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Introduction

Physics books are big. Sometimes they can be intimidating,.
Like any condensed work, the goal of this book is to get the plot, while sacrificing the depth and artistry of
the original. To do this, I walk through each chapter with the following approach:
o Identify the most important concepts in the chapter.
o Describe how they translate into problem-solving techniques.
e Show how these techniques work through the use of a few detailed examples.
The examples here are organized as a series of questions and responses. First learn to answer the questions,

as posed by the “tutor.” Then look for patterns in the questions, and learn to ask yourself the questions.
As you tackle other problems, try to ask yourself similar questions as you work toward an answer.

After a while you'll find that the questions themselves are easy to answer, almost insulting to ask. Many
students of physics struggle because they try to learn physics by learning how to answer the questions. The
successful students learn to ask themselves the questions.

Styling used in this book:
Key points are in bold.

Important terms are underlined.

When the student or tutor makes a mistake in an equation, it is marked with
a question mark at the right side of the equation, like

2+2=5 7

Remember that you should not take equations out of examples, because these
equations apply to the particular problem. Instead use the examples to under-
stand the equations and techniques.
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Five Things to Remember When
Doing Physics

e The goal is not possession of the answer, but mastery of the technique.
e Expect problems to take multiple steps. Don’t skip the steps.

o Be able to say what your variable means in words. You can make up a variables for things you want
or need and don’t have.

e Use the drawing, not the formula, for the direction.

e Minus signs and units are important.
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Chapter 1

Measurement

The important skills to get from this chapter are dealing with prefixes and units. We deal with both of these
the same way, by multiplying by one.

When we multiply something by one, we get the same thing we started with. This means that we can
multiply anything by one, all we want.

The key is choosing the correct “one.” Anything divided by the same thing is one (unless the two things are
zero). For example, if I have three dozen eggs and I want to know how many eggs I have, I choose 12 and 1
dozen as my two things that are equal to each other.

12
1. dezen

3 dezen x =36

To determine the correct “one,” see what you have that you want to get rid of. Put that in the numerator

or denominator so that it cancels. Then find something that’s equal to put in the other half of the fraction.

Handle prefixes the same way. For example, there are 1000 milli in one, no matter what they are. So to turn
0.126 seconds into milliseconds:

0.126 seconds x M = 126 milliseconds = 126 ms
o 1000 milli d
0.126 seconds x NN 126 milliseconds = 126 ms
1 second

Three things to watch out for:
¢ If a unit is squared or to some power other than one, then you’ll need to convert all of them (there are
three feet in a yard but nine square feet in a square yard).

e Don’t skip steps; experienced people may do the conversions in their heads, but that’s a good way to
make mistakes.

¢ Check your work: If you end with a bigger unit then you should have a smaller number, and vice versa.

EXAMPLE

How many inches are there in 5 km?
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Tutor: How are you going to attack this problem?

Student: I'm going to divide 5 km by one inch.

Tutor: Correct, but does it make sense that the answer is 57
Student: No, a kilometer is much longer than an inch.
Tutor: We need to have the two lengths in the same units.
Student: Should I use kilometers or inches?

Tutor: You could use either, or some other length like meters.
Student: I'll use meters.

Tutor: How many meters is 5 km equal to?

Student: One kilo is one thousand.

103
k — —
5 mx1k 5000 m

Tutor: How many meters is one inch?
Student: One inch is 2.5 centimeters, and there are 100 centi in one.

25em b emx —— —0.025m

1.6,
s 100 ¢

Tutor: What is 5 km divided by an inch?

500081

0.025.8r
Student: There are 200,000 inches in 5 kilometers.
Tutor: What are the units of your answer?
Student: The meters cancelled the meters and it doesn’t have any.
Tutor: What units should you get when you divide a length by a length?
Student: The ratio of two lengths should be a number, without any units.

2 x 10°

MEASUREMENT

EXAMPLE

How many square feet (ft2) are there in an acre?

Tutor: Do square feet and acres measure the same thing?

Student: A square foot is an area, and an acre is an area, so yes.
Tutor: Then we should be able to convert between them.

Student: How big is an acre?

Tutor: There are 640 acres in a square mile, and a mile is 5280 feet.
Student: So an acre is

1 square mile ) 5280 feet o
640 miles  °
Tutor: A square mile is 1 mile x 1 mile, so what you’ve done is

1 acre =

)
1 acre = 1 mile X 5280, flet = 8.25 mile feet
640 miles

Student: I need to cancel both miles.

1 acre =

1 mite? 8 5280 feet
640 _mites

2
) = 43, 560 feet?




EXAMPLE

Gravity is 9.8 m/s?. What is this in mi/h??

Tutor: What do you have to do?

Student: First I need to turn meters into miles.

Tutor: There are 1610 meters in a mile.

Student: So (1 mi/1610 m) and (1610 m/1 mi) are equal to one. I need to get rid of meters in the top,
so meters has to go on the bottom.

1 mi
2
9.8 m/s? x (1610m>

Student: And I need to change seconds into hours. Seconds is on the bottom so seconds has to go on the
top.

Tutor: How many seconds are there in an hour?

Student: There are 60 seconds in a minute and 60 minutes in an hour.

1 mi 60 s 60 minutes
o (o ?
9.8 m/s” x (1610 m) X (1 minute 1h )

Tutor: But there are two factors of seconds.
Student: So I need to convert both of them.

9 1 mi 604 60 minutes
9.8 yt/f x (1610,m) X (meu@ 1h
Tutor: That seems like a big number.
Student: It’s bigger than 9.8, so mi/h? must be a smaller unit than m/s?.
Tutor: It is.
Student: What is m/s?, anyway?
Tutor: Meters per second (m/s) is a speed, and means that each second you go so many meters. Meters
per second (m/s?) is an acceleration, and means that each second your speed changes by that many meters
per second. So, 9.8 m/s? means that each second your speed changes by 9.8 m/s, or 9.8 meters per second
each second.

2
) = 7.9 x 10* mi/h?

EXAMPLE

r

A machine draws narrow parallel lines, spaced 1200 per millimeter (mm). What is the distance between
lines, measured in nanometers (nm)?

Tutor: What do you need to do?

Student: I need to take mm in the denominator and make it nm in the numerator.

Tutor: To do that you would need to multiply by two lengths; that is, two distances in the numerator and
none in the denominator. Would that be equal to one?

Student: No. To end with a length in the numerator I need to start with the length in the numerator.
How about

_ 1 _ 1mm
"~ 1200/ mm 1200

Tutor: If there are 1200 in each millimeter, then the distance between them is 1 mm divided by 1200, yes.
Now we need it in nanometers.
Student: How many nanometers in a millimeter?

d
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Tutor: There are 103 milli in one, and 10° nano in one. Skipping steps is a good way to make mistakes.
Student: So I’ll turn mm into m, and m into nm.

Lmnr ( l,m’) (109nm
X X

4= To00 103 mnr Lar

) = 833 nm




Chapter 2

Motion Along a Straight Line

The most important thing to learn from this chapter is how to solve constant acceleration problems.

We start with five quantities: the displacement Az = x — xg, the initial velocity vg, the final velocity v,
the acceleration a, and the time ¢. The first four are vectors, so they have direction. In one dimension, the
direction means positive versus negative. They must all use the same axis, so any two that are in the
same direction will have the same sign.

To solve constant acceleration problems, we use the equations

includes omits
v—v =at vg, v, a,t  displacement Az
Az = % (vo+v)t Az, vy, v, t acceleration a

Az = vt + 2at? Az, vo,a,t final velocity v
Az =vt—1at®> Az, v,a,t initial velocity vo

2

v2—v2 =2a Az Az, v, v, a time t

If we know any three of the five quantities, and have a fourth that we want to find, but don’t care about

the fifth, then pick the equation that has the three you know and the one you want but not the one you
don’t care about.

EXAMPLE

If you drop a penny from the top of the Empire State Building (381 m tall), how fast will it be going when
it hits the ground below?

Tutor: What is happening here?

Student: The penny is undergoing constant acceleration.

Tutor: How do we solve constant acceleration problems?

Student: If we know three of the five variables, we can solve for the other two.
Tutor: Begin by writing down the five variables.

Student: Okay.

displacement Az
initial velocity v
final velocity
acceleration
time

~ 8 <
o

(@3]
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Tutor: Do we know the displacement?

Student: Yes, it’s 381 m.

Tutor: Is it positive or negative 381 m?

Student: Does it matter?

Tutor: Displacement is a vector, so it is important. We haven’t chosen either direction as positive yet.
Student: The displacement is downward, so I choose down as the positive direction, and Az = +381 m.
Tutor: Do we know the initial velocity?

Student: The penny is dropped, so the initial velocity is zero.

Tutor: Is it positive or negative?

Student: It doesn’t matter, because +0 = —0.

Tutor: Do we know the final velocity?

Student: It ends on the ground, so the final velocity is zero.

Tutor: To use our equations we need a constant acceleration. As the penny falls it accelerates downward,
but when it hits the ground the acceleration is upward.

Student: How is the acceleration upward?

Tutor: Just before it hits the ground, it was going downward. After it hits the ground it isn’t moving.
Student: So the change in the velocity is upward. Does this mean that the acceleration isn’t constant?
Tutor: It is constant until the instant that the penny hits the ground. So the final velocity is the velocity
it has as it hits the ground. Do we know this velocity?

Student: No. Does this mean that we can’t use the constant acceleration equations?

Tutor: Not necessarily. We need three of the five, and we already have two. Do we know the acceleration?
Student: The acceleration is g downward, so it’s 9.8 m/s?.

Tutor: Is it +9.8 m/s? or —9.8 m/s%?

Student: I chose downward as positive and the acceleration is downward, so it’s +9.8 m/s2.

Tutor: Last, do we know the time?

Student: No; we want to find the time.

displacement Az = +381m
initial velocity v = 0
final velocity v =
acceleration a = 9.8 m/s?
time t = 7

Tutor: How do we find the time?
Student: I don’t care about the final velocity v, so I'll use the equation that doesn’t contain v.

1
Az = vot + iat2

1 2

(+381 m) = (0)t + §(+9.8 m/s?)t?

2(+381 m)

= (+9.8 m/s?)

=8.82s

EXAMPLE

A volleyball player hits a volleyball 2.1 m above the floor so that it reaches a maximum height of 4.0 m
above the floor. How long is the volleyball in the air?

Tutor: What is happening here?
Student: The volleyball is undergoing constant acceleration.



Tutor: How do we solve constant acceleration problems?

Student: If we know three of the five variables, we can solve for the other two.
Tutor: Begin by writing down the five variables.

Student: Okay.

displacement Az =

initial velocity vy =
final velocity v o=
acceleration a =
time =

Tutor: Do we know the displacement?

Student: First it goes up 1.9 m and then it goes down 4.0 m.

Tutor: The displacement is the difference between the final position and the initial position.
Student: It ends 2.1 m below where it started, so that is the displacement.

Tutor: Is it positive or negative 2.1 m?

Student: I choose up as the positive direction, and the displacement is downward, so Az = —2.1 m.
Tutor: Do we know the initial velocity?

Student: No.

Tutor: Do we know the final velocity?

Student: No.

Tutor: Last, do we know the time?

Student: No; we want to find the time.

displacement Az = -2.1m
initial velocity wvo =
final velocity v =
acceleration a = 9.8 m/s?
time t = 7

Tutor: Can we find the time?

Student: We only know two of the five, so we can’t solve for anything.

Tutor: Is there anything else we know?

Student: We know how high it goes, but that doesn’t happen at either the start or finish.

Tutor: So we need a new start or finish.

Student: I'll do the way up. I know the displacement (+1.9 m), the final velocity (0), and the acceleration
(—9.8 m/s?).

displacement Az = +19m
initial velocity wvo =
final velocity v = 0
acceleration a = 98m/s?
time g =

Tutor: We know three of the five so we can solve, but how does this help us to find the total time?
Student: IfI find the initial velocity, then it is the same initial velocity as for the whole trip. Alternatively,
I could find the time up, then do the down problem to find the time down and add them.
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v —vi =2a Az

(0)2 — v2 = 2(—9.8 m/s?)(+1.9 m)
v§ =6.10 m/s

Tutor: Is it +6.10 m/s or —6.10 m/s?

Student: Does it matter?

Tutor: You just took a square root, which could be positive or negative.

Student: The initial velocity is up, which is my positive direction, so vp = +6.10 m/s for the whole trip.

displacement Az = -2.1m
initial velocity wvp = +6.10m/s
final velocity v =
acceleration a = 9.8 m/s?
time t = 7

Az = vot + %at2

~21m = (+6.10 m/s)t + 5(~9.8 m/s)2

(+4.9 m/s?)t? + (—6.10 m/s)t + (—2.1m) =0
 ha e
2a
—(—6.10 m/s) £+ /(—6.10 m/s)2 — 4(+4.9 m/s*)(—2.1 m)
2(+4.9 m/s?)
_ 6.10m/s+8.85 m/s
- (+9.8 m/s?)
. 6.10 m/s + 8.85 m/s
(+9.8 m/s?)
t=-0.28sor 1.53s

t

Tutor: There is a way to avoid the quadratic formula.

Student: Really? How?

Tutor: We know three of the five so we can solve for the other two. Solve first for the final velocity v, then .
we'll know four of the five.

Student: And I can choose a different equation to solve.

v2 — v} =2a Az

v? — (4+6.10 m/s)? = 2(—9.8 m/s?)(—2.1 m)

v=1/78.37 m?/s? = +8.85 m/s

Student: That number looks familiar.
Tutor: It should. We're really doing the same math, but in two easy steps instead of one hard step.
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Student: And I have to pick the sign for the square root. It’s going down, which is the negative direction,
S0 it’s negative.

v—v =at
(—8.85 m/s) — (+6.10 m/s) = (—9.8 m/s?)t
t=1.53 m/s

Tutor: If you had chosen the positive square root, then your time would have been —0.28 s.

EXAMPLE

A speeder at 80 mph (in a 35 mph zone) passes a policeman. The policeman, initially at rest, accelerates at
10 mi/h/s. How long will it take the policeman to catch the speeder?

Tutor: What is happening here?

Student: The policeman is undergoing constant acceleration.

Tutor: What about the speeder?

Student: He has a constant velocity.

Tutor: Is a constant velocity also constant acceleration?

Student: He has zero acceleration, which is constant.

Tutor: So we can use all of the same techniques for him too. Where do we start?
Student: We write down the five symbols for each person.

Speeder Policeman
displacement Azxg = Azp =
initial velocity wvsp = vpp =
final velocity vg = vp =
acceleration as = ap =
time ts = tp =

Student: What’s Azs and where did it come from?

Tutor: It’s the displacement of the speeder, as opposed to the displacement of the policeman, and we
invented it. We can use all of the constant acceleration formulas on it, like vs — vgo = asts.
Student: Aren’t the times the same for the speeder and the policeman?

Tutor: Yes, so we can use t for both. Do we know the speeder’s displacement?

Student: No. We don’t know the policeman’s displacement either.

Tutor: What event “starts” our constant acceleration?

Student: The speeder passes the policeman.

Tutor: What event “ends” our constant acceleration?

Student: The policeman catches the speeder.

Tutor: Since they start at the same place, and they end at the same place. ..

Student: the displacements are equal, whatever they are.

Speeder Policeman
displacement Az = — Az =
initial velocity wvsy = vpo =
final velocity wvs = vp =
acceleration ag = ap =

time = — t =
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Tutor: Do we know the speeder’s initial velocity?

Student: It’s 80 mph. Do I need to convert this into meters per second?

Tutor: Not necessarily. We can keep the units with the numbers and convert them when we need to. Do
we know the speeder’s final velocity?

Student: His velocity isn’t changing, so it’s also 80 mph. His acceleration is zero. Now we know three of
the five and we can solve for the time.

Tutor: Unfortunately, this is the exception to the rule. If the acceleration is zero and we know both
velocities, that is not enough. We need either the time or the displacement.

Student: And we don’t have either.

Tutor: What about the policeman?

Student: His initial velocity is zero, his acceleration is 10 mi/h/s, and we don’t know his final velocity.
What kind of a unit is mi/h/s?

Tutor: Each second his velocity increases by 10 miles per hour, so 10 miles per hour per second.

Speeder Policeman
displacement Az = — Az =
initial velocity wvsg = 80 mph vpg = 0
final velocity wvs = 80 mph vp =
acceleration ag = 0 ap = 10 mi/h/s
time t = — t =

Tutor: We could write an equation for the policeman, including his displacement and time as variables.

1
Azp = vpotp + §apt%

Az = (0)t + 3(10 mi/b/s)7?

Student: But it has two variables and we can’t solve it.
Tutor: We could write an equation for the speeder, but it would also have two variables, Az and ¢.
Student: So we’d have two equations and two unknowns. We could solve them.

1
Azs = vgotg + Easté

Il
Az = (80 mph)t + §(O)t2
Tutor: Since we want the time and don’t care about the displacement, let’s eliminate that.
1
5(10 mi/h/s)t?> = (80 mph)t

Student: The time cancels, and we don’t get a quadratic after all.

%(10 mi/h/s)t¢ = (80 mph)f

()= (%)

(55)= (%)

t=16s

Student: The miles and hours cancel.
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EXAMPLE

How must the initial speed of a car change so that the car is able to stop in only half the distance?

Student: How can I solve a problem without any numbers?

Tutor: Use variables. What equation would work here?

Student: I need to identify three of the five. The final velocity is zero, so I know that. I don’t know any
of the others.

Tutor: Which one don’t you care about?

Student: Initial velocity and displacement are mentioned, so it must be the acceleration or the time.
Tutor: The acceleration for the car is the same, no matter what the initial speed.

Student: So I don’t want that one?

Tutor: No, you do. Whatever it is, it is the same for both, and that is a piece of useful information. Given
that we don’t care about the time, what is the equation to use?

Student: That would be

v? — v =2a Az
Tutor: Good. This applies to any car with constant acceleration. So let’s come up with a set of variables
ay and Az; and so on for one car, and then another set as and Az, and so on for a second car.

20

u’ — v, =201 Azy — -2, =2a; Az
1,0 1,0

20

v = v} =2a; Az — —v} o = 2a2 Az,

Student: But I can’t solve either equation.
Tutor: True, but a; = as, and the distance Az, is half of Az;.
Student: So I substitute those.

1
—vg,o = 2a; <§A:c1>

Student: I still can’t solve it.

Tutor: No, but look at what you have. Does it look like anything else you have?
Student: It looks similar to the first equation, except for the %

Tutor: Then take the 1 out, and substitute.

(‘Uf,o)

| =

1
—’Ugyo = 5 (201 Al‘l) =
Student: Well, the minus sign cancels.

1
2 _ 129
V2,0 = 5”1,0

Tutor: Your goal is to find v, so take the square root and see what you have.

1 2 1
V2,0 = 5”1,0 = 5”1,0

Student: The initial speed the second time has to be \/g times the initial speed the first time?

Tutor: Yes, that’s exactly what the equation says. \/g is about 0.70, so the car has to be going 30%
slower to stop in half the distance.

Student: Where did you get 30%?

