this
point, the only examples we have of simple groups are cyclic groups of prime order.
In this section, we prove that if n > 5, each alternating group 4,, is a simple group.

Theorem 11.4.1. For eachn > 3 eachm € A, is a product of cycles of length 3.
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176 —— 11 Symmetric and alternating groups

Proof. Letm € A,,. Since r is a product of an even number of transpositions to prove
the theorem, it suffices to show that if 7;, 7, are transpositions, then 7,7, is a product
of 3-cycles.

The statement holds certainly for n = 3. Now, let n > 4.

Suppose that a, b, ¢, d are different digits in {1, ..., n}. There are three cases to con-
sider. First:

Case (1): (a,b)(a,b)=1=(1,2,3)%

hence, it is true here.
Next:

Case (2): (a,b)(b,c) = (c,a, b);

hence, it is also true here.
Finally:

Case (3): (a,b)(c,d) = (a,b)(b,c)(b,c)(c,d) = (c,a, b)(c,d, b)

since (b, c)(b, ¢) = 1. Therefore, it is also true here, proving the theorem. O

Now our main result:
Theorem 11.4.2. For n > 5, the alternating group A,, is a simple nonabelian group.

Proof. Suppose that N is a nontrivial normal subgroup of A,, with n > 5. We show that
N = A,; hence, 4, is simple.

We claim first that N must contain a 3-cycle. Let 1 # m € N, then  is not a trans-
position since 71 € A,,. Therefore, m moves at least 3 digits. If 7 moves exactly 3 digits,
then it is a 3-cycle, and we are done. Suppose then that 7 moves at least 4 digits. Let
m =14 --- T, with 7; disjoint cycles.

Case (1): Thereisat; = (...,a,b,c,d). Set g = (a,b,c) € A,. Then

non ! = TiUTi_l =(b,c,d).
However, from Lemma 11.3.1, (b, c,d) = (a", b"i, c"). Furthermore, since 7 ¢ N and N
is normal, we have

n(an_la_l) = (b,c,d)(a,c,b) = (a,d, b).

Therefore, in this case, N contains a 3-cycle.
Case (2): There is a 7, which is a 3-cycle. Then

= (ab,c)de,...).
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11.4 The simplicity of A, =— 177

Now, set o = (a, b,d) € A,, and then
non " = (b,c,e) = (a",b",d"),
and
o ton ! = (a,b,d)(b,c,e) = (b,c,e,d,a) € N.

Now, use Case (1). Therefore, in this case, N has a 3-cycle.

In the final case, 7 is a disjoint product of transpositions.

Case (3): m = (a,b)(c,d) ---. Since n > 5, thereisan e + a,b,c,d. Let o = (a,c,e) €
A,,. Then

non ' = (b,d,e;) withe, =e" # b, d.

However, (a”,c”,€") = (b,d,e,). Lety = (60" 'no)n!. This is in N since N is normal. If
e = e, theny = (e,c,a)(b,d,e) = (a,e,b,d,c), and we can use Case (1) to get that N
contains a 3-cycle. If e # e}, thenT = (e,c,a)(b,d,e;) € N, and then we can use Case
(2) to obtain that N contains a 3-cycle.

These three cases show that N must contain a 3-cycle.

If N is normal in A,,, then from the argument above, N contains a 3-cycle 7. How-
ever, from Theorem 11.3.2, any two 3-cycles in S,, are conjugate. Hence, 7 is conjugate
to any other 3-cycle in S,,. Since N is normal and 7 € N, each of these conjugates must
also be in N. Therefore, N contains all 3-cycles in S,,. From Theorem 11.4.1, each el-
ement of 4, is a product of 3-cycles. It follows then that each element of A, is in N.
However, since N ¢ A,, this is only possible if N = 4,,, completing the proof. O

Theorem 11.4.3. Letn € N and U c S, a subgroup. Let T be a transposition and a a
n-cycle witha,t € U. Then U = S,,.

Proof. Suppose, without loss of generality, that T = (1,2). There is an i with a/(1) = 2.
Without loss of generality, we may then assume thata = (1,2,as,...,a,). Let

i (1 2 az - an> .
12 3 -~ n
Then, from Lemma 11.3.1, we have

nan ! = 1,2,...,n).

Furthermore, 77(1,2)7"! = (1,2). Hence, U, = aUm ™! contains (1,2) and (1,2,.. ., n).
Now we have

1,2,...,m1,2)(1,2,...,n) " = (2,3) € U,.
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Analogously,
1,2,...,m23)1,2,...,n) " =3,4) € U,
and so on until
1,2,....,nNn-2n-1)1,2,...,n) ' =(n-1,n) € U,.
Hence, the transpositions (1,2), (2,3),...,(n - 1,n) € U,. Moreover,
(1,2)(2,3)(1,2) =(1,3) € U;.
In an identical fashion, each (1, k) € U;. Then for any digits s, ¢, we have
(1,5)1,6)(@1,s) = (s,t) € U;.

Therefore, U, contains all the transpositions of S,; hence, U, = S,,. Since U = nU,n ",
we must have U = §,, also. O

11.5 Exercises

1. Show that for n > 3, the group 4, is generated by {(1,2, k) : k > 3}.
Let o = (ky,..., k) € S, be a permutation. Show that the order of o is the least
common multiple of ky, ..., ks. Compute the orderof = (1 2213¢7) e S,.

3. LetG=S,.

(i) Determine a noncyclic subgroup H of order 4 of G.

(ii) Show that H is normal.

(iii) Show that f(g)(h) := ghg™! defines an epimorphism f : G — Aut(H) forg € G
and h € H. Determine its kernel.

Show that all subgroups of order 6 of S, are conjugate.

Leto; = (1,2)(3,4)and 0, = (1,3)(2,4) € S,. Determinet € S, such that Talr’l = 0,.

6. Leto=(ay,...,a;) €S,. Describe 07!

v
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12 Solvable groups

12.1 Solvability and solvable groups

The original motivation for Galois theory grew out of a famous problem in the theory of
equations. This problem was to determine the solvability or insolvability of a polyno-
mial equation of degree 5 or higher in terms of a formula involving the coefficients of
the polynomial and only using algebraic operations and radicals. This question arose
out of the well-known quadratic formula.

The ability to solve quadratic equations and, in essence, the quadratic formula
was known to the Babylonians some 3600 years ago. With the discovery of imaginary
numbers, the quadratic formula then says that any second degree polynomial over
C can be solved by radicals in terms of the coefficients. In the sixteenth century, the
Italian mathematician, Niccolo Tartaglia, discovered a similar formula in terms of rad-
icals to solve cubic equations. This cubic formula is now known erroneously as Car-
dano’s formula in honor of Cardano, who first published it in 1545. An earlier special
version of this formula was discovered by Scipione del Ferro. Cardano’s student, Fer-
rari, extended the formula to solutions by radicals for fourth degree polynomials. The
combination of these formulas says that polynomial equations of degree four or less
over the complex numbers can be solved by radicals.

