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Introduction

Physics books are big. Sometimes they can be intimidating.

Like any condensed work, the goal of this book is to get the plot, while sacrificing the depth and artistry of
the original. To do this, I walk through each chapter with the following approach:

o Identify the most important concepts in the chapter.

o Describe how they translate into problem-solving techniques.

o Show how these techniques work through the use of a few detailed examples.

The examples here are organized a^s a series of questions and resporrses. First learn to answer the questions,
a^s posed by the "tutor." Then look for patterns in the questions, and learn to ask yourself the questions.
As you tackle other probleffis, try to ask yourself similar questions a.s you work toward an answer.

After a while you'll find that the questions themselves are easy to answer, almost insulting to a.sk. Many
students of physics struggle because they try to learn physics by learning how to answer the questions. The
successful students learn to ask themselves the questions.

Styling used in this book:

Key points are in bold.

Important terms are underlined.

When the student or tutor makes a mistake in an equation, it is marked with
a question mark at the right side of the equation, like

2+2-5 ?

Remember that you should not take equations out of examples, because these
equations apply to the particular problem. Instead use the examples to under-
stand the equatiorxi and techniques.
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Five Things to Remember When
Doing Physics

o The goal is not possession of the answer, but mastery of the technique.

. Expect problems to take multiple steps. Don't skip the steps.

o Be able to say what your variable means in words. You can make up a rmriables for things you want
or need and dontt have.

o Use the drawing, not the formula, for the direction.

o Minus signs and units are importarrt.
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Chapter 1

Measurement

The important skills to get from this chapter are dealing with prefixes and units. We deal with both of these
the same w&y, by multiplying by one.

When we multiply something by one, we get the same thing we started with. This means that we can
multiply anything by one, all we want.

The key is choosing the correct "one." Anything divided by the same thing is one (unless the two things are
zero). For example, if I have three dozen eggs and I want to know how many eggs I have, I choose 12 and 1

dozen as my two things that are equal to each other.

To determine the correct "one," see what you have that you want to get rid of. Put that in the numerator
or denominator so that it cancels. Then find something that's equal to put in the other half of the fraction.

Handle prefixes the same way. For example, there are 1000 milli in one, ro matter what they are. So to turn
0.126 seconds into milliseconds:

0.126 seconds x 1000.milli 
- 126 milliseconds: 126 ms

1

or

0.126 seconds x

Three things to watch out for:

o If a unit is squared or to some power other than one, then you'll need to convert all of them (there are
three feet in a yard but nine square feet in a square yard).

o Don't skip steps; experienced people may do the conversions in their heads, but that's a good way to
make mistakes.

. Check your work: If you end with a bigger unit then you should have a smaller number, and vice versa.

1000 milliseconds
- 126 milliseconds : 126 ms

1 second

EXAMPTE

How many inches are there in 5 km?
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T\rtor: How are you going to attack this problem?
Student: I'm going to divide 5 km by one inch.
Thtor: Correct, but does it make sense that the answer is 5?

Student: No, a kilometer is much longer than an inch.
T\rtor: We need to have the two lengths in the same units.
Student: Should I use kilometers or inches?
Thtor: You could use either, or some other length like meters.
Student: I'll use meters.
Ttrtor: How many meters is 5 km equal to?
Student: One kilo is one thousand.

5 103kmxTT-5000m

T\rtor: How many meters is one inch?
Student: One inch is 2.5 centimeters, and there are 100 centi in one.

1 in. x 2,5,t* - 2.b cm x + - o.o2b m
1 in. 100 c

Tbtor: What is 5 km divided by an inch?

5000,nr(

o.ozSqr 2 x 105

Student: There are 200,000 inches in 5 kilometers.
T[rtor: What are the units of your answer?
Student: The meters cancelled the meters and it doesn't have any.
Thtor: What units should you get when you divide a length by a length?
Student: The ratio of two lengths should be a number, without any units.

-JEXAMPLE

How many square feet (ft') are there in an acre?

T\rtor: Do square feet and acres mea,sure the same thing?
Student: A square foot is an area, and an acre is an area, so yes.

T\rtor: Then we should be able to convert between them.
Student: How big is an acre?
T\rtor: There are 640 acres in a square mile, and a mile is 5280 feet.
Student: So an acre is

- 1 square mile 5280 feet u
^ acre- 640 .^, ;;i;; :

Tutor: A square mile is 1 mile x 1 mile, so what you've done is

1 acre - ry x 5280-feet - g.2b mile feet640 miles

Student: I need to cancel both miles.

1 a( W , (5280 teet)' 
- 43. b60 feet2rr€-ffi \ R) -43,560feet



EXAMPTE

Gravity is 9.8 m/s2. What is this in mi/h2?

T\rtor: What do you have to do?
Student: First I need to turn meters into miles.
T\rtor: There are 1610 meters in a mile.
Student: So (1 mil1610 m) and (1610 m/l mi) are equal to one. I need to get rid of meters in the top,
so meters has to go on the bottom.

e8m/s2x(#)
Student: And I need to change seconds into hours. Seconds is on the bottom so seconds has to go on the
top.
T\rtor: How many seconds are there in an hour?
Student: There are 60 seconds in a minute and 60 minutes in an hour.

e.8 m/s2 x f#) x f 60' 60 Tilutes) ?
\1610m/ \lminute th /

TUtor: But there are two factors of seconds.
Student: So I need to convert both of them.

s'8nt*zx(+rr-) x(#ry) ': T'ex1o4 miIhz

T\rtor: That seems like a big number.
Student: It's bigger than 9.8, so mi/h2 must be a smaller unit than mls2.
T\rtor: It is.
Student: What is m/s2, &trVway?
T[tor: Meters per second (*/r) is a speed, and means that each second you go so many meters. Meters
per second (^1"') ir an acceleration, and means that each second your speed changes by that many meters
per second. So, 9.8 m/s2 means that each second your speed changes by 9.8 m/s, or 9.8 meters per second
each second.

EXAMPLE

A machine draws narrow parallel lines, spaced 1200 per millimeter (**). What is the distance between
lines, measured in nanometers (nm)?

T\rtor: What do you need to do?
Student: I need to take mm in the denominator and make it nm in the numerator.
Tbtor: To do that you would need to multiply by two lengths; that is, two distances in the numerator and
none in the denominator. Would that be equal to one?
Student: No. To end with a length in the numerator I need to start with the length in the numerator.
How about

)_ 1 lmmu: 12oG; - 12oo

T\rtor: If there are 1200 in each millimeter, then the distance between them is 1 mm divided by 1200, yes.
Now we need it in nanometers.
Student: How many nanometers in a millimeter?
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T\rtor: There are 103 milh in one, and 10e nano in one. Skipping steps is a good way to make mistakes.
Student: So I'll turn mm into m, and m into nm.

d,-W*( rx( \ /toe "-\:83Bnm12oo \-1or*-/ 
x 

\ t^t I



Chapter 2

Motion Along a Straight Line

The most important thing to learn from this chapter is how to solve constant acceleration problems.

We start with five quantities: the displacement A,r- r - fiot the initial velocity ao, the final velocity n,
the acceleration o, and the time t. The first four are vectors, so they have direction. In one dimension, the
direction means positive versus negative. They must all use the same axis, so any two that are in the
same direction will have the same sign.

To solve constant acceleration probleffis, we use the equations

includes omits
a - uo: at uot u, a, t displacement Ar

L,n : L @o * u)t Ar, t)g, 't), t acceleration a

Ar : aot * f,at2 Ar, us, a, t final velocity u

An -- ut - iot' Lr, n, a, t initial velocity ao

a2 - aB :2a Ar Ar, I)s, u, a time t

If we know any three of the ftve quantities, and have a fourth that we want to find, but don't care about
the fifth, then pick the equation that has the three you know and the one you want but not the one you
dontt care about.

EXAMPLE

If you drop a penny from the top of the Empire State Building (381 m tall), how fast will it be going when
it hits the ground below?

T\rtor: What is happening here?
Student: The penny is undergoing constant acceleration.
Tbtor: How do we solve constant acceleration problems?
Student: If we know three of the five variables, we can solve for the other two.
T\rtor: Begin by writing down the five variables.
Student: Okay.

displacement A,n -
initial velocity us _

final velocity a -
acceleration a :

time t -
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Thtor: Do we know the displacement?
Student: Yes, it's 381 m.
T\rtor: Is it positive or negative 381 m?
Student: Does it matter?
T\rtor: Displacement is a vector, so it is important. We haven't chosen either direction as positive yet.
Student: The displacement is downward, so I choose down as the positive direction, and A,r - +381 m.
T\rtor: Do we know the initial velocity?
Student: The penny is dropped, so the initial velocity is zero.
T\rtor: Is it positive or negative?
Student: It doesn't matter, because *0 - -0.
T\rtor: Do we know the final velocity?
Student: It ends on the ground, so the final velocity is zero.
T\rtor: To use our equations we need a constant acceleration. As the penny falls it accelerates downward,
but when it hits the ground the acceleration is upward.
Student: How is the acceleration upward?
T\rtor: Just before it hits the ground, it was going downward. After it hits the ground it isn't moving.
Student: So the change in the velocity is upward. Does this mean that the acceleration isn't constant?
Tutor: It is constant until the instant that the penny hits the ground. So the final velocity is the velocity
it has as it hits the ground. Do we know this velocity?
Student: No. Does this mean that we can't use the constant acceleration equations?
T\rtor: Not necessarily. We need three of the five, and we already have two. Do we know the acceleration?
Student: The acceleration is g downward, so it's g.8 

^1"2.T\rtor: Is it +9.8 ^lt' or -9.8 mf s27

Student: I chose downward as positive and the acceleration is downward, so it's +9.8 m/s2.
Tutor: Last, do we know the time?
Student: No; we want to find the time.

displacement Ar
initial velocity us

final velocity a

acceleration a
time t

L,r : uot

(+sat m) : (o)t +

+381 m
0

9.8 m/s2
?

- 8.82 s

Tutor: How do we find the time?
Student: I don't care about the final velocity u, so I'll use the equation that doesn't contain u.

2(+3s1 m)

(+9.8 m/s2)

EXAMPLE

A volleyball player hits a volleyball 2.I m above the floor so that it reaches a maximum height of 4.0 rn
above the floor. How long is the volleyball in the air?

T\rtor: What is happening here?
Student: The volleyball is undergoing constant acceleration.



Tutor: How do we solve constant acceleration problems?
Student: If we know three of the five variables, we can solve for the other two.
T\rtor: Begin by writing down the five variables.
Student: Ok"y.

displacement Ar
initial velocity us -

final velocity a -acceleration a -time t :

T\rtor: Do we know the displacement?
Student: First it goes up 1.9 m and then it goes down 4.0 m.
Tutor: The displacement is the difference between the final position and the initial position.
Student: It ends 2.1 m below where it started, so that is the displacement.
T\rtor: Is it positive or negative 2.1 m?
Student: I choose up as the positive direction, and the displacement is downward, so A,r- -2.1 m.
Tbtor: Do we know the initial velocity?
Student: No.
Tbtor: Do we know the final velocity?
Student: No.
T\rtor: Last, do we know the time?
Student: No; we want to find the time.

displacement Ar - -2.1 m
nitial velocity us -
final velocity u -
acceleration a - 9.8m/s2

timet-?

T\rtor: Can we find the time?
Student: We only know two of the five, so we can't solve for anything.
T\rtor: Is there anything else we know?
Student: We know how high it goes, but that doesn't happen at either the start or finish.
I\rtor: So we need a new start or finish.
Student: I'll do the way up. I know the displacement (+1.9 *), the final velocity (0), and the acceleration
(-9.8 m/s2).

displacement Ar _ *1.9 m
initial velocity ug -finalvelocity a - 0

acceleration a
time t -

T\rtor: We know three of the five so we can solve, but how does this help us to find the total time?
Student: If I find the initial velocity, then it is the same initial velocity as for the whole trip. Alternatively,
I could find the time up, then do the down problem to find the time down and add them.
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a2 - uB :2a A,n

(o)' - u! - 2(-9.8 
^1"2)(+t.9 

*)
o3 :6.10 m/s

T\rtor: Is it +6.10 m/s or -6.10 m/s?
Student: Does it matter?
Thtor: You just took a square root, which could be positive or negative.
Student: The initial velocity is up, which is my positive directior, so us : +6.10 m/s for the whole trip.

displacement
initial velocity

final velocity
acceleration

time

-2.1 m
+6.10 m/s

9.8 m/s2
?

A,r :
Ug:
a:
a:
t:

t-L-

A,r 1: aot + )atz

-2.1 m - (+6.10 m/s)r * |t-n.t mf s2)t2

(+4.9 mls2)t2 + (-6.10 m/s)t + (-2.1 *) - 0

t--u+t@
2a

-(-6.10 m/s) +
2(+4.9 

^ls2)
6.10 m/s + 8.85 m/s

(+9.8 ^lt2)
6.10 mls + 8.85 m/s

(+9.8 
^/s2)

t - -0.28 s or 1.53 s

T\rtor: There is a way to avoid the quadratic formula.
Student: Really? How?
T\rtor: We know three of the five so we can solve for the other two. Solve first for the final velocity u t then
we'll know four of the five.
Student: And I can choose a different equation to solve.

u2 - u2o :2a Ar

u2 - (+6.10 m/t)2 : 2(-9.8 mls2)(-2.1 *)

-

n - 1f za.z7 m2 /r' - +8.8b m/s

Student: That number looks familiar.
T\rtor: It should. We're really doing the same math, but in two ea.sy steps instead of one hard step.
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Student: And I have to pick the sign for the square root. It's going down, which is the negative direction,
so it's negative.

A-UO:At

(-8.85 m/s) - (+6.10 m/s) - (-9.8 mlsz)t

t - 1.53 m/s

T\rtor: If you had chosen the positive square root, then your time would have been -0.28 s.

EXAMPTE
F

A speeder at 80 mph (in a 35 mph zone) passes a policeman. The policeman, initially at rest, accelerates at
10 mi/h/r. How long will it take the policeman to catch the speeder?

T\rtor: What is happening here?
Student: The policeman is undergoing constant acceleration.
T\rtor: What about the speeder?
Student: He has a constant velocity.
T\rtor: Is a constant velocity also constant acceleration?
Student: He has zero acceleration, which is constant.
T\rtor: So we can use all of the same techniques for him too. Where do we start?
Student: We write down the five symbols for each person.

Speeder Policeman
displacement Ars - Arp -

initial velocity uso _ upo --
final velocity us : up :
acceleration og : ap :

time ts : tp :

Student: What's Ars and where did it come from?
Thtor: It's the displacement of the speeder, as opposed to the displacement of the policeman, and we
invented it. We can use all of the constant acceleration formulas on it, like os - uso : osf,s.

Student: Aren't the times the same for the speeder and the policeman?
Thtor: Yes, so we can use t for both. Do we know the speeder's displacement?
Student: No. We don't know the policeman's displacement either.
Ttrtor: What event "starts" our constant acceleration?
Student: The speeder passes the policeman.
Ttrtor: What event "ends" our constant acceleration?
Student: The policeman catches the speeder.
T\rtor: Since they start at the same place, and they end at the same place. . .

Student: the displacements are equal, whatever they are.

displacement
initial velocity

final velocity
acceleration

time

Speeder
Ar:
?rso :
Ug:
og:

+
It

Policeman
A,r :
upo :
ap:
ap:

1t
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Tlrtor: Do we know the speeder's initial velocity?
Student: It's 80 mph. Do I need to convert this into meters per second?
Tutor: Not necessarily. We can keep the units with the numbers and convert them when we need to. Do
we know the speeder's final velocity?
Student: His velocity isn't changing, so it's also 80 mph. His acceleration is zero. Now we know three of
the five and we can solve for the time.
Ttrtor: Unfortunately, this is the exception to the rule. If the acceleration is zero and we know both
velocities, that is not enough. We need either the time or the displacement.
Student: And we don't have either.
T\rtor: What about the policeman?
Student: His initial velocity is zero, his acceleration is 10 mi/h/r, and we don't know his final velocity.
What kind of a unit is mi/h l"?
T\rtor: Each second his velocity increases by 10 miles per hour, so 10 miles per hour per second.

Speeder Policeman
displacement Ar - <+> L,r -

initial velocity uso

final velocity us - 80 mph up -
acceleration 0g - 0 ap - 10 mi/h/t

timet:(+>t

Tutor: We could write an equation for the policeman, including his displacement and time as variables.

Arp-upotp*f,"et?

a,n- (o)r .;(10 milhls)r2

Student: But it has two variables and we can't solve it.
T\rtor: We could write an equation for the speeder, but it would also have two variables, Ar and t.
Student: So we'd have two equations and two unknowns. We could solve them.

Ars-usots*I1"st's

A,r - (80 mph)r *;(o)r'
T\rtor: Since we want the time and don't care about the displacement, let's eliminate that.

lrrn milhls)r2 - (80 mph)r
2 \^"

Student: The time cancels, and we don't get a quadratic after all.

]f to milhls)tl - (80 mph)l

('#) ':('o#)
Student: The miles and hours cancel.

(,{-) ':('o +)
t-16s
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EXAMPLE

How must the initial speed of a car change so that the car is able to stop in only half the distance?

Student: How can I solve a problem without any numbers?
T\rtor: Use variables. What equation would work here?
Student: I need to identify three of the five. The final velocity is zero j so I know that. I don't know any
of the others.
TUtor: Which one don't you care about?
Student: Initial velocity and displacement are mentioned, so it must be the acceleration or the time.
T\rtor: The acceleration for the car is the same, no matter what the initial speed.
Student: So I don't want that one?
Tutor: No, you do. Whatever it is, it is the same for both, and that is a piece of useful information. Given
that we don't care about the time, what is the equation to use?

Student: That would be

u2 - ,3 :2a A,r

T\rtor: Good. This applies to any car with constant acceleration. So let's come up with a set of variables
a1 and Arr and so on for one car, and then another set a2 and Arz and so on for a second car.

Student: But I can't solve either equation.
T\rtor: Tlue, but a1 - a2, and the distance Ar2 is half of Ar1.
Student: So I substitute those.

-r3,o - 2at

Student: I still can't solve it.
T\rtor: No, but look at what you have. Does it look like anything else you have?
Student: It looks similar to the first equation, except for the L,

T\rtor: Then take the L out, and substitute.

-u|,,o:IQ", Lrr) - f,t-r?,o)
Student: Well, the minus sign cancels.

a3,,o : 
lr?,o

T\rtor: Your goal is to find uz,o, so take the square ,oot and see what you have.

-> -u?,0 - 2at Lrt

')22,o :2az Arz

IT
- tl z,)L'o

tf times the initial speed the first time?

yQ " about 0.70, so the car has to be going 30%

;o- a?,o - 2ar Lrr

ufo- u1,,o - 2ar Lrr

lt-
u2,,o : tl zui,o

Student: The initial speed the second time has to be

T\rtor: Yes, that's exactly what the equation says.

slower to stop in half the distance.
Student: Where did you get 30%?
T\rtor: The speed has to be 70% of the original speed, so the change is 30% of the original speed.
Student: And it doesn't matter how fast the car was going, or even what the acceleration was?
Tutor: As long as the acceleration is the same each time. In science we call problems like these "scaling"
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problems. You want to know how one thing changes when another chang€s, without any values. One way
to solve these problems is to write down the equation both before and after, then substitute anything that
you know, either because it stays the same or you know how it compares to before.



Chapter 3

Vectors

Many things in physics have direction and are expressed as vectors. These include displacement, velocity,
acceleration, and force. We need to be able to add and subtract vectors.

Adding two parallel vectors is ea.sy.

si+ 4i- (3+ +1i-zi

Adding two vectors that are perpendicular can be done with the Pythagorean theorem. Adding two vectors
that are neither parallel nor perpendicular is more difficult. It can be done using the law of cosines, but this
becomes unwieldy with more than two vectors.

Instead, we divide each vector into components. The fr components of each vector are parallel, and are

easy to add. The y components of each vector are likewise parallel to each other, and are likewise easy to
add. Then the r and y components are perpendicular to each other and can be added using the Pythagorean
theorem.

There is more than one way to find the components. I review the two most popular here.

Draw the right triangle with the vector as the hy-
potenuse and the other two sides parallel to the
axes. The side of the triangle that is adjacent to
the angle is cosine, and the side of the triangle that
is opposite to the angle is sine. If the component
is in the opposite direction as the axis, then the
component is negative.

Always draw the angle from the r ucis toward the
gl axis. Then the r component is cosine and the y
component is sine.

Let's see how each method works.

13
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We draw the right triangle as shown. The r
component is the side opposite to the angle,
so the tr component is r - 6 sin(32"). The y
component is the side adjacent to the angle,
but it is down and the y arcis is up, so the
y component is y - -$cos(32o).

I shall use the left-hand method.

EXAMPTE

CHAPTEN 3. VECTORS

The angle given is not mea"sured from the r
a)cis. We draw a new angle mea.srued from
the r ocis initially toward the y axis, This
new angle is 270o + 32o : 302o. Then the
n component is r - 6 cos(302') and the y
component is y - 6sin(302").

What is the sum of the four vectors?

B=
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T\rtor: Are the vectors
Student: No.
Tbtor: Are the vectors
Student: No.
T\rtor: So how do we add them?
Student: We break each one into components and add the components.
Thtor: What are you going to use for your ruces?

Student: Uh, there's already a>(es in the problem.
Thtor: Yes, but there won't always be.
Student: I'm going to use the a)ces provided.
T\rtor: Good. What is the r component of vector A?
Student: First I draw the triangle.

Student: The , component is the adjacent side of the triangle, so it's cosine.

A, : A cos 30o : 7.lcos 30o : 6.50

T\rtor: Good. What is the g component of vector A?
Student: The y component is the opposite side of the triangle, so it's sine.

A* : A sin 30o : 7 .5 sin 30o : 3.75

T\rtor: What is the o component of vect or B?
Student: First I draw the triangle.

all parallel?

all perpendicular?

B-
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Student: The r component is the adjacent side of the triangle, so it's cosine.

B* : Bcos 20" - 4cos 20" :3.76 ?

Tutor: But the r component goes to the left, and the r anis goes to the right, so it's negative.

B* : -B cos 20" - -Acos 20" - -3.76

Student: Doesn't the math take care of that automatically?
T\rtor: Yes, if you always mea"sure the angle from the r axis.

B, : B cos 160o - Acos 160o : -3.76
T\rtor: In many of the things we'll use vectors for, it's more convenient to draw the triangle and add minus
signs when determining components.
Student: Okay. The y component is opposite the angle, so it's sine.

By : B sin 20" - Asin 20o - I.37

Tlrtor: What is the ,r component of vect or C?
Student: First I draw the triangle.

Student: The u component is cosine.

C, : C cos 25" - 5 cos 25" : 4.53 ?

TUtor: The r component is opposite the angle this time, so it's sine.

C, - Csin25" - 5sin25" - 2.II

Student: Isn't the fr component always cosine?
T\rtor: No, the component adjacent to the angle is always cosine, and opposite is sine. More often than
not these will be the r and A components, respectively, but sometimes it's the other way around.
Student: And the A component of C is adjacent, so it's cosine. The y component is down, away from the
gl a>ris, so it's negative.

Cu : -C cos 25" - -5 cos 25" - -4.53
Tlrtor: What is the tr component of vect or D?
Student: How do I draw the triangle for vector D?
T\rtor: Because D is already parallel to one of the axes, you don't need to draw the triangle. The r
component of D is zero, because it doesn't go to the left or right at all.
Student: And the A component is -3.
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T\rtor: Good, now we can add them.
Student: The fr cemponents add

(A+ B +C + D),- A,* B**C** D,:6.50+ (-3.76) + 2.II+ (0) - 4.85

Student: And the y components add

(A+ B +C + D)y: Av* Bo*Cn* Do - 3.75+L.37 + (-4.53) + (-3)- -2.4!
Student: Do we need to find the magnitude and direction or are the components enough?
T\rtor: Often the components are enough, but let's find the magnitude and direction for practice.
Student: The magnitude or absolute value is

@: -m:rffi,:4.2r?
T\rtor: That can't be right, because it's less than one of the components. Remember to square the negative
sign too.

1l txl' + (Y)' :
Tutor: Some people find it easier

-m:tffi:5.42
to make a table:

6.50 3.75

-3.76 L.37
2.LI -4.53
0-3

4.85 -2.4r

Tutor: We can also express this vector using "unit vectors."

(4.85)a + (- 2.41) j
Student: What's a unit vector?   A

T\rtor: A unit vector is a vector of length 1 with no units. I points in the r direction and i points in the
gl direction.
Student: How do I find the angle?
T\rtor: Draw the triangle, but this time starting with the components.

A
B
C
D
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Student: So the angle is below the r a:ris. Does that mean the angle is negative?
T\rtor: Some people are happy with that, but it's best to show the angle that you mean with a drawing.
Student: The tangent of the angle is opposite over adjacent, so the angle is

o - arctan 
oqrPosite : &rct 

^n?'4taoJacent a*-B 
: &rctan o'497 - 26'4"

Student: . . . below the r arcis. Is adding vectors always so repetitive?
T\rtor: Usually, but with practice it will go faster.

EXAMPI,E

Find the vectors A + B and A - B graphically.

TUtor: How do we add vectors?
Student: We connect the ends, like this:

T\rtor: Both vectors A and B point to the
Student: No, so it must be the other way.
Tutor: Then A and B point up, but the
meaning that we move one vector so that it

right, and your sum points to the lefib. Can that be right?

sum points down. When adding vectors, we use "tip to tail,"
starts where the previous one left off.
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Student: Don't vectors have to start at the origin?
Tlrtor: No. A vector seen this way is a displacement, or a change, and it doesn't matter where it starts.
Student: So I add the vectors like this:

T\rtor: Yes. The vector you drew first is the difference of the two vectors.
Student: Butisit A-Bor B-A?
Tlrtor: Look for the "tip to tail" combination.
Student; So B plus my vector equals A, and my vector is

B+mine-A mine-A-B
I\rtor: An easier way to subtract vectors is to add the negative vector.

A-B-A+(-B)

Student: ,4 plus negative B equals my first vector, so it was A - B.
Tntor: Drawing it the other way would give B - A.
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EXAMPLE

Find a vector of length 4 that, when added to the vector shown, sums to a horizontal vector (parallel to the
r axis).

T\rtor: Where can we start?
Student: I'm adding vectors, so I'll need their components.
T\rtor: What are the components of the first vector?
Student: The r component is *3 and the y components is +2.
Thtor: What are the components of the second vector, the one we're trying to find?
Student: Don't I need an angle to find those?
Tutor: You need something. Do you know anything about the vector you'll get when you add them?
Student: It's horizontal.
T\rtor: What are the components of that vector?
Student: I don't know how long it is, so how can I find the components?
T\rtor: What is the y component of a horizontal vector?
Student: Zero. It doesn't go up or down.
T\rtor: The y component of the first vector is *2, and the g component of the sum is zero, so. . .

Student: . . . the A component of the second vector is -2.
T\rtor: Now you have a vector with a length of. 4 and a y component of -2. What is the fr component?
Student: I can use the Pythagorean theorem.

4-@ r-FeD2-s.46

T\rtor: A square root could be positive or negative. Could your second vector be (-3.46, -2)7
Student: Maybe, what would that look like?
Ttrtor: Start at the end of the first vector, and draw a circle of length 4. The second vector has to end on
this circle.
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Student: I see, there axe two points on the r axis where the vector could end. What if the first vector had
been (3, 5)? Then there wouldn't be any point where the circle intersects with the r a>cis.

T\rtor: And there wouldn't be any vector of length 4 that you could add to the first and get a horizontal
vector. The y component would have to be -5, so the second vector would have to be at least 5 long.



Chapter 4

Motron in Two and Three Dimensions

In this chapter we learn how to use vectors. Many things in physics have directior, and we use vectors to
describe the directions.

To demonstrate and practice vectors, we look at two basic techniques: projectile motion and relative motion.
Here we connect constant acceleration (and constant velocity) with vectors in two dimensions.

When everything lines up along a single line (utty line), then we have a one-dimensional problem. When
everything lines up along a single plane, then we have a two-dimensional problem. If we can't find a plane
in which everything happens, then we have a three-dimensional problem.

To deal with a one-dimensional problem, we choose one direction as the positive direction. Anythittg in
the opposite direction is negative. With a two-dimensional problem, we need to choose two axes. The one
Iimitation is that the axes need to be perpendicular to each other. Ary set of axes will do, but there is often
one set that works best. By "works best" I mean that it gives us much easier equations to solve.

Once we have a set of perpendicular axes, we can treat the motion along each axis separately.

While it is mathematically correct to use the ? and j notation of the pre ious chapter, it is not done so much
in practice. Instead, it is easier to describe motion as being in the r or y direction.

EXAMPLE

A boy throws a ball toward a wall. The ball leaves his hand 1 .4 m above the ground, with a speed of 15 m/s
at 42" above horizontal. How far above the ground does the ball hits the wall, 5 m away?

Tutor: Is this a one-dimensional problem?
Student: The ball starts going up and over, but the acceleration of gravity is downward. Since not every-
thing is along a single line, no.
T\rtor: Is this a two-dimensional problem?
Student: Everything can be drawn in the plane of the page, with nothing going into the page or coming
out of the page, so yes.

T\rtor: For a two-dimensional problem, we need two axes.

Student: Gravity is vertical, so I choose r horizontal toward the wall and y vertically up.
T\rtor: Those will work well, but not because the acceleration is vertical. They work because the wall is
vertical.
Student: How does the wall come into it?
T\rtor: We will want to know when the ball hits the wall, and it is much easier if this happens in one
dimension.

22
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Student: So I want to line up one axis with the "finish line" ?

T\rtor: Yes. Now what is happening along the r a>ris?

Student: Constant acceleration.
Thtor: What is happening along the y uris?
Student: Constant acceleration.
Ttrtor: How do we solve constant acceleration problems?
Student: We write down the five symbols and identify what we know.
T\rtor: But now we need two lists, one each for the r and y a)ces.

T\rtor: What is the displacement in the r direction?
Student: *5 m
T\rtor: What is the displacement in the y direction?
Student: We don't knowl that's what we're trying to find.
T\rtor: Is it really what we're trying to find?
Student: We want to find how high it is when the r displacement is +5 m, so we need to find the A

displacement and add +I.4 m to it.
I\rtor: What is the initial velocity in the r direction?
Student: The z component is adjacent to the 42" angle, so it is cosine: 15 m/s cos 42o .

Tutor: What is the initial velocity in the y direction?
Student: The r component is opposite to the 42" angle, so it is sine: 15 m/ssin42o.
T\rtor: Are both of them positive?
Student: The r component is toward the wall, which is our *r direction. The gt component is upward,
which is our *g direction, so both are positive.
T\rtor: What is the final velocity in the r direction?
Student: There is no horizontal acceleration, so it should be the same a"s the initial velocity in the n
direction.
T\rtor: Yes, but unfortunately this is the exception to the three-of-five rule: when the acceleration is zero
and it becomes a constant velocity problem, knowing two velocities (which are the same) only counts a^s one.
What is the final velocity in the gr direction?
Student: We don't know.
T\rtor: What is the acceleration in the r direction?
Student: The acceleration is parallel to the y axis, so it has no horizontal component. Zero.
T\rtor: What is the acceleration in the gr direction?
Student: g downward, so -9.8 ^/s2.Tutor: What is the time in the r direction?
Student: Time has direction?
T\rtor: No.
Student: So the time is the same for the r and gr problems.
T\rtor: Do we know it?
Student: No.

A,r : *5m Ly -
'ual - + (15 m/s) cos 42o uuo - + (15 m/s) sin 42o

Ur:Uy:
an:Oag:-g
t:+-)t:

Ay-
ugo :
uu:
aa:
t:

Ar-
UtO :
an:
a0:

I
It
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T\rtor: Can we solve the y problem to find the y displacement?
Student: No, we only know two of the five.
T\rtor: Can we solve the r problem?
Student: Yes, we know three of the five, so we could solve for the final velocity or the time in the fr
direction.
T\rtor: How does that help us with the y problem?
Student: The time in the r problem is the same as the time in the y problem. Then we'll be able to solve
the y problem.

Ar:urot.ia*t2

(b *) - ((15 */s) cos 42o) r + f,fo!',-#
t - 0.448 s

L,r : uot + rrat2 
- Aa : uyot . iont2

Ay - ((lb m/s) sin 42o) (0.448 ,) *;(-e.8 m/s2)(0.++8 ,)'
Ay - 3.52 m

Student: The y displacement is 3.52 m.
T\rtor: But that wasn't the question. What does the g displacement mean?
Student: The ball hits 3.52 m above where he threw it, or 1.4 m + 3.52 m - 4.92 m above the ground.
Tlrtor: If the g displacement had been less than -I.4 m, so that the height above the ground was negative,
what would that have meant?
Student: That the ball hit the wall below the ground?
T\rtor: Yes, what would that mean?
Student: That the ball hit the ground before reaching the wall.

-JEXAMPTE

A cannon fires a cannonball from the top of a cliff to the level ground 180 m below. The cannonball leaves
the cannon at 100 mls at 53o above horizontal. How far from the base of the cliffdoes the cannonball land?

T\rtor: How many dimensions are there in this problem?
Student: The initial velocity and the acceleration are not along the same line, so more than one. They
are in the same plane, so two is enough.
T\rtor: For a two-dimensional problem, we need two axes.
Student: I choose r horizontal, parallel to the ground, and g perpendicular to r.
T\rtor: Now what is happening along the r axis?
Student: Constant acceleration.
T\rtor: What is happening along the y axis?
Student: Constant acceleration.
Thtor: How do we solve constant acceleration problems?
Student: We write down the five symbols and identify what we know.
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T\rtor: What is the displacement in the r direction?
Student: We don't know; that's what we're trying to find.
T\rtor: What is the displacement in the y direction?
Student: -180 m.
Tbtor: What is the initial velocity in the r direction?
Student: The r component is adjacent to the 53" angle, so it is cosine: +100 m/scos53o.
T\rtor: What is the initial velocity in the y direction?
Student: The s component is opposite to the 53o angle, so it is sine: *100 m/ssin53o.
T\rtor: What is the final velocity in the r direction?
Student: There is no horizontal acceleration, so it should be the same a^s the initial velocity in the n
directior, but it doesn't help us.

Thtor: What is the final velocity in the y direction?
Student: We don't know.
Tutor: What is the acceleration in the r direction?
Student: The acceleration is parallel to the y ocis, so it has no horizontal component. Zero.
T\rtor: What is the acceleration in the y direction?
Student: g downwardr so -9.8 ^/"2.T\rtor: What is the time?
Student: We don't know, but it is the same for the r and y problems.

Lr : ? Ly : -180m
uro - + (100 m/s) cos53o uyo - + (100 m/s) sin53o
A&:Ag:
an:Oay:-g

++
at:ar:

Ttrtor: Can we solve the r problem to find the r displacement?
Student: No, we only know two of the five.
Thtor: Can we solve the y problem?
Student: Yes, we know three of the five, so we could solve for the time in the y problem, then put that
into the r problem.

Ar= 1 l2-Au-- 1
= uot + ;at2 - Ay : uyot + 

;oot2

(-180 m) : (+SO mls)t * i(-e.8 mf s2)t2

(4.9 mls2)t' + (-80 mls)t + (-180 m) : 0

Student: So we have to solve a quadratic equation?
TUtor: We could solve the quadratic. . .

t-
_b+rm

Ay-
uvo :
ag:
ay:

1
b

A,n :
UtO :
ao:
at:

+
L

2a
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-(-80 */.) + (80 */r) + (ee.6 m/s)t-
(9.8 mls2)

Tutor: . . . or we could solve the gl problem for the final velocity.
Student: How does that help us? We need the time.
Tutor: If we knew the final velocity we would have four of the five and would have our choice of equations.
We could solve for the time without a quadratic.

u2 - a2o :2a Ar - (uu)2 - ,?o - 2o, Ay

@)' : o?o * 2an AY

ag:

ua : +99.6 m/s

TUtor: The square root could be positive or negative. Which is it?
Student: What difference does it make?
Tutor: If the final velocity is positive then the cannonball is going upward as it lands.
Student: No, uu : -99.6 m/s.

A-UO:At+AU-UyO:Agt

t-

+_Ay-UAO
v-

(-ee.o ^l: -(80 m/s)
(-9.8 

^1"2)
t-18.3s

Student: Now we can do the r problem.

2(4.9 
^1"2)
t - -2.0 s or 18.3 s

n:uilt+lrat2

n - (60 m/s)(18.8 s) + |tol(18.8 
s)2

n-1100m

As an object flies through the air, its path
The horizontal motion is constant, so that
parabolic arc after they leave the airgun.

The vertical motion is
to \tr. In the photo,

like Ly : aot - Lgt'.
the beanbags fly in a

forms a parabola.
t is proportional
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Imagine that you are driving down the road at 60 mph. If you look only at yourself, you don't appear to
be moving. If you look out the window at the tree beside the road, the tree appears to be conring at you at
60 mph. You think of the car just ahead of you as going 60 mph, but it doesn't get any further from you.
Likewise, a car going the other way appears to be coming at you at 120 mph.

This is the idea behind relative motion. We can measure the position, the velocity, or the acceleration of
anything cornpared to any other thing. We often intuitively measure everything compared to the grortnd,
arrd think of the ground as "stationary," but we don't have to approach things that way. (When we get to
relativity, it's important to not approach things that way.)

The rnath behind relative motion is straightforward. If you have any two objects A and B, then

rtne-fAC*ilce

where C is any third person or object. ilns is read as "the velocity of A as measured by B." Also,

frle_ -rgR

Ttris says that whatever I see you doing, you see me doing the same thing in the other direction.

We carr take the derivative of this, so

dee - dnc * tice

and
6ns : -den

The same is true for acceleration.

It is important that everyone agree on the axes. For displacement, w€ can think of each person carryirrg
their axes with them, but they have to point in the same direction. These equations fail if I think north is
positive and you think south is positive.
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EXAMPLE

As a bus drives north at 60 mph, a passenger on the bus walks toward the rear at 2 mph, compared to the
bus. How fast is the passenger moving, as determined by someone standing on the side of the road?

T\rtor: How are you going to approach this problem?
Student: Because we're talking about relative motion, I'm going to use the relative motion equations.
T\rtor: Not all problems are labelled with the technique needed to solve them. How might you identify
that relative motion is involved in this problem?
Student: It talks about a measurement "compared to" and "as determined by."
T\rtor: Yes. It involves measurements made in two different frames of reference, by two different people.
Student: So I'll start with the equation.

dlie -t7RC ldcr
Student: What are A, B, and C?
Ttrtor: What are the three people, objects, or frames of reference mentioned in the problem?
Student: The bus, the passenger, and the guy by the side of the road.
T\rtor: It doesn't matter which one you make which letter, so long as you do it consistently.
Student: Because I want the velocity of the passenger as measured by the guy, I'll use A as the passenger
and B as the guy.

tTpc :6ps * dec

T\rtor: What is the velocity 6p,c of the bus as measured by the guy?
Student: 60 mph.
Tutor: Is it positive or negative?
Student: It doesn't say.
T\rtor: You need to choose an axis. Pick either north or south as positive and stick with your choice.
Student: I'll take north as positive, so it's *60 mph.
T\rtor: What is the velocity 6ps of the passenger as measured by the bus?
Student: 2 mph. He's walking toward the rear of the bus, or southward compared to the bus, so it's -2
mph.

dpc - e2 mph) + (+60 mph) - +b8 mph

Student: The guy by the side of the road sees the passenger moving northward at 58 mph.

-JEXAMPLE

An airplane is pointed southward with an airspeed of 200 mph. The wind is blowing northwest at 30 mph.
What is the speed of the plane compared to the ground?

Student: It says "compared to," so I'm going to use relative motion.
T\rtor: Good.
Student: All I need to do is figure out whether I add or subtract the 200 and the 30.
T\rtor: You're tryirg to skip steps, and that's a good way to make a mistake. South and northwest aren't
parallel to each other.
Student: So when I add or subtract I'll need to do components. Darn.
T\rtor: Harder but not impossible. What are you going to use for your axes?

Student: r and A, of course.
T\rtor: The directions in the problem are south and northwest. Think about how r and gr relate to the
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directions in the problem, or you could just use some combination of north, south, east, west, or even north-
west.
Student: The plane is going south, so I'll use south a^s one of my axes. The wind is more west than east,
so I'll use west as the other. That way the axes are perpendicular and my results will probably be positive.
T\rtor: Now figure out how to add the vectors.
Student: Using relative motion:

u-ne - 6nc * uce

Ttrtor: What are the three things in the problem?
Student: The airplane and the ground. That's two, so there must be a third thing moving. . . oh, the wind
or air.
I\rtor: Which is A, B, and C?
Student: I want the plane compared to the ground, so the Plane is A, the Ground is B, and the third
thing C is the Air.

dpC:U-pA*u-,q,C

T\rtor: What are the components of u-pn, the velocity of the plane compared to the air?
Student: It's headed south at 200 mph, so *200 mph south and 0 west.
Ttrtor: What are the components of dnc, the velocity of the air compared to the ground?
Student: That's the wind, so I draw my triangle.

Student: Because it's 45o, I can use either angle, and the components are the same.

uac,s : uAG,w - (30 mph) cos 45o - 21 mPh ?

T\rtor: The wind is going northwest, so the south component is negative (trying to skip steps again). Now
you can do the vector addition.
Student: First I'll add the south components.

?rpc,s : upA,,s * uac,,s : (200 mph) + (-2I mph) - 179 mph

upc,w - upA, w * uuc,w - (0 mph) + (21 mph) : 2t mph

T\rtor: The south and west components are perpendicular, so you can't just add them.
Student: I need to use the Pythagorean theorem again.

UPG : ,?c,s * o?c,,w : \@ry,h), + (21 mph)2 - 180 mph
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EXAMPLE

An airplane has an airspeed of 200 mph. The wind is blowing south at 30 mph. The airplane needs to fly
directly southeast compared to the ground, so that it flies parallel to the runway. In what direction should
the pilot point the airplane?

Student: It says compared to, so I'm going to try relative motion.

dpc -6pn*u-nc
Student: The directions are not all parallel, so I'll need axes to add the vectors.
Tutor: What are you going to use for your axes?
Student: How about south and west again?
T\rtor: Any set of perpendicular axes will work, of course, but the goal is to get the plane flying southea^st.
The math will be easier if you pick the goal (southeast) a^s one of your axes.
Student: Really? Ok y, and I'll use southwest for the other axis. u-pc equals +200 mph.
Tutor: Is it clear that the plane is moving 200 mph compared to the ground? In the last problem, the
groundspeed lrpc I and the airspeed lrpc I were different.
Student: I guess not. But the southwest component of the groundspeed is zero, so that the plane goes
southeast compared to the ground.
T\rtor: Yes. What are the components of the wind d11c?

Student: It's a 45" angle again, and southward means the southwest and southea^st components are both
positive. Drawing the triangle isn't as ea"sy because the il(es seem strange. Did you pick the strange direc-
tions just so I could practice using unusual axes?

T\rtor: Yes. If it seems strange, you can rotate the paper.

UAG ,SW - UAG ,S E

T\rtor: What components do you have now?

- (30 mph) cos 45o : +21 mph

SE SW
??

+2r +2r

+
upr,
UAG

dpc?o
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Student: I see. I can find dpn,sw : -2I. But I still don't know the angle.
Ttrtor: You have one of the components of u-p4, and you know the magnitude upe., so you can find the
other component.
Student: Using the Pythagorean theorem backwards.

u?e,-r|o,s1*o?n,sw

(200 mph)2 : a?n,sn * e21 mph)2

Student: It's a square root, so is it positive or negative?
T\rtor: If it's negative then the plane is going northward.
Student: Of course. Then the angle is

. opposite 2I
arctan adjacent ---- 

199

Student: That's 6o mea"sured eastward from southea,st.

-J

u".1,sp - \/(200 mph)2 - (-21 mph)2 - 199 mph



Chapter 5

Force and Motion I

In this chapter we cover the single most important technique to learn in physics. If you don't get this, get
help.

Every problem involving forces starts with the same basic steps:

o Draw a free-body diagram.

o Choose axes.

o Use the diagram to write Newton's second law equations along each ancis.

o Solve for the unknown.

Forces are things that push or pull on an object. Anything that touches an object can apply a force to it.
Also, there are two types of forces that can occur without touching: gravity and electromagnetic forces. We
won't have any electromagnetic forces for a while, so we only need to deal with gravity and things in contact
with our object. Also, there is no friction until the next chapter.

For the moment, we need to worry about three forces.

o gravity

o normal forces

o tension forces

Gravity is easy. Every object has a ma"ss m, and a weight (force) of ffig, where g is the same acceleration of
gravity as in the earlier chapters. g - 9.8 m/s2 on the surface of the Earth, and g is neaer negative. g is
the magnitude of the gravity force, and does not contain direction information.

Any time two objects are in contact, there could be a force where they meet. This force is to keep the objects
from occupying the same place at the same time. This force is always perpendicular to the surfaces, and
is just hard enough to keep the objects apart and no harder. There is a word in mathematics that means
"perpendicular to the surface," and that word is normal. So the normal force is the perpendicular to the
surface force.

You dontt know the magnitude of the normal force. One common mistake is to a.ssume that you
know the normal force, but you don't know it. The only time that you know the normal force is when
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someone is standing on a scale. The purpose of the scale is to measure the normal force, so if it says 200
pounds, then the normal force is 200 pounds. If you don't have a scale, you don't know the normal force.

We pull on an object with a string or rope. Usually in physics problems we use massless ropes (purchased
at the theoretical physics store). Tension forces are away from the object in the direction of the rope.

You dontt know the magnitude of the tension force. One common mistake is to assume that you
know the tension force, but you don't know it. The only time that you know the tension force is when the
tension force is applied by a spring scale.

The last important point about forces is dealittg with paired forces. Newton's third law says that if A puts
a force on B, then B puts a force on A, and that the two forces are equal in magnitude and have opposite
direction. Note that because one of these forces is on A and the other on B, these forces never occur on the
same object.

The purpose of the free-body diagram is to get a complete list of the forces, get the direction right, and
attach a name or label to each force.

EXAMPLE

A 3 kg box sits on the floor. The box is pulled to the right by u rope that is 35o above horizontal. Draw a
free-body diagram for the box.

Thtor: Are there any forces on the box?
Student: It has ma,ss, so it has weight mg downward.
Tutor: Are there any other forces acting on the box?
Student: There is a rope pulling on it, so there is a tension force.
T\rtor: Do we know how big the tension force is?

Student: Uh, no?
Tutor: Correct. Later we're going to want to put the magnitude of the tension force into an equation, so

we need a symbol to represent the magnitude of the tension force.
Student: I choose ?.
T\rtor: Good. What is the direction of the tension force?
Student: 35" from horizontal right toward upward.
T\rtor: Are there any other forces acting on the box?
Student: The box is in contact with the floor, so there is a normal force.
T\rtor: What is the direction of the normal force?
Student: Perpendicularly out of the floor, so upward.
T\rtor: What is the size of the normal force?
Student: The normal force is the same as the weight.
Ttrtor: Not necessarily. The tension will pull upward on the box, so if the normal force is the same as the
weight, the box will lift off of the floor.
Student: So the normal force isn't the same as the weight?
T\rtor: Sometimes it is, but a normal force is only as big as it needs to be to keep the objects from moving
into each other.
Student: So how big is the normal force?
T\rtor: Do you know?
Student: No.
Thtor: So pick a variable name or symbol to represent the magnitude of the normal force.
Student: I choose .A/.

T\rtor: FN and n are also common choices. Are there any other forces acting on the box?
Student: Fliction.
Tutor: We're going to save friction until the next chapter.
Student: Then that's all of the forces.
T\rtor: How do you know?
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Student: Because we did the weight and we did everything in contact with the box.
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EXAMPLE

A 2 kg book sits on a 7 kS table. Draw a free-body diagram for the book and one for the table.

T\rtor: Are there any forces on the book?
Student: It has mass, so it has weight mg downward.
Tutor: Are there any other forces acting on the book?
Student: It is in contact with the table, so there is a normal force upward.
T\rtor: How big is the normal force?
Student: It is the same as the weight, because those are the only forces on the book.
T\rtor: What if the table is in an elevator that is accelerating upward?
Student: Who would put a book on a table in an elevator?
T\rtor: The point is that just having two forces on an object doesn't make them equal. How big is the
normal force that the table puts on the book?
Student: I don't know, so I'll give it a symbol ^Af.

T\rtor: Are there any other forces acting on the book?
Student: I did the weight, and the only thing touching the book is the table, so those are the only forces
on the book.
T\rtor: What forces are there on the table?
Student: There is the weight of the table and the weight of the book and a normal force up from the floor.
T\rtor: The weight of the book doesn't act on the table.
Student: Surely the book affects the table.
Thtor: Yes, but the gravity force of the book is the Earth pulling it down, and Newton's third law says
that the gravity force of the book pulling up on the Earth is equal and opposite. The table doesn't come
into the gravity force on the book.
Student: Then how does the book affect the table?
T\rtor: They are in contact with each other.
Student: So there is a normal force perpendicularly out of the book acting on the table, pushing the table
downward.
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T\rtor: Yes. How big is this normal force?
Student: Equal to the weight of the book?
T\rtor: Not necessarily. Newton's third law says that the force that the table puts on the
to and in the opposite direction as the force that the book puts on the table. How big is the
table puts on the book?
Student: It was .l/, so the normal force of the book pushing down on the table is also l/.
T\rtor: How big is the normal force that the floor puts on the table?
Student: It's a normal force, so N.
Ttrtor: Is the normal force that the floor puts on the table the same size as the normal force
puts on the table?
Student: Not necessarily, so I need to use a different symbol for the floor-table force, so I choose l{floor.
Ttrtor: Are the two weights the same?
Student: No, so I'll use rng for the weight of the book and M g for the weight of the table.
Thtor: Are there any more forces acting on the table?
Student: We did the weight of the table, and it is in contact with two things so there are two normal
forces. We're done.

J
/b

book is equal
force that the

that the book

EXAMPLE

A 6 N boxand a 12 N boxhangfromaropeoverafrictionless, masslesspulley. Drawafree-bodydiagram
for each box.

T\rtor: What forces are there on the 6 N box?
Student: It has ma^ss, so it has weight mg downward. There is a tension force ? upward.
T\rtor: What forces are there on the 12 N box?
Student: It also has ma,ss, so it has weight downward. There is a also tension force upward.
T\rtor: Are the two masses the same?
Student: No, so I'll use mog for the 6 N box and mng for the 12 N box.
T\rtor: Newtons is a unit of force, not mass, so 6 N is mg for the lighter box.
Student: So the mass is 6 N/9.8 mf s2?

T\rtor: Yes, and likewise for the 12 N box.
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Student: Are the tensions the same or different?
Tutor: As long as it is the same massless rope, and the pulley is massless and frictionless, then the tensions
are the same.
Student: So I use the same symbol T in each free-body diagram. Isn't the tension equal to the weight of
the lighter box?
Tntor: If it is, then the light box has zero net force on it and doesn't accelerate, but the net force on the
heavy box is downward and it does accelerate.
Student: And then the rope would have to become longer. So I don't know the size of the tension force.

0
rz9

EXAMPLE

A 3 kg box hangs from the ceiling by u rope, and a 4 kg box hangs from the 3 kg box from another rope.
Draw a free-body diagram for each box.

T\rtor: What forces are there on the 3 kg box?
Student: It has mass, so it has weight rng downward. There is a tension force upward and a tension force
downward.
Tutor: Are the tension forces the same?
Student: If they were, they would add to zero and only the weight would remain, so the box would fall.
They must be different, so ?1 up and ?z down.
T\rtor: They could be the same, if the boxes were falling with acceleration g. What forces are there on
the 4 kg box?
Student: It also has mass, so it has weight downward. There is also a tension force upward.
Tutor: Are the two masses the same?
Student: No, so I'll use msg for the 3 kS box and mzg for the 4 kg box.
T\rtor: Is the tension pulling up on the 4 kS box equal to Tr or Tz?
Student: It is the same rope as the one that pulls down on the 3 kg, so it is ?2.
T\rtor: As long as the rope is massless.
Student: What if it had mass?
T\rtor: We would need to draw an additional free-body diagram for the rope. If it is massless, then we



have the tension at
Student: Which
rope.

top and bottom and they add to the mass, zero,
is zero no matter what the acceleration is, so the
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times the acceleration of the rope.
tension is the same everywhere on the

T
Newton says that if we add all of the forces on an object we get the ma,ss times the acceleration of that
object. The forces are vectors, and ofrben the forces are not colinear (along a single line), so we need to divide
them into components to add them. To do this we need axes (usually two, sometimes three). Aty set of axes

will work, so long as they are perpendicular to each other. If you choose one of the axes to be parallel
to the acceleration, then the math will be much easier to do. If the acceleration is zero, then choose any
a)ces you like.

Once you have your axes, you can add the force vectors. Take one axis, and go through the forces one at a
time. Find the component of that force along the axis. Add all of the components and set that total equal
to the mass times the acceleration along that axis.

Don't worry if you don't know values for all of the symbols in the equation. We've got to be missing one
variable, or we would have nothing to solve for. It is common to be missing two or more, so we'll need

additional equations in order to get a solution. Do each axis, then think about solving the equations.

EXAMPLE

A 3 kg box sits on the floor. The box is pulled to the right by r rope that is 35o above horizontal and has a
force of 26 N. Find the acceleration of the box. Find the normal force that the floor exerts on the box.

Tutor: How do we begin?
Student: We draw a free-body diagram for the box. We already did that for this problem, with the weight
rng downward, the normal force l/ upward, and the tension force ? up and to the right.



CHAPTER 5. FORCB A,IVD MOTIO]V - I

'J
Tutor: What is the direction of the acceleration?
Student: The box will slide along the floor, so horizontal and to the right.
Tutor: Choose one axis parallel to the acceleration and the second axis perpendicular to
Student: I choose / to the right and y upward.
T\rtor: Newton says that if we add the force vectors together, the result will be equal to
box times its acceleration.
Student: To add the forces, we need to divide the vectors into components.
T\rtor: Yes, then we can apply Newton's second law for each axis.
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T\rtor: Can we solve these?
Student: The tension ? is 26 N, so

the first.

the mass of the

EF" : TTLar and EFo - rrlao

T\rtor: What is the r component of the weight?
Student: The weight is perpendicular to the r axis, so the r component is zero.
Tutor: What is the r component of the normal force?
Student: The normal force is also perpendicular to the r axis, so the ,r component is zero.
T\rtor: What is the r component of the tension?
Student: The ,r component is adjacent to the 35o angle, so it's cosine.

? cos 35o - TTLar

T\rtor: Let's do the A components. What is the A component of the weight?
Student: The weight is parallel to the y axis, so all of it. It's down, so it's negative.
T\rtor: But the weight is negative because it is opposite to the y axis. Had you chosen the y axis downward,
the weight would be positive.
Student: Yes, so the weight is negative, and the normal force is also parallel to the A axis, so the A
component is +lf.
T\rtor: What is the y component of the tension?
Student: The r component is opposite to the 35o angle, so it's sine. It's in the same direction a,s the y
axis, so it's positive.

-mg + lf +T sin35o : rno,a

I can solve the first equation and find ar.

(26 N) cos 35o - (3 kg)o,

ar :7.I 
^l12

Student: I don't know the normal force so I can't find ar.
Ttrtor ? aa is the acceleration in the g direction, or vertical. We chose the axes so that all of the acceleration
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would be in the r direction.
Student: So a, - 0.

-(3 ks)(e.8 
^l12) + lr + Q6 N) sin35o : (3 kg)(0)

Student: Now I can solve for the normal force l/.

-(2e.4 N) + ^^r + (14.e N) - 0

,Ar - 14.5 N

Student: That looks strange, with .l/ on each side.
T\rtor: The ,Af on the left is in italics, which indicates that it's a variable. The N on the right is in
plaintype, so it is a unit. It can be confusing, so some people try to choose other symbols for the normal
force, like Flv, n) or q. What is the direction of the normal force?
Student: It's positive so it's upward.
T\rtor: N is the magnitude of the normal force, so it must be positive no matter what direction the normal
force is.
Student: If I had chosen down as the g axis, then shouldn't ^l/ be negative?
1lrtor: No, then the A component of the normal force would have been -,4f , and because l[ is positive, this
would be negative. We use the drawing to get the direction right, and the symbol is equal to the magnitude.
Student: So to see if the normal force is up or dowtr, I have to look back at the drawing.

EXAMPLE

A man pushes on a box that is on a ramp. The box has a mass of 24 kg and the ramp is 28" compared to
the horizontal. He pushes with a force of 100 N at 10o above horizontal. What is the acceleration of the
box?

Ttrtor: How do we begin?
Student: We draw a free-body diagram for the box. The weight is mg downward. There is a normal force
N upward.
T\rtor: Is the normal force really upward? The surface isn't horizontal.
Student: Right, the normal force is perpendicular to the surface, but we still don't know how big it is.
Also, the man is pushing on the box, so there is a force that I'll call P, 10o above horizontal.
T\rtor: Are there any other forces acting on the box?
Student: The only things touching it are the man and the ramp surface, and we did those and gravity, so
we have them all.
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T\rtor: The vectors are not all colinear, so to add the vectors we need to have two axes. The math will be
much easier if one axis is parallel to the acceleration.
Student: Why is that? Why can't I use r right and y vp?
T\rtor: You could, but then you'd have a" and as, and you wouldn't know either. Because the box slides
along the ramp, you'd have a third equation aalo, - tan 28", and you'd have to solve simultaneous equa-
tions. If aa :0, then you have two only equations and often you can solve each one by itself; much easier.
Student: Ok y, r is up the ramp and g is perpendicular to it, up and to the left.
Tutor: Now we can write Newton's second law.
Student: We have to do it in both the r and y direction.
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EF" : Trlar and EFo - TTLao

T\rtor: What is the tr component of the normal force?
Student: The normal force is perpendicular to the r axis, so the r component is zero.
T\rtor: What is the r component of the weight?
Student: Part of the weight is parallel to the r axis, but how do we find the angle?
Tutor: Consider the triangle formed by the ramp and the weight force. The angle
900 - 29"
it's 90o - 62" - 28o.

Student: So the r component of the weight is opposite to the 28" angle, so it's sine. It goes

direction as the r axis, so it's negative.
Tutor: What is the r component of the push force?
Student: Ttre push is 18o from the r axis.

at the top is
right angle, so

in the opposite

-mg sin28o + P cos 18o : rrlar

T\rtor: What is the y component of the normal force?
Student: The normal force is parallel to the y axis, so the gr component is +lf.
T\rtor: What is the A component of the weight?
Student: The y component of the weight is adjacent to the 28" angle, so it's cosine. It goes in the opposite
direction as the y axis, so it's negative.

,to rn9
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T\rtor: What is the y component of the push force?
Student: The y component is opposite to the 18", so it's sine. It's opposite to the y a;cis, so it's negative.

,Af - mgcos 28o - Psin 18o : *gdj
Trrtor: Now that we've applied Newton's second law, can we solve for the acceleration?
Student: We want the acceleration up the ramp at) and we know everything else in the r equation, so we
can solve.

-(24 kg)(9.8 
^1"') 

sin 28" + (100 N) cos 18" - (24 ks)o,

-(110 N) + (e5 N) : (24 ks)o,

-15 Nas: ffi: -o'64mfs2

Student: Doesn't o,, have to be positive?
T\rtor2 ar is a component, not a magnitude, so it could be negative. What does a negative a, mean?
Student: A negative a, means that the acceleration is down the ramp. He isn't pushing hard enough to
move the box up the ramp.
T\rtor: Which way is the box moving?
Student: The acceleration is down the ramp, so the box is moving down the ramp.
T\rtor: Perhaps the box was moving up the ramp, because he wa,s pushing harder earlier. Does the accel-
eration tell us which way something is moving?
Student: The acceleration tells us how the velocity is changing. The box could be moving up the ramp
but slowing. How can we tell?
T\rtor: We can't, not from the information we have.

-J
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EXAMPLE

In an Atwood's machine, a 6 N box and a 12 N box hang from a rope over a frictionless, massless pulley.
Find the acceleration of the boxes.

Student: We start by drawing the free-body diagram. We already did this one.

T\rtor: Newton says that if we add the forces, we get the mass times the acceleration. How do we add
forces?

Student: They're vectors, but they are all up and down, so I only need one axis. I choose g upward.
Tutor: Will both boxes accelerate upward?
Student: One will move up when the other moves down.
Tutor: How will their accelerations compare?
Student: They will be the same, except one will be positive and the other will be negative.
T\rtor: It would be handy if they were the same. To do this, we use separate axes for the two objects.
Student: We can do that?
T\rtor: Yes, each object can have its own set of axes. But you still need to be consistent in using the
correct axes for each object. This will come in handy when the accelerations aren't parallel, like if one of
the boxes was on a ramp.
Student: Okay. I think that the heavier box will move down, so down is positive for the 12 N box and up
is positive for the 6 N box.
T\rtor: You mean that the heavier box will accelerate down, since we could apply an additional force so

that the lighter one moves down.
Student: Of course. I'lladdtheforcesonthe 12Nbox. Thetensionisequaltotheweightof thelighterbox.

rnng - mOg -- Ttt L2a ?

T\rtor: If the tension is equal to the weight of the lighter box, then the total force on the lighter box is
zero and it doesn't move but the heavier one does.
Student: You mean doesn't accelerate. That would be a problem.
Tutor: For the lighter box to accelerate up, the tension must be more than its weight. For the heavier box
to accelerate down, the tension must be less than its weight.
Student: So the tension is between mag and mng.
T\rtor: Yes. How big is the tension force?
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Student: We don't know, that's why we made it a variable.
T\rtor: So apply Newtonts second law to each box.

rnng-T--ffttza
T - mag -- rrr6a

Student: Each equation has two variables, so I can't solve either of them.
Ttrtor: But they have the sarne two variables, so you have two equations and two variables, and you can
solve them together.
Student: I want the acceleration and not the tension, so I'll add the two equatiorrs.

mng-mog:rrtrL2a*rraoa

(*rr-*u)g-(*rr*m6)a
(L2 N - 6 N)(e.8 

^ls2) - (I2 N + 6 N)a

(!: (oXt(g='g=in/s'z) : B.B ^ls2(1820

Tutor: The result is positive. What does that mean?
Student: That the boxes a,re moving - ro, accelerating - in the directions I chose as positive.



Chapter 6

Force and Motion II

In this chapter we add two things to what we did last chapter. This first is friction forces, and the second
is things moving in a circle.

Of all of the things that you think you intuitively know, the one you are most likely to get backwards is

friction. You may think that friction opposes motion, and many physics books say so, but friction opposes
sliding of surfaces. Eriction will even cause motion in order to prevent sliding.

Imagine that you are driving a car that is currently at rest. If you push on the accelerator, the engine turns
the tires. If there was no friction, the tires would rotate but the car wouldn't move, so the tires would slip on
the ground. To prevent this slipping, friction pushes the car forward. The same thing works when walking,
where friction pushes your shoe forward, causing motion.

Fbiction comes in two types, static and kinetic. Kinetic friction is when the surfaces are already sliding
against each other, and static friction is when they aren't sliding yet. Kinetic friction tries to stop the
sliding, and static friction tries to prevent sliding

EXAMPLE

Consider a tablecloth on a table, and a bottle sitting on the tablecloth. A physics teacher slowly pulls the
tablecloth to the left. As he does so, the bottle slides with the tablecloth. Draw free-body diagrams for the
bottle and the tablecloth.

Thtor: What are the forces acting on the bottle?
Student: There is gravity mg down, of course, and a normal force l/r perpendicular to the surface, or up.
There is also a friction force /1 against the motion, or right.
Ttrtor: The bottle accelerates to the left. What force causes it to move to the left?
Student: The teacher is pulling on it.
T\rtor: The teacher is pulling on the tablecloth, but he isn't touching the bottle. He doesn't exert a force
on the bottle.
Student: It just moves because the tablecloth is moving.
T\rtor: Newton says that the bottle can't accelerate to the left without a force to the left. What force
could be to the left?
Student: Gravity is down and the normal force is up, so it can't be those. The only force remaining is
friction, and how can that be to the left?
T\rtor: If there was no friction, what would happen to the bottle?
Student: There would be no horizontal forces, so I guess it wouldn't move.
T\rtor: Correct, but the tablecloth would move to the left, so the bottle and tablecloth would be slidittg
against each other. Fbiction tries to prevent sliding.

44
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Student: So friction pushes the bottle to the left so that it doesn't slide?
T\rtor: Yes, friction moves the bottle to keep it from sliding on the tablecloth. What type of friction is it?
Student: I was going to say "kinetic" because the bottle is movirg, but I'll think again. The bottle isn't
sliding on the tablecloth, so it's static friction.

T\rtor: Correct. What are the fcrrces acting on the tablecloth?
Student: It has gravity fuIg downward, and a normal force Ir{z from the table upward. Because there is a
normal force, there could be a friction force f2 from the table.
T\rtor: Which way does the friction force from the table act?
Student: The tablecloth is sliding to the left, so it's kinetic friction and it pushes the tablecloth right.
T\rtor: Good. There are also forces from the bottle.
Student: The tablecloth pushes the bottle up, so the bottle exerts a normal force l/r down.
T\rtor: The tablecloth also exerts a friction force on the bottle, so the bottle exerts one on the tablecloth.
Student: So the bottle pustres the tablecloth to the right with an equal and opposite force ft, even though
there isn't any sliding between the bottle and the tablecloth?
Thtor: One way to prevent sliding is to push the bottle to the left, but the other way is to push the
tablecloth right.

Just because two surfaces are in contact does not mean that there is a friction force. Imagine a book sittirg
on a table. There are no horizontal forces on the book, so it sits motionless on the table. If there was a
friction force, it would cause the book to move. Since there doesn't need to be any friction to prevent sliding,
there is no friction force.

I
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When drawing your free-body diagram, always put the static friction forces in last. This is because
the static friction can be in any direction needed to keep sliding from happening. Until you know in which
direction something would slide if there was no friction, you don't know which way the static friction will
be. Do all other forces first, then ask, "in which direction would it slide if there was no friction?" Add the
static friction in to prevent this sliding.

The magnitude of the kinetic friction force is ^F'k - pr.l[, where Fu is the coefficient of friction and N is
the normal force between the surfaces. The magnitude of the static friction force is anything it needs to be
to prevent sliding, up to a maximum of F", max : pkN, where p, is the coefficient of friction and N is the
normal force between the surfaces.

EXAMPLE

A box sits on a table. The box has a mass of 8 kg and the coefficients of friction between the box and the
table are Fs :0.7 and pu : 0.4. A horizontal force of 45 N pushes the box to the right. What is the friction
force on the box?

Tutor: Where do we start?
Student: Can't we skip the free-body diagram?
T\rtor: If you have more than one force, then you need a free-body diagram. I still make mistakes if I skip
the diagram with only two forces.

Student: Okay. Gravity mg goes down, and a normal force lf pushes up. Because there is a normal
force, there could be a friction force f , but we'll do that last. Someone is pushing to the right with a force
P - 45 N.
T\rtor: What would happen if there were no friction force?
Student: The box would accelerate to the right, sliding across the floor. FYiction point to the left to
oppose the sliding.

rurg

T\rtor: Good. Is it static or kinetic friction?
Student: Kinetic, because the box is sliding.
T\rtor: How do you know that the box is sliding?
Student: Because someone pushes it.
Tutor: Have you ever pushed something and then it didn't move?

Student: Okay, how do I check?
T\rtor: How big could the static friction force be?

Student: Static friction could be as big as f,rrax : Frl/. I need to know the normal force.
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T\rtor: To get the normal force, add the vertical forces:

,A/- mg-*ilO
,Af - rng

Student: Static friction could be as big as

F^, : p"l/ : F"mg - (0.7)(8 kg)(9.8 
^ls2) - 55 N

T\rtor: How big is the friction force?
Student: It's 55 N.
Tutor: The static friction force can be as big as 55 N, but it doesn't have to be 55 N. What happens if
the friction force is 55 N?
Student: The total force is to the left.
T\rtor: Yes, he pushes to the right and the box accelerates to
Student: No, so the friction force will only be 45 N, and the
Thtor: What if the box were already moving?
Student: Then it would be sliding, and the friction would be

Fu: /r"l/ : F,ffis - (0.4)(8 kS)(9.8 mls2) : 3t N

the left. Does that make sense?

box doesn't move.

kinetic friction.

EXAMPLE

A boy pulls on a box with a rope that is 23" above horizontal to the right. He pulls with a force of 50 N
and the mass of the box is 8 kg. The coefficients of friction between the box and the floor are Fs :0.56 and

l-trk - 0.47 . What is the acceleration of the box?

Student: First we draw the free-body diagram. Gravity mg is down, and the normal force l[ is up. There
is a tension T - 50 N up and to the right, and there is a friction force F to the lefb.



48 CHAPTER 6, FORCE AND MOTION- II

T\rtor: Is it static friction or kinetic friction?
Student: That depends on whether the box is sliding across the floor.
Ttrtor: Good. How do we check?
Student: We see if the static friction would be enough to keep it from sliding. If it is, then the acceleration
is zero. If it isn't enough, then the box slides and there is kinetic friction.
Tutor: To do that, we need to write down the Newton's second law equations.

EF* -- rnar and EFn : TTLay

Student: If the box accelerates, it will do so to the right. I'll use that as the r uris and up a.s the y ucis.

?cos 23" - f - v7lar,

-0?sin23o +N -rng-rngl("
Student: au is zero because all of the acceleration is in the r direction.
T\rtor: Can you do anything with these equations?
Student: I can solve the second one to find N.
T\rtor: Does that help you?
Student: Yes, becaus€ frr,-ax : prN.

(50 N) sin 23" + N - (8 ks)(9.8 
^1"2) 

: 0

(19.5 N) + N - (78.4 N) : 0

N-58.9N

fr,,-"* : prN - (0.56)(58.9 N) - 33.0 N

T\rtor: What are you going to do with the maximum static friction force?
Student: I'll put it in the r equation and see if the box moves.

(50 N) cos 23" - (33.0 N) : (8 kg)a"

(46.0 N) - (33.0 N) : (8 kg)o,

Student: The total r force is positive, or to the right, so the box does move. Now I can find the accelera-
tion.
T\rtor: Since the box moves, is the friction still static.
Student: The friction is really kinetic, because the box is sliding. That means I have to start over with
kinetic friction.
T\rtor: You only need to go back to the r equation. Nothing about the y equation has changed.
Student: So the normal force is still 58.9 N.

(50 N) cos 23" - (0.47) (58.9 N) : (8 kg)a"

(18.3 N) : (8 kg)o"

ar:(1:lP :2.Jmls2
(8 ks)

EXAMPTE

A 6 kg box is sliding up a 34o ramp at L4 mf s. The coefficient of kinetic friction between the box and the
ramp it /ru : 0.36. What is the acceleration of the box?
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T\rtor: Where do we begin?
Student: With the free-body diagram, of course. Gravity mg is down, and the normal force N is perpen-
dicular to the surface. Because there is a normal force, there could be a friction force F. Also there is a
force P pushing the box up the ramp.
T\rtor: The problem doesn't mention a force pushing the box up the ramp. Where did that come from?
Student: Something had to push the box or it wouldn't go up the ramp.
T\rtor: Something did push the box to get it going up the ramp, but that something is done pushing now.
Can something be moving up without an upward force on it?
Student: Yes, if there was a force in the past. I see. There is no pushing force.
T\rtor: The friction force has to be parallel to the ramp surface. Will it point up or down the ramp?
Student: Won't friction always be down the ramp?
T\rtor: Fliction opposes sliding, so if the box is sliding up the ramp, the friction force will be down the
ramp.
Student: Of course. And since it's already sliding, it will be kinetic friction.

Thtor: Now you can choose axes and apply Newton's second law. Remember to pick one axis parallel to
the acceleration.
Student: The box is going up the ramp, but
Which way should I pick as the axis?
Tutor: It really doesn't matter whether up or

friction and gravity are both pushing it down the ramp.

down the ramp is positive, but if you choose r horizontal
the math will get messy.

Student: I choose r up the ramp, in the direction of the initial velocity. Just to be different, I'll take y
down into the ramp.

- mg sin 34o - f : TTLar

+ lf - mgcos 34o - *ilO
T\rtor: Can you solve these equations to find the acceleration?
Student: To find o, I need to know F. It's kinetic friction, so f - FuN .