Tutor: The speed has to be 70% of the original speed, so the change is 30% of the original speed.
Student: And it doesn’t matter how fast the car was going, or even what the acceleration was?

Tutor: As long as the acceleration is the same each time. In science we call problems like these “scaling”
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problems. You want to know how one thing changes when another changes, without any values. One way
to solve these problems is to write down the equation both before and after, then substitute anything that

you know, either because it stays the same or you know how it compares to before.




Chapter 3

Vectors

Many things in physics have direction and are expressed as vectors. These include displacement, velocity,
acceleration, and force. We need to be able to add and subtract vectors.

Adding two parallel vectors is easy.

3i+4i=(3+4)i="Ti

Adding two vectors that are perpendicular can be done with the Pythagorean theorem. Adding two vectors
that are neither parallel nor perpendicular is more difficult. It can be done using the law of cosines, but this
becomes unwieldy with more than two vectors.

Instead, we divide each vector into components. The z components of each vector are parallel, and are
easy to add. The y components of each vector are likewise parallel to each other, and are likewise easy to

add. Then the z and y components are perpendicular to each other and can be added using the Pythagorean
theorem.

There is more than one way to find the components. I review the two most popular here.

Draw the right triangle with the vector as the hy- | Always draw the angle from the z axis toward the
potenuse and the other two sides parallel to the | y axis. Then the  component is cosine and the y
axes. The side of the triangle that is adjacent to | component is sine.

the angle is cosine, and the side of the triangle that
is opposite to the angle is sine. If the component
is in the opposite direction as the axis, then the
component is negative.

Let’s see how each method works.

13
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X
Een
32°
&

We draw the right triangle as shown. The z or The angle given is not measured from the z
component is the side opposite to the angle, axis. We draw a new angle measured from
so the = component is = = 6sin(32°). The y the z axis initially toward the y axis. This
component is the side adjacent to the angle, new angle is 270° + 32° = 302°. Then the
but it is down and the y axis is up, so the z component is £ = 6cos(302°) and the y
y component is y = —6 cos(32°). component is y = 6sin(302°).

I shall use the left-hand method.

EXAMPLE

What is the sum of the four vectors?




Tutor: Are the vectors all parallel?

Student: No.
Tutor: Are the vectors all perpendicular?
Student: No.

Tutor: So how do we add them?

Student: We break each one into components and add the components.
Tutor: What are you going to use for your axes?

Student: Uh, there’s already axes in the problem.

Tutor: Yes, but there won’t always be.

Student: I'm going to use the axes provided.

Tutor: Good. What is the  component of vector A?

Student: First I draw the triangle.

30° X

Ax

Student: The 2 component is the adjacent side of the triangle, so it’s cosine.

A, = Acos30° = 7.5¢c0s30° = 6.50

Tutor: Good. What is the y component of vector A?
Student: The y component is the opposite side of the triangle, so it’s sine.

A, = Asin30° = 7.5sin30° = 3.75

Tutor: What is the £ component of vector B?
Student: First I draw the triangle.

B=4

By f 20°

¥x

Bx

15
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Student: The z component is the adjacent side of the triangle, so it’s cosine.

B, = Bcos20° = 4c0s20° = 3.76 7

Tutor: But the z component goes to the left, and the x axis goes to the right, so it’s negative.

B; = —Bcos20° = —4c0s20° = —3.76
Student: Doesn’t the math take care of that automatically?
Tutor: Yes, if you always measure the angle from the z axis.

B, = Bcos160° = 4cos160° = —3.76

Tutor: In many of the things we’ll use vectors for, it’s more convenient to draw the triangle and add minus
signs when determining components.
Student: Okay. The y component is opposite the angle, so it’s sine.

By = Bsin20° = 4sin20° = 1.37

Tutor: What is the £ component of vector C?
Student: First I draw the triangle.

¥

Cx

Student: The z component is cosine.

C, = Ccos25° = 5¢c0825° = 4.53 7

Tutor: The x component is opposite the angle this time, so it’s sine.

C; = C'sin25° = 5sin25° = 2.11

Student: Isn’t the x component always cosine?

Tutor: No, the component adjacent to the angle is always cosine, and opposite is sine. More often than
not these will be the z and y components, respectively, but sometimes it’s the other way around.
Student: And the y component of C is adjacent, so it’s cosine. The y component is down, away from the
y axis, so it’s negative.

Cy = —Cc0825° = —5c0825° = —4.53

Tutor: What is the £ component of vector D?

Student: How do I draw the triangle for vector D?

Tutor: Because D is already parallel to one of the axes, you don’t need to draw the triangle. The z
component of D is zero, because it doesn’t go to the left or right at all.

Student: And the y component is —3.
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Tutor: Good, now we can add them.
Student: The z components add

(A+B+C+ D), =A;+ By +Cy + Dy =6.50+ (—3.76) + 2.11 + (0) = 4.85
Student: And the y components add

(A+B+C+D),=Ay+ By +Cy+ Dy =375+ 137+ (-4.53) + (-3) = —2.41

Student: Do we need to find the magnitude and direction or are the components enough?
Tutor: Often the components are enough, but let’s find the magnitude and direction for practice.
Student: The magnitude or absolute value is

V(X)) 4+ (Y)? = /(485)2 + (—241)? = V2352 — 581 = V1771 =421 7

Tutor: That can’t be right, because it’s less than one of the components. Remember to square the negative
sign too.

V(X)? + (Y)? = /(4.85)2 + (—2.41)? = 2352 + 5.81 = v/29.33 = 5.42

Tutor: Some people find it easier to make a table:

T Y
A 650 3.75
B -37 1.37
C 211 —4.53
D 0 -3
485 —241

Tutor: We can also express this vector using “unit vectors.”

(A+B+C+Dj=A+B+C+D=A+B+C+D=(4.85)i + (—-2.41)j
Student: What’s a unit vector?

Tutor: A unit vector is a vector of length 1 with no units. 7 points in the z direction and 7 points in the
y direction.
Student: How do I find the angle?

Tutor: Draw the triangle, but this time starting with the components.
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Student: So the angle is below the = axis. Does that mean the angle is negative?
Tutor: Some people are happy with that, but it’s best to show the angle that you mean with a drawing.

Student:

Student:

Tutor:

6 = arctan

opposite
adjacen

The tangent of the angle is opposite over adjacent, so the angle is

t 4.85

...below the z axis. Is adding vectors always so repetitive?

Usually, but with practice it will go faster.

= arctan & = arctan 0.497 = 26.4°

EXAMPLE

Find the vectors A + B and A — B graphically.

Tutor:

Student:

Tutor:

Student:

Tutor:

How do we add vectors?

We connect the ends, like this:

—+

4

Both vectors A and B point to the right, and your sum points to the left. Can that be right?

No, so it must be the other way.

Then A and B point up, but the sum points down. When adding vectors, we use “tip to tail,”
meaning that we move one vector so that it starts where the previous one left off.
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Student: Don’t vectors have to start at the origin?

Tutor: No. A vector seen this way is a displacement, or a change, and it doesn’t matter where it starts.
Student: So I add the vectors like this:

X
| | l .
I | I hl
Tutor: Yes. The vector you drew first is the difference of the two vectors.
Student: Butisit A— Bor B — A?
Tutor: Look for the “tip to tail” combination.
Student: So B plus my vector equals A, and my vector is
B+mine=A — mine=A-B
Tutor: An easier way to subtract vectors is to add the negative vector.
A-B=A+(-B)
¥
A
-B
X

Y

Student: A plus negative B equals my first vector, so it was A — B.
Tutor: Drawing it the other way would give B — A.
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EXAMPLE

Find a vector of length 4 that, when added to the vector shown, sums to a horizontal vector (parallel to the
z axis).

Tutor: Where can we start?

Student: I'm adding vectors, so I'll need their components.

Tutor: What are the components of the first vector?

Student: The z component is +3 and the y components is +2.

Tutor: What are the components of the second vector, the one we’re trying to find?

Student: Don’t I need an angle to find those?

Tutor: You need something. Do you know anything about the vector you’ll get when you add them?
Student: It’s horizontal.

Tutor: What are the components of that vector?

Student: I don’t know how long it is, so how can I find the components?

Tutor: What is the y component of a horizontal vector?

Student: Zero. It doesn’t go up or down.

Tutor: The y component of the first vector is +2, and the y component of the sum is zero, so...
Student: ...the y component of the second vector is —2.

Tutor: Now you have a vector with a length of 4 and a y component of —2. What is the £ component?
Student: I can use the Pythagorean theorem.

4=/ + (22 — z=+/22— (—2)2 =346

Tutor: A square root could be positive or negative. Could your second vector be (—3.46, —2)?

Student: Maybe, what would that look like?

Tutor: Start at the end of the first vector, and draw a circle of length 4. The second vector has to end on
this circle.
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-+

Student: I see, there are two points on the = axis where the vector could end. What if the first vector had
been (3, 5)7 Then there wouldn’t be any point where the circle intersects with the z axis.

Tutor: And there wouldn’t be any vector of length 4 that you could add to the first and get a horizontal
vector. The y component would have to be —5, so the second vector would have to be at least 5 long.




Chapter 4

Motion in Two and Three Dimensions

In this chapter we learn how to use vectors. Many things in physics have direction, and we use vectors to
describe the directions.

To demonstrate and practice vectors, we look at two basic techniques: projectile motion and relative motion.
Here we connect constant acceleration (and constant velocity) with vectors in two dimensions.

When everything lines up along a single line (any line), then we have a one-dimensional problem. When
everything lines up along a single plane, then we have a two-dimensional problem. If we can’t find a plane
in which everything happens, then we have a three-dimensional problem.

To deal with a one-dimensional problem, we choose one direction as the positive direction. Anything in
the opposite direction is negative. With a two-dimensional problem, we need to choose two axes. The one
limitation is that the axes need to be perpendicular to each other. Any set of axes will do, but there is often
one set that works best. By “works best” I mean that it gives us much easier equations to solve.

Once we have a set of perpendicular axes, we can treat the motion along each axis separately.

While it is mathematically correct to use the ¢ and j notation of the previous chapter, it is not done so much
in practice. Instead, it is easier to describe motion as being in the z or y direction.

EXAMPLE

A boy throws a ball toward a wall. The ball leaves his hand 1.4 m above the ground, with a speed of 15 m/s
at 42° above horizontal. How far above the ground does the ball hits the wall, 5 m away?

Tutor: Is this a one-dimensional problem?

Student: The ball starts going up and over, but the acceleration of gravity is downward. Since not every-
thing is along a single line, no.

Tutor: Is this a two-dimensional problem?

Student: Everything can be drawn in the plane of the page, with nothing going into the page or coming
out of the page, so yes.

Tutor: For a two-dimensional problem, we need two axes.

Student: Gravity is vertical, so I choose = horizontal toward the wall and y vertically up.

Tutor: Those will work well, but not because the acceleration is vertical. They work because the wall is
vertical.

Student: How does the wall come into it?

Tutor: We will want to know when the ball hits the wall, and it is much easier if this happens in one
dimension.

22
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Student: So I want to line up one axis with the “finish line”?

Tutor: Yes. Now what is happening along the x axis?

Student: Constant acceleration.

Tutor: What is happening along the y axis?

Student: Constant acceleration.

Tutor: How do we solve constant acceleration problems?

Student: We write down the five symbols and identify what we know.
Tutor: But now we need two lists, one each for the x and y axes.

Ar = Ay =
VUz0 = Uyo =
vy = vy =
a; = ay =
t = t =

Tutor: What is the displacement in the z direction?

Student: +5m

Tutor: What is the displacement in the y direction?

Student: We don’t know; that’s what we’re trying to find.

Tutor: Is it really what we’re trying to find?

Student: We want to find how high it is when the = displacement is +5 m, so we need to find the y
displacement and add +1.4 m to it.

Tutor: What is the initial velocity in the z direction?

Student: The x component is adjacent to the 42° angle, so it is cosine: 15 m/scos42°.

Tutor: What is the initial velocity in the y direction?

Student: The z component is opposite to the 42° angle, so it is sine: 15 m/ssin42°.

Tutor: Are both of them positive?

Student: The x component is toward the wall, which is our +x direction. The y component is upward,
which is our +y direction, so both are positive.

Tutor: What is the final velocity in the z direction?

Student: There is no horizontal acceleration, so it should be the same as the initial velocity in the z
direction.

Tutor: Yes, but unfortunately this is the exception to the three-of-five rule: when the acceleration is zero
and it becomes a constant velocity problem, knowing two velocities (which are the same) only counts as one.
What is the final velocity in the y direction?

Student: We don’t know.

Tutor: What is the acceleration in the x direction?

Student: The acceleration is parallel to the y axis, so it has no horizontal component. Zero.

Tutor: What is the acceleration in the y direction?

Student: g downward, so —9.8 m/s2.

Tutor: What is the time in the z direction?

Student: Time has direction?

Tutor: No.

Student: So the time is the same for the z and y problems.

Tutor: Do we know it?

Student: No.

Az = +45m Ay = ?

vzo = +(15 m/s)cos42° vy = +(15 m/s)sin42°
Ty = v =
a; = 0 ay = -—g
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Tutor: Can we solve the y problem to find the y displacement?

Student: No, we only know two of the five.

Tutor: Can we solve the x problem?

Student: Yes, we know three of the five, so we could solve for the final velocity or the time in the z
direction.

Tutor: How does that help us with the y problem?

Student: The time in the z problem is the same as the time in the y problem. Then we’ll be able to solve
the y problem.

1
Az = Umot + Eaxtz

(5 m) = ((15 m/s) cos42°) t + %(O)t2

_ (5 m)
" (15 m/s) cos 42°
t=0.448s

1 1
Az = vot + Eat2 — Ay = vyot + -2—ayt2

Ay = ((15 m/s) sin 42°) (0.448 s) + %(—9.8 m/s?)(0.448 s)?
Ay =352 m

Student: The y displacement is 3.52 m.

Tutor: But that wasn’t the question. What does the y displacement mean?

Student: The ball hits 3.52 m above where he threw it, or 1.4 m + 3.52 m = 4.92 m above the ground.
Tutor: If the y displacement had been less than —1.4 m, so that the height above the ground was negative,
what would that have meant?

Student: That the ball hit the wall below the ground?

Tutor: Yes, what would that mean?

Student: That the ball hit the ground before reaching the wall.

EXAMPLE

A cannon fires a cannonball from the top of a cliff to the level ground 180 m below. The cannonball leaves
the cannon at 100 m/s at 53° above horizontal. How far from the base of the cliff does the cannonball land?

Tutor: How many dimensions are there in this problem?

Student: The initial velocity and the acceleration are not along the same line, so more than one. They
are in the same plane, so two is enough.

Tutor: For a two-dimensional problem, we need two axes.

Student: I choose z horizontal, parallel to the ground, and y perpendicular to z.
Tutor: Now what is happening along the z axis?

Student: Constant acceleration.

Tutor: What is happening along the y axis?

Student: Constant acceleration.

Tutor: How do we solve constant acceleration problems?

Student: We write down the five symbols and identify what we know.
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Azx = Ay =
VUz0o = Uyo =
Ve = vy =
a; = a, =
TE— t =

Tutor: What is the displacement in the x direction?

Student: We don’t know; that’s what we’re trying to find.

Tutor: What is the displacement in the y direction?

Student: —180 m.

Tutor: What is the initial velocity in the = direction?

Student: The z component is adjacent to the 53° angle, so it is cosine: +100 m/scos 53°.
Tutor: What is the initial velocity in the y direction?

Student: The z component is opposite to the 53° angle, so it is sine: +100 m/ssin53°.
Tutor: What is the final velocity in the x direction?

Student: There is no horizontal acceleration, so it should be the same as the initial velocity in the z
direction, but it doesn’t help us.

Tutor: What is the final velocity in the y direction?

Student: We don’t know.

Tutor: What is the acceleration in the z direction?

Student: The acceleration is parallel to the y axis, so it has no horizontal component. Zero.
Tutor: What is the acceleration in the y direction?

Student: g downward, so —9.8 m/s?.

Tutor: What is the time?

Student: We don’t know, but it is the same for the £ and y problems.

Az = 7 Ay = -180m
vzo = +(100 m/s)cos53° vyo = +(100 m/s)sin53°
Oy = vy =
az; = 0 ay = —g
= — t =

Tutor: Can we solve the z problem to find the = displacement?

Student: No, we only know two of the five.

Tutor: Can we solve the y problem?

Student: Yes, we know three of the five, so we could solve for the time in the y problem, then put that
into the x problem.

1 1
Az = vt + §at2 — Ay = vyot + ant2

(180 m) = (+80 m/s)t + 3(~9.8 m/s?)¢*
(4.9 m/s?)t? 4+ (—80 m/s)t + (—180 m) = 0

Student: So we have to solve a quadratic equation?
Tutor: We could solve the quadratic.. .

_ =bx vb? —4ac

t
2a
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_ —(—80 m/s) £ 1/(—80 m/s)? — 4(4.9 m/s?)(—180 m) _ (80 m/s) % (99.6 m/s)
- 2(4.9 m/s?) - (9.8 m/s?)

t=-2.0s or 18.3s

t

Tutor: ...or we could solve the y problem for the final velocity.

Student: How does that help us? We need the time.

Tutor: If we knew the final velocity we would have four of the five and would have our choice of equations.
We could solve for the time without a quadratic.

v? — 1§ =2a Az — (vy)? — vZ) = 2a, Ay

(vy)? = vy + 20, Ay

vy = 1/(80 m/s)? + 2(~9.8 m/s2)(~180 m)

vy = £99.6 m/s

Tutor: The square root could be positive or negative. Which 1is it?

Student: What difference does it make?

Tutor: If the final velocity is positive then the cannonball is going upward as it lands.
Student: No, vy = —99.6 m/s.

V— U9 = at — Uy — Uyg = Gyt
y y Yy

Uy — Uyo
ay

t=

_ (—99.6 m/s) — (80 m/s)
i (—9.8 m/s?)

t=183s

t

Student: Now we can do the z problem.

1
T = vgot + 50,t2

z = (60 m/s)(18.3 s) + %(0)(18.3 s)?

z =1100 m

As an object flies through the air, its path forms a parabola. The vertical motion is like Ay = vot — 1gt2.
The horizontal motion is constant, so that ¢ is proportional to Az. In the photo, the beanbags fly in a
parabolic arc after they leave the airgun.



27

Imagine that you are driving down the road at 60 mph. If you look only at yourself, you don’t appear to
be moving. If you look out the window at the tree beside the road, the tree appears to be coming at you at
60 mph. You think of the car just ahead of you as going 60 mph, but it doesn’t get any further from you.
Likewise, a car going the other way appears to be coming at you at 120 mph.

This is the idea behind relative motion. We can measure the position, the velocity, or the acceleration of
anything compared to any other thing. We often intuitively measure everything compared to the ground,
and think of the ground as “stationary,” but we don’t have to approach things that way. (When we get to
relativity, it’s important to not approach things that way.)

The math behind relative motion is straightforward. If you have any two objects A and B, then
Tap = Tac + TcB
where C is any third person or object. Zap is read as “the velocity of A as measured by B.” Also,
TAB = —TBA
This says that whatever I see you doing, you see me doing the same thing in the other direction.