From Cardano’s work until the very early nineteenth century, attempts were made
to find similar formulas for degree five polynomials. In 1805, Ruffini proved that fifth
degree polynomial equations are insolvable by radicals in general. Therefore, there
exists no comparable formula for degree 5. Abel (in 1825-1826) and Galois (in 1831)
extended Ruffini’s result and proved the insolubility by radicals for all degrees five or
greater. In doing this, Galois developed a general theory of field extensions and its
relationship to group theory. This has come to be known as Galois theory and is really
the main focus of this book.

The solution of the insolvability of the quintic and higher polynomials involved a
translation of the problem into a group theory setting. For a polynomial equation to
be solvable by radicals, its corresponding Galois group (a concept we will introduce in
Chapter 16) must be a solvable group. This is a group with a certain defined structure.
In this chapter, we introduce and discuss this class of groups.

12.2 Solvable groups

A normal series for a group G is a finite chain of subgroups beginning with G and end-
ing with the identity subgroup {1}
G=Gy>G;>G,>-->G,1>G, =11},
https://doi.org/10.1515/9783110603996-012
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180 — 12 Solvable groups

in which each G, is a proper normal subgroup of G;. The factor groups G;/G;,, are
called the factors of the series, and n is the length of the series.

Definition 12.2.1. A group G is solvable if it has a normal series with abelian factors;
that is, G;/G;,; is abelian for alli = 0,1,...,n — 1. Such a normal series is called a
solvable series.

If G is an abelian group, then G = G, > {1} provides a solvable series. Hence, any
abelian group is solvable. Furthermore, the symmetric group S; on 3-symbols is also
solvable, however, nonabelian. Consider the series

S30 A5 c {1}

Since |S5| = 6, we have |A;| = 3; hence, A; is cyclic and therefore abelian. Furthermore,
IS3/A3| = 2; hence, the factor group S3/4; is also cyclic, thus abelian. Therefore, the
series above gives a solvable series for S;.

Lemma 12.2.2. If G is a finite solvable group, then G has a normal series with cyclic
factors.

Proof. If G is a finite solvable group, then by definition, it has a normal series with
abelian factors. Hence, to prove the lemma, it suffices to show that a finite abelian
group has a normal series with cyclic factors.

Let A be a nontrivial finite abelian group. We do an induction on the order of A. If
|[A] = 2, then A itself is cyclic, and the result follows. Suppose that |A| > 2. Choose an
1+ a e A.Let N = (a) so that N is cyclic. Then we have the normal series A > N > {1}
with A/N abelian. Moreover, A/N has order less than A, so A/N has a normal series
with cyclic factors, and the result follows. O

Solvability is preserved under subgroups and factor groups.

Theorem 12.2.3. Let G be a solvable group. Then the following hold:
(1) Any subgroup H of G is also solvable.
(2) Any factor group G/N of G is also solvable.

Proof. (1) Let G be a solvable group, and suppose that
G=Gy>G;>:->G, ={1}
is a solvable series for G. Hence, G;,; is a normal subgroup of G; for each i, and the
factor group G;/G;,, is abelian.
Now let H be a subgroup of G, and consider the chain of subgroups
H=HnGy>HNG;>--->HNG, ={1}.
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12.2 Solvable groups =— 181

Since G;,, is normal in G;, we know that H N G;,; is normal in H N G;; hence, this gives
a finite normal series for H. Furthermore, from the second isomorphism theorem, we
have for each i,

(HNG)/(HNGyy) = HNG)/((HNG)NGyyy)
= (H N G))Gy11/Gyyy € Gi/ Gy
However, G;/G;,, is abelian, so each factor in the normal series for H is abelian. There-
fore, the above series is a solvable series for H; hence, H is also solvable.

(2) Let N be a normal subgroup of G. Then from (1) N is also solvable. As above,
let

G=Gy>G;>--->G, =11}
be a solvable series for G. Consider the chain of subgroups
G/N =GyN/N > G,N/N>--->G,N/N =N/N = {1}.
Letm € G;_;, n € N. Then since N is normal in G,

(mn)"'G;N(mn) = n"'m'G;mnN = n"'G;nN
=n"'NG; = NG; = G;N.
It follows that G;,N is normal in G;N for each i; therefore, the series for G/N is a normal

series.
Again, from the isomorphism theorems,

(GiN/N)/(G;1N/N) = G;/(G; n G;;1N)
= (Gi/G11)/((G; N G141N)/Gyyq).
However, the last group (G;/G;,1)/((G; N G;41N)/G;,4) is a factor group of the group
G;/Gy,,, which is abelian. Hence, this last group is also abelian; therefore, each factor

in the normal series for G/N is abelian. Hence, this series is a solvable series, and G/N
is solvable. O

The following is a type of converse of the above theorem:

Theorem 12.2.4. Let G be a group and N a normal subgroup of G. If both N and G/N
are solvable, then G is solvable.

Proof. Suppose that

N=Ny>N;>--->N, ={1}
G/N = Gy/N > Gy/N>--->G4/N =N/N = {1}
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are solvable series for N and G/N, respectively. Then
G=Gy>G;>--->Gs=N>N;>--->N, ={1}
gives a normal series for G. Furthermore, from the isomorphism theorems again,
Gi/Giy1 = (Gi/N)/(Gy11/N);

hence, each factor is abelian. Therefore, this is a solvable series for G; hence, G is
solvable. O

This theorem allows us to prove that solvability is preserved under direct products.

Corollary 12.2.5. Let G and H be solvable groups. Then their direct product G x H is also
solvable.

Proof. Suppose that G and H are solvable groups and K = G x H. Recall from Chap-
ter 10 that G can be considered as a normal subgroup of K with K/G = H. Therefore,
G is a solvable subgroup of K, and K/G is a solvable quotient. It follows then, from
Theorem 12.2.4, that K is solvable. O

We saw that the symmetric group S; is solvable. However, the following theorem
shows that the symmetric group S,, is not solvable for n > 5. This result will be crucial
to the proof of the insolvability of the quintic and higher polynomials.

Theorem 12.2.6. For n > 5, the symmetric group S,, is not solvable.

Proof. For n > 5, we saw that the alternating group A, is simple. Furthermore, 4,
is nonabelian. Hence, A, cannot have a nontrivial normal series, and so no solvable
series. Therefore, A, is not solvable. If S, were solvable for n > 5, then from The-
orem 12.2.3, A, would also be solvable. Therefore, S,, must also be nonsolvable for
nx>>5. O

In general, for a simple, solvable group we have the following:
Lemma 12.2.7. If a group G is both simple and solvable, then G is cyclic of prime order.

Proof. Suppose that G is a nontrivial simple, solvable group. Since G is simple, the
only normal series for G is G = G, > {1}. Since G is solvable, the factors are abelian;
hence, G is abelian. Again, since G is simple, G must be cyclic. If G were infinite, then
G = (Z, +). However, then 2Z. is a proper normal subgroup, a contradiction. Therefore,
G must be finite cyclic. If the order were not prime, then for each proper divisor of the
order, there would be a nontrivial proper normal subgroup. Therefore, G must be of
prime order. O

In general, a finite p-group is solvable.