Tutor: How will you get the normal force?
Student: I can solve the gt equation to find the normal force l[, then use that to solve the r equation for
the acceleration.

,^r - nxgcos 34" - (6 kg)(9.8 
^ls2) 

cos 34" - 48.7 N
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- mg sin 34o - prl/ : ma,r

- (6 ks)(e.8 
^l12) 

sin 34o - (0.36)(48.7 N) - (6 kg)o"

ar: -8.4 ^lsz
Student: As we expected, the acceleration is down the ramp, in the negative direction. Is the normal force
always lf - mg cos 0?

T\rtor: Not always. You need to go through the steps.

When somethirg goes in a circle, its velocity is always changing. Even if it travels at a constant speed, the
velocity is changing because the direction is changing. The acceleration of something going in a circle
is toward the middle and is

u2
ac

where u is the speed and r is the radius of the circle.

It is important to realize that centripetal force is not a real force and never goes in the free-body
diagram. The name "centripetal force" refers to the total force when the object is going in a circle. There
will be forces that you already know that add up to equal the centripetal force muz f r.

Imagine that you are in a car when the car turns to the left. You might think that you feel a force pushing
you to the right, toward the right of the car. A stationary observer sees that you are continuing straight
while the car turns underneath you. The real force on you is friction with the seat pushing you to the left.
The perceived force to the right is similar to a perceived force backwards when the car accelerates forward

- if the seat didn't push you forward you would stay there while the car moved out from under you.

If something is going in a circle, treat the problem like you would any other. Draw the free-body diagram,
choose axes, and apply Newton's second law. The only difference is that the total force will be toward the
middle of the circular path, and the acceleration will be u2 f r.

EXAMPLE
t

A roller coaster goes over a hill of radius 30 m. What speed is needed to achieve weightlessness?

Student: As the coaster goes over the hill, it is going in a circle, so the acceleration is downward, toward
the middle of the circle.
T\rtor: Good. Where do we begin?
Student: With the free-body diagram, as always. Gravity mg is going down and the normal force l/ is
going up. The centripetal force F" is going down, toward the middle of the circle.
T\rtor: There is no centripetal force, and it never goes in the free-body diagram.
Student: Then how can the coaster accelerate downward?
T\rtor: The forces that do exist must add up to go downward. Is the normal force equal to the weight?
Student: Not necessarily.
T\rtor: Are there any other forces besides weight and normal force?

Student: We did the weight, and the only thing in contact with the coaster is the track, so that's all of them.
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be

points downward?
then the total force will be down.
add the forces.

If up is positive, then the acceleration will

ng

T\rtor: Is it possible for the forces to add to a total that
Student: If the weight is greater than the normal force,
T\rtor: Apply Newton's second law. Choose an axis and
Student: I choose up to be positive.
T\rtor: Remember that the acceleration is downward.
negative.
Student: Ol*y, I choose down to be positive so that the acceleration will be positive.

EF -ma
mg- 'Af - *t

T\rtor: When something is going in a circle, we someti;", call the total force mu2 f r the "centripetal
force." Which of the forces in the problem is the centripetal force?
Student: Neither, it's the sum of the two.
T\rtor: Yes, the total force is equal to the centripetal force. What happens as the coaster goes faster?
Student: As u increases, the right side gets larger, so the left side gets larger too.
T\rtor: Does the weight increase as the coaster goes faster?
Student: No, so the normal force must get smaller.
T\rtor: We call it "weightlessness" when l/ : 0. The weight hasn't changed, but you don't "feel" a force.
Perhaps we should call it normalforcelessness.
Student: But how can there be no normal force? Won't the coaster fall?
T\rtor: Yes, it does fall. But to go over the hill, in an arc, it needs to accelerate downward, and the weight
provides the force to accelerate it downward.
Student: And all of this happens when

U _ lrFg : -17mfs
T\rtor: Right. The coaster "falls" at exactly the same curvature that the track has. The rider feels the
normal force from the seat momentarily disappear. What happens if the coaster goes even faster?
Student: Then the curvature of the track is greater than the path of the coaster, and the coaster comes
off of the track. That would be dangerous.
T\rtor: Modern coasters have wheels under the track, and restraints for the riders, so that the normal force
can pull downward too. When the coaster goes too fast you feel yourself being jerked downward, like on the
Magnum at Cedar Point in Ohio.
Student: So would I put in a negative value for lf? I thought .Af was a magnitude and couldn't be

m)(e.8 ^1"')
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negative.
Ttrtor: A negative value for ,Af indicates that the
diagram. Or you could draw a new diagram with the

CHAPTER 6. FORCE AND MOTION - II

force goes in the opposite direction a"s drawn in the
normal force down.

EXAMPLE

A small coin is placed on a turntable (like an old record player), 14 cm from the center. The coefficients of
friction between the coin and the turntable are F" -- 0.62 and Fk - 0.48. How fast can the coin go before it
slips? If it slips, in what direction will it go?

Student: We start with the free-body diagram. The coin has weight rng downward, and a normal force
N upward. We don't know how big l[ is. Because there is a normal force, there could be a friction force .F.
T\rtor: In which direction is the friction force?
Student: Well, it has to be parallel to the surface, and it doesn't need to be opposite to the motion. The
coin isn't sliding yet, so it's static friction.
T\rtor: Correct on all counts. Which way is the coin accelerating?
Student: It's going in a circle, so in toward the middle.
T\rtor: What force is pushing it that way?
Student: Centripetal force. No, wait, there is no such thing. There isn't any force in that direction.
FYiction must be toward the middle of the turntable.
Tutor: Correct. How big can friction be?
Student: Up to Frl/.
T\rtor: Since the problem asks for the fastest that the coin can go, we want the maximum static friction
force.
Student: Do we always want the maximum friction force?
T\rtor: When we want a limit, like when does the coin start to slip, then we want the maximum friction
force.
Student: Okay, I pick axes. r is in toward the center and parallel to the acceleration, and y is up. But
when the coin has gone halfway around, r will be away from the center.
T\rtor: We can move the axes with the coin, so that r is always pointing from the coin into the center of
the circle.

Student: Now I apply Newton's second law.

F - TTLar



+lr -ms-gdj
Student: I can solve the second equation for l/, then find f, and then find ar.

,Arr - mg

Student: I need to know the mass m.
T\rtor: Keep going, maybe it'll cancel.

prl{ - *tTt

(0.62)fr(s.8 m/s2) :rtffi
a - ,@r)(e.8 m/s2)(0.la m) - o .e2 mls

T\rtor: What if the coin goes faster than this?
Student: It flies off of the turntable, away from the center.
Tutor: Does it go directly away from the center? It was moving around the center.
after it slips?
Student: Once it slips, the friction will be kinetic, which is smaller. Once the coin is
there will be no friction, so the coin will move in a straight line.
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What are the forces

off of the turntable,

EXAMPTE

A 1500 kg car goes around a curve of radius 200 m. The curve is banked at 11" and the coefficient of static
friction between the car and the road is 0.48. What is the maximum speed of the car around the curve?

T\rtor: We start by drawing the free-body diagram, without which all hope is lost.
Student: There is a gravity force mg pulling it down. There is a normal force .nf perpendicular to the
surface of the road. Because there is a normal force there could also be a friction force /. Nothing else is in
contact with the car, so there are no other forces.
T\rtor: What is the direction of the friction force?
Student: It isn't necessarily opposite to the motion. Which way would the car slide without friction?
T\rtor: Very good. There is a speed at which the horizontal component of the normal force is just enough
force so that the car goes around the curve. Our car is going even faster, so it needs even more force in
toward the middle.
Student: So friction points in toward the middle? Doesn't it have to be parallel to the road surface?
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T\rtor: Yes, but of the choices up and down the ramp, which is in toward the middle of the turn?
Student: Down the ramp. So friction points down the ramp.
T\rtor: Yes. Imagine trying to go around a turn on an icy day. There isn't enough friction and the car
goes straight, or doesn't turn enough. Fbiction pushes the car in toward the turn.
Student: Ohy, now I need axes. The acceleration is also down the ramp.
T\rtor: The acceleration is toward the middle of the circle. Is the circle that the car is traveling completely
horizontal or parallel to the ramp?
Student: It is horizontal, so the acceleration is horizontal. The r axis needs to be horizontal, toward the
middle of the circle, and the y axis needs to be perpendicular to that, so up.

student: Now I can apply Newton's second law.

l[ sin 11o + fcos 11o : TTLer - *!'

+ lf cos 11o - fsin 11o - rng - *ilO
T\rtor: Good. Can you do anything with these equations?
Student: I have three unknowns, .nf, f , and u.I want to find u. I need another piece of information.
T\rtor: Yes, You need the relation between the friction force / and the normal force .Alr.

Student: Is / : FN, or f < p,N this time?
T\rtor: We want the fastest speed, so the static friction force is as big as it can be, f - p,N. If the speed
was some arbitrary value, we couldn't do this.
Student: Why is it static friction? Isn't the car moving compared to the road?
Thtor: The tires are rolling, rather than slipping. Since there is no slipping, it's static friction.

+ lf sin 11o + lt Ncos 11o - *t
+ lf cos 11o - 1tl{sin 11o - rngl O

Student: I know everything in the second equation except l/. I can find l/ and use it in the top equation
to find u.

^A/ (cos 11o - psin 11") : rng
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/[: , ,: 
ffi9 

=(cos 11o - ttsin 11o)

( , *9 
, , ,\ rrro 11o * ttcos 11') : *t

\(cos 11" - psin f ft)/ \e*r r'r I 
'"vl'rr' 

rr 
' - "o r

t): 
unn

l):

n -- 38.2 mls: 85 mph

Tlrtor: What if we were going slower than the magrc speed where no friction is needed?
Student: Then the horizontal component of the normal force would be too much, and friction would have
to point the other way.



Chapter 7 

Kinetic Energy and Work 

Energy is the power to make something move. That might not sound terribly interesting, but it includes a 
lot of stuff. Sound is moving air molecules, so energy is the power to make tunes. Lots of things use energy. 

It is a principle of physics that energy is conserved. This means that energy is neither created nor 
destroyed, but only turned from one form of energy into another. Conservation laws are a very powerful 
technique for solving problems. Conservation of energy is one of those laws, and is the important technique 
of this chapter. 

Just because something is "conserved" does not mean it doesn't change. What it does mean is that we can 
account for the change. For example, chairs in a chair factory are conserved. By this we mean that chairs do 
not suddenly appear or disappear, but are made and shipped. If there are more chairs now than there were 
an hour ago, then someone made some more. If there are fewer chairs, then some must have been loaded 
onto a truck and sent to the customer. If we take the number of chairs at the beginning of the day, add the 
number made and subtract the number shipped, we get the number of chairs in the factory now. 

How do we use conservation? What if the truck left the factory and no one counted how many chairs were 
on board. We could count how many chairs were still in the factory, and use the equation from the last 
paragraph to determine how many chairs had been loaded. If we know all of the terms in the equation except 
one, we can solve for the one we don't know. 

The equation for energy is 
Ki+W=Kj 

or, the initial kinetic energy plus the work is the final kinetic energy. Doing work is how we change the 
energy. 

Objects have kinetic energy when they are moving. The kinetic energy of a moving object is 

Note that the kinetic energy is positive even if the velocity is in the negative direction. 

The work done on an object is 
W = F . J = Fd cos 1> 

If the force F is in the same direction as the motion J, the work is positive, the energy increases, and the 
speed increases. If the force is in the opposite direction as the motion, the work is negative, the energy 
decreases, and the speed decreases. If the force is perpendicular to the motion, then the work is 
zero, the energy doesn't change, and the speed stays the same but the direction of motion may change. 
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The units of work and energy are the same - they need to be so that we can add them. A newton times
meter is a joule.

1Nx1m-1J

EXAMPLE

A 3 kg box is pulled 6 m across the floor. The box is pulled to the right by a rope that is 35o above horizontal
and has a force of 26 N. The coefficient of kinetic friction between the box and the floor is 0.15. Find the
work that each force does on the box, and find the speed of the box after it has been pulled 6 m.

Student: Do we still start with a free-body diagram, even though we're using energy?
T\rtor: Yes. To find the work done by each force we need to know what they are.
Student: Gravity mg is down, normal force .Af is up, because there is a normal force there could be a
friction force /, and tension ? is up and to the right.
T\rtor: Is it kinetic or static friction?
Student: The box is sliding, so it's kinetic. As the box slides to the right, the friction on the box will be
to the left.

rr3

Tutor: What is the work that the tension does on the box?
Student: The tension is 26 N and at a 35o angle.

Wr - Fdcos O - (26 N)(6 -) cos35o - 128 J

T\rtor: Good. How much work is done by gravity?
Student: Gravity is up, and the box moves sideways.

Wc - Fdcos O - ((S x)(9.8 mf s2)) (6 m) cos90o :0 J

Student: Does that make sense? Gravity really does no work?
T\rtor: Does gravity cause the box to speed up as it moves, gaining kinetic energy?
Student: Not on a level floor.
T\rtor: So if gravity doesn't change the kinetic energy, it does no work. Ary force that is perpendicular to
the nrotion does zero work.
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Student: That's a good thing to remember. The normal force is also perpendicular to the motionr so

Wx - Fdcos 0 - lf(6 m) cos90o :0 J

Student: And I didn't even need to figure out what the normal force is.

T\rtor: How much work does friction do?

Student: Fliction doesn't cause the box to speed up, so it does no work.
T\rtor: Fliction could cause the box to slow down, which would be taking energy out, or doing negative

work.
Student: Negative work? Then I need the friction force p,I{, so I need the normal force after all.

-0+lf +Tsin35o -mg -*6
.^r - mg -T sin35o - (3 kg)(9.8 ^lsz) - (26 N) sin35o - I4.5 N

Student: I just thought of something. What if 7 was so big that the normal force was negative?
T\rtor: Could the floor be pulling the box down? What would happen if you pulled really hard?

Student: No. The box would lift off of the floor, so os wouldn't be zero. The work done by friction is

Wy - Fdcos 0 - [(0.15)(14.5 N)] (6 m) cos180"- -13 J

Student: Now I can apply Newton's second law in the r direction and find the acceleration.
Tutor: You could do that. Many physics students try to use the first thing they learned for everything,
even if a newer technique works better. Tty using conservation of energy.

Kt*W - Kf

Student: Theboxisn'tmovingtostart,so Kr:0. Wedo I28 J+0+0+(-13J) -115Jof work,so

o + (115 J) - !*r'2

a- - 8.8 m/s

I

At this point we introduce springs. The force from a spring is

4rprirrg - -kr

The minus sign generally does not go into an equation. It is there to remind us that the force of the spring
is opposite to fr) where r is how much the spring is stretched or compressed. k is the "spring constart,"
a constant for any particular spring (though a different spring will have a different k). The units of k are

newtons of force for each meter that the spring is compressed (newtons/meter).

The reason to introduce springs here, when talking about work and energy, is that work and energy is

the easiest way to deal with springs. Because the force from a spring will change if it is compressed, the
acceleration will not be constant. Conservation of energy works well when the acceleration is not
constant. The work needed to compress or stretch a spring a distance r from its normal length is

lv"pri.s : !rf"'

When first compressing a spring, the force is zero so no work is needed. But the more you compress it the
greater the force you need, and each cm takes more work than the previous one. The work is equal to the
average force *tr" times the distan ce r.

2(115 J)

3ks
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EXAMPLE

A wall is tilted in by 15", and a 2 kg block is placed against the wall. The block is held in place with a

spring. The coefficients of friction between the block and the wall are ltrs :0.61 and Fk - 0.49. Holding the
block in place requires that the spring be compressed by 12 cm. What is the spring constant of the spring?

Student: We start with the free-body diagram. The weight mg is down. The normal force N is perpen-
dicularly out of the surface. Because there is a normal force, there could be a friction force. There is also a
spring force. The friction force pushes up the wall, to keep the block from sliding down the wall.
TUtor: Doing well. What is the direction of the spring force?

Student: It doesn't s&y, exactly. Pushing in toward the wall, opposite the normal force?

Tutor: Probably. Let's assume that this is the case.

a

I

I
t

ft3'

I'

I
I

I

t

Student: So the spring force is equal to the normal force, and friction is equal to the weight, and. . .

Tutor: Not all of the weight is parallel to the friction force.
Student: Ah, yes. I choose axes, but there is no acceleration.
T\rtor: So you can use any pair of perpendicular axes.
Student: I choose parallel to the spring force as r, and parallel to friction as y.

- .Af * 4prins - mgsin 15o : mg4.0

+F- mgcos15o -*ilO
T\rtor: How many unknowns do you have?
Student: I have l/, {sp.i.,g, and f. Three unknowns and only two equations. I need one more piece of
information. I can use Frpri.,g
T\rtort F*nring is the magnitude of the spring force, and you have the direction in your equation already.
Do you really want {"pri.,s : -kr?
Student: No, I want {rpri.,g - kr.
T\rtor: But then you introduce the unknown k. This is fine, since you want to solve for k eventually, but
you still have three unknowns.
Student: It's static friction because it isn't sliding. Can we say that the static friction force is equal to
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the maximum static friction force?
T\rtor: If L2 cm is the smallest compression of the spring that will hold the block, then we are at the limit
and we can say that.

-lf*kr-rngsinl5o:0
* lt"'Af - mg cos 15o - 0

Student: I can solve the bottom equation for lf, then put it in the top equation and solve for k.

ilr nxg cos 15o
.r\

kr - mgsin 1bo + 
mg cosLl" 

- rng (rir, 15o + 
to:]5" \

F" \ p )

t - 
rns (rir, 1bo * cos 15'\ 

- 
(2 ks)(9'8 m/s2) /rir lbo . #) : 801 N/mIt- r \"^^^ 

^" ' lt" / 0.12 m \"'^

EXAMPLE

A spring with spring constant k - 1600 N/* is placed on the ground and pressed down 6 cm. A 2 kg block
is placed on the spring, and the spring is released. How far above its initial position does the block go?

T\rtor: First we draw the free-body diagram. What forces act on the block?
Student: Gravity mg points down, and a normal force l[ is upward.
T\rtor: It really is a normal force, since it is a force between surfaces, but we call it a spring force.
Student: Okuy, a spring force F"p points upward.

Tutor: Is the spring force constant?
Student: No, as the spring uncompresses, the spring force will decrease.
T\rtor: Is the acceleration constant?
Student: No, as the spring force changes, the total force changes, so the acceleration changes.
T\rtor: When the acceleration is not constant, it's almost always easier to use a conservation law, like
conservation of energy.
Student: So whenever a spring is involved, use energy?
T\rtor: There was a spring in the last problem, but we didn't use energy. More precisely, whenever a spring
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is changing its length, that's a tip-off to try energy first.

Kt*W - Kf
Student: The block starts at rest , so Ki is zero.
TUtor: How fast is the block moving when it reaches its maximum height?
Student: It's at rest then too, so K y is also zero. Then the work is zero and everything is zero and we
can't solve for anything.
T\rtor: Don't panic. How much work does gravity do on the block?
Student: The force rng times the distance d times the cosine of 180o, since it moves up and gravity points
down.
Ttrtor: Good. Of course, we don't know d, but that's what we're trying to find, so this is how it gets into
our equation. How much work does the spring do on the block?
Student: The work of a spring is +kd'.
T\rtor: Is the initial compression of the spring equal to the distance that the block moves up?
Student: I guess not. That means we need another variable.
Tutor: How much is the spring initially compressed?
Student: By 6 cm.
T\rtor: How much is it compressed after the block flies up?
Student: Zero. Ah, the spring compression changes by 6 cm.
T\rtor: Because the equation for the work of a spring is nonlinear, we can't just use the change in compres-
sion. We need to do both the initial and final compression. Does the spring do positive or negative work?
Student: The spring pushes up, and the block moves up, and since the directions are the same it's positive
work.

K;, * (W*, *Wgr) : Kt

o+ (*sar'#-r + irro.o6 
m) 2.ffi*t) - o

I

msd, - ]11o.o6 
*)'

(2 ks)(e.s ^lr2)d: iO600 
N/-)(0.06 ,r')2

d - 0.147 rrl - I4.7 cm

Student: The block moves up I4.7 cm.
T\rtor: As part of our solution, we assumed that the spring fully uncompressed. Is that consistent with
our answer?
Student: The spring needed to uncompress by 6 cm, and the block moved more than that, so we're okay.
T\rtor: Good.
Student: What if we hadn't converted the 6 cm to meters, but had left it as 6 cm?
T\rtor: Then we would have had

d-
2(2 kg)(9.8 ^lr2) 

- 2(2 ke)(e.8 ^lsz) 
- r

T\rtor: It's still a unit of length, but not one that we're really familiar with.
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An important distinction in science is the difference between
done. Consider the following conversation:

Student: I drove from New York to Boston yesterd.y.
I\rtor: How fast did you go?

Student: 2I7 miles.

the total amount and the rate at which it is

Most of us would immediately recognize that the response answered a different question, that the correct
response would be somethittg like "65 miles per hour." Now consider another conversation, about energy
but exactly the same as the previous conversation.

Student: I carried a heavy box up the stairs yesterday.
Tutor: How much power did you exert?
Student: 5000 joules.

Joules measure energy or work, so 5000 joules is the amount of work done. Power measures how fast
you do work, not the amount done. To do 5000 joules of work quickly requires a large power. To do
5000 joules of work slowly requires a small power. In each case the amount of work done is still 5000 joules.

To determine how fast the work was done, we divide the work by the time.

D_EorWrt

Power is rleasured in watts, so one watt is one joule per second. To do 5000 joules of work in 10 seconds
requires 500 joules per second or 500 watts or 500 W. Such a power would be quite a feat for a human (1
horsepower
fast.

Humans tire quickly if they try to exert more than about 70% of their maximum power. Sprinting, for
example, will tire a person much quicker than jogging. Since you can jog much longer (time) than you can
sprint, you can jog furthe doing more work - than you can sprint, even though you sprint faster. The
time you can jog is much longer.

EXAMPTE

A 1600 kg car drives 1 mile up a 5To grade at a constant 60 mph. How much power does this take?

Student: We need to know the forces, so we start where we always do. Gravity mg points down, there is
a normal force l/ perpendicular to the surface, and because there is a normal force there could be a friction
force /. Nothing else is in contact with the car, so that's all of the forces.
Tutor: Which way is the friction force acting?
Student: The only way for the car to go up the hill is if friction pushes it up the hill. If the tires are
rolling without slippirg, then it's static friction.
T\rtor: As the engine turns the tires, what would happen without friction?
Student: The tires would slip on the road, so static friction pushes the car forward and up the hill to
prevent slipping.
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T\rtor: We want to find the power of the friction force. Does the friction force do positive or negative
work?
Student: Friction points up the hill, and the motion is up the hill. Since the force is in the same direction
as the motion, friction does positive work.
T\rtor: Yes. How much work does the normal force do?
Student: The normal force is always perpendicular to the motion, so it doesn't do any work. Does the
normal force ever do any work?
T\rtor: Yes, if the surface moves. If you push on an object and the object moves, your hand moves so the
normal force of your hand does work. Or the floor in an elevator does work because the floor surface moves.
Student: But thc road surface doesn't move, so the normal force doesn't do any work.
T\rtor: How much work does gravity do?
Student: We don't need to know that to do the problem.
T\rtor: Tlue, but try applying conservation of energy anyway.
Student: If the final speed of the car is the same as the initial speed, then the total work is zero. The
normal force doesn't do any work, so gravity must do the same amount of work as friction, except negative.
T\rtor: Excellent. Does it make sense that gravity does negative work?
Student: Gravity is down, and the motion of the car is up and over. Since gravity is opposite to the
rnotiorr, I guess it has to do negative work.
T\rtor: Yes. Also, gravity by itself would tend to slow the car down, reducing the kinetic energy, so it is

doing negative work.
Student: That makes sense. So I ca,n find the work done by gravity instead of the work done by friction.
T\rtor: That would work, so long as you keep track of the signs. Which is easier?
Student: I already know the force of gravity, so I'll find the work done by gravity.

Wrns - F dcos 0 - (*g)d cos Q

Student: What is a 5To grade?
Tntor: That's when the rise over the run ts 5To, or when tan 0 - 0.05.
Student: But if the "run" is a mile, then the road would be longer than a mile.
Tntor: TYue, but not by much. For a 5% grade the difference is about one-eighth of IYo, so there is not
much error in pretending that they are the same.
Student: That's tricky. Okay, the angle of the roadway rs

tan 0 - 0.05

Student: One rnile is 1610 meters, so

0 - 2.960

?l[1/mE - (mg)dcos O - (1600 kS)(9.S 
^l12)(1610 

m) cos87.14o : I.26 x 106 J
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T\rtor: Remember that the work of gravity is negative.
Student: Oh yeah, I should have used 92.86o instead. But the work by friction is the same but positive,
and it is L.26 x 106 J.
Tbtor: Yes, now what is the power?
Student: I divide the work by the time.

t-l:#ffixffix#:6os
P :Y r'26 x 106 I - 2r x los Jlror wt 60s

Student: Is that a lot?
T\rtor: T[y converting it into horsepower.
Student: Ok y. L horsepower - 746 W.

(zrxlosw) x (##) -28hp

Student: Any car should be able to do that easily.
TUtor: Of course we left out air resistance and friction in the engine, so it's not quite that simple.
Student: Why do trucks go uphill so slowly?
T\rtor: A truck can have 40 times the mass of the car, so to go up the hill at 60 mph would take over
1100 hp.
Student: And by doing it slower, they still do the same amount of work but with less power.
TUtor: Yep.



Chapter 8

Potential Energy and Conservation of
Energy

Some types of work can be expressed as potential energy. Potential energ:f is work done in the past
that could be turned into work again. If I have lifted a rock above my head, the rock has potential
energy, and by dropping the rock I can turn the potential energy into kinetic energy. If I push a box across
a floor, pushing to keep the box moving despite friction, then the work I do goes into heating the floor and
the box (through friction), and it is very difficult to turn this energy into some other useful form of energy.
Therefore we treat gravity with potential energy, but we don't treat friction this way. There are three forces
that we comrnonly treat with potential energy: gravity, springs, and forces from electric fields (to be covered
later).

What makes potential energy useful is that the potential energy only depends on where something is, and
not how it got there. This makes potential energy easier to calculate than work.

PE-U:lTwedid

While this may appear intimidating, in practice it is easy. Consider gravity. The force of gravity is a constant
mg, so

This says that the difference in potential energy between "zero" and Kh)) is mgh. This means that it takes
mgh amount of work to move a ma^ss n'L from wherever is "zero" to the spot (hn, a distance h high.

The potential energy from gravity is

Ugravity : fngh

What is the height? We can choose anywhere to be zero height, from which all heights are measured. Every
time we use conservation of energy in an equation, the potential energy before and the potential energy after
both show up, so that only the change in potential energy matters. Therefore, we can choose any spot to be
zero height, but once we choose we must stick with that spot for the whole problem (like a coordinate uis).

The potential energy from a spring is

[ p,i.s : *f*'2

Here r is not the length of the spring, but the change in length from the unstretched, uncompressed length.
Zero potential energy occurs when the spring is neither stretched nor compressed. Then the work of a spring
from the last chapter becomes the potential energy stored in the spring.

: 
lF*' applied

Ir^ 
@g) dn - l*g*li3 - rnsh - nxs(0) : rnsh
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If we use potential energy to express the work done by a force, then we dontt include the work
by this force when we calculate the work. We use an expanded conservation of energy equation

K&+ PEi+W - KEy * PEt

where W is the work done by forces not already treated with conservation of energy. It is possible to include
Eth and E;nt, but these are dealt with by W (heat generated by friction is the same as work done by
friction).

EXAMPLE

A spring (k :900 N/-) is compressed by 31 cm and a 6 kg block is placed in front of it. When the spring
is released the block slides across the floor. The coefficients of friction between the block and the floor are

Fs:0.61 and Fk - 0.46. How far does the block slide across the floor?

Thtor: How would you like to attack the problem?
Student: I want to draw a free-body diagram, find the acceleration, and use the constant acceleration
technique to find how far it goes. Of course, there is a different acceleration when the spring is pushing on
the block.
T\rtor: As the spring decompresses, the force of the spring changes, so the acceleration changes.

Student: Does that mean that I can't use Newton's laws?

Tutor: Newton's laws are still true, but to use the acceleration would mean setting up differential equa-
tions.
Student: Yuck.
Tutor: On the other hand, if we use energy techniques, we won't need any differential equations.
Student: Ok y, I'll try energy, and I'll use potential energy for gravity and the spring.

KEr, + PEi +W - KEr t PEt

Tutor: What is the kinetic energy of the block just as the spring is released?

Student: It isn't moving yet, so the speed is zero and the kinetic energy is zero.
T\rtor: What is the kinetic energy of the block just as it stops?

Student: Wait. Shouldn't I do the kinetic energy just as the block leaves the spring?
Tutor: We could use that instant as the final time, and then use constant acceleration to see how far the
block slides. But we can also do the whole thing in one step.
Student: Sounds good. The kinetic energy when the block stops is zero.

Ttrtor: It's not unusual for two or three of the terms in the energy equation to be zero. What is the
potential energy when the block is released?

Student: Do you want the potential energy of gravity or the spring?
T\rtor: Both. To do gravity you have to pick a spot as height equals zero.

Student: I'll pick the starting spot as height equals zero. Then the potential energy of gravity is zero.
The poterrtial energy of the spring is Lrtt*'.

Tutor: What is the potential energy when the block stops /
Student: Then the potential energy of gravity is still zero, because the block is at the same height. The
potential energy of the spring is zero, because the spring is uncompressed.

Fq+ PEi+w - 54+ PEr

!rc*' +w - o
2

T\rtor z W is the work done by all forces other than gravity and the spring. What other forces are there?
Student: There is a normal force upward, and a friction force against the sliding.
T\rtor: How much work does the normal force do?

Student: The normal force is perpendicular to the motion, so it doesn't do any work.
T\rtor: How much work does the friction force do?
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Student: The work is the force times the displacement times the cosine of the angle. The displacement is
what I'm looking for, so it's a variable r.
T\rtor: Is the displacement of the block the same as the initial compression of the spring?
Student: Not necessarily. I guess I need a different variable for the displacement. I'll use y. The angle is
180', and cosine of the angle is -1, because the friction force is in the opposite direction as the sliding.
T\rtor: Good. What is the friction force.
Student: Isn't it just pmg?
Tutor: Don't skip steps now. How do you find it?
Student: I need the norrnal force, so I add vertical forces. The normal force is up and gravity is down,
and the vertical acceleration is zero, so the normal force is equal to the weight, and the friction force is p,nr,g.

T\rtor: This is the special case where there are exactly two forces and they need to add to zero. We've
seen before that the normal force is not always mg.
Student: Ok^y, so I can look for the special case of two forces and zero acceleration.

t=r*'*|r*d@)(-1) :o
2

krz (9oo N/-)(0.31 -)2a- - 1.60 m
2pmg 2(0.46)(6 kg) (e.8 ^l s2)

T\rtor: By setting the final spring energy to zero, you assumed that the spring would fully uncompress. If
friction were really strong, then the spring wouldn't get the block moving.
Student: How do we check?
T\rtor: The distance the block slid is way past where the spring uncompresses, so we're safe. We should
have checked first that the spring force was greater than the maximum static friction force.

EXAMPLE

A 2 kg block slides without friction
point 1.3 m below its starting point.

down a track. It leaves
After leaving the track,

the track at a 35o angle above horizontal at a
how far up does the block fly?

\
\

\

T\rtor: How will you attack this problem?
Student: It's the energy chapter, so I'll use energy.
T\rtor: If you weren't reading the problem in a book,
you use energy?
Student: Because the acceleration isn't constant, and

but instead on

we don't care

a test

about

or somewhere else, why would

the time.

K&+ PE;+W - KEy * PEr
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Tutor: Good. What is the kinetic energy when the block starts?
Student: It doesn't appear to be moving yet, so zero.
Tutor: What is the potential energy when the block starts?
Student: I need to pick somewhere as height equals zero. Where's the bottonr of the ramp?
T\rtor: You don't need to use the lowest point as height equals zero. T[y using the top.
Student: Okay, the block starts at h - 0, so mgh - 0.
T\rtor: What is the potential energy at the "final" position?
Student: At the maximum height, it isn't movirg, so KEy - 0.
T\rtor: We have two issues here. The block leaves the ramp at an angle, with some horizontal velocity,
and it will still have that horizontal velocity when it reaches maximum height. Therefore KEt + 0. You
need to rethink what your "final" position is, and how you are going to get to the answer.
Student: So what I need to do is find the speed of the block as it leaves the ramp, then use projectile
motion and constant acceleration to see how high it goes.

T\rtor: And where is your "final" position?
Student: Where the block leaves the ramp. The potential energy there is mg(-1.3 m). Can potential
energy be negative?
T\rtor: Potential energy is how much work you need to do to move the object from "zero" to that spot. A
negative potential energy means that the object will go there on its own, that you could even get work out
of the process. The block will slide down the ramp on its own, gaining speed. It's possible to extract that
energy later.

f4+I-4+w - KEy *ms(-1.3 m)

T\rtor: What is the final kinetic energy?
Student: L*r?. We don't know u, but we hope to solve for it.
Trrtor: What is the work done by all forces other than gravity?
Student: Why not gravity?
T\rtor: Because we already took care of gravity by using potential energy.
Student: Right. The other forces are the normal force and friction. The normal force is perpendicular to
the motion, so it doesn't do any work. And there's no fricticln on the track.

Wt + P4 + W :'r*r' i ms(-1.3 rn)

;rr' - rtg(1.8 m)

- 5.05 m/s

Student: When the block leaves the track it is moving at 5.05 m/s.
T\rtor: How much of that is in the horizontal direction?
Student: The horizontal is adjacent to the angle, so

?)r - (5.05 mls) cos35o - 4.13 m/s

aa - (5 .05 mls) sin 35o - 2.90 m/s

T\rtor: How fast is the block going when it reaches maximum height?
Student: You rnentioned that it would still be moving horizontally. At maximum height it is going
4.13 m/s horizontally and it's not moving vertically.
Ttrtor: And because we donit care about the time, we can use energy to see how high it goes.

Student: But the acceleration is constant, so we don't need to use energy.
T\rtor: But we can use energy, even if we have a constant acceleration. If the acceleration isn't constant,
then we may need to use energy.
Student: Ok y. Taking the start when it leaves
finish when it reaches maximum height

the track, calling that the new height equals zero) and the

(2)(e.8
^ls2) 

(1.3

KEt,+ PEi+W : KEy * PEt
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fotA.o5 
m/r)'+ rtg(o) + (o)

|o.05 m/s)2+ - |r^.rr mls)2 + sh

h- #(rr.05m/r)'- (4.n m/s)2) -0.48m

EXAMPLE

A 65 kg man bungee-jumps off of a platform. The bungee cord is 20 m long and has a spring constant of
60 N/m. What is the greatest distance below the platform that he reaches after leaping from the platform?

Student: The bungee cord acts like a spring, so the acceleration won't be constant and we'll use conser-
vation of energy.
T\rtor: Good. First you need to pick "initial" and "final" positions.
Student: The start should be at the top, when he first jumps. The end is where he reaches his lowest
point.
Thtor: If we want to know where his lowest point is, then it helps if that is one of the points. What are
you going to use as height equals zero?
Student: I'm going to use the top, where he jumps from. That means that his potential energy at the end
will be negative, but that's okay.
T\rtor: You mean the potential energy from gravity; there's also the spring involved. What is the kinetic
energy at the start?
Student: He isn't moving yet, so it's zero.
T\rtor: What is his kinetic energy at the end?
Student: The lowest point is when he isn't moving, so that's also zero.

W+PE.+W -Y4+PEf
T\rtor: Correct. If he were still going down, he wouldn't be at the lowest point yet. If he were going up,
he would be past it. What is the potential energy at the top?
Student: The spring hasn't been stretched yet, and he is at height equals zero, so both types of potential
energy are zero.

P4+w - PEr

T\rtor: What is the work done by forces other than gravity and the bungee cord?
Student: There aren't any other forces, because he's not in contact with anything, right?
T\rtor: Right, so the work is zero.

V-PEr
Student: That means that PEt is zero. How can that be?
Tntor: There are two types of potential energy, and at the end they must add up to zero. What is the
potential energy at the end?
Student: We don't know how far he's fallen, so let's call it r. The height at the end is negative, so the
gravity potential energy is mg(-"). The spring potential energy is Lrtt*'.
Thtor: Does the bungee cord stretch the same distance that he falls? Does it begin stretching immediately?
Student: No, he falls 20 m before it starts stretching. The bungee cord stretches r - (20 m).

o- t*g(-")l + l;r("- eo''))']
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_brrm
4-,- 2" - 2(1)

fi : 7.4 ot 53.8 m

Student: How can there be two answers?
Tbtor: Which one do you want?
Student: The bungee cord is 20 m long, so it has to be 53.8 m.
Tlrtor: The other answer would occur if the bungee cord could be compressed.
Student: So if he bounced back up, and the bungee cord compressed instead of going slack, then he would
reach a spot 7.4 meters high.

CHAPTER 8. POTENTIAL ENERGY AND CONSERUAflON OF ENERGY

mg(r):rr(.- (20 *))

'#: n2 -2(2om)r+ (20 m)2

12 + l-, eom) - '#ln*(20 *)'- o

12+l-,Qom)- ]"* Qom)z-o

12 + (-61.2 *) u * (400 *2) - 0



Chapter 9

Center of Mass and Linear
Momentum

This chapter is about a second conservation law, conservation of momentum. In order to explain momentum,
we begin by explaining center of mass.

So far, all objects have been "point" particles. They act as if all of their ma^ss is at a single point. Most real
objects are not like this - their mass is spread out. For many purposes it is possible to treat objects a^s point
particl as if all of their ma^ss is at a single point. When this happens, that point is the center of mass.

To calculate the location of the center of mass, we do a "weighted average." Divide the object into pieces,
and for each piece, multiple the mass of that piece by its coordinate. Sum the product for all of the pieces,
and divide by the total ma"ss.

E6rimi
ffcM : 

Etmt

Some things to keep in mind:

o You get to decide how to divide the pieces.

. For each piece, you use the coordinate of the center of mass of that piece.

o You get to choose the coordinate axes, but as always you have to keep the same axes for the whole
calculation.

. Wise use of symmetry can simplify the calculation considerably.

How do you use symmetry? Consider a uniform square. "Uniform" means that the ma^ss of the square is
spread evenly across the square, the same everywhere. Pick a point, not the center, and let's use symmetry
to check to see if that point is the center of mass. Draw an imaginary line vertically down the center of the
square, and rotate the square 180o around this line. The square looks the same, so the center of mass must
be in the same place as it wa"s before. If the center of mass had moved, then we would have two centers of
mass for the same object. If the point you picked was on the vertical line, then it is in the same place as it
wa,s and it could be the center of mass. If the point you picked was not on the vertical line, then it is not in
the same place as it wa^s, and it could not be the center of mass. By using symmetry, w€ have determined
that the r coordinate of the center of mass is in the middle, without doing a calculation.

7I
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I

EXAMPTE

y (cm)

Find the center of mass of the four objects.

x (cm)

Student: So I take each object and add it up?

1+3 +4+2: L0 ?
T\rtor: Flor the denominator, you do that. In the numerator you multiply each mass,by its coordinate.
Student: Where are the arces?

Tbtor: You get to pick them. What would you like?
Student: I'll pick the biggest mass to be the origin, with s to the right and y up.
T\rtor: Because you have two axes, you have to do them separately. First do the r anis and then do the gr

a>rig.

Student: So I multiply the mass of 3 by the o coordinate of 0, and I get zero?
T\rtor: Yes. If that was the only mass, then the numerator would be zero, so the center of mass would be
at zeto. .
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Student: Which is where the object is. But I have to do that for all of them.

scM: : ff:O.gcm
Tutor: Now do the y coordinate.
Student: For the 1 kg object, do I use *1 or -1 m?
Tutor: If the object were at (0,+1), would the location of the center of mass be different?
Student: Yes, so I need the negative.

ucM - - 
nll u* : o.g cm

10 kg

T\rtor: Which object is located at the center of mass?
Student: None of them.
T\rtor: The center of mass doesn't have to correspond to one of the objects.

EXAMPLE

Find the center of mass of the uniform triangle.

Student: It's just one piece! How do I do the equation for each piece when there's only one piece?
Tbtor: Can you use symmetry to find the center of mass?
Student: If I flip it topto-bottom, it looks the same, so the center of mass has to be on the horizontal
a)cis.

thtor: What if you flip it left-teright?
Student: It doesn't look the same. That means that the center of mass isn't halfway along the horizontal
a>ris.

Tntor: It means that the center of mass doesn't haae to be there. It could be there but there's no rea.son
to think that it is.
Student: So the gt component of the center of mass is at y - 0, but we don't know where the r component
is, and it's only one piece.
TUtor: You need to divide it into pieces yourself, where you carr determine the ma.ss and location of each
piece.
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*

T\rtor: Divide it into a lot of pieces, and then each piece is small enough that we can call it a rectangle.
Then we add up all of the pieces.

Student: That sounds like an integral!
Tutor: Yep. What is the width of each piece'/

Student: Each piece is dr wide.
T\rtor: Yes. What is the height of each piece?

Student: They aren't all the same height.
T\rtor: That's right, they aren't. Given that a piece is located at r, how high is it?
Student: Well, the bigger r is, the greater the height of the piece.

T\rtor: Yes, also it's linear, so that the height is proportional to r. At r _ 0, the height is zero) and at
r - B' the height is 2.

Student: If it'slinear, then h-Cr, whereCisaconstant. If theheightis2 atr -8,thenthatconstant
needs to be i, so the height of each piece is Ir.
Ttrtor: Good. To find the mass of a piece, we multiply the area times the density. That is, we multiply
the square meters by the kilograms per square meters, and get kilograms.
Student: What is this density? It isn't given.
T\rtor: True. Hopefully it will cancel, or we won't be able to do the problem. Make up a variable for it.
Physicists tend to use d or p for densities.
Student: Okay, the density is d. Then the mass of a piece is the area times the densityr or (i* * d*)(d).

,ff f Ln* * d*)(d) . , i d ,ff 12 d,r ff *2 a*

ff f i* * d,r)(d) i6 t: r d,r [f r d,r l+rr]t,

ff *2 a*
rCM

T\rtor: Does the result make sense?

Student: How should I know?
T\rtor: Well, could the answer be more than 8?

Student: No, all of the mass is to the left of 8.

Tutor: Could the answer be less than 4?

Student: No, more of the mass is on the right side, and further to the right.
Ttrtor: Is the answer between 4 and 8?

Student: Yes, it's about 5. So it works.
T\rtor: At least it passes the sanity test.

Just as energy is conserved, so is momentum. When a large truck collides head-on with a small car, we
expect to see the car bounce backwards while the truck continues on. This is not because the force of the
truck on the car is larger than the force of the car on the truck - the forces are the same. Instead, this is
because the tnrck has more mornentum than the car.
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Conservation of momentum looks very similar to conservation of energy. The equations have the same
general form and the techniques are the same. Momentum is the product of mass and velocity.

F-md

Impulse is the name given to the change in the momentum, which thus has the same units a"s momentum
( kg m/s or N t). The basic equation is

Fn+j-Fr
j-Ft

where -i ir the "impulse," or change in momentum.

One difference between momentum and energy is that momentum is a vector, so it has direction. In the car

- truck head-on collision, one of the vehicles has a positive momentum and the other has a negative. The
truck has more momentum, so the total momentum is in the direction that the truck is going. After the
collision, the total momentum is also in the direction that the truck was going.

When we find the momentum, we can either calculate it for one object or for a group of objects, often called
a "system." Consider a system of two objects. If they create a force on each other, then the forces are equal
and opposite. So the impulses that they exert on each other are equal and opposite. Whatever that impulse
is, the impulse of A on B plus the impulse of B on A add to zero. So any forces between the two bodies
of our system don't change the momentum of the system. (The center of mass of the system keeps moving
with the same velocity.) The result of this logic is that conservation of momentum works particularly
well for collisions.

EXAMPTE

A 2500 kg train car moves down the track at 5 m/s. It hits and couples to a second (stationary) train car of
3500 kg. What is the speed of the train cars afterward, and what was the impulse that the second car gave
to the first one?

T\rtor: How are you going to solve this problem?
Student: There's a collision, which is a tip-off to try conservation of momentum.
T\rtor: Good. Are you going to use the momentum of one of the train cars or of the two together?
Student: What's the advantage of doing the two together?
T\rtor: If the train cars exert forces on each other, these forces will cancel if we do them together. Do they
exert forces on each other?
Student: They certainly do. So I want to do them together.

Fe+J--Ff
Tntor: What forces act on the train cars?
Student: They push on each other, of course. Also, there is gravity and a normal force on each. These
might be equal.
Tutor: We could try to figure out if they're equal. Instead, what are the directions of gravity and the
normal force?
Student: They are both vertical.
T\rtor: So if we only consider the horizontal component of the momentum, then we don't have to worry
about them at all.
Student: Cool. All we need is the forces they create on each other.
T\rtor: Correct, and those forces are equal, so they add to zero.

Pu,* Pzt* @A-ffif -E -ffiA - Ptf a PzI

Prr*Pzt-PtfaPzf
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Tutor: What is the momentum of the first car before the collision?
Student: The momentum is mu, so (2500 kS)(5 m/s).
Tutor: What is the momentum of the second car before the collision?
Student: It wasn't moving, so its momentum is zero.
Tutor: What is the momentum of the first car after the collision?
Student: Momentum is ma, but we don't know the velocity. I'll use u1 for the velocity of the train car
afterward.

(2500 kg)(5 m/s) + 0 - (2500 kg) ut * Pzf

Tutor: What is the momentum of the second car after the collision?
Student: We don't know its velocity either, so I'll us€ u2 for that.
Tutor: The two train cars couple together. Does that mean anything?
Student: They have to have the same velocity afterward?
T\rtor: Yes.

Student: So u2 - u1, and I only have one variable.

(2500 ks)(5 m/s) - (2500 kg)rr + (3500 kg)u1

(12500 ks -/s) : (6000 kg)rt

u1- (12500 kq m/s) 
- 2.08 m/s

(6000 kg)

T\rtor: Can you tell from your result which way the train cars go?

Student: Well, if the first car is originally moving to the right, shouldn't they move off to the right?
T\rtor: Yes. Can you express that same thought, using the word "momentum?"
Student: If the initial momentum is to the right, and there is no impulse from outside forces, then the
final momentum is to the right.
Tutor: Very good. Do your numbers say the same thing? Keep in mind that you used an axis but you
didn't explicitly say what you were using.
Student: Oops. So when I said the velocity of the first car beforehand was positive, I picked that as the
positive direction?
I\rtor: Yep. And when the final velocity was positive. . .

Student: Then the train cars rnove in that same direction. How do I find the impulse?
T\rtor: Repeat the conservation of momentum equation, but for just one car.
Student: So using the first car

Pu, * J2 on 1 - Prf

(2500 ks)(5 m/s) + J2 on 1 - (2500 kg)(2.08 m/s)

Jz on 1 : -7292 kg m/s

Student: Why is it negative?
T\rtor: Which way is the force that the second car exerts on the first?
Student: Against the initial velocity, so it should be negative.
T\rtor: And Jt on z is positive, so that the final momentum of the second car is positive.

EXAMPLE

A 72 Ib boy on a skateboard throws a 16 lb bowling ball to the right at a speed of 8 mls compared to him.
What is the boy's velocity after he throws the ball?

Student: This doesn't sound like a "collision." Why do I want to use momentum for this?
Tutor: Do you know the force that the boy applies to the bowling ball?



77

Student: No, do I need to know it?
Ttrtor: By using conservation of momentum, you can eliminate forces that two objects put on each other.
You won't need to find the force. It's true that momentum works well for collisions, but that's because using
momentum gets the forces between colliding objects to cancel.
Student: So I want to use the combined momentum of the two objects, boy and bowling ball.

Fn+j-Fr
T\rtor: Correct. What are the forces acting on them?
Student: The boy pushes on the bowling ball, and the bowling ball pushes back. These forces are opposite
and equal, so they cancel. There is gravity and a normal force on the boy. These are vertical, so we do only
horizontal momentum and they disappear.

Pu*Pzr:PrfaPzf
T\rtor: What is the momentum of the boy beforehand?
Student: He isn't movirg, so it's zero. The bowling ball isn't moving either.
T\rtor: What is the momentum of the boy afberward?
Student: Momentum is mu. We don't know his velocity, so I'll use a variable.

0 + 0 - mboyuboy * ?Tuballubau

0+0- (72 lb)uboy+(16 lb)u6"11

Student: Do I need to convert pounds into kilograms?
TUtor: You can keep them as they are for now, and see how they work out. What is the velocity of the
bowling ball after he throws it?
Student: 8 m/s to the right. I'll use to the right as the positive direction, so it's *8 m/s.
T\rtor: The 8 m/s is with respect to the boy, or a^s mea^sured by the boy.
Student: Ah, so I need to find the velocity compared to the ground.

u^q.g:UAC*uCg

,o",t,tt - uboy,ball * uball,gt

uball,boy - -u6oy,ball

uboy,gr - -Ugall,boy * Ub.ll,g,

uboy - -(8 m/s) + ubau

r,rtor: Now we have an equati: -:l l]l;i:::iub'v 
+ (8 "'/'))

Student: So we can solve it.

0 - (72 lb)uboy + (16 lb)uboy * (16 lb)(8 m/s)

(88 lb)?rboy - -(16 lb)(S m/s)

uboy
(8slb)

Tutor: What does the negative result mean?
Student: It means that the boy goes in the negative direction, so he goes to the left.
Ttrtor: Does that make sense? Remember that the initial momentum was zero.
Student: And the impulse was zero) so the final momentum needs to be zero. If the bowling ball goes to
the right, then the boy needs to go to the left.
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In some collisions, the kinetic energy is conserved. When two billiard balls strike, the total kinetic energy
before the collision is the same as after the collision. When two cars strike, some of the kinetic energy goes
into other forms of energy, such as heat or denting the cars. An elastic collision is one where the
kinetic energy is conserved. An inelastic collision is one where some of the kinetic energy is turned into
other forms of energy.

Because elastic collisions are somewhat common, and because of the unpleasantness of solving simultaneous
equations (especially with squares in them), physicists do something they don't often do - work out the
result and reuse it the next time. If object 1 collides elastically with object 2, then their velocities afterward
will be

I mt - TTLz 2mZ
-I -l- 

- 

u4

u:t--ryaoz*W,,,z mt*mz - T\*mz
or, if object 2 is stationary before the collision,

ul mt*mz
To use these equations, the positive direction for

and uL : 2mL 
armt*mz

each object must be the same.

How do you tell if a collision is elastic or not?

o If the problem says that the collision is elastic, then the collision is elastic (really).

o If the two objects stick together, then the collision is not elastic.

o If one object passes through the other, then the collision is not elastic.

. If you can solve the problem using only conservation of momentum, then there is no need to worry
whether the collision is elastic.

o After that, use your experience with the objects in question: are they likely to bounce off of each
other (elastic) or is some of the energy likely to be turned into heat (not elastic)?

EXAMPLE

A 4000 kg truck is coming straight at Joe at 14 r.r'ls. He throws a 0.3 kg rubber ball at the truck with a
speed of 10 m/s, and it bounces off of the truck elastically. After the ball bounces off of the truck, how fast
is the ball going?

Tutor: How are you going to attack this problem?
Student: There's a collision, so I'm going to use momentum. The ball and the truck put forces on each
other, but if I use the momentum of them together those forces cancel out. All of the other forces are vertical,
and by looking at the horizontal component, they go away.

Pu*Pzt:PtfaPzf
Trlbattuball I TTltruckutruck - Trlballufu,rt * TTltru.ku{r,r"k

(0.3 kg)(10 */s) + (4000 kg)(14 m/s) - (0.3 kg)uf.1 * (4000 ks)u|,,,"r.

T\rtor: Before the collision, are the ball and the truck going the same direction?
Student: No, they have a head-on collision.
Tutor: So one of them has to have a negative initial velocity.

?
o
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Student: I forgot to choose an axis! I'll take the direction that the ball is thrown a^s positive.

(0.3 kg)(10 m/s) + (4000 ks) ?14 -/s) - (0.3 ks)uf., + (4000 kg)u|,,,.r.

Tutor: Can you solve the equation?
Student: I guess not; I have one equation and two variables. I need another piece of information.
Tutor: The piece you are missing is that the collision is elastic.
Student: That means that I can write down the kinetic energy before and afber, set them equal, and get

another equation.
T\rtor: Yes, that is what it means. To avoid all of that work, you could just use the elastic collision
equations.
Student: Yes, that would be easier.

tl : TrLt - TTLzt'l * '*' ,',- mt*mz mttmZ

aLu,- 
?T}ball - ?truck uba, * --- 2*y'I-u-+ 

utruck
ITL6all * ?7)truck Tflball * ?T}truck

uf,,u : (10 rrr/s) + erum/s)

uf,., : (-sggg'z Eq) (10 m/s) + ,(tooo,ltl, (-1 amls)

-(4ooo^3 

kg) t' (4ooo.3kg) \ rzrl

uf,u' : ffi (10 m/s) + ffi (-1 a mls)

ulu,n

T\rtor: What does the minus sign mean?

Student: It means that the ball bounces in the direction that the truck was originally going. Why is the
speed so much faster than before?
Tutor: Ah, it's dangerous to throw a rubber ball at an oncoming truck. Look at the problem from the
truck's point of view. What does the truck driver see?

Student: He sees a ball coming at him at, oh, 24 mls.
T\rtor: Yes, and how much does the ball change the truck's momentum?
Student: None at all.
Tutor: If the truck puts a force on the ball, then the. . .

Student: . . . ball puts a force on the truck, equal but opposite. The ball accelerates more because it has

less mass. The truck's momentum must change, but not very much.
T\rtor: Correct. So he sees the ball bounce off at about 24 mls. If he's coming at you at 14 mls and he

thinks the ball is coming at you at 24 m/s, then what do you see?

Student: I see the ball coming at me at 38 m/s.
T\rtor: Mathematically what we do is switch everything to the "center of mass" frame of reference. The
truck's frame is almost the center of mass frame here. The idea here is the same one used to "slingshot"
space probes around planets to gain speed. 

,
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EXAMPLE

A 0.85 kg ball on the end of a 35-cm-long string falls and hits a 0.56 kg block of putty. The block sticks to
the ball. What is the speed of the putty after it is hit by the ball?

Student: There's a collision, so we need conservation of momentum. The putty and ball stick together,
so it's not an elastic collision. Other than the forces that the ball and the putty put on each other, all other
forces are vertical, so I'm going to use horizontal momentum.

Pu*Pzr-Pry*Pzf
Tttbatluball * ITlputtyuputty : (-u.tt * ?'rlp,rttv) uf,u,ll+putty

T\rtor: All well and good. What is the velocity of the putty before the collision?
Student: It isn't moving, so uputty - 0.

Tftbuttubalt * mpttty'upaff - (-u"tt * ?7zp,rttv) 'uf,all+putry

T\rtor: What is the velocity of the ball before the collision?
Student: The problem doesn't say. That means I have one equation but two unknowns.
T\rtor: What do you know about the ball?
Student: It starts 35 cm high and falls in an arc until it hits the putty.
T\rtor: How can we find the speed of the ball after it falls?
Student: Conservation of momentum, I assume?
T\rtor: What are the forces on the ball?
Student: Gravity and tension.
Tutor: The tension force changes as the ball falls, both in magnitude and direction, and we need to know
the time it takes to fall.
Student: That looks hard.
Tutor: It is hard. How much work does the tension do?
Student: Work? I thought work was in the last chapter.
T\rtor: It was, but we can still use it. We're allowed to use all of the techniques we've learned. Just
because it's the momentum chapter doesn't mearr that we can only use momentum.
Student: Okay, the work from the tension is zero because the tension is perpendicular to the motion.

K Euurc." * P Ea"to." * W - K Eutter * P Earte,

1 . .,) 1

i^r^t (0)' I ma^1gh : t*o^r(r)' * rftaulg(0)
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sR: |{ro^r)'

ubau : \m, - tlz(g.8 ^ls2)(0.35 
m) - 2.62 mls

T\rtor: Now you have the speed of the ball just before the collision.
Student: I'll choose the direction of the ball as positive, stick this in the momentum equatior, and solve
for the final velocity.

ITlbanuball : (-urtt * ??zputtv) uf,all+putty

(0.85 ks) Q.62 -/s) - ((0.85 ks) + (0.56 kg)) uf"u+putty

(2.23 ks -/s) : (I.41 kg)u'

u, : (2.?g-\e.mJ/s) _ 1.b8 m/s
(1.41 kg)



Chapter 10

Rotation

Sometimes things move, but sometimes things rotate (and talented objects can do both at the same time).
Everything we've done so far also applies for rotation, using the same equations, but with different variables.

fr+
a+
a

rTL

F->
P->

0 (Greek
u (Greek
a (Greek
I
r (Greek
L

"theta" )
ttomegatt 

)
"alpha" )

ttau" 
)

angular displacement
angular velocity
angular acceleration
angular mass - rrrorrrent of inertia
angular force - torque
angular momentum

Every equation we've had will also have an angular equivalent. For example, force equals ma,ss times
acceleration (F: rna), so angular force equals angular ma"ss times angular acceleration (, - Io).

An object can have a velocity, which is the change in its position. It can have an acceleration, which is how
fast the velocity is changing. It can have an acceleration even if the velocity is zero: throw something (other
than this book) straight up, and at the instant that it is at its peak height the velocity is zero but changing,
so that there is an acceleration. We've done all this before.

It's all true for rotation as well. An object can have an angular velocity, which is the change in its angular
position or angular displacement, or how fast it is spinning. It can have an angular acceleration, which is
how fast the angular velocity is changing - is the rotation speeding up or slowing down? It can have an
angular acceleration even if the angular velocity is zero. Roll a basketball or other round object up a ramp,
and at the instant that it is at its peak the angular velocity is zero but changing: it was rotating one w&y,

is not rotating now, and is about to rotate the other way. There is an angular acceleration.

If the acceleration wa,s constant then we could solve a number of problems with a few short equations. We
could solve problems where the acceleration wasn't constant, but that was harder. All of the equations we
used for constant acceleration work for constant angular acceleration as well - 

just replace the variable with
the angular equivalent. Just like constant acceleration, if we know any three of the five rotational variables,
then we can solve for the other two.

U -'UO - At

Ar-uot*Lrat2
A,r-,l.(uo*u)t
u2 - u3 :2a Ar

-+ U-UO:At

-) A0 - uot + iolt2
+ A0 - *(ro*w)t
+ a2-r3:2crA0

82
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We could mea"sure lengths in many different units, such as meters, inches, or miles. We can also mea^sure
angles in many different units, with the most common being degrees, radians, or cycles. Once around is
one cycle, 360 degrees, or 2r radians. With lengths, it didn't matter what unit we used, so long a,s we kept
track of the units. Sometimes it became necessary to use meters, because a newton is a kilogram meter per
second2. With angles, it doesn't matter which unit we use, so long as we keep track of the units. Sometimes,
though, it becomes necessary to use radians (more on this later).

EXAMPLE

A turntable starting from rest rotates 5 times while accelerating to 48 rpm (rotations per minute). What is
the angular acceleration of the turntable, in radians/s ec2?

T\rtor: What is happening here?
Student: Constant angular acceleration.
Trrtor: How do we solve constant acceleration problems?
Student: If we know three of the five variables, we can solve for the other two.
T\rtor: Start by writing down the five variables.

I\rtor: What is the angular displacement A0?
Student: 5 rotations, or cycles. Do I need to convert that to radians?
T\rtor: Not necessarily. Let's keep it and see what happens. What is the initial angular velocity?
Student: It starts at rest, so zero.
lhtor: What is the final angular velocity?
Student: 48 cycles per minute. We know three, so we can solve.
T\rtor: Is it positive 48 or negative 48?
Student: Uh-oh, w€ didn't choose an axis. We have to do that even in rotation?
Tutor: Yes. Typically we use clockwise or counterclockwise as positive. The problem doesn't s&y, so the
question here is whether the final angular velocity is in the same direction as the angular displacement, and
has the same sign.
Student: It has to be in the same direction, so c.r is positive.
T\rtor: More precisely, it has the same sign as A0.

Ar L0 : 5rotations
ug+ug
a + u - 48rotfmin
a-+a:?
t-)t-

T\rtor: We want to find the angular acceleration, of course Do we know the time?
Student: No, but that's okay. We don't care about the time, so we choose the equation that doesn't
include the time.

L,r -) A0 -
ug ug
a+u-
aa:
t+t:

u2 -r3:2a A,r 
-) 

,2 -r3:2a A0
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a

(48

,,_r3
2L0

rctf min)'- (0)'
2(5 rot)

a - 230 rotf minz

Student: We wanted the angular acceleration in radians/sec2.
T\rtor: So now we have to convert.
Student: Okay. There are 2r radians in a rotation, and 60 seconds in a minute.

/ rot \ /2r rad\ /I min\2a- (230ffi)(t*/(.*/
o - 0.40 radf s2

T\rtor: Should the angular acceleration be positive?
Student: It should be in the same direction as the angular displacement, so it should have the same sign.

Sometimes we need to connect the angular motion with the linear motion. Imagine, for example, that we
put a small drop of paint on the wheel before it rotates. We might then ask the question "how fast is the
drop of paint moving?" Note that the velocity of the paint is constantly changing, because its direction is
changing, but if the angular velocity is constant then the speed of the paint drop is also constant.

The further out from the pivot point (or axle) the paint is, the further it must move in each rotation, and
the faster we expect it to move. Since the distance covered is 2rR for each rotation, the speed is

u - 2r R x (rotations per second)

By choosing the unit for angles to be 2r radians per rotation, this becomes:

Lr:RL0
u-Rw
a- Ra

If we had chosen some other unit for measuring angles, then the above formulas would need to include an
extra constant; by using radians we get beautiful, simple formulas. This means that we must use radians
whenever we use one of the formulas above. Sometimes we use one of them without knowing it, so the
general rule is that we use radians whenever there is a length in the proble any length.

EXAMPLE

A  2-cm-diameter wheel is rotating with an angular speed of 120 rpm. It is slowing with an angular
deceleration of 52 radf s2. What is the (linear) acceleration of a point on the edge of the wheel?

T\rtor: What is happening in this problem?
Student: The point is moving in a circle. When something moves in a circle, there is an acceleration uz lr.
T\rtor: But above we saw that o, - re..
Student: Yes, that must mean that the two are equal, so u2 l, - re, right?
Tutor: But if something moves in a circle at a constant speed, a is zero. Then the acceleration is zero,
even though the velocity is changing?
Student: That can't be right. What's going on?
Tutor: As the wheel turns, a point on the edge moves. If the wheel turns faster, then point on the edge
has to move faster. As the rotation accelerates, the point accelerates. This acceleration is in the direction



of the motion of the point, or tangent to the circle. The acceleration a
made the point go in a circle. The acceleration a - ra makes the point
Student: So the two are perpendicular to each other?
T\rtor: Yes, always.
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: u2 f r was toward the center and
go in a circle faster.

Student: If they are perpendicular to each other, how can they cancel out?
Tntor: They don't. Whenever the wheel is turnirg, the point on the edge has u2 lr.If the rotation rate is
changing, so that the wheel spins faster or slower, then the point on the edge has rCI a"s well.
Student: And to find the total acceleration we have to add them.
T\rtor: Remember to add them as vectors.
Student: I see you've draw the coordinate axes. Why not r and y, and why can't the one be in so that
the acceleration is positive?
T\rtor: Because the point is movirg, we rotate the axes so that one of them points along the radius. We
call this the "radial" directior, and it is traditional to point it outward, in the radial direction. The other
axis is tangent to the circle, and is traditionally called 0 or sometimes 0.

Student: Ok y. The "radial" acceleration is inward, so it's negative.

T\rtor: We can substitute u - ru.

0R: -?')':-ru)2
Student: That's easier, because we have u.

0R:_(,r1 cm) (.ih))

u2oR: r

(ttoo rotlmin)

aR : -33 ^ls2
Student: Now we can do the "tangential" acceleration.

aT: Ra

ar : (0.21 m) (52 radls2)

ar - II ^ls2

VT
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T\rtor: We can express the acceleration vector using unit vectors.

CHAPTER 70. ROTATION

d,-ani*atd

d - (-33 
^ls2)i-+ 

(11 ^1"\6
Student: The radial and tangential parts are perpendicular to each other. To find the magnitude of the
vector I use the Pythagorean theorem.

t

ldl - { e3B m/"')2 + (rr ml"')2

ldl : 35 
^ls2

The angular equivalent of force is angular force, called torque. T[y opening a door by pushing near the hinge
rather than at the handle. You will find that the door does not open as easily or quickly, or perhaps even at
all. The further a\May from the pivot point the force is applied the greater the torque.

The torque a force creates is equal to the force times the moment arm times the sine of the angle between
them:

r - FBsin@

The "moment arm" is the line from the pivot point to the spot where the force is applied. If the force is
parallel or antiparallel to the moment arm, it does not cause the object to spin and the torque is zero. There
are variations on this method, and we'll explore them in the example below.

Torques can be positive or negative. Like velocities and accelerations, w€ get to pick the positive direction
and a negative torque is one in the other direction. Once we choose the positive direction we need to
stick with that direction for the whole problem. Physicists usually choose counterclockwise as the positive
direction, but it's not necessary to do that.

Hoop about
central axis

Solid cylinder
(or disk) about

central axis

Thin rod about
axis through center

perpendicular to
length

Slab about
perpendicular
axis *rrotrgh

center

7 = f,MRz

Solid sphere
about any
diameter

I =+rM(az + b2'1
Ii t =lMRz
I

1= ]2ML2
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EXAMPLE
F

Find the total torque applied to the shape around the pivot point.

Student: How do we do torques?
TUtor: We find each torque, and add them like we would forces.

Student: Does that mean we need to find the components of each torque?
Tlrtor: In advanced problems that is needed, but for most problems we just have clockwise and counter-
clockwise. What is the torque that the I N force creates around the pivot point?
Student: th.t. is a force of g N, it is applied 5 m from the pivot point, and there is a right angle between
them.

r\rtor: rs that torque in the ;;: .: :;:TIHfi .11];ll 
. -

Student: How do I tell?
T\rtor: Start at the force arrow and trace a circle that goes around the pivot point. Do you trace in the
clockwise or counterclockwise direction?
Student: Counterclockwise.
T\rtor: And is it a positive or a negative torque?
Student: I need to choose a positive direction. I'll pick counterclockwise a,s positive, so the 45 N.m is
positive.
Tutor: Good. What is the torque created by the 7 N force?
Student: There is a 35o angle between the 3 m "moment arm" and the force, so

r - FRsin@ - (7 N)(3 -) sin35o - 12 N.m

Student: If I start in the direction
so it's a negative 12 N torque.
T\rtor: What is the torque created
Student: The angle is 0o, so

of the 7 N force arrow and go around the pivot point, I go clockwise,

bythe4Nforce?

- FRsin@ - (4 N)(2 -) sin0o - 0 N.m

Student: How can a force create no torque?
T\rtor: If the 4 N force was the only force on the object, would it rotate around the pivot point?
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Student: I guess it wouldn't.
T\rtor: Right. It's like pulling a door outward from the hinges - it doesn't rotate. What about the 8 N
force?
Student: The moment arm is 6 m, but there is no angle.
T\rtor: The torque is the moment arm times the part of the force that is perpendicular to the moment
arm. Or, the torque is the force times the part of the moment arm that is perpendicular to the force. Look
atthe5mline.
Student: So the 5 m line is the part of the 6 m line that is perpendicular to the 8 N force?
T\rtor: Yes, the line from the pivot point that is perpendicular to the line of the force.
Student: So the torque is

student: And it goes .ro"r.o,li,; fflilf ;:";;H:;],;:ff meter-newtons, or do we have
to use N.m for Newton-meters?
Tutor: The problem with mN is that it could mean a force of a milli-newton. What is the torque from the
force that is 4 m away from the pivot?
Student: We need the part of the force that is perpendicular to the moment arm, so

student: And it goes crockw;-J:L1r:J:l: 
(5 N)(a -) -20 N m

T\rtor: What is the total torque about the pivot point?
Student: We just add the torques, so

r - 45 N.m - 12 N.m * 0 N.m - 40 N.m - 20 N.m _ -27 N.m
I

Just as Newton's second law says F - ma) so the same equation holds with the angular equivalents: T - Ia or
angular force equals angular mass times angular acceleration. The angular mass is called moment
a combination of moment arm and inertia. The moment of inertia is equal to

I-

We divide the object into tiny little pieces, then for each piece multiply its mass times the square of how far
from the pivot point it is, then add all of those together. We need to use lots of tiny pieces so that each piece

is all the same distance from the pivot point. Fortunately, many common shapes have simple moments of
inertia, and it's much easier to look them up than to figure them out every time. See the table for common
shapes.

Sometimes you might want to rotate one of these objects about a point other than the center. The moment
of inertia of a circle (or disk) about its center is I - iU n', but what if it rotates about a point on its edge
rather than its center? The parallel axis theorem tells us that

I-lcu+Md2

or the moment of inertia about any point on an object is equal to the moment of inertia about its center of
rnass plus its mass times the distance the pivot point is from the center of mass. So a disk rotated about a
point on its edge would have a moment of inertia of I - /cvr + Mdz: LrUn'+ MR2 - |MR'.

tmr?
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EXAMPLE

A boy leaving a store pushes on the door handle
mass of 7.2 kS. The boy pushes perpendicular to
to open (rotate to 90')?

with a force of 18 N. The door is 0.78 m wide and has a
the surface of the door. How long does it take for the door

T\rtor: If this were linear motion instead of rotation, how would you approach it?
Student: If I can find the acceleration, I can do a constant acceleration problem to find the velocity. To
find the acceleration, I need the force and the mass.
T\rtor: Good, but with rotation. . .

Student: To find the angular acceleration, I need the angular force (torque) and the angular mass (moment
of inertia).
T\rtor: What is the torque?
Student: There is only one force, and it is applied at a right angle at the edge, so

*rtor: rhere are other,";;;Tl1;li;j:,T]'l;1l,Tl;,:l|"?rce from the pivot occurs at
the pivot point, so the moment arm is zero. Gravity doesn't cause the door to open or close.
Student: So the other forces don't create any torque. Do I need a positive direction?
T\rtor: Since everything is happening in the same direction, we can call that positive and not worry about
it any more. If there was another torque, like friction at the pivot, then we would have to be careful about
direction.
Student: From above the door looks like a rod, so the moment of inertia is

/doo, : iM L2 - $fT.2 kgx0.78 m) 2 - 0.468 ks *' ?

T\rtor: That would be the moment of inertia if the door was being rotated about the center of the door,
but it is being rotated about the edge.
Student: So I need the parallel axis thingee.

I - /crrn + Md2

I - #ut'+ M (Ll2)' :lut'
/doo,: iut' -in.rkg)(0.28 rr,)2 - 1.46 kg m2

Student: Now I can find the angular acceleration.

r - Ia
14 N.m

1.46 kg m' - 9.59 rad/s2
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Student: I see that the kg and the m2 cancelled the same units in the numerator, and that the seconds
squared came from the newtons, but where did radians come from?
T\rtor: Radians aren't really a unit, not like other units. We can insert them and remove them at will.
We can't do this with degrees or revolutions, because radians are assumed so that u - ru works. It's really
just a word used to remind us but not really a unit.
Student: Okay. Now I have the angular acceleration and I can do the constant angular velocity problem.
T\rtor: Write down the five variables and identify the ones you know.
Student: Angular displacement is 90o, initial angular velocity c..'s is zero, and we have the angular accel-
eration.
T\rtor: The angular acceleration is in radians, so you'll want the angular displacement in radians. That's
why we use the word even though it isn't a unit.
Student: 90o is one-fourth of a revolution, so it's |r radians.

A,r -> L0
ug+ug
a-)u
a-)a
t->t

r12
0

9.59 radf s2

?

Lfi : uot .;a*

,ua) - (o), .;(o.ro rad,f s2)t'

t-0.57s

radf s2

EXAMPTE

In an Atwood's machine, two masses of. 4 kg and 7 kg hang over a 6 kg pulley. The radius of the pulley is

0.4 m. The 7 kS mass starts 2 m above the ground. What is its speed as it hits the ground?