We can take the derivative of this, so
UAB = UacC + UcB
and
UAB = —UBA
The same is true for acceleration.
It is important that everyone agree on the axes. For displacement, we can think of each person carrying

their axes with them, but they have to point in the same direction. These equations fail if I think north is
positive and you think south is positive.
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EXAMPLE

As a bus drives north at 60 mph, a passenger on the bus walks toward the rear at 2 mph, compared to the
bus. How fast is the passenger moving, as determined by someone standing on the side of the road?

Tutor: How are you going to approach this problem?

Student: Because we'’re talking about relative motion, I'm going to use the relative motion equations.
Tutor: Not all problems are labelled with the technique needed to solve them. How might you identify
that relative motion is involved in this problem?

Student: It talks about a measurement “compared to” and “as determined by.”

Tutor: Yes. It involves measurements made in two different frames of reference, by two different people.
Student: So I’ll start with the equation.

UAB = Uac + UcB

Student: What are A, B, and C?

Tutor: What are the three people, objects, or frames of reference mentioned in the problem?

Student: The bus, the passenger, and the guy by the side of the road.

Tutor: It doesn’t matter which one you make which letter, so long as you do it consistently.

Student: Because I want the velocity of the passenger as measured by the guy, I'll use A as the passenger
and B as the guy.

iUpg = UpB + UBG

Tutor: What is the velocity Upg of the bus as measured by the guy?

Student: 60 mph.

Tutor: Is it positive or negative?

Student: It doesn’t say.

Tutor: You need to choose an axis. Pick either north or south as positive and stick with your choice.
Student: I'll take north as positive, so it’s +60 mph.

Tutor: What is the velocity vpp of the passenger as measured by the bus?

Student: 2 mph. He’s walking toward the rear of the bus, or southward compared to the bus, so it’s —2
mph.

Upg = (—2 mph) + (+60 mph) = +58 mph
Student: The guy by the side of the road sees the passenger moving northward at 58 mph.

EXAMPLE

An airplane is pointed southward with an airspeed of 200 mph. The wind is blowing northwest at 30 mph.
What is the speed of the plane compared to the ground?

Student: It says “compared to,” so I'm going to use relative motion.

Tutor: Good.

Student: All I need to do is figure out whether I add or subtract the 200 and the 30.

Tutor: You're trying to skip steps, and that’s a good way to make a mistake. South and northwest aren’t
parallel to each other.

Student: So when I add or subtract I'll need to do components. Darn.

Tutor: Harder but not impossible. What are you going to use for your axes?

Student: z and y, of course.

Tutor: The directions in the problem are south and northwest. Think about how z and y relate to the
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directions in the problem, or you could just use some combination of north, south, east, west, or even north-
west.

Student: The plane is going south, so I’ll use south as one of my axes. The wind is more west than east,
so I’ll use west as the other. That way the axes are perpendicular and my results will probably be positive.
Tutor: Now figure out how to add the vectors.

Student: Using relative motion:

UaB = UAcC + UcB
Tutor: What are the three things in the problem?
Student: The airplane and the ground. That’s two, so there must be a third thing moving. .. oh, the wind
or air.
Tutor: Which is A, B, and C?
Student: I want the plane compared to the ground, so the Plane is A, the Ground is B, and the third
thing C is the Air.

Upg = Upa + UaG
Tutor: What are the components of Upa, the velocity of the plane compared to the air?
Student: It’s headed south at 200 mph, so +200 mph south and 0 west.

Tutor: What are the components of Uag, the velocity of the air compared to the ground?
Student: That’s the wind, so I draw my triangle.

llg

VG

VaGg

Student: Because it’s 45°, I can use either angle, and the components are the same.

VAG,s = vag,w = (30 mph) cos45° = 21 mph ?
Tutor: The wind is going northwest, so the south component is negative (trying to skip steps again). Now
you can do the vector addition.
Student: First I'll add the south components.
UPG,S = UPA,S + Vag,s = (200 mph) + (—21 mph) = 179 mph
vpG,w = UPA,w + vac,w = (0 mph) + (21 mph) = 21 mph

Tutor: The south and west components are perpendicular, so you can’t just add them.
Student: I need to use the Pythagorean theorem again.

vpG = \/VRg s + Vgw = V(179 mph)? + (21 mph)? = 180 mph
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EXAMPLE

An airplane has an airspeed of 200 mph. The wind is blowing south at 30 mph. The airplane needs to fly
directly southeast compared to the ground, so that it flies parallel to the runway. In what direction should
the pilot point the airplane?

Student: It says compared to, so I’'m going to try relative motion.

Upg = Upa + UG

Student: The directions are not all parallel, so I’ll need axes to add the vectors.

Tutor: What are you going to use for your axes?

Student: How about south and west again?

Tutor: Any set of perpendicular axes will work, of course, but the goal is to get the plane flying southeast.
The math will be easier if you pick the goal (southeast) as one of your axes.

Student: Really? Okay, and I'll use southwest for the other axis. Upg equals +200 mph.

Tutor: Is it clear that the plane is moving 200 mph compared to the ground? In the last problem, the
groundspeed |vpg| and the airspeed |vpg| were different.

Student: I guess not. But the southwest component of the groundspeed is zero, so that the plane goes
southeast compared to the ground.

Tutor: Yes. What are the components of the wind Tag?

Student: It’s a 45° angle again, and southward means the southwest and southeast components are both
positive. Drawing the triangle isn’t as easy because the axes seem strange. Did you pick the strange direc-
tions just so I could practice using unusual axes?

Tutor: Yes. If it seems strange, you can rotate the paper.

¥

VaG

N\

Sw SE

vAG,sw = VaG,sE = (30 mph) cos45° = +21 mph

Tutor: What components do you have now?

SE SW
UpA ? ?
vac  +21 +21
Upg i 0
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Student: I see. I can find pa,sw = —21. But I still don’t know the angle.

Tutor: You have one of the components of ¥ps, and you know the magnitude vpa, so you can find the
other component.

Student: Using the Pythagorean theorem backwards.

VA = 'U?’A,SE + U%A,sw
(200 mph)? = v, gp + (—21 mph)?

vpa,sE = /(200 mph)2 — (—21 mph)2 = 199 mph

Student: It’s a square root, so is it positive or negative?
Tutor: If it’s negative then the plane is going northward.
Student: Of course. Then the angle is

Sw SE

opposite

1
arctan et = arc 109

Student: That’s 6° measured eastward from southeast.




Chapter 5

Force and Motion — 1

In this chapter we cover the single most important technique to learn in physics. If you don’t get this, get
help.

Every problem involving forces starts with the same basic steps:

e Draw a free-body diagram.

e Choose axes.

e Use the diagram to write Newton’s second law equations along each axis.

e Solve for the unknown.
Forces are things that push or pull on an object. Anything that touches an object can apply a force to it.
Also, there are two types of forces that can occur without touching: gravity and electromagnetic forces. We

won’t have any electromagnetic forces for a while, so we only need to deal with gravity and things in contact
with our object. Also, there is no friction until the next chapter.

For the moment, we need to worry about three forces.

e gravity
e normal forces

e tension forces

Gravity is easy. Every object has a mass m, and a weight (force) of mg, where g is the same acceleration of
gravity as in the earlier chapters. g = 9.8 m/s? on the surface of the Earth, and g is never negative. g is
the magnitude of the gravity force, and does not contain direction information.

Any time two objects are in contact, there could be a force where they meet. This force is to keep the objects
from occupying the same place at the same time. This force is always perpendicular to the surfaces, and
is just hard enough to keep the objects apart and no harder. There is a word in mathematics that means
“perpendicular to the surface,” and that word is normal. So the normal force is the perpendicular to the
surface force.

You don’t know the magnitude of the normal force. One common mistake is to assume that you
know the normal force, but you don’t know it. The only time that you know the normal force is when
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someone is standing on a scale. The purpose of the scale is to measure the normal force, so if it says 200
pounds, then the normal force is 200 pounds. If you don’t have a scale, you don’t know the normal force.

We pull on an object with a string or rope. Usually in physics problems we use massless ropes (purchased
at the theoretical physics store). Tension forces are away from the object in the direction of the rope.

You don’t know the magnitude of the tension force. One common mistake is to assume that you
know the tension force, but you don’t know it. The only time that you know the tension force is when the
tension force is applied by a spring scale.

The last important point about forces is dealing with paired forces. Newton’s third law says that if A puts
a force on B, then B puts a force on A, and that the two forces are equal in magnitude and have opposite
direction. Note that because one of these forces is on A and the other on B, these forces never occur on the
same object.

The purpose of the free-body diagram is to get a complete list of the forces, get the direction right, and
attach a name or label to each force.

EXAMPLE

A 3 kg box sits on the floor. The box is pulled to the right by a rope that is 35° above horizontal. Draw a
free-body diagram for the box.

Tutor: Are there any forces on the box?

Student: It has mass, so it has weight mg downward.

Tutor: Are there any other forces acting on the box?

Student: There is a rope pulling on it, so there is a tension force.

Tutor: Do we know how big the tension force is?

Student: Uh, no?

Tutor: Correct. Later we're going to want to put the magnitude of the tension force into an equation, so
we need a symbol to represent the magnitude of the tension force.

Student: I choose T.

Tutor: Good. What is the direction of the tension force?

Student: 35° from horizontal right toward upward.

Tutor: Are there any other forces acting on the box?

Student: The box is in contact with the floor, so there is a normal force.

Tutor: What is the direction of the normal force?

Student: Perpendicularly out of the floor, so upward.

Tutor: What is the size of the normal force?

Student: The normal force is the same as the weight.

Tutor: Not necessarily. The tension will pull upward on the box, so if the normal force is the same as the
weight, the box will lift off of the floor.

Student: So the normal force isn’t the same as the weight?

Tutor: Sometimes it is, but a normal force is only as big as it needs to be to keep the objects from moving
into each other.

Student: So how big is the normal force?

Tutor: Do you know?

Student: No.

Tutor: So pick a variable name or symbol to represent the magnitude of the normal force.
Student: I choose V.

Tutor: Fx and n are also common choices. Are there any other forces acting on the box?
Student: Friction.

Tutor: We're going to save friction until the next chapter.

Student: Then that’s all of the forces.

Tutor: How do you know?
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Student: Because we did the weight and we did everything in contact with the box.
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EXAMPLE

A 2 kg book sits on a 7 kg table. Draw a free-body diagram for the book and one for the table.

Tutor: Are there any forces on the book?

Student: It has mass, so it has weight mg downward.

Tutor: Are there any other forces acting on the book?

Student: It is in contact with the table, so there is a normal force upward.

Tutor: How big is the normal force?

Student: It is the same as the weight, because those are the only forces on the book.

Tutor: What if the table is in an elevator that is accelerating upward?

Student: Who would put a book on a table in an elevator?

Tutor: The point is that just having two forces on an object doesn’t make them equal. How big is the
normal force that the table puts on the book?

Student: I don’t know, so I'll give it a symbol V.

Tutor: Are there any other forces acting on the book?

Student: I did the weight, and the only thing touching the book is the table, so those are the only forces
on the book.

Tutor: What forces are there on the table?

Student: There is the weight of the table and the weight of the book and a normal force up from the floor.
Tutor: The weight of the book doesn’t act on the table.

Student: Surely the book affects the table.

Tutor: Yes, but the gravity force of the book is the Earth pulling it down, and Newton’s third law says
that the gravity force of the book pulling up on the Earth is equal and opposite. The table doesn’t come
into the gravity force on the book.

Student: Then how does the book affect the table?

Tutor: They are in contact with each other.

Student: So there is a normal force perpendicularly out of the book acting on the table, pushing the table
downward.
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Tutor: Yes. How big is this normal force?

Student: Equal to the weight of the book?

Tutor: Not necessarily. Newton’s third law says that the force that the table puts on the book is equal
to and in the opposite direction as the force that the book puts on the table. How big is the force that the
table puts on the book?

Student: It was NV, so the normal force of the book pushing down on the table is also V.

Tutor: How big is the normal force that the floor puts on the table?

Student: It’s a normal force, so N.

Tutor: Is the normal force that the floor puts on the table the same size as the normal force that the book
puts on the table?

Student: Not necessarily, so I need to use a different symbol for the floor-table force, so I choose Ngoor.
Tutor: Are the two weights the same?

Student: No, so I'll use mg for the weight of the book and Mg for the weight of the table.

Tutor: Are there any more forces acting on the table?

Student: We did the weight of the table, and it is in contact with two things so there are two normal
forces. We’re done.

P fNa.,
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EXAMPLE

A 6 N box and a 12 N box hang from a rope over a frictionless, massless pulley. Draw a free-body diagram
for each box.

Tutor: What forces are there on the 6 N box?

Student: It has mass, so it has weight mg downward. There is a tension force T upward.
Tutor: What forces are there on the 12 N box?

Student: It also has mass, so it has weight downward. There is a also tension force upward.
Tutor: Are the two masses the same?

Student: No, so I'll use mgg for the 6 N box and m12g for the 12 N box.

Tutor: Newtons is a unit of force, not mass, so 6 N is mg for the lighter box.

Student: So the mass is 6 N/9.8 m/s2?

Tutor: Yes, and likewise for the 12 N box.
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Student: Are the tensions the same or different?

Tutor: As long as it is the same massless rope, and the pulley is massless and frictionless, then the tensions
are the same.

Student: So I use the same symbol T in each free-body diagram. Isn’t the tension equal to the weight of
the lighter box?

Tutor: If it is, then the light box has zero net force on it and doesn’t accelerate, but the net force on the
heavy box is downward and it does accelerate.

Student: And then the rope would have to become longer. So I don’t know the size of the tension force.

& 2 |
L
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EXAMPLE

A 3 kg box hangs from the ceiling by a rope, and a 4 kg box hangs from the 3 kg box from another rope.
Draw a free-body diagram for each box.

Tutor: What forces are there on the 3 kg box?

Student: It has mass, so it has weight mg downward. There is a tension force upward and a tension force
downward.

Tutor: Are the tension forces the same?

Student: If they were, they would add to zero and only the weight would remain, so the box would fall.
They must be different, so 77 up and 75 down.

Tutor: They could be the same, if the boxes were falling with acceleration g. What forces are there on
the 4 kg box?

Student: It also has mass, so it has weight downward. There is also a tension force upward.

Tutor: Are the two masses the same?

Student: No, so I'll use mag for the 3 kg box and mgg for the 4 kg box.

Tutor: Is the tension pulling up on the 4 kg box equal to 77 or T>?

Student: It is the same rope as the one that pulls down on the 3 kg, so it is T5.

Tutor: As long as the rope is massless.

Student: What if it had mass?

Tutor: We would need to draw an additional free-body diagram for the rope. If it is massless, then we
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have the tension at top and bottom and they add to the mass, zero, times the acceleration of the rope.
Student: Which is zero no matter what the acceleration is, so the tension is the same everywhere on the
rope.

Newton says that if we add all of the forces on an object we get the mass times the acceleration of that
object. The forces are vectors, and often the forces are not colinear (along a single line), so we need to divide
them into components to add them. To do this we need axes (usually two, sometimes three). Any set of axes
will work, so long as they are perpendicular to each other. If you choose one of the axes to be parallel
to the acceleration, then the math will be much easier to do. If the acceleration is zero, then choose any
axes you like.

Once you have your axes, you can add the force vectors. Take one axis, and go through the forces one at a
time. Find the component of that force along the axis. Add all of the components and set that total equal
to the mass times the acceleration along that axis.

Don’t worry if you don’t know values for all of the symbols in the equation. We’ve got to be missing one

variable, or we would have nothing to solve for. It is common to be missing two or more, so we’ll need
additional equations in order to get a solution. Do each axis, then think about solving the equations.

EXAMPLE

A 3 kg box sits on the floor. The box is pulled to the right by a rope that is 35° above horizontal and has a
force of 26 N. Find the acceleration of the box. Find the normal force that the floor exerts on the box.

Tutor: How do we begin?
Student: We draw a free-body diagram for the box. We already did that for this problem, with the weight
mg downward, the normal force N upward, and the tension force T up and to the right.
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Tutor: What is the direction of the acceleration?

Student: The box will slide along the floor, so horizontal and to the right.

Tutor: Choose one axis parallel to the acceleration and the second axis perpendicular to the first.
Student: I choose z to the right and y upward.

Tutor: Newton says that if we add the force vectors together, the result will be equal to the mass of the
box times its acceleration.

Student: To add the forces, we need to divide the vectors into components.

Tutor: Yes, then we can apply Newton’s second law for each axis.

YF; =ma, and YF, = may

Tutor: What is the z component of the weight?

Student: The weight is perpendicular to the = axis, so the £ component is zero.

Tutor: What is the £ component of the normal force?

Student: The normal force is also perpendicular to the z axis, so the £ component is zero.
Tutor: What is the £ component of the tension?

Student: The z component is adjacent to the 35° angle, so it’s cosine.

T cos 35° = may

Tutor: Let’s do the y components. What is the y component of the weight?

Student: The weight is parallel to the y axis, so all of it. It’s down, so it’s negative.

Tutor: But the weight is negative because it is opposite to the y axis. Had you chosen the y axis downward,
the weight would be positive.

Student: Yes, so the weight is negative, and the normal force is also parallel to the y axis, so the y
component is +N.

Tutor: What is the y component of the tension?

Student: The z component is opposite to the 35° angle, so it’s sine. It’s in the same direction as the y
axis, so it’s positive.

—mg + N + T'sin 35° = ma,

Tutor: Can we solve these?
Student: The tension T is 26 N, so I can solve the first equation and find a..

(26 N) cos35° = (3 kg)a,
a; = 7.1 m/s?

Student: I don’t know the normal force so I can’t find a,.
Tutor: a, is the acceleration in the y direction, or vertical. We chose the axes so that all of the acceleration
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would be in the z direction.
Student: So ay =0.

—(3kg)(9.8 m/s2) + N + (26 N)sin 35° = (3 kg)(0)

Student: Now I can solve for the normal force N.

—(29.4N)+ N + (149N) =0

N=145N

Student: That looks strange, with N on each side.

Tutor: The N on the left is in italics, which indicates that it’s a variable. The N on the right is in
plaintype, so it is a unit. It can be confusing, so some people try to choose other symbols for the normal
force, like Fiy, n, or n. What is the direction of the normal force?

Student: It’s positive so it’s upward.

Tutor: N is the magnitude of the normal force, so it must be positive no matter what direction the normal
force is.

Student: If I had chosen down as the y axis, then shouldn’t N be negative?

Tutor: No, then the y component of the normal force would have been — N, and because N is positive, this
would be negative. We use the drawing to get the direction right, and the symbol is equal to the magnitude.
Student: So to see if the normal force is up or down, I have to look back at the drawing.

EXAMPLE

A man pushes on a box that is on a ramp. The box has a mass of 24 kg and the ramp is 28° compared to
the horizontal. He pushes with a force of 100 N at 10° above horizontal. What is the acceleration of the
box?

Tutor: How do we begin?

Student: We draw a free-body diagram for the box. The weight is mg downward. There is a normal force
N upward.

Tutor: Is the normal force really upward? The surface isn’t horizontal.