Theorem 12.2.8. A finite p-group G is solvable.
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Proof. Suppose that |G| = p". We do this by induction on n. If n = 1, then |G| = p,
and G is cyclic, hence abelian and therefore solvable. Suppose that n > 1. Then as
used previously G has a nontrivial center Z(G). If Z(G) = G, then G is abelian; hence
solvable. If Z(G) + G, then Z(G) is a finite p-group of order less than p". From our
inductive hypothesis, Z(G) must be solvable. Furthermore, G/Z(G) is then also a finite
p-group of order less than p", so it is also solvable. Hence, Z(G) and G/Z(G) are both
solvable. Therefore, from Theorem 12.2.4, G is solvable. O

12.3 The derived series

Let G be a group, and let a, b € G. The product aba b~ is called the commutator of a
and b. We write [a, b] = aba 'b7".
Clearly, [a, b] = 1if and only if a and b commute.

Definition 12.3.1. Let G’ be the subgroup of G, which is generated by the set of all
commutators

G' =gp({lx.yl : x,y € G}).

G' is called the commutator or (derived) subgroup of G. We sometimes write G’ = [G, G].

Theorem 12.3.2. For any group G, the commutator subgroup G' is a normal subgroup of
G, and G/G' is abelian. Furthermore, if H is a normal subgroup of G, then G/H is abelian
ifand only if G' ¢ H.

Proof. The commutator subgroup G’ consists of all finite products of commutators and
inverses of commutators. However,

[a,b] ™! = (aba‘lb"l)_1 =babla’! = [b,al,

and so the inverse of a commutator is once again a commutator. It then follows that
G' is precisely the set of all finite products of commutators; that is, G’ is the set of all
elements of the form

hyhy - hy,

where each h; is a commutator of elements of G.

Ifh = [a,b] for a,b € G, then for x € G, xhx™! = [xax !, xbx7!] is again a com-
mutator of elements of G. Now from our previous comments, an arbitrary element of
G' has the form hyh, --- h,, where each h; is a commutator. Thus, x(hh, ---h)x " =
(xhlx‘l)(xhzx‘l)n-(xhnx‘l) and, since by the above each xh,-x‘1 is a commutator,
x(hyhy ---h,)x* € G'. It follows that G’ is a normal subgroup of G.

Brought to you by | Chalmers University of Technology
Authenticated
Download Date | 9/12/19 6:38 AM



184 — 12 Solvable groups

Consider the factor group G/G’. Let aG' and bG' be any two elements of G/G'. Then
[aG',bG'] = aG' - bG' - (aG') " - (bG')™"
=aG' -bG' -a'G'-b'G' =aba'b7'G' = G

since [a, b] € G'. In other words, any two elements of G/G' commute; therefore, G/G’
is abelian.

Now let N be a normal subgroup of G with G/N abelian. Let a, b € G, then aN and
bN commute since G/N is abelian. Therefore,

[aN,bN] = aNbNa 'Nb~'N = aba'b™'N = N.

It follows that [a, b] € N. Therefore, all commutators of elements in G lie in N; thus,
G' cN. O

From the second part of Theorem 12.3.2, we see that G’ is the minimal normal
subgroup of G such that G/G' is abelian. We call G/G' = G, the abelianization of G.

We consider next the following inductively defined sequence of subgroups of an
arbitrary group G called the derived series:

Definition 12.3.3. For an arbitrary group G, define G = Gand G = G', and then, in-
ductively, GV = (G™)’. That is, G™*? is the commutator subgroup or derived group
of G™. The chain of subgroups

G=G6G9>56Y5...56">5...

is called the derived series for G.

Notice that since GV is the commutator subgroup of G, we have G /G is

abelian. If the derived series was finite, then G would have a normal series with abelian
factors; hence would be solvable. The converse is also true and characterizes solvable
groups in terms of the derived series.

Theorem 12.3.4. A group G is solvable if and only if its derived series is finite. That is,
there exists an n such that G™ = {1}.

Proof. If G" = {1} for some n, then as explained above, the derived series provides a
solvable series for G; hence, G is solvable.
Conversely, suppose that G is solvable, and let

G=Gy>G;>:->G, =1{1}

be a solvable series for G. We claim first that G; > G for all i. We do this by induction
onr.Ifr = 0, then G = G, = G'). Suppose that G; > GY. Then G! > (G?)' = GU*.
Since G;/G;,, is abelian, it follows, from Theorem 12.3.2, that G;,; > G]. Therefore,
Giy1 > G, establishing the claim.

Now if G is solvable, from the claim, we have that G, > G, However, G, = {1}
therefore, G" = {1}, proving the theorem. O
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The length of the derived series is called the solvability length of a solvable
group G. The class of solvable groups of class c¢ consists of those solvable groups
of solvability length c, or less.

12.4 Composition series and the Jordan—-Hdlder theorem

The concept of a normal series is extremely important in the structure theory of groups.
This is especially true for finite groups. If

G=Gy>G;>-->Gs =11}
G=Hy>H;{>-->G;={1}

are two normal series for the group G, then the second is a refinement of the first if all
the terms of the second occur in the first series. Furthermore, two normal series are
called equivalent or (isomorphic) if there exists a 1-1 correspondence between the fac-
tors (hence the length must be the same) of the two series such that the corresponding
factors are isomorphic.

Theorem 12.4.1 (Schreier’s theorem). Any two normal series for a group G have equiv-
alent refinements.

Proof. Consider two normal series for G:
G=Gy>G; > ->Gs_1>Gy={1}
G=Hy>H;>--->H;_;>H;={1}.

Now define
Gijz(GiﬂI'Ij)Gi+1, j=0,1,2,...,t,
H; = (G;nH)H;,;, 1=0,12,...,s.

Then we have

G=G0036013"'3605261
:G1o 5.0 D Gls = G2 50D Gts = {e})
and
G:HOO 3H01 D"'DHOt:Hl
:Hlo Do DH][ :H2 Do DHSt = {e}

Now, applying the third isomorphism theorem to the groups G;, Hj, G;,, Hj,;, we have
that Gyj,1) = (G; N Hj,1)Gy,4 is a normal subgroup of G;; = (G; N H;)Gy,4, and Hy;,q) =
(Giq N Hj)Hj,4 is a normal subgroup of Hj; = (G; N Hj)Hj,;. Furthermore, also

Gij/Gij41y = Hji/Hji1).-
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Thus, the above two are normal series, which are refinements of the two given series,
and they are equivalent. O

A proper normal subgroup N of a group G is called maximal in G, if there does not
exist any normal subgroup N ¢ M ¢ G with all inclusions proper. This is the group
theoretic analog of a maximal ideal. An alternative characterization is the following:
N is a maximal normal subgroup of G if and only if G/N is simple.

A normal series, where each factor is simple can have no refinements.

Definition 12.4.2. A composition series for a group G is a normal series, where all the
inclusions are proper and such that G;,; is maximal in G;. Equivalently, a normal se-
ries, where each factor is simple.

It is possible that an arbitrary group does not have a composition series, or even
if it does have one, a subgroup of it may not have one. Of course, a finite group does
have a composition series.

In the case in which a group G does have a composition series, the following im-
portant theorem, called the Jordan—-Holder theorem, provides a type of unique factor-
ization.