T\rtor: How are you going to attack this?
Student: Find the torque, find the moment of inertia, find the angular acceleration, and solve the constant
velocity problem.
T\rtor: You could do that. The difficulty is that we don't know the tensions, and we'd need to write a
Newton's second law equation for each mass. Remember that we did this before, and had two equations.
We could do the same thing, but now the tensions aren't the same and we need a third equation for the
rotation of the pulley.
Student: That sounds like a lot of work.
Thtor: We could do it. The pulley equation is something like

rzl-r1R- (i*^,) .(t)
Student: It sounds like you think there's an easier way. Af;, we did forces, we did energy. Energy
techniques work well when the acceleration is not constant and when we don't care about the time. We
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don't care about the time here, so let's try energy.

KEt,+ PEi+W: KEy * PEr
Tutor: What is the initial kinetic energy?
Student: Nothing is moving, so zero.
T\rtor: What is the initial potential energy?
Student: I'll take the starting point as height equals zero, so no potential energy.
T\rtor: The two masses might not start at the same height, so you have a different
InASSES.

Student: I can handle that. For each mass, when I find the final potential energy,
where it started. The 4 kg ma"ss moves up 2 m, and the 7 kg mass moves down 2 m.

h - 0 spot for the two

I measure compared to

Fq: ?-df w - K E r * (^as(+2m) + mz sezrr,))
Ttrtor: What is the kinetic energy?
Student: Both of the masses are moving, so I need L*r' for each of them.
T\rtor: The pulley is also rotating, so you need the kinetic energy of rotation. It takes energy to rotate
somethirg, just like it takes energy to move it.
Student: So i*r' becomes itr'.

w - (i^^rz +!r*rr' .;rr') * (^n - TrLT)g(2 -)
T\rtor: When the 7 kg mass hits the ground, are the two masses going the same speed?
Student: Yes. If they weren't, the rope length would change.
TUtor: Good. How fast is the pulley rotating?
Student: Can I use u - Rti?
T\rtor: If the rope is not slipping over the pulley, then the speed of a point on the edge of the pulley is the
same as the speed of the rope.

W

Student: Look, the

t (*+ - rrlT)g(2 -)

w_ 1 / 1 \
' ; (-n * mz + ;*r) '2 + (*n - IrLT)sQ ^)

Student: Now we need to find the work done by forces other than gravity.
Tutor: There are the tensions in the rope.
Student: Consider the tension in the rope attached to the 7 kg mass. It holds back on the mass, doing
negative work, and pulls on the pulley, doing positive work.
Thtor: And since the forces are the same, and the distances are the same, the total work is zero.

Student: There's also a force at the pivot, holding the pulley up, and gravity on the pulley, but the
moment arm for these forces is zero.

- TrLT)g(2 
^)

*z)g(2 rn)

- (t*^,2 +I*,u' .;(i*,R') (:^) ') i (*n- rrlT)g(2 ^)
radius cancels.

w - (l*^r2 +!r*rr'*I*or')

)f2;(*^imz +

1/
t(-n*mz+

1

-m
2

:^ -2(-3 kg)(e.8 ^lr')(z *)-2(^n - rrlT)g(z ^) (++T+* o) kg - 2.9 m/s



Chapter 11

Rollingr Torqu€r and Angular
Momentum

This chapter is about angular momentum. But first an example of rolling motion.

EXAMPLE

A 7.0 kg bowling ball rolls without slippittg down a ramp. The ramp is 1 .4 m high and 9.6 m long. How fast
is the bowling ball moving when it reaches the bottom of the ramp?

Student: We don't care about the time, so I'll try energy.
T\rtor: Energy looks especially promisittg because we want the speed at the end of the ramp, and speed
connects directly to kinetic enerry.

K4+ PEi+W : KEy * PEt

Student: The ball isn't moving at the top, so the initial kinetic energy is zero. I'll choose the bottom as
h - 0, so the final potential energy is zero. The initial potential energy is mgh.

y.timsh+w - KEy *I4o
Ttrtor: What is the final kinetic energy?
Student: Ah, we had this in the last chapter. It has **r' but it also has LIr'.

rngh*W -'r*r'*;Iw2
92

*
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Thtor: What is the moment of inertia /?
Student: The bowling ball is a solid sphere, so we look in the table and I - ?*R'.
Ttrtor: What is the angular velocity w?
Student: Is this where we use u - Ru? The point on the edge is moving around the center of the bowling
ball at the same speed that the bowling ball is moving down the ramp?
Ttrtor: As long as the bowling ball rolls without slippirg, this is true.

rnsh*w -|*o'.;

rngh*W -'r*r' * l mu2

Student: Now we need to find the work done by forces other than gravity.
T\rtor: What other forces are there?
Student: The bowling ball is in contact with the ramp, so there is a normal force from the surface. If
there's a normal force, there could be a friction force.
T\rtor: If there was no friction force, there would be no torque, and the bowling ball wouldn't roll. Is it
static or kinetic friction?
Student: The ball isn't sliding, so it must be static friction.
T\rtor: Yes. How large is the friction force?
Student: Is it the limiting case where F - pN?
T\rtor: No, so we don't know how large the friction force is. Does the friction force do any work?
Student: The normal force doesn't do any work because it is perpendicular to the motion. I'm not sure
about the friction force.
Thtor: It may seem strange, but because there is no sliding, there is no displacement at the friction force,
so the friction force doesn't do any work. Or, does the bowling ball heat up a.s it rolls, ro, only if it slides,
so no mechanical energy is being turned into thermal energy by friction.
Student: If the work is zero, then we can solve the equation.

1",1.)fdsh-rfrr'+ Sfrr'

sh: fr*

T\rtor: Did you notice how both rn and .R cancel from the equation? It doesn't matter what the size or
ma^ss of the ball is, it will have the same speed when it gets to the bottom. But if we used a hollow sphere
or a tube instead of a solid sphere, the 215 would have been something else, and we would have gotten a
different result.
Student: So a bowling ball and a Ping-Pong ball have different speeds at the bottom, not because the
Ping-Pong ball is smaller or lighter, but because it is hollow?
T\rtor: Correct. Of course, air resistance would also play a part, but we've conveniently ignored it.
Student: Again. Could we do this problem using forces?
I\rtor: Yes. We would need to find all of the forces. Then we would have to write the Newton's second
law equation. Then we would need the Newton's second law equation for rotation (r - Ia), and we'd need
to use u - Ru to connect the two.

;(n.8 m/s')(1.4 tn) :4.4 m/s
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nI

Student: So we'd need to find the normal force and the friction force.
T\rtor: Alternatively, we could find the torque about the bottom, where the bowling ball contacts the
ramp. Then we could find o and find a. Since the normal force and friction force go through that point,
they wouldn't create any torque.
Student: It sounds like energy is easier.
T\rtor: If you can use energy, it usually is ea.sier.

Everything we did with momentum works with angular quantities. Angular momentum is traditionally
designated L.

P-Trra L-Iw-PRsinl
AP : Ft ---+ AL - rt

Pe,* AP - Pf + Lr,* AL - L1

Flor a rotating object, w€ use Iw, but for a point object moving around a point we use Pnsin,/, Angular
impulse is the name given to the change in the angular momentum, which thus has the same units as angular
momentum (kS *2/r).

EXAMPTE

An ice skater doing an urel pulls her arrrur in to spin faster. In order to triple her rotational speed, what
must she do to her moment of inertia?
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Student: Shouldn't that be an "axle," a^s in the thing a wheel turns around?
I\rtor: No, it was invented by someone named "Axel."
Student: Well, we just heard about angular momentum, so we must need to use that.
Thtor: Are there any other indications?
Student: We don't know the angular acceleration, but maybe energy would work.
Thtor: It wouldn't, but we'll see why later. What is the angular momentum beforehand?
Student: Angular momentum .L equals moment of inertia / times angular velocity w. We don't know any
of them.
T[rtor: So we leave them as variables. What is the angular momentum afterward?
Student: Angular momentum ^L equals moment of inertia / times angular velocity w. We still don't know
any of them.
T\rtor: Are they all the same as they were before?
Student: No, so afterward the angular momentum .L/ equals moment of inertia It times angular velocity wt .

Lr,*AL-Ly

Iw*AL-f'u)'

I\rtor: What do we know about the angular velocities?
Student: We know that u)' :3 x cr'.

Thtor: Correct. What about the angular impulse A^L?

Student: That's equal to the torque times the time. We need to find all of the torques.
Tutor: What forces are acting on her?
Student: Gravity, the normal force from the ice, and maybe friction from the ice.
Tutor: The axis of rotation is vertically through her center. All of those forces are on that line.
Student: So the moment arms are zero and the torques are all zero.

Iw *,kf : I' (3r)

Student: c.l cancels!

IJl: I'(3J/)

Tutor: This is a "scaling" problem, so it's not surprising that somethitrg cancels.

I -31,

I' :]l

Student: She must reduce her moment of inertia by u factor of three.
T\rtor: She does this by pulling her arms in.
Student: Just pulling her arms in does this? Her arms are a small part of her mass.
Ttrtor: Tbue, but because they are so much further out than the rest of her, and distance is squared in the
formula for moment of inertia, her arms are most of her rotational inertia.
Student: So why couldn't we use energy for this?
Tutor: Find her energy before and after.
Student: Energy is i,Ir'.

K+aurcre : irr' and KE^rter : )t'(r')'- ;(it) (3u)2 -|rr'
Student: They aren't the same!
Tutor: She does work when she pulls her arms in. Unless we know just how much work she does, we can't
use energy to solve the problem.
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EXAMPLE

A 0.85 kg, 35-cm-long
0.56 kg block of putty.
by the rod?

uniform rod falls from vertical to
The block sticks to the end of the

horizontal, pivoting about its
rod. What is the speed of the

end, then strikes a
putty after it is hit

Student: I don't even know where to begin.
Tutor: What you mean by that is that you can't see the end from where you are now. Instead focus
on what you can do. We've learned about constant acceleration, forces, energy, momentum, and rotation.
What can you do?
Student: I can probably use energy to find the speed of the rod after it falls. We did this for objects
falling, sliding, and rolling, so it should work here. The initial kinetic energy is zero, and I'll use the initial
positionas h:0.

Mir4:w - KEr+PEr
Tutor: All very good. What is the
Student: The rod is rotating, so

**o'too?
Tutor: Very insightful. If you use the moment of inertia about the center of the rod, then you need the
motion of the center of the rod. If you use the moment of inertia about the end of the rod, which is larger
by m(Ll2)2, then you don't need the Lr*r'.
Student: I'll use the moment of inertia about the end. We found earlier that it's *m n' .

w:t(!*"),'+ PEr

T\rtor: What is the final potential energy?
Student: The rod goes down, so it's negative.
T\rtor: You need to use the center of mass of the rod. How far down does that go?

Student: The center of mass is at the middle, so it goes down by Ll2.

w -t(!*t'),'* Mgr-lt,

Student: Now we need the work done by forces other than gravity. The pivot exerts a force, but that
force is at the pivot, so it doesn't exert any torque.

final kinetic energy?
Lrtr'. But the center of mass of the rod is also moving, so do I need
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T\rtor: Correct. And the work is r L0, so no torque means no work.

T\rtor: Right. Now it's just algebra.

tut" 
- I

Lr, f

- (l*od * Tnputtv)*,,

Student: Now we can plug in numbers and find the rotation rate.
T\rtor: There's no hurry. Once you know how fast the rod is rotating, what can you do?
Student: The rod hits the putty. That sounds like a collision, so I need to use momentum.
T\rtor: During the collision, the pivot at the top of the rod will exert a force to keep the top of the rod in
place. Do you know how big that force will be?
Student: No. Can't I just pretend that it's small, and when I multiply it by the small collision time, the
impulse will be really small?
T\rtor: The shorter the collision time, the larger the force from the pivot will be. We need to keep that
force out of the equation, but that's not the right way. What about angular momentum?
Student: If the force occurs at the pivot point, then it doesn't exert any torque, so no angular impulse.
Tbtor: Correct. And the forces that the rod and putty put on each other will cancel, just like with
momentum.

Lt*af2 t,
/rodt'./rod * Lpfity: Ifuf

Student: The angular speed of the rod before the collision is the same as the angular speed of the rod
after it falls.

* trputty : Ifwf

T\rtor: What is the moment of inertia of the combined rod and putty?
Student: The rod is tMroaL' , but the table doesn't have an entry for putty.
T\rtor: Just treat it as a single point, and use mr2 .

Student: And the angular momentum of the putty beforehand has to be zero, because it isn't moving.

(l* oaL2 * ?rlpu *vL2) ,,

(l* "or') E: (i*od *-o',,,)

uf:
(tMr"a * mputtv)

LrM'oo

] (o.ar ks)

(*to.Sb kg) + (o.bo t g))

3g

L

3g

L

3(9.8 
^l12)

(0.35 m)
uf-

(r)f :3.08 /s

lw\z
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Student: Shouldn't it be in meters per second?
T\rtor: We found the rotation rate of the rod and putty. . .

Student: And I want the speed of the point on the end.

u - Rln - (0.35 m)(3.08 lr) - 1.08 m/s

cHAprER 11. ROLLTVG, TORQUE, AAID AI\IGULAR MOMENTUM

EXAMPLE
F

(u) A small object moves in a circle on the end of a string on a horizontal frictionless table. Initially the
object moves at 0.7arrrls at the end of a 17 cm string. The string is then pulled through a hole in the center
of the table. When the string remainitrg is only 5.0 cm, how fast is the object moving? (b) A roller coaster
enters a spiral in which the radius of the track decreases from 17 m to 5.0 m while staying horizontal. If the
coaster enters the spiral at a speed of 7 .4 m/s, what is its speed at the end of the spiral?

Student: Part a sounds a lot like the previous example. We don't know the force of the string, but by
using angular moment, the force disappears.

Lr*tf! r,
Tntor: Because it is a single point, we can use L - PRsin@ for the angular momentum.

P Rsin / : P' R' sin S'

Student: The angle d is the angle between the momentum and the moment arm, and that's 90o

muR - mntRl

(0.74 m/s) (17 cm)
- 2.5 m/s

(5.0 cm)

Student: Now I can do the same thing to part b.

Thtor: Not so fast! What is the direction of the force that the tracks put on the roller coaster?
Student: It's not toward the middle of the circle?
T\rtor: No, it's a normal force so it's perpendicular to the track.
Student: So it's perpendicular to the motion of the roller coaster. It's not toward the center, so the torque
doesn't cancel. I need the force and direction.
T\rtor: T[y a different way. If angular momentum won't work, try forces, energy, or momentum.
Student: Well, energy is supposed to be easiest. If the force is perpendicular to the motion, the work is

zero. So the speed of the roller coaster doesn't change.

.3o- ----- -\/\
f\
l*l
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I\rtor: The difference between part a and part D is the direction of the force. In part D it was not tonrard
the center, or "pivot point," so the a,ngular momentum could change.
Student: Why couldn't I use momentum? The force is perpendicular to the motion so it doesn't create
an impulse.
Ilrtor: It does create an impulse. Momentum is a vector and the direction of the roller coaster is changing,
go the momentum is changing.
Student: So I have to use energy for part b.

Ttrtor: Yes, but it was easy.

Student: Tlue. Zerc equatiorur.



Chapter L2

Equilibrium and Elasticity

The equilibrium point is where something can sit without moving. That
so that there is no acceleration. It also means that the total torque is
acceleration.

means that the total force is zero,
zero, and that there is no angular

EXAMPLE

/^z.O-m-long,6.0 kg board is supported by two scales, one at the left end and the other 1.2 m from the left
end. What is the reading on each scale?

Student: Back to forces. I draw the free-body diagram, choose axes, add the forces, and write Newton's
second law equations.
Tutor: It is good that you remember. What are the forces on the board?
Student: There is a normal force from the first scale and a normal force from the second scale. The forces
might not be equal, so I'll call them l/r and N2. There's also gravity acting at the center of mass.

T\rtor: Time to choose axes.
Student: I only need one, since all of the forces are colinear. I choose up as positive.

+lfl +Af2 -mg-*ilO
T\rtor: Can you solve this equation?
Student: No, there are two unknowns and only one equation. I need to do the r forces.
T\rtor: There are no r forces, so that doesn't help.
Student: But I need another equation.
T\rtor: Indeed you do, but you can't get it from forces. What else has to be zero besides the force?
Student: Ah, the torque needs to be zero. I add the torques about the center of mass and set them equal

100
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to zero.

Dr-Ido
t Fratsin/6 - o

-Nl(1.0 m)(1) + *,0. 2 ^)1$ +(ms)(O)sin(?) : o

sin 90o

-Nl(1.0)+N2(0.2) -o
Student: Now I have two equations and two unknowns. I can solve that.
T\rtor: Yes you can. You could have used some other point as the pivot point. Try using the left end.

T 
F:-P'isin/6 -- Ia - o

Nl(0) sin(?) + N2(1.2 m) (1) -(*s)(1.0 m)(1) : o

,x"
+N2(1.2) -(*g)(1.0) -0

Student: H"y, I can solve this one immediately.

Nz: (^g)(1.0) l$.2): +j(6.0 ks)(e.8 
^ls2) - 4e N

T\rtor: You can always eliminate at least one torque by your choice of pivot point. To make the math
easier, it helps to eliminate the torque from an unknown force, like Nr, rather than the torque from a known
force like rtg.
Student: But does it still work?
T\rtor: Yes. The torque has to be zero around anA point, or the board would start to rotate about that
point.
Student: Then I do another torque equation where Nz is applied so that I can solve for Nr?
T\rtor: You could, but you could also go back to your y forces equation to find Nl.
Student: That's easier.

Nr+Nz-rzl,g-0
Nr + (49 N) - (6.0 ks)(9.8 mlsz) : 0

Nl :10N

You can always eliminate at least one torque by your choice of pivot point. If the forces are all
colinear, you might not be able to eliminate more than one, but if they are in two dimensions, then you can
eliminate two or more by choosing a pivot point where forces "intersect." To make the math easier, it
helps to eliminate the torque from an unknown force rather than the torque from a known force.

EXAMPTE

A 75 kg diver (165 lb) stands at the end of a diving board. The nearly massless board is 3.7 m long and has
two supports 0.90 m apart, with one at the far end from the diver. What is the force from each support on
the diving board?

Student: There are two normal forces and gravity.
Tutor: It's a massless board.
Student: The gravity force of the diver.
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T\rtor: The gravity force on the diver acts on the diver, not the board. Newton's third law says that the
equal and opposite force is the diver pulling up on the Earth.
Student: Ok y, he pushes down on the diving board with a normal force. Is this force the same as his
weight?
T\rtor: Add up the forces on the diver.
Student: The forces on the diver are his weight and the normal force from the board. They add to zero,
so they must have the same magnitude but be in opposite directions. The normal force that he puts on the
board is the same as the force the board puts on him, so they are equal.

2- 3.?r. - D

T\rtor: Yes, it's our "special case" where there are only two forces and no acceleration. Having said that
it's really a normal force acting on the board and not his weight, and having figured out that they're the
same, we might just call it his weight sometimes.
Student: Then why did we go through all that?
T\rtor: Because sometimes they aren't the same, so we really do need to check.
Student: Ok y. I add the vertical forces, using up as positive.

D Fu: *gdo

Flfl+N2 -rng -0
Student: I can't solve the equation, so I need a torque equation.
T\rtor: What are you going to use as the pivot point?
Student: It wouldn't help to use the center of mass of the board, so I'll use the left end.

t Ft&sin/a - Ido

N1(0) sin(?) - Nzlo.no *; I +@g)(3.7 mX1) : o

sin 90o

- Nz(0.90) * (mg)(3.7) : 0

Nz: @!^)!?^:z) : yosks)(e.8 
^lsz) - 8020 N(o.go) o.go t' "

Student: Now I can use the g forces equation to find ltrl.

+

1

N1

1

N

1

lfr+Nz-rng-0
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l/r * (3020 N) - (75 kg)(9.8 mf s2) : 0

lr1

Student: I thought that a normal force couldn't be negative?
T\rtor: A normal force has to be out from the surface. The negative means that the force is in the opposite
direction that you drew it, so that the left support must pull the left end of the board down.
Student: But a normal force can't do that!
Tutor: Correct. The left end of the board needs to be attached to the support, so that the support pulls
it down. Tty adding the torques around the center of the board - what do you find?
Student: All of the torques are clockwise.
Tutor: Yes - the board would have to rotate.

EXAMPTE

A 25 kg sign is hanging from a 3.0-m-long, 14 kg beam. The end of the beam is supported by a wire that
makes a 39o angle with the beam. What is the tension in the wire?

Student: First we draw the free-body diagram. There is the weight of the beam and the weight of the
sign. It's really a tension, but it's the same as the weight of the sign. There is also a tension up and a normal
force out from the wall.
T\rtor: All true. The beam is attached to the wall, like the diving board was attached to the left side
support.
Student: So the wall could be pulling the beam in?
Tutor: Yes, and it could also be pushing the end of the beam up or down.
Student: So we don't even know the direction of the force from the wall. How do we handle that?
T\rtor: Whatever the force is, it can be divided into components. We just use the components.
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Student: Now I choose axes and add up the r and y forces.

F-rna
* W, - Tcos 39o : Trlbeuor6|

* Wo - Mv"am - Mrisn + Tsin 39o : Trtbeurnil]

Tlrtor: We don't know W*,Wo, or ?, so we can't solve either of these yet. We need to add up the torques.
Student: By choosing the pivot point wisely, I can eliminate two of the torques from the equation. I'll use

B as the pivot point.
Trrtor: You could also use A or C. Using "4 eliminates the torques from Wy and T.
Student: Can I use ,4 even though it's not in the object?
T\rtor: You could use Paris as your pivot point and it would work, but the choice of Paris doesn't make
the equations easier to solve.
Student: I'll still use B as the pivot point.

t Frarsin@6 - Ia - o

W,(0) sin(?) + Wa(0) sin (?) - Mueamsfir>(1) - M"iens(L)(l) + r@)sin39o - 0

-;Mb.urng - M"ieng + Tsin 39o - 0

r - (l*rea e a Msie e) / sin 3eo

r - (1,14 kg) + (25ks)) (e.s 
^1,2)/sinBeo

T - 498 N

Tutor: Using 6 is a good choice because the unknown force remaining was the one you wanted to solve
for.

The other topic here is elasticity. When an object is in contact with a surface, there can be a normal force.
The normal force keeps the object from going into the surface. The normal force is really a spring force, and
the surface bends or deforms as it applies a force. For many common surfaces, this bending is so small that
we don't see it. This idea applies for all solid materials. Materials stretch and compress like springs
whenever they experience a force.

The elasticity is a measure of how much a material deforms under force.

F ,-t AL
u'

A-r' L

Given that a force F applies to a material with an area A, the Young's modulus E lets us determine how
much the material will stretch AL The stretching is expressed as a fraction of the total length LLIL.

The strength is a measure of when the material fails completely and breaks.

- Su or S,

For rigid materials like steel, glass, or wood, once the stretching has reached about 0. L% of. the total length,
the material will fail. Either it will snap or it will deform so much that it won't return to its "normal"
length.

F
A
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EXAMPLE

The sign in the previous example is to be supported by a steel wire (E : 200 x 10e N/*', S, - 400 x
106 N/*'). If a 0.3-mm-diameter wire is used, how much will the wire stretch under load, and how close
will the wire be to its ultimate strength?

Student: To find the amount of stretching, w€ need to know F, A, E, and L.
Thtor: Good, what is the force F?
Student: We did that in the last example. The force is the tension in the wire, 498 N.
T\rtor: What is the area?
Student: The outside area of the wire is the circumference times the length, (2rr)L.
Thtor: The area we need is the "cross-section" area of the wire. Imagine cutting the wire in half and
looking at the circle that you exposed. What is the area of that circle?
Student: That area is zr times the radius of the wire squared, or

A- rr2: zr(0.15 mm)' : zr(1.5 x 10-4 *)2 -7.07 x 10-E m2

Student: That seems like a very small area.
T\rtor: Stretch out your arms to make a big circle, and the area of the circle is less than one square meter.
The wire has an area much, much less than that. What is the length of the wire?
Student: We could use the Pythagorean theorem, but we don't know how high above the beam the wire
is attached.
I\rtor: No, so you need to do some trigonometry. Look at the right triangle formed by the wire.
Student: Ok"y, the wire is the hypotenuse and the beam is the adjacent side, so

cos Bgo : "dj- - +hvp L

L- 3a 
-3.g6mcos 39o

T\rtor: The Young's modulus ^B is given, so you can find the stretching AL.

Ar : : Q.136 m
(7.07 x 10-8 *2)(200 x 10e N/*') - \r'rrr\J

Student: The wire stretches 13.6 cm.
T\rtor: Is that a lot?
Student: It seems like a lot for a steel wire to stretch. Wouldn't it break?
Tlrtor: You can check. How does the stress F lA compare to the ultimate strength Su?

F (4e8 N)
i (ffi - 7.0 x loe N/*'- Tooo x 1oo N/*'

Student: Wow! That's more than 10 times the stress needed to break the wire.
T\rtor: How big would the wire have to be to avoid breaking?
Student: So I need to find the area so that the stress is less than the ultimate strength.
T\rtor: Perhaps you would like to be a little safer than that. Engineers use a "safety factor," which is how
much you could increase the force and it still wouldn't break. What safety factor would you be comfortable
with, if you were walking underneath the sign?
Student: How about a million? No, really. So I want the area of the wire so that the stress is one-tenth
of the ultimate strength.

I-E+ aL-#
(498 NX3.86 m)
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d-2r -2 r|ry -zv TfDu
, to(nnt=T] , .. - o.oo3g8 rrr - 3.g8 mm

zr(400 x 106 N/*') -
Student: I'd be okay walking under the sign if they used a 4-mm-diameter steel wire.

-J



Chapter 13

Gravitation

Newton said that any two ma^sses pull on each other with a force of

,-, GMtMz
u

12

where G is the universal gravitational constant (G : 6.67 x 10-11 N. ^' IUS\ and r is the distance between
the ma^sses. There is a gravitational force between you and this book of about

F _ GM\Mz: (6.67 x 10-u ry..r92/kg2)(60 ks)(l ks) _ 4 x10_8 N12 (0.3 m)2

You pull on the book with a force this big, and the book pulls back on you with the same force. Because
this force is so much smaller than the other forces acting on you or the book, we don't bother to include it
in our free-body diagrams.

Because the force depends on the distance, does the acceleration of gravity change as we move up and down?
Yes. When we move up 3 m (about 10 ft) the gravity force becomes weaker by about one millionth, or
0.0001% weaker. The acceleration of gravity is the force of gravity divided by the mass of the object.

F GM6^netTrtr \, 1 GMptanet*-a-T a:T
At the height at which airplanes fly, gravity is about 0.370 weaker than on the surface of the Earth. We
usually ignore this effect because it is small.

EXAMPLE

The Moon goes around the Earth in a circular path of radius 3.85 x 108 m. The mass of the Earth is
5.98 x I02a kg and the ma,ss of the Moon is 7.35 x 1022 kg. How long does it take for the Moon to orbit the
Earth?

Student: Couldn't we just look this up in the appendix?
T\rtor: We could, but the goal is to understand gravity, not to know one number. What are the forces on
the Moon?
Student: Gravity from the Earth attracts the Moon. Because the Moon is not at the surface of the Earth,
the force is not mg.
Tutor: Good. Are there any other forces on the Moon?
Student: It is not in contact with anything, so just gravity.

r07
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T\rtor: Newton says that when you add up all of the forces, all one of them, it's equal to the ma^ss times
the acceleration.
Student: The Moon is going in a circle, so the acceleration is u2 f r inward.

GMgu1tr6M14sen
- Mrvroontr12

Student: The ma^ss of the Moon cancels.
Ttrtor: Anything orbiting the Earth at the height of the Moon has the same orbit. What does the variable
r represent?
Student: It's the height of the Moon above the Earth.
Tutor: On the left side of the equation, it's the distance between the Earth and the Moon, from center to
center. On the right side, it's the radius of the Moon's orbit.
Student: But the Earth is at the center of the orbit, so they're the same.

Tutor: Now you can use the speed to find the time.
Student: We don't have an equation for the period of an orbit.
T\rtor: Not everything needs a new equation. Use d - ut.
Student: The circumference of an orbit equals the speed times the period.

a

a

I

a

I

I
I

I

I

t
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EXAMPTE

A "binary star" consists of two stars
ma^ss of each star is I.7 x 1030 kg and
the stars to make an orbit?

of equal mass rotating about
the distance between them is

the point midway
9 x 1010 m. How

i
L \

./
-at/

\

_Mt ?r

to center.

equal?

On

Student: Now I can repeat

GM M nnr'
w-tvt7

GM,
4, -u-

tGMu_rrl *
the d - ut process like before.

2rr
-4n

t _ atr. [ (n.u " tott *)tu-=t. ,V

dt-
a IGMvT

t 
- - cor) '

Student: This is just like the last example!

GMM
12

T\rtor: What does the variable r represent?
Student: It's the distance between the two stars.
T\rtor: On the left side of the equation, it's the distance between the two stars, from center
the right side, it's the radius of each star's orbit.
Student: But those aren't equal. How is it that we use r for both when they aren't always
Ttrtor: That's why it's important to know what each variable means.
Student: Ok y. I'll let r be the radius of the orbit. Then the distance between stars is 2r.

between them. The
long does it take for

13

GM

Earlier, we said that the
gravity rng. Now that we

potential energy of gravity was rngh.
know that the force of gravity is not

This came from using
constant, the potential

a constant force of
energy is no longer
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rngh. Since the force of gravity weakens as we move further away from the planet, the work we must do to
raise somethitrg is less than mgh would say.

For simplicity, we choose zero potential energy to be when two masses are an infinite distance from each
other. To move somethitrg from the surface of a planet to an infinite distance takes work. We must add
energy to lift something to energy equals zero) so the potential energy of gravity is always negative. To
determine the potential energy, we must find out how much work we need to do. Since the force is not
constant, finding this work involves an integral. Leaving the proof to more detailed texts, the potential
energy of gravity is

U-PE GMM

where G is the same universal gravitational constant , MtlO mare the two masses, and r is the distance
between them.

Remember that to use conservation of energy, we use

K4+ PEi+W - KEy * PEt

and that the potential energy appears on both sides of the equation. What matters is the change in the
potential energy. If the gravity force between the initial and final points is close to constant, then we can
still use mgh as an approximation.

EXAMPLE

How much energy does it take to lift an 875 kg communications satellite from Cape Canaveral (latitude
28.6o) into geosynchronous orbit?

Student: We want the energy, so we'll obviously be doing conservation of energy.

T\rtor: Very astute.

KEt+PEi+W:KEy*PEr
Student: The initial kinetic energy is zero.

T\rtor: Not this time. The Earth is rotating, and the rocket moves with the Earth.
Student: That's why they gave us the latitude.
T\rtor: Yes. Cape Canaveral sits on a circle of radius R6 cos latitude.
Student: So the initial velocity is (2rR1cos28.6o)lT, where T - I d.y - (24 ht).
T\rtor: Almost. The Earth rotates 360o in a "sidereal" day of 23 hours and 56 minutes. This is because

the Earth also rotates around the Sun, so that afber it has rotated 360o, the same point on Earth is not
facing the Sun. The Earth rotates a little more than 360o in a solar dry of 24 hours - 360o + 360'1365.25.
We can fudge this. What is the initial potential energy?
Student: The satellite is probably high enough that we can't use mgh. We'll have to use the new formula
for the potential energy. The initial distance is equal to R6coslatitude.
T\rtor: The distance r is the distance from the rocket to the center of the Earth, not the center of the
circle in which it rotates.
Student: So r is just Rn.

1 ( 2rLncos 28.6" \ 2 GM nm . r,
;m(. r / +-t+t'\'-KEv*PEr

Student: rn is the mass of the satellite, but where do we get Rn and Mn?
T\rtor: We look them up in a reference, but we can do that later. In many textbooks they are in the inside
front or back cover of the book. What is the final potential energy?
Student: Isn't that zero?

T\rtor: No, we don't have to move the satellite an infinite distance away.
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Student: What is geosynchronous orbit?
T\rtor: That's when the satellite orbits the Earth in exactly 24 hours. Earth also rotates once in24 hours.
The result is that the satellite is always above the same point on the Earth. It's in synchro with the geo. It
only works over the equator.
Student: Cool. That must be where the TV satellites go.

Thtor: Yes, and that's why we want to put a corirmunications satellite there. How far away from Earth is
it?
Student: This sounds like the first example in the chapter. Can we reuse the result?
Tbtor: Taking an equation out of an example is a good way to screw up. Look what happened in the
second example in this chapter. Go through the first example and see how close it is.

Student: Okay. We have a planet and something is orbiting the planet. The only force is gravity, so

GMnm a2

- 

-- r,'-
Ttr

IM
u -- lt 

-

Vr
d 2trrt_

f 
-;- ,

Student: All of that still works. I don't have r or u, but I have t : T. I'll substitute u into the last equation.

Student: Now I can solve for r.
T\rtor: Good.

r:
Student: Whew! Now I can put the numbers in.
Tbtor: Let's hold off on that. Symbols are easier to write than numbers.
Student: Ok"y. The final potential energy is

PEv -
GMnm

- -GMnm

)'- ry+w -KEr-GMnm

KE:I*r' --t*W :;mGMn

Tutor: What is the final kinetic energy?
Student: Can we get the velocity from the equation above?
lhtor: Sure.

2nRB cos 28.6o

-GMnm
2nRn cos

T
29.6"

w-.ry-iGMnm 2rRn cos

r :)29.6

Student: Do we really have to put in all those numbers?
Tbtor: I'm happy to skip it if you are - we've already done the physics. Remember that everything else
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is in newtons and seconds, so the time ? needs to be in seconds.
Student: Ah, yes . T is 24 hours times 60 minutes times 60 seconds.

I
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Fluids

Fluids are liquids and gases. Fluids exert forces and have energy. We want to know where and how much,
so that we can use fluids.

Fluids exert a pressure,

A fluid exerts its pressure in every direction. Air at ground level has a pressure of 15 pounds per square
inch, and by being in air, this pressure is exerted on every square inch of you. The same pressure, and force,
is exerted on each side of you, so that the air doesn't push you over (wind pushing you over is different
pressures on your two sides).

The pressure in a fluid increases with depth. This is because the lower fluid has to hold the upper fluid up,
so the change in pressure is

ap-psay
where p is the density of the fluid.

TTI MA.SS
A-

Y - V volume

When something is in the fluid, then the fluid above it pushes down and the fluid beneath it pushes up. The
fluid beneath it has a greater pressure and exerts a greater force. The difference in the forces is the buoyancy
force or buoyant force

FB - mfg

where rn1 is the mass of fluid displaced, or ma^ss of the fluid that would be where the object is if the object
wasn't there. The air exerts a buoyant force on you that is equal to your volume times the density of air
times g.

When the pressure of air increa.ses, often its density does as well. At high altitude, the density of air is less,
and airplanes need to be pressurized so the occupants can breathe. We usually ignore this complication, just
a"s we ignored air resistance, because the calculations would be difficult and we can get most of the important
information without it. We treat fluids as being incompressible, so that their densities do not change. One
result of this is that the volume flow rate Rv is a constant as the fluid moves.

Rv - Au: corlstant

What the constant is we can't say now, but a.s a fluid moves the volume flow rate will stay the same. This
is equivalent to saying that fluid can't build up anywhere.

FP-A
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As a fluid moves, its pressure changes because of its motion. This is Bernoulli's equatior,

1

P+ ior'* PgY - a constant

Again, we can't say what the constant is, but for two points in the same fluid, the constant is the same, so

that we can calculate one missing piece, like conservation of energy.

Some Useful Numbers
density of air
density of water
density of ice
pressure at sea level

I.2L kg/*t
998 kg/*t
9I7 kg/*t

1.0 x 105 N/*'
all at 20"C and 1 atm

EXAMPTE

A submarine is approximately a cylinder 10 m in diameter and 88 m long, with a ma^ss of 6.0 x 106 kg.
How much water (ir *3) must the submarine take on as ballast so that it keeps a constant depth while
submerged?

Student: This looks complicated.
Tutor: Not really. What is the weight of the submarine?
Student: The weight is mg, or

rrrtor: what is the buoya 
^,^yr"" "fil;oouJu*J,[; 

"''"):5'e x 107 N

Student: The buoyant force is Fe : mf g.

T\rtor: That's true, but it's not what I meant. Come at the buoyant force from the other direction. What
is the total force on the submarine?
Student: It doesn't s&y, so it must be zero.
T\rtor: An interesting conclusion. If the total force wa"s upward, then the submarine would accelerate up.
Student: And if it was downward then it would accelerate down. To keep a constant depth, the force
must be zero.
T\rtor: Good.
Student: So the buoyant force is equal to the weight.
T\rtor: Yes, and it's also equal to Fg :'trlf g.

n'Lg : *tg
Student: g cancels. What does that mean?

T\rtor: It means that the same submarine, in an ocean on a different planet with a different gravity, would
have to take on the same amount of water.
Student: Interesting. What's my?
T\rtor: The mass of the fluid that isn't there because the submarine is there.
Student: So it's the mass of water that would fit in the volume of the submarine.
T\rtor: Yes. Find the volume of the submarine and multiply by the density of water to find the mass of
the fluid.

mI: pV : prr2L - (998 kg/-t)"(5 *)2(88 m) :6.9 x t06 kg

Student: That's the mass of the fluid displaced, and it has to be equal to the ma.ss of the submarine. It
isn't. Something is wrong.
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T\rtor: The buoyancy force on the submarine is greater than its weight, so the submarine would normally
float to the surface. To stay submerged under water, the submarine takes on water in ballast tanks, increas-
ing the mass of the submarine.
Student: So I need to find out how much they increase the mass by taking on water. That's the difference
in the two masses.

rflwater - mf - ?7}sub - 6.9 x 106 kg - 6.0 x 106 kg - 9 x 105 kg

Student: That's a lot of water.
T\rtor: The question was to find the volume of the water.
Student: The connection between volume and mass is density.

p-T
9x105kg

- 900 m3
998 kg/-tv-m:

p

EXAMPLE

A 6 cm cube of wood with density 650
of oil has a density of 850 kg/*t. How

ke/*t is placed into a pail of oil and water. The l-cm-thick layer
much of the wood cube sticks out above the oil?

Student: The buoyancy force is equal to the weight.
Tutor: How do you know?
Student: It was last time.
Ibtor: AII problems are different. That's why it is dangerous to take any equation out of an example,
because it applies to the example and not necessarily to any other situation. But we reuse techrriques.
Student: The wood cube is not accelerating, so the total force on it is zero. The forces are the buclyancy
force and the weight, so they have to cancel; they must be equal.
Tutor: Much better.
Student: The buoyancy force is equal to the weight of the liquid displaced.

Fs-mfg
Student: But the densities of oil and water are different. We can't just multiply the volume by the density.
T\rtor: No, we have to do that separately for the oil and water. Could the oil by itself hold up the wood
cube?
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Student: The most oil that could be displaced would be 6 cm by 6 cm by 1 cm. The mass of that much oil is

rrloit - pv - (sro kg/-t) (to.oo m)(0.06 -)(0.01 *)) - 30.6 s

Student: The mass of the block is

s,uden,: N.,,he 3#;i:-f:::1i:j::::::::"0 
06 m)) - 140 4 g

T\rtor: Correct. If there was 1 cm of oil and nothing else, the wood would rest on the bottom. The wood
cube extends down into the water.
Student: How do you know that the oil is on top?
T\rtor: Because it has a lower density. The air is above the oil because the density of air is less than the
density of oil.
Student: Okay. So the difference must be the mass of the water displaced.

rrlwater: Trlwood - Trloir - (140.4 g) - (30.6 g) - 109.8 g

Student: Is there a reason for keeping more significant figures than usual?
T\rtor: When we subtract two numbers, we often lose significant figures. If we think we might subtract
later, then we keep more digits.
Student: Now that I have the mass of the water, I can find the volume.
T\rtor: And that volume depends on how much of the wood cube is submerged.
Student: I'll let r be the amount of the cube in the water.

Tflwater - pV

10e.8 s - (ooa r<g/*') (to.ou rn)(0.06 m)("))

r - 0.0306 rI - 3.06 cm

Student: The height of wood sticking out is 6 cm - 1 cm - 3.06 crr - I.94 cm.
T\rtor: There's another way to do the problem, using pressure.
Student: Is it easier?
T\rtor: I'll let you decide. What is the force that the liquid has to exert on the wood cube?
Student: A force equal to the weight of the cube.
T\rtor: And if we divide that force by the area of the bottom of the wood
Student: . . . we get the pressure at the bottom of the wood cube.
Tutor: Correct. So if we can find the pressure, then we can determine the depth at which that pressure
occurs.
Student: Okry. The weight is

student: Divide by the area;*;::T:-l$::lT]; 
1376 N

F 1.376 NP-i: ffi :382'2N/m2

T\rtor: A newton per meter squared (N/-') ir sometimes called a pascal.
Student: But this pressure is less than the pressure of the air. The air would push it down.
Ttrtor: You are confusing absolute pressure and gauge pressure. Gauge pressure is the difference between
the pressure and atmospheric pressure, because gauges can record only the difference. The absolute pressure
of the air at the surface is 1.0 x 105 N/-', but the gauge pressure is zero. Your 382.2 N/m2 is the increase
in pressure due to the liquid. The water pushes up that much harder than the air pushes down, which just
balances the weight of the wood cube.
Student: Where does the oil come into this?
T\rtor: It causes a pressure difference between the top and bottom of the oil. The pressure change due to
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the oil is

Ap - ps Ay - (850 t g/-t)(9.8 
^ls2)(0.01 

*) : 83.3 N/m2

Student: So if I take the pressure at the surface to be zero, using gauge pressure, then the pressure at the
bottom of the oil is 83.3 N/m2?
Tutor: Yes.

Student: But I need a pressure of 382.2 N/m2.
T\rtor: The rest of the increase must be due to the water.
Student: So I need a pressure change from water of

ap- ps av

382.2 N/*' - 83.3 N/*' - (998 t g/*t)(9.8 
^ls2X")

fi :0.0306 rI - 3.06 cm

Student: It's the same thing.
Thtor: As it should be.
Student: But the top of the wood cube is above the surface of the oil, so it's at a lower pressure. Can
pressure be negative?
Tntor: An absolute pressure cannot be negative. A gauge pressure can be negative, which means a lower
pressure than atmospheric pressure. Since you're using gauge pressure, the pressure at the top of the wood
is negative. But the density of air is so much lower than the density of water or oil that we typically ignore
it.
Student: As you would say, let's check.
T\rtor: Okay. The pressure at the top of the wood is

p - -pg Ay- - (I.21 kg/m3)(9.8 
^ls2)(0.0I94 

m) : -0.23 N/*'
T\rtor: We should have subtracted that, or something close to that, from the 382.2 N/*' pressure of
water, so the error we made by ignoring it wa^s

Toercor:ryx 0oo%)-Hx goo%) - o.oilTo
true

Student: I can live with that.
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EXAMPLE

CHAPTER 74, FLUIDS

One way to create
the car is traveling

ttdownforce" on a race car is
at 90 m/s and is 0.6 m high.

with a narrowing channel on the underside. Assume that
Calculate the downforce.

T\rtor: Downforce is created when the pressure under the car is less than the pressure above it. The net
force from pressure is downward.
Student: How can the pressure be less below the car than above it? Pressure increases as you go down.
T\rtor: tue, but in the last example we saw that the change in air is fairly small. Pressure also changes
as the speed of the fluid changes. Pretend that the car is stationary and the air is moving across it at 90
mls. What is the force on the top of the car?
Student: The force is

Ft : PtA

Tutor: What's the pressure in area 1 of the bottom?
Student: The bottom is lower than the top, so the pressure is greater.
T\rtor: Also, the air in area 1 is going the same speed as the air on the top.
Student: And speed changes the pressure. So we're using Bernoulli's equation.

1r)
h * ,PUf 

* PgAt - a constant

Student: What is the constant?
T\rtor: The same as it was on top, whatever that was.

1-,1r)
h * irr? * psw : Pt + 

;pu? 
* psyt

Student: The speeds are the same. What about the p's?
T\rtor: We treat the air as an incompressible fluid, so p doesn't change.

h*PqUt:Pt*Pga,
pt:pt* pg Ay:pt + (1.21 kgl^t)(9.8 

^1"2X0.6 
*) :pt+7 N/*'

T\rtor: Now do area 2.

Student: So area 2 is the same as area 1, except the air is moving faster?
T\rtor: Yes.

1.4 m
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Student: How much faster?
T\rtor: Use the volume-rate equatioD, that the rate of flow is the same.
Student: So the area of area 1 times the speed is the same as the area of volume 2 times the speed there.
T\rtor: Careful about what you mean by area. The area in that equation is the cross-sectional area, which
is the width times the height. The height of the cross-sectional area is into the page.
Student: So we can't see it.
Ttrtor: Assume it's the same along the whole length of the car.
Student: So

Mrtr, - Mwzuz
wtut (I.4 m)(90 m/s)u2:;-ff-315m/s

Student: The air in the channel is moving at 315 m/s.
T\rtor: Now you can find p2.

1.,1.r
h * i*? t pssr: Pz + 

;pu'z, 
* etsst

pz : (p, +z N/m') + 
f,o @? - ,3)

pz: pt *7 N/m2 +iO.21 kg l^t) ((90 ^lr)' - (315 m/s)2)

pz : pt *7 N/m'2 -55131 N/m 2 - pt -551 24 N lm2

Student: That's a big change.
I\rtor: Yes, it's about half of atmospheric pressure.
Student: What's the pressure ps?
Thtor: There is air there, and it's also moving at 90 m/s, so it's the same ffi pr. Really it's a couple of
inches lower, so the pressure is maybe 1 kg/m3 higher.
Student: So now I'm ready to find the downforce.

F - (pr)(1.4 m)(3 m) - (pt) ((1.4 m)(3 m) - (0.4 mX2 m)) - (prx0.4 m)(2 m)

F - (pr)(4.2 -2) - @, +7 N/*',)(3.4 *2) - @, - 55124 N/*',)(0.8 *2)

F - -(7 N/*,X3.4 m2) + (55124 N/*r)(0.8 ttt2)

F - 4.4 x 104 N/*'
Student: Is that a lot?
Tutor: It's about 9000 pounds, more than the weight of the race car.
Student: So a race car could drive upside down?
TUtor: Some of them, but only as long a^s they were driving fast. This isn't the same as a roller coaster
doing a loop. There, the coaster accelerated down, but the acceleration wa.s what was needed to go in a
circle. Here, the race car could drive in a straight line upside down, but would have to get going fast before
turning upside down.
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Oscillations

Imagine a box attached to a spring and sliding on a frictionless horizontal surface. The vertical forces are the
weight and the normal force, and they add to zero since there is no vertical acceleration. The only horizontal
force is the spring.

F--kr:TrLa

When the spring is neither stretched nor compressed the force is zero, and we call this the equilibrium point.
When the box is to the left of the equilibrium point the force is toward the right, and vice versa.

If the box starts on the left then it accelerates to the right. It gains speed until it reaches equilibrium. At
equilibrium the force is zero, but that doesn't mean that the box stops - the acceleration is zero (not the
velocity). It coasts through equilibrium. Once the box reaches the right side the spring slows it, stops it,
then pulls it back to the left. This process continues until the cows come home.

The acceleration is the change in the velocity, which is the change in the displacement from equilibrium.

-kr -- TrL#" &k
--idt2* - TTL

To find out how the box behaves we need to solve this differential equation. We do this using the standard
method for solving all differential equations: guess. We want something that oscillates back and forth like a
sine wave, so let's try a sine or cosine function. When we do this we find that the solution is

r(t) : nrrrcos (wt + 0)

where A, u, and $ are constants. We could also use sine instead of cosine. Anything that behaves in this fash-
ion, where the acceleration is minus a constant times the displacement, is called a simple harmonic oscillator.

trrn and Q can be anything, but the angular frequency c.l must be equal to

Since the biggest that cosine gets is 1, the biggest that rt gets is nrnt and it is called the amplitude.

Once we know the displacement as a function of time, we can find the velocity and acceleration as well. The
velocity is the derivative of the displacement, or a(t) - -nmc^r sin (rt + il. The acceleration is the derivative

of the velocity, or a(t) - -trTLw2 cos (rt + O). Earlier we said that u - ,E,so we find that the acceleration

is o(t) (k l*)r(t), &s it had to be.

k
m'

r20
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The motion of a simple harmonic oscillator is char acterized by its frequency, amplitude, and phase constant

0. It is often useful to convert between the angular frequency cd (rad/s), the frequency .f (cycles l"), and the
period 

" 
(r).

u-1
I

2"-l r
Also, while the maximum displacement of an oscillator is frrn t the macimum speed is

U* : frrrrU

This comes from the equation for the velocity, where the greatest that sine can be is 1, so the velocity can
only be as large as frrnu).

The maximum speed does not occur at the same time as the maximum displacement. Instead, the maximum
speed occurs when the displacement is zero, a"s the oscillator coasts through equilibrium. When the oscillator
is at manimum displacement, it is momentarily stationary, and all of its energy is potential energy. When
the oscillator is at equilibrium, the potential energy is zero and all of its energy is kinetic energy.

E-Lrr"r.imu2

EXAMPTE

A 56 g mass attached to a spring oscillates a"s shown. Write an equation for the displacement of the mass as

a function of time.

4A 50
t(ms)

Student: The equation is n(t) : nnt,cos (rt + il. It says so above.
Tntor: But what are the values for ror, u, and S?
Student: Oh, that's what they mean. Is r* equal to 4 because the displacement at t - 0 is 4?

Tlrtor2 n,n is the biggest that the displacement ever gets. The displacement is not always biggest at t: O.

Student: So r- - $ cm. Or is it -5 cm, or 10 cm?
Tlrtor: Cosine goes from *1 to -1, so the displacement goes from as high as *rrn to as low ffi -frm.
Student: Then frrn :5 cm. The frequency is 40, because the motion repeats after 40.
T\rtor: The period is the time before the motion repeats. So the period T - 40 ms.
Student: The displacement is zero at t - 15 ms, and again at t: 35 ms. Should the period be 20 ms?
T\rtor: The displacement is the same but the velocity is not in the same direction, so that isn't " repeating
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The motion of a simple harmonic oscillator is char acterlzed by its frequency, amplitude, and phase constant

0. It is often useful to convert between the angular frequency c{, (rad/s), the frequency f (cycles l"), and the
period 

" 
(r).

u-1
+

zit-r T
Also, while the maximum displacement of an oscillator is firnt the mucimum speed is

Uvn : frrr,,U

This comes from the equation for the velocity, where the greatest that sine can be is 1, so the velocity can
only be a"s large ffi fi7nu).

The ma.:rimum speed does not occur at the same time as the maximum displacement. Instead, the maximum
speed occurs when the displacement is zero) as the oscillator coasts through equilibrium. When the oscillator
is at mucimum displacement, it is momentarily stationary, and all of its energy is potential energy. When
the oscillator is at equilibrium, the potential energy is zero and all of its energy is kinetic energy.

E _ Lrr", *;mu2

EXAMPTE

A 56 g ma^ss attached to a spring oscillates a"s shown. Write an equation for the displacement of the mass as
a function of time.

4/J-50
f (ms)

Student: The equation is r(t) - nmcos (rt + il. It says so above.
Tutor: But what are the values for ro, u, and Q?
Student: Oh, that's what they mean. Is rn, equal to 4 because the displacement at t - 0 is 4?
Tlrtors frm is the biggest that the displacement ever gets. The displacement is not always biggest at t:0.
Student: So rrr, - 5 cm. Or is it -5 cm, or 10 cm?
T\rtor: Cosine goes from *1 to -1, so the displacement goes from as high as *r* to as low as -nrn.
Student: Then frrn :5 cm. The frequency is 40, because the motion repeats after 40.
I\rtor: The period is the time before the motion repeats. So the period T - 40 ms.
Student: The displacement is zero at t - 15 ms, and again at t: 35 ms. Should the period be 20 ms?
T\rtor: The displacement is the same but the velocity is not in the same direction, so that isn't " repeating
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the motion." The displacement at t - 10 ms is the same as at t - 0, but the period is not 10 ms either.
Student: Flom the period I can find the angular frequency u.

21 2r

student: so the equation is r(t): (;;,llfl;: o,':' ;::.- do r determine r?
T\rtor z t is an independent variable. Ary equation for a function includes at least one independent variable.
When you are done with your equation, I can come along and pick any time t, and you can use your equation
to tell me what the displacement is.

Student: So I don't need a value for f.
Tntor: You need to not have a value for t. The displacement is a function of the time. If your equation
did not have t in it, then it would be a constant displacement, not changing with time.
Student: But I do need a value for /. What does Q do?

T\rtor: The phase constant O determines the starting point. That is, where the oscillator is at t - 0.

Student: Theoscillatoris at4whent-0. Icansett-0inmyequation,andr-Acil,andsolvefor@.

4-effi- (5*m) cos (tttt /sec)(o) + d)

0.8 : cos (,/)

O - arccos0.8 : 37" : 0.64 rad ?

Tlrtor: You could, but the problem is that there are two angles for which cos 0 - 0.8. You need to be sure
to get the correct one.
Student: What's the difference?
T\rtor: What's the difference between t - 0 and t - 10 ms?
Student: The displacement is the same, but the velocity is in opposite directions.
T\rtor: That's the difference between the two angles.
Student: So I have to find both values for @ and put them in the velocity equation to see which gives a
positive result?
I\rtor: That is one way to do it. Here's another: what is the cosine of. zero?

Student: One.
T\rtor: So when the phase, or everything inside the parentheses, is zero) the displacement is a positive
maximum.
Student: What's the difference between phase and phase constant?
T\rtor: The phase constant is d. The phase is wt + 0, or the whole thing that we take the sine or cosine
of. The phase at t - 0 is equal to the phase constant.
Student: So the phase is zero at t - 5 ms?
Tutor: Y'es.

(tttt /sec)(5 ms) * d) - o

0 - -(157 lsec)(0.005 s) : -0.78

Student: We didn't get the same value for Q. Something must be wrong.
T\rtor: It's hard to read a graph exactly. The difference is about 0.14 out of 2tr, or 8o out of 360", or 2To

of a cycle.
Student: And the final equation is

r(t) - (b cm) cos (ttsz lsec)t - o tt)

u^L
+

2nrT
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EXAMPTE

A 0.24kg mass is attached to a spring with spring constant 50 N/-. At t : 0, the displacement of the mass
is r(0) :0.19 m and the velocity is u(0) - -4.1 m/s. Find the frequetrcy, mucimum speed, and acceleration
one period later.

Student: So I need to come up with an equation for the displacement as a function of time, and find the
first and second derivatives.
T\rtor: You could do that. But there are easier ways. Energy is usually an easier way, when it works.
Student: It must work here or you wouldn't suggest it. Why didn't it work in the last example?
T\rtor: Since the energy typically doesn't depend on the time, we can't use energy to find the time.
Student: So I can use energy to find the maximum speed.
T\rtor: Yes.

Student: I'll start with the frequency.

- 1a.a ls

I4.4 ls - 2.3 Hz
2n

Student: If hertz is really just one over seconds, and radians per second is one over seconds, then why
can't we write the angular frequency in Hz?
T\rtor: Radians per second and cycles per second are not the same, even though neither radians nor cycles
is a proper unitr so that both are really one over seconds. f and cl aren't interchangeable, so we often use

Hz as a reminder that we're using / rather than kr.

Student: Ok y. Now I'll use energy as you suggest.

E -'ur"' *;mn2 : Irro N/-)(0.1e -) ' +1,0 .2akg)(- .r-ls) 2 - 2.s2 J

Student: Okay, I have the energy, what do I do with it?
T\rtor: Using the energy meant using Et,*W - Ey. We're not really interested in what the energy is, but
in comparing the energy at two times or places.
Student: So if I want t e maximum speed, I need to pick the other time to be when the mass has the
maximum speed.
T\rtor: Yes. When is that?
Student: When it coasts through equilibrium.
Ttrtor: Good.

Student: Is the work I,7 equal to zero?
T\rtor: Are there any other forces acting?
Student: The weight?
Ttrtor: If the motion is horizontal, then the weight doesn't do any work. If the motion is vertical, then
the spring stretches until it balances the weight at the equilibrium point. As the mass moves from there, the
total of the weight and spring force is -kr, so it's the same as before, and we can do all of the same stuff as
long as we mea^sure r from the equilibrium point.
Student: So I don't need the potential energy of gravity, even if the weight is moving vertically.

-eu
t-r2n

(!rr"a.;^d) *w - (|r"2.;*,?)

(|r.z . ;*d) + w : (|r "z 
. ;*,'")

* ) 
2 + ( 0,:fr;J l ;,1;: : Tot *,- ) ( 0 ) 

2

50 N/m

(50 N/*)(0.le + (0.2a kg)(r,,)'
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un-L - 4.9 m/s

Student: Is it positive or negative?
Tutor: It's a speed. Can a speed be negative?
Student: No, because it's a magnitude.
T\rtor: What is the acceleration after one period?
Student: Now I have to find an equation for the oscillator.
T\rtor: Not necessarily. If you knew the acceleration at t - 0, could you find the acceleration one period
later?
Student: It would be the same, wouldn't it? After one period, the oscillator repeats its motion.
Tutor: Correct. What would you have to know to find the acceleration?
Student: The maximum acceleration is rrnwz.
T\rtor: TYue. Where does maximum acceleration occur?
Student: At maximum displacement. The farther the spring is stretched, the greater the force and the
greater the acceleration.
T\rtor: Is the displacement a maximum at t: 0?

Student: No.
T\rtor: But if you knew the force, could you find the acceleration?
Student: I have the mass, so yes. Ah, the force of the spring is -ler., so

-(50 N/*)(0.le m)
- -39.6 ^lsz(0.24 kg)

Student: Is the negative important? When we did springs before, the minus sign was a reminder that the
force was in the opposite direction as the displacement r.
T\rtor: True. If we care about the direction of the acceleration, what should it be?
Student: The displacement is positive, so the acceleration should be negative. It is important.

We have three more topics is this chapter: the pendulum, damping, and resonance.

For a pendulum, it is possible to show that

& ,, rngh . ,.,

dtr?-- I sin0

where d is the angular displacement, h is the distance between the center of mass and the pivot point, and
/ is the moment of inertia of the pendulum. This is not quite the same equation that we had before. If the
angle 0 is small, then

0(in radians) = sind = tan? when 0 is small

This approximation is the same as using the first term of the Taylor series (don't panic yet - wait for the
appropriate time to panic). So if we restrict the pendulum to small angles (about 15" or less), then it is
approximately the same equation with the same solutions. The angular frequency is

for a simple pendulum (a point mass on the end of a massless string) of length ,.

FYiction or air resistance in an oscillator will do negative work, decreasing the amplitude over time. If we
include this effect, then the displacement as a function of time is

F -kr
w- mm

mgh
I

r(t) : frrn"-bt/2rn cos (r't + O)
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where the frequency is

EXAMPLE

An experimenter tries to build a clock from a ma"ss on a spring. He chooses the ma,ss and spring constant so

that the period will be one second. When he uses the clock, he notices that damping reduces the amplitude
by one-sixth in 73 minutes. How much of the original amplitude will remain after 24 hours? How much does
the damping change the rate of the clock?

Student: We need to determine the damping constant b. How do we find b?

T\rtor: We may not need to. What does the information about 73 minutes tell you?
Student: That

1 n- : n*a-b(zs min)/2'ncos (w'(zlmin) + O) ?
6em

T\rtor: A good start, but we need to fix some things. The cosine part is the oscillation, and the other stuff
is the amplitude. It is not clear that the oscillation is at mrucimum displacement at t : 73 min. AIso, the
amplitude decreased by a sixth, not to a sixth.
Student: Okay, so five-sixths is left.

5 -h(rs minl lzrn
6 

rm -- firna L

T\rtor: Much better.
Student: The amplitude rm cancels.
Trrtor: The original amplitude cancels, because the later amplitude is 5/6 of the initial amplitude, regard-
less of the initial amplitude.

q 
- o-b(rs min) /zrn

6

Student: I still can't solve for b.

T\rtor: No, but you can solve for the combination bl*.
Student: Is that enough?
Tutor: It's enough to answer the first part of the question, anyway.

ln /q\ b(73 min)
'\6/ 2*

Tbtor: Are you bothered by the minus sign? Will b be negative?
Student: No, because the log of a number less than one is negative, so b will be positive.

b t"(8)
- Z* - (73 min)

I\rtor: You can use this to find the amplitude afber 24 hours.
Student: Does r,o, still cancel?
Tutor: Because the question is what fraction of the original amplitude remains, rather than what is the
amplitude remaining, it cancels.

fractior|- e-*,;1za hr; : e#ffi12a 
hrl

T\rtor: Remember to get your units straight.
Student: Do the units always have to cancel?
T\rtor: We can take the exponent or log only of a number, so we have to get rid of units.

b2

4m2
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Student: Okay. 24 hours is (24 hr)(60 min/hr) : L440 min.

fractiot}:"(,.8)t#:g(-o.182)(19.7):0.0274or2.74To

Student: Isn't there an ea,sier way?
Tlrtor: Well, we could say that 1440173 - I9.7 73 minute periods pffis, and during each one the amplitude
is decreased by " factor of (516), so that afrber 24 hours the amplitude is

/=\ 19.7

(;) :0 0274

T\rtor: But the way we did it is more general.
Student: Now we can find the real frequency.

(r)' :

Student: The period is 1 second, so

2ru):;_2r ls

T\rtor: And we know the combination bf 2m.

Student: So

Tutor: Excellent.
Student: And we don't even need to know b or k or rn. Cool.
Tutor: And what is it equal to?
Student: 6.28f s.

T\rtor: Well, we knew that. The change in the period is really small, but it's that difference that we care
about. Take your number and subtract 2r to find the difference.
Student: Zero.
T\rtor: But you know it's not zero. The equation is clearly not equal to 2r.
Student: But it's really close.
T\rtor: Yes it is. To find the difference, we need to use a Taylor series.
Student: What! We did those in calculus class. I hated them.
Thtor: As do many calculus students, because in calculus class they make you derive them. In physics,
we look them up in a reference book.

\ffi- 1 .in -!"' * *"3 +... for r <<

Student: And I just look this up?
T\rtor: Yes.
Student: But I don't have I + r.
T\rtor: Make it 1 + r by taking the 2r outside the square root.

kb2_:
TTL 4m2
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T\rtor: The right-hand part is much smaller than one, so it becomes r.

,.,, x (2tr t s) (t - ; ( rffir)')
Student: You included only the first two terms.
Tbtor: Yes. That's the other reason that physicists and engineers like Taylor series. We only include the
first nontrivial term.
Student: The 1 is "trivial?"
Tutor: The 1 says that the real frequency c.,r' is very nearly the same as u. The second term is the difference
between them.

u' - rt)

Student: That looks small.
T\rtor: And that is why your calculator had trouble telling the difference between 2r and 2r minus that.
The difference shows up in the twelfth significant digit.
Student: So why do we care?
T\rtor: The difference tells us how much the damping has changed the frequency. There are about r x 107

seconds in a year, and if we multiply by the error, we find that the damping causes the clock to lose 0.7
milliseconds per year.
Student: That's not much.
T\rtor: No, but then the damping is very weak.

The la;st topic in this chapter is resonance. The calculations for resonance are typically saved for a differential
equations or more advanced physics class. The behavior of resonance is worth knowing now.

It is possible to apply an oscillating force to an oscillator. That is, as it oscillates, we apply another force
Fa cos (rot * Qa), called a driving force. We can do this without matching our frequenc! u4 to the natural
frequency of the oscillator c.r - m.
When this happens, the oscillator can oscillate at two frequencies, the natural frequency c.r and the driving
frequency u)6. Damping will cause the natural frequency to disappear (sometimes quicker than others), but
the driving force will cause the oscillator to continue to oscillate at the driving frequency. The result is that
any driven oscillator will oscillate at the driving frequency rather than the natural frequency.
The closer these two frequencies are to each other, the greater the amplitude of the oscillation. When the
two frequencies are equal, the oscillation amplitude is the greatest and we call this resonance. For example,
when you hear sound, your ear vibrates at the frequency at which the sound pushes on it, rather than the
natural frequency of your ear. If this was not true, then any sound would cause your ear to vibrate at the
same frequency, and you could only hear one frequency - you could tell whether there was sound or not,
but that is all.

= Ir(rftflor)':22x10-11



Chapter 16

Waves I

Imagine a group of oscillators, connected one after the other. We take the one on the near end and shake
it. It puts a force on the next one, which drives the next one, and so on. Remember that driven oscillators
oscillate at the driving frequency. So the oscillation that we start will be passed down the line at the same
frequency.

The individual oscillators move up and down, but do not travel along the line of oscillators. Each oscillator
stays in its place and vibrates. Similarly, when fans in a stadium do the "wave," each fan moves up and
down as the wave passes, but the fans don't move to the next seat. What does not happen is that one section
of fans stands up and then all of the fans scootch around the stadium. The waae that moves is the point at
which the displacement is a maximum. That is, an oscillator along the wave moves up and down, and we
find one that is up; an instant later it is no longer up but moving down. The next one is now up. An instant
after that, the next one is up. This is the motion of the wave - the point that is at maximum displacement
moves, and we call this the movement of the wave.

An important question then is how fast does the wave move. This is different from asking how fast do the
individual oscillators move (still nrn - wrrn). An important principle of waves is that all waves travel
through a medium at the same speed regardless of the frequency or amplitude of the wave. (A
"medium" is whatever waves travel through.) Shaking our end of the train of oscillators will not cause the
wave to move down the line any faster.

For any medium, it is possible to derive a "wave equation" of the form

& 1&
ffiu(r,t): ftWY@,t)

where u is a constant, and g is the displacement of the medium at a spot r and at time t. The solution to
this equation is a wave that travels with speed u. Solutions come in two forms:

U(r,t) : y*sin(k* Iwt + do)

A@,t) : y,rsin(k") cos(c^rt)

The first form is a traveling wave and the second form is

be cosines and the cosines could be sines.)
a standing wave. (Like oscillators, the sines could

In a traveling wave, the phase 0 is the entire contents inside the parentheses (Qo is the phase constant).
When the phase is n f 2, 5r f 2, or 91 12, then the sine is 1 and the displacement is a maximum. The distance
along r between successive maxima (from 0 - T12to Q -5112) is a wavelength,\.

128
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As time increases, the phase increases or decreases, depending on the sign of the *wt term. To follow a
maximur: we need to keep the phase the same, so r must decrease or increase. The ratio of k and u
determines how much r must change as t increases, and thus the speed of the wave.

The second form u - /,\ is the most commonly used, and can be understood as: the speed of the wave is

the rate at which oscillations occur / times the distance moved per oscillation ).

The wavenumber k performs the same task for distance that the angular velocity u does for time. If the
time increases by one period T, then there is one oscillation and the phase changes by 2n. u is then the
radians per second by which the phase changes. If the position tr increases by one wavelength ,\, then there
is one oscillation and the phase changes by 2n. k is then the radians per meter by which the phase changes.

The signs in the phase determine the direction of the wave. If the signs of kr and wt are the same, then as

time increases, r must decrease to keep the phase constant, and the wave moves in the -r direction. If the

i:il fl#r"f #"T""1?#:[? 
then as time increa"ses, r must increase to keep the phase constant, and the

Remember that the speed of the wave depends on the medium. If we increase the frequency at which we

shake the end of the medium, even though u - f 
^ 

the speed of the wave does not increase. Instead the
wavelensh decreases. For any given medium we could mea"sure or calculate the speed of waves. One common
medium is a tightly stretched string, for which the speed is

Ustring :

Here r is the tension in the string, and we use r instead of ? because we are using T for the period of the
oscillation. p is the mass density, or mass per length of the string (*u - mlL).

EXAMPLE

The figure shows a "picture" of a wave traveling along a steel wire at time t - 2 s. The wave travels at 52

m/s to the right and the tension in the wire is 60 newtons. Find the wavelength and frequency of the wave,
the mass density of the wire, and write an equation for the wave.

_9
h

40 50
r (cm)
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Student: This picture looks a lot like the one from the last chapter.
Tutor: Yes, but the axes have changed. r is no longer the displacement, but the position along the wire,
and y is the displacement.
Student: Why couldn't we use r for the displacement?
T\rtor: We could. r(A,t)- rrrsin(ky - c't) is a wave moving in the *A directior, with the oscillations
happening in the r direction.
Student: Ok y. The amplitude yn, is 5 cil, because that's the greatest that the displacement gets from
zeto.
T\rtor: Correct. Can you identify the wavelength?
Student: There are peaks at r - 5 cm and r - 45 cm so the wavelength ,\ is 40 cm.
T\rtor: What is the velocity of the wave?

Student: That's the u - /,\ one, rather than the nrn, : ufrrn, right?
T\rtor: Correct . 'urn : uArn is the maximum speed of each piece of the medium. Imagine tying a ribbon to
part of the wire. Then ?)nt. : uUrn is the fastest that the ribbon moves up and down.
Student: And it's yn rather than rrn because the motion of the ribbon is in the y direction.
T\rtor: Yes.

Student: But I want the wave speed u - f 
^.

f^ -> f -?-Y,^hloocm-130/sr .tr 40cm 1m 
Lvvr

Tutor: Good.
Student: Now I can use ustrins: ,ft to find the mass density p.

usrri-o r ^ lL -) u, - 
T 60 N

ins: tl A -) u- a
Student: Now I need to write the equation for the wave. It should look like a@,t): Arnsin(kr tut+do).
IknowtheamplitudeUrn:5cm.ThewaVenumberk-+:ffi-15.7lm.RadianSareavirtualunit,
not a real unit, and I can write k - I5.7 rad/m.
T\rtor: I don't think I've heard the phrase "virtual unit" before, but it fits.
Student: Icangettheangularvelocityc..'fromthefrequency f,a-2rf -2r(130 lr)-8LT ls.

y(r,t) : (5 cm) sin [(r5.7 l^)r I (817 l")t + do]

Student: The r and t are the independent variables, and don't have specific values.
T\rtor: All very good. All that's left is to choose between * and r and to determine @s.

Student: If the signs of kr and wt are opposite, then the wave moves in the *r direction, so they must
be opposite. Does that mean I could write (k* - ut) or (-k* * wt)?
T\rtor: That's what it means. You might get different values of Qo depending on which you choose.
Student: I choose (kr - ,.,t).

a@,t) - (5 cm) sin [(15.7 l^), - (8r7 ls)t + Qol

Student: Now I look at the peak at r - 5 cr, and that corresponds to zero phase, like in the last chapter.
Tutor: Not so fast. You have the right idea, but we're using sine instead of cosine.
Student: Why did we change?
T\rtor: We use sine here for the same reason that we used cosine with oscillators - it improves the chances
that the phase constant is zero. But that doesn't mean that the phase constant here is zero. Because we're
using sine, a maximum occurs when the phase is r f 2 rather than at zero.
Student: Soat r- Scmand t- 2sthephase isrl2?
T\rtor: Yes, or 5112, or 9112, or so on. It doesn't matter which you use.

Student: Then I'll use r 12.

[(1b.T lrr4(0.05 m) - (812 liQ s) + dol - ;
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T\rtor: There's a quicker way to an answer.

a@,t) : (b cm) ri" 
[( 

rs.T l^)@ - 0.0b m) - (812 lil]p - 2 *t + 1l/ 2J

Student: It seems simple, I guess. How do you know that it works?
T\rtor: It's clear that if r - 5 cm and f - 2 s the phase isrf2, yes?

Student: Sure, because the first two terms of the phase are zero.
T\rtor: As we move away from r - 5 cm, the phase changes by L5.7 rad/m, the wavenumber. And as time
changes, the phase changes by 817 rad/s, the angular velocity.
Student: Yes, those must both be true, and the signs for r and t are opposite, so the direction is correct.

EXAMPLE

What phase difference must there be between two otherwise identical waves so that their sum has half the
amplitude of each of them?

Student: This seems pretty straightforward.
T\rtor: Okay. How are you going to do it?

If you take two solutions to the wave equation and add them, you get another solution. This is how we get
waves that are not shaped like sine or cosine, by adding many sine or cosine waves together. All of the waves
travel the same speed because they are traveling in the same medium.