Student: Right, the normal force is perpendicular to the surface, but we still don’t know how big it is.
Also, the man is pushing on the box, so there is a force that I'll call P, 10° above horizontal.

Tutor: Are there any other forces acting on the box?

Student: The only things touching it are the man and the ramp surface, and we did those and gravity, so
we have them all.
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Tutor: The vectors are not all colinear, so to add the vectors we need to have two axes. The math will be
much easier if one axis is parallel to the acceleration.

Student: Why is that? Why can’t I use z right and y up?

Tutor: You could, but then you’d have a, and ay, and you wouldn’t know either. Because the box slides
along the ramp, you’d have a third equation ay/a, = tan28°, and you’d have to solve simultaneous equa-
tions. If a, = 0, then you have two only equations and often you can solve each one by itself; much easier.
Student: Okay, z is up the ramp and y is perpendicular to it, up and to the left.

Tutor: Now we can write Newton’s second law.

Student: We have to do it in both the x and y direction.

YF, = ma, and YF, =may

Tutor: What is the £ component of the normal force?

Student: The normal force is perpendicular to the x axis, so the £ component is zero.

Tutor: What is the z component of the weight?

Student: Part of the weight is parallel to the x axis, but how do we find the angle?

Tutor: Consider the triangle formed by the ramp and the weight force. The angle at the top is
90° — 28° = 62°. That angle and the angle between the weight and the —y axis form a right angle, so
it’s 90° — 62° = 28°.

Student: So the x component of the weight is opposite to the 28° angle, so it’s sine. It goes in the opposite
direction as the z axis, so it’s negative.

Tutor: What is the z component of the push force?

Student: The push is 18° from the z axis.

—mgsin 28° + P cos 18° = ma,

Tutor: What is the y component of the normal force?

Student: The normal force is parallel to the y axis, so the y component is +N.

Tutor: What is the y component of the weight?

Student: The y component of the weight is adjacent to the 28° angle, so it’s cosine. It goes in the opposite
direction as the y axis, so it’s negative.
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Tutor: What is the y component of the push force?
Student: The y component is opposite to the 18°, so it’s sine. It’s opposite to the y axis, so it’s negative.

N —mgcos28° — Psin18° = m%'o

Tutor: Now that we’ve applied Newton’s second law, can we solve for the acceleration?
Student: We want the acceleration up the ramp a,, and we know everything else in the x equation, so we
can solve.

—(24 kg)(9.8 m/s?) sin 28° + (100 N) cos 18° = (24 kg)a,
_(110 N) + (95 N) = (24 kg)as

_ -I5N

%= kg

Student: Doesn’t a, have to be positive?

Tutor: a; is a component, not a magnitude, so it could be negative. What does a negative a, mean?
Student: A negative a, means that the acceleration is down the ramp. He isn’t pushing hard enough to
move the box up the ramp.

Tutor: Which way is the box moving?

Student: The acceleration is down the ramp, so the box is moving down the ramp.

Tutor: Perhaps the box was moving up the ramp, because he was pushing harder earlier. Does the accel-
eration tell us which way something is moving?

Student: The acceleration tells us how the velocity is changing. The box could be moving up the ramp
but slowing. How can we tell?

Tutor: We can’t, not from the information we have.

= —0.64 m/s?
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EXAMPLE

In an Atwood’s machine, a 6 N box and a 12 N box hang from a rope over a frictionless, massless pulley.
Find the acceleration of the boxes.

Student: We start by drawing the free-body diagram. We already did this one.

NS T
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Tutor: Newton says that if we add the forces, we get the mass times the acceleration. How do we add
forces?

Student: They’re vectors, but they are all up and down, so I only need one axis. I choose y upward.
Tutor: Will both boxes accelerate upward?

Student: One will move up when the other moves down.

Tutor: How will their accelerations compare?

Student: They will be the same, except one will be positive and the other will be negative.

Tutor: It would be handy if they were the same. To do this, we use separate axes for the two objects.
Student: We can do that?

Tutor: Yes, each object can have its own set of axes. But you still need to be consistent in using the
correct axes for each object. This will come in handy when the accelerations aren’t parallel, like if one of
the boxes was on a ramp.

Student: Okay. I think that the heavier box will move down, so down is positive for the 12 N box and up
is positive for the 6 N box.

Tutor: You mean that the heavier box will accelerate down, since we could apply an additional force so
that the lighter one moves down.

Student: Of course. I’ll add the forces on the 12 N box. The tension is equal to the weight of the lighter box.

?

mi2g —Meg = M12a -«

Tutor: If the tension is equal to the weight of the lighter box, then the total force on the lighter box is
zero and it doesn’t move but the heavier one does.

Student: You mean doesn’t accelerate. That would be a problem.

Tutor: For the lighter box to accelerate up, the tension must be more than its weight. For the heavier box
to accelerate down, the tension must be less than its weight.

Student: So the tension is between mgg and m;ag.

Tutor: Yes. How big is the tension force?
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Student: We don’t know, that’s why we made it a variable.
Tutor: So apply Newton’s second law to each box.

mi2g — T = my2a

T — mgg = mga

Student: Each equation has two variables, so I can’t solve either of them.

Tutor: But they have the same two variables, so you have two equations and two variables, and you can
solve them together.

Student: I want the acceleration and not the tension, so I'll add the two equations.

mi2g — Meg = Mi20 + Mea
(mi2 — mg)g = (m12 + me)a
(12N -6 N)(9.8 m/s?) = (12N +6 N)a

_ (6X)(9.8 m/s?) _ 2
a= (18.5) =3.3m/s
Tutor: The result is positive. What does that mean?
Student: That the boxes are moving — no, accelerating — in the directions I chose as positive.




Chapter 6

Force and Motion — 11

In this chapter we add two things to what we did last chapter. This first is friction forces, and the second
is things moving in a circle.

Of all of the things that you think you intuitively know, the one you are most likely to get backwards is
friction. You may think that friction opposes motion, and many physics books say so, but friction opposes
sliding of surfaces. Friction will even cause motion in order to prevent sliding.

Imagine that you are driving a car that is currently at rest. If you push on the accelerator, the engine turns
the tires. If there was no friction, the tires would rotate but the car wouldn’t move, so the tires would slip on
the ground. To prevent this slipping, friction pushes the car forward. The same thing works when walking,
where friction pushes your shoe forward, causing motion.

Friction comes in two types, static and kinetic. Kinetic friction is when the surfaces are already sliding
against each other, and static friction is when they aren’t sliding yet. Kinetic friction tries to stop the
sliding, and static friction tries to prevent sliding. .

EXAMPLE

Consider a tablecloth on a table, and a bottle sitting on the tablecloth. A physics teacher slowly pulls the
tablecloth to the left. As he does so, the bottle slides with the tablecloth. Draw free-body diagrams for the
bottle and the tablecloth.

Tutor: What are the forces acting on the bottle?

Student: There is gravity mg down, of course, and a normal force N; perpendicular to the surface, or up.
There is also a friction force f; against the motion, or right.

Tutor: The bottle accelerates to the left. What force causes it to move to the left?

Student: The teacher is pulling on it.

Tutor: The teacher is pulling on the tablecloth, but he isn’t touching the bottle. He doesn’t exert a force
on the bottle.

Student: It just moves because the tablecloth is moving.

Tutor: Newton says that the bottle can’t accelerate to the left without a force to the left. What force
could be to the left?

Student: Gravity is down and the normal force is up, so it can’t be those. The only force remaining is
friction, and how can that be to the left?

Tutor: If there was no friction, what would happen to the bottle?

Student: There would be no horizontal forces, so I guess it wouldn’t move.

Tutor: Correct, but the tablecloth would move to the left, so the bottle and tablecloth would be sliding
against each other. Friction tries to prevent sliding.

44
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Student: So friction pushes the bottle to the left so that it doesn’t slide?

Tutor: Yes, friction moves the bottle to keep it from sliding on the tablecloth. What type of friction is it?
Student: I was going to say “kinetic” because the bottle is moving, but I’ll think again. The bottle isn’t
sliding on the tablecloth, so it’s static friction.

iE

"

Tutor: Correct. What are the forces acting on the tablecloth?

Student: It has gravity Mg downward, and a normal force Ny from the table upward. Because there is a
normal force, there could be a friction force f; from the table.

Tutor: Which way does the friction force from the table act?

Student: The tablecloth is sliding to the left, so it’s kinetic friction and it pushes the tablecloth right.
Tutor: Good. There are also forces from the bottle.

Student: The tablecloth pushes the bottle up, so the bottle exerts a normal force N1 down.

Tutor: The tablecloth also exerts a friction force on the bottle, so the bottle exerts one on the tablecloth.
Student: So the bottle pushes the tablecloth to the right with an equal and opposite force f;, even though
there isn’t any sliding between the bottle and the tablecloth?

Tutor: One way to prevent sliding is to push the bottle to the left, but the other way is to push the
tablecloth right.

N,
=7,

—{) \LN. \LM,

Just because two surfaces are in contact does not mean that there is a friction force. Imagine a book sitting
on a table. There are no horizontal forces on the book, so it sits motionless on the table. If there was a
friction force, it would cause the book to move. Since there doesn’t need to be any friction to prevent sliding,
there is no friction force.
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When drawing your free-body diagram, always put the static friction forces in last. This is because
the static friction can be in any direction needed to keep sliding from happening. Until you know in which
direction something would slide if there was no friction, you don’t know which way the static friction will
be. Do all other forces first, then ask, “in which direction would it slide if there was no friction?” Add the
static friction in to prevent this sliding.

The magnitude of the kinetic friction force is Fix = uiN, where py is the coefficient of friction and N is
the normal force between the surfaces. The magnitude of the static friction force is anything it needs to be
to prevent sliding, up to a maximum of Fy max = pxN, where ps is the coefficient of friction and N is the
normal force between the surfaces.

EXAMPLE

A box sits on a table. The box has a mass of 8 kg and the coefficients of friction between the box and the
table are us = 0.7 and px = 0.4. A horizontal force of 45 N pushes the box to the right. What is the friction
force on the box?

Tutor: Where do we start?

Student: Can’t we skip the free-body diagram?

Tutor: If you have more than one force, then you need a free-body diagram. I still make mistakes if I skip
the diagram with only two forces.

Student: Okay. Gravity mg goes down, and a normal force N pushes up. Because there is a normal
force, there could be a friction force F, but we’ll do that last. Someone is pushing to the right with a force
P =45N.

Tutor: What would happen if there were no friction force?

Student: The box would accelerate to the right, sliding across the floor. Friction point to the left to

oppose the sliding.

P %

™9

Tutor: Good. Is it static or kinetic friction?

Student: Kinetic, because the box is sliding.

Tutor: How do you know that the box is sliding?

Student: Because someone pushes it.

Tutor: Have you ever pushed something and then it didn’t move?

Student: Okay, how do I check?

Tutor: How big could the static friction force be?

Student: Static friction could be as big as Fax = usN. I need to know the normal force.
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Tutor: To get the normal force, add the vertical forces:

N—mg=mg{0
N =mg

Student: Static friction could be as big as

Fax = usN = psmg = (0.7)(8 kg)(9.8 m/s?) = 55 N

Tutor: How big is the friction force?

Student: It’s 55 N.

Tutor: The static friction force can be as big as 55 N, but it doesn’t have to be 55 N. What happens if
the friction force is 55 N7

Student: The total force is to the left.

Tutor: Yes, he pushes to the right and the box accelerates to the left. Does that make sense?

Student: No, so the friction force will only be 45 N, and the box doesn’t move.

Tutor: What if the box were already moving?

Student: Then it would be sliding, and the friction would be kinetic friction.

Fi = usN = psmg = (0.4)(8 kg)(9.8 m/s?) =31 N

EXAMPLE

A boy pulls on a box with a rope that is 23° above horizontal to the right. He pulls with a force of 50 N
and the mass of the box is 8 kg. The coefficients of friction between the box and the floor are us = 0.56 and
px = 0.47. What is the acceleration of the box?

Student: First we draw the free-body diagram. Gravity mg is down, and the normal force N is up. There
is a tension T'= 50 N up and to the right, and there is a friction force F to the left.
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Tutor: Is it static friction or kinetic friction?

Student: That depends on whether the box is sliding across the floor.

Tutor: Good. How do we check?

Student: We see if the static friction would be enough to keep it from sliding. If it is, then the acceleration
is zero. If it isn’t enough, then the box slides and there is kinetic friction.

Tutor: To do that, we need to write down the Newton’s second law equations.

YF; = ma, and YF, =may

Student: If the box accelerates, it will do so to the right. I’ll use that as the z axis and up as the y axis.
T cos23° — F = ma,

T'sin23° +N—mg=mg17'0

Student: a, is zero because all of the acceleration is in the z direction.
Tutor: Can you do anything with these equations?

Student: I can solve the second one to find N.

Tutor: Does that help you?

Student: Yes, because Fsmax = psN.

(50 N)sin23° + N — (8 kg)(9.8 m/s?) =0
(19.5 N) + N — (784 N) = 0
N =589N
Fes,max = sV = (0.56)(58.9 N) = 33.0 N

Tutor: What are you going to do with the maximum static friction force?
Student: I'll put it in the = equation and see if the box moves.

(50 N) cos23° — (33.0 N) = (8 kg)a,
(46.0 N) — (33.0 N) = (8 kg)ax

Student: The total z force is positive, or to the right, so the box does move. Now I can find the accelera-
tion.

Tutor: Since the box moves, is the friction still static.

Student: The friction is really kinetic, because the box is sliding. That means I have to start over with
kinetic friction.

Tutor: You only need to go back to the z equation. Nothing about the y equation has changed.
Student: So the normal force is still 58.9 N.

(50 N) cos23° — (0.47)(58.9 N) = (8 kg)a,
(18.3 N) = (8 kg)as

_ (183N)
%= 8kg)

= 2.3 m/s?

EXAMPLE

A 6 kg box is sliding up a 34° ramp at 14 m/s. The coeflicient of kinetic friction between the box and the
ramp is gy = 0.36. What is the acceleration of the box?
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Tutor: Where do we begin?

Student: With the free-body diagram, of course. Gravity mg is down, and the normal force N is perpen-
dicular to the surface. Because there is a normal force, there could be a friction force F. Also there is a
force P pushing the box up the ramp.

Tutor: The problem doesn’t mention a force pushing the box up the ramp. Where did that come from?
Student: Something had to push the box or it wouldn’t go up the ramp.

Tutor: Something did push the box to get it going up the ramp, but that something is done pushing now.
Can something be moving up without an upward force on it?

Student: Yes, if there was a force in the past. I see. There is no pushing force.

Tutor: The friction force has to be parallel to the ramp surface. Will it point up or down the ramp?
Student: Won't friction always be down the ramp?

Tutor: Friction opposes sliding, so if the box is sliding up the ramp, the friction force will be down the
ramp.

Student: Of course. And since it’s already sliding, it will be kinetic friction.

N} o S

Tutor: Now you can choose axes and apply Newton’s second law. Remember to pick one axis parallel to
the acceleration.

Student: The box is going up the ramp, but friction and gravity are both pushing it down the ramp.
Which way should I pick as the axis?

Tutor: It really doesn’t matter whether up or down the ramp is positive, but if you choose z horizontal
the math will get messy.

Student: I choose z up the ramp, in the direction of the initial velocity. Just to be different, I'll take y
down into the ramp.

—mgsin34° — F = ma,

0
+ N — mgcos 34° = mgg”
Tutor: Can you solve these equations to find the acceleration?
Student: To find a, I need to know F. It’s kinetic friction, so F = uN.
Tutor: How will you get the normal force?

Student: I can solve the y equation to find the normal force N, then use that to solve the z equation for
the acceleration.

N =mgcos34° = (6 kg)(9.8 m/s?) cos34° = 48.7 N
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—mgsin34° — uy N = ma,
— (6 kg)(9.8 m/s?)sin 34° — (0.36)(48.7 N) = (6 kg)a,

a; = —8.4 m/s?

Student: As we expected, the acceleration is down the ramp, in the negative direction. Is the normal force
always N = mgcos6?
Tutor: Not always. You need to go through the steps.

When something goes in a circle, its velocity is always changing. Even if it travels at a constant speed, the
velocity is changing because the direction is changing. The acceleration of something going in a circle
is toward the middle and is

’U2

G = —
r

where v is the speed and r is the radius of the circle.

It is important to realize that centripetal force is not a real force and never goes in the free-body
diagram. The name “centripetal force” refers to the total force when the object is going in a circle. There
will be forces that you already know that add up to equal the centripetal force mv?/r.

Imagine that you are in a car when the car turns to the left. You might think that you feel a force pushing
you to the right, toward the right of the car. A stationary observer sees that you are continuing straight
while the car turns underneath you. The real force on you is friction with the seat pushing you to the left.
The perceived force to the right is similar to a perceived force backwards when the car accelerates forward
— if the seat didn’t push you forward you would stay there while the car moved out from under you.

If something is going in a circle, treat the problem like you would any other. Draw the free-body diagram,
choose axes, and apply Newton’s second law. The only difference is that the total force will be toward the
middle of the circular path, and the acceleration will be v2/r.

EXAMPLE

A roller coaster goes over a hill of radius 30 m. What speed is needed to achieve weightlessness?

Student: As the coaster goes over the hill, it is going in a circle, so the acceleration is downward, toward
the middle of the circle.

Tutor: Good. Where do we begin?

Student: With the free-body diagram, as always. Gravity mg is going down and the normal force N is
going up. The centripetal force F. is going down, toward the middle of the circle.

Tutor: There is no centripetal force, and it never goes in the free-body diagram.

Student: Then how can the coaster accelerate downward?

Tutor: The forces that do exist must add up to go downward. Is the normal force equal to the weight?
Student: Not necessarily.

Tutor: Are there any other forces besides weight and normal force?

Student: We did the weight, and the only thing in contact with the coaster is the track, so that’s all of them.
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Tutor: Is it possible for the forces to add to a total that points downward?

Student: If the weight is greater than the normal force, then the total force will be down.

Tutor: Apply Newton’s second law. Choose an axis and add the forces.

Student: I choose up to be positive.

Tutor: Remember that the acceleration is downward. If up is positive, then the acceleration will be
negative.

Student: Okay, I choose down to be positive so that the acceleration will be positive.

Tutor: When something is going in a circle, we sometimes call the total force mv?/r the “centripetal
force.” Which of the forces in the problem is the centripetal force?

Student: Neither, it’s the sum of the two.

Tutor: Yes, the total force is equal to the centripetal force. What happens as the coaster goes faster?
Student: As v increases, the right side gets larger, so the left side gets larger too.

Tutor: Does the weight increase as the coaster goes faster?

Student: No, so the normal force must get smaller.

Tutor: We call it “weightlessness” when N = 0. The weight hasn’t changed, but you don’t “feel” a force.
Perhaps we should call it normalforcelessness.

Student: But how can there be no normal force? Won’t the coaster fall?

Tutor: Yes, it does fall. But to go over the hill, in an arc, it needs to accelerate downward, and the weight
provides the force to accelerate it downward.