Theorem 12.4.3 (Jordan-Hélder theorem). If a group G has a composition series, then
any two composition series are equivalent; that is, the composition factors are unique.

Proof. Suppose we are given two composition series. Applying Theorem 12.4.1, we get
that the two composition series have equivalent refinements. But the only refinement
of a composition series is one obtained by introducing repetitions. If in the 1-1 corre-
spondence between the factors of these refinements, the paired factors equal to {e} are
disregarded; that is, if we drop the repetitions, clearly, we get that the original compo-
sition series are equivalent. O

We remarked in Chapter 10 that the simple groups are important, because they
play a role in finite group theory somewhat analogous to that of the primes in number
theory. In particular, an arbitrary finite group G can be broken down into simple com-
ponents. These uniquely determined simple components are, according to the Jordan-
Holder theorem, the factors of a composition series for G.

12.5 Exercises

1. LetK be afield and

a x vy
G= O b z |:abcxyzeK,abc+0
0 0 c
Show that G is solvable.
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A group G is called polycyclic if it has a normal series with cyclic factors. Show the

following:

(i) Each subgroup and each factor group of a polycyclic group is polycyclic.

(ii) In a polycyclic group, each normal series has the same number of infinite
cyclic factors.

Let G be a group. Show the following:

(i) If Gis finite and solvable, then G is polycyclic.

(ii) If G is polycyclic, then G is finitely generated.

(iii) The group (Q, +) is solvable, but not polycyclic.

Let N; and N, be normal subgroups of G. Show the following:

(i) If N; and N, are solvable, then also N;N, is a solvable normal subgroup of G.

(ii) Is (i) still true, if we replace “solvable” by “abelian”?

Let Ny, ..., N; be normal subgroups of a group G. If all factor groups G/N; are solv-

able, then also G/(N; n--- N N;) is solvable.
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13 Groups actions and the Sylow theorems

13.1 Group actions

A group action of a group G on a set A is a homomorphism from G into S, the symmet-
ric group on A. We say that G acts on A. Hence, G acts on A ifto each g € G corresponds
a permutation

ﬂg:A — A

such that
6))] Mg (Mg, (a)) = Mg ¢ (a) forall gy, g, € Gand foralla € 4,
(2) 1(a) =aforalla € A.

For the remainder of this chapter, if g € G and a € A, we will write ga for 71, (a).
Group actions are an extremely important idea, and we use this idea in the present
chapter to prove several fundamental results in group theory.
If G acts on the set A, then we say that two elements a;, a, € A are congruent under
G if there exists a g € G with ga; = a,. The set

G, =1{a; € A: a; = gafor some g € G}

is called the orbit of a. It consists of elements congruent to a under G.
Lemma 13.1.1. If G acts on A, then congruence under G is an equivalence relation on A.

Proof. Anyelementa € Aiscongruent toitself via the identity map; hence, the relation
is reflexive. If a, ~ a, so that ga, = a, for some g € G, theng™'a, = a;, and so a, ~ a;,
and the relation is symmetric. Finally, if g,a; = a, and g,a, = as, then g,g,a, = a;, and
the relation is transitive. O

Recall that the equivalence classes under an equivalence relation partition a set.
For a given a € A4, its equivalence class under this relation is precisely its orbit G,, as
defined above.

Corollary 13.1.2. If G acts on the set A, then the orbits under G partition the set A.

We say that G acts transitively on A if any two elements of A are congruent under G.
That is, the action is transitive if for any a;,a, € A there is some g € G such that

ga, = a,.
If a € A, the stabilizer of a consists of those g € G that fix a. Hence,

Stabs(a) ={g € G: ga = a}.

The following lemma is easily proved and left to the exercises:
https://doi.org/10.1515/9783110603996-013
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190 —— 13 Groups actions and the Sylow theorems

Lemma 13.1.3. If G acts on A, then for any a € A, the stabilizer Stabg(a) is a subgroup
of G.

We now prove the crucial theorem concerning group actions.

Theorem 13.1.4. Suppose that G acts on A and a € A. Let G, be the orbit of a under G
and Stabg(a) its stabilizer. Then

|G : Stabg(a)| = |G,|.

That is, the size of the orbit of a is the index of its stabilizer in G.

Proof. Suppose that g;,8, € G with g; Stab;(a) = g, Stab;(a); that is, they define the
same left coset of the stabilizer. Then g, 1g1 € Stabg(a). This implies that g5 1g1a =aso
that g,a = g,a. Hence, any two elements in the same left coset of the stabilizer produce
the same image of ain G,. Conversely, if g;a = g,a, then g, g, define the same left coset
of Stabg(a). This shows that there is a one-to-one correspondence between left cosets
of Stab;(a) and elements of G,. It follows that the size of G, is precisely the index of
the stabilizer. O

We will use this theorem repeatedly with different group actions to obtain impor-
tant group theoretic results.

13.2 Conjugacy classes and the class equation

In Section 10.5, we introduced the center of a group
Z(G)=1{g € G:gg, = ggforallg G},

and showed that it is a normal subgroup of G. We use this normal subgroup in con-
junction with what we call the class equation to show that any finite p-group has a
nontrivial center. In this section, we use group actions to derive the class equation
and prove the result for finite p-groups.

Recall that if G is a group, then two elements g;, g, € G are conjugate if there exists
ag € G with g’lglg = g,. We saw that conjugacy is an equivalence relation on G. For
The equivalence class of g € G is called its conjugacy class, which we will denote by
Cl(g). Thus,

Cl(g) = {g; € G : gy is conjugate to g}.
If g € G, then its centralizer C;(g) is the set of elements in G that commute with g:

Cs(8) =181 €G: g8 =18}
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13.2 Conjugacy classes and the class equation =— 191

Theorem 13.2.1. Let G be a finite group and g € G. Then the centralizer of g is a subgroup
of G, and

|G : Cs(9)] = |CL(g)|-

That is, the index of the centralizer of g is the size of its conjugacy class.
In particular, for a finite group the size of each conjugacy class divides the order of
the group.

Proof. Let the group G act on itself by conjugation. That is, g(g;) = g‘lglg. It is easy to
show that this is an action on the set G (see exercises). The orbit of g € G under this
action is precisely its conjugacy class Cl(g), and the stabilizer is its centralizer C;(g).
The statements in the theorem then follow directly from Theorem 13.1.4. O

For any group G, since conjugacy is an equivalence relation, the conjugacy classes
partition G. Hence,

G=Jcug),

geG

where this union is taken over the distinct conjugacy classes. It follows that

Gl =) |clg)],

geG

where this sum is taken over distinct conjugacy classes.