There are three important cases of adding waves that appear many times, and are worth learning about:

o two (or more) waves traveling the same direction, identical except perhaps for a phase difference,

o two waves traveling the same direction, identical except for a slight difference in frequency, and

o two waves, identical except that they travel in opposite directions.

When two identical waves travel the same direction, they add together to form a wave that is twice as

big, having twice the amplitude. When the waves are exactly "out of phas€," or one is half a wavelength
behind the other, they are exact opposites and they add to zero. We call these constructive interference and
destructive interference, respectively. If they are somewhere in between, then using a trig identity

ino*sin p -2sin 
(Zn st' (4\
\ 2 )cos\. 

' 
/

sr- sin (k* - ut + il * a,nsin(kr - ut) - 2cos (;t) yn sin (r" - wt . Lf)
so they add to form a new wave, identical to the first two, but with an amplitude of 2 cos (+0) times the
original amplitudes. Sure enough, for 4, - 0 this is 2 and for Q - n this is 0.

When two waves have slightly different frequencies,

sin a * sin p -2 sin ff) .o, (+)
y*sin(k* - u1r) +y,'sin (k* -wzt):2A,ncos ((r, -u1) t) sin (f" -" t",)

The result is a wave with the average frequency, with an amplitude that oscillates at the difference in the
two frequencies. We call this phenomena beats, and the difference frequency is the beat frequency.
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Student: With the formula above.

CHAPTER 76. WAVES - I

T\rtor: The units on the left are length, but the right side doesn't have units. Something must be wrong.
Student: Oh, I need the amplitude that the waves start with.

Student: But the original amplitude cancels.
T\rtor: Yes, because in this problem we are comparing to the original amplitude, instead of to meters or
centimeters.

1 /1\
,0 - arccos (.a/

Student: Does it matter whether I use radians or degrees?
T\rtor: No. Like any unit, you need to write the units and use them consistently.

O -2 arcco' (i) : 151o : 2.64rad

Student: There, I did both for good measure. But what if the waves don't have the same amplitude? Do
we have a formula for that?
Tutor: We have a technique that we call phasors.
Student: Isn't that some kind of stun gun?
I\rtor: Only in science fiction. In physics, it's a way to add waves by adding vectors. Imagine a vector
that initially points in the *r direction, but then rotates counterclockwise. What would the o component
be?
Student: It would be cos 0.

Tntor: As long a^s we measure 0 from the r ucis, yes. As the wave pa.sses a point, let the vector rotate
at angular velocity w, and then the o component is the displacement. Now imagine that we have another
wave, similar to the first but 7r 12 behind and with half the amplitude. We can draw another vector, in the

-gr direction and half as long. Because the waves have the same frequency, these rotate at the same rate.
To add the waves together, we add the vectors together.

2cos(;4 urn:t ?

2 cos (;t) urn : Ir*

cos(;r) : i
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Student: So the sum is a wave with amplitude tre)'+ (0.5)' : I.I2?
T\rtor: Yes, and the angle of the resultant vector tells us the phase of the resulting wave.

Student: That's kind of cool. And we can add more than one vector this way?
T\rtor: As many as you want.
Student: So how can you explain beats with phasors?
Tutor: Because the two waves have slightly different frequencies, the vectors rotate at slightly different
frequencies. When they point in the same direction, the amplitude is large, and when they point in opposite
directions, they add to zero and the amplitude is small.
Student: But they don't rotate together.
Tutor: No, but they rotate much faster than the difference frequetrcy, which is how the difference in the
vectors changes.

The last important case is two waves traveling in opposite directions.

in a * sin 0 -2 sin ff) .o, (+)
g- sin (k* * wt) * Arnsin(kr - ut) - 2y,ncos (rt) sin (kr)

Each piece of the medium is an oscillator, but instead of moving one after the other, they all move in sync.
Some places have an amplitude of 2Arn and others have an amplitude of zero. Because these waves
don't move left or right, but oscillate in place, we call them standing waves. We call the spots where the
amplitude is zero nodes, and the spots where the amplitude is a maximum antinodes.

How can you get two identical waves but going in opposite directions? You tie down one end of your string.
It is a general principle of waves that when a wave encounters a change of medium, in which
the wave would go a different speed, some of the wave is reflected and some is transmitted. If
the boundary is especially hard, so that none of the wave is transmitted, then the entire wave is reflected
and we have an identical wave going the opposite direction. If the medium off of which the wave reflects is
one in which it would go slower, then the wave is flipped upon reflection, so that the incoming and reflected
waves add to zero, producing a node at the endpoint.

If both ends of a string are bound then the wavelength is constrained. Nodes are half a wavelength apart,
so if both ends must be nodes, then the length of the medium must be an integer times half a wavelength.

L- ,\ 2Ln, or 
^-;

where n is any positive integer. This means that there are many acceptable wavelengths, but they are a
discrete set - only those wavelengths will work. This is the basis of musical instruments. In a guitar, for
example, the wavelength must be twice the length of the string, or an integer times that.

3L
2

r,-
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We can then use u - /) to determine the frequency.

CHAPTER 16. WAVES - I

The important point is that there is a fundamental frequency .fi, and the other allowed frequencies
are integers times the fundamental, called harmonics. The integer n is the same integer for how
many half-wavelengths fit in the medium, and is the number of antinodes present. Sometimes these higher
frequencies are called overtones. The difference is that, if a medium is more than one dimensional, there
may be allowed frequencies that are not integer multiples of the fundamental, and the word overtones covers
these.

I strongly recommend aga'insf memorizing an equation for the frequencies of a standing wave. One of the
most common mistakes made with standing waves is to pull out a formula for the frequencies and use it
improperly, or where it doesn't apply. Instead, picture the waveforil, apply L : nt or ,\ - +, use a - /,\,
and find the frequencies. It is always better to learn to use a few equations well than to memorize more
equations, and especially here.

EXAMPLE

A 74 cm strittg clamped at both ends with a mass density of 0.310 glm has a fundamental frequency of.440
Hz (the note A). How far from the end would you have to hold the string down so that the third harmonic
is the note F (1398 Hz)?

Student: I don't see how to get from here to there.
T\rtor: So start with what you would need.

Student: If the third harmonic is 1398 Hz, then the fundamental is

fs_ rf,, ft-+- ry - 466H2

Student: Does that mean that the first harmonic is equal to the fundamental?
T\rtor: Indeed it does. The first harmonic is one times the fundamental, or equal to the fundamental. The
first overtone is the first frequency above the fundamental, or the second harmonic. What is the wavelength
of the 466 Hz fundamental?
Student: How can the fundamental be both 440 Hz and 466 Hz?
T\rtor: It isn't both, so much as first one and then the other. Initially the fundamental is 440 Hz, but
then we hold the string down partway along its length. When someone plays a guitar, they hold the string
down on a "fret" along the guitar's neck. That shortens the string, so the wavelength will be shorter and
the frequency higher.
Student: Because the medium hasn't changed and the velocity is the same, right? But we've changed the
string, so the medium has changed.
Tutor: The tension is the same and the mass density is the same, so the speed of the wave is the same.

Student: So it's really two different strings.
T\rtor: Yes, but with the same speed.
Student: So I can write

"fb.fo.ulbufor" 
: ubefore : uafter : f^ft"r)"ft".

T\rtor: Very good.
Student: Do I even need to find the wave speed?
T\rtor: Nope.
Student: I know the frequency before and after holding down the string.

(440 Ht))b"fo," - (1398 Hr))u,ft".

Student: How does the fundamental afterward come into it.
T\rtor: You could use it. I'll show you in a minute. But since you've opted for the third harmonic, we can

f -|^-nft
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use that. What is the wavelength of the fundamental before?
Student: It's the length of the string.
T\rtor: Think about what the waveform looks like. Is that one wavelength?
Student: No, it's only half a wavelength. The fundamental wavelength (can we say that?) is twice the
length of the string, or 148 cm.

(440 Hr)(148 cm) - (1398 Hr)lurt",

Student: Now I can solve.

)after :
(440 Hr)(148 cm)

- 46.6 cm
(1398 Hr)

T\rtor: Good. How can you use the wavelength of the third harmonic?
Student: That's right, it's the third harmonic, not the fundamental. So the wavelength is 2Lf 3.

: )"ft"r : 46'6 cm

L - 69.9 cm

Student: The guitar player has to hold the string down 69.9 cm from one end.
T\rtor: Or 74 - 69.9 : 4.I cm from the other end, as he probably thinks about it. If you had used the
fundamental frequency afterward instead of the third harmonic, then you would have gotten a wavelength
of about 140 cffi, but then the wavelength would have been 2L instead of 2L13. It didn't matter which you
used, so long as you matched wavelength and frequency.
Student: Is that why grand pianos are curved, because the strings are different lengths?
Tutor: Yes. You could change the length, or you could change the tension or mass density and thus change
the speed. Remember that changing the speed will change the frequency because the wavelength is fixed by
the length of the string. (You tune a guitar or piano by changing the tension.) The high notes are short
strings and they get longer for lower notes. Eventually the strings would become too long, and we can't
really put more tension in the strings, so thicker strings are used for the lowest notes. Guitar strings are of
different thicknesses so that they can have the same length and tension but play different notes.
Student: Can you explain standing waves using phasors?
Tutor: If you like. The two vectors now rotate in opposite directions. If the start both vertical, then they
will always add to a vertical vector with no r component, and we get a node displacement ever. If
they start both to the right (+"), then they will add to a horizontal vector that varies from *2 to -2,, and
we get an antinode.

The fundamental (pardon the pun) equation for all waves is

O: f \

Here's how to keep straight which of the three variables is determined.

Any two waves in the same medium have the same speed.

A wave keeps the same frequency as it crosses from one medium into another.

o Standing waves, with nodes at fixed points, have certain allowed wavelengths.

We've seen examples of the first and last. For the second, consider a piano. The strings vibrate at a frequency

f , and strike the air molecules, causing them to vibrate at the same frequency /.

2L
T



Chapter fT

Waves II

Air may seem empty, but that is merely relative. Air contains about 101e molecules per cubic meter. Liquids
and solids, for comparison, contain about 102e molecules per cubic meter.

It can be helpful to think of sound as the molecules in the air vibrating, but this is not strictly true. Because
of the lower density, the molecules in air move around, travelling a short distance (centimeter-like) before
colliding with another air molecule. Instead the pressure of the air oscillates, changing by a small amount
of maybe #dd of atmospheric pressure, and this region of slightly higher pressure is the wave that moves.

The speed of sound depends on the molecules in the air and the conditions, so that it changes with temper-
aturc, for example. At standard conditions (atmospheric pressure, room temperature) the speed of sound
is 343 m/s. This is much slower than light, so that when a spaceship in a science fiction movie blows up,
you would see the explosion before hearing it like lightning on Earth. Really, because there are so few
molecules in outer space, you wouldn't hear the explosion at all.

Having described string instruments in the last chapter, we examine wind instruments here. Imagine a pipe
with one open end and one closed end. At the closed end, the air can't move very far, because it would leave
a vacuuln in the end. At the open end, the air molecules are free to move. But the open end is literally out
in the open, so the pressure there remains atmospheric pressure, while the pressure in the closed end can
change. So an open end is a pressure node but a displacement (of the air molecules, in and out of the pipe)
antinode. A closed end is a displacement node but a pressure antinode.

Confusing? Remember that the two ends of an open pipe have to be the same, but the two ends
of a closed pipe have to be different. So the allowed wavelengths of an open pipe (open at both ends)
are sirnilar to those of a string. But for a closed pipe (closed at one end; nothing would happen if both ends
were closed) the length must be |,f, f,f, f,f, and so on.

-)-
n=2

n-3

n= 4

L-zI-,/2= I-

h - 21.,/3

L-- 2L/4 = I-/2

n= |

n= 3

n=5

L= 4L

)v - 4I-/ 3

L - 4r/5
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EXAMPLE

A closed pipe in standard conditions has a length of 32.7 cm. When an open pipe is played at the same
time, the beat note between the fundamental of the open pipe and the third harmonic of the closed pipe is
3 Hz. How much longer must the open pipe be so that the two frequencies match?

Student: This looks complex! Where can I start?
T\rtor: Can you find the frequency of the closed pipe?
Student: Which, the fundamental or the third harmonic?
Tutor: Either. Of course we'll need the third harmonic eventually, but let's start with the fundamental.
Student: Well, because it's open at one end and closed at the other, one is a node and the other is an
antinode. Does it matter which is which?
T\rtor: Usually not. It would depend on whether you're looking at air pressure or at air molecule displace-
ment. You do have the important thing, which is that they are opposites.
Student: In a standing wave, nodes and antinodes are a quarter of a wavelength apart. So for the funda-
mental, the length of the pipe is a quarter wavelength (L : ifl.
Tutor: Very good.
Student: The second harmonic is when the length is fi,\ and the third is when it is i,l.
T\rtor: You have the right idea, but incorrect terminology. The first overtone is indeed when the length is

i,\ and the second overtone is when it is i,l. But when L - f,f, the wavelength is + what it was, and the
frequency is three times higher, so we call it the third harmonic.
Student: So what's the second harmonic?
Ttrtor: There is no second harmonic for a closed pipe. A medium with a node and an antinode at the two
ends doesn't have even harmonics, only odd ones.

Student: So if L - I,l it's the fifth harmonic?
T\rtor: Yes, because the frequency is five times the fundamental frequency.
Student: Ok y. For the third harmonic

L-9,1 + 
^-!^r-*ft.7cm) -43.6cm43r

f - ?- ln?=T/' - T8T Hz) 0.436 m
T\rtor: Okay. When the two pipes are played at the same time, we hear a beat frequency of 3 Hz.
Student: So the frequency from the open pipe is 784 Hz.
T\rtor: Or 790 Hz. You can't tell from the beat frequency which of the two is the higher frequency.
Student: So I'm stuck? The open pipe frequency is 784 or 790 Hz and I can't tell which?
Tutor: The problem does say that to make the two pipes match, w€ need to make the open pipe longer.
Does the frequency increase or decrease as the pipe gets longer?
Student: If the pipe gets longer, then the wavelength gets longer too. If 

^ 
gets bigger, then / gets smaller.

T\rtor: So to rnake them match, we're going to make f smaller.
Student: So the frequency of the open pipe must be 790 Hz. Do we have an equation for the change in
frequency?
T\rtor: No, but we could determine the length, and then the needed length, and subtract.
Student: I was hoping for an easier way.
T\rtor: You mean a single step?
Student: Yes.

T\rtor: Havi.g fewer equations and putting them together is easier than having an equation for every need.
We'd have nearly infinite equations.
Student: Okay. The length of the open pipe is half the fundamental wavelength.

L-1,1 k ,:f\ + L_ !:2 - "'- 2f

L,- 3 - - !11? -t1') - 21 71 cm- r 2h 2(790 Hr)
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r,e - :- - !1*?I1') - 21.7e cm- '' 2f, 2(787 Hr)

Lz - Lr - 2I.79 cm - 2I.7I clr - 0.08 cm, - 0.8 mm

Student: That's not very much.
T\rtor: To tune a wind instrument, like a clarinet, you take two of the pieces and pull them just a little
apart. Pulling them 1 mm apart can change the frequency by a couple of hertz.

-J
In general, when two or more waves add we call it interference. There are many examples of interference,
such as standing waves when you add two waves traveling in opposite directions.

We now consider adding two waves coming from arbitrary directions, but with the same frequency. If peaks
arrive at the same time, then we have constructive interference where the waves meet. It doesntt matter
that the waves came from different directions. If a peak from one wave arrives at the same time as a dip
(marimum negative displacement) from the other, then we get destructive interference.

Usually the two sources are coherent, or "in-phase," meaning that they produce peaks at the same time. If
the wave from one has to travel for an extra period, then a peak from that wave arrives just as the next peak
from the closer source arrives. The same is true if the further wave travels for an extra two, threer or any
integer number of periods. Because a wave travels one wavelength in one period, constructive interference
occurs when one source is an integer number of wavelengths further away than the other. If
the wave from one has to travel for an extra half period, then a peak from that wave arrives just as the
next dip from the closer sources arrives. The same is true if the further wave travels for an extra one and
a half, two and a half, or any half-integer (integer plus a half) number of periods. Therefore, destructive
interference occurs when one source is a half-integer number of wavelengths further away than
the other.

constructive interference

* lf destructive interference

A person stands near two in-phase speakers as shown. Find the three lowest frequencies at which destructive
interference occurs.

l-3m

Student: I want destructive interference, so I need AL - (m + *lf .

T\rtor: Good. What is A^L?

Student: The difference between the two distances. L2 is 3 meters, or is that LJ
I\rtor: It doesn't matter, and we don't care whether the difference is positive or negative.

A^L:lLz-Ltl

EXAMPTE
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Student:SoIcanjustSaythatonedistanceis3mandtheotheri"'ffi-3.60m?
T\rtor: Yes.
Student: Then the difference is 3.60 - 3.00 : 0.60 m. But the frequency hasn't shown up in any of the
equations.
Ttrtor: You can still use u - f 

^.Student: Ah yes. If I can find the wavelength, then I can find the frequency. AL is half a wavelength, or
one and a half wavelengths, and so on.

(m + ilr - L,L - o.6o m

f - !- (^ 
! j)' - (* ++)r", ,,, - (m + i)672 Hr)J)AL

Tutor: Very good.
Student: And m car' be any integer, so I put in 1, 2,,

T\rtor: The lowest frequency occurs when m - 0.

Student: Oh yes, because then A.L is |X.

m-0 + f -(r)(bz2Hz)-286H2
m-r -> f -(BXsz2Hz)-8b8Hz
m-2 + f -(t)(b72Hz)-r43oHz

Student: How far can we go?

T\rtor: You could keep going, but the human ear doesn't hear well above about 20,000 Hz.
Student: Couldn't we just combine what we've done and get a formula for the destructive frequencies?
Thtor: We could do that for any problem. The question is whether we should. If an equation is used over
and over, is difficult to do mathematically, and not prone to misuse, then it makes sense. This was true for
elastic collisions, where we had two equations and one of them had u2 in it. Is this something that we'll need
many times?
Student: It seems like it could come up more than once.
T\rtor: It could. Is it hard to do the math?
Student: No, it wasn't.
T\rtor: But experience teaching this topic has taught me that it is prone to misuse. Two out of three says
to stick to two simple equations and not try to memorize something else.

Student: Fair enough.

Waves carry energy. Light from the Sun brings or brought us most of the energy we use (brought for fossil
fuels). We describe this energy by its power and intensity. The power is the energ.y per time, as before. The
intensity is the power per area.

Imagine turning on a flashlight. The flashlight bulb emits a certain amount of power in the form of light. As
the light leaves the flashlight it spreads out. The further away from the flashlight, the lower the intensity,
as the light spreads out over a larger area, but the power is the same. The brightness or intensity of any
wave is proportional to the amplitude squared.

In many cases we use a point source that radiates uniformly in all directions. The math is easier, and there
are many sources that come close to this. The intensity is the power divided by the area of a sphere over
which the power is spread.

I - nl,,
This is true for any type of wave emanating from a point source.

We often describe not the intensity of sound waves in W/m2 but the sound level in decibels

I

B - (10 dB) r.s *
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where Io :10-12 W l^'is approximately the threshold of human hearing. Decibels are "factors of ten," so
10 dB is 10 times greater than 0 dB (0 dB is not zero sound), and 20 dB is 10 times greater than 10 dB,
or 100 times greater than 0 dB. Think of 20 dB as "2 factors of ten above 0 dB." 3 dB is approximately a
factor of 2, so 23 dB is two times greater than 20 dB, or 200 times greater than 0 dB. Normal conversation
is about 60 dB, or about a million times more intense than the threshold of hearing (six factors of ten).
Decibels can be used in a relative or absolute sense, so one signal can be +23 dB relative to another (200
times as large), or 23 dB (200 times ^[s, or threshold). (W. use decibels because the ear is logarithmic.)

EXAMPLE

A man hears a jackhammer at a sound level of g5 dB. If we moves twice as far away, what will the sound
level be? What if he moves 20 times further away?

Student: So I have to use the decibel equation to find the power of the jackhammer, then double r and
find the new intensity, then . . . wait a minute, it doesn't say how far away from the jackhammer he starts.
How can I find the power?
Tutor: You can't. But see where it says "twice as far away" ?
Student: It's a scaling problem. I write the equation before and after.

rPb"for"r,P"rt",lbefore: 
W 

ano lafter: 
W

T\rtor: Yes. What is the same between the two?
Student: Well, n before is the same as 7r afterward
T\rtor: Tbue but not enough.
Student: Ok y, the power is the same before and after, but the radius has changed.

Student: Now rafter :2rb"forer so -{orl"'vv /b"fo." 4'

Tutor: Good.
Student: We're using dB in a relative sense, rather than compared to /s.

p - (10 dB) roe *q - (10 dB) 1", I - -6.02 dB
/b.for. \

T\rtor: True. You could also say that 4 is two factors of two, so -3 dB for the first factor of two, then -3
dB more for the second factor of two.
Student: And you don't multiply?
T\rtor: You never multiply dB, because dB is "factors of ten."
Student: Can you always do this tricky stuff? What's -I7 dB?
T\rtor: If you go down a factor of ten (-10 dB), then down another factor of ten (-10 dB), then up a
factor of 2 (+3 dB), you're at -17 dB, so -I7 dB is down a factor of 50.

Student: And if he stands three times further a\May, the intensity is 9 times less.

T\rtor: -10 dB is 10 timbs less, and -9 - (-3) + (-3) + (-3) dB is three factors of 2 or 8 times less, so

it's between -9 and -10 dB.
Student: Seems simple.
Tutor: You need to remember that you add dB to multiply the intensity. By the w&y, the problem
didn't ask for the relative sound level, it asked for the sound level.
Student: Ah, he starts at 95 dB, and the change is -6 dB, so the result is 95/6 - 16 dB. No, you add dB.
It's 95 - 6 - 89 dB. That doesn't seem like much of a change.
Tutor: It isn't. The ear perceives a factor of 10 in intensity to be "one notch" in sound, so he hasn't really
reduced the sound much. What if he stands 20 times further away?
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Student: Then the intensity is 202 - 400 times lower. 400 is 10x 10 x2x2, so (-10)+(-10)+(-3)+(-3) -
-26 dB. 26 dB below 95 dB is 69 dB.
Tntor: Excellent. 69E} is three factors of 2 or 8 times louder than normal conversation.
Student: Even though he's moved 20 times further away?!
I\rtor: That's why you should wear ear protection when operating a jackhammer, and it's hard to have a
conversation near one.

Our last sound phenomenon is the
frequency of the sound changes.

Doppler effect. If we move, or the source of the sound moves, then the

Peaks of the sound, spots of slightly higher air pressure, are a wavelength apart as they move toward us.
Waves travel one wavelength in one period, so we receive the peaks at intervals of a period. ff we move
toward the source of the sound, then it takes less time than a period (* mea^sured by the source) for the next
peak to get to us. We perceive a shorter period than the source does, and a higher frequency. If the source
moves toward us, then one period later, as it emits the next peak, the previous one is not a full wavelength
away - it is a wavelength minus the distance the source moved in a period.

The frequency that a "detector" hears is

st - r (u*ua\r -r \'+'")
where / is the frequency of the source , ?)d, and u" are the velocities of the detector and source, respectively,
and u is the speed of sound. Which of * and do you use? One way is to remember that motion of the
source or detector toward the other increases the frequency, and use the sign to produce the desired result.
Written the way I have it here, use the top sign for motion toward the other and the bottom sign for motion
away from the other. If the detector moves toward the source, then use the * sign in the numerator. If the
source moves away from the detector, use the bottom sign or * sign in the denominator.

EXAMPTE

A ship is chasing a submarine.
detecting the reflected sound.
ship sends out a 700 Hz sound
in water is 1500 m/s.

To detect the submarine, the ship uses sonar, sending out a sound wave and
The submarine is moving at 8 m/s and the ship chases it at 20 rnf s. If the
wave, what frequency do they hear for the return wave? The speed of sound

Student: The ship is both source and detector, so there's no change.
Tutor: It's not quite that simple. The ship is the source and the sub is the detector. The sub hears a
different frequency than the ship sends.
Student: The detector moves away from the source at 8 m/s, and because it's away we use the bottom
sign or - in the numerator. The source moves toward the detector, and because it's toward we use the top
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sign or in the denominator.

,r",,u -r(H)-(7oo H,) (
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(1500 */s) - (20 */s) )-(7ooH,) (ffi) -zobTHz

ffi) -(TobTHz) (ffiH) :TtrsHz

(s m/s)(1500 m/s)

Student: The sub is movit g away from the ship. Shouldn't they hear a lower frequency?
Tutor: The ship is moving toward the sub faster than the sub is moving away from it.
Student: Okay. Couldn't we have used the relative velocity, saying that the sub was stationary and the
ship moving 12 mls?
Ttrtor: We can't because the sound travels through the water. If the sub moves at the speed of sound,
then the peaks never reach the sub, even though the ship is moving faster than the sub.
Student: But the ship would be moving faster than sound. Can that happen?
Tutor: It is possible to move faster than sound. Supersonic airplanes are ones that move faster than sound
in air. If the source moves at the speed of soutrd, then each peak is on top of the previous one, because the
source is at the same place as the previous peak as it releases the next one.
Student: That's how you get a sonic boom.
Tutor: More or less. And the equation would say that the received frequency was infinite, reflecting that
all of the peaks would arrive at the same time. Here, if we used relative velocity as you suggest, we would
get a very small error in our answer. The error is small because the speeds of the vessels are so much slower
than the speed of sound.
Student: Ok y. But we have the frequency that the submarine hears. We want the frequency that the
ship hears.
T\rtor: T[ue. The waves reflect off of the submarine.
Student: Is that because the steel of the submarine is a different medium than the water?
T\rtor: Very good. Whenever a wave encounters a change in medium, some of the wave is reflected. Most
of the sound reflects off of the air inside the submarine, rather than the steel of the submarine. Now the
submarine is the source of the reflected wave, and that reflected wave starts with a frequency of 705 .7 Hz.
Student: So the ship is the detector and hears

(1500 m/s) +
1500 -/s) + (8 -/s)

T\rtor: Yes, and you used the + sign in the numerator because the ship wa^s moving toward the source,
and the * sign in the denominator because the sub was moving away from the detector.
Student: And the ship can use this to determine where the sub is?
T\rtor: They can use the shift in frequency to determine the speed of the sub. They mea"sure the time that
it takes for the reflected wave to arrive to determine how far away the sub is.

Student: Can't they just look?
T\rtor: Light does not travel far through seawater, so the submarine isn't visible. Sound travels quite well
through seawater.



Chapter 18

Temperatur€r Fleat) and the First Law
of Thermodynamics

What happens when we cook food? If there is no force exerted over a distance, then how can we move energy
into the food, and where does the energy go?

There is a second way to move energy into an object, other than by doing work on it. Heat is the energy we

move into an object other thar by work. No object has heat, because heat is the transfer of energy.

Every object has internal energy Eint Temperature is a measure of the density of the internal
energy, in energy per atom rather than per volume. Two objects at the same temperature do not necessarily
have the same amount of internal energy. A large bucket of water has more internal energy than a small
bucket of water even though they have the same temperature. When placed in contact, no heat flows
between the two because they have the same "energy density." The small bucket could have the same

internal energy as the large one, but would need to have a higher energy density or temperature. Then when
placed in contact, heat would flow from the hotter, higher temperature bucket of water to the colder, lower
temperature bucket.

The first law of thermodynamics is conservation of energy, so

A.Eir,, - LQ + Lwdone on - LQ - LWaone by

where LQ is the heat transferred into the object. We can increase the internal energy by transferring heat
into or by doing work on the object. Throughout these chapters, LW is the work done by the
object, so a positive LW decreases the internal energy.

There are many scales for measuring temperature. In the United States, the most familiar is Fahrenheit
(65"F is a pleasant spring day). In chemistry, the Celsius scale is often used,

('C) + gz'

where 100'C is the boiling point of water and OoC is the freezing point of water. In physics, we often use

Kelvin.
K -oC + 273.15o

So the boiling point of water is 373 K. We say "100 degrees Celsius" but "373 kelvin," not "373 degrees
kelvin."

Because the difference between Celsius and kelvin is only adding 273, &r increase of one degree Celsius is the
same as an increase of one kelvin. Therefore, when using a temperature difference, Celsius and kelvin are the

o
T-i

5
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same. But zero kelvin corresponds to zero internal energy, which is an important point in thermodynamics.
Therefore use Celsius only when finding a temperature difference; all temperatures must be in
kelvin. Temperature differences can also be in kelvin, of course.

Now we need to determine how to find the heat and the work and what they do. The work done by an
object is

w- [pav
J

where p is the pressure the object (often a fluid) exerts. Because the pressure of a gas or liquid is exerted
outward, an increase in volume means that the motion was in the same direction as the force and the work
done is positive. When the volume decreases, then the motion is in the opposite direction as the force and
the work done by the object is negative.

EXAMPLE

Find the work done by the gas undergoing the process shown. The curve A-B is pV - corrstant.

Student: So I have to do an integral W - I pdv.
T\rtor: Don't you like doing integrals?
Student: NO!
Tutor: Then we should look for ways to avoid doing any more than we have to.
Student: I'm all for that.
T\rtor: Look at the path from B to C and tell me about the pressure.
Student: It's a constant. That means that the integralw - I pdv - pAV.
Tutor: Very good. The work is the area under the curve.
Student: The pressure times the change in volume. I get it.
T\rtor: But the change in volume from B to C is negative.
Student: So the work is negative?
Tutor: Yes. We're pushing in on the gas harder than it pushes out, so it is compressed. The work that
the gas does is the pressure it exerts times the change in volume.
Student: Shouldn't that be the force, or pressure times area, times dfr?

T\rtor: But dr times the area is the change in volume.
Student: If we're looking for the work, don't we push harder on the B&s, so shouldn't we use our pressure?
Thtor: If the change happens slowly, as most changes in this chapter do, then our pressure is the same a^s

the gas's. We push a little harder to get it compressing. . .

Student: . . . and then a little less hard at the end, but with the same pressure during the compression.
Just like work.
T\rtor: It is the same as work. What about from C to A?
Student: There is no change in the volume, so no work.
T\rtor: Correct, and there is no area under the curve.

E-t6
o
l-5
U'o
o)
L
0-

Volume (mg)
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Student: But from A to B we have to do an integral.
Tntor: Yes. Along the curve the pressure times the volume is a constant, so we can write pV :
(3 atm)(1 rn3) - 3 atm.m3.
Student: Then we can set up the integral.

wrs: I pd,v: /;t 
3 ut"''*t 

d,v :(3 atm.m3) [hyrl il:

-(3atm.-3)[tn1s,,,3)_h(1-')]-(3atm.m,)l,,ffi-(3atm.m,)l,,3-3.30atm.m3- \r-

Student: Shouldn't the answer be in joules?
Tutor: 1 atmosphere (atm) of pressure is 1.013 x 105 N/-'.
Student: So I can convert. . .

T\rtor: Before you do that, let's finish the problem in the units we have. Add the work from the three
steps.
Student: The work from B to C is -2 atm.m3, and from C to A is zero) so the total work done is
1.30 atm.m3.
Tutor: Yes.

Student: So the internal energy of the gas decreases by that amount?
T\rtor: No, the internal energy is determined by p and V. Because the internal energy is the same af,ber a
complete cycle, there must have been heat AQ into the gas somewhere during the process.

Student: Ok^y. Now I can see whether the work is really joules.
T\rtor: There are many units we could use for work or energy. Any one of them should convert to any
other of them. If we can't turn atm m3 into joules, then we did something wrong.

(1.30 ffif*3) x (1'0rt,1< 105 N/*',) 
- 1 .32x105 N.m - 1 .32x105 J(l^"ffi)

Student: Is that a lot?
T\rtor: About enough to run an LCD computer monitor for an hour.
Student: How did you come up with that?
Tlrtor: The power is the energy over the time, so I.32 x 105 J/3600 s - 36 W.
Student: All of the energy and work and power stuff still applies?
T\rtor: Would you rather you had to learn new energy and work and power stuff?
Student: No.

When heat or work is added to an object, it increases the internal energy. We use temperature to measure
this internal energy (energy density, really), so the temperature increases.

The amount of heat needed to increase the temperature is

Q-CAT-cmLT
where C is the heat capacity and c is the specific heat. An object has a heat capacity, and a material
has speciftc heat. The more of the material, the greater the heat capacity. The specific heat of water is
1.00 callg-K, or 4180 J/kg.K.

It is also possible for the fluid to change form, to another state of matter. An example of this is ice turning
into water, or water turning into steam. The heat needed to transform an object is

Q-Lm
where ^L is the heat of transformation. The heat of fusion is the heat needed to go from a solid to a liquid,
and the heat of vaporization is the heat needed to go from a liquid to a solid. The heat of fusion of water is
333 kJ/kg, and the heat of vaporization of water is 2256 kJ/kg.
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EXAMPLE

How much energy does it take to turn 15 kg of ice at -10"C into steam?

Student: What's the temperature of steam?
T\rtor: Water has to be at least 100oC to become steam. Steam can get hotter than that.
Student: So

Q -cmLT - (41s0 Jlkg.K)(15ks)(100"C - (-10'C)) -6.e0x 106 J-6.90MJ ?

Tutor: Partly correct. Your use of specific heat is good, and using the temperature difference is good, and
it's true that degrees Celsius and kelvin are the same because it's a temperature di,fference that we need.
But you've forgotten the heat of transformation.
Student: The Q - Lm part?
Tutor: Yes. It takes 0.63 MJ to heat the ice up to 0oC. Then we need to melt it into water.
Student: Ok y. The energy needed to melt the ice is

Q - Lm - (333 kJlkg)(l5 kg) :5000 kJ :5.00 MJ

Student: The table in the book has a heat of fusion of hydrogen. You can have frozen hydrogen?
Ttrtor: Yes. You cool hydrogen down to 20 K, then remove the heat of vaporization to turn it into liquid
hydrogen. Then you cool the liquid down to the melting point and remove the heat of fusion and, presto,
solid hydrogen.
Student: You make it sound easy.

T\rtor: It requires appropriate equipment, of course, but it's not difficult. Liquid nitrogen sells for a couple
dollars per liter and is commonly used in physics experiments and demonstrations.
Student: Like the one where they freeze a banana and use it as a hammer?
T\rtor: Yes. The heat you need to remove from a banana to freeze it is sufficient to boil only a small
amount of liquid nitrogen, so with more liquid nitrogen than that, you can freeze a banana.
Student: Does the heat of fusion work the same each way?
Tutor: Yes, to freeze something you remove the same amount of heat that you added to melt it.
Student: Ok y. Then we add 6.30 MJ of energy to raise the temperature to 100oC, and add the heat of
vaporization.

Q - Lm - (2256 kJ/ks)(lr kg) :33,840 kJ:33.84 MJ

Student: The total heat is

(0.63 + 5.00 + 6.30 + 33.84) - 45.77 MJ

Tntor: That's about 13 kilowatt-hours (kwh), or 13 kilowatts for an hour. A typical house uses L-2
kilowatts, so that would power a house for 6-8 hours.
Student: Or turn 15 kg of ice into steam. It takes a lot of energy.
T\rtor: Where did most of it go?

Student: Into the last step, turning the hot water into steam.
T\rtor: Yes. If you start with hot water, s&y from the hot-water tap, then it takes 10 times the energy to
vaporize the water as it does to heat it. That's why it takes only a few minutes to boil water on a stove, but
a long time to boil it all away.
Student: And the large heat of fusion is why coolers work, right?
Trtor: Yes. The energy to melt ice is the same to cool ten times more water by 8"C. That makes using
ice in a cooler effective.

There are three ways to transfer heat. Heat transfers by conduction, convection, and radiation.
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Conduction is when heat moves between two objects that are in contact. The speed of the heat transfer is
measured by the power, or energy per time,

P-9:kAYtL
where k depends on the material through which the heat transfers, A is the cross-sectional area through which
it transfers, L is the length or thickness through which it transfers, and LT is the temperature difference.
This is why thicker insulation keeps houses warmer, because I is larger so the heat transfer is slower. A layer
of air can be used to insulate an object, because the thermal conductivity k of air is small at 0.026 W/m.K,
less than fiberglass insulation.

Convection is the nonrandom motion of molecules in a gas or liquid. In air, for example, the oxygen and
nitrogen molecules race around at speeds close to the speed of sound. They go only a short distance before
colliding with another molecule and bouncing off in a random direction. But when air gases get warm they
expand, and as the density decreases they tend to rise. As a fire in a fireplace warms the air, this warm air
moves up the smokestack because of its lower density, rather than moving randomly either into the room or
the chimney. This nonrandom motion is called convection. Calculating the heat transfer from convection is
very difficult, and we will not try it here.

Radiation is heat transferred by electromagnetic waves, such as light or infrared radiation. All objects give
off thermal radiation. The power or heat transfer rate from radiation is

P - oeATa

where o is the Stefan-Boltzmann constant (o - 5.6704 x 10-8 W/m2.Ka), . is the emissivity of the material,
A is the area of the object, and 7 is the temperature.

Emissivity is a measure of how much radiation an object both absorbs and emits (same number for both),
and is one for a completely black object and zero for a perfectly reflective object (neither of which can
actually be made). The SR-71 "blackbird" airplane was designed to fly 3 times the speed of sound. The air
resistance was expected to heat the plane considerably, and the designers painted it black so that it would
radiate heat more quickly.

EXAMPLE

The intensity of sunlight at the Earth's surface is about 1000 W l^'. The average temperature of the Earth
is about 58"F. What must the emissivity of the Earth be?

Student: Don't we need to know the temperature of the Sun?
Tutor: That would help us find the energy-that the Sun gives to the Earth, but we already have that.
Student: Okry. The area of the Earth is 4nR2, times the intensity is the power into the Earth.
T\rtor: Except that the Sun is not above every spot on the Earth. If you stand back from a globe and look
at it, how much of the Earth do you see?

Student: Half of it.
Tutor: But even that half you don't all see at normal incidence. What is the area you perceive?
Student: Ah. It looks like a circle of area rR2, right?
Tutor: Yes. Now what's the power out from the Earth?
Student: That's radiation, so it's P - oe AT4.
T\rtor: True, but not what I had in mind. If the Earth is to stay at the same temperature, with the same
internal energy, then. . .

Student: . . . the power out has to equal the power in.
T\rtor: Yes, what we call "steady-state."

(nR')I : oe(4nB')Tn
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Student: Do I need to use kelvin here?
T\rtor: Is it a temperature di,fference?
Student: No. So it's an absolute temperature, and I need to use kelvin.

58oF:3("c) +32o r4.4oc

K - L4.4"C + 273.150 - 297.6 K

I 7:- (1ooo-wl::].- :0.64e- m: 4(|,6T04x 10-8 Wl^r.K4)(287-6Ion =

Tutor: The emissivity of the Earth varies with the surface, with different values for water, land, pavement,
even clouds.
Student: Clouds change the emissivity? So the emissivity of the Earth isn't constant.
Tutor: That's one of the things that makes climate modelling difficult.
Student: Can't we take an average value?
Tutor: Because the temperature goes to the fourth power, w€ need to calculate the power emitted from
each area and average the powers, rather than averaging the emissivity.

When the temperature of a solid or liquid increa,ses, the object expands. The expansion is

AL - Laar or AJ 
- ,,LT

L

where a is the coefficient of thermal expansion. Because 2-D objects expand in two dimensions and 3-D
objects in three,

LA: A(2o)LT AV - V(3") AT
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Chapter 19

The Kinetic Theory of Gases

Gases consist of many molecules, often 1020 or more. Not all of these are travelling in the same direction, or
even at the same speed. How can we deal with so many objects? When the numbers are that large, statistics
works very, very well.

Whatever a single molecule does, it typically travels only a short
before colliding with another molecule, after which it has a new
atom or molecule in a gas is:

E^u" -2r,2

The total energy of a large number of atoms is:

distance (micrometers at 25"C and 1 atm)
velocity. The average kinetic energy of an

Ein -n (i*) -n(;"')
The difference between the two forms is that the first form uses the number of atoms (N) and the second
uses the number of moles of atoms n. A mole is Avogadro's number, Na : 6.022 x 1023 atoms, so

n-NlNe, and R-Nok

A mole is significant because one mole of atoms has a mass in grams equal to the ma"ss number of the atom,
so one mole of nitrogen, with mass number L4, has a mass of 14 grams.

We can evaluate the sum of all atoms or molecules in a gas using the ideal gas law.

pV -nRT:NkT
Again it comes in two forms, one for atoms (or molecules) and one for moles of atoms. k - 1.3807x 10-2t JIK
is the Boltzmann constant, and R - 8.3145 J/mol . K is the gas constant. Because T is a temperature and
not a temperature difference, it must be in kelvin.

Our goal is to calculate the change in energy AE, the heat flow Q, and the work done I4l. There are many
specific processes that appear often, and that can aid us in our calculations. The chart on page I49 shows
these important processes.

An isothermal process is one that occurs at a constant temperature. Because the temperature doesn't change,
neither does the internal energy. Conservation of energy still holds, so the heat i.r Q must equal the work
done by the gas W . Finding the work requires an integral, and the result is W - nRT In(Vy lW.
An isobaric process is one that occurs at a constant pressure. The work I pdV : pAV is easy to calculate.
The heat in Q - nCpLT, where C, is the molar specific heat at constant pressure.

150
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An isochoric process is one that occurs at a constant volume. The work I pdV :0 is again ea.sy to calculate.
The heat in Q - nCv LT, where Cv is the molar specific heat at constant volume.

An adiabatic process is one that occurs with no heat transfer Q. Because Q - 0, the change in internal energy
is the opposite of the work done by AEi"t - -W. In an adiabatic process, the quantity pV1 is a constant.

What are Cr, Cv, and 7? It depends on the number of "degrees of freedom"
of the atoms or molecules. An atom has three: up-down, left-right, in-out.
So for an atom, E^u" - tnf and Cv - |n. A diatomic molecule, two atoms
together like Oz, has two additional degrees of freedom: spinning around each
of the two axes perpendicular to the line joining the atoms. So for a diatomic
molecule, E^ue : |nf and Cv : Orn.7 is the ratio "y - CrlCv, which is 5/3
for an atom and 7 15 for a diatomic molecule.

EXAMPTE

Monotomic atom
I

Diatomic molecule

Find the heat Q, the work W , and
of the process of the diatomic gas.

enclosed area.

the change in energy AE for each step
The process goes clockwise around the

2

A

E
-F.!
v

o
L-Q
U,
q)
L.
rL

1

Student: This looks complicated. We don't even have all of the data. What's the pressure at C?
Tutor: Well, start with what you do know. Do you know the volume, pressure, or temperature at A?
Student: We know all three, right? The volume is 1 ffi3, the pressure is 2 atm, and the temperature is
300 K.
T\rtor: Yep, room temperature but twice the pressure. What about B?
Student: The pressure is still 2 atm, but the volume has increased to 2 m3 and we don't know the tem-
perature.
T\rtor: But we might be able to calculate the temperature using the ideal gas law.
Student: Does that apply both at A and at B?
Tntor: Yes, it applies anywhere on the graph. Better yet, the number of moles n doesn't chatrg€, so pV lT
is constant anywhere on the graph.

rabat c

\

Volume (me) 2
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Student: Okay. At C we know that the volume is 3 m3.
Tutor: Is the temperature at C the same as the temperature at B?
Student: They don't have to be, do they?
T\rtor: No. From B to C is an adiabatic path, and any adiabatic change will change the temperature.
Student: So we don't know the temperature at B or C, but they're not the same. At D the temperature
is 180 K.
T\rtor: Yes, very cold. Below -100"F.
Student: The path from D to E is an isothermal, so the temperature is also 180 K at E. We know the
volume at D and the pressure at E, but not the other way around.

p (atm) v (-t) T (K)
all in atm.m3

a I n lot
A 2 1 300

A+B ? ? ?

B 2 2 ?
B--C ? ? ?

C ? 3 ?

C-'D ? ? ?

D ? 3 180
D+E ? ? ?

E 1.5 ? 180
E-A ? ? ?

A 2 1 300 _? -? -?loopl E-? | E:? | E:?
Student: Now I can use the ideal gas law to find the temperature at B. I know p, V , T, and of course R,
so I can find the number of moles n.
Tntor: We don't really need to know n. What we need is the combination frR, because they are always
together.

pV - nRT -> nP - PnVn - Pr-Vt^r" r"
(2 atry)(2 m3) : nR _ (2 atm](=l_m3) 

- * atm 
^s lKTe (300 K) 150 

('!rrrrr rl

Ts :600 K
Student: Can we keep using units of atm m3 lKt Shouldn't we convert to something?
T\rtor: Our pressures are all in atm, our volumes in ffi3, and our temperatures in K, so these will work
fine. We can convert the energies to joules at the end.
Student: Like we did in the last chapter. I can find po and I/B the same way.

pp(3 ttt3) (1.5 atm)VB : nR: 1 
atm mB lK

190 K 180 K 150 t

Po - 0.4 atm and Vs, :0.8 m3

Student: But I can't do point C that way. The temperature isn't the sarne as either B or D, and I don't
think I can read the pressure off of the graph.
Tntor: True. But B-C is an adiabatic, so pV1 is a constant along the curve.
Student: This is where it matters that our gas is diatomic. ^l - i: I.4.

p"vA4 - pcvA4 + pc: pB (7.) " - (2atm) e4)'n : 1.1s atm' \3 m')
T\rtor: Very good.
Student: Back to the ideal gas law.

(t.13 at:r)(3 m3) : nR: + atm ^, lK _> Tc :b10 KTs 150
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loopr E-? | E-? | E-?
Tutor: Well done. Now we can start on the right side of the chart.
Student: How do I find the heat transferred to the gas during A+B?
T\rtor: The path from A+B is an isobar (constant pressure), so Q - nCpAT .

Student: What's the difference between isobar and isobaric?
Tutor: Isobar is a noun, and refers to the line on the chart. Isobaric is an adjective, and refers to the
process. An isobaric process is one that travels along an isobar on the chart.
Student: So an isothermal process is one that travels along an isotherm?
Tutor: Yes.

Student: What do you call the line for an adiabatic process?

Tutor: An adiabat.
Student: Ok y. Cp : Cv I R, and the gas is diatomic so Cv - f;n. Cp : $n.

Q - nCpLT -!r"nm
Tlrtor: There's the combination nR again.

p (atm) v (-t) T (K) all in atm.m3al*lo"
A 2 1 300

A+B ? ? ?
B 2 2 600

B*C ? ? ?
C 1.13 3 510

C-'D ? ? ?

D 0.4 3 180
D+E ? ? ?

E 1.5 0.8 180
E+A ? ? ?

A 2 1 300
-? _?

-?

Student: The work is easy.

W - [ rd,V : pAV - (2atm)(1 rn3) - 2atm.m3
J

Student: I can use AE - Q - W to find the change in energy, right?
Tntor: Yes, br! you can also calculate it directly. The energ"y is ^E - n (!rRf).
Student: The * is because it's diatomic, yes?

Tutor: Yes.

R^- lnRrt :r(* atm -'lt )(300 
K) :5 atm'm3t_t It _ 

2,

r-., 5Es- ,nilrz:Z(* atm *'/^) (600 K) : 10 atm'm3

AE - Ee - Et- 10 atm.m3 - 5 atm.m3 : 5 atm.m3

Student: That's the same as A.E - Q - Wl
Tutor: It's nice to know that energy is still being conserved.
Student: Stop being sarcastic. Fhom B-C is adiabatic, so Q - 0. Finding the work is going to take an
integral.
Tutor: There's an easier way.
Student: Oh, conservation of energy. Q - 0, so if I find A^E then W - -LE.
Tutor: Yes. Let's do the integral first.

e -lrnuar - !r(* atm ,,,'/n 
) 

((600 K) - (800 K)) - T atm.m'

w- lrd,v: l,'0"(+) 
" d,v:pvelt #) ff) 

"] 
,



I54 CHAPTER 79. THE KINETIC THEORY OF GASES

:-Wl t+)"- (+) "] 
',:+lboatmm'

Student: Now I'll do it the ea,sy way.

Ec:lrnuTs -2r(* atm *tl^) (b10 K) :8.b atm.m'

AE - Ec - Es:8.5 atm'm3 - 10 atm'm3: -1.5 atm.m3

0

AE -/-w + w - -aE- +1.b atm.m3

Student: Flom C--D is an isochoric, with no volume change, so no work. I can find the change in energy
and that's equal to the heat.

o- - 
5 nurs:Z(* atm *t/^) (180 K) :3 atm.m',_tL) _ 
2,

AE - Eo - Eg - 3 atm.m3 - 8.5 atm.m3 - -5.5 atm.m3

Student: What does it mean that Q is negative?
Tbtor: We lowered the temperature by removing heat from the system. With the volume held constant,
the pressure decreased. Each molecule had less energ"y, so less speed, and exerted less impulse on the walls
as they bounced off. Can you find the heat directly?
Student: You mean using Q - nCv AT?

e - ncvLr -|rnnr:r(* atm *'/^) ((180 K) - (b10 K)) : -b.b atm.m3

Student: Flom D-+E is an isotherm. The temperature doesn't change, so the energy doesn't change. It
looks like we need to do an integral to find the work. I'll cheat by using W - nRTln(VylU).
T\rtor: It's not cheating. We did the integral in the last chapter, and there's no rea^son to do it every time.
Student: That's right. pV - constant is an isotherm.
T\rtor: We didn't call it that then because we didn't have the ideal gas law yet.

W_nRTIn(V7lu)-(*atm*'/K)(180K)ln(#):-1.59atm.m3

Student: LE is zero, so I is also -1.59 atm.m3.
Tutor: Last one.
Student: From E-+A is not any of our special curves.
T\rtor: But you could find the work I,7.

Student: Doing another integral?
Tutor: It's the area under the curve.
Student: Do you mean below the E+A line but above the D+E isothermal curve?
T\rtor: The work from E-A is the area under the E--A line and above the ancis. To find the total work
done in a cycle, we'll add all of the works, and the D+E work wa,s negative because we were going left on
the graph.
Student: Ok"y, it's just a trapezoid.

w - ;(rr+ ra) Lv -- t( rt.b atm) + (z atm) ) (o.z *') : 0.3b atm.m3

Student: And we can find the energy like we did before.

Es: Eo :3 atm'm3

AE -- Et - En - 5 atm.m3 - 3 atm.m3 : 2 atm.m3



155

p (atm) v ('''t) T (K)
all in atm.mr

a I n lo"
A 2 1 300

A*B +7 +2 +5
B 2 2 600

B-'C 0 +1.5 - 1.5
C 1.13 3 510

C--D -b.b 0 -5.5
D 0.4 3 180

D+E - 1.59 - 1.59 0
E 1.5 0.8 180

E---A 2.35 0.35 2
A 2 1 300

-? -? -?Ioopl E-? | E-? | E:?

Tntor: If we add all of the A-E's, we get zero. Does that make sense?

Student: The energy depends on the temperature, and if we're back to the same temperature, then
it should be the same energy. What about the work, though? If we add all of the works, then we get
+2.26 atm.m3, or +229 kJ. How do we get work out if the energy is the same?
Tutor: Tfy adding the Q's.
Student: Oh, they add up to +2.26 atm.m3 aho.
Tutor: We get work out, and it's the same as the net amount of heat that we put in. For a complete cycle
this has to be true.
Student: What is "net heat?"
T\rtor: In some of the steps we put heat in, and in some we got heat out. Net heat is the difference. In
the next chapter, we find that we don't recover the heat out, and this limits our efficiency.

EXAMPLE

An ideal monatomic gas at 600 K has a pressure of 2.5 x 105 Pa and a volume of 3 m3. It goes through
an adiabatic process and then an isothermal process and finishes with a pressure of 1.5 x 105 Pa and a

temperature of 390 K. Find the volume of the gas after the adiabatic process but before the isothermal
process.

Student: That's a lot to keep track of.
Tutor: Make a table.

po :2.5 x 105 Pa Vo :3 m3 To :600 K
Pr -? Vr -? Tt -?
p2 :1.5 x 105 Pa Vz -7 Tz :390 K

Student: I can use the ideal gas law to find V2:

PoVo n PzVz

th 
: Tr'r1' -- f,

Vz pzTo (1.5 x lob Pu)(6oo 
^I- 

- 3'25 m3

Student: But I can't find Vr because I don't know the pressure or temperature.
T\rtor: The second step is an isothermal process. What is held constant during an isothermal process?
Student: The temperature. Ah, ?r - Tz: 390 K.
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Vo:3 m3 Ts - 600 K
Vt -? Tt: 390 K
Vz :3.25 m3 Tz :390 K

Po :2.5 x 105 Pa

Pt -?
p2 : 1.5 x 105 Pa

Tutor: What has to be true along an adiabat?
Student: The pressure and volume have to match pvl - constant, but the temperature can be anything
it wants.
T\rtor: Good. Now write that down, and write down the ideal ga^s law.
Student: Okay. The gas is monatomic, so ",1 - 513.

p4f /3 : poVi/t and PtVt : nR:'+
Tt

Student: I know ?o and ?r, so it's two equations and two unknowns.

Pt:oifff

#vl/':pili/'
fr':'3: v:/'

vt:(+)''' vo:(m)''' (B *') -bzm3
Student: Why would anyone want to do such a thing?
T\rtor: In the next chapter we'll want to calculate entropy. Entropy is easy to calculate for adiabatic and
isothermal processes, so if we can get from point A to point B using an adiabat and an isotherm, w€ can
calculate entropy.

o
L
I
J

mo
o
L
0-

Volume
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Entropy and the Second Law of
Thermodynamics

I'd like to explain entropy in a clear, intuitive manner. Unfortunately I don't have such an explanation.
Robert Jones, in his book Common-Sense Thermodynam'ics, writes:

No simple "intuitive reason" can be given to explain why a state functi,on results when a quantity
of heat . . . is divided by the temperature. And indeed Clausius [one of the pioneers of ther-
modynamics] himself took 15 years in developing a concept of entropy that satisfied his own
doubts.

So what can we say about entropy? Entropy is a state function, which means that for any combination of
p,I/, and T there is a well-defined value for the entropy ,S. Being a state function also means that if we can
find even a single way to calculate the entropy, then any other way to calculate the entropy must give the
same result.

We are typically interested only in changes in the entropy AS. While it is possible to calculate the entropy,
usually the change is both easier to calculate and more meaningful.

To decrease the entropy requires work or energy from outside the system. For a closed syst€D, the entropy
can never decrease. A reversible process is one where the entropy change is zerol so that a positive entropy
change means that the process can't be reversed, at least without some outside source of energy.

Reversible processes happen infinitely slowly (and are therefore no fun to watch). We don't have a good
way to calculate AS for an irreversible process, so we find a reversible path that goes from the starting
configuration to the final one, then we can calculate the change in entropy for the reversible process.

The change in entropy is

As : ln'#
Two important special cases are adiabatic and isothermal processes. They are important because they are
easy to calculate. For an adiabatic process, LQ : 0, so AS - 0. For an isothermal process, ? is a constant
so AS - LQ lT. Lengthier calculations include an ideal gas

ASia".r gas - nRmY * nCy m*
V,; tt

and for a solid or liquid, with no volume change

ASsolidliquid : 
I#
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Remember that Cv is energy per kelvin per mole, and c is energy per kelvin per kg, so these two equations
are very similar.

EXAMPLE

A 30 g ice cube at -5"C is placed in 508 g of 23" C water. Find the change in entropy A,S of the water and
ice as the ice melts and the system comes to equilibrium.

Student: What's equilibrium?
T\rtor: After the ice has melted, it will be OoC. The melted ice will then warm as the cooled water further
cools, until they are all the sarne temperature.
Student: What is that temperature?
Tutor: We don't know. We have to figure it out. How much energy does it take to warm the ice?

Student: The mass times the specific heat times the temperature change.

Q - mcLT - (0.030 kg)(4180 Jlkg-K)(5 K) - 627 J

Tutor: Good. You saw that a change of 5"C is the same as 5 K.
Student: Yes. Now I need to find the energy to melt the ice.

Q - Lm - (333 kJlkg)(0.030 ke) - e.ee J ?

Tutor: Uh, that's kilojoules.
Student: Oops.

Q - Lm - (333 kJlkg)(0.030 kg) - e.ee kJ : eee0 J

Student: I was wondering why it took so little heat to melt the ice.
Tutor: It's good to see whether your answer makes sense. How much will the water cool while the ice melts?

Q - mcLT -+ (627 + 9990) J : (0.508 ke)(4180 Jlke.K)AT -> LT: 5 K

Student: The water is cooled to 18'C as the ice melts.
Tutor: Good. Now find the equilibrium temperature. The heat that the melted ice gains is equal to the
heat that the cooled water loses, until the temperatures are equal.
Student: But I don't know the temperature.
Tutor: Then make up a variable.

m1/LT1 - Ql - Qz: m2/LT2

(0.030 ks) g - 0o) : (0.508 kg)(18' - r)
(")(0.030 ks * 0.508 kg) - (0.508 kg)(18")

ff\- (0.508 kg) (18')- 
- r.o\^ / (o.o3o kg * 0.508 kg)

Student: And we still haven't done the entropy.
T\rtor: Now we can. What is the change in_entropy of the ice as it warms to 0"?
Student: Can we use ASrorid,tiquid - TTLCIn fi?T\rtor: Yes.

rtrtor: How are you going ."*T "j[:ff::: 

o,"t:":K) rn + ?

Student: I must have made a mistake, yes?

T\rtor: Yes. When you found the heat to warm or melt the ice, it was a temperature difference. . .
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Student: . . . so I could use Celsius, but when I divide temperatures I need to use kelvin.

AS - (0.030 ks)(4180 Jlkg.K)ln ry- 2.32 JIK, _5+t
Student: What kind of unit is a joule per kelvin?
T\rtor: I don't have a good explanation for that, just like I don't have a good one for entropy.
Student: Ok y. Then the ice melts, and that happens at a constant temperature.

AS: 9- ry:36.ss JIKT 273K
Student: And then the melted ice warms.

S - (0.030 kg)(4180 J lks.K) In 
IUzs, o+2n -7.58J/K

Student: And the water cools.
T\rtor: Remember to include the cooling that happens as the ice melts.
Student: Oh y€s, the initial temperature of the water was 23".

As - (0.508 kg)(4180 Jlkg.K) l' Y-' 23+273

Student: Then the total change in entropy is:

As - (2.32 JIK) + (36.5e JIK) + (7.58 JIK) + (-43.48 JIK):3.01 JIK

Tutor: Good.
Student: The change in entropy is positive. That means that this process is irreversible.
T\rtor: Correct.
Student: But I could put 30 g of the water in the freezer and turn it into ice again, and 23"C is room
temperature, so if I leave it sitting out it will warm again. I'll be back where I started, so the entropy will
be the same as it was. That's what being a "state function" means, right?
Tutor: AII true. The change in entropy of the water as you move it back to the initial conditions will be

-3.01 J lK. But the freezer will use electrical energy, and the water will absorb energy from the room, and
if we include that in our system the change in entropy will be positive. You can reduce the entropy only by
bringing work or energy in from outside the system.
Student: So if I take the water back to the initial conditions, the change in entropy of the freezer and the
room must be positive and greater than 3.01 J lK.
Tutor: Yes.

The effect of entropy is to limit the efficiency of thermodynamic processes. In the last chapter, we said that
we could not recover the heat out. Now we tell why.

First we need to know about reservoirs. A reservoir is an external body at a particular temperature. The
reservoir is large enough that we can add heat or take heat out and not change the temperature of the
reservoir. Though not perfectly true, it works well for doing calculations.

To make a heat engine an engine that turns heat into work requires two reservoirs. Find a liquid
that boils at a temperature that is lower than the hotter of the two reservoirs. When the "working fluid"
is in contact with the hotter or higher temperature reservoir, it boils into gas or steam. When the working
fluid is in contact with the colder or lower temperature reservoir, it either condenses to liquid or is still ges,
but lower temperature gas with a lower pressure. If we put a turbine or propeller or fan between the two
reservoirs, the higher pressure from the hotter side will spin the turbine. We can connect this turbine to a
generator and get electricity, or use the torque directly. If we had only one reservoir, then both sides of the
turbine would be at the same pressure and the turbine wouldn't spin or do work.
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The process must lose heat to the lower temperature reservoir. When the working
fluid is in contact with the high-temperature reservoir, it absorbs heat from the
reservoir. After going through the turbine, the fluid comes in contact with the
low-temperature reservoir, and heat comes from the working fluid to the reservoir.
Not all of the heat taken from the high-temperature reservoir can get turned into
work.

The efficiency is the ratio of the work out to energy in. The highest possible
efficiency is

- Tr,

Tn

"Carnot cycle," consisting of adiabats and

CHAPTER 20, E]VTROPY AATD THE SECOIVD LAW OF THERMODYNAMICS

TsTr. :
Tn

which is obtained
isotherms.

A heat pump takes heat from the low-temperature reservoir and moves it to
the high-temperature reservoir. Heat does not normally flow this w&y, so we
need to put energy in to the heat pump in the form of work. The coefficient of
performance for a heat pump is the ratio of heat extracted to work supplied, and
of thermodynamics:

is also limited by the laws

r.. - lQrl -. Trr'E [, 
<' 

rH-rL
Air conditioners and refrigerators are heat pumps. A refrigerator takes heat out of the colder inside and
puts it into the warmer room, typically through coils on the back. An air conditioner moves heat from the
cooler room to the hotter outdoors. To do so takes work, and we use electricity to power an electric motor
to do this work.

How can work move heat from a cold reservoir to a hot one? Imagine that you
have a box of gas, designed so that you can push in one side to change the volume,
and so that heat can flow through the sides of the box. Standing inside, you pull
out the side of the box, expanding the gas. As it expands, the gas cools. It is
now colder than the room, and heat flows from the room to the box. You now
walk outside while pushing in on the box, compressing it. As the gas in the box
compresses, it becomes hotter, so that it is hotter than the outside air. Heat now
flows from the box to the air. As you walk back inside, you expand the box again,
repeating until the inside air is cool enough.

The second law of thermodynamics can be expressed in many ways. You can't
turn all of the heat into work, heat doesn't go from cold to hot on its own, and
AS"rored-syste* 2 0 are just some expressions of the second law of thermodynam-
ics.

EXAMPTE

A solar pond uses salt to trap the heated water at the bottom of the pond, so

that the energy does not escape to the atmosphere. Such a pond can achieve
80"C temperature water in this bottom, heated layer. This water is used to make
steam out of a working fluid with a suitably low boiling point. Use 450 W l^' for the intensity of solar
radiation, with the Sun shining only 6 hours per d.y. How large a solar pond would be needed to make a 1

GW power plant?

Student: One gigawatt seems like a lot of power.
T\rtor: About enough for an American city of half a million people.
Student: Why is the Sun shining for only 6 hours per day?
T\rtor: The Sun is not always directly overhead. Take a piece of paper (or this book) and turn it so that

Heat engine
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you are looking somewhat along the page, rather than normal to the page. The area you see is less than the
area of the page. When the Sun is not directly overhead, we need to include a factor of cos 0, wherc 0 is the
angle between the Sun's rays and the normal to the surface. It averages out to about 6 hours a day, 7 or 8
in Arizona, S in Ohio.
Student: Okuy. If I need 1GW of power, then I need 4 GW for 6 hours aday, because Iget nothing for
the other L8 hours a day.
T\rtor: You haven't taken the efficiency into account. You can't collect all of the energy that reaches the
pond. That comes from the second law of thermodynamics.
Student: So I need to multiply by the efficiency.
Tutor: Multiply the power reaching the pond by the efficiency to see how much power you can get.

P1rrxe-Po.rt-4GW
Student: To calculate the efficiency, I need the high and low temperatures. The high temperature is 80"C,
but what's the low temperature?
Thtor: Take something rea.sonable.
Student: Okay. The average temperature of the Earth is 15oC. I'll use that.
Tutor: Good choice.
Student: And I need to use kelvin because it's not a temperature difference.
T\rtor: Really you only need to use kelvin in the denominator, but it doesn't hurt.

e_rr_T,- (80+2Iq) _(15+273) _0.18: t8%Tn (80 + 273)

Student: I can get only 18% of the power out?
Tutor: Probably not even that much.

Pin x (0.1S): Pout - 4 GW

n^-19 -22cwrn - 0.18

r-!-+ A-!-'3 Il9: Y-4.exLorm2L A ' t I 450W1^'

T\rtor: About 19 square miles.
Student: So one of these "solar ponds" could power a city with an area of 4 miles x 5 miles?
Ttrtor: Theoretically. There are issues involved with doing so. For example, you're collecting 5.5 GW, or
average, but generating 1 GW, so you need a reservoir where you can dump 4.5 GW of waste heat.
Student: Do coal and nuclear plants have the same problem?
Tutor: Yes, but they operate at higher temperatures and are about 33% efficient, so they only have 2 GW
of waste heat to dump. Most power plants are located by rivers or lakes so that they can dump the waste
heat into the water. Remember that water has a high specific heat and can store a lot of energy.
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Electric Charge

So far, every force on an object has been exerted by something else in contact with it, except for gravity.
There is a second type of force that can act without being in contact, and that is electricity. Eventually
there will be a third such force gnetism.

Electric forces occur between two objects that each have a special character about them. For lack of anything
better, w€ call this special trait charge. Charge comes in two types, which we call positive and negative.
Then a charge (the object) ir an object that has charge (the character trait). We use the word both ways
and use the context to determine which way we're using the word each time.

When we want to include the charge in an equation, we typically use q or A for amount of charge (the
character trait) that a charge (the object) has. Either q or Q is used, but if both occur in the same problem
then they refer to different amounts of charge (the trait). While q is a variable that could be positive or
negative, *q implies an unknown amount of positive charge and -q implies an unknown amount of negative
charge.

The most basic charges (the objects) are the proton and the electron. (This is not entirely true but works
well until the last chapter of the book.) Protons have positive charge and electrons have the same amount of
negative charge. Because the charge of a proton or electron appears so often in physics, we give it a special
symbol e. e is the arnount of charge on a proton or electron, so the charge of an electron is -e.

Charge is measured in coulombs, abbreviated C. The charge of a proton e is 1.6 x 10-1e C. Inversely, a
coulomb is about 6 x 1018 protons or electrons. The charge on an electron is -1.6 x 10-1e C.

Any two charges create an electric force on each other. Two charges of the same sign repel each other, while
two charges of opposite sign attract each other. The magnitude of the force they create is

- klqrllqrl
,T2

where q1 and q2 are the charges (the amount, or trait) and r is the distance between them. The constant k
is

k- 1 
-gxloeN.^, lc,4Tes

EXAMPLE

Three charges, of +3
respectively. Find the

FC, -5 pC, and
total force on the

+7 FC, are arranged along the r axis at 0, 10 cffi, and 25 cffi,
*7 pC charge.

r62
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T\rtor: Where do we always start when dealing with forces?

Student: With a free-body diagram.
Tntor: What forces are acting on the *7 p"C charge?

Student: There is nothing in contact with it, so only gravity and electric forces.

Tgtor: Often when there is an electric force we ignore gravity, because the force of gravity is much smaller

than the electric force.
Student: Then just the electric force.
Tntor: What is the force that the *3 p,C charge puts on the *7 p'C charge?

Student: Is the *3 ptC charge blocked by the -5 pC charge?

Tgtor: If I hold my hand under somethirg, does the mass of my hand block the gravity force from the

mass of the Earth?
Student: No.
T\rtor: So one charge does not block the force from another.
Student: The *3 pC charge creates a force on the f7 p"C charge that is

(9 r 10e N. 
^2 lc')(3 r 10-6 c)(7 x 10-6 c) _ ? n N

(0.25 m)2

Tutor: Is the force to the left or the right?
Student: The force is positive, so it's to the right.
T\rtor: We haven't chosen axes yet, so there is no positive direction. When we did forces before, w€ used

the diagram to get the direction of the forces right, and the equations never told us the direction.

Student: They are both positive charg€s, with the same sign, so they repel.

T\rtor: If the +3 p,C charge repels the +7 pr,C charge, what is the direction of the force on the +7 p'C

charge?
Student: Away from the *3 p,C charge, or to the right.
T\rtor: What is the force that the -5 pC charge puts on the *7 p'C charge?

Student: The -5 pC charge creates a force on the *7 p,C charge that is

(9 " 10e N. ^' lc')(5 r 10-6 c)(7 x 10-6 c)
(0.15 -)'

Tutor: What is the direction of this 14 N force?

Student: The charges have opposite signs, so they attract. The force on the *7 pC charge is toward the

-5 pC charge, or to the left.
T\rtor: Are there any other electric forces?

Student: We did every charge except the *7 ptC charge, so we have all of the electric forces, and there

are no other forces.
T\rtor: Now we can finish the free-body diagram.

--

- 14.0 N

Tutor: Now you have to choose an axis.
Student: Only one axis?

3N
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Tntor: All of the forces are colinear.
Student: Since the greater force is to the left, I'll take left as the positive direction.
T\rtor: What is the total force on the *7 pC charge?

F-(+taN) +(-3N) :+11 N

Student: 11 N in the positive direction, or to the left.

CHAPTER 27. ELECTRIC CHARGE

EXAMPLE

Two +15 p,C charges are fixed 10 cm apart on a horizontal line. A third +25 pC charge stays 12 cm above
the midpoint of the first two charges. What is the mass of the third charge?

Student: How is the mass connected to the charge?
Tutor: Never mind that. Where do we start?
Student: With a free-body diagram.
Tntor: What are the forces on the +25 p,C charge?
Student: There is nothing in contact with it, so gravity and electric forces.
T\rtor: There's the connection. What about gravity?
Student: The gravity force is down with a magnitude of mg. We don't know the ma"ss, so ?z? is a variable.
Tutor: What is the electric force that the left bottom charge creates on the third charge?
Student: They are both positive, so they repel, and the force on the top charge is up and to the right:

r- -13cm
(g x 10e N. ^, lc,)(15 x 10-6 c)(25 x 10-6 C) :200N

(0.13 m)2

T\rtor: What is the electric force that the right bottom charge creates on the third charge?
Student: The distance between the charges is the same as the distance we just did, and the charges are
the same, so it's also 200 N. The force is up and to the lefb.

T\rtor: Now we can finish the free-body diagram.

lz3

l.

,3;I L
at,j

q7""i @"
t
a

&- lo crr ->
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Student: Can we add the three forces, 2 x 200 N - mg : 0?

Tutor: Forces are vectors. How do we add vectors?
Student: We choose axes, break the vectors into components, and add the components.
Tutor: What axes will you use?

Student: I'll choose the r axis to the right and the g axis upward.
T\rtor: What is the angle between the electric force created by the bottom left charge and the g axis?
Student: It's the same as the opposite angle, so the cosine of the angle is (12113).

0 - arccos(I2113) - 22.6"

T\rtor: What is the r component of the electric force created by the bottom left charge?
Student: The r component is opposite to the angle, so it's sine.

Fl,,, - 200 N sin 22.6" : 77 N

T\rtor: What is the g component of the electric force created by the bottom left charge?
Student: The gr component is adjacent to the angle, so it's cosine.

FL,u - 200 N cos 22.6" - 185 N

Tutor: What is the r component of the electric force created by the bottom right charge?
Student: The r component is opposite to the angle, so it's sine. It goes to the left so it's negative.

FR,,

T\rtor: What is the A component of the electric force created by the bottom right charge?
Student: The U component is adjacent to the angle, so it's cosine.

Fn,, - 200 N cos 22.6" : 185 N

T\rtor: What is the r component of the gravity force?
Student: Gravity is parallel to the y axis, so there is no r component.
Tutor: Now we can write our Newton's second law equation.
Student: And the acceleration is zero.

EF" : TTL,

(77 N) + (-77 N) + (0) : 0

Student: What did we learn from that?
T\rtor: If the r forces didn't add to zero, then the top charge would have to move.
Student: But the r forces have to add to zero because the problem is symmetric.
T\rtor: If the bottom charges weren't equal, the top charge wouldn't be above the midpoint.

EFo - TTL,

(185 N) + (185 N) + (-*g) - 0

(370 N) - ms

m- ttoT= 
-38ks"'/ - 9'8 m/s2 - '

EXAMPLE

Two charges, of *2 pC and -7 pC, are placed along the r axis at 0 and 10 cm. Where can a third charge
of +5 pC be placed so that the total electric force on it is zero?
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Student: Where do we start?
T\rtor: Could it be on the y axis, above the first charge?