Student: And all of this happens when

0 o2
mg —XN'=m—
r
2
v*
-

wg = pi—

v =g = /(30 m)(9.8 m/s?) = 17 m/s

Tutor: Right. The coaster “falls” at exactly the same curvature that the track has. The rider feels the
normal force from the seat momentarily disappear. What happens if the coaster goes even faster?
Student: Then the curvature of the track is greater than the path of the coaster, and the coaster comes
off of the track. That would be dangerous.

Tutor: Modern coasters have wheels under the track, and restraints for the riders, so that the normal force
can pull downward too. When the coaster goes too fast you feel yourself being jerked downward, like on the
Magnum at Cedar Point in Ohio.

Student: So would I put in a negative value for N? I thought N was a magnitude and couldn’t be
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negative.
Tutor: A negative value for N indicates that the force goes in the opposite direction as drawn in the
diagram. Or you could draw a new diagram with the normal force down.

EXAMPLE

A small coin is placed on a turntable (like an old record player), 14 cm from the center. The coefficients of
friction between the coin and the turntable are pus = 0.62 and pyx = 0.48. How fast can the coin go before it
slips? If it slips, in what direction will it go?

Student: We start with the free-body diagram. The coin has weight mg downward, and a normal force
N upward. We don’t know how big N is. Because there is a normal force, there could be a friction force F.
Tutor: In which direction is the friction force?

Student: Well, it has to be parallel to the surface, and it doesn’t need to be opposite to the motion. The
coin isn’t sliding yet, so it’s static friction.

Tutor: Correct on all counts. Which way is the coin accelerating?

Student: It’s going in a circle, so in toward the middle.

Tutor: What force is pushing it that way?

Student: Centripetal force. No, wait, there is no such thing. There isn’t any force in that direction.
Friction must be toward the middle of the turntable.

Tutor: Correct. How big can friction be?

Student: Up to usN.

Tutor: Since the problem asks for the fastest that the coin can go, we want the maximum static friction
force.

Student: Do we always want the maximum friction force?

Tutor: When we want a limit, like when does the coin start to slip, then we want the maximum friction
force.

Student: Okay, I pick axes. z is in toward the center and parallel to the acceleration, and y is up. But
when the coin has gone halfway around, z will be away from the center.

Tutor: We can move the axes with the coin, so that z is always pointing from the coin into the center of
the circle.

N«7‘(‘

VMJ

Student: Now I apply Newton’s second law.

F = mag
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0
+N-mg =gg
Student: I can solve the second equation for IV, then find F, and then find a.

N =mg
Student: I need to know the mass m.
Tutor: Keep going, maybe it’ll cancel.
2
v
psN = m?
2 v?
.62 . =mp—
(0.62)p1(9.8 m/s°) ”(0.14 o)

v=1/(0.62)(9.8 m/s?)(0.14 m) = 0.92 m/s

Tutor: What if the coin goes faster than this?

Student: It flies off of the turntable, away from the center.

Tutor: Does it go directly away from the center? It was moving around the center. What are the forces
after it slips?

Student: Once it slips, the friction will be kinetic, which is smaller. Once the coin is off of the turntable,
there will be no friction, so the coin will move in a straight line.

A
;

EXAMPLE

A 1500 kg car goes around a curve of radius 200 m. The curve is banked at 11° and the coefficient of static
friction between the car and the road is 0.48. What is the maximum speed of the car around the curve?

Tutor: We start by drawing the free-body diagram, without which all hope is lost.

Student: There is a gravity force mg pulling it down. There is a normal force N perpendicular to the
surface of the road. Because there is a normal force there could also be a friction force f. Nothing else is in
contact with the car, so there are no other forces.

Tutor: What is the direction of the friction force?

Student: It isn’t necessarily opposite to the motion. Which way would the car slide without friction?
Tutor: Very good. There is a speed at which the horizontal component of the normal force is just enough
force so that the car goes around the curve. Our car is going even faster, so it needs even more force in
toward the middle.

Student: So friction points in toward the middle? Doesn’t it have to be parallel to the road surface?
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Tutor: Yes, but of the choices up and down the ramp, which is in toward the middle of the turn?
Student: Down the ramp. So friction points down the ramp.

Tutor: Yes. Imagine trying to go around a turn on an icy day. There isn’t enough friction and the car
goes straight, or doesn’t turn enough. Friction pushes the car in toward the turn.

Student: Okay, now I need axes. The acceleration is also down the ramp.

Tutor: The acceleration is toward the middle of the circle. Is the circle that the car is traveling completely
horizontal or parallel to the ramp?

Student: It is horizontal, so the acceleration is horizontal. The z axis needs to be horizontal, toward the
middle of the circle, and the y axis needs to be perpendicular to that, so up.

"
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Student: Now I can apply Newton’s second law.

2
+ Nsinl11° + fcos11° = ma, = mv—
e

+ Ncosll® — fsinll®° —mg = m%'o
Tutor: Good. Can you do anything with these equations?
Student: I have three unknowns, N, f, and v. I want to find v. I need another piece of information.
Tutor: Yes, you need the relation between the friction force f and the normal force N.
Student: Is f = puN, or f < uN this time?
Tutor: We want the fastest speed, so the static friction force is as big as it can be, f = uN. If the speed
was some arbitrary value, we couldn’t do this.
Student: Why is it static friction? Isn’t the car moving compared to the road?
Tutor: The tires are rolling, rather than slipping. Since there is no slipping, it’s static friction.

v?

+ Nsin11® + uNcos11° = m—
r
+ Ncosll® — uNsinll®° —mg =0
Student: I know everything in the second equation except N. I can find N and use it in the top equation
to find v.

N (cos11° — usin11°) = mg
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— mg
N = (st = psin 117)
2
mg e o9
((C0811°—p,sinllo)) (sin11° + pcos11°) =m -

o= | RoER11° + pcos11°)
- (cos11° — psin11°)

o= flmomes e R D

v = 38.2 m/s = 85 mph

Tutor: What if we were going slower than the magic speed where no friction is needed?
Student: Then the horizontal component of the normal force would be too much, and friction would have
to point the other way.




Chapter 7

Kinetic Energy and Work

Energy is the power to make something move. That might not sound terribly interesting, but it includes a
lot of stuff. Sound is moving air molecules, so energy is the power to make tunes. Lots of things use energy.

It is a principle of physics that energy is conserved. This means that energy is neither created nor
destroyed, but only turned from one form of energy into another. Conservation laws are a very powerful
technique for solving problems. Conservation of energy is one of those laws, and is the important technique
of this chapter.

Just because something is “conserved” does not mean it doesn’t change. What it does mean is that we can
account for the change. For example, chairs in a chair factory are conserved. By this we mean that chairs do
not suddenly appear or disappear, but are made and shipped. If there are more chairs now than there were
an hour ago, then someone made some more. If there are fewer chairs, then some must have been loaded
onto a truck and sent to the customer. If we take the number of chairs at the beginning of the day, add the
number made and subtract the number shipped, we get the number of chairs in the factory now.

How do we use conservation? What if the truck left the factory and no one counted how many chairs were
on board. We could count how many chairs were still in the factory, and use the equation from the last
paragraph to determine how many chairs had been loaded. If we know all of the terms in the equation except
one, we can solve for the one we don’t know.

The equation for energy is
K;+W =Ky

or, the initial kinetic energy plus the work is the final kinetic energy. Doing work is how we change the
cnergy.

Objects have kinetic energy when they are moving. The kinetic energy of a moving object is
1
KE = 5va

Note that the kinetic energy is positive even if the velocity is in the negative direction.

The work done on an object is
W =F.d=Fdcos¢

If the force F is in the same direction as the motion d, the work is positive, the energy increases, and the
speed increases. If the force is in the opposite direction as the motion, the work is negative, the energy
decreases, and the speed decreases. If the force is perpendicular to the motion, then the work is
zero, the energy doesn’t change, and the speed stays the same but the direction of motion may change.

56
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The units of work and energy are the same — they need to be so that we can add them. A newton times a
meter is a joule.
INxIm=11J

EXAMPLE

A 3 kg box is pulled 6 m across the floor. The box is pulled to the right by a rope that is 35° above horizontal
and has a force of 26 N. The coefficient of kinetic friction between the box and the floor is 0.15. Find the
work that each force does on the box, and find the speed of the box after it has been pulled 6 m.

Student: Do we still start with a free-body diagram, even though we'’re using energy?

Tutor: Yes. To find the work done by each force we need to know what they are.

Student: Gravity mg is down, normal force N is up, because there is a normal force there could be a
friction force f, and tension T is up and to the right.

Tutor: s it kinetic or static friction?

Student: The box is sliding, so it’s kinetic. As the box slides to the right, the friction on the box will be
to the left.

Tutor: What is the work that the tension does on the box?
Student: The tension is 26 N and at a 35° angle.

Wr = Fdcos¢ = (26 N)(6 m) cos 35° = 128 J

Tutor: Good. How much work is done by gravity?
Student: Gravity is up, and the box moves sideways.

We = Fdcos¢ = ((3 N)(9.8 m/s?)) (6 m) cos90° =0 J

Student: Does that make sense? Gravity really does no work?

Tutor: Does gravity cause the box to speed up as it moves, gaining kinetic energy?

Student: Not on a level floor.

Tutor: So if gravity doesn’t change the kinetic energy, it does no work. Any force that is perpendicular to
the motion does zero work.
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Student: That’s a good thing to remember. The normal force is also perpendicular to the motion, so

Wy = Fdcos¢ = N(6 m)cos90° =0 J

Student: And I didn’t even need to figure out what the normal force is.

Tutor: How much work does friction do?

Student: Friction doesn’t cause the box to speed up, so it does no work.

Tutor: Friction could cause the box to slow down, which would be taking energy out, or doing negative
work.

Student: Negative work? Then I need the friction force uN, so I need the normal force after all.

+ N + T'sin35° — mg =m%'0

N = mg — T'sin35° = (3 kg)(9.8 m/s?) — (26 N)sin35° = 14.5 N

Student: I just thought of something. What if T was so big that the normal force was negative?
Tutor: Could the floor be pulling the box down? What would happen if you pulled really hard?
Student: No. The box would lift off of the floor, so a, wouldn’t be zero. The work done by friction is

Wy = Fdcos¢ = [(0.15)(14.5 N)] (6 m) cos 180° = —13 J

Student: Now I can apply Newton’s second law in the z direction and find the acceleration.
Tutor: You could do that. Many physics students try to use the first thing they learned for everything,
even if a newer technique works better. Try using conservation of energy.

K, +W =Ky
Student: The box isn’t moving to start, so K; = 0. We do 128 J+ 0+ 0+ (—13 J) = 115 J of work, so

1
0+ (115J) = Emv2

2(115 J)

At this point we introduce springs. The force from a spring is
F, spring — —kz

The minus sign generally does not go into an equation. It is there to remind us that the force of the spring
is opposite to x, where x is how much the spring is stretched or compressed. k is the “spring constant,”
a constant for any particular spring (though a different spring will have a different k). The units of k are
newtons of force for each meter that the spring is compressed (newtons/meter).

The reason to introduce springs here, when talking about work and energy, is that work and energy is
the easiest way to deal with springs. Because the force from a spring will change if it is compressed, the
acceleration will not be constant. Conservation of energy works well when the acceleration is not
constant. The work needed to compress or stretch a spring a distance z from its normal length is

1
Wspring = §k1f2
When first compressing a spring, the force is zero so no work is needed. But the more you compress it the

greater the force you need, and each cm takes more work than the previous one. The work is equal to the
average force 1kz times the distance z.
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EXAMPLE

A wall is tilted in by 15°, and a 2 kg block is placed against the wall. The block is held in place with a
spring. The coeflicients of friction between the block and the wall are pus = 0.61 and py = 0.49. Holding the
block in place requires that the spring be compressed by 12 cm. What is the spring constant of the spring?

Student: We start with the free-body diagram. The weight mg is down. The normal force N is perpen-
dicularly out of the surface. Because there is a normal force, there could be a friction force. There is also a
spring force. The friction force pushes up the wall, to keep the block from sliding down the wall.

Tutor: Doing well. What is the direction of the spring force?

Student: It doesn’t say, exactly. Pushing in toward the wall, opposite the normal force?

Tutor: Probably. Let’s assume that this is the case.

Student: So the spring force is equal to the normal force, and friction is equal to the weight, and. ..
Tutor: Not all of the weight is parallel to the friction force.

Student: Ah, yes. I choose axes, but there is no acceleration.

Tutor: So you can use any pair of perpendicular axes.

Student: I choose parallel to the spring force as x, and parallel to friction as y.

— N + Fypring — mgsin 15° = mg{o

+F —mgcos15° = mg,g'o

Tutor: How many unknowns do you have?

Student: I have N, Fypring, and F. Three unknowns and only two equations. I need one more piece of
information. I can use Fypring = —kx.

Tutor: Fipring is the magnitude of the spring force, and you have the direction in your equation already.
Do you really want Fypring = —kx?

Student: No, I want Fy,ing = kz.

Tutor: But then you introduce the unknown k. This is fine, since you want to solve for k eventually, but
you still have three unknowns.

Student: It’s static friction because it isn’t sliding. Can we say that the static friction force is equal to
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the maximum static friction force?
Tutor: If 12 cm is the smallest compression of the spring that will hold the block, then we are at the limit

and we can say that.
— N +kz —mgsinl15° =0
+ pusN —mgcos15° =0

Student: I can solve the bottom equation for NV, then put it in the top equation and solve for k.

N = Mmgcos 15°
Hs
15° 15°
kx = mgsin15° + m =mg (sin 15° + M)
iu’s ll/s
mg (. ._o coslb° (2 kg)(9.8m/s?) (. . cosl5°
=— = e ol
k . (sm 15° + = ) 012 m sin15° + 0.61 301 N/m

EXAMPLE

A spring with spring constant £ = 1600 N/m is placed on the ground and pressed down 6 cm. A 2 kg block
is placed on the spring, and the spring is released. How far above its initial position does the block go?

Tutor: First we draw the free-body diagram. What forces act on the block?

Student: Gravity mg points down, and a normal force N is upward.

Tutor: It really is a normal force, since it is a force between surfaces, but we call it a spring force.
Student: Okay, a spring force Fyp points upward.

fs

™

Tutor: Is the spring force constant?

Student: No, as the spring uncompresses, the spring force will decrease.

Tutor: Is the acceleration constant?

Student: No, as the spring force changes, the total force changes, so the acceleration changes.

Tutor: When the acceleration is not constant, it’s almost always easier to use a conservation law, like
conservation of energy.

Student: So whenever a spring is involved, use energy?

Tutor: There was a spring in the last problem, but we didn’t use energy. More precisely, whenever a spring
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is changing its length, that’s a tip-off to try energy first.

K;+W =Ky

Student: The block starts at rest, so K; is zero.

Tutor: How fast is the block moving when it reaches its maximum height?

Student: It’s at rest then too, so K is also zero. Then the work is zero and everything is zero and we
can’t solve for anything.

Tutor: Don’t panic. How much work does gravity do on the block?

Student: The force mg times the distance d times the cosine of 180°, since it moves up and gravity points
down.

Tutor: Good. Of course, we don’t know d, but that’s what we’re trying to find, so this is how it gets into
our equation. How much work does the spring do on the block?

Student: The work of a spring is $kd?.

Tutor: Is the initial compression of the spring equal to the distance that the block moves up?

Student: I guess not. That means we need another variable.

Tutor: How much is the spring initially compressed?

Student: By 6 cm.

Tutor: How much is it compressed after the block flies up?

Student: Zero. Ah, the spring compression changes by 6 cm.

Tutor: Because the equation for the work of a spring is nonlinear, we can’t just use the change in compres-
sion. We need to do both the initial and final compression. Does the spring do positive or negative work?
Student: The spring pushes up, and the block moves up, and since the directions are the same it’s positive
work.

Ki + (Wg + W) = Ky
-1 1 5 +1
0+ ( mgdcost80°  + 51{:(0.06 m)? ces0*” =0
1 2
mgd = 515:(0.06 m)

(2 kg)(9.8 m/s?)d = %(1600 N/m)(0.06 m)?
d=0.147m = 14.7 cm

Student: The block moves up 14.7 cm.

Tutor: As part of our solution, we assumed that the spring fully uncompressed. Is that consistent with
our answer?

Student: The spring needed to uncompress by 6 cm, and the block moved more than that, so we’re okay.
Tutor: Good.

Student: What if we hadn’t converted the 6 cm to meters, but had left it as 6 cm?

Tutor: Then we would have had

de (1600 N/m)(6 cm)? _ (1600 kg m/s?/m)(6 cm)?
T 2(2kg)(9-8m/s?)  2(2 kg)(9.8 m/s?)
Tutor: It’s still a unit of length, but not one that we're really familiar with.

= 1470 cm?/m
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An important distinction in science is the difference between the total amount and the rate at which it is
done. Consider the following conversation:

Student: I drove from New York to Boston yesterday.
Tutor: How fast did you go?
Student: 217 miles.

Most of us would immediately recognize that the response answered a different question, that the correct
response would be something like “65 miles per hour.” Now consider another conversation, about energy
but exactly the same as the previous conversation.

Student: I carried a heavy box up the stairs yesterday.
Tutor: How much power did you exert?
Student: 5000 joules.

Joules measure energy or work, so 5000 joules is the amount of work done. Power measures how fast
you do work, not the amount done. To do 5000 joules of work quickly requires a large power. To do
5000 joules of work slowly requires a small power. In each case the amount of work done is still 5000 joules.

To determine how fast the work was done, we divide the work by the time.

_EorW
= ===

P

Power is measured in watts, so one watt is one joule per second. To do 5000 joules of work in 10 seconds
requires 500 joules per second or 500 watts or 500 W. Such a power would be quite a feat for a human (1
horsepower = 746 W). To do 5000 joules of work is not difficult for a human — just don’t try to do it so
fast.

Humans tire quickly if they try to exert more than about 70% of their maximum power. Sprinting, for
example, will tire a person much quicker than jogging. Since you can jog much longer (time) than you can
sprint, you can jog further — doing more work — than you can sprint, even though you sprint faster. The
time you can jog is much longer.

EXAMPLE

A 1600 kg car drives 1 mile up a 5% grade at a constant 60 mph. How much power does this take?

Student: We need to know the forces, so we start where we always do. Gravity mg points down, there is
a normal force N perpendicular to the surface, and because there is a normal force there could be a friction
force f. Nothing else is in contact with the car, so that’s all of the forces.

Tutor: Which way is the friction force acting?

Student: The only way for the car to go up the hill is if friction pushes it up the hill. If the tires are
rolling without slipping, then it’s static friction.

Tutor: As the engine turns the tires, what would happen without friction?

Student: The tires would slip on the road, so static friction pushes the car forward and up the hill to
prevent slipping.
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Tutor: We want to find the power of the friction force. Does the friction force do positive or negative
work?

Student: Friction points up the hill, and the motion is up the hill. Since the force is in the same direction
as the motion, friction does positive work.

Tutor: Yes. How much work does the normal force do?

Student: The normal force is always perpendicular to the motion, so it doesn’t do any work. Does the
normal force ever do any work?