If Cl(g) = {g}; that is, the conjugacy class of g is g alone, then C;(g) = Gso thatg
commutes with all of G. Therefore, in this case, g € Z(G). This is true for every element
of the center; therefore,

G=2G)u |J @)
8¢Z(G)

where again the second union is taken over the distinct conjugacy classes Cl(g) with
g ¢ Z(G). The size of G is then the sum of these disjoint pieces, so

Gl =1z(G)|+ ) |Ci@)],
8¢Z(G)

where the sum is taken over the distinct conjugacy classes Cl(g) with g ¢ Z(G). How-
ever, from Theorem 13.2.1, |Cl(g)| = |G : C;(g)l, so the equation above becomes

G =12@)|+ ) |G:Cs(9)
8¢Z(G)

>

where the sum is taken over the distinct indices |G : C;(g)| with g ¢ Z(G). This is
known as the class equation.
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Theorem 13.2.2 (Class equation). Let G be a finite group. Then

G =12+ ) [G:Cs@),
8¢Z(G)

where the sum is taken over the distinct centralizers.

As a first application, we prove the result that finite p-groups have nontrivial cen-
ters (see Lemma 10.5.6).

Theorem 13.2.3. Let G be a finite p-group. Then G has a nontrivial center.

Proof. Let G be a finite p-group so that |G| = p" for some n, and consider the class
equation

Gl =1Z(G)| + ) |G:Cg(8)]s
8¢Z(G)

where the sum is taken over the distinct centralizers. Since |G : C;(g)| divides |G| for
each g € G, we must have that p||G : C;(g)| for each g € G. Furthermore, p||G|. There-
fore, p must divide |Z(G)|; hence, |Z(G)| = p™ for some m > 1. Therefore, Z(G) is non-
trivial. O

The idea of conjugacy and the centralizer of an element can be extended to sub-
groups. If H;, H, are subgroups of a group G, then H;, H, are conjugate if there exists a
g € G such that glelg = H,. As for elements, conjugacy is an equivalence relation on
the set of subgroups of G.

If H c G is a subgroup, then its conjugacy class consists of all the subgroups of G
conjugate to it. The normalizer of H is

Ng(H) = {g € G: g 'Hg = H}.

As for elements, let G act on the set of subgroups of G by conjugation. That is, for
g € G, the map is given by H — g 'Hg. For H c G, the stabilizer under this action
is precisely the normalizer. Hence, exactly as for elements, we obtain the following
theorem:

Theorem 13.2.4. Let G be a group and H c G a subgroup. Then the normalizer N;(H)
of H is a subgroup of G, H is normal in N;(H), and

|G : Ng(H)| = number of conjugates of H in G.

13.3 The Sylow theorems

If G is a finite group and H ¢ G is a subgroup, then Lagrange’s theorem guarantees
that the order of H divides the order of G. However, the converse of Lagrange’s theo-
rem is false. That is, if G is a finite group of order n and if d|n, then G need not contain
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a subgroup of order d. If d is a prime p or a power of a prime p®, however, then we shall
see that G must contain subgroups of that order. In particular, we shall see that if pd is
the highest power of p that divides n, then all subgroups of that order are actually con-
jugate, and we shall finally get a formula concerning the number of such subgroups.
These theorems constitute the Sylow theorems, which we will examine in this section.
First, we give an example, where the converse of Lagrange’s theorem is false.

Lemma 13.3.1. The alternating group on 4 symbols A, has order 12, but has no subgroup
of order 6.

Proof. Suppose that there exists a subgroup U c A, with |U| = 6. Then |4, : U| = 2
since |A,4| = 12; hence, U is normal in 4.

Now id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) are in A,. These each have order 2 and
commute, so they form a normal subgroup V ¢ A, of order 4. This subgroup V =
Z, x Z,. Then

VIIUl  4-6
VUl |VnU|

12=14,] > [VU| =

It follows that V n U # {1}, and since U is normal, we have that V n U is also normal
inA,.

Now (1,2)(3,4) € V,and by renaming the entries in V, if necessary, we may assume
that it is also in U, so that (1,2)(3,4) € V. n U. Since (1,2,3) € A,, we have

3,2,1)(1,23,4)1,2,3) = (1,3)2,4) e Vn U,
and then
(3,2,1)(1,4)(2,3)1,2,3) = (1,2)(3,4) e V N U.

Butthen V ¢ V n U, and so V ¢ U. But this is impossible since |V| = 4, which does
not divide |U| = 6. O

Definition 13.3.2. Let G be a finite group with |G| = n, and let p be a prime such that
p“|n, but no higher power of p divides n. A subgroup of G of order p® is called a p-Sylow
subgroup.

Itis not a clear that a p-Sylow subgroup must exist. We will prove that for each p|n
a p-Sylow subgroup exists.
We first consider and prove a very special case.

Theorem 13.3.3. Let G be a finite abelian group, and let p be a prime such that p||G|.
Then G contains at least one element of order p.

Proof. Suppose that G is a finite abelian group of order pn. We use induction on n. If
n = 1, then G has order p, and hence is cyclic. Therefore, it has an element of order
p. Suppose that the theorem is true for all abelian groups of order pm with m < n,
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and suppose that G has order pn. Suppose that g € G. If the order of g is pt for some
integer ¢, then g' # 1, and g’ has order p, proving the theorem in this case. Hence,
we may suppose that g € G has order prime to p, and we show that there must be an
element, whose order is a multiple of p, and then use the above argument to get an
element of exact order p.

Hence, we have g € G with order m, where (m, p) = 1. Since m||G| = pn, we must
have m|n. Since G is abelian, (g) is normal, and the factor group G/(g) is abelian of
order p(%) < pn. By the inductive hypothesis, G/(g) has an element h(g) of order p,
h € G; hence, W’ = gk for some k. gk has order m;|m; therefore, h has order pm;. Now,
as above, K™ has order p, proving the theorem. O

Therefore, if G is an abelian group, and if p|n, then G contains a subgroup of or-
der p, the cyclic subgroup of order p generated by an element a € G of order p, whose
existence is guaranteed by the above theorem. We now present the first Sylow theo-
rem:

Theorem 13.3.4 (First Sylow theorem). Let G be a finite group, and let p||G|, then G con-
tains a p-Sylow subgroup; that is, a p-Sylow subgroup exists.

Proof. Let G be a finite group of order pn, and—as above—we do induction on n. If
n = 1, then G is cyclic, and G is its own maximal p-subgroup; hence, all of G is a
p-Sylow subgroup. We assume then that if |G| = pm with m < n, then G has a p-Sylow
subgroup.

Assume that |G| = p'm with (m, p) = 1. We must show that G contains a subgroup
of order p'. If H is a proper subgroup, whose index is prime to p, then |H| = p'm, with
m, < m. Therefore, by the inductive hypothesis, H has a p-Sylow subgroup of order p’.
This will also be a subgroup of G, hence a p-Sylow subgroup of G.

Therefore, we may assume that the index of any proper subgroup H of G must be
divisible by p. Now consider the class equation for G,

Gl =1Z(G)| + ) |G:C(8)]s
8¢2(G)

where the sum is taken over the distinct centralizers. By assumption, each of the in-
dices are divisible by p and also p||G|. Therefore, p||Z(G)|. It follows that Z(G) is a finite
abelian group, whose order is divisible by p. From Theorem 13.3.3, there exists an el-
ement g € Z(G) c G of order p. Since g € Z(G), we must have (g) normal in G. The
factor group G/(g) then has order p*~'m, and—by the inductive hypothesis—must have
a p-Sylow subgroup K of order p'"!, hence of index m. By the Correspondence Theo-
rem 10.2.6, there is a subgroup K of G with (g) ¢ K such that K/(g) = K. Therefore,
IK| = p', and K is a p-Sylow subgroup of G. O

On the basis of this theorem, we can now strengthen the result obtained in Theo-
rem 13.3.3.