Student: Anywhere on the g axis?
T\rtor: If the third charge is on the g axis, what are the forces on it?
Student: The first charge creates a force up, and the second charge creates a force down and to the right.
T\rtor: Could those forces add to zero?
Student: No, there would still be a component to the right.
T\rtor: What if the third charge was above the midpoint between the first two?
Student: Then both of them would create forces to the right.
T\rtor: If we put the third charge anywhere other than on the r axis, the first two charges will create
forces that aren't colinear.
Student: So that won't cancel and won't add to zero. We have to put the third charge on the r axis.
Tutor: Could it go between them?
Student: Then the first charge creates a force to the right, and the second charge creates a force to the
right, so no.
T\rtor: Could it go to the right of the two charges?

Student: Then the first charge creates a force to the right, and the second charge creates a force to the
left, so it could.
T\rtor: If the third charge is to the right, could the electric forces have the same magnitude?
Student: The -7 p,C charge would be bigger and closer, so it would create a bigger force. The forces
couldn't add to zero.
T\rtor: Could it go to the left of the two charges?

Student: Then the first charge creates a force to the left, and the second charge creates a force to the
right. The -7 pC charge would be bigg€r, but the f2 p,C charge would be closer. How do we decide which
is bigger?
T\rtor: If the +5 p,C charge is really close to the +2 ptC charge, then the *2 pC charge creates a bigger
force. What if the f5 p,C charge is a long way to the left?
Student: The *2 p,C charge would still be closer.
Tutor: But the difference between (100 rn)2 and (100.1 ttt)2 is very small.
Student: So the larger charge would create a larger force.
T\rtor: Somewhere in between there must be a spot where the two charges create the same force, but in
opposite directions.

:"r;j.."rt 
We've already gotten the forces in opposite directions, so that is where the magnitudes are the

lq2 pc)\b-peT fte p,c)\WT
(r)' (r * 0.1 -)2

Student: It doesn't matter how big the third charge is, since it cancels.

Tutor: We'll see why in the next chapter.

(z pc) (7 pc)
(r)' (r * 0.1 m)2

7(r)' - 2(r * 0.1 rn)2

tffi 1ry - (r + 0.1 -)
ttFz tz - 1)(") : 0.1 m

0.1 m(r)- 
- 

-0.115rrl-11.5cm\ / 
w7 12-1)

-J
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The other important thing in this chapter is how charges behave.

Charges can move around in a conducting material, but not in an insulating material. Most metals are
conductors (made of conducting material), so we make wires out of copper or aluminum. Plastic is a good
insulator, so we put it on the outside of wires so that the charges don't go through us.

In dealing with charges, we often refer to "ground." Ground can supply an infinite amount of charge without
becoming charged itself. If you have a charged conductor and you touch it to ground, or connect it to ground
through a wire, then all of the charge can go from the conductor onto ground. Ground does not itself become
charged, because ground is SO big that the charge is dispersed too small to detect. It is not true that any
object connected to ground must be neutral (uncharged). If my conductor is connected to ground and a
positive charge is brought close to my conductor, then negative charge will come from ground onto my
conductor, attracted by the positive charge.

EXAMPTE

You have three identical conducting spheres on insulating stands, a positively charged insulating rod, and
a conducting wire. You also have access to ground (the Earth). What could you do so that you can get
charges of 1.Q, _iq, and zero on the spheres? That is, you don't care how big the charges are, so long as

one of the spheres has a negative charge on it, another has twice as much positive charge, and the third is
neutral. Describe how you could achieve this.

Student: If I rub the rod on one of the spheres, the sphere will get some charge on it.
Trrtor: Maybe some, but charge does not move easily off of the insulating rod. Is there another way to get
charge onto a sphere?
Student: I could connect it to something with the wire, like ground or another sphere.
T\rtor: If you connect a sphere to ground, what happens to the charge on the sphere?
Student: The sphere becomes neutral.
T\rtor: Not necessarily. If the rod or another charge is nearby, opposite charges will be attracted from
ground onto the sphere.
Student: So if I hold the rod nearby a sphere and connect the sphere to ground, the sphere will become
positively charged.
T\rtor: Yes. What happens if you connect two spheres together or touch them to each other?
Student: Charges can move from one to the other. The charges will move so that the two spheres are
equal.
T\rtor: The charges can move, but if the charged rod is closer to one of the spheres than the other, will
the spheres be equal?
Student: No, the nearby sphere will have more negative charge than the far one.
T\rtor: And if you connect a sphere to ground with nothing else nearby, it will become neutral.
Student: So I connect one sphere to ground and use the rod to pull negative charges onto it. I disconnect
the sphere and move the rod away and the charges are still there. Then I connect a second sphere to ground
and use the first one to pull positive charges onto it.
Tutor: That would give you two spheres with opposite charges, but it would be very difficult to get the
right amount of charge on each sphere. Tby a different way of getting some charge on a sphere.
Student: Okuy, I connect one sphere to another and put the rod near the first sphere. I disconnect the
spheres and then I have two spheres of *q and -q.
T\rtor: To make sure that the charges are equal, you need to make sure that they are both neutral before-
hand. Do this by connecting each to ground with no other charges nearby. Now you need to take the -q
and split it in half.
Student: I'll take the negative sphere and connect it to the third sphere. But how do I know that the
charge splits exactly in half?
T\rtor: Using symmetry - since the spheres are identical, they have to have the same charge after the
charges are done moving. That's why we're using spheres. If we used cubes, then we'd have much more
difficulty getting the geometry to be symmetric.
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Student: So now I have le, _ iq, and -Lrq. If I connect the third sphere to ground, with the other charges
far away, then it will become neutral.

-J



Chapter 22

Electric Fields

In mathematics, a field means that at each point in space there is a vector. Imagine walking around and
measuring the normal force that the ground puts on you. On flat ground the force would be the same as

your weight and upward (since there are no other forces and no acceleration). On a hillside, the normal
force would be tilted, so that it was perpendicular to the hill's surface. This set of vectors would be a field.
Imagine taking a single charge and moving it around among other charges, and at each point you measure
the electric force on your charge. The set of vectors, one for every point in space, is a field.

Imagine now that you repeat the process, but with a greater charg€, twice as big. At each point, the force
that each other charge creates would be twice as big, so the total force would be twice as big. If you switched
the sign of your charge, all of the forces would switch direction, so the total force would switch direction.
The force on your charge is proportional to the amount of charge you use.

One way to think about electric field is that it is the force you would have on a charge if there was a charge
there. The field exists whether there is a charge there or not. So the units of electric field are newtons of
force for each coulomb of charg€, or N/C. A 3 C charge in a 4 N/C field experiences a force of 12 N. A
point in space has an electric field, and a charge at that point experiences a force from the
electric field.

In the previous chapter we had charges creati.rg forces on other charges. That was a simplification. Charges
create electric field, and electric field creates forces on charges.

Q-E-F

Each of these steps produces a vector, either field or force. For each step, we need a way to determirre the
direction of the vector and an equation to determine the magnitude of the vector. Just like everything else

we've done involving vectors, the equation only tells us the magnitude of the vector.

Imagine that a positive charge is creating the electric field. If I were to put a 1 C charge nearby, the positive
charge would repel my charge, creating a force away from the positive charge. Therefore the positive
charge creates electric field away from the positive charge. This is because the force my charge
would experience if I put it nearby would be away from the positive charge. Likewise, if you imagine that
a negative charge is creating the electric field, then the negative charge would attract my charge, creatirg
a force toward the negative charge. Therefore the negative charge creates electric field toward the
negative charge.

The electric field that a char ge Q creates is 
E _ ke

12
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When a charge q is placed in this electric field, it experiences a force of

F:qE
Notice that this is a vector equation. If q is negative, then the force on the negative charge is in the
opposite direction as the electric field. (It is possible to write the first equation as a vector equation,
but not as helpful at this time.)

Why do we bother with electric fields at all? Electric fields can do things between the time they are created
and the time they act on a charge. Also, there are some types of calculations that are only possible with
electric fields. More on these later.

So we have two ways to calculate electric fields. If we have the charge(s) that create the electric field,
we look at the first step (Q - E, E - kQ lr'). If we have the charge that experiences the electric fieldr w€
Iook at the second step (E + F, F - qE). Like any equation, we can do each step backwards if necessary.

EXAMPLE

A proton and an electron are located 2 p,m apart in
electron. The total electric force on the electron is 4
magnitude of the external electric field?

an electric field, with the proton
x 10-17 N to the left. What are

to the left of the
the direction and

Student: The proton creates an electric field at the electron, and the electric field creates a force on the
electron. We find the electric field, then find the force.
Tutor: But the force is already given.
Student: So what is there left to find?
Thtor: There is an external electric field.
Student: Meaning that it doesn't exist internally?
T\rtor: Meaning that it is created by charges that we don't see - charges other than the proton. It is an
externally created electric field, in addition to the field created by the proton.
Student: So are we doing the Q + E step or the E + F step.
T\rtor: You were correct in saying that we can find the electric field that the proton creates.
Student: That would be the Q + E step, right?
Tutor: Right. That field plus the external field is the total field.
Student: How can there be more than one electric field?
Tutor: Every charge creates electric field. The proton creates electric field where the electron is, and the
charges we don't see create electric field where the electron is. If we add the fields from all of the charges,
we get the total field.
Student: Do we need to include the field created by the electron?
T\rtor: Good question, but ro, when we want the field acting on the electron we don't include the field
created by the electron. Otherwise we might conclude that the charge can push itself.
Student: Okay. The proton creates an electric field

Ep: kQ (9 x loe N. ^, lC,)(1.6 x lo-1e C)

12 (2 x 10-6 -)2
: 360 N/C

Student: Is this a big field?
T\rtor: No, electric fields are often 105 N/C or more. What is the direction of this electric field.
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Student: It goes away from the proton.
T\rtor: Yes, but what is the direction of this field at the electron?
Student: Away from the proton would be to the right.
T\rtor: Correct. Now you can find the total electric field acting on the electron.
Student: How can I do that? I don't know the externally applied field.
Tutor: True, but you know the force on the electron, so you can find the field at the electron.
Student: You mean using the E + F step, only backwards.
T\rtor: Yes. Or you could define a variable for the external field, write an equation for the total field, and
put it into the F - qE equation.
Student: Which is better?
T\rtor: They're the same. It's a matter of personal preference.
Student: I'm going to find the total field. The force on the electron is

F:QE

(4 x 10-12 N) - (-1.6 x 10-1e C)Etot"r ?

T\rtor: You need to be careful about your signs. What is your positive direction?
Student: How about to the right?
T\rtor: Okay. Is ^Eo positive or negative?
Student: It was to the right, so it's positive.
T\rtor: Good. Is the force on the electron positive or negative?
Student: It's to the left, so it must be negative. The charge of the electron isn't a vector, so do I include
the sign?
T\rtor: Yes. Because the charge q is negative, F and Etotur will have opposite signs, indicating that they
point in opposite directions.

(-4 x 10-tz N) - (-1.6 x 10-1e C)Etot"r

Etot^r - 250 N/C

Student: The total electric field is positive, so it points to the right.
Tutor: Does that make sense?

Student: The electron has a negative charge, so the field and force should be in opposite directions. The
force is to the left, so the field is to the right. It works.
Tutor: Good. What is the external field?
Student: The total field is the sum of the proton's field and the external field.

Etot^t- Ev*8"*t

(+zso N/c) - (+360 N/C) + Ee*t

Ee*t: -110 N/C

Student: The external field is to the lefrb.

EXAMPLE

Find the electric field at the center of the square.
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Tutor: How are you going to start?
Student: We want electric field, so we need to use either the Q + E step or the E + F step.
Tutor: True. Either we have the charges that create the electric field or u/e have the force created by the
electric field.
Student: There is no charge at the center of the square. How can we have the force created by the electric
field?
T\rtor: We don't.
Student: Ah, but we have the charges that create the electric field. I find the field from each one and add
them up.
T\rtor: Remember to add them as vectors. Start with a diagram, except that instead of drawing forces,
draw fields.
Student: Okay. The top *4 p,C charge creates field a\May from it because it is a positive charge. Away
from that charge is downward. The bottom *4 p,C charge creates field away from it, or upward. The -2
p,C charge creates field toward the negative charge, or to the left. And last, the *5 p,C charge creates field
away from it, or up and to the right.

b

Student: Do the fields from the *4 p,C charges cancel?
T\rtor: They are in opposite directions. Do they have the same magnitude?
Student: The charges are the same, and the distances are the same, so the magnitudes should be the
same. They cancel.
I\rtor: They add to zero, y€s. What about the other fields?
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Student: I need to find the magnitudes and add them.

n^ _lcQ (g x 10e N.m2 lcrx2 x 10-6 c) _ 7.2x106 N/C.urz - F

Es-ry- (ex 10e N'.T1{c2)(5x 10-6 c):18x 
106 N/c ?v rz (0.05 m)2

Tlrtor: Is the *5 p,C charge 5 cm from the center of the square? '
Student: No, it's further. I need to use the Pythagorean theorem.
Ttrtor: For a 45o-45o-909 right triangle, the hypotenuse is fr times the length of a side.
Student: Yeah, that's right. So the *5 p,C charge is rt x 5 cm from the center.

E. _ ItQ _ (g x 10e N. m2 lCrXS x 10-6 C) _ g.0 x 106 N/c.urt-F-

Student: Now I decide whether to add them or subtract them.
T\rtor: Are the field vectors colinear?
Student: No. Do I have to find the components like we did back in Chapter 3 or something?
T\rtor: Yep. Adding vectors hasn't changed, even if the vectors are electric fields now.

Er: -Ez* Escos 45o_ -(7.2x 106 N/C) + (9.0 x 106 N/C)cos 45": -0.84x 106 N/C

Eu: *Essin45o - (9.0 x 106 N/C)sin45" : *6.36 x 106 N/C

Student: To find the magnitude of the field, I have to add the components using the Pythagorearr theorem.

E_

Student: It's almost the same as the y component.
Tlrtor: The y component is much bigger than the o component. The angle of the vector should show that.
Student: It goes a little left and a lot up. Measured from the -r-anis, the angle is

arctan( 
):82.bo

-J

A charge of Q:L2 pcC is spread out uniformly over a rod of length L -L2 cm. The point P is a distance
fl, - 2 cm above the midpoint of the rod. What is the electric field at point P?

(8,), + (Er), : ,/(-0.84 x 106 N/C), + (+6.86 x 106 Nnt :6.42 x 106 N/C

EXAMPLE

L
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T\rtor: How do we find electric fields?
Student: We use E - ttQ lr', but what do I use for r?
T\rtor: That is a problem, isn't it? Since not all of the charge is at the same place, you need to divide it
into pieces, each so small that we can say that the whole piece is at the same place.
Student: That would have to be really tiny. There'd be hundreds of them
T\rtor: Yes, maybe more. Then you find the electric field from each piece and add all the electric fields
created by the pieces.
Student: But there are hundreds of pieces! Wait, this is sounding like an integral.
T\rtor: Don't panic. Pick one piece, but not the first or the last.
Student: Why not the first or the last?
T\rtor: We need to do all of the pieces at once, and the first and last pieces are special and aren't repre-
sentative. Pick an arbitrary piece.
Student: Like, s&y, 1 cm to the right of the middle of the rod.
T\rtor: Like, say, r to the right of the middle of the rod. r can then be anything from -6 to 6 cm.

L
Student: So it could be any piece. Got it. Then I find the electric field from the piece using r. The
magnitude of the field is

,.-, k dq
u'"- 

@'+d2)2
Student: Picking r from the middle makes the denominator simpler. What's dq?
T\rtor: dq is typically used to represent the charge of each piece. What is the charge dq of the piece?
Student: Well, if there are millions of pieces, then the charge of each piece is really, really small.
Tntor: Very small, but not zero. If there were exactly one million pieces, what would be the charge of
each piece?

Student: The total charge is 12 p,C, so a millionth of that, or 12 x 10-12 C.
T\rtor: Do all of the pieces have the same charge?
Student: Uh, I think so. How can I tell?
T\rtor: The charge is spread "uniformly" over the rod, so any piece of the same length has the same charge.
What is the length of each piece?

Student: Is that dr?
T\rtor: It is. The length of each piece is equal to the distance from one piece to the next, which is dr.
You can use that to find the charge on each piece.
Student: So the number of pieces is Lf dr, and the charge q of each piece is
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dq- a Adr
number of pieces L I dr L

T\rtor: Very good. Another way to get the same result is by using charge density. The charge density is
the charge per length, or coulombs per meter. If we multiply the coulombs per meter @ I L) by the meters
of a piece (dr) then we get the coulombs of a piece @ dr I L).
Student: So the field created by each piece is

n k(Q drlL)ft:@

T\rtor: That is the magn'itude of the field created by each piece. Do the electric fields created by each
piece point irr the same direction?
Student: No. The fields all point away from the charge but not all in the same direction.
Tutor: So we have to find the r and g components of each field.
Student: But there are millions of fields.
T\rtor: Again, do it once for the piece at r and
Student: Okay. I need to find the angle d, and
cornponent is opposite, so it's sin.

-r
T\rtor: True. But you don't really need 0, just cos 0 and sin d. Look at the triangle you drew to find the
arrgle. Instead of finding the angle, find the cosine and sine of the angle, using the lengths of the sides.

Student:Thecosineof0isrdividedby!ffi.Isthatwhatyoumean?
T\rtor: Yep. Now you can write down the r conrponent of the electric field. Remember that if n is positive,
then the r cornponent of the electric field is negative.

F k(Q dr I L) \1 -r kQ* drna-@xffi:-W
Tlrtor: Then the total r component is the sum of all of the individual r components. What are the limits
for r?
Student: r goes from L - -O cm to *6 cm.

a

it will be the same for all of them.
then the r component is adjacent, so it's cos, while the y

e

T
CI

0

r:,t::,
kQr dr kQ

L(*' + d2)tl' L
rdr

(*' + d2)3/2
E,-
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Student: Now we have to do the integral.
Tutor: We look in the appendix of the book, or some other integral table, where we find

I rdr 
-- 

1

I (*, + a2)3/2 (*t + a2)r/2

T\rtor: This is the same integral that we have, so we can use their answer.

Student: Zero? Isn't there some easier way to do this?
Tutor: Look at the symmetry of the problem.
Student: Oh, yeah. If I flip the problem left to right, the problem is the same, so the answer has to look
the same, so it has to be along the y axis.
T\rtor: Good. You still need to do the A component.
Student: It should be very similar, except that it's the opposite over the hypotenuse.

Eu: ["'' ryx +- ry fL/z dn

r-L/2ftWf ^

Student: We look in the appendix of the book, where we find

D kQ ["t' r d,r kQ |. 1 1"t'Ltr--LJ_rp@ Ll-ffiaaz)_rp

[dn:r
I (*, + a2)3/2 a2 (*' + a2)r/2

D kQd, f 
Lt' dn kQd, I n 1"t' kQd, I L 12'r'- L J_rp@- L Lffi)_"p- Ldrl@- -L12

ffi
kQ

Student: Now I can put in the numbers.

Ey: kQ (9 x 10e N. ^'lc')(r2 pC)

dW (o.o2m) - 8.5 x 107 N/C



Chapter 23

Gauss'Law

Examine the surface below. Count the number of electric field lines coming out of each surface. Remember
to count a field line going in as a negative line going out. You should find that lr{z : -l/1 and Afs - l[a : 0.

This is not mere coincidence. Electric field lines start at positive charges
and end at negative charges. For a field line to come out of a surface, it
either has to start inside (.t a positive charge) ot enter somewhere else

on the surface. This is Gauss' law.

Gauss' Iaw works for any closed surface. A closed surface is one with no
exits - if you are inside the surface and you want to get out you need to
pass through the surface. The surface does not have to be real - imagine
or invent any surface you want and Gauss' law tells you the number of
electric field lines coming out.

The mathematical expression for Gauss' law is

QB

where Q6 is the electric field flux coming out of the area, Qnet is the net
charge inside the area, and es is 4rk - 8.85 x 10-12 C'/N m2.

What is electric field flux Q n? Imagine that you are out in the rain
holding a bucket. Flux would be the rate at which raindrops enter the
bucket. You could reduce this rate by using a smaller bucket, by going to
a place with less rain, or by tilting the bucket sideways. The electric field
flux 06 is effectively a count of the number of electric field lines passing
through a surface. Mathematically,

Qn dA

which says to divide the surface into tiny pieces, at each piece find the component of the electric field that
is perpendicularly out of the surface (normal to the surface), multiply times the area of the tiny piece, and
add the results for all of the tiny pieces.

Despite the scary appearance of this integral, it's not so bad. We only do the integral when it's dirt simple,
when not doing this integral leads to a much nastier integral.

Snet

€g
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Let's see how it works. We want to find the electric field created by a Gaussian

single point charge q

away? We can invent any surface we want to use with Gauss' law, so we'll
use a sphere, centered on the charge q with a radius of r (r is a variable,
it could be anything).

We want to do the integral to find the flu>c. To do that we need to know
the electric field at each spot on our imaginary surface. We don't know
the field - that's what we're trying to find. What we do know is that the
field on one side of the imaginary sphere is the same as the field on the
other side. Pick any two spots on the imaginary sphere, and the electric
field is the same. It has to be because of the symmetry of the proble
it looks the same from any angle, so the electric field is the same at any angle.

At any spot on our imaginary sphere the electric field is perpendicularly out of the surface and has the same

magnitude. Because the field is perpendicularly out,

E.dA- E d,A cosoo - E dA

Because the field E is the same everywhere on our imaginary "Gaussian" surface

The integral that remains is to add up the area of each tiny piece, so it's equal to the area of the imaginary
surface.

oo -E Iad,-EAUJ

Gauss' law tells us that the flruc is equal to the charge "enclosed" by the imaginary surface divided by e6.

EA- en - Qnet

€g

Because the surface is a sphere, the area is 4rr2

E(hrr') - 
Qnet

€g

tr - Qnetu 
4trr2 es (4nes)r2 12

This is the same thing we got in the last chapter (whew).

What if we had used a negative charge q - -2 p,C? Everything would have been the same until we put the
negative in and got a negative electric field. We always mea"sure the field out from the surface, never in, so

a negative field is inward or toward the negative charge.

The goal is to use Gauss' law to calculate the electric field. We can only do that if the symmetry in the
problem lets us do the critical step above - the electric field, whatever it is, is the same everywhere on the
imaginary surface so we can pull it out of the integral.

en:lnd,A-nlat

symmetry Gauss' law

EA:la dA:'r"-T
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EXAMPLE

A charge of Q :14 pC is placed on a hollow conducting sphere of radius R - 5 cm. Find the electric field
magnitude everywhere.

T\rtor: How do we find the electric field?
Student: We divide the charge into little pieces, find the electric field from each, and add the electric fields
(as vectors).
Ttrtor: We could do that, but the resulting integral would be very difficult. Instead, let's try using Gauss'
law.
Student: So we need some kind of "Gaussian surface."
Tutor: Yes, but that's not complicated. Imagine that you want the electric field at a point that is a
distance r from the middle of the sphere. Draw an imaginary sphere that is concentric with the conducting
sphere and has radius r.
Student: What's r? Isn't it the same as R?
Ttrtor z R is the size of the sphere. r is the distance to the point where we want the electric field.
Student: But we want the electric field everywhere. Don't we have to pick a value for r?
Tutor: We could, but the beauty of leaving it as a variable is that it works for any value. Then we only
have to do the problem once.
Student: So the electric field is the same everywhere?
Thtor: Not necessarily. Our result might be a function of r, so that
electric fields.
Student: Okay, but why a sphere?
T\rtor: Because of the symmetry. Look at the problem.
You can rotate it any way you want around the center,
and the problem looks the same. Therefore, the answer .
also has to look the same (remember doing this when we ,.
did center of mass?). We don't know what the electric field
is, but everywhere on a concentric sphere the electric field ,'
is the same. If we chose some other shape, when we rotated j
the Gaussian surface with the sphere, the problem would : o . "
look different, and we couldn't say that the electric field is .'-
the same everywhere. This is the key to using Gauss' lawr I \ \
choosing a surface where the electric field, whatever it is, '.

at different values of r we get different

-'DrDrDlro '\

T\rtor: So that we can calculate the flux. We divide the \

area of the surface into tiny pieces, find the electric field
through each, multiply by the (tiny) area, and add them. If the field is the same everywhere, then this is
the same as EA.
Student: Okay, so the flux O is equal to EA, and we don't know.E. Is A the area of the conducting sphere
or the imaginary Gaussian surface?
I\rtor: It's the area of the Gaussian surface 4trr2.
Student: But a"s r gets bigger, the area increases and the flux increases, but the number of field lines
doesn't increase.
T\rtor: It is good that you're thinking ahead. As r gets bigger, the area gets bigger, but the number of
field lines doesn't increase. Therefore, the electric field must get smaller so that the flux stays the same.
Student: Ah, so E does depend on r.
T\rtor: Correct. Once you have chosen your Gaussian surface, write down Gauss' law.

is the same everywhere.
Student: Why does the field have
where?

I

to be the same every- \
\ \

Q""t -eB -EA€g

to do vector dot products and stuff like that.

I

-
F

a

a

Student: I thought that we had
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T\rtor: We do, but we need the field to be at least p'iecew'ise-constant in order to use Gauss' law. More on
that in the next example. Look at the Gaussian surface. At each point on the surface, what is the direction
of the electric field?
Student: Directly away from the sphere.
T\rtor: Correct. Because of the symmetry, the field points directly away from the sphere. How much of
the field is perpendicular to the Gaussian surface, parallel to the normal vector?
Student: All of it.
T\rtor: Correct. You just did the vector dot product. All of the field is parallel to the normal, so the cos d
is 1.

Student: And the field is the same everywhere, so the integral equals EA.
T\rtor: Yes. Now, what is the area of the Gaussian surface?
Student: The area is the area of a sphere , 4rr2 .

+- eB - E(4trr2)

T\rtor: How much charge is enclosed?
Student: All of it, A -- *4 pC.
Ttrtor: If r ) B and the Gaussian surface encloses the sphere, then yes. What if r < R?
Student: Then none of the charge is enclosed.
Tutor: Correct. Let's start inside. If none if the charge is enclosed, what is the electric field?

M':oa: E(Anrz)
€g

0 - E(4rr2)

E _0

Student: There won't be any electric field.
Tutor: Correct. What about outside the sphere?

Q"n' - Qp: E( nr')
€g

9- - E(4nr')
€6\

,-r a kQiJ-@: r,
Student: That's the same thing we had before!
Tutor: Before it was for a point charge. Now it is for a sphere.
Student: So any sphere has the same electric field as a point charge?
Tutor: Keep in mind that the purpose of the example is not to reach such a conclusion, but to be able to
use Gauss' law.
Student: Yes, I know. Is the electric field for a sphere the same as a point charge, though?
T\rtor: As long as you have spherical symmetry, and all of the charge is enclosed, then everything we did
works.
Student: And by askittg what the field is everywhere, it means both inside and outside the sphere?
T\rtor: Yes, and because the field isn't constant, our electric field depended on r.

-J
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EXAMPLE

A long, solid, insulating cylinder of radius R - 6 cm has a uniform charge density of )
electric field magnitude everywhere.

Student: So the symmetry,, cornbined with the difficulty of dividing the charge into little pieces, tips me
off to use Gauss' law.
Tntor: Very good. Of course, it tips you off to try Gauss' Iaw. We're never entirely sure something will
work until we can see the end.
Student: Ok y. I want a Gaussian surface with the same symmetry as the charge, so I choose a cylinder,
concentric with the cylinder of charge. My imaginary cylinder has a radius of r, which might be more of less

than ^R.

T\rtor: All very good.

Student: Then I write down Gauss' law.

Q",'r_OE:EA
€g

Student: The area is the area of my cylinder, which is (2mL) + 2(nr'), including the ends, where L is
the length of my imaginary Gaussian surface.
T\rtor: Correct. Now it's time to think about the electric field. What is thgdirection of the electric field?
Student: It points outward from the cylinder of charge.
T\rtor: Radially outward. What is the flux through the top and bottom of the Gaussian surface?
Student: There isn't any. The field skims the surface but doesn't go through.
T\rtor: So Gauss' law becomes

? - QB : E ia "(2trrL)(1) * 8".,d (2trr2)(0)

Student: So the 1 and the 0 are the cos 0's?
I\rtor: Correct.
Student: Then Eu,'d, disappears from the equation.
T\rtor: Yes, and that's good because the field wasn't constant as it moves out from the cylinder along the
ends.
Student: If r ) R, the charge enclosed is all of it, but they don't tell us the total charge.
T\rtor: The longer the cylinder is, the more charge it has. The charge is -3 coulombs for each meter of
length. Multiply the length enclosed by the charge per length to get the charge enclosed.
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Student: So Q.r,c : 
^L?

*-en-E(2nrL)

E- 2rr/eo 2Tesr r
Tutor: Good. As we get further from the cylinder, the field gets weaker as the field lines spread out. What
ifr<R?
Student: Then the enclosed charge is zero, so the field is zero.
T\rtor: Not true this time. If the cylinder were made of a conducting material, then the charges would
move to the surface and that would be true. Now the charge is spread throughout the cylinder.
Student: So if r 1R, some of the charge is enclosed?
T\rtor: Correct. How much of the charge is enclosed?
Student: I don't know.
T\rtor: How much of the volume is enclosed?
Student: What does that matter?
T\rtor: If half of the volume is enclosed, then half of the charge is enclosed.
Student: So I find the volume enclosed, divide by the total volume to get the fraction enclosed, and
multiply by the charge?
T\rtor: Essentially.
Student: The volurne enclosed is rr2L. The total volume is rR2L. The charge enclosed is

Q"n.-)x #-)x # ?

T\rtor: Almost. The charge in a volume nR2I is 
^L.

Q"n"-),Lx#
Tutor: Now back to Gauss' law.

r-2
+ - EQrr)
eOR2 

L

r- \r
'J 2rregR2

Student: The field increases as we nrove away from the cylinder.
Tutor: The field increases as we move away from the center, so long as we are still inside the cylinder. As
we move a\May, the charge enclosed increases faster than the area, so the field increases. What is the electric
field atr:0?
Student: It is zero
Tutor: Which it has to be because of symmetry.
Student: Ah, if it wasn't zero j and we rotated the cylinder around its axis, it would be different.
Tutor: Note that ,\ is negative, so the field is going into the Gaussian surface.
Student: Good - the field should go towards the negative charge.

EXAMPLE

Ad
electric field magnitude everywhere.

*x(r^rl x #)-er -E(2nrL)
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Student: I need a Gaussian surface that keeps the symmetry of the charge.
T\rtor: Correct. What does the electric field look like?
Student: It points perpendicular to the plane of charge.
Tutor: Does it go in both directions?
Student: Can we use symmetry to determine that? If I flip the problem left-to-right, the problem looks
the same, so it goes both ways and has to have the same field each way.
Tbtor: Good. Draw a Gaussian cuboid that starts at the center and goes out a distance tr.
Student: Then I write down Gauss' law.

Q"n' -eB-EA
€g

Tutor: What is the area?
Student: I only include the area that has field coming out of it. Nothing comes out of the paper or goes

into the paper, or goes up or down the paper, because it skims the surface rather than going through. The
field at the center is zero, so the only side that has field is the right side. But what is the area of the right
side?
T\rtor: It's your Gaussian surface, so you get to choose.
Student: Okay. The area is A, whatever that is. It better cancel, right?
T\rtor: Correct. The field better not depend on the size of your imaginary surfac I might imagine a
different surface but that wouldn't change the field. What is the charge enclosed?
Student: It's the volume in meterss times the density in coulombs per meter3.
T\rtor: Good - what's the volume?
Student: The width times the height times the depth.
T\rtor: The height times the depth is your area A, and the width is r.
Student: So the volume is frA, and the charge is rAp.
Ttrtor: As long as the right side is inside the plane (r < d,l2).

rAP 
- eB: EA

€g

Student: The area does cancel.

Erp
€g

T\rtor: What if r ) d,12, and the right side is outside the plane?
Student: The area is still the same.
Tutor: Yes, but not all of the Gaussian surface contains charge.
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Student: Oh, so the enclosed charge stops increasing once we leave the plane.

(dlz)Ap _eB:EA
€g

Student: I saw the equations E - o l ro and E - o f2es. fs this the 2 inthe equations?
Tutor: Somewhat. If the field goes in both directions, then you use the equation with the 2. If the field
goes in only one directior, then you don't use the 2. This happens if you have a conducting plane with
charge on the surface, since there won't be an electric field inside the conductor. The field here goes in both
directions, and the 2 appears because, by measuring out from the center, w€ include only half the charge.
Student: So what's with the Greek letters ) and p for charge?
Tutor: We still use a or q for charge, but we use Greek letters for charge density. Greek lambda ,\ is
typically used for coulombs per meter, Greek sigma o for coulombs per meter2, and Greek rho p (pronounced
"row" as in row, row, row your boat) for coulombs per meter3. It's a tipoff or reminder of how the charge
is distributed.

E- pd

2eo
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Electric Potential

We've learned to use forces when we deal with charged objects. Can we use conservation of energy and
conservation of momentum? Certairly energy and momentum are both conserved, but can we use them
effectively to solve problems? Conservation of momentum doesn't help us because some of the charges are

usually "glued down," and we don't know the force on them so we don't know the impulse. Conservation of
energy is so effective in dealing with charges that we do it all the time, often without noticing.

How did we use conservation of energy earlier? The energy you start with plus the energy you put in (work)
is the energy you end with.

K4+ PEi+W - KEy * PEt

The work done by some forces (gravity and springs) is easier to deal with by using potential energy, and
then we don't include them in the work term. Work done by electric force is the other work that is easier to
do with potential energy.

How did potential energy from gravity work? Potential energy is work that wetve done that we
might get back out. When we raise a rock we exert a force equal to gravity n'Lg (a little more at the
beginning to get it going) while we raise it a height h. Since we push in the same direction as the motion
we do positive work. Gravity pushes in the opposite direction as the motion and does negative work as the
potential energy increases. The work that we do that is stored as potential energy is mgh. If we tied a string
to the rock beforehand and wrapped the other end around a generator, then as the rock rolled down the hill
we could get electricity to power our stereo and make tunes, which is the purpose of physics. The work that
gravity does during the process is the same no matter how we get the rock to the top.

If we moved a rock that was twice as big then the potential energy would be twice as big. The potential
energy is the product of the size of the rock (*) and somethitrg that depends on the position (gh). This
latter part, the part that depends on position, is the potential. The units of gh are ^'l"'or Jlk1- how
much work it takes to move one kilogram of rock.

With electricity, the potential energy is equal to the product of the size (charge q) of the thing we move
times the potential V, which depends on the position.

U-PE-qV

(U is often used for potential energy.) The potential energy in joules is equal to the charge in coulombs
times the potential, or joules per coulomb. One joule per coulomb is a volt and is sometimes called voltage.

The only significant difference is that the charge can be negative, while with gravity the mass could only be
positive.

1V:1*

185
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Remember that potential and voltage are the same thing, but potential and potential energ:f
are not the sarne. A location has potential, and a charge at the location has potential energy.

The question then is: how do we determine the potential.

When we push a charge against the electrical force we do positive work, increasing the potential energy.
When the charge moves on its own and we hold it back, we do negative work (or get work out) while the
potential energy decreases (some of the potential enerry is turned into work). To calculate the electrical
potential energy we have to find the work we do pushing against the electrical force, or the negative work
done by the electrical force.

LPE- - F-f - -qE . dfr - -q4rcosl
Often the electric field is not constant as we move the charge. Therefore we divide the path into tiny pieces

- so tiny that we can say that the electric field is constant for the whole tiny path. Then we add the work
we've done (increase in potential energy) for all of the tiny pieces of the path.

aPE-ot- 8.dfr'J

where ^d 
. dd is the component of the electric field parallel to the tiny piece d,E times the length of the tiny

piece.

The potential enerry is the product of two pieces, the amount of charge that we move and somethittg that
depends only on the path along which we move it. The part that depends on the path (and not the charge)
is the potential.

f{Av: J_8.dfr

You might conclude that we're going to be doing lots of integrals, but this is not so. There are two cases for
which it's rea"sonable to work out the integral and reuse it. The ca^ses are point charge and constant field.
Since these come up regularly using potential often keep.s us from needing to do an integral.

If the field is constant, then the integral becomes

-E.AE

if the field is created by a point charge, then the potential is

Vpoint charge :

This assumes that the potential is equal to zero at infinity.

A%o,,stant : I -E . dfr - -E I ffi -

kq

R



187

EXAMPLE

What is the work needed to move a proton from P to m?

30 cm

Student: The problem asks for work, so that means we'll need to use energy.
T\rtor: Good. What is the equation for conservation of ener gy?

Student: Energy before plus energy in equals energy after.

KEt, + PEi +W : KEy * PEt

Tutor: What is the kinetic energy before?
Student: The proton isn't moving, is it?
Tutor: The problem doesn't s&y, so that implies that it isn't.
Student: So the kinetic energy before is zero. Is the proton moving when it gets to infinity?
T\rtor: If it was, then it would have a positive kinetic energy, and we'd have to do more work. We don't
want to do that.
Student: So the kinetic energy afterward is zero. How can a proton move to infinity?
T\rtor: It can't really, of course, because the universe is finite. It takes something like half of the work to
move the proton the first 40 cm, and half of the remaining work to move it the next 80 cm, and half of the
remaining to move it the next 160

Student: How do you come up with that so easily?
T\rtor: If we double the distance, we cut the potential energy in half.
Student: So by the time we've moved it three meters, we've already done 90% of the work needed to move
it to infinity?
T\rtor: Yes, and we can calculate how much work it would take to get to infinity, but we'd never really get
it there.
Student: Okuy. Both kinetic energies are zero. We need the potential energies.
T\rtor: True. The potential energy due to electric forces is qV .

Student: So. . .

Fqievp+w:r$fev*
I\rtor: Very good. Now we need to calculate the potentials at P and oo.

Student: So I find the potential at P due to each charge and add the potentials?
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T\rtor: Yes.
Student: The potential at P due to the -5 pC charge is

v - kQ 
- 

kl-: p? 
- -11.2b x 104 N.m/cr (40 cm)

TUtor: Yes. A newton times a meter is a joule, and a joule per coulomb is a volt.
Student: Okry. The potential at P due to the *5 p,C charge is

V-kQ: :9x1o4v
r

Tbtor: Correct.
Student: Now I need to find the components and add the r and A components together.
Tlrtor: No. Potential doesn't have direction. The values you just found are the potentials created by each
charge, and you just add the potentials together.
Student: No vector stuff at all? Great.

Vp: (g x 104 V) + (-1t.25 x 104 V) : -22,b00 V - -22.s kV

T\rtor: That's one of the reasons to use potential. If we had been doing a vectoq, then you should have
used the absolute value of the charge, so that you got a positive value for the magnitude. Since potential
isn't a vector, you need to include the minus sign so that a negative charge creates a negative potential.

(1.6 x 10-1e C) (-22.5 kV) +W - (1.6 x 10-1e C)y*

Student: Now I need to find the potential at infinity.
Tutor: Yep. What is the potential if r is oo?

Student: Uh, it's zero.
T\rtor: Yes. We chose the potential to be zero at infinity. If we had picked anywhere else, then the equation
for potential would have been more complicated and harder to calculate.
Student: So the potential is always zero at infinity?
T\rtor: Whenever we use V - kQ l, for point charges, the potential is zero at infinity. The other common
situation is a constant.field, and then we can't take the potential to be zero at infinity. We'll do one of those
next.
Student: Oh good! Anyway, now I can find the work.

(1.6 x 10-1e c) ( -22.skv) +w - (1.6 x 10-1e c) )K0
w - -(1.6 x 10-1e c) ( -22.5 kV) - 3.6 x 10-15 J
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EXAMPTE

What is the work needed to move an electron from C to D?

.D

E- 300V/m

*40cm+

Student: It asks for work again, so we'll be using consenration of enerry again.

K4+ PEi+W -- KEf + PEf

Student: Again, the particle isn't moving before or afber, and again, the potential energy is qV.

y.{iqvc+w --Wlevo
T\rtor: You're doing well. What is the potential at C?

Student: Well, that is a problem. Where are the charges that create the electric field?
Tbtor: We can't see them.
Student: So I have to start at infinity, where the potential is zero, and integrate the electric field a^s I
come in to C?

T\rtor: That would work, in theory. The problem is that the field is a constant, and integrating & constant
over an infinite distance gives an infinite value. We didn't have this problem with a point charge, because

the field got smaller as we went further away, and the integral converged.
Student: Ah, big math term. So if I can't see the charges that create the field, and I can't integral the
electric field from infinity how can I find the potential at C?

T\rtor: It's kind of a trick question. You don't need the potential at infinity, you need only the difference
in potentials between C and D.

W - eVo - eVc - q(Vo -Vc)
Student: So I have to integrate only from C to D.
T\rtor: Correct. In fact, it is important that you integrate from C to D and not from D to C.

Student: How can you tell?
T\rtor: Because a change is always the final minus the initial, so the final is D and the initial is C. Fortu-
nately the electric field is constant, and the integral is easy.

Student: Oh, right. The potential difference is

AV - E x d,- (300 V/*)(0.50 m) : 150 V ?

Student: I thought that the units for electric field were newtons per coulomb.
T\rtor: They are. Volts per meter are equal to newtons per coulombs. Also, remember that only the part
of the displacement that is parallel to the electric field matters.
Student: Oh, so

AV - E x d,- (300 V/*)(0.40 m) : 120 V ?

oC
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T\rtor: Now you need to make sure that you have the sign right.
Student: How do I do that?
T\rtor: One way is to follow the math. As you go from C to D, the displacement is to the right. The
electric field is to the left. The displacement in the direction of the electric field is -40 cm, so

LV- - E.Lil- -(300 V/*)(-0.a0 m) - 120 v
T\rtor: Another way is to look at the electric field. Electric field always goes from higher potential to lower
potential.
Student: So 2 must be at a higher potential than C.

Tntor: Yes, and therefore Vo - Vc is. . .

Student: . . .positive.
T\rtor: Is the potential at 2 positive or negative?
Student: It's greater than the potential at C, so it must be positive
Tntor: But -4 is greater than -7, and -4 isn't positive.
Student: So Vo is negative?
Ttrtor: We don't know, and we don't care. We do know that Vxt ) Vc, and that's what's important.
Student: Okay. I can finish the problem now.

W - q(Vo -Vc) - (-1.6 x 10-1e Cxtzl V): -1.92x 10-t7 J

Tutor: Does it make sense that the work you need to do is negative?
Student: The electric force will push the electron to the right, so it will go there on its own. I won't need
to do any work.
T\rtor: Negative work means that we can get work out of the process a,s the electron moves.

I

EXAMPLE

A charge of Q - *4 p,C

the center of the sphere,
is spread uniformly
taking the potential

over a solid sphere of radius R - 5 cm. Find the potential at
to be zero at infinity.

Student: Nothing about energy, just find the potential.
T\rtor: Yep. We have three ways to do that. If the field is constant, then the potential difference is the
displacement times the parallel component of the field.
Student: The field isn't a constant. We found the field in the last chapter.
T\rtor: Not quite. We found the field due to a hollow conducting sphere. Because the solid sphere is also
spherically symmetric, the field outside the sphere is the same as for the hollow sphere. Our second way to
find a potential is that if the field is created by point charges, then we can find the potential from each point
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charge and add the potentials.
Student: The charge is spread out over the sphere, so we would have an infinite number of point charges.
T\rtor: Tbue. The third way is to start at a point where we know the potential, and integrate the electric
field to the point we want.
Student: The only place where we know the potential is at infinity.
T\rtor: So we start there and integrate in.

f+

^v - J -8.*i

vn - "2! [" -8. dfr'-.Yx - J*
Trrtor: I have trouble with minus signs when integrating from a higher value to a lower one, so I'm going
to reverse the limits and add a minus sign.

vn: - l: -E dil

Student: The field outside the sphere is kQlr2.
Ttrtor: As we move from ^R to oo, we are using r to represent our current position.
Student: So the field outside the sphere is kQ l12?
Thtor: Correct. What is the direction of the electric field?
Student: The field points away from the sphere.
T\rtor: What is the direction of dfl
Student: What is dtrl
T\rtorz d,fr is the infinitesimally small length of the steps that we take as we move out to oo.

Student: If it's infinitesimally small, then it doesn't have direction.
T\rtor: It may be really small, but it isn't zero. When we add up all of the steps, we have to get the
displacement from R to oo.

Student: So the direction of each step, small though it is, is outward from the sphere.
T\rtor: Good. How much of the electric field is in the direction of the step?
Student: They are in the same direction.
T\rtor: Yes. How much of the electric field is in the direction of the step?
Student: All of it.
Thtor: Yes, so

8.d,il-Edn
Student: That's how we deal with the vector stuff.
T\rtor: Yes. Now the potential Vn at R is

vn: I: Edn: I: ydn-kel-;] ; -ke[-:--*] : E
Student: That's the same as the potential for a point charge!
Tutor: The field is the same as for a point charge, so the integral of the field is also the same.
Student: Now we do the same for the field inside the sphere.
T\rtor: Yes. What is the electric field inside the sphere?
Student: We need to use Gauss' law, picking an imaginary sphere to keep the symmetry of the charge.
Only part of the charge is enclosed, so we need to find Q"n" like we did in the cylinder example from the last
chapter.

Q"n" 
o^e : EA

€g

1 ( "'J"-t ftY"a x (charge of ,pr,"r")) - E(4nr2)
€s \ volume oI Spnere /
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* (#"4) -E(An")

#':E(4n")
' Qrs Qr kQrEJ: 

-4v^psrz 

:  nrop,ig - ET
T\rtor: Wonderful. Nory we can do the potential integral.

vo:vn* fo -, dn
Jn

Tlrtor: Agaitr, I prefer to reverse the limits, because otherwise I'm likely to make a sign error.

Student: What's wrong with that?
T\rtor: The field inside the sphere is a function of how far we axe from the center of the sphere. In using
Gauss' law to find the field, you used r for that distance, but in the potential integral we're using r.
Student: So the field inside the sphere is W when we do the integral.
Thtor: Yes, as 0 goes from 0 to .R.

T -"/c'X+a pc) - 1 .44 x1o6 ,y : r.44MV

ELECTHIC POTENTIAL

vo:vn*- 
Ir" -E dn-#* 

Io" W dn ?

Vo:

2kQ

I"Wdn-#*#lo"*dn
*'J::8.#ln'-o'l :E.E

Vn:
R (0.05 m) I

EXAMPLE

A charge Q is spread uniformly over a length L. What is the potential at P, a distance d away from the
center of the line of charge?

L

Student: Let me see if I have this right. We have three ways to find the potential. If the field is constant,
then we use A%oostant - -E . AE. If the field is from point charges, we use Tpoint charge : H. If we can't
do either of those, then we integrate the electric field AV - I -E - dfr from someplace where we do know
the potential.
Tutor: Very good. Which way are you going to try here?
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Student: The field isn't a constant, so we can't do that. The charge isn't a point charge, but we could
divide it into point charges and add the potentials using an integral. Or we could integrate the field. We
have to do an integral either way. Which way is easier?
T\rtor: We can do it both ways for practice. It's probably easier to integrate the charge.
Student: We divide the rod into tiny bits, each dn long. As before, the charge of each piece is

dQ: (length of piece)

(length of rod)

Ttrtor: Good. What is the potential created by each tiny piece?

Student: k times the charge divided by the distance.

r/^ [k(Qdrlt')YP-JW
T\rtor: What are the limits for the integral? What are the minimum an maximum values for r?
Student: r goes from -L12 to *L12.

Student: Can I do the integral now?
T\rtor: Sure, everything there is a constant or r, the variable of integration.

Vp: rw

x (charge of rod) - f A

L

?

\

I

I

I
I

dr

vp:ry fr"("+
Vp

T\rtor: We can do algebra to simplify this, but the ph

(Ll2) +

- rn (t- L12) +

ysics of the problem is done.

(-Ll2) +
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Vp- kQ
L "'\(-Ll2)+ F7py

CHAPTER 24. ELECTHIC PO"ENTIAL

(Ll2)+@\
(Lt2)+@)

Vp:

/r

vp:Yr^( 
)

vp:'#t"( 
)

Student: Now you want to integrate the field for practice?
Tntor: Sure. To get the potential at P, start at oo and go to P, integrating the electric field.

Student: But then you want to integrate the other way.
T\rtor: It's easier to get the sign right that way.

-8.dfr

Student: The electric field is kQlr2, since n is our variable of integration.
T\rtor: Just because r is the variable you're integrating over doesn't mean that the field depends on tr.
Student: True. But the field does depend on where we are. As r moves from P to oo, we need the field
at a distance fi.
T\rtor: Good. But the field is not created by a point charge.
Student: Arrg! We have to integrate over the charge to find the field?
Thtor: Yes and no. Yes, we have to find the field, and that means doing an integral. No, we don't have
to now, because we did that in an earlier example.

kQ

vp:voo. [ -E-dfr

Ea:
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Student: There's no r.
T\rtor3 No. d was the distance from the rod to the point where we found the field.
Student: So we replace d with c.

Er(t) -
Ilrtor: Yes, then we let s go from d to oo.

vp-kelo*ffi

Student: So we get the sarne answers either way.
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Capacitance

Imagine taking two large flat pieces of metal, such as cookie sheets, and placing them parallel to each other
but not touching. Then connect the two ends of a battery to the two cookie sheets. Positive charge flows
out of the positive end of the battery to the first cookie sheet (really it's negative charges flowing out of
the negative end of the battery onto the other cookie sheet, but the effect is the same). When the positive
charges get to the first conductor (cookie sheet), they can go no further so they collect there. Other positive
charges from the second conductor take the place of the previous charges, going into the negative terminal
of the battery and leaving behind a net negative charge. After a while (which might be only microseconds)
this process slows down and stops.

What if we were now to disconnect the battery from the cookie sheets? Could the charges on the conductors
foresee what we're about to do and rush back into the battery? No, the charges are trapped on the conductors.
We could now connect the conductors to the two ends of a light bulb, and the excess positive charge would
go through the bulb, creating a momentary current, and meet up with the excess negative charge on the
other conductor. We have a device for storing small amounts of charge. The amount of charge Q that can
be stored on a capacitor with capacitance C is

Q-CV
Equal amounts of positive and negative charge are stored on the two plates of the capacitor, and Q is the
absolute value of one of these two charges. The units of capacitance are farads (F).

It takes work to store charge on a capacitor. Since this energ"y can all be extracted later, we can express it
as a potential energy 

l(Icnp: 
;AV

This is similar to the equation we had for the potential energy of a charge (U : qV) except for the one-half.
One way to understand this difference is to imagine stacking books. If you start with a bunch of (equally
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sized) books on the floor, it doesn't take any work to put the first book on the floor. The second book takes
a little work, since it must be moved up by the thickness of the first book. The third book takes even more
work, and so on, until the last book takes the most work. We could add the work needed for each book, or
multiply the number of books by the aaerage work for each book. The average is the work for the middle
book, which is lifted to half the height of the pile. Likewise it takes no work to put the first charge on the
capacitor because with no charge it has no voltage. The second charge takes some work, the third more, and
the last charge takes the most work. The total work is the charge times the average voltage, which is half of
the final voltage. Use U - qV for individual charges, but use U - ieV when each successive charge takes
more work than the next.

We have four variables (C, V, Q, and t/) and two equations. If we know any two of the four variables,
we can find the other two using our two equations.

EXAMPLE

What size capacitor would you need to store 2 mJ when connected to a 12 V battery?

Student: If we know any two of the four, we can solve for the others, but I need an equation with [/, V,
and C.
T\rtor: It's true that if you know two of the four, you can find the others. It's also true that we don't have
an equation with those three. What can you find?
Student: I can solve for the charge Q.

(Jcrp:lO'

(o.oo2 J) : ia(12 v)

Q -333 pC

Student: That seems like a pretty small charge, but then 2 mJ seems like a pretty small amount of energy.
T\rtor: Most capacitors aren't very big. They store only a little charge.
Student: Now that I have the charge, I guess I can find the capacitance after all.

Q_CV
333 pC : C (12 V)

C-28p,F
Thtor: One farad is a big capacitance, so many capacitors are mea"sured in microfarads or even picofarads.
Student: So why don't we come up with another equation?
Tutor: We could ...

2u:cv 
-) u-t"r'

VQ-'+
T\rtor: We could come up with an equation for every problem, but then there would be an infinite number
of equations. It's better to remember fewer equations and to combine them when necessary.
Student: An infinite number of equations would be hard to remember.

The next difficulty comes when we have two or more capacitors at the same time. If two capacitors are
connected in series or in parallel, then we have ways of dealing with them. It is not true that any two
capacitors must be either in series or parallel, but if they are then we can do something with them.

When two devices are connected so that all of the charge that leaves one must go through the other, we say
they are in series. Likewise when two devices are connected so that they must have the same voltage, we
say they are in parallel.
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How do we determine whether two capacitors are in series? Consid er C1 and Cz above. Charge passes from
A through C1 to B. Flom there the charges can only go to C and through Cz to D. Ct and C2 are in series
because the charges that pass through Ct must then go through Cz, and the charges that pass through the
two must be equal. Charges that pass through Cz to point D can go either through C3 to F or through Ca
to H. The charges through Cz and C3 do not have to be equal, so Cz and C3 are not in series.

How do we determine whether two capacitors are in parallel? Consider Cs and Ca above. Take a finger from
each hand, and place them at each end of Cs. The voltage difference between your fingers is equal to the
voltage difference between the ends of Cs, or the voltage across C3. Now try moving your fingers, but only
along wires and not across any circuit element, such as a capacitor or battery. If by doing this you can get
your fingers to lie at the two ends of C+, then C3 and Ca have the same voltage across them and they are
in parallel (they are, and you should be able to do this). Are Cg and C2 in parallel? We can move a finger
from E to D but we can't get from F to C. We could only do this by jumping from one wire to another
nearby wire (not allowed), or by going through the battery and C1 (also not allowed). Therefore, Cs and Cz
are not in parallel. Even though both are drawn vertically, so that they are geometrically parallel, they are
not electrically parallel. Aty two capacitors do not have to be either in series or in parallel.

If two capacitors are in series, then they can be treated as if they were a single capacitor. The capacitance
of this replacement or "equivalent" capacitor is

If two capacitors are in parallel, then they can be treated as if they were a single capacitor. The capacitance
of this replacement or "equivalent" capacitor is

Cp-Ct*Cz

EXAMPLE

111
IG cr- c,

Find the voltage across each capacitor.
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Student: The voltage on the 5 pF capacitor is 6 volts.
Tutor: Rather than "voltage on," use "voltage across." The voltage across is the difference in the voltages,
or potentials, &t the two ends.
Student: Okay. The voltage across the 5 pF capacitor is 6 volts.
T\rtor: How do you know?
Student: Because it's a 6 volt battery.
T\rtor: That's not enough. Is the 5 pF capacitor in parallel with the battery?
Student: Why does it matter?
T\rtor: Two things in parallel have the same voltage across them.
Student: So if the 5 pF capacitor is in parallel with the battery, then it has the same voltage across it as

the battery does?

T\rtor: Yes. How do you check?
Student: I do the "finger test." I put one finger on each side of the 5 pF capacitor and try to move them
to the ends of the battery. I slide the top one over, and I slide the bottom one over, and I'm there. The 5

pF capacitor is in parallel with the battery.
T\rtor: How do you know that the voltage across the battery is 6 volts?
Student: Uh, because it's a 6 volt battery?
Tutor: Yes. A battery creates a potential difference, or voltage difference. A 6 volt battery creates a 6
volt potential difference.
Student: So the voltage across the 5 pF capacitor is the same as the voltage across the battery, and that's
6 volts.
T\rtor: Good.
Student: The voltage across the 6 pF capacitor is 6 volts.
T\rtor: How do you know?
Student: Because it's a 6 volt battery.
Ttrtor: That's not enough. Is the 6 pF capacitor in parallel with the battery?
Student: Here we go again.
Tutor: It gets faster with experience.
Student: If the 6 pF capacitor is in parallel with the battery, then it has the same potential across it as

the battery does. I put one finger on each side of the 6 pF capacitor and try to move them to the two sides
of the battery. The top one slides over to the top of the battery. The bottom one has to jump over the 2 pE
capacitor or the 4 fB capacitor. . .

T\rtor: . . . and it can't do that.
Student: So the 6 pF capacitor is not in parallel with the battery.
T\rtor: Correct.
Student: So the voltage across the 6 pF capacitor isn't 6 volts.
T\rtor: It isn't necessarily 6 volts. It might be 6 volts, but we don't know that yet (and it won't be).
Student: So what can I do? Neither the 2 p,F capacitor nor the 4 p,F capacitor is in parallel with the
battery either.
Tutor: If you can find two capacitors in series or parallel, then you can replace them with a single capacitor.
Student: So I can replace the 6 pF capacitor and the 4 pF capacitor with a 10 pF capacitor, and the 8
pF capacitor is in parallel with the battery.
T\rtor: Slow down. You just did three steps, all of which we need to check. Are the 6 pF capacitor and
the 4 frF capacitor in series or parallel?
Student: They are in series. Charge goes from the 6 to the 4.

T\rtor: Let's check. Does all of the charge that comes out of the bottom of the 6 pF capacitor have to go
into the 4 pF capacitor, or could some of it go somewhere else?
Student: Some of the charge could go into the 2 pF capacitor.
T\rtor: To be in series, all of the charge from one must go into the other.
Student: So the 6 pF capacitor and the 4 pF capacitor aren'tin series.
Thtor: Correct.
Student: And the 6 pF capacitor isn't in series with the 2 pF capacitor either.
T\rtor: Also correct.
Student: Nor is the 4 pF capacitor in series with the 2 pF capacitor.
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Thtor: Correct.
Student: Are some of them in parallel?
T\rtor: Check.
Student: Okay. I'll check to see if the 4 is in parallel with the 6. I put one finger on each side of the 4 pF
capacitor, and try to move them to the two sides of the 6 pF capacitor. I can move one from the top of the
4 to the bottom of the 6, but I can't move the other from the bottom of the 4 to the top of the 6.
Tlrtor: But you can move them to the two sides of the 2 pF capacitor.
Student: Oh. How can the 4 pF capacitor and the 2 pF capacitor be in parallel when one is vertical and
the other is horizontal?
I\rtor: There's a difference between electrically parallel and graphically parallel. Often two capacitors
that are graphically parallel are also electrically parallel, but not always, so you need to check for electrically
parallel. The 6 pF capacitor and the 5 pF capacitor are graphically parallel, but not electrically parallel.
Student: So I can replace the 4 pF capacitor and the 2 pF capacitor with a single capacitor?
T\rtor: Yes. How do we add capacitors in parallel?
Student: We add the capacitances.
T\rtor: Yes. Earlier you tried to add capacitors that you thought were in series.
Student: Oops.

Cp-Cr*Cz
C+uz-Ca*Cz-(4pF) +(2 pF) -6/rF

T\rtor: Good.
Student: Is the replacement capacitor in series with the 6 pF capacitor?
T\rtor: Check.
Student: The charge that comes out of the bottom of the 6 pF capacitor can go into the top of the 4 pF
capacitor, or into the left side of the 2 pF capacitor, but nowhere else.

T\rtor: So the 6 fE capacitor is in series with the replacement capacitor, or with the 4-2 pair.
Student: So I can replace them with a single capacitor.

111
Cs Cr- C,

11111
c*^*- cu+ c*r- 1opFt 

* 
tu rty

T\rtor: Be careful that you don't do something silly, like 116 + 116: IlI2.
Student: I had almost forgotten how much I enjoyed fractions.
Tutor: They aren't that hard, but do be careful.

11121
c*^*-CpE;*(urtt GrrFt 1apE;

Tntor: The replacement capacitor is not I 13 p,F . One over the replacement capacitor is I 13 p,F .

Student: So the replacement capacitor is 3 pF.
T\rtor: Yes. Sometimes we call it the equivalent capacitance of the trio of capacitors.
Student: Now the trio of capacitors is in parallel with the 5 pF capacitor.
T\rtor: Tbue, but not necessary.
Student: I don't need to combine the 5 pF capacitor with the other trio?
T\rtor: No. The trio is in parallel with the battery.
Student: It is. I can move one finger from the top of the 6 to the top of the battery, and the other from
the bottom of the trio to the bottom of the battery. Isn't the 5 pF capacitor in the way?
T\rtor: It may be between the battery and the trio, but it doesn't affect whether or not the trio is in
parallel with the battery. What does it mean that the trio is in parallel with the battery?
Student: They have the same voltage, so the voltage on the trio is 6 volts, so the voltage on each of the
three capacitors is 6 volts.
T\rtor: Right and wrong. The voltage across the trio is 6 volts, but that doesn't mean that the voltage on
each capacitor in the trio is 6 volts.
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Student: No?
T\rtor: One volt is one joule per coulomb, so each coulomb of charge leaves the battery with 6 joules of
energy. First the charges go through the 6 p,F capacitor, then through the 4-2 pair (which is also 6 pF).
How much energy does the coulomb of charge "spend" to get through each capacitor?
Student: Does it spend 3 joules and 3 joules?
T\rtor: Yes.
Student: But then the three capacitors in the trio each have 3 volts across them. That's 9 volts!
T\rtor: Each coulomb of charge goes through first the 6 pF capacitor and then either the 4 pF capacitor
or the 2 pF capacitor. So for each charge it's 3 volts plus 3 volts, which is 6 volts.
Student: How can we be sure that it's 3 and 3?
Tbtor: Because the two capacitors (6 and 4-2 pair) have the same capacitance, so they have to have the
same voltage across them.
Student: What if the 6 and the 4-2 pair didn't have the same capacitance?
T\rtor: Then they wouldn't have the same voltage. Let's do that in the next example.

EXAMPLE

Find the voltage across each capacitor.

L2V 6rlt

Student: Neither capacitor is in parallel with the battery, so the voltage across the capacitors isn't 12
volts.
Tbtor: Good.
Student: But if the capacitors are in series or parallel, then I can replace them with a single capacitor.
TUtor: Yes.
Student: I think that they're in series, so I'll check that first. When charge comes out of the 3 p,F
capacitor, it has nowhere to go other than into the 6 pF capacitor, so they are in series.
Thtor: Good. How do we combine capacitors in series?
Student: By adding their reciprocals.

111
cb-cr-c,

111113
co*- cr+ cu: 1e1,r;* turtt- GpF)

Cpair - 2 p,F

T\rtor: What is the voltage across the 2 pF pair?
Student: The pair is in parallel with the battery, so it has the same voltage as the battery, so 12 volts.
T\rtor: What is the charge on the equivalent capacitor?
Student: We're trying to find voltage. Why are you asking about the charge?
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Tlrtor: Because that's how we get to voltage. Remember that Q : CV, so if we know the charge we can
find the voltage.
Student: The charge on the equivalent capacitor is

Qp^i, : CpaivVpair - (2 pF) (I2 V) : 24 p'C

T\rtor: How much of that charge is on each capacitor?
Student: Half on each?
Tntor: Think about what happens to the charge . 24 p,C of charge comes out of the battery and goes into
the first capacitor. There's a gap, so the charge can't go any further, and it stops. 24 p,C of charge takes
it's place, coming out of the bottom of the first capacitor and going into the top of the second capacitor.
There it stops, and 24 p,C of charge from the bottom of the second capacitor goes into the bottom of the
battery.
Student: So there's 24 p,C of charge on each capacitor?!
Ttrtor: Yes. When capacitors are in series, they each have all of the charge.
Student: In the last example, when the 4-2 pair wa^s in series with the 6, the 4-2 pair would have the same
charge as the 6?

T\rtor: Yes. The 4 and the 2 would not each have the same charge as the 6, but their combined charge
would be the same as the 6.

Student: So capacitors in parallel share charge, but in series they each get the whole charge.
T\rtor: Yes.
Student: Now that we know the charges on the capacitors, we can find the voltages.

v- I
CQ-CV

Vs:X-

Vo:X-
Student: Look! They add up to 12 volts.
T\rtor: They need to, because each coulomb of charge uses up 12 joules a,s it goes through the two capaci-
tors. The rules for adding capacitors in series and parallel were invented so that the voltages would add up
to 12 volts.
Student: But you said a moment ago that the charges can't go through a capacitor.
T\rtor: True. Positive charges stop on one plate, and different positive charges leave the other plate,

::T'r:"TL',*r:,fi ffi ffi-"'iffi ;lT:';#H-?';ff :",;|'JIT1T""H:JHilt?#;T'lf :lif,tlllrl:



Chapter 26

Current and Resistance

So far, w€ have not had moving charges or electric fields in conducting materials. These two are connected.
An electric fteld in conducting material causes current 

- 
moving charges. So far we have simply

waited until the charges quit moving and the electric field disappeared. Not anymore.

An electric field in a conducting material causes a current density J'.

The current density J is the current i divided by the cross-sectional area A. Most of the time we care more
about the current than the current density, but an electric field causes current density. The current appears
because the valence electrons drift in the conducting material, and the current density is equal to the density
n of charges times the charge e of each times the average drift velocity 't)4. o is the conductivity of the
material, and p is the resistivity of the material (o - 1 I d.
Of more practical importance is Ohmts law.

V:iR

The difference in voltage (or potential) between the two sides of a resistor is equal to the current through
the resistor times the resistance of the resistor. Current is mea,sured in amperes (1 A - 1 C/t). Resistance
is measured in ohms. To avoid confusing an upperca.se (60" with a zero, the symbol for ohms is the Greek
letter upperca,se omega (1 O - 1 V/A).

Consider also the energy used in the resistor. Each charge uses an energy that depends on the change in the
potential - if the voltage difference between the two sides of the resistor is 6 volts, or 6 joules per coulomb,
then each coulomb of charge uses 6 joules of energly getting through the resistor. The more current, the
faster coulombs of charge go through, the quicker energy is turned into heat in the resistor. So the power,
or rate of energy used in the resistor, is

P -iV
The units of power used earlier work here - volts times amps equals watts.

(1 v)(1 A) - (1 rl$$El"):1 rlr- 1w

We have four variables (n, V, i, and P) and two equations. If we know any two of the four variables, we
can find the other two using our two equations.

To find the resistance of a wire, we use

?
=1,J-+-(ne)da:oE-!

A \ /w p

R:+
203
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where p and A are the resistivity of the material and the cross-sectional area above, and ^L is the length. It
is not necessary for the wire to be round or cylindrical, just so long as it has the same cross section over its
whole length.

EXAMPLE

A light bulb uses 100 watts of power when attached to I20 volts. What is the resistance of the light bulb?

V : IR and P: IV

D_v v v2
'u- I Plv P

R-q4g -r44e(100 w)

Student: If Iknowtwoof thefour, Icansolvefortheothertwo. Iknow P- 100Wand V - 120V. It
seems strange to say that V - I20V.
Tutor: Be careful. Remember that variables are in italics and units in regular type. Your first statement
said that the potential difference (or voltage) was equal to 120 volts, which is correct. Your second statement
said that the potential difference was equal to I20 times the potential difference, which is not correct.
Student: Yes, I'm going to have to be careful. I do have two of them, so I should be able to find the
resistance. I can use Ohm's law V - iR, but I don't know the current.
Ttrtor: tue. You'll need to find the current in order to use Ohm's law.
Student: I could use P - iV, but I can't use it to solve for the resistance. I could use it to find the
current, then put that current back into Ohm's law to find the resistance.
T\rtor: Very good.

P-iV
100W:i(120V)

i_#-0.83A
V:iR

(120 V) : (0.83 A)n

R- 12ov - r44e
0.83 A

Student: It seems like we could invent a new formula for this.
T\rtor: We could.

Tlrtor: We could invent a formula for euery situation, but after a while the number of formulas would
become too large. Better to be able to use a few formulas many ways.

EXAMPTE

A power plant delivers 100 MW of electrical power to the big city at 50 kV. The power travels through wires
with a total resistance of 2 O. How much power is lost in the wires?

P- iv: (t*) u: #



Student: I have the power and the voltage and the resistance, so with three of the
easy. In fact, I have the power and I want the power, so what's the problem?
T\rtor: The problem is that there are two resistors. One is the resistance of the wires
the second is the resistance of the big city.
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four this should be

to the big city, and

Tutor: What do you know about the resistance of the wires?
Student: The resistance is 2 Q. I want the power. The current isn't mentioned. Is the voltage 50

T\rtor: 50 kV is the voltage across the resistance of the big city.
Student: So I don't know the voltage across the wires. I know only one of the four, and I can't
problem.

KV?

do the

T\rtor: It is true that you know only one of the
resistance of the big city?
Student: The power is 100 MW and the voltage
T\rtor: But you could find them. You know two
two if you wanted.

four, but don't give up. What do you know about the

is 50 kV. I don't know the current or the resistance.
of the four for the big city, so you could find the other

Wire City
V
i
R
P

2Q
?

50 kv

1OO MW

Student: Yes, I suppose I could.
T\rtor: What happens to the charges after they go through the wire?
Student: They go through the big city.
T\rtor: Is the number of charges passing through the wire equal to the number of charges passing through
the big city?
Student: You mean, are the two resistors in series?
T\rtor: We'll handle series and parallel resistors in the next chapter, but y€s, that's what I mean.
Student: They are in series. So the currents are the same.
T\rtor: So if you found the current through the big city, then that would be the current through the wires.
You would know two of the four and could solve for the power in the wires.
Student: I could do that.

P"ity - icityV.itv

100 MW - icity (50 kV)

100 MW 100 x 106 W
- 2000 A?'city : 50kV 50x103V

P*ir" : iwireT*ir" : i*ir. (i*iruRwire) - i'*rr"Rrvire - (2000 A)'Q q - 8 x 106 W - 8 MW
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Tlrtor: About 8 % of the power is lost in the wires.
Student: So my electric bill is 8% higher because of energy lost in the wires?
Tutor: To avoid this, the electric company delivers electricity at much higher voltages, like 350 kV. At
seven times the voltage, the current is one-seventh as much, and the power in the wires is L 149 as much or
98% less - only 0.27o is lost.
Student: That's better.

EXAMPTE
f

If the length of a wire is increased by a factor of 7, by what factor must we change the diameter of the wire
so that the resistance remains unchanged?

Student: No numbers. This is one of those "scaling" problems.
T\rtor: It is. How do you deal with scaling problems?
Student: I work out an equation for each case, before and afber, and divide or substitute equatiorrs.
T\rtor: Very good. What is the appropriate equation?
Student: Isn't it just

R- PL
A

T\rtor: Almost. You want to get the diameter involved.
Student: The area is

./ r\ 2

A-rr2-7r(;)

R-4PL
rd2

Student: So I'll use R1 for the original resistance, and R2 for the resistance afterward, and likewise ev-
erything else.

Rt- o_r!rr,

Rz:';;r'

Tutor: Excellent. What do you know about the two resistances?
Student: They are the same. We change the diameter so that the resistances are the same.

4prl D 4pzLz

d-Rt:1t'2-@
T[tor: The 4 and the zr cancel. What do you know about the two resistivities?
Student: If the wires are made of the same material, then the resistivities are the same.

tu_tu
d', d2,

Tlrtor: What is the length of the wire afterward (Lz)?
Student: The problem doesn't say.

T\rtor: It is true that we don't have a value, but we do know something about it.
Student: We know that the length afterward is seven times the length beforehand.

Lz:7Lt
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Lr (7L)
4:T

Ilrtor: So the length cancels, with the factor of seven left behind.

1 (7)

Fr:@
Student: I still can't solve and get a rnalue'for d2.
Ilrtor: Solve for d,2 anJrway.

d,z- rl-re:rt d,,

Ilrtor: The question was: by what factor do we need to change the dia,meter.
Student: And we need to multiply it by rt.
Ilrtor: And that's true regardless of the specific values.
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What happens if you have two (or more) resistors in the same circuit? We did this with capacitors, and now
we'll do it with resistors.

Like before, resistors can be in series, or in parallel, or neither. When two devices are connected so that
they must have the same current, we say they are in series. Two resistors in series act the same as a single
resistor that has resistance

Bs-Rr*Rz
Likewise, when two devices are connected so that they must have the same voltage, we say they are in
parallel. Two resistors in parallel act the same as a single resistor that has resistance

111
Rp Rr- R,

Note that these rules are the reverse of the rules for capacitors.