Tutor: Yes, if the surface moves. If you push on an object and the object moves, your hand moves so the
normal force of your hand does work. Or the floor in an elevator does work because the floor surface moves.
Student: But the road surface doesn’t move, so the normal force doesn’t do any work.

Tutor: How much work does gravity do?

Student: We don’t need to know that to do the problem.

Tutor: True, but try applying conservation of energy anyway.

Student: If the final speed of the car is the same as the initial speed, then the total work is zero. The
normal force doesn’t do any work, so gravity must do the same amount of work as friction, except negative.
Tutor: Excellent. Does it make sense that gravity does negative work?

Student: Gravity is down, and the motion of the car is up and over. Since gravity is opposite to the
motion, I guess it has to do negative work.

Tutor: Yes. Also, gravity by itself would tend to slow the car down, reducing the kinetic energy, so it is
doing negative work.

Student: That makes sense. So I can find the work done by gravity instead of the work done by friction.
Tutor: That would work, so long as you keep track of the signs. Which is easier?

Student: I already know the force of gravity, so I'll find the work done by gravity.

Wig = Fdcos¢ = (mg)dcos ¢

Student: What is a 5% grade?

Tutor: That’s when the rise over the run is 5%, or when tan 6 = 0.05.

Student: But if the “run” is a mile, then the road would be longer than a mile.

Tutor: True, but not by much. For a 5% grade the difference is about one-eighth of 1%, so there is not
much error in pretending that they are the same.

Student: That’s tricky. Okay, the angle of the roadway is

tanf = 0.05 — 0 = 2.86°

Student: One mile is 1610 meters, so

Wig = (mg)dcos¢ = (1600 kg)(9.8 m/s%)(1610 m) cos 87.14° = 1.26 x 10° J ?
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Tutor: Remember that the work of gravity is negative.

Student: Oh yeah, I should have used 92.86° instead. But the work by friction is the same but positive,
and it is 1.26 x 108 J.

Tutor: Yes, now what is the power?

Student: I divide the work by the time.

g _ 1 mile X 60 min y 60 s
v 60mi/hr © 1lhr ~ 1min
W 1.26 x 10°J

i 3 60 s

t= =60s

=21x10%J/sor W

Student: Is that a lot?
Tutor: Try converting it into horsepower.
Student: Okay. 1 horsepower = 746 W.

1 hp
3 —_— ) =
(21 x 10° W) x (746 W) 28 hp
Student: Any car should be able to do that easily.
Tutor: Of course we left out air resistance and friction in the engine, so it’s not quite that simple.
Student: Why do trucks go uphill so slowly?
Tutor: A truck can have 40 times the mass of the car, so to go up the hill at 60 mph would take over
1100 hp.
Student: And by doing it slower, they still do the same amount of work but with less power.
Tutor: Yep.




Chapter 8

Potential Energy and Conservation of
Energy

Some types of work can be expressed as potential energy. Potential energy is work done in the past
that could be turned into work again. If I have lifted a rock above my head, the rock has potential
energy, and by dropping the rock I can turn the potential energy into kinetic energy. If I push a box across
a floor, pushing to keep the box moving despite friction, then the work I do goes into heating the floor and
the box (through friction), and it is very difficult to turn this energy into some other useful form of energy.
Therefore we treat gravity with potential energy, but we don’t treat friction this way. There are three forces
that we commonly treat with potential energy: gravity, springs, and forces from electric fields (to be covered
later).

What makes potential energy useful is that the potential energy only depends on where something is, and
not how it got there. This makes potential energy easier to calculate than work.

PE=U = Wwe did = /Fwe applied

While this may appear intimidating, in practice it is easy. Consider gravity. The force of gravity is a constant
mg, so

h
| ma)dz = mga; = mgh — mg(0) = mah

This says that the difference in potential energy between “zero” and “h” is mgh. This means that it takes
mgh amount of work to move a mass m from wherever is “zero” to the spot “h”, a distance h high.

The potential energy from gravity is
U, gravity = mgh

What is the height? We can choose anywhere to be zero height, from which all heights are measured. Every
time we use conservation of energy in an equation, the potential energy before and the potential energy after
both show up, so that only the change in potential energy matters. Therefore, we can choose any spot to be
zero height, but once we choose we must stick with that spot for the whole problem (like a coordinate axis).

The potential energy from a spring is
1
Uspring = 5’“’52

Here z is not the length of the spring, but the change in length from the unstretched, uncompressed length.
Zero potential energy occurs when the spring is neither stretched nor compressed. Then the work of a spring
from the last chapter becomes the potential energy stored in the spring.
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If we use potential energy to express the work done by a force, then we don’t include the work
by this force when we calculate the work. We use an expanded conservation of energy equation

KEi+PEi+W=KEf+PEf

where W is the work done by forces not already treated with conservation of energy. It is possible to include
Eih and E;nt, but these are dealt with by W (heat generated by friction is the same as work done by
friction).

EXAMPLE

A spring (k=900 N/m) is compressed by 31 cm and a 6 kg block is placed in front of it. When the spring
is released the block slides across the floor. The coefficients of friction between the block and the floor are
us = 0.61 and px = 0.46. How far does the block slide across the floor?

Tutor: How would you like to attack the problem?

Student: I want to draw a free-body diagram, find the acceleration, and use the constant acceleration
technique to find how far it goes. Of course, there is a different acceleration when the spring is pushing on
the block.

Tutor: As the spring decompresses, the force of the spring changes, so the acceleration changes.
Student: Does that mean that I can’t use Newton’s laws?

Tutor: Newton’s laws are still true, but to use the acceleration would mean setting up differential equa-
tions.

Student: Yuck.

Tutor: On the other hand, if we use energy techniques, we won’t need any differential equations.
Student: Okay, I'll try energy, and I'll use potential energy for gravity and the spring.

KE; + PE; + W = KE; + PE;

Tutor: What is the kinetic energy of the block just as the spring is released?

Student: It isn’t moving yet, so the speed is zero and the kinetic energy is zero.

Tutor: What is the kinetic energy of the block just as it stops?

Student: Wait. Shouldn’t I do the kinetic energy just as the block leaves the spring?

Tutor: We could use that instant as the final time, and then use constant acceleration to see how far the
block slides. But we can also do the whole thing in one step.

Student: Sounds good. The kinetic energy when the block stops is zero.

Tutor: It’s not unusual for two or three of the terms in the energy equation to be zero. What is the
potential energy when the block is released?

Student: Do you want the potential energy of gravity or the spring?

Tutor: Both. To do gravity you have to pick a spot as height equals zero.

Student: T’ll pick the starting spot as height equals zero. Then the potential energy of gravity is zero.
The potential energy of the spring is %kx?

Tutor: What is the potential energy when the block stops?

Student: Then the potential energy of gravity is still zero, because the block is at the same height. The
potential energy of the spring is zero, because the spring is uncompressed.

KE+ PE;+W = KE7 + PEy
%kx2+W=0

Tutor: W is the work done by all forces other than gravity and the spring. What other forces are there?
Student: There is a normal force upward, and a friction force against the sliding.

Tutor: How much work does the normal force do?

Student: The normal force is perpendicular to the motion, so it doesn’t do any work.

Tutor: How much work does the friction force do?
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Student: The work is the force times the displacement times the cosine of the angle. The displacement is
what I’'m looking for, so it’s a variable z.

Tutor: Is the displacement of the block the same as the initial compression of the spring?

Student: Not necessarily. I guess I need a different variable for the displacement. I'll use y. The angle is
180°, and cosine of the angle is —1, because the friction force is in the opposite direction as the sliding.
Tutor: Good. What is the friction force.

Student: Isn’t it just pmg?

Tutor: Don't skip steps now. How do you find it?

Student: I need the normal force, so I add vertical forces. The normal force is up and gravity is down,
and the vertical acceleration is zero, so the normal force is equal to the weight, and the friction force is pmg.
Tutor: This is the special case where there are exactly two forces and they need to add to zero. We've
seen before that the normal force is not always mg.

Student: Okay, so I can look for the special case of two forces and zero acceleration.

Ska? + (umg)(y)(~1) = 0

2 2
Y= kx N (900 N/m)(0.31 m) —160m
2umg  2(0.46)(6 kg)(9.8 m/s?)
Tutor: By setting the final spring energy to zero, you assumed that the spring would fully uncompress. If
friction were really strong, then the spring wouldn’t get the block moving.
Student: How do we check?
Tutor: The distance the block slid is way past where the spring uncompresses, so we’re safe. We should
have checked first that the spring force was greater than the maximum static friction force.

EXAMPLE

A 2 kg block slides without friction down a track. It leaves the track at a 35° angle above horizontal at a
point 1.3 m below its starting point. After leaving the track, how far up does the block fly?

Tutor: How will you attack this problem?

Student: It’s the energy chapter, so I'll use energy.

Tutor: If you weren’t reading the problem in a book, but instead on a test or somewhere else, why would
you use energy?

Student: Because the acceleration isn’t constant, and we don’t care about the time.

KE;+PE;,+W = KE; + PEy
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Tutor: Good. What is the kinetic energy when the block starts?

Student: It doesn’t appear to be moving yet, so zero.

Tutor: What is the potential energy when the block starts?

Student: I need to pick somewhere as height equals zero. Where’s the bottom of the ramp?

Tutor: You don’t need to use the lowest point as height equals zero. Try using the top.

Student: Okay, the block starts at h = 0, so mgh = 0.

Tutor: What is the potential energy at the “final” position?

Student: At the maximum height, it isn’t moving, so KEy = 0.

Tutor: We have two issues here. The block leaves the ramp at an angle, with some horizontal velocity,
and it will still have that horizontal velocity when it reaches maximum height. Therefore KE; # 0. You
need to rethink what your “final” position is, and how you are going to get to the answer.

Student: So what I need to do is find the speed of the block as it leaves the ramp, then use projectile
motion and constant acceleration to see how high it goes.

Tutor: And where is your “final” position?

Student: Where the block leaves the ramp. The potential energy there is mg(—1.3 m). Can potential
energy be negative?

Tutor: Potential energy is how much work you need to do to move the object from “zero” to that spot. A
negative potential energy means that the object will go there on its own, that you could even get work out
of the process. The block will slide down the ramp on its own, gaining speed. It’s possible to extract that
energy later.

KFE; +PFE;+W = KE; + mg(—1.3 m)
Tutor: What is the final kinetic energy?
Student: %mv2. We don’t know v, but we hope to solve for it.
Tutor: What is the work done by all forces other than gravity?
Student: Why not gravity?
Tutor: Because we already took care of gravity by using potential energy.
Student: Right. The other forces are the normal force and friction. The normal force is perpendicular to
the motion, so it doesn’t do any work. And there’s no friction on the track.

1
KE; + PE + W = §mv2 +mg(—1.3 m)

—;—m? = p1g(1.3 m)

v =y (2)(9.8 m/s?)(1.3 m) = 5.05 m/s

Student: When the block leaves the track it is moving at 5.05 m/s.
Tutor: How much of that is in the horizontal direction?
Student: The horizontal is adjacent to the angle, so

vy = (5.05 m/s) cos35° = 4.13 m/s
vy = (5.05 m/s)sin 35° = 2.90 m/s

Tutor: How fast is the block going when it reaches maximum height?

Student:  You mentioned that it would still be moving horizontally. At maximum height it is going
4.13 m/s horizontally and it’s not moving vertically.

Tutor: And because we don’t care about the time, we can use energy to see how high it goes.

Student: But the acceleration is constant, so we don’t need to use energy.

Tutor: DBut we can use energy, even if we have a constant acceleration. If the acceleration isn’t constant,
then we may need to use energy.

Student: Okay. Taking the start when it leaves the track, calling that the new height equals zero, and the
finish when it reaches maximum height

KE1+PEi+W=KEf+PEf
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%;m(5.05 m/s)? + p1g(0) + (0) = %}n’(4.13 m/s)? + pigh
%(5.05 m/s)’+ = %(4.13 m/s)? + gh
h= m ((5.05 m/s)? — (4.13 m/s)z) =043 m
EXAMPLE

A 65 kg man bungee-jumps off of a platform. The bungee cord is 20 m long and has a spring constant of
60 N/m. What is the greatest distance below the platform that he reaches after leaping from the platform?

Student: The bungee cord acts like a spring, so the acceleration won’t be constant and we’ll use conser-
vation of energy.

Tutor: Good. First you need to pick “initial” and “final” positions.

Student: The start should be at the top, when he first jumps. The end is where he reaches his lowest
point.

Tutor: If we want to know where his lowest point is, then it helps if that is one of the points. What are
you going to use as height equals zero?

Student: I'm going to use the top, where he jumps from. That means that his potential energy at the end
will be negative, but that’s okay.

Tutor: You mean the potential energy from gravity; there’s also the spring involved. What is the kinetic
energy at the start?

Student: He isn’t moving yet, so it’s zero.

Tutor: What is his kinetic energy at the end?

Student: The lowest point is when he isn’t moving, so that’s also zero.

KFE+ PE,+W = KEf + PE;

Tutor: Correct. If he were still going down, he wouldn’t be at the lowest point yet. If he were going up,
he would be past it. What is the potential energy at the top?

Student: The spring hasn’t been stretched yet, and he is at height equals zero, so both types of potential
energy are zero.

PE;+W = PE;

Tutor: What is the work done by forces other than gravity and the bungee cord?
Student: There aren’t any other forces, because he’s not in contact with anything, right?
Tutor: Right, so the work is zero.

W = PE;

Student: That means that PE; is zero. How can that be?

Tutor: There are two types of potential energy, and at the end they must add up to zero. What is the
potential energy at the end?

Student: We don’t know how far he’s fallen, so let’s call it z. The height at the end is negative, so the
gravity potential energy is mg(—z). The spring potential energy is %kw:’.

Tutor: Does the bungee cord stretch the same distance that he falls? Does it begin stretching immediately?
Student: No, he falls 20 m before it starts stretching. The bungee cord stretches z — (20 m).

0 = [mg(-z)] + [%k(m - (20 m))z}
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mg(z) = %k(a: —(20 m))2

2mgx
k

= 22 — 2(20 m)z + (20 m)?

z? + [—2(20 m) — 2%] z+ (20 m)? =0

2(65 kg)(9.8 m/s?)
(60 N/m)
2% 4 (—61.2 m) z + (400 m?) =0
_ —bx Vb2 —4ac _ —(—61.2m) % +/(—61.2 m)2 — 4(1)(400 m?)
7= 2 = 2(1)
r="740r 53.8m

z? + [—2(20 m) — ] z+(20m)%2 =0

Student: How can there be two answers?

Tutor: Which one do you want?

Student: The bungee cord is 20 m long, so it has to be 53.8 m.

Tutor: The other answer would occur if the bungee cord could be compressed.

Student: So if he bounced back up, and the bungee cord compressed instead of going slack, then he would

reach a spot 7.4 meters high.




Chapter 9

Center of Mass and Linear
Momentum

This chapter is about a second conservation law, conservation of momentum. In order to explain momentum,
we begin by explaining center of mass.

So far, all objects have been “point” particles. They act as if all of their mass is at a single point. Most real
objects are not like this — their mass is spread out. For many purposes it is possible to treat objects as point
particles — as if all of their mass is at a single point. When this happens, that point is the center of mass.

To calculate the location of the center of mass, we do a “weighted average.” Divide the object into pieces,
and for each piece, multiple the mass of that piece by its coordinate. Sum the product for all of the pieces,
and divide by the total mass.

_ Tizim,

IcMm = S
Some things to keep in mind:

e You get to decide how to divide the pieces.
e For each piece, you use the coordinate of the center of mass of that piece.

e You get to choose the coordinate axes, but as always you have to keep the same axes for the whole
calculation.

e Wise use of symmetry can simplify the calculation considerably.

How do you use symmetry? Consider a uniform square. “Uniform” means that the mass of the square is
spread evenly across the square, the same everywhere. Pick a point, not the center, and let’s use symmetry
to check to see if that point is the center of mass. Draw an imaginary line vertically down the center of the
square, and rotate the square 180° around this line. The square looks the same, so the center of mass must
be in the same place as it was before. If the center of mass had moved, then we would have two centers of
mass for the same object. If the point you picked was on the vertical line, then it is in the same place as it
was and it could be the center of mass. If the point you picked was not on the vertical line, then it is not in
the same place as it was, and it could not be the center of mass. By using symmetry, we have determined
that the z coordinate of the center of mass is in the middle, without doing a calculation.

71



72 CHAPTER 9. CENTER OF MASS AND LINEAR MOMENTUM

EXAMPLE

Find the center of mass of the four objects.

y (cm)

——+—{(8 ) +——+—+—= x(cm)

Student: So I take each object and add it up?

1+3+4+2=10 ?

Tutor: For the denominator, you do that. In the numerator you multiply each mass by its coordinate.
Student: Where are the axes?

Tutor: You get to pick them. What would you like? ‘

Student: I'll pick the biggest mass to be the origin, with z to the right and y up.

Tutor: Because you have two axes, you have to do them separately. First do the z axis and then do the y
axis.

Student: So I multiply the mass of 3 by the = coordinate of 0, and I get zero?

Tutor: Yes. If that was the only mass, then the numerator would be zero, so the center of mass would be
at zero. ;
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Student: Which is where the object is. But I have to do that for all of them.

_ (1 kg)(0 ecm) + (3 kg)(0 cm) + (4 kg)(1 cm) + (2 kg)(2 cm) 8 cm kg 0.8 em
rom = (1kg) + (3 kg) + (4 ke) + (2 kg) T 10kg
Tutor: Now do the y coordinate.
Student: For the 1 kg object, do I use +1 or —1 m?
Tutor: If the object were at (0,41), would the location of the center of mass be different?
Student: Yes, so I need the negative.

(1 kg)(—1 cm) + (3 kg)(0 cm) + (4 kg)(2 cm) + (2 kg)(1 cm) 9 cm kg
(1 kg) + (3 kg) + (4 kg) + (2 kg) "~ 10kg
Tutor: Which object is located at the center of mass?

Student: None of them.
Tutor: The center of mass doesn’t have to correspond to one of the objects.

YoM = =09 cm

EXAMPLE

Find the center of mass of the uniform triangle.

Student: It’s just one piece! How do I do the equation for each piece when there’s only one piece?
Tutor: Can you use symmetry to find the center of mass?

Student: If I flip it top-to-bottom, it looks the same, so the center of mass has to be on the horizontal
axis.

Tutor: What if you flip it left-to-right?

Student: It doesn’t look the same. That means that the center of mass isn’t halfway along the horizontal
axis.

Tutor: It means that the center of mass doesn’t have to be there. It could be there but there’s no reason
to think that it is.

Student: So the y component of the center of mass is at y = 0, but we don’t know where the £ component
is, and it’s only one piece.

Tutor: You need to divide it into pieces yourself, where you can determine the mass and location of each
piece.
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Tutor: Divide it into a lot of pieces, and then each piece is small enough that we can call it a rectangle.
Then we add up all of the pieces.

Student: That sounds like an integral!

Tutor: Yep. What is the width of each piece?

Student: Each piece is dr wide.

Tutor: Yes. What is the height of each piece?

Student: They aren’t all the same height.

Tutor: That’s right, they aren’t. Given that a piece is located at x, how high is it?