Brought to you by | Stockholm University Library
Authenticated
Download Date | 10/13/19 9:00 AM



13.3 The Sylow theorems = 195

Theorem 13.3.5 (Cauchy). If G is a finite group, and if p is a prime such that p||G/|, then
G contains at least one element of order p.

Proof. Let P be a p-Sylow subgroup of G, and let |P| = p.If g € P, g # 1, then the order
.t pht
ofgisp". Theng? has order p. O

We have seen that p-Sylow subgroups exist. We now wish to show that any two
p-Sylow subgroups are conjugate. This is the content of the second Sylow theorem:

Theorem 13.3.6 (Second Sylow theorem). Let G be a finite group and p a prime such
that p||G|. Then any p-subgroup H of G is contained in a p-Sylow subgroup. Further-
more, all p-Sylow subgroups of G are conjugate. That is, if P, and P, are any two p-Sylow
subgroups of G, then there exists an a € G such that P, = aP,a .

Proof. Let Q be the set of p-Sylow subgroups of G, and let G act on Q by conjugation.
This action will, of course, partition Q into disjoint orbits. Let P be a fixed p-Sylow
subgroup and Qp be its orbit under the conjugation action. The size of the orbit is the
index of its stabilizer; that is, |Qp| = |G : Stabg(P)|. Now P c Stab;(P), and P is a
maximal p-subgroup of G. It follows that the index of Stab;(P) must be prime to p,
and so the number of p-Sylow subgroups conjugate to P is prime to p.

Now let H be a p-subgroup of G, and let H act on Qp by conjugation. Qp will itself
decompose into disjoint orbits under this actions. Furthermore, the size of each orbit is
an index of a subgroup of H, hence must be a power of p. On the other hand, the size of
the whole orbit is prime to p. Therefore, there must be one orbit that has size exactly 1.
This orbit contains a p-Sylow subgroup P, and P’ is fixed by H under conjugation;
that is, H normalizes P'. It follows that HP' is a subgroup of G, and P’ is normal in
HP'. From the second isomorphism theorem, we then obtain

HP'/P' =H/(HnP").

Since H is a p-group, the size of H/(H n P’) is a power of p; therefore, so is the size of
HP'/P'.But P’ is also a p-group, so it follows that HP' also has order a power of p. Now
P’ c HP', but P’ is a maximal p-subgroup of G. Hence, HP' = P’. This is possible only
if H c P!, proving the first assertion in the theorem. Therefore, any p-subgroup of G is
obtained in a p-Sylow subgroup.

Now let H be a p-Sylow subgroup P,, and let P; act on Qp. Exactly as in the argu-
ment above, P, ¢ P', where P' is a conjugate of P. Since P; and P’ are both p-Sylow
subgroups, they have the same size; hence, P, = P'. This implies that P; is a conju-
gate of P. Since P; and P are arbitrary p-Sylow subgroups, it follows that all p-Sylow
subgroups are conjugate. O

We come now to the last of the three Sylow theorems. This one gives us informa-
tion concerning the number of p-Sylow subgroups.
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Theorem 13.3.7 (Third Sylow theorem). Let G be a finite group and p a prime such that
pl|G|. Then the number of p-Sylow subgroups of G is of the form 1 + pk and divides the
order of |G|. It follows that if |G| = p®m with (p,m) = 1, then the number of p-Sylow
subgroups divides m.

Proof. Let P be a p-Sylow subgroup, and let P act on Q, the set of all p-Sylow sub-
groups, by conjugation. Now P normalizes itself, so there is one orbit, namely, P, hav-
ing exactly size 1. Every other orbit has size a power of p since the size is the index of
a nontrivial subgroup of P, and therefore must be divisible by p. Hence, the size of the
Qis 1+ pk. O

13.4 Some applications of the Sylow theorems

We now give some applications of the Sylow theorems. First, we show that the con-
verse of Lagrange’s theorem is true for both general p-groups and for finite abelian
groups.

Theorem 13.4.1. Let G be a group of order p", p a prime number. Then G contains at
least one normal subgroup of order p™ for each m such that 0 < m < n.

Proof. We use induction on n. For n = 1, the theorem is trivial. By Lemma 10.5.7, any
group of order p? is abelian. This, together with Theorem 13.3.3, establishes the claim
forn=2.

We now assume the theorem is true for all groups G of order p*, where 1 < k < n,
where n > 2. Let G be a group of order p". From Lemma 10.3.4, G has a nontrivial
center of order at least p, hence an element g € Z(G) of order p. Let N = (g). Since
g € Z(G), it follows that N is normal subgroup of order p. Then G/N is of order p™ !,
therefore contains (by the induction hypothesis) normal subgroups of orders p™ !, for
0 < m-1 < n-1. These groups are of the form H/N, where the normal subgroup H ¢ G
contains N and is of order p™, 1 < m < n, because |H| = |[N|[H : N] = [N| - |H/N]|. O

On the basis of the first Sylow theorem, we see that if G is a finite group, and if
pk ||G|, then G must contain a subgroup of order pk. One can actually show that, as in
the case of Sylow p-groups, the number of such subgroups is of the form 1+ pt, but we
shall not prove this here.

Theorem 13.4.2. Let G be a finite abelian group of order n. Suppose that d|n. Then G
contains a subgroup of order d.

Proof. Suppose that n = p{'---p}* is the prime factorization of n. Then d = pﬁl e pik
for some nonnegative f;, ..., f;,. Now G has p;-Sylow subgroup H; of order pfl. Hence,
from Theorem 13.4.1, H; has a subgroup K; of order pﬁl Similarly, there are subgroups
K,, ..., K, of G of respective orders pfz, ety p’;f . Moreover, since the orders are disjoint,
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KinK; = {1} ifi # j. It follows that (K;,K,,...,K)) has order |K;[|K,|--- K| = p’l(1

pl=d. m

In Section 10.5, we examined the classification of finite groups of small orders.
Here, we use the Sylow theorems to extend some of this material further.

Theorem 13.4.3. Let p, q be distinct primes with p < q and q not congruent to 1 mod p.
Then any group of order pq is cyclic. For example, any group of order 15 must be cyclic.

Proof. Suppose that |G| = pq with p < g and g not congruent to 1 mod p. The number
of g-Sylow subgroups is of the form 1 + gk and divides p. Since g is greater than p,
this implies that there can be only one; hence, there is a normal g-Sylow subgroup H.
Since q is a prime, H is cyclic of order g; therefore, there is an element g of order q.
The number of p-Sylow subgroups is of the form 1 + pk and divides q. Since q is
not congruent to 1 mod p, this implies that there also can be only one p-Sylow sub-
group; hence, there is a normal p-Sylow subgroup K. Since p is a prime K is cyclic
of order p; therefore, there is an element h of order p. Since p, q are distinct primes
H N K = {1}. Consider the element g"'h~'gh. Since K is normal, g'hg € K. Then
g'h'gh = (g7'h"'g)h € K. But H is also normal, so h'gh € H. This then implies
that g 'h'gh = gl (h"'gh) € H; therefore, g 'h7'gh ¢ K n H. It follows then that
g 'h7'gh = 1 or gh = hg. Since g, h commute, the order of gh is the lcm of the orders
of g and h, which is pq. Therefore, G has an element of order pgq. Since |G| = pg, this
implies that G is cyclic. O

In the above theorem, since we assumed that g is not congruent to 1 mod p, hence
p # 2. In the case where p = 2, we get another possibility.