How do we determine whether two resistors are in series? Consider Rr and R2 above. Current passes from
A through B1 to B. Flom there the charges can only go to C and through Rz to D. Rt and Rz arc in series
because the charges that pass through Rr must then go through Rz, and the currents through the two must
be equal. Charges that pass through Rz to point D can go either through Rs to F or through Ra to H. The
currents through R2 and R3 do not have to be equal, so ^Rz and R3 are not in series.

How do we determine whether two resistors (or capacitors) are in parallel? Consider R3 and .Ra above. Place
a finger at each end of R3. The voltage difference between your fingers is equal to the voltage difference
between the ends of ,Rs, or the voltage across R3. Now try moving your fingers, but only along wires and
not across any circuit element, such as a resistor, capacitor, or battery. If by doing this you can get your
fingers to lie at the two ends of Ra, then Rs and Rq have the same voltage across them and they are in

208



209

parallel (they are, and you should be able to do this). Are ,Rs and Rz in parallel? We can move a finger
from E to D but we can't get from f' to C. We could only do this by jumping from one wire to another
nearby wire (not allowed), or by going through the battery and Rr (also not allowed). Therefore, Rs and
Rz are not in parallel. Even though both are drawn vertically, so that they are geometrically parallel, they
are not electrically parallel.

We have found that Rz and Rs are neither in series nor in parallel. Two resistors do not have to be
either in series or in parallel.

When doing more complicated circuits, we often do the series and parallel thing many times. Ohm's law
(V - I R) can be applied to any resistor, but it can also be applied to a pair in series, or to any group of
resistors. Likewise Q : CV can be applied to any capacitor, but it can also be applied to a pair in series,

or to any group of capacitors. It's important to keep track of what value applies to what circuit element or
group of elements.

EXAMPLE
F

Find the voltage across each resistor.

Student: This looks a lot like the capacitor circuit example from a couple of chapter ago.
T\rtor: It is a lot like that example, and the techniques involved are very similar. Let's see how much you
remember.
Student: The voltage o,cross the 5 O resistor is 6 volts.
T\rtor: How do you know?
Student: Because it's in parallel with the 6 volt battery. Two things in parallel have the same voltage
across them.
T\rtor: Yes. How do you check?
Student: I do the "finger test." I put one finger on each side of the 5 O resistor and try to move them to
the ends of the battery. I slide the top one over, and I slide the bottom one over, and I'm there. The 5 CI

resistor is in parallel with the battery.
T\rtor: How do you know that the voltage across the battery is 6 volts?
Student: Because a battery creates a potential difference, or voltage difference. A 6 volt battery creates
a 6 volt potential difference.
T\rtor: All good.
Student: The voltage across the 4 Q resistor is 6 volts.
Tutor: How do you know?
Student: Because it's a 6 volt battery.
T\rtor: That's not enough. Is the 4 Q resistor in parallel with the battery?
Student: Oops. If the 4 Q resistor is in parallel with the battery, then it has the same potential across it
as the battery does. I put one finger on each side of the 4 Q resistor and try to move them to the two sides
of the battery. The top one slides over to the top of the battery. The bottom one has to jump over the 3 C)
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resistor or the 6 CI resistor. It can't do that. So the 4 Oresistor is not in parallel with the battery.
T\rtor: Correct. So the voltage across the 4 Q resistor isn't 6 volts.
Tutor: If I can find two resistors in series or parallel, then I can replace them with a single resistor.
lhtor: Can you find two resistors in either series or parallel? Check to see if the 4 O resistor and the 3 O
resistor are in series.
Student: Does aII of the current that comes out of the bottom of the 4 Q resistor have to go into the 3 Q
resistor, or could some of it go somewhere else? Some of the current could go into the 6 O resistor.
T\rtor: To be in series, all of the charge or current from one must go into the other.
Student: So the 4 Q resistor and the 3 O resistor aren't in series.
Ttrtor: Correct.
Student: I believe that the 3 O resistor is in parallel with the 6 O resistor. I put one finger on each side of
the 3 O resistor, and try to move them to the two sides of the 6 Q resistor. I can move one from the top of
the 3 to the top of the 6, and I can move the other from the bottom of the 3 to the bottom of the 6. They
are in parallel electrically, even if they are not graphically parallel.
T\rtor: Doing well. How do we'add resistors in parallel?
Student: We add the reciprocals of the resistances.

111
^Rp R, - R,

1111131
Rt*- R, + R, - 3 CI 

+ 
6 0 - 6 o 

_ 
2a

Student: The replacement resistor is not I12 O, but the reciprocal, 2 dl.
T\rtor: Yes. Sometimes we call it the equivalent resistance of the pair of resistors.

Rsuo -- 2 Q

Student: The replacement resistor is in series with the 4 Q resistor.
Tutor: Check to be sure.
Student: The current that comes out of the bottom of the 4 0 resistor can go into the top of the 3 O
resistor, or into the left side of the 6 CI resistor, but nowhere else.

T\rtor: So the 4 Q resistor is in series with the replacement resistor, or with the 3-6 pair.
Student: Then I can replace them with a single resistor.

Rs:Rt*Rz
Rt.io - R+ * Rsu6 - (4 O) + (2 O) : 6 Cl

Student: The trio of resistors has an equivalent resistance of 6 Q. This trio of resistors is in parallel with
the 5 CI resistor.
T\rtor: True, but not necessary. The trio is in parallel with the battery, so we can determine the voltage
on the trio.
Student: It is. I can move one finger from the top of the 4 to the top of the battery, and the other from
the bottom of the trio to the bottom of the battery. Isn't the 5 O resistor in the way?
T\rtor: It may be between the battery and the trio, but it doesn't affect whether or not the trio is in
parallel with the battery. What does it mean that the trio is in parallel with the battery?
Student: They have the same voltage, so the voltage across the trio is 6 volts. That doesn't mean that
the voltage on each of the three resistors is 6 volts.
T\rtor: Excellent. One volt is one joule per coulomb, so each coulomb of charge leaves the battery with 6
joules of energy. First the charges go through the 4 Q resistor, then through the 3-6 pair (which is 2 Q). It
takes more joules for charges to get through the 4 Q resistor, so the voltage fioules per coulomb) on the 4 Q
resistor is higher.
Student: So how do I find the voltage across each of the resistors in the trio?
T\rtor: You need to find the current through the trio.
Student: Like finding the charge in the trio a couple chapters ago.

Vrio: itrioEtrio
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6V:itrio(6O)

itrio - 1 A

Student: One amp of current goes through the trio.
T\rtor: Yes. This is true regardless of the 5 O resistor, because the voltage across the trio is not affected
by the presence of the 5 Q resistor.
Student: Is there a current through the 5 C, resistor?
T\rtor: Oh yes. There is a current of I.2 A, so that the total current from the battery is 2.2 A.
Student: What do I do, now that I know the current through the trio?
Tntor: What is the current through the 4 Q resistor?
Student: AII of the current that goes through the trio goes through the 4Q resistor first, and then through
the 3-6 pair. The current through the 4 Q resistor is 1 A, and the current through the pair is 1 A.
T\rtor: Now you can find the voltage across the 4 Q resistor.
Student: Using Ohm's law.

V+: i+Rq,

va-(r A)(4Q) :4V
T\rtor: What is the current through the 3-6 pair?
Student: All of the current that goes through the trio goes through the 4Q resistor first, and then through
the 3-6 pair. The current through the pair is 1 A.
T\rtor: Correct. Now you can use Ohm's law to find the voltage across the pair.

Vpair :'ipairBpair

Vpair - (1 A)(2 Q) : 2 V

Student: The voltage across the pair is 2 volts.
T\rtor: Good. What is the voltage across the 3 O resistor?
Student: Doesn't the 3 Q resistor get all of the 2 volts?
Tbtor: It does. The voltage difference across the pair is the same as the voltage across the 3 Ct resistor
and the same as the voltage across the 6 CI resistor.
Student: So V3 --Vo:Vpair:2V. And it's not a problem that 4+2+2#6.
T\rtor: No, because none of the charges go through all three resistors of the trio. They go through the 4
and the 3, or through the 4 and the 6, and either way the sum of the voltages is 6 volts, or 6 joules for each
coulomb of charge.
Student: Isn't there some shortcut?
Tntor: In general, no. If the numbers are nice, then sometimes. Look at the 4 Q resistor and the 2 Q pair.
The are in series, so they have the same current. The 4 Q resistor has twice the resistance as the 3-6 pair,
so it must have twice the voltage. Also, the voltage must add up to 6 volts. Can you think of two numbers,
one twice as big as the other, so that the two numbers add up to 6?

Student: Four and two.
T\rtor: Yes. When the numbers are nice, sometimes you can do that. Usually the numbers aren't nice,
and often they aren't even integers.

In more complicated circuits, equivalent resistance is not enough. We need more powerful tools.

Kirchhoff has two rules for dealing with circuits:

. The node rule: The currents into any point or element in the circuit is the same as the current out of
that point or element.

o The loop rule: The sum of the voltage changes along any closed path in the circuit is zero.
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Kirchhoff's node rule says that charge cannot collect anywhere. This is the same idea we have used to say
that two devices in series had to have the same current.

Kirchhoff's loop rule says that the energy that each charge has (12 joules for each coulomb if it comes from a
12 volt battery) must be exactly used up by the charge as it goes from the positive to the negative terminal
of the battery. This is why in a complex circuit the sum of the resistor voltages is not equal to the battery
voltage. Instead the sum of the voltages along the path that any charge takes adds up to be equal to the
battery voltage.

In practice, we follow complete loops adding up the voltage changes. A complete loop is one where we start
and stop at the same place. When we get back to the starting place, the sum of the voltage changes must
be zero. (This is essentially conservation of energy - if you took a mountain hike, adding all of the changes
in elevation, when you returned to your starting spot the sum of the changes would be zero.)

In the process, we usually come across resistors. The voltage across the resistors depends on the current, and
we don't know the current. We do what we always do in physics when we want to put a value into an equation
and we don't have a valu invent a variable. This variable or symbol represents the current through the
resistor, and the voltage across the resistor is I R. Because the current could go in either direction, we choose
a direction to be positive current through the resistor. It is not important that our choice be correct
negative value indicates that the current is opposite to our choice. It is important that we use our choice
consistently.

EXAMPLE

What is the current through the 5 O resistor?

T\rtor: Are any of the resistors in series or parallel?
Student: Is the 3 0 resistor in series with the 2 O resistor? I'll check. Current that goes through the
3 Q resistor left to right could go down through the 2 Q resistor, but it could also go right through the 5 O
resistor. The 3 CI resistoris not inserieswitheither the 2Q resistororthe 5 Q resistor. I don't see anything
in series or parallel.
T\rtor: The 3 CI resistor is in series with the 6 V battery, but we don't have a rule for replacing a battery
and a resistor in series.
Student: So we need to use the advanced tools.
T\rtor: Pick a point, and go around a loop adding the voltage changes.
Student: Ok y, I'll start at the bottom left corner. First I go through the 6 volt battery, and the change
is 6 volts.
T\rtor: Is the change positive or negative?
Student: How do I tell?
T\rtor: Which end of the battery is at a higher potential?
Student: The end with the longer line on the symbol, which is the top end in this circuit.
T\rtor: So as you move up over the battery, do you go to a higher or a lower potential?

Cl
Y

bo3
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Student: I go to a higher potential.
T\rtor: Yes, you go from a lower to a higher potential. Is the change in potential positive or negative?
Student: The change is to increase the potential, so it is positive.
T\rtor: Good.
Student: Now I go through the 3 Q resistor. The voltage across the 3 O resistor is equal to the resistance
times the current. I don't know the current through the resistor, so I need to invent a variable. I choose i
to be the current.
T\rtor: Careful. We're going to have more than one current that we don't know, so we'll need more than
one current variable. How about using i3?
Student: The three must be for the 3 O resistor. So the voltage across the 3 CI resistor is (3 Cr)(is).
Tutor: Yes. Is the change positive or negative?
Student: I'm not sure. How do I tell?
Ttrtor: Current goes from higher potential to lower potential. If you go with the current, you're going to
lower potential, and if you go against the current, you're going to higher potential.
Student: Which way is the current going?
Tutor: You get to decide.
Student: Wait a minute. The current is certainly going one way or the other. How can I be the one to
decide?
I\rtor: True, the current is going one way or the other, determined by the circuit configuration. You get
to choose which way to call positive. When a car was moving on the highway, you got to decide whether the
car was moving in the positive or negative direction. Your choice of axis did not affect the motion of the
car, but only the sign you used to represent the motion of the car. Here you are choosing an axis, and your
choice does not change the actual current but rather the sign you use to represent the current. Pick either
direction, it doesn't matter as long as you use it consistently.
Student: Okay. The current is going left to right. What if I'm wrong?
T[rtor: Then the value of i3 will be negative. Is the voltage change positive or negative?
Student: The current is going left to right, so the higher potential is at the left and the lower potential is

at the right. But if I choose the current direction wrong then those will be reversed.
Thtor: And then the negative value of i3 will make everything work out right. Draw an arrow and the
symbol on the circuit so that you'll remember what you chose.
Student: Okay, I draw on the circuit, and all I have to do is use the direction I chose consistently. Okay.
I'm moving across the resistor from left to right, from higher potential to lower potential, so the change in
potential is negative.
T\rtor: Good. Now do the next circuit element.
Student: I go down across the 2 Q resistor. The voltage across the 2 O resistor is equal to the resistance
times the current.
T\rtor: Is the current through the 2 Q resistor equal to the current through the 3 O resistor?
Student: If it is, then they are in series. We already determined that they aren't in series, so no, they are
not equal.
T\rtor: So you need a different variable name for the current through the 2 O resistor.
Student: I'll use i2. I need to pick a direction, so I'll choose downward as positive iz. The higher potential
is at the top and the lower potential is at the bottom. I'm going downward, toward lower potential, with
the current, so the change in voltage is negative.
T\rtor: Good. Draw an arrow and the symbol on the circuit. Now you're back where you started.
Student: So I add all of the voltage changes and they have to add up to zero.

+6V-(30)i3 -QQ)i' -o
T\rtor: Good. Can you solve this equation to find the current through the 5 CI resistor?
Student: That current isn't even in this equation. We have two variables and one equatior, so we can't
solve it for anything.
Ttrtor: So you need to do another loop.
Student: I'll do the right-hand loop, starting at the bottom middle. First I go through the 2 Q resistor. I
need to choose a variable and direction for the current through the 2 Q resistor.
Tutor: You already chose a variable and direction.
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Student: I don't get to choose the direction again?
T\rtor: No, you have to use the direction you chose earlier.
Student: So that's what you mean about using the direction consistently. I'm going upward, against the
current and toward higher potential, so the change is positive (2 CI) (iz).
Tutor: Good.
Student: Now I go across the 5 Q resistor. I don't have a variable for that yet, so I choose is and left to
right is the positive direction. I draw an arrow and the symbol on the circuit. I'm going with the current,
toward lower potential, so the change in voltage is negative.

6V 4V

T\rtor: You may be getting the hang of this.
Student: Now I go across the battery. Do I need a variable for the current through the battery?
T\rtor: No. The voltage difference across the battery is the same, regardless of the current through the
battery.
Student: Okry. The voltage difference on the battery is 4 volts. I'm going toward lower potential, so the
change is negative. Now I'm back where I started, so the sum of the voltage changes is zero.

+ (2 Q)i, - (5 O)ir - 4 V: o

Tutor: Good. Can you solve this equation to find the voltage across the 5 CI resistor?
Student: No, because there are two unknowns in the equation.
Tutor: Can you solve the two equations together?
Student: Then I have two equations but three different unknowns, so again I can't solve yet. I need to do
another loop. Maybe around the outside.
T\rtor: Tempting though that might be, it won't help. Going around the outside is the same as doing both
of the loops you've already done - 6, 3, 2, back through the 2, 5, 4. The resulting equation would be the
same as if we added the two equations you already have.

Student: But I'd have three equations and three unknowns. I could solve them.
T\rtor: You wouldn't have three 'independent equations. When you solved them, you would cancel stuff
until you got to something like 6 : 6. That wouldn't help.
Student: So I need another equation, but I can't do another loop.
Tutor: Correct. You need to do a "node rule" equation.
Student: How does that work?
T\rtor: Look at the spot midway between the 3 O resistor and the 5 O resistor, where the connection to
the 2 Q resistor comes in. Charge can't build up there, so the current going into that spot has to equal the
current going out of that spot.
Student: So i3 in has to equal i2 * is out?
T\rtor: Correct. That is your third equation.

ig:'iz*is
Student: Now I have three equations and three unknowns. I can solve for i5.
T\rtor: Is i5 what you're trying to find?

Ct-bCl3
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Student: No, I need the voltage across the 5 O resistor. But if I know i5, then I can find the voltage.

( - (2 Q)i, - o:3
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is : -0.26 A

Student: It came out negative. That means that the current through the 5 O resistor is really right to
left.
T\rtor: Very good. What is the voltage across the 5 O resistor?
Student: I use Ohm's law and the current to find the voltage.

Vs : isRs - (-0.26 A)(5 O) - -1.3 V

T\rtor: Remember that the negative indicates direction.
Student: So I'd say that the voltage is really 1.3 volts, right?
T\rtor: Right. Which side of the 5 O resistor is at the higher voltage?
Student: The current really goes from right to left, so the right side is at the higher potential.
Thtor: Correct.
Student: Since the current ended up being negative, shouldn't I reverse the direction on my drawing?
T\rtor: No. Then you'd get confused over the direction of the current. It's perfectly okay now, with
positive is being left to right and i5 having a negative value.

-JEXAMPLE

Find the current through each resistor.

l2v

Student: I need "loop rule" equations around each of the loops, and then "node rule" equations for each
of the nodes.
Tutor: Slow down. There is a tendency to use the most recently learned technique for everything. It might

o3O2

5C)+8V
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not be necessary.
Student: But I can't combine all of the resistors using series and parallel. The 5 Q resistor isn't in series
or parallel with any of the other resistors.
Tbtor: But it is in parallel with the 12 volt battery.
Student: It is. I can put one finger on each end of the 5 O resistor and move one from the top of the
resistor to the top of the battery, and the other from the bottom of the resistor to the bottom of the battery.
T\rtor: What does that mean?
Student: Because they are in parallel, they have to have the same voltage. The voltage across the 5 0
resistor is 12 volts. The current through the 5 Q resistor is

6:+:ry-2.4ARs 5O
Ttrtor: One down. What about the 2 Q resistor?
Student: It's not in parallel with either the 12 volt battery or the 8 volt battery.
T\rtor: Look at the two batteries. The batteries and the 2 Q resistor form a loop.
Student: So does the 2 Q resistor, the 5 Q resistor, and the 8 volt battery. Why are you so excited about
your loop rather than mine?
T\rtor: How many variables are in your loop?
Student: One for each resistor, so two.
T\rtor: How many variables are in my loop?
Student: One for the 2 Q resistor. f see. We can solve the equation from your loop but not mine.

+12V-(2Q)ir-8V:o
4v - (2 Q)i,

iz:2 A

Tutor: Two down, two to go. What can you tell me about the 3 O resistor and the 1 O resistor?
Student: They are in series. All of the current that goes through the 3 O resistor has to go through the
1 Q resistor - it has nowhere else to go. I can replace them with a single resistor of 4 O. That equivalent
resistor is in parallel with the 8 volt battery.

is : it= Voair 8 V
=ipair: E;: AO 

:2 A

Student: So if we haven't learned anything new, why did we do this example?
Tutor: To make the point that you don't have to use your "best" tool for every job.
Student: So look for series and parallel pieces and simple loops before resorting to lots of loop equations.
T\rtor: Exactly.
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Magnetic Fields

Charges create electric field, and electric field creates forces on charges. Moving charges create magnetic
field, and magnetic field creates forces on moving charges.

When we did electric field, for each step we needed a way to find the direction and a formula to find the
magnitude. For magnetic field, for each step we need a way to find the direction and a formula to find the
magnitude. This chapter is about finding the magnetic force created by the magnetic field. The next chapter
is about finding the magnetic field created by the moving charges.

The equation for magnetic force is
F'u - qd t a'

Because it is a vector equation, this equation contains both the magnitude and direction information. We
don't typically use the vector equation. Instead, the magnitude of the magnetic force is

Fn - lqlrB sin @

where d it the angle between the velocity of the moving charge and the magnetic field. When lots of charges
are moving in a current, the magnetic force a the wire is

Fn : iLB sin @

where Z is the length of the wire.

Then we need to find the direction of the magnetic force. The magnetic force on a moving charge is
always perpendicular to the magnetic field and is always perpendicular to the velocity of the
charged particle. Imagine a proton moving out of the page in a magnetic field that points left to right. Is
there any direction that is perpendicular to both out of the page and right at the same time? Only up the
page and down the page. Note that any magnetic force problem must be three-dimensional.

To determine whether the magnetic force is into the page or out of the page we use the right-hand rule. Hold
your hand so that the fingers point out of the page (as in the figure) - keep your fingers pointing out of
the page and rotate your hand so that the palm points right - curl your fingers from out to right - where
does your thumb point? Up the page.

' If q is negative, then that reverses the direction of the magnetic force. Also, 1f u and B are parallel, then
the angle between them is zero and there is no magnetic force.

217
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Drawing a vector up the page or right is easy, but drawing one into or out of the page is less so. To describe

a vector out of the page we use the dot of the a,rrow coming at trs (O symbol), like in a 3-D movie. To
describe a vector into the page we lne the tailfeathers of the arrosr going asray from us (8 or x symbol).

Maguetic field is measured in tesla:

1T-1N/Am-1Nt/Cm

A tesla is a large magRetic field strong handheld magnet typically produces a magRetic field strength
of 0.01 T to 0.1 T.

EXAMPLE
f-

A +10 pC charge moves from left to right at a speed of 5 x 106 m/s. There is a 0.04 T magnetic field toward
one o'clock, if the page were a clock. Find the magnetic force on the charge.

Tlrtor: How are you going to do this?
Student: We have a formula to tell us the magnetic force.

Fn : lqlrB sin @

Student: I know the charge, the speed, and the magnetic field.

Fa: (10 pC)(5 t 106 m/s)(0.04 T)sin/

Tlrtor: What is the angle /?
Student: It's the angle between the velocity and the magnetic field. Here it's less than 90o.

Tutor: If the magnetic field pointed to three o'clock, it would be parallel to the velocity. What would the
angle be if the magnetic field pointed tonrard twelve o'clock?
Student: Then it would be 90o. Oh, so the angle is twethirds of the way from 0o to 90o, or 60o.

Fn : (10 pC)(5 x 106 m/s)(0.04 T)sin60o : 17.3 N

Thtor: What is the direction of the magnetic force?
Student: I have to find the direction too?
Thtor: Force is a vector and has direction.
Student: I need to use the right-hand rule. How do I do that?
Tbtor: Begin by pointing your fingers in the direction of the velocity.
Student: So I point my fingers to the right.
Tlrtor: Now, while keeping your fingers pointed in that directior, rotate your hand so that the palm points

in the direction of the magnetic field.
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Student: If I rotate my hand, the fingers move. They no longer point to the right.
T\rtor: Draw an imaginary line to the right. This is the axis that you rotate your hand around, until the
palm points up.
Student: But the magnetic field isn't up, it's up and to the right.
T\rtor: The rightward component of the magnetic field doesn't create any force, so we care only about the
upward component.
Student: Is that what the sin r/ does?
T\rtor: Yes, B sin / is the component of the magnetic field that is perpendicular to the velocity of the
charge.
Student: Now my palm is up and my fingers point to
Tutor: Curl your fingers toward the magnetic field.
Student: Just how far should I curl my fingers?
Tutor: Basically 90". What direction does your thumb
point?
Student: If points toward me.
T\rtor: What direction does your thumb point, rela-
tive to the page?

Student: It points out of the page.

Ttrtor: That's the direction of the magnetic force.
Student: And if the charge wa^s a negative charge,
then the force would be the other w&y, into the page?

T\rtor: Correct. Now let's check. The direction of
the magnetic force has to be perpendicular to both the
velocity of the charge and the magnetic field. Is it?
Student: Yes, but the magnetic field and the velocity

the right. What now?

are not perpendicular.
Ttrtor: Those don't have to be. We can create both of those, so they can be in any direction. But nature
decides what direction the magnetic force is, and nature makes the force perpendicular to the velocity and
the field.
Student: What if I use my left hand?
T\rtor: Then you'll get the opposite answer. Also, you have to do the velocity first and then the field, or
you'll get the opposite answer.
Student: But if I do both . . .

Tutor: There are many ways to determine the correct direction of the magnetic force. It is important that
you have a systematic approach, so that you can always get the right answer. This is the way we teach you
to do it.

EXAMPLE

The Earth's magnetic field is about 50 pT northward. Find the velocity that an electron would have to have
so that the magnetic force balances gravity.

Student: So this time I already know the direction of the magnetic force. The force is upward.
Tutor: Yes, but what is the direction of the velocity?
Student: Oh. So I have to decide whether it's into the page or whatever?
T\rtor: There is no "page" here. When we do 3-D problems with the page as a reference, our directions
are up, down, left, right, into, and out of. When we use the compass as our reference, our directions are
north, south east, west, up, and down. Up compared to north is not the same as up the page.

Student: So the velocity is either north, south, east, west, up, or down.
T\rtor: It could be a combination, s&y southeast. Could the velocity be up?
Student: How can I decide?
T\rtor: If the velocity is up, could the magnetic force be up?
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Student: No, the force is perpendicular to the velocity. The force is up, so the velocity can't be up. Or
down.
Tutor: Could the velocity be southward?
Student: Then the field and the velocity would be parallel. The magnetic force would be zero.
T\rtor: When two vectors point in opposite directions, we sometimes call them antiparallel.
Student: Ohy, but the velocity has to be east or west.
T\rtor: It could be southwest. The west component would cause a magnetic force that balances the weight,
and the south component wouldn't create any force, so the weight would still be balanced.
Student: So there are two answers?
T\rtor: There are many answers, but the east-west component is the same for all of them. Let's keep it
simple and assume that the velocity is either east or west.
Student: Which one is it?
T\rtor: Guess, then see if you're right.
Student: Ok y. I'll guess eastward. I point my fingers to the east, with my palm to the north. Then I
curl my fingers toward the magnetic field, or northward. My thumb points up, so the force is up.
T\rtor: The force on a positive charge would be up. What is the charge on an electron?
Student: Oh, it's negative, so the force on an electron would be down. I need an upward magnetic force,
so the velocity is the other w&y, or westward.
Tutor: Now you can find the speed.
Student: Yep. I look up the mass of the electron in the inside back cover of the book.

FB

student: r courd use some other angre,,ili* ;l:1 l::ll .,*rent verocity.
T\rtor: tue, but the westward component of the velocity would be the same.
Student: I'll stick with directly westward.

ms (9.1 x 10-31 ks)(9.8 mls2)u-;;_-1'1 x1o-6m/s

Student: That's a really small speed.
Tutor: Yes. Magnetic forces are much stronger than gravitational forces. We often ignore gravity if there's
a magnetic field around.
Student: But we couldn't ignore it here.
Tutor: No, because we were comparing to gravity.
Student: So if moving charges create magnetic fields that create forces on moving charges, how do per-
manent magnets pick up steel?
T\rtor: The magnet is made of atoms, and every atom has little electrons moving inside of it. Steel is also
made of atoms with moving electrons. That comes up in a later chapter.

EXAMPTE

What magnetic field strength is necessary so that an electron moving with a speed of 5 x 105 m/s travels in
a circle of radius 1 m?

Student: Why would the electron go in a circle?
T\rtor: The magnetic force is perpendicular to the velocity, so it causes the electron to change direction.
Then the force is perpendicular to the new velocity, and so on. When somethirg was going in a circle, what
was the direction of the acceleration?
Student: In toward the middle of the circle.
T\rtor: And therefore perpendicular to the velocity. A charged particle in a magnetic field goes in a circle.
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Student: So now we need a new formula.
T\rtor: Not necessarily. We can use two that we already have. What is the magnitude of the magnetic
force?
Student: The magnetic force is Fn : quB sin /.
T\rtor: Let's take Q to be 90o, with the magnetic field perpendicular to the velocity. What is the force on
somethirg going in a circle?
Student: Looking way back, it's F - muz lr.Are these equal?
Thtor: The force needed to get the particle to go in a circle is provided by the magnetic force, so yes.

qaB mu2

qB+
Student: I need to find the magnetic field strength B.

E 
-Tnarq

(9.1 x 10-31 ks)(5 t 105 m/s)
- 2.8 x 10-6 T - 2.8 p,T

(1 m)(1.6 x 10-1e C)

T\rtor: Does it matter what direction the magnetic field is?

Student: The direction of the field will determine which way the charge goes around the circle, whether
it's clockwise or counterclockwise, but it won't affect the size of the circle.

I

Consider the loop of current shown, in a magnetic field that points to the right. There is no force on the
top or bottom, because these currents are parallel to the magnetic field. The force on the left side is into
the p&ge, and the force on the right side is out of the page. With the same length and current, and in the
same magnetic field, these add to a net force of zero. But they do create a torque on the loop, rotating it
clockwise as seen from the top of the page.

B

--D

Magnetic fields do not always create torque on current loops. What if the magnetic field had been out of the
page? The magnetic force on each side would be inward, toward the center, and there would be no torque.

To find the torque, start by finding the magnetic moment. Arything that creates a magnetic field has a
magnetic moment. Magnetic moments are vectors. The magnitude of the magnetic moment of a loop of
current is

lp] - NiA

where a loop of l/ turns of current i has an are a A. To find the direction of the magnetic moment vector,
curl the fingers of your right hand around the loop in the direction of the current. Then your right thumb
points in the direction of the magnetic moment.



222 CHAPTER 28. MAGNETIC FIELDS

The torque on a magnetic moment in a magnetic field is

i-F^E
The magnitude of a "vector cross product" is equal to the magnitude of one vector, times the component of
the second that is perpendicular to the first, found with the sine of the angle between them.

T - p,B sin0

The direction of the torque is such that the magnetic moment rotates to align parallel to the
external field.

This is how a compass works. The needle is a small magnet, free to rotate. The torque from the Earth's
magnetic field causes the compass needle to rotate until it lines up with the Earth's field. The magnetic field
from the compa"ss comes out of the north pole, and aligns with the magnetic field from the Earth, which
comes out of the Antarctic and toward the Arctic. Thus the geographic north pole of the Earth (where
Santa's workshop is) is the magnetic south pole of the Earth.

Magnetic moments also create magnetic fields. Along the ucis of the current loop, or magnetic moment, the
field is <

E-Lo t'L

2r z3

where z is the distance from the magnetic moment. This equation does not apply close to the current loop,
but only at large distances. As alw&ys, large means "compared to other distances in the problem," or the
radius of the current loop.

EXAMPTE

A single rectangular loop of wire 14 cm x 20 cm carries a current of 18 A in the direction shown. The loop
ha^s a ma"ss of 47 grams and is hinged at the upper-left (darker) longer side so that it can rotate up and
down. A magnetic field of 0.24 T points vertically up. At what angle / will the loop reach equilibrium?
That is, at what angle d will the magnetic and gravitational torques cancel?

(!
U

.Fa
-J
li

#
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Student: It doesn't seem like torque is the issue here. Should we be more interested in force?
Tutor: The end where the loop is attached can provide all the vertical force we need, but that upward
force is not through the center of mass of the loop, so it causes the loop to turn.
Student: If there's no current then the loop falls, doesn't it?
Trrtor: That's one way to look at it, but if it's stationary then we can look at it from a torque standpoint.
What is the direction of the magnetic moment of the loop?
Student: I point my right-hand fingers around the loop in the direction of the current,
and my thumb points up and to the right.
Thtor: Correct. The torque from the magnetic fiel
the magnetic field.
Student: And that turns it counterclockwise, in
from gravity.
T\rtor: Good.
Student: So we just find the two torques and set t
Tutor: Yep.

Student: The magnetic moment is

tL - I{iA - (1)(18 A) [(0.14 m)(0.20 m)] : 0.50 Am2

Student: The torque is

r - p,Bsind - (0.50 Am')(O.24T)sin@ ?

Ttrtor: In the equation for torque, 0 is the angle between the magnetic moment and the magnetic field.
When they are aligned, the angle is zero and, because sin 0o - 0, there is no torque. When the magnetic
moment is vertically up and aligned with the field, the angle Q in the diagram is 90o, so the equation would
give maximum torque.
Student: The angle / isn't the same angle as 0?

Tutor: No.
Student: That's nasty. The angle 0 - 90" - 0.
Tutor: Yes, and sin(90o - a) : cos 0.
Student: Is that always true?
Tntor: It's one of the trig identities. In a right triangle, a is one angle and 90o - a, is the other. The side
that is adjacent to o is opposite to 90o - a.
Student: Ol*y, the torque from the magnetic field is (0.121 Am'T)(cos /).
Ttrtor: F : iLB, so a newton is an amp meter tesla.
Student: Then the torque is (0.I21 N.*)(cos d), and we have the units we expect. Now we find the torque
from gravity. The moment arm is 14 cm x sin d, so

(0.121 Nm)(cos ,/) - (0.0 aT kg)(9.8 
^lr2) 

(0.1a m)( x sin /)
T\rtor: Remember that sine over cosine is tangent.
Student: Yes, so

sln ptana- -
(0.121 Nm)

- 1.88
ind

cos / (0.047 kg)(9.8 
^1"2X0.14 

m) - r.

0 - arctan 1.88 : 62o
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Magnetic Fields Due to Currents

Moving charg€s, or currents, create
field, so we'll only worry about the
and magnitude of the magnetic field
Rench, so the t's are silent).

where po - 4tr x 10-7 T m/A.

dB- lto
4n

.ttt?,dsxr

Let's try to explain this. Divide the current up into tiny pieces of length dg. The vector r is from the tiny
piece of current to the spot where we're finding the magnetic field. The cross product di x r- is found just
like we did in the last section, using the right-hand rule. Multiply by the other stuff and you get the tiny
amount of magnetic field created by that tiny piece of current. Add up all the tiny magnetic fields (and
there's a lot of such tiny pieces) and you get the magnetic field.

magnetic fields. A single moving charge creates only a tiny magnetic
fields created by currents. We need a way to determine the direction
created by a current. We do this with the Biot-Savart law (they were

13

,[
dB (into
page)

P

Finding electric fields wasn't this complicated, &t least at the beginning. The difference is that each piece of
the current is usually a different distance from the spot of interest, and so we have to use calculus to do this.

Doing this calculation is a long (or painful, if you prefer) process, so we take a few common situations to
work it out and remember them. The magnetic field created by a long straight wire is

B*ir" ttoi
2nR

where R is the distance from the wire to the point. How long is long? The length of the wire must be much
greater than the distance to the wire. If the distance to the wire is 10 cffi, then the wire would need to be a
meter or so long. The shorter the wire is, the greater the error in pretending that it is infinitely long.

d?
:-..0

a

2
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How do we find the direction of the magnetic field? Magnetic field lines never end, but always circle back
onto themselves. They circle around a long straight wire. If the wire is coming at you, out of the page, then
the magnetic field lines go around the wire counterclockwise. How do we know whether they go clockwise
or counterclockwise? We use another right-hand rule. Take your thumb, like you're trying to "hitch" a ride,
and point the thumb in the direction of the current. The fingers go around the wire in the same direction
as the magnetic field.

Another common situation is a circular loop of wire. The magnetic field at the center of the loop is

Bloop :

To get the direction of the magnetic field, pick a spot on the wire loop and use the right-hand rule: thumb
in the direction of the current and curl your fingers. Alternatively, curl your fingers with the current
(counterclockwise) and your thumb will point in the direction of the magnetic field in the center of the loop
(out of the page). Either method works, as long as you don't use your left hand (.*y to do if your pencil is
in your right hand).

EXAMPLE

A rectangular loop of current 6 A is beneath, and in the same plane as, a long straight wire with a current
of 8 A. Find the magnetic force that the long straight wire exerts on the rectangular loop of current.

<- 6A

+4lcm+
Student: Whoa! This looks complicated.
T\rtor: It's not. What is the magnetic field that the long straight wire creates?
Student: The magnetic field from a wire is B*ire : 1tsil2TR.
T\rtor: Okay. What's i?

10

12.6
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Student: That's the current in the long straight wire, 8 amperes.
T\rtor: Good. What's R?
Student: That's a good question. Some of the rectangular loop is 10 cm away and some is 26 cm a\May. If
I pick a different point on the long wire, then the distances are even greater. What do I use?

l\rtor: We always use the closest point, or shortest distance to the long straight wire, so you do use 10

cm and 26 cm. You need to use both. To find the force on the top of the rectangle, you need to find the
magnetic field at the top of the rectangle.
Student: So

D ltoi, po (8 A)
, ,L ^-"t'oP 2nR 2n(0.10 m)

D. troi po(8 A)
r-'bottom 2trR 2r(0.126 m)

the top side of the rectangle?Tutor: Yes. What is the force on
Student: The force is

4oo - (6 A)(0.41 m)Btoo sin@

Tntor: Good so far. What is Q?

Student: It's the angle between the current and the magnetic field.
Tutor: So we need to know the direction of the magnetic field.
Student: Right-hand rule: I point my thumb to the right, and my fingers go down. The magnetic field is
down.
Tutor: I don't think you're doing it right. The magnetic field goes around the 8 A current, and down
doesn't go around it. Take your hand the way you had it, and bend your fingers at the knuckles.
Student: My fingers go into the page.

T\rtor: That's the direction of the magnetic field.
Student: So my thumb goes with the current, and my hand goes toward the point where I want the field,
and then when I bend my fingers at the knuckles, the fingertips point in the direction of the field.

Tutor: Yes.

Student: Got it. The field is into the page, and the 6 A current is to the right, so the angle d is 90o.

T\rtor: When you go to find the direction of the force, remember to do the current first, then the field.
Student: Oh, the first right-hand rule. Fingers to the right with the current, bend them into the FeB€,
and the thumb points up. The force on the top is up.
T\rtor: What is the force on the bottom?
Student: The magnetic field at the bottom is also into the page, but weaker. To find the magnetic force, I
point my fingers to the left, bend them into the page, and the thumb points down. The forces are opposite,
so I need to subtract.
T\rtor: What about the sides?
Student: For the left side, the fingers point up the page, and bend into the page, and the thumb points
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left. But the field changes along the length of the side. How do I find the magnitude of the force?
Tutor: We'll have to do an integral. What about the right side?
Student: The force on the right side is to the right.
Tutor: How do the magnitudes of the forces on the sides compare?
Student: Well, the fields are the same for the left and right, though they change along the length of the
sides. The currents are the same and the lengths are the same, so the forces are the same. They cancel.
T\rtor: To find those individual forces we would need to do an integral, but . . .

Student: They'll add to zero, so we don't need to.
T\rtor: Now you can finish adding the forces.
Student: Right. Taking upward a^s positive.

F - trioo - Fbottom - (6 A)(0.41 m)Btoosing0o - (6 A)(0.41 ttt)Bbotto,,rsin90o

F - (6 A)(0.41 m) (Brop - Buotto"')

F-(6A)(041 *) (ffi-ffi)
F - (4n x10-7 r m/AX6 A)(8 A)(041 ^)+(#) - (0*m))

F -2.4x 10-s P

Student: That seems like a small force.
Ttrtor: Magnetic forces are generally weaker than electric forces
Student: ...but stronger than gravity...
T\rtor: . . . and we have two magnetic forces that partially cancel, so it's a small force.

EXAMPLE

The long wire was a single turn of radius 12 cm. What must the current be so that the magnetic field at the
center of the loop is 100 p,T into the page?

Student: I need to find the magnetic field from the long straight wire and from the loop and add them.
T\rtor: Correct.
Student: But the wire is split in two.
T\rtor: Is each piece exactly one-half of a long straight wire?
Student: What do you mean "exactly" half?
Tutor: If I take a long straight wire and cut it into two equal pieces, the dividing point is the closest point
on the wire. If I split it somewhere else, the two pieces wouldn't be symmetric.
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Student: I see, and symmetric is good?
Tutor: If the two pieces are symmetric, then they each create the same magnetic field - half of a long
straight wire.
Student: Okay. Each of the two half-long wires ends at the closest point along the line, so they are each
lralf of a long straight wire. I can use +ffi to find the field from each of them.
T\rtor: Now you have to deal with the loop.
Student: I know that the magnetic field from a full loop is Bloop : ffi, but I don't have a full loop.
T\rtor: Each piece of the loop contributes the same magnetic field. If you have half a loop, you have half
the field.
Student: And I have three-quarters of a loop, so I have three-quarters of the field. Now I add the two fields.

B-!pot *lFoi *l Foi ?
227tR- 4n- r2"R o

Tutor: You have the right idea, but you're skipping a step. Magnetic field is a vector . . .

Student: So I need to find the direction of each piece and add components.
Tutor: Something like that. What is the direction of the magnetic field created by the long straight wire?
Student: What direction is the current going? The problem doesn't say.

T\rtor: So pick a direction as positive, and if you end up with a negative current then the current is really
the other way.

Student: Like doing circuits.
T\rtor: Or anything in physics where you have a direction. You're simply choosing an axis for the current.
Student: I choose positive current to be in from the left, clockwise around the loop, and up out of the
page. To find the field from the rightward current, I point my thumb to the right with my hand toward the
top of the page. When I bend my fingers at the knuckles, they point out of the page, so the field is out of
the page, and is negative.
T\rtor: Good. You've picked the field you want to be positive field, and this is the other way.
Student: To do the upward-going current, I point my thumb up, hand to the left, and the fingers bend
out of the page. How do I do the loop?
T\rtor: Pick a spot on the loop, any spot, and find the direction from there. All pieces of the loop create
field in the same direction.
Student: I pick the left edge of the loop. I point my thumb up the page and hold my hand to the right,
because I want the field to the right of the piece of wire. My fingers bend into the page, so the field that the
loop creates is positive.
Tutor: Yes, for the whole loop.

B - -1 Foi * -3 
ltoi 1 Foi-rhrR- 4n- rhrR

D_3ttoi ttoi ttoi(3 1\
E _ 

4n- hrR: 2R \A -;)

Student: That seems like a lot of current.
T\rtor: It's more than you'd have in a household circuit - they typically top out at 20 amps.

When we did electric fields, we had Gauss' law. The equivalent with magnetic fields is Ampere's law.

Just as it is possible to use field lines to envision an electric field, it is possible to use field lines to envision
a magnetic field. Magnetic field lines never end, but go in loops. The figure shows the magnetic field lines
from a current that goes into the page. The field lines get further apart a^s we move away from the current
because the field gets weaker.

lNiTm;rx 10-7w
-44/'

Gn100x10-6T-
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When we calculated the electric field flux, we got a total that was related to the charge inside the surface.
This is because electric field lines start and end at electric charges. Magnetic field lines don't start and end,
so the magnetic field flux through any closed surface is always zero. This is good to know, but it doesn't
help us find the magnetic field strength.

Instead of using a closed surface, Ampere's law uses a closed loop.

: PoLen"

Pick any closed loop - that is, start somewhere and go anywhere so long as you end where you started
(using f instead "f / is a way to say use a closed path). As you travel along this route, at each point find
the magnetic field. Take the component of the magnetic field ^d ttrut is parallel to your next step ds- and
multiply them. When you add up the product for all of the steps, Ampere's law says that you get ps times
the current enclosed by the loop. This is not the current going along the path, but passing through the
surface of which the path is the edge.

As with Gauss' law, w€ only do the integral when it's dirt simple. Let's see how this works. We want to find
the magnetic field created by . long straight wire with current i. We draw an imaginary "Amperian loop"
around the wire at a distance r.

The problem has symmetry - if I rotate the problem along the axis of the wire it
magnetic field is the same everywhere on the imaginary path (if the wire was bent
this would not be true). Also, from the right-hand rule this magnetic field will be

looks the same the
rather than straight then
parallel to the path.

Wre with ctrrrent
into the page
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I a.ds: f a d,s - u f o,
J

The last integral f ds is the sum of the lengths of each step for all steps. Because we've already dealt with the
vector part (the magnetic field is parallel to the path) it is the length of the steps and not the displacement
of the steps. This is the length of the path, so f ds - L.

f e . ds : f a d,s - B I a, - BL - B(2nr)
J

Ampere's law tells us that this integral is equal to Foi"n", so

B(2rr)- FoI"n:Foi

B-

Like Gauss' Iaw, Ampere's law is always true, but we can profitably use it only when there is symmetry in
the problem. There are fewer geometries where Ampere's law is useful than there are for Gauss' Iaw.

EXAMPLE

An extruded rectangle is curved into a toroid, so that the inner radius is 40 cil, the outer radius is 50 cffi,
and the height is 15 cm. A wire is wrapped evenly 140 times around the toroid and carries a current of 7 A.
Find the magnetic field inside the toroid.

i
o)(o=

symmetry+
fBL:f B dg:Foi"n

Amperets law
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T\rtor: How can you do this?
Student: We can find the magnetic field from each of the 140 loops and add them.
T\rtor: We don't know how to find the field from a loop at a spot off of the axis. Even if we did, we'd have
L40 fields to add, &s vectors.
Student: Ouch. Presumably we can use the symmetry and Ampere's
T\rtor: Correct. Draw an Amperian loop around the toroid.
Student: Like this?
T\rtor: Uh, no. We need to find a path where the magnetic field is the
same everywhere on the path.
Student: But we don't know the magnetic field.
T\rtor: True. We use symmetry to say that the magnetic field, what-
ever it is, is the same everywhere.
Student: That sounds familiar. So if I draw my path through the
middle of the inside of the toroid, the field is the same everywhere?
T\rtor: Use symmetry to explain how.
Student: If I rotate the whole toroid, it looks the same, so the answer
has to look the same, so the field 'ins'ide the toroid is constant.
T\rtor: Careful. "Constant" means that it doesn't change with time.
"Uniform" means that it's the same everywhere. The magnetic field in-
side the toroid isn't necessarily uniform - it could be different along the
inside and outside edges. But at the same radius from the center, the
magnetic field has to be the same all around the toroid.
Student: So I can use Ampere's law.

f

f B'di: Foi"n.

Trrtor: What is the direction of the magnetic field inside the toroid?
Student: It goes around the inside.
Tutor: How much of the magnetic field is parallel to your Amperian path?
Student: All of it. So E . dg - Bd,s.
Ttrtor: Very good.
Student: And B is constant, oops, the same everywhere along the path, so it comes out of the integral.

f

4 e . ds : f B d,s - B t' a' - B(tength of path) - B2trr
J

Student: Is r the inside or outside radius of the toroid?
T\rtor: Look at how you used it, to find the length of your path.
Student: So r is the radius of my path.
I\rtor: Yes, you get to choose r.
Student: Can r be less than 40 cm or more than 50 cm?
Tutor: Sure, because the symmetry still holds.

law.
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Student: Okay. Ampere's law has given me

B2trr : Foi"n

Student: What is the enclosed current?
Ttrtor: If you pick r to be less than 40 cm, then there is no enclosed current.
Student: That means that the magnetic field is zero.
T\rtor: The magnetic field parallel to your path is zero. We have to use symmetry to argue that the
magnetic field perpendicular to your path is also zero. What if 40 cm ( r 150 cm?
Student: Then the wire goes through the loop, and the enclosed current is 7 A.
Ttrtor: The wire goes through the loop 140 times.
Student: Do I count every time that the wire goes through the loop?
T\rtor: Yes.

Student: So the enclosed current is 140 x 7 A.
Tutor: Yes.
Student: And if r is greater than 50 cffi, then the enclosed current is 280 x 7 A.
T\rtor: On the outside of the toroid, the current is going the other w&y, so they count as negative currents.
Student: So it would be -140 x 7 A.
T\rtor: The inside currents are still enclosed.
Student: So the inside and outside currents cancel?!
Tutor: Yes.
Student: And the field is zero if r > 50 cm.
T\rtor: Yes.
Student: So the only place where there is a field is inside the toroid. And that field is

B2nr:Fo(140x7A)

B - Po(140)(7 A)
2rr

Student: So the field gets weaker a^s I go further out, even inside the toroid.
Tutor: Yes, because your path becomes longer but the enclosed current stays the same.
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Induction and Inductance

If you connect a coil of wires to an ammeter (a current-measuring device) and place a magnet nearby, you
will find that no matter how strong the magnet there is no current in the coil. However, as you move the
magnet into position near the magnet there will be a current in the coil, and as you move it away from the
coil there will be a current in the coil. What's happening?

XXXXX
XXXXX

B XXXXX
XXXXX

Imagine a loop of wire on the edge of a magnetic field.
the bottom of the loop experience a force to the right.
loop.

XXXX
XXXX
XXXX
XXXX

If the loop moves down, the positive charges along
They push a current counterclockwise around the

BX XX

If the loop is entirely in the magnetic field (rather than partly in the magnetic field) then the positive charges
at the top of the loop also feel a force to the right, and the result is no net current. This is similar to the
magnet and coil, where the magnetic field itself doesn't cause a current but a movement in the magnetic
field does.

233
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The voltage induced in a loop by u magnetic

t

CHAPTER 30. I]VDUCTIOI{ A]VD I]VDUCTA]VCE

Aos
Lt

field is

dQB

dt

where Qs is the magnetic field flux passing through the loop. This voltage causes a current if the loop is
closed (complete).

The use of the word voltage here is somewhat misleading. We could say that one point in the loop had a
higher voltage than the next, which had a higher voltage than the next, and so on until we got back to the
original spot. This clearly can't be true, and may bring to mind Escher's waterfall. We typically use EMF
t (electromotive force) for an electric field like this, created by a changing situation, and reserve the word
voltage for static EMFs. I'll use the word voltage, but my doing so will make some physicists cringe.

What is flrur? (If you remember this from Gauss' law then this is a repeat.) Imagine that you are out in
the rain holding a bucket. Flux would be the rate at which raindrops enter the bucket. You could reduce
this rate by using a smaller bucket, by going to a place with less rain, or by tilting the bucket sideways.
The magnetic field flux is effectively a count of the number of magnetic field lines passing through a surface.
Mathematically,

fo": 
J 

B. dA

which says to divide the surface into tiny pieces, at each piece find the component of the magnetic field that
is perpendicular to the surface (normal to the surface), multiply times the area of the tiny piece, and add
the results for all of the tiny pieces.

Despite the scary appearance of this integral, it's not so bad. Typically, the magnetic field is the same
everywhere on the surface (or we'll pretend it is), so

constant field

f
oB - J 

B . dA-BA

definition of flux

The derivative (d,) or delta (A) indicates that it is not magnetic field that creates an induced voltage or
current. An induced current is caused by a change in the magnetic flux.

The minus sign in the equation is a reminder. The direction of the induced current is opposite to the change
in the magnetic flux. How does this work? Consider our loop on the edge of the magnetic field. Initially
the flux through the loop is zero since there is no magnetic field where the loop is. As we move the loop
down, into the magnetic field, the magnetic flux into the page increases. The loop "wants" to keep the same
flux it had (zero, in this case), so it creates magnetic field out of the page. That is, there will be an induced
current in the direction that causes a magnetic field to pass through the loop out of the page.

In which direction would this current be? There are two ways to figure it out using the right-hand rules from
the magnetic field section. One way is to point your thumb in the direction that you want the magnetic field
through the loop to go (out of the page), then the fingers curl in the direction of the current (counterclock-
wise). The other is to point the fingers in the direction that you want the magnetic field through the loop
to go. Then the thumb goes around the fingers in the direction of the current (counterclockwise).
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EXAMPTE

Find the direction of the induced current as the coil is moved in each of the directions shown.

,t
/z

+3

l4
# Constant i

T\rtor: What is the direction of the magnetic field that the long straight wire creates where the coil is?

Student: Second right-hand rule. I point my thumb to the left, put my hand up toward the coil, and bend
my fingers into the page. The magnetic field goes into the page.
T\rtor: So the magnetic flux is into the page.

Student: It's as easy as that?
T\rtor: Field into p&Be, flux into page. As the coil moves away from the wire, what happens to the magnetic
field?
Student: The field gets weaker.
T\rtor: By that you mean, the coil moves to a place where the field is weaker, so that the field through
the coil is weaker.
Student: I'm sure that's what I meant.
Tutor: What happens to the magnetic flux through the coil?
Student: It gets smaller.
T\rtor: It will be helpful here if you specify a direction. "Less magnetic flux into the page."
Student: Ok y. The effect of moving the coil is to create less magnetic flux into the page. Happy?
Tutor: You will be. The coil wants to keep the same flux, so the loop tries to create magnetic field in
which direction?
Student: Out of the page, opposite to the magnetic flux.
T\rtor: It is the change in magnetic flux that matters. By moving the coil, we create less magnetic flux
into the page.

Student: You said that.
T\rtor: So the coil tries to replace the flux that was there and isn't anymore.
Student: So the coil creates magnetic flux into the page?
Tutor: Yes, to replace the flux that isn't there anymore.
Student: Even though the flux is into the page.
T\rtor: Yes, because it's the change in flux that matters. We create less flux into the page, so the coil
creates flux into the page, and the total flux stays the same.
Student: Ok^y. For the second direction, the field also gets weaker, so there's less flux into the page, and
the coil creates field into the page, replacing the lost flux.
T\rtor: Yes. The field that the coil creates is called the induced field. If the coil wants to create an induced
field into the page, in what direction must the current in the coil go?

Student: That's the second right-hand rule again, right?
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T\rtor: Yes. Bend your fingers like you usually do, then point the bent fingers in the direction of the field.
Student: Into the page.

Tutor: Now keep them there and move your hand in a circle, following your thumb. Which way does your
hand go?

Student: It goes clockwise.
Tutor: So a clockwise current in the coil creates a magnetic field into the page. At least in the middle of
the coil.
Student: And outside the coil?
T\rtor: The magnetic field circles around, since magnetic field lines never end. The field comes out of the
page. But we care only about the field in the middle of the coil.
Student: Okay. In the third direction, the field doesn't change, so the flux doesn't change.
Tutor: If there is no change in the flux, what is the induced current?
Student: There isn't one.
T\rtor: Correct. No matter how big the flux is, if it doesn't change then there is no induced current.
Student: In the fourth direction, the coil moves to a stronger magnetic field, so the change is "more flux
into the page."
T\rtor: Excellent.
Student: The coil creates magnetic field out of the page to opposite the increase in the magnetic flux.
T\rtor: Very good.
Student: Fingers out, and the thumb follows the hand counterclockwise.

EXAMPLE

A circular coil consists of an unknown number of turns of wire, each 50 cm in diameter, in a 0.4 T magnetic
field. The loop needs to rotate at 60 Hz and generate an average voltage of 120 V. How many turns must
there be in the coil?

Student: If the coil rotates completely around, then the flux is back to what it started at, and there is no
induced voltage.
T\rtor: As the coil rotates one-fourth of the way around, the flux drops to zero.
Student: Because the magnetic field lines don't go through the coil?
Tutor: Correct. So let's look at one-fourth of a rotation.
Student: Ok^y. The original flux is BA, and the final flux is zero. The change happens in one-fourth of a
period.

c _ nrA(D" nrO - BA
'J 'At ir

T\rtor: We need to include the factor l/, since each turn induces a voltage and the voltages add. What's
the period?
Student: The frequency is 60 per second. The period is one over 60.

o n(o.4 T)A('-' 
-1 (# s)

Student: Is it my imagination or are we being sloppy with minus signs here?
T\rtor: We are. We're not interested in the direction of the induced current, only the rnagnitude of the
induced voltage.
Student: Ok y. The radius is 25 cr, so the area is

A - rR2 - 7r(0.25 -)' - 0.196 m2

r20V _ .^r(0.4 
l)(0.1e6 -')
i(# s)
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^Ar -
(120 vXiX# s) :6.4
(0.4 T)(0.196 m2)

T\rtor: What are the units for l/?
Student: It shouldn't have &ry, should it?
T\rtor: No. A tesla meter squared is flux, divided by a second is a volt.
Student: So the units all cancel. Shouldn't the number of turns be an integer?
I\rtor: It should. We would have to change one of the other parameters so that N came out to be an integer.

EXAMPLE

A small circular loop (8 cm diameter) of 100 turns sits in the plane of and inside a large loop (28 cm diameter)
of 100 turns. The current in the outer loop is 5 A and is increasing at a rate of 180 A/s. What is the voltage
induced in the inner loop?

Student: The induced voltage is

A dQn
L('' 

dt
T\rtor: Good. What's the magnetic flux Qa?
Student: It's the magnetic field times the area.
TUtor: What is the magnetic field?
Student: We can use the magnetic field from a loop.

r/t
>D

T\rtor: That's the magnetic field from
Student: So I need a factor of 100. Is
Ttrtor: It's the radius of the loop that
Student: So it's the big loop.
T\rtor: Now what's the magnetic flrur
Student: It's the magnetic field times
T\rtor: Which r?

Bloop - ltsif 2R ?

each turn, and there are 100 of them.
R the big loop or the small loop?
is creating the magnetic field.

through the small loop?
the area Trr2 .



Student: Uh, it's the area of the inner loop, so r is the radius of the inner loop.
T\rtor: Good.

t - d9P-: 9B.l: ( !!) ,dt dt \d,t)
Student: We can pull the area outside of the derivative?
T\rtor: The area isn't changing, so it is constant. # is how fast the magnetic field is changing.
Student: But we don't know that. We know what the field is.
T\rtor: So put the equation for the field into the equation for the induced voltage.

t-(*") A-(*,W@")
T\rtor: l/ , Fo, and -R are constants, so you can pull them out of the derivative too.

s-(#) (*')@")
Student: But I can't pull i out.
T\rtor: The current i in the outer loop is changing. The change in current causes a change in magnetic
field, a change in magnetic flux, and an induced voltage.
Student: So it's the change in the current that causes an induced voltage in the inner loop.
Tutor: Yes, and the size of the change in current that determines the magnitude of the induced voltage.

t - ( (100)(4?r x 10-?.T m/A) 
) (180 A/r) (zr(0.0 4 ,,42): 4.1 x 10-3 v : 4.1 mv

\ 2(0.14 m) /
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When the flux changes because of motion, then the induced voltage is

t-BLu
where ^L is the length at the edge. The longer the length at the edge, and the faster the motion, the quicker
the flux changes, and the greater the induced voltage.

EXAMPLE

Plot the induced voltage as a function of time for the single rectangular loop. Use clockwise induced current
as corresponding to positive induced voltage.

15 cm

30 cm

XXXXX
B=0.27

XXXXX

XXXX

XXXXX

XXXXX
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T\rtor: What's the induced voltage when time begins?

Student: There's no flux, so there's no induced voltage.
Tutor: It is possible to have an induced voltage without a magnetic flux. If the flux is zero, but changitrB,
then there will be an induced voltage.
Student: Okay. At t - 0 there is no flux and the flux isn't changing either. It doesn't start to change

untilt-2s.
Tutor: Good. How long does it take for the loop to enter the magnetic field?
Student: It has to travel 15 cm to fully enter the magnetic field, at 3 cm/s, so it takes 5 seconds. It enters
from t - 2 s until t - 7 s and exits from t - 12 s until t - 17 s.

Ttrtor: Good. As it enters the magnetic field, what is the induced voltage?
Student: The further into the field it goes, the greater the flux, and the greater the voltage.
T\rtor: More flux does not correspond to more voltage. What matters is how fast the flux is changing. Is
the flux increasing more rapidly att - 6 s than att - 3 s?

Student: No, the flux will increase at a constant rate until the loop is inside the field.
T\rtor: What's the slope of a constant rate, of a straight line?
Student: It would be constant. The induced voltage is a constant as it enters the magnetic field.
T\rtor: Yes. What is that constant?
Student: Doluset-BLu?
Thtor: Yes.

Student: And which side is L?
T\rtor z L is the width where the flux is changing. If I waited one second, the area of the loop with magnetic
field in it would increase by how much?
Student: By3cm/sx6cm.
T\rtor: The 3 cm/s is in u, and the 6 cm is in ^L.

Student: So the induced voltage is

t - BLu - (0.2 T)(0.06 r")(0.03 m/s) :3.6 x 10-4 V - 0.36 mV

T\rtor: Yes, for the entire time that the loop is entering the magnetic field.
Student: How would you get an induced voltage that increased as it entered the field?
T\rtor: I'd use a triangular loop.

Student: Oh, so that L increased as it got further into the field.
T\rtor: Yes. Is the 0.36 mV positive or negative?
Student: I need to find the direction of the induced current. When moving into the field, the change is

more flrur into the page. The loop tries to create field out of the page, against the change in flux, so the
induced current is counterclockwise, or negative.
Tntor: So the voltage is -0.36 mV. What is the induced voltage between t - 7 s and t - L2 s, as the loop
travels through the magnetic field?
Student: The flux is constant. Since it isn't changing, there is no induced voltage.
I\rtor: Very good. What is the induced voltage as it exits the magnetic field?
Student: It will b" just the opposite as when it enters.
T\rtor: The magnitude will be the same, but check the direction.
Student: Ok y. As it exits, the result is less flux into the page, so the loop creates flux into the page to
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replace the flux that's disappearing, and to create flux into the page the loop needs a clockwise current. The
voltage is +0.36 mV as it exits the field.

+t(s)



Chapter 31

Electromagnetic Oscillations and
Alternating Current

A coil in a circuit is called an inductor. The voltage across an inductor is

(Some physics sources have a minus sign, left over from induced voltag€s, but it is incorrect to have one for
an inductor.) The inductance .L is measured in henries. As the current changes, the magnetic field chang€s,

and that induces a voltage.

Consider a circuit with an inductor. A steady-state situation is one in which none of the currents or voltages
are changing. If the circuit is ever to reach a steady state, then the voltage across the inductor must be zero,
because a nonzero voltage indicates that the current is changing.

What if an inductor and a capacitor are placed in the same circuit? If the current is steady, then that
current through the capacitor causes the charge on the capacitor to change. As the charge changes, so does

the voltage, and so does the voltage on the inductor. The only possible steady state is zero current,
no voltage, and no charge. Instead, the current through the inductor-capacitor circuit oscillates with a
frequency

When we studied oscillators, we saw that a forced oscillator would oscillate at the forcing frequency, rather
than the natural frequency. The closer the two frequencies were to each other, the greater the amplitude of
the oscillation. This is true of electric oscillators, and the amplitude of the current of the oscillation is

I- t,-lR

where cera is the forcing frequency and t*is the amplitude of the forcing voltage. If R - 0, then at resonance
(ra - w) this becomes infinite, but the resistance of the circuit won't ever be zero.

Vt': L#

tn

24r
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EXAMPLE

Choose approximate values for ^L and C for an FM radio so that the amplitude of the next station ir # the
amplitude of the "tuned" station, given that the circuit has a resistance of 0.6 Q.

Student: How am I supposed to do this? There are no numbers.
Tlrtor: They are merely disguised. FM stations have frequencies of about 100 MHz, and are 0.2 MHz
apart.
Student: So I need e) : h to be 108.

Tlrtor: The frequency / is 108, and u - 2rf .

Student: Oh, that's right. So h - 2n x 108. But if I don't know one, I can't get the other. Do I just
make one up?
Tutor: There are other criteria to match. What's the amplitude of the current at resonance?
Student: It's t*lR.
T\rtor: So if wa - u is 0.2 MHz, you need the amplitude to be # of that.
Student: So the denominator must be 100.

r+ ! ('3-")':104
R2 \ u4 ) -rL'

t= (r'o-r'\ xI02
E \ ,"t, ) 

'r'r rv

Student: Is 100 MHz the natural frequency u or the driving frequency ua?
T\rtor: The natural frequency c^r is the frequency of the radio station that you want to hear. The driving
frequency crra is the frequency of the next station over, 0.2 MHz either higher or lower.
Student: The difference is 0.2 mHz, but how do I get wl - w2?

T\rtor: Careful, mHz is millihertz instead of meg ahertz

@3-w2) - (ra-w)(ra+w) = (wa-w)(2r) x (210.2 MHz)(2rr00 MHz)

L ( (2n0.2 MHz)(2rI00 MHr) \ ^ ., n2

E \ / 'W IU

I
fi{2"0.2 

MHz) x Loz

T\rtor: So far, we haven't made any assumptions that weren't in the problem.
Student: The units don't seem right.
Tntor: A henry, the unit for L, is equal to O times a second. So LIR has units of seconds, and Hz is ll",
so the left side is unitless.
Student: Okay. We're given the resistance R.

T ,\r,L) t\t
I.26 x 106 s-l

Student: Now I can find the capacitance C.

L,
E (r'26 x

(10,)(0.6 o)

106 r-t) = 102

- 4.8 x 10-5 H - 48 p,H

- 2tr x 108 s-l

C-
(a.8 x 10-5 H)(2r x 108 t-t)' - b.3 x 10-14 F : o.ob3 pF



Student: How do you get farads out of that?
T\rtor: A henry is an ohm times a second, divided
inverse to get second/ohm, which is a farad . LC is
square root and invert is 1 over seconds.
Student: Okay. That seems like a small capacitance.
Ttrtor: It is a small capacitance. Every circuit has some capacitance, whether you put a capacitor in or
not. You would need to control the "stray" capacitance at this level to tune the radio properly.
Student: Is this how a radio works?
l]rtor: It's one way. All of the radio stations in the area broadcast their signal, and all of the signals arrive
at your antenna and try to "force" your circuit. Only one of them has a frequency that matches the circuit's
frequency, so all of the others produce much smaller amplitudes. If the current is 100 times less, then the
power is 104 less and down by 40 dB.

Tbansformers change the voltage in a circuit. Imagine two coils wrapped together that is, two wires
wrapped around the same space. If the current in one changes, the magnetic field through each changes, so

there is a voltage induced in the other wire. Because it is the change in the magnetic field that causes a
voltage in the other coil, transformers only work with alternating current, and not with direct current.

The magnitude of the induced voltage increases if there are more turns in the second wire. We typically call
the first wire the "primary" and the second, or output wire, the "secondary." The voltage out, or secondary
voltage, is determined by the ratio of the number of turns.

Transformers cannot create energy, so the power out is equal to the power in. This is not true at every
instant. The magnetic field stores energy and the power out will increase and decrease as the instantaneous
current chang€s, taking energy stored in the magnetic field. But over a complete cycle, the power in and out
are the same. Therefore, if the output (secondary) voltage is greater, the output current must be less.

VoIr:Pp-P":V"1"

Why do we use ^[ here for current instead of i? Because .I is not the instantaneous current but the ampli,tude
of the oscillating current. The instantaneous current is i(t) - isinc,,,rl. Maximum current in the primary and
secondary do not occur at the same time, but usually we are interested in the maximum current, or current
amplitude /.

EXAMPLE

Electric power in the United States is 120 volts, but in Europe is 240 volts. When an American traveler goes

to Europ€, he may take a travel transformer, which allows him to use his American devices in Europe. How
many turns must be on the primary and secondary sides of such a transformer?

Student: I need to use V"lVp: N"lNo.
T\rtor: Yes, but which is the primary and which is the second arv?
Student: The higher voltage is the secondary.
T\rtor: Always?
Student: Isn't it?
T\rtor: No. "Step-down" transformers are used to decrease the voltage for neighborhoods, and in the home
for dimmer switches and model trains.
Student: So the lower voltage is the second ary?
T\rtor: "Step-up transformers" are used for long-distance transmission and high-voltage equipment, like

243

by two factors of seconds is an ohm/second; take the
(ohm second)(second/ohm) ir second2, then take the
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mosquito zappers.
Student: So which is which?
Tbtor: The device is designed to work in America, so it must need a voltage of . . .

Student: ...L20 volts.
Tntor: So the transformer has to output L20 volts.
Student: That's the secondary.
T\rtor: And the voltage that the transformer has to work with is 240 volts. That's what it can get out of
the wall.
Student: So that's the primary, the ((in" to the transformer.
T\rtor: Yes.

AL V, 120V 1

Np Ve 240 \I ,
Student: But I still don't know how many turns are on either side.
Ttrtor: No, but you know that Np - 2N", that there are twice as many turns on the primary a.s on the
secondary.
Student: So it could be 200:100, or 60:30, or 2:I?
T\rtor: Well, it's not likely to be 2:L. The magnetic field created in the transformer would be so weak that
it wouldn't work as well.
Student: But it's not important to know how many turns there are?
T\rtor: Only the ratio of turns.
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Maxwell's Equations; Magnetism of
Matter

All of electromagnetism is summed up in Maxwell's equations.

eB:f E.dA-T

f e . dg: Fo,i"r," * ps (., #rrr)
While not one of Maxwell's equations, a fifth is often included with the group:

The first equation is Gauss's law. The flux coming out of a closed surface is proportional to the enclosed
charge. This is because electric field lines start at positive charges and end at negative charges.

The second equation, Gauss's law for magnetic fields, says that the magnetic flrur coming out of a closed
surface is zero. This is because magnetic field lines never end, so every magnetic field line that enters a
surface has to leave it somewhere.

The third equation is Faraday's induced currents. The induced voltage is the sum of the electric field around
the loop.

The fourth equation is a modified version of Ampere's law. The sum of the magnetic field around a loop is
proportional to the current through the loop, plus the piece in parentheses called the "displacement current."
When current passes through a capacitor, charging the capacitor, the current causes a magnetic field. There
is also a magnetic field around the capacitor, even though no real current passes through the capacitor. But
the changing electric field between the capacitor plates creates a magnetic field, just like a current would. It
also leads to electromagnetic waves, seen in the next chapter.

F--n(E+6,.E)
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EXAMPLE

A capacitor is made of two parallel circular disks, 6 cm in
through the capacitor. Find the magnetic field magnitude
the capacitor.

radius and 1 mm apart.
3 cm from the wire, and

A current of 4 A passes

3 cm from the center of

id

Student: Isn't this just like what we did with Ampere's law?
Tutor: Yes. Do you remember that?
Student: I think so. We draw a circle around the wire with a radius of 3
through our point. The magnetic field is the same everywhere on the circle,
The enclosed current is 4 A, so

that the circle passes

di: BL: B(2rr).

B(2rr) - po(4 A)

(4n x 10-7 T m/AX4 A)
- 26.7 pT

2r(0.03 -)
T\rtor: Excellent. Now for inside the capacitor.
Student: We need to find the electric field flux inside the capacitor.
T\rtor: We need the change in the electric flux, but finding an equation for the flux is a step in that process.
Student: Can we use Gauss's law?
Ttrtor: What is the surface you are using? What is the loop you are using?
Student: I'm drawing a circle around the center of the capacitor with a radius of 3 cm.

Tutor: The surface is the area surrounded by the loop. Is this a closed surface?
Student: No. That means no Gauss's law.
T\rtor: Correct. What is the electric field inside the capacitor?
Student: There is a constant field between the two plates.
Tutor: Constant means that it doesn't change with time. Uniform means that the field is the same at all

i.
rl
ti
tt
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lr'
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points inside the region
Student: I meant there is a uniform field between the two plates. The flux is OB - [ EdA: EA.
T\rtor: Good. What is the area A?
Student: The area of my surface, right? It's n'(3 cm)2.
T\rtor: Yes. What's the electric field?
Student: Can we use E - *? It's a uniform field near a plane of charge, with the field going only one
way-
T\rtor: Very good.

or : EA - 
o 

1nr2)
€g

Student: o is the charge Q divided by the area rr2.
T\rtor z rr2 is the area of your surface, but not the area of the capacitor.
Student: Oops. The area of the capacitor is rR2, where ,R is 6 cm.

or: EA-Ql("R') (nrr) - ry- 9(
€g ' t TR2eg eoR2

T\rtor: Good. What we really want is the change in the flux.
Student: So I take the derivative.

d^n_ d9r' Lr'dQ !r',
dt-o dtesR2 eoR2 dt esft2"

Student: The change in the charge is the current. I don't need to know the charge, only the current.

f -+ .s+- 
Irni,onn- 

/ 
'rr\f B . dg: Foi",," * ps (.r; - /

B(2nr) - po(o) * t o(., *#r)
B (2nr) - r, fil# i -r, ( !^),

Student: It's just one-fourth of what we had before.
Tutor: That's because your loop enclosed one-fourth of the area, so one-fourth of the flux.
Student: If my loop had enclosed all of the flux, then we would have gotten the same answer.
T\rtor: Yes. The increasing flux acts like a current, called the displacement current.

A magnet in a magnetic fteld tries to rotate so that its magnetic field is parallel to the existing
field. This is how a compass works - the compass is a small magnet and it rotates so that its field lines up
with the Earth's field.