Student: Well, the bigger z is, the greater the height of the piece.

Tutor: Yes, also it’s linear, so that the height is proportional to . At z = 0, the height is zero, and at
z = 8, the height is 2.

Student: If it’s linear, then h = Cz, where C is a constant. If the height is 2 at x = 8, then that constant
needs to be %, so the height of each piece is iw.

Tutor: Good. To find the mass of a piece, we multiply the area times the density. That is, we multiply
the square meters by the kilograms per square meters, and get kilograms.

Student: What is this density? It isn’t given.

Tutor: True. Hopefully it will cancel, or we won’t be able to do the problem. Make up a variable for it.
Physicists tend to use § or p for densities.

Student: Okay, the density is 6. Then the mass of a piece is the area times the density, or (z x dz)(6).

_ 3%, _ (58] [%{(8)] 16

B fos(%w x dr)(0) -z %6]08 2?2 dz B f08 z?dz

1
3
JP(de x de)(5) L [Pade  [Jxde  [La2)]

Icm

_.
|
30

1
2
Tutor: Does the result make sense?

Student: How should I know?

Tutor: Well, could the answer be more than 87

Student: No, all of the mass is to the left of 8.

Tutor: Could the answer be less than 47

Student: No, more of the mass is on the right side, and further to the right.

Tutor: Is the answer between 4 and 87

Student: Yes, it’s about 5. So it works.

Tutor: At least it passes the sanity test.

Just as energy is conserved, so is momentum. When a large truck collides head-on with a small car, we
expect to see the car bounce backwards while the truck continues on. This is not because the force of the
truck on the car is larger than the force of the car on the truck — the forces are the same. Instead, this is
because the truck has more momentum than the car.
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Conservation of momentum looks very similar to conservation of energy. The equations have the same
general form and the techniques are the same. Momentum is the product of mass and velocity.

—

P=mv

Impulse is the name given to the change in the momentum, which thus has the same units as momentum
(kg m/s or N s). The basic equation is

— - —

P, +J="PF;
J=

T,

t

where J is the “impulse,” or change in momentum.

One difference between momentum and energy is that momentum is a vector, so it has direction. In the car
— truck head-on collision, one of the vehicles has a positive momentum and the other has a negative. The
truck has more momentum, so the total momentum is in the direction that the truck is going. After the
collision, the total momentum is also in the direction that the truck was going.

When we find the momentum, we can either calculate it for one object or for a group of objects, often called
a “system.” Consider a system of two objects. If they create a force on each other, then the forces are equal
and opposite. So the impulses that they exert on each other are equal and opposite. Whatever that impulse
is, the impulse of A on B plus the impulse of B on A add to zero. So any forces between the two bodies
of our system don’t change the momentum of the system. (The center of mass of the system keeps moving
with the same velocity.) The result of this logic is that conservation of momentum works particularly
well for collisions.

EXAMPLE

A 2500 kg train car moves down the track at 5 m/s. It hits and couples to a second (stationary) train car of
3500 kg. What is the speed of the train cars afterward, and what was the impulse that the second car gave
to the first one?

Tutor: How are you going to solve this problem?

Student: There’s a collision, which is a tip-off to try conservation of momentum.

Tutor: Good. Are you going to use the momentum of one of the train cars or of the two together?
Student: What’s the advantage of doing the two together?

Tutor: If the train cars exert forces on each other, these forces will cancel if we do them together. Do they
exert forces on each other?

Student: They certainly do. So I want to do them together.

Tutor: What forces act on the train cars?

Student: They push on each other, of course. Also, there is gravity and a normal force on each. These
might be equal.

Tutor: We could try to figure out if they’re equal. Instead, what are the directions of gravity and the
normal force?

Student: They are both vertical.

Tutor: So if we only consider the horizontal component of the momentum, then we don’t have to worry
about them at all.

Student: Cool. All we need is the forces they create on each other.

Tutor: Correct, and those forces are equal, so they add to zero.

Pii + Py + (Eronat — Eoonit) = Pif + Poy
Py + Py = Py + Poy
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Tutor: What is the momentum of the first car before the collision?

Student: The momentum is mv, so (2500 kg)(5 m/s).

Tutor: What is the momentum of the second car before the collision?

Student: It wasn’t moving, so its momentum is zero.

Tutor: What is the momentum of the first car after the collision?

Student: Momentum is mv, but we don’t know the velocity. I'll use v; for the velocity of the train car
afterward.

(2500 kg)(5 m/s) + 0 = (2500 kg)vy + Pyy

Tutor: What is the momentum of the second car after the collision?
Student: We don’t know its velocity either, so I'll use v for that.
Tutor: The two train cars couple together. Does that mean anything?
Student: They have to have the same velocity afterward?

Tutor: Yes.

Student: So vy = v1, and I only have one variable.

(2500 kg)(5 m/s) = (2500 kg)v; + (3500 kg)v;
(12500 kg m/s) = (6000 kg)v,
(12500 kg m/s)
(6000 kg)

Tutor: Can you tell from your result which way the train cars go?

Student: Well, if the first car is originally moving to the right, shouldn’t they move off to the right?
Tutor: Yes. Can you express that same thought, using the word “momentum?”

Student: If the initial momentum is to the right, and there is no impulse from outside forces, then the
final momentum is to the right.

Tutor: Very good. Do your numbers say the same thing? Keep in mind that you used an axis but you
didn’t explicitly say what you were using.

Student: Oops. So when I said the velocity of the first car beforehand was positive, I picked that as the
positive direction?

Tutor: Yep. And when the final velocity was positive. ..

Student: Then the train cars move in that same direction. How do I find the impulse?

Tutor: Repeat the conservation of momentum equation, but for just one car.

Student: So using the first car

v = =2.08 m/s

P+ Jron1 = Piy
(2500 kg)(5 m/s) + Jz on 1 = (2500 kg)(2.08 m/s)
J2on1 = —T7292 kg m/s

Student: Why is it negative?

Tutor: Which way is the force that the second car exerts on the first?

Student: Against the initial velocity, so it should be negative.

Tutor: And J; o, 2 is positive, so that the final momentum of the second car is positive.

EXAMPLE

A 72 1b boy on a skateboard throws a 16 lb bowling ball to the right at a speed of 8 m/s compared to him.
What is the boy’s velocity after he throws the ball?

Student: This doesn’t sound like a “collision.” Why do I want to use momentum for this?
Tutor: Do you know the force that the boy applies to the bowling ball?
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Student: No, do I need to know it?

Tutor: By using conservation of momentum, you can eliminate forces that two objects put on each other.
You won'’t need to find the force. It’s true that momentum works well for collisions, but that’s because using
momentum gets the forces between colliding objects to cancel.

Student: So I want to use the combined momentum of the two objects, boy and bowling ball.

P+J=F
Tutor: Correct. What are the forces acting on them?
Student: The boy pushes on the bowling ball, and the bowling ball pushes back. These forces are opposite

and equal, so they cancel. There is gravity and a normal force on the boy. These are vertical, so we do only
horizontal momentum and they disappear.

Py + Py; = Pig + Py

Tutor: What is the momentum of the boy beforehand?

Student: He isn’t moving, so it’s zero. The bowling ball isn’t moving either.
Tutor: What is the momentum of the boy afterward?

Student: Momentum is mv. We don’t know his velocity, so I’ll use a variable.

0+ 0 = MboyUboy + MballVball
0+ 0 = (72 Ib)vpey + (16 Ib)vpan

Student: Do I need to convert pounds into kilograms?

Tutor: You can keep them as they are for now, and see how they work out. What is the velocity of the
bowling ball after he throws it?

Student: 8 m/s to the right. I'll use to the right as the positive direction, so it’s +8 m/s.

Tutor: The 8 m/s is with respect to the boy, or as measured by the boy.

Student: Ah, so I need to find the velocity compared to the ground.

UAB = VAC + UCB
Uboy,gr = Uboy,ball + Uball,gr
Uball,boy = —Uboy,ball
Uboy,gr = —Uball,boy T Uball,gr
Uboy = —(8 m/8) + Vpan
0 = (72 1b)wpey + (16 1b) (vboy +(8 m/s))

Tutor: Now we have an equation with a single unknown.
Student: So we can solve it.

0 = (72 1b)vpoy + (16 1b)vpey + (16 1b)(8 m/s)
(88 Ib)vpoy = —(16 1b)(8 m/s)

__em)@ums) _
Vboy (58.15) 5m/s

Tutor: What does the negative result mean?

Student: It means that the boy goes in the negative direction, so he goes to the left.

Tutor: Does that make sense? Remember that the initial momentum was zero.

Student: And the impulse was zero, so the final momentum needs to be zero. If the bowling ball goes to
the right, then the boy needs to go to the left.
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In some collisions, the kinetic energy is conserved. When two billiard balls strike, the total kinetic energy
before the collision is the same as after the collision. When two cars strike, some of the kinetic energy goes
into other forms of energy, such as heat or denting the cars. An elastic collision is one where the
kinetic energy is conserved. An inelastic collision is one where some of the kinetic energy is turned into
other forms of energy.

Because elastic collisions are somewhat common, and because of the unpleasantness of solving simultaneous
equations (especially with squares in them), physicists do something they don’t often do — work out the
result and reuse it the next time. If object 1 collides elastically with object 2, then their velocities afterward

will be
’ mi; — ma 2’!77.2
vl -

v + Vo
my + me mi + mg
, Mg —my 2my

v + V1
mi + mo my + ma
or, if object 2 is stationary before the collision,

;M —my 2m,

vy and vy =

= U1 = U]
my + my my + myo

To use these equations, the positive direction for each object must be the same.

How do you tell if a collision is elastic or not?
e If the problem says that the collision is elastic, then the collision is elastic (really).
e If the two objects stick together, then the collision is not elastic.
e If one object passes through the other, then the collision is not elastic.

e If you can solve the problem using only conservation of momentum, then there is no need to worry
whether the collision is elastic.

e After that, use your experience with the objects in question: are they likely to bounce off of each
other (elastic) or is some of the energy likely to be turned into heat (not elastic)?

EXAMPLE

A 4000 kg truck is coming straight at Joe at 14 m/s. He throws a 0.3 kg rubber ball at the truck with a
speed of 10 m/s, and it bounces off of the truck elastically. After the ball bounces off of the truck, how fast
is the ball going?

Tutor: How are you going to attack this problem?

Student: There’s a collision, so I'm going to use momentum. The ball and the truck put forces on each
other, but if I use the momentum of them together those forces cancel out. All of the other forces are vertical,
and by looking at the horizontal component, they go away.

Py + Py = Py + Py
_ / ’
MpallUball T MtruckVtruck = MballVba)l + MtruckVtruck

(0.3 kg)(10 m/s) + (4000 kg)(14 m/s) = (0.3 kg)vh.y; + (4000 kg)v! e &

Tutor: Before the collision, are the ball and the truck going the same direction?
Student: No, they have a head-on collision.
Tutor: So one of them has to have a negative initial velocity.
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Student: I forgot to choose an axis! I'll take the direction that the ball is thrown as positive.

(0.3 kg)(10 m/s) + (4000 kg)(—14 m/s) = (0.3 kg)viay + (4000 kg)v},ya

Tutor: Can you solve the equation?

Student: I guess not; I have one equation and two variables. I need another piece of information.
Tutor: The piece you are missing is that the collision is elastic.

Student: That means that I can write down the kinetic energy before and after, set them equal, and get
another equation.

Tutor: Yes, that is what it means. To avoid all of that work, you could just use the elastic collision
equations.

Student: Yes, that would be easier.

0 mip — Mo 2mgy
v = v + V2
my + ma my + me
- Mpall — Mtruck Vball + 2Miruck Vtrack
ball Mball + Meruck * Mball + Mtruck e
. (0.3 kg) — (4000 kg) 2(4000 kg)
= ~14
Uhall = (53 ke) 7 (4000 kg) C ™) * (0.3 ke) + (2000 kg) " m/s)
. (—3999.7 kg) (8000 kg)
= vl B el AR
Uhal = (20003 kg) "0 ™9 ¥ (40003 kg) 4 ™)
. (—3999.7 ke) (8000 kg)
g A 5B (14
vhat = 20003 kg) 0™/ ¥ (40003 ke 4 ™Y

'U’bau = —37.996 m/S

Tutor: What does the minus sign mean?

Student: It means that the ball bounces in the direction that the truck was originally going. Why is the
speed so much faster than before?

Tutor: A, it’s dangerous to throw a rubber ball at an oncoming truck. Look at the problem from the
truck’s point of view. What does the truck driver see?

Student: He sees a ball coming at him at, oh, 24 m/s.

Tutor: Yes, and how much does the ball change the truck’s momentum?

Student: None at all.

Tutor: If the truck puts a force on the ball, then the. ..

Student: ...ball puts a force on the truck, equal but opposite. The ball accelerates more because it has
less mass. The truck’s momentum must change, but not very much.

Tutor: Correct. So he sees the ball bounce off at about 24 m/s. If he’s coming at you at 14 m/s and he
thinks the ball is coming at you at 24 m/s, then what do you see?

Student: I see the ball coming at me at 38 m/s.

Tutor: Mathematically what we do is switch everything to the “center of mass” frame of reference. The
truck’s frame is almost the center of mass frame here. The idea here is the same one used to “slingshot”
space probes around planets to gain speed.
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EXAMPLE

A 0.85 kg ball on the end of a 35—cm—long string falls and hits a 0.56 kg block of putty. The block sticks to
the ball. What is the speed of the putty after it is hit by the ball?

Ve N
( 9

&y

Student: There’s a collision, so we need conservation of momentum. The putty and ball stick together,
so it’s not an elastic collision. Other than the forces that the ball and the putty put on each other, all other
forces are vertical, so I'm going to use horizontal momentum.

Py + Py; = Py + Poy

/
MballVball T MputtyUputty = (mball + mputty) Uball+putty

Tutor: All well and good. What is the velocity of the putty before the collision?
Student: It isn’t moving, so vputty = 0.

!
MpallVball + Mputty Uputty — (mball + mputty) Uball+putty

Tutor: What is the velocity of the ball before the collision?

Student: The problem doesn’t say. That means I have one equation but two unknowns.

Tutor: What do you know about the ball?

Student: It starts 35 cm high and falls in an arc until it hits the putty.

Tutor: How can we find the speed of the ball after it falls?

Student: Conservation of momentum, I assume?

Tutor: What are the forces on the ball?

Student: Gravity and tension.

Tutor: The tension force changes as the ball falls, both in magnitude and direction, and we need to know
the time it takes to fall.

Student: That looks hard.

Tutor: It is hard. How much work does the tension do?

Student: Work? I thought work was in the last chapter.

Tutor: It was, but we can still use it. We’re allowed to use all of the techniques we’ve learned. Just
because it’s the momentum chapter doesn’t mean that we can only use momentum.

Student: Okay, the work from the tension is zero because the tension is perpendicular to the motion.

K’Ebefore + PEbefore +W= KEafter + PEafter

1 1
§mbau(0)2 + Myangh = meau(v)2 + Mbanug(0)
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1
Mgmgh = 5111@1@)2

gR = —(vpan)?

N =

Vball = V/2gR = \/2(9.8 m/s%)(0.35 m) = 2.62 m/s

Tutor: Now you have the speed of the ball just before the collision.
Student: I’ll choose the direction of the ball as positive, stick this in the momentum equation, and solve
for the final velocity.

/
MballUball = (Mball + Mputty) Uball+putty

(0.85 kg)(2.62 m/s) = ((0.85 kg) + (0.56 kg)) Vhay11putty

(2.23 kg m/s) = (1.41 kg)'

g (2.23 kg m/s)

(141 kg) =1.58 m/s




Chapter 10

Rotation

Sometimes things move, but sometimes things rotate (and talented objects can do both at the same time).
Everything we’ve done so far also applies for rotation, using the same equations, but with different variables.

0 (Greek “theta”)  angular displacement
w (Greek “omega”) angular velocity
o (Greek “alpha”)  angular acceleration

MM 3 s es
A A A A A

I angular mass = moment of inertia
T (Greek “tau”) angular force = torque
L angular momentum

Every equation we’ve had will also have an angular equivalent. For example, force equals mass times
acceleration (F = ma), so angular force equals angular mass times angular acceleration (7 = Ia).

An object can have a velocity, which is the change in its position. It can have an acceleration, which is how
fast the velocity is changing. It can have an acceleration even if the velocity is zero: throw something (other
than this book) straight up, and at the instant that it is at its peak height the velocity is zero but changing,
so that there is an acceleration. We’ve done all this before.

It’s all true for rotation as well. An object can have an angular velocity, which is the change in its angular
position or angular displacement, or how fast it is spinning. It can have an angular acceleration, which is
how fast the angular velocity is changing — is the rotation speeding up or slowing down? It can have an
angular acceleration even if the angular velocity is zero. Roll a basketball or other round object up a ramp,
and at the instant that it is at its peak the angular velocity is zero but changing: it was rotating one way,
is not rotating now, and is about to rotate the other way. There is an angular acceleration.

If the acceleration was constant then we could solve a number of problems with a few short equations. We
could solve problems where the acceleration wasn’t constant, but that was harder. All of the equations we
used for constant acceleration work for constant angular acceleration as well — just replace the variable with
the angular equivalent. Just like constant acceleration, if we know any three of the five rotational variables,
then we can solve for the other two.

w—wy=at

A0 = wot + at?
Af =3 (wo+w)t
w? —wd =2a Al

v—1vg=at
Az = vot + Jat?

Az =% (vo+ )t
2

LLLl

v? —v2 =2a Az
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We could measure lengths in many different units, such as meters, inches, or miles. We can also measure
angles in many different units, with the most common being degrees, radians, or cycles. Once around is
one cycle, 360 degrees, or 27 radians. With lengths, it didn’t matter what unit we used, so long as we kept
track of the units. Sometimes it became necessary to use meters, because a newton is a kilogram meter per
second?. With angles, it doesn’t matter which unit we use, so long as we keep track of the units. Sometimes,
though, it becomes necessary to use radians (more on this later).

EXAMPLE

A turntable starting from rest rotates 5 times while accelerating to 48 rpm (rotations per minute). What is
the angular acceleration of the turntable, in radians/sec??

Tutor: What is happening here?

Student: Constant angular acceleration.

Tutor: How do we solve constant acceleration problems?

Student: If we know three of the five variables, we can solve for the other two.
Tutor: Start by writing down the five variables.

Ar — A =
V9 — Wwo =
v - w =

a — « =

t — t =

Tutor: What is the angular displacement A8?

Student: 5 rotations, or cycles. Do I need to convert that to radians?

Tutor: Not necessarily. Let’s keep it and see what happens. What is the initial angular velocity?
Student: It starts at rest, so zero.

Tutor: What is the final angular velocity?

Student: 48 cycles per minute. We know three, so we can solve.

Tutor: Is it positive 48 or negative 48?7

Student: Uh-oh, we didn’t choose an axis. We have to do that even in rotation?

Tutor: Yes. Typically we use clockwise or counterclockwise as positive. The problem doesn’t say, so the
question here is whether the final angular velocity is in the same direction as the angular displacement, and
has the same sign.