Theorem 13.4.4. Let p be an odd prime and G a finite group of order 2p. Then either
G is cyclic, or G is isomorphic to the dihedral group of order 2p; that is, the group of
symmetries of a regular p-gon. In this latter case, G is generated by two elements, g
and h, which satisfy the relations g° = h* = (gh)? = 1.

Proof. As in the proof of Theorem 13.4.3, G must have a normal cyclic subgroup of or-
der p, say (g). Since 2||G/|, the group G must have an element of order 2, say h. Consider
the order of gh. By Lagrange’s theorem, this element can have order 1, 2, p, 2p. If the or-
deris 1, then gh = 1org = h™! = h. This is impossible since g has order p, and h has
order 2. If the order of gh is p, then from the second Sylow theorem, gh € (g). But this
implies that h € (g), which is impossible since every nontrivial element of (g) has
order p. Therefore, the order of gh is either 2 or 2p.

If the order of gh is 2p, then since G has order 2p, it must be cyclic.

If the order of gh is 2, then within G, we have the relations g” = h? = (gh)® = 1. Let
H = (g, h) be the subgroup of G generated by g and h. The relations g = h? = (gh)* = 1
imply that H has order 2p. Since |G| = 2p, we get that H = G. G is isomorphic to the
dihedral group D, of order 2p (see exercises).
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198 —— 13 Groups actions and the Sylow theorems

In the above description, g represents a rotation of 2;" of a regular p-gon about its
center, whereas h represents any reflection across a line of symmetry of the regular
p-gon. (]

Example 13.4.5 (The groups of order 21). Let G be a group of order 21. The number of
7-Sylow subgroups of G is 1, because it is of the form 1 + 7k and divides 3. Hence, the
7-Sylow subgroup K is normal and cyclic; that is, K < G and K = (a) with a of order 7.

The number of 3-Sylow subgroups is analogously 1 or 7. If it is 1, then we have
exactly one element of order 3 in G, and if it is 7, there are 14 elements of order 3 in G.

Let b be an element of order 3. Then bab™! = a for some r with 1 < r < 6. Now,
a=bab>3 = a’a; hence, 1 = 1in Z, which implies r = 1,2 or 4.

Themap b — b, a — a’® defines an automorphism of G, because (az)3 =a.

Hence, up to isomorphism, there are exactly two groups of order 21.

If r = 1, then G is abelian. In fact, G = (ab) is cyclic of order 21.

The group for r = 2 can be realized as a subgroup of S;. Let a = (1,2,3,4,5,6,7)
and b = (2,3,5)(4,7,6). Then bab™! = &2, and {(a, b) has order 21.

We have looked at the finite fields Z,,. We give an example of a p-Sylow subgroup
of a matrix group over Z,,.

Example 13.4.6. Consider GL(n, p), the group of n x n invertible matrices over Z,. If
{vi,...,v,} is a basis for (Zp)" over Z,, then the size of GL(n, p) is the number of inde-
pendent images {w;, ..., w,} of {v;,...,v,}. For w;, there are p" - 1 choices; for w, there
are p" — p choices and so on. It follows that

n(n-1)

|GL(n,p)| _ (pn _ 1)(}9” _p) . (pn _pn—l) _ pl+2+~-+(n—l)m =p*m
with (p, m) = 1. Therefore, a p-Sylow subgroup must have size p@.
Let P be the subgroup of upper triangular matrices with 1’s on the diagonal.

Then P has size p** D = p"(nzil), and is therefore a p-Sylow subgroup of
GL(n, p).

The final example is a bit more difficult. We mentioned that a major result on fi-
nite groups is the classification of the finite simple groups. This classification showed
that any finite simple group is either cyclic of prime order, in one of several classes of
groups such as the A, n > 4, or one of a number of special examples called sporadic
groups. One of the major tools in this classification is the following famous result,
called the Feit-Thompson theorem, which showed that any finite group G of odd or-
der is solvable and, in addition, if G is not cyclic, then G is nonsimple.

Theorem 13.4.7 (Feit-Thompson theorem). Any finite group of odd order is solvable.

The proof of this theorem, one of the major results in algebra in the twentieth cen-
tury, is way beyond the scope of this book. The proof is actually hundreds of pages
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in length, when one counts the results used. However, we look at the smallest non-
abelian simple group.

Theorem 13.4.8. Suppose that G is a simple group of order 60. Then G is isomorphic to
As. Moreover, As is the smallest nonabelian finite simple group.

Proof. Suppose that G is a simple group of order 60 = 2*- 3 - 5. The number of 5-Sylow
subgroups is of the form 1+ 5k and divides 12. Hence, there is 1 or 6. Since G is assumed
simple, and all 5-Sylow subgroups are conjugate, there cannot be only one. Hence,
there are 6. Since each of these is cyclic of order 5 they intersect only in the identity.
Hence, these 6 subgroups cover 24 distinct elements.

The number of 3-Sylow subgroups is of the form 1 + 3k and divides 20. Hence,
there are 1, 4,10. We claim that there are 10. There cannot be only 1, since G is simple.
Suppose there were 4. Let G act on the set of 3-Sylow subgroups by conjugation. Since
an action is a permutation, this gives a homomorphism f from G into S,. By the first
isomorphism theorem, G/ Kker(f) = im(f). However, since G is simple, the kernel must
be trivial, and this implies that G would imbed into S,. This is impossible, since |G| =
60 > 24 = |S,|. Therefore, there are 10 3-Sylow subgroups. Since each of these is cyclic
of order 3, they intersect only in the identity. Therefore, these 10 subgroups cover 20
distinct elements.

Hence, together with the elements in the 5-Sylow subgroups, we have 44 nontrivial
elements.

The number of 2-Sylow subgroups is of the form 1+ 2k and divides 15. Hence, there
are 1,3,5,15. We claim that there are 5. As before, there cannot be only 1, since G is
simple. There cannot be 3, since as for the case of 3-Sylow subgroups, this would imply
an imbedding of G into S3, which is impossible, given |S;| = 6. Suppose that there
were 15 2-Sylow subgroups, each of order 4. The intersections would have a maximum
of 2 elements. Therefore, each of these would contribute at least 2 distinct elements.
This gives a minimum of 30 distinct elements. However, we already have 44 nontrivial
elements from the 3-Sylow and 5-Sylow subgroups. Since |G| = 60, this is too many.
Therefore, G must have 5 2-Sylow subgroups.