Many atoms and molecules have magnetic moments, meaning that they act like tiny magnets. In some
materials, the atoms are free to "rotate" so that their field becomes parallel to the external field. This makes
the magnetic field even stronger. We call these materials paramagnetic. When the external magnetic field
is removed, the atoms align randomly, so that they tend to cancel each other out and they no longer create
a net magnetic field.

Ferromagnetic materials are similar to paramagnetic, except that the atoms can remain aligned after the
external magnetic field is removed. Iron and some alloys of iron are ferromagnetic materials and are used
to make permanent magnets. The atoms remain aligned because they have less energy aligned than when
their magnetic fields are random. If such a magnet is heated then the energy put into the magnetic can
demagnetize the material, overcoming the energy from being aligned. The Curie temperature is the point at
which a magnetic becomes demagnetized.
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Materials that are neither paramagnetic nor ferromagnetic are diamagnetic. Diamagnetic materials develop
a small magnetic field opposite to the external field. The atoms are not free to rotate, but the external
field changes the orbits of the electrons in the atoms. Diamagnetic materials are repelled by magnetic fields,
rather than attracted.

EXAMPLE

A coin-shaped piece of iron has a thickness of 1 mm and a diameter of 1 cm. Iron has a density of 7900
kg/*t and an iron atom has a magnetic moment of 2 x 10-23 J lT. What is the maximum magnetic field
strength that this magnet can create 3 mm above its surface?

Student: Each atom acts like a magnet, with its own magnetization. I find out how many atoms there
are and multiply by the magnetic moment.
T\rtor: Good. How will you find the number of atoms?
Student: Well, if I use the density and find the volum€, I can find the mass of the magnet. Then I divide
by the mass of a single atom.

,^r-X # ry n(o"i#]i{];?'lilry-66x1021

Tutor: Nicely done.
Student: Now I multiply by the magnetic moment of each atom.

tL - Nt p" - (6.6 x 1021)(2 t 10-23 JIT) - 0.rJ JIT

T\rtor: But that's not the magnetic field. That's the magnetic moment.
Student: Oh. How do I find the magnetic field?
Tutor: The magnetic field from a magnetic moment is

E_ttoF=
2r z3

Tutor: This is the field along the axis of the magnetic moment.
Student: So

B_4rxI0-7Tml A0.13JlT
2n (o.oo3 m)3 0'96 J lL'm2

Student: Shouldn't the units be teslas?
T\rtor: We typically measure magnetic field in tesla. Is this the same as teslas?
Student: A joule is a newton meter, so it's newtons per amp.meter.
T\rtor: I remember teslas by using F : iLB, so a newton is an amp.meter.tesla.
Student: Then a newton per amp.meteris a tesla. We get a magnetic field of 1 tesla.
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Electromagnetic Waves

Maxwell's equations show that a changing electric field creates a magnetic field, and a changing magnetic
field creates an electric field. fn we were to create an electric field that varied like sine, then the change in
the electric field would create a magnetic field. Because the rate at which the electric field is changing is
changing (it has a second derivative too), the magnetic field would be changing, so it would create an electric
field, and so on.

The result is a wave equation involving E and B. The solutions to the wave equation are waves, and these
electromagnetic waves are radio wave, visible light, and X-rays. The solution also gives the speed for the
wave.

-3x108m/sc-
lM

Because the speed of light shows up so much in physics, it is given its own symbol c. E and B arc always in
phase with each other and perpendicular to each other.

The instantaneous intensity is given by the Poynting vector

The magnitude of the Poynting vector is equal to the intensity, and the direction of the vector gives the
direction of travel of the wave. We can replac e B with E I " 

from above. Remember that the intensity of
any wave is proportional to the amplitude squared, and electromagnetic waves are no exception. To find the
average or RMS intensity, we need a factor of two.

I- power

area cFo

Remember that the RMS is maximum divided by t[2.

'l -ji- 'ExE
lto

B
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EXAMPLE

A 100 watt light bulb is 1.4 m away. The light bulb is 5% efficient. What is the amplitude of the electric
field oscillation?

Student: Is 100 watts the maximum intensity or the average intensity?
Tntor: It's the average electrical power. The intensity is the power per square meter.
Student: The 5To means that the light power is not the same as the electrical power.
Ttrtor: Correct. For a typical incandescent light bulb, only 5% of the electrical energy is turned into light.
The rest is turned into heat. You can save on your lighting bills by using compact fluorescent bulbs, which
are about 20% efficient.
Student: So you get four times the light.
T\rtor: Or the same amount of light with one-fourth the electricity. What is the light power from the
bulb?
Student: It's 0.05 x 100 W or 5 watts.
T\rtor: Over how much area is that power spread?
Student: If it radiates uniformly, then over a sphere of radius 1.4 m.

A - 4nr2 - 4n(1.4 rn)2 - 24.6 m2

Tutor: What's the average intensity?
Student: Intensity is power per area.

0.203 Wfm2 - E?
(3 x 108 m/s) (4n x 10-7 T

E?^":76.5 w'T lr'A
Er.,'r:8.75@

m/A) -rms

Student: I'm not sure about the units. They ought to be N/C or V/m.
I\rtor: True. Thewaylrememberteslasiswith F-iLB,soN-A.m.T,and1T- 1N/A.m.

E .rr" : 8.75 : 8.75 : 8.75 - 8.75 N/C

Student: It worked.
T\rtor: What we have now is the RMS value of the electric field.
Student: And we want the amplitude.

Envs

E,n - ERu rth - 8.75 N/C - 12.4 N/C

Electromagnetic waves are transverse waves, meaning that the electric field is perpendicular to the direction
that the wave travels. This is clear mathematically from the Poynting vector, because the cross product has
to be perpendicular to vectors that are cross products. To describe the direction in which the electric and
magnetic field oscillate, we use polarization.

Most light that you see is not polarized. One "photon" of light may have its electric field vertical, and the
next horizontal, and the next somewhere in between. Light is polarized when all of the light is oriented the
same way. We can polarize light by putting it through a polarizer. When we put unpolarized light through
a polarizer, half of it comes through:

1_I- II 
- -1"-nOlariZed

2 
urrr'

(N.*).N/r'W.N/s.m.A2



25L

but the light that does come through is now polarized parallel to the orientation of the polarizer. When we
put polarized light through a polarizer, the fraction that comes through is

I - Ipor,rized cos2 d

where d is the angle between the polarizer and the polarization of the light.

Light can also be polarized when it is reflected. When light reflects from a surface at an angle (not normal
incidence), one polarization is reflected better than the other. At Brewster's angle, one of the polarizations
is not reflected at all, so only the other polarization remains. This is why polarizirg sunglasses work -they remove half of unpolarized sunlight, or light that reflects off of irregular surfaces like trees, but they
can remove much more than half of glare from reflective surfaces. They are especially effective at glare from
water.

EXAMPLE

700 W l^'of sunlight goes through three polarizers. The three polarizers are oriented at angles of 15", 40o,
and 105o from the common reference axis. How much light comes out of the third polarizer?

T\rtor: How much light intensity goes into the first polarizer?
Student: Wouldn't that just be 700 W lm2?
T\rtor: It would. Is this light polarized?
Student: Natural sunlight isn't polarized - no.
T\rtor: How much light comes through the first polarizer?
Student: Because the light isn't polarized, half of what went in: |(ZOO W l^') - 350 W l^'.
T\rtor: How much light goes into the second polarizer?
Student: What comes out of the first one: 350 W l^'.
Tutor: How much comes out of the second?
Student: The light going into the second one is polarized, isn't it?
T\rtor: Yes, because it has gone through a polarizer.
Student: Is there a way to de-polarize light?
T\rtor: Sure. If you shine polarized light on a wall or anything that isn't mirror-like, the reflected light
will be unpolarized.
Student: Since it is polarized, the amount that comes through is

I - fpolarized cos2 P

12 - I1cos2 40o ?

T\rtor: Why 40"?
Student: Because that's the angle of the polarizer.
T\rtor: 0 is the angle between the light and the polarizer, not the polarizer and the reference axis. What
is the direction of polarization of the light that reaches the second polarizer?
Student: It's not 0o, right? It matches the first polarizer. So the angle d is 25o.
T\rtor: Correct.

Iz:.I1 cos2 25" - (350 W l^') cos2 25" - 287 W l^'
Student: And this light is parallel to the second polarizer.
T\rtor: Correct.
Student: So the angle to use when it goes through the third polarizer is 65o.

Is: I2cosz 25" - (287 W l^') cos2 650 : 51 W l^'
Student: Now if the angle was 90o, then cos90o - 0, so no light would get through.
T\rtor: Correct. If you try to put horizontal light through a vertical polarizer, none gets through. The
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component of the electric field in the vertical direction is zero.

Student: But if you stick another polarlzer in between them,
polafizers were 90o apart.
T\rtor: True. Because some gets through the second one, and
the direction of the third polarizer.
Student: Strange.

CHAPTER 33. ELECTROMAGNETIC WAVES

some light gets through. Our first and last

now that light has a nonzero component in

It is a general principle of waves that when a wave encounters a change of medium, in which the wave would
go a different speed, some of the wave is reflected and some is transmitted. This is true of light as well.

We characterize the speed of light in a material with the index of refraction of the material n.

:
n is one for vacuum, and increases from ther light only goes slower as it goes through material. Because

n is the ratio of two speeds, it has no units.

Some Indexes of Refraction
vacuum I 1 (exact)
air I t.0003
water I 1.33
glass I 1.5

One effect of the change in speed is that the transmitted light is deflected. We can this refraction, and the

eouation that we use is Snell's law.^ 

- 

n1 sin 91 - rl2sin d2

This important thing to remember is that we always measure angles from the normal to the surface,
never the surface itself.

Whichever material has the larger n has to have the smaller sin 9, and thus the smaller angle 0. In the figure,

material 2 has the smaller angle (measured from the normal), so it rnust have the larger index of refraction.

This is true regardless of the material that the light starts in. This can lead to an interesting situation, a's

shown on the right side of the figure. If the angle 02 was to increase, then 01 would reach 90o. If 02 increased

still more, then dr would be unsolvable - the sine of h would have to be more than one. Since the light
can't exit, it must all be reflected back into material 2, called total internal reflection. This can only happen

when the refracted (outgoing) angle is larger than the incident (incomitts) angle, or when the light is going

into a material with lower n. Note that there would be some light reflected anyw&Y, but when the incident

angle is too large, all of the light is reflected. Reflected light is always reflected at the same angle as the

incident angle.
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EXAMPTE

Light enters the glass block (n - 1.57) from air as shown. Find the marked angle.

Student: The angle isn't measured compared to the normal.
T\rtor: Then it isn't the angle that you need to use.

Student: So I need to use 0t :90o - 15o : 75o .

nr sin0r - Tt2sin02

(1.0003) sin 75" - (1 .57) sinflz

T\rtor: Even though the index of refraction of air isn't exactly 1, w€ often use L anyway.
Student: Whatever.

oz:arcsin fry)sin75"\\ $.T):38'oo
Tlrtor: Now you need to do the second surface.
Student: But what's the angle?
Tutor: Use the geometry of the triangle.
Student: The bottom-left angle of the triangle is 90o - 38.0o : 52.0o. The bottom-right angle of the
triangle is 180o - 80" - 52.00 : 48.0o. Then the incident angle at the second surface is 90o - 48.00 : 42.0o.
T\rtor: Very good.

n1 sin 01 - n2sin 0z

(1.57) sin42.0o : (1.0003) sin02

oz :arcsin (ffi ) - o,rcsin(1.048)

Student: How do you take the arcsine of a number greater than 1?

Tbtor: You don't.
Student: So, does that mean there is total internal reflection?
T\rtor: Yes.
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We use names for ranges of electromagnetic frequencies. Infrared, for example, is about 1011 Hz to 1015 Hz.
Visible light is the relatively narrow range of wavelengths from 400 nm to 700 nm. (W" use wavelengths for
visible light and higher frequency electromagnetic waves.)

The reason for the different names is that electromagnetic waves of different frequencies interact with matter
in different ways. Therefore you have to use different techniques to generate and detect infrared waves than
you use for ultraviolet waves. There is not a distinct cutoff where a technique stops working - it is not true
that your eye can see 699 nm but not 70I rffi, but as you go further into the infrared your eye works less

well, and we use 700 because it's about right.
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Images

When light reflects off of a mirror, the reflected angle is equal to the incident angle. This results in the
creation of an image. Examine the figure below, and you find that all of the light that leaves the nose and
then reflects off of the mirror appears to come from one spot, Iocated behind the mirror. Someone looking
at nose in the mirror will really be looking at a spot behind the mirror. You can try this yourself - put
a sticker or tape a paper onto a mirror and then look at yourself in the mirrorl when your reflection (your
image) is in focus, the sticker on the mirror will not be, and vice versa. Your reflection is not at the mirror,
but behind it.

This allows us to deal with mirrors without working out all of the reflected angles. Instead, we locate the
image, and pretend that the object of our attention is indeed there. The object is not there, of course, but
all of the light that we see from the mirror is the same as if it were there. The location of this image is
behind the mirror, the same distance from the mirror as the object but on the other side.

One myth that persists about mirrors is that they reverse left and right. This is not true. Imagine that you
are reading this book and decide that you want to read its reflection in a mirror. To view the book in the
mirror, you turn the book around - you reverse left and right by turning the book. The mirror reverses
front and back, so to see the text of the book you have to turn it around. You could flip it upside down, in
which case you also could see the text, and in doing so left and right would not be switched, because you
didn't switch them.

255
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EXAMPTE

CHAPTER 34. IMAGES

Joanne (at the bottom) wants to take
appear to be from Joanne (what focal

a picture of Betty's
length must she use

reflection. How far away does
for the camera lens)?

Betty (at the top)

6m

o
a'

a
a

/

Student: We could draw the path of the light, and then set up similar triangles.
T\rtor: We could, and it would work, but there's an easier way. Where is the image of Betty?
Student: Doesn't that depend on where Joanne is?

T\rtor: No. Anyone looking at Betty's reflection will see it at the same place, the location of the image.
Student: Is that 2 m behind the mirror?
Tutor: Yes it is. How far is it from Betty's image to Joanne?
Student: In a straight line?

-7.8m
Student: Is that it?
Tutor: Yes. Once we know where the image is, it's the same as if Betty was there.
All of the light from Betty appears to come from there, just as if she was there and the
mirror wasn't.
Student: It feels like cheating, somehow, to not do an extensive calculation. 

fThtor: I felt that way for years, because I first saw this "solution" in a book of brain
teasers. But I've learned that it works because images work that way - the light behaves as if it comes from
the image.

What if the mirror is curved? There is still an image, but the location of the image is different than if the
mirror was flat. The same is also true of lenses. The math is nearly the same for mirrors and lenses, so we'll
deal with them together.

Every curved mirror has a focal point, and lenses have one on each side. When parallel beams of light reach
the mirror or lens, they are deflected so that they all hit the focal point.

The equation that tells us where to find the els

111or j:E+a
lmag

1f;
I'

11
fp
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where / is the focal length, or distance from the mirror/lens to the focal point, p is the distance from the
mirror/lens to the object (many books use do), and i is the distance from the mirror/lens to the image (many
books use dr). The magnification is the ratio of the size of the image to that of the object

h,r d,r,:__
ho do

h'i
--:-- Ofnp TTL :

If we know any two of / , p, i, and n'L) we can find the other two.

A common stumbling block in dealing with mirrors/lenses is in handling the minus signs. Each
of f , p, i) rn) h' , and h can be positive or negative, and there are meanings attached to each.

f
porx
m
horhl

A mirror/lens can be either converging or diverging. A converging mirror/lens causes the light beams to
converge more rapidly, or diverge less rapidly. A diverging mirror/lens causes the light beams to diverge
more rapidly, or converge less rapidly. Concave mirrors and convex lenses are converging, and have positive
focal lengths. Convex mirrors and concave lenses are divergirg, and have negative focal lengths.

(a)

converging
real

not flipped
right side up

diverging
virtual
flipped

upside down

l-f

Ff

(c)
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If you can hold a sheet of paper up where the image should be, and see the image on the piece of paper,
then it is a real image with a positive image distance. If you can't ,then it is a virtual image with a negative
image distance. Key to this is knowing which way is the positive direction for measuring the image distance.
Whatever direction the light goes when it leaves the mirror/lens is the positive direction for
measuring the image distance. Therefore, if the image is where the light goes, it is a real image. If the
image is where the light doesn't go, it is a virtual image. You can still see a virtual image - you have to be
looking at the mirror/lens, seeing the light that comes from it.

It is also possible to have a negative object distance. Whatever direction the light comes from as it reaches
the mirror/lens is the positive direction for measuring the object distance. You can only have a negative
object distance, meaning a "virtual object," if you have more than one mirror/lens.

Sometimes the image is flipped - slide projectors flip the image, so the slide must be inserted upside down
so that the image is right side up. A negative magnification corresponds to a flipped image. A negative
magnification does not mean an upside down image - the object might be upside down and the image right
side up. If the absolute value of the magnification is greater than one, then the image is larger than the
object, and if it is less than one, then the image is smaller than the object. Rear-view mirrors with the
warning "objects in mirror are closer than they appear" create smaller images, so that you can see more,
but may distort your mental perception if you do not account for the demagnification.

The last piece before we start sorne examples is how to make a mirror. If a mirror has a radius of curvature
r ) then the focal length is

f -+,
There is a similar but more difficult equation for lenr.r, which we won't deal with here.

EXAMPLE

The side mirror on a car is designed so that an upright truck 100 m behind the car will appear upright and
half as big when viewed in the mirror. What is the radius of the mirror, and is it convex or concave?

Student: The image is half as big, so the magnification Tn: I12.
T\rtor: Is it positive I12 or negative I12?
Student: The image needs to be upright, so the magnification is positive.
I\rtor: For the magnification to be positive, the height h' needs to be positive. A positive magnification
does not mean that the inrage is upright, or right side up.
Student: Aren't you being a little picky? If the image isn't flipped, then it's right side up, right?
T\rtor: The object really could be upside down.
Student: Okay. The object car is right side up, and so is the image, so the image isn't flipped. That
means that the magnification is positive, so it's +I12.
T\rtor: Good.

f

Virtual
image 1

l-
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Student: I need another one. The object is the truck, and the truck is 100 m from the mirror, so the
object distance is 100 m.
T\rtor: Positive or
Student: The light comes from behind the car, and the truck is behind the car, so it's +100 m. AIso,
there is only one mirror or lens, so the object distance p has to be positive.
T\rtor: Good. Now you should be able to solve.
Student: I can find the image distance, then find the focal length, and then the radius.

1?,
t-'2 *100m

Tutor: What does the negative image distance mean'?

Student: The table says that it's a virtual image.
T\rtor: Where is the image?
Student: 50 meters from the mirror.
T\rtor: But on which side? Which way is the positive direction for measuring the image?
Student: The mirror faces the back of the car, and the light that bounces off of the mirror goes toward
the back of the car, so that's the positive direction for the image. The image distance is positive, so the
image is 50 m toward the front of the car.
Tutor: Yes. The driver looks forward to see the image of the truck.
Student: If the image distance was +50 m, would he look behind him to see the image?
T\rtor: The image would be 50 m behind the car, but he couldn't see it. If he looks backward, he wouldn't
see the light that reflected off of the mirror.
Student: Oh.
T\rtor: If there was a screen or piece of paper 50 m in front of the car, would there be an image on the
screen?
Student: No, the light bounces off of the mirror and doesn't go there.
T\rtor: Correct. That's why it's a virtual image.

1
f *1oom 5om 100m 1oom

f - -100 m

Student: Is there a connection between the 100 m to the truck and the 100 m focal length?
T\rtor: No, it's coincidence; besides, it's -100 m.
Student: Negative focal length means diverging mirror.
T\rtor: Yes.

Student: Is it true that a negative focal length causes a negative image distance so that a diverging mirror
always creates a virtual image?
T\rtor: Not necessarily. If p is positive and / is negative, then i has to be negative, so your statement is

true if the object is a real object. If you have a virtual object, then your statement might not be true. We'll
do one of those later.
Student: How do you remember convex and concave?
T\rtor: A concave mirror/lens is one in which the bear can hide. Seriously, this is how I learned to re-
member the shapes. To remember that a concave mirror is converging, think about where parallel incoming
beams of light would go - would they converge or diverge?
Student: So a divergirg mirror is a convex mirror.
T\rtor: Yes, but the opposite for lenses. A diverging lens is a concave lens.

?,

TTL :
p

- i--50m

111
I

^tIp?'

f -;,
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r - 2f :2(-100 m) : -200 m

Student: That seems like a big radius.
Tutor: Pick a point 2 football fields in front of the car, and that's the point around which the mirror is
centered. It's not a lot of curvature.

EXAMPLE
I

Find the object distance necessary for a *36-cm-focal-length lens to form a real image three times as large
as the object.

Student: I have to know two of the four. The focal length / is +36 cm and the magnification is 3.
Tutor: Is the magnification positive or negative?
Student: It doesn't s&y, so it must be positive.
T\rtor: It may not say explicitly, but that doesn't mean that the magnification is positive. What do you
know about the object and image distances?
Student: That I can solve for them.
Tbtor: But you don't know what the magnification is, so you could only determine two possible sets of
values.
Student: There is only one lens, so it's a real object with a positive object distance p.
T\rtor: Good.
Student: The problem says that the image is real, so it's positive.
Tutor: Now look at the equation for magnification m
Student: If p and i are both positive, then m must be negative. m is -3.
T\rtor: Good. Now you can do the problem.

TTL: -! and :- 1 * Iplpl'
D- ?'

-3- -p +i-3p

1 1.1 3+1 4

(+SO cm) p ' 3p 3p 3p

Student: Do I need to convert the 36 cm to meters?
T\rtor: No. It does help if you have common units for f , p, and z.

4
p - ; (+s0 cm) : *48 cm

T\rtor: Signs are important, but sometimes they aren't explicit. If you wanted a virtual image, then you'd
need a negative i, even if the problem didn't come right out and say so.

We can explain a plane mirror using the same equations. The radius of a plane mirror is infinite the
mirror gets flatter as the radius increases, and we increase the radius until the mirror is completely flat.

0

t 11r 
- -*; -> z:-p6pL

The light bounces off of the mirror, and the virtual image is behind the mirror, the same distance behind
the mirror that the object is in front of it. The magnification is

TTL : -!pp
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so the image is the same size and unflipped.

We can likewise examine a flat piece of glass. The focal length of a flat piece of glass is infinite. Again,
i - -p arrd m: *1. The virtual image is on the opposite side of the glass that the light goes, but the same
side that it comes from, and the same distance away as the object - it is at the object.

EXAMPTE

A 2.4-mm-high object is
cm concave lens. What is

15 cm in front of a
the size of the final

+10 cm convex lens. 24 cm behind the convex lens is a -10
image?

Student: We have two lenses, so we might have a negative object distance.
T\rtor: Correct. Take the lenses one at a time.
Student: Okay, the first lens. The light comes from the left, so the left is the positive direction for
measuring the object. The object is on the left, so the object distance p is positive 15 cm. The focal length
is *10 cm. I have two of the four, so I can solve for the other two.

?,Tn: and
p

11

111
I

alIp?'
1

*10 cm

1

Student: The light that leaves the first lens goes

lens is 30 cm to the right of the first lens.

'lTL1 - -!-p

I

lrr .nt - 7

1 3-2 11

i *10 cm *15 cm 30 cm 30 cm

i-*30cm
to the right of the first lens, so the image from the first

+30-etr o
2+I\*ftr

T\rtor: So far so good. Now we do the second lens.
Student: Is the object distance for the second lens +39 cm?
Tutor: No. The object for the second lens is the image created by the first lens. That's where the light
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into the second lens appears to come from.
Student: But the image from the first lens is on the right side of the second lens.
Tutor: And the light into the second lens comes from the left, so it's a negative object distance. The light
into the second lens doesn't appear to be coming from a spot, but going to a spot 6 cm to the right of the
second lens.
Student: So the object distance for the second lens is -6 cm?
T\rtor: Yes.

111
10cm -6cm =i

1 1 1 3-5 -2
i -10 cm -6 cm -30 cm -30 cm

i-*15cm
Student: The final image is a real image, 15 cm to the right of the second lens - right because that's
where the light goes when it leaves the second lens.
Ttrtor: Very good.

IrL2 -- -!- - 
+r:ffir 

- +2.5p -A-efrr
Student: How do I combine the magnifications?
T\rtor: The first image is -2x the first object, then it becomes the second object, and the second image
is 2.5x the second object.
Student: So I multiply.

(2.4 mm) x (-2) x (+Z.S; _ -12 mm

Student: And the negative height means that it's upside down.
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Interference

When we looked waves and sound, we encountered interference. Interference takes place when two waves
add. For light, this usually involves two beams of light that are parallel, or nearly so.

If you have two identical waves travelling side-by-side, they add and you get one wave that's twice the size.
If you have two waves, identical except that one is half a wavelength behind the other, or half a period in
time, then they add to zero. This is like adding 3 and -3. If two waves are identical except that one is one
wavelength behind the other, then it looks the same as the first wave and they again add to give a wave
twice as large. The general idea is that if one wave is an integer number of waves behind the first, we have
constructive interference, and the sum is twice the amplitude. If the second wave is a half-integer (0.5, 1.5,

2.5,. . .) behind the first, then we have destructive interference, and the sum is zero.

Typically the two light waves start at the same time, so one is behind the other because it has a greater
distance to travel. We don't care what the two distances are, but we do care what the difference in the two
distances AI is. There are many geometries we can use to create the difference in the two path lengths, but
regardless of geometry,

a,L - [y^'J-\(-+*)r
where m is an integ€r, any integer.

+

constructive interference
destructive interference
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EXAMPLE

A Michelson interferometer is shown below. When one of the mirrors is nroved by 1.407 pm, the pattern
shifts by 6 fringes. What is the wavelength of the light?

Student: Shouldn't the waves either cancel or not? The viewer should see bright or dark.
T\rtor: In reality, there are fringes due to slight differences in the paths to the telescope. When the
difference in the path length changes by one wavelength, the fringes shift by one.

Student: So the question is: What do I have to do to change the path
length difference by a wavelength? . Movable

T\rtor: Yes.

Student: Do I just move one of the mirrors or both?
T\rtor: Typically one mirror is fixed and we move the
other.
Student: Do I move it a wavelength?
T\rtor: The light has to go out and back. If you move one mirror out by
a wavelength, then that path increases by two wavelengths and the other
doesn't change.

Student: So the difference LL would increase by 2,\. So one fringe cor-
responds to moving one mirror by |X.
T\rtor: Yes.

Student: We saw six fringes, so we moved one mirror by 6 x |,1 _
31.

3) : I.407 pm

1 .407 um 10-o 1 n\ 
- 

-----r---- x : x 

-) 
-469 llltl/\- 3 w   

l0_t
Tutor: It's handy to remember the wavelengths of light. Visible light goes from 400 nrn to 700 nm. If
you're using visible light, then you should expect the result to be in that range.
Student: And it is.

One of the most common geometries for interference is Young's double-slit experiment. Two narrow slits
are made in an opaque surface, and the light goes through them. It may seem strange that the light would
spread out as it goes through the slits, but it does - see Huygens's principle.

When the light goes straight through, the light from the two slits goes the same distance, the difference

is zero, and the light is bright. We call this a bright fringe or a maximum. As you go a little ways away
from the center, light from one of the slits has to go further than light from the other. When this difference

reaches LL - lX,, the two lights cancel and there is no light. We call this a dark fringe or a minimum. If
we go further, so that LL - ^, 

we get to another maximum. Maxima (plural of maxirnum) occur when
LL - m), and minima at LL - (m + i)f.
The difference in the two path lengths for this geometry is

LL - dsin 0

where d is the distance or separation between the two slits. So

dsino_ L,L-{H+})r constructive interference
destructive interference

To find the position A on the screen of the maxima and minima, we use trigonometry:

A - Dtan?

Movable
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where D is the distance to the screen. Often in double-slit experiments the angle 0 is small, so we can use

d(in radians) = sin 0 x tan? when 0 is small

To check whether the angle is small, check for either l << d or a K D, where ( typically means 100 times
less than.

EXAMPLE
T

Light of wavelength 562 nm is incident on two slits with slit spacing 80 plm. On a screen 2.6 m away, how
far from the central maximum is the third minimum?

Student: I use dsin0 - AL - (m++)) for a minimum, with TrL-- 3 for the third one.
T\rtor: What is m for the central maximum?
Student: At the center, LL - 0, 0 : 0o , and m - 0.
T\rtor: Good. What's m for the first maximum?
Student: The central maximum isn't the first one?
T\rtor: No. The central maximum is the "zeroth" one, with m - 0.
Student: So the first maximum is at TTL :1, and the second maximum is at m - 2.

T\rtor: Yes. What is at m - |, between the zeroth and first muima?
Student: m has to be an integer.
T\rtor: Okay. The central maximum is at LL _ 0 and the first maximum is at AL - ,\. What is at
L,L: ixz
Student: So that's what you mean by m - + There is a minimum there.
Tutor: Yes. What would you call it - the first minimum?
Student: Sure.
Tntor: So the first minimum occurs at m - 0 and LL - (0 + +)^.
Student: And the second minimum is at LL - (1 + *)f, and ine third at AL - (2+ 1)f.

T
v

I
Path length differen ce L,L
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Student: Then the angle is

dsin0-AL-(z+*) I
T\rtor: Before doing the arcsine, is the angle small?
Student: How small?
T\rtor: Small enough to use sin0 = tan?, as in ) << d.

Student: ,\ is 562 ril, or 0.562 pr;m. d is 80 pm, so ,\ is less than a hundredth of d.
Tutor: So the angle is small.

+ :sing nY tan o - #
*xo *(0.562 pm)(2.6 m)

aN?- :0'0457m-45'7mm

EXAMPLE

Light of wavelength 562 nm is incident on two slits with slit spacing 19 Ltm. How many interference ma;rima
are there in the whole pattern?

Student: Why should there be a limit?
Tntor: As you go to higher values of m, you get larger angles. Eventually you get to an angle that you
cantt use.

Student: You mean past 90o?
Ttrtor: Yes. How high would m have to be so that the angle 0 is 90o?

dsin0-AL-m),

m _ dsing0o _ (19 ry_mXt) : 33.8

^ 
(0.562 /rm)

Student: Of course, nz has to be an integer, so we round.
T\rtorz rrl does have to be an integer. If m - 33.8, the angle I is 90". What would the angle be if we used
fTL :34?
Student: It would be more than 90o.

T\rtor: No. You would need to find an angle such that the sine of the angle is greater than 1.

Student: You can't have a sine greater than 1.
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T\rtor: So you can't use m - 34.
Student: So we truncate rather than rounding.
Ttrtor: Yes. We get the lst through 33rd interference maxima on each side, plus the central maxima for
m -0.Student: So the total is

33+1+33:67
Student: Is there some reason?
Tutor: To get the 12th interference maximuil, you need light from one slit to be 12 wavelengths behind
the other. The slits here are only 33.8 wavelengths apart, so the greatest path length difference we can get
is 33.81. You can't get a path length difference of 34 wavelengths, so you can't get the 34th interference
maximum.

Remember that a general principle of waves is that when a wave reaches a change of medium, some of the
wave is transmitted and some is reflected. If a beam of light strikes a piece of glass, some of the light is
reflected from both the front and the back surfaces of the glass. We will a,ssume that the light hits at normal
incidence, despite the figure.

One beam goes 2t further than the other, where t is the thickness of the glass. (Most glass is too thick and
doesn't have a uniform enough thickness - we usually observe this with much thinner films.) Because the
extra distance occurs in the film, we need the extra distance to be equal to an integer number of wavelengths,
using the wavelength in the film.

So

2t: AL : constructive interference

destructive interference

There is one more change in thin films. When a wave reflects off of a surface in which it would go slower
than it would in the medium it is in, the wave is flipped. So if the material that the wave bounces off of has
a greater n, the wave is flipped. If both waves or neither wave is flipped, then nothing changes. But if one is
flipped and the other isn't, then what would have been constructive interference becomes destructive, and
vice versa.

EXAMPLE

\n::

A thin film of soap is stretched across a coat hanger.
of 1 .24. Light reflects normally off of the film. Find
is especially bright.

The film is 575 nm thick and has an index of refraction
all wavelengths of visible light for which the reflection
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Student: I start with the formula.

CHAPTER 35. IN?ERFERENCE

2t-AL- constructive interference

+) * destructive interference

Tutor: Okay, but make a quick drawing.
Student: Really?
Tutor: You need to determine whether the waves flip on reflection, so a quick drawittg is important.
Student: Okuy. The light is in air, with n_ 1.00. It bounces off of soap, with n : I.24. The thing it
bounces off of has a greater n than what it's in, so it is flipped.
Ttrtor: Very good.
Student: Is the transmitted light also flipped?
Tutor: No. The transmitted light isn't flipped as it moves into the second medium, regardless of whether
the reflected light is flipped.
Student: Okay. At the second surface, the light is travelling in soap, with n - I.24. It bounces off of air,
with rr:1.00. The thing it bounces off of has a lesser n than what it's in, so it is not flipped.
T\rtor: Good.

Student: One of the waves is flipped and the other isn't, so the equations switch.

ffi destructive interference

il* ffi constructive interference

Tbtor: Good.
Student: I want brighter light, which means constructive interference.

Student: What value do I use for m?
T\rtor: All of them.
Student: All? That could take a while.
Ttrtor: T[y it.

2(1.24)(575 nm)

(* + Lr)

L426 nm

1426 nm

(*+ *)
m-0 + )-

)-
0.5

1426 nm

- 2852 nm

: 951 nmm-I
1.5
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)- 1426 nm

^-

2.5

1426 nm
3.5

1426 nm
4.5

TUtor: Which of these correspond to visible light?
Student: The first two are infrared, and the last one is ultraviolet. Only 570 nm and 407 nm are visible
light.
T\rtor: Do you need to keep going?
Student: No. As m gets even bigger, the wavelength will get smaller, and it's already too small for visible
light.

EXAMPLE

Two pieces of glass are placed with a thin wire separating them at one end. There are LL4 bright fringes
between the left end and the wire, when using 632 nm light. Find the diameter of the wire.

Student: What does the diameter of the wire have to do with fringes?
T\rtor: The light reflects off of the top and bottom of each piece of glass, a total of four surfaces. The
light from the top and bottom of the top surface interfere constructively or destructively, or something in
between, but whatever it is it doesn't change. The light that reflects off of the bottom of the top piece of
glass, and the light that reflects off the top of the bottom piece of glass, also interfere. This interference will
change from constructive to destructive to constructive and so on as the thickness of the "air gap" increa^ses.
Student: So the changing interference causes fringes.
Thtor: Yes. Like the two-slit experiment, when we move away from the center of the pattern, the path
length difference increases and we see fringes.

: 570 nm

- 407 nm

: 317 nm
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Student: So the first thing I do is write down the

CHAPTER 35.

equation.

constructive interference

destructive interference

I]VTBRFERE]VCE

2t: L,L: ( mL

t r#* +)*
Student: Then I make a little drawing.

Student: The top beam is traveling in glass (n = 1.5) and bounces off of air (n * 1.0), so it is not flipped.
The bottom beam is traveling in air and bounces off of glass, so it is flipped. One is flipped and the other
is not, so the equations are flipped.

2t: L,L: [ ** . Mdestructive interference

\ (- + +)* ffi constructive interference

T\rtor: Doing well. At the far left end, is it dark or bright?
Student: That would be the top equation, so it's dark. f'm not sure that makes sense.
T\rtor: The second beam goes no extra distance, so there is no change from that. One of the beams is
flipped, so the two beams are opposites and add to zero.
Student: Now I need to relate the fringes to the thickness f, which is equal to the diameter.
T\rtor: The first dark fringe is at TrL - 0 and f - 0. Where is the first bright fringe?
Student: At m
equation.

2t: (113 + ili
Student: What value should I use for n?
T\rtor: What material is there where the extra distance takes place?
Student: Air. So I use n - 1.0.

t - *tt13.5)^ - *tt13.5)(632 nm) :35866 nm:35.9 pm

glar3



Chapter 36

Diffraction

In the previous chapter we examined interference from two sources. It is possible to have interference from
more than two sources.

A diffraction grating (ot interference grating) is a series of slits, so that there is interference from 100 or
more sources. If the slits are evenly spaced, then the math is the same as with two slits. If the light from the
second slit is one wavelength behind that from the first, then light from the third is one wavelen$h behind
that from the second, and so on. The maxima are in the same place, but are narrower because, if you go a
little ways off from the maximur, there are more sources and they cancel each other out sooner.

A more interesting question is what to do with a single slit. It may seem that with only one source, there
should be no interference. But light from the far edge of the slit has to go a little further than light from
the near edge of the slit. To deal with one slit properly, we need to divide it into an infinite number of slits.
When the interference is from different points in the same slit, we call it diffraction.

Consider the point in the middle of the slit. If the light from here goes half a wavelength further than light
from the near edge, then they will cancel. Working across the slit, light from each point in the near half is
canceled by light from a point in the far half of the slit. All of the light cancels, and we get a minimum.
This occurs at fisin 0 - |, *here a is the slit width. In general, the diffraction minima occur at

osin0-m),

This equation is similar to the one used in two-slit interference, except then it was for interference (two or
more slit) maxima, and here it is for diffraction (one slit) minima.

27r
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Incident
wave

EXAMPLE

Light of wavelength 570 nm goes through a slit of width 30 pm. What is the width of the central diffraction
maximum on a screen 1.5 m away?

Student: What's the "central diffraction maximum?"
Tutor: At the middle of the pattern on the screen, light from all points in the slit travels the same distance,
so they all interfere constructively, and the light is the brightest. If you move away from the center to the
spot where o sin 0 - ), then the light from the bottom half of the slit cancels the light from the top half and
there is a minimum.
Student: Wait aminute. Insingle-slit diffraction, the minimaoccur at osin0 - rn),. If m- 0 then 0:0,
so shouldn't there be a minimum in the center of the pattern?
T\rtor: A good question. In diffraction the minima occur at every integer value of m ercept m -- 0. There
has to be a maximum there because all of the light travels the same distance. Because there is no minimum
at m - 0, the central maximum is twice as wide as the others.
Student: So there is a maximum at 0 - 0, which is m - 0. How do I determine the width of this central
diffraction maximum?
T\rtor: The edge of the maximum is where the minima are.
Student: So I need to find the minimum corresponding to m - I?
T\rtor: Yes.

Student: And they are at

a sinfl

T\rtor: Yes. There is one on each side, the same distance away from the center.
Student: So I can find one and double it. To find the distance on the screen I use

Pr

:fr^I

Student: Is the
T\rtor: How do
Student: With
T\rtor: So with
small.

A - Dtan?

angle small enough to use d(in radians) = sin I x tan??
you check?
two-slit interference, w€ compared the wavelength to the slit separation d.

single-slit diffraction, compare the wavelength to the slit width a. If ,\ ( a, then sin 0 is

Path length difference
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Student: So the ratio ),la is

::ffi
Student: It needs to be 1/100 or less, doesn't it?
T\rtor: Tfy it both ways and see.

Student: If I make the approximation, then

A : tan 0 =sinO - ]
Da

width - za - 2^D - 2(0'57#,')(1t5 
m) 

- 0 .xsl rD - 57 mm

T\rtor: What if you don't do the u*lo*r-l,,onrtto*'
Student: Then I have to use arcsine to find the angle.

sino - la 30pm

e - arcsin(0.019) :1.0887"

width - 2y:2Dtan 0 - 2(1.5 -)(0.0190034) - 0.0570103 rrl- 57.0103 mm

Student: So the difference is that with the approximation, the width is 57.0 mm instead of 57.0103 mm.
T\rtor: Correct. 57.0103 mm is the true width of the central diffraction minimum.
Student: So I didn't need to be worried that the angle was too big?
Tntor: It depends on how much precision you want. The difference between sine and tangent reaches ITo

at about 8" or 0.14 radians. If two significant figures is enough, then you need * < 0.I4. To keep the error
below 0.I%, you need an angle less than 0.04 radians. Your angle was less than 0.02 radians.
Student: So if the slit width is 110.04 - 25 times as large as the wavelength, then I can use the approxi-
mation and my error will be less than 0.I%?
Tutor: Yes, using 1/100 is more restrictive than you need to be.

Having determined the location of the minima, we now ask what the intensity is at any spot on the screen.
For two slits, each of width a and separated by d,, the intensity is given by

r(o) _ro,(ry)'{.",2 B)

where

a-ffsinl and P-!rr^e
I,n is the maximum intensity, found at the center of the pattern (P - 0). This may seem mysterious, but is
not that bad.

The cos2 B factor is the effect of the interference of the light from the two slits. At the center of the pattern,
p-0andcos2p
interference minimum. This happens at

7trd1
;: 0:^sin0 -> ;^ - dsin?

That is, cos2 p goes to zero at the angle where we know the first interference minimum is. The first interference
minimum always occurs when cos2 P - T12,, regardless of the wavelength and slit separation, because P uses
the ratio of these two. Interference maxima occur wherlever cosz p - 1, or at P
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dsin0
dsin0-],1,$,f,...

The (Y)' factor is the effect of diffraction of each of the slits.

(%")'- 1(asalimit). Whena - 7r, sin a_ 0, sotheintensityis
minimum. This happens at

CHAPTER 36. DIFFRACTION

sind -> ^-osin0
That is, sin o goes to zero at the angle where we know the first diffraction minimum is. The first diffraction
minimum always occurs when sin a - 7r ) regardless of the wavelength and slit widths, because a uses
the ratio of these two. Diffraction minima occur whenever sin a
asin 0 - 

^,2^,... 
The diffraction maxima are close to a - t,+,+,..., but not at exactly these spots.

Consider a point in the pattern where cos2 P - 1 and sino-0. The cos2 p part says that the point is an
interference maximum - that the light from the two slits is in phase, because light from one slit goes an
integer number of wavelengths further than light from the other. The sin a part says that the point is a
diffraction minimum - that for each slit the light from part of the slit cancels the light from the other part,
so that there is no light from the slit. The light from the two slits would interfere constructively, except that
there is no light from either slit. The intensity is I - 1,.(0lax1) - 0.

The a in the denominator causes the pattern to lose intensity as we move away from the center of the pattern.
In the first diffraction maximuffi, light from the middle third of the slit cancels light from the top third, and
only light from the bottom third remains. In the second diffraction maximuil, light from the second fifth of
the slit cancels light from the top fifth, Iight from the fourth fifth cancels light from the third fifth, and only
light from the bottom fifth remains. As we continue, each diffraction maximum is less intense than the one
before.

In the last chapter, we treated the slits as being infinitesimally narrow. This is a practical impossibility,
since no light would go through such a narrow slit, but it works well mathematically. When o - 0, then a
becomes zero regardless of the angle, and (Y)' - 1 regardless of the angle. Light diffracts out evenly in
all directions. We had to take only interference into account.

Light of wavelength 614 nm goes through two slits with slit width 73 pm and slit separation 214 prr^. What
is the intensity of the second interference maximuffi, compared to the intensity at the center of the pattern?

Student: So I find the angle 0, then calculate c and p.
T\rtor: There's an easier way. What's p?
Student: Don't I need to know the angle?
T\rtor z p is zero at the center and r at the first interference maximun, regardless of d, I, or 0.
Student: So 0 -2r.T\rtor: Yes. What's a?
Student: Presumably you'll say I don't need the angle for that one either.
T\rtor: Yes, you don't. What's the ratio of p la?
Student: Most of the stuff cancels.

t' sind

ff sinO

T\rtor: You can use the ratio to find c.

a-]e: P*^Qd_ 2.r4r

71 3n 5n
2, T, T' ' ' ', which is at

At the center of the pattern, a
zero) corresponding to the first diffraction

TrCL

7T-A-

^

d:
a

p_-
a

EXAMPLE
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Student: That was easy. Does it always work like that?
Tlrtor: If you know one of o and p, then you can use the ratio to find the other.
Student: That must mean something.
Tntor: It does. The ratio dlo tells us what the last interference maximum inside the central diffraction
maximum is. The ratio here is 214173 - 2.93, so the second interference maximum is inside the edge of
the central diffraction maximun, but the third interference maximum just misses. This is true regardless of
wavelength. If we increased the wavelength, the pattern would get narrower but would keep the same shape
and intensity ratios, the whole pattern getting narrower together.
Student: Interesting. Now I can calculate the intensity.

r(o)- r*(ry)'{.""2p)

*:(ffi)'{."s21zzr;)
T\rtor: When you take the sine of o, remember to have your calculator in radians mode.
Student: Is that important?
Tlrtor: Yes. The equation was derived with o and 0 in radians.
Student: Does d have to be in radians, if we had found d?

T\rtor: It can be in whatever you want, and have your calculator in the correct mode. A hint that a and

B are in radians is the zr in the equation for them.

(0.3e2)' (r.0) : 0.154 - 15.4%

Student: So the second interference mucimum has 15% of the intensity of the central interference maxi-
mum, regardless of the wavelength of the light.
Ttrtor: Yes. It is determined by the ratio dlo.

EXAMPLE

The figure shows intensity as a function of angle (0" in the center) for a number of slit arrangements. Which
figure corresponds to

o a single narrow (a << 
^) 

slit?

o two slits with slit separation three times the slit width (d : 3a)?

o many narrow (o < A) slits?
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Student: What kind of evil bonehead question is this?
Tutor: One meant to see if you can distinguish between interference and diffraction.
Student: There's nothing to calculate.
Tntor: You might find a little. If a { ), where is the first diffraction minimum?
Student: The diffraction minima are at

asin 0 - m),

sin0 - (1)l
a

Student: If a ( ), then the right side is greater than one. We can't solve for the first diffraction minimum.
Tutor: There isn't one. The first diffraction minimum occurs when light from one side of the slit goes a
wavelength further than light from the near side. Because the slit is less than a wavelength wide, there isn't
room for this to happen.
Student: So is that the top-middle graph?
T\rtor: Yes. When the slit is very narrow, then light spreads way out.
Student: And when the slit is wide, the diffraction minima move way in. If a >
top-right graph?
lfrtor: Yes.
Student: And when they're about the same, we get the top-left figure.
T\rtor: Yes. You can tell that the minima are caused by diffraction rather than interference because each
minimum is so much smaller than the previous one, and because the central maximum is twice as wide as

the others.
Student: The left-middle graph looks like interference. The central maximum is the same size as the
others and they don't get much smaller as we go out.
T\rtor: Good. Is it two slits or many slits?
Student: How can I tell?
T\rtor: Compare the left-middle graph with the bottom-right graph.
Student: They're similar, but the maxima in the bottom-right graph are much narrower.
Tutor: That's what you get when you have many slits - narrower bright spots.
Student: So the left-middle is two slits and the bottom-right is many slits.
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Ttrtor: Yes. How wide are the slits?
Student: There isn't much diffraction, and there's no diffraction minimuil, so they're like the top-middle
graph,wherea<,\.
T\rtor: Yes. The slits in the bottom-right graph are wider than those in the left-middle, but still smaller
than a wavelength.
Student: Is that the difference between the right-middle and the bottom-middle graphs? They look the
same but with narrower slits.
T\rtor: Very good. Notice that the third interference maximum in each is missing.
Student: Is that because there is a diffraction minimum there?
T\rtor: Yes. There is a third interference maximuil, but the intensity is zero there. The light from one

slit travels three wavelengths further than light from the other, but there is no light from either slit due to
diffraction.
Student: The middle graph has the second interference maximum missing. So d
graph?
T\rtor: Yes, and d - 3a for the right-middle and bottom-middle graphs. What about the bottom-left
graph?
Student: The fourth interference maximum is missirg, so d - 4a.

When light travels through a circular hole rather than a slit, it again forms a diffraction pattern. The
diffraction minima and maxima are circular in shape, Iike the hole, and get weaker in intensity as you go

further out. The angle to the first diffraction minimum is

0 - r.22I,Od

where 0 is in radians and the small angle approximation applies (d = sin 0 x tan 0) , and d is the diameter of
the hole.

If we look at two objects that are close together but far from us, they may appear to be a single object.
Rayleigh's criterion for being able to tell the two objects apart is that the center of the second object has to
be outside the first diffraction minimum of the first object. This diffraction minimum depends on the size

of the hole through which we view the object.

0n: I'224
d,

EXAMPLE

An athlete is at the far end of a sports field, 100 m away. How large a telescope would be needed to
distinguish the athlete's nose, 3 cm long?

Student: Why do I want to see his nose?

T\rtor: To see if his opponent broke it.
Student: Okay. The small angle approximation applies, so

0xtan0_ Y
D

Student: where g is the length of the nose and D is the distance to the nose.

Tutor: Excellent.
Student: Is this the same angle 0 as in the previous equation?
T\rtor: Yes.

Student: What wavelength should I use? The problem doesn't say.
T\rtor: Pick one in the visible light range.
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Student: Like 500 nm?
Tbtor: Sure.

#=0-1.22)
d - r.22xD - 

!'22(500 " t9--n m)(100 m) : 0.0020 m :2.0mm
A 0.03 m

T\rtor: That's about the size of the pupil of the human eye.
Student: So I should be able to see the nose.
Tbtor: So you should just be able to see that there is a nose, but not tell the shape of the nose. This is
assuming that diffraction in the eye is what limits your eyesight - there are other things that could keep
you from seeing the nose, but diffraction limits you to just barely seeing a nose. If you use 25-mm{ia,meter
binoculars, then you can see details 12 times smaller.
Student: Let's see. If. d goes up, then y goes down. But what if the binoculars are 7x binoculars?
T\rtor: If the limiting factor is diffraction, then it's the ratio of the diameters that matter.
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Relativity

When two people are moving compared to each other, they measure the world differently. This is not because
one of them is less competent, nor is one right and the other wrong. The world is just different to two people
who are moving compared to each other.

Note that we don't say that one is standing still and the other is moving. One of the points of relativity is
that there is no "standittg still" frame of reference, compared to which all measurements are made. If you
drive by me at 60 miles per hour, I believe that I am standing still and that you are moving. But you see

yourself as station&ry, you see the car not moving, and you see me - by the side of the road - as moving
toward the rear of your car at 60 mph. Both of us are right, in our own frame of reference.

The important thing to remember is that nothing in relativity changes what we've covered so far. As long as
you stay in one frame of reference, all of physics works just fine. The issues begin when you need to change
from one frame of reference to another.

There are two basic postulates that we start with in relativity, and these lead to some interesting results.

The first postulate is that the laws of physics are the same in any inertial frame of reference. An
inertial frame of reference is one in which Newton's laws apply. Note that any frame of reference that moves
with a constant velocity compared to an inertial frame of reference is also an inertial frame of reference.

What is a noninertial frame of reference? Imagine that you are in a car, holding out your hand, with a Ping-
Pong ball on your hand. If the driver of the car steps on the brakes, the car will slow, but the Ping-Pong
ball will continue nroving forward. Flom your standpoint, you were just sitting there when, all of a sudden,
the Ping-Pong ball accelerated forward without any horizontal forces on it. Noninertial frames of reference
typically involve acceleration that causes objects to accelerate without forces.

The second postulate is that the speed of light is the same for all observers. In particular, if I shine a laser
beam and measure the speed of the light, I get c. If you are moving compared to me, and measure the speed
of the same light beam, you get the same speed c, rather than c * u or c - u.

The most immediate result of these two postulates is that two frames moving compared to each
other will not agree on whether two events are simultaneous or not. You believe that two events
happened simultaneously. As I move compared to you and look at the same events, I believe that they are
not simultaneous.

This is not because of the delay in my seeing the events. If an event happens somewhere in my frame of
reference other than in front of me, I subtract off the travel time of the signal to determine when the event
happened. Forexample, If I see sornething at t-0 but 3 x 106 m awayfromffi€, I realize that it took
0.01 seconds for the light of the event to travel to ffi€, so that the event really occurred at t - -0.01 s. All

279
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observers are considered smart enough to compensate for the travel time of the signals, but this does not
explain the effects of relativity.

A second result from these two postulates is that two observers, moving compared to each other, can me&sure
the distance between two points, or the time between two events, and will get different values. For each, it
is still true that d - ut, but they have different values of d, u, and t.

To convert space-time coordinates between frames of reference, we use the Lorent z transform.

t L,r' - ^l (A, - u At)
t Lt'-"y(At-bA")

where ? is the Lorentz factor

and u is the velocity between the two frames of reference.

Many of the most important effects of relativity can be understood in terms of proper time Ato and proper
length Ls. One frame of reference measures the "proper time" Ato, where proper is a name and not a
description, and the proper time is not the correct time. Similarly, one frame of reference measures the
"proper length" Lo, where proper is a name and not a description, and the proper length is not the correct
length. The person who sees both events (start and end) happen directly in front of them measures the
proper time. The person who sees the two ends stationary measures the proper length. These are never the
same Person 

r - Lo ll and At : .y Lto

EXAMPTE

Captain Krank leaves Earth to go to
Krank travels at 0.866c and Vapid is
trip take, as measured by Krank?

Vapid to visit Smerk while McClay stays behind on Earth. Captain
26 It yr away, both as measured by McCIay. How long does Krank's

K
0.866 c

26 lt Yt

Student: If we can use proper time and proper length, then that will be easiest?
T\rtor: Yes. Who measures the proper length for Krank's trip?
Student: McClay is not moving, so he is the one measuring proper time and length.
T\rtor: Being on Earth does not mean that he isn't moving. From Krank's point of view, Krank isn't
moving and McClay is moving to the left at 0.866c.
Student: How do we tell who is moving and who is standing still?
Tntor: There is no "standing still." Each person is standing still in their own frame of reference, and
everyone else is moving. Everyone is correct for their own frame of reference.
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T\rtor: That is the distance measured
measured by McCIay.

Student: But I can use d : ut, right?
T\rtor: Fbr each person and each frame of reference, you can do that.
Student: So
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26 ltYr. 
-3oyr0.866 It yr /yr 'r -

and the velocity measured by McClay, so it's the time

the two frames of reference.

26 lt yr
0.866c

by McClay

Student: And if I take the distance measured by Krank and the velocity measured by Krank, I get the
time measured by Kratrk, right?
Tutor: Right. What is the distance measured by Krank?
Student: It isn't 26 lt yr.
T\rtor: Correct. McClay sees the proper length because the endpoints aren't moving in his frame of
reference. To him, Earth and Vapid are stationary.
Student: So McCIay measures the proper length for the trip because the planets are not moving in his
frame of reference.
Ttrtor: Correct. And what is this "proper length" ? e

Student: 26 lt yr.
T\rtor: What is the length as measured by Krank?
Student: He mea,sures a different length.

L-Loll so + trKr"rrk - LM.clavf ^f

Student: What is 7 ?

T\rtor z j comes from the difference in speeds between

11
"Y-

T\rtor: How far is the trip according to Krank?
Student: Since McClay measures the proper length, w€ can use the Krank-McClay 1to find the distance
according to Krank.

trK.".,k : LM.ct^vf "l - (26 lt yr) l@ - 13 It yr

T\rtor: Good. How fast is Krank going according to Krank?
Student: tick questio Krank isn't moving according to Krank.
I\rtor: Very good. How fast is Krank going according to McClay?
Student: Is it just 0.866c?
Ttrtor: Yes. The dl'e: -deA, from relative motion still works.
Student: So I need a minus sign.
I\rtor: Gamma is not negative. It is always a positive number greater than 1. When we square the
negative velocity the sign disappears. There are some times when the sign of the velocity matters, but not
yet.
Student: Okay. Now we calculate how long the trip takes according to Krank.

tKrank: 
dK""k _ t=t]ll' :g - 1g.,ruKrank 0.866c 0.866 lt yrf yr Lv r L

Thtor: We could also have found the time according to McClay and converted the time into Krank's frame.

du"cl.y 26 It yr 26 lt vr
tM.Cluy : ^rrvvral : 

-- - 
30 yfuMcClay 0.866c

T\rtor: Who measures the proper time?
Student: Wouldn't that be McClay, since he measures the proper length?
Tutor: No, the proper time is measured by the person who is at Earth when Krank leaves Earth, and is

1

(0.866)2
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also at Vapid when Krank arrives at Vapid.
Student: That would be Krank.
T\rtor: Correct.

CHAPTER 37. RELATIVITY

Student: But if McClay measures proper length and Krank measures proper time, which one is the correct
frame of reference?
T\rtor: Neither. There is no "correct" frame of reference. Each
gets different results, but their measurements are correct for their
change measurements from one frame of reference to another.
Student: So I can use d - ut as long as all three are measured in

frame of reference measures things and
frame of reference. We use relativity to

the same frame of reference.

At : ",f Ato Atu"clay : I Ltxrank

Atx,.,'k - Atu"c uv 11 - (30 yr) I Q) : 15 yr

Student: Now I've heard of this so-called "twin paradox," where one twin stays on Earth and the other
goes away and comes back. Can't we say that the one in the rocket stays put while the one on Earth goes
away and comes back?
T\rtor: Good question. When the twin in the rocket turns around, everything in the rocket ship that is
not bolted down picks itself up and flies against the front of the ship. This never happens to the twin on
Earth. This moment of noninertial frame of reference is the difference. The equations we use in this chapter
assume a constant velocity between two frames of reference. When the rocket ship turns around, the velocity
between the twins changes, if only from positive to negative. So we have to do the problem in two pieces,
and in each piece the twin in the rocket ship experiences the proper time, which is shorter, so he is younger
when they get back together.

Just as two observers will measure lengths and times differently, so they will also measure velocities differently.
To transform a velocity from one equation into another, we use

u,+u
u - 1+ u,uf c2

where u is the velocity measured in one frame and u' is the velocity measured in the other.

EXAMPLE

In the previous example, Scootie leaves Earth toward Vapid at 0.943c. How long does Krank's trip take
according to Scootie?

0.866 c
K

26 lt Yt
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Student: Can we use At - 1 Ltg?
T\rtor: We can. We would find the proper time, and then find the gamma factor 7 between the frame with
the proper time and Scootie's frame.
Student: Krank measures the proper time, so Af - 15 yr.
T\rtor: Good. Now we need 7 between Krank and Scootie.
Student: So I take the speed between Krank and Scootie . . .

T\rtor: Which is?

Student: 0.943c.
I\rtor: That's the speed between McClay and Scootie.
Student: Can I subtract?

0.943c-0.866c-0.077c ?
a

Tutor: That is the speed at which McClay sees Scootie gaining on Krank. It is the difference of two
velocities, but it is still in McCIay's frame of reference.
Student: So we need to use the complicated formula. How do I keep u and u' and u straight?
Ttrtor: It's possible, but not necessary. In the numerator, do what you already did. If you sa\M two cars
on the highway, one going 86.6 mph and the other chasing it at 94.3 mph, you would say that the second
was gaining on the first at 7.7 mph. Then, whatever values you used in the numerator, just use them in the
denominator.
Student: Like this?

0.943c - 0.866c ?
1 + (0.e43c)(0 .866c) lc2

Tutor: More like this.

Student: Now if I used
2 and 3 to 1.10?

T\rtor: Not really. The
Student: Ok y. Now I

(0.e43c) + (-0.866c)
- 0.42c

1 + (o.s43\(-0.866A l/
Student: So if one of them is negative in the numerator, it is negative in the denominator?
T\rtor: Precisely.
Student: Then I find 7 from this velocity.

"Y- - 1.10

I got 2. Is there some way to go trom

At : ^f Lto Ats"ootie : I Ltxrank - (1.10)(15 yr) - 16.5 yr

Student: Since Scootie is going faster, shouldn't he see a shorter time?
T\rtor'. ^l is always more than 1, so any other time is longer than the proper time. Whoever measures the
proper time measures the shortest time, and everyone else measures a longer time.
Student: Could we have done the calculation in Scootie's frame of reference?
T\rtor: Yes. According to Scootie, the world looks like this.

0.943c and found 7, I'd get 3. With 0.866c,

equations in relativity are highly nonlinear.
can find the time.

1 - (0.42)2
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0.42 c+

T\rtor: The question for Scootie is: how fast is Vapid gaining on Krank?
Student: So Krank is facing toward the right but moving toward the left?
T\rtor: Everyone sees Krank facing toward the right, but Scootie sees Krank moving toward the left - in
the picture. That is, Scootie is gaining on Krank, but Scootie is gaining on Vapid faster than he is gaining
on Krank.

A r AdS"ootit
ruDcoof,le :r-ruDcoof,le 

- uscootie

Student: What is Adscootie?
T\rtor: How much distance Vapid must gain on Krank, according to Scootie.
Student: According to McCluy, that's 26 lt yr.
T\rtor: Very good. What is that distance according to Scootie?
Student: McClay measures the proper length, and 7 between Scootie and McClay is 3.

trscootie : Ly."ct^yll - (26 lt yr)l(3) : 8.7 lt yr

T\rtorr us.ootie is the speed at which Vapid gains on Krank, according to Scootie.
Student: Is that uscootie : 0.42c - 0.943c - -0.523c?
T\rtor: Yes.

AdS"ooti"

8.7 lt yt

g.Lt, ,r, _ 16.6 y,
0.523 lt yr lyr G

Afs"ootie :
Uscootie

Student: It's not quite the same.
T\rtor: Because of rounding in intermediate steps.

EXAMPLE

Ashley obserttes two flashes, one red and one blue, both at t - 0. Also at f : 0, Helen races by Ashley at
n -- 0.5c. Which flash does Helen observe first, and by how much?



eleH

Ashley
l*-100 m

Student: What do we mean by "observes?"
T\rtor: Ashley does not see the light of the flashes at the same time. She sees the red one first, and then
the blue one 1 ps later. But she concludes that, because the blue light had to travel further, they really
happened at the same time. Her "observation" is that they happened at the same time, once she corrects
for the travel time of the signal.
Student: And we want to know which one Helen "observes" first, which is different from which one she
ttseestt first.
I\rtor: They might be the same, but y€s, after she subtracts off the travel time of the signals, she might
conclude that the one she "saw" first really happened second.
Student: So which of Helen and Ashley mea"sures the proper time?
T\rtor: Which one is at the red light when it goes off and at the blue light when it goes off?
Student: Neither.
T\rtor: So neither of them measures the proper time.
Student: Does that mean that we need to use the Lorentz transform?
T\rtor: Yes.

I Ar'-.y(A, -a At)
I At'-"y(At-hA*)

Tlrtor: Take Ashley as the "unprimed" frame, so that t, fr, and u are mea.sured by Ashl"y, and fs is the
time of the red flash as measured by Ashley.
Student: Then ta : 0.

Ttrtor: Yes. Take Helen as the "primed" frame, so that t', x', andu' are measured by Helen, andt'e is the
time of the red flash as measured by Helen.
Student: We don't know that.
T\rtor: Correct. We do know fn, ts, frR, fr7, and u.

Student: u is the velocity of Helen as measured by Ashley, measured by Ashley because it is unprimed.
Is u positive or negative?
T\rtor: According to Ashl"y, is Helen moving in the positive or negative direction?
Student: Positive. So u is positive. Does that mean u' is negative?
T\rtor: It does. To use the Lorentz transform, both people must have there r-axes parallel, not antiparallel.
For both of them , t : tt - fi : r' :0 at the moment that the one passes the other.
Student: Does it have to be that way?
T\rtor: No, but if we didn't then the equations would be messier. Like when we chose the potential of a
point charge to be zero at infinity didn't have to, but not doing so would lead to messier equations.
Student: Ok"y. Now I can find the times according to Helen.

285
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t'R: t (t" -Y (+1oom)) (+1oo -1 )

2(3 x 108 -/r)
I.92x10-7s--0.I92pts

t'B :, (r" - Y(+aoo*)) :-

-3"")

3 "") - (1 lbb)

rll
(,;

t'n

(1.155)(+aoo m)

2(3 x 108 -/s)
T\rtor: The negative times me

isatt:0.
Helen "observes" both of the flashes before she passes Ashley, which

Student: And because the blue time is more negative, it happens first.
Tutor: It happens first in Helen's frame of reference. They happened at the same time in Ashley's frame
of reference. For a third person that Ashley sees going in the opposite direction as Helen, that person would
observe the red flash first.
Student: So one observer might say that "the bomb went off before the fuse was lit."
T\rtor: An interesting point. In Ashley's frame of reference, there would not be time for the red flash to
"cause" the blue one, or vice versa. The second one already happened before the light or signal from the first
one arrived. It is possible to show that, because one can't cause the other in Ashley's frame of reference, it
can't cause the other in any inertial frame of reference. Therefore two observers can observe different orders
for the events. If the red flash happened after the blue one in Ashley's frame, long enough after (> 1 ps)
that the blue one could have caused the red one, then there is no frame in which the red one happened first.
Student: So if I find the distance between the flashes in Helen's frame, it will be greater than the time
difference between the flashes in Helen's frame times the speed of light?
T\rtor: Yes, so that Helen concludes that the blue one could not have caused the red one.

Student: Let's check.

L,r' - ^t(A" - a ar) - (1.1bb) (tsoo m) - (0.bc)(0)) - 346 m

d - ct -(3 * 108 -/s) l 
(f- 0.770ps) - (-0 .rs2r')) 

I - 173 m

Student: Helen sees the flashes 346 m apart, but in the time between them light could only travel 173 m.
So she concludes that one couldn't have caused the other.

Energy and momentum also have relativistic values. The momentum is

pi - lmd
For objects moving much slower than the speed of light, "y = 1 and we get the same equation for momentum
that we have always had.

One of the most well known equations from relativity is E - mc2. This is
something has even when it isn't moving. The total energy is

the rest energy, the energy that

E _ ^ymc2

The difference between the total energy and the rest energy is the kinetic energy K.

E-1mc2:mc2+K
For slow speeds ,, K x lmu2.

Another useful equation involving energy is

E2: @")r+(*"r),
Here E is the total energy. Often nuclear physicists will describe particles with their kinetic energy. For
example, a 100 keV electron is one with a kinetic energy of 100,000 electron volts. Note that 8,, pc, and mc2

all have units of energy.

I



Chapter 38

Photons and Matter Waves

In the last few chapters, we have examined how light acts like a wave. Interference and diffraction are wave
behaviors, and anything that demonstrates interference and diffraction is acting like a wave. Now we ask
the question, what kind of behavior is a characteristic behavior of particles? If we could identify such a
behavior, and then found something that showed this behavior, we would know that this something was a
particle.

The characteristic behavior of particles is that they can't be arbitrarily divided. If I want to reduce the
power of a wave, I can always reduce the amplitude. I cannot continue to reduce baseballs - eventually I
get to one baseball and I can't go any further.

The stunning observation is that light shows this indivisibility feature, and small particles like electrons show
interference behavior. Therefore light sometimes acts like particles and electrons sornetirnes act
like waves.

Light behaves like little particles called photons. The energy in each photon is

E-

where h
amount of energy that can be taken from light has to be an integer multiple of the photon energy. You can't
take half of a photon's worth of energy from a beam of light. In this way light is indivisible and behaves like
a stream of particles.

When does light behave like a wave and when does it behave like particles? In general, when light interacts
with light, it behaves like a wave, showing interference. When light interacts with matter like atoms,
it behaves like particles, showing indivisibility. In particular, an atom can absorb only one photon and
therefore only the energy of one photon.

Consider what happens when light hits a metal. Given sufficient enersy, electrons can escape from the atoms
in the metal. The energy needed, called the work energy O, is typically a few electron volts. But an atom
can absorb only one photon. So if a single photon has enough energy, or E, > O, then an electron can escape
from the metal. Any excess energy that the photon has above the work function shows up as kinetic energy
of the electron after it escapes. If the photons do not have enough energy, then the electrons can't escape
at all, no matter how intense the light. More intense light is more photons, but not greater energy photons.
This is called the photoelectric effect. People knew about the photoelectric effect, but it took Einstein to
explain it using photons.

It is possible in these next few chapters to do the calculations in joules, meters, and the other units that
you've become familiar with. It is easier to use units of about the right size, such as electron volts ("V) and

hf :X
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nanometers. Remember that 1eV - (e)(1 V) :1.6 x 10-1e J and that 1 nm - 10-e m. In particular, look
for the item in the left column, try to turn it into the combination in the middle column, and substitute the
value in the right column.

Look for Thrn into Value
h

TTLe

mp
p
U

k

hc
TfL.c2

ffipc2
pc
ulc
ke2

1240 nm.eV
511 keV - 511,000 eV
938 MeV - 938 x 106 eV
momentum in energy units
velocity parameter
1.44 nm.eV

EXAMPLE

When light of.470 nm strikes a metal, electrons are ejected with a maximum kinetic energy of 0.16 eV. What
is the stopping voltage and the speed of the ejected electrons when 410 nm light is used?

Student: I need to know the energy of the photons.
Tutor: Yes, that would help.
Student: And I use hcl ), to find that.

E-hf:y
^ 

470 nm

Student: And for the 4I0 nm photons.

E-Yl 410 nm

Student: Is the kinetic energy of the electrons proportional to the photon energy?
T\rtor: No, because the work energy does not change.
Student: Then what can I do?
T\rtor: Can you find the work energy?
Student: How do I do that? Don't I need a formula?
T\rtor: How much energy is in the 470 nm photon?
Student: 2.64 eV.
T\rtor: And after the atom absorbs the energy from the photon,0.16 eV is left over and goes into kinetic
energy of the electron.
Student: So 2.64 eV - 0.16 eV - 2.48 eV must be the work function.
T\rtor: Yes. Now the 410 nm light hits the metal.
Student: But the work function is still the same. So 3.02 eV - 2.48 eV - 0.54 eV must be energy left over
to become the kinetic energy of the electron.
T\rtor: Yes.
Student: Why do they talk about the "maximum kinetic energy?"
Ttrtor: Some electrons are easier to remove from the atom than others. The work function is the energy
needed to remove the easiest electrons. When a harder-to-remove electron is ejected, there is less energy left
over for kinetic energy.
Student: I see. And what's this "stopping voltage" about?
Ttrtor: It comes from the way in which the experiment is done. It's easy to detect the presence of an
electron, but hard to detect it's velocity. So we use an electric field to slow it down until it stops. We create
a potential difference and gradually increase the potential difference until the electrons can't make it any
more. So the stopping voltage is the kinetic energy divided by the charge of the electron. If the kinetic
energy is 0.54 eV, then the stopping voltage is 0.54 V.
Student: That seems like a strange way to do things.
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T\rtor: Imagine that some people are tossing basketballs in the air. You are blindfolded and can't see

them, but you want to know what the greatest energy is of any of the basketballs. So you hold out your
hand and keep moving it up until you don't feel any more basketballs hitting it. The potential energy of
a basketball where your hand was when you quit feeling them tells you about the maximum energy of the
basketballs.
Student: So when we look at electrons we're blindfolded.
T\rtor: In the sense that we can't just know everything about them.
Student: Ok y. I have the kinetic energy of the electron in electron-volts. I can convert that to joules,
put in the mass of the electron, and solve for the speed.
T\rtor: You can, but there's an easier way.

Student: Is this the "combinations" thing?
Trrtor: Yes.

KE:)*r' - f,{*"') G)'

(:)'

- 0.00145

u - 0.00I45c- 0.00145(3 " 108 -/s) - 4.36 x 105 m/s

T\rtor: The advantage to this is that you aren't dragging big exponents all over the equations.

Just as light can act like a particle, matter like electrons can act like waves. When they do so, their
wavelength is the de Broglie wavelength,

u

c

^- 
L
p

This equation is also true regarding the momentum of a photon.
electron. This equation does not work for anything that has mass

A common mistake is to use I - E for

- it only works for photons.

EXAMPLE

What is the de Broglie wavelength of a 14 eV electron?