Student: It has to be in the same direction, so w is positive.

Tutor: More precisely, it has the same sign as Af.

Az — A6 = 5 rotations
v — wyg = 0
v — w = 48rot/min
a — = 7
t — t =

Tutor: We want to find the angular acceleration, of course. Do we know the time?
Student: No, but that’s okay. We don’t care about the time, so we choose the equation that doesn’t
include the time.

v2 — v} =2a Az — W — Wi =20 AG
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_ot-uf
*~ 20
__ (48 rot/min)? — (0)?
2(5 rot)

a = 230 rot/min?

Student: We wanted the angular acceleration in radians/sec?.
Tutor: So now we have to convert.
Student: Okay. There are 27 radians in a rotation, and 60 seconds in a minute.

rot 27 rad 1 min ) 2
“= (230 min2) ( 1 rot ) ( 60 s )

a = 0.40 rad/s?

Tutor: Should the angular acceleration be positive?
Student: It should be in the same direction as the angular displacement, so it should have the same sign.

Sometimes we need to connect the angular motion with the linear motion. Imagine, for example, that we
put a small drop of paint on the wheel before it rotates. We might then ask the question “how fast is the
drop of paint moving?” Note that the velocity of the paint is constantly changing, because its direction is
changing, but if the angular velocity is constant then the speed of the paint drop is also constant.

The further out from the pivot point (or axle) the paint is, the further it must move in each rotation, and
the faster we expect it to move. Since the distance covered is 27 R for each rotation, the speed is

v = 27 R X (rotations per second)

By choosing the unit for angles to be 27 radians per rotation, this becomes:

Az = R A6
v=Ruw
a=Ra

If we had chosen some other unit for measuring angles, then the above formulas would need to include an
extra constant; by using radians we get beautiful, simple formulas. This means that we must use radians
whenever we use one of the formulas above. Sometimes we use one of them without knowing it, so the
general rule is that we use radians whenever there is a length in the problem — any length.

EXAMPLE

A 42-cm—diameter wheel is rotating with an angular speed of 120 rpm. It is slowing with an angular
deceleration of 52 rad/s2. What is the (linear) acceleration of a point on the edge of the wheel?

Tutor: What is happening in this problem?

Student: The point is moving in a circle. When something moves in a circle, there is an acceleration v2 /7.
Tutor: But above we saw that a = ra.

Student: Yes, that must mean that the two are equal, so v2/r = ra, right?

Tutor: But if something moves in a circle at a constant speed, « is zero. Then the acceleration is zero,
even though the velocity is changing?

Student: That can’t be right. What’s going on?

Tutor: As the wheel turns, a point on the edge moves. If the wheel turns faster, then point on the edge
has to move faster. As the rotation accelerates, the point accelerates. This acceleration is in the direction
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of the motion of the point, or tangent to the circle. The acceleration a = v%/r was toward the center and
made the point go in a circle. The acceleration a = ra makes the point go in a circle faster.

Student: So the two are perpendicular to each other?

Tutor: Yes, always.

9>

Student: If they are perpendicular to each other, how can they cancel out?

Tutor: They don’t. Whenever the wheel is turning, the point on the edge has v?/r. If the rotation rate is
changing, so that the wheel spins faster or slower, then the point on the edge has ra as well.

Student: And to find the total acceleration we have to add them.

Tutor: Remember to add them as vectors.

Student: I see you've draw the coordinate axes. Why not x and y, and why can’t the one be in so that
the acceleration is positive?

Tutor: Because the point is moving, we rotate the axes so that one of them points along the radius. We
call this the “radial” direction, and it is traditional to point it outward, in the radial direction. The other
axis is tangent to the circle, and is traditionally called ¢ or sometimes 6.

Student: Okay. The “radial” acceleration is inward, so it’s negative.

2

Tutor: We can substitute v = rw.

2
.
( ‘:) =

aR = —

Student: That’s easier, because we have w.

ap = — ((21 cm) ( - ololzm» ((300 rot/min) (2;:;(1) (16,31:1))2

ar = —33 m/s?

Student: Now we can do the “tangential” acceleration.

at = Ra
ar = (0.21 m) (52 rad/s?)

ar =11 m/s?
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Tutor: We can express the acceleration vector using unit vectors.

a= awE + aTQA5
@ = (—33 m/s%)7 + (11 m/s2)¢
Student: The radial and tangential parts are perpendicular to each other. To find the magnitude of the
vector I use the Pythagorean theorem.

@l = /(=33 m/s?)2 + (11 m/s?)?
|@| = 35 m/s?

The angular equivalent of force is angular force, called torque. Try opening a door by pushing near the hinge
rather than at the handle. You will find that the door does not open as easily or quickly, or perhaps even at
all. The further away from the pivot point the force is applied the greater the torque.

The torque a force creates is equal to the force times the moment arm times the sine of the angle between
them:
7= FRsin¢

The “moment arm” is the line from the pivot point to the spot where the force is applied. If the force is
parallel or antiparallel to the moment arm, it does not cause the object to spin and the torque is zero. There
are variations on this method, and we’ll explore them in the example below.

Torques can be positive or negative. Like velocities and accelerations, we get to pick the positive direction
and a negative torque is one in the other direction. Once we choose the positive direction we need to
stick with that direction for the whole problem. Physicists usually choose counterclockwise as the positive
direction, but it’s not necessary to do that.

y Axis Axis
Thin rod about Ty Thin
‘ axis through center spherical shell
% Hoop about \ perpendicular to about any
central axis _// ' length OR diameter
/ 2
Le
I= MR? I=5MIL2 I=21MR?
V Axis Axis
Slab about | _ Solid sphere
: perpendicular " ab.out any
fE" , axis through : diameter
i ' _‘?,r.é&‘* | center
Solid cylinder @ 0 :
R cy ¢
' \/ (or disk) about —a— | "
central axis

I={MR? I=5M(a? +b?) | I=3MR?
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EXAMPLE

Find the total torque applied to the shape around the pivot point.

Student: How do we do torques?

Tutor: We find each torque, and add them like we would forces.

Student: Does that mean we need to find the components of each torque?

Tutor: In advanced problems that is needed, but for most problems we just have clockwise and counter-
clockwise. What is the torque that the 9 N force creates around the pivot point?

Student: There is a force of 9 N, it is applied 5 m from the pivot point, and there is a right angle between
them.

7= FRsin¢ = (9 N)(5 m)sin90° = 45 N-m

Tutor: Is that torque in the clockwise or counterclockwise direction?

Student: How do I tell?

Tutor: Start at the force arrow and trace a circle that goes around the pivot point. Do you trace in the
clockwise or counterclockwise direction?

Student: Counterclockwise.

Tutor: And is it a positive or a negative torque?

Student: I need to choose a positive direction. I’ll pick counterclockwise as positive, so the 45 N-m is
positive.

Tutor: Good. What is the torque created by the 7 N force?

Student: There is a 35° angle between the 3 m “moment arm” and the force, so

7 =FRsing = (7 N)(3 m)sin35° = 12 N-m

Student: If I start in the direction of the 7 N force arrow and go around the pivot point, I go clockwise,
so it’s a negative 12 N torque.

Tutor: What is the torque created by the 4 N force?

Student: The angle is 0°, so

7=FRsin¢ = (4 N)(2m)sin0° =0 N-m

Student: How can a force create no torque?
Tutor: If the 4 N force was the only force on the object, would it rotate around the pivot point?
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Student: I guess it wouldn’t.

Tutor: Right. It’s like pulling a door outward from the hinges — it doesn’t rotate. What about the 8 N
force?

Student: The moment arm is 6 m, but there is no angle.

Tutor: The torque is the moment arm times the part of the force that is perpendicular to the moment
arm. Or, the torque is the force times the part of the moment arm that is perpendicular to the force. Look
at the 5 m line.

Student: So the 5 m line is the part of the 6 m line that is perpendicular to the 8 N force?

Tutor: Yes, the line from the pivot point that is perpendicular to the line of the force.

Student: So the torque is

7= F(Rsing) = FR; = (8 N)(5 m) =40 N-m

Student: And it goes clockwise, so it’s —40 N-m. Is it okay to write mN for meter-newtons, or do we have
to use N-m for Newton-meters?

Tutor: The problem with mN is that it could mean a force of a milli-newton. What is the torque from the
force that is 4 m away from the pivot?

Student: We need the part of the force that is perpendicular to the moment arm, so

T=FRsing=F;  R=(5N)(4 m) =20 N-m

Student: And it goes clockwise, so it’s —20 N-m.
Tutor: What is the total torque about the pivot point?
Student: We just add the torques, so

7T=45Nm—-12N-m+0Nm—40 NNm — 20 N-m = —27 N-m

Just as Newton’s second law says F' = ma, so the same equation holds with the angular equivalents: 7 = Ia or
angular force equals angular mass times angular acceleration. The angular mass is called moment of inertia,
a combination of moment arm and inertia. The moment of inertia is equal to

2
I= E m;T;
i

We divide the object into tiny little pieces, then for each piece multiply its mass times the square of how far
from the pivot point it is, then add all of those together. We need to use lots of tiny pieces so that each piece
is all the same distance from the pivot point. Fortunately, many common shapes have simple moments of
inertia, and it’s much easier to look them up than to figure them out every time. See the table for common
shapes.

Sometimes you might want to rotate one of these objects about a point other than the center. The moment
of inertia of a circle (or disk) about its center is I = M R?, but what if it rotates about a point on its edge
rather than its center? The parallel axis theorem tells us that

I=1Icy + Md?

or the moment of inertia about any point on an object is equal to the moment of inertia about its center of
mass plus its mass times the distance the pivot point is from the center of mass. So a disk rotated about a
point on its edge would have a moment of inertia of I = Icm + Md? = {MR? + MR? = $MR2.
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EXAMPLE

I
A boy leaving a store pushes on the door handle with a force of 18 N. The door is 0.78 m wide and has a

mass of 7.2 kg. The boy pushes perpendicular to the surface of the door. How long does it take for the door
to open (rotate to 90°)?

Tutor: If this were linear motion instead of rotation, how would you approach it?

Student: If I can find the acceleration, I can do a constant acceleration problem to find the velocity. To
find the acceleration, I need the force and the mass.

Tutor: Good, but with rotation. ..

Student: To find the angular acceleration, I need the angular force (torque) and the angular mass (moment
of inertia).

Tutor: What is the torque?

Student: There is only one force, and it is applied at a right angle at the edge, so

T=FRsing =F, R= (18 N)(0.78 m) = 14 N-m

Tutor: There are other forces, from gravity and from the pivot itself. The force from the pivot occurs at
the pivot point, so the moment arm is zero. Gravity doesn’t cause the door to open or close.

Student: So the other forces don’t create any torque. Do I need a positive direction?

Tutor: Since everything is happening in the same direction, we can call that positive and not worry about
it any more. If there was another torque, like friction at the pivot, then we would have to be careful about
direction.

Student: From above the door looks like a rod, so the moment of inertia is

1
12
Tutor: That would be the moment of inertia if the door was being rotated about the center of the door,
but it is being rotated about the edge.

Student: So I need the parallel axis thingee.

Tioor = —ML? = 1—12(7.2 kg)(0.78 m)? = 0.468 kg m? 7

I=1Icm+ Md?
1 1
I= ﬁML2 +M(L/2)* = gML2

Tioor = %ML2 = %(7.2 kg)(0.78 m)? = 1.46 kg m?

Student: Now I can find the angular acceleration.

7= I«

T 14 N-m o
T = m =9.59 rad/s

Q=
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Student: I see that the kg and the m? cancelled the same units in the numerator, and that the seconds
squared came from the newtons, but where did radians come from?

Tutor: Radians aren’t really a unit, not like other units. We can insert them and remove them at will.
We can’t do this with degrees or revolutions, because radians are assumed so that v = rw works. It’s really
just a word used to remind us but not really a unit.

Student: Okay. Now I have the angular acceleration and I can do the constant angular velocity problem.
Tutor: Write down the five variables and identify the ones you know.

Student: Angular displacement is 90°, initial angular velocity wy is zero, and we have the angular accel-
eration.

Tutor: The angular acceleration is in radians, so you’ll want the angular displacement in radians. That’s
why we use the word even though it isn’t a unit.

Student: 90° is one-fourth of a revolution, so it’s %w radians.

Az — A0 = 7/2
Vo — Wo = 0
v oo w =
a — a = 959rad/s?
t — t = 7

Af = wot + %at2
(z rad) = (0)t + % (9.59 rad/s?) t*

. 7 rad
|/ 9.59 rad/s?

t=0.57s

EXAMPLE

In an Atwood’s machine, two masses of 4 kg and 7 kg hang over a 6 kg pulley. The radius of the pulley is
0.4 m. The 7 kg mass starts 2 m above the ground. What is its speed as it hits the ground?

Tutor: How are you going to attack this?

Student: Find the torque, find the moment of inertia, find the angular acceleration, and solve the constant
velocity problem.

Tutor: You could do that. The difficulty is that we don’t know the tensions, and we’d need to write a
Newton’s second law equation for each mass. Remember that we did this before, and had two equations.
We could do the same thing, but now the tensions aren’t the same and we need a third equation for the
rotation of the pulley.

Student: That sounds like a lot of work.

Tutor: We could do it. The pulley equation is something like

Tl =Tl — (%mRi’) @

o3

Student: It sounds like you think there’s an easier way. After we did forces, we did energy. Energy
techniques work well when the acceleration is not constant and when we don’t care about the time. We
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don’t care about the time here, so let’s try energy.

KEi+PEi+W=KEf+PEf

Tutor: What is the initial kinetic energy?

Student: Nothing is moving, so zero.

Tutor: What is the initial potential energy?

Student: TI'll take the starting point as height equals zero, so no potential energy.

Tutor: The two masses might not start at the same height, so you have a different h = 0 spot for the two
masses.

Student: I can handle that. For each mass, when I find the final potential energy, I measure compared to
where it started. The 4 kg mass moves up 2 m, and the 7 kg mass moves down 2 m.

0 0
KE+ PE'+ W = KEj + (mag(+2 m) + mrg(—2 m))
Tutor: What is the kinetic energy?
Student: Both of the masses are moving, so I need $mv? for each of them.
Tutor: The pulley is also rotating, so you need the kinetic energy of rotation. It takes energy to rotate
something, just like it takes energy to move it.
Student: So %m’u2 becomes %Iuﬂ.

2 2 2

Tutor: When the 7 kg mass hits the ground, are the two masses going the same speed?

Student: Yes. If they weren’t, the rope length would change.

Tutor: Good. How fast is the pulley rotating?

Student: Can I use v = Rw?

Tutor: If the rope is not slipping over the pulley, then the speed of a point on the edge of the pulley is the
same as the speed of the rope.

W = (lmw? + lm7'v2 + llw2) + (mq —m7)g(2 m)

(Lo 4 ot 1 (o 22 (2 5o —
W= (Gt + g+ 3 (3o (5)") + (4 = mr)g(z m

Student: Look, the radius cancels.

1 1 1
W = (57714'02 + §Tn7v2 + Zmpv2> + (m4 — m7)g(2 m)

1 1
W = 5 <m4 +mq + imp> v+ (m4 —m7)g(2 m)

Student: Now we need to find the work done by forces other than gravity.

Tutor: There are the tensions in the rope.

Student: Consider the tension in the rope attached to the 7 kg mass. It holds back on the mass, doing
negative work, and pulls on the pulley, doing positive work.

Tutor: And since the forces are the same, and the distances are the same, the total work is zero.
Student: There’s also a force at the pivot, holding the pulley up, and gravity on the pulley, but the
moment arm for these forces is zero.

04 1 -
W= 2 (m4 +my + 5’%) v + (m4 — mz)g(2 m)

1 1
3 <m4 +m7 + §mp> v? = —(myg — m7)g(2 m)

o wz(m‘;—m?)g(z m) _ \/—2(—3 kg)( 08 m/s”)(2m) _, g

('m.4 +my7 + %mp) (4 + 7+ % . 6) kg




Chapter 11

Rolling, Torque, and Angular
Momentum

This chapter is about angular momentum. But first an example of rolling motion.

EXAMPLE

A 7.0 kg bowling ball rolls without slipping down a ramp. The ramp is 1.4 m high and 9.6 m long. How fast
is the bowling ball moving when it reaches the bottom of the ramp?

A
|

.Y
$

Student: We don’t care about the time, so I'll try energy.
Tutor: Energy looks especially promising because we want the speed at the end of the ramp, and speed
connects directly to kinetic energy.

KEi+PEi+W=KEf+PEf

Student: The ball isn’t moving at the top, so the initial kinetic energy is zero. I'll choose the bottom as
h = 0, so the final potential energy is zero. The initial potential energy is mgh.

0 0
KE+mgh+W = KE; + PEf
Tutor: What is the final kinetic energy?
Student: Ah, we had this in the last chapter. It has mv? but it also has 2Jw?.

1 1
mgh+ W = Emv2 + §Ia.)2

92
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Tutor: What is the moment of inertia I7

Student: The bowling ball is a solid sphere, so we look in the table and I = %mRZ.

Tutor: What is the angular velocity w?

Student: Is this where we use v = Rw? The point on the edge is moving around the center of the bowling
ball at the same speed that the bowling ball is moving down the ramp?

Tutor: As long as the bowling ball rolls without slipping, this is true.

Lo (o) (2
mgh+W—2mv +2<5mR>(R)

1 1
mgh+ W = §mv2 + 5"“’2

Student: Now we need to find the work done by forces other than gravity.

Tutor: What other forces are there?

Student: The bowling ball is in contact with the ramp, so there is a normal force from the surface. If
there’s a normal force, there could be a friction force.

Tutor: If there was no friction force, there would be no torque, and the bowling ball wouldn’t roll. Is it
static or kinetic friction?

Student: The ball isn’t sliding, so it must be static friction.

Tutor: Yes. How large is the friction force?

Student: Is it the limiting case where F' = uN?

Tutor: No, so we don’t know how large the friction force is. Does the friction force do any work?
Student: The normal force doesn’t do any work because it is perpendicular to the motion. I'm not sure
about the friction force.

Tutor: It may seem strange, but because there is no sliding, there is no displacement at the friction force,
so the friction force doesn’t do any work. Or, does the bowling ball heat up as it rolls, no, only if it slides,
so no mechanical energy is being turned into thermal energy by friction.

Student: If the work is zero, then we can solve the equation.

wigh = s36? + L

v=4/—=gh= (9.8 m/s?)(1.4 m) = 4.4 m/s

10 10
7 7
Tutor: Did you notice how both m and R cancel from the equation? It doesn’t matter what the size or
mass of the ball is, it will have the same speed when it gets to the bottom. But if we used a hollow sphere
or a tube instead of a solid sphere, the 2/5 would have been something else, and we would have gotten a
different result.

Student: So a bowling ball and a Ping-Pong ball have different speeds at the bottom, not because the
Ping-Pong ball is smaller or lighter, but because it is hollow?

Tutor: Correct. Of course, air resistance would also play a part, but we’ve conveniently ignored it.
Student: Again. Could we do this problem using forces?

Tutor: Yes. We would need to find all of the forces. Then we would have to write the Newton’s second
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