Now let G act on the set of 2-Sylow subgroups. This then, as above, implies an
imbedding of G into Ss, so we may consider G as a subgroup of S;. However, the only
subgroup of S; of order 60 is As; therefore, G = As.

The proof that A; is the smallest nonabelian simple group is actually brute force.
We show that any group G of order less than 60 either has prime order, or is nonsimple.
There are strong tools that we can use. By the Feit-Thompson theorem, we must only
consider groups of even order. From Theorem 13.4.4, we do not have to consider orders
2p. The rest can be done by an analysis using Sylow theory. For example, we show that
any group of order 20 is nonsimple. Since 20 = 2°-5, the number of 5-Sylow subgroups
is 1 + 5k and divides 4. Hence, there is only one; therefore, it must be normal, and so
G is nonsimple. There is a strong theorem by Burnside, whose proof is usually done
with representation theory (see Chapter 22), which says that any group, whose order
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is divisible by only two primes, is solvable. Therefore, for |G| = 60, we only have to
show that groups of order 30 = 2-3-5and 42 = 2- 3 - 7 are nonsimple. This is done
in the same manner as the first part of this proof. Suppose |G| = 30. The number of
5-Sylow subgroups is of the form 1 + 5k and divides 6. Hence, there are 1 or 6. If G were
simple there would have to be 6 covering 24 distinct elements. The number of 3-Sylow
subgroups is of the form 1 + 3k and divides 10; hence, there are 1 or 10. If there were
10 these would cover an additional 20 distinct elements, which is impossible, since
we already have 24 and G has order 30. Therefore, there is only one, hence a normal
3-Sylow subgroup. It follows that G cannot be simple. The case |G| = 42is even simpler.
There must be a normal 7-Sylow subgroup. O

13.5 Exercises

1. Prove Lemma 13.1.3.
Let the group G act on itself by conjugation; that is, g(g;) = g’lglg. Prove that this
is an action on the set G.

3. Show that the dihedral group D,, of order 2n has the presentation

(rf;r"=f>=(f)> =1)

(see Chapter 14 for group presentations).

Show that each group of order < 59 is solvable.

Show that there is no simple group of order 84.

6. Let P, and P, be two different p-Sylow subgroups of a finite group G. Show that
P, P, is not a subgroup of G.

7. Let P and Q be two p-Sylow subgroups of the finite group G. If Z(P) is a normal
subgroup of Q, then Z(P) = Z(Q).

8. Let G be a finite group. For a prime p the following are equivalent:
(i) G has exactly one p-Sylow subgroup.
(ii) The product of any two elements of order p has some order p*.

9. Letpbeaprimeand G =SL(2,p). Let P = (a), wherea = ({ }).
(i) Determine the normalizer N;(P) and the number of p-Sylow subgroups of G.
(ii) Determine the centralizer C;(a). How many elements of order p does G have?

In how many conjugacy classes can they be decomposed?

(iii) Show that all subgroups of G of order p(p — 1) are conjugate.
(iv) Show that G has no elements of order p(p — 1) for p > 5.

10. Let G be a finite group and N a normal subgroup such that |N| is a power of p.
Show that N is contained in every p-Sylow subgroup of G.

11. Let p be a prime number, and let P and Q be two p-Sylow subgroups of the finite
group G such that P is contained in N . Show that P = Q.

v o
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14.1 Group presentations and combinatorial group theory

In discussing the symmetric group on 3 symbols and then the various dihedral groups
in Chapters 9, 10, and 11, we came across the concept of a group presentation. Roughly,
for a group G, a presentation consists of a set of generators X for G, so that G = (X),
and a set of relations between the elements of X, from which—in principle—the whole
group table can be constructed. In this chapter, we make this concept precise. As we
will see, every group G has a presentation, but it is mainly in the case where the group
is finite or countably infinite that presentations are most useful. Historically, the idea
of group presentations arose out of the attempt to describe the countably infinite fun-
damental groups that came out of low dimensional topology. The study of groups us-
ing group presentations is called combinatorial group theory.

Before looking at group presentations in general, we revisit two examples of finite
groups and then a class of infinite groups.

Consider the symmetric group on 3 symbols, S;. We saw that it has the following

6 elements:
1 2
1- 3)) a=<1 2 3>, b=<1 2 3)
1 2 3 2 3 1 3 1 2
(1 2 3) <1 2 3) <1 2 3
c= , d= , e=
2 1 3 3 2 1 1 3 2

Notice that @® = 1, ¢® = 1, and that ac = ca®. We claim that
(a,c;a° = * = (ac)* = 1)
is a presentation for S;. First, it is easy to show that S5 = (a, c). Indeed,
1=1, a=a, b=d’ c=c, d=ac, e=ds,

and so a, c generate S;.

Now from (ac)? = acac = 1, we get that ca = a?c. This implies that if we write any
sequence (or word in our later language) in a and ¢, we can also rearrange it so that
the only nontrivial powers of a are a and a%; the only powers of c are ¢, and all a terms
precede c terms. For example,

aca’cac = aca(acac) = a(ca) = a(a’c) = (a®)c = c.

Therefore, using the three relations from the presentation above, each element of S;
can be written as a®c? with a = 0,1,2 and B = 0, 1. From this the multiplication of any
two elements can be determined.

https://doi.org/10.1515/9783110603996-014
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This type of argument exactly applies to all the dihedral groups D,,. We saw that, in
general, |D,| = 2n. Since these are the symmetry groups of a regular n-gon, we always
have a rotation r of angle 27" about the center of the n-gon. This element r would have
order n. Let f be a reflection about any line of symmetry. Then f2 = 1, and 1f is a
reflection about the rotated line, which is also a line of symmetry. Therefore, (rf )2 =1.
Exactly as for S;, the relation (rf )?> = 1implies that fr = r"'f = r""!f. This allows us to
always place r terms in front of f terms in any word on r and f. Therefore, the elements
of D,, are always of the form

P a=012..,n-1 B=01

Moreover, the relations r* = f? = (1f)? = 1 allow us to rearrange any word in r and f
into this form. It follows that |(r,f)| = 2n; hence, D,, = (r,f) together with the relations
above. Hence, we obtain the following:

Theorem 14.1.1. If D, is the symmetry group of a regular n-gon, then a presentation for
D, is given by

D, =(rfir"=f>=@f)*=1).

(See Section 14.3 for the concept of group presentations.)

We now give one class of infinite examples. If G is an infinite cyclic group, so that
G = 7Z,then G = (g; ) isa presentation for G. That is, G has a single generator with no
relations.

A direct product of n copies of Z is called a free abelian group of rank n. We will
denote this by Z". A presentation for Z" is then given by

Z" = (X1, Xy, ..., X3 XiX; = xpx; for all i,j = 1,..., n).

14.2 Free groups

Crucial to the concept of a group presentation is the idea of a free group.

Definition 14.2.1 (Universal mapping property). A group F is free on a subset X if every
map f : X — G with G a group can be extended to a unique homomorphismf : F — G.
X is called a free basis for F. In general, a group F is a free group if it is free on some
subset X. If X is a free basis for a free group F, we write F = F(X).

We first show that given any set X, there does exist a free group with free basis X.
Let X = {x;};c; be