Student: I can't use 
^ 

- E for the electron because the electron has mass.
Tutor: Good.
Student: I need to find the momentum. So I use the kinetic energy to find the speed, just like in the last
example. Then I use the speed and p - 1mu to find the momentum.
Tutor: You could do that. Because the kinetic energy of our electron is so much less than the rest energy,
the electron is going much slower than the speed of light, so you could use p - mu.
Student: So the way to tell is to compare the energy to the rest energy.
T\rtor: That's one way. If K K, mc2, then you're safe with p - n'LU. Also, you don't really need the speed,
do you? That's just an intermediate step.
Student: Correct. But I need to find the momentum.
T\rtor: If we find the speed from the energy, and put the speed into the momentum, we get

2(0.54)

511,000

1.!

i*o' and p-rrla + p-tffi
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Student: Is there a reason that we're using K for kinetic energy now instead of K E?
T\rtor: Because we have a total ener gy E that we didn't have before, so someone might get confused and
think K E was the product of two values.
Student: Okay, so I have p - tffit<. I want to do this combinations thing.
Tutor: It will be much easier.
Student: I put two factors of c inside the square root to get mc2, and add one factor of c to the left, and
I get pc. It works out perfectly.

p- \ffi pc-
Ttrtor: Then you can find the wavelength.
Student: Yes. I need to use

(1240 nm.eV)
- 0.328 nm - 328 pm

2(511, 000 eV) (r4 eV)

Student: What's a pm?
T\rtor:Apicometer,or10_12m.Justrememberthatourearlierstepthatledto,Mrequiredthat
the speed be slow.
Student: What if the speed isn't slow?
T\rtor: Then we find the total energy E - K + mc2, use E2 - (p")2 + (*"')' to find the combin ation pc,
and use 

^ 
- hlp - hcf pc to find the de Broglie wavelength. There's more algebra involved, but the idea is

the same.

,hhchc/^ - ppc@

2(mc2)K

Now that we know that an electron acts like a wave, w€ can show
that the de Broglie wavelength of the electron is connected to the
wavelengths corresponding to greater momentum.

you a picture of an electron. Remember
momentum of the electron, with shorter

Two interesting questions to ask are: where is the electron and how fast is it going? Because of the width
of the "wave packet," it is hard to say exactly where the electron is. To improve the determination of the
position of the electron, we need to shrink the width of the wave packet (shown horizontally). But then the
wave packet will consist of fewer waves, so we can't determine the wavelength as well, and the wavelensh
tells us the momentum.

This effect is the Heisenberg uncertainty principle, which states that the uncertainty with which the
position and momentum are measured must have a minimum value.

L,r Lp* )h: h

2n

We cannot determine the position of an electron exactly without losing all information on its velocity.
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EXAMPTE
tr

An electron has a speed 10 1450 +.25 m/s. What is the minimum uncertainty in its position?

Student: I need to use Heisenberg's uncertainty principle.
T\rtor: How did you decide that?
Student: Because it asks for minimum uncertainty. Nothing else we've done has required a minimum
uncertainty.

A,r Ap* ) h:

ArmAur>

Tbtor: Can you spot the combinations in the equation?
Student: You mean like h - hc?

h

2"
h

h,

Ar (*"') A' 
>c2r

1240 nm.eV
A,r ) hc

2r(mcz)(Au lc) 2n(511, 000 ev)(25 lQ x 10t))
: 4634 nm - 4.6 pm

Student: Where does the 1450 m/s go?

T\rtor: The minimum uncertainty in the position depends on the uncertainty in the velocity, not the
velocity itself. To know the momentum better, w€ need the wave packet to contain more "wavestt so that we
can better determine the wavelength. That makes the wave packet longer, spread out over more distance.
Student: So there's no way to measure the position of an electron to better than 4.6 pr;m.

T\rtor: Sure there is, but not while mea"suring its velocity to a precision of 25 mls. In a previous example,
less than 1 eV of kinetic energy gave an electron a speed of half a million meters per second. So this is a
very slow moving electron. For an electron moving with a speed of 5 x 105 m/s, this is an error of 0.005%.
Student: I would think that a slow-moving electron would be easier to pin down than a fast one.
T\rtor: The way you make a wave packet is by adding waves of difference frequency or wavelength. The
narrower the wave packet, the more wavelengths you need. If you use fewer different wavelengths, so that
you know the wavelength better, then the wave packet will be wider.
Student: Why don't we see the Heisenberg uncertainty principle in larger objects? When a policeman
pulls me over for speeding, he says he knows my speed to 1 mph. Then he must not know where I am.
Tlrtor z 25 m/s is about 50 mph, so he claims to know your speed 50 times better than our electron, and
the uncertainty in the position is 50 times worse, or 0.25 mm. But the mass of the car is much bigger, so

that the minimum uncertainty in the position of the car is about 10-34 m while knowing the velocity to the
nearest I mph.
Student: So the Heisenberg uncertainty principle is not going to keep me from getting a ticket.

-J



Chapter 39

More About Matter Waves

In the previous chapter, w€ treated a moving electron as a traveling wave. What happens when an electron
acts like a standing wave? In a standing wave, we forced nodes at particular places, and the result was that
only specific frequencies would work. For an electron in a similar situation, only specific energies are allowed.

Imagine an electron in a long skinny tube. The tube is so skinny that we worry about the motion of the
electron in only one direction. Because the electron behaves like a wave, it must form a standing wave with
a node at each end. The allowed wavelengths of the electron are 2LlI,2L12,2L13,2Lf 3,. . . Flom these we
can find the allowed momenta. 

h h hn
P- 

^ 
2Lln 2L

The potential energy doesn't change throughout the box, so the energy is the kinetic energy.

E - I*,, -- r* (h)' : *: * (#)
There are specific values of the energy of the electron that work, and all other values don't work. We call
this a one-dimensional infinite square well. The electron can move in only one dimension, it takes an infinite
energy to get past the ends of the tube, and the potential energy is "flat" within the well, or square.

A similar thing happens inside an atom, where the electrons orbit the positively charged nucleus. A hydrogen
atom consists of an electron orbiting a proton. When the electron makes one complete orbit, the distance
it travels must be an integer number of wavelengths of the electron 2rrn - rl\n This is the Bohr model of
the atom. Because only specific values of the wavelength are allowed, only specific values of the energy are
allowed. FYom this, it is possible to determine the allowed energies.

13.6 eV
n2

Why is the energy negative? Remember that the potential energy <-rf the proton and electron when they are
far apart is zero. As the electron approaches the proton, it gains kinetic energy and loses potential energyr
so that the potential energy is negative. This means that we would have to do work to move the negative
charge away from the positive charge and back to an infinite distance apart. While the electron is close to
the proton, w€ take away some of its kinetic energy. The kinetic energy is positive and the potential energy
is negative, but the potential energy is more negative than the kinetic energy is positive, so the total energy
is negative.

It is a general principle that the energy of anything that is stable is less than the energy that
the pieces have when they are apart. Things tend to move toward lower energy, so if the energy together
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was positive, then it would tend to move apart, and be unstable. The energies of the one-dimensional infinite
square well are positive, but the energy when the electron is outside the "box" is infinite rather than zero.

A system that can have only specific values is said to be quantized, and the study of quantized systems is

called quantum mechanics. Not all quantized things are microscopic. When you bry eggs you can buy a
dozen, or a half dozen, or perhaps a single egg, buy you can't bry 1.39 eBBS, so eggs are quantized. You can
go to the butcher's store and buy 1.39 pounds of ground beef, or any value you like, so ground beef is not
quantized, but is a continuum. The smallest possible value that a quantized system can have is
called a quantum. Therefore a "quantum leap" is the smallest possible change in a quantized system.

The different allowed values in a quantized system are called states. The lowest energy state is called the
ground state, and the next lowest state is the first excited state. To make a quantum leap, or change from
one state to another, in a hydrogen atom involves moving to a different energy. To move to a higher n value,
or higher energy, requires that the atom gain energy. To move to a lower n value, or lower energy, requires
that the atom lose energy.

Atoms gain and lose energy by absorbing or emitting a photon of light. The energy of the photon must be

equal to the difference of the energies of the initial and final states.

AE - lEnt*n - Eto*l: E,

Because both the initial and final energies are quantized, the photon must have exactly the right amount of
energy, to about 8 significant figures. If the energy of the photon is not exactly right, then the atom can't
absorb the photon and can't make a transition. This is the principle behind spectroscopy.

EXAMPLE

What happens to a hydrogen atom in the ground state when it is illuminated with light of wavelength 99.255

rffi, with light of wavelength 97.255 ril, and with light of wavelength 90.255 nm?

Student: The atom absorbs the energy of the photon.
T\rtor: Not necessarily. If the energy from the photon puts the atom between allowed energy states, or
energy levels, then the atom can't go there and won't absorb the photon.
Student: So I need to see whether the photon has the right amount of energy.

1240 nm.eVE-

E-

E-

hc

)
hc

99.255 nm

1240 nm.eV

- 12.493 eY

- 12.750 eY

- 13.739 eV
ĥc

T

97.255 nm

1240 nm.eV

90.255

13.6 eVEn:
n2

Thtor: What are you trying to do?
Student: I need to find out if the energy of the photon matches one of the allowed energy levels. So I'll
solve for n and see if it's an integer.
T\rtor: Your idea is partially correct. The question isn't whether the photon energy matches 13.6 eV
divide d by n2 , but whether the energy of the atom after absorbing the photon matches an allowed energy.
Student: Ah, so I need to add the photon energy to the starting energy to find the after energy.
T\rtor: Yes.

Student: What's the starting energy?
Tlrtor: The hydrogen atom is in the ground state. What value of n gives the lowest energy?
Student: n : I. So the initial energy is 13.6 eV.
T\rtor: Negative 13.6 eV.

nm

- 12.493 eY ?
o
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Student: Oops. With the first photon, the energy afterward is

MORE ABOUT MATTER WAVES

-13.6 eV + 12.493 eV - -1.107 eV

- -1.107 eV
13.6 eV

n2

: 3.51

Student: 3.51 is not an integer, so we can't shine 99 .255 nm light on a hydrogen atom.
T\rtor: Oh, w€ can shine the light on a hydrogen atom, but the atom doesn't absorb any of the photons.
Student: Could the hydrogen atom absorb a photon and go up to n: 3?

T\rtor: The photon has too much energy. Es: -1.511 eV.
Student: But the atom could emit a photon with the excess energy, and then it would be ohy, right?
T\rtor: That doesn't happen. It's possible to cause effects similar to that to happen, but that's for ad-
vanced quantum mechanics and we won't get into that stuff.
Student: Okay, so nothing happens. With 97.255 nm light,

En

- 13.6

En

ev * 12.750

13.6 eV

eV - -0.850 eV

- -0.850 eV
n2

- 4.00

Student: n is an integer, so it works. The atom absorbs the photon and jumps to the rr - 4 state.
T\rtor: Good. Then what happens?
Student: I don't know.
T\rtor: The atom wants to be in the lowest possible state, remember.
Student: So it jumps back down to the ground state?
Ttrtor: After a while, like 10 or 20 ns, it jumps to a lower state, either n - 3 or n- 2 or n-- 1. It
lose energy in the process so it emits a photon with the appropriate energy.
Student: Not the energy of the n - 3 or n - 2 or n

has to

of the
two states, right?
T\rtor: Right. This photon goes off in a random direction, not necessarily the same direction as the
incident photons. So if we see photons going off in other directions, that is a sign that the energy of the
incident light matches a transition energy.
Student: Is that how scientists do spectroscopy, by changing the wavelength of the incident light until
they see light coming off?
T\rtor: A simplistic but substantially correct explanation.
Student: Cool. Now with 90.255 nm light,

ev * 13.739 eV

13.6 eV
n2

Student: How am I supposed to take the square root of a negative number?
T\rtor: You aren't. There are no values of n for which the energy of the hydrogen atom is positive.
Student: So nothing happens.
Tntor: Something does happen. What happens at energy equals zero?
Student: The hydrogen atom has zero energy when the electron and proton are separated.
T\rtor: So a positive energy is more than enough for the electron to leave the proton.
Student: Like the photoelectric effect.
l]rtor: Yes, but we call it ionization. The ionization energy is the energy needed to extract an electron.

+0.139
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Student: How is the ionization energy different from the work function?
T\rtor: It isn't really, except that we use the work function only for metals.
Student: Okay. What are the allowed positive energies?
T\rtor: Any positive energy is allowed. Once the electron is free of the atom, it can have any kinetic energy
it wants. Above zero energy, the energy of the hydrogen atom is a continuum. Also, remember to not use

-13.6 eY lnz for a particle in a one-dimensional box; it only applies to the hydrogen atom.
Student: What about other atoms, like helium?
T\rtor: When there are two electrons in an atom, the problem becomes extremely difficult to solve. A
helium ion H e+ is similar to a hydrogen atom, because it has one electron. For one-electron atoms with
greater charg€s, like the helium atom, the allowed energy levels are

E--,13'6eY\22
TL'

T\rtor: where Z is the charge of the nucleus. For atoms with more than one electron, someone has already
measured them so we look them up in a book.

EXAMPLE

The shortest wavelength in a series of Li++ is 40.5 nm. What is the longest wavelength in the series?

Student: Lithium has a charge of 3, so Z - 3 and the energies are -13.6 eV . 7z lr'. But I don't know
the initial or final levels, and what's a "series" ?

T\rtor: A series is em'iss'ion l'ines from transitions that end with the same n. An electron in the Tl

state can drop ton - 3, but an electron in the n- 5 state can also drop ton - 3, and so on. When we get
to high values of n, the states have energies that are close together, so a series is transitions with photon
wavelengths that are close together. For example, in hydrogen all of the transitions that end at n - t have
energies >
have photon wavelengths in the infrared.
Student: So the names Balmer and Paschen mean the level at which the transition ends.
T\rtor: They mean the lower-energy level of the two, which is the ending level when photon emission takes
place. The Paschen series in hydrogen is all transitions down to n - 3.
Student: What about up to n - 3, do we have a name for that?
T\rtor: No. It's not easy to go up from n - 2 to n - 3. When we put the hydrogen atom in n
stays there for only a short time, like 10 or 20 rs, before going back down to n
emission lines are all of the ones available but the absorption lines are only the ones that start at n - 1 (ot
the ground state).
Student: What's a "line?"
T\rtor: When we excite an atom into higher energy states and it decays, it gives off photons.
Student: And the photons have energies equal to the difference between the energies of the initial and
final states, right?
T\rtor: Yes. When we view this light through a spectrometer, like a diffraction grating, it appears as lines.
So sometimes we call the photons "lines."
Student: Ok y. I have a 40.5 nm photon, with an energy of

hc l24o "ry :30.6 evE-T: 4o5r-
Student: But I don't know what level the transition finishes at.
T\rtor: Look at the other end. At what level does it start?
Student: The problem doesn't say that either.
T\rtor: The problem does say that you have the shortest wavelength in the series. Shorter wavelengths
correspond to what?
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Student: Greater energies.
Thtor: Yes. If this is the shortest wavelength and greatest energy, is the initial energy higher or lower?
Student: It would be the highest starting energ"y, or the biggest n. How big can n get?
Thtor: As big as you can make it. Experimentally, it is hard to hold atoms together when n gets to be
100 or so. The energy gets too close to zero.
Student: So I can take zero as the starting energy, and the energy of the final state is -30.6 eV.

En:- (tg'6 eY)(32) : -30.6 ev -> n - 2

Student: The series is all transitions O"# to n - ).
Tutor: Good. What's the longest wavelength in the series?
Student: Longer wavelengths are lower energies, so I want the smallest transition energ.y. That would be
when the electron goes to n - 3.

Es:- (ts'o 
-eYXg2) - -13.6 ev
32

Et: A,E - lDs - Ezl : l(-13.6 eV) - (-30.6 eV)l : 17 eV

1240 nm.eV :72.9 nm
17 eV

The solutions that we've presented are overly simplistic. To solve these and other problems properly we use

the wavefunction. A wavefunction iI, is a function of both position and time tU(r, A,z,t) - rh(fi,y,z)e-iutt,
and often the value of the wavefunction is a complex number. To solve a quantum system we have to find the
wavefunctions. Only specific wavefunctions work, where working means to satisSr the Schrodinger equation

#.ryw-u(*)t$:o
The significance of the wavefunction is two-fold. Using the wavefunction we can calculate energy levels,
momentum, angular momentum, and transition probability between levels, but the math gets na,sty. Also,
the probability of finding the electron at a given spot is proportional to the square of the wavefunction t/2
at that spot. Therefore, the integral of the square of the wavefunction is the sum of all the probabilities of
finding the electron everywhere, so it must be equal to 1.

For the electron in the one-dimensional infinite square well, the wavefunctions that work are

'b,@)-- l|'in(T")
These resemble the amplitude of a standing wave. Because the wavefunction is zero at each end, the chances
of finding the electron very close to the end of the one-dimensional box are nil. For the n - 2 state, ,h is
zero at the middle, so the electron is never there, but for the n - 1 state that is the most likely place for it
to be.

I tt excited state n=3 n= 4Ground state
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Consider the one-dimensional finite well shown. The wider lines represent the potential well - it is possible
to get out of the well without an infinite amount of energy, and it takes energy to get from the left side to
the right. The horizontal line represents the energy of one of the wavefunctions. The electron has enough
energy to get to both the left and right parts of the energ.y well but not enough to get out. The sinusoidal
line is one of the wavefunctions.

The potential energy on the right side is greater, so if the electron is there it must have less kinetic energy.
Less kinetic energy means less momentum, and a longer wavelength. Also, the wavefunction extends past
the walls of the well. There is a nonzero chance of finding the electron outside of the well, even though the
electron doesn't have enough energy to get out. This is a purely quantum mechanical effect that doesn't
happen in the old "classical" physics.

EXAMPLE

An electron is in a one-dimensional infinite square well of width 0.14 nm. The electron has an energy of
76.76 eV. What is the probability of finding the electron in the leftmost 0.02 nm of the infinite well?

Student: So I need to find the wavefunction and integrate it from 0 to 0.02 ril, yes?

Ttrtor: Mostly correct. You want to find the probability of the electron being at each spot in that region.
Because the probabilities are not uniform, we divide the region into pieces so small that we can treat the
probability a^s being the same throughout the region.
Student: Infinitesimally small pieces.

Tlrtor: Yes. The probability is the square of the wavefunction.
Student: Ok y. Which state n is the electron in?
T\rtor: You need to determine that. How can you tell the states apart?
Student: They have different energies. I know the energy, so I can find the state that has the right energy.

En: 13.6 eV :76.76 eV ?
n2

T\rtor: The - 13 .6ln' applies only for the hydrogen atom. What are the energies for the one-dimensional
square well?
Student: Oh, that's right.

F - 
(h")' 

,n2

2(mc2)L' 'o

76.76 eV - n2

76.76 eV - (19.19 eY)nz --+ n : 2

Student: The electron is in the n - 2 state.
T\rtor: Otherwise known as the first excited state.
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Student: What if I hadn't gotten an integer for n?
Tlrtor. n has to be an integ€r, so either you or the problem author made an error.
Student: Now that I know that n - 2,I can write down the wavefunction.

,hz(*) :

T\rtor: What is the probability that the electron is in an infinitesimal piece of width dn?
Student: That's the square of the wavefunction.

probability : kbz("))2 -
Tbtor: The probability of finding the electron in any infinitesimally small piece has to be infinitesimally
small, but nothing in your equation is infinitesimally small. The square of the wavefunction gives you the
relative probability, but to get the probability for a given piece you need to multiply by the width of the
piece. For an infinitesimally small piece this is infinitesimally small.

probability -- kbr("))' d* :

Student: Then the probability of finding the electron between 0

bilities, or an integral.
T\rtor: Yes.

loo" 

nm 

l,in'(7") dn

Student: To find the integral, I replace the sin2 with the trigonometric identity.
T\rtor: Or just look it up in a book.

sin2ar

(7")dn
and 0.02 nm is the sum of all the proba-

2.,
7 sm-

["in'ar-?-J2

looo' 

nm 

l,in'(7") d*:?l;-f ,i" (+")l:"nm

:?|ry-3"*"(ffi")l
:8fB -*""(+"):oo6b3

Student: The chances are 6.53T0.
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All About Atoms

The Pauli exclusion principle says that no two electrons in an atom can have the same quantum numbers.
The idea is that once one electron is in the n - 7. state, the next electron must go into the n - 2 state, and
so on.

But there are more quantum numbers than just n. An electron in an atom is specified by the quantum
numbers { rL, l, mt) ms } I is the orbital angular momentum of the electrorl, trll is the z component of this
angular momentum, and m" is the z component of the electron's spin.

The preferred way to distinguish between states of the same n is by the angular momentum. As the electron
orbits the nucleus it has orbital angular momentum. The quantum number I has to be an integer between
0 and n- 1, so for n - 3 / can be 0 or 1 or 2. We attach names to the values of l, and call them by the first
letterrsol-0iss, l:Ii.p, l:2isd, l-3is/,andcontinueswithgandh.Sothestaterr-2,, I-0is
called 2s, and the state n - 4, I - 2 is called 4d.

The next quantum number, TTL1, is the z component of l. (Itr quantum mechanics, w€ use z as the first axis
chosen, rather than r.) The z component could be all of the angular momentum, or none of it, or even in
the -z direction. So m; has to be an integer between -l and l. For the 3p state, m1 could be -1 or 0 or +1.

As the electron orbits the nucleus, it also spins on its own axis. The angular
momentum of the spinning is always s - *, ro we don't bother writing it. But the
z component can be +| ot -+ (from the minimum to the maximum in steps of 1).

The Pauli exclusion principle still says that no two electrons in an atom can have
the same quantum numbers. The first electron is in the state { 1, 0, 0, ++ }, the E .

second ir { 1, 0, 0, -+ }, and the third ir { 2,0, 0, ++ }, because the n - f level is f s

filled. Previously, the energies of the states depended only on n) so that 2s and 2p
have the same energy. This is not entirely true. As the number of electrons in an da
atom increases, they have more effect on each other, and the energy of 2p is slightly 'J-
greater than 2s, so 2s is filled first. The energy of 3d is greater than the energy of
3p is greater than the energy of 3s, so much so that the energy of 3d is greater than
the energy of 4s (in some atoms). By filling up the levels from the lowest energy, -fawe create the periodic table (located at the end of the book).

One way to write the electron configuration of an electron is nl#. The # is the
number of electrons in the nl level. So after two electrons, we could write ls2. The 2s

electron configuration of aluminum (Z : 13) is !s2 2s2 2pu 3s2 3p'. A configuration
of 1s2 2sz 2p6 3s2 4sr would be aluminum in an excited state.

5nft4d

3p

299



300 CHAPTER 40. ALL ABOUT ATOMS

EXAMPLE

What is the electron configuration of arsenic (Ar, Z - 33) in the first excited state?

Student: So there can be only two electrons in the ls state, right?
T\rtor: Correct, { 1, 0, 0, +L, } and { 1, 0, 0, -+ }.
Student: And there can't be one in the lp state, because p means I - 1 and / has to be less than n, right?
Ttrtor: Correct.
Student: So how can there be six electrons in the 2p state?
T\rtor: Because I - I, so m7 can be -1 or 0 or 1. There are three possibilities for m7, and for each of them
there are two possibilities for m", and 3 x 2 - 6.

Student: Does that mean that there can be 6 electrons in any p level?

T\rtor: Yes, and 10 in any d level.
Student: There can be2 electrons in 1, and 2+ 6 - 8 inn-2, and 2+ 6+10:18 in n-3. Is there
some easy way to determine how many can fit in an n level?
T\rtorz 2,8,18 is twice I, 4., 9, so 2n2.
Student: 2(4)2 - 32, so As is one electron past 32.

T\rtor: There can be 32 electrons in the n - 4 level, but you need to fill the n -- 1,2, and 3 levels first.
Student: Oops.2inn-I andSin n- 2 and 18in n- 3is28. Arsenicis5electronspast n-3.
Tntor: Careful. 4s has lower energy than 3d, so you start n - 4 before finishing n - 3.

Student: Ok y.

rs2 2s2 2pu Jsz Jpu

Student: That's 18, and I need 15 more. Then comes 4s2, and then 3dr0, so I fill the 3d level.
I\rtor: Yes. Sometimes you'll see a level called a "shell."
Student: And the last three go into 4p.

T\rtor: That's the lowest energy place for them to go. For the first excited state, move one of them up to
the next highest level.
Student: 5s is lower than 4d.

rs2 2s2 2p6 3s2 Bpu 4s2 Jdro 4p' 5s1

We use an x-ray spectrum to identify the nucleus of an atom. We take an atom and bombard it with
high-energy electrons. Sometimes the incoming electron knocks out one of the electrons. An electron from
a higher level comes down to fill the lower energy level, giving off the extra energy as an emitted photon.
This photon typically has a high energy and is in the x-ray spectrum.

When an electron drops from a higher level to a lower one, it emits a photon with a characteristic energy.
The energy of the photon must equal the difference in energy of the two levels. When an electron drops from
n- 2to n - 1 we call it a Ko photon. When an electron drops from n - 3 to n- 1 we call it a Kp photon.
We also get photons of other energies, up to a maximum equal to the energy of the incoming electron.

Previously we used -13.6 eV x Z'lr'for the energy of the electron. This was applied to a single electron
in an atom - a "one electron atom." With more than one electron the energy becomes very difficult to
calculate, but we can get an estimate. Because there is one electron in the n - 1 level (the other has been

knocked out), w€ use the combined charge of the nucleus plus the ls electron.
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EXAMPLE

What are the minimum wavelength and K p wavelength for cesium (Ct, Z - 55) when bombarded with 42
keV photons?

Student: Kp means from rr -- 3 to rr - 1. I find the energy of the two states, then the difference in the
energies is the energy of the K p photon.
T\rtor: Very good.
Student: But I use Z - I to find the energies of the states.

D (13.6 eV) (Z - D'L/n' - n2

E1: - 
(13'6 evX55 - 1)2 : -39.66 kev

12

Es :- (13'6 eVx55 - 1)2 
- -4.41 keV

32

Et : A,E - l(-39.66 keV) - ( -4.4I keV)l : 35.25 keV

Student: What if the incoming electron doesn't have 39.66 keV of energy.
Tntor: Then it wouldn't be able to knock the electron out of the n - I level.
Student: So the wavelength of the K B photon is

\p:y_ ry: o.o3b2 nm:3b.2 pmE 35,251 eV

Tutor: Good.
Student: How do I get the minimum wavelength?
T\rtor: What's the most energy that you could possibly get from a 42 keV photon?
Student: 42 keY.
Thtor: And the largest energy is the shortest wavelength.
Student: So the minimum wavelength photon is the one with an energy of 42 keV.

)min : Y- t?10, ll':Y - o .o2sbnm - 2e.b pmE 42,000 eV
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Conduction of Electricity in Solids

When atoms form a solid, they are very close to each other, about 0.1 nm away
from each of their nearest neighbors. This is about the same size as an individual
atom. (For comparison, in a gas at room temperature they are about 2 nm away
from each other, leading to a density about 3000 times smaller.) When atoms
are this close, the electron wavefunctions begin to overlap. The Pauli exclusion
principle says that no two electrons can be in the same state. To avoid overlapping
electrons being in the same state, they change their energies just a little. The
result is that instead of discrete energy levels, the energies become energy bands,
with many energies very close together.

How close together are these energy levels? The density of energy levels in a 3-D
material is

8t[2r(^"')tt' ttr - (0.81/eV.nm3)
(h")t

(For a 2-D material, such as a very thin film, one does a difference calculation and gets a difference result.)
While this number may look small, the units conceal a large density, because nanometers are much smaller
than the typical solid. For a (1 mm)3 sohd, the energy levels are about 10-1e eV apart.

The conduction of electric current in a solid depends on whether the energy states in these bands are filled.
To move rapidly, electrons need room to work, and without it they can move only slowly. In the camp game

"shuffie your buns," a couple dozen people sit in a circle of chairs, with one empty chair and one person in
the middle of the circle. The ((it" person in the middle tries to sit down, but one of the people next to the
empty chair "shuffies" over into the chair, and the next person shuffies into the chair the first one vacated. In
this way the people shuffie one way and the empty chair shuffies the other way. None of the chairs move, of
course, but the location of the empty chair moves. Because there is but a single empty chair, the movement
is relatively slow. Imagine a single empty chair among 1023 electrons, and you have virtually no current at
all, as each electron waits for its turn to move. But if half of the chairs were empty, then each electron could
constantly be in motion.
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In the insulator shown to the left of the figure, the energy band is completely full. There is no room for
electrons to move around, and very little current can flow. Electrons would have plenty of room to move
around if they could jn-p up to the next band, but that requires a considerable energy, perhaps 3 eV or
more. This corresponds to atoms where the outer shell of electrons is completely filled.

In the conductor shown in the middle, the energy band is only half full, and there is plenty of room to move
around. Metals are typically conductors. Each metal atom has one or more electrons in a partly filled shell,
so there are available states at nearly the same energ-y, and plenty of room to move about. The Fermi energy
Ep is the energy of the highest occupied state when all lower states are filled.

(+ nm2 .v) n2/s

To the right is a semiconductor. Semiconductors have a completely filled band, but the j,tmp to the next
band is relatively small, perhaps 1 eV or less. Some of the electrons might get enough energy to move to the
next band, where they would have plenty of room to move around, and a current could flow.

Remember from thermodynamics that temperature is a measure of internal energy. At higher temperatures,
more electrons have the energy to move to higher levels. The probability of an energy level being filled by
an electron is

P(E) _
e@-Er') /kr + 1

k? is the typical energy available to electrons, where k is the Boltzmann constant of 1.38 x 10-23 JlK, or
about I eY 111,600 K. To get a value of kT of even 0.5 eV requires a temperature equal to the temperature
of the Sun.

How could an electron hope to jump 1 eV to the next energy band at only room temperature? Though the
probability is small, the number of electrons is very large. For a conductor like copper the density of "valence
electrons" n - I x 1028 l^t. For a semiconductor like silicon, the density of charges in the higher energy
band is about 1016r so that only a trillionth of the electrons have the energy to make it, but the number of
electrons trying to make it is much more than a trillion.

One of the interesting result of this temperature dependence is that the resistance of semiconductors decreases
with temperature. For metals, a^s the temperature increases, the rate of collisions for the moving electrons
increases. More energy is lost in the collisions, and the power turned to heat increases, corresponding to
increased resistance. For semiconductors, higher temperature means more available energy, &trd the density
of electrons in the higher conduction band increases, so the current can increase.

EXAMPLE

For a 1 cm copper cube, how much more energy than the Fermi energy is the most energetic electron likely
to have?

Student: That's it? I'm supposed to be able to figure this out from only that information?
T\rtor: Let's see how far we can get. You could start by findittg the Fermi energy.
Student: I need the density n. Is that something that I need to look up?
Tutor: You can find it from the density. Each copper atom contributes 1 electron.
Student: How do you know that it's one?
T\rtor: The electrons in the ground state are in Is2 2s2 2pu 3s2 3p6 3d10 4sL. Only the last electron is
available to move around.
Student: I thought that 4s had lower energy than 3d. Shouldn't it be 4s2 3ds?
T\rtor: Multiple electrons in an atom cause the energy levels to change. It's better, as in lower energy, to
fill the 3d shell than the 4s shell.
Student: So if I know the density of copper atoms, the density of valence electrons is the same.
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T\rtor: You look up the density (8.96 gl" 3) and the atomic mass (63.54 g/mol). You already have the
electrons per atom, and you know the number of atoms per mol.
Student: Oh, Avogadro's number.

electr_ons 
- 

electrons x ry x mor x qcm3 atom '\ mol g a-g

n - (1) (6 .02 x10") (#) (8.e6) - 8.5 x r02z 1" ,

Student: Now I can find the Fermi energy.
T\rtor: Be careful with nm and cm and m.

Ep: (+ nm2 "v) n2/s - (+ nm ro22 I "^r)r/r(*)' : 7.03 ev

Tutor: We can also find the density of states

lr(E') - (0.81/eV.nm3) ffi
T\rtor: We're more interested in the density
Student: So I multiply by the volume?

P(E) -
T\rtor: I think you can safely neglect the
Student: Oh, because the e@-Er') /kr is

e@-Ep)/kr +1 1.8x 1022

*1 on the left.
so much bigger.

n-t)

-volt.

:
p

- 18/eV nm3

n(r) - (ra l"yr,,,,') x (1 c-)3 x (+*)':1.8 x 1022 l"y
Student: The energy levels are spaced 1022 eV apart?
T\rtor: They are 10-22 eY apart, so that there are about 1022 eV of them over a space of 1 eV. Now, if the
energy level spacing was such that there was 1000 state per eV, but the probability of a state being filled
was 21L000, about how many electrons would be in an electron-volt?
Student: 1000 x 211000 - 2, so there would be 2 electrons.
T\rtor: About 2 electrons, because it's a probability. To find the highest energy electron, we could go until
the density times the probability was about 1, or one electron over a whole electron-volt.
Student: So above that the probability is small enough that there are no electrons.
T\rtor: Well, very few if any electrons. We could do a calculation to find the expected number of electrons
with even higher energies. That would involve integrating the probability times the density of states.
Student: No thanks. I need to find where

"(E-Er') 
/kr - 1.8 x 1022

(E - Ep)lkT - ln (t.a x r0"): 51

E - Er :srkT: 51 ( :"u \
v^ 

\ rr, ooo K,) 
(3oo K) - 1'3 ev

T\rtor: At that energy, the density of states is a little higher, but only about I0%.
Student: Close enough for me.

In practice, semiconductors are "doped" with another material. Doping means to replace a small fraction of
the atoms of the original substance with atoms of a difference substance. Each silicon atom has 4 valence
electrons, and shares one of them with each of its four neighbors. Then each atom has eight electrons around
it, and all of the electron shells are filled.

ev)/(t
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For each silicon atom that is replaced with something that has one more valence electron, the extra electron
moves to the conduction band. One way to dope silicon is with phosphorus. Phosphorus has 5 valence
electrons, so that there are enough to fill all of the electron shells, plus one extra electron. We saw earlier
that only about a trillionth (1 in 1012) of the atoms in a semiconductor contribute an electron to the
conduction band. If only a millionth of the semiconductor atoms were replaced with something with an
additional electron, these additional electrons would completely outnumber the conduction electrons from
the semiconductor. Essentially all of the conduction electrons would be from the doping. This gives us good
control of the density of conduction electrons when manufacturing doped semiconductors.

EXAMPLE

How much phosphorus must be added to 2 grams of silicon to create a doped semiconductor with a charge
carrier density n - 1021 l^t?
Student: The silicon itself contributes a density of 1016 l^t, so the doping must do all of the rest. But
1021 - 1016 is nearly the same as 1021. Ail of the conduction electrons come from the phosphorus.
T\rtor: Almost all. The error in saying ((all" is in the sixth significant digit.
Student: I can live with that. So the density of phosphorus atoms needs to be 1021 l^t.
T\rtor: Yes.

Student: If I knew the volume of the phosphorus, I could multiply by the density to get the number of
phosphorus atoms.
T\rtor: The phosphorus atoms are scattered among the silicon atoms. The vast majority of the silicon is
still siliconr so the volume is determined by the silicon.
Student: So I find the volume of 2 grams of silicon and multiply by the density of phosphorus to find the
number of phosphorus atoms.

V-m: 'r, ^:0.86cm3p 2.33 glcm5

l/p : (0.86 cm3)(10" l^,) ( .!=^ \t : 8.6 x 1014
\to, cm)

r,,p-(80x1014, (#) (*'q) - 44x1o-8s

Student: That's really small!
Tutor: Semiconductors are made in "clean rooms" to reduce the chances of contamination. It wouldn't
take much to mess up the production of a semiconductor.
Student: Why are semiconductors so important?
Tntor: When we put semiconductors together we can form a transistor. Thansistors allow us to control one
current with a second current or voltage. We use transistors to make amplifiers and computer logic circuits.
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Nuclear Physics

We now examine the nucleus, located at the center of the atom. The nucleus is made up of protons and
neutrons. Because there are only positive charges in the nucleus, the electric force tries to push the protons
apart. The strong nuclear force holds the protons together, but only at short distances of about 10-15 m.
The neutrons are necessary to create more space between the protons, so that the strong nuclear force will
be greater than the electric repulsion.

Which element an atom is is determined by the charge of the nucleus or atomic number Z, equal to the
number of protons. Atoms of the same element but with different numbers of neutrons are called isotopes.
The atomic mass number A is the number of nucleons, which is the number of protons and neutrons. We
write a nucleus or isotope |nt, Where El is the chemical symbol for the element. Because Z determines El,
El and Z are redundant and Z is sometimes omitted. For example, STnU is rubidium with 37 protons and
40 neutrons, while 85Rb is rubidium with 37 protons and 38 neutrons.

Because everything wants to have less energy, remember that anything stable must have less energy together
than apart, otherwise it would fall apart. Therefore, the mass of the nucleus is less than the sum of
the masses of the pieces. The mass of the 37nU nucleus is less than the sum of the masses of 37 protons
and 40 neutrons. The difference in mass, times c2, is how much energy we would have to put in to separate
the nucleus into individual nucleons, and is called the binding energy.

To find the binding energy, we need to find this difference in ma.ss. We add up the ma^sses of the pieces of the
nucleus. Then we find the ma^ss of the nucleus itself. Nuclear physicists have measured these and we look
up their results. We convert from atomic ma,ss units (u) to kg, multiply by "', and convert to mega-electron
volts (MeV). We can combine all of these factors into c2 :931.5 MeV/u.

Some Nuclear Masses

-f e- 0.000549

lH 1.00782b

fin 1.008665

tn" 4.002608

tu'c 12.oooooo

!8p" bb.es4esl

,88u zt,s.o4aggo

,88u 2g8.oboz88

'8?P,r 239.05 2164

tSrt I 1go.go 6124

t83Y 1o1.gaabb8

t83cr 186.902089

39Rb eb.es42T2

(includes ma,ss of electrons)
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The mass of a nucleus is not equal to the atomic mass number, but is approximately the same. Because a
proton and a neutron each have mass of about 1 u, the mass of the nucleus (in atomic mass units u) is about
equal to the number of nucleons. Note that some nuclei have more and some less mass than the atomic
mass number A. The standard for an atomic mass unit is L- of the mass of a t'C nucleus, which includes
the binding energy of that nucleus. Because the binding energies of the various isotopes is different, the
deviation away from A is different for each isotope.

EXAMPLE

Find the binding energy of '88U.

Student: The binding energy is the difference in the ma"ss.

T\rtor: The binding energy is proportional to the difference, but what difference?
Student: I add up the mass of g2 protons and 238 neutrons. Then I subtract the mass of a '88U nucleus.
I\rtor: A '88U nucleus has 92 protons and 238 nucleons, but not 238 neutrons.
Student: What's a nucleon?
Tutor: A nucleon is a proton or neutron in the nucleus.
Student: So there are only 238 - 92 - 146 neutrons.
T\rtor: Correct.
Student: And the ma^ss of the pieces is

(e2)(1.007825 u) + (146)(1.008665 u) - 23e.e84ee0 u

Student: Is there a reason to keep so many significant figures?
Tutor: Yes. We're about to subtract a number that's pretty close to the number we have. When we do
that, we'll get a much smaller number with two or three fewer significant figures. Tty it.
Student: Okay. The sum of the masses of the pieces minus the ma"ss of the nucleus is

239.984990 u - 238.050788 u - I.934202 u

T\rtor: If we had only kept three or four significant figures, w€ would have one or two now.
Student: Ok y. So the binding energy is 1.934202 u.
T\rtor: The ma,ss difference, sometimes called mass defect, is I.934202 atomic mass units.
Student: Do we really need a new unit?
Tutor: It's handy to have a unit that's about the size of the thing that we're measuring. Just keep track
of your units, &s always.
Student: To get the binding energy, I multiply by 931.5.

(1.934202 u)(931.5 MeV/") - 1802 MeV

Student: When we did atoms, the energy was negative. Is the binding energy negative?
Tutor: It's true that the binding energy is how much less energy the nucleus has than if the parts were
separate. But we don't typically measure compared to all separate pieces, while we did mea^sure the atom
compared to all of the electrons removed. It's normal to specify binding energies as positive.
Student; The energy here is much greater than for an atom. Those were 13.6 eV.
T\rtor: Hydrogen was 13.6 €V, and greater charge in the nucleus led to greater energies, but y€s, this is
much more. Nuclear reactions involve much more energy than chemical reactions. That's one reason to use

nuclear energ-y. We'll work on nuclear energy in the next chapter.

Some nuclei are stable, and others are radioactive. Radioactive nuclei emit e,) B, and l particles, and
occasionally neutrons. An alpha particle is the same as a helium-4 nucleus, a beta is the same as an electron,
and gamma is a high-energy photon. Beta decay can also be the emission of a positron, an anti-electron
with the same mass but a positive charge:

a - tH"*' P - -!e- or +1"* "y - 8r - high-energy photon
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When a nucleus decays, the charge is conserved. The charge is expressed with the atomic number Z, so Z
must be the same before and after. By adding the Z's on each side, we can determine one that is missing.

The mass number is also conserved in a nuclear reaction. This is not the same as the mass being conserved,
since the mass is not exactly equal to the mass number. The binding energies before and after will be
different, and this will cause the mass afterward to be different from the mass before. But the mass number
A is conserved, so again we can determine any one missing mass number if we know the rest.

EXAMPLE
F

Astatine-2l9 ('ltAt) decays by a decay, followed by f decay, followed by B decay. What isotope remains
after the decays?

Student: I don't know where to start.
Tutor: So, write down the first reaction.
Student: But I don't know what comes out.
Trrtor: Leave it blank, like a variable.

,rt$At -tc,+2?
Student: And the A's have to be the same, right? Does that mean that A is 2I9, like the At, or 215?

T\rtor: The total A for each side is the same.
Student: So 219:4+A, and A-2I5. Likewise8S -2+2, so Z -83.

,rt$,qt - ta +'rt!?

Tutor: Good.
Student: What element is Z : 83?

T\rtor: Look it up in a periodic table. There's no way to derive or deduce the symbol based on 2,, you
just learn them or look them up.
Student: Okay. Z - 83 is Bi for bismuth.

'ltAt -tc,+2r1$Bi
Student: Is alpha decay always a fa?
T\rtor: Yes. All o particles are two protons and two neutrons, the same as a tnu nucleus.
Student: Now the bismuth-2l5 decays by gamma radiation.

,rt|ei-8r +t?
Student: How can the radiation particle have no mass and no charge?
T\rtor: It's a photon, a high-energy photon. Photons don't have mass or charge.

Student: Since A and Z of the 7 photon are zero) the isotope afber should be the same as before.

%t$si*8r+2rlfBi
Student: How can you get gamma decay? Nothing happens.
lhtor: Nuclei have excited states, just like the electrons in orbit around the nucleus do. An a or P decay
can leave the nucleus in an excited state, and after a short time it decays, emitting a photon. The energies
in the nucleus are much greater than for the electrons, so the photon is very high energy, & B&mma ray.
Sometimes we write a nucleus in an excited state with an asterisk.

,rtgBi. *8r+2r1$Bi

Student: What's so interesting about gamma decay? Why do we care?

T\rtorr l rays will penetrate most things, so radioactive material can be detected from these gamma rays.

So if you've recently had a nuclear medical procedure done, or are carrying kitty litter with you, you might
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set off a security detector. Emitted gammas can be used to detect radioactive material.
Student: Kitty litter?
Trrtor: Yes. It has small amounts of radioactive isotopes in it.
Student: Isn't that dangerous?
T\rtor: If you swallow it, your chances of getting cancer will increase slightly.
Student: Well, I'm not going to do that. On to the beta decay. Is it p+ or p-7
Tntor: If it doesn't say, assume B- .

Student: But how do you know?
T\rtor: I know because I looked it up. Nuclear physicists are very good at compiling and disseminating
this information.

'rt5Bi -> -?e + 2t

"tfBi 
-) -?P + 'rtiPo

Student: The atomic number goes up?
T\rtor: Yes. In beta decay, the atomic number can go up.
Student: Is polonium-2l5 stable then?
Tutor: Most isotopes of polonium, including 'rtiPo, are highly radioactive. A lethal dose of 'rtlPo is only
about 10-e kg.
Student: What about 2]feot
Ttrtor: It has a half-life of 1.8 milliseconds.
Student: Where does it end?

,t?At g retSgi. L rrtSgi L %tfpo 
g 

%Ltpu LrJrtBi 3 rgln. Lrglu Lrgtrpa8t

T\rtor: Within four hours, nearly all of the astatine-2I9 will have turned into \ead-207.
Student: Do alpha and beta decay always alternate like that?
Thtor: No, just coincidence here.
Student: And where do you find all of this information.
T\rtor: At the nuclear wallet card, found at http://wluw.nndc.bnl.gou/wallet/ on the Web. You can also
find it at Wikipedia by searching forisotopes of polon'ium, or whatever element you want.

When we said above that polonium-2l5 has a half-life of 1.8 milliseconds, it is not true that after precisely 1.8
milliseconds half of the polonium-2l5 turns into lead-2l1, or that after 3.6 milliseconds all of the polonium-
2I5 will be gone. Nuclear decay is a random process, with each nucleus "deciding" independently when to
decay. The result of this is that the rate at which the nuclei decrease in number R is proportional to the
number of nuclei l[.

R - 
^.Ar,\ is the disintegration constant or decay constant, and has nothing to do with wavelength (*" just re-use

the Greek letter). The units of ) are l/time, typically l/seconds but not always.

If we solve the ensuing differential equation, we get exponential decay. This may be expressed as

R
- tr; - s-\t : e-t/r :2-t/Trt,

where l/6 is the size of the initial sample and Rs is the initial decay rate in nuclei per time. As the number
of nuclei decrease, so does the number that decay per time, but the disintegration constant does not change.
T is the mean life or natural lifetimg. The meaning of r is that, if the decay rate .R remained the same (it
won't, of course), then all of the nuclei would decay in one natural lifetime (R: Nl"). We often use the
half-life Tr/z instead, which is the time needed for half of the sample to decay. Because these three forms of
exponential decay are identical,

F_1 Tt/z

^ 
ln2
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EXAMPLE

Given a 100 pg sample of polonium-2l5, with a half-life of 1.781 ils, how long must you wait until the decay
rate has dropped to 20 decays/second?

Student: There's l/, No, R, Ro, Tt/2, T, and ). Where do we start?
T\rtor: Are there any that you know?
Student: The half-life Tt/z is 1.781 milliseconds.
Tutor: Okay. What's 20 decays/second?
Student: That's the final decay rate, so it's .R.

Ttrtor: True. If you knew the initial decay rate Ro, or the final number N, then you could find the time.

R-^Ir # -2-t/rr/z

Student: I'll try to find the initial decay rate from the initial number N0. 1 mole of polonium-2l5 would
have a mass of 215 grams.

/\r0 - (100 x r0-o s) x f 
6'01:10'?3) 

-2.8 x 1012 atomst/ \ 2LbS /
Ttrtor: Yes. 100 tlg of polonium-2l5 has 2.8 x 1017 atoms.
Student: That seems like a lot, but 100 /rg is really small.
T\rtor: Consider that you have between 1027 and 1028 atoms in you, and 1017 isn't that much. A single
cell has around 1012 to 1014 atoms.
Student: It just seemed like a big number. Now to find the initial rate Ro,I multiply the initial number
Ab by ).

i,\ In2 Tt/z 1.781 ms

Student: What does 0.389 /-t mean?
T\rtor: It means that a fraction of 0.389, or 38.9%, decays in a time of 1 millisecond.
Student: That seems fast.
Ttrtor: It's averyshort half-life.WU has ahalf-life of about 5 billionyears, so ,\= 5 x 10-1E ls. Only a

very small fraction of the uranium decays every second.
Student: But then 389 per second means that 389% decays in a second!
T\rtor: It means that 38,9007o decays in a second. Yes, the decay rate is such that, if it continued, they
would all decay 389 times in a second. Of course, the decay rate does not stay constant. As the number of
atoms declines, so does the decay rate, because there are fewer atoms to decay.

fto: 
^,4f0 

- (389 liQ.8 x 1017 atoms) - 1.09 x 1020 atoms/s

Student: That's a lot, right? Because of the short half-life.
T\rtor: Yes. But as the number of atoms decreases, this will eventually drop.
Student: And I need to find when it drops to only 20 per second.

*- 2-t/r,rz h(*) --+'2 t--rr/z' /nr
\ Ro ) |t/z

Tutor: Are you bothered by the minus sign?

Student: Is it because the number of atoms is decreasing?
Tutor: No. If the rate was negative, the sign would disappear when we divide the two rates.
Student: Ah! R < Ro, and the log of a number less than one is negative. We won't get a negative time.
T\rtor: Very good.

+--r,/,h("t) :-#h(ffi) -(1.281 ms) (62.2):111 ms
In2
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Student: It only takes 111 milliseconds?
T\rtor: It takes 62 half-lives, but the half-lives are very short. How many atoms are left when this happens?
Student: I can use R-,\^nf or find the decay from the original number N0.

^nf - Ns2t/Trr, _ (Z.g x 10tt) 2-02.2 : 0.0b

Student: How can you have less than one atom?
T\rtor: You can't. Atoms, of course, are quantized.
Student: So what does this mean?
T\rtor: Remember that even a single atom would have a decay rate of 389 decays per second.
Student: So you couldn't even get a decay rate of 20 per second.
T\rtor: No. How long would it take until all of them have decayed?
Student: You can't say for sure when that happens, can you?
Tutor: No, but you can get a reasonably good estimate. Find the time that it takes to get to one atom,
then add one natural lifetime.
Student: Why a natural lifetime instead of a half-life?
T\rtor: That's the time it takes for all of them to decay once at the current rate, so it's the expected life
of a single atom.

tr - Ab2 -t/rrrz 
-, 

+ - -Tt/' h (#)In2

b--#h(#) _loams

Tt/z 1.781 ms _ o Ar - lrr2
Student: 103 + 2.6 - 106 ms for them to all decay, more or less.

T\rtor: Correct, where more or less means it could be a few milliseconds more or less.

Student: But not everything decays that fast, does it?
Ttrtor: No.
Student: So how does this carbon dating work?
T\rtor: People have carbon in their bodies, and some of it is carbon-l4. When we find something organic
that died, we can measure the ratio of carbon-l4 to carbon-L2, which is stable and doesn't decay. If the
ratio of carbon-l4 to carbon-Iz is half what it would naturally be, then the thing died one half-life ago.
Student: But the half-life of carbon-l4 is 5700 years.
T\rtor: For things that died last week, so little of the carbon has decayed that carbon dating isn't useful.
For things that died 50,000 years &Bo, there is so little carbon left that it is hard to measure.

How dangerous is radiation? We measure the energy that the radiation deposits in the body. Tbaditionally,
this energy is measured in rads, where 1 rad - 0.01 JlkS of flesh. Of course, all units should be 1, so the
new unit is l gray - 1J/kg (t Gy - 100 rad).

Some radiation does more damage than others. Alpha particles have more charge and mass and interact
more strongly, while gammas have no charge and interact weakly. Because they interact strongly, alphas
interact with the first thing they can, and dump all of their energy in a small volume. They also don't
penetrate very far - you could defend yourself from a beam of alphas with one page of this book. To defend
yourself from a beam of betas, you would want to block them with the whole book. Because gammas interact
weakly, they penetrate much better. To block a beam of gammas, you would need a couple inches of lead.

Because the damage from alphas is localized and more extensive, we use rems rather than rads to describe
the damage. To get the rems, multiply the rads by the quality factor. The quality factor for gammas is 1,

but for alphas it is 10-20. The modern unit is the sievert, and grays times quality factor is sieverts. Anythirg
old will be in rads and rems, and anything new and from the government will be in grays and sieverts.
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How much radiation is too much? A person typically gets 300-400 millirem per year of radiation. 400-500
rem in a short period of time is fatal - it kills off the white blood cells and the victim dies of infection over
the next couple of months, much like AIDS. Higher doses can cause other bodily malfunctions. The effect
of small doses is incredibly hard to measure, because the effects are so small that they are indistinguishable
from other effects.

Long half-lives are not the greatest danger. About half of the 300-400 millirems is from radon ga.s. (Other
sources include medical x-rays, increased cosmic rays during air travel, even LCD wristwatches.) Uranium in
the ground decays through a string of decays into radon gas. Radon has a half-life of 4 days - long enough
to breathe it, but also short enough that it decays before you die of other causes. For somethittg with a
much longer half-life, like plutonium, you die of something else before most of the nuclei have decayed.

The EPA has a Web site where you can estimate your annual dose
(http : / / w'tlt D . ep a. g o u / ra di ati o n / stu d ent s / calculat e . htmQ .

EXAMPLE

'zfllV has a half-life of 4.5 billion years and decays via o emission with an energy of 4.3 MeV. Estimate how
much t88U you would have to swallow so that the added radiation dose would effectively double your annual
dose.

Student: So the question is, how much 'z$fU would cause a dose of 300 millirems?
T\rtor: Yes.

Student: And 1 rem is 0.01 J llr5. I need to know the kilograms.
T\rtor: One rad is 0.01 J lk1. What is the quality factor of the alphas?
Student: Oops. It's about 10, so it's only 30 millirads.
I\rtor: Estimate. How much does a typical adult weigh?
Student: Oh, about 65 kg.

30 mrad x 0.001 rad 0.01 J lks
1 *rua x ffi x (65 kg) - 0.019b J

Student: That's not a lot of energy in a year.
T\rtor: Radiation does damage at the molecular level, to proteins and DNA. It doesn't take many joules
to break molecular bonds.
Student: Now I need to know how many decays it takes to get that much energy.
T\rtor: Yes. Good.
Student: And each decay produces 4.3 MeV.

(o.o1e5 J) x J"U 1 Mev, r.6xfu x ffi - 1'22x 1011 MeV

Student: Is that a lot of MeV?
T\rtor: That's why we do the math. It's impossible to avoid radiation altogether, and we want to know
how much is dangerous.
Student: Is an extra 300 millirems dangerous?
T\rtor: The 300 millirems we get can't be too dangerous, or we would all be dead. Doubling this dose
shouldn't be too dangerous.
Student: If we divide by the energy in each decay, we can find the number of decays.

I.22 x 1011 MeV
- 2.83 x 1010 decays

4.3 MeV

T\rtor: Remember that this is per year, because we want the 300 millirems to be in a year.
Student: So I need to convert it into seconds.
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Tutor: You could. But we have the half-life in years, and years is a perfectly good unit of time.

,\ - y- , ,, 
lt,?= - 1 .54 x 10- ro ly,Tt/z 4.5 x 10e yr

Student: What about other decays? Doesn't uranium-238 turn into something radioactive, so that we
need to include that as well?
TUtor: Excellent thinking. Yes, it is followed by two beta decays, but they have low energ"y, and it ends up
as uranium-234. Uranium-234 has a half-life of a quarter of a million years, so very little of this will decay
before we get hit by a truck or otherwise perish.
Student: Now that I have R and ), I can find N.

R-)N + N- !:,'flt,tot='/{t -1.gx1020atoms,\ 1.b4 x 10- ro ly,
Tutor: What's the weight of a uranium-238 atom?
Student: 238 grams per mole, or Avogadro's number. Should we be worrying about other isotopes?
T\rtor: It is true that about I% of.naturally occurring uranium is z$lV, and that this isotope has a shorter
half-life. But it's only seven times shorter, and 99 times less of it, so it doesn't change too much.

(1.8x1020atoms)x :0.073g:73mg' 
6.02 x 1023 atoms

T\rtor: So don't go swallowing more than 70 milligrams of uranium.
Student: I'm not going to swallow anything radioactive!
T\rtor: Many foods contain trace amounts of radioactive isotopes, like potassium-4O. The average person
gets 40 millirem from food each year.
Student: What about nuclear reactors and nuclear bombs?
T\rtor: About 1 millircmf year from all past bomb tests, and about 0.01 milliremf year from nuclear power
plants. Coal plants release more radiation than nuclear plants, because there are trace radioactive isotopes
in the coal, and it goes into the air. In a nuclear power plant the radiation is contained.
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Energy from the Nucleus

How do we extract energy from the nucleus? The process works, from an energy point of view, much like
extracting energ-y from fossil fuels.

Most of the energy that we use is chemical energy, and comes from the chemical reactions of fossil fuels.
Consider the reaction when we burn methane:

CHa + 2O2 --' COz * 2HzO

Each molecule has a binding energy. This is the energy that we would have to put in to separate the molecule
into its pieces. (The energies in chemistry are not defined the same way as in physics, so positive energies
are possibl..) If we were to break the molecules into their pieces, it would take 

"nrrry. 
They would then

seek lower energies, form new molecules, and release energ"y. If the new molecules wer. *or. stable than the
old ones, then more energ-y would be given off than we put in to start the reaction. Carbon dioxide (COz)
and water (HzO) are relatively stable molecules, so about 8 eV of energy is given off every time we do this
reaction.

Now consider the process of nuclear fission, where a large nucleus splits into two pieces. The binding energy
of the large nucleus is the energy that we have to put in to separate the nucleus into its pieces. The pieces
then form into new nuclei. If the two pieces formed are more stable, and have lower energ-y or more binding
energy, than the initial nucleus, then more energy comes off than we put in to start the process.

Because the number of nucleons does not change, w€ measure stability in binding energy per nucleon. The
maximum for binding energy per nucleon occurs at !8p". If a large nucleus splits into two pieces that are
closer to iron-56, we call it fission, and energy is given off. If two small nuclei merge into one larger piece
that is closer to iron-56, w€ call it fusion, and energy is given off.
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100
Mass number A

How do we split a large nucleus? We smack it with a neutron. This process results in two smaller pieces,
plus two or three loose neutrons. These extra neutrons can smack other nuclei, causing more fissions, and a
chain reaction that keeps the process going.

EXAMPTE

Determine the missing "fission fragment" and the energy released in the reaction

[n + ,}Eu + '$Ic'+ t? +3[n

Student: Figuring out the missing piece is just matching the A's and Z's, like previous chapter, right?
Tutor: Yes.

Student: Ais 236 onthe left, so I37+A+3 -236, and A-96. Z \s g2ontheleft, so55+ Z +0:92,
and Z - 37. We look Z - 37 up in the periodic table, and it's rubidium.

[n + 'z$fiv '$Ic' + ?q Rb + 3 fin

T\rtor: Very good.
Student: To find the energy, w€ find the difference in masses, just like previous chapter. Where do we
find the masses?

T\rtor: They are conveniently located in the previous chapter.

1.008665 u + 235.043930 u - 136.907089 u * 95.934272 u * 3(1.008665,t) t Am

Lm - 0.185239 u

E - Lm. s2 : (0.185239 u)(931.5 MeV/") - 172MeY

Student: So what's new?
T\rtor: Nothing. Notice that the energy is L72 rnega electron volts.
Student: So?

Tutor: The energy of burning methane was 8 electron volts. The energies involved in nuclear reactions
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are 100 million times larger. So to get the same amount of electricity, w€ need to have one one-hundred
millionth as many nuclear reactions.
Student: But what about the nuclear waste?
T\rtor: The uranium and plutonium aren't the problem, because they have long half-lives so they decay
slowly. The smaller pieces, called fission fragments, are the problem. They are highly radioactive, with much
shorter half-lives.
Student: What about Chernobyl? Wasn't there a lot of radioactive material released?
T\rtor: There was. But the most dangerous materials were the fission fragments with half-lives of days,
months, or years. Radioactive isotopes of iodine, cesium, and strontium are the worst. Radioactive iodine
lands on the grass, gets eaten by cows, goes into milk, is drunk by people, and then the iodine collects in
the thyroid gland. There were about 8000 additional thyroid cancers in the area because of the accident.
Fortunately thyroid cancer is treatable, and there were only 9 deaths due to thyroid cancer.
Student: Only 9 people died in Chernobyl?
T\rtor: The United Nations did a study and concluded that the death toll wa^s about 60. Also, there were
perhaps 2000 more due to cancer, but about 40,000 of the surrounding population would be expected to die
from cancer anyway, so 2000 more is hard to detect. Don't get me wrong - any death is a tragedy. But
we have many more deaths from other causes, including coal-burning power plants, so this number is not
substantially worse than what we already suffer. That many people die on American roads every month, for
example.
Student: And by using nuclear power, w€ use 107 to 108 times less fuel.

Uranium-238 does not fission well. To achieve a substantial chain reaction, we need to use the isotope
uranium-235. Uranium-235 comprises about I% of naturally occurring uranium, but we need 4% 28tU for
a reactor an d 90% '88U for a highly enriched uranium bomb. In an HEU bomb, once a neutron causes one
fission, there are many neutrons around and the chain reaction happens very fast.

EXAMPLE

The bombs used in World War II had energy yields of about 13 kilotons. One kiloton is 2.6 x 1025 MeV.
How much enriched uranium would you need to make such a bomb?

Student: Isn't this a little morbid?
T\rtor: Again, any death is

Student: ...atragedy.
T\rtor: But reasonable estimates are that an invasion would have resulted in 50 times as many deaths as

the explosions. More important, to prevent proliferation of bombs now, we need to know how much material
is significant.
Student: So this is what the CIA looks for?
Tntor: Yes, for the capability to enrich uranium from I% U-235 to g0% in substantial quantities.
Student: Ok y. 13 kilotons is

(13) (2.6 x 1025 MeV) - 3.38 x 1026 MeV

Student: The fission above gave I72 MeV, but there could be others.
T\rtor: Yes. There are hundreds of possible fission reactions. The average is about 200 MeV per fission.

(3.38 x 1026 MeV) lQ00 MeV) - 1 .7 x 1024 fissions

Tutor: How many kilograms is that?
Student: If all of the U-235 is fissioned, then we need I.7 x 1024 atoms. Each mole is 235 grams.

235 g
(1.7 x l024.to-r) ( 6.02 x 1023 atoms )(ffi) -066kg
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Student: That's not a lot!
Ttrtor: No it isn't. Flortunately, that isn't enough to make a working bomb. With a piece that size, too
many neutrons leak out the side before causing more fissions, md the chain reaction doesn't turn into an
explosion. Ah, the enrichment process is very challengiDg, so building a bomb sounds easier than it is.
Student: That's a good thing. Can't we just ban them or something?
T\rtor: The knowledge of how to build them is too widespread to ever do that - science works that way
sometimes. We have to find another way to keep them from ever being used again.



Chapter 44

auarks, Leptons, and the Big Bang

None of these things really exist, so let's save a little time and go straight to the appendix, which features
some funny pictures and a mind-bending plot twist.

No, seriously.

Things are made out of molecules, and molecules are made out of atoms, and atoms &re made out of protons,
neutrons, and electrons, and protons are made out of . . . funny you should ask. But whatever the pieces of
a proton are, they have less energy together than apart, because otherwise they wouldntt stay together. If
we want to separate a proton into its constituent pieces, then we need to add energ-y. The typical method
of doing this is to take a proton and something else, perhaps another protoD, and slam them together at
high speed. We do this hoping that the kinetic energy will change to internal enerry and free the pieces of
a proton so that we can examine them.

The most obvious result of slamming microscopic particles together is to create unusual particles like pions
and kaons and exotic baryons. These particles have short lifetimes, so we don't encounter them very often
and haven't needed them until now. The standard model of particle physics has been developed to explain
these exotic particles, as well as protons and electrons. Over the last couple of decades it has been remarkably
successful in interpreting the results of particle collisions.

Electrons are (currently believed to be) elementary particl that is, they are not made of anything else.
They are one of a group of particles called leptons. Other leptons include the muon and the tau.

There are also elusive leptons called neutrinos. Neutrinos interact very weakly,
so that they are hard to detect. Most of the neutrinos from the Sun pass

through the Earth without interacting. There are three neutrinos, and they
are paired with the other leptons, so that we call them the electron neutrino,
the muon neutrino, and the tau neutrino.

The other six elementary particles are the quarks, named after an obscure
literary reference. The six quarks are called up, down, strange, charm, bottom,
and top. Particles made of quarks are called hadrons. Quarks are never seen
alone, but only in groups. Groups of three quarks are called baryons, and
include protons (uud) and neutrons (udd). Groups of one quark and one
antiquark are called gl@11g.

Every particle also has an antiparticle. An anti-electron, for example, is a
positron e*. An antiproton is made of two anti-up quarks and an anti-down
quark (uud).

Student conception of a
muon, before learning that
muons are subatomic parti-
cles. (Ashley Hopkins)
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Some Hadrons
Baryons Mesons

proton p
neutron

antiproton p
antineutron n

p+

5o
E_
FO

uud
udd
__-
uuct
_.i-
udd
uus

uds
dds
USS

pion zr- Ud

pion zro uu or dd
pion zr+ ud
kaon 6+ uS

kaon Ko ds

kaon Ro sd
kaon K- s[
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There are many things that are conserved in all particle reactions.

EXAMPTE

Which, if any, conservation laws does the following reaction violate? Fix the reaction so that it doesn't
violate any of the conservation laws.

n*P+ -e* *up+Eo *ro

Student: I go through the conservation laws one by one and check to see whether they're okay.
T\rtor: Okay.
Student: First is energy. The energy shows up as ma,ss, so if the ma,ss on the right is more than the ma"ss

on the left, then the reaction can't happen.
T\rtor: Good thinking, but there could be energy somewhere else.

Student: Ah, kinetic energy. Even if the rest ma^ss afberward is greater, if the two initial particles are
moving fast enough then there would be enough energy.
Ttrtor: Yes. What about momentum?
Student: How do I check momentum?
T\rtor: While momentum is conserved, we don't have the momentums so we can't check that one.

Student: Ok"y. The charge beforehand is *1, and the charge afberward is *1 because of the positron e*.
So charge is okay.
lhtor: Good.
Student: Now we check leptonf . Neither of the things on the left is a lepton, but the positron and the
neutrino up are leptons, so there are two on the right.
T\rtor: Partially correct. The electron is a lepton, and the positron is an anti-electron.
Student: So the positron counts a^s -1 lepton?
T\rtor: Yes.
Student: Then the number of leptons on the right is -1 plus *1 equals 0, so it's okay.
T\rtor: Almost. The "in families" means that the number of electron-type leptons has to be the same, and
the number of muon-type leptons has to be the same, and also the tau-type leptons.
Student: So there is -1 electron-type lepton and +1 muon-type lepton on the right, but no leptons on

Some Particle-Physics Conservation Laws
energy

momentum
charge

leptonf (in families)
baryonf

strangeness
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the left, and it can't happen?
T\rtor: Correct.
Student: Okay. Baryonff is next. There are two baryons on the left, and on the right only the 2o is a
baryon. There are fewer baryons afterward, so the reaction can't happen.
Tutor: Correct. We would need another baryon on the right.
Student: And last is strangeness.
T\rtor: Just count the number of strange quarks on each side. A strange quark has strangeness of - 1.

Student: The only strange quark is in the E0 on the right, with strangeness -1.
T\rtor: So to fix the reaction, you need to get the leptons conserved in families, and you need to add one
baryon and +1 strange to the right, without adding charge.
Student: The leptons will be fixed if I change the u* to a L/e) won't they?
T\rtor: Yes.

Student: And if I add another E0 to the right, it will fix the baryonf .

T\rtor: But then you'll have -2 strangeness on the right.
Student: What if I add an anti-Eo on the right, a I0 ? That will have *1 strangeness.
Thtor: But then the baryon number on the right becomes zero.

Student: Oh, that's right.
Tutor: You need to add one baryon and one anti-strange quark to the right side.
Student: None of the baryons listed have strange quarks.
T\rtor: A baryon has three quarks, so having an anti-strange quark makes it an anti-baryon.
Student: I'll add a E0 to the right to fix the baryon number, but now I have -2 strangeness on the right.
Now I'll add two kaon K0 to the left so that the strangeness will be -2 on each side.
T\rtor: You can't have more than two things on the left. It is very difficult to get more than two things to
collide all at once.
Student: So I need to add two kaons K0 to the right.

n * p+ * e* * u"+2to + ro +2Ko
Thtor: Yes. This is one of many reactions that are possible when a high-energy neutron and proton collide.
Student: If physicists understand all of this so well, why do they keep studying it?
Tutor: There are limits to what we know. For example, the Higgs boson is thought to exist, and to have
a role in creating mass, but no one has ever observed one in an experiment. This is one of many areas of
research that continue in physics today.
Student: And if I find the Higgs boson . . .

I\rtor: You'll receive the Nobel Prize in physics.



Mathematical Formulas

Righttriangle: 
r, -." ., .r_ .r .no

o2 +b2 : "2 sin2 0+cos2 0 :l tan 0 -k

sinp:g cos0- adjacent tan0-oppositehypotenuse hypotenuse adjacent

Quadratic equation:

If an2*br*c-Q then n--ry

Thigonometry identities: 
sin20 - )sin g cos 0

cos 20 - cos2 0 - sin2 0 - 2cos2 -1 - 1 - 2sin2 0

sin(o + 0: sinocos P + cos asinB

cos(o + P) - coso cos 0 +sino sinB

sina*sin p-o^,- ("H) .o, ff)' - 
. DrrI 

\-

cos, *cos B-2cos (ry) .o, (+)
cos a -cos B --2 sin (ry),t" (+)

Some Common Taylor Series

(1 + n)n - 1 *nr + f,n(n- 1)*' +... I tt + *)' - 1 *2r * 12

e* :1+ r***'+#"t+... | (1+ r)3-1 *3r*3r2+...
ln(l *r) -n-L*' +irt+... | (1 + *)-L - 1-n*12 -r.3 +...
sinr -n-*n3+*ru+... | (1 + n)-2 -1-2r*Br2-4rs +...
cosn-- 1- h*' +f;r4+-.. I tt *r)Llz - 1 +*"-t*' +#"t+...
tans-r* t"t +?u*' +.. | (1 + n)-L/2 - 1- Lz**t*' - *rt+...
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Some Useful Constants and Data

acceleration of gravity g 9.80665 mf s2

speed of light in vacuum c 2.998 x 108 m/s
Newton's gravitation G 6.674 x 10-11 N.m2 lk1'
Avogadro's constant I{n 6.022 x 1023 f mol
Boltzmann constant k 1.3807 x 10-23 J lK
elementary charge e L6022 x 10-1e C

universal gas constant R 8.3145 J/mol.K - Nek
Planck constant h 6.626 x 10-34 J.s - 4.136 x 10-15 eV.s

hc for photon energy hc 1239.84 nm.eV

permeability constant Fo 4n x 10-z a.mlA
permittivity constant €s 8.8542 x 10-12 C2/N.m2

Bohr radius as 0.529 x 10-10 m

Rydberg energy Ep 13.606 eV

Coulomb's law k Il(aneg) - 8.99 x 10e N.m2 lC'
Stefan-Boltzmann constant o 5.6704 x 10-8 W l^'.y+
electron mass me 9.109 x 10-31 kg - 510,999 eY f c2

proton rnass mp L6726 x 10-27 kg - 938 .27 MeY l"'
neutron mass mn L6749 x 10-27 kg - 939.565 MeY f c2

atomic mass unit Tnu 1.6605 x 10-27 kg - 931 .494MeY f c2

mass of Earth M@ 5.98 x 1024 kg

radius of Earth B@ 6.37 x 106 ID - (a0.0 x 106 m) lQ")
radius of Earth's orbit AU 1.50 x 1011 m (AU - "astronomical unit")
speed of sound in 20"C air 343 m/s

SI Prefixes

E exa 1018

P peta 1015

T tera 1012

G giga 10e

M mega 106

k kilo 103

c centi 10-2

m milli 10-3

p micro 10-o

n nano LO-e

p pico 10- 12

f femto 10- 15

Conversion Factors

1 mile : 5280 ft (exact) - 1609 m
1 in - 2.54 cm (exact)

I ft - 0.3048 m
1 y :365.2425 d = r x 107 s

1 m/s - 2.24 mph
360'
1 acre - 43,560 ft2
t hectare - 104 m2

1 gallon (US) - 3.786 liter
1 pound - 4.45 N = 0.4536 kg
1 eV - I.602 10-1e J
1 atm - 1.013 x 105 N/-' or pascals

1 cal - 4.1868 J

t hp - 746W
1 Tesla - 104 gauss

length

time
MASS

force

enerry
power

charge

electric field

current
potential
resistance

capacitance

inductance

magnetic field

meter

second

kilogram
newton
joule

watt
coulomb

ampere

volt
ohm

farad

henry

tesla

Units

l*
N - kg.m/s2

J - N m: kg.m'lr'- W.s

W - Jl, - N.m/s: V'A
C-A.s
N/C -Ylrrr'
A-Cl":YlQ
V - JIC - A CI- T.mzf s

a- vlA
F-Clv-s/o
H-V.s/A:f,).s
T - N/A.m

circle:

sphere:

C -2rR

A - 4nR2
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1 2 

H He 
3 4 5 6 7 8 9 10 

Li Be B C N 0 F Ne 
11 12 13 14 15 16 17 18 

Na Mg Al Si P S CI Ar 
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 
55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 

Cs Ba * Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn 
87 88 104 105 106 107 108 109 110 111 

Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg 

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 

* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 

** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 


